Loading...
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) "OF: " fmt
3
4#include <linux/device.h>
5#include <linux/fwnode.h>
6#include <linux/io.h>
7#include <linux/ioport.h>
8#include <linux/logic_pio.h>
9#include <linux/module.h>
10#include <linux/of_address.h>
11#include <linux/overflow.h>
12#include <linux/pci.h>
13#include <linux/pci_regs.h>
14#include <linux/sizes.h>
15#include <linux/slab.h>
16#include <linux/string.h>
17#include <linux/dma-direct.h> /* for bus_dma_region */
18
19#include "of_private.h"
20
21/* Max address size we deal with */
22#define OF_MAX_ADDR_CELLS 4
23#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
24#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
25
26/* Debug utility */
27#ifdef DEBUG
28static void of_dump_addr(const char *s, const __be32 *addr, int na)
29{
30 pr_debug("%s", s);
31 while (na--)
32 pr_cont(" %08x", be32_to_cpu(*(addr++)));
33 pr_cont("\n");
34}
35#else
36static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
37#endif
38
39/* Callbacks for bus specific translators */
40struct of_bus {
41 const char *name;
42 const char *addresses;
43 int (*match)(struct device_node *parent);
44 void (*count_cells)(struct device_node *child,
45 int *addrc, int *sizec);
46 u64 (*map)(__be32 *addr, const __be32 *range,
47 int na, int ns, int pna, int fna);
48 int (*translate)(__be32 *addr, u64 offset, int na);
49 int flag_cells;
50 unsigned int (*get_flags)(const __be32 *addr);
51};
52
53/*
54 * Default translator (generic bus)
55 */
56
57static void of_bus_default_count_cells(struct device_node *dev,
58 int *addrc, int *sizec)
59{
60 if (addrc)
61 *addrc = of_n_addr_cells(dev);
62 if (sizec)
63 *sizec = of_n_size_cells(dev);
64}
65
66static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 int na, int ns, int pna, int fna)
68{
69 u64 cp, s, da;
70
71 cp = of_read_number(range + fna, na - fna);
72 s = of_read_number(range + na + pna, ns);
73 da = of_read_number(addr + fna, na - fna);
74
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
76
77 if (da < cp || da >= (cp + s))
78 return OF_BAD_ADDR;
79 return da - cp;
80}
81
82static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83{
84 u64 a = of_read_number(addr, na);
85 memset(addr, 0, na * 4);
86 a += offset;
87 if (na > 1)
88 addr[na - 2] = cpu_to_be32(a >> 32);
89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90
91 return 0;
92}
93
94static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
95{
96 return of_read_number(addr, 1);
97}
98
99static unsigned int of_bus_default_get_flags(const __be32 *addr)
100{
101 return IORESOURCE_MEM;
102}
103
104static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
105 int ns, int pna, int fna)
106{
107 /* Check that flags match */
108 if (*addr != *range)
109 return OF_BAD_ADDR;
110
111 return of_bus_default_map(addr, range, na, ns, pna, fna);
112}
113
114static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
115{
116 /* Keep "flags" part (high cell) in translated address */
117 return of_bus_default_translate(addr + 1, offset, na - 1);
118}
119
120#ifdef CONFIG_PCI
121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122{
123 unsigned int flags = 0;
124 u32 w = be32_to_cpup(addr);
125
126 if (!IS_ENABLED(CONFIG_PCI))
127 return 0;
128
129 switch((w >> 24) & 0x03) {
130 case 0x01:
131 flags |= IORESOURCE_IO;
132 break;
133 case 0x02: /* 32 bits */
134 flags |= IORESOURCE_MEM;
135 break;
136
137 case 0x03: /* 64 bits */
138 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
139 break;
140 }
141 if (w & 0x40000000)
142 flags |= IORESOURCE_PREFETCH;
143 return flags;
144}
145
146/*
147 * PCI bus specific translator
148 */
149
150static bool of_node_is_pcie(const struct device_node *np)
151{
152 bool is_pcie = of_node_name_eq(np, "pcie");
153
154 if (is_pcie)
155 pr_warn_once("%pOF: Missing device_type\n", np);
156
157 return is_pcie;
158}
159
160static int of_bus_pci_match(struct device_node *np)
161{
162 /*
163 * "pciex" is PCI Express
164 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
165 * "ht" is hypertransport
166 *
167 * If none of the device_type match, and that the node name is
168 * "pcie", accept the device as PCI (with a warning).
169 */
170 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
171 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
172 of_node_is_pcie(np);
173}
174
175static void of_bus_pci_count_cells(struct device_node *np,
176 int *addrc, int *sizec)
177{
178 if (addrc)
179 *addrc = 3;
180 if (sizec)
181 *sizec = 2;
182}
183
184static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
185 int pna, int fna)
186{
187 unsigned int af, rf;
188
189 af = of_bus_pci_get_flags(addr);
190 rf = of_bus_pci_get_flags(range);
191
192 /* Check address type match */
193 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
194 return OF_BAD_ADDR;
195
196 return of_bus_default_map(addr, range, na, ns, pna, fna);
197}
198
199#endif /* CONFIG_PCI */
200
201static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
202{
203 if (overflows_type(start, r->start))
204 return -EOVERFLOW;
205
206 r->start = start;
207
208 if (!size)
209 r->end = wrapping_sub(typeof(r->end), r->start, 1);
210 else if (size && check_add_overflow(r->start, size - 1, &r->end))
211 return -EOVERFLOW;
212
213 return 0;
214}
215
216/*
217 * of_pci_range_to_resource - Create a resource from an of_pci_range
218 * @range: the PCI range that describes the resource
219 * @np: device node where the range belongs to
220 * @res: pointer to a valid resource that will be updated to
221 * reflect the values contained in the range.
222 *
223 * Returns -EINVAL if the range cannot be converted to resource.
224 *
225 * Note that if the range is an IO range, the resource will be converted
226 * using pci_address_to_pio() which can fail if it is called too early or
227 * if the range cannot be matched to any host bridge IO space (our case here).
228 * To guard against that we try to register the IO range first.
229 * If that fails we know that pci_address_to_pio() will do too.
230 */
231int of_pci_range_to_resource(const struct of_pci_range *range,
232 const struct device_node *np, struct resource *res)
233{
234 u64 start;
235 int err;
236 res->flags = range->flags;
237 res->parent = res->child = res->sibling = NULL;
238 res->name = np->full_name;
239
240 if (res->flags & IORESOURCE_IO) {
241 unsigned long port;
242 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
243 range->size);
244 if (err)
245 goto invalid_range;
246 port = pci_address_to_pio(range->cpu_addr);
247 if (port == (unsigned long)-1) {
248 err = -EINVAL;
249 goto invalid_range;
250 }
251 start = port;
252 } else {
253 start = range->cpu_addr;
254 }
255 return __of_address_resource_bounds(res, start, range->size);
256
257invalid_range:
258 res->start = (resource_size_t)OF_BAD_ADDR;
259 res->end = (resource_size_t)OF_BAD_ADDR;
260 return err;
261}
262EXPORT_SYMBOL(of_pci_range_to_resource);
263
264/*
265 * of_range_to_resource - Create a resource from a ranges entry
266 * @np: device node where the range belongs to
267 * @index: the 'ranges' index to convert to a resource
268 * @res: pointer to a valid resource that will be updated to
269 * reflect the values contained in the range.
270 *
271 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
272 * cannot be converted to resource.
