Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (C) 1995  Linus Torvalds
   3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   4 *
   5 *   This program is free software; you can redistribute it and/or
   6 *   modify it under the terms of the GNU General Public License
   7 *   as published by the Free Software Foundation, version 2.
   8 *
   9 *   This program is distributed in the hope that it will be useful, but
  10 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *   NON INFRINGEMENT.  See the GNU General Public License for
  13 *   more details.
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/hugetlb.h>
  27#include <linux/swap.h>
  28#include <linux/smp.h>
  29#include <linux/init.h>
  30#include <linux/highmem.h>
  31#include <linux/pagemap.h>
  32#include <linux/poison.h>
  33#include <linux/bootmem.h>
  34#include <linux/slab.h>
  35#include <linux/proc_fs.h>
  36#include <linux/efi.h>
  37#include <linux/memory_hotplug.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/processor.h>
  41#include <asm/pgtable.h>
  42#include <asm/pgalloc.h>
  43#include <asm/dma.h>
  44#include <asm/fixmap.h>
  45#include <asm/tlb.h>
  46#include <asm/tlbflush.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/homecache.h>
  50#include <hv/hypervisor.h>
  51#include <arch/chip.h>
  52
  53#include "migrate.h"
  54
  55#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  56
  57#ifndef __tilegx__
  58unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  59EXPORT_SYMBOL(VMALLOC_RESERVE);
  60#endif
  61
  62/* Create an L2 page table */
  63static pte_t * __init alloc_pte(void)
  64{
  65	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  66}
  67
  68/*
  69 * L2 page tables per controller.  We allocate these all at once from
  70 * the bootmem allocator and store them here.  This saves on kernel L2
  71 * page table memory, compared to allocating a full 64K page per L2
  72 * page table, and also means that in cases where we use huge pages,
  73 * we are guaranteed to later be able to shatter those huge pages and
  74 * switch to using these page tables instead, without requiring
  75 * further allocation.  Each l2_ptes[] entry points to the first page
  76 * table for the first hugepage-size piece of memory on the
  77 * controller; other page tables are just indexed directly, i.e. the
  78 * L2 page tables are contiguous in memory for each controller.
  79 */
  80static pte_t *l2_ptes[MAX_NUMNODES];
  81static int num_l2_ptes[MAX_NUMNODES];
  82
  83static void init_prealloc_ptes(int node, int pages)
  84{
  85	BUG_ON(pages & (PTRS_PER_PTE - 1));
  86	if (pages) {
  87		num_l2_ptes[node] = pages;
  88		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  89						HV_PAGE_TABLE_ALIGN, 0);
  90	}
  91}
  92
  93pte_t *get_prealloc_pte(unsigned long pfn)
  94{
  95	int node = pfn_to_nid(pfn);
  96	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  97	BUG_ON(node >= MAX_NUMNODES);
  98	BUG_ON(pfn >= num_l2_ptes[node]);
  99	return &l2_ptes[node][pfn];
 100}
 101
 102/*
 103 * What caching do we expect pages from the heap to have when
 104 * they are allocated during bootup?  (Once we've installed the
 105 * "real" swapper_pg_dir.)
 106 */
 107static int initial_heap_home(void)
 108{
 109#if CHIP_HAS_CBOX_HOME_MAP()
 110	if (hash_default)
 111		return PAGE_HOME_HASH;
 112#endif
 113	return smp_processor_id();
 114}
 115
 116/*
 117 * Place a pointer to an L2 page table in a middle page
 118 * directory entry.
 119 */
 120static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
 121{
 122	phys_addr_t pa = __pa(page_table);
 123	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
 124	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
 125	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
 126	pteval = pte_set_home(pteval, initial_heap_home());
 127	*(pte_t *)pmd = pteval;
 128	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
 129		BUG();
 130}
 131
 132#ifdef __tilegx__
 133
 134static inline pmd_t *alloc_pmd(void)
 135{
 136	return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
 137}
 138
 139static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
 140{
 141	assign_pte((pmd_t *)pud, (pte_t *)pmd);
 142}
 143
 144#endif /* __tilegx__ */
 145
 146/* Replace the given pmd with a full PTE table. */
 147void __init shatter_pmd(pmd_t *pmd)
 148{
 149	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
 150	assign_pte(pmd, pte);
 151}
 152
 153#ifdef CONFIG_HIGHMEM
 154/*
 155 * This function initializes a certain range of kernel virtual memory
 156 * with new bootmem page tables, everywhere page tables are missing in
 157 * the given range.
 158 */
 159
 160/*
 161 * NOTE: The pagetables are allocated contiguous on the physical space
 162 * so we can cache the place of the first one and move around without
 163 * checking the pgd every time.
