Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)	"OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
  11#include <linux/overflow.h>
  12#include <linux/pci.h>
  13#include <linux/pci_regs.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16#include <linux/string.h>
  17#include <linux/dma-direct.h> /* for bus_dma_region */
  18
  19#include "of_private.h"
  20
  21/* Max address size we deal with */
  22#define OF_MAX_ADDR_CELLS	4
  23#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  24#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  25
  26/* Debug utility */
  27#ifdef DEBUG
  28static void of_dump_addr(const char *s, const __be32 *addr, int na)
  29{
  30	pr_debug("%s", s);
  31	while (na--)
  32		pr_cont(" %08x", be32_to_cpu(*(addr++)));
  33	pr_cont("\n");
  34}
  35#else
  36static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  37#endif
  38
  39/* Callbacks for bus specific translators */
  40struct of_bus {
  41	const char	*name;
  42	const char	*addresses;
  43	int		(*match)(struct device_node *parent);
  44	void		(*count_cells)(struct device_node *child,
  45				       int *addrc, int *sizec);
  46	u64		(*map)(__be32 *addr, const __be32 *range,
  47				int na, int ns, int pna, int fna);
  48	int		(*translate)(__be32 *addr, u64 offset, int na);
  49	int		flag_cells;
  50	unsigned int	(*get_flags)(const __be32 *addr);
  51};
  52
  53/*
  54 * Default translator (generic bus)
  55 */
  56
  57static void of_bus_default_count_cells(struct device_node *dev,
  58				       int *addrc, int *sizec)
  59{
  60	if (addrc)
  61		*addrc = of_n_addr_cells(dev);
  62	if (sizec)
  63		*sizec = of_n_size_cells(dev);
  64}
  65
  66static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  67		int na, int ns, int pna, int fna)
  68{
  69	u64 cp, s, da;
  70
  71	cp = of_read_number(range + fna, na - fna);
  72	s  = of_read_number(range + na + pna, ns);
  73	da = of_read_number(addr + fna, na - fna);
  74
  75	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
  76
  77	if (da < cp || da >= (cp + s))
  78		return OF_BAD_ADDR;
  79	return da - cp;
  80}
  81
  82static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  83{
  84	u64 a = of_read_number(addr, na);
  85	memset(addr, 0, na * 4);
  86	a += offset;
  87	if (na > 1)
  88		addr[na - 2] = cpu_to_be32(a >> 32);
  89	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  90
  91	return 0;
  92}
  93
  94static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
  95{
  96	return of_read_number(addr, 1);
  97}
  98
  99static unsigned int of_bus_default_get_flags(const __be32 *addr)
 100{
 101	return IORESOURCE_MEM;
 102}
 103
 104static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
 105				    int ns, int pna, int fna)
 106{
 107	/* Check that flags match */
 108	if (*addr != *range)
 109		return OF_BAD_ADDR;
 110
 111	return of_bus_default_map(addr, range, na, ns, pna, fna);
 112}
 113
 114static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
 115{
 116	/* Keep "flags" part (high cell) in translated address */
 117	return of_bus_default_translate(addr + 1, offset, na - 1);
 118}
 119
 120#ifdef CONFIG_PCI
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123	unsigned int flags = 0;
 124	u32 w = be32_to_cpup(addr);
 125
 126	if (!IS_ENABLED(CONFIG_PCI))
 127		return 0;
 128
 129	switch((w >> 24) & 0x03) {
 130	case 0x01:
 131		flags |= IORESOURCE_IO;
 132		break;
 133	case 0x02: /* 32 bits */
 134		flags |= IORESOURCE_MEM;
 135		break;
 136
 137	case 0x03: /* 64 bits */
 138		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
 139		break;
 140	}
 141	if (w & 0x40000000)
 142		flags |= IORESOURCE_PREFETCH;
 143	return flags;
 144}
 145
 146/*
 147 * PCI bus specific translator
 148 */
 149
 150static bool of_node_is_pcie(const struct device_node *np)
 151{
 152	bool is_pcie = of_node_name_eq(np, "pcie");
 153
 154	if (is_pcie)
 155		pr_warn_once("%pOF: Missing device_type\n", np);
 156
 157	return is_pcie;
 158}
 159
 160static int of_bus_pci_match(struct device_node *np)
 161{
 162	/*
 163 	 * "pciex" is PCI Express
 164	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 165	 * "ht" is hypertransport
 166	 *
 167	 * If none of the device_type match, and that the node name is
 168	 * "pcie", accept the device as PCI (with a warning).
 169	 */
 170	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 171		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
 172		of_node_is_pcie(np);
 173}
 174
 175static void of_bus_pci_count_cells(struct device_node *np,
 176				   int *addrc, int *sizec)
 177{
 178	if (addrc)
 179		*addrc = 3;
 180	if (sizec)
 181		*sizec = 2;
 182}
 183
 184static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 185		int pna, int fna)
 186{
 187	unsigned int af, rf;
 188
 189	af = of_bus_pci_get_flags(addr);
 190	rf = of_bus_pci_get_flags(range);
 191
 192	/* Check address type match */
 193	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 194		return OF_BAD_ADDR;
 195
 196	return of_bus_default_map(addr, range, na, ns, pna, fna);
 197}
 198
 199#endif /* CONFIG_PCI */
 200
 201static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
 202{
 203	if (overflows_type(start, r->start))
 204		return -EOVERFLOW;
 205
 206	r->start = start;
 207
 208	if (!size)
 209		r->end = wrapping_sub(typeof(r->end), r->start, 1);
 210	else if (size && check_add_overflow(r->start, size - 1, &r->end))
 211		return -EOVERFLOW;
 212
 213	return 0;
 214}
 215
 216/*
 217 * of_pci_range_to_resource - Create a resource from an of_pci_range
 218 * @range:	the PCI range that describes the resource
 219 * @np:		device node where the range belongs to
 220 * @res:	pointer to a valid resource that will be updated to
 221 *              reflect the values contained in the range.
 222 *
 223 * Returns -EINVAL if the range cannot be converted to resource.
 224 *
 225 * Note that if the range is an IO range, the resource will be converted
 226 * using pci_address_to_pio() which can fail if it is called too early or
 227 * if the range cannot be matched to any host bridge IO space (our case here).
 228 * To guard against that we try to register the IO range first.
 229 * If that fails we know that pci_address_to_pio() will do too.
 230 */
 231int of_pci_range_to_resource(const struct of_pci_range *range,
 232			     const struct device_node *np, struct resource *res)
 233{
 234	u64 start;
 235	int err;
 236	res->flags = range->flags;
 237	res->parent = res->child = res->sibling = NULL;
 238	res->name = np->full_name;
 239
 240	if (res->flags & IORESOURCE_IO) {
 241		unsigned long port;
 242		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 243				range->size);
 244		if (err)
 245			goto invalid_range;
 246		port = pci_address_to_pio(range->cpu_addr);
 247		if (port == (unsigned long)-1) {
 248			err = -EINVAL;
 249			goto invalid_range;
 250		}
 251		start = port;
 252	} else {
 253		start = range->cpu_addr;
 
 
 
 
 
 
 254	}
 255	return __of_address_resource_bounds(res, start, range->size);
 