273 */
274int of_range_to_resource(struct device_node *np, int index, struct resource *res)
275{
276 int ret, i = 0;
277 struct of_range_parser parser;
278 struct of_range range;
279
280 ret = of_range_parser_init(&parser, np);
281 if (ret)
282 return ret;
283
284 for_each_of_range(&parser, &range)
285 if (i++ == index)
286 return of_pci_range_to_resource(&range, np, res);
287
288 return -ENOENT;
289}
290EXPORT_SYMBOL(of_range_to_resource);
291
292/*
293 * ISA bus specific translator
294 */
295
296static int of_bus_isa_match(struct device_node *np)
297{
298 return of_node_name_eq(np, "isa");
299}
300
301static void of_bus_isa_count_cells(struct device_node *child,
302 int *addrc, int *sizec)
303{
304 if (addrc)
305 *addrc = 2;
306 if (sizec)
307 *sizec = 1;
308}
309
310static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
311 int pna, int fna)
312{
313 /* Check address type match */
314 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
315 return OF_BAD_ADDR;
316
317 return of_bus_default_map(addr, range, na, ns, pna, fna);
318}
319
320static unsigned int of_bus_isa_get_flags(const __be32 *addr)
321{
322 unsigned int flags = 0;
323 u32 w = be32_to_cpup(addr);
324
325 if (w & 1)
326 flags |= IORESOURCE_IO;
327 else
328 flags |= IORESOURCE_MEM;
329 return flags;
330}
331
332static int of_bus_default_flags_match(struct device_node *np)
333{
334 /*
335 * Check for presence first since of_bus_n_addr_cells() will warn when
336 * walking parent nodes.
337 */
338 return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3);
339}
340
341static int of_bus_default_match(struct device_node *np)
342{
343 /*
344 * Check for presence first since of_bus_n_addr_cells() will warn when
345 * walking parent nodes.
346 */
347 return of_property_present(np, "#address-cells");
348}
349
350/*
351 * Array of bus specific translators
352 */
353
354static const struct of_bus of_busses[] = {
355#ifdef CONFIG_PCI
356 /* PCI */
357 {
358 .name = "pci",
359 .addresses = "assigned-addresses",
360 .match = of_bus_pci_match,
361 .count_cells = of_bus_pci_count_cells,
362 .map = of_bus_pci_map,
363 .translate = of_bus_default_flags_translate,
364 .flag_cells = 1,
365 .get_flags = of_bus_pci_get_flags,
366 },
367#endif /* CONFIG_PCI */
368 /* ISA */
369 {
370 .name = "isa",
371 .addresses = "reg",
372 .match = of_bus_isa_match,
373 .count_cells = of_bus_isa_count_cells,
374 .map = of_bus_isa_map,
375 .translate = of_bus_default_flags_translate,
376 .flag_cells = 1,
377 .get_flags = of_bus_isa_get_flags,
378 },
379 /* Default with flags cell */
380 {
381 .name = "default-flags",
382 .addresses = "reg",
383 .match = of_bus_default_flags_match,
384 .count_cells = of_bus_default_count_cells,
385 .map = of_bus_default_flags_map,
386 .translate = of_bus_default_flags_translate,
387 .flag_cells = 1,
388 .get_flags = of_bus_default_flags_get_flags,
389 },
390 /* Default */
391 {
392 .name = "default",
393 .addresses = "reg",
394 .match = of_bus_default_match,
395 .count_cells = of_bus_default_count_cells,
396 .map = of_bus_default_map,
397 .translate = of_bus_default_translate,
398 .get_flags = of_bus_default_get_flags,
399 },
400};
401
402static const struct of_bus *of_match_bus(struct device_node *np)
403{
404 int i;
405
406 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
407 if (!of_busses[i].match || of_busses[i].match(np))
408 return &of_busses[i];
409 return NULL;
410}
411
412static int of_empty_ranges_quirk(const struct device_node *np)
413{
414 if (IS_ENABLED(CONFIG_PPC)) {
415 /* To save cycles, we cache the result for global "Mac" setting */
416 static int quirk_state = -1;
417
418 /* PA-SEMI sdc DT bug */
419 if (of_device_is_compatible(np, "1682m-sdc"))
420 return true;
421
422 /* Make quirk cached */
423 if (quirk_state < 0)
424 quirk_state =
425 of_machine_is_compatible("Power Macintosh") ||
426 of_machine_is_compatible("MacRISC");
427 return quirk_state;
428 }
429 return false;
430}
431
432static int of_translate_one(const struct device_node *parent, const struct of_bus *bus,
433 const struct of_bus *pbus, __be32 *addr,
434 int na, int ns, int pna, const char *rprop)
435{
436 const __be32 *ranges;
437 unsigned int rlen;
438 int rone;
439 u64 offset = OF_BAD_ADDR;
440
441 /*
442 * Normally, an absence of a "ranges" property means we are
443 * crossing a non-translatable boundary, and thus the addresses
444 * below the current cannot be converted to CPU physical ones.
445 * Unfortunately, while this is very clear in the spec, it's not
446 * what Apple understood, and they do have things like /uni-n or
447 * /ht nodes with no "ranges" property and a lot of perfectly
448 * useable mapped devices below them. Thus we treat the absence of
449 * "ranges" as equivalent to an empty "ranges" property which means
450 * a 1:1 translation at that level. It's up to the caller not to try
451 * to translate addresses that aren't supposed to be translated in
452 * the first place. --BenH.
453 *
454 * As far as we know, this damage only exists on Apple machines, so
455 * This code is only enabled on powerpc. --gcl
456 *
457 * This quirk also applies for 'dma-ranges' which frequently exist in
458 * child nodes without 'dma-ranges' in the parent nodes. --RobH
459 */
460 ranges = of_get_property(parent, rprop, &rlen);
461 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
462 strcmp(rprop, "dma-ranges")) {
463 pr_debug("no ranges; cannot translate\n");
464 return 1;
465 }
466 if (ranges == NULL || rlen == 0) {
467 offset = of_read_number(addr, na);
468 /* set address to zero, pass flags through */
469 memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4);
470 pr_debug("empty ranges; 1:1 translation\n");
471 goto finish;
472 }
473
474 pr_debug("walking ranges...\n");
475
476 /* Now walk through the ranges */
477 rlen /= 4;
478 rone = na + pna + ns;
479 for (; rlen >= rone; rlen -= rone, ranges += rone) {
480 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
481 if (offset != OF_BAD_ADDR)
482 break;
483 }
484 if (offset == OF_BAD_ADDR) {
485 pr_debug("not found !\n");
486 return 1;
487 }
488 memcpy(addr, ranges + na, 4 * pna);
489
490 finish:
491 of_dump_addr("parent translation for:", addr, pna);
492 pr_debug("with offset: %llx\n", offset);
493
494 /* Translate it into parent bus space */
495 return pbus->translate(addr, offset, pna);
496}
497
498/*
499 * Translate an address from the device-tree into a CPU physical address,
500 * this walks up the tree and applies the various bus mappings on the
501 * way.
502 *
503 * Note: We consider that crossing any level with #size-cells == 0 to mean
504 * that translation is impossible (that is we are not dealing with a value
505 * that can be mapped to a cpu physical address). This is not really specified
506 * that way, but this is traditionally the way IBM at least do things
507 *
508 * Whenever the translation fails, the *host pointer will be set to the
509 * device that had registered logical PIO mapping, and the return code is
510 * relative to that node.
511 */
512static u64 __of_translate_address(struct device_node *node,
513 struct device_node *(*get_parent)(const struct device_node *),
514 const __be32 *in_addr, const char *rprop,
515 struct device_node **host)
516{
517 struct device_node *dev __free(device_node) = of_node_get(node);
518 struct device_node *parent __free(device_node) = get_parent(dev);
519 const struct of_bus *bus, *pbus;
520 __be32 addr[OF_MAX_ADDR_CELLS];
521 int na, ns, pna, pns;
522
523 pr_debug("** translation for device %pOF **\n", dev);
524
525 *host = NULL;
526
527 if (parent == NULL)
528 return OF_BAD_ADDR;
529 bus = of_match_bus(parent);
530 if (!bus)
531 return OF_BAD_ADDR;
532
533 /* Count address cells & copy address locally */
534 bus->count_cells(dev, &na, &ns);
535 if (!OF_CHECK_COUNTS(na, ns)) {
536 pr_debug("Bad cell count for %pOF\n", dev);
537 return OF_BAD_ADDR;
538 }
539 memcpy(addr, in_addr, na * 4);
540
541 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
542 bus->name, na, ns, parent);
543 of_dump_addr("translating address:", addr, na);
544
545 /* Translate */
546 for (;;) {
547 struct logic_pio_hwaddr *iorange;
548
549 /* Switch to parent bus */
550 of_node_put(dev);
551 dev = parent;
552 parent = get_parent(dev);
553
554 /* If root, we have finished */
555 if (parent == NULL) {
556 pr_debug("reached root node\n");
557 return of_read_number(addr, na);
558 }
559
560 /*
561 * For indirectIO device which has no ranges property, get
562 * the address from reg directly.