 164 */
 165static void __init page_table_range_init(unsigned long start,
 166					 unsigned long end, pgd_t *pgd_base)
 167{
 168	pgd_t *pgd;
 169	int pgd_idx;
 170	unsigned long vaddr;
 171
 172	vaddr = start;
 173	pgd_idx = pgd_index(vaddr);
 174	pgd = pgd_base + pgd_idx;
 175
 176	for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
 177		pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
 178		if (pmd_none(*pmd))
 179			assign_pte(pmd, alloc_pte());
 180		vaddr += PMD_SIZE;
 181	}
 182}
 183#endif /* CONFIG_HIGHMEM */
 184
 185
 186#if CHIP_HAS_CBOX_HOME_MAP()
 187
 188static int __initdata ktext_hash = 1;  /* .text pages */
 189static int __initdata kdata_hash = 1;  /* .data and .bss pages */
 190int __write_once hash_default = 1;     /* kernel allocator pages */
 191EXPORT_SYMBOL(hash_default);
 192int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
 193#endif /* CHIP_HAS_CBOX_HOME_MAP */
 194
 195/*
 196 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 197 * is available, this is only relevant if kcache_hash sets up the
 198 * .data and .bss to be page-homed, and we don't want the default mode
 199 * of using the full set of kernel cpus for the striping.
 200 */
 201static __initdata struct cpumask kdata_mask;
 202static __initdata int kdata_arg_seen;
 203
 204int __write_once kdata_huge;       /* if no homecaching, small pages */
 205
 206
 207/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
 208static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
 209{
 210	prot = pte_set_home(prot, home);
 211#if CHIP_HAS_CBOX_HOME_MAP()
 212	if (home == PAGE_HOME_IMMUTABLE) {
 213		if (ktext_hash)
 214			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
 215		else
 216			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
 217	}
 218#endif
 219	return prot;
 220}
 221
 222/*
 223 * For a given kernel data VA, how should it be cached?
 224 * We return the complete pgprot_t with caching bits set.
 225 */
 226static pgprot_t __init init_pgprot(ulong address)
 227{
 228	int cpu;
 229	unsigned long page;
 230	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
 231
 232#if CHIP_HAS_CBOX_HOME_MAP()
 233	/* For kdata=huge, everything is just hash-for-home. */
 234	if (kdata_huge)
 235		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 236#endif
 237
 238	/* We map the aliased pages of permanent text inaccessible. */
 239	if (address < (ulong) _sinittext - CODE_DELTA)
 240		return PAGE_NONE;
 241
 242	/*
 243	 * We map read-only data non-coherent for performance.  We could
 244	 * use neighborhood caching on TILE64, but it's not clear it's a win.
 245	 */
 246	if ((address >= (ulong) __start_rodata &&
 247	     address < (ulong) __end_rodata) ||
 248	    address == (ulong) empty_zero_page) {
 249		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
 250	}
 251
 252#ifndef __tilegx__
 253#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
 254	/* Force the atomic_locks[] array page to be hash-for-home. */
 255	if (address == (ulong) atomic_locks)
 256		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 257#endif
 258#endif
 259
 260	/*
 261	 * Everything else that isn't data or bss is heap, so mark it
 262	 * with the initial heap home (hash-for-home, or this cpu).  This
 263	 * includes any addresses after the loaded image and any address before
 264	 * _einitdata, since we already captured the case of text before
 265	 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
 266	 *
 267	 * All the LOWMEM pages that we mark this way will get their
 268	 * struct page homecache properly marked later, in set_page_homes().
 269	 * The HIGHMEM pages we leave with a default zero for their
 270	 * homes, but with a zero free_time we don't have to actually
 271	 * do a flush action the first time we use them, either.
 272	 */
 273	if (address >= (ulong) _end || address < (ulong) _einitdata)
 274		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 275
 276#if CHIP_HAS_CBOX_HOME_MAP()
 277	/* Use hash-for-home if requested for data/bss. */
 278	if (kdata_hash)
 279		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 280#endif
 281
 282	/*
 283	 * Make the w1data homed like heap to start with, to avoid
 284	 * making it part of the page-striped data area when we're just
 285	 * going to convert it to read-only soon anyway.
 286	 */
 287	if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
 288		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 289
 290	/*
 291	 * Otherwise we just hand out consecutive cpus.  To avoid
 292	 * requiring this function to hold state, we just walk forward from
 293	 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
 294	 * the requested address, while walking cpu home around kdata_mask.
 295	 * This is typically no more than a dozen or so iterations.
