Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_lib.h"
   5#include "ice_switch.h"
   6#include "ice_trace.h"
   7
   8#define ICE_ETH_DA_OFFSET		0
   9#define ICE_ETH_ETHTYPE_OFFSET		12
  10#define ICE_ETH_VLAN_TCI_OFFSET		14
  11#define ICE_MAX_VLAN_ID			0xFFF
  12#define ICE_IPV6_ETHER_ID		0x86DD
  13
  14/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
  15 * struct to configure any switch filter rules.
  16 * {DA (6 bytes), SA(6 bytes),
  17 * Ether type (2 bytes for header without VLAN tag) OR
  18 * VLAN tag (4 bytes for header with VLAN tag) }
  19 *
  20 * Word on Hardcoded values
  21 * byte 0 = 0x2: to identify it as locally administered DA MAC
  22 * byte 6 = 0x2: to identify it as locally administered SA MAC
  23 * byte 12 = 0x81 & byte 13 = 0x00:
  24 *      In case of VLAN filter first two bytes defines ether type (0x8100)
  25 *      and remaining two bytes are placeholder for programming a given VLAN ID
  26 *      In case of Ether type filter it is treated as header without VLAN tag
  27 *      and byte 12 and 13 is used to program a given Ether type instead
  28 */
  29static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
  30							0x2, 0, 0, 0, 0, 0,
  31							0x81, 0, 0, 0};
  32
  33enum {
  34	ICE_PKT_OUTER_IPV6	= BIT(0),
  35	ICE_PKT_TUN_GTPC	= BIT(1),
  36	ICE_PKT_TUN_GTPU	= BIT(2),
  37	ICE_PKT_TUN_NVGRE	= BIT(3),
  38	ICE_PKT_TUN_UDP		= BIT(4),
  39	ICE_PKT_INNER_IPV6	= BIT(5),
  40	ICE_PKT_INNER_TCP	= BIT(6),
  41	ICE_PKT_INNER_UDP	= BIT(7),
  42	ICE_PKT_GTP_NOPAY	= BIT(8),
  43	ICE_PKT_KMALLOC		= BIT(9),
  44	ICE_PKT_PPPOE		= BIT(10),
  45	ICE_PKT_L2TPV3		= BIT(11),
  46	ICE_PKT_PFCP		= BIT(12),
  47};
  48
  49struct ice_dummy_pkt_offsets {
  50	enum ice_protocol_type type;
  51	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
  52};
  53
  54struct ice_dummy_pkt_profile {
  55	const struct ice_dummy_pkt_offsets *offsets;
  56	const u8 *pkt;
  57	u32 match;
  58	u16 pkt_len;
  59	u16 offsets_len;
  60};
  61
  62#define ICE_DECLARE_PKT_OFFSETS(type)					\
  63	static const struct ice_dummy_pkt_offsets			\
  64	ice_dummy_##type##_packet_offsets[]
  65
  66#define ICE_DECLARE_PKT_TEMPLATE(type)					\
  67	static const u8 ice_dummy_##type##_packet[]
  68
  69#define ICE_PKT_PROFILE(type, m) {					\
  70	.match		= (m),						\
  71	.pkt		= ice_dummy_##type##_packet,			\
  72	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
  73	.offsets	= ice_dummy_##type##_packet_offsets,		\
  74	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
  75}
  76
  77ICE_DECLARE_PKT_OFFSETS(vlan) = {
  78	{ ICE_VLAN_OFOS,        12 },
  79};
  80
  81ICE_DECLARE_PKT_TEMPLATE(vlan) = {
  82	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
  83};
  84
  85ICE_DECLARE_PKT_OFFSETS(qinq) = {
  86	{ ICE_VLAN_EX,          12 },
  87	{ ICE_VLAN_IN,          16 },
  88};
  89
  90ICE_DECLARE_PKT_TEMPLATE(qinq) = {
  91	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
  92	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
  93};
  94
  95ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
  96	{ ICE_MAC_OFOS,		0 },
  97	{ ICE_ETYPE_OL,		12 },
  98	{ ICE_IPV4_OFOS,	14 },
  99	{ ICE_NVGRE,		34 },
 100	{ ICE_MAC_IL,		42 },
 101	{ ICE_ETYPE_IL,		54 },
 102	{ ICE_IPV4_IL,		56 },
 103	{ ICE_TCP_IL,		76 },
 104	{ ICE_PROTOCOL_LAST,	0 },
 105};
 106
 107ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
 108	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 109	0x00, 0x00, 0x00, 0x00,
 110	0x00, 0x00, 0x00, 0x00,
 111
 112	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 113
 114	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 115	0x00, 0x00, 0x00, 0x00,
 116	0x00, 0x2F, 0x00, 0x00,
 117	0x00, 0x00, 0x00, 0x00,
 118	0x00, 0x00, 0x00, 0x00,
 119
 120	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 121	0x00, 0x00, 0x00, 0x00,
 122
 123	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 124	0x00, 0x00, 0x00, 0x00,
 125	0x00, 0x00, 0x00, 0x00,
 126
 127	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 128
 129	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 130	0x00, 0x00, 0x00, 0x00,
 131	0x00, 0x06, 0x00, 0x00,
 132	0x00, 0x00, 0x00, 0x00,
 133	0x00, 0x00, 0x00, 0x00,
 134
 135	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
 136	0x00, 0x00, 0x00, 0x00,
 137	0x00, 0x00, 0x00, 0x00,
 138	0x50, 0x02, 0x20, 0x00,
 139	0x00, 0x00, 0x00, 0x00
 140};
 141
 142ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
 143	{ ICE_MAC_OFOS,		0 },
 144	{ ICE_ETYPE_OL,		12 },
 145	{ ICE_IPV4_OFOS,	14 },
 146	{ ICE_NVGRE,		34 },
 147	{ ICE_MAC_IL,		42 },
 148	{ ICE_ETYPE_IL,		54 },
 149	{ ICE_IPV4_IL,		56 },
 150	{ ICE_UDP_ILOS,		76 },
 151	{ ICE_PROTOCOL_LAST,	0 },
 152};
 153
 154ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
 155	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 156	0x00, 0x00, 0x00, 0x00,
 157	0x00, 0x00, 0x00, 0x00,
 158
 159	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 160
 161	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 162	0x00, 0x00, 0x00, 0x00,
 163	0x00, 0x2F, 0x00, 0x00,
 164	0x00, 0x00, 0x00, 0x00,
 165	0x00, 0x00, 0x00, 0x00,
 166
 167	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 168	0x00, 0x00, 0x00, 0x00,
 169
 170	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 171	0x00, 0x00, 0x00, 0x00,
 172	0x00, 0x00, 0x00, 0x00,
 173
 174	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 175
 176	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 177	0x00, 0x00, 0x00, 0x00,
 178	0x00, 0x11, 0x00, 0x00,
 179	0x00, 0x00, 0x00, 0x00,
 180	0x00, 0x00, 0x00, 0x00,
 181
 182	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
 183	0x00, 0x08, 0x00, 0x00,
 184};
 185
 186ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
 187	{ ICE_MAC_OFOS,		0 },
 188	{ ICE_ETYPE_OL,		12 },
 189	{ ICE_IPV4_OFOS,	14 },
 190	{ ICE_UDP_OF,		34 },
 191	{ ICE_VXLAN,		42 },
 192	{ ICE_GENEVE,		42 },
 193	{ ICE_VXLAN_GPE,	42 },
 194	{ ICE_MAC_IL,		50 },
 195	{ ICE_ETYPE_IL,		62 },
 196	{ ICE_IPV4_IL,		64 },
 197	{ ICE_TCP_IL,		84 },
 198	{ ICE_PROTOCOL_LAST,	0 },
 199};
 200
 201ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
 202	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 203	0x00, 0x00, 0x00, 0x00,
 204	0x00, 0x00, 0x00, 0x00,
 205
 206	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 207
 208	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 209	0x00, 0x01, 0x00, 0x00,
 210	0x40, 0x11, 0x00, 0x00,
 211	0x00, 0x00, 0x00, 0x00,
 212	0x00, 0x00, 0x00, 0x00,
 213
 214	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 215	0x00, 0x46, 0x00, 0x00,
 216
 217	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 218	0x00, 0x00, 0x00, 0x00,
 219
 220	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 221	0x00, 0x00, 0x00, 0x00,
 222	0x00, 0x00, 0x00, 0x00,
 223
 224	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 225
 226	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
 227	0x00, 0x01, 0x00, 0x00,
 228	0x40, 0x06, 0x00, 0x00,
 229	0x00, 0x00, 0x00, 0x00,
 230	0x00, 0x00, 0x00, 0x00,
 231
 232	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
 233	0x00, 0x00, 0x00, 0x00,
 234	0x00, 0x00, 0x00, 0x00,
 235	0x50, 0x02, 0x20, 0x00,
 236	0x00, 0x00, 0x00, 0x00
 237};
 238
 239ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
 240	{ ICE_MAC_OFOS,		0 },
 241	{ ICE_ETYPE_OL,		12 },
 242	{ ICE_IPV4_OFOS,	14 },
 243	{ ICE_UDP_OF,		34 },
 244	{ ICE_VXLAN,		42 },
 245	{ ICE_GENEVE,		42 },
 246	{ ICE_VXLAN_GPE,	42 },
 247	{ ICE_MAC_IL,		50 },
 248	{ ICE_ETYPE_IL,		62 },
 249	{ ICE_IPV4_IL,		64 },
 250	{ ICE_UDP_ILOS,		84 },
 251	{ ICE_PROTOCOL_LAST,	0 },
 252};
 253
 254ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
 255	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 256	0x00, 0x00, 0x00, 0x00,
 257	0x00, 0x00, 0x00, 0x00,
 258
 259	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 260
 261	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
 262	0x00, 0x01, 0x00, 0x00,
 263	0x00, 0x11, 0x00, 0x00,
 264	0x00, 0x00, 0x00, 0x00,
 265	0x00, 0x00, 0x00, 0x00,
 266
 267	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 268	0x00, 0x3a, 0x00, 0x00,
 269
 270	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 271	0x00, 0x00, 0x00, 0x00,
 272
 273	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 274	0x00, 0x00, 0x00, 0x00,
 275	0x00, 0x00, 0x00, 0x00,
 276
 277	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 278
 279	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
 280	0x00, 0x01, 0x00, 0x00,
 281	0x00, 0x11, 0x00, 0x00,
 282	0x00, 0x00, 0x00, 0x00,
 283	0x00, 0x00, 0x00, 0x00,
 284
 285	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
 286	0x00, 0x08, 0x00, 0x00,
 287};
 288
 289ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
 290	{ ICE_MAC_OFOS,		0 },
 291	{ ICE_ETYPE_OL,		12 },
 292	{ ICE_IPV4_OFOS,	14 },
 293	{ ICE_NVGRE,		34 },
 294	{ ICE_MAC_IL,		42 },
 295	{ ICE_ETYPE_IL,		54 },
 296	{ ICE_IPV6_IL,		56 },
 297	{ ICE_TCP_IL,		96 },
 298	{ ICE_PROTOCOL_LAST,	0 },
 299};
 300
 301ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
 302	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 303	0x00, 0x00, 0x00, 0x00,
 304	0x00, 0x00, 0x00, 0x00,
 305
 306	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 307
 308	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
 309	0x00, 0x00, 0x00, 0x00,
 310	0x00, 0x2F, 0x00, 0x00,
 311	0x00, 0x00, 0x00, 0x00,
 312	0x00, 0x00, 0x00, 0x00,
 313
 314	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 315	0x00, 0x00, 0x00, 0x00,
 316
 317	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 318	0x00, 0x00, 0x00, 0x00,
 319	0x00, 0x00, 0x00, 0x00,
 320
 321	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 322
 323	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 324	0x00, 0x08, 0x06, 0x40,
 325	0x00, 0x00, 0x00, 0x00,
 326	0x00, 0x00, 0x00, 0x00,
 327	0x00, 0x00, 0x00, 0x00,
 328	0x00, 0x00, 0x00, 0x00,
 329	0x00, 0x00, 0x00, 0x00,
 330	0x00, 0x00, 0x00, 0x00,
 331	0x00, 0x00, 0x00, 0x00,
 332	0x00, 0x00, 0x00, 0x00,
 333
 334	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
 335	0x00, 0x00, 0x00, 0x00,
 336	0x00, 0x00, 0x00, 0x00,
 337	0x50, 0x02, 0x20, 0x00,
 338	0x00, 0x00, 0x00, 0x00
 339};
 340
 341ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
 342	{ ICE_MAC_OFOS,		0 },
 343	{ ICE_ETYPE_OL,		12 },
 344	{ ICE_IPV4_OFOS,	14 },
 345	{ ICE_NVGRE,		34 },
 346	{ ICE_MAC_IL,		42 },
 347	{ ICE_ETYPE_IL,		54 },
 348	{ ICE_IPV6_IL,		56 },
 349	{ ICE_UDP_ILOS,		96 },
 350	{ ICE_PROTOCOL_LAST,	0 },
 351};
 352
 353ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
 354	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 355	0x00, 0x00, 0x00, 0x00,
 356	0x00, 0x00, 0x00, 0x00,
 357
 358	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 359
 360	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 361	0x00, 0x00, 0x00, 0x00,
 362	0x00, 0x2F, 0x00, 0x00,
 363	0x00, 0x00, 0x00, 0x00,
 364	0x00, 0x00, 0x00, 0x00,
 365
 366	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 367	0x00, 0x00, 0x00, 0x00,
 368
 369	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 370	0x00, 0x00, 0x00, 0x00,
 371	0x00, 0x00, 0x00, 0x00,
 372
 373	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 374
 375	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 376	0x00, 0x08, 0x11, 0x40,
 377	0x00, 0x00, 0x00, 0x00,
 378	0x00, 0x00, 0x00, 0x00,
 379	0x00, 0x00, 0x00, 0x00,
 380	0x00, 0x00, 0x00, 0x00,
 381	0x00, 0x00, 0x00, 0x00,
 382	0x00, 0x00, 0x00, 0x00,
 383	0x00, 0x00, 0x00, 0x00,
 384	0x00, 0x00, 0x00, 0x00,
 385
 386	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
 387	0x00, 0x08, 0x00, 0x00,
 388};
 389
 390ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
 391	{ ICE_MAC_OFOS,		0 },
 392	{ ICE_ETYPE_OL,		12 },
 393	{ ICE_IPV4_OFOS,	14 },
 394	{ ICE_UDP_OF,		34 },
 395	{ ICE_VXLAN,		42 },
 396	{ ICE_GENEVE,		42 },
 397	{ ICE_VXLAN_GPE,	42 },
 398	{ ICE_MAC_IL,		50 },
 399	{ ICE_ETYPE_IL,		62 },
 400	{ ICE_IPV6_IL,		64 },
 401	{ ICE_TCP_IL,		104 },
 402	{ ICE_PROTOCOL_LAST,	0 },
 403};
 404
 405ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
 406	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 407	0x00, 0x00, 0x00, 0x00,
 408	0x00, 0x00, 0x00, 0x00,
 409
 410	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 411
 412	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
 413	0x00, 0x01, 0x00, 0x00,
 414	0x40, 0x11, 0x00, 0x00,
 415	0x00, 0x00, 0x00, 0x00,
 416	0x00, 0x00, 0x00, 0x00,
 417
 418	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 419	0x00, 0x5a, 0x00, 0x00,
 420
 421	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 422	0x00, 0x00, 0x00, 0x00,
 423
 424	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 425	0x00, 0x00, 0x00, 0x00,
 426	0x00, 0x00, 0x00, 0x00,
 427
 428	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 429
 430	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 431	0x00, 0x08, 0x06, 0x40,
 432	0x00, 0x00, 0x00, 0x00,
 433	0x00, 0x00, 0x00, 0x00,
 434	0x00, 0x00, 0x00, 0x00,
 435	0x00, 0x00, 0x00, 0x00,
 436	0x00, 0x00, 0x00, 0x00,
 437	0x00, 0x00, 0x00, 0x00,
 438	0x00, 0x00, 0x00, 0x00,
 439	0x00, 0x00, 0x00, 0x00,
 440
 441	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
 442	0x00, 0x00, 0x00, 0x00,
 443	0x00, 0x00, 0x00, 0x00,
 444	0x50, 0x02, 0x20, 0x00,
 445	0x00, 0x00, 0x00, 0x00
 446};
 447
 448ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
 449	{ ICE_MAC_OFOS,		0 },
 450	{ ICE_ETYPE_OL,		12 },
 451	{ ICE_IPV4_OFOS,	14 },
 452	{ ICE_UDP_OF,		34 },
 453	{ ICE_VXLAN,		42 },
 454	{ ICE_GENEVE,		42 },
 455	{ ICE_VXLAN_GPE,	42 },
 456	{ ICE_MAC_IL,		50 },
 457	{ ICE_ETYPE_IL,		62 },
 458	{ ICE_IPV6_IL,		64 },
 459	{ ICE_UDP_ILOS,		104 },
 460	{ ICE_PROTOCOL_LAST,	0 },
 461};
 462
 463ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
 464	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 465	0x00, 0x00, 0x00, 0x00,
 466	0x00, 0x00, 0x00, 0x00,
 467
 468	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 469
 470	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
 471	0x00, 0x01, 0x00, 0x00,
 472	0x00, 0x11, 0x00, 0x00,
 473	0x00, 0x00, 0x00, 0x00,
 474	0x00, 0x00, 0x00, 0x00,
 475
 476	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 477	0x00, 0x4e, 0x00, 0x00,
 478
 479	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 480	0x00, 0x00, 0x00, 0x00,
 481
 482	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 483	0x00, 0x00, 0x00, 0x00,
 484	0x00, 0x00, 0x00, 0x00,
 485
 486	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 487
 488	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 489	0x00, 0x08, 0x11, 0x40,
 490	0x00, 0x00, 0x00, 0x00,
 491	0x00, 0x00, 0x00, 0x00,
 492	0x00, 0x00, 0x00, 0x00,
 493	0x00, 0x00, 0x00, 0x00,
 494	0x00, 0x00, 0x00, 0x00,
 495	0x00, 0x00, 0x00, 0x00,
 496	0x00, 0x00, 0x00, 0x00,
 497	0x00, 0x00, 0x00, 0x00,
 498
 499	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
 500	0x00, 0x08, 0x00, 0x00,
 501};
 502
 503/* offset info for MAC + IPv4 + UDP dummy packet */
 504ICE_DECLARE_PKT_OFFSETS(udp) = {
 505	{ ICE_MAC_OFOS,		0 },
 506	{ ICE_ETYPE_OL,		12 },
 507	{ ICE_IPV4_OFOS,	14 },
 508	{ ICE_UDP_ILOS,		34 },
 509	{ ICE_PROTOCOL_LAST,	0 },
 510};
 511
 512/* Dummy packet for MAC + IPv4 + UDP */
 513ICE_DECLARE_PKT_TEMPLATE(udp) = {
 514	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 515	0x00, 0x00, 0x00, 0x00,
 516	0x00, 0x00, 0x00, 0x00,
 517
 518	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 519
 520	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
 521	0x00, 0x01, 0x00, 0x00,
 522	0x00, 0x11, 0x00, 0x00,
 523	0x00, 0x00, 0x00, 0x00,
 524	0x00, 0x00, 0x00, 0x00,
 525
 526	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
 527	0x00, 0x08, 0x00, 0x00,
 528
 529	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 530};
 531
 532/* offset info for MAC + IPv4 + TCP dummy packet */
 533ICE_DECLARE_PKT_OFFSETS(tcp) = {
 534	{ ICE_MAC_OFOS,		0 },
 535	{ ICE_ETYPE_OL,		12 },
 536	{ ICE_IPV4_OFOS,	14 },
 537	{ ICE_TCP_IL,		34 },
 538	{ ICE_PROTOCOL_LAST,	0 },
 539};
 540
 541/* Dummy packet for MAC + IPv4 + TCP */
 542ICE_DECLARE_PKT_TEMPLATE(tcp) = {
 543	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 544	0x00, 0x00, 0x00, 0x00,
 545	0x00, 0x00, 0x00, 0x00,
 546
 547	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 548
 549	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
 550	0x00, 0x01, 0x00, 0x00,
 551	0x00, 0x06, 0x00, 0x00,
 552	0x00, 0x00, 0x00, 0x00,
 553	0x00, 0x00, 0x00, 0x00,
 554
 555	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
 556	0x00, 0x00, 0x00, 0x00,
 557	0x00, 0x00, 0x00, 0x00,
 558	0x50, 0x00, 0x00, 0x00,
 559	0x00, 0x00, 0x00, 0x00,
 560
 561	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 562};
 563
 564ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
 565	{ ICE_MAC_OFOS,		0 },
 566	{ ICE_ETYPE_OL,		12 },
 567	{ ICE_IPV6_OFOS,	14 },
 568	{ ICE_TCP_IL,		54 },
 569	{ ICE_PROTOCOL_LAST,	0 },
 570};
 571
 572ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
 573	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 574	0x00, 0x00, 0x00, 0x00,
 575	0x00, 0x00, 0x00, 0x00,
 576
 577	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 578
 579	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 580	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
 581	0x00, 0x00, 0x00, 0x00,
 582	0x00, 0x00, 0x00, 0x00,
 583	0x00, 0x00, 0x00, 0x00,
 584	0x00, 0x00, 0x00, 0x00,
 585	0x00, 0x00, 0x00, 0x00,
 586	0x00, 0x00, 0x00, 0x00,
 587	0x00, 0x00, 0x00, 0x00,
 588	0x00, 0x00, 0x00, 0x00,
 589
 590	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
 591	0x00, 0x00, 0x00, 0x00,
 592	0x00, 0x00, 0x00, 0x00,
 593	0x50, 0x00, 0x00, 0x00,
 594	0x00, 0x00, 0x00, 0x00,
 595
 596	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 597};
 598
 599/* IPv6 + UDP */
 600ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
 601	{ ICE_MAC_OFOS,		0 },
 602	{ ICE_ETYPE_OL,		12 },
 603	{ ICE_IPV6_OFOS,	14 },
 604	{ ICE_UDP_ILOS,		54 },
 605	{ ICE_PROTOCOL_LAST,	0 },
 606};
 607
 608/* IPv6 + UDP dummy packet */
 609ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
 610	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 611	0x00, 0x00, 0x00, 0x00,
 612	0x00, 0x00, 0x00, 0x00,
 613
 614	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 615
 616	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 617	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
 618	0x00, 0x00, 0x00, 0x00,
 619	0x00, 0x00, 0x00, 0x00,
 620	0x00, 0x00, 0x00, 0x00,
 621	0x00, 0x00, 0x00, 0x00,
 622	0x00, 0x00, 0x00, 0x00,
 623	0x00, 0x00, 0x00, 0x00,
 624	0x00, 0x00, 0x00, 0x00,
 625	0x00, 0x00, 0x00, 0x00,
 626
 627	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
 628	0x00, 0x10, 0x00, 0x00,
 629
 630	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
 631	0x00, 0x00, 0x00, 0x00,
 632
 633	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 634};
 635
 636/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 637ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
 638	{ ICE_MAC_OFOS,		0 },
 639	{ ICE_IPV4_OFOS,	14 },
 640	{ ICE_UDP_OF,		34 },
 641	{ ICE_GTP,		42 },
 642	{ ICE_IPV4_IL,		62 },
 643	{ ICE_TCP_IL,		82 },
 644	{ ICE_PROTOCOL_LAST,	0 },
 645};
 646
 647ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
 648	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 649	0x00, 0x00, 0x00, 0x00,
 650	0x00, 0x00, 0x00, 0x00,
 651	0x08, 0x00,
 652
 653	0x45, 0x00, 0x00, 0x58, /* IP 14 */
 654	0x00, 0x00, 0x00, 0x00,
 655	0x00, 0x11, 0x00, 0x00,
 656	0x00, 0x00, 0x00, 0x00,
 657	0x00, 0x00, 0x00, 0x00,
 658
 659	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 660	0x00, 0x44, 0x00, 0x00,
 661
 662	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
 663	0x00, 0x00, 0x00, 0x00,
 664	0x00, 0x00, 0x00, 0x85,
 665
 666	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 667	0x00, 0x00, 0x00, 0x00,
 668
 669	0x45, 0x00, 0x00, 0x28, /* IP 62 */
 670	0x00, 0x00, 0x00, 0x00,
 671	0x00, 0x06, 0x00, 0x00,
 672	0x00, 0x00, 0x00, 0x00,
 673	0x00, 0x00, 0x00, 0x00,
 674
 675	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
 676	0x00, 0x00, 0x00, 0x00,
 677	0x00, 0x00, 0x00, 0x00,
 678	0x50, 0x00, 0x00, 0x00,
 679	0x00, 0x00, 0x00, 0x00,
 680
 681	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 682};
 683
 684/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
 685ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
 686	{ ICE_MAC_OFOS,		0 },
 687	{ ICE_IPV4_OFOS,	14 },
 688	{ ICE_UDP_OF,		34 },
 689	{ ICE_GTP,		42 },
 690	{ ICE_IPV4_IL,		62 },
 691	{ ICE_UDP_ILOS,		82 },
 692	{ ICE_PROTOCOL_LAST,	0 },
 693};
 694
 695ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
 696	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 697	0x00, 0x00, 0x00, 0x00,
 698	0x00, 0x00, 0x00, 0x00,
 699	0x08, 0x00,
 700
 701	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
 702	0x00, 0x00, 0x00, 0x00,
 703	0x00, 0x11, 0x00, 0x00,
 704	0x00, 0x00, 0x00, 0x00,
 705	0x00, 0x00, 0x00, 0x00,
 706
 707	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 708	0x00, 0x38, 0x00, 0x00,
 709
 710	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
 711	0x00, 0x00, 0x00, 0x00,
 712	0x00, 0x00, 0x00, 0x85,
 713
 714	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 715	0x00, 0x00, 0x00, 0x00,
 716
 717	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
 718	0x00, 0x00, 0x00, 0x00,
 719	0x00, 0x11, 0x00, 0x00,
 720	0x00, 0x00, 0x00, 0x00,
 721	0x00, 0x00, 0x00, 0x00,
 722
 723	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
 724	0x00, 0x08, 0x00, 0x00,
 725
 726	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 727};
 728
 729/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 730ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
 731	{ ICE_MAC_OFOS,		0 },
 732	{ ICE_IPV4_OFOS,	14 },
 733	{ ICE_UDP_OF,		34 },
 734	{ ICE_GTP,		42 },
 735	{ ICE_IPV6_IL,		62 },
 736	{ ICE_TCP_IL,		102 },
 737	{ ICE_PROTOCOL_LAST,	0 },
 738};
 739
 740ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
 741	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 742	0x00, 0x00, 0x00, 0x00,
 743	0x00, 0x00, 0x00, 0x00,
 744	0x08, 0x00,
 745
 746	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
 747	0x00, 0x00, 0x00, 0x00,
 748	0x00, 0x11, 0x00, 0x00,
 749	0x00, 0x00, 0x00, 0x00,
 750	0x00, 0x00, 0x00, 0x00,
 751
 752	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 753	0x00, 0x58, 0x00, 0x00,
 754
 755	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
 756	0x00, 0x00, 0x00, 0x00,
 757	0x00, 0x00, 0x00, 0x85,
 758
 759	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 760	0x00, 0x00, 0x00, 0x00,
 761
 762	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 763	0x00, 0x14, 0x06, 0x00,
 764	0x00, 0x00, 0x00, 0x00,
 765	0x00, 0x00, 0x00, 0x00,
 766	0x00, 0x00, 0x00, 0x00,
 767	0x00, 0x00, 0x00, 0x00,
 768	0x00, 0x00, 0x00, 0x00,
 769	0x00, 0x00, 0x00, 0x00,
 770	0x00, 0x00, 0x00, 0x00,
 771	0x00, 0x00, 0x00, 0x00,
 772
 773	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 774	0x00, 0x00, 0x00, 0x00,
 775	0x00, 0x00, 0x00, 0x00,
 776	0x50, 0x00, 0x00, 0x00,
 777	0x00, 0x00, 0x00, 0x00,
 778
 779	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 780};
 781
 782ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
 783	{ ICE_MAC_OFOS,		0 },
 784	{ ICE_IPV4_OFOS,	14 },
 785	{ ICE_UDP_OF,		34 },
 786	{ ICE_GTP,		42 },
 787	{ ICE_IPV6_IL,		62 },
 788	{ ICE_UDP_ILOS,		102 },
 789	{ ICE_PROTOCOL_LAST,	0 },
 790};
 791
 792ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
 793	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 794	0x00, 0x00, 0x00, 0x00,
 795	0x00, 0x00, 0x00, 0x00,
 796	0x08, 0x00,
 797
 798	0x45, 0x00, 0x00, 0x60, /* IP 14 */
 799	0x00, 0x00, 0x00, 0x00,
 800	0x00, 0x11, 0x00, 0x00,
 801	0x00, 0x00, 0x00, 0x00,
 802	0x00, 0x00, 0x00, 0x00,
 803
 804	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 805	0x00, 0x4c, 0x00, 0x00,
 806
 807	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
 808	0x00, 0x00, 0x00, 0x00,
 809	0x00, 0x00, 0x00, 0x85,
 810
 811	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 812	0x00, 0x00, 0x00, 0x00,
 813
 814	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 815	0x00, 0x08, 0x11, 0x00,
 816	0x00, 0x00, 0x00, 0x00,
 817	0x00, 0x00, 0x00, 0x00,
 818	0x00, 0x00, 0x00, 0x00,
 819	0x00, 0x00, 0x00, 0x00,
 820	0x00, 0x00, 0x00, 0x00,
 821	0x00, 0x00, 0x00, 0x00,
 822	0x00, 0x00, 0x00, 0x00,
 823	0x00, 0x00, 0x00, 0x00,
 824
 825	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 826	0x00, 0x08, 0x00, 0x00,
 827
 828	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 829};
 830
 831ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
 832	{ ICE_MAC_OFOS,		0 },
 833	{ ICE_IPV6_OFOS,	14 },
 834	{ ICE_UDP_OF,		54 },
 835	{ ICE_GTP,		62 },
 836	{ ICE_IPV4_IL,		82 },
 837	{ ICE_TCP_IL,		102 },
 838	{ ICE_PROTOCOL_LAST,	0 },
 839};
 840
 841ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
 842	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 843	0x00, 0x00, 0x00, 0x00,
 844	0x00, 0x00, 0x00, 0x00,
 845	0x86, 0xdd,
 846
 847	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 848	0x00, 0x44, 0x11, 0x00,
 849	0x00, 0x00, 0x00, 0x00,
 850	0x00, 0x00, 0x00, 0x00,
 851	0x00, 0x00, 0x00, 0x00,
 852	0x00, 0x00, 0x00, 0x00,
 853	0x00, 0x00, 0x00, 0x00,
 854	0x00, 0x00, 0x00, 0x00,
 855	0x00, 0x00, 0x00, 0x00,
 856	0x00, 0x00, 0x00, 0x00,
 857
 858	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 859	0x00, 0x44, 0x00, 0x00,
 860
 861	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
 862	0x00, 0x00, 0x00, 0x00,
 863	0x00, 0x00, 0x00, 0x85,
 864
 865	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 866	0x00, 0x00, 0x00, 0x00,
 867
 868	0x45, 0x00, 0x00, 0x28, /* IP 82 */
 869	0x00, 0x00, 0x00, 0x00,
 870	0x00, 0x06, 0x00, 0x00,
 871	0x00, 0x00, 0x00, 0x00,
 872	0x00, 0x00, 0x00, 0x00,
 873
 874	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 875	0x00, 0x00, 0x00, 0x00,
 876	0x00, 0x00, 0x00, 0x00,
 877	0x50, 0x00, 0x00, 0x00,
 878	0x00, 0x00, 0x00, 0x00,
 879
 880	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 881};
 882
 883ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
 884	{ ICE_MAC_OFOS,		0 },
 885	{ ICE_IPV6_OFOS,	14 },
 886	{ ICE_UDP_OF,		54 },
 887	{ ICE_GTP,		62 },
 888	{ ICE_IPV4_IL,		82 },
 889	{ ICE_UDP_ILOS,		102 },
 890	{ ICE_PROTOCOL_LAST,	0 },
 891};
 892
 893ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
 894	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 895	0x00, 0x00, 0x00, 0x00,
 896	0x00, 0x00, 0x00, 0x00,
 897	0x86, 0xdd,
 898
 899	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 900	0x00, 0x38, 0x11, 0x00,
 901	0x00, 0x00, 0x00, 0x00,
 902	0x00, 0x00, 0x00, 0x00,
 903	0x00, 0x00, 0x00, 0x00,
 904	0x00, 0x00, 0x00, 0x00,
 905	0x00, 0x00, 0x00, 0x00,
 906	0x00, 0x00, 0x00, 0x00,
 907	0x00, 0x00, 0x00, 0x00,
 908	0x00, 0x00, 0x00, 0x00,
 909
 910	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 911	0x00, 0x38, 0x00, 0x00,
 912
 913	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
 914	0x00, 0x00, 0x00, 0x00,
 915	0x00, 0x00, 0x00, 0x85,
 916
 917	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 918	0x00, 0x00, 0x00, 0x00,
 919
 920	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
 921	0x00, 0x00, 0x00, 0x00,
 922	0x00, 0x11, 0x00, 0x00,
 923	0x00, 0x00, 0x00, 0x00,
 924	0x00, 0x00, 0x00, 0x00,
 925
 926	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 927	0x00, 0x08, 0x00, 0x00,
 928
 929	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 930};
 931
 932ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
 933	{ ICE_MAC_OFOS,		0 },
 934	{ ICE_IPV6_OFOS,	14 },
 935	{ ICE_UDP_OF,		54 },
 936	{ ICE_GTP,		62 },
 937	{ ICE_IPV6_IL,		82 },
 938	{ ICE_TCP_IL,		122 },
 939	{ ICE_PROTOCOL_LAST,	0 },
 940};
 941
 942ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
 943	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 944	0x00, 0x00, 0x00, 0x00,
 945	0x00, 0x00, 0x00, 0x00,
 946	0x86, 0xdd,
 947
 948	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 949	0x00, 0x58, 0x11, 0x00,
 950	0x00, 0x00, 0x00, 0x00,
 951	0x00, 0x00, 0x00, 0x00,
 952	0x00, 0x00, 0x00, 0x00,
 953	0x00, 0x00, 0x00, 0x00,
 954	0x00, 0x00, 0x00, 0x00,
 955	0x00, 0x00, 0x00, 0x00,
 956	0x00, 0x00, 0x00, 0x00,
 957	0x00, 0x00, 0x00, 0x00,
 958
 959	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 960	0x00, 0x58, 0x00, 0x00,
 961
 962	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
 963	0x00, 0x00, 0x00, 0x00,
 964	0x00, 0x00, 0x00, 0x85,
 965
 966	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 967	0x00, 0x00, 0x00, 0x00,
 968
 969	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
 970	0x00, 0x14, 0x06, 0x00,
 971	0x00, 0x00, 0x00, 0x00,
 972	0x00, 0x00, 0x00, 0x00,
 973	0x00, 0x00, 0x00, 0x00,
 974	0x00, 0x00, 0x00, 0x00,
 975	0x00, 0x00, 0x00, 0x00,
 976	0x00, 0x00, 0x00, 0x00,
 977	0x00, 0x00, 0x00, 0x00,
 978	0x00, 0x00, 0x00, 0x00,
 979
 980	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
 981	0x00, 0x00, 0x00, 0x00,
 982	0x00, 0x00, 0x00, 0x00,
 983	0x50, 0x00, 0x00, 0x00,
 984	0x00, 0x00, 0x00, 0x00,
 985
 986	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 987};
 988
 989ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
 990	{ ICE_MAC_OFOS,		0 },
 991	{ ICE_IPV6_OFOS,	14 },
 992	{ ICE_UDP_OF,		54 },
 993	{ ICE_GTP,		62 },
 994	{ ICE_IPV6_IL,		82 },
 995	{ ICE_UDP_ILOS,		122 },
 996	{ ICE_PROTOCOL_LAST,	0 },
 997};
 998
 999ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
1000	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1001	0x00, 0x00, 0x00, 0x00,
1002	0x00, 0x00, 0x00, 0x00,
1003	0x86, 0xdd,
1004
1005	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1006	0x00, 0x4c, 0x11, 0x00,
1007	0x00, 0x00, 0x00, 0x00,
1008	0x00, 0x00, 0x00, 0x00,
1009	0x00, 0x00, 0x00, 0x00,
1010	0x00, 0x00, 0x00, 0x00,
1011	0x00, 0x00, 0x00, 0x00,
1012	0x00, 0x00, 0x00, 0x00,
1013	0x00, 0x00, 0x00, 0x00,
1014	0x00, 0x00, 0x00, 0x00,
1015
1016	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1017	0x00, 0x4c, 0x00, 0x00,
1018
1019	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1020	0x00, 0x00, 0x00, 0x00,
1021	0x00, 0x00, 0x00, 0x85,
1022
1023	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1024	0x00, 0x00, 0x00, 0x00,
1025
1026	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1027	0x00, 0x08, 0x11, 0x00,
1028	0x00, 0x00, 0x00, 0x00,
1029	0x00, 0x00, 0x00, 0x00,
1030	0x00, 0x00, 0x00, 0x00,
1031	0x00, 0x00, 0x00, 0x00,
1032	0x00, 0x00, 0x00, 0x00,
1033	0x00, 0x00, 0x00, 0x00,
1034	0x00, 0x00, 0x00, 0x00,
1035	0x00, 0x00, 0x00, 0x00,
1036
1037	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1038	0x00, 0x08, 0x00, 0x00,
1039
1040	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1041};
1042
1043ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1044	{ ICE_MAC_OFOS,		0 },
1045	{ ICE_IPV4_OFOS,	14 },
1046	{ ICE_UDP_OF,		34 },
1047	{ ICE_GTP_NO_PAY,	42 },
1048	{ ICE_PROTOCOL_LAST,	0 },
1049};
1050
1051ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1052	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1053	0x00, 0x00, 0x00, 0x00,
1054	0x00, 0x00, 0x00, 0x00,
1055	0x08, 0x00,
1056
1057	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1058	0x00, 0x00, 0x40, 0x00,
1059	0x40, 0x11, 0x00, 0x00,
1060	0x00, 0x00, 0x00, 0x00,
1061	0x00, 0x00, 0x00, 0x00,
1062
1063	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1064	0x00, 0x00, 0x00, 0x00,
1065
1066	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1067	0x00, 0x00, 0x00, 0x00,
1068	0x00, 0x00, 0x00, 0x85,
1069
1070	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1071	0x00, 0x00, 0x00, 0x00,
1072
1073	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1074	0x00, 0x00, 0x40, 0x00,
1075	0x40, 0x00, 0x00, 0x00,
1076	0x00, 0x00, 0x00, 0x00,
1077	0x00, 0x00, 0x00, 0x00,
1078	0x00, 0x00,
1079};
1080
1081ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1082	{ ICE_MAC_OFOS,		0 },
1083	{ ICE_IPV6_OFOS,	14 },
1084	{ ICE_UDP_OF,		54 },
1085	{ ICE_GTP_NO_PAY,	62 },
1086	{ ICE_PROTOCOL_LAST,	0 },
1087};
1088
1089ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1090	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1091	0x00, 0x00, 0x00, 0x00,
1092	0x00, 0x00, 0x00, 0x00,
1093	0x86, 0xdd,
1094
1095	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1096	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1097	0x00, 0x00, 0x00, 0x00,
1098	0x00, 0x00, 0x00, 0x00,
1099	0x00, 0x00, 0x00, 0x00,
1100	0x00, 0x00, 0x00, 0x00,
1101	0x00, 0x00, 0x00, 0x00,
1102	0x00, 0x00, 0x00, 0x00,
1103	0x00, 0x00, 0x00, 0x00,
1104	0x00, 0x00, 0x00, 0x00,
1105
1106	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1107	0x00, 0x00, 0x00, 0x00,
1108
1109	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1110	0x00, 0x00, 0x00, 0x00,
1111
1112	0x00, 0x00,
1113};
1114
1115ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv4) = {
1116	{ ICE_MAC_OFOS,		0 },
1117	{ ICE_ETYPE_OL,		12 },
1118	{ ICE_IPV4_OFOS,	14 },
1119	{ ICE_UDP_ILOS,		34 },
1120	{ ICE_PFCP,		42 },
1121	{ ICE_PROTOCOL_LAST,	0 },
1122};
1123
1124ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv4) = {
1125	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1126	0x00, 0x00, 0x00, 0x00,
1127	0x00, 0x00, 0x00, 0x00,
1128
1129	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1130
1131	0x45, 0x00, 0x00, 0x2c, /* ICE_IPV4_OFOS 14 */
1132	0x00, 0x01, 0x00, 0x00,
1133	0x00, 0x11, 0x00, 0x00,
1134	0x00, 0x00, 0x00, 0x00,
1135	0x00, 0x00, 0x00, 0x00,
1136
1137	0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 34 */
1138	0x00, 0x18, 0x00, 0x00,
1139
1140	0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 42 */
1141	0x00, 0x00, 0x00, 0x00,
1142	0x00, 0x00, 0x00, 0x00,
1143	0x00, 0x00, 0x00, 0x00,
1144
1145	0x00, 0x00,		/* 2 bytes for 4 byte alignment */
1146};
1147
1148ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv6) = {
1149	{ ICE_MAC_OFOS,		0 },
1150	{ ICE_ETYPE_OL,		12 },
1151	{ ICE_IPV6_OFOS,	14 },
1152	{ ICE_UDP_ILOS,		54 },
1153	{ ICE_PFCP,		62 },
1154	{ ICE_PROTOCOL_LAST,	0 },
1155};
1156
1157ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv6) = {
1158	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1159	0x00, 0x00, 0x00, 0x00,
1160	0x00, 0x00, 0x00, 0x00,
1161
1162	0x86, 0xdd,		/* ICE_ETYPE_OL 12 */
1163
1164	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1165	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
1166	0x00, 0x00, 0x00, 0x00,
1167	0x00, 0x00, 0x00, 0x00,
1168	0x00, 0x00, 0x00, 0x00,
1169	0x00, 0x00, 0x00, 0x00,
1170	0x00, 0x00, 0x00, 0x00,
1171	0x00, 0x00, 0x00, 0x00,
1172	0x00, 0x00, 0x00, 0x00,
1173	0x00, 0x00, 0x00, 0x00,
1174
1175	0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 54 */
1176	0x00, 0x18, 0x00, 0x00,
1177
1178	0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 62 */
1179	0x00, 0x00, 0x00, 0x00,
1180	0x00, 0x00, 0x00, 0x00,
1181	0x00, 0x00, 0x00, 0x00,
1182
1183	0x00, 0x00,		/* 2 bytes for 4 byte alignment */
1184};
1185
1186ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1187	{ ICE_MAC_OFOS,		0 },
1188	{ ICE_ETYPE_OL,		12 },
1189	{ ICE_PPPOE,		14 },
1190	{ ICE_IPV4_OFOS,	22 },
1191	{ ICE_TCP_IL,		42 },
1192	{ ICE_PROTOCOL_LAST,	0 },
1193};
1194
1195ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1196	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1197	0x00, 0x00, 0x00, 0x00,
1198	0x00, 0x00, 0x00, 0x00,
1199
1200	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1201
1202	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1203	0x00, 0x16,
1204
1205	0x00, 0x21,		/* PPP Link Layer 20 */
1206
1207	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1208	0x00, 0x01, 0x00, 0x00,
1209	0x00, 0x06, 0x00, 0x00,
1210	0x00, 0x00, 0x00, 0x00,
1211	0x00, 0x00, 0x00, 0x00,
1212
1213	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1214	0x00, 0x00, 0x00, 0x00,
1215	0x00, 0x00, 0x00, 0x00,
1216	0x50, 0x00, 0x00, 0x00,
1217	0x00, 0x00, 0x00, 0x00,
1218
1219	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1220};
1221
1222ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1223	{ ICE_MAC_OFOS,		0 },
1224	{ ICE_ETYPE_OL,		12 },
1225	{ ICE_PPPOE,		14 },
1226	{ ICE_IPV4_OFOS,	22 },
1227	{ ICE_UDP_ILOS,		42 },
1228	{ ICE_PROTOCOL_LAST,	0 },
1229};
1230
1231ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1232	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1233	0x00, 0x00, 0x00, 0x00,
1234	0x00, 0x00, 0x00, 0x00,
1235
1236	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1237
1238	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1239	0x00, 0x16,
1240
1241	0x00, 0x21,		/* PPP Link Layer 20 */
1242
1243	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1244	0x00, 0x01, 0x00, 0x00,
1245	0x00, 0x11, 0x00, 0x00,
1246	0x00, 0x00, 0x00, 0x00,
1247	0x00, 0x00, 0x00, 0x00,
1248
1249	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1250	0x00, 0x08, 0x00, 0x00,
1251
1252	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1253};
1254
1255ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1256	{ ICE_MAC_OFOS,		0 },
1257	{ ICE_ETYPE_OL,		12 },
1258	{ ICE_PPPOE,		14 },
1259	{ ICE_IPV6_OFOS,	22 },
1260	{ ICE_TCP_IL,		62 },
1261	{ ICE_PROTOCOL_LAST,	0 },
1262};
1263
1264ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1265	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1266	0x00, 0x00, 0x00, 0x00,
1267	0x00, 0x00, 0x00, 0x00,
1268
1269	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1270
1271	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1272	0x00, 0x2a,
1273
1274	0x00, 0x57,		/* PPP Link Layer 20 */
1275
1276	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1277	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1278	0x00, 0x00, 0x00, 0x00,
1279	0x00, 0x00, 0x00, 0x00,
1280	0x00, 0x00, 0x00, 0x00,
1281	0x00, 0x00, 0x00, 0x00,
1282	0x00, 0x00, 0x00, 0x00,
1283	0x00, 0x00, 0x00, 0x00,
1284	0x00, 0x00, 0x00, 0x00,
1285	0x00, 0x00, 0x00, 0x00,
1286
1287	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1288	0x00, 0x00, 0x00, 0x00,
1289	0x00, 0x00, 0x00, 0x00,
1290	0x50, 0x00, 0x00, 0x00,
1291	0x00, 0x00, 0x00, 0x00,
1292
1293	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1294};
1295
1296ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1297	{ ICE_MAC_OFOS,		0 },
1298	{ ICE_ETYPE_OL,		12 },
1299	{ ICE_PPPOE,		14 },
1300	{ ICE_IPV6_OFOS,	22 },
1301	{ ICE_UDP_ILOS,		62 },
1302	{ ICE_PROTOCOL_LAST,	0 },
1303};
1304
1305ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1306	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1307	0x00, 0x00, 0x00, 0x00,
1308	0x00, 0x00, 0x00, 0x00,
1309
1310	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1311
1312	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1313	0x00, 0x2a,
1314
1315	0x00, 0x57,		/* PPP Link Layer 20 */
1316
1317	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1318	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1319	0x00, 0x00, 0x00, 0x00,
1320	0x00, 0x00, 0x00, 0x00,
1321	0x00, 0x00, 0x00, 0x00,
1322	0x00, 0x00, 0x00, 0x00,
1323	0x00, 0x00, 0x00, 0x00,
1324	0x00, 0x00, 0x00, 0x00,
1325	0x00, 0x00, 0x00, 0x00,
1326	0x00, 0x00, 0x00, 0x00,
1327
1328	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1329	0x00, 0x08, 0x00, 0x00,
1330
1331	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1332};
1333
1334ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1335	{ ICE_MAC_OFOS,		0 },
1336	{ ICE_ETYPE_OL,		12 },
1337	{ ICE_IPV4_OFOS,	14 },
1338	{ ICE_L2TPV3,		34 },
1339	{ ICE_PROTOCOL_LAST,	0 },
1340};
1341
1342ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1343	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1344	0x00, 0x00, 0x00, 0x00,
1345	0x00, 0x00, 0x00, 0x00,
1346
1347	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1348
1349	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1350	0x00, 0x00, 0x40, 0x00,
1351	0x40, 0x73, 0x00, 0x00,
1352	0x00, 0x00, 0x00, 0x00,
1353	0x00, 0x00, 0x00, 0x00,
1354
1355	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1356	0x00, 0x00, 0x00, 0x00,
1357	0x00, 0x00, 0x00, 0x00,
1358	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1359};
1360
1361ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1362	{ ICE_MAC_OFOS,		0 },
1363	{ ICE_ETYPE_OL,		12 },
1364	{ ICE_IPV6_OFOS,	14 },
1365	{ ICE_L2TPV3,		54 },
1366	{ ICE_PROTOCOL_LAST,	0 },
1367};
1368
1369ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1370	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1371	0x00, 0x00, 0x00, 0x00,
1372	0x00, 0x00, 0x00, 0x00,
1373
1374	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1375
1376	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1377	0x00, 0x0c, 0x73, 0x40,
1378	0x00, 0x00, 0x00, 0x00,
1379	0x00, 0x00, 0x00, 0x00,
1380	0x00, 0x00, 0x00, 0x00,
1381	0x00, 0x00, 0x00, 0x00,
1382	0x00, 0x00, 0x00, 0x00,
1383	0x00, 0x00, 0x00, 0x00,
1384	0x00, 0x00, 0x00, 0x00,
1385	0x00, 0x00, 0x00, 0x00,
1386
1387	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1388	0x00, 0x00, 0x00, 0x00,
1389	0x00, 0x00, 0x00, 0x00,
1390	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1391};
1392
1393static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1394	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1395				  ICE_PKT_GTP_NOPAY),
1396	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1397					    ICE_PKT_OUTER_IPV6 |
1398					    ICE_PKT_INNER_IPV6 |
1399					    ICE_PKT_INNER_UDP),
1400	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1401					    ICE_PKT_OUTER_IPV6 |
1402					    ICE_PKT_INNER_IPV6),
1403	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1404					    ICE_PKT_OUTER_IPV6 |
1405					    ICE_PKT_INNER_UDP),
1406	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1407					    ICE_PKT_OUTER_IPV6),
1408	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1409	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1410					    ICE_PKT_INNER_IPV6 |
1411					    ICE_PKT_INNER_UDP),
1412	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1413					    ICE_PKT_INNER_IPV6),
1414	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1415					    ICE_PKT_INNER_UDP),
1416	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1417	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1418	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1419	ICE_PKT_PROFILE(pfcp_session_ipv6, ICE_PKT_PFCP | ICE_PKT_OUTER_IPV6),
1420	ICE_PKT_PROFILE(pfcp_session_ipv4, ICE_PKT_PFCP),
1421	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1422					ICE_PKT_INNER_UDP),
1423	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1424	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1425	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1426	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1427				      ICE_PKT_INNER_TCP),
1428	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1429	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1430	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1431	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1432					  ICE_PKT_INNER_IPV6 |
1433					  ICE_PKT_INNER_TCP),
1434	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1435	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1436	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1437	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1438					  ICE_PKT_INNER_IPV6),
1439	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1440	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1441	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1442	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1443	ICE_PKT_PROFILE(tcp, 0),
1444};
1445
1446/* this is a recipe to profile association bitmap */
1447static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1448			  ICE_MAX_NUM_PROFILES);
1449
1450/* this is a profile to recipe association bitmap */
1451static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1452			  ICE_MAX_NUM_RECIPES);
1453
1454/**
1455 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1456 * @hw: pointer to the HW struct
1457 *
1458 * Allocate memory for the entire recipe table and initialize the structures/
1459 * entries corresponding to basic recipes.
1460 */
1461int ice_init_def_sw_recp(struct ice_hw *hw)
1462{
1463	struct ice_sw_recipe *recps;
1464	u8 i;
1465
1466	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1467			     sizeof(*recps), GFP_KERNEL);
1468	if (!recps)
1469		return -ENOMEM;
1470
1471	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1472		recps[i].root_rid = i;
1473		INIT_LIST_HEAD(&recps[i].filt_rules);
1474		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
 