563 */
564 iorange = find_io_range_by_fwnode(&dev->fwnode);
565 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
566 u64 result = of_read_number(addr + 1, na - 1);
567 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
568 dev, result);
569 *host = no_free_ptr(dev);
570 return result;
571 }
572
573 /* Get new parent bus and counts */
574 pbus = of_match_bus(parent);
575 if (!pbus)
576 return OF_BAD_ADDR;
577 pbus->count_cells(dev, &pna, &pns);
578 if (!OF_CHECK_COUNTS(pna, pns)) {
579 pr_err("Bad cell count for %pOF\n", dev);
580 return OF_BAD_ADDR;
581 }
582
583 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
584 pbus->name, pna, pns, parent);
585
586 /* Apply bus translation */
587 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
588 return OF_BAD_ADDR;
589
590 /* Complete the move up one level */
591 na = pna;
592 ns = pns;
593 bus = pbus;
594
595 of_dump_addr("one level translation:", addr, na);
596 }
597
598 unreachable();
599}
600
601u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
602{
603 struct device_node *host;
604 u64 ret;
605
606 ret = __of_translate_address(dev, of_get_parent,
607 in_addr, "ranges", &host);
608 if (host) {
609 of_node_put(host);
610 return OF_BAD_ADDR;
611 }
612
613 return ret;
614}
615EXPORT_SYMBOL(of_translate_address);
616
617#ifdef CONFIG_HAS_DMA
618struct device_node *__of_get_dma_parent(const struct device_node *np)
619{
620 struct of_phandle_args args;
621 int ret, index;
622
623 index = of_property_match_string(np, "interconnect-names", "dma-mem");
624 if (index < 0)
625 return of_get_parent(np);
626
627 ret = of_parse_phandle_with_args(np, "interconnects",
628 "#interconnect-cells",
629 index, &args);
630 if (ret < 0)
631 return of_get_parent(np);
632
633 return args.np;
634}
635#endif
636
637static struct device_node *of_get_next_dma_parent(struct device_node *np)
638{
639 struct device_node *parent;
640
641 parent = __of_get_dma_parent(np);
642 of_node_put(np);
643
644 return parent;
645}
646
647u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
648{
649 struct device_node *host;
650 u64 ret;
651
652 ret = __of_translate_address(dev, __of_get_dma_parent,
653 in_addr, "dma-ranges", &host);
654
655 if (host) {
656 of_node_put(host);
657 return OF_BAD_ADDR;
658 }
659
660 return ret;
661}
662EXPORT_SYMBOL(of_translate_dma_address);
663
664/**
665 * of_translate_dma_region - Translate device tree address and size tuple
666 * @dev: device tree node for which to translate
667 * @prop: pointer into array of cells
668 * @start: return value for the start of the DMA range
669 * @length: return value for the length of the DMA range
670 *
671 * Returns a pointer to the cell immediately following the translated DMA region.
672 */
673const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
674 phys_addr_t *start, size_t *length)
675{
676 struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
677 u64 address, size;
678 int na, ns;
679
680 if (!parent)
681 return NULL;
682
683 na = of_bus_n_addr_cells(parent);
684 ns = of_bus_n_size_cells(parent);
685
686 address = of_translate_dma_address(dev, prop);
687 if (address == OF_BAD_ADDR)
688 return NULL;
689
690 size = of_read_number(prop + na, ns);
691
692 if (start)
693 *start = address;
694
695 if (length)
696 *length = size;
697
698 return prop + na + ns;
699}
700EXPORT_SYMBOL(of_translate_dma_region);
701
702const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
703 u64 *size, unsigned int *flags)
704{
705 const __be32 *prop;
706 unsigned int psize;
707 struct device_node *parent __free(device_node) = of_get_parent(dev);
708 const struct of_bus *bus;
709 int onesize, i, na, ns;
710
711 if (parent == NULL)
712 return NULL;
713
714 /* match the parent's bus type */
715 bus = of_match_bus(parent);
716 if (!bus || (strcmp(bus->name, "pci") && (bar_no >= 0)))
717 return NULL;
718
719 /* Get "reg" or "assigned-addresses" property */
720 prop = of_get_property(dev, bus->addresses, &psize);
721 if (prop == NULL)
722 return NULL;
723 psize /= 4;
724
725 bus->count_cells(dev, &na, &ns);
726 if (!OF_CHECK_ADDR_COUNT(na))
727 return NULL;
728
729 onesize = na + ns;
730 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
731 u32 val = be32_to_cpu(prop[0]);
732 /* PCI bus matches on BAR number instead of index */
733 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
734 ((index >= 0) && (i == index))) {
735 if (size)
736 *size = of_read_number(prop + na, ns);
737 if (flags)
738 *flags = bus->get_flags(prop);
739 return prop;
740 }
741 }
742 return NULL;
743}
744EXPORT_SYMBOL(__of_get_address);
745
746/**
747 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
748 * @np: device tree node for which to retrieve "reg" from
749 * @idx: "reg" entry index to read
750 * @addr: return value for the untranslated address
751 * @size: return value for the entry size
752 *
753 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
754 * size values filled in.
755 */
756int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
757{
758 const __be32 *prop = of_get_address(np, idx, size, NULL);
759
760 if (!prop)
761 return -EINVAL;
762
763 *addr = of_read_number(prop, of_n_addr_cells(np));
764
765 return 0;
766}
767EXPORT_SYMBOL(of_property_read_reg);
768
769static int parser_init(struct of_pci_range_parser *parser,
770 struct device_node *node, const char *name)
771{
772 int rlen;
773
774 parser->node = node;
775 parser->pna = of_n_addr_cells(node);
776 parser->na = of_bus_n_addr_cells(node);
777 parser->ns = of_bus_n_size_cells(node);
778 parser->dma = !strcmp(name, "dma-ranges");
779 parser->bus = of_match_bus(node);
780
781 parser->range = of_get_property(node, name, &rlen);
782 if (parser->range == NULL)
783 return -ENOENT;
784
785 parser->end = parser->range + rlen / sizeof(__be32);
786
787 return 0;
788}
789
790int of_pci_range_parser_init(struct of_pci_range_parser *parser,
791 struct device_node *node)
792{
793 return parser_init(parser, node, "ranges");
794}
795EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
796
797int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
798 struct device_node *node)
799{
800 return parser_init(parser, node, "dma-ranges");
801}
802EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
803#define of_dma_range_parser_init of_pci_dma_range_parser_init
804
805struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
806 struct of_pci_range *range)
807{
808 int na = parser->na;
809 int ns = parser->ns;
810 int np = parser->pna + na + ns;
811 int busflag_na = parser->bus->flag_cells;
812
813 if (!range)
814 return NULL;
815
816 if (!parser->range || parser->range + np > parser->end)
817 return NULL;
818
819 range->flags = parser->bus->get_flags(parser->range);
820
821 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
822
823 if (parser->dma)
824 range->cpu_addr = of_translate_dma_address(parser->node,
825 parser->range + na);
826 else
827 range->cpu_addr = of_translate_address(parser->node,
828 parser->range + na);
829 range->size = of_read_number(parser->range + parser->pna + na, ns);
830
831 parser->range += np;
832
833 /* Now consume following elements while they are contiguous */
834 while (parser->range + np <= parser->end) {
835 u32 flags = 0;
836 u64 bus_addr, cpu_addr, size;
837
838 flags = parser->bus->get_flags(parser->range);
839 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
840 if (parser->dma)
841 cpu_addr = of_translate_dma_address(parser->node,
842 parser->range + na);
843 else
844 cpu_addr = of_translate_address(parser->node,
845 parser->range + na);
846 size = of_read_number(parser->range + parser->pna + na, ns);
847
848 if (flags != range->flags)
849 break;
850 if (bus_addr != range->bus_addr + range->size ||
851 cpu_addr != range->cpu_addr + range->size)
852 break;
853
854 range->size += size;
855 parser->range += np;
856 }
857
858 return range;
859}
860EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
861
862static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
863 u64 size)
864{
865 u64 taddr;
866 unsigned long port;
867 struct device_node *host;
868
869 taddr = __of_translate_address(dev, of_get_parent,
870 in_addr, "ranges", &host);
871 if (host) {
872 /* host-specific port access */
873 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
874 of_node_put(host);
875 } else {
876 /* memory-mapped I/O range */
877 port = pci_address_to_pio(taddr);
878 }
879
880 if (port == (unsigned long)-1)
881 return OF_BAD_ADDR;
882
883 return port;
884}
885
886#ifdef CONFIG_HAS_DMA
887/**
888 * of_dma_get_range - Get DMA range info and put it into a map array
889 * @np: device node to get DMA range info
890 * @map: dma range structure to return
891 *
892 * Look in bottom up direction for the first "dma-ranges" property
893 * and parse it. Put the information into a DMA offset map array.