 296	 */
 297	page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
 298	BUG_ON(address < page || address >= (ulong)_end);
 299	cpu = cpumask_first(&kdata_mask);
 300	for (; page < address; page += PAGE_SIZE) {
 301		if (page >= (ulong)&init_thread_union &&
 302		    page < (ulong)&init_thread_union + THREAD_SIZE)
 303			continue;
 304		if (page == (ulong)empty_zero_page)
 305			continue;
 306#ifndef __tilegx__
 307#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
 308		if (page == (ulong)atomic_locks)
 309			continue;
 310#endif
 311#endif
 312		cpu = cpumask_next(cpu, &kdata_mask);
 313		if (cpu == NR_CPUS)
 314			cpu = cpumask_first(&kdata_mask);
 315	}
 316	return construct_pgprot(PAGE_KERNEL, cpu);
 317}
 318
 319/*
 320 * This function sets up how we cache the kernel text.  If we have
 321 * hash-for-home support, normally that is used instead (see the
 322 * kcache_hash boot flag for more information).  But if we end up
 323 * using a page-based caching technique, this option sets up the
 324 * details of that.  In addition, the "ktext=nocache" option may
 325 * always be used to disable local caching of text pages, if desired.
 326 */
 327
 328static int __initdata ktext_arg_seen;
 329static int __initdata ktext_small;
 330static int __initdata ktext_local;
 331static int __initdata ktext_all;
 332static int __initdata ktext_nondataplane;
 333static int __initdata ktext_nocache;
 334static struct cpumask __initdata ktext_mask;
 335
 336static int __init setup_ktext(char *str)
 337{
 338	if (str == NULL)
 339		return -EINVAL;
 340
 341	/* If you have a leading "nocache", turn off ktext caching */
 342	if (strncmp(str, "nocache", 7) == 0) {
 343		ktext_nocache = 1;
 344		pr_info("ktext: disabling local caching of kernel text\n");
 345		str += 7;
 346		if (*str == ',')
 347			++str;
 348		if (*str == '\0')
 349			return 0;
 350	}
 351
 352	ktext_arg_seen = 1;
 353
 354	/* Default setting on Tile64: use a huge page */
 355	if (strcmp(str, "huge") == 0)
 356		pr_info("ktext: using one huge locally cached page\n");
 357
 358	/* Pay TLB cost but get no cache benefit: cache small pages locally */
 359	else if (strcmp(str, "local") == 0) {
 360		ktext_small = 1;
 361		ktext_local = 1;
 362		pr_info("ktext: using small pages with local caching\n");
 363	}
 364
 365	/* Neighborhood cache ktext pages on all cpus. */
 366	else if (strcmp(str, "all") == 0) {
 367		ktext_small = 1;
 368		ktext_all = 1;
 369		pr_info("ktext: using maximal caching neighborhood\n");
 370	}
 371
 372
 373	/* Neighborhood ktext pages on specified mask */
 374	else if (cpulist_parse(str, &ktext_mask) == 0) {
 375		char buf[NR_CPUS * 5];
 376		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
 377		if (cpumask_weight(&ktext_mask) > 1) {
 378			ktext_small = 1;
 379			pr_info("ktext: using caching neighborhood %s "
 380			       "with small pages\n", buf);
 381		} else {
 382			pr_info("ktext: caching on cpu %s with one huge page\n",
 383			       buf);
 384		}
 385	}
 386
 387	else if (*str)
 388		return -EINVAL;
 389
 390	return 0;
 391}
 392
 393early_param("ktext", setup_ktext);
 394
 395
 396static inline pgprot_t ktext_set_nocache(pgprot_t prot)
 397{
 398	if (!ktext_nocache)
 399		prot = hv_pte_set_nc(prot);
 400#if CHIP_HAS_NC_AND_NOALLOC_BITS()
 401	else
 402		prot = hv_pte_set_no_alloc_l2(prot);
 403#endif
 404	return prot;
 405}
 406
 407#ifndef __tilegx__
 408static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 409{
 410	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
 411}
 412#else
 413static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 414{
 415	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
 416	if (pud_none(*pud))
 417		assign_pmd(pud, alloc_pmd());
 418	return pmd_offset(pud, va);
 419}
 420#endif
 421
 422/* Temporary page table we use for staging. */
 423static pgd_t pgtables[PTRS_PER_PGD]
 424 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
 425
 426/*
 427 * This maps the physical memory to kernel virtual address space, a total
 428 * of max_low_pfn pages, by creating page tables starting from address
 429 * PAGE_OFFSET.
 430 *
 431 * This routine transitions us from using a set of compiled-in large
 432 * pages to using some more precise caching, including removing access
 433 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 434 * marking read-only data as locally cacheable, striping the remaining
 435 * .data and .bss across all the available tiles, and removing access
 436 * to pages above the top of RAM (thus ensuring a page fault from a bad
 437 * virtual address rather than a hypervisor shoot down for accessing
 438 * memory outside the assigned limits).
