Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)	"OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
  11#include <linux/overflow.h>
  12#include <linux/pci.h>
  13#include <linux/pci_regs.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16#include <linux/string.h>
  17#include <linux/dma-direct.h> /* for bus_dma_region */
  18
  19#include "of_private.h"
  20
  21/* Max address size we deal with */
  22#define OF_MAX_ADDR_CELLS	4
  23#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  24#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  25
 
 
 
 
 
  26/* Debug utility */
  27#ifdef DEBUG
  28static void of_dump_addr(const char *s, const __be32 *addr, int na)
  29{
  30	pr_debug("%s", s);
  31	while (na--)
  32		pr_cont(" %08x", be32_to_cpu(*(addr++)));
  33	pr_cont("\n");
  34}
  35#else
  36static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  37#endif
  38
  39/* Callbacks for bus specific translators */
  40struct of_bus {
  41	const char	*name;
  42	const char	*addresses;
  43	int		(*match)(struct device_node *parent);
  44	void		(*count_cells)(struct device_node *child,
  45				       int *addrc, int *sizec);
  46	u64		(*map)(__be32 *addr, const __be32 *range,
  47				int na, int ns, int pna, int fna);
  48	int		(*translate)(__be32 *addr, u64 offset, int na);
  49	int		flag_cells;
  50	unsigned int	(*get_flags)(const __be32 *addr);
  51};
  52
  53/*
  54 * Default translator (generic bus)
  55 */
  56
  57static void of_bus_default_count_cells(struct device_node *dev,
  58				       int *addrc, int *sizec)
  59{
  60	if (addrc)
  61		*addrc = of_n_addr_cells(dev);
  62	if (sizec)
  63		*sizec = of_n_size_cells(dev);
  64}
  65
  66static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  67		int na, int ns, int pna, int fna)
  68{
  69	u64 cp, s, da;
  70
  71	cp = of_read_number(range + fna, na - fna);
  72	s  = of_read_number(range + na + pna, ns);
  73	da = of_read_number(addr + fna, na - fna);
  74
  75	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
  76
  77	if (da < cp || da >= (cp + s))
  78		return OF_BAD_ADDR;
  79	return da - cp;
  80}
  81
  82static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  83{
  84	u64 a = of_read_number(addr, na);
  85	memset(addr, 0, na * 4);
  86	a += offset;
  87	if (na > 1)
  88		addr[na - 2] = cpu_to_be32(a >> 32);
  89	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  90
  91	return 0;
  92}
  93
  94static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
  95{
  96	return of_read_number(addr, 1);
  97}
  98
  99static unsigned int of_bus_default_get_flags(const __be32 *addr)
 100{
 101	return IORESOURCE_MEM;
 102}
 103
 104static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
 105				    int ns, int pna, int fna)
 106{
 107	/* Check that flags match */
 108	if (*addr != *range)
 109		return OF_BAD_ADDR;
 110
 111	return of_bus_default_map(addr, range, na, ns, pna, fna);
 112}
 113
 114static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
 115{
 116	/* Keep "flags" part (high cell) in translated address */
 117	return of_bus_default_translate(addr + 1, offset, na - 1);
 118}
 119
 120#ifdef CONFIG_PCI
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123	unsigned int flags = 0;
 124	u32 w = be32_to_cpup(addr);
 125
 126	if (!IS_ENABLED(CONFIG_PCI))
 127		return 0;
 128
 129	switch((w >> 24) & 0x03) {
 130	case 0x01:
 131		flags |= IORESOURCE_IO;
 132		break;
 133	case 0x02: /* 32 bits */
 134		flags |= IORESOURCE_MEM;
 135		break;
 136
 137	case 0x03: /* 64 bits */
 138		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
 139		break;
 140	}
 141	if (w & 0x40000000)
 142		flags |= IORESOURCE_PREFETCH;
 143	return flags;
 144}
 145
 146/*
 147 * PCI bus specific translator
 148 */
 149
 150static bool of_node_is_pcie(const struct device_node *np)
 151{
 152	bool is_pcie = of_node_name_eq(np, "pcie");
 153
 154	if (is_pcie)
 155		pr_warn_once("%pOF: Missing device_type\n", np);
 156
 157	return is_pcie;
 158}
 159
 160static int of_bus_pci_match(struct device_node *np)
 161{
 162	/*
 163 	 * "pciex" is PCI Express
 164	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 165	 * "ht" is hypertransport
 166	 *
 167	 * If none of the device_type match, and that the node name is
 168	 * "pcie", accept the device as PCI (with a warning).
 169	 */
 170	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 171		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
 172		of_node_is_pcie(np);
 173}
 174
 175static void of_bus_pci_count_cells(struct device_node *np,
 176				   int *addrc, int *sizec)
 177{
 178	if (addrc)
 179		*addrc = 3;
 180	if (sizec)
 181		*sizec = 2;
 182}
 183
 184static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 185		int pna, int fna)
 186{
 
 187	unsigned int af, rf;
 188
 189	af = of_bus_pci_get_flags(addr);
 190	rf = of_bus_pci_get_flags(range);
 191
 192	/* Check address type match */
 193	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 194		return OF_BAD_ADDR;
 195
 196	return of_bus_default_map(addr, range, na, ns, pna, fna);
 
 
 
 
 
 
 
 
 
 197}
 198
 
 
 
 
 199#endif /* CONFIG_PCI */
 200
 201static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
 
 202{
 203	if (overflows_type(start, r->start))
 204		return -EOVERFLOW;
 205
 206	r->start = start;
 207
 208	if (!size)
 209		r->end = wrapping_sub(typeof(r->end), r->start, 1);
 210	else if (size && check_add_overflow(r->start, size - 1, &r->end))
 211		return -EOVERFLOW;
 212
 213	return 0;
 214}
 
 215
 216/*
 217 * of_pci_range_to_resource - Create a resource from an of_pci_range
 218 * @range:	the PCI range that describes the resource
 219 * @np:		device node where the range belongs to
 220 * @res:	pointer to a valid resource that will be updated to
 221 *              reflect the values contained in the range.
 222 *
 223 * Returns -EINVAL if the range cannot be converted to resource.
 224 *
 225 * Note that if the range is an IO range, the resource will be converted
 226 * using pci_address_to_pio() which can fail if it is called too early or
 227 * if the range cannot be matched to any host bridge IO space (our case here).
 228 * To guard against that we try to register the IO range first.
 229 * If that fails we know that pci_address_to_pio() will do too.
 230 */
 231int of_pci_range_to_resource(const struct of_pci_range *range,
 232			     const struct device_node *np, struct resource *res)
 233{
 234	u64 start;
 235	int err;
 236	res->flags = range->flags;
 237	res->parent = res->child = res->sibling = NULL;
 238	res->name = np->full_name;
 239
 
 
 
 240	if (res->flags & IORESOURCE_IO) {
 241		unsigned long port;
 242		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 243				range->size);
 244		if (err)
 245			goto invalid_range;
 246		port = pci_address_to_pio(range->cpu_addr);
 247		if (port == (unsigned long)-1) {
 248			err = -EINVAL;
 249			goto invalid_range;
 250		}
 251		start = port;
 252	} else {
 253		start = range->cpu_addr;
 
 
 
 
 
 
 254	}
 255	return __of_address_resource_bounds(res, start, range->size);
 
 256
 257invalid_range:
 258	res->start = (resource_size_t)OF_BAD_ADDR;
 259	res->end = (resource_size_t)OF_BAD_ADDR;
 260	return err;
 261}
 262EXPORT_SYMBOL(of_pci_range_to_resource);
 263
 264/*
 265 * of_range_to_resource - Create a resource from a ranges entry
 266 * @np:		device node where the range belongs to
 267 * @index:	the 'ranges' index to convert to a resource
 268 * @res:	pointer to a valid resource that will be updated to
 269 *              reflect the values contained in the range.
 270 *
 271 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
 272 * cannot be converted to resource.
 273 */
 274int of_range_to_resource(struct device_node *np, int index, struct resource *res)
 275{
 276	int ret, i = 0;
 277	struct of_range_parser parser;
 278	struct of_range range;
 279
 280	ret = of_range_parser_init(&parser, np);
 281	if (ret)
 282		return ret;
 283
 284	for_each_of_range(&parser, &range)
 285		if (i++ == index)
 286			return of_pci_range_to_resource(&range, np, res);
 287
 288	return -ENOENT;
 289}
 290EXPORT_SYMBOL(of_range_to_resource);
 291
 292/*
 293 * ISA bus specific translator
 294 */
 295
 296static int of_bus_isa_match(struct device_node *np)
 297{
 298	return of_node_name_eq(np, "isa");
 299}
 300
 301static void of_bus_isa_count_cells(struct device_node *child,
 302				   int *addrc, int *sizec)
 303{
 304	if (addrc)
 305		*addrc = 2;
 306	if (sizec)
 307		*sizec = 1;
 308}
 309
 310static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 311		int pna, int fna)
 312{
 