894 *
895 * dma-ranges format:
896 * DMA addr (dma_addr) : naddr cells
897 * CPU addr (phys_addr_t) : pna cells
898 * size : nsize cells
899 *
900 * It returns -ENODEV if "dma-ranges" property was not found for this
901 * device in the DT.
902 */
903int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
904{
905 struct device_node *node __free(device_node) = of_node_get(np);
906 const __be32 *ranges = NULL;
907 bool found_dma_ranges = false;
908 struct of_range_parser parser;
909 struct of_range range;
910 struct bus_dma_region *r;
911 int len, num_ranges = 0;
912
913 while (node) {
914 ranges = of_get_property(node, "dma-ranges", &len);
915
916 /* Ignore empty ranges, they imply no translation required */
917 if (ranges && len > 0)
918 break;
919
920 /* Once we find 'dma-ranges', then a missing one is an error */
921 if (found_dma_ranges && !ranges)
922 return -ENODEV;
923
924 found_dma_ranges = true;
925
926 node = of_get_next_dma_parent(node);
927 }
928
929 if (!node || !ranges) {
930 pr_debug("no dma-ranges found for node(%pOF)\n", np);
931 return -ENODEV;
932 }
933 of_dma_range_parser_init(&parser, node);
934 for_each_of_range(&parser, &range) {
935 if (range.cpu_addr == OF_BAD_ADDR) {
936 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
937 range.bus_addr, node);
938 continue;
939 }
940 num_ranges++;
941 }
942
943 if (!num_ranges)
944 return -EINVAL;
945
946 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
947 if (!r)
948 return -ENOMEM;
949
950 /*
951 * Record all info in the generic DMA ranges array for struct device,
952 * returning an error if we don't find any parsable ranges.
953 */
954 *map = r;
955 of_dma_range_parser_init(&parser, node);
956 for_each_of_range(&parser, &range) {
957 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
958 range.bus_addr, range.cpu_addr, range.size);
959 if (range.cpu_addr == OF_BAD_ADDR)
960 continue;
961 r->cpu_start = range.cpu_addr;
962 r->dma_start = range.bus_addr;
963 r->size = range.size;
964 r++;
965 }
966 return 0;
967}
968#endif /* CONFIG_HAS_DMA */
969
970/**
971 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
972 * @np: The node to start searching from or NULL to start from the root
973 *
974 * Gets the highest CPU physical address that is addressable by all DMA masters
975 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
976 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
977 */
978phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
979{
980 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
981 struct of_range_parser parser;
982 phys_addr_t subtree_max_addr;
983 struct device_node *child;
984 struct of_range range;
985 const __be32 *ranges;
986 u64 cpu_end = 0;
987 int len;
988
989 if (!np)
990 np = of_root;
991
992 ranges = of_get_property(np, "dma-ranges", &len);
993 if (ranges && len) {
994 of_dma_range_parser_init(&parser, np);
995 for_each_of_range(&parser, &range)
996 if (range.cpu_addr + range.size > cpu_end)
997 cpu_end = range.cpu_addr + range.size - 1;
998
999 if (max_cpu_addr > cpu_end)
1000 max_cpu_addr = cpu_end;
1001 }
1002
1003 for_each_available_child_of_node(np, child) {
1004 subtree_max_addr = of_dma_get_max_cpu_address(child);
1005 if (max_cpu_addr > subtree_max_addr)
1006 max_cpu_addr = subtree_max_addr;
1007 }
1008
1009 return max_cpu_addr;
1010}
1011
1012/**
1013 * of_dma_is_coherent - Check if device is coherent
1014 * @np: device node
1015 *
1016 * It returns true if "dma-coherent" property was found
1017 * for this device in the DT, or if DMA is coherent by
1018 * default for OF devices on the current platform and no
1019 * "dma-noncoherent" property was found for this device.
1020 */
1021bool of_dma_is_coherent(struct device_node *np)
1022{
1023 struct device_node *node __free(device_node) = of_node_get(np);
1024
1025 while (node) {
1026 if (of_property_read_bool(node, "dma-coherent"))
1027 return true;
1028
1029 if (of_property_read_bool(node, "dma-noncoherent"))
1030 return false;
1031
1032 node = of_get_next_dma_parent(node);
1033 }
1034 return dma_default_coherent;
1035}
1036EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1037
1038/**
1039 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1040 * @np: device node
1041 *
1042 * Returns true if the "nonposted-mmio" property was found for
1043 * the device's bus.
1044 *
1045 * This is currently only enabled on builds that support Apple ARM devices, as
1046 * an optimization.
1047 */
1048static bool of_mmio_is_nonposted(const struct device_node *np)
1049{
1050 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1051 return false;
1052
1053 struct device_node *parent __free(device_node) = of_get_parent(np);
1054 if (!parent)
1055 return false;
1056
1057 return of_property_read_bool(parent, "nonposted-mmio");
1058}
1059
1060static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1061 struct resource *r)
1062{
1063 u64 taddr;
1064 const __be32 *addrp;
1065 u64 size;
1066 unsigned int flags;
1067 const char *name = NULL;
1068
1069 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1070 if (addrp == NULL)
1071 return -EINVAL;
1072
1073 /* Get optional "reg-names" property to add a name to a resource */
1074 if (index >= 0)
1075 of_property_read_string_index(dev, "reg-names", index, &name);
1076
1077 if (flags & IORESOURCE_MEM)
1078 taddr = of_translate_address(dev, addrp);
1079 else if (flags & IORESOURCE_IO)
1080 taddr = of_translate_ioport(dev, addrp, size);
1081 else
1082 return -EINVAL;
1083
1084 if (taddr == OF_BAD_ADDR)
1085 return -EINVAL;
1086 memset(r, 0, sizeof(struct resource));
1087
1088 if (of_mmio_is_nonposted(dev))
1089 flags |= IORESOURCE_MEM_NONPOSTED;
1090
1091 r->flags = flags;
1092 r->name = name ? name : dev->full_name;
1093
1094 return __of_address_resource_bounds(r, taddr, size);
1095}
1096
1097/**
1098 * of_address_to_resource - Translate device tree address and return as resource
1099 * @dev: Caller's Device Node
1100 * @index: Index into the array
1101 * @r: Pointer to resource array
1102 *
1103 * Returns -EINVAL if the range cannot be converted to resource.
