Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/avc.h>
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90	unsigned int avc_cache_threshold;
  91	struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
  95
  96void selinux_avc_init(void)
  97{
  98	int i;
  99
 100	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104	}
 105	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107}
 108
 109unsigned int avc_get_cache_threshold(void)
 110{
 111	return selinux_avc.avc_cache_threshold;
 112}
 113
 114void avc_set_cache_threshold(unsigned int cache_threshold)
 115{
 116	selinux_avc.avc_cache_threshold = cache_threshold;
 117}
 118
 119static struct avc_callback_node *avc_callbacks __ro_after_init;
 120static struct kmem_cache *avc_node_cachep __ro_after_init;
 121static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
 122static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
 123static struct kmem_cache *avc_xperms_cachep __ro_after_init;
 124
 125static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
 126{
 127	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 128}
 129
 130/**
 131 * avc_init - Initialize the AVC.
 132 *
 133 * Initialize the access vector cache.
 134 */
 135void __init avc_init(void)
 136{
 137	avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC);
 138	avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC);
 139	avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC);
 140	avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC);
 
 
 
 
 
 
 
 
 141}
 142
 143int avc_get_hash_stats(char *page)
 144{
 145	int i, chain_len, max_chain_len, slots_used;
 146	struct avc_node *node;
 147	struct hlist_head *head;
 148
 149	rcu_read_lock();
 150
 151	slots_used = 0;
 152	max_chain_len = 0;
 153	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 154		head = &selinux_avc.avc_cache.slots[i];
 155		if (!hlist_empty(head)) {
 156			slots_used++;
 157			chain_len = 0;
 158			hlist_for_each_entry_rcu(node, head, list)
 159				chain_len++;
 160			if (chain_len > max_chain_len)
 161				max_chain_len = chain_len;
 162		}
 163	}
 164
 165	rcu_read_unlock();
 166
 167	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 168			 "longest chain: %d\n",
 169			 atomic_read(&selinux_avc.avc_cache.active_nodes),
 170			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 171}
 172
 173/*
 174 * using a linked list for extended_perms_decision lookup because the list is
 175 * always small. i.e. less than 5, typically 1
 176 */
 177static struct extended_perms_decision *
 178avc_xperms_decision_lookup(u8 driver, u8 base_perm,
 179			   struct avc_xperms_node *xp_node)
 180{
 181	struct avc_xperms_decision_node *xpd_node;
 182
 183	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 184		if (xpd_node->xpd.driver == driver &&
 185		    xpd_node->xpd.base_perm == base_perm)
 186			return &xpd_node->xpd;
 187	}
 188	return NULL;
 189}
 190
 191static inline unsigned int
 192avc_xperms_has_perm(struct extended_perms_decision *xpd,
 193					u8 perm, u8 which)
 194{
 195	unsigned int rc = 0;
 196
 197	if ((which == XPERMS_ALLOWED) &&
 198			(xpd->used & XPERMS_ALLOWED))
 199		rc = security_xperm_test(xpd->allowed->p, perm);
 200	else if ((which == XPERMS_AUDITALLOW) &&
 201			(xpd->used & XPERMS_AUDITALLOW))
 202		rc = security_xperm_test(xpd->auditallow->p, perm);
 203	else if ((which == XPERMS_DONTAUDIT) &&
 204			(xpd->used & XPERMS_DONTAUDIT))
 205		rc = security_xperm_test(xpd->dontaudit->p, perm);
 206	return rc;
 207}
 208
 209static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 210				  u8 driver, u8 base_perm, u8 perm)
 211{
 212	struct extended_perms_decision *xpd;
 213	security_xperm_set(xp_node->xp.drivers.p, driver);
 214	xp_node->xp.base_perms |= base_perm;
 215	xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node);
 216	if (xpd && xpd->allowed)
 217		security_xperm_set(xpd->allowed->p, perm);
 218}
 219
 220static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 221{
 222	struct extended_perms_decision *xpd;
 223
 224	xpd = &xpd_node->xpd;
 225	if (xpd->allowed)
 226		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 227	if (xpd->auditallow)
 228		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 229	if (xpd->dontaudit)
 230		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 231	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 232}
 233
 234static void avc_xperms_free(struct avc_xperms_node *xp_node)
 235{
 236	struct avc_xperms_decision_node *xpd_node, *tmp;
 237
 238	if (!xp_node)
 239		return;
 240
 241	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 242		list_del(&xpd_node->xpd_list);
 243		avc_xperms_decision_free(xpd_node);
 244	}
 245	kmem_cache_free(avc_xperms_cachep, xp_node);
 246}
 247
 248static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 249					struct extended_perms_decision *src)
 250{
 251	dest->base_perm = src->base_perm;
 252	dest->driver = src->driver;
 253	dest->used = src->used;
 254	if (dest->used & XPERMS_ALLOWED)
 255		memcpy(dest->allowed->p, src->allowed->p,
 256				sizeof(src->allowed->p));
 257	if (dest->used & XPERMS_AUDITALLOW)
 258		memcpy(dest->auditallow->p, src->auditallow->p,
 259				sizeof(src->auditallow->p));
 260	if (dest->used & XPERMS_DONTAUDIT)
 261		memcpy(dest->dontaudit->p, src->dontaudit->p,
 262				sizeof(src->dontaudit->p));
 263}
 264
 265/*
 266 * similar to avc_copy_xperms_decision, but only copy decision
 267 * information relevant to this perm
 268 */
 269static inline void avc_quick_copy_xperms_decision(u8 perm,
 270			struct extended_perms_decision *dest,
 271			struct extended_perms_decision *src)
 272{
 273	/*
 274	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 275	 * command permission
 276	 */
 277	u8 i = perm >> 5;
 278
 279	dest->base_perm = src->base_perm;
 280	dest->used = src->used;
 281	if (dest->used & XPERMS_ALLOWED)
 282		dest->allowed->p[i] = src->allowed->p[i];
 283	if (dest->used & XPERMS_AUDITALLOW)
 284		dest->auditallow->p[i] = src->auditallow->p[i];
 285	if (dest->used & XPERMS_DONTAUDIT)
 286		dest->dontaudit->p[i] = src->dontaudit->p[i];
 287}
 288
 289static struct avc_xperms_decision_node
 290		*avc_xperms_decision_alloc(u8 which)
 291{
 292	struct avc_xperms_decision_node *xpd_node;
 293	struct extended_perms_decision *xpd;
 294
 295	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
 296				     GFP_NOWAIT | __GFP_NOWARN);
 297	if (!xpd_node)
 298		return NULL;
 299
 300	xpd = &xpd_node->xpd;
 301	if (which & XPERMS_ALLOWED) {
 302		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 303						GFP_NOWAIT | __GFP_NOWARN);
 304		if (!xpd->allowed)
 305			goto error;
 306	}
 307	if (which & XPERMS_AUDITALLOW) {
 308		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 309						GFP_NOWAIT | __GFP_NOWARN);
 310		if (!xpd->auditallow)
 311			goto error;
 312	}
 313	if (which & XPERMS_DONTAUDIT) {
 314		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 315						GFP_NOWAIT | __GFP_NOWARN);
 316		if (!xpd->dontaudit)
 317			goto error;
 318	}
 319	return xpd_node;
 320error:
 321	avc_xperms_decision_free(xpd_node);
 322	return NULL;
 323}
 324
 325static int avc_add_xperms_decision(struct avc_node *node,
 326			struct extended_perms_decision *src)
 327{
 328	struct avc_xperms_decision_node *dest_xpd;
 329
 