 
 313	/* Check address type match */
 314	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 315		return OF_BAD_ADDR;
 316
 317	return of_bus_default_map(addr, range, na, ns, pna, fna);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318}
 319
 320static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 321{
 322	unsigned int flags = 0;
 323	u32 w = be32_to_cpup(addr);
 324
 325	if (w & 1)
 326		flags |= IORESOURCE_IO;
 327	else
 328		flags |= IORESOURCE_MEM;
 329	return flags;
 330}
 331
 332static int of_bus_default_flags_match(struct device_node *np)
 333{
 334	/*
 335	 * Check for presence first since of_bus_n_addr_cells() will warn when
 336	 * walking parent nodes.
 337	 */
 338	return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3);
 339}
 340
 341static int of_bus_default_match(struct device_node *np)
 342{
 343	/*
 344	 * Check for presence first since of_bus_n_addr_cells() will warn when
 345	 * walking parent nodes.
 346	 */
 347	return of_property_present(np, "#address-cells");
 348}
 349
 350/*
 351 * Array of bus specific translators
 352 */
 353
 354static const struct of_bus of_busses[] = {
 355#ifdef CONFIG_PCI
 356	/* PCI */
 357	{
 358		.name = "pci",
 359		.addresses = "assigned-addresses",
 360		.match = of_bus_pci_match,
 361		.count_cells = of_bus_pci_count_cells,
 362		.map = of_bus_pci_map,
 363		.translate = of_bus_default_flags_translate,
 364		.flag_cells = 1,
 365		.get_flags = of_bus_pci_get_flags,
 366	},
 367#endif /* CONFIG_PCI */
 368	/* ISA */
 369	{
 370		.name = "isa",
 371		.addresses = "reg",
 372		.match = of_bus_isa_match,
 373		.count_cells = of_bus_isa_count_cells,
 374		.map = of_bus_isa_map,
 375		.translate = of_bus_default_flags_translate,
 376		.flag_cells = 1,
 377		.get_flags = of_bus_isa_get_flags,
 378	},
 379	/* Default with flags cell */
 380	{
 381		.name = "default-flags",
 382		.addresses = "reg",
 383		.match = of_bus_default_flags_match,
 384		.count_cells = of_bus_default_count_cells,
 385		.map = of_bus_default_flags_map,
 386		.translate = of_bus_default_flags_translate,
 387		.flag_cells = 1,
 388		.get_flags = of_bus_default_flags_get_flags,
 389	},
 390	/* Default */
 391	{
 392		.name = "default",
 393		.addresses = "reg",
 394		.match = of_bus_default_match,
 395		.count_cells = of_bus_default_count_cells,
 396		.map = of_bus_default_map,
 397		.translate = of_bus_default_translate,
 398		.get_flags = of_bus_default_get_flags,
 399	},
 400};
 401
 402static const struct of_bus *of_match_bus(struct device_node *np)
 403{
 404	int i;
 405
 406	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 407		if (!of_busses[i].match || of_busses[i].match(np))
 408			return &of_busses[i];
 
 409	return NULL;
 410}
 411
 412static int of_empty_ranges_quirk(const struct device_node *np)
 413{
 414	if (IS_ENABLED(CONFIG_PPC)) {
 415		/* To save cycles, we cache the result for global "Mac" setting */
 416		static int quirk_state = -1;
 417
 418		/* PA-SEMI sdc DT bug */
 419		if (of_device_is_compatible(np, "1682m-sdc"))
 420			return true;
 421
 422		/* Make quirk cached */
 423		if (quirk_state < 0)
 424			quirk_state =
 425				of_machine_is_compatible("Power Macintosh") ||
 426				of_machine_is_compatible("MacRISC");
 427		return quirk_state;
 428	}
 429	return false;
 430}
 431
 432static int of_translate_one(const struct device_node *parent, const struct of_bus *bus,
 433			    const struct of_bus *pbus, __be32 *addr,
 434			    int na, int ns, int pna, const char *rprop)
 435{
 436	const __be32 *ranges;
 437	unsigned int rlen;
 438	int rone;
 439	u64 offset = OF_BAD_ADDR;
 440
 441	/*
 442	 * Normally, an absence of a "ranges" property means we are
 443	 * crossing a non-translatable boundary, and thus the addresses
 444	 * below the current cannot be converted to CPU physical ones.
 445	 * Unfortunately, while this is very clear in the spec, it's not
 446	 * what Apple understood, and they do have things like /uni-n or
 447	 * /ht nodes with no "ranges" property and a lot of perfectly
 448	 * useable mapped devices below them. Thus we treat the absence of
 449	 * "ranges" as equivalent to an empty "ranges" property which means
 450	 * a 1:1 translation at that level. It's up to the caller not to try
 451	 * to translate addresses that aren't supposed to be translated in
 452	 * the first place. --BenH.
 453	 *
 454	 * As far as we know, this damage only exists on Apple machines, so
 455	 * This code is only enabled on powerpc. --gcl
 456	 *
 457	 * This quirk also applies for 'dma-ranges' which frequently exist in
 458	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
 459	 */
 460	ranges = of_get_property(parent, rprop, &rlen);
 461	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
 462	    strcmp(rprop, "dma-ranges")) {
 463		pr_debug("no ranges; cannot translate\n");
 464		return 1;
 465	}
 466	if (ranges == NULL || rlen == 0) {
 467		offset = of_read_number(addr, na);
 468		/* set address to zero, pass flags through */
 469		memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4);
 470		pr_debug("empty ranges; 1:1 translation\n");
 471		goto finish;
 472	}
 473
 474	pr_debug("walking ranges...\n");
 475
 476	/* Now walk through the ranges */
 477	rlen /= 4;
 478	rone = na + pna + ns;
 479	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 480		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
 481		if (offset != OF_BAD_ADDR)
 482			break;
 483	}
 484	if (offset == OF_BAD_ADDR) {
 485		pr_debug("not found !\n");
 486		return 1;
 487	}
 488	memcpy(addr, ranges + na, 4 * pna);
 489
 490 finish:
 491	of_dump_addr("parent translation for:", addr, pna);
 492	pr_debug("with offset: %llx\n", offset);
 493
 494	/* Translate it into parent bus space */
 495	return pbus->translate(addr, offset, pna);
 496}
 497
 498/*
 499 * Translate an address from the device-tree into a CPU physical address,
 500 * this walks up the tree and applies the various bus mappings on the
 501 * way.
 502 *
 503 * Note: We consider that crossing any level with #size-cells == 0 to mean
 504 * that translation is impossible (that is we are not dealing with a value
 505 * that can be mapped to a cpu physical address). This is not really specified
 506 * that way, but this is traditionally the way IBM at least do things
 507 *
 508 * Whenever the translation fails, the *host pointer will be set to the
 509 * device that had registered logical PIO mapping, and the return code is
 510 * relative to that node.
 511 */
 512static u64 __of_translate_address(struct device_node *node,
 513				  struct device_node *(*get_parent)(const struct device_node *),
 514				  const __be32 *in_addr, const char *rprop,
 515				  struct device_node **host)
 516{
 517	struct device_node *dev __free(device_node) = of_node_get(node);
 518	struct device_node *parent __free(device_node) = get_parent(dev);
 519	const struct of_bus *bus, *pbus;
 520	__be32 addr[OF_MAX_ADDR_CELLS];
 521	int na, ns, pna, pns;
 
 522
 523	pr_debug("** translation for device %pOF **\n", dev);
 524
 525	*host = NULL;
 
 526
 
 
 
 527	if (parent == NULL)
 528		return OF_BAD_ADDR;
 529	bus = of_match_bus(parent);
 530	if (!bus)
 531		return OF_BAD_ADDR;
 532
 533	/* Count address cells & copy address locally */
 534	bus->count_cells(dev, &na, &ns);
 535	if (!OF_CHECK_COUNTS(na, ns)) {
 536		pr_debug("Bad cell count for %pOF\n", dev);
 537		return OF_BAD_ADDR;
 538	}
 539	memcpy(addr, in_addr, na * 4);
 540
 541	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 542	    bus->name, na, ns, parent);
 543	of_dump_addr("translating address:", addr, na);
 544
 545	/* Translate */
 546	for (;;) {
 547		struct logic_pio_hwaddr *iorange;
 548
 549		/* Switch to parent bus */
 550		of_node_put(dev);
 551		dev = parent;
 552		parent = get_parent(dev);
 553
 554		/* If root, we have finished */
 555		if (parent == NULL) {
 556			pr_debug("reached root node\n");
 557			return of_read_number(addr, na);
 