 256
 257invalid_range:
 258	res->start = (resource_size_t)OF_BAD_ADDR;
 259	res->end = (resource_size_t)OF_BAD_ADDR;
 260	return err;
 261}
 262EXPORT_SYMBOL(of_pci_range_to_resource);
 263
 264/*
 265 * of_range_to_resource - Create a resource from a ranges entry
 266 * @np:		device node where the range belongs to
 267 * @index:	the 'ranges' index to convert to a resource
 268 * @res:	pointer to a valid resource that will be updated to
 269 *              reflect the values contained in the range.
 270 *
 271 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
 272 * cannot be converted to resource.
 273 */
 274int of_range_to_resource(struct device_node *np, int index, struct resource *res)
 275{
 276	int ret, i = 0;
 277	struct of_range_parser parser;
 278	struct of_range range;
 279
 280	ret = of_range_parser_init(&parser, np);
 281	if (ret)
 282		return ret;
 283
 284	for_each_of_range(&parser, &range)
 285		if (i++ == index)
 286			return of_pci_range_to_resource(&range, np, res);
 287
 288	return -ENOENT;
 289}
 290EXPORT_SYMBOL(of_range_to_resource);
 291
 292/*
 293 * ISA bus specific translator
 294 */
 295
 296static int of_bus_isa_match(struct device_node *np)
 297{
 298	return of_node_name_eq(np, "isa");
 299}
 300
 301static void of_bus_isa_count_cells(struct device_node *child,
 302				   int *addrc, int *sizec)
 303{
 304	if (addrc)
 305		*addrc = 2;
 306	if (sizec)
 307		*sizec = 1;
 308}
 309
 310static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 311		int pna, int fna)
 312{
 313	/* Check address type match */
 314	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 315		return OF_BAD_ADDR;
 316
 317	return of_bus_default_map(addr, range, na, ns, pna, fna);
 318}
 319
 320static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 321{
 322	unsigned int flags = 0;
 323	u32 w = be32_to_cpup(addr);
 324
 325	if (w & 1)
 326		flags |= IORESOURCE_IO;
 327	else
 328		flags |= IORESOURCE_MEM;
 329	return flags;
 330}
 331
 332static int of_bus_default_flags_match(struct device_node *np)
 333{
 334	/*
 335	 * Check for presence first since of_bus_n_addr_cells() will warn when
 336	 * walking parent nodes.
 337	 */
 338	return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3);
 339}
 340
 341static int of_bus_default_match(struct device_node *np)
 342{
 343	/*
 344	 * Check for presence first since of_bus_n_addr_cells() will warn when
 345	 * walking parent nodes.
 346	 */
 347	return of_property_present(np, "#address-cells");
 348}
 349
 350/*
 351 * Array of bus specific translators
 352 */
 353
 354static const struct of_bus of_busses[] = {
 355#ifdef CONFIG_PCI
 356	/* PCI */
 357	{
 358		.name = "pci",
 359		.addresses = "assigned-addresses",
 360		.match = of_bus_pci_match,
 361		.count_cells = of_bus_pci_count_cells,
 362		.map = of_bus_pci_map,
 363		.translate = of_bus_default_flags_translate,
 364		.flag_cells = 1,
 365		.get_flags = of_bus_pci_get_flags,
 366	},
 367#endif /* CONFIG_PCI */
 368	/* ISA */
 369	{
 370		.name = "isa",
 371		.addresses = "reg",
 372		.match = of_bus_isa_match,
 373		.count_cells = of_bus_isa_count_cells,
 374		.map = of_bus_isa_map,
 375		.translate = of_bus_default_flags_translate,
 376		.flag_cells = 1,
 377		.get_flags = of_bus_isa_get_flags,
 378	},
 379	/* Default with flags cell */
 380	{
 381		.name = "default-flags",
 382		.addresses = "reg",
 383		.match = of_bus_default_flags_match,
 384		.count_cells = of_bus_default_count_cells,
 385		.map = of_bus_default_flags_map,
 386		.translate = of_bus_default_flags_translate,
 387		.flag_cells = 1,
 388		.get_flags = of_bus_default_flags_get_flags,
 389	},
 390	/* Default */
 391	{
 392		.name = "default",
 393		.addresses = "reg",
 394		.match = of_bus_default_match,
 395		.count_cells = of_bus_default_count_cells,
 396		.map = of_bus_default_map,
 397		.translate = of_bus_default_translate,
 398		.get_flags = of_bus_default_get_flags,
 399	},
 400};
 401
 402static const struct of_bus *of_match_bus(struct device_node *np)
 403{
 404	int i;
 405
 406	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 407		if (!of_busses[i].match || of_busses[i].match(np))
 408			return &of_busses[i];
 
 409	return NULL;
 410}
 411
 412static int of_empty_ranges_quirk(const struct device_node *np)
 413{
 414	if (IS_ENABLED(CONFIG_PPC)) {
 415		/* To save cycles, we cache the result for global "Mac" setting */
 416		static int quirk_state = -1;
 417
 418		/* PA-SEMI sdc DT bug */
 419		if (of_device_is_compatible(np, "1682m-sdc"))
 420			return true;
 421
 422		/* Make quirk cached */
 423		if (quirk_state < 0)
 424			quirk_state =
 425				of_machine_is_compatible("Power Macintosh") ||
 426				of_machine_is_compatible("MacRISC");
 427		return quirk_state;
 428	}
 429	return false;
 430}
 431
 432static int of_translate_one(const struct device_node *parent, const struct of_bus *bus,
 433			    const struct of_bus *pbus, __be32 *addr,
 434			    int na, int ns, int pna, const char *rprop)
 435{
 436	const __be32 *ranges;
 437	unsigned int rlen;
 438	int rone;
 439	u64 offset = OF_BAD_ADDR;
 440
 441	/*
 442	 * Normally, an absence of a "ranges" property means we are
 443	 * crossing a non-translatable boundary, and thus the addresses
 444	 * below the current cannot be converted to CPU physical ones.
 445	 * Unfortunately, while this is very clear in the spec, it's not
 446	 * what Apple understood, and they do have things like /uni-n or
 447	 * /ht nodes with no "ranges" property and a lot of perfectly
 448	 * useable mapped devices below them. Thus we treat the absence of
 449	 * "ranges" as equivalent to an empty "ranges" property which means
 450	 * a 1:1 translation at that level. It's up to the caller not to try
 451	 * to translate addresses that aren't supposed to be translated in
 452	 * the first place. --BenH.
 453	 *
 454	 * As far as we know, this damage only exists on Apple machines, so
 455	 * This code is only enabled on powerpc. --gcl
 456	 *
 457	 * This quirk also applies for 'dma-ranges' which frequently exist in
 458	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
 459	 */
 460	ranges = of_get_property(parent, rprop, &rlen);
 461	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
 462	    strcmp(rprop, "dma-ranges")) {
 463		pr_debug("no ranges; cannot translate\n");
 464		return 1;
 465	}
 466	if (ranges == NULL || rlen == 0) {
 467		offset = of_read_number(addr, na);
 468		/* set address to zero, pass flags through */
 469		memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4);
 470		pr_debug("empty ranges; 1:1 translation\n");
 471		goto finish;
 472	}
 473
 474	pr_debug("walking ranges...\n");
 475
 476	/* Now walk through the ranges */
 477	rlen /= 4;
 478	rone = na + pna + ns;
 479	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 480		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
 481		if (offset != OF_BAD_ADDR)
 482			break;
 483	}
 484	if (offset == OF_BAD_ADDR) {
 485		pr_debug("not found !\n");
 486		return 1;
 487	}
 488	memcpy(addr, ranges + na, 4 * pna);
 489
 490 finish:
 491	of_dump_addr("parent translation for:", addr, pna);
 492	pr_debug("with offset: %llx\n", offset);
 493
 494	/* Translate it into parent bus space */
 495	return pbus->translate(addr, offset, pna);
 496}
 497
 498/*
 499 * Translate an address from the device-tree into a CPU physical address,
 500 * this walks up the tree and applies the various bus mappings on the
 501 * way.
 502 *
 503 * Note: We consider that crossing any level with #size-cells == 0 to mean
 504 * that translation is impossible (that is we are not dealing with a value
 505 * that can be mapped to a cpu physical address). This is not really specified
 506 * that way, but this is traditionally the way IBM at least do things
 507 *
 508 * Whenever the translation fails, the *host pointer will be set to the
 509 * device that had registered logical PIO mapping, and the return code is
 510 * relative to that node.
 511 */
 512static u64 __of_translate_address(struct device_node *node,
 513				  struct device_node *(*get_parent)(const struct device_node *),
 514				  const __be32 *in_addr, const char *rprop,
 515				  struct device_node **host)
 516{
 517	struct device_node *dev __free(device_node) = of_node_get(node);
 518	struct device_node *parent __free(device_node) = get_parent(dev);
 519	const struct of_bus *bus, *pbus;
 520	__be32 addr[OF_MAX_ADDR_CELLS];
 521	int na, ns, pna, pns;
 
 522
 523	pr_debug("** translation for device %pOF **\n", dev);
 524
 525	*host = NULL;
 
 526
 
 
 
 527	if (parent == NULL)
 528		return OF_BAD_ADDR;
 529	bus = of_match_bus(parent);
 530	if (!bus)
 531		return OF_BAD_ADDR;
 532
 533	/* Count address cells & copy address locally */
 534	bus->count_cells(dev, &na, &ns);
 535	if (!OF_CHECK_COUNTS(na, ns)) {
 536		pr_debug("Bad cell count for %pOF\n", dev);
 537		return OF_BAD_ADDR;
 538	}
 539	memcpy(addr, in_addr, na * 4);
 540
 541	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 542	    bus->name, na, ns, parent);
 543	of_dump_addr("translating address:", addr, na);
 544
 545	/* Translate */
 546	for (;;) {
 547		struct logic_pio_hwaddr *iorange;
 548
 549		/* Switch to parent bus */
 550		of_node_put(dev);
 551		dev = parent;
 552		parent = get_parent(dev);
 553
 554		/* If root, we have finished */
 555		if (parent == NULL) {
 556			pr_debug("reached root node\n");
 557			return of_read_number(addr, na);
 
 558		}
 559
 560		/*
 561		 * For indirectIO device which has no ranges property, get
 562		 * the address from reg directly.
 563		 */
 564		iorange = find_io_range_by_fwnode(&dev->fwnode);
 565		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 566			u64 result = of_read_number(addr + 1, na - 1);
 567			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 568				 dev, result);
 569			*host = no_free_ptr(dev);
 570			return result;
 571		}
 572
 573		/* Get new parent bus and counts */
 574		pbus = of_match_bus(parent);
 575		if (!pbus)
 576			return OF_BAD_ADDR;
 577		pbus->count_cells(dev, &pna, &pns);
 578		if (!OF_CHECK_COUNTS(pna, pns)) {
 579			pr_err("Bad cell count for %pOF\n", dev);
 580			return OF_BAD_ADDR;
 581		}
 582
 583		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 584		    pbus->name, pna, pns, parent);
 585
 586		/* Apply bus translation */
 587		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 588			return OF_BAD_ADDR;
 589
 590		/* Complete the move up one level */
 591		na = pna;
 592		ns = pns;
 593		bus = pbus;
 594
 595		of_dump_addr("one level translation:", addr, na);
 596	}
 