 330	dest_xpd = avc_xperms_decision_alloc(src->used);
 331	if (!dest_xpd)
 332		return -ENOMEM;
 333	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 334	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 335	node->ae.xp_node->xp.len++;
 336	return 0;
 337}
 338
 339static struct avc_xperms_node *avc_xperms_alloc(void)
 340{
 341	struct avc_xperms_node *xp_node;
 342
 343	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
 344	if (!xp_node)
 345		return xp_node;
 346	INIT_LIST_HEAD(&xp_node->xpd_head);
 347	return xp_node;
 348}
 349
 350static int avc_xperms_populate(struct avc_node *node,
 351				struct avc_xperms_node *src)
 352{
 353	struct avc_xperms_node *dest;
 354	struct avc_xperms_decision_node *dest_xpd;
 355	struct avc_xperms_decision_node *src_xpd;
 356
 357	if (src->xp.len == 0)
 358		return 0;
 359	dest = avc_xperms_alloc();
 360	if (!dest)
 361		return -ENOMEM;
 362
 363	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 364	dest->xp.len = src->xp.len;
 365	dest->xp.base_perms = src->xp.base_perms;
 366
 367	/* for each source xpd allocate a destination xpd and copy */
 368	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 369		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 370		if (!dest_xpd)
 371			goto error;
 372		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 373		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 374	}
 375	node->ae.xp_node = dest;
 376	return 0;
 377error:
 378	avc_xperms_free(dest);
 379	return -ENOMEM;
 380
 381}
 382
 383static inline u32 avc_xperms_audit_required(u32 requested,
 384					struct av_decision *avd,
 385					struct extended_perms_decision *xpd,
 386					u8 perm,
 387					int result,
 388					u32 *deniedp)
 389{
 390	u32 denied, audited;
 391
 392	denied = requested & ~avd->allowed;
 393	if (unlikely(denied)) {
 394		audited = denied & avd->auditdeny;
 395		if (audited && xpd) {
 396			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 397				audited = 0;
 398		}
 399	} else if (result) {
 400		audited = denied = requested;
 401	} else {
 402		audited = requested & avd->auditallow;
 403		if (audited && xpd) {
 404			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 405				audited = 0;
 406		}
 407	}
 408
 409	*deniedp = denied;
 410	return audited;
 411}
 412
 413static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
 414				   u32 requested, struct av_decision *avd,
 415				   struct extended_perms_decision *xpd,
 416				   u8 perm, int result,
 417				   struct common_audit_data *ad)
 418{
 419	u32 audited, denied;
 420
 421	audited = avc_xperms_audit_required(
 422			requested, avd, xpd, perm, result, &denied);
 423	if (likely(!audited))
 424		return 0;
 425	return slow_avc_audit(ssid, tsid, tclass, requested,
 426			audited, denied, result, ad);
 427}
 428
 429static void avc_node_free(struct rcu_head *rhead)
 430{
 431	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 432	avc_xperms_free(node->ae.xp_node);
 433	kmem_cache_free(avc_node_cachep, node);
 434	avc_cache_stats_incr(frees);
 435}
 436
 437static void avc_node_delete(struct avc_node *node)
 438{
 439	hlist_del_rcu(&node->list);
 440	call_rcu(&node->rhead, avc_node_free);
 441	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 442}
 443
 444static void avc_node_kill(struct avc_node *node)
 445{
 446	avc_xperms_free(node->ae.xp_node);
 447	kmem_cache_free(avc_node_cachep, node);
 448	avc_cache_stats_incr(frees);
 449	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 450}
 451
 452static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 453{
 454	hlist_replace_rcu(&old->list, &new->list);
 455	call_rcu(&old->rhead, avc_node_free);
 456	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 457}
 458
 459static inline int avc_reclaim_node(void)
 460{
 461	struct avc_node *node;
 462	int hvalue, try, ecx;
 463	unsigned long flags;
 464	struct hlist_head *head;
 465	spinlock_t *lock;
 466
 467	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 468		hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
 469			(AVC_CACHE_SLOTS - 1);
 470		head = &selinux_avc.avc_cache.slots[hvalue];
 471		lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 472
 473		if (!spin_trylock_irqsave(lock, flags))
 474			continue;
 475
 476		rcu_read_lock();
 477		hlist_for_each_entry(node, head, list) {
 478			avc_node_delete(node);
 479			avc_cache_stats_incr(reclaims);
 480			ecx++;
 481			if (ecx >= AVC_CACHE_RECLAIM) {
 482				rcu_read_unlock();
 483				spin_unlock_irqrestore(lock, flags);
 484				goto out;
 485			}
 486		}
 487		rcu_read_unlock();
 488		spin_unlock_irqrestore(lock, flags);
 489	}
 490out:
 491	return ecx;
 492}
 493
 494static struct avc_node *avc_alloc_node(void)
 495{
 496	struct avc_node *node;
 497
 498	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
 499	if (!node)
 500		goto out;
 501
 502	INIT_HLIST_NODE(&node->list);
 503	avc_cache_stats_incr(allocations);
 504
 505	if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
 506	    selinux_avc.avc_cache_threshold)
 507		avc_reclaim_node();
 508
 509out:
 510	return node;
 511}
 512
 513static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 514{
 515	node->ae.ssid = ssid;
 516	node->ae.tsid = tsid;
 517	node->ae.tclass = tclass;
 518	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 519}
 520
 521static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 522{
 523	struct avc_node *node, *ret = NULL;
 524	u32 hvalue;
 525	struct hlist_head *head;
 526
 527	hvalue = avc_hash(ssid, tsid, tclass);
 528	head = &selinux_avc.avc_cache.slots[hvalue];
 529	hlist_for_each_entry_rcu(node, head, list) {
 530		if (ssid == node->ae.ssid &&
 531		    tclass == node->ae.tclass &&
 532		    tsid == node->ae.tsid) {
 533			ret = node;
 534			break;
 535		}
 536	}
 537
 538	return ret;
 539}
 540
 541/**
 542 * avc_lookup - Look up an AVC entry.
 543 * @ssid: source security identifier
 544 * @tsid: target security identifier
 545 * @tclass: target security class
 546 *
 547 * Look up an AVC entry that is valid for the
 548 * (@ssid, @tsid), interpreting the permissions
 549 * based on @tclass.  If a valid AVC entry exists,
 550 * then this function returns the avc_node.
 551 * Otherwise, this function returns NULL.
 552 */
 553static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 554{
 555	struct avc_node *node;
 556
 557	avc_cache_stats_incr(lookups);
 558	node = avc_search_node(ssid, tsid, tclass);
 559
 560	if (node)
 561		return node;
 562
 563	avc_cache_stats_incr(misses);
 564	return NULL;
 565}
 566
 567static int avc_latest_notif_update(u32 seqno, int is_insert)
 568{
 569	int ret = 0;
 570	static DEFINE_SPINLOCK(notif_lock);
 571	unsigned long flag;
 572
 573	spin_lock_irqsave(&notif_lock, flag);
 574	if (is_insert) {
 575		if (seqno < selinux_avc.avc_cache.latest_notif) {
 576			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 577			       seqno, selinux_avc.avc_cache.latest_notif);
 578			ret = -EAGAIN;
 579		}
 580	} else {
 581		if (seqno > selinux_avc.avc_cache.latest_notif)
 582			selinux_avc.avc_cache.latest_notif = seqno;
 583	}
 584	spin_unlock_irqrestore(&notif_lock, flag);
 585
 586	return ret;
 587}
 588
 589/**
 590 * avc_insert - Insert an AVC entry.
 591 * @ssid: source security identifier
 592 * @tsid: target security identifier
 593 * @tclass: target security class
 594 * @avd: resulting av decision
 595 * @xp_node: resulting extended permissions
 596 *
 597 * Insert an AVC entry for the SID pair
 598 * (@ssid, @tsid) and class @tclass.
 599 * The access vectors and the sequence number are
 600 * normally provided by the security server in
 601 * response to a security_compute_av() call.  If the
 602 * sequence number @avd->seqno is not less than the latest
 603 * revocation notification, then the function copies
 604 * the access vectors into a cache entry.
 605 */
 606static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
 607		       struct av_decision *avd, struct avc_xperms_node *xp_node)
 608{
 609	struct avc_node *pos, *node = NULL;
 610	u32 hvalue;
 611	unsigned long flag;
 612	spinlock_t *lock;
 613	struct hlist_head *head;
 614
 615	if (avc_latest_notif_update(avd->seqno, 1))
 616		return;
 617
 618	node = avc_alloc_node();
 619	if (!node)
 620		return;
 621
 622	avc_node_populate(node, ssid, tsid, tclass, avd);
 623	if (avc_xperms_populate(node, xp_node)) {
 624		avc_node_kill(node);
 625		return;
 626	}
 627
 628	hvalue = avc_hash(ssid, tsid, tclass);
 629	head = &selinux_avc.avc_cache.slots[hvalue];
 630	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 631	spin_lock_irqsave(lock, flag);
 632	hlist_for_each_entry(pos, head, list) {
 633		if (pos->ae.ssid == ssid &&
 634			pos->ae.tsid == tsid &&
 635			pos->ae.tclass == tclass) {
 636			avc_node_replace(node, pos);
 637			goto found;
 638		}
 639	}
 640	hlist_add_head_rcu(&node->list, head);
 641found:
 642	spin_unlock_irqrestore(lock, flag);
 643}
 644
 645/**
 646 * avc_audit_pre_callback - SELinux specific information
 647 * will be called by generic audit code
 648 * @ab: the audit buffer
 649 * @a: audit_data
 650 */
 651static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 652{
 653	struct common_audit_data *ad = a;
 654	struct selinux_audit_data *sad = ad->selinux_audit_data;
 655	u32 av = sad->audited, perm;
 656	const char *const *perms;
 657	u32 i;
 658
 659	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 660
 661	if (av == 0) {
 662		audit_log_format(ab, " null");
 663		return;
 664	}
 665
 666	perms = secclass_map[sad->tclass-1].perms;
 667
 668	audit_log_format(ab, " {");
 669	i = 0;
 670	perm = 1;
 671	while (i < (sizeof(av) * 8)) {
 672		if ((perm & av) && perms[i]) {
 673			audit_log_format(ab, " %s", perms[i]);
 674			av &= ~perm;
 675		}
 676		i++;
 677		perm <<= 1;
 678	}
 679
 680	if (av)
 681		audit_log_format(ab, " 0x%x", av);
 682
 683	audit_log_format(ab, " } for ");
 684}
 685
 686/**
 687 * avc_audit_post_callback - SELinux specific information
 688 * will be called by generic audit code
 689 * @ab: the audit buffer
 690 * @a: audit_data
 691 */
 692static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 693{
 694	struct common_audit_data *ad = a;
 695	struct selinux_audit_data *sad = ad->selinux_audit_data;
 696	char *scontext = NULL;
 697	char *tcontext = NULL;
 698	const char *tclass = NULL;
 699	u32 scontext_len;
 700	u32 tcontext_len;
 701	int rc;
 702
 703	rc = security_sid_to_context(sad->ssid, &scontext,
 704				     &scontext_len);
 705	if (rc)
 706		audit_log_format(ab, " ssid=%d", sad->ssid);
 707	else
 708		audit_log_format(ab, " scontext=%s", scontext);
 709
 710	rc = security_sid_to_context(sad->tsid, &tcontext,
 711				     &tcontext_len);
 712	if (rc)
 713		audit_log_format(ab, " tsid=%d", sad->tsid);
 714	else
 715		audit_log_format(ab, " tcontext=%s", tcontext);
 716
 717	tclass = secclass_map[sad->tclass-1].name;
 718	audit_log_format(ab, " tclass=%s", tclass);
 719
 720	if (sad->denied)
 721		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 722
 723	trace_selinux_audited(sad, scontext, tcontext, tclass);
 724	kfree(tcontext);
 725	kfree(scontext);
 726
 727	/* in case of invalid context report also the actual context string */
 728	rc = security_sid_to_context_inval(sad->ssid, &scontext,
 729					   &scontext_len);
 730	if (!rc && scontext) {
 731		if (scontext_len && scontext[scontext_len - 1] == '\0')
 732			scontext_len--;
 733		audit_log_format(ab, " srawcon=");
 734		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 735		kfree(scontext);
 736	}
 737
 738	rc = security_sid_to_context_inval(sad->tsid, &scontext,
 739					   &scontext_len);
 740	if (!rc && scontext) {
 741		if (scontext_len && scontext[scontext_len - 1] == '\0')
 742			scontext_len--;
 743		audit_log_format(ab, " trawcon=");
 744		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 745		kfree(scontext);
 746	}
 747}
 748
 749/*
 750 * This is the slow part of avc audit with big stack footprint.
 751 * Note that it is non-blocking and can be called from under
 752 * rcu_read_lock().
 753 */
 754noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
 755			    u32 requested, u32 audited, u32 denied, int result,
 756			    struct common_audit_data *a)
 757{
 758	struct common_audit_data stack_data;
 759	struct selinux_audit_data sad;
 760
 761	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 762		return -EINVAL;
 763
 764	if (!a) {
 765		a = &stack_data;
 766		a->type = LSM_AUDIT_DATA_NONE;
 767	}
 768
 769	sad.tclass = tclass;
 770	sad.requested = requested;
 771	sad.ssid = ssid;
 772	sad.tsid = tsid;
 773	sad.audited = audited;
 774	sad.denied = denied;
 775	sad.result = result;
 776
 777	a->selinux_audit_data = &sad;
 778
 779	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 780	return 0;
 781}
 782
 783/**
 784 * avc_add_callback - Register a callback for security events.
 785 * @callback: callback function
 786 * @events: security events
 787 *
 788 * Register a callback function for events in the set @events.
 789 * Returns %0 on success or -%ENOMEM if insufficient memory
 790 * exists to add the callback.
 791 */
 792int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 793{
 794	struct avc_callback_node *c;
 795	int rc = 0;
 796
 797	c = kmalloc(sizeof(*c), GFP_KERNEL);
 798	if (!c) {
 799		rc = -ENOMEM;
 800		goto out;
 801	}
 802
 803	c->callback = callback;
 804	c->events = events;
 805	c->next = avc_callbacks;
 806	avc_callbacks = c;
 807out:
 808	return rc;
 809}
 810
 811/**
 812 * avc_update_node - Update an AVC entry
 813 * @event : Updating event
 814 * @perms : Permission mask bits
 815 * @driver: xperm driver information
 816 * @base_perm: the base permission associated with the extended permission
 817 * @xperm: xperm permissions
 818 * @ssid: AVC entry source sid
 819 * @tsid: AVC entry target sid
 820 * @tclass : AVC entry target object class
 821 * @seqno : sequence number when decision was made
 822 * @xpd: extended_perms_decision to be added to the node
 823 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
 824 *
 825 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 826 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 827 * otherwise, this function updates the AVC entry. The original AVC-entry object
 828 * will release later by RCU.
 829 */
 830static int avc_update_node(u32 event, u32 perms, u8 driver, u8 base_perm,
 831			   u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno,
 832			   struct extended_perms_decision *xpd, u32 flags)
 