 558		}
 559
 560		/*
 561		 * For indirectIO device which has no ranges property, get
 562		 * the address from reg directly.
 563		 */
 564		iorange = find_io_range_by_fwnode(&dev->fwnode);
 565		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 566			u64 result = of_read_number(addr + 1, na - 1);
 567			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 568				 dev, result);
 569			*host = no_free_ptr(dev);
 570			return result;
 571		}
 572
 573		/* Get new parent bus and counts */
 574		pbus = of_match_bus(parent);
 575		if (!pbus)
 576			return OF_BAD_ADDR;
 577		pbus->count_cells(dev, &pna, &pns);
 578		if (!OF_CHECK_COUNTS(pna, pns)) {
 579			pr_err("Bad cell count for %pOF\n", dev);
 580			return OF_BAD_ADDR;
 581		}
 582
 583		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 584		    pbus->name, pna, pns, parent);
 585
 586		/* Apply bus translation */
 587		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 588			return OF_BAD_ADDR;
 589
 590		/* Complete the move up one level */
 591		na = pna;
 592		ns = pns;
 593		bus = pbus;
 594
 595		of_dump_addr("one level translation:", addr, na);
 596	}
 
 
 
 597
 598	unreachable();
 599}
 600
 601u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 602{
 603	struct device_node *host;
 604	u64 ret;
 605
 606	ret = __of_translate_address(dev, of_get_parent,
 607				     in_addr, "ranges", &host);
 608	if (host) {
 609		of_node_put(host);
 610		return OF_BAD_ADDR;
 611	}
 612
 613	return ret;
 614}
 615EXPORT_SYMBOL(of_translate_address);
 616
 617#ifdef CONFIG_HAS_DMA
 618struct device_node *__of_get_dma_parent(const struct device_node *np)
 619{
 620	struct of_phandle_args args;
 621	int ret, index;
 622
 623	index = of_property_match_string(np, "interconnect-names", "dma-mem");
 624	if (index < 0)
 625		return of_get_parent(np);
 626
 627	ret = of_parse_phandle_with_args(np, "interconnects",
 628					 "#interconnect-cells",
 629					 index, &args);
 630	if (ret < 0)
 631		return of_get_parent(np);
 632
 633	return args.np;
 634}
 635#endif
 636
 637static struct device_node *of_get_next_dma_parent(struct device_node *np)
 638{
 639	struct device_node *parent;
 640
 641	parent = __of_get_dma_parent(np);
 642	of_node_put(np);
 643
 644	return parent;
 645}
 646
 647u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 648{
 649	struct device_node *host;
 650	u64 ret;
 651
 652	ret = __of_translate_address(dev, __of_get_dma_parent,
 653				     in_addr, "dma-ranges", &host);
 654
 655	if (host) {
 656		of_node_put(host);
 657		return OF_BAD_ADDR;
 658	}
 659
 660	return ret;
 661}
 662EXPORT_SYMBOL(of_translate_dma_address);
 663
 664/**
 665 * of_translate_dma_region - Translate device tree address and size tuple
 666 * @dev: device tree node for which to translate
 667 * @prop: pointer into array of cells
 668 * @start: return value for the start of the DMA range
 669 * @length: return value for the length of the DMA range
 670 *
 671 * Returns a pointer to the cell immediately following the translated DMA region.
 672 */
 673const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
 674				      phys_addr_t *start, size_t *length)
 675{
 676	struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
 677	u64 address, size;
 678	int na, ns;
 679
 680	if (!parent)
 681		return NULL;
 682
 683	na = of_bus_n_addr_cells(parent);
 684	ns = of_bus_n_size_cells(parent);
 685
 686	address = of_translate_dma_address(dev, prop);
 687	if (address == OF_BAD_ADDR)
 688		return NULL;
 689
 690	size = of_read_number(prop + na, ns);
 691
 692	if (start)
 693		*start = address;
 694
 695	if (length)
 696		*length = size;
 697
 698	return prop + na + ns;
 699}
 700EXPORT_SYMBOL(of_translate_dma_region);
 701
 702const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
 703			       u64 *size, unsigned int *flags)
 704{
 705	const __be32 *prop;
 706	unsigned int psize;
 707	struct device_node *parent __free(device_node) = of_get_parent(dev);
 708	const struct of_bus *bus;
 709	int onesize, i, na, ns;
 710
 
 
 711	if (parent == NULL)
 712		return NULL;
 713
 714	/* match the parent's bus type */
 715	bus = of_match_bus(parent);
 716	if (!bus || (strcmp(bus->name, "pci") && (bar_no >= 0)))
 
 
 
 
 
 
 717		return NULL;
 718
 719	/* Get "reg" or "assigned-addresses" property */
 720	prop = of_get_property(dev, bus->addresses, &psize);
 721	if (prop == NULL)
 722		return NULL;
 723	psize /= 4;
 724
 725	bus->count_cells(dev, &na, &ns);
 726	if (!OF_CHECK_ADDR_COUNT(na))
 727		return NULL;
 728
 729	onesize = na + ns;
 730	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 731		u32 val = be32_to_cpu(prop[0]);
 732		/* PCI bus matches on BAR number instead of index */
 733		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
 734		    ((index >= 0) && (i == index))) {
 735			if (size)
 736				*size = of_read_number(prop + na, ns);
 737			if (flags)
 738				*flags = bus->get_flags(prop);
 739			return prop;
 740		}
 741	}
 742	return NULL;
 743}
 744EXPORT_SYMBOL(__of_get_address);
 745
 746/**
 747 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
 748 * @np: device tree node for which to retrieve "reg" from
 749 * @idx: "reg" entry index to read
 750 * @addr: return value for the untranslated address
 751 * @size: return value for the entry size
 752 *
 753 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
 754 * size values filled in.
 755 */
 756int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
 757{
 758	const __be32 *prop = of_get_address(np, idx, size, NULL);
 759
 760	if (!prop)
 761		return -EINVAL;
 762
 763	*addr = of_read_number(prop, of_n_addr_cells(np));
 764
 765	return 0;
 766}
 767EXPORT_SYMBOL(of_property_read_reg);
 768
 769static int parser_init(struct of_pci_range_parser *parser,
 770			struct device_node *node, const char *name)
 771{
 772	int rlen;
 773
 774	parser->node = node;
 775	parser->pna = of_n_addr_cells(node);
 776	parser->na = of_bus_n_addr_cells(node);
 777	parser->ns = of_bus_n_size_cells(node);
 778	parser->dma = !strcmp(name, "dma-ranges");
 779	parser->bus = of_match_bus(node);
 780
 781	parser->range = of_get_property(node, name, &rlen);
 782	if (parser->range == NULL)
 783		return -ENOENT;
 784
 785	parser->end = parser->range + rlen / sizeof(__be32);
 786
 787	return 0;
 788}
 789
 790int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 791				struct device_node *node)
 792{
 793	return parser_init(parser, node, "ranges");
 794}
 795EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 796
 797int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 798				struct device_node *node)
 799{
 800	return parser_init(parser, node, "dma-ranges");
 801}
 802EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 803#define of_dma_range_parser_init of_pci_dma_range_parser_init
 804
 805struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 806						struct of_pci_range *range)
 807{
 808	int na = parser->na;
 809	int ns = parser->ns;
 810	int np = parser->pna + na + ns;
 811	int busflag_na = parser->bus->flag_cells;
 812
 813	if (!range)
 814		return NULL;
 815
 816	if (!parser->range || parser->range + np > parser->end)
 817		return NULL;
 818
 819	range->flags = parser->bus->get_flags(parser->range);
 820
 
 
 