1475		mutex_init(&recps[i].filt_rule_lock);
1476	}
1477
1478	hw->switch_info->recp_list = recps;
1479
1480	return 0;
1481}
1482
1483/**
1484 * ice_aq_get_sw_cfg - get switch configuration
1485 * @hw: pointer to the hardware structure
1486 * @buf: pointer to the result buffer
1487 * @buf_size: length of the buffer available for response
1488 * @req_desc: pointer to requested descriptor
1489 * @num_elems: pointer to number of elements
1490 * @cd: pointer to command details structure or NULL
1491 *
1492 * Get switch configuration (0x0200) to be placed in buf.
1493 * This admin command returns information such as initial VSI/port number
1494 * and switch ID it belongs to.
1495 *
1496 * NOTE: *req_desc is both an input/output parameter.
1497 * The caller of this function first calls this function with *request_desc set
1498 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1499 * configuration information has been returned; if non-zero (meaning not all
1500 * the information was returned), the caller should call this function again
1501 * with *req_desc set to the previous value returned by f/w to get the
1502 * next block of switch configuration information.
1503 *
1504 * *num_elems is output only parameter. This reflects the number of elements
1505 * in response buffer. The caller of this function to use *num_elems while
1506 * parsing the response buffer.
1507 */
1508static int
1509ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1510		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1511		  struct ice_sq_cd *cd)
1512{
1513	struct ice_aqc_get_sw_cfg *cmd;
1514	struct ice_aq_desc desc;
1515	int status;
1516
1517	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1518	cmd = &desc.params.get_sw_conf;
1519	cmd->element = cpu_to_le16(*req_desc);
1520
1521	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1522	if (!status) {
1523		*req_desc = le16_to_cpu(cmd->element);
1524		*num_elems = le16_to_cpu(cmd->num_elems);
1525	}
1526
1527	return status;
1528}
1529
1530/**
1531 * ice_aq_add_vsi
1532 * @hw: pointer to the HW struct
1533 * @vsi_ctx: pointer to a VSI context struct
1534 * @cd: pointer to command details structure or NULL
1535 *
1536 * Add a VSI context to the hardware (0x0210)
1537 */
1538static int
1539ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1540	       struct ice_sq_cd *cd)
1541{
1542	struct ice_aqc_add_update_free_vsi_resp *res;
1543	struct ice_aqc_add_get_update_free_vsi *cmd;
1544	struct ice_aq_desc desc;
1545	int status;
1546
1547	cmd = &desc.params.vsi_cmd;
1548	res = &desc.params.add_update_free_vsi_res;
1549
1550	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1551
1552	if (!vsi_ctx->alloc_from_pool)
1553		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1554					   ICE_AQ_VSI_IS_VALID);
1555	cmd->vf_id = vsi_ctx->vf_num;
1556
1557	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1558
1559	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562				 sizeof(vsi_ctx->info), cd);
1563
1564	if (!status) {
1565		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1566		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1567		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1568	}
1569
1570	return status;
1571}
1572
1573/**
1574 * ice_aq_free_vsi
1575 * @hw: pointer to the HW struct
1576 * @vsi_ctx: pointer to a VSI context struct
1577 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1578 * @cd: pointer to command details structure or NULL
1579 *
1580 * Free VSI context info from hardware (0x0213)
1581 */
1582static int
1583ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1584		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1585{
1586	struct ice_aqc_add_update_free_vsi_resp *resp;
1587	struct ice_aqc_add_get_update_free_vsi *cmd;
1588	struct ice_aq_desc desc;
1589	int status;
1590
1591	cmd = &desc.params.vsi_cmd;
1592	resp = &desc.params.add_update_free_vsi_res;
1593
1594	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1595
1596	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1597	if (keep_vsi_alloc)
1598		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1599
1600	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1601	if (!status) {
1602		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1603		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1604	}
1605
1606	return status;
1607}
1608
1609/**
1610 * ice_aq_update_vsi
1611 * @hw: pointer to the HW struct
1612 * @vsi_ctx: pointer to a VSI context struct
1613 * @cd: pointer to command details structure or NULL
1614 *
1615 * Update VSI context in the hardware (0x0211)
1616 */
1617static int
1618ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1619		  struct ice_sq_cd *cd)
1620{
1621	struct ice_aqc_add_update_free_vsi_resp *resp;
1622	struct ice_aqc_add_get_update_free_vsi *cmd;
1623	struct ice_aq_desc desc;
1624	int status;
1625
1626	cmd = &desc.params.vsi_cmd;
1627	resp = &desc.params.add_update_free_vsi_res;
1628
1629	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1630
1631	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1632
1633	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1634
1635	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1636				 sizeof(vsi_ctx->info), cd);
1637
1638	if (!status) {
1639		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1640		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1641	}
1642
1643	return status;
1644}
1645
1646/**
1647 * ice_is_vsi_valid - check whether the VSI is valid or not
1648 * @hw: pointer to the HW struct
1649 * @vsi_handle: VSI handle
1650 *
1651 * check whether the VSI is valid or not
1652 */
1653bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1654{
1655	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1656}
1657
1658/**
1659 * ice_get_hw_vsi_num - return the HW VSI number
1660 * @hw: pointer to the HW struct
1661 * @vsi_handle: VSI handle
1662 *
1663 * return the HW VSI number
1664 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1665 */
1666u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1667{
1668	return hw->vsi_ctx[vsi_handle]->vsi_num;
1669}
1670
1671/**
1672 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1673 * @hw: pointer to the HW struct
1674 * @vsi_handle: VSI handle
1675 *
1676 * return the VSI context entry for a given VSI handle
1677 */
1678struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1679{
1680	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1681}
1682
1683/**
1684 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1685 * @hw: pointer to the HW struct
1686 * @vsi_handle: VSI handle
1687 * @vsi: VSI context pointer
1688 *
1689 * save the VSI context entry for a given VSI handle
1690 */
1691static void
1692ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1693{
1694	hw->vsi_ctx[vsi_handle] = vsi;
1695}
1696
1697/**
1698 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1699 * @hw: pointer to the HW struct
1700 * @vsi_handle: VSI handle
1701 */
1702static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1703{
1704	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1705	u8 i;
1706
1707	if (!vsi)
1708		return;
1709	ice_for_each_traffic_class(i) {
1710		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1711		vsi->lan_q_ctx[i] = NULL;
1712		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1713		vsi->rdma_q_ctx[i] = NULL;
1714	}
1715}
1716
1717/**
1718 * ice_clear_vsi_ctx - clear the VSI context entry
1719 * @hw: pointer to the HW struct
1720 * @vsi_handle: VSI handle
1721 *
1722 * clear the VSI context entry
1723 */
1724static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1725{
1726	struct ice_vsi_ctx *vsi;
1727
1728	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1729	if (vsi) {
1730		ice_clear_vsi_q_ctx(hw, vsi_handle);
1731		devm_kfree(ice_hw_to_dev(hw), vsi);
1732		hw->vsi_ctx[vsi_handle] = NULL;
1733	}
1734}
1735
1736/**
1737 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1738 * @hw: pointer to the HW struct
1739 */
1740void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1741{
1742	u16 i;
1743
1744	for (i = 0; i < ICE_MAX_VSI; i++)
1745		ice_clear_vsi_ctx(hw, i);
1746}
1747
1748/**
1749 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1750 * @hw: pointer to the HW struct
1751 * @vsi_handle: unique VSI handle provided by drivers
1752 * @vsi_ctx: pointer to a VSI context struct
1753 * @cd: pointer to command details structure or NULL
1754 *
1755 * Add a VSI context to the hardware also add it into the VSI handle list.
1756 * If this function gets called after reset for existing VSIs then update
1757 * with the new HW VSI number in the corresponding VSI handle list entry.
1758 */
1759int
1760ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1761	    struct ice_sq_cd *cd)
1762{
1763	struct ice_vsi_ctx *tmp_vsi_ctx;
1764	int status;
1765
1766	if (vsi_handle >= ICE_MAX_VSI)
1767		return -EINVAL;
1768	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1769	if (status)
1770		return status;
1771	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1772	if (!tmp_vsi_ctx) {
1773		/* Create a new VSI context */
1774		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1775					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1776		if (!tmp_vsi_ctx) {
1777			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1778			return -ENOMEM;
1779		}
1780		*tmp_vsi_ctx = *vsi_ctx;
1781		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1782	} else {
1783		/* update with new HW VSI num */
1784		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1785	}
1786
1787	return 0;
1788}
1789
1790/**
1791 * ice_free_vsi- free VSI context from hardware and VSI handle list
1792 * @hw: pointer to the HW struct
1793 * @vsi_handle: unique VSI handle
1794 * @vsi_ctx: pointer to a VSI context struct
1795 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1796 * @cd: pointer to command details structure or NULL
1797 *
1798 * Free VSI context info from hardware as well as from VSI handle list
1799 */
1800int
1801ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1802	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1803{
1804	int status;
1805
1806	if (!ice_is_vsi_valid(hw, vsi_handle))
1807		return -EINVAL;
1808	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1809	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1810	if (!status)
1811		ice_clear_vsi_ctx(hw, vsi_handle);
1812	return status;
1813}
1814
1815/**
1816 * ice_update_vsi
1817 * @hw: pointer to the HW struct
1818 * @vsi_handle: unique VSI handle
1819 * @vsi_ctx: pointer to a VSI context struct
1820 * @cd: pointer to command details structure or NULL
1821 *
1822 * Update VSI context in the hardware
1823 */
1824int
1825ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1826	       struct ice_sq_cd *cd)
1827{
1828	if (!ice_is_vsi_valid(hw, vsi_handle))
1829		return -EINVAL;
1830	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1831	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1832}
1833
1834/**
1835 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1836 * @hw: pointer to HW struct
1837 * @vsi_handle: VSI SW index
1838 * @enable: boolean for enable/disable
1839 */
1840int
1841ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1842{
1843	struct ice_vsi_ctx *ctx, *cached_ctx;
1844	int status;
1845
1846	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1847	if (!cached_ctx)
1848		return -ENOENT;
1849
1850	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1851	if (!ctx)
1852		return -ENOMEM;
1853
1854	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1855	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1856	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1857
1858	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1859
1860	if (enable)
1861		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1862	else
1863		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1864
1865	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1866	if (!status) {
1867		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1868		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1869	}
1870
1871	kfree(ctx);
1872	return status;
1873}
1874
1875/**
1876 * ice_aq_alloc_free_vsi_list
1877 * @hw: pointer to the HW struct
1878 * @vsi_list_id: VSI list ID returned or used for lookup
1879 * @lkup_type: switch rule filter lookup type
1880 * @opc: switch rules population command type - pass in the command opcode
1881 *
1882 * allocates or free a VSI list resource
1883 */
1884static int
1885ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1886			   enum ice_sw_lkup_type lkup_type,
1887			   enum ice_adminq_opc opc)
1888{
1889	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1890	u16 buf_len = __struct_size(sw_buf);
1891	struct ice_aqc_res_elem *vsi_ele;
1892	int status;
1893
1894	sw_buf->num_elems = cpu_to_le16(1);
1895
1896	if (lkup_type == ICE_SW_LKUP_MAC ||
1897	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1898	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1899	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1900	    lkup_type == ICE_SW_LKUP_PROMISC ||
1901	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1902	    lkup_type == ICE_SW_LKUP_DFLT ||
1903	    lkup_type == ICE_SW_LKUP_LAST) {
1904		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1905	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1906		if (opc == ice_aqc_opc_alloc_res)
1907			sw_buf->res_type =
1908				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1909					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1910		else
1911			sw_buf->res_type =
1912				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1913	} else {
1914		return -EINVAL;
1915	}
1916
1917	if (opc == ice_aqc_opc_free_res)
1918		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1919
1920	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1921	if (status)
1922		return status;
1923
1924	if (opc == ice_aqc_opc_alloc_res) {
1925		vsi_ele = &sw_buf->elem[0];
1926		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1927	}
1928
1929	return 0;
1930}
1931
1932/**
1933 * ice_aq_sw_rules - add/update/remove switch rules
1934 * @hw: pointer to the HW struct
1935 * @rule_list: pointer to switch rule population list
1936 * @rule_list_sz: total size of the rule list in bytes
1937 * @num_rules: number of switch rules in the rule_list
1938 * @opc: switch rules population command type - pass in the command opcode
1939 * @cd: pointer to command details structure or NULL
1940 *
1941 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1942 */
1943int
1944ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1945		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1946{
1947	struct ice_aq_desc desc;
1948	int status;
1949
1950	if (opc != ice_aqc_opc_add_sw_rules &&
1951	    opc != ice_aqc_opc_update_sw_rules &&
1952	    opc != ice_aqc_opc_remove_sw_rules)
1953		return -EINVAL;
1954
1955	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1956
1957	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1958	desc.params.sw_rules.num_rules_fltr_entry_index =
1959		cpu_to_le16(num_rules);
1960	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1961	if (opc != ice_aqc_opc_add_sw_rules &&
1962	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1963		status = -ENOENT;
1964
1965	if (!status) {
1966		if (opc == ice_aqc_opc_add_sw_rules)
1967			hw->switch_info->rule_cnt += num_rules;
1968		else if (opc == ice_aqc_opc_remove_sw_rules)
1969			hw->switch_info->rule_cnt -= num_rules;
1970	}
1971
1972	trace_ice_aq_sw_rules(hw->switch_info);
1973
1974	return status;
1975}
1976
1977/**
1978 * ice_aq_add_recipe - add switch recipe
1979 * @hw: pointer to the HW struct
1980 * @s_recipe_list: pointer to switch rule population list
1981 * @num_recipes: number of switch recipes in the list
1982 * @cd: pointer to command details structure or NULL
1983 *
1984 * Add(0x0290)
1985 */
1986int
1987ice_aq_add_recipe(struct ice_hw *hw,
1988		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1989		  u16 num_recipes, struct ice_sq_cd *cd)
1990{
1991	struct ice_aqc_add_get_recipe *cmd;
1992	struct ice_aq_desc desc;
1993	u16 buf_size;
1994
1995	cmd = &desc.params.add_get_recipe;
1996	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1997
1998	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1999	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2000
2001	buf_size = num_recipes * sizeof(*s_recipe_list);
2002
2003	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2004}
2005
2006/**
2007 * ice_aq_get_recipe - get switch recipe
2008 * @hw: pointer to the HW struct
2009 * @s_recipe_list: pointer to switch rule population list
2010 * @num_recipes: pointer to the number of recipes (input and output)
2011 * @recipe_root: root recipe number of recipe(s) to retrieve
2012 * @cd: pointer to command details structure or NULL
2013 *
2014 * Get(0x0292)
2015 *
2016 * On input, *num_recipes should equal the number of entries in s_recipe_list.
2017 * On output, *num_recipes will equal the number of entries returned in
2018 * s_recipe_list.
2019 *
2020 * The caller must supply enough space in s_recipe_list to hold all possible
2021 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
2022 */
2023int
2024ice_aq_get_recipe(struct ice_hw *hw,
2025		  struct ice_aqc_recipe_data_elem *s_recipe_list,
2026		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
2027{
2028	struct ice_aqc_add_get_recipe *cmd;
2029	struct ice_aq_desc desc;
2030	u16 buf_size;
2031	int status;
2032
2033	if (*num_recipes != ICE_MAX_NUM_RECIPES)
2034		return -EINVAL;
2035
2036	cmd = &desc.params.add_get_recipe;
2037	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
2038
2039	cmd->return_index = cpu_to_le16(recipe_root);
2040	cmd->num_sub_recipes = 0;
2041
2042	buf_size = *num_recipes * sizeof(*s_recipe_list);
2043
2044	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2045	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
2046
2047	return status;
2048}
2049
2050/**
2051 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
2052 * @hw: pointer to the HW struct
2053 * @params: parameters used to update the default recipe
2054 *
2055 * This function only supports updating default recipes and it only supports
2056 * updating a single recipe based on the lkup_idx at a time.
2057 *
2058 * This is done as a read-modify-write operation. First, get the current recipe
2059 * contents based on the recipe's ID. Then modify the field vector index and
2060 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
2061 * the pre-existing recipe with the modifications.
2062 */
2063int
2064ice_update_recipe_lkup_idx(struct ice_hw *hw,
2065			   struct ice_update_recipe_lkup_idx_params *params)
2066{
2067	struct ice_aqc_recipe_data_elem *rcp_list;
2068	u16 num_recps = ICE_MAX_NUM_RECIPES;
2069	int status;
2070
2071	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
2072	if (!rcp_list)
2073		return -ENOMEM;
2074
2075	/* read current recipe list from firmware */
2076	rcp_list->recipe_indx = params->rid;
2077	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
2078	if (status) {
2079		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
2080			  params->rid, status);
2081		goto error_out;
2082	}
2083
2084	/* only modify existing recipe's lkup_idx and mask if valid, while
2085	 * leaving all other fields the same, then update the recipe firmware
2086	 */
2087	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2088	if (params->mask_valid)
2089		rcp_list->content.mask[params->lkup_idx] =
2090			cpu_to_le16(params->mask);
2091
2092	if (params->ignore_valid)
2093		rcp_list->content.lkup_indx[params->lkup_idx] |=
2094			ICE_AQ_RECIPE_LKUP_IGNORE;
2095
2096	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2097	if (status)
2098		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2099			  params->rid, params->lkup_idx, params->fv_idx,
2100			  params->mask, params->mask_valid ? "true" : "false",
2101			  status);
2102
2103error_out:
2104	kfree(rcp_list);
2105	return status;
2106}
2107
2108/**
2109 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2110 * @hw: pointer to the HW struct
2111 * @profile_id: package profile ID to associate the recipe with
2112 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2113 * @cd: pointer to command details structure or NULL
2114 * Recipe to profile association (0x0291)
2115 */
2116int
2117ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2118			     struct ice_sq_cd *cd)
2119{
2120	struct ice_aqc_recipe_to_profile *cmd;
2121	struct ice_aq_desc desc;
2122
2123	cmd = &desc.params.recipe_to_profile;
2124	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2125	cmd->profile_id = cpu_to_le16(profile_id);
2126	/* Set the recipe ID bit in the bitmask to let the device know which
2127	 * profile we are associating the recipe to
2128	 */
2129	cmd->recipe_assoc = cpu_to_le64(r_assoc);
2130
2131	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2132}
2133
2134/**
2135 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2136 * @hw: pointer to the HW struct
2137 * @profile_id: package profile ID to associate the recipe with
2138 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2139 * @cd: pointer to command details structure or NULL
2140 * Associate profile ID with given recipe (0x0293)
2141 */
2142int
2143ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2144			     struct ice_sq_cd *cd)
2145{
2146	struct ice_aqc_recipe_to_profile *cmd;
2147	struct ice_aq_desc desc;
2148	int status;
2149
2150	cmd = &desc.params.recipe_to_profile;
2151	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2152	cmd->profile_id = cpu_to_le16(profile_id);
2153
2154	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2155	if (!status)
2156		*r_assoc = le64_to_cpu(cmd->recipe_assoc);
2157
2158	return status;
2159}
2160
2161/**
2162 * ice_init_chk_recipe_reuse_support - check if recipe reuse is supported
2163 * @hw: pointer to the hardware structure
2164 */
2165void ice_init_chk_recipe_reuse_support(struct ice_hw *hw)
2166{
2167	struct ice_nvm_info *nvm = &hw->flash.nvm;
2168
2169	hw->recp_reuse = (nvm->major == 0x4 && nvm->minor >= 0x30) ||
2170			 nvm->major > 0x4;
2171}
2172
2173/**
2174 * ice_alloc_recipe - add recipe resource
2175 * @hw: pointer to the hardware structure
2176 * @rid: recipe ID returned as response to AQ call
2177 */
2178int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2179{
2180	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2181	u16 buf_len = __struct_size(sw_buf);
2182	u16 res_type;
2183	int status;
2184
2185	sw_buf->num_elems = cpu_to_le16(1);
2186	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE);
2187	if (hw->recp_reuse)
2188		res_type |= ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED;
2189	else
2190		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
2191	sw_buf->res_type = cpu_to_le16(res_type);
2192	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2193				       ice_aqc_opc_alloc_res);
2194	if (!status) {
2195		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2196		hw->switch_info->recp_cnt++;
2197	}
2198
2199	return status;
2200}
2201
2202/**
2203 * ice_free_recipe_res - free recipe resource
2204 * @hw: pointer to the hardware structure
2205 * @rid: recipe ID to free
2206 *
2207 * Return: 0 on success, and others on error
2208 */
2209static int ice_free_recipe_res(struct ice_hw *hw, u16 rid)
2210{
2211	int status;
2212
2213	status = ice_free_hw_res(hw, ICE_AQC_RES_TYPE_RECIPE, 1, &rid);
2214	if (!status)
2215		hw->switch_info->recp_cnt--;
2216
2217	return status;
2218}
2219
2220/**
2221 * ice_release_recipe_res - disassociate and free recipe resource
2222 * @hw: pointer to the hardware structure
2223 * @recp: the recipe struct resource to unassociate and free
2224 *
2225 * Return: 0 on success, and others on error
2226 */
2227static int ice_release_recipe_res(struct ice_hw *hw,
2228				  struct ice_sw_recipe *recp)
2229{
2230	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2231	struct ice_switch_info *sw = hw->switch_info;
2232	u64 recp_assoc;
2233	u32 rid, prof;
2234	int status;
2235
2236	for_each_set_bit(rid, recp->r_bitmap, ICE_MAX_NUM_RECIPES) {
2237		for_each_set_bit(prof, recipe_to_profile[rid],
2238				 ICE_MAX_NUM_PROFILES) {
2239			status = ice_aq_get_recipe_to_profile(hw, prof,
2240							      &recp_assoc,
2241							      NULL);
2242			if (status)
2243				return status;
2244
2245			bitmap_from_arr64(r_bitmap, &recp_assoc,
2246					  ICE_MAX_NUM_RECIPES);
2247			bitmap_andnot(r_bitmap, r_bitmap, recp->r_bitmap,
2248				      ICE_MAX_NUM_RECIPES);
2249			bitmap_to_arr64(&recp_assoc, r_bitmap,
2250					ICE_MAX_NUM_RECIPES);
2251			ice_aq_map_recipe_to_profile(hw, prof,
2252						     recp_assoc, NULL);
2253
2254			clear_bit(rid, profile_to_recipe[prof]);
2255			clear_bit(prof, recipe_to_profile[rid]);
2256		}
2257
2258		status = ice_free_recipe_res(hw, rid);
2259		if (status)
2260			return status;
2261
2262		sw->recp_list[rid].recp_created = false;
2263		sw->recp_list[rid].adv_rule = false;
2264		memset(&sw->recp_list[rid].lkup_exts, 0,
2265		       sizeof(sw->recp_list[rid].lkup_exts));
2266		clear_bit(rid, recp->r_bitmap);
2267	}
2268
2269	return 0;
2270}
2271
2272/**
2273 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2274 * @hw: pointer to hardware structure
2275 *
2276 * This function is used to populate recipe_to_profile matrix where index to
2277 * this array is the recipe ID and the element is the mapping of which profiles
2278 * is this recipe mapped to.
2279 */
2280static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2281{
2282	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2283	u64 recp_assoc;
2284	u16 i;
2285
2286	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2287		u16 j;
2288
2289		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2290		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2291		if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2292			continue;
2293		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2294		bitmap_copy(profile_to_recipe[i], r_bitmap,
2295			    ICE_MAX_NUM_RECIPES);
2296		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2297			set_bit(i, recipe_to_profile[j]);
2298	}
2299}
2300
2301/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2303 * @hw: pointer to hardware structure
2304 * @recps: struct that we need to populate
2305 * @rid: recipe ID that we are populating
2306 * @refresh_required: true if we should get recipe to profile mapping from FW
2307 * @is_add: flag of adding recipe
2308 *
2309 * This function is used to populate all the necessary entries into our
2310 * bookkeeping so that we have a current list of all the recipes that are
2311 * programmed in the firmware.
2312 */
2313static int
2314ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2315		    bool *refresh_required, bool is_add)
2316{
2317	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2318	struct ice_aqc_recipe_data_elem *tmp;
2319	u16 num_recps = ICE_MAX_NUM_RECIPES;
2320	struct ice_prot_lkup_ext *lkup_exts;
2321	u8 fv_word_idx = 0;
2322	u16 sub_recps;
2323	int status;
2324
2325	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2326
2327	/* we need a buffer big enough to accommodate all the recipes */
2328	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2329	if (!tmp)
2330		return -ENOMEM;
2331
2332	tmp[0].recipe_indx = rid;
2333	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2334	/* non-zero status meaning recipe doesn't exist */
2335	if (status)
2336		goto err_unroll;
2337
2338	/* Get recipe to profile map so that we can get the fv from lkups that
2339	 * we read for a recipe from FW. Since we want to minimize the number of
2340	 * times we make this FW call, just make one call and cache the copy
2341	 * until a new recipe is added. This operation is only required the
2342	 * first time to get the changes from FW. Then to search existing
2343	 * entries we don't need to update the cache again until another recipe
2344	 * gets added.
2345	 */
2346	if (*refresh_required) {
2347		ice_get_recp_to_prof_map(hw);
2348		*refresh_required = false;
2349	}
2350
2351	/* Start populating all the entries for recps[rid] based on lkups from
2352	 * firmware. Note that we are only creating the root recipe in our
2353	 * database.
2354	 */
2355	lkup_exts = &recps[rid].lkup_exts;
2356
2357	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2358		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
 
2359		u8 i, prof, idx, prot = 0;
2360		bool is_root;
2361		u16 off = 0;
2362
 
 
 
 
 
 
 
2363		idx = root_bufs.recipe_indx;
2364		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2365
2366		/* Mark all result indices in this chain */
2367		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2368			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2369				result_bm);
2370
2371		/* get the first profile that is associated with rid */
2372		prof = find_first_bit(recipe_to_profile[idx],
2373				      ICE_MAX_NUM_PROFILES);
2374		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2375			u8 lkup_indx = root_bufs.content.lkup_indx[i];
2376			u16 lkup_mask = le16_to_cpu(root_bufs.content.mask[i]);
 
 
 
2377
2378			/* If the recipe is a chained recipe then all its
2379			 * child recipe's result will have a result index.
2380			 * To fill fv_words we should not use those result
2381			 * index, we only need the protocol ids and offsets.
2382			 * We will skip all the fv_idx which stores result
2383			 * index in them. We also need to skip any fv_idx which
2384			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2385			 * valid offset value.
2386			 */
2387			if (!lkup_indx ||
2388			    (lkup_indx & ICE_AQ_RECIPE_LKUP_IGNORE) ||
2389			    test_bit(lkup_indx,
2390				     hw->switch_info->prof_res_bm[prof]))
2391				continue;
2392
2393			ice_find_prot_off(hw, ICE_BLK_SW, prof, lkup_indx,
2394					  &prot, &off);
2395			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2396			lkup_exts->fv_words[fv_word_idx].off = off;
2397			lkup_exts->field_mask[fv_word_idx] = lkup_mask;
 
2398			fv_word_idx++;
2399		}
 
 
 
 
2400
2401		/* Propagate some data to the recipe database */
 
2402		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2403		recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl &
2404					     ICE_AQ_RECIPE_ACT_NEED_PASS_L2);
2405		recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl &
2406					      ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2);
2407		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2408		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2409			set_bit(root_bufs.content.result_indx &
2410				~ICE_AQ_RECIPE_RESULT_EN, recps[idx].res_idxs);
 
 
 
2411		}
2412
2413		if (!is_root) {
2414			if (hw->recp_reuse && is_add)
2415				recps[idx].recp_created = true;
2416
2417			continue;
2418		}
2419
2420		/* Only do the following for root recipes entries */
2421		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2422		       sizeof(recps[idx].r_bitmap));
2423		recps[idx].root_rid = root_bufs.content.rid &
2424			~ICE_AQ_RECIPE_ID_IS_ROOT;
2425		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2426	}
2427
2428	/* Complete initialization of the root recipe entry */
2429	lkup_exts->n_val_words = fv_word_idx;
 
 
 
 
 
 
 
 
 