 833{
 834	u32 hvalue;
 835	int rc = 0;
 836	unsigned long flag;
 837	struct avc_node *pos, *node, *orig = NULL;
 838	struct hlist_head *head;
 839	spinlock_t *lock;
 840
 841	node = avc_alloc_node();
 842	if (!node) {
 843		rc = -ENOMEM;
 844		goto out;
 845	}
 846
 847	/* Lock the target slot */
 848	hvalue = avc_hash(ssid, tsid, tclass);
 849
 850	head = &selinux_avc.avc_cache.slots[hvalue];
 851	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 852
 853	spin_lock_irqsave(lock, flag);
 854
 855	hlist_for_each_entry(pos, head, list) {
 856		if (ssid == pos->ae.ssid &&
 857		    tsid == pos->ae.tsid &&
 858		    tclass == pos->ae.tclass &&
 859		    seqno == pos->ae.avd.seqno){
 860			orig = pos;
 861			break;
 862		}
 863	}
 864
 865	if (!orig) {
 866		rc = -ENOENT;
 867		avc_node_kill(node);
 868		goto out_unlock;
 869	}
 870
 871	/*
 872	 * Copy and replace original node.
 873	 */
 874
 875	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 876
 877	if (orig->ae.xp_node) {
 878		rc = avc_xperms_populate(node, orig->ae.xp_node);
 879		if (rc) {
 880			avc_node_kill(node);
 881			goto out_unlock;
 882		}
 883	}
 884
 885	switch (event) {
 886	case AVC_CALLBACK_GRANT:
 887		node->ae.avd.allowed |= perms;
 888		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 889			avc_xperms_allow_perm(node->ae.xp_node, driver, base_perm, xperm);
 890		break;
 891	case AVC_CALLBACK_TRY_REVOKE:
 892	case AVC_CALLBACK_REVOKE:
 893		node->ae.avd.allowed &= ~perms;
 894		break;
 895	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 896		node->ae.avd.auditallow |= perms;
 897		break;
 898	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 899		node->ae.avd.auditallow &= ~perms;
 900		break;
 901	case AVC_CALLBACK_AUDITDENY_ENABLE:
 902		node->ae.avd.auditdeny |= perms;
 903		break;
 904	case AVC_CALLBACK_AUDITDENY_DISABLE:
 905		node->ae.avd.auditdeny &= ~perms;
 906		break;
 907	case AVC_CALLBACK_ADD_XPERMS:
 908		rc = avc_add_xperms_decision(node, xpd);
 909		if (rc) {
 910			avc_node_kill(node);
 911			goto out_unlock;
 912		}
 913		break;
 914	}
 915	avc_node_replace(node, orig);
 916out_unlock:
 917	spin_unlock_irqrestore(lock, flag);
 918out:
 919	return rc;
 920}
 921
 922/**
 923 * avc_flush - Flush the cache
 924 */
 925static void avc_flush(void)
 926{
 927	struct hlist_head *head;
 928	struct avc_node *node;
 929	spinlock_t *lock;
 930	unsigned long flag;
 931	int i;
 932
 933	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 934		head = &selinux_avc.avc_cache.slots[i];
 935		lock = &selinux_avc.avc_cache.slots_lock[i];
 936
 937		spin_lock_irqsave(lock, flag);
 938		/*
 939		 * With preemptable RCU, the outer spinlock does not
 940		 * prevent RCU grace periods from ending.
 941		 */
 942		rcu_read_lock();
 943		hlist_for_each_entry(node, head, list)
 944			avc_node_delete(node);
 945		rcu_read_unlock();
 946		spin_unlock_irqrestore(lock, flag);
 947	}
 948}
 949
 950/**
 951 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 952 * @seqno: policy sequence number
 953 */
 954int avc_ss_reset(u32 seqno)
 955{
 956	struct avc_callback_node *c;
 957	int rc = 0, tmprc;
 958
 959	avc_flush();
 960
 961	for (c = avc_callbacks; c; c = c->next) {
 962		if (c->events & AVC_CALLBACK_RESET) {
 963			tmprc = c->callback(AVC_CALLBACK_RESET);
 964			/* save the first error encountered for the return
 965			   value and continue processing the callbacks */
 966			if (!rc)
 967				rc = tmprc;
 968		}
 969	}
 970
 971	avc_latest_notif_update(seqno, 0);
 972	return rc;
 973}
 974
 975/**
 976 * avc_compute_av - Add an entry to the AVC based on the security policy
 977 * @ssid: subject
 978 * @tsid: object/target
 979 * @tclass: object class
 980 * @avd: access vector decision
 981 * @xp_node: AVC extended permissions node
 982 *
 983 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
 984 * fails.  Don't inline this, since it's the slow-path and just results in a
 985 * bigger stack frame.
 986 */
 987static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
 988				    struct av_decision *avd,
 989				    struct avc_xperms_node *xp_node)
 990{
 991	INIT_LIST_HEAD(&xp_node->xpd_head);
 992	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
 993	avc_insert(ssid, tsid, tclass, avd, xp_node);
 994}
 995
 996static noinline int avc_denied(u32 ssid, u32 tsid, u16 tclass, u32 requested,
 997			       u8 driver, u8 base_perm, u8 xperm,
 998			       unsigned int flags, struct av_decision *avd)
 