 
 
 597
 598	unreachable();
 599}
 600
 601u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 602{
 603	struct device_node *host;
 604	u64 ret;
 605
 606	ret = __of_translate_address(dev, of_get_parent,
 607				     in_addr, "ranges", &host);
 608	if (host) {
 609		of_node_put(host);
 610		return OF_BAD_ADDR;
 611	}
 612
 613	return ret;
 614}
 615EXPORT_SYMBOL(of_translate_address);
 616
 617#ifdef CONFIG_HAS_DMA
 618struct device_node *__of_get_dma_parent(const struct device_node *np)
 619{
 620	struct of_phandle_args args;
 621	int ret, index;
 622
 623	index = of_property_match_string(np, "interconnect-names", "dma-mem");
 624	if (index < 0)
 625		return of_get_parent(np);
 626
 627	ret = of_parse_phandle_with_args(np, "interconnects",
 628					 "#interconnect-cells",
 629					 index, &args);
 630	if (ret < 0)
 631		return of_get_parent(np);
 632
 633	return args.np;
 634}
 635#endif
 636
 637static struct device_node *of_get_next_dma_parent(struct device_node *np)
 638{
 639	struct device_node *parent;
 640
 641	parent = __of_get_dma_parent(np);
 642	of_node_put(np);
 643
 644	return parent;
 645}
 646
 647u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 648{
 649	struct device_node *host;
 650	u64 ret;
 651
 652	ret = __of_translate_address(dev, __of_get_dma_parent,
 653				     in_addr, "dma-ranges", &host);
 654
 655	if (host) {
 656		of_node_put(host);
 657		return OF_BAD_ADDR;
 658	}
 659
 660	return ret;
 661}
 662EXPORT_SYMBOL(of_translate_dma_address);
 663
 664/**
 665 * of_translate_dma_region - Translate device tree address and size tuple
 666 * @dev: device tree node for which to translate
 667 * @prop: pointer into array of cells
 668 * @start: return value for the start of the DMA range
 669 * @length: return value for the length of the DMA range
 670 *
 671 * Returns a pointer to the cell immediately following the translated DMA region.
 672 */
 673const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
 674				      phys_addr_t *start, size_t *length)
 675{
 676	struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
 677	u64 address, size;
 678	int na, ns;
 679
 
 680	if (!parent)
 681		return NULL;
 682
 683	na = of_bus_n_addr_cells(parent);
 684	ns = of_bus_n_size_cells(parent);
 685
 
 
 686	address = of_translate_dma_address(dev, prop);
 687	if (address == OF_BAD_ADDR)
 688		return NULL;
 689
 690	size = of_read_number(prop + na, ns);
 691
 692	if (start)
 693		*start = address;
 694
 695	if (length)
 696		*length = size;
 697
 698	return prop + na + ns;
 699}
 700EXPORT_SYMBOL(of_translate_dma_region);
 701
 702const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
 703			       u64 *size, unsigned int *flags)
 704{
 705	const __be32 *prop;
 706	unsigned int psize;
 707	struct device_node *parent __free(device_node) = of_get_parent(dev);
 708	const struct of_bus *bus;
 709	int onesize, i, na, ns;
 710
 
 
 711	if (parent == NULL)
 712		return NULL;
 713
 714	/* match the parent's bus type */
 715	bus = of_match_bus(parent);
 716	if (!bus || (strcmp(bus->name, "pci") && (bar_no >= 0)))
 
 
 
 
 
 
 717		return NULL;
 718
 719	/* Get "reg" or "assigned-addresses" property */
 720	prop = of_get_property(dev, bus->addresses, &psize);
 721	if (prop == NULL)
 722		return NULL;
 723	psize /= 4;
 724
 725	bus->count_cells(dev, &na, &ns);
 726	if (!OF_CHECK_ADDR_COUNT(na))
 727		return NULL;
 728
 729	onesize = na + ns;
 730	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 731		u32 val = be32_to_cpu(prop[0]);
 732		/* PCI bus matches on BAR number instead of index */
 733		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
 734		    ((index >= 0) && (i == index))) {
 735			if (size)
 736				*size = of_read_number(prop + na, ns);
 737			if (flags)
 738				*flags = bus->get_flags(prop);
 739			return prop;
 740		}
 741	}
 742	return NULL;
 743}
 744EXPORT_SYMBOL(__of_get_address);
 745
 746/**
 747 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
 748 * @np: device tree node for which to retrieve "reg" from
 749 * @idx: "reg" entry index to read
 750 * @addr: return value for the untranslated address
 751 * @size: return value for the entry size
 752 *
 753 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
 754 * size values filled in.
 755 */
 756int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
 757{
 758	const __be32 *prop = of_get_address(np, idx, size, NULL);
 759
 760	if (!prop)
 761		return -EINVAL;
 762
 763	*addr = of_read_number(prop, of_n_addr_cells(np));
 764
 765	return 0;
 766}
 767EXPORT_SYMBOL(of_property_read_reg);
 768
 769static int parser_init(struct of_pci_range_parser *parser,
 770			struct device_node *node, const char *name)
 771{
 772	int rlen;
 773
 774	parser->node = node;
 775	parser->pna = of_n_addr_cells(node);
 776	parser->na = of_bus_n_addr_cells(node);
 777	parser->ns = of_bus_n_size_cells(node);
 778	parser->dma = !strcmp(name, "dma-ranges");
 779	parser->bus = of_match_bus(node);
 780
 781	parser->range = of_get_property(node, name, &rlen);
 782	if (parser->range == NULL)
 783		return -ENOENT;
 784
 785	parser->end = parser->range + rlen / sizeof(__be32);
 786
 787	return 0;
 788}
 789
 790int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 791				struct device_node *node)
 792{
 793	return parser_init(parser, node, "ranges");
 794}
 795EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 796
 797int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 798				struct device_node *node)
 799{
 800	return parser_init(parser, node, "dma-ranges");
 801}
 802EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 803#define of_dma_range_parser_init of_pci_dma_range_parser_init
 804
 805struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 806						struct of_pci_range *range)
 807{
 808	int na = parser->na;
 809	int ns = parser->ns;
 810	int np = parser->pna + na + ns;
 811	int busflag_na = parser->bus->flag_cells;
 812
 813	if (!range)
 814		return NULL;
 815
 816	if (!parser->range || parser->range + np > parser->end)
 817		return NULL;
 818
 819	range->flags = parser->bus->get_flags(parser->range);
 820
 821	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 822
 823	if (parser->dma)
 824		range->cpu_addr = of_translate_dma_address(parser->node,
 825				parser->range + na);
 826	else
 827		range->cpu_addr = of_translate_address(parser->node,
 828				parser->range + na);
 829	range->size = of_read_number(parser->range + parser->pna + na, ns);
 830
 831	parser->range += np;
 832
 833	/* Now consume following elements while they are contiguous */
 834	while (parser->range + np <= parser->end) {
 835		u32 flags = 0;
 836		u64 bus_addr, cpu_addr, size;
 837
 838		flags = parser->bus->get_flags(parser->range);
 839		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 840		if (parser->dma)
 841			cpu_addr = of_translate_dma_address(parser->node,
 842					parser->range + na);
 843		else
 844			cpu_addr = of_translate_address(parser->node,
 845					parser->range + na);
 846		size = of_read_number(parser->range + parser->pna + na, ns);
 847
 848		if (flags != range->flags)
 849			break;
 850		if (bus_addr != range->bus_addr + range->size ||
 851		    cpu_addr != range->cpu_addr + range->size)
 852			break;
 853
 854		range->size += size;
 855		parser->range += np;
 856	}
 857
 858	return range;
 859}
 860EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 861
 862static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 863			u64 size)
 864{
 865	u64 taddr;
 866	unsigned long port;
 867	struct device_node *host;
 868
 869	taddr = __of_translate_address(dev, of_get_parent,
 870				       in_addr, "ranges", &host);
 871	if (host) {
 872		/* host-specific port access */
 873		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 874		of_node_put(host);
 875	} else {
 876		/* memory-mapped I/O range */
 877		port = pci_address_to_pio(taddr);
 878	}
 879
 880	if (port == (unsigned long)-1)
 881		return OF_BAD_ADDR;
 882
 883	return port;
 884}
 885
 886#ifdef CONFIG_HAS_DMA
 887/**
 888 * of_dma_get_range - Get DMA range info and put it into a map array
 889 * @np:		device node to get DMA range info
 890 * @map:	dma range structure to return
 891 *
 892 * Look in bottom up direction for the first "dma-ranges" property
 893 * and parse it.  Put the information into a DMA offset map array.
 894 *
 895 * dma-ranges format:
 896 *	DMA addr (dma_addr)	: naddr cells
 897 *	CPU addr (phys_addr_t)	: pna cells
 898 *	size			: nsize cells
 899 *
 900 * It returns -ENODEV if "dma-ranges" property was not found for this
 901 * device in the DT.
 902 */
 903int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
 904{
 905	struct device_node *node __free(device_node) = of_node_get(np);
 906	const __be32 *ranges = NULL;
 907	bool found_dma_ranges = false;
 908	struct of_range_parser parser;
 909	struct of_range range;
 910	struct bus_dma_region *r;
 911	int len, num_ranges = 0;
 