2430
2431	/* Copy result indexes */
2432	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2433	if (is_add)
2434		recps[rid].recp_created = true;
2435
2436err_unroll:
2437	kfree(tmp);
2438	return status;
2439}
2440
2441/* ice_init_port_info - Initialize port_info with switch configuration data
2442 * @pi: pointer to port_info
2443 * @vsi_port_num: VSI number or port number
2444 * @type: Type of switch element (port or VSI)
2445 * @swid: switch ID of the switch the element is attached to
2446 * @pf_vf_num: PF or VF number
2447 * @is_vf: true if the element is a VF, false otherwise
2448 */
2449static void
2450ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2451		   u16 swid, u16 pf_vf_num, bool is_vf)
2452{
2453	switch (type) {
2454	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2455		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2456		pi->sw_id = swid;
2457		pi->pf_vf_num = pf_vf_num;
2458		pi->is_vf = is_vf;
2459		break;
2460	default:
2461		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2462		break;
2463	}
2464}
2465
2466/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2467 * @hw: pointer to the hardware structure
2468 */
2469int ice_get_initial_sw_cfg(struct ice_hw *hw)
2470{
2471	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2472	u16 req_desc = 0;
2473	u16 num_elems;
2474	int status;
2475	u16 i;
2476
2477	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2478	if (!rbuf)
2479		return -ENOMEM;
2480
2481	/* Multiple calls to ice_aq_get_sw_cfg may be required
2482	 * to get all the switch configuration information. The need
2483	 * for additional calls is indicated by ice_aq_get_sw_cfg
2484	 * writing a non-zero value in req_desc
2485	 */
2486	do {
2487		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2488
2489		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2490					   &req_desc, &num_elems, NULL);
2491
2492		if (status)
2493			break;
2494
2495		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2496			u16 pf_vf_num, swid, vsi_port_num;
2497			bool is_vf = false;
2498			u8 res_type;
2499
2500			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2501				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2502
2503			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2504				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2505
2506			swid = le16_to_cpu(ele->swid);
2507
2508			if (le16_to_cpu(ele->pf_vf_num) &
2509			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2510				is_vf = true;
2511
2512			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2513					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2514
2515			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2516				/* FW VSI is not needed. Just continue. */
2517				continue;
2518			}
2519
2520			ice_init_port_info(hw->port_info, vsi_port_num,
2521					   res_type, swid, pf_vf_num, is_vf);
2522		}
2523	} while (req_desc && !status);
2524
2525	kfree(rbuf);
2526	return status;
2527}
2528
2529/**
2530 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2531 * @hw: pointer to the hardware structure
2532 * @fi: filter info structure to fill/update
2533 *
2534 * This helper function populates the lb_en and lan_en elements of the provided
2535 * ice_fltr_info struct using the switch's type and characteristics of the
2536 * switch rule being configured.
2537 */
2538static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2539{
2540	fi->lb_en = false;
2541	fi->lan_en = false;
2542	if ((fi->flag & ICE_FLTR_TX) &&
2543	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2544	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2545	     fi->fltr_act == ICE_FWD_TO_Q ||
2546	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2547		/* Setting LB for prune actions will result in replicated
2548		 * packets to the internal switch that will be dropped.
2549		 */
2550		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2551			fi->lb_en = true;
2552
2553		/* Set lan_en to TRUE if
2554		 * 1. The switch is a VEB AND
2555		 * 2
2556		 * 2.1 The lookup is a directional lookup like ethertype,
2557		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2558		 * and default-port OR
2559		 * 2.2 The lookup is VLAN, OR
2560		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2561		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2562		 *
2563		 * OR
2564		 *
2565		 * The switch is a VEPA.
2566		 *
2567		 * In all other cases, the LAN enable has to be set to false.
2568		 */
2569		if (hw->evb_veb) {
2570			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2571			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2572			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2573			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2574			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2575			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2576			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2577			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2578			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2579			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2580				fi->lan_en = true;
2581		} else {
2582			fi->lan_en = true;
2583		}
2584	}
2585
2586	if (fi->flag & ICE_FLTR_TX_ONLY)
2587		fi->lan_en = false;
2588}
2589
2590/**
2591 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2592 * @eth_hdr: pointer to buffer to populate
2593 */
2594void ice_fill_eth_hdr(u8 *eth_hdr)
2595{
2596	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2597}
2598
2599/**
2600 * ice_fill_sw_rule - Helper function to fill switch rule structure
2601 * @hw: pointer to the hardware structure
2602 * @f_info: entry containing packet forwarding information
2603 * @s_rule: switch rule structure to be filled in based on mac_entry
2604 * @opc: switch rules population command type - pass in the command opcode
2605 */
2606static void
2607ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2608		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2609		 enum ice_adminq_opc opc)
2610{
2611	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2612	u16 vlan_tpid = ETH_P_8021Q;
2613	void *daddr = NULL;
2614	u16 eth_hdr_sz;
2615	u8 *eth_hdr;
2616	u32 act = 0;
2617	__be16 *off;
2618	u8 q_rgn;
2619
2620	if (opc == ice_aqc_opc_remove_sw_rules) {
2621		s_rule->act = 0;
2622		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2623		s_rule->hdr_len = 0;
2624		return;
2625	}
2626
2627	eth_hdr_sz = sizeof(dummy_eth_header);
2628	eth_hdr = s_rule->hdr_data;
2629
2630	/* initialize the ether header with a dummy header */
2631	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2632	ice_fill_sw_info(hw, f_info);
2633
2634	switch (f_info->fltr_act) {
2635	case ICE_FWD_TO_VSI:
2636		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2637				  f_info->fwd_id.hw_vsi_id);
2638		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2639			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2640				ICE_SINGLE_ACT_VALID_BIT;
2641		break;
2642	case ICE_FWD_TO_VSI_LIST:
2643		act |= ICE_SINGLE_ACT_VSI_LIST;
2644		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2645				  f_info->fwd_id.vsi_list_id);
2646		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2647			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2648				ICE_SINGLE_ACT_VALID_BIT;
2649		break;
2650	case ICE_FWD_TO_Q:
2651		act |= ICE_SINGLE_ACT_TO_Q;
2652		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2653				  f_info->fwd_id.q_id);
2654		break;
2655	case ICE_DROP_PACKET:
2656		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2657			ICE_SINGLE_ACT_VALID_BIT;
2658		break;
2659	case ICE_FWD_TO_QGRP:
2660		q_rgn = f_info->qgrp_size > 0 ?
2661			(u8)ilog2(f_info->qgrp_size) : 0;
2662		act |= ICE_SINGLE_ACT_TO_Q;
2663		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2664				  f_info->fwd_id.q_id);
2665		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2666		break;
2667	default:
2668		return;
2669	}
2670
2671	if (f_info->lb_en)
2672		act |= ICE_SINGLE_ACT_LB_ENABLE;
2673	if (f_info->lan_en)
2674		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2675
2676	switch (f_info->lkup_type) {
2677	case ICE_SW_LKUP_MAC:
2678		daddr = f_info->l_data.mac.mac_addr;
2679		break;
2680	case ICE_SW_LKUP_VLAN:
2681		vlan_id = f_info->l_data.vlan.vlan_id;
2682		if (f_info->l_data.vlan.tpid_valid)
2683			vlan_tpid = f_info->l_data.vlan.tpid;
2684		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2685		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2686			act |= ICE_SINGLE_ACT_PRUNE;
2687			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2688		}
2689		break;
2690	case ICE_SW_LKUP_ETHERTYPE_MAC:
2691		daddr = f_info->l_data.ethertype_mac.mac_addr;
2692		fallthrough;
2693	case ICE_SW_LKUP_ETHERTYPE:
2694		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2695		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2696		break;
2697	case ICE_SW_LKUP_MAC_VLAN:
2698		daddr = f_info->l_data.mac_vlan.mac_addr;
2699		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2700		break;
2701	case ICE_SW_LKUP_PROMISC_VLAN:
2702		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2703		fallthrough;
2704	case ICE_SW_LKUP_PROMISC:
2705		daddr = f_info->l_data.mac_vlan.mac_addr;
2706		break;
2707	default:
2708		break;
2709	}
2710
2711	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2712		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2713		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2714
2715	/* Recipe set depending on lookup type */
2716	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2717	s_rule->src = cpu_to_le16(f_info->src);
2718	s_rule->act = cpu_to_le32(act);
2719
2720	if (daddr)
2721		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2722
2723	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2724		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2725		*off = cpu_to_be16(vlan_id);
2726		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2727		*off = cpu_to_be16(vlan_tpid);
2728	}
2729
2730	/* Create the switch rule with the final dummy Ethernet header */
2731	if (opc != ice_aqc_opc_update_sw_rules)
2732		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2733}
2734
2735/**
2736 * ice_add_marker_act
2737 * @hw: pointer to the hardware structure
2738 * @m_ent: the management entry for which sw marker needs to be added
2739 * @sw_marker: sw marker to tag the Rx descriptor with
2740 * @l_id: large action resource ID
2741 *
2742 * Create a large action to hold software marker and update the switch rule
2743 * entry pointed by m_ent with newly created large action
2744 */
2745static int
2746ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2747		   u16 sw_marker, u16 l_id)
2748{
2749	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2750	struct ice_sw_rule_lg_act *lg_act;
2751	/* For software marker we need 3 large actions
2752	 * 1. FWD action: FWD TO VSI or VSI LIST
2753	 * 2. GENERIC VALUE action to hold the profile ID
2754	 * 3. GENERIC VALUE action to hold the software marker ID
2755	 */
2756	const u16 num_lg_acts = 3;
2757	u16 lg_act_size;
2758	u16 rules_size;
2759	int status;
2760	u32 act;
2761	u16 id;
2762
2763	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2764		return -EINVAL;
2765
2766	/* Create two back-to-back switch rules and submit them to the HW using
2767	 * one memory buffer:
2768	 *    1. Large Action
2769	 *    2. Look up Tx Rx
2770	 */
2771	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2772	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2773	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2774	if (!lg_act)
2775		return -ENOMEM;
2776
2777	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2778
2779	/* Fill in the first switch rule i.e. large action */
2780	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2781	lg_act->index = cpu_to_le16(l_id);
2782	lg_act->size = cpu_to_le16(num_lg_acts);
2783
2784	/* First action VSI forwarding or VSI list forwarding depending on how
2785	 * many VSIs
2786	 */
2787	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2788		m_ent->fltr_info.fwd_id.hw_vsi_id;
2789
2790	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2791	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2792	if (m_ent->vsi_count > 1)
2793		act |= ICE_LG_ACT_VSI_LIST;
2794	lg_act->act[0] = cpu_to_le32(act);
2795
2796	/* Second action descriptor type */
2797	act = ICE_LG_ACT_GENERIC;
2798
2799	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2800	lg_act->act[1] = cpu_to_le32(act);
2801
2802	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2803			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2804
2805	/* Third action Marker value */
2806	act |= ICE_LG_ACT_GENERIC;
2807	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2808
2809	lg_act->act[2] = cpu_to_le32(act);
2810
2811	/* call the fill switch rule to fill the lookup Tx Rx structure */
2812	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2813			 ice_aqc_opc_update_sw_rules);
2814
2815	/* Update the action to point to the large action ID */
2816	act = ICE_SINGLE_ACT_PTR;
2817	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2818	rx_tx->act = cpu_to_le32(act);
2819
2820	/* Use the filter rule ID of the previously created rule with single
2821	 * act. Once the update happens, hardware will treat this as large
2822	 * action
2823	 */
2824	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2825
2826	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2827				 ice_aqc_opc_update_sw_rules, NULL);
2828	if (!status) {
2829		m_ent->lg_act_idx = l_id;
2830		m_ent->sw_marker_id = sw_marker;
2831	}
2832
2833	devm_kfree(ice_hw_to_dev(hw), lg_act);
2834	return status;
2835}
2836
2837/**
2838 * ice_create_vsi_list_map
2839 * @hw: pointer to the hardware structure
2840 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2841 * @num_vsi: number of VSI handles in the array
2842 * @vsi_list_id: VSI list ID generated as part of allocate resource
2843 *
2844 * Helper function to create a new entry of VSI list ID to VSI mapping
2845 * using the given VSI list ID
2846 */
2847static struct ice_vsi_list_map_info *
2848ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2849			u16 vsi_list_id)
2850{
2851	struct ice_switch_info *sw = hw->switch_info;
2852	struct ice_vsi_list_map_info *v_map;
2853	int i;
2854
2855	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2856	if (!v_map)
2857		return NULL;
2858
2859	v_map->vsi_list_id = vsi_list_id;
2860	v_map->ref_cnt = 1;
2861	for (i = 0; i < num_vsi; i++)
2862		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2863
2864	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2865	return v_map;
2866}
2867
2868/**
2869 * ice_update_vsi_list_rule
2870 * @hw: pointer to the hardware structure
2871 * @vsi_handle_arr: array of VSI handles to form a VSI list
2872 * @num_vsi: number of VSI handles in the array
2873 * @vsi_list_id: VSI list ID generated as part of allocate resource
2874 * @remove: Boolean value to indicate if this is a remove action
2875 * @opc: switch rules population command type - pass in the command opcode
2876 * @lkup_type: lookup type of the filter
2877 *
2878 * Call AQ command to add a new switch rule or update existing switch rule
2879 * using the given VSI list ID
2880 */
2881static int
2882ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2883			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2884			 enum ice_sw_lkup_type lkup_type)
2885{
2886	struct ice_sw_rule_vsi_list *s_rule;
2887	u16 s_rule_size;
2888	u16 rule_type;
2889	int status;
2890	int i;
2891
2892	if (!num_vsi)
2893		return -EINVAL;
2894
2895	if (lkup_type == ICE_SW_LKUP_MAC ||
2896	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2897	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2898	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2899	    lkup_type == ICE_SW_LKUP_PROMISC ||
2900	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2901	    lkup_type == ICE_SW_LKUP_DFLT ||
2902	    lkup_type == ICE_SW_LKUP_LAST)
2903		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2904			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2905	else if (lkup_type == ICE_SW_LKUP_VLAN)
2906		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2907			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2908	else
2909		return -EINVAL;
2910
2911	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2912	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2913	if (!s_rule)
2914		return -ENOMEM;
2915	for (i = 0; i < num_vsi; i++) {
2916		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2917			status = -EINVAL;
2918			goto exit;
2919		}
2920		/* AQ call requires hw_vsi_id(s) */
2921		s_rule->vsi[i] =
2922			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2923	}
2924
2925	s_rule->hdr.type = cpu_to_le16(rule_type);
2926	s_rule->number_vsi = cpu_to_le16(num_vsi);
2927	s_rule->index = cpu_to_le16(vsi_list_id);
2928
2929	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2930
2931exit:
2932	devm_kfree(ice_hw_to_dev(hw), s_rule);
2933	return status;
2934}
2935
2936/**
2937 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2938 * @hw: pointer to the HW struct
2939 * @vsi_handle_arr: array of VSI handles to form a VSI list
2940 * @num_vsi: number of VSI handles in the array
2941 * @vsi_list_id: stores the ID of the VSI list to be created
2942 * @lkup_type: switch rule filter's lookup type
2943 */
2944static int
2945ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2946			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2947{
2948	int status;
2949
2950	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2951					    ice_aqc_opc_alloc_res);
2952	if (status)
2953		return status;
2954
2955	/* Update the newly created VSI list to include the specified VSIs */
2956	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2957					*vsi_list_id, false,
2958					ice_aqc_opc_add_sw_rules, lkup_type);
2959}
2960
2961/**
2962 * ice_create_pkt_fwd_rule
2963 * @hw: pointer to the hardware structure
2964 * @f_entry: entry containing packet forwarding information
2965 *
2966 * Create switch rule with given filter information and add an entry
2967 * to the corresponding filter management list to track this switch rule
2968 * and VSI mapping
2969 */
2970static int
2971ice_create_pkt_fwd_rule(struct ice_hw *hw,
2972			struct ice_fltr_list_entry *f_entry)
2973{
2974	struct ice_fltr_mgmt_list_entry *fm_entry;
2975	struct ice_sw_rule_lkup_rx_tx *s_rule;
2976	enum ice_sw_lkup_type l_type;
2977	struct ice_sw_recipe *recp;
2978	int status;
2979
2980	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2981			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2982			      GFP_KERNEL);
2983	if (!s_rule)
2984		return -ENOMEM;
2985	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2986				GFP_KERNEL);
2987	if (!fm_entry) {
2988		status = -ENOMEM;
2989		goto ice_create_pkt_fwd_rule_exit;
2990	}
2991
2992	fm_entry->fltr_info = f_entry->fltr_info;
2993
2994	/* Initialize all the fields for the management entry */
2995	fm_entry->vsi_count = 1;
2996	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2997	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2998	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2999
3000	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
3001			 ice_aqc_opc_add_sw_rules);
3002
3003	status = ice_aq_sw_rules(hw, s_rule,
3004				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3005				 ice_aqc_opc_add_sw_rules, NULL);
3006	if (status) {
3007		devm_kfree(ice_hw_to_dev(hw), fm_entry);
3008		goto ice_create_pkt_fwd_rule_exit;
3009	}
3010
3011	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3012	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3013
3014	/* The book keeping entries will get removed when base driver
3015	 * calls remove filter AQ command
3016	 */
3017	l_type = fm_entry->fltr_info.lkup_type;
3018	recp = &hw->switch_info->recp_list[l_type];
3019	list_add(&fm_entry->list_entry, &recp->filt_rules);
3020
3021ice_create_pkt_fwd_rule_exit:
3022	devm_kfree(ice_hw_to_dev(hw), s_rule);
3023	return status;
3024}
3025
3026/**
3027 * ice_update_pkt_fwd_rule
3028 * @hw: pointer to the hardware structure
3029 * @f_info: filter information for switch rule
3030 *
3031 * Call AQ command to update a previously created switch rule with a
3032 * VSI list ID
3033 */
3034static int
3035ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
3036{
3037	struct ice_sw_rule_lkup_rx_tx *s_rule;
3038	int status;
3039
3040	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3041			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
3042			      GFP_KERNEL);
3043	if (!s_rule)
3044		return -ENOMEM;
3045
3046	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
3047
3048	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
3049
3050	/* Update switch rule with new rule set to forward VSI list */
3051	status = ice_aq_sw_rules(hw, s_rule,
3052				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3053				 ice_aqc_opc_update_sw_rules, NULL);
3054
3055	devm_kfree(ice_hw_to_dev(hw), s_rule);
3056	return status;
3057}
3058
3059/**
3060 * ice_update_sw_rule_bridge_mode
3061 * @hw: pointer to the HW struct
3062 *
3063 * Updates unicast switch filter rules based on VEB/VEPA mode
3064 */
3065int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
3066{
3067	struct ice_switch_info *sw = hw->switch_info;
3068	struct ice_fltr_mgmt_list_entry *fm_entry;
3069	struct list_head *rule_head;
3070	struct mutex *rule_lock; /* Lock to protect filter rule list */
3071	int status = 0;
3072
3073	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3074	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3075
3076	mutex_lock(rule_lock);
3077	list_for_each_entry(fm_entry, rule_head, list_entry) {
3078		struct ice_fltr_info *fi = &fm_entry->fltr_info;
3079		u8 *addr = fi->l_data.mac.mac_addr;
3080
3081		/* Update unicast Tx rules to reflect the selected
3082		 * VEB/VEPA mode
3083		 */
3084		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
3085		    (fi->fltr_act == ICE_FWD_TO_VSI ||
3086		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
3087		     fi->fltr_act == ICE_FWD_TO_Q ||
3088		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
3089			status = ice_update_pkt_fwd_rule(hw, fi);
3090			if (status)
3091				break;
3092		}
3093	}
3094
3095	mutex_unlock(rule_lock);
3096
3097	return status;
3098}
3099
3100/**
3101 * ice_add_update_vsi_list
3102 * @hw: pointer to the hardware structure
3103 * @m_entry: pointer to current filter management list entry
3104 * @cur_fltr: filter information from the book keeping entry
3105 * @new_fltr: filter information with the new VSI to be added
3106 *
3107 * Call AQ command to add or update previously created VSI list with new VSI.
3108 *
3109 * Helper function to do book keeping associated with adding filter information
3110 * The algorithm to do the book keeping is described below :
3111 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
3112 *	if only one VSI has been added till now
3113 *		Allocate a new VSI list and add two VSIs
3114 *		to this list using switch rule command
3115 *		Update the previously created switch rule with the
3116 *		newly created VSI list ID
3117 *	if a VSI list was previously created
3118 *		Add the new VSI to the previously created VSI list set
3119 *		using the update switch rule command
3120 */
3121static int
3122ice_add_update_vsi_list(struct ice_hw *hw,
3123			struct ice_fltr_mgmt_list_entry *m_entry,
3124			struct ice_fltr_info *cur_fltr,
3125			struct ice_fltr_info *new_fltr)
3126{
3127	u16 vsi_list_id = 0;
3128	int status = 0;
3129
3130	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
3131	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
3132		return -EOPNOTSUPP;
3133
3134	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
3135	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
3136	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
3137	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
3138		return -EOPNOTSUPP;
3139
3140	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3141		/* Only one entry existed in the mapping and it was not already
3142		 * a part of a VSI list. So, create a VSI list with the old and
3143		 * new VSIs.
3144		 */
3145		struct ice_fltr_info tmp_fltr;
3146		u16 vsi_handle_arr[2];
3147
3148		/* A rule already exists with the new VSI being added */
3149		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3150			return -EEXIST;
3151
3152		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3153		vsi_handle_arr[1] = new_fltr->vsi_handle;
3154		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3155						  &vsi_list_id,
3156						  new_fltr->lkup_type);
3157		if (status)
3158			return status;
3159
3160		tmp_fltr = *new_fltr;
3161		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3162		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3163		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3164		/* Update the previous switch rule of "MAC forward to VSI" to
3165		 * "MAC fwd to VSI list"
3166		 */
3167		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3168		if (status)
3169			return status;
3170
3171		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3172		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3173		m_entry->vsi_list_info =
3174			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3175						vsi_list_id);
3176
3177		if (!m_entry->vsi_list_info)
3178			return -ENOMEM;
3179
3180		/* If this entry was large action then the large action needs
3181		 * to be updated to point to FWD to VSI list
3182		 */
3183		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3184			status =
3185			    ice_add_marker_act(hw, m_entry,
3186					       m_entry->sw_marker_id,
3187					       m_entry->lg_act_idx);
3188	} else {
3189		u16 vsi_handle = new_fltr->vsi_handle;
3190		enum ice_adminq_opc opcode;
3191
3192		if (!m_entry->vsi_list_info)
3193			return -EIO;
3194
3195		/* A rule already exists with the new VSI being added */
3196		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3197			return -EEXIST;
3198
3199		/* Update the previously created VSI list set with
3200		 * the new VSI ID passed in
3201		 */
3202		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3203		opcode = ice_aqc_opc_update_sw_rules;
3204
3205		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3206						  vsi_list_id, false, opcode,
3207						  new_fltr->lkup_type);
3208		/* update VSI list mapping info with new VSI ID */
3209		if (!status)
3210			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3211	}
3212	if (!status)
3213		m_entry->vsi_count++;
3214	return status;
3215}
3216
3217/**
3218 * ice_find_rule_entry - Search a rule entry
3219 * @hw: pointer to the hardware structure
3220 * @recp_id: lookup type for which the specified rule needs to be searched
3221 * @f_info: rule information
3222 *
3223 * Helper function to search for a given rule entry
3224 * Returns pointer to entry storing the rule if found
3225 */
3226static struct ice_fltr_mgmt_list_entry *
3227ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3228{
3229	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3230	struct ice_switch_info *sw = hw->switch_info;
3231	struct list_head *list_head;
3232
3233	list_head = &sw->recp_list[recp_id].filt_rules;
3234	list_for_each_entry(list_itr, list_head, list_entry) {
3235		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3236			    sizeof(f_info->l_data)) &&
3237		    f_info->flag == list_itr->fltr_info.flag) {
3238			ret = list_itr;
3239			break;
3240		}
3241	}
3242	return ret;
3243}
3244
3245/**
3246 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3247 * @hw: pointer to the hardware structure
3248 * @recp_id: lookup type for which VSI lists needs to be searched
3249 * @vsi_handle: VSI handle to be found in VSI list
3250 * @vsi_list_id: VSI list ID found containing vsi_handle
3251 *
3252 * Helper function to search a VSI list with single entry containing given VSI
3253 * handle element. This can be extended further to search VSI list with more
3254 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3255 */
3256struct ice_vsi_list_map_info *
3257ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3258			u16 *vsi_list_id)
3259{
3260	struct ice_vsi_list_map_info *map_info = NULL;
3261	struct ice_switch_info *sw = hw->switch_info;
3262	struct ice_fltr_mgmt_list_entry *list_itr;
3263	struct list_head *list_head;
3264
3265	list_head = &sw->recp_list[recp_id].filt_rules;
3266	list_for_each_entry(list_itr, list_head, list_entry) {
3267		if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3268			map_info = list_itr->vsi_list_info;
3269			if (test_bit(vsi_handle, map_info->vsi_map)) {
3270				*vsi_list_id = map_info->vsi_list_id;
3271				return map_info;
3272			}
3273		}
3274	}
3275	return NULL;
3276}
3277
3278/**
3279 * ice_add_rule_internal - add rule for a given lookup type
3280 * @hw: pointer to the hardware structure
3281 * @recp_id: lookup type (recipe ID) for which rule has to be added
3282 * @f_entry: structure containing MAC forwarding information
3283 *
3284 * Adds or updates the rule lists for a given recipe
3285 */
3286static int
3287ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3288		      struct ice_fltr_list_entry *f_entry)
3289{
3290	struct ice_switch_info *sw = hw->switch_info;
3291	struct ice_fltr_info *new_fltr, *cur_fltr;
3292	struct ice_fltr_mgmt_list_entry *m_entry;
3293	struct mutex *rule_lock; /* Lock to protect filter rule list */
3294	int status = 0;
3295
3296	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3297		return -EINVAL;
3298	f_entry->fltr_info.fwd_id.hw_vsi_id =
3299		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3300
3301	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3302
3303	mutex_lock(rule_lock);
3304	new_fltr = &f_entry->fltr_info;
3305	if (new_fltr->flag & ICE_FLTR_RX)
3306		new_fltr->src = hw->port_info->lport;
3307	else if (new_fltr->flag & ICE_FLTR_TX)
3308		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3309
3310	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3311	if (!m_entry) {
3312		mutex_unlock(rule_lock);
3313		return ice_create_pkt_fwd_rule(hw, f_entry);
3314	}
3315
3316	cur_fltr = &m_entry->fltr_info;
3317	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3318	mutex_unlock(rule_lock);
3319
3320	return status;
3321}
3322
3323/**
3324 * ice_remove_vsi_list_rule
3325 * @hw: pointer to the hardware structure
3326 * @vsi_list_id: VSI list ID generated as part of allocate resource
3327 * @lkup_type: switch rule filter lookup type
3328 *
3329 * The VSI list should be emptied before this function is called to remove the
3330 * VSI list.
3331 */
3332static int
3333ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3334			 enum ice_sw_lkup_type lkup_type)
3335{
3336	struct ice_sw_rule_vsi_list *s_rule;
3337	u16 s_rule_size;
3338	int status;
3339
3340	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3341	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3342	if (!s_rule)
3343		return -ENOMEM;
3344
3345	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3346	s_rule->index = cpu_to_le16(vsi_list_id);
3347
3348	/* Free the vsi_list resource that we allocated. It is assumed that the
3349	 * list is empty at this point.
3350	 */
3351	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3352					    ice_aqc_opc_free_res);
3353
3354	devm_kfree(ice_hw_to_dev(hw), s_rule);
3355	return status;
3356}
3357
3358/**
3359 * ice_rem_update_vsi_list
3360 * @hw: pointer to the hardware structure
3361 * @vsi_handle: VSI handle of the VSI to remove
3362 * @fm_list: filter management entry for which the VSI list management needs to
3363 *           be done
3364 */
3365static int
3366ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3367			struct ice_fltr_mgmt_list_entry *fm_list)
3368{
3369	enum ice_sw_lkup_type lkup_type;
3370	u16 vsi_list_id;
3371	int status = 0;
3372
3373	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3374	    fm_list->vsi_count == 0)
3375		return -EINVAL;
3376
3377	/* A rule with the VSI being removed does not exist */
3378	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3379		return -ENOENT;
3380
3381	lkup_type = fm_list->fltr_info.lkup_type;
3382	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3383	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3384					  ice_aqc_opc_update_sw_rules,
3385					  lkup_type);
3386	if (status)
3387		return status;
3388
3389	fm_list->vsi_count--;
3390	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3391
3392	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3393		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3394		struct ice_vsi_list_map_info *vsi_list_info =
3395			fm_list->vsi_list_info;
3396		u16 rem_vsi_handle;
3397
3398		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3399						ICE_MAX_VSI);
3400		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3401			return -EIO;
3402
3403		/* Make sure VSI list is empty before removing it below */
3404		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3405						  vsi_list_id, true,
3406						  ice_aqc_opc_update_sw_rules,
3407						  lkup_type);
3408		if (status)
3409			return status;
3410
3411		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3412		tmp_fltr_info.fwd_id.hw_vsi_id =
3413			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3414		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3415		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3416		if (status) {
3417			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3418				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3419			return status;
3420		}
3421
3422		fm_list->fltr_info = tmp_fltr_info;
3423	}
3424
3425	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3426	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3427		struct ice_vsi_list_map_info *vsi_list_info =
3428			fm_list->vsi_list_info;
3429
3430		/* Remove the VSI list since it is no longer used */
3431		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3432		if (status) {
3433			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3434				  vsi_list_id, status);
3435			return status;
3436		}
3437
3438		list_del(&vsi_list_info->list_entry);
3439		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3440		fm_list->vsi_list_info = NULL;
3441	}
3442
3443	return status;
3444}
3445
3446/**
3447 * ice_remove_rule_internal - Remove a filter rule of a given type
3448 * @hw: pointer to the hardware structure
3449 * @recp_id: recipe ID for which the rule needs to removed
3450 * @f_entry: rule entry containing filter information
3451 */
3452static int
3453ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3454			 struct ice_fltr_list_entry *f_entry)
3455{
3456	struct ice_switch_info *sw = hw->switch_info;
3457	struct ice_fltr_mgmt_list_entry *list_elem;
3458	struct mutex *rule_lock; /* Lock to protect filter rule list */
3459	bool remove_rule = false;
3460	u16 vsi_handle;
3461	int status = 0;
3462
3463	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3464		return -EINVAL;
3465	f_entry->fltr_info.fwd_id.hw_vsi_id =
3466		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3467
3468	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3469	mutex_lock(rule_lock);
3470	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3471	if (!list_elem) {
3472		status = -ENOENT;
3473		goto exit;
3474	}
3475
3476	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3477		remove_rule = true;
3478	} else if (!list_elem->vsi_list_info) {
3479		status = -ENOENT;
3480		goto exit;
3481	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3482		/* a ref_cnt > 1 indicates that the vsi_list is being
3483		 * shared by multiple rules. Decrement the ref_cnt and
3484		 * remove this rule, but do not modify the list, as it
3485		 * is in-use by other rules.
3486		 */
3487		list_elem->vsi_list_info->ref_cnt--;
3488		remove_rule = true;
3489	} else {
3490		/* a ref_cnt of 1 indicates the vsi_list is only used
3491		 * by one rule. However, the original removal request is only
3492		 * for a single VSI. Update the vsi_list first, and only
3493		 * remove the rule if there are no further VSIs in this list.
3494		 */
3495		vsi_handle = f_entry->fltr_info.vsi_handle;
3496		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3497		if (status)
3498			goto exit;
3499		/* if VSI count goes to zero after updating the VSI list */
3500		if (list_elem->vsi_count == 0)
3501			remove_rule = true;
3502	}
3503
3504	if (remove_rule) {
3505		/* Remove the lookup rule */
3506		struct ice_sw_rule_lkup_rx_tx *s_rule;
3507
3508		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3509				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3510				      GFP_KERNEL);
3511		if (!s_rule) {
3512			status = -ENOMEM;
3513			goto exit;
3514		}
3515
3516		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3517				 ice_aqc_opc_remove_sw_rules);
3518
3519		status = ice_aq_sw_rules(hw, s_rule,
3520					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3521					 1, ice_aqc_opc_remove_sw_rules, NULL);
3522
3523		/* Remove a book keeping from the list */
3524		devm_kfree(ice_hw_to_dev(hw), s_rule);
3525
3526		if (status)
3527			goto exit;
3528
3529		list_del(&list_elem->list_entry);
3530		devm_kfree(ice_hw_to_dev(hw), list_elem);
3531	}
3532exit:
3533	mutex_unlock(rule_lock);
3534	return status;
3535}
3536
3537/**
3538 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3539 * @hw: pointer to the hardware structure
3540 * @vlan_id: VLAN ID
3541 * @vsi_handle: check MAC filter for this VSI
3542 */
3543bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3544{
3545	struct ice_fltr_mgmt_list_entry *entry;
3546	struct list_head *rule_head;
3547	struct ice_switch_info *sw;
3548	struct mutex *rule_lock; /* Lock to protect filter rule list */
3549	u16 hw_vsi_id;
3550
3551	if (vlan_id > ICE_MAX_VLAN_ID)
3552		return false;
3553
3554	if (!ice_is_vsi_valid(hw, vsi_handle))
3555		return false;
3556
3557	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3558	sw = hw->switch_info;
3559	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3560	if (!rule_head)
3561		return false;
3562
3563	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3564	mutex_lock(rule_lock);
3565	list_for_each_entry(entry, rule_head, list_entry) {
3566		struct ice_fltr_info *f_info = &entry->fltr_info;
3567		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3568		struct ice_vsi_list_map_info *map_info;
3569
3570		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3571			continue;
3572
3573		if (f_info->flag != ICE_FLTR_TX ||
3574		    f_info->src_id != ICE_SRC_ID_VSI ||
3575		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3576			continue;
3577
3578		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3579		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3580		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3581			continue;
3582
3583		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3584			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3585				continue;
3586		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3587			/* If filter_action is FWD_TO_VSI_LIST, make sure
3588			 * that VSI being checked is part of VSI list
3589			 */
3590			if (entry->vsi_count == 1 &&
3591			    entry->vsi_list_info) {
3592				map_info = entry->vsi_list_info;
3593				if (!test_bit(vsi_handle, map_info->vsi_map))
3594					continue;
3595			}
3596		}
3597
3598		if (vlan_id == entry_vlan_id) {
3599			mutex_unlock(rule_lock);
3600			return true;
3601		}
3602	}
3603	mutex_unlock(rule_lock);
3604
3605	return false;
3606}
3607
3608/**
3609 * ice_add_mac - Add a MAC address based filter rule
3610 * @hw: pointer to the hardware structure
3611 * @m_list: list of MAC addresses and forwarding information
3612 */
3613int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3614{
3615	struct ice_fltr_list_entry *m_list_itr;
3616	int status = 0;
3617
3618	if (!m_list || !hw)
3619		return -EINVAL;
3620
3621	list_for_each_entry(m_list_itr, m_list, list_entry) {
3622		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3623		u16 vsi_handle;
3624		u16 hw_vsi_id;
3625
3626		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3627		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3628		if (!ice_is_vsi_valid(hw, vsi_handle))
3629			return -EINVAL;
3630		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3631		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3632		/* update the src in case it is VSI num */
3633		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3634			return -EINVAL;
3635		m_list_itr->fltr_info.src = hw_vsi_id;
3636		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3637		    is_zero_ether_addr(add))
3638			return -EINVAL;
3639
3640		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3641							   m_list_itr);
3642		if (m_list_itr->status)
3643			return m_list_itr->status;
3644	}
3645
3646	return status;
3647}
3648
3649/**
3650 * ice_add_vlan_internal - Add one VLAN based filter rule
3651 * @hw: pointer to the hardware structure
3652 * @f_entry: filter entry containing one VLAN information
3653 */
3654static int
3655ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3656{
3657	struct ice_switch_info *sw = hw->switch_info;
3658	struct ice_fltr_mgmt_list_entry *v_list_itr;
3659	struct ice_fltr_info *new_fltr, *cur_fltr;
3660	enum ice_sw_lkup_type lkup_type;
3661	u16 vsi_list_id = 0, vsi_handle;
3662	struct mutex *rule_lock; /* Lock to protect filter rule list */
3663	int status = 0;
3664
3665	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3666		return -EINVAL;
3667
3668	f_entry->fltr_info.fwd_id.hw_vsi_id =
3669		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3670	new_fltr = &f_entry->fltr_info;
3671
3672	/* VLAN ID should only be 12 bits */
3673	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3674		return -EINVAL;
3675
3676	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3677		return -EINVAL;
3678
3679	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3680	lkup_type = new_fltr->lkup_type;
3681	vsi_handle = new_fltr->vsi_handle;
3682	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3683	mutex_lock(rule_lock);
3684	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3685	if (!v_list_itr) {
3686		struct ice_vsi_list_map_info *map_info = NULL;
3687
3688		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3689			/* All VLAN pruning rules use a VSI list. Check if
3690			 * there is already a VSI list containing VSI that we
3691			 * want to add. If found, use the same vsi_list_id for
3692			 * this new VLAN rule or else create a new list.
3693			 */
3694			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3695							   vsi_handle,
3696							   &vsi_list_id);
3697			if (!map_info) {
3698				status = ice_create_vsi_list_rule(hw,
3699								  &vsi_handle,
3700								  1,
3701								  &vsi_list_id,
3702								  lkup_type);
3703				if (status)
3704					goto exit;
3705			}
3706			/* Convert the action to forwarding to a VSI list. */
3707			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3708			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3709		}
3710
3711		status = ice_create_pkt_fwd_rule(hw, f_entry);
3712		if (!status) {
3713			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3714							 new_fltr);
3715			if (!v_list_itr) {
3716				status = -ENOENT;
3717				goto exit;
3718			}
3719			/* reuse VSI list for new rule and increment ref_cnt */
3720			if (map_info) {
3721				v_list_itr->vsi_list_info = map_info;
3722				map_info->ref_cnt++;
3723			} else {
3724				v_list_itr->vsi_list_info =
3725					ice_create_vsi_list_map(hw, &vsi_handle,
3726								1, vsi_list_id);
3727			}
3728		}
3729	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3730		/* Update existing VSI list to add new VSI ID only if it used
3731		 * by one VLAN rule.
3732		 */
3733		cur_fltr = &v_list_itr->fltr_info;
3734		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3735						 new_fltr);
3736	} else {
3737		/* If VLAN rule exists and VSI list being used by this rule is
3738		 * referenced by more than 1 VLAN rule. Then create a new VSI
3739		 * list appending previous VSI with new VSI and update existing
3740		 * VLAN rule to point to new VSI list ID
3741		 */
3742		struct ice_fltr_info tmp_fltr;
3743		u16 vsi_handle_arr[2];
3744		u16 cur_handle;
3745
3746		/* Current implementation only supports reusing VSI list with
3747		 * one VSI count. We should never hit below condition
3748		 */
3749		if (v_list_itr->vsi_count > 1 &&
3750		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3751			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3752			status = -EIO;
3753			goto exit;
3754		}
3755
3756		cur_handle =
3757			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3758				       ICE_MAX_VSI);
3759
3760		/* A rule already exists with the new VSI being added */
3761		if (cur_handle == vsi_handle) {
3762			status = -EEXIST;
3763			goto exit;
3764		}
3765
3766		vsi_handle_arr[0] = cur_handle;
3767		vsi_handle_arr[1] = vsi_handle;
3768		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3769						  &vsi_list_id, lkup_type);
3770		if (status)
3771			goto exit;
3772
3773		tmp_fltr = v_list_itr->fltr_info;
3774		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3775		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3776		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3777		/* Update the previous switch rule to a new VSI list which
3778		 * includes current VSI that is requested
3779		 */
3780		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3781		if (status)
3782			goto exit;
3783
3784		/* before overriding VSI list map info. decrement ref_cnt of
3785		 * previous VSI list
3786		 */
3787		v_list_itr->vsi_list_info->ref_cnt--;
3788
3789		/* now update to newly created list */
3790		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3791		v_list_itr->vsi_list_info =
3792			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3793						vsi_list_id);
3794		v_list_itr->vsi_count++;
3795	}
3796
3797exit:
3798	mutex_unlock(rule_lock);
3799	return status;
3800}
3801
3802/**
3803 * ice_add_vlan - Add VLAN based filter rule
3804 * @hw: pointer to the hardware structure
3805 * @v_list: list of VLAN entries and forwarding information
3806 */
3807int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3808{
3809	struct ice_fltr_list_entry *v_list_itr;
3810
3811	if (!v_list || !hw)
3812		return -EINVAL;
3813
3814	list_for_each_entry(v_list_itr, v_list, list_entry) {
3815		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3816			return -EINVAL;
3817		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3818		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3819		if (v_list_itr->status)
3820			return v_list_itr->status;
3821	}
3822	return 0;
3823}
3824
3825/**
3826 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3827 * @hw: pointer to the hardware structure
3828 * @em_list: list of ether type MAC filter, MAC is optional
3829 *
3830 * This function requires the caller to populate the entries in
3831 * the filter list with the necessary fields (including flags to
3832 * indicate Tx or Rx rules).
3833 */
3834int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3835{
3836	struct ice_fltr_list_entry *em_list_itr;
3837
3838	if (!em_list || !hw)
3839		return -EINVAL;
3840
3841	list_for_each_entry(em_list_itr, em_list, list_entry) {
3842		enum ice_sw_lkup_type l_type =
3843			em_list_itr->fltr_info.lkup_type;
3844
3845		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3846		    l_type != ICE_SW_LKUP_ETHERTYPE)
3847			return -EINVAL;
3848
3849		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3850							    em_list_itr);
3851		if (em_list_itr->status)
3852			return em_list_itr->status;
3853	}
3854	return 0;
3855}
3856
3857/**
3858 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3859 * @hw: pointer to the hardware structure
3860 * @em_list: list of ethertype or ethertype MAC entries
3861 */
3862int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3863{
3864	struct ice_fltr_list_entry *em_list_itr, *tmp;
3865
3866	if (!em_list || !hw)
3867		return -EINVAL;
3868
3869	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3870		enum ice_sw_lkup_type l_type =
3871			em_list_itr->fltr_info.lkup_type;
3872
3873		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3874		    l_type != ICE_SW_LKUP_ETHERTYPE)
3875			return -EINVAL;
3876
3877		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3878							       em_list_itr);
3879		if (em_list_itr->status)
3880			return em_list_itr->status;
3881	}
3882	return 0;
3883}
3884
3885/**
3886 * ice_rem_sw_rule_info
3887 * @hw: pointer to the hardware structure
3888 * @rule_head: pointer to the switch list structure that we want to delete
3889 */
3890static void
3891ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3892{
3893	if (!list_empty(rule_head)) {
3894		struct ice_fltr_mgmt_list_entry *entry;
3895		struct ice_fltr_mgmt_list_entry *tmp;
3896
3897		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3898			list_del(&entry->list_entry);
3899			devm_kfree(ice_hw_to_dev(hw), entry);
3900		}
3901	}
3902}
3903
3904/**
3905 * ice_rem_adv_rule_info
3906 * @hw: pointer to the hardware structure
3907 * @rule_head: pointer to the switch list structure that we want to delete
3908 */
3909static void
3910ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3911{
3912	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3913	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3914
3915	if (list_empty(rule_head))
3916		return;
3917
3918	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3919		list_del(&lst_itr->list_entry);
3920		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3921		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3922	}
3923}
3924
3925/**
3926 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3927 * @pi: pointer to the port_info structure
3928 * @vsi_handle: VSI handle to set as default
3929 * @set: true to add the above mentioned switch rule, false to remove it
3930 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3931 *
3932 * add filter rule to set/unset given VSI as default VSI for the switch
3933 * (represented by swid)
3934 */
3935int
3936ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3937		 u8 direction)
3938{
3939	struct ice_fltr_list_entry f_list_entry;
3940	struct ice_fltr_info f_info;
3941	struct ice_hw *hw = pi->hw;
3942	u16 hw_vsi_id;
3943	int status;
3944
3945	if (!ice_is_vsi_valid(hw, vsi_handle))
3946		return -EINVAL;
3947
3948	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3949
3950	memset(&f_info, 0, sizeof(f_info));
3951
3952	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3953	f_info.flag = direction;
3954	f_info.fltr_act = ICE_FWD_TO_VSI;
3955	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3956	f_info.vsi_handle = vsi_handle;
3957
3958	if (f_info.flag & ICE_FLTR_RX) {
3959		f_info.src = hw->port_info->lport;
3960		f_info.src_id = ICE_SRC_ID_LPORT;
3961	} else if (f_info.flag & ICE_FLTR_TX) {
3962		f_info.src_id = ICE_SRC_ID_VSI;
3963		f_info.src = hw_vsi_id;
3964		f_info.flag |= ICE_FLTR_TX_ONLY;
3965	}
3966	f_list_entry.fltr_info = f_info;
3967
3968	if (set)
3969		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3970					       &f_list_entry);
3971	else
3972		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3973						  &f_list_entry);
3974
3975	return status;
3976}
3977
3978/**
3979 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3980 * @fm_entry: filter entry to inspect
3981 * @vsi_handle: VSI handle to compare with filter info
3982 */
3983static bool
3984ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3985{
3986	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3987		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3988		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3989		 fm_entry->vsi_list_info &&
3990		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3991}
3992
3993/**
3994 * ice_check_if_dflt_vsi - check if VSI is default VSI
3995 * @pi: pointer to the port_info structure
3996 * @vsi_handle: vsi handle to check for in filter list
3997 * @rule_exists: indicates if there are any VSI's in the rule list
3998 *
3999 * checks if the VSI is in a default VSI list, and also indicates
4000 * if the default VSI list is empty
4001 */
4002bool
4003ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
4004		      bool *rule_exists)
4005{
4006	struct ice_fltr_mgmt_list_entry *fm_entry;
4007	struct ice_sw_recipe *recp_list;
4008	struct list_head *rule_head;
4009	struct mutex *rule_lock; /* Lock to protect filter rule list */
4010	bool ret = false;
4011
4012	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
4013	rule_lock = &recp_list->filt_rule_lock;
4014	rule_head = &recp_list->filt_rules;
4015
4016	mutex_lock(rule_lock);
4017
4018	if (rule_exists && !list_empty(rule_head))
4019		*rule_exists = true;
4020
4021	list_for_each_entry(fm_entry, rule_head, list_entry) {
4022		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
4023			ret = true;
4024			break;
4025		}
4026	}
4027
4028	mutex_unlock(rule_lock);
4029
4030	return ret;
4031}
4032
4033/**
4034 * ice_remove_mac - remove a MAC address based filter rule
4035 * @hw: pointer to the hardware structure
4036 * @m_list: list of MAC addresses and forwarding information
4037 *
4038 * This function removes either a MAC filter rule or a specific VSI from a
4039 * VSI list for a multicast MAC address.
4040 *
4041 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4042 * be aware that this call will only work if all the entries passed into m_list
4043 * were added previously. It will not attempt to do a partial remove of entries
4044 * that were found.
4045 */
4046int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4047{
4048	struct ice_fltr_list_entry *list_itr, *tmp;
4049
4050	if (!m_list)
4051		return -EINVAL;
4052
4053	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4054		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4055		u16 vsi_handle;
4056
4057		if (l_type != ICE_SW_LKUP_MAC)
4058			return -EINVAL;
4059
4060		vsi_handle = list_itr->fltr_info.vsi_handle;
4061		if (!ice_is_vsi_valid(hw, vsi_handle))
4062			return -EINVAL;
4063
4064		list_itr->fltr_info.fwd_id.hw_vsi_id =
4065					ice_get_hw_vsi_num(hw, vsi_handle);
4066
4067		list_itr->status = ice_remove_rule_internal(hw,
4068							    ICE_SW_LKUP_MAC,
4069							    list_itr);
4070		if (list_itr->status)
4071			return list_itr->status;
4072	}
4073	return 0;
4074}
4075
4076/**
4077 * ice_remove_vlan - Remove VLAN based filter rule
4078 * @hw: pointer to the hardware structure
4079 * @v_list: list of VLAN entries and forwarding information
4080 */
4081int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4082{
4083	struct ice_fltr_list_entry *v_list_itr, *tmp;
4084
4085	if (!v_list || !hw)
4086		return -EINVAL;
4087
4088	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4089		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4090
4091		if (l_type != ICE_SW_LKUP_VLAN)
4092			return -EINVAL;
4093		v_list_itr->status = ice_remove_rule_internal(hw,
4094							      ICE_SW_LKUP_VLAN,
4095							      v_list_itr);
4096		if (v_list_itr->status)
4097			return v_list_itr->status;
4098	}
4099	return 0;
4100}
4101
4102/**
4103 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4104 * @hw: pointer to the hardware structure
4105 * @vsi_handle: VSI handle to remove filters from
4106 * @vsi_list_head: pointer to the list to add entry to
4107 * @fi: pointer to fltr_info of filter entry to copy & add
4108 *
4109 * Helper function, used when creating a list of filters to remove from
4110 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4111 * original filter entry, with the exception of fltr_info.fltr_act and
4112 * fltr_info.fwd_id fields. These are set such that later logic can
4113 * extract which VSI to remove the fltr from, and pass on that information.
4114 */
4115static int
4116ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4117			       struct list_head *vsi_list_head,
4118			       struct ice_fltr_info *fi)
4119{
4120	struct ice_fltr_list_entry *tmp;
4121
4122	/* this memory is freed up in the caller function
4123	 * once filters for this VSI are removed
4124	 */
4125	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4126	if (!tmp)
4127		return -ENOMEM;
4128
4129	tmp->fltr_info = *fi;
4130
4131	/* Overwrite these fields to indicate which VSI to remove filter from,
4132	 * so find and remove logic can extract the information from the
4133	 * list entries. Note that original entries will still have proper
4134	 * values.
4135	 */
4136	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4137	tmp->fltr_info.vsi_handle = vsi_handle;
4138	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4139
4140	list_add(&tmp->list_entry, vsi_list_head);
4141
4142	return 0;
4143}
4144
4145/**
4146 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4147 * @hw: pointer to the hardware structure
4148 * @vsi_handle: VSI handle to remove filters from
4149 * @lkup_list_head: pointer to the list that has certain lookup type filters
4150 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4151 *
4152 * Locates all filters in lkup_list_head that are used by the given VSI,
4153 * and adds COPIES of those entries to vsi_list_head (intended to be used
4154 * to remove the listed filters).
4155 * Note that this means all entries in vsi_list_head must be explicitly
4156 * deallocated by the caller when done with list.
4157 */
4158static int
4159ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4160			 struct list_head *lkup_list_head,
4161			 struct list_head *vsi_list_head)
4162{
4163	struct ice_fltr_mgmt_list_entry *fm_entry;
4164	int status = 0;
4165
4166	/* check to make sure VSI ID is valid and within boundary */
4167	if (!ice_is_vsi_valid(hw, vsi_handle))
4168		return -EINVAL;
4169
4170	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4171		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4172			continue;
4173
4174		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4175							vsi_list_head,
4176							&fm_entry->fltr_info);
4177		if (status)
4178			return status;
4179	}
4180	return status;
4181}
4182
4183/**
4184 * ice_determine_promisc_mask
4185 * @fi: filter info to parse
4186 *
4187 * Helper function to determine which ICE_PROMISC_ mask corresponds
4188 * to given filter into.
4189 */
4190static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4191{
4192	u16 vid = fi->l_data.mac_vlan.vlan_id;
4193	u8 *macaddr = fi->l_data.mac.mac_addr;
4194	bool is_tx_fltr = false;
4195	u8 promisc_mask = 0;
4196
4197	if (fi->flag == ICE_FLTR_TX)
4198		is_tx_fltr = true;
4199
4200	if (is_broadcast_ether_addr(macaddr))
4201		promisc_mask |= is_tx_fltr ?
4202			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4203	else if (is_multicast_ether_addr(macaddr))
4204		promisc_mask |= is_tx_fltr ?
4205			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4206	else if (is_unicast_ether_addr(macaddr))
4207		promisc_mask |= is_tx_fltr ?
4208			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4209	if (vid)
4210		promisc_mask |= is_tx_fltr ?
4211			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4212
4213	return promisc_mask;
4214}
4215
4216/**
4217 * ice_remove_promisc - Remove promisc based filter rules
4218 * @hw: pointer to the hardware structure
4219 * @recp_id: recipe ID for which the rule needs to removed
4220 * @v_list: list of promisc entries
4221 */
4222static int
4223ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4224{
4225	struct ice_fltr_list_entry *v_list_itr, *tmp;
4226
4227	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4228		v_list_itr->status =
4229			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4230		if (v_list_itr->status)
4231			return v_list_itr->status;
4232	}
4233	return 0;
4234}
4235
4236/**
4237 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4238 * @hw: pointer to the hardware structure
4239 * @vsi_handle: VSI handle to clear mode
4240 * @promisc_mask: mask of promiscuous config bits to clear
4241 * @vid: VLAN ID to clear VLAN promiscuous
4242 */
4243int
4244ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4245		      u16 vid)
4246{
4247	struct ice_switch_info *sw = hw->switch_info;
4248	struct ice_fltr_list_entry *fm_entry, *tmp;
4249	struct list_head remove_list_head;
4250	struct ice_fltr_mgmt_list_entry *itr;
4251	struct list_head *rule_head;
4252	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4253	int status = 0;
4254	u8 recipe_id;
4255
4256	if (!ice_is_vsi_valid(hw, vsi_handle))
4257		return -EINVAL;
4258
4259	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4260		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4261	else
4262		recipe_id = ICE_SW_LKUP_PROMISC;
4263
4264	rule_head = &sw->recp_list[recipe_id].filt_rules;
4265	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4266
4267	INIT_LIST_HEAD(&remove_list_head);
4268
4269	mutex_lock(rule_lock);
4270	list_for_each_entry(itr, rule_head, list_entry) {
4271		struct ice_fltr_info *fltr_info;
4272		u8 fltr_promisc_mask = 0;
4273
4274		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4275			continue;
4276		fltr_info = &itr->fltr_info;
4277
4278		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4279		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4280			continue;
4281
4282		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4283
4284		/* Skip if filter is not completely specified by given mask */
4285		if (fltr_promisc_mask & ~promisc_mask)
4286			continue;
4287
4288		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4289							&remove_list_head,
4290							fltr_info);
4291		if (status) {
4292			mutex_unlock(rule_lock);
4293			goto free_fltr_list;
4294		}
4295	}
4296	mutex_unlock(rule_lock);
4297
4298	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4299
4300free_fltr_list:
4301	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4302		list_del(&fm_entry->list_entry);
4303		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4304	}
4305
4306	return status;
4307}
4308
4309/**
4310 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4311 * @hw: pointer to the hardware structure
4312 * @vsi_handle: VSI handle to configure
4313 * @promisc_mask: mask of promiscuous config bits
4314 * @vid: VLAN ID to set VLAN promiscuous
4315 */
4316int
4317ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4318{
4319	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4320	struct ice_fltr_list_entry f_list_entry;
4321	struct ice_fltr_info new_fltr;
4322	bool is_tx_fltr;
4323	int status = 0;
4324	u16 hw_vsi_id;
4325	int pkt_type;
4326	u8 recipe_id;
4327
4328	if (!ice_is_vsi_valid(hw, vsi_handle))
4329		return -EINVAL;
4330	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4331
4332	memset(&new_fltr, 0, sizeof(new_fltr));
4333
4334	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4335		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4336		new_fltr.l_data.mac_vlan.vlan_id = vid;
4337		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4338	} else {
4339		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4340		recipe_id = ICE_SW_LKUP_PROMISC;
4341	}
4342
4343	/* Separate filters must be set for each direction/packet type
4344	 * combination, so we will loop over the mask value, store the
4345	 * individual type, and clear it out in the input mask as it
4346	 * is found.
4347	 */
4348	while (promisc_mask) {
4349		u8 *mac_addr;
4350
4351		pkt_type = 0;
4352		is_tx_fltr = false;
4353
4354		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4355			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4356			pkt_type = UCAST_FLTR;
4357		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4358			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4359			pkt_type = UCAST_FLTR;
4360			is_tx_fltr = true;
4361		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4362			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4363			pkt_type = MCAST_FLTR;
4364		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4365			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4366			pkt_type = MCAST_FLTR;
4367			is_tx_fltr = true;
4368		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4369			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4370			pkt_type = BCAST_FLTR;
4371		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4372			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4373			pkt_type = BCAST_FLTR;
4374			is_tx_fltr = true;
4375		}
4376
4377		/* Check for VLAN promiscuous flag */
4378		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4379			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4380		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4381			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4382			is_tx_fltr = true;
4383		}
4384
4385		/* Set filter DA based on packet type */
4386		mac_addr = new_fltr.l_data.mac.mac_addr;
4387		if (pkt_type == BCAST_FLTR) {
4388			eth_broadcast_addr(mac_addr);
4389		} else if (pkt_type == MCAST_FLTR ||
4390			   pkt_type == UCAST_FLTR) {
4391			/* Use the dummy ether header DA */
4392			ether_addr_copy(mac_addr, dummy_eth_header);
4393			if (pkt_type == MCAST_FLTR)
4394				mac_addr[0] |= 0x1;	/* Set multicast bit */
4395		}
4396
4397		/* Need to reset this to zero for all iterations */
4398		new_fltr.flag = 0;
4399		if (is_tx_fltr) {
4400			new_fltr.flag |= ICE_FLTR_TX;
4401			new_fltr.src = hw_vsi_id;
4402		} else {
4403			new_fltr.flag |= ICE_FLTR_RX;
4404			new_fltr.src = hw->port_info->lport;
4405		}
4406
4407		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4408		new_fltr.vsi_handle = vsi_handle;
4409		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4410		f_list_entry.fltr_info = new_fltr;
4411
4412		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4413		if (status)
4414			goto set_promisc_exit;
4415	}
4416
4417set_promisc_exit:
4418	return status;
4419}
4420
4421/**
4422 * ice_set_vlan_vsi_promisc
4423 * @hw: pointer to the hardware structure
4424 * @vsi_handle: VSI handle to configure
4425 * @promisc_mask: mask of promiscuous config bits
4426 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4427 *
4428 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4429 */
4430int
4431ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4432			 bool rm_vlan_promisc)
4433{
4434	struct ice_switch_info *sw = hw->switch_info;
4435	struct ice_fltr_list_entry *list_itr, *tmp;
4436	struct list_head vsi_list_head;
4437	struct list_head *vlan_head;
4438	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4439	u16 vlan_id;
4440	int status;
4441
4442	INIT_LIST_HEAD(&vsi_list_head);
4443	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4444	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4445	mutex_lock(vlan_lock);
4446	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4447					  &vsi_list_head);
4448	mutex_unlock(vlan_lock);
4449	if (status)
4450		goto free_fltr_list;
4451
4452	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4453		/* Avoid enabling or disabling VLAN zero twice when in double
4454		 * VLAN mode
4455		 */
4456		if (ice_is_dvm_ena(hw) &&
4457		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4458			continue;
4459
4460		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4461		if (rm_vlan_promisc)
4462			status = ice_clear_vsi_promisc(hw, vsi_handle,
4463						       promisc_mask, vlan_id);
4464		else
4465			status = ice_set_vsi_promisc(hw, vsi_handle,
4466						     promisc_mask, vlan_id);
4467		if (status && status != -EEXIST)
4468			break;
4469	}
4470
4471free_fltr_list:
4472	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4473		list_del(&list_itr->list_entry);
4474		devm_kfree(ice_hw_to_dev(hw), list_itr);
4475	}
4476	return status;
4477}
4478
4479/**
4480 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4481 * @hw: pointer to the hardware structure
4482 * @vsi_handle: VSI handle to remove filters from
4483 * @lkup: switch rule filter lookup type
4484 */
4485static void
4486ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4487			 enum ice_sw_lkup_type lkup)
4488{
4489	struct ice_switch_info *sw = hw->switch_info;
4490	struct ice_fltr_list_entry *fm_entry;
4491	struct list_head remove_list_head;
4492	struct list_head *rule_head;
4493	struct ice_fltr_list_entry *tmp;
4494	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4495	int status;
4496
4497	INIT_LIST_HEAD(&remove_list_head);
4498	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4499	rule_head = &sw->recp_list[lkup].filt_rules;
4500	mutex_lock(rule_lock);
4501	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4502					  &remove_list_head);
4503	mutex_unlock(rule_lock);
4504	if (status)
4505		goto free_fltr_list;
4506
4507	switch (lkup) {
4508	case ICE_SW_LKUP_MAC:
4509		ice_remove_mac(hw, &remove_list_head);
4510		break;
4511	case ICE_SW_LKUP_VLAN:
4512		ice_remove_vlan(hw, &remove_list_head);
4513		break;
4514	case ICE_SW_LKUP_PROMISC:
4515	case ICE_SW_LKUP_PROMISC_VLAN:
4516		ice_remove_promisc(hw, lkup, &remove_list_head);
4517		break;
4518	case ICE_SW_LKUP_MAC_VLAN:
4519	case ICE_SW_LKUP_ETHERTYPE:
4520	case ICE_SW_LKUP_ETHERTYPE_MAC:
4521	case ICE_SW_LKUP_DFLT:
4522	case ICE_SW_LKUP_LAST:
4523	default:
4524		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4525		break;
4526	}
4527
4528free_fltr_list:
4529	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4530		list_del(&fm_entry->list_entry);
4531		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4532	}
4533}
4534
4535/**
4536 * ice_remove_vsi_fltr - Remove all filters for a VSI
4537 * @hw: pointer to the hardware structure
4538 * @vsi_handle: VSI handle to remove filters from
4539 */
4540void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4541{
4542	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4543	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4544	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4545	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4546	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4547	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4548	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4549	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4550}
4551
4552/**
4553 * ice_alloc_res_cntr - allocating resource counter
4554 * @hw: pointer to the hardware structure
4555 * @type: type of resource
4556 * @alloc_shared: if set it is shared else dedicated
4557 * @num_items: number of entries requested for FD resource type
4558 * @counter_id: counter index returned by AQ call
4559 */
4560int
4561ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4562		   u16 *counter_id)
4563{
4564	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4565	u16 buf_len = __struct_size(buf);
4566	int status;
4567
4568	buf->num_elems = cpu_to_le16(num_items);
4569	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4570				    alloc_shared);
4571
4572	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4573	if (status)
4574		return status;
4575
4576	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4577	return status;
4578}
4579
4580/**
4581 * ice_free_res_cntr - free resource counter
4582 * @hw: pointer to the hardware structure
4583 * @type: type of resource
4584 * @alloc_shared: if set it is shared else dedicated
4585 * @num_items: number of entries to be freed for FD resource type
4586 * @counter_id: counter ID resource which needs to be freed
4587 */
4588int
4589ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4590		  u16 counter_id)
4591{
4592	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4593	u16 buf_len = __struct_size(buf);
4594	int status;
4595
4596	buf->num_elems = cpu_to_le16(num_items);
4597	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4598				    alloc_shared);
4599	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4600
4601	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4602	if (status)
4603		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4604
4605	return status;
4606}
4607
4608#define ICE_PROTOCOL_ENTRY(id, ...) {		\
4609	.prot_type	= id,			\
4610	.offs		= {__VA_ARGS__},	\
4611}
4612
4613/**
4614 * ice_share_res - set a resource as shared or dedicated
4615 * @hw: hw struct of original owner of resource
4616 * @type: resource type
4617 * @shared: is the resource being set to shared
4618 * @res_id: resource id (descriptor)
4619 */
4620int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4621{
4622	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4623	u16 buf_len = __struct_size(buf);
4624	u16 res_type;
4625	int status;
4626
4627	buf->num_elems = cpu_to_le16(1);
4628	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4629	if (shared)
4630		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4631
4632	buf->res_type = cpu_to_le16(res_type);
4633	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4634	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4635				       ice_aqc_opc_share_res);
4636	if (status)
4637		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4638			  type, res_id, shared ? "SHARED" : "DEDICATED");
4639
4640	return status;
4641}
4642
4643/* This is mapping table entry that maps every word within a given protocol
4644 * structure to the real byte offset as per the specification of that
4645 * protocol header.
4646 * for example dst address is 3 words in ethertype header and corresponding
4647 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4648 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4649 * matching entry describing its field. This needs to be updated if new
4650 * structure is added to that union.
4651 */
4652static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4653	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4654	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4655	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4656	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4657	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4658	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4659	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4660	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4661			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4662	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4663			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4664	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4665	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4666	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4667	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4668	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4669	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4670	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4671	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4672	ICE_PROTOCOL_ENTRY(ICE_PFCP, 8, 10, 12, 14, 16, 18, 20, 22),
4673	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4674	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4675	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4676	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4677	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4678			   ICE_SOURCE_PORT_MDID_OFFSET,
4679			   ICE_PTYPE_MDID_OFFSET,
4680			   ICE_PACKET_LENGTH_MDID_OFFSET,
4681			   ICE_SOURCE_VSI_MDID_OFFSET,
4682			   ICE_PKT_VLAN_MDID_OFFSET,
4683			   ICE_PKT_TUNNEL_MDID_OFFSET,
4684			   ICE_PKT_TCP_MDID_OFFSET,
4685			   ICE_PKT_ERROR_MDID_OFFSET),
4686};
4687
4688static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4689	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4690	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4691	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4692	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4693	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4694	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4695	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4696	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4697	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4698	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4699	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4700	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4701	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4702	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4703	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4704	{ ICE_GTP,		ICE_UDP_OF_HW },
4705	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4706	{ ICE_PFCP,		ICE_UDP_ILOS_HW },
4707	{ ICE_PPPOE,		ICE_PPPOE_HW },
4708	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4709	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4710	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4711	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4712};
4713
4714/**
4715 * ice_find_recp - find a recipe
4716 * @hw: pointer to the hardware structure
4717 * @lkup_exts: extension sequence to match
4718 * @rinfo: information regarding the rule e.g. priority and action info
4719 * @is_add: flag of adding recipe
4720 *
4721 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4722 */
4723static u16
4724ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4725	      const struct ice_adv_rule_info *rinfo, bool is_add)
4726{
4727	bool refresh_required = true;
4728	struct ice_sw_recipe *recp;
4729	u8 i;
4730
4731	/* Walk through existing recipes to find a match */
4732	recp = hw->switch_info->recp_list;
4733	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4734		/* If recipe was not created for this ID, in SW bookkeeping,
4735		 * check if FW has an entry for this recipe. If the FW has an
4736		 * entry update it in our SW bookkeeping and continue with the
4737		 * matching.
4738		 */
4739		if (hw->recp_reuse) {
4740			if (ice_get_recp_frm_fw(hw,
4741						hw->switch_info->recp_list, i,
4742						&refresh_required, is_add))
4743				continue;
4744		}
 