 999{
1000	if (flags & AVC_STRICT)
1001		return -EACCES;
1002
1003	if (enforcing_enabled() &&
1004	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1005		return -EACCES;
1006
1007	avc_update_node(AVC_CALLBACK_GRANT, requested, driver, base_perm,
1008			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1009	return 0;
1010}
1011
1012/*
1013 * The avc extended permissions logic adds an additional 256 bits of
1014 * permissions to an avc node when extended permissions for that node are
1015 * specified in the avtab. If the additional 256 permissions is not adequate,
1016 * as-is the case with ioctls, then multiple may be chained together and the
1017 * driver field is used to specify which set contains the permission.
1018 */
1019int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1020			   u8 driver, u8 base_perm, u8 xperm,
1021			   struct common_audit_data *ad)
1022{
1023	struct avc_node *node;
1024	struct av_decision avd;
1025	u32 denied;
1026	struct extended_perms_decision local_xpd;
1027	struct extended_perms_decision *xpd = NULL;
1028	struct extended_perms_data allowed;
1029	struct extended_perms_data auditallow;
1030	struct extended_perms_data dontaudit;
1031	struct avc_xperms_node local_xp_node;
1032	struct avc_xperms_node *xp_node;
1033	int rc = 0, rc2;
1034
1035	xp_node = &local_xp_node;
1036	if (WARN_ON(!requested))
1037		return -EACCES;
1038
1039	rcu_read_lock();
1040
1041	node = avc_lookup(ssid, tsid, tclass);
1042	if (unlikely(!node)) {
1043		avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1044	} else {
1045		memcpy(&avd, &node->ae.avd, sizeof(avd));
1046		xp_node = node->ae.xp_node;
1047	}
1048	/* if extended permissions are not defined, only consider av_decision */
1049	if (!xp_node || !xp_node->xp.len)
1050		goto decision;
1051
1052	local_xpd.allowed = &allowed;
1053	local_xpd.auditallow = &auditallow;
1054	local_xpd.dontaudit = &dontaudit;
1055
1056	xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node);
1057	if (unlikely(!xpd)) {
1058		/*
1059		 * Compute the extended_perms_decision only if the driver
1060		 * is flagged and the base permission is known.
1061		 */
1062		if (!security_xperm_test(xp_node->xp.drivers.p, driver) ||
1063		    !(xp_node->xp.base_perms & base_perm)) {
1064			avd.allowed &= ~requested;
1065			goto decision;
1066		}
1067		rcu_read_unlock();
1068		security_compute_xperms_decision(ssid, tsid, tclass, driver,
1069						 base_perm, &local_xpd);
1070		rcu_read_lock();
1071		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver,
1072				base_perm, xperm, ssid, tsid, tclass, avd.seqno,
1073				&local_xpd, 0);
1074	} else {
1075		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1076	}
1077	xpd = &local_xpd;
1078
1079	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1080		avd.allowed &= ~requested;
1081
1082decision:
1083	denied = requested & ~(avd.allowed);
1084	if (unlikely(denied))
1085		rc = avc_denied(ssid, tsid, tclass, requested, driver,
1086				base_perm, xperm, AVC_EXTENDED_PERMS, &avd);
1087
1088	rcu_read_unlock();
1089
1090	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1091			&avd, xpd, xperm, rc, ad);
1092	if (rc2)
1093		return rc2;
1094	return rc;
1095}
1096
1097/**
1098 * avc_perm_nonode - Add an entry to the AVC
1099 * @ssid: subject
1100 * @tsid: object/target
1101 * @tclass: object class
1102 * @requested: requested permissions
1103 * @flags: AVC flags
1104 * @avd: access vector decision
1105 *
1106 * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1107 * unlikely and needs extra stack space for the new node that we generate, so
1108 * don't inline it.
1109 */
1110static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1111				    u32 requested, unsigned int flags,
1112				    struct av_decision *avd)
1113{
1114	u32 denied;
1115	struct avc_xperms_node xp_node;
1116
1117	avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1118	denied = requested & ~(avd->allowed);
1119	if (unlikely(denied))
1120		return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0,
1121				  flags, avd);
1122	return 0;
1123}
1124
1125/**
1126 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1127 * @ssid: source security identifier
1128 * @tsid: target security identifier
1129 * @tclass: target security class
1130 * @requested: requested permissions, interpreted based on @tclass
1131 * @flags:  AVC_STRICT or 0
1132 * @avd: access vector decisions
1133 *
1134 * Check the AVC to determine whether the @requested permissions are granted
1135 * for the SID pair (@ssid, @tsid), interpreting the permissions
1136 * based on @tclass, and call the security server on a cache miss to obtain
1137 * a new decision and add it to the cache.  Return a copy of the decisions
1138 * in @avd.  Return %0 if all @requested permissions are granted,
1139 * -%EACCES if any permissions are denied, or another -errno upon
1140 * other errors.  This function is typically called by avc_has_perm(),
1141 * but may also be called directly to separate permission checking from
1142 * auditing, e.g. in cases where a lock must be held for the check but
1143 * should be released for the auditing.
1144 */
1145inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1146				u16 tclass, u32 requested,
1147				unsigned int flags,
1148				struct av_decision *avd)
1149{
1150	u32 denied;
1151	struct avc_node *node;
1152
1153	if (WARN_ON(!requested))
1154		return -EACCES;
1155
1156	rcu_read_lock();
1157	node = avc_lookup(ssid, tsid, tclass);
1158	if (unlikely(!node)) {
1159		rcu_read_unlock();
1160		return avc_perm_nonode(ssid, tsid, tclass, requested,
1161				       flags, avd);
1162	}
1163	denied = requested & ~node->ae.avd.allowed;
1164	memcpy(avd, &node->ae.avd, sizeof(*avd));
1165	rcu_read_unlock();
1166
1167	if (unlikely(denied))
1168		return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0,
1169				  flags, avd);
1170	return 0;
1171}
1172
1173/**
1174 * avc_has_perm - Check permissions and perform any appropriate auditing.
1175 * @ssid: source security identifier
1176 * @tsid: target security identifier
1177 * @tclass: target security class
1178 * @requested: requested permissions, interpreted based on @tclass
1179 * @auditdata: auxiliary audit data
1180 *
1181 * Check the AVC to determine whether the @requested permissions are granted
1182 * for the SID pair (@ssid, @tsid), interpreting the permissions
1183 * based on @tclass, and call the security server on a cache miss to obtain
1184 * a new decision and add it to the cache.  Audit the granting or denial of
1185 * permissions in accordance with the policy.  Return %0 if all @requested
1186 * permissions are granted, -%EACCES if any permissions are denied, or
1187 * another -errno upon other errors.
1188 */
1189int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1190		 u32 requested, struct common_audit_data *auditdata)
1191{
1192	struct av_decision avd;
1193	int rc, rc2;
1194
1195	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1196				  &avd);
1197
1198	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1199			auditdata);
1200	if (rc2)
1201		return rc2;
1202	return rc;
1203}
1204
1205u32 avc_policy_seqno(void)
1206{
1207	return selinux_avc.avc_cache.latest_notif;
1208}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the kernel access vector cache (AVC).
   4 *
   5 * Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   9 *	Replaced the avc_lock spinlock by RCU.
  10 *
  11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  12 */
  13#include <linux/types.h>
  14#include <linux/stddef.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/fs.h>
  18#include <linux/dcache.h>
  19#include <linux/init.h>
  20#include <linux/skbuff.h>
  21#include <linux/percpu.h>
  22#include <linux/list.h>
  23#include <net/sock.h>
  24#include <linux/un.h>
  25#include <net/af_unix.h>
  26#include <linux/ip.h>
  27#include <linux/audit.h>
  28#include <linux/ipv6.h>
  29#include <net/ipv6.h>
  30#include "avc.h"
  31#include "avc_ss.h"
  32#include "classmap.h"
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/avc.h>
  36
  37#define AVC_CACHE_SLOTS			512
  38#define AVC_DEF_CACHE_THRESHOLD		512
  39#define AVC_CACHE_RECLAIM		16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)	do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48	u32			ssid;
  49	u32			tsid;
  50	u16			tclass;
  51	struct av_decision	avd;
  52	struct avc_xperms_node	*xp_node;
  53};
  54
  55struct avc_node {
  56	struct avc_entry	ae;
  57	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
  58	struct rcu_head		rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62	struct extended_perms_decision xpd;
  63	struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67	struct extended_perms xp;
  68	struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
  75	atomic_t		active_nodes;
  76	u32			latest_notif;	/* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80	int (*callback) (u32 event);
  81	u32 events;
  82	struct avc_callback_node *next;
  83};
  84
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90	unsigned int avc_cache_threshold;
  91	struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
  95
  96void selinux_avc_init(void)
  97{
  98	int i;
  99
 100	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104	}
 105	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107}
 108
 109unsigned int avc_get_cache_threshold(void)
 110{
 111	return selinux_avc.avc_cache_threshold;
 112}
 113
 114void avc_set_cache_threshold(unsigned int cache_threshold)
 115{
 116	selinux_avc.avc_cache_threshold = cache_threshold;
 117}
 118
 119static struct avc_callback_node *avc_callbacks __ro_after_init;
 120static struct kmem_cache *avc_node_cachep __ro_after_init;
 121static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
 122static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
 123static struct kmem_cache *avc_xperms_cachep __ro_after_init;
 124
 125static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
 126{
 127	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 128}
 129
 130/**
 131 * avc_init - Initialize the AVC.
 132 *
 133 * Initialize the access vector cache.
 134 */
 135void __init avc_init(void)
 136{
 137	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 138					0, SLAB_PANIC, NULL);
 139	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 140					sizeof(struct avc_xperms_node),
 141					0, SLAB_PANIC, NULL);
 142	avc_xperms_decision_cachep = kmem_cache_create(
 143					"avc_xperms_decision_node",
 144					sizeof(struct avc_xperms_decision_node),
 145					0, SLAB_PANIC, NULL);
 146	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 147					sizeof(struct extended_perms_data),
 148					0, SLAB_PANIC, NULL);
 149}
 150
 151int avc_get_hash_stats(char *page)
 152{
 153	int i, chain_len, max_chain_len, slots_used;
 154	struct avc_node *node;
 155	struct hlist_head *head;
 156
 157	rcu_read_lock();
 158
 159	slots_used = 0;
 160	max_chain_len = 0;
 161	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 162		head = &selinux_avc.avc_cache.slots[i];
 163		if (!hlist_empty(head)) {
 164			slots_used++;
 165			chain_len = 0;
 166			hlist_for_each_entry_rcu(node, head, list)
 167				chain_len++;
 168			if (chain_len > max_chain_len)
 169				max_chain_len = chain_len;
 170		}
 171	}
 172
 173	rcu_read_unlock();
 174
 175	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 176			 "longest chain: %d\n",
 177			 atomic_read(&selinux_avc.avc_cache.active_nodes),
 178			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
 179}
 180
 181/*
 182 * using a linked list for extended_perms_decision lookup because the list is
 183 * always small. i.e. less than 5, typically 1
 184 */
 185static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 186					struct avc_xperms_node *xp_node)
 