 
 821	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 822
 823	if (parser->dma)
 824		range->cpu_addr = of_translate_dma_address(parser->node,
 825				parser->range + na);
 826	else
 827		range->cpu_addr = of_translate_address(parser->node,
 828				parser->range + na);
 829	range->size = of_read_number(parser->range + parser->pna + na, ns);
 830
 831	parser->range += np;
 832
 833	/* Now consume following elements while they are contiguous */
 834	while (parser->range + np <= parser->end) {
 835		u32 flags = 0;
 836		u64 bus_addr, cpu_addr, size;
 837
 838		flags = parser->bus->get_flags(parser->range);
 839		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 840		if (parser->dma)
 841			cpu_addr = of_translate_dma_address(parser->node,
 842					parser->range + na);
 843		else
 844			cpu_addr = of_translate_address(parser->node,
 845					parser->range + na);
 846		size = of_read_number(parser->range + parser->pna + na, ns);
 847
 848		if (flags != range->flags)
 849			break;
 850		if (bus_addr != range->bus_addr + range->size ||
 851		    cpu_addr != range->cpu_addr + range->size)
 852			break;
 853
 854		range->size += size;
 855		parser->range += np;
 856	}
 857
 858	return range;
 859}
 860EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 861
 862static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 863			u64 size)
 864{
 865	u64 taddr;
 866	unsigned long port;
 867	struct device_node *host;
 868
 869	taddr = __of_translate_address(dev, of_get_parent,
 870				       in_addr, "ranges", &host);
 871	if (host) {
 872		/* host-specific port access */
 873		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 874		of_node_put(host);
 875	} else {
 876		/* memory-mapped I/O range */
 877		port = pci_address_to_pio(taddr);
 878	}
 879
 880	if (port == (unsigned long)-1)
 881		return OF_BAD_ADDR;
 882
 883	return port;
 884}
 885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886#ifdef CONFIG_HAS_DMA
 887/**
 888 * of_dma_get_range - Get DMA range info and put it into a map array
 889 * @np:		device node to get DMA range info
 890 * @map:	dma range structure to return
 891 *
 892 * Look in bottom up direction for the first "dma-ranges" property
 893 * and parse it.  Put the information into a DMA offset map array.
 894 *
 895 * dma-ranges format:
 896 *	DMA addr (dma_addr)	: naddr cells
 897 *	CPU addr (phys_addr_t)	: pna cells
 898 *	size			: nsize cells
 899 *
 900 * It returns -ENODEV if "dma-ranges" property was not found for this
 901 * device in the DT.
 902 */
 903int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
 904{
 905	struct device_node *node __free(device_node) = of_node_get(np);
 906	const __be32 *ranges = NULL;
 907	bool found_dma_ranges = false;
 908	struct of_range_parser parser;
 909	struct of_range range;
 910	struct bus_dma_region *r;
 911	int len, num_ranges = 0;
 
 912
 913	while (node) {
 914		ranges = of_get_property(node, "dma-ranges", &len);
 915
 916		/* Ignore empty ranges, they imply no translation required */
 917		if (ranges && len > 0)
 918			break;
 919
 920		/* Once we find 'dma-ranges', then a missing one is an error */
 921		if (found_dma_ranges && !ranges)
 922			return -ENODEV;
 923
 
 924		found_dma_ranges = true;
 925
 926		node = of_get_next_dma_parent(node);
 927	}
 928
 929	if (!node || !ranges) {
 930		pr_debug("no dma-ranges found for node(%pOF)\n", np);
 931		return -ENODEV;
 
 932	}
 
 933	of_dma_range_parser_init(&parser, node);
 934	for_each_of_range(&parser, &range) {
 935		if (range.cpu_addr == OF_BAD_ADDR) {
 936			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
 937			       range.bus_addr, node);
 938			continue;
 939		}
 940		num_ranges++;
 941	}
 942
 943	if (!num_ranges)
 944		return -EINVAL;
 945
 946	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
 947	if (!r)
 948		return -ENOMEM;
 
 
 949
 950	/*
 951	 * Record all info in the generic DMA ranges array for struct device,
 952	 * returning an error if we don't find any parsable ranges.
 953	 */
 954	*map = r;
 955	of_dma_range_parser_init(&parser, node);
 956	for_each_of_range(&parser, &range) {
 957		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 958			 range.bus_addr, range.cpu_addr, range.size);
 959		if (range.cpu_addr == OF_BAD_ADDR)
 
 
 960			continue;
 
 961		r->cpu_start = range.cpu_addr;
 962		r->dma_start = range.bus_addr;
 963		r->size = range.size;
 
 964		r++;
 965	}
 966	return 0;
 
 
 967}
 968#endif /* CONFIG_HAS_DMA */
 969
 970/**
 971 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
 972 * @np: The node to start searching from or NULL to start from the root
 973 *
 974 * Gets the highest CPU physical address that is addressable by all DMA masters
 975 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
 976 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
 977 */
 978phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
 979{
 980	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
 981	struct of_range_parser parser;
 982	phys_addr_t subtree_max_addr;
 983	struct device_node *child;
 984	struct of_range range;
 985	const __be32 *ranges;
 986	u64 cpu_end = 0;
 987	int len;
 988
 989	if (!np)
 990		np = of_root;
 991
 992	ranges = of_get_property(np, "dma-ranges", &len);
 993	if (ranges && len) {
 994		of_dma_range_parser_init(&parser, np);
 995		for_each_of_range(&parser, &range)
 996			if (range.cpu_addr + range.size > cpu_end)
 997				cpu_end = range.cpu_addr + range.size - 1;
 998
 999		if (max_cpu_addr > cpu_end)
1000			max_cpu_addr = cpu_end;
1001	}
1002
1003	for_each_available_child_of_node(np, child) {
1004		subtree_max_addr = of_dma_get_max_cpu_address(child);
1005		if (max_cpu_addr > subtree_max_addr)
1006			max_cpu_addr = subtree_max_addr;
1007	}
1008
1009	return max_cpu_addr;
1010}
1011
1012/**
1013 * of_dma_is_coherent - Check if device is coherent
1014 * @np:	device node
1015 *
1016 * It returns true if "dma-coherent" property was found
1017 * for this device in the DT, or if DMA is coherent by
1018 * default for OF devices on the current platform and no
1019 * "dma-noncoherent" property was found for this device.
1020 */
1021bool of_dma_is_coherent(struct device_node *np)
1022{
1023	struct device_node *node __free(device_node) = of_node_get(np);
1024
1025	while (node) {
1026		if (of_property_read_bool(node, "dma-coherent"))
1027			return true;
1028
1029		if (of_property_read_bool(node, "dma-noncoherent"))
1030			return false;
1031
 
 
 
 
 
1032		node = of_get_next_dma_parent(node);
1033	}
1034	return dma_default_coherent;
 
1035}
1036EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1037
1038/**
1039 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1040 * @np:	device node
1041 *
1042 * Returns true if the "nonposted-mmio" property was found for
1043 * the device's bus.
1044 *
1045 * This is currently only enabled on builds that support Apple ARM devices, as
1046 * an optimization.
1047 */
1048static bool of_mmio_is_nonposted(const struct device_node *np)
1049{
 
 
 
1050	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1051		return false;
1052
1053	struct device_node *parent __free(device_node) = of_get_parent(np);
1054	if (!parent)
1055		return false;
1056
1057	return of_property_read_bool(parent, "nonposted-mmio");
1058}
1059
1060static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1061		struct resource *r)
1062{
1063	u64 taddr;
1064	const __be32	*addrp;
1065	u64		size;
1066	unsigned int	flags;
1067	const char	*name = NULL;
1068
1069	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1070	if (addrp == NULL)
1071		return -EINVAL;
1072
1073	/* Get optional "reg-names" property to add a name to a resource */
1074	if (index >= 0)
1075		of_property_read_string_index(dev, "reg-names",	index, &name);
1076
1077	if (flags & IORESOURCE_MEM)
1078		taddr = of_translate_address(dev, addrp);
1079	else if (flags & IORESOURCE_IO)
1080		taddr = of_translate_ioport(dev, addrp, size);
1081	else
1082		return -EINVAL;
1083
1084	if (taddr == OF_BAD_ADDR)
1085		return -EINVAL;
1086	memset(r, 0, sizeof(struct resource));
1087
1088	if (of_mmio_is_nonposted(dev))
1089		flags |= IORESOURCE_MEM_NONPOSTED;
1090
1091	r->flags = flags;
1092	r->name = name ? name : dev->full_name;
1093
1094	return __of_address_resource_bounds(r, taddr, size);
1095}
1096
1097/**
1098 * of_address_to_resource - Translate device tree address and return as resource
1099 * @dev:	Caller's Device Node
1100 * @index:	Index into the array
1101 * @r:		Pointer to resource array
1102 *
1103 * Returns -EINVAL if the range cannot be converted to resource.
1104 *
1105 * Note that if your address is a PIO address, the conversion will fail if
1106 * the physical address can't be internally converted to an IO token with
1107 * pci_address_to_pio(), that is because it's either called too early or it
1108 * can't be matched to any host bridge IO space
1109 */
1110int of_address_to_resource(struct device_node *dev, int index,
1111			   struct resource *r)
1112{
1113	return __of_address_to_resource(dev, index, -1, r);
1114}
1115EXPORT_SYMBOL_GPL(of_address_to_resource);
1116
1117int of_pci_address_to_resource(struct device_node *dev, int bar,
1118			       struct resource *r)
1119{
1120
1121	if (!IS_ENABLED(CONFIG_PCI))
1122		return -ENOSYS;
1123
1124	return __of_address_to_resource(dev, -1, bar, r);
1125}
1126EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1127
1128/**
1129 * of_iomap - Maps the memory mapped IO for a given device_node
1130 * @np:		the device whose io range will be mapped
1131 * @index:	index of the io range
1132 *
1133 * Returns a pointer to the mapped memory
1134 */
1135void __iomem *of_iomap(struct device_node *np, int index)
1136{
1137	struct resource res;
1138
1139	if (of_address_to_resource(np, index, &res))
1140		return NULL;
1141
1142	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1143		return ioremap_np(res.start, resource_size(&res));
1144	else
1145		return ioremap(res.start, resource_size(&res));
1146}
1147EXPORT_SYMBOL(of_iomap);
1148
1149/*
1150 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1151 *			   for a given device_node
1152 * @device:	the device whose io range will be mapped
1153 * @index:	index of the io range
1154 * @name:	name "override" for the memory region request or NULL
1155 *
1156 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1157 * error code on failure. Usage example:
1158 *
1159 *	base = of_io_request_and_map(node, 0, "foo");
1160 *	if (IS_ERR(base))
1161 *		return PTR_ERR(base);
1162 */
1163void __iomem *of_io_request_and_map(struct device_node *np, int index,
1164				    const char *name)
1165{
1166	struct resource res;
1167	void __iomem *mem;
1168
1169	if (of_address_to_resource(np, index, &res))
1170		return IOMEM_ERR_PTR(-EINVAL);
1171
1172	if (!name)
1173		name = res.name;
1174	if (!request_mem_region(res.start, resource_size(&res), name))
1175		return IOMEM_ERR_PTR(-EBUSY);
1176
1177	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1178		mem = ioremap_np(res.start, resource_size(&res));
1179	else
1180		mem = ioremap(res.start, resource_size(&res));
1181
1182	if (!mem) {
1183		release_mem_region(res.start, resource_size(&res));
1184		return IOMEM_ERR_PTR(-ENOMEM);
1185	}
1186
1187	return mem;
1188}
1189EXPORT_SYMBOL(of_io_request_and_map);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)	"OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
 