 
 
 
4745
4746		/* if number of words we are looking for match */
4747		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4748			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4749			struct ice_fv_word *be = lkup_exts->fv_words;
4750			u16 *cr = recp[i].lkup_exts.field_mask;
4751			u16 *de = lkup_exts->field_mask;
4752			bool found = true;
4753			u8 pe, qr;
4754
4755			/* ar, cr, and qr are related to the recipe words, while
4756			 * be, de, and pe are related to the lookup words
4757			 */
4758			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4759				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4760				     qr++) {
4761					if (ar[qr].off == be[pe].off &&
4762					    ar[qr].prot_id == be[pe].prot_id &&
4763					    cr[qr] == de[pe])
4764						/* Found the "pe"th word in the
4765						 * given recipe
4766						 */
4767						break;
4768				}
4769				/* After walking through all the words in the
4770				 * "i"th recipe if "p"th word was not found then
4771				 * this recipe is not what we are looking for.
4772				 * So break out from this loop and try the next
4773				 * recipe
4774				 */
4775				if (qr >= recp[i].lkup_exts.n_val_words) {
4776					found = false;
4777					break;
4778				}
4779			}
4780			/* If for "i"th recipe the found was never set to false
4781			 * then it means we found our match
4782			 * Also tun type and *_pass_l2 of recipe needs to be
4783			 * checked
4784			 */
4785			if (found && recp[i].tun_type == rinfo->tun_type &&
4786			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4787			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4788				return i; /* Return the recipe ID */
4789		}
4790	}
4791	return ICE_MAX_NUM_RECIPES;
4792}
4793
4794/**
4795 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4796 *
4797 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4798 * supported protocol array record for outer vlan has to be modified to
4799 * reflect the value proper for DVM.
4800 */
4801void ice_change_proto_id_to_dvm(void)
4802{
4803	u8 i;
4804
4805	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4806		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4807		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4808			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4809}
4810
4811/**
4812 * ice_prot_type_to_id - get protocol ID from protocol type
4813 * @type: protocol type
4814 * @id: pointer to variable that will receive the ID
4815 *
4816 * Returns true if found, false otherwise
4817 */
4818static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4819{
4820	u8 i;
4821
4822	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4823		if (ice_prot_id_tbl[i].type == type) {
4824			*id = ice_prot_id_tbl[i].protocol_id;
4825			return true;
4826		}
4827	return false;
4828}
4829
4830/**
4831 * ice_fill_valid_words - count valid words
4832 * @rule: advanced rule with lookup information
4833 * @lkup_exts: byte offset extractions of the words that are valid
4834 *
4835 * calculate valid words in a lookup rule using mask value
4836 */
4837static u8
4838ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4839		     struct ice_prot_lkup_ext *lkup_exts)
4840{
4841	u8 j, word, prot_id, ret_val;
4842
4843	if (!ice_prot_type_to_id(rule->type, &prot_id))
4844		return 0;
4845
4846	word = lkup_exts->n_val_words;
4847
4848	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4849		if (((u16 *)&rule->m_u)[j] &&
4850		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4851			/* No more space to accommodate */
4852			if (word >= ICE_MAX_CHAIN_WORDS)
4853				return 0;
4854			lkup_exts->fv_words[word].off =
4855				ice_prot_ext[rule->type].offs[j];
4856			lkup_exts->fv_words[word].prot_id =
4857				ice_prot_id_tbl[rule->type].protocol_id;
4858			lkup_exts->field_mask[word] =
4859				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4860			word++;
4861		}
4862
4863	ret_val = word - lkup_exts->n_val_words;
4864	lkup_exts->n_val_words = word;
4865
4866	return ret_val;
4867}
4868
4869/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4870 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4871 * @hw: pointer to the hardware structure
4872 * @rm: recipe management list entry
 
4873 *
4874 * Helper function to fill in the field vector indices for protocol-offset
4875 * pairs. These indexes are then ultimately programmed into a recipe.
4876 */
4877static int
4878ice_fill_fv_word_index(struct ice_hw *hw, struct ice_sw_recipe *rm)
 
4879{
4880	struct ice_sw_fv_list_entry *fv;
 
4881	struct ice_fv_word *fv_ext;
4882	u8 i;
4883
4884	if (list_empty(&rm->fv_list))
4885		return -EINVAL;
4886
4887	fv = list_first_entry(&rm->fv_list, struct ice_sw_fv_list_entry,
4888			      list_entry);
4889	fv_ext = fv->fv_ptr->ew;
4890
4891	/* Add switch id as the first word. */
4892	rm->fv_idx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4893	rm->fv_mask[0] = ICE_AQ_SW_ID_LKUP_MASK;
4894	rm->n_ext_words++;
4895
4896	for (i = 1; i < rm->n_ext_words; i++) {
4897		struct ice_fv_word *fv_word = &rm->ext_words[i - 1];
4898		u16 fv_mask = rm->word_masks[i - 1];
4899		bool found = false;
4900		u8 j;
4901
4902		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) {
4903			if (fv_ext[j].prot_id == fv_word->prot_id &&
4904			    fv_ext[j].off == fv_word->off) {
4905				found = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4906
4907				/* Store index of field vector */
4908				rm->fv_idx[i] = j;
4909				rm->fv_mask[i] = fv_mask;
4910				break;
4911			}
4912		}
4913
4914		/* Protocol/offset could not be found, caller gave an invalid
4915		 * pair.
4916		 */
4917		if (!found)
4918			return -EINVAL;
4919	}
4920
4921	return 0;
4922}
4923
4924/**
4925 * ice_find_free_recp_res_idx - find free result indexes for recipe
4926 * @hw: pointer to hardware structure
4927 * @profiles: bitmap of profiles that will be associated with the new recipe
4928 * @free_idx: pointer to variable to receive the free index bitmap
4929 *
4930 * The algorithm used here is:
4931 *	1. When creating a new recipe, create a set P which contains all
4932 *	   Profiles that will be associated with our new recipe
4933 *
4934 *	2. For each Profile p in set P:
4935 *	    a. Add all recipes associated with Profile p into set R
4936 *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4937 *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4938 *		i. Or just assume they all have the same possible indexes:
4939 *			44, 45, 46, 47
4940 *			i.e., PossibleIndexes = 0x0000F00000000000
4941 *
4942 *	3. For each Recipe r in set R:
4943 *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4944 *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4945 *
4946 *	FreeIndexes will contain the bits indicating the indexes free for use,
4947 *      then the code needs to update the recipe[r].used_result_idx_bits to
4948 *      indicate which indexes were selected for use by this recipe.
4949 */
4950static u16
4951ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4952			   unsigned long *free_idx)
4953{
4954	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4955	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4956	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4957	u16 bit;
4958
4959	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4960	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4961
4962	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4963
4964	/* For each profile we are going to associate the recipe with, add the
4965	 * recipes that are associated with that profile. This will give us
4966	 * the set of recipes that our recipe may collide with. Also, determine
4967	 * what possible result indexes are usable given this set of profiles.
4968	 */
4969	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4970		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4971			  ICE_MAX_NUM_RECIPES);
4972		bitmap_and(possible_idx, possible_idx,
4973			   hw->switch_info->prof_res_bm[bit],
4974			   ICE_MAX_FV_WORDS);
4975	}
4976
4977	/* For each recipe that our new recipe may collide with, determine
4978	 * which indexes have been used.
4979	 */
4980	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4981		bitmap_or(used_idx, used_idx,
4982			  hw->switch_info->recp_list[bit].res_idxs,
4983			  ICE_MAX_FV_WORDS);
4984
4985	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4986
4987	/* return number of free indexes */
4988	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4989}
4990
4991/**
4992 * ice_calc_recp_cnt - calculate number of recipes based on word count
4993 * @word_cnt: number of lookup words
4994 *
4995 * Word count should include switch ID word and regular lookup words.
4996 * Returns: number of recipes required to fit @word_cnt, including extra recipes
4997 * needed for recipe chaining (if needed).
4998 */
4999static int ice_calc_recp_cnt(u8 word_cnt)
5000{
5001	/* All words fit in a single recipe, no need for chaining. */
5002	if (word_cnt <= ICE_NUM_WORDS_RECIPE)
5003		return 1;
5004
5005	/* Recipe chaining required. Result indexes are fitted right after
5006	 * regular lookup words. In some cases a new recipe must be added in
5007	 * order to fit result indexes.
5008	 *
5009	 * While the word count increases, every 5 words an extra recipe needs
5010	 * to be added. However, by adding a recipe, one word for its result
5011	 * index must also be added, therefore every 4 words recipe count
5012	 * increases by 1. This calculation does not apply to word count == 1,
5013	 * which is handled above.
5014	 */
5015	return (word_cnt + 2) / (ICE_NUM_WORDS_RECIPE - 1);
5016}
5017
5018static void fill_recipe_template(struct ice_aqc_recipe_data_elem *recp, u16 rid,
5019				 const struct ice_sw_recipe *rm)
5020{
5021	int i;
5022
5023	recp->recipe_indx = rid;
5024	recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_PRUNE_INDX_M;
5025
5026	for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
5027		recp->content.lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5028		recp->content.mask[i] = cpu_to_le16(0);
5029	}
5030
5031	set_bit(rid, (unsigned long *)recp->recipe_bitmap);
5032	recp->content.act_ctrl_fwd_priority = rm->priority;
5033
5034	if (rm->need_pass_l2)
5035		recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5036
5037	if (rm->allow_pass_l2)
5038		recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5039}
5040
5041static void bookkeep_recipe(struct ice_sw_recipe *recipe,
5042			    struct ice_aqc_recipe_data_elem *r,
5043			    const struct ice_sw_recipe *rm)
5044{
5045	memcpy(recipe->r_bitmap, r->recipe_bitmap, sizeof(recipe->r_bitmap));
5046
5047	recipe->priority = r->content.act_ctrl_fwd_priority;
5048	recipe->tun_type = rm->tun_type;
5049	recipe->need_pass_l2 = rm->need_pass_l2;
5050	recipe->allow_pass_l2 = rm->allow_pass_l2;
5051	recipe->recp_created = true;
5052}
5053
5054/* For memcpy in ice_add_sw_recipe. */
5055static_assert(sizeof_field(struct ice_aqc_recipe_data_elem, recipe_bitmap) ==
5056	      sizeof_field(struct ice_sw_recipe, r_bitmap));
5057
5058/**
5059 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5060 * @hw: pointer to hardware structure
5061 * @rm: recipe management list entry
5062 * @profiles: bitmap of profiles that will be associated.
5063 */
5064static int
5065ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5066		  unsigned long *profiles)
5067{
5068	struct ice_aqc_recipe_data_elem *buf __free(kfree) = NULL;
5069	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5070	struct ice_aqc_recipe_data_elem *root;
5071	struct ice_sw_recipe *recipe;
5072	u16 free_res_idx, rid;
5073	int lookup = 0;
5074	int recp_cnt;
 
 
 
5075	int status;
5076	int word;
5077	int i;
5078
5079	recp_cnt = ice_calc_recp_cnt(rm->n_ext_words);
5080
 
 
 
 
 
 
5081	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5082	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5083
5084	/* Check number of free result indices */
5085	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5086
5087	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5088		  free_res_idx, recp_cnt);
5089
5090	/* Last recipe doesn't need result index */
5091	if (recp_cnt - 1 > free_res_idx)
5092		return -ENOSPC;
5093
5094	if (recp_cnt > ICE_MAX_CHAIN_RECIPE_RES)
5095		return -E2BIG;
5096
5097	buf = kcalloc(recp_cnt, sizeof(*buf), GFP_KERNEL);
5098	if (!buf)
 
 
 
5099		return -ENOMEM;
5100
5101	/* Setup the non-root subrecipes. These do not contain lookups for other
5102	 * subrecipes results. Set associated recipe only to own recipe index.
5103	 * Each non-root subrecipe needs a free result index from FV.
5104	 *
5105	 * Note: only done if there is more than one recipe.
 
 
 
 
 
 
 
 
 
 
 
5106	 */
5107	for (i = 0; i < recp_cnt - 1; i++) {
5108		struct ice_aqc_recipe_content *content;
5109		u8 result_idx;
5110
5111		status = ice_alloc_recipe(hw, &rid);
5112		if (status)
5113			return status;
5114
5115		fill_recipe_template(&buf[i], rid, rm);
5116
5117		result_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5118		/* Check if there really is a valid result index that can be
5119		 * used.
5120		 */
5121		if (result_idx >= ICE_MAX_FV_WORDS) {
5122			ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5123			return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5124		}
5125		clear_bit(result_idx, result_idx_bm);
5126
5127		content = &buf[i].content;
5128		content->result_indx = ICE_AQ_RECIPE_RESULT_EN |
5129				       FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5130						  result_idx);
5131
5132		/* Set recipe association to be used for root recipe */
5133		set_bit(rid, rm->r_bitmap);
 
 
 
 
 
 
 
5134
5135		word = 0;
5136		while (lookup < rm->n_ext_words &&
5137		       word < ICE_NUM_WORDS_RECIPE) {
5138			content->lkup_indx[word] = rm->fv_idx[lookup];
5139			content->mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
 
 
 
 
5140
5141			lookup++;
5142			word++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5143		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5144
5145		recipe = &hw->switch_info->recp_list[rid];
5146		set_bit(result_idx, recipe->res_idxs);
5147		bookkeep_recipe(recipe, &buf[i], rm);
5148	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5149
5150	/* Setup the root recipe */
5151	status = ice_alloc_recipe(hw, &rid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5152	if (status)
5153		return status;
5154
5155	recipe = &hw->switch_info->recp_list[rid];
5156	root = &buf[recp_cnt - 1];
5157	fill_recipe_template(root, rid, rm);
5158
5159	/* Set recipe association, use previously set bitmap and own rid */
5160	set_bit(rid, rm->r_bitmap);
5161	memcpy(root->recipe_bitmap, rm->r_bitmap, sizeof(root->recipe_bitmap));
5162
5163	/* For non-root recipes rid should be 0, for root it should be correct
5164	 * rid value ored with 0x80 (is root bit).
5165	 */
5166	root->content.rid = rid | ICE_AQ_RECIPE_ID_IS_ROOT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5167
5168	/* Fill remaining lookups in root recipe */
5169	word = 0;
5170	while (lookup < rm->n_ext_words &&
5171	       word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5172		root->content.lkup_indx[word] = rm->fv_idx[lookup];
5173		root->content.mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5174
5175		lookup++;
5176		word++;
5177	}
5178
5179	/* Fill result indexes as lookups */
5180	i = 0;
5181	while (i < recp_cnt - 1 &&
5182	       word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5183		root->content.lkup_indx[word] = buf[i].content.result_indx &
5184						~ICE_AQ_RECIPE_RESULT_EN;
5185		root->content.mask[word] = cpu_to_le16(0xffff);
5186		/* For bookkeeping, it is needed to mark FV index as used for
5187		 * intermediate result.
5188		 */
5189		set_bit(root->content.lkup_indx[word], recipe->res_idxs);
5190
5191		i++;
5192		word++;
 
 
 
 
 
 
 
 
 
 
 
 
 
5193	}
 
 
 
5194
5195	rm->root_rid = rid;
5196	bookkeep_recipe(&hw->switch_info->recp_list[rid], root, rm);
 
 
 
 
5197
5198	/* Program the recipe */
5199	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5200	if (status)
5201		return status;
 
 
 
 
 
 
 
 
5202
5203	status = ice_aq_add_recipe(hw, buf, recp_cnt, NULL);
5204	ice_release_change_lock(hw);
5205	if (status)
5206		return status;
5207
5208	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5209}
5210
5211/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5212 * @hw: pointer to hardware structure
5213 * @rinfo: other information regarding the rule e.g. priority and action info
5214 * @bm: pointer to memory for returning the bitmap of field vectors
5215 */
5216static void
5217ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5218			 unsigned long *bm)
5219{
5220	enum ice_prof_type prof_type;
5221
5222	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5223
5224	switch (rinfo->tun_type) {
5225	case ICE_NON_TUN:
5226		prof_type = ICE_PROF_NON_TUN;
5227		break;
5228	case ICE_ALL_TUNNELS:
5229		prof_type = ICE_PROF_TUN_ALL;
5230		break;
5231	case ICE_SW_TUN_GENEVE:
5232	case ICE_SW_TUN_VXLAN:
5233		prof_type = ICE_PROF_TUN_UDP;
5234		break;
5235	case ICE_SW_TUN_NVGRE:
5236		prof_type = ICE_PROF_TUN_GRE;
5237		break;
5238	case ICE_SW_TUN_GTPU:
5239		prof_type = ICE_PROF_TUN_GTPU;
5240		break;
5241	case ICE_SW_TUN_GTPC:
5242		prof_type = ICE_PROF_TUN_GTPC;
5243		break;
5244	case ICE_SW_TUN_PFCP:
5245		prof_type = ICE_PROF_TUN_PFCP;
5246		break;
5247	case ICE_SW_TUN_AND_NON_TUN:
5248	default:
5249		prof_type = ICE_PROF_ALL;
5250		break;
5251	}
5252
5253	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5254}
5255
5256/**
5257 * ice_subscribe_recipe - subscribe to an existing recipe
5258 * @hw: pointer to the hardware structure
5259 * @rid: recipe ID to subscribe to
5260 *
5261 * Return: 0 on success, and others on error
5262 */
5263static int ice_subscribe_recipe(struct ice_hw *hw, u16 rid)
5264{
5265	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
5266	u16 buf_len = __struct_size(sw_buf);
5267	u16 res_type;
5268	int status;
5269
5270	/* Prepare buffer to allocate resource */
5271	sw_buf->num_elems = cpu_to_le16(1);
5272	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE) |
5273		   ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED |
5274		   ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_CTL;
5275	sw_buf->res_type = cpu_to_le16(res_type);
5276
5277	sw_buf->elem[0].e.sw_resp = cpu_to_le16(rid);
5278
5279	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
5280				       ice_aqc_opc_alloc_res);
5281
5282	return status;
5283}
5284
5285/**
5286 * ice_subscribable_recp_shared - share an existing subscribable recipe
5287 * @hw: pointer to the hardware structure
5288 * @rid: recipe ID to subscribe to
5289 */
5290static void ice_subscribable_recp_shared(struct ice_hw *hw, u16 rid)
5291{
5292	struct ice_sw_recipe *recps = hw->switch_info->recp_list;
5293	u16 sub_rid;
5294
5295	for_each_set_bit(sub_rid, recps[rid].r_bitmap, ICE_MAX_NUM_RECIPES)
5296		ice_subscribe_recipe(hw, sub_rid);
5297}
5298
5299/**
5300 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5301 * @hw: pointer to hardware structure
5302 * @lkups: lookup elements or match criteria for the advanced recipe, one
5303 *  structure per protocol header
5304 * @lkups_cnt: number of protocols
5305 * @rinfo: other information regarding the rule e.g. priority and action info
5306 * @rid: return the recipe ID of the recipe created
5307 */
5308static int
5309ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5310		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5311{
5312	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5313	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5314	struct ice_prot_lkup_ext *lkup_exts;
 