 439 */
 440static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
 441{
 442	unsigned long long irqmask;
 443	unsigned long address, pfn;
 444	pmd_t *pmd;
 445	pte_t *pte;
 446	int pte_ofs;
 447	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
 448	struct cpumask kstripe_mask;
 449	int rc, i;
 450
 451#if CHIP_HAS_CBOX_HOME_MAP()
 452	if (ktext_arg_seen && ktext_hash) {
 453		pr_warning("warning: \"ktext\" boot argument ignored"
 454			   " if \"kcache_hash\" sets up text hash-for-home\n");
 455		ktext_small = 0;
 456	}
 457
 458	if (kdata_arg_seen && kdata_hash) {
 459		pr_warning("warning: \"kdata\" boot argument ignored"
 460			   " if \"kcache_hash\" sets up data hash-for-home\n");
 461	}
 462
 463	if (kdata_huge && !hash_default) {
 464		pr_warning("warning: disabling \"kdata=huge\"; requires"
 465			  " kcache_hash=all or =allbutstack\n");
 466		kdata_huge = 0;
 467	}
 468#endif
 469
 470	/*
 471	 * Set up a mask for cpus to use for kernel striping.
 472	 * This is normally all cpus, but minus dataplane cpus if any.
 473	 * If the dataplane covers the whole chip, we stripe over
 474	 * the whole chip too.
 475	 */
 476	cpumask_copy(&kstripe_mask, cpu_possible_mask);
 477	if (!kdata_arg_seen)
 478		kdata_mask = kstripe_mask;
 479
 480	/* Allocate and fill in L2 page tables */
 481	for (i = 0; i < MAX_NUMNODES; ++i) {
 482#ifdef CONFIG_HIGHMEM
 483		unsigned long end_pfn = node_lowmem_end_pfn[i];
 484#else
 485		unsigned long end_pfn = node_end_pfn[i];
 486#endif
 487		unsigned long end_huge_pfn = 0;
 488
 489		/* Pre-shatter the last huge page to allow per-cpu pages. */
 490		if (kdata_huge)
 491			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
 492
 493		pfn = node_start_pfn[i];
 494
 495		/* Allocate enough memory to hold L2 page tables for node. */
 496		init_prealloc_ptes(i, end_pfn - pfn);
 497
 498		address = (unsigned long) pfn_to_kaddr(pfn);
 499		while (pfn < end_pfn) {
 500			BUG_ON(address & (HPAGE_SIZE-1));
 501			pmd = get_pmd(pgtables, address);
 502			pte = get_prealloc_pte(pfn);
 503			if (pfn < end_huge_pfn) {
 504				pgprot_t prot = init_pgprot(address);
 505				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
 506				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 507				     pfn++, pte_ofs++, address += PAGE_SIZE)
 508					pte[pte_ofs] = pfn_pte(pfn, prot);
 509			} else {
 510				if (kdata_huge)
 511					printk(KERN_DEBUG "pre-shattered huge"
 512					       " page at %#lx\n", address);
 513				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 514				     pfn++, pte_ofs++, address += PAGE_SIZE) {
 515					pgprot_t prot = init_pgprot(address);
 516					pte[pte_ofs] = pfn_pte(pfn, prot);
 517				}
 518				assign_pte(pmd, pte);
 519			}
 520		}
 521	}
 522
 523	/*
 524	 * Set or check ktext_map now that we have cpu_possible_mask
 525	 * and kstripe_mask to work with.