1104 *
1105 * Note that if your address is a PIO address, the conversion will fail if
1106 * the physical address can't be internally converted to an IO token with
1107 * pci_address_to_pio(), that is because it's either called too early or it
1108 * can't be matched to any host bridge IO space
1109 */
1110int of_address_to_resource(struct device_node *dev, int index,
1111 struct resource *r)
1112{
1113 return __of_address_to_resource(dev, index, -1, r);
1114}
1115EXPORT_SYMBOL_GPL(of_address_to_resource);
1116
1117int of_pci_address_to_resource(struct device_node *dev, int bar,
1118 struct resource *r)
1119{
1120
1121 if (!IS_ENABLED(CONFIG_PCI))
1122 return -ENOSYS;
1123
1124 return __of_address_to_resource(dev, -1, bar, r);
1125}
1126EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1127
1128/**
1129 * of_iomap - Maps the memory mapped IO for a given device_node
1130 * @np: the device whose io range will be mapped
1131 * @index: index of the io range
1132 *
1133 * Returns a pointer to the mapped memory
1134 */
1135void __iomem *of_iomap(struct device_node *np, int index)
1136{
1137 struct resource res;
1138
1139 if (of_address_to_resource(np, index, &res))
1140 return NULL;
1141
1142 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1143 return ioremap_np(res.start, resource_size(&res));
1144 else
1145 return ioremap(res.start, resource_size(&res));
1146}
1147EXPORT_SYMBOL(of_iomap);
1148
1149/*
1150 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1151 * for a given device_node
1152 * @device: the device whose io range will be mapped
1153 * @index: index of the io range
1154 * @name: name "override" for the memory region request or NULL
1155 *
1156 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1157 * error code on failure. Usage example:
1158 *
1159 * base = of_io_request_and_map(node, 0, "foo");
1160 * if (IS_ERR(base))
1161 * return PTR_ERR(base);
1162 */
1163void __iomem *of_io_request_and_map(struct device_node *np, int index,
1164 const char *name)
1165{
1166 struct resource res;
1167 void __iomem *mem;
1168
1169 if (of_address_to_resource(np, index, &res))
1170 return IOMEM_ERR_PTR(-EINVAL);
1171
1172 if (!name)
1173 name = res.name;
1174 if (!request_mem_region(res.start, resource_size(&res), name))
1175 return IOMEM_ERR_PTR(-EBUSY);
1176
1177 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1178 mem = ioremap_np(res.start, resource_size(&res));
1179 else
1180 mem = ioremap(res.start, resource_size(&res));
1181
1182 if (!mem) {
1183 release_mem_region(res.start, resource_size(&res));
1184 return IOMEM_ERR_PTR(-ENOMEM);
1185 }
1186
1187 return mem;
1188}
1189EXPORT_SYMBOL(of_io_request_and_map);
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) "OF: " fmt
3
4#include <linux/device.h>
5#include <linux/fwnode.h>
6#include <linux/io.h>
7#include <linux/ioport.h>
8#include <linux/logic_pio.h>
9#include <linux/module.h>
10#include <linux/of_address.h>
11#include <linux/pci.h>
12#include <linux/pci_regs.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16#include <linux/dma-direct.h> /* for bus_dma_region */
17
18#include "of_private.h"
19
20/* Max address size we deal with */
21#define OF_MAX_ADDR_CELLS 4
22#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25static struct of_bus *of_match_bus(struct device_node *np);
26static int __of_address_to_resource(struct device_node *dev, int index,
27 int bar_no, struct resource *r);
28static bool of_mmio_is_nonposted(struct device_node *np);
29
30/* Debug utility */
31#ifdef DEBUG
32static void of_dump_addr(const char *s, const __be32 *addr, int na)
33{
34 pr_debug("%s", s);
35 while (na--)
36 pr_cont(" %08x", be32_to_cpu(*(addr++)));
37 pr_cont("\n");
38}
39#else
40static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
41#endif
42
43/* Callbacks for bus specific translators */
44struct of_bus {
45 const char *name;
46 const char *addresses;
47 int (*match)(struct device_node *parent);
48 void (*count_cells)(struct device_node *child,
49 int *addrc, int *sizec);
50 u64 (*map)(__be32 *addr, const __be32 *range,
51 int na, int ns, int pna);
52 int (*translate)(__be32 *addr, u64 offset, int na);
53 bool has_flags;
54 unsigned int (*get_flags)(const __be32 *addr);
55};
56
57/*
58 * Default translator (generic bus)
59 */
60
61static void of_bus_default_count_cells(struct device_node *dev,
62 int *addrc, int *sizec)
63{
64 if (addrc)
65 *addrc = of_n_addr_cells(dev);
66 if (sizec)
67 *sizec = of_n_size_cells(dev);
68}
69
70static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
71 int na, int ns, int pna)
72{
73 u64 cp, s, da;
74
75 cp = of_read_number(range, na);
76 s = of_read_number(range + na + pna, ns);
77 da = of_read_number(addr, na);
78
79 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
80
81 if (da < cp || da >= (cp + s))
82 return OF_BAD_ADDR;
83 return da - cp;
84}
85
86static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
87{
88 u64 a = of_read_number(addr, na);
89 memset(addr, 0, na * 4);
90 a += offset;
91 if (na > 1)
92 addr[na - 2] = cpu_to_be32(a >> 32);
93 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
94
95 return 0;
96}
97
98static unsigned int of_bus_default_get_flags(const __be32 *addr)
99{
100 return IORESOURCE_MEM;
101}
102
103#ifdef CONFIG_PCI
104static unsigned int of_bus_pci_get_flags(const __be32 *addr)
105{
106 unsigned int flags = 0;
107 u32 w = be32_to_cpup(addr);
108
109 if (!IS_ENABLED(CONFIG_PCI))
110 return 0;
111
112 switch((w >> 24) & 0x03) {
113 case 0x01:
114 flags |= IORESOURCE_IO;
115 break;
116 case 0x02: /* 32 bits */
117 flags |= IORESOURCE_MEM;
118 break;
119
120 case 0x03: /* 64 bits */
121 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
122 break;
123 }
124 if (w & 0x40000000)
125 flags |= IORESOURCE_PREFETCH;
126 return flags;
127}
128
129/*
130 * PCI bus specific translator
131 */
132
133static bool of_node_is_pcie(struct device_node *np)
134{
135 bool is_pcie = of_node_name_eq(np, "pcie");
136
137 if (is_pcie)
138 pr_warn_once("%pOF: Missing device_type\n", np);
139
140 return is_pcie;
141}
142
143static int of_bus_pci_match(struct device_node *np)
144{
145 /*
146 * "pciex" is PCI Express
147 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
148 * "ht" is hypertransport
149 *
150 * If none of the device_type match, and that the node name is
151 * "pcie", accept the device as PCI (with a warning).
152 */
153 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
154 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
155 of_node_is_pcie(np);
156}
157
158static void of_bus_pci_count_cells(struct device_node *np,
159 int *addrc, int *sizec)
160{
161 if (addrc)
162 *addrc = 3;
163 if (sizec)
164 *sizec = 2;
165}
166
167static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
168 int pna)
169{
170 u64 cp, s, da;
171 unsigned int af, rf;
172
173 af = of_bus_pci_get_flags(addr);
174 rf = of_bus_pci_get_flags(range);
175
176 /* Check address type match */
177 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
178 return OF_BAD_ADDR;
179
180 /* Read address values, skipping high cell */
181 cp = of_read_number(range + 1, na - 1);
182 s = of_read_number(range + na + pna, ns);
183 da = of_read_number(addr + 1, na - 1);
184
185 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
186
187 if (da < cp || da >= (cp + s))
188 return OF_BAD_ADDR;
189 return da - cp;
190}
191
192static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
193{
194 return of_bus_default_translate(addr + 1, offset, na - 1);
195}
196#endif /* CONFIG_PCI */
197
198int of_pci_address_to_resource(struct device_node *dev, int bar,
199 struct resource *r)
200{
201
202 if (!IS_ENABLED(CONFIG_PCI))
203 return -ENOSYS;
204
205 return __of_address_to_resource(dev, -1, bar, r);
206}
207EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
208
209/*
210 * of_pci_range_to_resource - Create a resource from an of_pci_range
211 * @range: the PCI range that describes the resource
212 * @np: device node where the range belongs to
213 * @res: pointer to a valid resource that will be updated to
214 * reflect the values contained in the range.
215 *
216 * Returns EINVAL if the range cannot be converted to resource.
217 *
218 * Note that if the range is an IO range, the resource will be converted
219 * using pci_address_to_pio() which can fail if it is called too early or
220 * if the range cannot be matched to any host bridge IO space (our case here).
221 * To guard against that we try to register the IO range first.
222 * If that fails we know that pci_address_to_pio() will do too.