5315	struct ice_sw_fv_list_entry *fvit;
 
5316	struct ice_sw_fv_list_entry *tmp;
5317	struct ice_sw_recipe *rm;
5318	int status = 0;
5319	u16 rid_tmp;
5320	u8 i;
5321
5322	if (!lkups_cnt)
5323		return -EINVAL;
5324
5325	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5326	if (!lkup_exts)
5327		return -ENOMEM;
5328
5329	/* Determine the number of words to be matched and if it exceeds a
5330	 * recipe's restrictions
5331	 */
5332	for (i = 0; i < lkups_cnt; i++) {
5333		u16 count;
5334
5335		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5336			status = -EIO;
5337			goto err_free_lkup_exts;
5338		}
5339
5340		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5341		if (!count) {
5342			status = -EIO;
5343			goto err_free_lkup_exts;
5344		}
5345	}
5346
5347	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5348	if (!rm) {
5349		status = -ENOMEM;
5350		goto err_free_lkup_exts;
5351	}
5352
5353	/* Get field vectors that contain fields extracted from all the protocol
5354	 * headers being programmed.
5355	 */
5356	INIT_LIST_HEAD(&rm->fv_list);
 
5357
5358	/* Get bitmap of field vectors (profiles) that are compatible with the
5359	 * rule request; only these will be searched in the subsequent call to
5360	 * ice_get_sw_fv_list.
5361	 */
5362	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5363
5364	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5365	if (status)
5366		goto err_unroll;
5367
5368	/* Copy FV words and masks from lkup_exts to recipe struct. */
5369	rm->n_ext_words = lkup_exts->n_val_words;
5370	memcpy(rm->ext_words, lkup_exts->fv_words, sizeof(rm->ext_words));
5371	memcpy(rm->word_masks, lkup_exts->field_mask, sizeof(rm->word_masks));
 
 
5372
5373	/* set the recipe priority if specified */
5374	rm->priority = (u8)rinfo->priority;
5375
5376	rm->need_pass_l2 = rinfo->need_pass_l2;
5377	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5378
5379	/* Find offsets from the field vector. Pick the first one for all the
5380	 * recipes.
5381	 */
5382	status = ice_fill_fv_word_index(hw, rm);
5383	if (status)
5384		goto err_unroll;
5385
5386	/* get bitmap of all profiles the recipe will be associated with */
5387	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5388	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5389		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5390		set_bit((u16)fvit->profile_id, profiles);
5391	}
5392
5393	/* Look for a recipe which matches our requested fv / mask list */
5394	*rid = ice_find_recp(hw, lkup_exts, rinfo, true);
5395	if (*rid < ICE_MAX_NUM_RECIPES) {
5396		/* Success if found a recipe that match the existing criteria */
5397		if (hw->recp_reuse)
5398			ice_subscribable_recp_shared(hw, *rid);
5399
5400		goto err_unroll;
5401	}
5402
5403	rm->tun_type = rinfo->tun_type;
5404	/* Recipe we need does not exist, add a recipe */
5405	status = ice_add_sw_recipe(hw, rm, profiles);
5406	if (status)
5407		goto err_unroll;
5408
5409	/* Associate all the recipes created with all the profiles in the
5410	 * common field vector.
5411	 */
5412	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5413		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5414		u64 recp_assoc;
5415		u16 j;
5416
5417		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5418						      &recp_assoc, NULL);
5419		if (status)
5420			goto err_free_recipe;
5421
5422		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5423		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5424			  ICE_MAX_NUM_RECIPES);
5425		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5426		if (status)
5427			goto err_free_recipe;
5428
5429		bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5430		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5431						      recp_assoc, NULL);
5432		ice_release_change_lock(hw);
5433
5434		if (status)
5435			goto err_free_recipe;
5436
5437		/* Update profile to recipe bitmap array */
5438		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5439			    ICE_MAX_NUM_RECIPES);
5440
5441		/* Update recipe to profile bitmap array */
5442		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5443			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5444	}
5445
5446	*rid = rm->root_rid;
5447	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5448	       sizeof(*lkup_exts));
5449	goto err_unroll;
5450
5451err_free_recipe:
5452	if (hw->recp_reuse) {
5453		for_each_set_bit(rid_tmp, rm->r_bitmap, ICE_MAX_NUM_RECIPES) {
5454			if (!ice_free_recipe_res(hw, rid_tmp))
5455				clear_bit(rid_tmp, rm->r_bitmap);
5456		}
5457	}
5458
5459err_unroll:
5460	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5461		list_del(&fvit->list_entry);
5462		devm_kfree(ice_hw_to_dev(hw), fvit);
5463	}
5464
 
5465	kfree(rm);
5466
5467err_free_lkup_exts:
5468	kfree(lkup_exts);
5469
5470	return status;
5471}
5472
5473/**
5474 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5475 *
5476 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5477 * @num_vlan: number of VLAN tags
5478 */
5479static struct ice_dummy_pkt_profile *
5480ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5481			  u32 num_vlan)
5482{
5483	struct ice_dummy_pkt_profile *profile;
5484	struct ice_dummy_pkt_offsets *offsets;
5485	u32 buf_len, off, etype_off, i;
5486	u8 *pkt;
5487
5488	if (num_vlan < 1 || num_vlan > 2)
5489		return ERR_PTR(-EINVAL);
5490
5491	off = num_vlan * VLAN_HLEN;
5492
5493	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5494		  dummy_pkt->offsets_len;
5495	offsets = kzalloc(buf_len, GFP_KERNEL);
5496	if (!offsets)
5497		return ERR_PTR(-ENOMEM);
5498
5499	offsets[0] = dummy_pkt->offsets[0];
5500	if (num_vlan == 2) {
5501		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5502		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5503	} else if (num_vlan == 1) {
5504		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5505	}
5506
5507	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5508		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5509		offsets[i + num_vlan].offset =
5510			dummy_pkt->offsets[i].offset + off;
5511	}
5512	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5513
5514	etype_off = dummy_pkt->offsets[1].offset;
5515
5516	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5517		  dummy_pkt->pkt_len;
5518	pkt = kzalloc(buf_len, GFP_KERNEL);
5519	if (!pkt) {
5520		kfree(offsets);
5521		return ERR_PTR(-ENOMEM);
5522	}
5523
5524	memcpy(pkt, dummy_pkt->pkt, etype_off);
5525	memcpy(pkt + etype_off,
5526	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5527	       off);
5528	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5529	       dummy_pkt->pkt_len - etype_off);
5530
5531	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5532	if (!profile) {
5533		kfree(offsets);
5534		kfree(pkt);
5535		return ERR_PTR(-ENOMEM);
5536	}
5537
5538	profile->offsets = offsets;
5539	profile->pkt = pkt;
5540	profile->pkt_len = buf_len;
5541	profile->match |= ICE_PKT_KMALLOC;
5542
5543	return profile;
5544}
5545
5546/**
5547 * ice_find_dummy_packet - find dummy packet
5548 *
5549 * @lkups: lookup elements or match criteria for the advanced recipe, one
5550 *	   structure per protocol header
5551 * @lkups_cnt: number of protocols
5552 * @tun_type: tunnel type
5553 *
5554 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5555 */
5556static const struct ice_dummy_pkt_profile *
5557ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5558		      enum ice_sw_tunnel_type tun_type)
5559{
5560	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5561	u32 match = 0, vlan_count = 0;
5562	u16 i;
5563
5564	switch (tun_type) {
5565	case ICE_SW_TUN_GTPC:
5566		match |= ICE_PKT_TUN_GTPC;
5567		break;
5568	case ICE_SW_TUN_GTPU:
5569		match |= ICE_PKT_TUN_GTPU;
5570		break;
5571	case ICE_SW_TUN_NVGRE:
5572		match |= ICE_PKT_TUN_NVGRE;
5573		break;
5574	case ICE_SW_TUN_GENEVE:
5575	case ICE_SW_TUN_VXLAN:
5576		match |= ICE_PKT_TUN_UDP;
5577		break;
5578	case ICE_SW_TUN_PFCP:
5579		match |= ICE_PKT_PFCP;
5580		break;
5581	default:
5582		break;
5583	}
5584
5585	for (i = 0; i < lkups_cnt; i++) {
5586		if (lkups[i].type == ICE_UDP_ILOS)
5587			match |= ICE_PKT_INNER_UDP;
5588		else if (lkups[i].type == ICE_TCP_IL)
5589			match |= ICE_PKT_INNER_TCP;
5590		else if (lkups[i].type == ICE_IPV6_OFOS)
5591			match |= ICE_PKT_OUTER_IPV6;
5592		else if (lkups[i].type == ICE_VLAN_OFOS ||
5593			 lkups[i].type == ICE_VLAN_EX)
5594			vlan_count++;
5595		else if (lkups[i].type == ICE_VLAN_IN)
5596			vlan_count++;
5597		else if (lkups[i].type == ICE_ETYPE_OL &&
5598			 lkups[i].h_u.ethertype.ethtype_id ==
5599				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5600			 lkups[i].m_u.ethertype.ethtype_id ==
5601				cpu_to_be16(0xFFFF))
5602			match |= ICE_PKT_OUTER_IPV6;
5603		else if (lkups[i].type == ICE_ETYPE_IL &&
5604			 lkups[i].h_u.ethertype.ethtype_id ==
5605				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5606			 lkups[i].m_u.ethertype.ethtype_id ==
5607				cpu_to_be16(0xFFFF))
5608			match |= ICE_PKT_INNER_IPV6;
5609		else if (lkups[i].type == ICE_IPV6_IL)
5610			match |= ICE_PKT_INNER_IPV6;
5611		else if (lkups[i].type == ICE_GTP_NO_PAY)
5612			match |= ICE_PKT_GTP_NOPAY;
5613		else if (lkups[i].type == ICE_PPPOE) {
5614			match |= ICE_PKT_PPPOE;
5615			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5616			    htons(PPP_IPV6))
5617				match |= ICE_PKT_OUTER_IPV6;
5618		} else if (lkups[i].type == ICE_L2TPV3)
5619			match |= ICE_PKT_L2TPV3;
5620	}
5621
5622	while (ret->match && (match & ret->match) != ret->match)
5623		ret++;
5624
5625	if (vlan_count != 0)
5626		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5627
5628	return ret;
5629}
5630
5631/**
5632 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5633 *
5634 * @lkups: lookup elements or match criteria for the advanced recipe, one
5635 *	   structure per protocol header
5636 * @lkups_cnt: number of protocols
5637 * @s_rule: stores rule information from the match criteria
5638 * @profile: dummy packet profile (the template, its size and header offsets)
5639 */
5640static int
5641ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5642			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5643			  const struct ice_dummy_pkt_profile *profile)
5644{
5645	u8 *pkt;
5646	u16 i;
5647
5648	/* Start with a packet with a pre-defined/dummy content. Then, fill
5649	 * in the header values to be looked up or matched.
5650	 */
5651	pkt = s_rule->hdr_data;
5652
5653	memcpy(pkt, profile->pkt, profile->pkt_len);
5654
5655	for (i = 0; i < lkups_cnt; i++) {
5656		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5657		enum ice_protocol_type type;
5658		u16 offset = 0, len = 0, j;
5659		bool found = false;
5660
5661		/* find the start of this layer; it should be found since this
5662		 * was already checked when search for the dummy packet
5663		 */
5664		type = lkups[i].type;
5665		/* metadata isn't present in the packet */
5666		if (type == ICE_HW_METADATA)
5667			continue;
5668
5669		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5670			if (type == offsets[j].type) {
5671				offset = offsets[j].offset;
5672				found = true;
5673				break;
5674			}
5675		}
5676		/* this should never happen in a correct calling sequence */
5677		if (!found)
5678			return -EINVAL;
5679
5680		switch (lkups[i].type) {
5681		case ICE_MAC_OFOS:
5682		case ICE_MAC_IL:
5683			len = sizeof(struct ice_ether_hdr);
5684			break;
5685		case ICE_ETYPE_OL:
5686		case ICE_ETYPE_IL:
5687			len = sizeof(struct ice_ethtype_hdr);
5688			break;
5689		case ICE_VLAN_OFOS:
5690		case ICE_VLAN_EX:
5691		case ICE_VLAN_IN:
5692			len = sizeof(struct ice_vlan_hdr);
5693			break;
5694		case ICE_IPV4_OFOS:
5695		case ICE_IPV4_IL:
5696			len = sizeof(struct ice_ipv4_hdr);
5697			break;
5698		case ICE_IPV6_OFOS:
5699		case ICE_IPV6_IL:
5700			len = sizeof(struct ice_ipv6_hdr);
5701			break;
5702		case ICE_TCP_IL:
5703		case ICE_UDP_OF:
5704		case ICE_UDP_ILOS:
5705			len = sizeof(struct ice_l4_hdr);
5706			break;
5707		case ICE_SCTP_IL:
5708			len = sizeof(struct ice_sctp_hdr);
5709			break;
5710		case ICE_NVGRE:
5711			len = sizeof(struct ice_nvgre_hdr);
5712			break;
5713		case ICE_VXLAN:
5714		case ICE_GENEVE:
5715			len = sizeof(struct ice_udp_tnl_hdr);
5716			break;
5717		case ICE_GTP_NO_PAY:
5718		case ICE_GTP:
5719			len = sizeof(struct ice_udp_gtp_hdr);
5720			break;
5721		case ICE_PFCP:
5722			len = sizeof(struct ice_pfcp_hdr);
5723			break;
5724		case ICE_PPPOE:
5725			len = sizeof(struct ice_pppoe_hdr);
5726			break;
5727		case ICE_L2TPV3:
5728			len = sizeof(struct ice_l2tpv3_sess_hdr);
5729			break;
5730		default:
5731			return -EINVAL;
5732		}
5733
5734		/* the length should be a word multiple */
5735		if (len % ICE_BYTES_PER_WORD)
5736			return -EIO;
5737
5738		/* We have the offset to the header start, the length, the
5739		 * caller's header values and mask. Use this information to
5740		 * copy the data into the dummy packet appropriately based on
5741		 * the mask. Note that we need to only write the bits as
5742		 * indicated by the mask to make sure we don't improperly write
5743		 * over any significant packet data.
5744		 */
5745		for (j = 0; j < len / sizeof(u16); j++) {
5746			u16 *ptr = (u16 *)(pkt + offset);
5747			u16 mask = lkups[i].m_raw[j];
5748
5749			if (!mask)
5750				continue;
5751
5752			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5753		}
5754	}
5755
5756	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5757
5758	return 0;
5759}
5760
5761/**
5762 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5763 * @hw: pointer to the hardware structure
5764 * @tun_type: tunnel type
5765 * @pkt: dummy packet to fill in
5766 * @offsets: offset info for the dummy packet
5767 */
5768static int
5769ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5770			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5771{
5772	u16 open_port, i;
5773
5774	switch (tun_type) {
5775	case ICE_SW_TUN_VXLAN:
5776		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5777			return -EIO;
5778		break;
5779	case ICE_SW_TUN_GENEVE:
5780		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5781			return -EIO;
5782		break;
5783	default:
5784		/* Nothing needs to be done for this tunnel type */
5785		return 0;
5786	}
5787
5788	/* Find the outer UDP protocol header and insert the port number */
5789	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5790		if (offsets[i].type == ICE_UDP_OF) {
5791			struct ice_l4_hdr *hdr;
5792			u16 offset;
5793
5794			offset = offsets[i].offset;
5795			hdr = (struct ice_l4_hdr *)&pkt[offset];
5796			hdr->dst_port = cpu_to_be16(open_port);
5797
5798			return 0;
5799		}
5800	}
5801
5802	return -EIO;
5803}
5804
5805/**
5806 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5807 * @hw: pointer to hw structure
5808 * @vlan_type: VLAN tag type
5809 * @pkt: dummy packet to fill in
5810 * @offsets: offset info for the dummy packet
5811 */
5812static int
5813ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5814			 const struct ice_dummy_pkt_offsets *offsets)
5815{
5816	u16 i;
5817
5818	/* Check if there is something to do */
5819	if (!vlan_type || !ice_is_dvm_ena(hw))
5820		return 0;
5821
5822	/* Find VLAN header and insert VLAN TPID */
5823	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5824		if (offsets[i].type == ICE_VLAN_OFOS ||
5825		    offsets[i].type == ICE_VLAN_EX) {
5826			struct ice_vlan_hdr *hdr;
5827			u16 offset;
5828
5829			offset = offsets[i].offset;
5830			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5831			hdr->type = cpu_to_be16(vlan_type);
5832
5833			return 0;
5834		}
5835	}
5836
5837	return -EIO;
5838}
5839
5840static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5841			    const struct ice_adv_rule_info *second)
5842{
5843	return first->sw_act.flag == second->sw_act.flag &&
5844	       first->tun_type == second->tun_type &&
5845	       first->vlan_type == second->vlan_type &&
5846	       first->src_vsi == second->src_vsi &&
5847	       first->need_pass_l2 == second->need_pass_l2 &&
5848	       first->allow_pass_l2 == second->allow_pass_l2;
5849}
5850
5851/**
5852 * ice_find_adv_rule_entry - Search a rule entry
5853 * @hw: pointer to the hardware structure
5854 * @lkups: lookup elements or match criteria for the advanced recipe, one
5855 *	   structure per protocol header
5856 * @lkups_cnt: number of protocols
5857 * @recp_id: recipe ID for which we are finding the rule
5858 * @rinfo: other information regarding the rule e.g. priority and action info
5859 *
5860 * Helper function to search for a given advance rule entry
5861 * Returns pointer to entry storing the rule if found
5862 */
5863static struct ice_adv_fltr_mgmt_list_entry *
5864ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5865			u16 lkups_cnt, u16 recp_id,
5866			struct ice_adv_rule_info *rinfo)
5867{
5868	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5869	struct ice_switch_info *sw = hw->switch_info;
5870	int i;
5871
5872	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5873			    list_entry) {
5874		bool lkups_matched = true;
5875
5876		if (lkups_cnt != list_itr->lkups_cnt)
5877			continue;
5878		for (i = 0; i < list_itr->lkups_cnt; i++)
5879			if (memcmp(&list_itr->lkups[i], &lkups[i],
5880				   sizeof(*lkups))) {
5881				lkups_matched = false;
5882				break;
5883			}
5884		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5885		    lkups_matched)
5886			return list_itr;
5887	}
5888	return NULL;
5889}
5890
5891/**
5892 * ice_adv_add_update_vsi_list
5893 * @hw: pointer to the hardware structure
5894 * @m_entry: pointer to current adv filter management list entry
5895 * @cur_fltr: filter information from the book keeping entry
5896 * @new_fltr: filter information with the new VSI to be added
5897 *
5898 * Call AQ command to add or update previously created VSI list with new VSI.
5899 *
5900 * Helper function to do book keeping associated with adding filter information
5901 * The algorithm to do the booking keeping is described below :
5902 * When a VSI needs to subscribe to a given advanced filter
5903 *	if only one VSI has been added till now
5904 *		Allocate a new VSI list and add two VSIs
5905 *		to this list using switch rule command
5906 *		Update the previously created switch rule with the
5907 *		newly created VSI list ID
5908 *	if a VSI list was previously created
5909 *		Add the new VSI to the previously created VSI list set
5910 *		using the update switch rule command
5911 */
5912static int
5913ice_adv_add_update_vsi_list(struct ice_hw *hw,
5914			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5915			    struct ice_adv_rule_info *cur_fltr,
5916			    struct ice_adv_rule_info *new_fltr)
5917{
5918	u16 vsi_list_id = 0;
5919	int status;
5920
5921	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5922	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5923	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5924		return -EOPNOTSUPP;
5925
5926	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5927	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5928	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5929	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5930		return -EOPNOTSUPP;
5931
5932	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5933		 /* Only one entry existed in the mapping and it was not already
5934		  * a part of a VSI list. So, create a VSI list with the old and
5935		  * new VSIs.
5936		  */
5937		struct ice_fltr_info tmp_fltr;
5938		u16 vsi_handle_arr[2];
5939
5940		/* A rule already exists with the new VSI being added */
5941		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5942		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5943			return -EEXIST;
5944
5945		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5946		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5947		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5948						  &vsi_list_id,
5949						  ICE_SW_LKUP_LAST);
5950		if (status)
5951			return status;
5952
5953		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5954		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5955		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5956		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5957		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5958		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5959
5960		/* Update the previous switch rule of "forward to VSI" to
5961		 * "fwd to VSI list"
5962		 */
5963		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5964		if (status)
5965			return status;
5966
5967		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5968		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5969		m_entry->vsi_list_info =
5970			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5971						vsi_list_id);
5972	} else {
5973		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5974
5975		if (!m_entry->vsi_list_info)
5976			return -EIO;
5977
5978		/* A rule already exists with the new VSI being added */
5979		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5980			return 0;
5981
5982		/* Update the previously created VSI list set with
5983		 * the new VSI ID passed in
5984		 */
5985		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5986
5987		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5988						  vsi_list_id, false,
5989						  ice_aqc_opc_update_sw_rules,
5990						  ICE_SW_LKUP_LAST);
5991		/* update VSI list mapping info with new VSI ID */
5992		if (!status)
5993			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5994	}
5995	if (!status)
5996		m_entry->vsi_count++;
5997	return status;
5998}
5999
6000void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
6001{
6002	lkup->type = ICE_HW_METADATA;
6003	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
6004		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
6005}
6006
6007void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
6008{
6009	lkup->type = ICE_HW_METADATA;
6010	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6011		cpu_to_be16(ICE_PKT_FROM_NETWORK);
6012}
6013
6014void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
6015{
6016	lkup->type = ICE_HW_METADATA;
6017	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6018		cpu_to_be16(ICE_PKT_VLAN_MASK);
6019}
6020
6021void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
6022{
6023	lkup->type = ICE_HW_METADATA;
6024	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
6025}
6026
6027/**
6028 * ice_add_adv_rule - helper function to create an advanced switch rule
6029 * @hw: pointer to the hardware structure
6030 * @lkups: information on the words that needs to be looked up. All words
6031 * together makes one recipe
6032 * @lkups_cnt: num of entries in the lkups array
6033 * @rinfo: other information related to the rule that needs to be programmed
6034 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6035 *               ignored is case of error.
6036 *
6037 * This function can program only 1 rule at a time. The lkups is used to
6038 * describe the all the words that forms the "lookup" portion of the recipe.
6039 * These words can span multiple protocols. Callers to this function need to
6040 * pass in a list of protocol headers with lookup information along and mask
6041 * that determines which words are valid from the given protocol header.
6042 * rinfo describes other information related to this rule such as forwarding
6043 * IDs, priority of this rule, etc.
6044 */
6045int
6046ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6047		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6048		 struct ice_rule_query_data *added_entry)
6049{
6050	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6051	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6052	const struct ice_dummy_pkt_profile *profile;
6053	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6054	struct list_head *rule_head;
6055	struct ice_switch_info *sw;
6056	u16 word_cnt;
6057	u32 act = 0;
6058	int status;
6059	u8 q_rgn;
6060
6061	/* Initialize profile to result index bitmap */
6062	if (!hw->switch_info->prof_res_bm_init) {
6063		hw->switch_info->prof_res_bm_init = 1;
6064		ice_init_prof_result_bm(hw);
6065	}
6066
6067	if (!lkups_cnt)
6068		return -EINVAL;
6069
6070	/* get # of words we need to match */
6071	word_cnt = 0;
6072	for (i = 0; i < lkups_cnt; i++) {
6073		u16 j;
6074
6075		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6076			if (lkups[i].m_raw[j])
6077				word_cnt++;
6078	}
6079
6080	if (!word_cnt)
6081		return -EINVAL;
6082
6083	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6084		return -ENOSPC;
6085
6086	/* locate a dummy packet */
6087	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6088	if (IS_ERR(profile))
6089		return PTR_ERR(profile);
6090
6091	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6092	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6093	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6094	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6095	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6096	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6097		status = -EIO;
6098		goto free_pkt_profile;
6099	}
6100
6101	vsi_handle = rinfo->sw_act.vsi_handle;
6102	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6103		status =  -EINVAL;
6104		goto free_pkt_profile;
6105	}
6106
6107	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6108	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6109	    rinfo->sw_act.fltr_act == ICE_NOP) {
6110		rinfo->sw_act.fwd_id.hw_vsi_id =
6111			ice_get_hw_vsi_num(hw, vsi_handle);
6112	}
6113
6114	if (rinfo->src_vsi)
6115		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6116	else
6117		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6118
6119	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6120	if (status)
6121		goto free_pkt_profile;
6122	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6123	if (m_entry) {
6124		/* we have to add VSI to VSI_LIST and increment vsi_count.
6125		 * Also Update VSI list so that we can change forwarding rule
6126		 * if the rule already exists, we will check if it exists with
6127		 * same vsi_id, if not then add it to the VSI list if it already
6128		 * exists if not then create a VSI list and add the existing VSI
6129		 * ID and the new VSI ID to the list
6130		 * We will add that VSI to the list
6131		 */
6132		status = ice_adv_add_update_vsi_list(hw, m_entry,
6133						     &m_entry->rule_info,
6134						     rinfo);
6135		if (added_entry) {
6136			added_entry->rid = rid;
6137			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6138			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6139		}
6140		goto free_pkt_profile;
6141	}
6142	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6143	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6144	if (!s_rule) {
6145		status = -ENOMEM;
6146		goto free_pkt_profile;
6147	}
6148
6149	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6150		if (!rinfo->flags_info.act_valid) {
6151			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6152			act |= ICE_SINGLE_ACT_LB_ENABLE;
6153		} else {
6154			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6155							ICE_SINGLE_ACT_LB_ENABLE);
6156		}
6157	}
6158
6159	switch (rinfo->sw_act.fltr_act) {
6160	case ICE_FWD_TO_VSI:
6161		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6162				  rinfo->sw_act.fwd_id.hw_vsi_id);
6163		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6164		break;
6165	case ICE_FWD_TO_Q:
6166		act |= ICE_SINGLE_ACT_TO_Q;
6167		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6168				  rinfo->sw_act.fwd_id.q_id);
6169		break;
6170	case ICE_FWD_TO_QGRP:
6171		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6172			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6173		act |= ICE_SINGLE_ACT_TO_Q;
6174		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6175				  rinfo->sw_act.fwd_id.q_id);
6176		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6177		break;
6178	case ICE_DROP_PACKET:
6179		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6180		       ICE_SINGLE_ACT_VALID_BIT;
6181		break;
6182	case ICE_MIRROR_PACKET:
6183		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6184		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6185				  rinfo->sw_act.fwd_id.hw_vsi_id);
6186		break;
6187	case ICE_NOP:
6188		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6189				  rinfo->sw_act.fwd_id.hw_vsi_id);
6190		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6191		break;
6192	default:
6193		status = -EIO;
6194		goto err_ice_add_adv_rule;
6195	}
6196
6197	/* If there is no matching criteria for direction there
6198	 * is only one difference between Rx and Tx:
6199	 * - get switch id base on VSI number from source field (Tx)
6200	 * - get switch id base on port number (Rx)
6201	 *
6202	 * If matching on direction metadata is chose rule direction is
6203	 * extracted from type value set here.
6204	 */
6205	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6206		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6207		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6208	} else {
6209		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6210		s_rule->src = cpu_to_le16(hw->port_info->lport);
6211	}
6212
6213	s_rule->recipe_id = cpu_to_le16(rid);
6214	s_rule->act = cpu_to_le32(act);
6215
6216	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6217	if (status)
6218		goto err_ice_add_adv_rule;
6219
6220	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6221					 profile->offsets);
6222	if (status)
6223		goto err_ice_add_adv_rule;
6224
6225	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6226					  s_rule->hdr_data,
6227					  profile->offsets);
6228	if (status)
6229		goto err_ice_add_adv_rule;
6230
6231	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6232				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6233				 NULL);
6234	if (status)
6235		goto err_ice_add_adv_rule;
6236	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6237				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6238				GFP_KERNEL);
6239	if (!adv_fltr) {
6240		status = -ENOMEM;
6241		goto err_ice_add_adv_rule;
6242	}
6243
6244	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6245				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6246	if (!adv_fltr->lkups) {
6247		status = -ENOMEM;
6248		goto err_ice_add_adv_rule;
6249	}
6250
6251	adv_fltr->lkups_cnt = lkups_cnt;
6252	adv_fltr->rule_info = *rinfo;
6253	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6254	sw = hw->switch_info;
6255	sw->recp_list[rid].adv_rule = true;
6256	rule_head = &sw->recp_list[rid].filt_rules;
6257
6258	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6259		adv_fltr->vsi_count = 1;
6260
6261	/* Add rule entry to book keeping list */
6262	list_add(&adv_fltr->list_entry, rule_head);
6263	if (added_entry) {
6264		added_entry->rid = rid;
6265		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6266		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6267	}
6268err_ice_add_adv_rule:
6269	if (status && adv_fltr) {
6270		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6271		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6272	}
6273
6274	kfree(s_rule);
6275
6276free_pkt_profile:
6277	if (profile->match & ICE_PKT_KMALLOC) {
6278		kfree(profile->offsets);
6279		kfree(profile->pkt);
6280		kfree(profile);
6281	}
6282
6283	return status;
6284}
6285
6286/**
6287 * ice_replay_vsi_fltr - Replay filters for requested VSI
6288 * @hw: pointer to the hardware structure
6289 * @vsi_handle: driver VSI handle
6290 * @recp_id: Recipe ID for which rules need to be replayed
6291 * @list_head: list for which filters need to be replayed
6292 *
6293 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6294 * It is required to pass valid VSI handle.
6295 */
6296static int
6297ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6298		    struct list_head *list_head)
6299{
6300	struct ice_fltr_mgmt_list_entry *itr;
6301	int status = 0;
6302	u16 hw_vsi_id;
6303
6304	if (list_empty(list_head))
6305		return status;
6306	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6307
6308	list_for_each_entry(itr, list_head, list_entry) {
6309		struct ice_fltr_list_entry f_entry;
6310
6311		f_entry.fltr_info = itr->fltr_info;
6312		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6313		    itr->fltr_info.vsi_handle == vsi_handle) {
6314			/* update the src in case it is VSI num */
6315			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6316				f_entry.fltr_info.src = hw_vsi_id;
6317			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6318			if (status)
6319				goto end;
6320			continue;
6321		}
6322		if (!itr->vsi_list_info ||
6323		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6324			continue;
 
 
6325		f_entry.fltr_info.vsi_handle = vsi_handle;
6326		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6327		/* update the src in case it is VSI num */
6328		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6329			f_entry.fltr_info.src = hw_vsi_id;
6330		if (recp_id == ICE_SW_LKUP_VLAN)
6331			status = ice_add_vlan_internal(hw, &f_entry);
6332		else
6333			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6334		if (status)
6335			goto end;
6336	}
6337end:
6338	return status;
6339}
6340
6341/**
6342 * ice_adv_rem_update_vsi_list
6343 * @hw: pointer to the hardware structure
6344 * @vsi_handle: VSI handle of the VSI to remove
6345 * @fm_list: filter management entry for which the VSI list management needs to
6346 *	     be done
6347 */
6348static int
6349ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6350			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6351{
6352	struct ice_vsi_list_map_info *vsi_list_info;
6353	enum ice_sw_lkup_type lkup_type;
6354	u16 vsi_list_id;
6355	int status;
6356
6357	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6358	    fm_list->vsi_count == 0)
6359		return -EINVAL;
6360
6361	/* A rule with the VSI being removed does not exist */
6362	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6363		return -ENOENT;
6364
6365	lkup_type = ICE_SW_LKUP_LAST;
6366	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6367	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6368					  ice_aqc_opc_update_sw_rules,
6369					  lkup_type);
6370	if (status)
6371		return status;
6372
6373	fm_list->vsi_count--;
6374	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6375	vsi_list_info = fm_list->vsi_list_info;
6376	if (fm_list->vsi_count == 1) {
6377		struct ice_fltr_info tmp_fltr;
6378		u16 rem_vsi_handle;
6379
6380		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6381						ICE_MAX_VSI);
6382		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6383			return -EIO;
6384
6385		/* Make sure VSI list is empty before removing it below */
6386		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6387						  vsi_list_id, true,
6388						  ice_aqc_opc_update_sw_rules,
6389						  lkup_type);
6390		if (status)
6391			return status;
6392
6393		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6394		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6395		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6396		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6397		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6398		tmp_fltr.fwd_id.hw_vsi_id =
6399			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6400		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6401			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6402		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6403
6404		/* Update the previous switch rule of "MAC forward to VSI" to
6405		 * "MAC fwd to VSI list"
6406		 */
6407		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6408		if (status) {
6409			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6410				  tmp_fltr.fwd_id.hw_vsi_id, status);
6411			return status;
6412		}
6413		fm_list->vsi_list_info->ref_cnt--;
6414
6415		/* Remove the VSI list since it is no longer used */
6416		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6417		if (status) {
6418			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6419				  vsi_list_id, status);
6420			return status;
6421		}
6422
6423		list_del(&vsi_list_info->list_entry);
6424		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6425		fm_list->vsi_list_info = NULL;
6426	}
6427
6428	return status;
6429}
6430
6431/**
6432 * ice_rem_adv_rule - removes existing advanced switch rule
6433 * @hw: pointer to the hardware structure
6434 * @lkups: information on the words that needs to be looked up. All words
6435 *         together makes one recipe
6436 * @lkups_cnt: num of entries in the lkups array
6437 * @rinfo: Its the pointer to the rule information for the rule
6438 *
6439 * This function can be used to remove 1 rule at a time. The lkups is
6440 * used to describe all the words that forms the "lookup" portion of the
6441 * rule. These words can span multiple protocols. Callers to this function
6442 * need to pass in a list of protocol headers with lookup information along
6443 * and mask that determines which words are valid from the given protocol
6444 * header. rinfo describes other information related to this rule such as
6445 * forwarding IDs, priority of this rule, etc.
6446 */
6447static int
6448ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6449		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6450{
6451	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6452	struct ice_prot_lkup_ext lkup_exts;
6453	bool remove_rule = false;
6454	struct mutex *rule_lock; /* Lock to protect filter rule list */
6455	u16 i, rid, vsi_handle;
6456	int status = 0;
6457
6458	memset(&lkup_exts, 0, sizeof(lkup_exts));
6459	for (i = 0; i < lkups_cnt; i++) {
6460		u16 count;
6461
6462		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6463			return -EIO;
6464
6465		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6466		if (!count)
6467			return -EIO;
6468	}
6469
6470	rid = ice_find_recp(hw, &lkup_exts, rinfo, false);
6471	/* If did not find a recipe that match the existing criteria */
6472	if (rid == ICE_MAX_NUM_RECIPES)
6473		return -EINVAL;
6474
6475	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6476	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6477	/* the rule is already removed */
6478	if (!list_elem)
6479		return 0;
6480	mutex_lock(rule_lock);
6481	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6482		remove_rule = true;
6483	} else if (list_elem->vsi_count > 1) {
6484		remove_rule = false;
6485		vsi_handle = rinfo->sw_act.vsi_handle;
6486		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6487	} else {
6488		vsi_handle = rinfo->sw_act.vsi_handle;
6489		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6490		if (status) {
6491			mutex_unlock(rule_lock);
6492			return status;
6493		}
6494		if (list_elem->vsi_count == 0)
6495			remove_rule = true;
6496	}
6497	mutex_unlock(rule_lock);
6498	if (remove_rule) {
6499		struct ice_sw_rule_lkup_rx_tx *s_rule;
6500		u16 rule_buf_sz;
6501
6502		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6503		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6504		if (!s_rule)
6505			return -ENOMEM;
6506		s_rule->act = 0;
6507		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6508		s_rule->hdr_len = 0;
6509		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6510					 rule_buf_sz, 1,
6511					 ice_aqc_opc_remove_sw_rules, NULL);
6512		if (!status || status == -ENOENT) {
6513			struct ice_switch_info *sw = hw->switch_info;
6514			struct ice_sw_recipe *r_list = sw->recp_list;
6515
6516			mutex_lock(rule_lock);
6517			list_del(&list_elem->list_entry);
6518			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6519			devm_kfree(ice_hw_to_dev(hw), list_elem);
6520			mutex_unlock(rule_lock);
6521			if (list_empty(&r_list[rid].filt_rules)) {
6522				r_list[rid].adv_rule = false;
6523
6524				/* All rules for this recipe are now removed */
6525				if (hw->recp_reuse)
6526					ice_release_recipe_res(hw,
6527							       &r_list[rid]);
6528			}
6529		}
6530		kfree(s_rule);
6531	}
6532	return status;
6533}
6534
6535/**
6536 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6537 * @hw: pointer to the hardware structure
6538 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6539 *
6540 * This function is used to remove 1 rule at a time. The removal is based on
6541 * the remove_entry parameter. This function will remove rule for a given
6542 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6543 */
6544int
6545ice_rem_adv_rule_by_id(struct ice_hw *hw,
6546		       struct ice_rule_query_data *remove_entry)
6547{
6548	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6549	struct list_head *list_head;
6550	struct ice_adv_rule_info rinfo;
6551	struct ice_switch_info *sw;
6552
6553	sw = hw->switch_info;
6554	if (!sw->recp_list[remove_entry->rid].recp_created)
6555		return -EINVAL;
6556	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6557	list_for_each_entry(list_itr, list_head, list_entry) {
6558		if (list_itr->rule_info.fltr_rule_id ==
6559		    remove_entry->rule_id) {
6560			rinfo = list_itr->rule_info;
6561			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6562			return ice_rem_adv_rule(hw, list_itr->lkups,
6563						list_itr->lkups_cnt, &rinfo);
6564		}
6565	}
6566	/* either list is empty or unable to find rule */
6567	return -ENOENT;
6568}
6569
6570/**
6571 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6572 * @hw: pointer to the hardware structure
6573 * @vsi_handle: driver VSI handle
6574 * @list_head: list for which filters need to be replayed
6575 *
6576 * Replay the advanced rule for the given VSI.
6577 */
6578static int
6579ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6580			struct list_head *list_head)
6581{
6582	struct ice_rule_query_data added_entry = { 0 };
6583	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6584	int status = 0;
6585
6586	if (list_empty(list_head))
6587		return status;
6588	list_for_each_entry(adv_fltr, list_head, list_entry) {
6589		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6590		u16 lk_cnt = adv_fltr->lkups_cnt;
6591
6592		if (vsi_handle != rinfo->sw_act.vsi_handle)
6593			continue;
6594		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6595					  &added_entry);
6596		if (status)
6597			break;
6598	}
6599	return status;
6600}
6601
6602/**
6603 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6604 * @hw: pointer to the hardware structure
6605 * @vsi_handle: driver VSI handle
6606 *
6607 * Replays filters for requested VSI via vsi_handle.
6608 */
6609int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6610{
6611	struct ice_switch_info *sw = hw->switch_info;
6612	int status;
6613	u8 i;
6614
6615	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6616		struct list_head *head;
6617
6618		head = &sw->recp_list[i].filt_replay_rules;
6619		if (!sw->recp_list[i].adv_rule)
6620			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6621		else
6622			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6623		if (status)
6624			return status;
6625	}
6626	return status;
6627}
6628
6629/**
6630 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6631 * @hw: pointer to the HW struct
6632 *
6633 * Deletes the filter replay rules.
6634 */
6635void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6636{
6637	struct ice_switch_info *sw = hw->switch_info;
6638	u8 i;
6639
6640	if (!sw)
6641		return;
6642
6643	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6644		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6645			struct list_head *l_head;
6646
6647			l_head = &sw->recp_list[i].filt_replay_rules;
6648			if (!sw->recp_list[i].adv_rule)
6649				ice_rem_sw_rule_info(hw, l_head);
6650			else
6651				ice_rem_adv_rule_info(hw, l_head);
6652		}
6653	}
6654}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_lib.h"
   5#include "ice_switch.h"
 
   6
   7#define ICE_ETH_DA_OFFSET		0
   8#define ICE_ETH_ETHTYPE_OFFSET		12
   9#define ICE_ETH_VLAN_TCI_OFFSET		14
  10#define ICE_MAX_VLAN_ID			0xFFF
  11#define ICE_IPV6_ETHER_ID		0x86DD
  12
  13/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
  14 * struct to configure any switch filter rules.
  15 * {DA (6 bytes), SA(6 bytes),
  16 * Ether type (2 bytes for header without VLAN tag) OR
  17 * VLAN tag (4 bytes for header with VLAN tag) }
  18 *
  19 * Word on Hardcoded values
  20 * byte 0 = 0x2: to identify it as locally administered DA MAC
  21 * byte 6 = 0x2: to identify it as locally administered SA MAC
  22 * byte 12 = 0x81 & byte 13 = 0x00:
  23 *      In case of VLAN filter first two bytes defines ether type (0x8100)
  24 *      and remaining two bytes are placeholder for programming a given VLAN ID
  25 *      In case of Ether type filter it is treated as header without VLAN tag
  26 *      and byte 12 and 13 is used to program a given Ether type instead
  27 */
  28static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
  29							0x2, 0, 0, 0, 0, 0,
  30							0x81, 0, 0, 0};
  31
  32enum {
  33	ICE_PKT_OUTER_IPV6	= BIT(0),
  34	ICE_PKT_TUN_GTPC	= BIT(1),
  35	ICE_PKT_TUN_GTPU	= BIT(2),
  36	ICE_PKT_TUN_NVGRE	= BIT(3),
  37	ICE_PKT_TUN_UDP		= BIT(4),
  38	ICE_PKT_INNER_IPV6	= BIT(5),
  39	ICE_PKT_INNER_TCP	= BIT(6),
  40	ICE_PKT_INNER_UDP	= BIT(7),
  41	ICE_PKT_GTP_NOPAY	= BIT(8),
  42	ICE_PKT_KMALLOC		= BIT(9),
  43	ICE_PKT_PPPOE		= BIT(10),
  44	ICE_PKT_L2TPV3		= BIT(11),
 