 187{
 188	struct avc_xperms_decision_node *xpd_node;
 189
 190	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 191		if (xpd_node->xpd.driver == driver)
 
 192			return &xpd_node->xpd;
 193	}
 194	return NULL;
 195}
 196
 197static inline unsigned int
 198avc_xperms_has_perm(struct extended_perms_decision *xpd,
 199					u8 perm, u8 which)
 200{
 201	unsigned int rc = 0;
 202
 203	if ((which == XPERMS_ALLOWED) &&
 204			(xpd->used & XPERMS_ALLOWED))
 205		rc = security_xperm_test(xpd->allowed->p, perm);
 206	else if ((which == XPERMS_AUDITALLOW) &&
 207			(xpd->used & XPERMS_AUDITALLOW))
 208		rc = security_xperm_test(xpd->auditallow->p, perm);
 209	else if ((which == XPERMS_DONTAUDIT) &&
 210			(xpd->used & XPERMS_DONTAUDIT))
 211		rc = security_xperm_test(xpd->dontaudit->p, perm);
 212	return rc;
 213}
 214
 215static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 216				u8 driver, u8 perm)
 217{
 218	struct extended_perms_decision *xpd;
 219	security_xperm_set(xp_node->xp.drivers.p, driver);
 220	xpd = avc_xperms_decision_lookup(driver, xp_node);
 
 221	if (xpd && xpd->allowed)
 222		security_xperm_set(xpd->allowed->p, perm);
 223}
 224
 225static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 226{
 227	struct extended_perms_decision *xpd;
 228
 229	xpd = &xpd_node->xpd;
 230	if (xpd->allowed)
 231		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 232	if (xpd->auditallow)
 233		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 234	if (xpd->dontaudit)
 235		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 236	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 237}
 238
 239static void avc_xperms_free(struct avc_xperms_node *xp_node)
 240{
 241	struct avc_xperms_decision_node *xpd_node, *tmp;
 242
 243	if (!xp_node)
 244		return;
 245
 246	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 247		list_del(&xpd_node->xpd_list);
 248		avc_xperms_decision_free(xpd_node);
 249	}
 250	kmem_cache_free(avc_xperms_cachep, xp_node);
 251}
 252
 253static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 254					struct extended_perms_decision *src)
 255{
 
 256	dest->driver = src->driver;
 257	dest->used = src->used;
 258	if (dest->used & XPERMS_ALLOWED)
 259		memcpy(dest->allowed->p, src->allowed->p,
 260				sizeof(src->allowed->p));
 261	if (dest->used & XPERMS_AUDITALLOW)
 262		memcpy(dest->auditallow->p, src->auditallow->p,
 263				sizeof(src->auditallow->p));
 264	if (dest->used & XPERMS_DONTAUDIT)
 265		memcpy(dest->dontaudit->p, src->dontaudit->p,
 266				sizeof(src->dontaudit->p));
 267}
 268
 269/*
 270 * similar to avc_copy_xperms_decision, but only copy decision
 271 * information relevant to this perm
 272 */
 273static inline void avc_quick_copy_xperms_decision(u8 perm,
 274			struct extended_perms_decision *dest,
 275			struct extended_perms_decision *src)
 276{
 277	/*
 278	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
 279	 * command permission
 280	 */
 281	u8 i = perm >> 5;
 282
 
 283	dest->used = src->used;
 284	if (dest->used & XPERMS_ALLOWED)
 285		dest->allowed->p[i] = src->allowed->p[i];
 286	if (dest->used & XPERMS_AUDITALLOW)
 287		dest->auditallow->p[i] = src->auditallow->p[i];
 288	if (dest->used & XPERMS_DONTAUDIT)
 289		dest->dontaudit->p[i] = src->dontaudit->p[i];
 290}
 291
 292static struct avc_xperms_decision_node
 293		*avc_xperms_decision_alloc(u8 which)
 294{
 295	struct avc_xperms_decision_node *xpd_node;
 296	struct extended_perms_decision *xpd;
 297
 298	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
 299				     GFP_NOWAIT | __GFP_NOWARN);
 300	if (!xpd_node)
 301		return NULL;
 302
 303	xpd = &xpd_node->xpd;
 304	if (which & XPERMS_ALLOWED) {
 305		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 306						GFP_NOWAIT | __GFP_NOWARN);
 307		if (!xpd->allowed)
 308			goto error;
 309	}
 310	if (which & XPERMS_AUDITALLOW) {
 311		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 312						GFP_NOWAIT | __GFP_NOWARN);
 313		if (!xpd->auditallow)
 314			goto error;
 315	}
 316	if (which & XPERMS_DONTAUDIT) {
 317		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 318						GFP_NOWAIT | __GFP_NOWARN);
 319		if (!xpd->dontaudit)
 320			goto error;
 321	}
 322	return xpd_node;
 323error:
 324	avc_xperms_decision_free(xpd_node);
 325	return NULL;
 326}
 327
 328static int avc_add_xperms_decision(struct avc_node *node,
 329			struct extended_perms_decision *src)
 330{
 331	struct avc_xperms_decision_node *dest_xpd;
 332
 333	node->ae.xp_node->xp.len++;
 334	dest_xpd = avc_xperms_decision_alloc(src->used);
 335	if (!dest_xpd)
 336		return -ENOMEM;
 337	avc_copy_xperms_decision(&dest_xpd->xpd, src);
 338	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 
 339	return 0;
 340}
 341
 342static struct avc_xperms_node *avc_xperms_alloc(void)
 343{
 344	struct avc_xperms_node *xp_node;
 345
 346	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
 347	if (!xp_node)
 348		return xp_node;
 349	INIT_LIST_HEAD(&xp_node->xpd_head);
 350	return xp_node;
 351}
 352
 353static int avc_xperms_populate(struct avc_node *node,
 354				struct avc_xperms_node *src)
 355{
 356	struct avc_xperms_node *dest;
 357	struct avc_xperms_decision_node *dest_xpd;
 358	struct avc_xperms_decision_node *src_xpd;
 359
 360	if (src->xp.len == 0)
 361		return 0;
 362	dest = avc_xperms_alloc();
 363	if (!dest)
 364		return -ENOMEM;
 365
 366	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 367	dest->xp.len = src->xp.len;
 