 526	 */
 527	if (ktext_all)
 528		cpumask_copy(&ktext_mask, cpu_possible_mask);
 529	else if (ktext_nondataplane)
 530		ktext_mask = kstripe_mask;
 531	else if (!cpumask_empty(&ktext_mask)) {
 532		/* Sanity-check any mask that was requested */
 533		struct cpumask bad;
 534		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
 535		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
 536		if (!cpumask_empty(&bad)) {
 537			char buf[NR_CPUS * 5];
 538			cpulist_scnprintf(buf, sizeof(buf), &bad);
 539			pr_info("ktext: not using unavailable cpus %s\n", buf);
 540		}
 541		if (cpumask_empty(&ktext_mask)) {
 542			pr_warning("ktext: no valid cpus; caching on %d.\n",
 543				   smp_processor_id());
 544			cpumask_copy(&ktext_mask,
 545				     cpumask_of(smp_processor_id()));
 546		}
 547	}
 548
 549	address = MEM_SV_INTRPT;
 550	pmd = get_pmd(pgtables, address);
 551	pfn = 0;  /* code starts at PA 0 */
 552	if (ktext_small) {
 553		/* Allocate an L2 PTE for the kernel text */
 554		int cpu = 0;
 555		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
 556						 PAGE_HOME_IMMUTABLE);
 557
 558		if (ktext_local) {
 559			if (ktext_nocache)
 560				prot = hv_pte_set_mode(prot,
 561						       HV_PTE_MODE_UNCACHED);
 562			else
 563				prot = hv_pte_set_mode(prot,
 564						       HV_PTE_MODE_CACHE_NO_L3);
 565		} else {
 566			prot = hv_pte_set_mode(prot,
 567					       HV_PTE_MODE_CACHE_TILE_L3);
 568			cpu = cpumask_first(&ktext_mask);
 569
 570			prot = ktext_set_nocache(prot);
 571		}
 572
 573		BUG_ON(address != (unsigned long)_stext);
 574		pte = NULL;
 575		for (; address < (unsigned long)_einittext;
 576		     pfn++, address += PAGE_SIZE) {
 577			pte_ofs = pte_index(address);
 578			if (pte_ofs == 0) {
 579				if (pte)
 580					assign_pte(pmd++, pte);
 581				pte = alloc_pte();
 582			}
 583			if (!ktext_local) {
 584				prot = set_remote_cache_cpu(prot, cpu);
 585				cpu = cpumask_next(cpu, &ktext_mask);
 586				if (cpu == NR_CPUS)
 587					cpu = cpumask_first(&ktext_mask);
 588			}
 589			pte[pte_ofs] = pfn_pte(pfn, prot);
 590		}
 591		if (pte)
 592			assign_pte(pmd, pte);
 593	} else {
 594		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
 595		pteval = pte_mkhuge(pteval);
 596#if CHIP_HAS_CBOX_HOME_MAP()
 597		if (ktext_hash) {
 598			pteval = hv_pte_set_mode(pteval,
 599						 HV_PTE_MODE_CACHE_HASH_L3);
 600			pteval = ktext_set_nocache(pteval);
 601		} else
 602#endif /* CHIP_HAS_CBOX_HOME_MAP() */
 603		if (cpumask_weight(&ktext_mask) == 1) {
 604			pteval = set_remote_cache_cpu(pteval,
 605					      cpumask_first(&ktext_mask));
 606			pteval = hv_pte_set_mode(pteval,
 607						 HV_PTE_MODE_CACHE_TILE_L3);
 608			pteval = ktext_set_nocache(pteval);
 609		} else if (ktext_nocache)
 610			pteval = hv_pte_set_mode(pteval,
 611						 HV_PTE_MODE_UNCACHED);
 612		else
 613			pteval = hv_pte_set_mode(pteval,
 614						 HV_PTE_MODE_CACHE_NO_L3);
 615		for (; address < (unsigned long)_einittext;
 616		     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
 617			*(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
 618	}
 619
 620	/* Set swapper_pgprot here so it is flushed to memory right away. */
 621	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
 622
 623	/*
 624	 * Since we may be changing the caching of the stack and page
 625	 * table itself, we invoke an assembly helper to do the
 626	 * following steps:
 627	 *
 628	 *  - flush the cache so we start with an empty slate
 629	 *  - install pgtables[] as the real page table
 630	 *  - flush the TLB so the new page table takes effect
 631	 */
 632	irqmask = interrupt_mask_save_mask();
 633	interrupt_mask_set_mask(-1ULL);
 634	rc = flush_and_install_context(__pa(pgtables),
 635				       init_pgprot((unsigned long)pgtables),
 636				       __get_cpu_var(current_asid),
 637				       cpumask_bits(my_cpu_mask));
 638	interrupt_mask_restore_mask(irqmask);
 639	BUG_ON(rc != 0);
 640
 641	/* Copy the page table back to the normal swapper_pg_dir. */
 642	memcpy(pgd_base, pgtables, sizeof(pgtables));
 643	__install_page_table(pgd_base, __get_cpu_var(current_asid),
 644			     swapper_pgprot);
 645
 646	/*
 647	 * We just read swapper_pgprot and thus brought it into the cache,
 648	 * with its new home & caching mode.  When we start the other CPUs,
 649	 * they're going to reference swapper_pgprot via their initial fake
 650	 * VA-is-PA mappings, which cache everything locally.  At that
 651	 * time, if it's in our cache with a conflicting home, the
 652	 * simulator's coherence checker will complain.  So, flush it out
 653	 * of our cache; we're not going to ever use it again anyway.
 654	 */
 655	__insn_finv(&swapper_pgprot);
 656}
 657
 658/*
 659 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 660 * is valid. The argument is a physical page number.
 661 *
 662 * On Tile, the only valid things for which we can just hand out unchecked
 663 * PTEs are the kernel code and data.  Anything else might change its
 664 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 665 * Note that init_thread_union is released to heap soon after boot,
 666 * so we include it in the init data.