 912
 913	while (node) {
 914		ranges = of_get_property(node, "dma-ranges", &len);
 915
 916		/* Ignore empty ranges, they imply no translation required */
 917		if (ranges && len > 0)
 918			break;
 919
 920		/* Once we find 'dma-ranges', then a missing one is an error */
 921		if (found_dma_ranges && !ranges)
 922			return -ENODEV;
 923
 
 924		found_dma_ranges = true;
 925
 926		node = of_get_next_dma_parent(node);
 927	}
 928
 929	if (!node || !ranges) {
 930		pr_debug("no dma-ranges found for node(%pOF)\n", np);
 931		return -ENODEV;
 
 932	}
 
 933	of_dma_range_parser_init(&parser, node);
 934	for_each_of_range(&parser, &range) {
 935		if (range.cpu_addr == OF_BAD_ADDR) {
 936			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
 937			       range.bus_addr, node);
 938			continue;
 939		}
 940		num_ranges++;
 941	}
 942
 943	if (!num_ranges)
 944		return -EINVAL;
 
 
 945
 946	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
 947	if (!r)
 948		return -ENOMEM;
 
 
 949
 950	/*
 951	 * Record all info in the generic DMA ranges array for struct device,
 952	 * returning an error if we don't find any parsable ranges.
 953	 */
 954	*map = r;
 955	of_dma_range_parser_init(&parser, node);
 956	for_each_of_range(&parser, &range) {
 957		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 958			 range.bus_addr, range.cpu_addr, range.size);
 959		if (range.cpu_addr == OF_BAD_ADDR)
 960			continue;
 961		r->cpu_start = range.cpu_addr;
 962		r->dma_start = range.bus_addr;
 963		r->size = range.size;
 964		r++;
 965	}
 966	return 0;
 
 
 967}
 968#endif /* CONFIG_HAS_DMA */
 969
 970/**
 971 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
 972 * @np: The node to start searching from or NULL to start from the root
 973 *
 974 * Gets the highest CPU physical address that is addressable by all DMA masters
 975 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
 976 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
 977 */
 978phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
 979{
 980	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
 981	struct of_range_parser parser;
 982	phys_addr_t subtree_max_addr;
 983	struct device_node *child;
 984	struct of_range range;
 985	const __be32 *ranges;
 986	u64 cpu_end = 0;
 987	int len;
 988
 989	if (!np)
 990		np = of_root;
 991
 992	ranges = of_get_property(np, "dma-ranges", &len);
 993	if (ranges && len) {
 994		of_dma_range_parser_init(&parser, np);
 995		for_each_of_range(&parser, &range)
 996			if (range.cpu_addr + range.size > cpu_end)
 997				cpu_end = range.cpu_addr + range.size - 1;
 998
 999		if (max_cpu_addr > cpu_end)
1000			max_cpu_addr = cpu_end;
1001	}
1002
1003	for_each_available_child_of_node(np, child) {
1004		subtree_max_addr = of_dma_get_max_cpu_address(child);
1005		if (max_cpu_addr > subtree_max_addr)
1006			max_cpu_addr = subtree_max_addr;
1007	}
1008
1009	return max_cpu_addr;
1010}
1011
1012/**
1013 * of_dma_is_coherent - Check if device is coherent
1014 * @np:	device node
1015 *
1016 * It returns true if "dma-coherent" property was found
1017 * for this device in the DT, or if DMA is coherent by
1018 * default for OF devices on the current platform and no
1019 * "dma-noncoherent" property was found for this device.
1020 */
1021bool of_dma_is_coherent(struct device_node *np)
1022{
1023	struct device_node *node __free(device_node) = of_node_get(np);
1024
1025	while (node) {
1026		if (of_property_read_bool(node, "dma-coherent"))
1027			return true;
1028
1029		if (of_property_read_bool(node, "dma-noncoherent"))
1030			return false;
1031
 
 
 
 
 
 
 
 
 
1032		node = of_get_next_dma_parent(node);
1033	}
1034	return dma_default_coherent;
 
1035}
1036EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1037
1038/**
1039 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1040 * @np:	device node
1041 *
1042 * Returns true if the "nonposted-mmio" property was found for
1043 * the device's bus.
1044 *
1045 * This is currently only enabled on builds that support Apple ARM devices, as
1046 * an optimization.
1047 */
1048static bool of_mmio_is_nonposted(const struct device_node *np)
1049{
 
 
 
1050	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1051		return false;
1052
1053	struct device_node *parent __free(device_node) = of_get_parent(np);
1054	if (!parent)
1055		return false;
1056
1057	return of_property_read_bool(parent, "nonposted-mmio");
 
 
 
1058}
1059
1060static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1061		struct resource *r)
1062{
1063	u64 taddr;
1064	const __be32	*addrp;
1065	u64		size;
1066	unsigned int	flags;
1067	const char	*name = NULL;
1068
1069	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1070	if (addrp == NULL)
1071		return -EINVAL;
1072
1073	/* Get optional "reg-names" property to add a name to a resource */
1074	if (index >= 0)
1075		of_property_read_string_index(dev, "reg-names",	index, &name);
1076
1077	if (flags & IORESOURCE_MEM)
1078		taddr = of_translate_address(dev, addrp);
1079	else if (flags & IORESOURCE_IO)
1080		taddr = of_translate_ioport(dev, addrp, size);
1081	else
1082		return -EINVAL;
1083
1084	if (taddr == OF_BAD_ADDR)
1085		return -EINVAL;
1086	memset(r, 0, sizeof(struct resource));
1087
1088	if (of_mmio_is_nonposted(dev))
1089		flags |= IORESOURCE_MEM_NONPOSTED;
1090
 
 
1091	r->flags = flags;
1092	r->name = name ? name : dev->full_name;
1093
1094	return __of_address_resource_bounds(r, taddr, size);
1095}
1096
1097/**
1098 * of_address_to_resource - Translate device tree address and return as resource
1099 * @dev:	Caller's Device Node
1100 * @index:	Index into the array
1101 * @r:		Pointer to resource array
1102 *
1103 * Returns -EINVAL if the range cannot be converted to resource.
1104 *
1105 * Note that if your address is a PIO address, the conversion will fail if
1106 * the physical address can't be internally converted to an IO token with
1107 * pci_address_to_pio(), that is because it's either called too early or it
1108 * can't be matched to any host bridge IO space
1109 */
1110int of_address_to_resource(struct device_node *dev, int index,
1111			   struct resource *r)
1112{
1113	return __of_address_to_resource(dev, index, -1, r);
1114}
1115EXPORT_SYMBOL_GPL(of_address_to_resource);
1116
1117int of_pci_address_to_resource(struct device_node *dev, int bar,
1118			       struct resource *r)
1119{
1120
1121	if (!IS_ENABLED(CONFIG_PCI))
1122		return -ENOSYS;
1123
1124	return __of_address_to_resource(dev, -1, bar, r);
1125}
1126EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1127
1128/**
1129 * of_iomap - Maps the memory mapped IO for a given device_node
1130 * @np:		the device whose io range will be mapped
1131 * @index:	index of the io range
1132 *
1133 * Returns a pointer to the mapped memory
1134 */
1135void __iomem *of_iomap(struct device_node *np, int index)
1136{
1137	struct resource res;
1138
1139	if (of_address_to_resource(np, index, &res))
1140		return NULL;
1141
1142	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1143		return ioremap_np(res.start, resource_size(&res));
1144	else
1145		return ioremap(res.start, resource_size(&res));
1146}
1147EXPORT_SYMBOL(of_iomap);
1148
1149/*
1150 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1151 *			   for a given device_node
1152 * @device:	the device whose io range will be mapped
1153 * @index:	index of the io range
1154 * @name:	name "override" for the memory region request or NULL
1155 *
1156 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1157 * error code on failure. Usage example:
1158 *
1159 *	base = of_io_request_and_map(node, 0, "foo");
1160 *	if (IS_ERR(base))
1161 *		return PTR_ERR(base);
1162 */
1163void __iomem *of_io_request_and_map(struct device_node *np, int index,
1164				    const char *name)
1165{
1166	struct resource res;
1167	void __iomem *mem;
1168
1169	if (of_address_to_resource(np, index, &res))
1170		return IOMEM_ERR_PTR(-EINVAL);
1171
1172	if (!name)
1173		name = res.name;
1174	if (!request_mem_region(res.start, resource_size(&res), name))
1175		return IOMEM_ERR_PTR(-EBUSY);
1176
1177	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1178		mem = ioremap_np(res.start, resource_size(&res));
1179	else
1180		mem = ioremap(res.start, resource_size(&res));
1181
1182	if (!mem) {
1183		release_mem_region(res.start, resource_size(&res));
1184		return IOMEM_ERR_PTR(-ENOMEM);
1185	}
1186
1187	return mem;
1188}
1189EXPORT_SYMBOL(of_io_request_and_map);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)	"OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
 