 368
 369	/* for each source xpd allocate a destination xpd and copy */
 370	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 371		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 372		if (!dest_xpd)
 373			goto error;
 374		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 375		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 376	}
 377	node->ae.xp_node = dest;
 378	return 0;
 379error:
 380	avc_xperms_free(dest);
 381	return -ENOMEM;
 382
 383}
 384
 385static inline u32 avc_xperms_audit_required(u32 requested,
 386					struct av_decision *avd,
 387					struct extended_perms_decision *xpd,
 388					u8 perm,
 389					int result,
 390					u32 *deniedp)
 391{
 392	u32 denied, audited;
 393
 394	denied = requested & ~avd->allowed;
 395	if (unlikely(denied)) {
 396		audited = denied & avd->auditdeny;
 397		if (audited && xpd) {
 398			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 399				audited &= ~requested;
 400		}
 401	} else if (result) {
 402		audited = denied = requested;
 403	} else {
 404		audited = requested & avd->auditallow;
 405		if (audited && xpd) {
 406			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 407				audited &= ~requested;
 408		}
 409	}
 410
 411	*deniedp = denied;
 412	return audited;
 413}
 414
 415static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
 416				   u32 requested, struct av_decision *avd,
 417				   struct extended_perms_decision *xpd,
 418				   u8 perm, int result,
 419				   struct common_audit_data *ad)
 420{
 421	u32 audited, denied;
 422
 423	audited = avc_xperms_audit_required(
 424			requested, avd, xpd, perm, result, &denied);
 425	if (likely(!audited))
 426		return 0;
 427	return slow_avc_audit(ssid, tsid, tclass, requested,
 428			audited, denied, result, ad);
 429}
 430
 431static void avc_node_free(struct rcu_head *rhead)
 432{
 433	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 434	avc_xperms_free(node->ae.xp_node);
 435	kmem_cache_free(avc_node_cachep, node);
 436	avc_cache_stats_incr(frees);
 437}
 438
 439static void avc_node_delete(struct avc_node *node)
 440{
 441	hlist_del_rcu(&node->list);
 442	call_rcu(&node->rhead, avc_node_free);
 443	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 444}
 445
 446static void avc_node_kill(struct avc_node *node)
 447{
 448	avc_xperms_free(node->ae.xp_node);
 449	kmem_cache_free(avc_node_cachep, node);
 450	avc_cache_stats_incr(frees);
 451	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 452}
 453
 454static void avc_node_replace(struct avc_node *new, struct avc_node *old)
 455{
 456	hlist_replace_rcu(&old->list, &new->list);
 457	call_rcu(&old->rhead, avc_node_free);
 458	atomic_dec(&selinux_avc.avc_cache.active_nodes);
 459}
 460
 461static inline int avc_reclaim_node(void)
 462{
 463	struct avc_node *node;
 464	int hvalue, try, ecx;
 465	unsigned long flags;
 466	struct hlist_head *head;
 467	spinlock_t *lock;
 468
 469	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 470		hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
 471			(AVC_CACHE_SLOTS - 1);
 472		head = &selinux_avc.avc_cache.slots[hvalue];
 473		lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 474
 475		if (!spin_trylock_irqsave(lock, flags))
 476			continue;
 477
 478		rcu_read_lock();
 479		hlist_for_each_entry(node, head, list) {
 480			avc_node_delete(node);
 481			avc_cache_stats_incr(reclaims);
 482			ecx++;
 483			if (ecx >= AVC_CACHE_RECLAIM) {
 484				rcu_read_unlock();
 485				spin_unlock_irqrestore(lock, flags);
 486				goto out;
 487			}
 488		}
 489		rcu_read_unlock();
 490		spin_unlock_irqrestore(lock, flags);
 491	}
 492out:
 493	return ecx;
 494}
 495
 496static struct avc_node *avc_alloc_node(void)
 497{
 498	struct avc_node *node;
 499
 500	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
 501	if (!node)
 502		goto out;
 503
 504	INIT_HLIST_NODE(&node->list);
 505	avc_cache_stats_incr(allocations);
 506
 507	if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
 508	    selinux_avc.avc_cache_threshold)
 509		avc_reclaim_node();
 510
 511out:
 512	return node;
 513}
 514
 515static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 516{
 517	node->ae.ssid = ssid;
 518	node->ae.tsid = tsid;
 519	node->ae.tclass = tclass;
 520	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 521}
 522
 523static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
 524{
 525	struct avc_node *node, *ret = NULL;
 526	u32 hvalue;
 527	struct hlist_head *head;
 528
 529	hvalue = avc_hash(ssid, tsid, tclass);
 530	head = &selinux_avc.avc_cache.slots[hvalue];
 531	hlist_for_each_entry_rcu(node, head, list) {
 532		if (ssid == node->ae.ssid &&
 533		    tclass == node->ae.tclass &&
 534		    tsid == node->ae.tsid) {
 535			ret = node;
 536			break;
 537		}
 538	}
 539
 540	return ret;
 541}
 542
 543/**
 544 * avc_lookup - Look up an AVC entry.
 545 * @ssid: source security identifier
 546 * @tsid: target security identifier
 547 * @tclass: target security class
 548 *
 549 * Look up an AVC entry that is valid for the
 550 * (@ssid, @tsid), interpreting the permissions
 551 * based on @tclass.  If a valid AVC entry exists,
 552 * then this function returns the avc_node.
 553 * Otherwise, this function returns NULL.
 554 */
 555static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
 556{
 557	struct avc_node *node;
 558
 559	avc_cache_stats_incr(lookups);
 560	node = avc_search_node(ssid, tsid, tclass);
 561
 562	if (node)
 563		return node;
 564
 565	avc_cache_stats_incr(misses);
 566	return NULL;
 567}
 568
 569static int avc_latest_notif_update(u32 seqno, int is_insert)
 570{
 571	int ret = 0;
 572	static DEFINE_SPINLOCK(notif_lock);
 573	unsigned long flag;
 574
 575	spin_lock_irqsave(&notif_lock, flag);
 576	if (is_insert) {
 577		if (seqno < selinux_avc.avc_cache.latest_notif) {
 578			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
 579			       seqno, selinux_avc.avc_cache.latest_notif);
 580			ret = -EAGAIN;
 581		}
 582	} else {
 583		if (seqno > selinux_avc.avc_cache.latest_notif)
 584			selinux_avc.avc_cache.latest_notif = seqno;
 585	}
 586	spin_unlock_irqrestore(&notif_lock, flag);
 587
 588	return ret;
 589}
 590
 591/**
 592 * avc_insert - Insert an AVC entry.
 593 * @ssid: source security identifier
 594 * @tsid: target security identifier
 595 * @tclass: target security class
 596 * @avd: resulting av decision
 597 * @xp_node: resulting extended permissions
 598 *
 599 * Insert an AVC entry for the SID pair
 600 * (@ssid, @tsid) and class @tclass.
 601 * The access vectors and the sequence number are
 602 * normally provided by the security server in
 603 * response to a security_compute_av() call.  If the
 604 * sequence number @avd->seqno is not less than the latest
 605 * revocation notification, then the function copies
 606 * the access vectors into a cache entry.
 607 */
 608static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
 609		       struct av_decision *avd, struct avc_xperms_node *xp_node)
 610{
 611	struct avc_node *pos, *node = NULL;
 612	u32 hvalue;
 613	unsigned long flag;
 614	spinlock_t *lock;
 615	struct hlist_head *head;
 616
 617	if (avc_latest_notif_update(avd->seqno, 1))
 618		return;
 619
 620	node = avc_alloc_node();
 621	if (!node)
 622		return;
 623
 624	avc_node_populate(node, ssid, tsid, tclass, avd);
 625	if (avc_xperms_populate(node, xp_node)) {
 626		avc_node_kill(node);
 627		return;
 628	}
 629
 630	hvalue = avc_hash(ssid, tsid, tclass);
 631	head = &selinux_avc.avc_cache.slots[hvalue];
 632	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 633	spin_lock_irqsave(lock, flag);
 634	hlist_for_each_entry(pos, head, list) {
 635		if (pos->ae.ssid == ssid &&
 636			pos->ae.tsid == tsid &&
 637			pos->ae.tclass == tclass) {
 638			avc_node_replace(node, pos);
 639			goto found;
 640		}
 641	}
 642	hlist_add_head_rcu(&node->list, head);
 643found:
 644	spin_unlock_irqrestore(lock, flag);
 645}
 646
 647/**
 648 * avc_audit_pre_callback - SELinux specific information
 649 * will be called by generic audit code
 650 * @ab: the audit buffer
 651 * @a: audit_data
 652 */
 653static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 654{
 655	struct common_audit_data *ad = a;
 656	struct selinux_audit_data *sad = ad->selinux_audit_data;
 657	u32 av = sad->audited, perm;
 658	const char *const *perms;
 659	u32 i;
 660
 661	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
 662
 663	if (av == 0) {
 664		audit_log_format(ab, " null");
 665		return;
 666	}
 667
 668	perms = secclass_map[sad->tclass-1].perms;
 669
 670	audit_log_format(ab, " {");
 671	i = 0;
 672	perm = 1;
 673	while (i < (sizeof(av) * 8)) {
 674		if ((perm & av) && perms[i]) {
 675			audit_log_format(ab, " %s", perms[i]);
 676			av &= ~perm;
 677		}
 678		i++;
 679		perm <<= 1;
 680	}
 681
 682	if (av)
 683		audit_log_format(ab, " 0x%x", av);
 684
 685	audit_log_format(ab, " } for ");
 686}
 687
 688/**
 689 * avc_audit_post_callback - SELinux specific information
 690 * will be called by generic audit code
 691 * @ab: the audit buffer
 692 * @a: audit_data
 693 */
 694static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 695{
 696	struct common_audit_data *ad = a;
 697	struct selinux_audit_data *sad = ad->selinux_audit_data;
 698	char *scontext = NULL;
 699	char *tcontext = NULL;
 700	const char *tclass = NULL;
 701	u32 scontext_len;
 702	u32 tcontext_len;
 703	int rc;
 704
 705	rc = security_sid_to_context(sad->ssid, &scontext,
 706				     &scontext_len);
 707	if (rc)
 708		audit_log_format(ab, " ssid=%d", sad->ssid);
 709	else
 710		audit_log_format(ab, " scontext=%s", scontext);
 711
 712	rc = security_sid_to_context(sad->tsid, &tcontext,
 713				     &tcontext_len);
 714	if (rc)
 715		audit_log_format(ab, " tsid=%d", sad->tsid);
 716	else
 717		audit_log_format(ab, " tcontext=%s", tcontext);
 718
 719	tclass = secclass_map[sad->tclass-1].name;
 720	audit_log_format(ab, " tclass=%s", tclass);
 721
 722	if (sad->denied)
 723		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
 724
 725	trace_selinux_audited(sad, scontext, tcontext, tclass);
 726	kfree(tcontext);
 727	kfree(scontext);
 728
 729	/* in case of invalid context report also the actual context string */
 730	rc = security_sid_to_context_inval(sad->ssid, &scontext,
 731					   &scontext_len);
 732	if (!rc && scontext) {
 733		if (scontext_len && scontext[scontext_len - 1] == '\0')
 734			scontext_len--;
 735		audit_log_format(ab, " srawcon=");
 736		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 737		kfree(scontext);
 738	}
 739
 740	rc = security_sid_to_context_inval(sad->tsid, &scontext,
 741					   &scontext_len);
 742	if (!rc && scontext) {
 743		if (scontext_len && scontext[scontext_len - 1] == '\0')
 744			scontext_len--;
 745		audit_log_format(ab, " trawcon=");
 746		audit_log_n_untrustedstring(ab, scontext, scontext_len);
 747		kfree(scontext);
 748	}
 749}
 750
 751/*
 752 * This is the slow part of avc audit with big stack footprint.
 753 * Note that it is non-blocking and can be called from under
 754 * rcu_read_lock().
 755 */
 756noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
 757			    u32 requested, u32 audited, u32 denied, int result,
 758			    struct common_audit_data *a)
 759{
 760	struct common_audit_data stack_data;
 761	struct selinux_audit_data sad;
 762
 763	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
 764		return -EINVAL;
 765
 766	if (!a) {
 767		a = &stack_data;
 768		a->type = LSM_AUDIT_DATA_NONE;
 769	}
 770
 771	sad.tclass = tclass;
 772	sad.requested = requested;
 773	sad.ssid = ssid;
 774	sad.tsid = tsid;
 775	sad.audited = audited;
 776	sad.denied = denied;
 777	sad.result = result;
 778
 779	a->selinux_audit_data = &sad;
 780
 781	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 782	return 0;
 783}
 784
 785/**
 786 * avc_add_callback - Register a callback for security events.
 787 * @callback: callback function
 788 * @events: security events
 789 *
 790 * Register a callback function for events in the set @events.
 791 * Returns %0 on success or -%ENOMEM if insufficient memory
 792 * exists to add the callback.
 793 */
 794int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 795{
 796	struct avc_callback_node *c;
 797	int rc = 0;
 798
 799	c = kmalloc(sizeof(*c), GFP_KERNEL);
 800	if (!c) {
 801		rc = -ENOMEM;
 802		goto out;
 803	}
 804
 805	c->callback = callback;
 806	c->events = events;
 807	c->next = avc_callbacks;
 808	avc_callbacks = c;
 809out:
 810	return rc;
 811}
 812
 813/**
 814 * avc_update_node - Update an AVC entry
 815 * @event : Updating event
 816 * @perms : Permission mask bits
 817 * @driver: xperm driver information
 