  11#include <linux/pci.h>
  12#include <linux/pci_regs.h>
  13#include <linux/sizes.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16#include <linux/dma-direct.h> /* for bus_dma_region */
  17
  18#include "of_private.h"
  19
  20/* Max address size we deal with */
  21#define OF_MAX_ADDR_CELLS	4
  22#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  23#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  24
  25static struct of_bus *of_match_bus(struct device_node *np);
  26static int __of_address_to_resource(struct device_node *dev, int index,
  27		int bar_no, struct resource *r);
  28static bool of_mmio_is_nonposted(struct device_node *np);
  29
  30/* Debug utility */
  31#ifdef DEBUG
  32static void of_dump_addr(const char *s, const __be32 *addr, int na)
  33{
  34	pr_debug("%s", s);
  35	while (na--)
  36		pr_cont(" %08x", be32_to_cpu(*(addr++)));
  37	pr_cont("\n");
  38}
  39#else
  40static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  41#endif
  42
  43/* Callbacks for bus specific translators */
  44struct of_bus {
  45	const char	*name;
  46	const char	*addresses;
  47	int		(*match)(struct device_node *parent);
  48	void		(*count_cells)(struct device_node *child,
  49				       int *addrc, int *sizec);
  50	u64		(*map)(__be32 *addr, const __be32 *range,
  51				int na, int ns, int pna);
  52	int		(*translate)(__be32 *addr, u64 offset, int na);
  53	bool	has_flags;
  54	unsigned int	(*get_flags)(const __be32 *addr);
  55};
  56
  57/*
  58 * Default translator (generic bus)
  59 */
  60
  61static void of_bus_default_count_cells(struct device_node *dev,
  62				       int *addrc, int *sizec)
  63{
  64	if (addrc)
  65		*addrc = of_n_addr_cells(dev);
  66	if (sizec)
  67		*sizec = of_n_size_cells(dev);
  68}
  69
  70static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  71		int na, int ns, int pna)
  72{
  73	u64 cp, s, da;
  74
  75	cp = of_read_number(range, na);
  76	s  = of_read_number(range + na + pna, ns);
  77	da = of_read_number(addr, na);
  78
  79	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
  80
  81	if (da < cp || da >= (cp + s))
  82		return OF_BAD_ADDR;
  83	return da - cp;
  84}
  85
  86static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  87{
  88	u64 a = of_read_number(addr, na);
  89	memset(addr, 0, na * 4);
  90	a += offset;
  91	if (na > 1)
  92		addr[na - 2] = cpu_to_be32(a >> 32);
  93	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  94
  95	return 0;
  96}
  97
 
 
 
 
 
  98static unsigned int of_bus_default_get_flags(const __be32 *addr)
  99{
 100	return IORESOURCE_MEM;
 101}
 102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103#ifdef CONFIG_PCI
 104static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 105{
 106	unsigned int flags = 0;
 107	u32 w = be32_to_cpup(addr);
 108
 109	if (!IS_ENABLED(CONFIG_PCI))
 110		return 0;
 111
 112	switch((w >> 24) & 0x03) {
 113	case 0x01:
 114		flags |= IORESOURCE_IO;
 115		break;
 116	case 0x02: /* 32 bits */
 117		flags |= IORESOURCE_MEM;
 118		break;
 119
 120	case 0x03: /* 64 bits */
 121		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
 122		break;
 123	}
 124	if (w & 0x40000000)
 125		flags |= IORESOURCE_PREFETCH;
 126	return flags;
 127}
 128
 129/*
 130 * PCI bus specific translator
 131 */
 132
 133static bool of_node_is_pcie(struct device_node *np)
 134{
 135	bool is_pcie = of_node_name_eq(np, "pcie");
 136
 137	if (is_pcie)
 138		pr_warn_once("%pOF: Missing device_type\n", np);
 139
 140	return is_pcie;
 141}
 142
 143static int of_bus_pci_match(struct device_node *np)
 144{
 145	/*
 146 	 * "pciex" is PCI Express
 147	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 148	 * "ht" is hypertransport
 149	 *
 150	 * If none of the device_type match, and that the node name is
 151	 * "pcie", accept the device as PCI (with a warning).
 152	 */
 153	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 154		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
 155		of_node_is_pcie(np);
 156}
 157
 158static void of_bus_pci_count_cells(struct device_node *np,
 159				   int *addrc, int *sizec)
 160{
 161	if (addrc)
 162		*addrc = 3;
 163	if (sizec)
 164		*sizec = 2;
 165}
 166
 167static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 168		int pna)
 169{
 170	u64 cp, s, da;
 171	unsigned int af, rf;
 172
 173	af = of_bus_pci_get_flags(addr);
 174	rf = of_bus_pci_get_flags(range);
 175
 176	/* Check address type match */
 177	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 178		return OF_BAD_ADDR;
 179
 180	/* Read address values, skipping high cell */
 181	cp = of_read_number(range + 1, na - 1);
 182	s  = of_read_number(range + na + pna, ns);
 183	da = of_read_number(addr + 1, na - 1);
 184
 185	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
 186
 187	if (da < cp || da >= (cp + s))
 188		return OF_BAD_ADDR;
 189	return da - cp;
 190}
 191
 192static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 193{
 194	return of_bus_default_translate(addr + 1, offset, na - 1);
 195}
 196#endif /* CONFIG_PCI */
 197
 198int of_pci_address_to_resource(struct device_node *dev, int bar,
 199			       struct resource *r)
 200{
 
 
 
 
 201
 202	if (!IS_ENABLED(CONFIG_PCI))
 203		return -ENOSYS;
 
 
 204
 205	return __of_address_to_resource(dev, -1, bar, r);
 206}
 207EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 208
 209/*
 210 * of_pci_range_to_resource - Create a resource from an of_pci_range
 211 * @range:	the PCI range that describes the resource
 212 * @np:		device node where the range belongs to
 213 * @res:	pointer to a valid resource that will be updated to
 214 *              reflect the values contained in the range.
 215 *
 216 * Returns EINVAL if the range cannot be converted to resource.
 217 *
 218 * Note that if the range is an IO range, the resource will be converted
 219 * using pci_address_to_pio() which can fail if it is called too early or
 220 * if the range cannot be matched to any host bridge IO space (our case here).
 221 * To guard against that we try to register the IO range first.
 222 * If that fails we know that pci_address_to_pio() will do too.
 223 */
 224int of_pci_range_to_resource(struct of_pci_range *range,
 225			     struct device_node *np, struct resource *res)
 226{
 