  11#include <linux/pci.h>
  12#include <linux/pci_regs.h>
  13#include <linux/sizes.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16#include <linux/dma-direct.h> /* for bus_dma_region */
  17
  18#include "of_private.h"
  19
  20/* Max address size we deal with */
  21#define OF_MAX_ADDR_CELLS	4
  22#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  23#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  24
  25/* Debug utility */
  26#ifdef DEBUG
  27static void of_dump_addr(const char *s, const __be32 *addr, int na)
  28{
  29	pr_debug("%s", s);
  30	while (na--)
  31		pr_cont(" %08x", be32_to_cpu(*(addr++)));
  32	pr_cont("\n");
  33}
  34#else
  35static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  36#endif
  37
  38/* Callbacks for bus specific translators */
  39struct of_bus {
  40	const char	*name;
  41	const char	*addresses;
  42	int		(*match)(struct device_node *parent);
  43	void		(*count_cells)(struct device_node *child,
  44				       int *addrc, int *sizec);
  45	u64		(*map)(__be32 *addr, const __be32 *range,
  46				int na, int ns, int pna, int fna);
  47	int		(*translate)(__be32 *addr, u64 offset, int na);
  48	int		flag_cells;
  49	unsigned int	(*get_flags)(const __be32 *addr);
  50};
  51
  52/*
  53 * Default translator (generic bus)
  54 */
  55
  56static void of_bus_default_count_cells(struct device_node *dev,
  57				       int *addrc, int *sizec)
  58{
  59	if (addrc)
  60		*addrc = of_n_addr_cells(dev);
  61	if (sizec)
  62		*sizec = of_n_size_cells(dev);
  63}
  64
  65static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  66		int na, int ns, int pna, int fna)
  67{
  68	u64 cp, s, da;
  69
  70	cp = of_read_number(range + fna, na - fna);
  71	s  = of_read_number(range + na + pna, ns);
  72	da = of_read_number(addr + fna, na - fna);
  73
  74	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
  75
  76	if (da < cp || da >= (cp + s))
  77		return OF_BAD_ADDR;
  78	return da - cp;
  79}
  80
  81static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  82{
  83	u64 a = of_read_number(addr, na);
  84	memset(addr, 0, na * 4);
  85	a += offset;
  86	if (na > 1)
  87		addr[na - 2] = cpu_to_be32(a >> 32);
  88	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  89
  90	return 0;
  91}
  92
  93static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
  94{
  95	return of_read_number(addr, 1);
  96}
  97
  98static unsigned int of_bus_default_get_flags(const __be32 *addr)
  99{
 100	return IORESOURCE_MEM;
 101}
 102
 103static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
 104				    int ns, int pna, int fna)
 105{
 106	/* Check that flags match */
 107	if (*addr != *range)
 108		return OF_BAD_ADDR;
 109
 110	return of_bus_default_map(addr, range, na, ns, pna, fna);
 111}
 112
 113static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
 114{
 115	/* Keep "flags" part (high cell) in translated address */
 116	return of_bus_default_translate(addr + 1, offset, na - 1);
 117}
 118
 119#ifdef CONFIG_PCI
 120static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 121{
 122	unsigned int flags = 0;
 123	u32 w = be32_to_cpup(addr);
 124
 125	if (!IS_ENABLED(CONFIG_PCI))
 126		return 0;
 127
 128	switch((w >> 24) & 0x03) {
 129	case 0x01:
 130		flags |= IORESOURCE_IO;
 131		break;
 132	case 0x02: /* 32 bits */
 133		flags |= IORESOURCE_MEM;
 134		break;
 135
 136	case 0x03: /* 64 bits */
 137		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
 138		break;
 139	}
 140	if (w & 0x40000000)
 141		flags |= IORESOURCE_PREFETCH;
 142	return flags;
 143}
 144
 145/*
 146 * PCI bus specific translator
 147 */
 148
 149static bool of_node_is_pcie(struct device_node *np)
 150{
 151	bool is_pcie = of_node_name_eq(np, "pcie");
 152
 153	if (is_pcie)
 154		pr_warn_once("%pOF: Missing device_type\n", np);
 155
 156	return is_pcie;
 157}
 158
 159static int of_bus_pci_match(struct device_node *np)
 160{
 161	/*
 162 	 * "pciex" is PCI Express
 163	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 164	 * "ht" is hypertransport
 165	 *
 166	 * If none of the device_type match, and that the node name is
 167	 * "pcie", accept the device as PCI (with a warning).
 168	 */
 169	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 170		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
 171		of_node_is_pcie(np);
 172}
 173
 174static void of_bus_pci_count_cells(struct device_node *np,
 175				   int *addrc, int *sizec)
 176{
 177	if (addrc)
 178		*addrc = 3;
 179	if (sizec)
 180		*sizec = 2;
 181}
 182
 183static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 184		int pna, int fna)
 185{
 186	unsigned int af, rf;
 187
 188	af = of_bus_pci_get_flags(addr);
 189	rf = of_bus_pci_get_flags(range);
 190
 191	/* Check address type match */
 192	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 193		return OF_BAD_ADDR;
 194
 195	return of_bus_default_map(addr, range, na, ns, pna, fna);
 196}
 197
 198#endif /* CONFIG_PCI */
 199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200/*
 201 * of_pci_range_to_resource - Create a resource from an of_pci_range
 202 * @range:	the PCI range that describes the resource
 203 * @np:		device node where the range belongs to
 204 * @res:	pointer to a valid resource that will be updated to
 205 *              reflect the values contained in the range.
 206 *
 207 * Returns -EINVAL if the range cannot be converted to resource.
 208 *
 209 * Note that if the range is an IO range, the resource will be converted
 210 * using pci_address_to_pio() which can fail if it is called too early or
 211 * if the range cannot be matched to any host bridge IO space (our case here).
 212 * To guard against that we try to register the IO range first.
 213 * If that fails we know that pci_address_to_pio() will do too.
 214 */
 215int of_pci_range_to_resource(struct of_pci_range *range,
 216			     struct device_node *np, struct resource *res)
 217{
 