  45};
  46
  47struct ice_dummy_pkt_offsets {
  48	enum ice_protocol_type type;
  49	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
  50};
  51
  52struct ice_dummy_pkt_profile {
  53	const struct ice_dummy_pkt_offsets *offsets;
  54	const u8 *pkt;
  55	u32 match;
  56	u16 pkt_len;
  57	u16 offsets_len;
  58};
  59
  60#define ICE_DECLARE_PKT_OFFSETS(type)					\
  61	static const struct ice_dummy_pkt_offsets			\
  62	ice_dummy_##type##_packet_offsets[]
  63
  64#define ICE_DECLARE_PKT_TEMPLATE(type)					\
  65	static const u8 ice_dummy_##type##_packet[]
  66
  67#define ICE_PKT_PROFILE(type, m) {					\
  68	.match		= (m),						\
  69	.pkt		= ice_dummy_##type##_packet,			\
  70	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
  71	.offsets	= ice_dummy_##type##_packet_offsets,		\
  72	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
  73}
  74
  75ICE_DECLARE_PKT_OFFSETS(vlan) = {
  76	{ ICE_VLAN_OFOS,        12 },
  77};
  78
  79ICE_DECLARE_PKT_TEMPLATE(vlan) = {
  80	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
  81};
  82
  83ICE_DECLARE_PKT_OFFSETS(qinq) = {
  84	{ ICE_VLAN_EX,          12 },
  85	{ ICE_VLAN_IN,          16 },
  86};
  87
  88ICE_DECLARE_PKT_TEMPLATE(qinq) = {
  89	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
  90	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
  91};
  92
  93ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
  94	{ ICE_MAC_OFOS,		0 },
  95	{ ICE_ETYPE_OL,		12 },
  96	{ ICE_IPV4_OFOS,	14 },
  97	{ ICE_NVGRE,		34 },
  98	{ ICE_MAC_IL,		42 },
  99	{ ICE_ETYPE_IL,		54 },
 100	{ ICE_IPV4_IL,		56 },
 101	{ ICE_TCP_IL,		76 },
 102	{ ICE_PROTOCOL_LAST,	0 },
 103};
 104
 105ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
 106	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 107	0x00, 0x00, 0x00, 0x00,
 108	0x00, 0x00, 0x00, 0x00,
 109
 110	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 111
 112	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 113	0x00, 0x00, 0x00, 0x00,
 114	0x00, 0x2F, 0x00, 0x00,
 115	0x00, 0x00, 0x00, 0x00,
 116	0x00, 0x00, 0x00, 0x00,
 117
 118	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 119	0x00, 0x00, 0x00, 0x00,
 120
 121	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 122	0x00, 0x00, 0x00, 0x00,
 123	0x00, 0x00, 0x00, 0x00,
 124
 125	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 126
 127	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 128	0x00, 0x00, 0x00, 0x00,
 129	0x00, 0x06, 0x00, 0x00,
 130	0x00, 0x00, 0x00, 0x00,
 131	0x00, 0x00, 0x00, 0x00,
 132
 133	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
 134	0x00, 0x00, 0x00, 0x00,
 135	0x00, 0x00, 0x00, 0x00,
 136	0x50, 0x02, 0x20, 0x00,
 137	0x00, 0x00, 0x00, 0x00
 138};
 139
 140ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
 141	{ ICE_MAC_OFOS,		0 },
 142	{ ICE_ETYPE_OL,		12 },
 143	{ ICE_IPV4_OFOS,	14 },
 144	{ ICE_NVGRE,		34 },
 145	{ ICE_MAC_IL,		42 },
 146	{ ICE_ETYPE_IL,		54 },
 147	{ ICE_IPV4_IL,		56 },
 148	{ ICE_UDP_ILOS,		76 },
 149	{ ICE_PROTOCOL_LAST,	0 },
 150};
 151
 152ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
 153	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 154	0x00, 0x00, 0x00, 0x00,
 155	0x00, 0x00, 0x00, 0x00,
 156
 157	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 158
 159	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 160	0x00, 0x00, 0x00, 0x00,
 161	0x00, 0x2F, 0x00, 0x00,
 162	0x00, 0x00, 0x00, 0x00,
 163	0x00, 0x00, 0x00, 0x00,
 164
 165	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 166	0x00, 0x00, 0x00, 0x00,
 167
 168	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 169	0x00, 0x00, 0x00, 0x00,
 170	0x00, 0x00, 0x00, 0x00,
 171
 172	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 173
 174	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 175	0x00, 0x00, 0x00, 0x00,
 176	0x00, 0x11, 0x00, 0x00,
 177	0x00, 0x00, 0x00, 0x00,
 178	0x00, 0x00, 0x00, 0x00,
 179
 180	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
 181	0x00, 0x08, 0x00, 0x00,
 182};
 183
 184ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
 185	{ ICE_MAC_OFOS,		0 },
 186	{ ICE_ETYPE_OL,		12 },
 187	{ ICE_IPV4_OFOS,	14 },
 188	{ ICE_UDP_OF,		34 },
 189	{ ICE_VXLAN,		42 },
 190	{ ICE_GENEVE,		42 },
 191	{ ICE_VXLAN_GPE,	42 },
 192	{ ICE_MAC_IL,		50 },
 193	{ ICE_ETYPE_IL,		62 },
 194	{ ICE_IPV4_IL,		64 },
 195	{ ICE_TCP_IL,		84 },
 196	{ ICE_PROTOCOL_LAST,	0 },
 197};
 198
 199ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
 200	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 201	0x00, 0x00, 0x00, 0x00,
 202	0x00, 0x00, 0x00, 0x00,
 203
 204	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 205
 206	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 207	0x00, 0x01, 0x00, 0x00,
 208	0x40, 0x11, 0x00, 0x00,
 209	0x00, 0x00, 0x00, 0x00,
 210	0x00, 0x00, 0x00, 0x00,
 211
 212	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 213	0x00, 0x46, 0x00, 0x00,
 214
 215	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 216	0x00, 0x00, 0x00, 0x00,
 217
 218	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 219	0x00, 0x00, 0x00, 0x00,
 220	0x00, 0x00, 0x00, 0x00,
 221
 222	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 223
 224	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
 225	0x00, 0x01, 0x00, 0x00,
 226	0x40, 0x06, 0x00, 0x00,
 227	0x00, 0x00, 0x00, 0x00,
 228	0x00, 0x00, 0x00, 0x00,
 229
 230	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
 231	0x00, 0x00, 0x00, 0x00,
 232	0x00, 0x00, 0x00, 0x00,
 233	0x50, 0x02, 0x20, 0x00,
 234	0x00, 0x00, 0x00, 0x00
 235};
 236
 237ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
 238	{ ICE_MAC_OFOS,		0 },
 239	{ ICE_ETYPE_OL,		12 },
 240	{ ICE_IPV4_OFOS,	14 },
 241	{ ICE_UDP_OF,		34 },
 242	{ ICE_VXLAN,		42 },
 243	{ ICE_GENEVE,		42 },
 244	{ ICE_VXLAN_GPE,	42 },
 245	{ ICE_MAC_IL,		50 },
 246	{ ICE_ETYPE_IL,		62 },
 247	{ ICE_IPV4_IL,		64 },
 248	{ ICE_UDP_ILOS,		84 },
 249	{ ICE_PROTOCOL_LAST,	0 },
 250};
 251
 252ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
 253	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 254	0x00, 0x00, 0x00, 0x00,
 255	0x00, 0x00, 0x00, 0x00,
 256
 257	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 258
 259	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
 260	0x00, 0x01, 0x00, 0x00,
 261	0x00, 0x11, 0x00, 0x00,
 262	0x00, 0x00, 0x00, 0x00,
 263	0x00, 0x00, 0x00, 0x00,
 264
 265	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 266	0x00, 0x3a, 0x00, 0x00,
 267
 268	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 269	0x00, 0x00, 0x00, 0x00,
 270
 271	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 272	0x00, 0x00, 0x00, 0x00,
 273	0x00, 0x00, 0x00, 0x00,
 274
 275	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 276
 277	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
 278	0x00, 0x01, 0x00, 0x00,
 279	0x00, 0x11, 0x00, 0x00,
 280	0x00, 0x00, 0x00, 0x00,
 281	0x00, 0x00, 0x00, 0x00,
 282
 283	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
 284	0x00, 0x08, 0x00, 0x00,
 285};
 286
 287ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
 288	{ ICE_MAC_OFOS,		0 },
 289	{ ICE_ETYPE_OL,		12 },
 290	{ ICE_IPV4_OFOS,	14 },
 291	{ ICE_NVGRE,		34 },
 292	{ ICE_MAC_IL,		42 },
 293	{ ICE_ETYPE_IL,		54 },
 294	{ ICE_IPV6_IL,		56 },
 295	{ ICE_TCP_IL,		96 },
 296	{ ICE_PROTOCOL_LAST,	0 },
 297};
 298
 299ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
 300	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 301	0x00, 0x00, 0x00, 0x00,
 302	0x00, 0x00, 0x00, 0x00,
 303
 304	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 305
 306	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
 307	0x00, 0x00, 0x00, 0x00,
 308	0x00, 0x2F, 0x00, 0x00,
 309	0x00, 0x00, 0x00, 0x00,
 310	0x00, 0x00, 0x00, 0x00,
 311
 312	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 313	0x00, 0x00, 0x00, 0x00,
 314
 315	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 316	0x00, 0x00, 0x00, 0x00,
 317	0x00, 0x00, 0x00, 0x00,
 318
 319	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 320
 321	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 322	0x00, 0x08, 0x06, 0x40,
 323	0x00, 0x00, 0x00, 0x00,
 324	0x00, 0x00, 0x00, 0x00,
 325	0x00, 0x00, 0x00, 0x00,
 326	0x00, 0x00, 0x00, 0x00,
 327	0x00, 0x00, 0x00, 0x00,
 328	0x00, 0x00, 0x00, 0x00,
 329	0x00, 0x00, 0x00, 0x00,
 330	0x00, 0x00, 0x00, 0x00,
 331
 332	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
 333	0x00, 0x00, 0x00, 0x00,
 334	0x00, 0x00, 0x00, 0x00,
 335	0x50, 0x02, 0x20, 0x00,
 336	0x00, 0x00, 0x00, 0x00
 337};
 338
 339ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
 340	{ ICE_MAC_OFOS,		0 },
 341	{ ICE_ETYPE_OL,		12 },
 342	{ ICE_IPV4_OFOS,	14 },
 343	{ ICE_NVGRE,		34 },
 344	{ ICE_MAC_IL,		42 },
 345	{ ICE_ETYPE_IL,		54 },
 346	{ ICE_IPV6_IL,		56 },
 347	{ ICE_UDP_ILOS,		96 },
 348	{ ICE_PROTOCOL_LAST,	0 },
 349};
 350
 351ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
 352	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 353	0x00, 0x00, 0x00, 0x00,
 354	0x00, 0x00, 0x00, 0x00,
 355
 356	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 357
 358	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 359	0x00, 0x00, 0x00, 0x00,
 360	0x00, 0x2F, 0x00, 0x00,
 361	0x00, 0x00, 0x00, 0x00,
 362	0x00, 0x00, 0x00, 0x00,
 363
 364	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 365	0x00, 0x00, 0x00, 0x00,
 366
 367	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 368	0x00, 0x00, 0x00, 0x00,
 369	0x00, 0x00, 0x00, 0x00,
 370
 371	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 372
 373	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 374	0x00, 0x08, 0x11, 0x40,
 375	0x00, 0x00, 0x00, 0x00,
 376	0x00, 0x00, 0x00, 0x00,
 377	0x00, 0x00, 0x00, 0x00,
 378	0x00, 0x00, 0x00, 0x00,
 379	0x00, 0x00, 0x00, 0x00,
 380	0x00, 0x00, 0x00, 0x00,
 381	0x00, 0x00, 0x00, 0x00,
 382	0x00, 0x00, 0x00, 0x00,
 383
 384	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
 385	0x00, 0x08, 0x00, 0x00,
 386};
 387
 388ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
 389	{ ICE_MAC_OFOS,		0 },
 390	{ ICE_ETYPE_OL,		12 },
 391	{ ICE_IPV4_OFOS,	14 },
 392	{ ICE_UDP_OF,		34 },
 393	{ ICE_VXLAN,		42 },
 394	{ ICE_GENEVE,		42 },
 395	{ ICE_VXLAN_GPE,	42 },
 396	{ ICE_MAC_IL,		50 },
 397	{ ICE_ETYPE_IL,		62 },
 398	{ ICE_IPV6_IL,		64 },
 399	{ ICE_TCP_IL,		104 },
 400	{ ICE_PROTOCOL_LAST,	0 },
 401};
 402
 403ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
 404	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 405	0x00, 0x00, 0x00, 0x00,
 406	0x00, 0x00, 0x00, 0x00,
 407
 408	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 409
 410	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
 411	0x00, 0x01, 0x00, 0x00,
 412	0x40, 0x11, 0x00, 0x00,
 413	0x00, 0x00, 0x00, 0x00,
 414	0x00, 0x00, 0x00, 0x00,
 415
 416	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 417	0x00, 0x5a, 0x00, 0x00,
 418
 419	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 420	0x00, 0x00, 0x00, 0x00,
 421
 422	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 423	0x00, 0x00, 0x00, 0x00,
 424	0x00, 0x00, 0x00, 0x00,
 425
 426	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 427
 428	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 429	0x00, 0x08, 0x06, 0x40,
 430	0x00, 0x00, 0x00, 0x00,
 431	0x00, 0x00, 0x00, 0x00,
 432	0x00, 0x00, 0x00, 0x00,
 433	0x00, 0x00, 0x00, 0x00,
 434	0x00, 0x00, 0x00, 0x00,
 435	0x00, 0x00, 0x00, 0x00,
 436	0x00, 0x00, 0x00, 0x00,
 437	0x00, 0x00, 0x00, 0x00,
 438
 439	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
 440	0x00, 0x00, 0x00, 0x00,
 441	0x00, 0x00, 0x00, 0x00,
 442	0x50, 0x02, 0x20, 0x00,
 443	0x00, 0x00, 0x00, 0x00
 444};
 445
 446ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
 447	{ ICE_MAC_OFOS,		0 },
 448	{ ICE_ETYPE_OL,		12 },
 449	{ ICE_IPV4_OFOS,	14 },
 450	{ ICE_UDP_OF,		34 },
 451	{ ICE_VXLAN,		42 },
 452	{ ICE_GENEVE,		42 },
 453	{ ICE_VXLAN_GPE,	42 },
 454	{ ICE_MAC_IL,		50 },
 455	{ ICE_ETYPE_IL,		62 },
 456	{ ICE_IPV6_IL,		64 },
 457	{ ICE_UDP_ILOS,		104 },
 458	{ ICE_PROTOCOL_LAST,	0 },
 459};
 460
 461ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
 462	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 463	0x00, 0x00, 0x00, 0x00,
 464	0x00, 0x00, 0x00, 0x00,
 465
 466	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 467
 468	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
 469	0x00, 0x01, 0x00, 0x00,
 470	0x00, 0x11, 0x00, 0x00,
 471	0x00, 0x00, 0x00, 0x00,
 472	0x00, 0x00, 0x00, 0x00,
 473
 474	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 475	0x00, 0x4e, 0x00, 0x00,
 476
 477	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 478	0x00, 0x00, 0x00, 0x00,
 479
 480	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 481	0x00, 0x00, 0x00, 0x00,
 482	0x00, 0x00, 0x00, 0x00,
 483
 484	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 485
 486	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 487	0x00, 0x08, 0x11, 0x40,
 488	0x00, 0x00, 0x00, 0x00,
 489	0x00, 0x00, 0x00, 0x00,
 490	0x00, 0x00, 0x00, 0x00,
 491	0x00, 0x00, 0x00, 0x00,
 492	0x00, 0x00, 0x00, 0x00,
 493	0x00, 0x00, 0x00, 0x00,
 494	0x00, 0x00, 0x00, 0x00,
 495	0x00, 0x00, 0x00, 0x00,
 496
 497	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
 498	0x00, 0x08, 0x00, 0x00,
 499};
 500
 501/* offset info for MAC + IPv4 + UDP dummy packet */
 502ICE_DECLARE_PKT_OFFSETS(udp) = {
 503	{ ICE_MAC_OFOS,		0 },
 504	{ ICE_ETYPE_OL,		12 },
 505	{ ICE_IPV4_OFOS,	14 },
 506	{ ICE_UDP_ILOS,		34 },
 507	{ ICE_PROTOCOL_LAST,	0 },
 508};
 509
 510/* Dummy packet for MAC + IPv4 + UDP */
 511ICE_DECLARE_PKT_TEMPLATE(udp) = {
 512	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 513	0x00, 0x00, 0x00, 0x00,
 514	0x00, 0x00, 0x00, 0x00,
 515
 516	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 517
 518	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
 519	0x00, 0x01, 0x00, 0x00,
 520	0x00, 0x11, 0x00, 0x00,
 521	0x00, 0x00, 0x00, 0x00,
 522	0x00, 0x00, 0x00, 0x00,
 523
 524	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
 525	0x00, 0x08, 0x00, 0x00,
 526
 527	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 528};
 529
 530/* offset info for MAC + IPv4 + TCP dummy packet */
 531ICE_DECLARE_PKT_OFFSETS(tcp) = {
 532	{ ICE_MAC_OFOS,		0 },
 533	{ ICE_ETYPE_OL,		12 },
 534	{ ICE_IPV4_OFOS,	14 },
 535	{ ICE_TCP_IL,		34 },
 536	{ ICE_PROTOCOL_LAST,	0 },
 537};
 538
 539/* Dummy packet for MAC + IPv4 + TCP */
 540ICE_DECLARE_PKT_TEMPLATE(tcp) = {
 541	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 542	0x00, 0x00, 0x00, 0x00,
 543	0x00, 0x00, 0x00, 0x00,
 544
 545	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 546
 547	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
 548	0x00, 0x01, 0x00, 0x00,
 549	0x00, 0x06, 0x00, 0x00,
 550	0x00, 0x00, 0x00, 0x00,
 551	0x00, 0x00, 0x00, 0x00,
 552
 553	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
 554	0x00, 0x00, 0x00, 0x00,
 555	0x00, 0x00, 0x00, 0x00,
 556	0x50, 0x00, 0x00, 0x00,
 557	0x00, 0x00, 0x00, 0x00,
 558
 559	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 560};
 561
 562ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
 563	{ ICE_MAC_OFOS,		0 },
 564	{ ICE_ETYPE_OL,		12 },
 565	{ ICE_IPV6_OFOS,	14 },
 566	{ ICE_TCP_IL,		54 },
 567	{ ICE_PROTOCOL_LAST,	0 },
 568};
 569
 570ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
 571	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 572	0x00, 0x00, 0x00, 0x00,
 573	0x00, 0x00, 0x00, 0x00,
 574
 575	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 576
 577	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 578	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
 579	0x00, 0x00, 0x00, 0x00,
 580	0x00, 0x00, 0x00, 0x00,
 581	0x00, 0x00, 0x00, 0x00,
 582	0x00, 0x00, 0x00, 0x00,
 583	0x00, 0x00, 0x00, 0x00,
 584	0x00, 0x00, 0x00, 0x00,
 585	0x00, 0x00, 0x00, 0x00,
 586	0x00, 0x00, 0x00, 0x00,
 587
 588	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
 589	0x00, 0x00, 0x00, 0x00,
 590	0x00, 0x00, 0x00, 0x00,
 591	0x50, 0x00, 0x00, 0x00,
 592	0x00, 0x00, 0x00, 0x00,
 593
 594	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 595};
 596
 597/* IPv6 + UDP */
 598ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
 599	{ ICE_MAC_OFOS,		0 },
 600	{ ICE_ETYPE_OL,		12 },
 601	{ ICE_IPV6_OFOS,	14 },
 602	{ ICE_UDP_ILOS,		54 },
 603	{ ICE_PROTOCOL_LAST,	0 },
 604};
 605
 606/* IPv6 + UDP dummy packet */
 607ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
 608	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 609	0x00, 0x00, 0x00, 0x00,
 610	0x00, 0x00, 0x00, 0x00,
 611
 612	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 613
 614	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 615	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
 616	0x00, 0x00, 0x00, 0x00,
 617	0x00, 0x00, 0x00, 0x00,
 618	0x00, 0x00, 0x00, 0x00,
 619	0x00, 0x00, 0x00, 0x00,
 620	0x00, 0x00, 0x00, 0x00,
 621	0x00, 0x00, 0x00, 0x00,
 622	0x00, 0x00, 0x00, 0x00,
 623	0x00, 0x00, 0x00, 0x00,
 624
 625	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
 626	0x00, 0x10, 0x00, 0x00,
 627
 628	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
 629	0x00, 0x00, 0x00, 0x00,
 630
 631	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 632};
 633
 634/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 635ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
 636	{ ICE_MAC_OFOS,		0 },
 637	{ ICE_IPV4_OFOS,	14 },
 638	{ ICE_UDP_OF,		34 },
 639	{ ICE_GTP,		42 },
 640	{ ICE_IPV4_IL,		62 },
 641	{ ICE_TCP_IL,		82 },
 642	{ ICE_PROTOCOL_LAST,	0 },
 643};
 644
 645ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
 646	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 647	0x00, 0x00, 0x00, 0x00,
 648	0x00, 0x00, 0x00, 0x00,
 649	0x08, 0x00,
 650
 651	0x45, 0x00, 0x00, 0x58, /* IP 14 */
 652	0x00, 0x00, 0x00, 0x00,
 653	0x00, 0x11, 0x00, 0x00,
 654	0x00, 0x00, 0x00, 0x00,
 655	0x00, 0x00, 0x00, 0x00,
 656
 657	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 658	0x00, 0x44, 0x00, 0x00,
 659
 660	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
 661	0x00, 0x00, 0x00, 0x00,
 662	0x00, 0x00, 0x00, 0x85,
 663
 664	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 665	0x00, 0x00, 0x00, 0x00,
 666
 667	0x45, 0x00, 0x00, 0x28, /* IP 62 */
 668	0x00, 0x00, 0x00, 0x00,
 669	0x00, 0x06, 0x00, 0x00,
 670	0x00, 0x00, 0x00, 0x00,
 671	0x00, 0x00, 0x00, 0x00,
 672
 673	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
 674	0x00, 0x00, 0x00, 0x00,
 675	0x00, 0x00, 0x00, 0x00,
 676	0x50, 0x00, 0x00, 0x00,
 677	0x00, 0x00, 0x00, 0x00,
 678
 679	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 680};
 681
 682/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
 683ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
 684	{ ICE_MAC_OFOS,		0 },
 685	{ ICE_IPV4_OFOS,	14 },
 686	{ ICE_UDP_OF,		34 },
 687	{ ICE_GTP,		42 },
 688	{ ICE_IPV4_IL,		62 },
 689	{ ICE_UDP_ILOS,		82 },
 690	{ ICE_PROTOCOL_LAST,	0 },
 691};
 692
 693ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
 694	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 695	0x00, 0x00, 0x00, 0x00,
 696	0x00, 0x00, 0x00, 0x00,
 697	0x08, 0x00,
 698
 699	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
 700	0x00, 0x00, 0x00, 0x00,
 701	0x00, 0x11, 0x00, 0x00,
 702	0x00, 0x00, 0x00, 0x00,
 703	0x00, 0x00, 0x00, 0x00,
 704
 705	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 706	0x00, 0x38, 0x00, 0x00,
 707
 708	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
 709	0x00, 0x00, 0x00, 0x00,
 710	0x00, 0x00, 0x00, 0x85,
 711
 712	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 713	0x00, 0x00, 0x00, 0x00,
 714
 715	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
 716	0x00, 0x00, 0x00, 0x00,
 717	0x00, 0x11, 0x00, 0x00,
 718	0x00, 0x00, 0x00, 0x00,
 719	0x00, 0x00, 0x00, 0x00,
 720
 721	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
 722	0x00, 0x08, 0x00, 0x00,
 723
 724	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 725};
 726
 727/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 728ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
 729	{ ICE_MAC_OFOS,		0 },
 730	{ ICE_IPV4_OFOS,	14 },
 731	{ ICE_UDP_OF,		34 },
 732	{ ICE_GTP,		42 },
 733	{ ICE_IPV6_IL,		62 },
 734	{ ICE_TCP_IL,		102 },
 735	{ ICE_PROTOCOL_LAST,	0 },
 736};
 737
 738ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
 739	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 740	0x00, 0x00, 0x00, 0x00,
 741	0x00, 0x00, 0x00, 0x00,
 742	0x08, 0x00,
 743
 744	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
 745	0x00, 0x00, 0x00, 0x00,
 746	0x00, 0x11, 0x00, 0x00,
 747	0x00, 0x00, 0x00, 0x00,
 748	0x00, 0x00, 0x00, 0x00,
 749
 750	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 751	0x00, 0x58, 0x00, 0x00,
 752
 753	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
 754	0x00, 0x00, 0x00, 0x00,
 755	0x00, 0x00, 0x00, 0x85,
 756
 757	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 758	0x00, 0x00, 0x00, 0x00,
 759
 760	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 761	0x00, 0x14, 0x06, 0x00,
 762	0x00, 0x00, 0x00, 0x00,
 763	0x00, 0x00, 0x00, 0x00,
 764	0x00, 0x00, 0x00, 0x00,
 765	0x00, 0x00, 0x00, 0x00,
 766	0x00, 0x00, 0x00, 0x00,
 767	0x00, 0x00, 0x00, 0x00,
 768	0x00, 0x00, 0x00, 0x00,
 769	0x00, 0x00, 0x00, 0x00,
 770
 771	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 772	0x00, 0x00, 0x00, 0x00,
 773	0x00, 0x00, 0x00, 0x00,
 774	0x50, 0x00, 0x00, 0x00,
 775	0x00, 0x00, 0x00, 0x00,
 776
 777	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 778};
 779
 780ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
 781	{ ICE_MAC_OFOS,		0 },
 782	{ ICE_IPV4_OFOS,	14 },
 783	{ ICE_UDP_OF,		34 },
 784	{ ICE_GTP,		42 },
 785	{ ICE_IPV6_IL,		62 },
 786	{ ICE_UDP_ILOS,		102 },
 787	{ ICE_PROTOCOL_LAST,	0 },
 788};
 789
 790ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
 791	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 792	0x00, 0x00, 0x00, 0x00,
 793	0x00, 0x00, 0x00, 0x00,
 794	0x08, 0x00,
 795
 796	0x45, 0x00, 0x00, 0x60, /* IP 14 */
 797	0x00, 0x00, 0x00, 0x00,
 798	0x00, 0x11, 0x00, 0x00,
 799	0x00, 0x00, 0x00, 0x00,
 800	0x00, 0x00, 0x00, 0x00,
 801
 802	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 803	0x00, 0x4c, 0x00, 0x00,
 804
 805	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
 806	0x00, 0x00, 0x00, 0x00,
 807	0x00, 0x00, 0x00, 0x85,
 808
 809	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 810	0x00, 0x00, 0x00, 0x00,
 811
 812	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 813	0x00, 0x08, 0x11, 0x00,
 814	0x00, 0x00, 0x00, 0x00,
 815	0x00, 0x00, 0x00, 0x00,
 816	0x00, 0x00, 0x00, 0x00,
 817	0x00, 0x00, 0x00, 0x00,
 818	0x00, 0x00, 0x00, 0x00,
 819	0x00, 0x00, 0x00, 0x00,
 820	0x00, 0x00, 0x00, 0x00,
 821	0x00, 0x00, 0x00, 0x00,
 822
 823	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 824	0x00, 0x08, 0x00, 0x00,
 825
 826	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 827};
 828
 829ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
 830	{ ICE_MAC_OFOS,		0 },
 831	{ ICE_IPV6_OFOS,	14 },
 832	{ ICE_UDP_OF,		54 },
 833	{ ICE_GTP,		62 },
 834	{ ICE_IPV4_IL,		82 },
 835	{ ICE_TCP_IL,		102 },
 836	{ ICE_PROTOCOL_LAST,	0 },
 837};
 838
 839ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
 840	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 841	0x00, 0x00, 0x00, 0x00,
 842	0x00, 0x00, 0x00, 0x00,
 843	0x86, 0xdd,
 844
 845	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 846	0x00, 0x44, 0x11, 0x00,
 847	0x00, 0x00, 0x00, 0x00,
 848	0x00, 0x00, 0x00, 0x00,
 849	0x00, 0x00, 0x00, 0x00,
 850	0x00, 0x00, 0x00, 0x00,
 851	0x00, 0x00, 0x00, 0x00,
 852	0x00, 0x00, 0x00, 0x00,
 853	0x00, 0x00, 0x00, 0x00,
 854	0x00, 0x00, 0x00, 0x00,
 855
 856	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 857	0x00, 0x44, 0x00, 0x00,
 858
 859	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
 860	0x00, 0x00, 0x00, 0x00,
 861	0x00, 0x00, 0x00, 0x85,
 862
 863	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 864	0x00, 0x00, 0x00, 0x00,
 865
 866	0x45, 0x00, 0x00, 0x28, /* IP 82 */
 867	0x00, 0x00, 0x00, 0x00,
 868	0x00, 0x06, 0x00, 0x00,
 869	0x00, 0x00, 0x00, 0x00,
 870	0x00, 0x00, 0x00, 0x00,
 871
 872	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 873	0x00, 0x00, 0x00, 0x00,
 874	0x00, 0x00, 0x00, 0x00,
 875	0x50, 0x00, 0x00, 0x00,
 876	0x00, 0x00, 0x00, 0x00,
 877
 878	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 879};
 880
 881ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
 882	{ ICE_MAC_OFOS,		0 },
 883	{ ICE_IPV6_OFOS,	14 },
 884	{ ICE_UDP_OF,		54 },
 885	{ ICE_GTP,		62 },
 886	{ ICE_IPV4_IL,		82 },
 887	{ ICE_UDP_ILOS,		102 },
 888	{ ICE_PROTOCOL_LAST,	0 },
 889};
 890
 891ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
 892	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 893	0x00, 0x00, 0x00, 0x00,
 894	0x00, 0x00, 0x00, 0x00,
 895	0x86, 0xdd,
 896
 897	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 898	0x00, 0x38, 0x11, 0x00,
 899	0x00, 0x00, 0x00, 0x00,
 900	0x00, 0x00, 0x00, 0x00,
 901	0x00, 0x00, 0x00, 0x00,
 902	0x00, 0x00, 0x00, 0x00,
 903	0x00, 0x00, 0x00, 0x00,
 904	0x00, 0x00, 0x00, 0x00,
 905	0x00, 0x00, 0x00, 0x00,
 906	0x00, 0x00, 0x00, 0x00,
 907
 908	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 909	0x00, 0x38, 0x00, 0x00,
 910
 911	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
 912	0x00, 0x00, 0x00, 0x00,
 913	0x00, 0x00, 0x00, 0x85,
 914
 915	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 916	0x00, 0x00, 0x00, 0x00,
 917
 918	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
 919	0x00, 0x00, 0x00, 0x00,
 920	0x00, 0x11, 0x00, 0x00,
 921	0x00, 0x00, 0x00, 0x00,
 922	0x00, 0x00, 0x00, 0x00,
 923
 924	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 925	0x00, 0x08, 0x00, 0x00,
 926
 927	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 928};
 929
 930ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
 931	{ ICE_MAC_OFOS,		0 },
 932	{ ICE_IPV6_OFOS,	14 },
 933	{ ICE_UDP_OF,		54 },
 934	{ ICE_GTP,		62 },
 935	{ ICE_IPV6_IL,		82 },
 936	{ ICE_TCP_IL,		122 },
 937	{ ICE_PROTOCOL_LAST,	0 },
 938};
 939
 940ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
 941	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 942	0x00, 0x00, 0x00, 0x00,
 943	0x00, 0x00, 0x00, 0x00,
 944	0x86, 0xdd,
 945
 946	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 947	0x00, 0x58, 0x11, 0x00,
 948	0x00, 0x00, 0x00, 0x00,
 949	0x00, 0x00, 0x00, 0x00,
 950	0x00, 0x00, 0x00, 0x00,
 951	0x00, 0x00, 0x00, 0x00,
 952	0x00, 0x00, 0x00, 0x00,
 953	0x00, 0x00, 0x00, 0x00,
 954	0x00, 0x00, 0x00, 0x00,
 955	0x00, 0x00, 0x00, 0x00,
 956
 957	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 958	0x00, 0x58, 0x00, 0x00,
 959
 960	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
 961	0x00, 0x00, 0x00, 0x00,
 962	0x00, 0x00, 0x00, 0x85,
 963
 964	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 965	0x00, 0x00, 0x00, 0x00,
 966
 967	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
 968	0x00, 0x14, 0x06, 0x00,
 969	0x00, 0x00, 0x00, 0x00,
 970	0x00, 0x00, 0x00, 0x00,
 971	0x00, 0x00, 0x00, 0x00,
 972	0x00, 0x00, 0x00, 0x00,
 973	0x00, 0x00, 0x00, 0x00,
 974	0x00, 0x00, 0x00, 0x00,
 975	0x00, 0x00, 0x00, 0x00,
 976	0x00, 0x00, 0x00, 0x00,
 977
 978	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
 979	0x00, 0x00, 0x00, 0x00,
 980	0x00, 0x00, 0x00, 0x00,
 981	0x50, 0x00, 0x00, 0x00,
 982	0x00, 0x00, 0x00, 0x00,
 983
 984	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 985};
 986
 987ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
 988	{ ICE_MAC_OFOS,		0 },
 989	{ ICE_IPV6_OFOS,	14 },
 990	{ ICE_UDP_OF,		54 },
 991	{ ICE_GTP,		62 },
 992	{ ICE_IPV6_IL,		82 },
 993	{ ICE_UDP_ILOS,		122 },
 994	{ ICE_PROTOCOL_LAST,	0 },
 995};
 996
 997ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
 998	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 999	0x00, 0x00, 0x00, 0x00,
1000	0x00, 0x00, 0x00, 0x00,
1001	0x86, 0xdd,
1002
1003	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004	0x00, 0x4c, 0x11, 0x00,
1005	0x00, 0x00, 0x00, 0x00,
1006	0x00, 0x00, 0x00, 0x00,
1007	0x00, 0x00, 0x00, 0x00,
1008	0x00, 0x00, 0x00, 0x00,
1009	0x00, 0x00, 0x00, 0x00,
1010	0x00, 0x00, 0x00, 0x00,
1011	0x00, 0x00, 0x00, 0x00,
1012	0x00, 0x00, 0x00, 0x00,
1013
1014	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015	0x00, 0x4c, 0x00, 0x00,
1016
1017	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018	0x00, 0x00, 0x00, 0x00,
1019	0x00, 0x00, 0x00, 0x85,
1020
1021	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022	0x00, 0x00, 0x00, 0x00,
1023
1024	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025	0x00, 0x08, 0x11, 0x00,
1026	0x00, 0x00, 0x00, 0x00,
1027	0x00, 0x00, 0x00, 0x00,
1028	0x00, 0x00, 0x00, 0x00,
1029	0x00, 0x00, 0x00, 0x00,
1030	0x00, 0x00, 0x00, 0x00,
1031	0x00, 0x00, 0x00, 0x00,
1032	0x00, 0x00, 0x00, 0x00,
1033	0x00, 0x00, 0x00, 0x00,
1034
1035	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036	0x00, 0x08, 0x00, 0x00,
1037
1038	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039};
1040
1041ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042	{ ICE_MAC_OFOS,		0 },
1043	{ ICE_IPV4_OFOS,	14 },
1044	{ ICE_UDP_OF,		34 },
1045	{ ICE_GTP_NO_PAY,	42 },
1046	{ ICE_PROTOCOL_LAST,	0 },
1047};
1048
1049ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051	0x00, 0x00, 0x00, 0x00,
1052	0x00, 0x00, 0x00, 0x00,
1053	0x08, 0x00,
1054
1055	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056	0x00, 0x00, 0x40, 0x00,
1057	0x40, 0x11, 0x00, 0x00,
1058	0x00, 0x00, 0x00, 0x00,
1059	0x00, 0x00, 0x00, 0x00,
1060
1061	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062	0x00, 0x00, 0x00, 0x00,
1063
1064	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065	0x00, 0x00, 0x00, 0x00,
1066	0x00, 0x00, 0x00, 0x85,
1067
1068	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069	0x00, 0x00, 0x00, 0x00,
1070
1071	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072	0x00, 0x00, 0x40, 0x00,
1073	0x40, 0x00, 0x00, 0x00,
1074	0x00, 0x00, 0x00, 0x00,
1075	0x00, 0x00, 0x00, 0x00,
1076	0x00, 0x00,
1077};
1078
1079ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080	{ ICE_MAC_OFOS,		0 },
1081	{ ICE_IPV6_OFOS,	14 },
1082	{ ICE_UDP_OF,		54 },
1083	{ ICE_GTP_NO_PAY,	62 },
1084	{ ICE_PROTOCOL_LAST,	0 },
1085};
1086
1087ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089	0x00, 0x00, 0x00, 0x00,
1090	0x00, 0x00, 0x00, 0x00,
1091	0x86, 0xdd,
1092
1093	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095	0x00, 0x00, 0x00, 0x00,
1096	0x00, 0x00, 0x00, 0x00,
1097	0x00, 0x00, 0x00, 0x00,
1098	0x00, 0x00, 0x00, 0x00,
1099	0x00, 0x00, 0x00, 0x00,
1100	0x00, 0x00, 0x00, 0x00,
1101	0x00, 0x00, 0x00, 0x00,
1102	0x00, 0x00, 0x00, 0x00,
1103
1104	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105	0x00, 0x00, 0x00, 0x00,
1106
1107	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108	0x00, 0x00, 0x00, 0x00,
1109
1110	0x00, 0x00,
1111};
1112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114	{ ICE_MAC_OFOS,		0 },
1115	{ ICE_ETYPE_OL,		12 },
1116	{ ICE_PPPOE,		14 },
1117	{ ICE_IPV4_OFOS,	22 },
1118	{ ICE_TCP_IL,		42 },
1119	{ ICE_PROTOCOL_LAST,	0 },
1120};
1121
1122ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124	0x00, 0x00, 0x00, 0x00,
1125	0x00, 0x00, 0x00, 0x00,
1126
1127	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1128
1129	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130	0x00, 0x16,
1131
1132	0x00, 0x21,		/* PPP Link Layer 20 */
1133
1134	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135	0x00, 0x01, 0x00, 0x00,
1136	0x00, 0x06, 0x00, 0x00,
1137	0x00, 0x00, 0x00, 0x00,
1138	0x00, 0x00, 0x00, 0x00,
1139
1140	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141	0x00, 0x00, 0x00, 0x00,
1142	0x00, 0x00, 0x00, 0x00,
1143	0x50, 0x00, 0x00, 0x00,
1144	0x00, 0x00, 0x00, 0x00,
1145
1146	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1147};
1148
1149ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150	{ ICE_MAC_OFOS,		0 },
1151	{ ICE_ETYPE_OL,		12 },
1152	{ ICE_PPPOE,		14 },
1153	{ ICE_IPV4_OFOS,	22 },
1154	{ ICE_UDP_ILOS,		42 },
1155	{ ICE_PROTOCOL_LAST,	0 },
1156};
1157
1158ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160	0x00, 0x00, 0x00, 0x00,
1161	0x00, 0x00, 0x00, 0x00,
1162
1163	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1164
1165	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166	0x00, 0x16,
1167
1168	0x00, 0x21,		/* PPP Link Layer 20 */
1169
1170	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171	0x00, 0x01, 0x00, 0x00,
1172	0x00, 0x11, 0x00, 0x00,
1173	0x00, 0x00, 0x00, 0x00,
1174	0x00, 0x00, 0x00, 0x00,
1175
1176	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177	0x00, 0x08, 0x00, 0x00,
1178
1179	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1180};
1181
1182ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183	{ ICE_MAC_OFOS,		0 },
1184	{ ICE_ETYPE_OL,		12 },
1185	{ ICE_PPPOE,		14 },
1186	{ ICE_IPV6_OFOS,	22 },
1187	{ ICE_TCP_IL,		62 },
1188	{ ICE_PROTOCOL_LAST,	0 },
1189};
1190
1191ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193	0x00, 0x00, 0x00, 0x00,
1194	0x00, 0x00, 0x00, 0x00,
1195
1196	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1197
1198	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199	0x00, 0x2a,
1200
1201	0x00, 0x57,		/* PPP Link Layer 20 */
1202
1203	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205	0x00, 0x00, 0x00, 0x00,
1206	0x00, 0x00, 0x00, 0x00,
1207	0x00, 0x00, 0x00, 0x00,
1208	0x00, 0x00, 0x00, 0x00,
1209	0x00, 0x00, 0x00, 0x00,
1210	0x00, 0x00, 0x00, 0x00,
1211	0x00, 0x00, 0x00, 0x00,
1212	0x00, 0x00, 0x00, 0x00,
1213
1214	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215	0x00, 0x00, 0x00, 0x00,
1216	0x00, 0x00, 0x00, 0x00,
1217	0x50, 0x00, 0x00, 0x00,
1218	0x00, 0x00, 0x00, 0x00,
1219
1220	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1221};
1222
1223ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224	{ ICE_MAC_OFOS,		0 },
1225	{ ICE_ETYPE_OL,		12 },
1226	{ ICE_PPPOE,		14 },
1227	{ ICE_IPV6_OFOS,	22 },
1228	{ ICE_UDP_ILOS,		62 },
1229	{ ICE_PROTOCOL_LAST,	0 },
1230};
1231
1232ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234	0x00, 0x00, 0x00, 0x00,
1235	0x00, 0x00, 0x00, 0x00,
1236
1237	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1238
1239	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240	0x00, 0x2a,
1241
1242	0x00, 0x57,		/* PPP Link Layer 20 */
1243
1244	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246	0x00, 0x00, 0x00, 0x00,
1247	0x00, 0x00, 0x00, 0x00,
1248	0x00, 0x00, 0x00, 0x00,
1249	0x00, 0x00, 0x00, 0x00,
1250	0x00, 0x00, 0x00, 0x00,
1251	0x00, 0x00, 0x00, 0x00,
1252	0x00, 0x00, 0x00, 0x00,
1253	0x00, 0x00, 0x00, 0x00,
1254
1255	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256	0x00, 0x08, 0x00, 0x00,
1257
1258	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1259};
1260
1261ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262	{ ICE_MAC_OFOS,		0 },
1263	{ ICE_ETYPE_OL,		12 },
1264	{ ICE_IPV4_OFOS,	14 },
1265	{ ICE_L2TPV3,		34 },
1266	{ ICE_PROTOCOL_LAST,	0 },
1267};
1268
1269ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271	0x00, 0x00, 0x00, 0x00,
1272	0x00, 0x00, 0x00, 0x00,
1273
1274	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1275
1276	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277	0x00, 0x00, 0x40, 0x00,
1278	0x40, 0x73, 0x00, 0x00,
1279	0x00, 0x00, 0x00, 0x00,
1280	0x00, 0x00, 0x00, 0x00,
1281
1282	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283	0x00, 0x00, 0x00, 0x00,
1284	0x00, 0x00, 0x00, 0x00,
1285	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1286};
1287
1288ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289	{ ICE_MAC_OFOS,		0 },
1290	{ ICE_ETYPE_OL,		12 },
1291	{ ICE_IPV6_OFOS,	14 },
1292	{ ICE_L2TPV3,		54 },
1293	{ ICE_PROTOCOL_LAST,	0 },
1294};
1295
1296ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298	0x00, 0x00, 0x00, 0x00,
1299	0x00, 0x00, 0x00, 0x00,
1300
1301	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1302
1303	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304	0x00, 0x0c, 0x73, 0x40,
1305	0x00, 0x00, 0x00, 0x00,
1306	0x00, 0x00, 0x00, 0x00,
1307	0x00, 0x00, 0x00, 0x00,
1308	0x00, 0x00, 0x00, 0x00,
1309	0x00, 0x00, 0x00, 0x00,
1310	0x00, 0x00, 0x00, 0x00,
1311	0x00, 0x00, 0x00, 0x00,
1312	0x00, 0x00, 0x00, 0x00,
1313
1314	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315	0x00, 0x00, 0x00, 0x00,
1316	0x00, 0x00, 0x00, 0x00,
1317	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1318};
1319
1320static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322				  ICE_PKT_GTP_NOPAY),
1323	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324					    ICE_PKT_OUTER_IPV6 |
1325					    ICE_PKT_INNER_IPV6 |
1326					    ICE_PKT_INNER_UDP),
1327	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328					    ICE_PKT_OUTER_IPV6 |
1329					    ICE_PKT_INNER_IPV6),
1330	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331					    ICE_PKT_OUTER_IPV6 |
1332					    ICE_PKT_INNER_UDP),
1333	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334					    ICE_PKT_OUTER_IPV6),
1335	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337					    ICE_PKT_INNER_IPV6 |
1338					    ICE_PKT_INNER_UDP),
1339	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340					    ICE_PKT_INNER_IPV6),
1341	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342					    ICE_PKT_INNER_UDP),
1343	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
 