 667 *
 668 * For TILE-Gx, we might want to consider allowing access to PA
 669 * regions corresponding to PCI space, etc.
 670 */
 671int devmem_is_allowed(unsigned long pagenr)
 672{
 673	return pagenr < kaddr_to_pfn(_end) &&
 674		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
 675		  pagenr < kaddr_to_pfn(_einitdata)) &&
 676		!(pagenr >= kaddr_to_pfn(_sinittext) ||
 677		  pagenr <= kaddr_to_pfn(_einittext-1));
 678}
 679
 680#ifdef CONFIG_HIGHMEM
 681static void __init permanent_kmaps_init(pgd_t *pgd_base)
 682{
 683	pgd_t *pgd;
 684	pud_t *pud;
 685	pmd_t *pmd;
 686	pte_t *pte;
 687	unsigned long vaddr;
 688
 689	vaddr = PKMAP_BASE;
 690	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
 691
 692	pgd = swapper_pg_dir + pgd_index(vaddr);
 693	pud = pud_offset(pgd, vaddr);
 694	pmd = pmd_offset(pud, vaddr);
 695	pte = pte_offset_kernel(pmd, vaddr);
 696	pkmap_page_table = pte;
 697}
 698#endif /* CONFIG_HIGHMEM */
 699
 700
 701#ifndef CONFIG_64BIT
 702static void __init init_free_pfn_range(unsigned long start, unsigned long end)
 703{
 704	unsigned long pfn;
 705	struct page *page = pfn_to_page(start);
 706
 707	for (pfn = start; pfn < end; ) {
 708		/* Optimize by freeing pages in large batches */
 709		int order = __ffs(pfn);
 710		int count, i;
 711		struct page *p;
 712
 713		if (order >= MAX_ORDER)
 714			order = MAX_ORDER-1;
 715		count = 1 << order;
 716		while (pfn + count > end) {
 717			count >>= 1;
 718			--order;
 719		}
 720		for (p = page, i = 0; i < count; ++i, ++p) {
 721			__ClearPageReserved(p);
 722			/*
 723			 * Hacky direct set to avoid unnecessary
 724			 * lock take/release for EVERY page here.
 725			 */
 726			p->_count.counter = 0;
 727			p->_mapcount.counter = -1;
 728		}
 729		init_page_count(page);
 730		__free_pages(page, order);
 731		totalram_pages += count;
 732
 733		page += count;
 734		pfn += count;
 735	}
 736}
 737
 738static void __init set_non_bootmem_pages_init(void)
 739{
 740	struct zone *z;
 741	for_each_zone(z) {
 742		unsigned long start, end;
 743		int nid = z->zone_pgdat->node_id;
 744		int idx = zone_idx(z);
 745
 746		start = z->zone_start_pfn;
 747		if (start == 0)
 748			continue;  /* bootmem */
 749		end = start + z->spanned_pages;
 750		if (idx == ZONE_NORMAL) {
 751			BUG_ON(start != node_start_pfn[nid]);
 752			start = node_free_pfn[nid];
 753		}
 754#ifdef CONFIG_HIGHMEM
 755		if (idx == ZONE_HIGHMEM)
 756			totalhigh_pages += z->spanned_pages;
 757#endif
 758		if (kdata_huge) {
 759			unsigned long percpu_pfn = node_percpu_pfn[nid];
 760			if (start < percpu_pfn && end > percpu_pfn)
 761				end = percpu_pfn;
 762		}
 763#ifdef CONFIG_PCI
 764		if (start <= pci_reserve_start_pfn &&
 765		    end > pci_reserve_start_pfn) {
 766			if (end > pci_reserve_end_pfn)
 767				init_free_pfn_range(pci_reserve_end_pfn, end);
 768			end = pci_reserve_start_pfn;
 769		}
 770#endif
 771		init_free_pfn_range(start, end);
 772	}
 773}
 774#endif
 775
 776/*
 777 * paging_init() sets up the page tables - note that all of lowmem is
 778 * already mapped by head.S.
 779 */
 780void __init paging_init(void)
 781{
 782#ifdef CONFIG_HIGHMEM
 783	unsigned long vaddr, end;
 784#endif
 785#ifdef __tilegx__
 786	pud_t *pud;
 787#endif
 788	pgd_t *pgd_base = swapper_pg_dir;
 789
 790	kernel_physical_mapping_init(pgd_base);
 791
 792#ifdef CONFIG_HIGHMEM
 793	/*
 794	 * Fixed mappings, only the page table structure has to be
 795	 * created - mappings will be set by set_fixmap():
 796	 */
 797	vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
 798	end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
 799	page_table_range_init(vaddr, end, pgd_base);
 800	permanent_kmaps_init(pgd_base);
 801#endif
 802
 803#ifdef __tilegx__
 804	/*
 805	 * Since GX allocates just one pmd_t array worth of vmalloc space,
 806	 * we go ahead and allocate it statically here, then share it
 807	 * globally.  As a result we don't have to worry about any task
 808	 * changing init_mm once we get up and running, and there's no
 809	 * need for e.g. vmalloc_sync_all().