 218	int err;
 219	res->flags = range->flags;
 220	res->parent = res->child = res->sibling = NULL;
 221	res->name = np->full_name;
 222
 223	if (res->flags & IORESOURCE_IO) {
 224		unsigned long port;
 225		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 226				range->size);
 227		if (err)
 228			goto invalid_range;
 229		port = pci_address_to_pio(range->cpu_addr);
 230		if (port == (unsigned long)-1) {
 231			err = -EINVAL;
 232			goto invalid_range;
 233		}
 234		res->start = port;
 235	} else {
 236		if ((sizeof(resource_size_t) < 8) &&
 237		    upper_32_bits(range->cpu_addr)) {
 238			err = -EINVAL;
 239			goto invalid_range;
 240		}
 241
 242		res->start = range->cpu_addr;
 243	}
 244	res->end = res->start + range->size - 1;
 245	return 0;
 246
 247invalid_range:
 248	res->start = (resource_size_t)OF_BAD_ADDR;
 249	res->end = (resource_size_t)OF_BAD_ADDR;
 250	return err;
 251}
 252EXPORT_SYMBOL(of_pci_range_to_resource);
 253
 254/*
 255 * of_range_to_resource - Create a resource from a ranges entry
 256 * @np:		device node where the range belongs to
 257 * @index:	the 'ranges' index to convert to a resource
 258 * @res:	pointer to a valid resource that will be updated to
 259 *              reflect the values contained in the range.
 260 *
 261 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
 262 * converted to resource.
 263 */
 264int of_range_to_resource(struct device_node *np, int index, struct resource *res)
 265{
 266	int ret, i = 0;
 267	struct of_range_parser parser;
 268	struct of_range range;
 269
 270	ret = of_range_parser_init(&parser, np);
 271	if (ret)
 272		return ret;
 273
 274	for_each_of_range(&parser, &range)
 275		if (i++ == index)
 276			return of_pci_range_to_resource(&range, np, res);
 277
 278	return -ENOENT;
 279}
 280EXPORT_SYMBOL(of_range_to_resource);
 281
 282/*
 283 * ISA bus specific translator
 284 */
 285
 286static int of_bus_isa_match(struct device_node *np)
 287{
 288	return of_node_name_eq(np, "isa");
 289}
 290
 291static void of_bus_isa_count_cells(struct device_node *child,
 292				   int *addrc, int *sizec)
 293{
 294	if (addrc)
 295		*addrc = 2;
 296	if (sizec)
 297		*sizec = 1;
 298}
 299
 300static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 301		int pna, int fna)
 302{
 303	/* Check address type match */
 304	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 305		return OF_BAD_ADDR;
 306
 307	return of_bus_default_map(addr, range, na, ns, pna, fna);
 308}
 309
 310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 311{
 312	unsigned int flags = 0;
 313	u32 w = be32_to_cpup(addr);
 314
 315	if (w & 1)
 316		flags |= IORESOURCE_IO;
 317	else
 318		flags |= IORESOURCE_MEM;
 319	return flags;
 320}
 321
 322static int of_bus_default_flags_match(struct device_node *np)
 323{
 324	return of_bus_n_addr_cells(np) == 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 325}
 326
 327/*
 328 * Array of bus specific translators
 329 */
 330
 331static struct of_bus of_busses[] = {
 332#ifdef CONFIG_PCI
 333	/* PCI */
 334	{
 335		.name = "pci",
 336		.addresses = "assigned-addresses",
 337		.match = of_bus_pci_match,
 338		.count_cells = of_bus_pci_count_cells,
 339		.map = of_bus_pci_map,
 340		.translate = of_bus_default_flags_translate,
 341		.flag_cells = 1,
 342		.get_flags = of_bus_pci_get_flags,
 343	},
 344#endif /* CONFIG_PCI */
 345	/* ISA */
 346	{
 347		.name = "isa",
 348		.addresses = "reg",
 349		.match = of_bus_isa_match,
 350		.count_cells = of_bus_isa_count_cells,
 351		.map = of_bus_isa_map,
 352		.translate = of_bus_default_flags_translate,
 353		.flag_cells = 1,
 354		.get_flags = of_bus_isa_get_flags,
 355	},
 356	/* Default with flags cell */
 357	{
 358		.name = "default-flags",
 359		.addresses = "reg",
 360		.match = of_bus_default_flags_match,
 361		.count_cells = of_bus_default_count_cells,
 362		.map = of_bus_default_flags_map,
 363		.translate = of_bus_default_flags_translate,
 364		.flag_cells = 1,
 365		.get_flags = of_bus_default_flags_get_flags,
 366	},
 367	/* Default */
 368	{
 369		.name = "default",
 370		.addresses = "reg",
 371		.match = NULL,
 372		.count_cells = of_bus_default_count_cells,
 373		.map = of_bus_default_map,
 374		.translate = of_bus_default_translate,
 375		.get_flags = of_bus_default_get_flags,
 376	},
 377};
 378
 379static struct of_bus *of_match_bus(struct device_node *np)
 380{
 381	int i;
 382
 383	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 384		if (!of_busses[i].match || of_busses[i].match(np))
 385			return &of_busses[i];
 386	BUG();
 387	return NULL;
 388}
 389
 390static int of_empty_ranges_quirk(struct device_node *np)
 391{
 392	if (IS_ENABLED(CONFIG_PPC)) {
 393		/* To save cycles, we cache the result for global "Mac" setting */
 394		static int quirk_state = -1;
 395
 396		/* PA-SEMI sdc DT bug */
 397		if (of_device_is_compatible(np, "1682m-sdc"))
 398			return true;
 399
 400		/* Make quirk cached */
 401		if (quirk_state < 0)
 402			quirk_state =
 403				of_machine_is_compatible("Power Macintosh") ||
 404				of_machine_is_compatible("MacRISC");
 405		return quirk_state;
 406	}
 407	return false;
 408}
 409
 410static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 411			    struct of_bus *pbus, __be32 *addr,
 412			    int na, int ns, int pna, const char *rprop)
 413{
 414	const __be32 *ranges;
 415	unsigned int rlen;
 416	int rone;
 417	u64 offset = OF_BAD_ADDR;
 418
 419	/*
 420	 * Normally, an absence of a "ranges" property means we are
 421	 * crossing a non-translatable boundary, and thus the addresses
 422	 * below the current cannot be converted to CPU physical ones.
 423	 * Unfortunately, while this is very clear in the spec, it's not
 424	 * what Apple understood, and they do have things like /uni-n or
 425	 * /ht nodes with no "ranges" property and a lot of perfectly
 426	 * useable mapped devices below them. Thus we treat the absence of
 427	 * "ranges" as equivalent to an empty "ranges" property which means
 428	 * a 1:1 translation at that level. It's up to the caller not to try
 429	 * to translate addresses that aren't supposed to be translated in
 430	 * the first place. --BenH.
 431	 *
 432	 * As far as we know, this damage only exists on Apple machines, so
 433	 * This code is only enabled on powerpc. --gcl
 434	 *
 435	 * This quirk also applies for 'dma-ranges' which frequently exist in
 436	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
 437	 */
 438	ranges = of_get_property(parent, rprop, &rlen);
 439	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
 440	    strcmp(rprop, "dma-ranges")) {
 441		pr_debug("no ranges; cannot translate\n");
 442		return 1;
 443	}
 444	if (ranges == NULL || rlen == 0) {
 445		offset = of_read_number(addr, na);
 446		memset(addr, 0, pna * 4);
 
 447		pr_debug("empty ranges; 1:1 translation\n");
 448		goto finish;
 449	}
 450
 451	pr_debug("walking ranges...\n");
 452
 453	/* Now walk through the ranges */
 454	rlen /= 4;
 455	rone = na + pna + ns;
 456	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 457		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
 458		if (offset != OF_BAD_ADDR)
 459			break;
 460	}
 461	if (offset == OF_BAD_ADDR) {
 462		pr_debug("not found !\n");
 463		return 1;
 464	}
 465	memcpy(addr, ranges + na, 4 * pna);
 466
 467 finish:
 468	of_dump_addr("parent translation for:", addr, pna);
 469	pr_debug("with offset: %llx\n", offset);
 470
 471	/* Translate it into parent bus space */
 472	return pbus->translate(addr, offset, pna);
 473}
 474
 475/*
 476 * Translate an address from the device-tree into a CPU physical address,
 477 * this walks up the tree and applies the various bus mappings on the
 478 * way.
 479 *
 480 * Note: We consider that crossing any level with #size-cells == 0 to mean
 481 * that translation is impossible (that is we are not dealing with a value
 482 * that can be mapped to a cpu physical address). This is not really specified
 483 * that way, but this is traditionally the way IBM at least do things
 484 *
 485 * Whenever the translation fails, the *host pointer will be set to the
 486 * device that had registered logical PIO mapping, and the return code is
 487 * relative to that node.
 488 */
 489static u64 __of_translate_address(struct device_node *dev,
 490				  struct device_node *(*get_parent)(const struct device_node *),
 491				  const __be32 *in_addr, const char *rprop,
 492				  struct device_node **host)
 493{
 494	struct device_node *parent = NULL;
 495	struct of_bus *bus, *pbus;
 
 496	__be32 addr[OF_MAX_ADDR_CELLS];
 497	int na, ns, pna, pns;
 498	u64 result = OF_BAD_ADDR;
 499
 500	pr_debug("** translation for device %pOF **\n", dev);
 501
 502	/* Increase refcount at current level */
 503	of_node_get(dev);
 504
 505	*host = NULL;
 506	/* Get parent & match bus type */
 507	parent = get_parent(dev);
 508	if (parent == NULL)
 509		goto bail;
 510	bus = of_match_bus(parent);
 
 
 511
 512	/* Count address cells & copy address locally */
 513	bus->count_cells(dev, &na, &ns);
 514	if (!OF_CHECK_COUNTS(na, ns)) {
 515		pr_debug("Bad cell count for %pOF\n", dev);
 516		goto bail;
 517	}
 518	memcpy(addr, in_addr, na * 4);
 519
 520	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 521	    bus->name, na, ns, parent);
 522	of_dump_addr("translating address:", addr, na);
 523
 524	/* Translate */
 525	for (;;) {
 526		struct logic_pio_hwaddr *iorange;
 527
 528		/* Switch to parent bus */
 529		of_node_put(dev);
 530		dev = parent;
 531		parent = get_parent(dev);
 532
 533		/* If root, we have finished */
 534		if (parent == NULL) {
 535			pr_debug("reached root node\n");
 536			result = of_read_number(addr, na);
 537			break;
 538		}
 539
 540		/*
 541		 * For indirectIO device which has no ranges property, get
 542		 * the address from reg directly.
 543		 */
 544		iorange = find_io_range_by_fwnode(&dev->fwnode);
 545		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 546			result = of_read_number(addr + 1, na - 1);
 547			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 548				 dev, result);
 549			*host = of_node_get(dev);
 550			break;
 551		}
 552
 553		/* Get new parent bus and counts */
 554		pbus = of_match_bus(parent);
 