 818 * @xperm: xperm permissions
 819 * @ssid: AVC entry source sid
 820 * @tsid: AVC entry target sid
 821 * @tclass : AVC entry target object class
 822 * @seqno : sequence number when decision was made
 823 * @xpd: extended_perms_decision to be added to the node
 824 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
 825 *
 826 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 827 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 828 * otherwise, this function updates the AVC entry. The original AVC-entry object
 829 * will release later by RCU.
 830 */
 831static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 832			   u32 tsid, u16 tclass, u32 seqno,
 833			   struct extended_perms_decision *xpd,
 834			   u32 flags)
 835{
 836	u32 hvalue;
 837	int rc = 0;
 838	unsigned long flag;
 839	struct avc_node *pos, *node, *orig = NULL;
 840	struct hlist_head *head;
 841	spinlock_t *lock;
 842
 843	node = avc_alloc_node();
 844	if (!node) {
 845		rc = -ENOMEM;
 846		goto out;
 847	}
 848
 849	/* Lock the target slot */
 850	hvalue = avc_hash(ssid, tsid, tclass);
 851
 852	head = &selinux_avc.avc_cache.slots[hvalue];
 853	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
 854
 855	spin_lock_irqsave(lock, flag);
 856
 857	hlist_for_each_entry(pos, head, list) {
 858		if (ssid == pos->ae.ssid &&
 859		    tsid == pos->ae.tsid &&
 860		    tclass == pos->ae.tclass &&
 861		    seqno == pos->ae.avd.seqno){
 862			orig = pos;
 863			break;
 864		}
 865	}
 866
 867	if (!orig) {
 868		rc = -ENOENT;
 869		avc_node_kill(node);
 870		goto out_unlock;
 871	}
 872
 873	/*
 874	 * Copy and replace original node.
 875	 */
 876
 877	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 878
 879	if (orig->ae.xp_node) {
 880		rc = avc_xperms_populate(node, orig->ae.xp_node);
 881		if (rc) {
 882			avc_node_kill(node);
 883			goto out_unlock;
 884		}
 885	}
 886
 887	switch (event) {
 888	case AVC_CALLBACK_GRANT:
 889		node->ae.avd.allowed |= perms;
 890		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 891			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 892		break;
 893	case AVC_CALLBACK_TRY_REVOKE:
 894	case AVC_CALLBACK_REVOKE:
 895		node->ae.avd.allowed &= ~perms;
 896		break;
 897	case AVC_CALLBACK_AUDITALLOW_ENABLE:
 898		node->ae.avd.auditallow |= perms;
 899		break;
 900	case AVC_CALLBACK_AUDITALLOW_DISABLE:
 901		node->ae.avd.auditallow &= ~perms;
 902		break;
 903	case AVC_CALLBACK_AUDITDENY_ENABLE:
 904		node->ae.avd.auditdeny |= perms;
 905		break;
 906	case AVC_CALLBACK_AUDITDENY_DISABLE:
 907		node->ae.avd.auditdeny &= ~perms;
 908		break;
 909	case AVC_CALLBACK_ADD_XPERMS:
 910		avc_add_xperms_decision(node, xpd);
 
 
 