223 */
224int of_pci_range_to_resource(struct of_pci_range *range,
225 struct device_node *np, struct resource *res)
226{
227 int err;
228 res->flags = range->flags;
229 res->parent = res->child = res->sibling = NULL;
230 res->name = np->full_name;
231
232 if (!IS_ENABLED(CONFIG_PCI))
233 return -ENOSYS;
234
235 if (res->flags & IORESOURCE_IO) {
236 unsigned long port;
237 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
238 range->size);
239 if (err)
240 goto invalid_range;
241 port = pci_address_to_pio(range->cpu_addr);
242 if (port == (unsigned long)-1) {
243 err = -EINVAL;
244 goto invalid_range;
245 }
246 res->start = port;
247 } else {
248 if ((sizeof(resource_size_t) < 8) &&
249 upper_32_bits(range->cpu_addr)) {
250 err = -EINVAL;
251 goto invalid_range;
252 }
253
254 res->start = range->cpu_addr;
255 }
256 res->end = res->start + range->size - 1;
257 return 0;
258
259invalid_range:
260 res->start = (resource_size_t)OF_BAD_ADDR;
261 res->end = (resource_size_t)OF_BAD_ADDR;
262 return err;
263}
264EXPORT_SYMBOL(of_pci_range_to_resource);
265
266/*
267 * ISA bus specific translator
268 */
269
270static int of_bus_isa_match(struct device_node *np)
271{
272 return of_node_name_eq(np, "isa");
273}
274
275static void of_bus_isa_count_cells(struct device_node *child,
276 int *addrc, int *sizec)
277{
278 if (addrc)
279 *addrc = 2;
280 if (sizec)
281 *sizec = 1;
282}
283
284static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
285 int pna)
286{
287 u64 cp, s, da;
288
289 /* Check address type match */
290 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
291 return OF_BAD_ADDR;
292
293 /* Read address values, skipping high cell */
294 cp = of_read_number(range + 1, na - 1);
295 s = of_read_number(range + na + pna, ns);
296 da = of_read_number(addr + 1, na - 1);
297
298 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
299
300 if (da < cp || da >= (cp + s))
301 return OF_BAD_ADDR;
302 return da - cp;
303}
304
305static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
306{
307 return of_bus_default_translate(addr + 1, offset, na - 1);
308}
309
310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
311{
312 unsigned int flags = 0;
313 u32 w = be32_to_cpup(addr);
314
315 if (w & 1)
316 flags |= IORESOURCE_IO;
317 else
318 flags |= IORESOURCE_MEM;
319 return flags;
320}
321
322/*
323 * Array of bus specific translators
324 */
325
326static struct of_bus of_busses[] = {
327#ifdef CONFIG_PCI
328 /* PCI */
329 {
330 .name = "pci",
331 .addresses = "assigned-addresses",
332 .match = of_bus_pci_match,
333 .count_cells = of_bus_pci_count_cells,
334 .map = of_bus_pci_map,
335 .translate = of_bus_pci_translate,
336 .has_flags = true,
337 .get_flags = of_bus_pci_get_flags,
338 },
339#endif /* CONFIG_PCI */
340 /* ISA */
341 {
342 .name = "isa",
343 .addresses = "reg",
344 .match = of_bus_isa_match,
345 .count_cells = of_bus_isa_count_cells,
346 .map = of_bus_isa_map,
347 .translate = of_bus_isa_translate,
348 .has_flags = true,
349 .get_flags = of_bus_isa_get_flags,
350 },
351 /* Default */
352 {
353 .name = "default",
354 .addresses = "reg",
355 .match = NULL,
356 .count_cells = of_bus_default_count_cells,
357 .map = of_bus_default_map,
358 .translate = of_bus_default_translate,
359 .get_flags = of_bus_default_get_flags,
360 },
361};
362
363static struct of_bus *of_match_bus(struct device_node *np)
364{
365 int i;
366
367 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
368 if (!of_busses[i].match || of_busses[i].match(np))
369 return &of_busses[i];
370 BUG();
371 return NULL;
372}
373
374static int of_empty_ranges_quirk(struct device_node *np)
375{
376 if (IS_ENABLED(CONFIG_PPC)) {
377 /* To save cycles, we cache the result for global "Mac" setting */
378 static int quirk_state = -1;
379
380 /* PA-SEMI sdc DT bug */
381 if (of_device_is_compatible(np, "1682m-sdc"))
382 return true;
383
384 /* Make quirk cached */
385 if (quirk_state < 0)
386 quirk_state =
387 of_machine_is_compatible("Power Macintosh") ||
388 of_machine_is_compatible("MacRISC");
389 return quirk_state;
390 }
391 return false;
392}
393
394static int of_translate_one(struct device_node *parent, struct of_bus *bus,
395 struct of_bus *pbus, __be32 *addr,
396 int na, int ns, int pna, const char *rprop)
397{
398 const __be32 *ranges;
399 unsigned int rlen;
400 int rone;
401 u64 offset = OF_BAD_ADDR;
402
403 /*
404 * Normally, an absence of a "ranges" property means we are
405 * crossing a non-translatable boundary, and thus the addresses
406 * below the current cannot be converted to CPU physical ones.
407 * Unfortunately, while this is very clear in the spec, it's not
408 * what Apple understood, and they do have things like /uni-n or
409 * /ht nodes with no "ranges" property and a lot of perfectly
410 * useable mapped devices below them. Thus we treat the absence of
411 * "ranges" as equivalent to an empty "ranges" property which means
412 * a 1:1 translation at that level. It's up to the caller not to try
413 * to translate addresses that aren't supposed to be translated in
414 * the first place. --BenH.
415 *
416 * As far as we know, this damage only exists on Apple machines, so
417 * This code is only enabled on powerpc. --gcl
418 *
419 * This quirk also applies for 'dma-ranges' which frequently exist in
420 * child nodes without 'dma-ranges' in the parent nodes. --RobH
421 */
422 ranges = of_get_property(parent, rprop, &rlen);
423 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
424 strcmp(rprop, "dma-ranges")) {
425 pr_debug("no ranges; cannot translate\n");
426 return 1;
427 }
428 if (ranges == NULL || rlen == 0) {
429 offset = of_read_number(addr, na);
430 memset(addr, 0, pna * 4);
431 pr_debug("empty ranges; 1:1 translation\n");
432 goto finish;
433 }
434
435 pr_debug("walking ranges...\n");
436
437 /* Now walk through the ranges */
438 rlen /= 4;
439 rone = na + pna + ns;
440 for (; rlen >= rone; rlen -= rone, ranges += rone) {
441 offset = bus->map(addr, ranges, na, ns, pna);
442 if (offset != OF_BAD_ADDR)
443 break;
444 }
445 if (offset == OF_BAD_ADDR) {
446 pr_debug("not found !\n");
447 return 1;
448 }
449 memcpy(addr, ranges + na, 4 * pna);
450
451 finish:
452 of_dump_addr("parent translation for:", addr, pna);
453 pr_debug("with offset: %llx\n", offset);
454
455 /* Translate it into parent bus space */
456 return pbus->translate(addr, offset, pna);
457}
458
459/*
460 * Translate an address from the device-tree into a CPU physical address,
461 * this walks up the tree and applies the various bus mappings on the
462 * way.
463 *
464 * Note: We consider that crossing any level with #size-cells == 0 to mean
465 * that translation is impossible (that is we are not dealing with a value
466 * that can be mapped to a cpu physical address). This is not really specified
467 * that way, but this is traditionally the way IBM at least do things
468 *
469 * Whenever the translation fails, the *host pointer will be set to the
470 * device that had registered logical PIO mapping, and the return code is
471 * relative to that node.
472 */
473static u64 __of_translate_address(struct device_node *dev,
474 struct device_node *(*get_parent)(const struct device_node *),
475 const __be32 *in_addr, const char *rprop,
476 struct device_node **host)
477{
478 struct device_node *parent = NULL;
479 struct of_bus *bus, *pbus;
480 __be32 addr[OF_MAX_ADDR_CELLS];
481 int na, ns, pna, pns;
482 u64 result = OF_BAD_ADDR;
483
484 pr_debug("** translation for device %pOF **\n", dev);
485
486 /* Increase refcount at current level */
487 of_node_get(dev);
488
489 *host = NULL;
490 /* Get parent & match bus type */
491 parent = get_parent(dev);
492 if (parent == NULL)
493 goto bail;
494 bus = of_match_bus(parent);
495
496 /* Count address cells & copy address locally */
497 bus->count_cells(dev, &na, &ns);
498 if (!OF_CHECK_COUNTS(na, ns)) {
499 pr_debug("Bad cell count for %pOF\n", dev);
500 goto bail;
501 }
502 memcpy(addr, in_addr, na * 4);
503
504 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
505 bus->name, na, ns, parent);
506 of_dump_addr("translating address:", addr, na);
507
508 /* Translate */
509 for (;;) {
510 struct logic_pio_hwaddr *iorange;
511
512 /* Switch to parent bus */
513 of_node_put(dev);
514 dev = parent;
515 parent = get_parent(dev);
516
517 /* If root, we have finished */
518 if (parent == NULL) {
519 pr_debug("reached root node\n");
520 result = of_read_number(addr, na);
521 break;
522 }
523
524 /*
525 * For indirectIO device which has no ranges property, get
526 * the address from reg directly.