 810	 */
 811	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
 812	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
 813	assign_pmd(pud, alloc_pmd());
 814#endif
 815}
 816
 817
 818/*
 819 * Walk the kernel page tables and derive the page_home() from
 820 * the PTEs, so that set_pte() can properly validate the caching
 821 * of all PTEs it sees.
 822 */
 823void __init set_page_homes(void)
 824{
 825}
 826
 827static void __init set_max_mapnr_init(void)
 828{
 829#ifdef CONFIG_FLATMEM
 830	max_mapnr = max_low_pfn;
 831#endif
 832}
 833
 834void __init mem_init(void)
 835{
 836	int codesize, datasize, initsize;
 837	int i;
 838#ifndef __tilegx__
 839	void *last;
 840#endif
 841
 842#ifdef CONFIG_FLATMEM
 843	BUG_ON(!mem_map);
 844#endif
 845
 846#ifdef CONFIG_HIGHMEM
 847	/* check that fixmap and pkmap do not overlap */
 848	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
 849		pr_err("fixmap and kmap areas overlap"
 850		       " - this will crash\n");
 851		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
 852		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
 853		       FIXADDR_START);
 854		BUG();
 855	}
 856#endif
 857
 858	set_max_mapnr_init();
 859
 860	/* this will put all bootmem onto the freelists */
 861	totalram_pages += free_all_bootmem();
 862
 863#ifndef CONFIG_64BIT
 864	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
 865	set_non_bootmem_pages_init();
 866#endif
 867
 868	codesize =  (unsigned long)&_etext - (unsigned long)&_text;
 869	datasize =  (unsigned long)&_end - (unsigned long)&_sdata;
 870	initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext;
 871	initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
 872
 873	pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
 874		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
 875		num_physpages << (PAGE_SHIFT-10),
 876		codesize >> 10,
 877		datasize >> 10,
 878		initsize >> 10,
 879		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
 880	       );
 881
 882	/*
 883	 * In debug mode, dump some interesting memory mappings.
 884	 */
 885#ifdef CONFIG_HIGHMEM
 886	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
 887	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
 888	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
 889	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
 890#endif
 891#ifdef CONFIG_HUGEVMAP
 892	printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
 893	       HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
 894#endif
 895	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
 896	       _VMALLOC_START, _VMALLOC_END - 1);
 897#ifdef __tilegx__
 898	for (i = MAX_NUMNODES-1; i >= 0; --i) {
 899		struct pglist_data *node = &node_data[i];
 900		if (node->node_present_pages) {
 901			unsigned long start = (unsigned long)
 902				pfn_to_kaddr(node->node_start_pfn);
 903			unsigned long end = start +
 904				(node->node_present_pages << PAGE_SHIFT);
 905			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
 906			       i, start, end - 1);
 907		}
 908	}
 909#else
 910	last = high_memory;
 911	for (i = MAX_NUMNODES-1; i >= 0; --i) {
 912		if ((unsigned long)vbase_map[i] != -1UL) {
 913			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
 914			       i, (unsigned long) (vbase_map[i]),
 915			       (unsigned long) (last-1));
 916			last = vbase_map[i];
 917		}
 918	}
 919#endif
 920
 921#ifndef __tilegx__
 922	/*
 923	 * Convert from using one lock for all atomic operations to
 924	 * one per cpu.
 925	 */
 926	__init_atomic_per_cpu();
 927#endif
 928}
 929
 930/*
 931 * this is for the non-NUMA, single node SMP system case.
 932 * Specifically, in the case of x86, we will always add
 933 * memory to the highmem for now.
 934 */
 935#ifndef CONFIG_NEED_MULTIPLE_NODES
 936int arch_add_memory(u64 start, u64 size)
 937{
 938	struct pglist_data *pgdata = &contig_page_data;
 939	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
 940	unsigned long start_pfn = start >> PAGE_SHIFT;
 941	unsigned long nr_pages = size >> PAGE_SHIFT;
 942
 943	return __add_pages(zone, start_pfn, nr_pages);
 944}
 945
 946int remove_memory(u64 start, u64 size)
 947{
 948	return -EINVAL;
 949}
 950#endif
 951
 952struct kmem_cache *pgd_cache;
 953
 954void __init pgtable_cache_init(void)
 955{
 956	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
 957	if (!pgd_cache)
 958		panic("pgtable_cache_init(): Cannot create pgd cache");
 959}
 960
 961#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
 962/*
 963 * The __w1data area holds data that is only written during initialization,
 964 * and is read-only and thus freely cacheable thereafter.  Fix the page
 965 * table entries that cover that region accordingly.