 
 911		break;
 912	}
 913	avc_node_replace(node, orig);
 914out_unlock:
 915	spin_unlock_irqrestore(lock, flag);
 916out:
 917	return rc;
 918}
 919
 920/**
 921 * avc_flush - Flush the cache
 922 */
 923static void avc_flush(void)
 924{
 925	struct hlist_head *head;
 926	struct avc_node *node;
 927	spinlock_t *lock;
 928	unsigned long flag;
 929	int i;
 930
 931	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 932		head = &selinux_avc.avc_cache.slots[i];
 933		lock = &selinux_avc.avc_cache.slots_lock[i];
 934
 935		spin_lock_irqsave(lock, flag);
 936		/*
 937		 * With preemptable RCU, the outer spinlock does not
 938		 * prevent RCU grace periods from ending.
 939		 */
 940		rcu_read_lock();
 941		hlist_for_each_entry(node, head, list)
 942			avc_node_delete(node);
 943		rcu_read_unlock();
 944		spin_unlock_irqrestore(lock, flag);
 945	}
 946}
 947
 948/**
 949 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 950 * @seqno: policy sequence number
 951 */
 952int avc_ss_reset(u32 seqno)
 953{
 954	struct avc_callback_node *c;
 955	int rc = 0, tmprc;
 956
 957	avc_flush();
 958
 959	for (c = avc_callbacks; c; c = c->next) {
 960		if (c->events & AVC_CALLBACK_RESET) {
 961			tmprc = c->callback(AVC_CALLBACK_RESET);
 962			/* save the first error encountered for the return
 963			   value and continue processing the callbacks */
 964			if (!rc)
 965				rc = tmprc;
 966		}
 967	}
 968
 969	avc_latest_notif_update(seqno, 0);
 970	return rc;
 971}
 972
 973/**
 974 * avc_compute_av - Add an entry to the AVC based on the security policy
 975 * @ssid: subject
 976 * @tsid: object/target
 977 * @tclass: object class
 978 * @avd: access vector decision
 979 * @xp_node: AVC extended permissions node
 980 *
 981 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
 982 * fails.  Don't inline this, since it's the slow-path and just results in a
 983 * bigger stack frame.
 984 */
 985static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
 986				    struct av_decision *avd,
 987				    struct avc_xperms_node *xp_node)
 988{
 989	INIT_LIST_HEAD(&xp_node->xpd_head);
 990	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
 991	avc_insert(ssid, tsid, tclass, avd, xp_node);
 992}
 993
 994static noinline int avc_denied(u32 ssid, u32 tsid,
 995			       u16 tclass, u32 requested,
 996			       u8 driver, u8 xperm, unsigned int flags,
 997			       struct av_decision *avd)
 998{
 999	if (flags & AVC_STRICT)
1000		return -EACCES;
1001
1002	if (enforcing_enabled() &&
1003	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1004		return -EACCES;
1005
1006	avc_update_node(AVC_CALLBACK_GRANT, requested, driver,
1007			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1008	return 0;
1009}
1010
1011/*
1012 * The avc extended permissions logic adds an additional 256 bits of
1013 * permissions to an avc node when extended permissions for that node are
1014 * specified in the avtab. If the additional 256 permissions is not adequate,
1015 * as-is the case with ioctls, then multiple may be chained together and the
1016 * driver field is used to specify which set contains the permission.
1017 */
1018int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1019			   u8 driver, u8 xperm, struct common_audit_data *ad)
 
1020{
1021	struct avc_node *node;
1022	struct av_decision avd;
1023	u32 denied;
1024	struct extended_perms_decision local_xpd;
1025	struct extended_perms_decision *xpd = NULL;
1026	struct extended_perms_data allowed;
1027	struct extended_perms_data auditallow;
1028	struct extended_perms_data dontaudit;
1029	struct avc_xperms_node local_xp_node;
1030	struct avc_xperms_node *xp_node;
1031	int rc = 0, rc2;
1032
1033	xp_node = &local_xp_node;
1034	if (WARN_ON(!requested))
1035		return -EACCES;
1036
1037	rcu_read_lock();
1038
1039	node = avc_lookup(ssid, tsid, tclass);
1040	if (unlikely(!node)) {
1041		avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1042	} else {
1043		memcpy(&avd, &node->ae.avd, sizeof(avd));
1044		xp_node = node->ae.xp_node;
1045	}
1046	/* if extended permissions are not defined, only consider av_decision */
1047	if (!xp_node || !xp_node->xp.len)
1048		goto decision;
1049
1050	local_xpd.allowed = &allowed;
1051	local_xpd.auditallow = &auditallow;
1052	local_xpd.dontaudit = &dontaudit;
1053
1054	xpd = avc_xperms_decision_lookup(driver, xp_node);
1055	if (unlikely(!xpd)) {
1056		/*
1057		 * Compute the extended_perms_decision only if the driver
1058		 * is flagged
1059		 */
1060		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
 
1061			avd.allowed &= ~requested;
1062			goto decision;
1063		}
1064		rcu_read_unlock();
1065		security_compute_xperms_decision(ssid, tsid, tclass,
1066						 driver, &local_xpd);
1067		rcu_read_lock();
1068		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested,
1069				driver, xperm, ssid, tsid, tclass, avd.seqno,
1070				&local_xpd, 0);
1071	} else {
1072		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1073	}
1074	xpd = &local_xpd;
1075
1076	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1077		avd.allowed &= ~requested;
1078
1079decision:
1080	denied = requested & ~(avd.allowed);
1081	if (unlikely(denied))
1082		rc = avc_denied(ssid, tsid, tclass, requested,
1083				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1084
1085	rcu_read_unlock();
1086
1087	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1088			&avd, xpd, xperm, rc, ad);
1089	if (rc2)
1090		return rc2;
1091	return rc;
1092}
1093
1094/**
1095 * avc_perm_nonode - Add an entry to the AVC
1096 * @ssid: subject
1097 * @tsid: object/target
1098 * @tclass: object class
1099 * @requested: requested permissions
1100 * @flags: AVC flags
1101 * @avd: access vector decision
1102 *
1103 * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1104 * unlikely and needs extra stack space for the new node that we generate, so
1105 * don't inline it.
1106 */
1107static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1108				    u32 requested, unsigned int flags,
1109				    struct av_decision *avd)
1110{
1111	u32 denied;
1112	struct avc_xperms_node xp_node;
1113
1114	avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1115	denied = requested & ~(avd->allowed);
1116	if (unlikely(denied))
1117		return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1118				  flags, avd);
1119	return 0;
1120}
1121
1122/**
1123 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1124 * @ssid: source security identifier
1125 * @tsid: target security identifier
1126 * @tclass: target security class
1127 * @requested: requested permissions, interpreted based on @tclass
1128 * @flags:  AVC_STRICT or 0
1129 * @avd: access vector decisions
1130 *
1131 * Check the AVC to determine whether the @requested permissions are granted
1132 * for the SID pair (@ssid, @tsid), interpreting the permissions
1133 * based on @tclass, and call the security server on a cache miss to obtain
1134 * a new decision and add it to the cache.  Return a copy of the decisions
1135 * in @avd.  Return %0 if all @requested permissions are granted,
1136 * -%EACCES if any permissions are denied, or another -errno upon
1137 * other errors.  This function is typically called by avc_has_perm(),
1138 * but may also be called directly to separate permission checking from
1139 * auditing, e.g. in cases where a lock must be held for the check but
1140 * should be released for the auditing.
1141 */
1142inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1143				u16 tclass, u32 requested,
1144				unsigned int flags,
1145				struct av_decision *avd)
1146{
1147	u32 denied;
1148	struct avc_node *node;
1149
1150	if (WARN_ON(!requested))
1151		return -EACCES;
1152
1153	rcu_read_lock();
1154	node = avc_lookup(ssid, tsid, tclass);
1155	if (unlikely(!node)) {
1156		rcu_read_unlock();
1157		return avc_perm_nonode(ssid, tsid, tclass, requested,
1158				       flags, avd);
1159	}
1160	denied = requested & ~node->ae.avd.allowed;
1161	memcpy(avd, &node->ae.avd, sizeof(*avd));
1162	rcu_read_unlock();
1163
1164	if (unlikely(denied))
1165		return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1166				  flags, avd);
1167	return 0;
1168}
1169
1170/**
1171 * avc_has_perm - Check permissions and perform any appropriate auditing.
1172 * @ssid: source security identifier
1173 * @tsid: target security identifier
1174 * @tclass: target security class
1175 * @requested: requested permissions, interpreted based on @tclass
1176 * @auditdata: auxiliary audit data
1177 *
1178 * Check the AVC to determine whether the @requested permissions are granted
1179 * for the SID pair (@ssid, @tsid), interpreting the permissions
1180 * based on @tclass, and call the security server on a cache miss to obtain
1181 * a new decision and add it to the cache.  Audit the granting or denial of
1182 * permissions in accordance with the policy.  Return %0 if all @requested
1183 * permissions are granted, -%EACCES if any permissions are denied, or
1184 * another -errno upon other errors.
1185 */
1186int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1187		 u32 requested, struct common_audit_data *auditdata)
1188{
1189	struct av_decision avd;
1190	int rc, rc2;
1191
1192	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1193				  &avd);
1194
1195	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1196			auditdata);
1197	if (rc2)
1198		return rc2;
1199	return rc;
1200}
1201
1202u32 avc_policy_seqno(void)
1203{
1204	return selinux_avc.avc_cache.latest_notif;
1205}