 
1346	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347					ICE_PKT_INNER_UDP),
1348	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352				      ICE_PKT_INNER_TCP),
1353	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357					  ICE_PKT_INNER_IPV6 |
1358					  ICE_PKT_INNER_TCP),
1359	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363					  ICE_PKT_INNER_IPV6),
1364	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368	ICE_PKT_PROFILE(tcp, 0),
1369};
1370
1371/* this is a recipe to profile association bitmap */
1372static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373			  ICE_MAX_NUM_PROFILES);
1374
1375/* this is a profile to recipe association bitmap */
1376static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377			  ICE_MAX_NUM_RECIPES);
1378
1379/**
1380 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381 * @hw: pointer to the HW struct
1382 *
1383 * Allocate memory for the entire recipe table and initialize the structures/
1384 * entries corresponding to basic recipes.
1385 */
1386int ice_init_def_sw_recp(struct ice_hw *hw)
1387{
1388	struct ice_sw_recipe *recps;
1389	u8 i;
1390
1391	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392			     sizeof(*recps), GFP_KERNEL);
1393	if (!recps)
1394		return -ENOMEM;
1395
1396	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397		recps[i].root_rid = i;
1398		INIT_LIST_HEAD(&recps[i].filt_rules);
1399		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400		INIT_LIST_HEAD(&recps[i].rg_list);
1401		mutex_init(&recps[i].filt_rule_lock);
1402	}
1403
1404	hw->switch_info->recp_list = recps;
1405
1406	return 0;
1407}
1408
1409/**
1410 * ice_aq_get_sw_cfg - get switch configuration
1411 * @hw: pointer to the hardware structure
1412 * @buf: pointer to the result buffer
1413 * @buf_size: length of the buffer available for response
1414 * @req_desc: pointer to requested descriptor
1415 * @num_elems: pointer to number of elements
1416 * @cd: pointer to command details structure or NULL
1417 *
1418 * Get switch configuration (0x0200) to be placed in buf.
1419 * This admin command returns information such as initial VSI/port number
1420 * and switch ID it belongs to.
1421 *
1422 * NOTE: *req_desc is both an input/output parameter.
1423 * The caller of this function first calls this function with *request_desc set
1424 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425 * configuration information has been returned; if non-zero (meaning not all
1426 * the information was returned), the caller should call this function again
1427 * with *req_desc set to the previous value returned by f/w to get the
1428 * next block of switch configuration information.
1429 *
1430 * *num_elems is output only parameter. This reflects the number of elements
1431 * in response buffer. The caller of this function to use *num_elems while
1432 * parsing the response buffer.
1433 */
1434static int
1435ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1437		  struct ice_sq_cd *cd)
1438{
1439	struct ice_aqc_get_sw_cfg *cmd;
1440	struct ice_aq_desc desc;
1441	int status;
1442
1443	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444	cmd = &desc.params.get_sw_conf;
1445	cmd->element = cpu_to_le16(*req_desc);
1446
1447	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448	if (!status) {
1449		*req_desc = le16_to_cpu(cmd->element);
1450		*num_elems = le16_to_cpu(cmd->num_elems);
1451	}
1452
1453	return status;
1454}
1455
1456/**
1457 * ice_aq_add_vsi
1458 * @hw: pointer to the HW struct
1459 * @vsi_ctx: pointer to a VSI context struct
1460 * @cd: pointer to command details structure or NULL
1461 *
1462 * Add a VSI context to the hardware (0x0210)
1463 */
1464static int
1465ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466	       struct ice_sq_cd *cd)
1467{
1468	struct ice_aqc_add_update_free_vsi_resp *res;
1469	struct ice_aqc_add_get_update_free_vsi *cmd;
1470	struct ice_aq_desc desc;
1471	int status;
1472
1473	cmd = &desc.params.vsi_cmd;
1474	res = &desc.params.add_update_free_vsi_res;
1475
1476	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477
1478	if (!vsi_ctx->alloc_from_pool)
1479		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480					   ICE_AQ_VSI_IS_VALID);
1481	cmd->vf_id = vsi_ctx->vf_num;
1482
1483	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484
1485	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486
1487	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488				 sizeof(vsi_ctx->info), cd);
1489
1490	if (!status) {
1491		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494	}
1495
1496	return status;
1497}
1498
1499/**
1500 * ice_aq_free_vsi
1501 * @hw: pointer to the HW struct
1502 * @vsi_ctx: pointer to a VSI context struct
1503 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504 * @cd: pointer to command details structure or NULL
1505 *
1506 * Free VSI context info from hardware (0x0213)
1507 */
1508static int
1509ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511{
1512	struct ice_aqc_add_update_free_vsi_resp *resp;
1513	struct ice_aqc_add_get_update_free_vsi *cmd;
1514	struct ice_aq_desc desc;
1515	int status;
1516
1517	cmd = &desc.params.vsi_cmd;
1518	resp = &desc.params.add_update_free_vsi_res;
1519
1520	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521
1522	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523	if (keep_vsi_alloc)
1524		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525
1526	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527	if (!status) {
1528		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530	}
1531
1532	return status;
1533}
1534
1535/**
1536 * ice_aq_update_vsi
1537 * @hw: pointer to the HW struct
1538 * @vsi_ctx: pointer to a VSI context struct
1539 * @cd: pointer to command details structure or NULL
1540 *
1541 * Update VSI context in the hardware (0x0211)
1542 */
1543static int
1544ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545		  struct ice_sq_cd *cd)
1546{
1547	struct ice_aqc_add_update_free_vsi_resp *resp;
1548	struct ice_aqc_add_get_update_free_vsi *cmd;
1549	struct ice_aq_desc desc;
1550	int status;
1551
1552	cmd = &desc.params.vsi_cmd;
1553	resp = &desc.params.add_update_free_vsi_res;
1554
1555	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556
1557	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558
1559	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562				 sizeof(vsi_ctx->info), cd);
1563
1564	if (!status) {
1565		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567	}
1568
1569	return status;
1570}
1571
1572/**
1573 * ice_is_vsi_valid - check whether the VSI is valid or not
1574 * @hw: pointer to the HW struct
1575 * @vsi_handle: VSI handle
1576 *
1577 * check whether the VSI is valid or not
1578 */
1579bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580{
1581	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582}
1583
1584/**
1585 * ice_get_hw_vsi_num - return the HW VSI number
1586 * @hw: pointer to the HW struct
1587 * @vsi_handle: VSI handle
1588 *
1589 * return the HW VSI number
1590 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591 */
1592u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593{
1594	return hw->vsi_ctx[vsi_handle]->vsi_num;
1595}
1596
1597/**
1598 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599 * @hw: pointer to the HW struct
1600 * @vsi_handle: VSI handle
1601 *
1602 * return the VSI context entry for a given VSI handle
1603 */
1604struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605{
1606	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607}
1608
1609/**
1610 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611 * @hw: pointer to the HW struct
1612 * @vsi_handle: VSI handle
1613 * @vsi: VSI context pointer
1614 *
1615 * save the VSI context entry for a given VSI handle
1616 */
1617static void
1618ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619{
1620	hw->vsi_ctx[vsi_handle] = vsi;
1621}
1622
1623/**
1624 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625 * @hw: pointer to the HW struct
1626 * @vsi_handle: VSI handle
1627 */
1628static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629{
1630	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631	u8 i;
1632
1633	if (!vsi)
1634		return;
1635	ice_for_each_traffic_class(i) {
1636		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637		vsi->lan_q_ctx[i] = NULL;
1638		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639		vsi->rdma_q_ctx[i] = NULL;
1640	}
1641}
1642
1643/**
1644 * ice_clear_vsi_ctx - clear the VSI context entry
1645 * @hw: pointer to the HW struct
1646 * @vsi_handle: VSI handle
1647 *
1648 * clear the VSI context entry
1649 */
1650static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651{
1652	struct ice_vsi_ctx *vsi;
1653
1654	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655	if (vsi) {
1656		ice_clear_vsi_q_ctx(hw, vsi_handle);
1657		devm_kfree(ice_hw_to_dev(hw), vsi);
1658		hw->vsi_ctx[vsi_handle] = NULL;
1659	}
1660}
1661
1662/**
1663 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664 * @hw: pointer to the HW struct
1665 */
1666void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667{
1668	u16 i;
1669
1670	for (i = 0; i < ICE_MAX_VSI; i++)
1671		ice_clear_vsi_ctx(hw, i);
1672}
1673
1674/**
1675 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676 * @hw: pointer to the HW struct
1677 * @vsi_handle: unique VSI handle provided by drivers
1678 * @vsi_ctx: pointer to a VSI context struct
1679 * @cd: pointer to command details structure or NULL
1680 *
1681 * Add a VSI context to the hardware also add it into the VSI handle list.
1682 * If this function gets called after reset for existing VSIs then update
1683 * with the new HW VSI number in the corresponding VSI handle list entry.
1684 */
1685int
1686ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687	    struct ice_sq_cd *cd)
1688{
1689	struct ice_vsi_ctx *tmp_vsi_ctx;
1690	int status;
1691
1692	if (vsi_handle >= ICE_MAX_VSI)
1693		return -EINVAL;
1694	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695	if (status)
1696		return status;
1697	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698	if (!tmp_vsi_ctx) {
1699		/* Create a new VSI context */
1700		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702		if (!tmp_vsi_ctx) {
1703			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704			return -ENOMEM;
1705		}
1706		*tmp_vsi_ctx = *vsi_ctx;
1707		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708	} else {
1709		/* update with new HW VSI num */
1710		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711	}
1712
1713	return 0;
1714}
1715
1716/**
1717 * ice_free_vsi- free VSI context from hardware and VSI handle list
1718 * @hw: pointer to the HW struct
1719 * @vsi_handle: unique VSI handle
1720 * @vsi_ctx: pointer to a VSI context struct
1721 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722 * @cd: pointer to command details structure or NULL
1723 *
1724 * Free VSI context info from hardware as well as from VSI handle list
1725 */
1726int
1727ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729{
1730	int status;
1731
1732	if (!ice_is_vsi_valid(hw, vsi_handle))
1733		return -EINVAL;
1734	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736	if (!status)
1737		ice_clear_vsi_ctx(hw, vsi_handle);
1738	return status;
1739}
1740
1741/**
1742 * ice_update_vsi
1743 * @hw: pointer to the HW struct
1744 * @vsi_handle: unique VSI handle
1745 * @vsi_ctx: pointer to a VSI context struct
1746 * @cd: pointer to command details structure or NULL
1747 *
1748 * Update VSI context in the hardware
1749 */
1750int
1751ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752	       struct ice_sq_cd *cd)
1753{
1754	if (!ice_is_vsi_valid(hw, vsi_handle))
1755		return -EINVAL;
1756	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758}
1759
1760/**
1761 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762 * @hw: pointer to HW struct
1763 * @vsi_handle: VSI SW index
1764 * @enable: boolean for enable/disable
1765 */
1766int
1767ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768{
1769	struct ice_vsi_ctx *ctx, *cached_ctx;
1770	int status;
1771
1772	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773	if (!cached_ctx)
1774		return -ENOENT;
1775
1776	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777	if (!ctx)
1778		return -ENOMEM;
1779
1780	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783
1784	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785
1786	if (enable)
1787		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788	else
1789		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790
1791	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792	if (!status) {
1793		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795	}
1796
1797	kfree(ctx);
1798	return status;
1799}
1800
1801/**
1802 * ice_aq_alloc_free_vsi_list
1803 * @hw: pointer to the HW struct
1804 * @vsi_list_id: VSI list ID returned or used for lookup
1805 * @lkup_type: switch rule filter lookup type
1806 * @opc: switch rules population command type - pass in the command opcode
1807 *
1808 * allocates or free a VSI list resource
1809 */
1810static int
1811ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812			   enum ice_sw_lkup_type lkup_type,
1813			   enum ice_adminq_opc opc)
1814{
1815	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1816	u16 buf_len = __struct_size(sw_buf);
1817	struct ice_aqc_res_elem *vsi_ele;
1818	int status;
1819
1820	sw_buf->num_elems = cpu_to_le16(1);
1821
1822	if (lkup_type == ICE_SW_LKUP_MAC ||
1823	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828	    lkup_type == ICE_SW_LKUP_DFLT) {
 
1829		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831		if (opc == ice_aqc_opc_alloc_res)
1832			sw_buf->res_type =
1833				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1834					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1835		else
1836			sw_buf->res_type =
1837				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1838	} else {
1839		return -EINVAL;
1840	}
1841
1842	if (opc == ice_aqc_opc_free_res)
1843		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1844
1845	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1846	if (status)
1847		return status;
1848
1849	if (opc == ice_aqc_opc_alloc_res) {
1850		vsi_ele = &sw_buf->elem[0];
1851		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1852	}
1853
1854	return 0;
1855}
1856
1857/**
1858 * ice_aq_sw_rules - add/update/remove switch rules
1859 * @hw: pointer to the HW struct
1860 * @rule_list: pointer to switch rule population list
1861 * @rule_list_sz: total size of the rule list in bytes
1862 * @num_rules: number of switch rules in the rule_list
1863 * @opc: switch rules population command type - pass in the command opcode
1864 * @cd: pointer to command details structure or NULL
1865 *
1866 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1867 */
1868int
1869ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1870		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1871{
1872	struct ice_aq_desc desc;
1873	int status;
1874
1875	if (opc != ice_aqc_opc_add_sw_rules &&
1876	    opc != ice_aqc_opc_update_sw_rules &&
1877	    opc != ice_aqc_opc_remove_sw_rules)
1878		return -EINVAL;
1879
1880	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1881
1882	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1883	desc.params.sw_rules.num_rules_fltr_entry_index =
1884		cpu_to_le16(num_rules);
1885	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1886	if (opc != ice_aqc_opc_add_sw_rules &&
1887	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1888		status = -ENOENT;
1889
 
 
 
 
 
 
 
 
 
1890	return status;
1891}
1892
1893/**
1894 * ice_aq_add_recipe - add switch recipe
1895 * @hw: pointer to the HW struct
1896 * @s_recipe_list: pointer to switch rule population list
1897 * @num_recipes: number of switch recipes in the list
1898 * @cd: pointer to command details structure or NULL
1899 *
1900 * Add(0x0290)
1901 */
1902int
1903ice_aq_add_recipe(struct ice_hw *hw,
1904		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1905		  u16 num_recipes, struct ice_sq_cd *cd)
1906{
1907	struct ice_aqc_add_get_recipe *cmd;
1908	struct ice_aq_desc desc;
1909	u16 buf_size;
1910
1911	cmd = &desc.params.add_get_recipe;
1912	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1913
1914	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1915	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1916
1917	buf_size = num_recipes * sizeof(*s_recipe_list);
1918
1919	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1920}
1921
1922/**
1923 * ice_aq_get_recipe - get switch recipe
1924 * @hw: pointer to the HW struct
1925 * @s_recipe_list: pointer to switch rule population list
1926 * @num_recipes: pointer to the number of recipes (input and output)
1927 * @recipe_root: root recipe number of recipe(s) to retrieve
1928 * @cd: pointer to command details structure or NULL
1929 *
1930 * Get(0x0292)
1931 *
1932 * On input, *num_recipes should equal the number of entries in s_recipe_list.
1933 * On output, *num_recipes will equal the number of entries returned in
1934 * s_recipe_list.
1935 *
1936 * The caller must supply enough space in s_recipe_list to hold all possible
1937 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1938 */
1939int
1940ice_aq_get_recipe(struct ice_hw *hw,
1941		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1942		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1943{
1944	struct ice_aqc_add_get_recipe *cmd;
1945	struct ice_aq_desc desc;
1946	u16 buf_size;
1947	int status;
1948
1949	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1950		return -EINVAL;
1951
1952	cmd = &desc.params.add_get_recipe;
1953	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1954
1955	cmd->return_index = cpu_to_le16(recipe_root);
1956	cmd->num_sub_recipes = 0;
1957
1958	buf_size = *num_recipes * sizeof(*s_recipe_list);
1959
1960	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1961	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1962
1963	return status;
1964}
1965
1966/**
1967 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1968 * @hw: pointer to the HW struct
1969 * @params: parameters used to update the default recipe
1970 *
1971 * This function only supports updating default recipes and it only supports
1972 * updating a single recipe based on the lkup_idx at a time.
1973 *
1974 * This is done as a read-modify-write operation. First, get the current recipe
1975 * contents based on the recipe's ID. Then modify the field vector index and
1976 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1977 * the pre-existing recipe with the modifications.
1978 */
1979int
1980ice_update_recipe_lkup_idx(struct ice_hw *hw,
1981			   struct ice_update_recipe_lkup_idx_params *params)
1982{
1983	struct ice_aqc_recipe_data_elem *rcp_list;
1984	u16 num_recps = ICE_MAX_NUM_RECIPES;
1985	int status;
1986
1987	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1988	if (!rcp_list)
1989		return -ENOMEM;
1990
1991	/* read current recipe list from firmware */
1992	rcp_list->recipe_indx = params->rid;
1993	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1994	if (status) {
1995		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1996			  params->rid, status);
1997		goto error_out;
1998	}
1999
2000	/* only modify existing recipe's lkup_idx and mask if valid, while
2001	 * leaving all other fields the same, then update the recipe firmware
2002	 */
2003	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2004	if (params->mask_valid)
2005		rcp_list->content.mask[params->lkup_idx] =
2006			cpu_to_le16(params->mask);
2007
2008	if (params->ignore_valid)
2009		rcp_list->content.lkup_indx[params->lkup_idx] |=
2010			ICE_AQ_RECIPE_LKUP_IGNORE;
2011
2012	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2013	if (status)
2014		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2015			  params->rid, params->lkup_idx, params->fv_idx,
2016			  params->mask, params->mask_valid ? "true" : "false",
2017			  status);
2018
2019error_out:
2020	kfree(rcp_list);
2021	return status;
2022}
2023
2024/**
2025 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2026 * @hw: pointer to the HW struct
2027 * @profile_id: package profile ID to associate the recipe with
2028 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2029 * @cd: pointer to command details structure or NULL
2030 * Recipe to profile association (0x0291)
2031 */
2032int
2033ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2034			     struct ice_sq_cd *cd)
2035{
2036	struct ice_aqc_recipe_to_profile *cmd;
2037	struct ice_aq_desc desc;
2038
2039	cmd = &desc.params.recipe_to_profile;
2040	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2041	cmd->profile_id = cpu_to_le16(profile_id);
2042	/* Set the recipe ID bit in the bitmask to let the device know which
2043	 * profile we are associating the recipe to
2044	 */
2045	cmd->recipe_assoc = cpu_to_le64(r_assoc);
2046
2047	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2048}
2049
2050/**
2051 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2052 * @hw: pointer to the HW struct
2053 * @profile_id: package profile ID to associate the recipe with
2054 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2055 * @cd: pointer to command details structure or NULL
2056 * Associate profile ID with given recipe (0x0293)
2057 */
2058int
2059ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2060			     struct ice_sq_cd *cd)
2061{
2062	struct ice_aqc_recipe_to_profile *cmd;
2063	struct ice_aq_desc desc;
2064	int status;
2065
2066	cmd = &desc.params.recipe_to_profile;
2067	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2068	cmd->profile_id = cpu_to_le16(profile_id);
2069
2070	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2071	if (!status)
2072		*r_assoc = le64_to_cpu(cmd->recipe_assoc);
2073
2074	return status;
2075}
2076
2077/**
 
 
 
 
 
 
 
 
 
 
 
 
2078 * ice_alloc_recipe - add recipe resource
2079 * @hw: pointer to the hardware structure
2080 * @rid: recipe ID returned as response to AQ call
2081 */
2082int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2083{
2084	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2085	u16 buf_len = __struct_size(sw_buf);
 
2086	int status;
2087
2088	sw_buf->num_elems = cpu_to_le16(1);
2089	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2090					ICE_AQC_RES_TYPE_S) |
2091					ICE_AQC_RES_TYPE_FLAG_SHARED);
 
 
 
2092	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2093				       ice_aqc_opc_alloc_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094	if (!status)
2095		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2096
2097	return status;
2098}
2099
2100/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2101 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2102 * @hw: pointer to hardware structure
2103 *
2104 * This function is used to populate recipe_to_profile matrix where index to
2105 * this array is the recipe ID and the element is the mapping of which profiles
2106 * is this recipe mapped to.
2107 */
2108static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2109{
2110	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2111	u64 recp_assoc;
2112	u16 i;
2113
2114	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2115		u16 j;
2116
2117		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2118		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2119		if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2120			continue;
2121		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2122		bitmap_copy(profile_to_recipe[i], r_bitmap,
2123			    ICE_MAX_NUM_RECIPES);
2124		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2125			set_bit(i, recipe_to_profile[j]);
2126	}
2127}
2128
2129/**
2130 * ice_collect_result_idx - copy result index values
2131 * @buf: buffer that contains the result index
2132 * @recp: the recipe struct to copy data into
2133 */
2134static void
2135ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2136		       struct ice_sw_recipe *recp)
2137{
2138	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2139		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2140			recp->res_idxs);
2141}
2142
2143/**
2144 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2145 * @hw: pointer to hardware structure
2146 * @recps: struct that we need to populate
2147 * @rid: recipe ID that we are populating
2148 * @refresh_required: true if we should get recipe to profile mapping from FW
 
2149 *
2150 * This function is used to populate all the necessary entries into our
2151 * bookkeeping so that we have a current list of all the recipes that are
2152 * programmed in the firmware.
2153 */
2154static int
2155ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2156		    bool *refresh_required)
2157{
2158	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2159	struct ice_aqc_recipe_data_elem *tmp;
2160	u16 num_recps = ICE_MAX_NUM_RECIPES;
2161	struct ice_prot_lkup_ext *lkup_exts;
2162	u8 fv_word_idx = 0;
2163	u16 sub_recps;
2164	int status;
2165
2166	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2167
2168	/* we need a buffer big enough to accommodate all the recipes */
2169	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2170	if (!tmp)
2171		return -ENOMEM;
2172
2173	tmp[0].recipe_indx = rid;
2174	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2175	/* non-zero status meaning recipe doesn't exist */
2176	if (status)
2177		goto err_unroll;
2178
2179	/* Get recipe to profile map so that we can get the fv from lkups that
2180	 * we read for a recipe from FW. Since we want to minimize the number of
2181	 * times we make this FW call, just make one call and cache the copy
2182	 * until a new recipe is added. This operation is only required the
2183	 * first time to get the changes from FW. Then to search existing
2184	 * entries we don't need to update the cache again until another recipe
2185	 * gets added.
2186	 */
2187	if (*refresh_required) {
2188		ice_get_recp_to_prof_map(hw);
2189		*refresh_required = false;
2190	}
2191
2192	/* Start populating all the entries for recps[rid] based on lkups from
2193	 * firmware. Note that we are only creating the root recipe in our
2194	 * database.
2195	 */
2196	lkup_exts = &recps[rid].lkup_exts;
2197
2198	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2199		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2200		struct ice_recp_grp_entry *rg_entry;
2201		u8 i, prof, idx, prot = 0;
2202		bool is_root;
2203		u16 off = 0;
2204
2205		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2206					GFP_KERNEL);
2207		if (!rg_entry) {
2208			status = -ENOMEM;
2209			goto err_unroll;
2210		}
2211
2212		idx = root_bufs.recipe_indx;
2213		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2214
2215		/* Mark all result indices in this chain */
2216		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2217			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2218				result_bm);
2219
2220		/* get the first profile that is associated with rid */
2221		prof = find_first_bit(recipe_to_profile[idx],
2222				      ICE_MAX_NUM_PROFILES);
2223		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2224			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2225
2226			rg_entry->fv_idx[i] = lkup_indx;
2227			rg_entry->fv_mask[i] =
2228				le16_to_cpu(root_bufs.content.mask[i + 1]);
2229
2230			/* If the recipe is a chained recipe then all its
2231			 * child recipe's result will have a result index.
2232			 * To fill fv_words we should not use those result
2233			 * index, we only need the protocol ids and offsets.
2234			 * We will skip all the fv_idx which stores result
2235			 * index in them. We also need to skip any fv_idx which
2236			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2237			 * valid offset value.
2238			 */
2239			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2240			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2241			    rg_entry->fv_idx[i] == 0)
 
2242				continue;
2243
2244			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2245					  rg_entry->fv_idx[i], &prot, &off);
2246			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2247			lkup_exts->fv_words[fv_word_idx].off = off;
2248			lkup_exts->field_mask[fv_word_idx] =
2249				rg_entry->fv_mask[i];
2250			fv_word_idx++;
2251		}
2252		/* populate rg_list with the data from the child entry of this
2253		 * recipe
2254		 */
2255		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2256
2257		/* Propagate some data to the recipe database */
2258		recps[idx].is_root = !!is_root;
2259		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2260		recps[idx].need_pass_l2 = root_bufs.content.act_ctrl &
2261					  ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
2262		recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl &
2263					   ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
2264		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2265		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2266			recps[idx].chain_idx = root_bufs.content.result_indx &
2267				~ICE_AQ_RECIPE_RESULT_EN;
2268			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2269		} else {
2270			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2271		}
2272
2273		if (!is_root)
 
 
 
2274			continue;
 
2275
2276		/* Only do the following for root recipes entries */
2277		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2278		       sizeof(recps[idx].r_bitmap));
2279		recps[idx].root_rid = root_bufs.content.rid &
2280			~ICE_AQ_RECIPE_ID_IS_ROOT;
2281		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2282	}
2283
2284	/* Complete initialization of the root recipe entry */
2285	lkup_exts->n_val_words = fv_word_idx;
2286	recps[rid].big_recp = (num_recps > 1);
2287	recps[rid].n_grp_count = (u8)num_recps;
2288	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2289					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2290					   GFP_KERNEL);
2291	if (!recps[rid].root_buf) {
2292		status = -ENOMEM;
2293		goto err_unroll;
2294	}
2295
2296	/* Copy result indexes */
2297	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2298	recps[rid].recp_created = true;
 
2299
2300err_unroll:
2301	kfree(tmp);
2302	return status;
2303}
2304
2305/* ice_init_port_info - Initialize port_info with switch configuration data
2306 * @pi: pointer to port_info
2307 * @vsi_port_num: VSI number or port number
2308 * @type: Type of switch element (port or VSI)
2309 * @swid: switch ID of the switch the element is attached to
2310 * @pf_vf_num: PF or VF number
2311 * @is_vf: true if the element is a VF, false otherwise
2312 */
2313static void
2314ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2315		   u16 swid, u16 pf_vf_num, bool is_vf)
2316{
2317	switch (type) {
2318	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2319		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2320		pi->sw_id = swid;
2321		pi->pf_vf_num = pf_vf_num;
2322		pi->is_vf = is_vf;
2323		break;
2324	default:
2325		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2326		break;
2327	}
2328}
2329
2330/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2331 * @hw: pointer to the hardware structure
2332 */
2333int ice_get_initial_sw_cfg(struct ice_hw *hw)
2334{
2335	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2336	u16 req_desc = 0;
2337	u16 num_elems;
2338	int status;
2339	u16 i;
2340
2341	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2342	if (!rbuf)
2343		return -ENOMEM;
2344
2345	/* Multiple calls to ice_aq_get_sw_cfg may be required
2346	 * to get all the switch configuration information. The need
2347	 * for additional calls is indicated by ice_aq_get_sw_cfg
2348	 * writing a non-zero value in req_desc
2349	 */
2350	do {
2351		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2352
2353		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2354					   &req_desc, &num_elems, NULL);
2355
2356		if (status)
2357			break;
2358
2359		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2360			u16 pf_vf_num, swid, vsi_port_num;
2361			bool is_vf = false;
2362			u8 res_type;
2363
2364			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2365				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2366
2367			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2368				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2369
2370			swid = le16_to_cpu(ele->swid);
2371
2372			if (le16_to_cpu(ele->pf_vf_num) &
2373			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2374				is_vf = true;
2375
2376			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2377					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2378
2379			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2380				/* FW VSI is not needed. Just continue. */
2381				continue;
2382			}
2383
2384			ice_init_port_info(hw->port_info, vsi_port_num,
2385					   res_type, swid, pf_vf_num, is_vf);
2386		}
2387	} while (req_desc && !status);
2388
2389	kfree(rbuf);
2390	return status;
2391}
2392
2393/**
2394 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2395 * @hw: pointer to the hardware structure
2396 * @fi: filter info structure to fill/update
2397 *
2398 * This helper function populates the lb_en and lan_en elements of the provided
2399 * ice_fltr_info struct using the switch's type and characteristics of the
2400 * switch rule being configured.
2401 */
2402static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2403{
2404	fi->lb_en = false;
2405	fi->lan_en = false;
2406	if ((fi->flag & ICE_FLTR_TX) &&
2407	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2408	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2409	     fi->fltr_act == ICE_FWD_TO_Q ||
2410	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2411		/* Setting LB for prune actions will result in replicated
2412		 * packets to the internal switch that will be dropped.
2413		 */
2414		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2415			fi->lb_en = true;
2416
2417		/* Set lan_en to TRUE if
2418		 * 1. The switch is a VEB AND
2419		 * 2
2420		 * 2.1 The lookup is a directional lookup like ethertype,
2421		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2422		 * and default-port OR
2423		 * 2.2 The lookup is VLAN, OR
2424		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2425		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2426		 *
2427		 * OR
2428		 *
2429		 * The switch is a VEPA.
2430		 *
2431		 * In all other cases, the LAN enable has to be set to false.
2432		 */
2433		if (hw->evb_veb) {
2434			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2435			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2436			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2437			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2438			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2439			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2440			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2441			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2442			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2443			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2444				fi->lan_en = true;
2445		} else {
2446			fi->lan_en = true;
2447		}
2448	}
 
 
 
2449}
2450
2451/**
2452 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2453 * @eth_hdr: pointer to buffer to populate
2454 */
2455void ice_fill_eth_hdr(u8 *eth_hdr)
2456{
2457	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2458}
2459
2460/**
2461 * ice_fill_sw_rule - Helper function to fill switch rule structure
2462 * @hw: pointer to the hardware structure
2463 * @f_info: entry containing packet forwarding information
2464 * @s_rule: switch rule structure to be filled in based on mac_entry
2465 * @opc: switch rules population command type - pass in the command opcode
2466 */
2467static void
2468ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2469		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2470		 enum ice_adminq_opc opc)
2471{
2472	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2473	u16 vlan_tpid = ETH_P_8021Q;
2474	void *daddr = NULL;
2475	u16 eth_hdr_sz;
2476	u8 *eth_hdr;
2477	u32 act = 0;
2478	__be16 *off;
2479	u8 q_rgn;
2480
2481	if (opc == ice_aqc_opc_remove_sw_rules) {
2482		s_rule->act = 0;
2483		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2484		s_rule->hdr_len = 0;
2485		return;
2486	}
2487
2488	eth_hdr_sz = sizeof(dummy_eth_header);
2489	eth_hdr = s_rule->hdr_data;
2490
2491	/* initialize the ether header with a dummy header */
2492	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2493	ice_fill_sw_info(hw, f_info);
2494
2495	switch (f_info->fltr_act) {
2496	case ICE_FWD_TO_VSI:
2497		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2498				  f_info->fwd_id.hw_vsi_id);
2499		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2500			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2501				ICE_SINGLE_ACT_VALID_BIT;
2502		break;
2503	case ICE_FWD_TO_VSI_LIST:
2504		act |= ICE_SINGLE_ACT_VSI_LIST;
2505		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2506				  f_info->fwd_id.vsi_list_id);
2507		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2508			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2509				ICE_SINGLE_ACT_VALID_BIT;
2510		break;
2511	case ICE_FWD_TO_Q:
2512		act |= ICE_SINGLE_ACT_TO_Q;
2513		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2514				  f_info->fwd_id.q_id);
2515		break;
2516	case ICE_DROP_PACKET:
2517		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2518			ICE_SINGLE_ACT_VALID_BIT;
2519		break;
2520	case ICE_FWD_TO_QGRP:
2521		q_rgn = f_info->qgrp_size > 0 ?
2522			(u8)ilog2(f_info->qgrp_size) : 0;
2523		act |= ICE_SINGLE_ACT_TO_Q;
2524		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2525				  f_info->fwd_id.q_id);
2526		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2527		break;
2528	default:
2529		return;
2530	}
2531
2532	if (f_info->lb_en)
2533		act |= ICE_SINGLE_ACT_LB_ENABLE;
2534	if (f_info->lan_en)
2535		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2536
2537	switch (f_info->lkup_type) {
2538	case ICE_SW_LKUP_MAC:
2539		daddr = f_info->l_data.mac.mac_addr;
2540		break;
2541	case ICE_SW_LKUP_VLAN:
2542		vlan_id = f_info->l_data.vlan.vlan_id;
2543		if (f_info->l_data.vlan.tpid_valid)
2544			vlan_tpid = f_info->l_data.vlan.tpid;
2545		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2546		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2547			act |= ICE_SINGLE_ACT_PRUNE;
2548			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2549		}
2550		break;
2551	case ICE_SW_LKUP_ETHERTYPE_MAC:
2552		daddr = f_info->l_data.ethertype_mac.mac_addr;
2553		fallthrough;
2554	case ICE_SW_LKUP_ETHERTYPE:
2555		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2556		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2557		break;
2558	case ICE_SW_LKUP_MAC_VLAN:
2559		daddr = f_info->l_data.mac_vlan.mac_addr;
2560		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2561		break;
2562	case ICE_SW_LKUP_PROMISC_VLAN:
2563		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2564		fallthrough;
2565	case ICE_SW_LKUP_PROMISC:
2566		daddr = f_info->l_data.mac_vlan.mac_addr;
2567		break;
2568	default:
2569		break;
2570	}
2571
2572	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2573		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2574		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2575
2576	/* Recipe set depending on lookup type */
2577	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2578	s_rule->src = cpu_to_le16(f_info->src);
2579	s_rule->act = cpu_to_le32(act);
2580
2581	if (daddr)
2582		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2583
2584	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2585		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2586		*off = cpu_to_be16(vlan_id);
2587		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2588		*off = cpu_to_be16(vlan_tpid);
2589	}
2590
2591	/* Create the switch rule with the final dummy Ethernet header */
2592	if (opc != ice_aqc_opc_update_sw_rules)
2593		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2594}
2595
2596/**
2597 * ice_add_marker_act
2598 * @hw: pointer to the hardware structure
2599 * @m_ent: the management entry for which sw marker needs to be added
2600 * @sw_marker: sw marker to tag the Rx descriptor with
2601 * @l_id: large action resource ID
2602 *
2603 * Create a large action to hold software marker and update the switch rule
2604 * entry pointed by m_ent with newly created large action
2605 */
2606static int
2607ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2608		   u16 sw_marker, u16 l_id)
2609{
2610	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2611	struct ice_sw_rule_lg_act *lg_act;
2612	/* For software marker we need 3 large actions
2613	 * 1. FWD action: FWD TO VSI or VSI LIST
2614	 * 2. GENERIC VALUE action to hold the profile ID
2615	 * 3. GENERIC VALUE action to hold the software marker ID
2616	 */
2617	const u16 num_lg_acts = 3;
2618	u16 lg_act_size;
2619	u16 rules_size;
2620	int status;
2621	u32 act;
2622	u16 id;
2623
2624	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2625		return -EINVAL;
2626
2627	/* Create two back-to-back switch rules and submit them to the HW using
2628	 * one memory buffer:
2629	 *    1. Large Action
2630	 *    2. Look up Tx Rx
2631	 */
2632	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2633	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2634	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2635	if (!lg_act)
2636		return -ENOMEM;
2637
2638	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2639
2640	/* Fill in the first switch rule i.e. large action */
2641	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2642	lg_act->index = cpu_to_le16(l_id);
2643	lg_act->size = cpu_to_le16(num_lg_acts);
2644
2645	/* First action VSI forwarding or VSI list forwarding depending on how
2646	 * many VSIs
2647	 */
2648	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2649		m_ent->fltr_info.fwd_id.hw_vsi_id;
2650
2651	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2652	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2653	if (m_ent->vsi_count > 1)
2654		act |= ICE_LG_ACT_VSI_LIST;
2655	lg_act->act[0] = cpu_to_le32(act);
2656
2657	/* Second action descriptor type */
2658	act = ICE_LG_ACT_GENERIC;
2659
2660	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2661	lg_act->act[1] = cpu_to_le32(act);
2662
2663	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2664			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2665
2666	/* Third action Marker value */
2667	act |= ICE_LG_ACT_GENERIC;
2668	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2669
2670	lg_act->act[2] = cpu_to_le32(act);
2671
2672	/* call the fill switch rule to fill the lookup Tx Rx structure */
2673	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2674			 ice_aqc_opc_update_sw_rules);
2675
2676	/* Update the action to point to the large action ID */
2677	act = ICE_SINGLE_ACT_PTR;
2678	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2679	rx_tx->act = cpu_to_le32(act);
2680
2681	/* Use the filter rule ID of the previously created rule with single
2682	 * act. Once the update happens, hardware will treat this as large
2683	 * action
2684	 */
2685	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2686
2687	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2688				 ice_aqc_opc_update_sw_rules, NULL);
2689	if (!status) {
2690		m_ent->lg_act_idx = l_id;
2691		m_ent->sw_marker_id = sw_marker;
2692	}
2693
2694	devm_kfree(ice_hw_to_dev(hw), lg_act);
2695	return status;
2696}
2697
2698/**
2699 * ice_create_vsi_list_map
2700 * @hw: pointer to the hardware structure
2701 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2702 * @num_vsi: number of VSI handles in the array
2703 * @vsi_list_id: VSI list ID generated as part of allocate resource
2704 *
2705 * Helper function to create a new entry of VSI list ID to VSI mapping
2706 * using the given VSI list ID
2707 */
2708static struct ice_vsi_list_map_info *
2709ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2710			u16 vsi_list_id)
2711{
2712	struct ice_switch_info *sw = hw->switch_info;
2713	struct ice_vsi_list_map_info *v_map;
2714	int i;
2715
2716	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2717	if (!v_map)
2718		return NULL;
2719
2720	v_map->vsi_list_id = vsi_list_id;
2721	v_map->ref_cnt = 1;
2722	for (i = 0; i < num_vsi; i++)
2723		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2724
2725	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2726	return v_map;
2727}
2728
2729/**
2730 * ice_update_vsi_list_rule
2731 * @hw: pointer to the hardware structure
2732 * @vsi_handle_arr: array of VSI handles to form a VSI list
2733 * @num_vsi: number of VSI handles in the array
2734 * @vsi_list_id: VSI list ID generated as part of allocate resource
2735 * @remove: Boolean value to indicate if this is a remove action
2736 * @opc: switch rules population command type - pass in the command opcode
2737 * @lkup_type: lookup type of the filter
2738 *
2739 * Call AQ command to add a new switch rule or update existing switch rule
2740 * using the given VSI list ID
2741 */
2742static int
2743ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2744			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2745			 enum ice_sw_lkup_type lkup_type)
2746{
2747	struct ice_sw_rule_vsi_list *s_rule;
2748	u16 s_rule_size;
2749	u16 rule_type;
2750	int status;
2751	int i;
2752
2753	if (!num_vsi)
2754		return -EINVAL;
2755
2756	if (lkup_type == ICE_SW_LKUP_MAC ||
2757	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2758	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2759	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2760	    lkup_type == ICE_SW_LKUP_PROMISC ||
2761	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2762	    lkup_type == ICE_SW_LKUP_DFLT)
 