 966 */
 967static void mark_w1data_ro(void)
 968{
 969	/* Loop over page table entries */
 970	unsigned long addr = (unsigned long)__w1data_begin;
 971	BUG_ON((addr & (PAGE_SIZE-1)) != 0);
 972	for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
 973		unsigned long pfn = kaddr_to_pfn((void *)addr);
 974		pte_t *ptep = virt_to_pte(NULL, addr);
 975		BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
 976		set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
 977	}
 978}
 979#endif
 980
 981#ifdef CONFIG_DEBUG_PAGEALLOC
 982static long __write_once initfree;
 983#else
 984static long __write_once initfree = 1;
 985#endif
 986
 987/* Select whether to free (1) or mark unusable (0) the __init pages. */
 988static int __init set_initfree(char *str)
 989{
 990	long val;
 991	if (strict_strtol(str, 0, &val) == 0) {
 992		initfree = val;
 993		pr_info("initfree: %s free init pages\n",
 994			initfree ? "will" : "won't");
 995	}
 996	return 1;
 997}
 998__setup("initfree=", set_initfree);
 999
1000static void free_init_pages(char *what, unsigned long begin, unsigned long end)
1001{
1002	unsigned long addr = (unsigned long) begin;
1003
1004	if (kdata_huge && !initfree) {
1005		pr_warning("Warning: ignoring initfree=0:"
1006			   " incompatible with kdata=huge\n");
1007		initfree = 1;
1008	}
1009	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1010	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1011	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1012		/*
1013		 * Note we just reset the home here directly in the
1014		 * page table.  We know this is safe because our caller
1015		 * just flushed the caches on all the other cpus,
1016		 * and they won't be touching any of these pages.
1017		 */
1018		int pfn = kaddr_to_pfn((void *)addr);
1019		struct page *page = pfn_to_page(pfn);
1020		pte_t *ptep = virt_to_pte(NULL, addr);
1021		if (!initfree) {
1022			/*
1023			 * If debugging page accesses then do not free
1024			 * this memory but mark them not present - any
1025			 * buggy init-section access will create a
1026			 * kernel page fault:
1027			 */
1028			pte_clear(&init_mm, addr, ptep);
1029			continue;
1030		}
1031		__ClearPageReserved(page);
1032		init_page_count(page);
1033		if (pte_huge(*ptep))
1034			BUG_ON(!kdata_huge);
1035		else
1036			set_pte_at(&init_mm, addr, ptep,
1037				   pfn_pte(pfn, PAGE_KERNEL));
1038		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1039		free_page(addr);
1040		totalram_pages++;
1041	}
1042	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1043}
1044
1045void free_initmem(void)
1046{
1047	const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1048
1049	/*
1050	 * Evict the dirty initdata on the boot cpu, evict the w1data
1051	 * wherever it's homed, and evict all the init code everywhere.
1052	 * We are guaranteed that no one will touch the init pages any
1053	 * more, and although other cpus may be touching the w1data,
1054	 * we only actually change the caching on tile64, which won't
1055	 * be keeping local copies in the other tiles' caches anyway.
1056	 */
1057	homecache_evict(&cpu_cacheable_map);
1058
1059	/* Free the data pages that we won't use again after init. */
1060	free_init_pages("unused kernel data",
1061			(unsigned long)_sinitdata,
1062			(unsigned long)_einitdata);
1063
1064	/*
1065	 * Free the pages mapped from 0xc0000000 that correspond to code
1066	 * pages from MEM_SV_INTRPT that we won't use again after init.
1067	 */
1068	free_init_pages("unused kernel text",
1069			(unsigned long)_sinittext - text_delta,
1070			(unsigned long)_einittext - text_delta);
1071
1072#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1073	/*
1074	 * Upgrade the .w1data section to globally cached.
1075	 * We don't do this on tilepro, since the cache architecture
1076	 * pretty much makes it irrelevant, and in any case we end
1077	 * up having racing issues with other tiles that may touch
1078	 * the data after we flush the cache but before we update
1079	 * the PTEs and flush the TLBs, causing sharer shootdowns
1080	 * later.  Even though this is to clean data, it seems like
1081	 * an unnecessary complication.
1082	 */
1083	mark_w1data_ro();
1084#endif
1085
1086	/* Do a global TLB flush so everyone sees the changes. */
1087	flush_tlb_all();
1088}