527 */
528 iorange = find_io_range_by_fwnode(&dev->fwnode);
529 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
530 result = of_read_number(addr + 1, na - 1);
531 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
532 dev, result);
533 *host = of_node_get(dev);
534 break;
535 }
536
537 /* Get new parent bus and counts */
538 pbus = of_match_bus(parent);
539 pbus->count_cells(dev, &pna, &pns);
540 if (!OF_CHECK_COUNTS(pna, pns)) {
541 pr_err("Bad cell count for %pOF\n", dev);
542 break;
543 }
544
545 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
546 pbus->name, pna, pns, parent);
547
548 /* Apply bus translation */
549 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
550 break;
551
552 /* Complete the move up one level */
553 na = pna;
554 ns = pns;
555 bus = pbus;
556
557 of_dump_addr("one level translation:", addr, na);
558 }
559 bail:
560 of_node_put(parent);
561 of_node_put(dev);
562
563 return result;
564}
565
566u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
567{
568 struct device_node *host;
569 u64 ret;
570
571 ret = __of_translate_address(dev, of_get_parent,
572 in_addr, "ranges", &host);
573 if (host) {
574 of_node_put(host);
575 return OF_BAD_ADDR;
576 }
577
578 return ret;
579}
580EXPORT_SYMBOL(of_translate_address);
581
582static struct device_node *__of_get_dma_parent(const struct device_node *np)
583{
584 struct of_phandle_args args;
585 int ret, index;
586
587 index = of_property_match_string(np, "interconnect-names", "dma-mem");
588 if (index < 0)
589 return of_get_parent(np);
590
591 ret = of_parse_phandle_with_args(np, "interconnects",
592 "#interconnect-cells",
593 index, &args);
594 if (ret < 0)
595 return of_get_parent(np);
596
597 return of_node_get(args.np);
598}
599
600static struct device_node *of_get_next_dma_parent(struct device_node *np)
601{
602 struct device_node *parent;
603
604 parent = __of_get_dma_parent(np);
605 of_node_put(np);
606
607 return parent;
608}
609
610u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
611{
612 struct device_node *host;
613 u64 ret;
614
615 ret = __of_translate_address(dev, __of_get_dma_parent,
616 in_addr, "dma-ranges", &host);
617
618 if (host) {
619 of_node_put(host);
620 return OF_BAD_ADDR;
621 }
622
623 return ret;
624}
625EXPORT_SYMBOL(of_translate_dma_address);
626
627const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
628 u64 *size, unsigned int *flags)
629{
630 const __be32 *prop;
631 unsigned int psize;
632 struct device_node *parent;
633 struct of_bus *bus;
634 int onesize, i, na, ns;
635
636 /* Get parent & match bus type */
637 parent = of_get_parent(dev);
638 if (parent == NULL)
639 return NULL;
640 bus = of_match_bus(parent);
641 if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
642 of_node_put(parent);
643 return NULL;
644 }
645 bus->count_cells(dev, &na, &ns);
646 of_node_put(parent);
647 if (!OF_CHECK_ADDR_COUNT(na))
648 return NULL;
649
650 /* Get "reg" or "assigned-addresses" property */
651 prop = of_get_property(dev, bus->addresses, &psize);
652 if (prop == NULL)
653 return NULL;
654 psize /= 4;
655
656 onesize = na + ns;
657 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
658 u32 val = be32_to_cpu(prop[0]);
659 /* PCI bus matches on BAR number instead of index */
660 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
661 ((index >= 0) && (i == index))) {
662 if (size)
663 *size = of_read_number(prop + na, ns);
664 if (flags)
665 *flags = bus->get_flags(prop);
666 return prop;
667 }
668 }
669 return NULL;
670}
671EXPORT_SYMBOL(__of_get_address);
672
673static int parser_init(struct of_pci_range_parser *parser,
674 struct device_node *node, const char *name)
675{
676 int rlen;
677
678 parser->node = node;
679 parser->pna = of_n_addr_cells(node);
680 parser->na = of_bus_n_addr_cells(node);
681 parser->ns = of_bus_n_size_cells(node);
682 parser->dma = !strcmp(name, "dma-ranges");
683 parser->bus = of_match_bus(node);
684
685 parser->range = of_get_property(node, name, &rlen);
686 if (parser->range == NULL)
687 return -ENOENT;
688
689 parser->end = parser->range + rlen / sizeof(__be32);
690
691 return 0;
692}
693
694int of_pci_range_parser_init(struct of_pci_range_parser *parser,
695 struct device_node *node)
696{
697 return parser_init(parser, node, "ranges");
698}
699EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
700
701int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
702 struct device_node *node)
703{
704 return parser_init(parser, node, "dma-ranges");
705}
706EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
707#define of_dma_range_parser_init of_pci_dma_range_parser_init
708
709struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
710 struct of_pci_range *range)
711{
712 int na = parser->na;
713 int ns = parser->ns;
714 int np = parser->pna + na + ns;
715 int busflag_na = 0;
716
717 if (!range)
718 return NULL;
719
720 if (!parser->range || parser->range + np > parser->end)
721 return NULL;
722
723 range->flags = parser->bus->get_flags(parser->range);
724
725 /* A extra cell for resource flags */
726 if (parser->bus->has_flags)
727 busflag_na = 1;
728
729 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
730
731 if (parser->dma)
732 range->cpu_addr = of_translate_dma_address(parser->node,
733 parser->range + na);
734 else
735 range->cpu_addr = of_translate_address(parser->node,
736 parser->range + na);
737 range->size = of_read_number(parser->range + parser->pna + na, ns);
738
739 parser->range += np;
740
741 /* Now consume following elements while they are contiguous */
742 while (parser->range + np <= parser->end) {
743 u32 flags = 0;
744 u64 bus_addr, cpu_addr, size;
745
746 flags = parser->bus->get_flags(parser->range);
747 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
748 if (parser->dma)
749 cpu_addr = of_translate_dma_address(parser->node,
750 parser->range + na);
751 else
752 cpu_addr = of_translate_address(parser->node,
753 parser->range + na);
754 size = of_read_number(parser->range + parser->pna + na, ns);
755
756 if (flags != range->flags)
757 break;
758 if (bus_addr != range->bus_addr + range->size ||
759 cpu_addr != range->cpu_addr + range->size)
760 break;
761
762 range->size += size;
763 parser->range += np;
764 }
765
766 return range;
767}
768EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
769
770static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
771 u64 size)
772{
773 u64 taddr;
774 unsigned long port;
775 struct device_node *host;
776
777 taddr = __of_translate_address(dev, of_get_parent,
778 in_addr, "ranges", &host);
779 if (host) {
780 /* host-specific port access */
781 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
782 of_node_put(host);
783 } else {
784 /* memory-mapped I/O range */
785 port = pci_address_to_pio(taddr);
786 }
787
788 if (port == (unsigned long)-1)
789 return OF_BAD_ADDR;
790
791 return port;
792}
793
794static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
795 struct resource *r)
796{
797 u64 taddr;
798 const __be32 *addrp;
799 u64 size;
800 unsigned int flags;
801 const char *name = NULL;
802
803 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
804 if (addrp == NULL)
805 return -EINVAL;
806
807 /* Get optional "reg-names" property to add a name to a resource */
808 if (index >= 0)
809 of_property_read_string_index(dev, "reg-names", index, &name);
810
811 if (flags & IORESOURCE_MEM)
812 taddr = of_translate_address(dev, addrp);
813 else if (flags & IORESOURCE_IO)
814 taddr = of_translate_ioport(dev, addrp, size);
815 else
816 return -EINVAL;
817
818 if (taddr == OF_BAD_ADDR)
819 return -EINVAL;
820 memset(r, 0, sizeof(struct resource));
821
822 if (of_mmio_is_nonposted(dev))
823 flags |= IORESOURCE_MEM_NONPOSTED;
824
825 r->start = taddr;