 
 555		pbus->count_cells(dev, &pna, &pns);
 556		if (!OF_CHECK_COUNTS(pna, pns)) {
 557			pr_err("Bad cell count for %pOF\n", dev);
 558			break;
 559		}
 560
 561		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 562		    pbus->name, pna, pns, parent);
 563
 564		/* Apply bus translation */
 565		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 566			break;
 567
 568		/* Complete the move up one level */
 569		na = pna;
 570		ns = pns;
 571		bus = pbus;
 572
 573		of_dump_addr("one level translation:", addr, na);
 574	}
 575 bail:
 576	of_node_put(parent);
 577	of_node_put(dev);
 578
 579	return result;
 580}
 581
 582u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 583{
 584	struct device_node *host;
 585	u64 ret;
 586
 587	ret = __of_translate_address(dev, of_get_parent,
 588				     in_addr, "ranges", &host);
 589	if (host) {
 590		of_node_put(host);
 591		return OF_BAD_ADDR;
 592	}
 593
 594	return ret;
 595}
 596EXPORT_SYMBOL(of_translate_address);
 597
 598#ifdef CONFIG_HAS_DMA
 599struct device_node *__of_get_dma_parent(const struct device_node *np)
 600{
 601	struct of_phandle_args args;
 602	int ret, index;
 603
 604	index = of_property_match_string(np, "interconnect-names", "dma-mem");
 605	if (index < 0)
 606		return of_get_parent(np);
 607
 608	ret = of_parse_phandle_with_args(np, "interconnects",
 609					 "#interconnect-cells",
 610					 index, &args);
 611	if (ret < 0)
 612		return of_get_parent(np);
 613
 614	return of_node_get(args.np);
 615}
 616#endif
 617
 618static struct device_node *of_get_next_dma_parent(struct device_node *np)
 619{
 620	struct device_node *parent;
 621
 622	parent = __of_get_dma_parent(np);
 623	of_node_put(np);
 624
 625	return parent;
 626}
 627
 628u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 629{
 630	struct device_node *host;
 631	u64 ret;
 632
 633	ret = __of_translate_address(dev, __of_get_dma_parent,
 634				     in_addr, "dma-ranges", &host);
 635
 636	if (host) {
 637		of_node_put(host);
 638		return OF_BAD_ADDR;
 639	}
 640
 641	return ret;
 642}
 643EXPORT_SYMBOL(of_translate_dma_address);
 644
 645/**
 646 * of_translate_dma_region - Translate device tree address and size tuple
 647 * @dev: device tree node for which to translate
 648 * @prop: pointer into array of cells
 649 * @start: return value for the start of the DMA range
 650 * @length: return value for the length of the DMA range
 651 *
 652 * Returns a pointer to the cell immediately following the translated DMA region.
 653 */
 654const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
 655				      phys_addr_t *start, size_t *length)
 656{
 657	struct device_node *parent;
 658	u64 address, size;
 659	int na, ns;
 660
 661	parent = __of_get_dma_parent(dev);
 662	if (!parent)
 663		return NULL;
 664
 665	na = of_bus_n_addr_cells(parent);
 666	ns = of_bus_n_size_cells(parent);
 667
 668	of_node_put(parent);
 669
 670	address = of_translate_dma_address(dev, prop);
 671	if (address == OF_BAD_ADDR)
 672		return NULL;
 673
 674	size = of_read_number(prop + na, ns);
 675
 676	if (start)
 677		*start = address;
 678
 679	if (length)
 680		*length = size;
 681
 682	return prop + na + ns;
 683}
 684EXPORT_SYMBOL(of_translate_dma_region);
 685
 686const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
 687			       u64 *size, unsigned int *flags)
 688{
 689	const __be32 *prop;
 690	unsigned int psize;
 691	struct device_node *parent;
 692	struct of_bus *bus;
 693	int onesize, i, na, ns;
 694
 695	/* Get parent & match bus type */
 696	parent = of_get_parent(dev);
 697	if (parent == NULL)
 698		return NULL;
 
 
 699	bus = of_match_bus(parent);
 700	if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
 701		of_node_put(parent);
 702		return NULL;
 703	}
 704	bus->count_cells(dev, &na, &ns);
 705	of_node_put(parent);
 706	if (!OF_CHECK_ADDR_COUNT(na))
 707		return NULL;
 708
 709	/* Get "reg" or "assigned-addresses" property */
 710	prop = of_get_property(dev, bus->addresses, &psize);
 711	if (prop == NULL)
 712		return NULL;
 713	psize /= 4;
 714
 
 
 
 
 715	onesize = na + ns;
 716	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 717		u32 val = be32_to_cpu(prop[0]);
 718		/* PCI bus matches on BAR number instead of index */
 719		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
 720		    ((index >= 0) && (i == index))) {
 721			if (size)
 722				*size = of_read_number(prop + na, ns);
 723			if (flags)
 724				*flags = bus->get_flags(prop);
 725			return prop;
 726		}
 727	}
 728	return NULL;
 729}
 730EXPORT_SYMBOL(__of_get_address);
 731
 732/**
 733 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
 734 * @np: device tree node for which to retrieve "reg" from
 735 * @idx: "reg" entry index to read
 736 * @addr: return value for the untranslated address
 737 * @size: return value for the entry size
 738 *
 739 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
 740 * size values filled in.
 741 */
 742int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
 743{
 744	const __be32 *prop = of_get_address(np, idx, size, NULL);
 745
 746	if (!prop)
 747		return -EINVAL;
 748
 749	*addr = of_read_number(prop, of_n_addr_cells(np));
 750
 751	return 0;
 752}
 753EXPORT_SYMBOL(of_property_read_reg);
 754
 755static int parser_init(struct of_pci_range_parser *parser,
 756			struct device_node *node, const char *name)
 757{
 758	int rlen;
 759
 760	parser->node = node;
 761	parser->pna = of_n_addr_cells(node);
 762	parser->na = of_bus_n_addr_cells(node);
 763	parser->ns = of_bus_n_size_cells(node);
 764	parser->dma = !strcmp(name, "dma-ranges");
 765	parser->bus = of_match_bus(node);
 766
 767	parser->range = of_get_property(node, name, &rlen);
 768	if (parser->range == NULL)
 769		return -ENOENT;
 770
 771	parser->end = parser->range + rlen / sizeof(__be32);
 772
 773	return 0;
 774}
 775
 776int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 777				struct device_node *node)
 778{
 779	return parser_init(parser, node, "ranges");
 780}
 781EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 782
 783int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 784				struct device_node *node)
 785{
 786	return parser_init(parser, node, "dma-ranges");
 787}
 788EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 789#define of_dma_range_parser_init of_pci_dma_range_parser_init
 790
 791struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 792						struct of_pci_range *range)
 793{
 794	int na = parser->na;
 795	int ns = parser->ns;
 796	int np = parser->pna + na + ns;
 797	int busflag_na = parser->bus->flag_cells;
 798
 799	if (!range)
 800		return NULL;
 801
 802	if (!parser->range || parser->range + np > parser->end)
 803		return NULL;
 804
 805	range->flags = parser->bus->get_flags(parser->range);
 806
 807	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 808
 809	if (parser->dma)
 810		range->cpu_addr = of_translate_dma_address(parser->node,
 811				parser->range + na);
 812	else
 813		range->cpu_addr = of_translate_address(parser->node,
 814				parser->range + na);
 815	range->size = of_read_number(parser->range + parser->pna + na, ns);
 816
 817	parser->range += np;
 818
 819	/* Now consume following elements while they are contiguous */
 820	while (parser->range + np <= parser->end) {
 821		u32 flags = 0;
 822		u64 bus_addr, cpu_addr, size;
 823
 824		flags = parser->bus->get_flags(parser->range);
 825		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 826		if (parser->dma)
 827			cpu_addr = of_translate_dma_address(parser->node,
 828					parser->range + na);
 829		else
 830			cpu_addr = of_translate_address(parser->node,
 831					parser->range + na);
 832		size = of_read_number(parser->range + parser->pna + na, ns);
 833
 834		if (flags != range->flags)
 835			break;
 836		if (bus_addr != range->bus_addr + range->size ||
 837		    cpu_addr != range->cpu_addr + range->size)
 838			break;
 839
 840		range->size += size;
 841		parser->range += np;
 842	}
 843
 844	return range;
 845}
 846EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 847
 848static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 849			u64 size)
 850{
 851	u64 taddr;
 852	unsigned long port;
 853	struct device_node *host;
 854
 855	taddr = __of_translate_address(dev, of_get_parent,
 856				       in_addr, "ranges", &host);
 857	if (host) {
 858		/* host-specific port access */
 859		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 860		of_node_put(host);
 861	} else {
 862		/* memory-mapped I/O range */
 863		port = pci_address_to_pio(taddr);
 864	}
 865
 866	if (port == (unsigned long)-1)
 867		return OF_BAD_ADDR;
 868
 869	return port;
 870}
 871
 872#ifdef CONFIG_HAS_DMA
 873/**
 874 * of_dma_get_range - Get DMA range info and put it into a map array
 875 * @np:		device node to get DMA range info
 876 * @map:	dma range structure to return
 877 *
 878 * Look in bottom up direction for the first "dma-ranges" property
 879 * and parse it.  Put the information into a DMA offset map array.
 880 *
 881 * dma-ranges format:
 882 *	DMA addr (dma_addr)	: naddr cells
 883 *	CPU addr (phys_addr_t)	: pna cells
 884 *	size			: nsize cells
 885 *
 886 * It returns -ENODEV if "dma-ranges" property was not found for this
 887 * device in the DT.
 888 */
 889int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
 890{
 891	struct device_node *node = of_node_get(np);
 892	const __be32 *ranges = NULL;
 893	bool found_dma_ranges = false;
 894	struct of_range_parser parser;
 895	struct of_range range;
 896	struct bus_dma_region *r;
 897	int len, num_ranges = 0;
 898	int ret = 0;
 899
 900	while (node) {
 901		ranges = of_get_property(node, "dma-ranges", &len);
 902
 903		/* Ignore empty ranges, they imply no translation required */
 904		if (ranges && len > 0)
 905			break;
 906
 907		/* Once we find 'dma-ranges', then a missing one is an error */
 908		if (found_dma_ranges && !ranges) {
 909			ret = -ENODEV;
 910			goto out;
 911		}
 912		found_dma_ranges = true;
 913
 914		node = of_get_next_dma_parent(node);
 915	}
 916
 917	if (!node || !ranges) {
 918		pr_debug("no dma-ranges found for node(%pOF)\n", np);
 919		ret = -ENODEV;
 920		goto out;
 921	}
 922
 923	of_dma_range_parser_init(&parser, node);
 924	for_each_of_range(&parser, &range) {
 925		if (range.cpu_addr == OF_BAD_ADDR) {
 926			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
 927			       range.bus_addr, node);
 928			continue;
 929		}
 930		num_ranges++;
 931	}
 932
 933	if (!num_ranges) {
 934		ret = -EINVAL;
 935		goto out;
 936	}
 937
 938	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
 939	if (!r) {
 940		ret = -ENOMEM;
 941		goto out;
 942	}
 943
 944	/*
 945	 * Record all info in the generic DMA ranges array for struct device,
 946	 * returning an error if we don't find any parsable ranges.
 947	 */
 948	*map = r;
 949	of_dma_range_parser_init(&parser, node);
 950	for_each_of_range(&parser, &range) {
 951		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 952			 range.bus_addr, range.cpu_addr, range.size);
 953		if (range.cpu_addr == OF_BAD_ADDR)
 954			continue;
 955		r->cpu_start = range.cpu_addr;
 956		r->dma_start = range.bus_addr;
 957		r->size = range.size;
 958		r++;
 959	}
 960out:
 961	of_node_put(node);
 962	return ret;
 963}
 964#endif /* CONFIG_HAS_DMA */
 965
 966/**
 967 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
 968 * @np: The node to start searching from or NULL to start from the root
 969 *
 970 * Gets the highest CPU physical address that is addressable by all DMA masters
 971 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
 972 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
 973 */
 974phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
 975{
 976	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
 977	struct of_range_parser parser;
 978	phys_addr_t subtree_max_addr;
 979	struct device_node *child;
 980	struct of_range range;
 981	const __be32 *ranges;
 982	u64 cpu_end = 0;
 983	int len;
 984
 985	if (!np)
 986		np = of_root;
 987
 988	ranges = of_get_property(np, "dma-ranges", &len);
 989	if (ranges && len) {
 990		of_dma_range_parser_init(&parser, np);
 991		for_each_of_range(&parser, &range)
 992			if (range.cpu_addr + range.size > cpu_end)
 993				cpu_end = range.cpu_addr + range.size - 1;
 994
 995		if (max_cpu_addr > cpu_end)
 996			max_cpu_addr = cpu_end;
 997	}
 998
 999	for_each_available_child_of_node(np, child) {
1000		subtree_max_addr = of_dma_get_max_cpu_address(child);
1001		if (max_cpu_addr > subtree_max_addr)
1002			max_cpu_addr = subtree_max_addr;
1003	}
1004
1005	return max_cpu_addr;
1006}
1007
1008/**
1009 * of_dma_is_coherent - Check if device is coherent
1010 * @np:	device node
1011 *
1012 * It returns true if "dma-coherent" property was found
1013 * for this device in the DT, or if DMA is coherent by
1014 * default for OF devices on the current platform and no
1015 * "dma-noncoherent" property was found for this device.
1016 */
1017bool of_dma_is_coherent(struct device_node *np)
1018{
1019	struct device_node *node;
1020	bool is_coherent = dma_default_coherent;
 