 227	int err;
 228	res->flags = range->flags;
 229	res->parent = res->child = res->sibling = NULL;
 230	res->name = np->full_name;
 231
 232	if (!IS_ENABLED(CONFIG_PCI))
 233		return -ENOSYS;
 234
 235	if (res->flags & IORESOURCE_IO) {
 236		unsigned long port;
 237		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 238				range->size);
 239		if (err)
 240			goto invalid_range;
 241		port = pci_address_to_pio(range->cpu_addr);
 242		if (port == (unsigned long)-1) {
 243			err = -EINVAL;
 244			goto invalid_range;
 245		}
 246		res->start = port;
 247	} else {
 248		if ((sizeof(resource_size_t) < 8) &&
 249		    upper_32_bits(range->cpu_addr)) {
 250			err = -EINVAL;
 251			goto invalid_range;
 252		}
 253
 254		res->start = range->cpu_addr;
 255	}
 256	res->end = res->start + range->size - 1;
 257	return 0;
 258
 259invalid_range:
 260	res->start = (resource_size_t)OF_BAD_ADDR;
 261	res->end = (resource_size_t)OF_BAD_ADDR;
 262	return err;
 263}
 264EXPORT_SYMBOL(of_pci_range_to_resource);
 265
 266/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267 * ISA bus specific translator
 268 */
 269
 270static int of_bus_isa_match(struct device_node *np)
 271{
 272	return of_node_name_eq(np, "isa");
 273}
 274
 275static void of_bus_isa_count_cells(struct device_node *child,
 276				   int *addrc, int *sizec)
 277{
 278	if (addrc)
 279		*addrc = 2;
 280	if (sizec)
 281		*sizec = 1;
 282}
 283
 284static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 285		int pna)
 286{
 287	u64 cp, s, da;
 288
 289	/* Check address type match */
 290	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 291		return OF_BAD_ADDR;
 292
 293	/* Read address values, skipping high cell */
 294	cp = of_read_number(range + 1, na - 1);
 295	s  = of_read_number(range + na + pna, ns);
 296	da = of_read_number(addr + 1, na - 1);
 297
 298	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
 299
 300	if (da < cp || da >= (cp + s))
 301		return OF_BAD_ADDR;
 302	return da - cp;
 303}
 304
 305static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 306{
 307	return of_bus_default_translate(addr + 1, offset, na - 1);
 308}
 309
 310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 311{
 312	unsigned int flags = 0;
 313	u32 w = be32_to_cpup(addr);
 314
 315	if (w & 1)
 316		flags |= IORESOURCE_IO;
 317	else
 318		flags |= IORESOURCE_MEM;
 319	return flags;
 320}
 321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322/*
 323 * Array of bus specific translators
 324 */
 325
 326static struct of_bus of_busses[] = {
 327#ifdef CONFIG_PCI
 328	/* PCI */
 329	{
 330		.name = "pci",
 331		.addresses = "assigned-addresses",
 332		.match = of_bus_pci_match,
 333		.count_cells = of_bus_pci_count_cells,
 334		.map = of_bus_pci_map,
 335		.translate = of_bus_pci_translate,
 336		.has_flags = true,
 337		.get_flags = of_bus_pci_get_flags,
 338	},
 339#endif /* CONFIG_PCI */
 340	/* ISA */
 341	{
 342		.name = "isa",
 343		.addresses = "reg",
 344		.match = of_bus_isa_match,
 345		.count_cells = of_bus_isa_count_cells,
 346		.map = of_bus_isa_map,
 347		.translate = of_bus_isa_translate,
 348		.has_flags = true,
 349		.get_flags = of_bus_isa_get_flags,
 350	},
 
 
 
 
 
 
 
 
 
 
 
 351	/* Default */
 352	{
 353		.name = "default",
 354		.addresses = "reg",
 355		.match = NULL,
 356		.count_cells = of_bus_default_count_cells,
 357		.map = of_bus_default_map,
 358		.translate = of_bus_default_translate,
 359		.get_flags = of_bus_default_get_flags,
 360	},
 361};
 362
 363static struct of_bus *of_match_bus(struct device_node *np)
 364{
 365	int i;
 366
 367	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 368		if (!of_busses[i].match || of_busses[i].match(np))
 369			return &of_busses[i];
 370	BUG();
 371	return NULL;
 372}
 373
 374static int of_empty_ranges_quirk(struct device_node *np)
 375{
 376	if (IS_ENABLED(CONFIG_PPC)) {
 377		/* To save cycles, we cache the result for global "Mac" setting */
 378		static int quirk_state = -1;
 379
 380		/* PA-SEMI sdc DT bug */
 381		if (of_device_is_compatible(np, "1682m-sdc"))
 382			return true;
 383
 384		/* Make quirk cached */
 385		if (quirk_state < 0)
 386			quirk_state =
 387				of_machine_is_compatible("Power Macintosh") ||
 388				of_machine_is_compatible("MacRISC");
 389		return quirk_state;
 390	}
 391	return false;
 392}
 393
 394static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 395			    struct of_bus *pbus, __be32 *addr,
 396			    int na, int ns, int pna, const char *rprop)
 397{
 398	const __be32 *ranges;
 399	unsigned int rlen;
 400	int rone;
 401	u64 offset = OF_BAD_ADDR;
 402
 403	/*
 404	 * Normally, an absence of a "ranges" property means we are
 405	 * crossing a non-translatable boundary, and thus the addresses
 406	 * below the current cannot be converted to CPU physical ones.
 407	 * Unfortunately, while this is very clear in the spec, it's not
 408	 * what Apple understood, and they do have things like /uni-n or
 409	 * /ht nodes with no "ranges" property and a lot of perfectly
 410	 * useable mapped devices below them. Thus we treat the absence of
 411	 * "ranges" as equivalent to an empty "ranges" property which means
 412	 * a 1:1 translation at that level. It's up to the caller not to try
 413	 * to translate addresses that aren't supposed to be translated in
 414	 * the first place. --BenH.
 415	 *
 416	 * As far as we know, this damage only exists on Apple machines, so
 417	 * This code is only enabled on powerpc. --gcl
 418	 *
 419	 * This quirk also applies for 'dma-ranges' which frequently exist in
 420	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
 421	 */
 422	ranges = of_get_property(parent, rprop, &rlen);
 423	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
 424	    strcmp(rprop, "dma-ranges")) {
 425		pr_debug("no ranges; cannot translate\n");
 426		return 1;
 427	}
 428	if (ranges == NULL || rlen == 0) {
 429		offset = of_read_number(addr, na);
 430		memset(addr, 0, pna * 4);
 
 431		pr_debug("empty ranges; 1:1 translation\n");
 432		goto finish;
 433	}
 434
 435	pr_debug("walking ranges...\n");
 436
 437	/* Now walk through the ranges */
 438	rlen /= 4;
 439	rone = na + pna + ns;
 440	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 441		offset = bus->map(addr, ranges, na, ns, pna);
 442		if (offset != OF_BAD_ADDR)
 443			break;
 444	}
 445	if (offset == OF_BAD_ADDR) {
 446		pr_debug("not found !\n");
 447		return 1;
 448	}
 449	memcpy(addr, ranges + na, 4 * pna);
 450
 451 finish:
 452	of_dump_addr("parent translation for:", addr, pna);
 453	pr_debug("with offset: %llx\n", offset);
 454
 455	/* Translate it into parent bus space */
 456	return pbus->translate(addr, offset, pna);
 457}
 458
 459/*
 460 * Translate an address from the device-tree into a CPU physical address,
 461 * this walks up the tree and applies the various bus mappings on the
 462 * way.
 463 *
 464 * Note: We consider that crossing any level with #size-cells == 0 to mean
 465 * that translation is impossible (that is we are not dealing with a value
 466 * that can be mapped to a cpu physical address). This is not really specified
 467 * that way, but this is traditionally the way IBM at least do things
 468 *
 469 * Whenever the translation fails, the *host pointer will be set to the
 470 * device that had registered logical PIO mapping, and the return code is
 471 * relative to that node.
 472 */
 473static u64 __of_translate_address(struct device_node *dev,
 474				  struct device_node *(*get_parent)(const struct device_node *),
 475				  const __be32 *in_addr, const char *rprop,
 476				  struct device_node **host)
 477{
 478	struct device_node *parent = NULL;
 479	struct of_bus *bus, *pbus;
 
 480	__be32 addr[OF_MAX_ADDR_CELLS];
 481	int na, ns, pna, pns;
 482	u64 result = OF_BAD_ADDR;
 483
 484	pr_debug("** translation for device %pOF **\n", dev);
 485
 486	/* Increase refcount at current level */
 487	of_node_get(dev);
 488
 489	*host = NULL;
 490	/* Get parent & match bus type */
 491	parent = get_parent(dev);
 492	if (parent == NULL)
 493		goto bail;
 494	bus = of_match_bus(parent);
 