826 r->end = taddr + size - 1;
827 r->flags = flags;
828 r->name = name ? name : dev->full_name;
829
830 return 0;
831}
832
833/**
834 * of_address_to_resource - Translate device tree address and return as resource
835 * @dev: Caller's Device Node
836 * @index: Index into the array
837 * @r: Pointer to resource array
838 *
839 * Note that if your address is a PIO address, the conversion will fail if
840 * the physical address can't be internally converted to an IO token with
841 * pci_address_to_pio(), that is because it's either called too early or it
842 * can't be matched to any host bridge IO space
843 */
844int of_address_to_resource(struct device_node *dev, int index,
845 struct resource *r)
846{
847 return __of_address_to_resource(dev, index, -1, r);
848}
849EXPORT_SYMBOL_GPL(of_address_to_resource);
850
851/**
852 * of_iomap - Maps the memory mapped IO for a given device_node
853 * @np: the device whose io range will be mapped
854 * @index: index of the io range
855 *
856 * Returns a pointer to the mapped memory
857 */
858void __iomem *of_iomap(struct device_node *np, int index)
859{
860 struct resource res;
861
862 if (of_address_to_resource(np, index, &res))
863 return NULL;
864
865 if (res.flags & IORESOURCE_MEM_NONPOSTED)
866 return ioremap_np(res.start, resource_size(&res));
867 else
868 return ioremap(res.start, resource_size(&res));
869}
870EXPORT_SYMBOL(of_iomap);
871
872/*
873 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
874 * for a given device_node
875 * @device: the device whose io range will be mapped
876 * @index: index of the io range
877 * @name: name "override" for the memory region request or NULL
878 *
879 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
880 * error code on failure. Usage example:
881 *
882 * base = of_io_request_and_map(node, 0, "foo");
883 * if (IS_ERR(base))
884 * return PTR_ERR(base);
885 */
886void __iomem *of_io_request_and_map(struct device_node *np, int index,
887 const char *name)
888{
889 struct resource res;
890 void __iomem *mem;
891
892 if (of_address_to_resource(np, index, &res))
893 return IOMEM_ERR_PTR(-EINVAL);
894
895 if (!name)
896 name = res.name;
897 if (!request_mem_region(res.start, resource_size(&res), name))
898 return IOMEM_ERR_PTR(-EBUSY);
899
900 if (res.flags & IORESOURCE_MEM_NONPOSTED)
901 mem = ioremap_np(res.start, resource_size(&res));
902 else
903 mem = ioremap(res.start, resource_size(&res));
904
905 if (!mem) {
906 release_mem_region(res.start, resource_size(&res));
907 return IOMEM_ERR_PTR(-ENOMEM);
908 }
909
910 return mem;
911}
912EXPORT_SYMBOL(of_io_request_and_map);
913
914#ifdef CONFIG_HAS_DMA
915/**
916 * of_dma_get_range - Get DMA range info and put it into a map array
917 * @np: device node to get DMA range info
918 * @map: dma range structure to return
919 *
920 * Look in bottom up direction for the first "dma-ranges" property
921 * and parse it. Put the information into a DMA offset map array.
922 *
923 * dma-ranges format:
924 * DMA addr (dma_addr) : naddr cells
925 * CPU addr (phys_addr_t) : pna cells
926 * size : nsize cells
927 *
928 * It returns -ENODEV if "dma-ranges" property was not found for this
929 * device in the DT.
930 */
931int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
932{
933 struct device_node *node = of_node_get(np);
934 const __be32 *ranges = NULL;
935 bool found_dma_ranges = false;
936 struct of_range_parser parser;
937 struct of_range range;
938 struct bus_dma_region *r;
939 int len, num_ranges = 0;
940 int ret = 0;
941
942 while (node) {
943 ranges = of_get_property(node, "dma-ranges", &len);
944
945 /* Ignore empty ranges, they imply no translation required */
946 if (ranges && len > 0)
947 break;
948
949 /* Once we find 'dma-ranges', then a missing one is an error */
950 if (found_dma_ranges && !ranges) {
951 ret = -ENODEV;
952 goto out;
953 }
954 found_dma_ranges = true;
955
956 node = of_get_next_dma_parent(node);
957 }
958
959 if (!node || !ranges) {
960 pr_debug("no dma-ranges found for node(%pOF)\n", np);
961 ret = -ENODEV;
962 goto out;
963 }
964
965 of_dma_range_parser_init(&parser, node);
966 for_each_of_range(&parser, &range)
967 num_ranges++;
968
969 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
970 if (!r) {
971 ret = -ENOMEM;
972 goto out;
973 }
974
975 /*
976 * Record all info in the generic DMA ranges array for struct device.
977 */
978 *map = r;
979 of_dma_range_parser_init(&parser, node);
980 for_each_of_range(&parser, &range) {
981 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
982 range.bus_addr, range.cpu_addr, range.size);
983 if (range.cpu_addr == OF_BAD_ADDR) {
984 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
985 range.bus_addr, node);
986 continue;
987 }
988 r->cpu_start = range.cpu_addr;
989 r->dma_start = range.bus_addr;
990 r->size = range.size;
991 r->offset = range.cpu_addr - range.bus_addr;
992 r++;
993 }
994out:
995 of_node_put(node);
996 return ret;
997}
998#endif /* CONFIG_HAS_DMA */
999
1000/**
1001 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1002 * @np: The node to start searching from or NULL to start from the root
1003 *
1004 * Gets the highest CPU physical address that is addressable by all DMA masters
1005 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1006 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1007 */
1008phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1009{
1010 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1011 struct of_range_parser parser;
1012 phys_addr_t subtree_max_addr;
1013 struct device_node *child;
1014 struct of_range range;
1015 const __be32 *ranges;
1016 u64 cpu_end = 0;
1017 int len;
1018
1019 if (!np)
1020 np = of_root;
1021
1022 ranges = of_get_property(np, "dma-ranges", &len);
1023 if (ranges && len) {
1024 of_dma_range_parser_init(&parser, np);
1025 for_each_of_range(&parser, &range)
1026 if (range.cpu_addr + range.size > cpu_end)
1027 cpu_end = range.cpu_addr + range.size - 1;
1028
1029 if (max_cpu_addr > cpu_end)
1030 max_cpu_addr = cpu_end;
1031 }
1032
1033 for_each_available_child_of_node(np, child) {
1034 subtree_max_addr = of_dma_get_max_cpu_address(child);
1035 if (max_cpu_addr > subtree_max_addr)
1036 max_cpu_addr = subtree_max_addr;
1037 }
1038
1039 return max_cpu_addr;
1040}
1041
1042/**
1043 * of_dma_is_coherent - Check if device is coherent
1044 * @np: device node
1045 *
1046 * It returns true if "dma-coherent" property was found
1047 * for this device in the DT, or if DMA is coherent by
1048 * default for OF devices on the current platform.
1049 */
1050bool of_dma_is_coherent(struct device_node *np)
1051{
1052 struct device_node *node;
1053
1054 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1055 return true;
1056
1057 node = of_node_get(np);
1058
1059 while (node) {
1060 if (of_property_read_bool(node, "dma-coherent")) {
1061 of_node_put(node);
1062 return true;
1063 }
1064 node = of_get_next_dma_parent(node);
1065 }
1066 of_node_put(node);
1067 return false;
1068}
1069EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1070
1071/**
1072 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1073 * @np: device node
1074 *
1075 * Returns true if the "nonposted-mmio" property was found for
1076 * the device's bus.
1077 *
1078 * This is currently only enabled on builds that support Apple ARM devices, as
1079 * an optimization.
1080 */
1081static bool of_mmio_is_nonposted(struct device_node *np)
1082{
1083 struct device_node *parent;
1084 bool nonposted;
1085
1086 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1087 return false;
1088
1089 parent = of_get_parent(np);
1090 if (!parent)
1091 return false;
1092
1093 nonposted = of_property_read_bool(parent, "nonposted-mmio");
1094
1095 of_node_put(parent);
1096 return nonposted;
1097}