 
 
1021
1022	node = of_node_get(np);
 
1023
1024	while (node) {
1025		if (of_property_read_bool(node, "dma-coherent")) {
1026			is_coherent = true;
1027			break;
1028		}
1029		if (of_property_read_bool(node, "dma-noncoherent")) {
1030			is_coherent = false;
1031			break;
1032		}
1033		node = of_get_next_dma_parent(node);
1034	}
1035	of_node_put(node);
1036	return is_coherent;
1037}
1038EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1039
1040/**
1041 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1042 * @np:	device node
1043 *
1044 * Returns true if the "nonposted-mmio" property was found for
1045 * the device's bus.
1046 *
1047 * This is currently only enabled on builds that support Apple ARM devices, as
1048 * an optimization.
1049 */
1050static bool of_mmio_is_nonposted(struct device_node *np)
1051{
1052	struct device_node *parent;
1053	bool nonposted;
1054
1055	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1056		return false;
1057
1058	parent = of_get_parent(np);
1059	if (!parent)
1060		return false;
1061
1062	nonposted = of_property_read_bool(parent, "nonposted-mmio");
1063
1064	of_node_put(parent);
1065	return nonposted;
1066}
1067
1068static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1069		struct resource *r)
1070{
1071	u64 taddr;
1072	const __be32	*addrp;
1073	u64		size;
1074	unsigned int	flags;
1075	const char	*name = NULL;
1076
1077	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1078	if (addrp == NULL)
1079		return -EINVAL;
1080
1081	/* Get optional "reg-names" property to add a name to a resource */
1082	if (index >= 0)
1083		of_property_read_string_index(dev, "reg-names",	index, &name);
1084
1085	if (flags & IORESOURCE_MEM)
1086		taddr = of_translate_address(dev, addrp);
1087	else if (flags & IORESOURCE_IO)
1088		taddr = of_translate_ioport(dev, addrp, size);
1089	else
1090		return -EINVAL;
1091
1092	if (taddr == OF_BAD_ADDR)
1093		return -EINVAL;
1094	memset(r, 0, sizeof(struct resource));
1095
1096	if (of_mmio_is_nonposted(dev))
1097		flags |= IORESOURCE_MEM_NONPOSTED;
1098
1099	r->start = taddr;
1100	r->end = taddr + size - 1;
1101	r->flags = flags;
1102	r->name = name ? name : dev->full_name;
1103
1104	return 0;
1105}
1106
1107/**
1108 * of_address_to_resource - Translate device tree address and return as resource
1109 * @dev:	Caller's Device Node
1110 * @index:	Index into the array
1111 * @r:		Pointer to resource array
1112 *
1113 * Returns -EINVAL if the range cannot be converted to resource.
1114 *
1115 * Note that if your address is a PIO address, the conversion will fail if
1116 * the physical address can't be internally converted to an IO token with
1117 * pci_address_to_pio(), that is because it's either called too early or it
1118 * can't be matched to any host bridge IO space
1119 */
1120int of_address_to_resource(struct device_node *dev, int index,
1121			   struct resource *r)
1122{
1123	return __of_address_to_resource(dev, index, -1, r);
1124}
1125EXPORT_SYMBOL_GPL(of_address_to_resource);
1126
1127int of_pci_address_to_resource(struct device_node *dev, int bar,
1128			       struct resource *r)
1129{
1130
1131	if (!IS_ENABLED(CONFIG_PCI))
1132		return -ENOSYS;
1133
1134	return __of_address_to_resource(dev, -1, bar, r);
1135}
1136EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1137
1138/**
1139 * of_iomap - Maps the memory mapped IO for a given device_node
1140 * @np:		the device whose io range will be mapped
1141 * @index:	index of the io range
1142 *
1143 * Returns a pointer to the mapped memory
1144 */
1145void __iomem *of_iomap(struct device_node *np, int index)
1146{
1147	struct resource res;
1148
1149	if (of_address_to_resource(np, index, &res))
1150		return NULL;
1151
1152	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1153		return ioremap_np(res.start, resource_size(&res));
1154	else
1155		return ioremap(res.start, resource_size(&res));
1156}
1157EXPORT_SYMBOL(of_iomap);
1158
1159/*
1160 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1161 *			   for a given device_node
1162 * @device:	the device whose io range will be mapped
1163 * @index:	index of the io range
1164 * @name:	name "override" for the memory region request or NULL
1165 *
1166 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1167 * error code on failure. Usage example:
1168 *
1169 *	base = of_io_request_and_map(node, 0, "foo");
1170 *	if (IS_ERR(base))
1171 *		return PTR_ERR(base);
1172 */
1173void __iomem *of_io_request_and_map(struct device_node *np, int index,
1174				    const char *name)
1175{
1176	struct resource res;
1177	void __iomem *mem;
1178
1179	if (of_address_to_resource(np, index, &res))
1180		return IOMEM_ERR_PTR(-EINVAL);
1181
1182	if (!name)
1183		name = res.name;
1184	if (!request_mem_region(res.start, resource_size(&res), name))
1185		return IOMEM_ERR_PTR(-EBUSY);
1186
1187	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1188		mem = ioremap_np(res.start, resource_size(&res));
1189	else
1190		mem = ioremap(res.start, resource_size(&res));
1191
1192	if (!mem) {
1193		release_mem_region(res.start, resource_size(&res));
1194		return IOMEM_ERR_PTR(-ENOMEM);
1195	}
1196
1197	return mem;
1198}
1199EXPORT_SYMBOL(of_io_request_and_map);