 
 495
 496	/* Count address cells & copy address locally */
 497	bus->count_cells(dev, &na, &ns);
 498	if (!OF_CHECK_COUNTS(na, ns)) {
 499		pr_debug("Bad cell count for %pOF\n", dev);
 500		goto bail;
 501	}
 502	memcpy(addr, in_addr, na * 4);
 503
 504	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 505	    bus->name, na, ns, parent);
 506	of_dump_addr("translating address:", addr, na);
 507
 508	/* Translate */
 509	for (;;) {
 510		struct logic_pio_hwaddr *iorange;
 511
 512		/* Switch to parent bus */
 513		of_node_put(dev);
 514		dev = parent;
 515		parent = get_parent(dev);
 516
 517		/* If root, we have finished */
 518		if (parent == NULL) {
 519			pr_debug("reached root node\n");
 520			result = of_read_number(addr, na);
 521			break;
 522		}
 523
 524		/*
 525		 * For indirectIO device which has no ranges property, get
 526		 * the address from reg directly.
 527		 */
 528		iorange = find_io_range_by_fwnode(&dev->fwnode);
 529		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 530			result = of_read_number(addr + 1, na - 1);
 531			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 532				 dev, result);
 533			*host = of_node_get(dev);
 534			break;
 535		}
 536
 537		/* Get new parent bus and counts */
 538		pbus = of_match_bus(parent);
 
 
 539		pbus->count_cells(dev, &pna, &pns);
 540		if (!OF_CHECK_COUNTS(pna, pns)) {
 541			pr_err("Bad cell count for %pOF\n", dev);
 542			break;
 543		}
 544
 545		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 546		    pbus->name, pna, pns, parent);
 547
 548		/* Apply bus translation */
 549		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 550			break;
 551
 552		/* Complete the move up one level */
 553		na = pna;
 554		ns = pns;
 555		bus = pbus;
 556
 557		of_dump_addr("one level translation:", addr, na);
 558	}
 559 bail:
 560	of_node_put(parent);
 561	of_node_put(dev);
 562
 563	return result;
 564}
 565
 566u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 567{
 568	struct device_node *host;
 569	u64 ret;
 570
 571	ret = __of_translate_address(dev, of_get_parent,
 572				     in_addr, "ranges", &host);
 573	if (host) {
 574		of_node_put(host);
 575		return OF_BAD_ADDR;
 576	}
 577
 578	return ret;
 579}
 580EXPORT_SYMBOL(of_translate_address);
 581
 582static struct device_node *__of_get_dma_parent(const struct device_node *np)
 
 583{
 584	struct of_phandle_args args;
 585	int ret, index;
 586
 587	index = of_property_match_string(np, "interconnect-names", "dma-mem");
 588	if (index < 0)
 589		return of_get_parent(np);
 590
 591	ret = of_parse_phandle_with_args(np, "interconnects",
 592					 "#interconnect-cells",
 593					 index, &args);
 594	if (ret < 0)
 595		return of_get_parent(np);
 596
 597	return of_node_get(args.np);
 598}
 
 599
 600static struct device_node *of_get_next_dma_parent(struct device_node *np)
 601{
 602	struct device_node *parent;
 603
 604	parent = __of_get_dma_parent(np);
 605	of_node_put(np);
 606
 607	return parent;
 608}
 609
 610u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 611{
 612	struct device_node *host;
 613	u64 ret;
 614
 615	ret = __of_translate_address(dev, __of_get_dma_parent,
 616				     in_addr, "dma-ranges", &host);
 617
 618	if (host) {
 619		of_node_put(host);
 620		return OF_BAD_ADDR;
 621	}
 622
 623	return ret;
 624}
 625EXPORT_SYMBOL(of_translate_dma_address);
 626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
 628			       u64 *size, unsigned int *flags)
 629{
 630	const __be32 *prop;
 631	unsigned int psize;
 632	struct device_node *parent;
 633	struct of_bus *bus;
 634	int onesize, i, na, ns;
 635
 636	/* Get parent & match bus type */
 637	parent = of_get_parent(dev);
 638	if (parent == NULL)
 639		return NULL;
 
 
 640	bus = of_match_bus(parent);
 641	if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
 642		of_node_put(parent);
 643		return NULL;
 644	}
 645	bus->count_cells(dev, &na, &ns);
 646	of_node_put(parent);
 647	if (!OF_CHECK_ADDR_COUNT(na))
 648		return NULL;
 649
 650	/* Get "reg" or "assigned-addresses" property */
 651	prop = of_get_property(dev, bus->addresses, &psize);
 652	if (prop == NULL)
 653		return NULL;
 654	psize /= 4;
 655
 
 
 
 
 656	onesize = na + ns;
 657	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 658		u32 val = be32_to_cpu(prop[0]);
 659		/* PCI bus matches on BAR number instead of index */
 660		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
 661		    ((index >= 0) && (i == index))) {
 662			if (size)
 663				*size = of_read_number(prop + na, ns);
 664			if (flags)
 665				*flags = bus->get_flags(prop);
 666			return prop;
 667		}
 668	}
 669	return NULL;
 670}
 671EXPORT_SYMBOL(__of_get_address);
 672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673static int parser_init(struct of_pci_range_parser *parser,
 674			struct device_node *node, const char *name)
 675{
 676	int rlen;
 677
 678	parser->node = node;
 679	parser->pna = of_n_addr_cells(node);
 680	parser->na = of_bus_n_addr_cells(node);
 681	parser->ns = of_bus_n_size_cells(node);
 682	parser->dma = !strcmp(name, "dma-ranges");
 683	parser->bus = of_match_bus(node);
 684
 685	parser->range = of_get_property(node, name, &rlen);
 686	if (parser->range == NULL)
 687		return -ENOENT;
 688
 689	parser->end = parser->range + rlen / sizeof(__be32);
 690
 691	return 0;
 692}
 693
 694int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 695				struct device_node *node)
 696{
 697	return parser_init(parser, node, "ranges");
 698}
 699EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 700
 701int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 702				struct device_node *node)
 703{
 704	return parser_init(parser, node, "dma-ranges");
 705}
 706EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 707#define of_dma_range_parser_init of_pci_dma_range_parser_init
 708
 709struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 710						struct of_pci_range *range)
 711{
 712	int na = parser->na;
 713	int ns = parser->ns;
 714	int np = parser->pna + na + ns;
 715	int busflag_na = 0;
 716
 717	if (!range)
 718		return NULL;
 719
 720	if (!parser->range || parser->range + np > parser->end)
 721		return NULL;
 722
 723	range->flags = parser->bus->get_flags(parser->range);
 724
 725	/* A extra cell for resource flags */
 726	if (parser->bus->has_flags)
 727		busflag_na = 1;
 728
 729	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 730
 731	if (parser->dma)
 732		range->cpu_addr = of_translate_dma_address(parser->node,
 733				parser->range + na);
 734	else
 735		range->cpu_addr = of_translate_address(parser->node,
 736				parser->range + na);
 737	range->size = of_read_number(parser->range + parser->pna + na, ns);
 738
 739	parser->range += np;
 740
 741	/* Now consume following elements while they are contiguous */
 742	while (parser->range + np <= parser->end) {
 743		u32 flags = 0;
 744		u64 bus_addr, cpu_addr, size;
 745
 746		flags = parser->bus->get_flags(parser->range);
 747		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 748		if (parser->dma)
 749			cpu_addr = of_translate_dma_address(parser->node,
 750					parser->range + na);
 751		else
 752			cpu_addr = of_translate_address(parser->node,
 753					parser->range + na);
 754		size = of_read_number(parser->range + parser->pna + na, ns);
 755
 756		if (flags != range->flags)
 757			break;
 758		if (bus_addr != range->bus_addr + range->size ||
 759		    cpu_addr != range->cpu_addr + range->size)
 760			break;
 761
 762		range->size += size;
 763		parser->range += np;
 764	}
 765
 766	return range;
 767}
 768EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 769
 770static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 771			u64 size)
 772{
 773	u64 taddr;
 774	unsigned long port;
 775	struct device_node *host;
 776
 777	taddr = __of_translate_address(dev, of_get_parent,
 778				       in_addr, "ranges", &host);
 779	if (host) {
 780		/* host-specific port access */
 781		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 782		of_node_put(host);
 783	} else {
 784		/* memory-mapped I/O range */
 785		port = pci_address_to_pio(taddr);
 786	}
 787
 788	if (port == (unsigned long)-1)
 789		return OF_BAD_ADDR;
 790
 791	return port;
 792}
 793
 794static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
 795		struct resource *r)
 796{
 797	u64 taddr;
 798	const __be32	*addrp;
 799	u64		size;
 800	unsigned int	flags;
 801	const char	*name = NULL;
 802
 803	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
 804	if (addrp == NULL)
 805		return -EINVAL;
 806
 807	/* Get optional "reg-names" property to add a name to a resource */
 808	if (index >= 0)
 809		of_property_read_string_index(dev, "reg-names",	index, &name);
 810
 811	if (flags & IORESOURCE_MEM)
 812		taddr = of_translate_address(dev, addrp);
 813	else if (flags & IORESOURCE_IO)
 814		taddr = of_translate_ioport(dev, addrp, size);
 815	else
 816		return -EINVAL;
 817
 818	if (taddr == OF_BAD_ADDR)
 819		return -EINVAL;
 820	memset(r, 0, sizeof(struct resource));
 821
 822	if (of_mmio_is_nonposted(dev))
 823		flags |= IORESOURCE_MEM_NONPOSTED;
 824
 825	r->start = taddr;
 826	r->end = taddr + size - 1;
 827	r->flags = flags;
 828	r->name = name ? name : dev->full_name;
 829
 830	return 0;
 831}
 832
 833/**
 834 * of_address_to_resource - Translate device tree address and return as resource
 835 * @dev:	Caller's Device Node
 836 * @index:	Index into the array
 837 * @r:		Pointer to resource array
 838 *
 839 * Note that if your address is a PIO address, the conversion will fail if
 840 * the physical address can't be internally converted to an IO token with
 841 * pci_address_to_pio(), that is because it's either called too early or it
 842 * can't be matched to any host bridge IO space
 843 */
 844int of_address_to_resource(struct device_node *dev, int index,
 845			   struct resource *r)
 846{
 847	return __of_address_to_resource(dev, index, -1, r);
 848}
 849EXPORT_SYMBOL_GPL(of_address_to_resource);
 850
 851/**
 852 * of_iomap - Maps the memory mapped IO for a given device_node
 853 * @np:		the device whose io range will be mapped
 854 * @index:	index of the io range
 855 *
 856 * Returns a pointer to the mapped memory
 857 */
 858void __iomem *of_iomap(struct device_node *np, int index)
 859{
 860	struct resource res;
 861
 862	if (of_address_to_resource(np, index, &res))
 863		return NULL;
 864
 865	if (res.flags & IORESOURCE_MEM_NONPOSTED)
 866		return ioremap_np(res.start, resource_size(&res));
 867	else
 868		return ioremap(res.start, resource_size(&res));
 869}
 870EXPORT_SYMBOL(of_iomap);
 871
 872/*
 873 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 874 *			   for a given device_node
 875 * @device:	the device whose io range will be mapped
 876 * @index:	index of the io range
 877 * @name:	name "override" for the memory region request or NULL
 878 *
 879 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 880 * error code on failure. Usage example:
 881 *
 882 *	base = of_io_request_and_map(node, 0, "foo");
 883 *	if (IS_ERR(base))
 884 *		return PTR_ERR(base);
 885 */
 886void __iomem *of_io_request_and_map(struct device_node *np, int index,
 887				    const char *name)
 888{
 889	struct resource res;
 890	void __iomem *mem;
 891
 892	if (of_address_to_resource(np, index, &res))
 893		return IOMEM_ERR_PTR(-EINVAL);
 894
 895	if (!name)
 896		name = res.name;
 897	if (!request_mem_region(res.start, resource_size(&res), name))
 898		return IOMEM_ERR_PTR(-EBUSY);
 899
 900	if (res.flags & IORESOURCE_MEM_NONPOSTED)
 901		mem = ioremap_np(res.start, resource_size(&res));
 902	else
 903		mem = ioremap(res.start, resource_size(&res));
 904
 905	if (!mem) {
 906		release_mem_region(res.start, resource_size(&res));
 907		return IOMEM_ERR_PTR(-ENOMEM);
 908	}
 909
 910	return mem;
 911}
 912EXPORT_SYMBOL(of_io_request_and_map);
 913
 914#ifdef CONFIG_HAS_DMA
 915/**
 916 * of_dma_get_range - Get DMA range info and put it into a map array
 917 * @np:		device node to get DMA range info
 918 * @map:	dma range structure to return
 919 *
 920 * Look in bottom up direction for the first "dma-ranges" property
 921 * and parse it.  Put the information into a DMA offset map array.
 922 *
 923 * dma-ranges format:
 924 *	DMA addr (dma_addr)	: naddr cells
 925 *	CPU addr (phys_addr_t)	: pna cells
 926 *	size			: nsize cells
 927 *
 928 * It returns -ENODEV if "dma-ranges" property was not found for this
 929 * device in the DT.
 930 */
 931int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
 932{
 933	struct device_node *node = of_node_get(np);
 934	const __be32 *ranges = NULL;
 935	bool found_dma_ranges = false;
 936	struct of_range_parser parser;
 937	struct of_range range;
 938	struct bus_dma_region *r;
 939	int len, num_ranges = 0;
 940	int ret = 0;
 941
 942	while (node) {
 943		ranges = of_get_property(node, "dma-ranges", &len);
 944
 945		/* Ignore empty ranges, they imply no translation required */
 946		if (ranges && len > 0)
 947			break;
 948
 949		/* Once we find 'dma-ranges', then a missing one is an error */
 950		if (found_dma_ranges && !ranges) {
 951			ret = -ENODEV;
 952			goto out;
 953		}
 954		found_dma_ranges = true;
 955
 956		node = of_get_next_dma_parent(node);
 957	}
 958
 959	if (!node || !ranges) {
 960		pr_debug("no dma-ranges found for node(%pOF)\n", np);
 961		ret = -ENODEV;
 962		goto out;
 963	}
 964
 965	of_dma_range_parser_init(&parser, node);
 966	for_each_of_range(&parser, &range)
 
 
 
 
 
 967		num_ranges++;
 
 
 
 
 968
 969	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
 970	if (!r) {
 971		ret = -ENOMEM;
 972		goto out;
 973	}
 974
 975	/*
 976	 * Record all info in the generic DMA ranges array for struct device.
 
 977	 */
 978	*map = r;
 979	of_dma_range_parser_init(&parser, node);
 980	for_each_of_range(&parser, &range) {
 981		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 982			 range.bus_addr, range.cpu_addr, range.size);
 983		if (range.cpu_addr == OF_BAD_ADDR) {
 984			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
 985			       range.bus_addr, node);
 986			continue;
 987		}
 988		r->cpu_start = range.cpu_addr;
 989		r->dma_start = range.bus_addr;
 990		r->size = range.size;
 991		r->offset = range.cpu_addr - range.bus_addr;
 992		r++;
 993	}
 994out:
 995	of_node_put(node);
 996	return ret;
 997}
 998#endif /* CONFIG_HAS_DMA */
 999
1000/**
1001 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1002 * @np: The node to start searching from or NULL to start from the root
1003 *
1004 * Gets the highest CPU physical address that is addressable by all DMA masters
1005 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1006 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1007 */
1008phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1009{
1010	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1011	struct of_range_parser parser;
1012	phys_addr_t subtree_max_addr;
1013	struct device_node *child;
1014	struct of_range range;
1015	const __be32 *ranges;
1016	u64 cpu_end = 0;
1017	int len;
1018
1019	if (!np)
1020		np = of_root;
1021
1022	ranges = of_get_property(np, "dma-ranges", &len);
1023	if (ranges && len) {
1024		of_dma_range_parser_init(&parser, np);
1025		for_each_of_range(&parser, &range)
1026			if (range.cpu_addr + range.size > cpu_end)
1027				cpu_end = range.cpu_addr + range.size - 1;
1028
1029		if (max_cpu_addr > cpu_end)
1030			max_cpu_addr = cpu_end;
1031	}
1032
1033	for_each_available_child_of_node(np, child) {
1034		subtree_max_addr = of_dma_get_max_cpu_address(child);
1035		if (max_cpu_addr > subtree_max_addr)
1036			max_cpu_addr = subtree_max_addr;
1037	}
1038
1039	return max_cpu_addr;
1040}
1041
1042/**
1043 * of_dma_is_coherent - Check if device is coherent
1044 * @np:	device node
1045 *
1046 * It returns true if "dma-coherent" property was found
1047 * for this device in the DT, or if DMA is coherent by
1048 * default for OF devices on the current platform.
 
1049 */
1050bool of_dma_is_coherent(struct device_node *np)
1051{
1052	struct device_node *node;
1053
1054	if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1055		return true;
 
1056
1057	node = of_node_get(np);
 
1058
1059	while (node) {
1060		if (of_property_read_bool(node, "dma-coherent")) {
1061			of_node_put(node);
1062			return true;
1063		}
1064		node = of_get_next_dma_parent(node);
1065	}
1066	of_node_put(node);
1067	return false;
1068}
1069EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1070
1071/**
1072 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1073 * @np:	device node
1074 *
1075 * Returns true if the "nonposted-mmio" property was found for
1076 * the device's bus.
1077 *
1078 * This is currently only enabled on builds that support Apple ARM devices, as
1079 * an optimization.
1080 */
1081static bool of_mmio_is_nonposted(struct device_node *np)
1082{
1083	struct device_node *parent;
1084	bool nonposted;
1085
1086	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1087		return false;
1088
1089	parent = of_get_parent(np);
1090	if (!parent)
1091		return false;
1092
1093	nonposted = of_property_read_bool(parent, "nonposted-mmio");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095	of_node_put(parent);
1096	return nonposted;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1097}