2763		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2764			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2765	else if (lkup_type == ICE_SW_LKUP_VLAN)
2766		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2767			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2768	else
2769		return -EINVAL;
2770
2771	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2772	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2773	if (!s_rule)
2774		return -ENOMEM;
2775	for (i = 0; i < num_vsi; i++) {
2776		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2777			status = -EINVAL;
2778			goto exit;
2779		}
2780		/* AQ call requires hw_vsi_id(s) */
2781		s_rule->vsi[i] =
2782			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2783	}
2784
2785	s_rule->hdr.type = cpu_to_le16(rule_type);
2786	s_rule->number_vsi = cpu_to_le16(num_vsi);
2787	s_rule->index = cpu_to_le16(vsi_list_id);
2788
2789	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2790
2791exit:
2792	devm_kfree(ice_hw_to_dev(hw), s_rule);
2793	return status;
2794}
2795
2796/**
2797 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2798 * @hw: pointer to the HW struct
2799 * @vsi_handle_arr: array of VSI handles to form a VSI list
2800 * @num_vsi: number of VSI handles in the array
2801 * @vsi_list_id: stores the ID of the VSI list to be created
2802 * @lkup_type: switch rule filter's lookup type
2803 */
2804static int
2805ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2806			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2807{
2808	int status;
2809
2810	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2811					    ice_aqc_opc_alloc_res);
2812	if (status)
2813		return status;
2814
2815	/* Update the newly created VSI list to include the specified VSIs */
2816	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2817					*vsi_list_id, false,
2818					ice_aqc_opc_add_sw_rules, lkup_type);
2819}
2820
2821/**
2822 * ice_create_pkt_fwd_rule
2823 * @hw: pointer to the hardware structure
2824 * @f_entry: entry containing packet forwarding information
2825 *
2826 * Create switch rule with given filter information and add an entry
2827 * to the corresponding filter management list to track this switch rule
2828 * and VSI mapping
2829 */
2830static int
2831ice_create_pkt_fwd_rule(struct ice_hw *hw,
2832			struct ice_fltr_list_entry *f_entry)
2833{
2834	struct ice_fltr_mgmt_list_entry *fm_entry;
2835	struct ice_sw_rule_lkup_rx_tx *s_rule;
2836	enum ice_sw_lkup_type l_type;
2837	struct ice_sw_recipe *recp;
2838	int status;
2839
2840	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2841			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2842			      GFP_KERNEL);
2843	if (!s_rule)
2844		return -ENOMEM;
2845	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2846				GFP_KERNEL);
2847	if (!fm_entry) {
2848		status = -ENOMEM;
2849		goto ice_create_pkt_fwd_rule_exit;
2850	}
2851
2852	fm_entry->fltr_info = f_entry->fltr_info;
2853
2854	/* Initialize all the fields for the management entry */
2855	fm_entry->vsi_count = 1;
2856	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2857	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2858	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2859
2860	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2861			 ice_aqc_opc_add_sw_rules);
2862
2863	status = ice_aq_sw_rules(hw, s_rule,
2864				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2865				 ice_aqc_opc_add_sw_rules, NULL);
2866	if (status) {
2867		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2868		goto ice_create_pkt_fwd_rule_exit;
2869	}
2870
2871	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2872	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2873
2874	/* The book keeping entries will get removed when base driver
2875	 * calls remove filter AQ command
2876	 */
2877	l_type = fm_entry->fltr_info.lkup_type;
2878	recp = &hw->switch_info->recp_list[l_type];
2879	list_add(&fm_entry->list_entry, &recp->filt_rules);
2880
2881ice_create_pkt_fwd_rule_exit:
2882	devm_kfree(ice_hw_to_dev(hw), s_rule);
2883	return status;
2884}
2885
2886/**
2887 * ice_update_pkt_fwd_rule
2888 * @hw: pointer to the hardware structure
2889 * @f_info: filter information for switch rule
2890 *
2891 * Call AQ command to update a previously created switch rule with a
2892 * VSI list ID
2893 */
2894static int
2895ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2896{
2897	struct ice_sw_rule_lkup_rx_tx *s_rule;
2898	int status;
2899
2900	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2901			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2902			      GFP_KERNEL);
2903	if (!s_rule)
2904		return -ENOMEM;
2905
2906	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2907
2908	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2909
2910	/* Update switch rule with new rule set to forward VSI list */
2911	status = ice_aq_sw_rules(hw, s_rule,
2912				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2913				 ice_aqc_opc_update_sw_rules, NULL);
2914
2915	devm_kfree(ice_hw_to_dev(hw), s_rule);
2916	return status;
2917}
2918
2919/**
2920 * ice_update_sw_rule_bridge_mode
2921 * @hw: pointer to the HW struct
2922 *
2923 * Updates unicast switch filter rules based on VEB/VEPA mode
2924 */
2925int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2926{
2927	struct ice_switch_info *sw = hw->switch_info;
2928	struct ice_fltr_mgmt_list_entry *fm_entry;
2929	struct list_head *rule_head;
2930	struct mutex *rule_lock; /* Lock to protect filter rule list */
2931	int status = 0;
2932
2933	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2934	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2935
2936	mutex_lock(rule_lock);
2937	list_for_each_entry(fm_entry, rule_head, list_entry) {
2938		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2939		u8 *addr = fi->l_data.mac.mac_addr;
2940
2941		/* Update unicast Tx rules to reflect the selected
2942		 * VEB/VEPA mode
2943		 */
2944		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2945		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2946		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2947		     fi->fltr_act == ICE_FWD_TO_Q ||
2948		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2949			status = ice_update_pkt_fwd_rule(hw, fi);
2950			if (status)
2951				break;
2952		}
2953	}
2954
2955	mutex_unlock(rule_lock);
2956
2957	return status;
2958}
2959
2960/**
2961 * ice_add_update_vsi_list
2962 * @hw: pointer to the hardware structure
2963 * @m_entry: pointer to current filter management list entry
2964 * @cur_fltr: filter information from the book keeping entry
2965 * @new_fltr: filter information with the new VSI to be added
2966 *
2967 * Call AQ command to add or update previously created VSI list with new VSI.
2968 *
2969 * Helper function to do book keeping associated with adding filter information
2970 * The algorithm to do the book keeping is described below :
2971 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2972 *	if only one VSI has been added till now
2973 *		Allocate a new VSI list and add two VSIs
2974 *		to this list using switch rule command
2975 *		Update the previously created switch rule with the
2976 *		newly created VSI list ID
2977 *	if a VSI list was previously created
2978 *		Add the new VSI to the previously created VSI list set
2979 *		using the update switch rule command
2980 */
2981static int
2982ice_add_update_vsi_list(struct ice_hw *hw,
2983			struct ice_fltr_mgmt_list_entry *m_entry,
2984			struct ice_fltr_info *cur_fltr,
2985			struct ice_fltr_info *new_fltr)
2986{
2987	u16 vsi_list_id = 0;
2988	int status = 0;
2989
2990	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2991	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2992		return -EOPNOTSUPP;
2993
2994	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2995	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2996	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2997	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2998		return -EOPNOTSUPP;
2999
3000	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3001		/* Only one entry existed in the mapping and it was not already
3002		 * a part of a VSI list. So, create a VSI list with the old and
3003		 * new VSIs.
3004		 */
3005		struct ice_fltr_info tmp_fltr;
3006		u16 vsi_handle_arr[2];
3007
3008		/* A rule already exists with the new VSI being added */
3009		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3010			return -EEXIST;
3011
3012		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3013		vsi_handle_arr[1] = new_fltr->vsi_handle;
3014		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3015						  &vsi_list_id,
3016						  new_fltr->lkup_type);
3017		if (status)
3018			return status;
3019
3020		tmp_fltr = *new_fltr;
3021		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3022		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3023		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3024		/* Update the previous switch rule of "MAC forward to VSI" to
3025		 * "MAC fwd to VSI list"
3026		 */
3027		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3028		if (status)
3029			return status;
3030
3031		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3032		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3033		m_entry->vsi_list_info =
3034			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3035						vsi_list_id);
3036
3037		if (!m_entry->vsi_list_info)
3038			return -ENOMEM;
3039
3040		/* If this entry was large action then the large action needs
3041		 * to be updated to point to FWD to VSI list
3042		 */
3043		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3044			status =
3045			    ice_add_marker_act(hw, m_entry,
3046					       m_entry->sw_marker_id,
3047					       m_entry->lg_act_idx);
3048	} else {
3049		u16 vsi_handle = new_fltr->vsi_handle;
3050		enum ice_adminq_opc opcode;
3051
3052		if (!m_entry->vsi_list_info)
3053			return -EIO;
3054
3055		/* A rule already exists with the new VSI being added */
3056		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3057			return 0;
3058
3059		/* Update the previously created VSI list set with
3060		 * the new VSI ID passed in
3061		 */
3062		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3063		opcode = ice_aqc_opc_update_sw_rules;
3064
3065		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3066						  vsi_list_id, false, opcode,
3067						  new_fltr->lkup_type);
3068		/* update VSI list mapping info with new VSI ID */
3069		if (!status)
3070			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3071	}
3072	if (!status)
3073		m_entry->vsi_count++;
3074	return status;
3075}
3076
3077/**
3078 * ice_find_rule_entry - Search a rule entry
3079 * @hw: pointer to the hardware structure
3080 * @recp_id: lookup type for which the specified rule needs to be searched
3081 * @f_info: rule information
3082 *
3083 * Helper function to search for a given rule entry
3084 * Returns pointer to entry storing the rule if found
3085 */
3086static struct ice_fltr_mgmt_list_entry *
3087ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3088{
3089	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3090	struct ice_switch_info *sw = hw->switch_info;
3091	struct list_head *list_head;
3092
3093	list_head = &sw->recp_list[recp_id].filt_rules;
3094	list_for_each_entry(list_itr, list_head, list_entry) {
3095		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3096			    sizeof(f_info->l_data)) &&
3097		    f_info->flag == list_itr->fltr_info.flag) {
3098			ret = list_itr;
3099			break;
3100		}
3101	}
3102	return ret;
3103}
3104
3105/**
3106 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3107 * @hw: pointer to the hardware structure
3108 * @recp_id: lookup type for which VSI lists needs to be searched
3109 * @vsi_handle: VSI handle to be found in VSI list
3110 * @vsi_list_id: VSI list ID found containing vsi_handle
3111 *
3112 * Helper function to search a VSI list with single entry containing given VSI
3113 * handle element. This can be extended further to search VSI list with more
3114 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3115 */
3116struct ice_vsi_list_map_info *
3117ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3118			u16 *vsi_list_id)
3119{
3120	struct ice_vsi_list_map_info *map_info = NULL;
3121	struct ice_switch_info *sw = hw->switch_info;
3122	struct ice_fltr_mgmt_list_entry *list_itr;
3123	struct list_head *list_head;
3124
3125	list_head = &sw->recp_list[recp_id].filt_rules;
3126	list_for_each_entry(list_itr, list_head, list_entry) {
3127		if (list_itr->vsi_list_info) {
3128			map_info = list_itr->vsi_list_info;
3129			if (test_bit(vsi_handle, map_info->vsi_map)) {
3130				*vsi_list_id = map_info->vsi_list_id;
3131				return map_info;
3132			}
3133		}
3134	}
3135	return NULL;
3136}
3137
3138/**
3139 * ice_add_rule_internal - add rule for a given lookup type
3140 * @hw: pointer to the hardware structure
3141 * @recp_id: lookup type (recipe ID) for which rule has to be added
3142 * @f_entry: structure containing MAC forwarding information
3143 *
3144 * Adds or updates the rule lists for a given recipe
3145 */
3146static int
3147ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3148		      struct ice_fltr_list_entry *f_entry)
3149{
3150	struct ice_switch_info *sw = hw->switch_info;
3151	struct ice_fltr_info *new_fltr, *cur_fltr;
3152	struct ice_fltr_mgmt_list_entry *m_entry;
3153	struct mutex *rule_lock; /* Lock to protect filter rule list */
3154	int status = 0;
3155
3156	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3157		return -EINVAL;
3158	f_entry->fltr_info.fwd_id.hw_vsi_id =
3159		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3160
3161	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3162
3163	mutex_lock(rule_lock);
3164	new_fltr = &f_entry->fltr_info;
3165	if (new_fltr->flag & ICE_FLTR_RX)
3166		new_fltr->src = hw->port_info->lport;
3167	else if (new_fltr->flag & ICE_FLTR_TX)
3168		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3169
3170	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3171	if (!m_entry) {
3172		mutex_unlock(rule_lock);
3173		return ice_create_pkt_fwd_rule(hw, f_entry);
3174	}
3175
3176	cur_fltr = &m_entry->fltr_info;
3177	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3178	mutex_unlock(rule_lock);
3179
3180	return status;
3181}
3182
3183/**
3184 * ice_remove_vsi_list_rule
3185 * @hw: pointer to the hardware structure
3186 * @vsi_list_id: VSI list ID generated as part of allocate resource
3187 * @lkup_type: switch rule filter lookup type
3188 *
3189 * The VSI list should be emptied before this function is called to remove the
3190 * VSI list.
3191 */
3192static int
3193ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3194			 enum ice_sw_lkup_type lkup_type)
3195{
3196	struct ice_sw_rule_vsi_list *s_rule;
3197	u16 s_rule_size;
3198	int status;
3199
3200	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3201	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3202	if (!s_rule)
3203		return -ENOMEM;
3204
3205	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3206	s_rule->index = cpu_to_le16(vsi_list_id);
3207
3208	/* Free the vsi_list resource that we allocated. It is assumed that the
3209	 * list is empty at this point.
3210	 */
3211	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3212					    ice_aqc_opc_free_res);
3213
3214	devm_kfree(ice_hw_to_dev(hw), s_rule);
3215	return status;
3216}
3217
3218/**
3219 * ice_rem_update_vsi_list
3220 * @hw: pointer to the hardware structure
3221 * @vsi_handle: VSI handle of the VSI to remove
3222 * @fm_list: filter management entry for which the VSI list management needs to
3223 *           be done
3224 */
3225static int
3226ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3227			struct ice_fltr_mgmt_list_entry *fm_list)
3228{
3229	enum ice_sw_lkup_type lkup_type;
3230	u16 vsi_list_id;
3231	int status = 0;
3232
3233	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3234	    fm_list->vsi_count == 0)
3235		return -EINVAL;
3236
3237	/* A rule with the VSI being removed does not exist */
3238	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3239		return -ENOENT;
3240
3241	lkup_type = fm_list->fltr_info.lkup_type;
3242	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3243	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3244					  ice_aqc_opc_update_sw_rules,
3245					  lkup_type);
3246	if (status)
3247		return status;
3248
3249	fm_list->vsi_count--;
3250	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3251
3252	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3253		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3254		struct ice_vsi_list_map_info *vsi_list_info =
3255			fm_list->vsi_list_info;
3256		u16 rem_vsi_handle;
3257
3258		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3259						ICE_MAX_VSI);
3260		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3261			return -EIO;
3262
3263		/* Make sure VSI list is empty before removing it below */
3264		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3265						  vsi_list_id, true,
3266						  ice_aqc_opc_update_sw_rules,
3267						  lkup_type);
3268		if (status)
3269			return status;
3270
3271		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3272		tmp_fltr_info.fwd_id.hw_vsi_id =
3273			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3274		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3275		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3276		if (status) {
3277			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3278				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3279			return status;
3280		}
3281
3282		fm_list->fltr_info = tmp_fltr_info;
3283	}
3284
3285	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3286	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3287		struct ice_vsi_list_map_info *vsi_list_info =
3288			fm_list->vsi_list_info;
3289
3290		/* Remove the VSI list since it is no longer used */
3291		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3292		if (status) {
3293			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3294				  vsi_list_id, status);
3295			return status;
3296		}
3297
3298		list_del(&vsi_list_info->list_entry);
3299		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3300		fm_list->vsi_list_info = NULL;
3301	}
3302
3303	return status;
3304}
3305
3306/**
3307 * ice_remove_rule_internal - Remove a filter rule of a given type
3308 * @hw: pointer to the hardware structure
3309 * @recp_id: recipe ID for which the rule needs to removed
3310 * @f_entry: rule entry containing filter information
3311 */
3312static int
3313ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3314			 struct ice_fltr_list_entry *f_entry)
3315{
3316	struct ice_switch_info *sw = hw->switch_info;
3317	struct ice_fltr_mgmt_list_entry *list_elem;
3318	struct mutex *rule_lock; /* Lock to protect filter rule list */
3319	bool remove_rule = false;
3320	u16 vsi_handle;
3321	int status = 0;
3322
3323	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3324		return -EINVAL;
3325	f_entry->fltr_info.fwd_id.hw_vsi_id =
3326		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3327
3328	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3329	mutex_lock(rule_lock);
3330	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3331	if (!list_elem) {
3332		status = -ENOENT;
3333		goto exit;
3334	}
3335
3336	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3337		remove_rule = true;
3338	} else if (!list_elem->vsi_list_info) {
3339		status = -ENOENT;
3340		goto exit;
3341	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3342		/* a ref_cnt > 1 indicates that the vsi_list is being
3343		 * shared by multiple rules. Decrement the ref_cnt and
3344		 * remove this rule, but do not modify the list, as it
3345		 * is in-use by other rules.
3346		 */
3347		list_elem->vsi_list_info->ref_cnt--;
3348		remove_rule = true;
3349	} else {
3350		/* a ref_cnt of 1 indicates the vsi_list is only used
3351		 * by one rule. However, the original removal request is only
3352		 * for a single VSI. Update the vsi_list first, and only
3353		 * remove the rule if there are no further VSIs in this list.
3354		 */
3355		vsi_handle = f_entry->fltr_info.vsi_handle;
3356		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3357		if (status)
3358			goto exit;
3359		/* if VSI count goes to zero after updating the VSI list */
3360		if (list_elem->vsi_count == 0)
3361			remove_rule = true;
3362	}
3363
3364	if (remove_rule) {
3365		/* Remove the lookup rule */
3366		struct ice_sw_rule_lkup_rx_tx *s_rule;
3367
3368		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3369				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3370				      GFP_KERNEL);
3371		if (!s_rule) {
3372			status = -ENOMEM;
3373			goto exit;
3374		}
3375
3376		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3377				 ice_aqc_opc_remove_sw_rules);
3378
3379		status = ice_aq_sw_rules(hw, s_rule,
3380					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3381					 1, ice_aqc_opc_remove_sw_rules, NULL);
3382
3383		/* Remove a book keeping from the list */
3384		devm_kfree(ice_hw_to_dev(hw), s_rule);
3385
3386		if (status)
3387			goto exit;
3388
3389		list_del(&list_elem->list_entry);
3390		devm_kfree(ice_hw_to_dev(hw), list_elem);
3391	}
3392exit:
3393	mutex_unlock(rule_lock);
3394	return status;
3395}
3396
3397/**
3398 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3399 * @hw: pointer to the hardware structure
3400 * @vlan_id: VLAN ID
3401 * @vsi_handle: check MAC filter for this VSI
3402 */
3403bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3404{
3405	struct ice_fltr_mgmt_list_entry *entry;
3406	struct list_head *rule_head;
3407	struct ice_switch_info *sw;
3408	struct mutex *rule_lock; /* Lock to protect filter rule list */
3409	u16 hw_vsi_id;
3410
3411	if (vlan_id > ICE_MAX_VLAN_ID)
3412		return false;
3413
3414	if (!ice_is_vsi_valid(hw, vsi_handle))
3415		return false;
3416
3417	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3418	sw = hw->switch_info;
3419	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3420	if (!rule_head)
3421		return false;
3422
3423	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3424	mutex_lock(rule_lock);
3425	list_for_each_entry(entry, rule_head, list_entry) {
3426		struct ice_fltr_info *f_info = &entry->fltr_info;
3427		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3428		struct ice_vsi_list_map_info *map_info;
3429
3430		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3431			continue;
3432
3433		if (f_info->flag != ICE_FLTR_TX ||
3434		    f_info->src_id != ICE_SRC_ID_VSI ||
3435		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3436			continue;
3437
3438		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3439		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3440		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3441			continue;
3442
3443		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3444			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3445				continue;
3446		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3447			/* If filter_action is FWD_TO_VSI_LIST, make sure
3448			 * that VSI being checked is part of VSI list
3449			 */
3450			if (entry->vsi_count == 1 &&
3451			    entry->vsi_list_info) {
3452				map_info = entry->vsi_list_info;
3453				if (!test_bit(vsi_handle, map_info->vsi_map))
3454					continue;
3455			}
3456		}
3457
3458		if (vlan_id == entry_vlan_id) {
3459			mutex_unlock(rule_lock);
3460			return true;
3461		}
3462	}
3463	mutex_unlock(rule_lock);
3464
3465	return false;
3466}
3467
3468/**
3469 * ice_add_mac - Add a MAC address based filter rule
3470 * @hw: pointer to the hardware structure
3471 * @m_list: list of MAC addresses and forwarding information
3472 */
3473int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3474{
3475	struct ice_fltr_list_entry *m_list_itr;
3476	int status = 0;
3477
3478	if (!m_list || !hw)
3479		return -EINVAL;
3480
3481	list_for_each_entry(m_list_itr, m_list, list_entry) {
3482		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3483		u16 vsi_handle;
3484		u16 hw_vsi_id;
3485
3486		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3487		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3488		if (!ice_is_vsi_valid(hw, vsi_handle))
3489			return -EINVAL;
3490		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3491		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3492		/* update the src in case it is VSI num */
3493		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3494			return -EINVAL;
3495		m_list_itr->fltr_info.src = hw_vsi_id;
3496		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3497		    is_zero_ether_addr(add))
3498			return -EINVAL;
3499
3500		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3501							   m_list_itr);
3502		if (m_list_itr->status)
3503			return m_list_itr->status;
3504	}
3505
3506	return status;
3507}
3508
3509/**
3510 * ice_add_vlan_internal - Add one VLAN based filter rule
3511 * @hw: pointer to the hardware structure
3512 * @f_entry: filter entry containing one VLAN information
3513 */
3514static int
3515ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3516{
3517	struct ice_switch_info *sw = hw->switch_info;
3518	struct ice_fltr_mgmt_list_entry *v_list_itr;
3519	struct ice_fltr_info *new_fltr, *cur_fltr;
3520	enum ice_sw_lkup_type lkup_type;
3521	u16 vsi_list_id = 0, vsi_handle;
3522	struct mutex *rule_lock; /* Lock to protect filter rule list */
3523	int status = 0;
3524
3525	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3526		return -EINVAL;
3527
3528	f_entry->fltr_info.fwd_id.hw_vsi_id =
3529		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3530	new_fltr = &f_entry->fltr_info;
3531
3532	/* VLAN ID should only be 12 bits */
3533	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3534		return -EINVAL;
3535
3536	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3537		return -EINVAL;
3538
3539	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3540	lkup_type = new_fltr->lkup_type;
3541	vsi_handle = new_fltr->vsi_handle;
3542	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3543	mutex_lock(rule_lock);
3544	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3545	if (!v_list_itr) {
3546		struct ice_vsi_list_map_info *map_info = NULL;
3547
3548		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3549			/* All VLAN pruning rules use a VSI list. Check if
3550			 * there is already a VSI list containing VSI that we
3551			 * want to add. If found, use the same vsi_list_id for
3552			 * this new VLAN rule or else create a new list.
3553			 */
3554			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3555							   vsi_handle,
3556							   &vsi_list_id);
3557			if (!map_info) {
3558				status = ice_create_vsi_list_rule(hw,
3559								  &vsi_handle,
3560								  1,
3561								  &vsi_list_id,
3562								  lkup_type);
3563				if (status)
3564					goto exit;
3565			}
3566			/* Convert the action to forwarding to a VSI list. */
3567			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3568			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3569		}
3570
3571		status = ice_create_pkt_fwd_rule(hw, f_entry);
3572		if (!status) {
3573			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3574							 new_fltr);
3575			if (!v_list_itr) {
3576				status = -ENOENT;
3577				goto exit;
3578			}
3579			/* reuse VSI list for new rule and increment ref_cnt */
3580			if (map_info) {
3581				v_list_itr->vsi_list_info = map_info;
3582				map_info->ref_cnt++;
3583			} else {
3584				v_list_itr->vsi_list_info =
3585					ice_create_vsi_list_map(hw, &vsi_handle,
3586								1, vsi_list_id);
3587			}
3588		}
3589	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3590		/* Update existing VSI list to add new VSI ID only if it used
3591		 * by one VLAN rule.
3592		 */
3593		cur_fltr = &v_list_itr->fltr_info;
3594		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3595						 new_fltr);
3596	} else {
3597		/* If VLAN rule exists and VSI list being used by this rule is
3598		 * referenced by more than 1 VLAN rule. Then create a new VSI
3599		 * list appending previous VSI with new VSI and update existing
3600		 * VLAN rule to point to new VSI list ID
3601		 */
3602		struct ice_fltr_info tmp_fltr;
3603		u16 vsi_handle_arr[2];
3604		u16 cur_handle;
3605
3606		/* Current implementation only supports reusing VSI list with
3607		 * one VSI count. We should never hit below condition
3608		 */
3609		if (v_list_itr->vsi_count > 1 &&
3610		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3611			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3612			status = -EIO;
3613			goto exit;
3614		}
3615
3616		cur_handle =
3617			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3618				       ICE_MAX_VSI);
3619
3620		/* A rule already exists with the new VSI being added */
3621		if (cur_handle == vsi_handle) {
3622			status = -EEXIST;
3623			goto exit;
3624		}
3625
3626		vsi_handle_arr[0] = cur_handle;
3627		vsi_handle_arr[1] = vsi_handle;
3628		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3629						  &vsi_list_id, lkup_type);
3630		if (status)
3631			goto exit;
3632
3633		tmp_fltr = v_list_itr->fltr_info;
3634		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3635		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3636		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3637		/* Update the previous switch rule to a new VSI list which
3638		 * includes current VSI that is requested
3639		 */
3640		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3641		if (status)
3642			goto exit;
3643
3644		/* before overriding VSI list map info. decrement ref_cnt of
3645		 * previous VSI list
3646		 */
3647		v_list_itr->vsi_list_info->ref_cnt--;
3648
3649		/* now update to newly created list */
3650		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3651		v_list_itr->vsi_list_info =
3652			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3653						vsi_list_id);
3654		v_list_itr->vsi_count++;
3655	}
3656
3657exit:
3658	mutex_unlock(rule_lock);
3659	return status;
3660}
3661
3662/**
3663 * ice_add_vlan - Add VLAN based filter rule
3664 * @hw: pointer to the hardware structure
3665 * @v_list: list of VLAN entries and forwarding information
3666 */
3667int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3668{
3669	struct ice_fltr_list_entry *v_list_itr;
3670
3671	if (!v_list || !hw)
3672		return -EINVAL;
3673
3674	list_for_each_entry(v_list_itr, v_list, list_entry) {
3675		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3676			return -EINVAL;
3677		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3678		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3679		if (v_list_itr->status)
3680			return v_list_itr->status;
3681	}
3682	return 0;
3683}
3684
3685/**
3686 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3687 * @hw: pointer to the hardware structure
3688 * @em_list: list of ether type MAC filter, MAC is optional
3689 *
3690 * This function requires the caller to populate the entries in
3691 * the filter list with the necessary fields (including flags to
3692 * indicate Tx or Rx rules).
3693 */
3694int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3695{
3696	struct ice_fltr_list_entry *em_list_itr;
3697
3698	if (!em_list || !hw)
3699		return -EINVAL;
3700
3701	list_for_each_entry(em_list_itr, em_list, list_entry) {
3702		enum ice_sw_lkup_type l_type =
3703			em_list_itr->fltr_info.lkup_type;
3704
3705		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3706		    l_type != ICE_SW_LKUP_ETHERTYPE)
3707			return -EINVAL;
3708
3709		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3710							    em_list_itr);
3711		if (em_list_itr->status)
3712			return em_list_itr->status;
3713	}
3714	return 0;
3715}
3716
3717/**
3718 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3719 * @hw: pointer to the hardware structure
3720 * @em_list: list of ethertype or ethertype MAC entries
3721 */
3722int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3723{
3724	struct ice_fltr_list_entry *em_list_itr, *tmp;
3725
3726	if (!em_list || !hw)
3727		return -EINVAL;
3728
3729	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3730		enum ice_sw_lkup_type l_type =
3731			em_list_itr->fltr_info.lkup_type;
3732
3733		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3734		    l_type != ICE_SW_LKUP_ETHERTYPE)
3735			return -EINVAL;
3736
3737		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3738							       em_list_itr);
3739		if (em_list_itr->status)
3740			return em_list_itr->status;
3741	}
3742	return 0;
3743}
3744
3745/**
3746 * ice_rem_sw_rule_info
3747 * @hw: pointer to the hardware structure
3748 * @rule_head: pointer to the switch list structure that we want to delete
3749 */
3750static void
3751ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3752{
3753	if (!list_empty(rule_head)) {
3754		struct ice_fltr_mgmt_list_entry *entry;
3755		struct ice_fltr_mgmt_list_entry *tmp;
3756
3757		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3758			list_del(&entry->list_entry);
3759			devm_kfree(ice_hw_to_dev(hw), entry);
3760		}
3761	}
3762}
3763
3764/**
3765 * ice_rem_adv_rule_info
3766 * @hw: pointer to the hardware structure
3767 * @rule_head: pointer to the switch list structure that we want to delete
3768 */
3769static void
3770ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3771{
3772	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3773	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3774
3775	if (list_empty(rule_head))
3776		return;
3777
3778	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3779		list_del(&lst_itr->list_entry);
3780		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3781		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3782	}
3783}
3784
3785/**
3786 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3787 * @pi: pointer to the port_info structure
3788 * @vsi_handle: VSI handle to set as default
3789 * @set: true to add the above mentioned switch rule, false to remove it
3790 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3791 *
3792 * add filter rule to set/unset given VSI as default VSI for the switch
3793 * (represented by swid)
3794 */
3795int
3796ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3797		 u8 direction)
3798{
3799	struct ice_fltr_list_entry f_list_entry;
3800	struct ice_fltr_info f_info;
3801	struct ice_hw *hw = pi->hw;
3802	u16 hw_vsi_id;
3803	int status;
3804
3805	if (!ice_is_vsi_valid(hw, vsi_handle))
3806		return -EINVAL;
3807
3808	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3809
3810	memset(&f_info, 0, sizeof(f_info));
3811
3812	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3813	f_info.flag = direction;
3814	f_info.fltr_act = ICE_FWD_TO_VSI;
3815	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3816	f_info.vsi_handle = vsi_handle;
3817
3818	if (f_info.flag & ICE_FLTR_RX) {
3819		f_info.src = hw->port_info->lport;
3820		f_info.src_id = ICE_SRC_ID_LPORT;
3821	} else if (f_info.flag & ICE_FLTR_TX) {
3822		f_info.src_id = ICE_SRC_ID_VSI;
3823		f_info.src = hw_vsi_id;
 
3824	}
3825	f_list_entry.fltr_info = f_info;
3826
3827	if (set)
3828		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3829					       &f_list_entry);
3830	else
3831		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3832						  &f_list_entry);
3833
3834	return status;
3835}
3836
3837/**
3838 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3839 * @fm_entry: filter entry to inspect
3840 * @vsi_handle: VSI handle to compare with filter info
3841 */
3842static bool
3843ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3844{
3845	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3846		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3847		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3848		 fm_entry->vsi_list_info &&
3849		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3850}
3851
3852/**
3853 * ice_check_if_dflt_vsi - check if VSI is default VSI
3854 * @pi: pointer to the port_info structure
3855 * @vsi_handle: vsi handle to check for in filter list
3856 * @rule_exists: indicates if there are any VSI's in the rule list
3857 *
3858 * checks if the VSI is in a default VSI list, and also indicates
3859 * if the default VSI list is empty
3860 */
3861bool
3862ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3863		      bool *rule_exists)
3864{
3865	struct ice_fltr_mgmt_list_entry *fm_entry;
3866	struct ice_sw_recipe *recp_list;
3867	struct list_head *rule_head;
3868	struct mutex *rule_lock; /* Lock to protect filter rule list */
3869	bool ret = false;
3870
3871	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3872	rule_lock = &recp_list->filt_rule_lock;
3873	rule_head = &recp_list->filt_rules;
3874
3875	mutex_lock(rule_lock);
3876
3877	if (rule_exists && !list_empty(rule_head))
3878		*rule_exists = true;
3879
3880	list_for_each_entry(fm_entry, rule_head, list_entry) {
3881		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3882			ret = true;
3883			break;
3884		}
3885	}
3886
3887	mutex_unlock(rule_lock);
3888
3889	return ret;
3890}
3891
3892/**
3893 * ice_remove_mac - remove a MAC address based filter rule
3894 * @hw: pointer to the hardware structure
3895 * @m_list: list of MAC addresses and forwarding information
3896 *
3897 * This function removes either a MAC filter rule or a specific VSI from a
3898 * VSI list for a multicast MAC address.
3899 *
3900 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3901 * be aware that this call will only work if all the entries passed into m_list
3902 * were added previously. It will not attempt to do a partial remove of entries
3903 * that were found.
3904 */
3905int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3906{
3907	struct ice_fltr_list_entry *list_itr, *tmp;
3908
3909	if (!m_list)
3910		return -EINVAL;
3911
3912	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3913		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3914		u16 vsi_handle;
3915
3916		if (l_type != ICE_SW_LKUP_MAC)
3917			return -EINVAL;
3918
3919		vsi_handle = list_itr->fltr_info.vsi_handle;
3920		if (!ice_is_vsi_valid(hw, vsi_handle))
3921			return -EINVAL;
3922
3923		list_itr->fltr_info.fwd_id.hw_vsi_id =
3924					ice_get_hw_vsi_num(hw, vsi_handle);
3925
3926		list_itr->status = ice_remove_rule_internal(hw,
3927							    ICE_SW_LKUP_MAC,
3928							    list_itr);
3929		if (list_itr->status)
3930			return list_itr->status;
3931	}
3932	return 0;
3933}
3934
3935/**
3936 * ice_remove_vlan - Remove VLAN based filter rule
3937 * @hw: pointer to the hardware structure
3938 * @v_list: list of VLAN entries and forwarding information
3939 */
3940int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3941{
3942	struct ice_fltr_list_entry *v_list_itr, *tmp;
3943
3944	if (!v_list || !hw)
3945		return -EINVAL;
3946
3947	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3948		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3949
3950		if (l_type != ICE_SW_LKUP_VLAN)
3951			return -EINVAL;
3952		v_list_itr->status = ice_remove_rule_internal(hw,
3953							      ICE_SW_LKUP_VLAN,
3954							      v_list_itr);
3955		if (v_list_itr->status)
3956			return v_list_itr->status;
3957	}
3958	return 0;
3959}
3960
3961/**
3962 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3963 * @hw: pointer to the hardware structure
3964 * @vsi_handle: VSI handle to remove filters from
3965 * @vsi_list_head: pointer to the list to add entry to
3966 * @fi: pointer to fltr_info of filter entry to copy & add
3967 *
3968 * Helper function, used when creating a list of filters to remove from
3969 * a specific VSI. The entry added to vsi_list_head is a COPY of the
3970 * original filter entry, with the exception of fltr_info.fltr_act and
3971 * fltr_info.fwd_id fields. These are set such that later logic can
3972 * extract which VSI to remove the fltr from, and pass on that information.
3973 */
3974static int
3975ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3976			       struct list_head *vsi_list_head,
3977			       struct ice_fltr_info *fi)
3978{
3979	struct ice_fltr_list_entry *tmp;
3980
3981	/* this memory is freed up in the caller function
3982	 * once filters for this VSI are removed
3983	 */
3984	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3985	if (!tmp)
3986		return -ENOMEM;
3987
3988	tmp->fltr_info = *fi;
3989
3990	/* Overwrite these fields to indicate which VSI to remove filter from,
3991	 * so find and remove logic can extract the information from the
3992	 * list entries. Note that original entries will still have proper
3993	 * values.
3994	 */
3995	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3996	tmp->fltr_info.vsi_handle = vsi_handle;
3997	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3998
3999	list_add(&tmp->list_entry, vsi_list_head);
4000
4001	return 0;
4002}
4003
4004/**
4005 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4006 * @hw: pointer to the hardware structure
4007 * @vsi_handle: VSI handle to remove filters from
4008 * @lkup_list_head: pointer to the list that has certain lookup type filters
4009 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4010 *
4011 * Locates all filters in lkup_list_head that are used by the given VSI,
4012 * and adds COPIES of those entries to vsi_list_head (intended to be used
4013 * to remove the listed filters).
4014 * Note that this means all entries in vsi_list_head must be explicitly
4015 * deallocated by the caller when done with list.
4016 */
4017static int
4018ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4019			 struct list_head *lkup_list_head,
4020			 struct list_head *vsi_list_head)
4021{
4022	struct ice_fltr_mgmt_list_entry *fm_entry;
4023	int status = 0;
4024
4025	/* check to make sure VSI ID is valid and within boundary */
4026	if (!ice_is_vsi_valid(hw, vsi_handle))
4027		return -EINVAL;
4028
4029	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4030		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4031			continue;
4032
4033		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4034							vsi_list_head,
4035							&fm_entry->fltr_info);
4036		if (status)
4037			return status;
4038	}
4039	return status;
4040}
4041
4042/**
4043 * ice_determine_promisc_mask
4044 * @fi: filter info to parse
4045 *
4046 * Helper function to determine which ICE_PROMISC_ mask corresponds
4047 * to given filter into.
4048 */
4049static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4050{
4051	u16 vid = fi->l_data.mac_vlan.vlan_id;
4052	u8 *macaddr = fi->l_data.mac.mac_addr;
4053	bool is_tx_fltr = false;
4054	u8 promisc_mask = 0;
4055
4056	if (fi->flag == ICE_FLTR_TX)
4057		is_tx_fltr = true;
4058
4059	if (is_broadcast_ether_addr(macaddr))
4060		promisc_mask |= is_tx_fltr ?
4061			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4062	else if (is_multicast_ether_addr(macaddr))
4063		promisc_mask |= is_tx_fltr ?
4064			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4065	else if (is_unicast_ether_addr(macaddr))
4066		promisc_mask |= is_tx_fltr ?
4067			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4068	if (vid)
4069		promisc_mask |= is_tx_fltr ?
4070			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4071
4072	return promisc_mask;
4073}
4074
4075/**
4076 * ice_remove_promisc - Remove promisc based filter rules
4077 * @hw: pointer to the hardware structure
4078 * @recp_id: recipe ID for which the rule needs to removed
4079 * @v_list: list of promisc entries
4080 */
4081static int
4082ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4083{
4084	struct ice_fltr_list_entry *v_list_itr, *tmp;
4085
4086	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4087		v_list_itr->status =
4088			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4089		if (v_list_itr->status)
4090			return v_list_itr->status;
4091	}
4092	return 0;
4093}
4094
4095/**
4096 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4097 * @hw: pointer to the hardware structure
4098 * @vsi_handle: VSI handle to clear mode
4099 * @promisc_mask: mask of promiscuous config bits to clear
4100 * @vid: VLAN ID to clear VLAN promiscuous
4101 */
4102int
4103ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4104		      u16 vid)
4105{
4106	struct ice_switch_info *sw = hw->switch_info;
4107	struct ice_fltr_list_entry *fm_entry, *tmp;
4108	struct list_head remove_list_head;
4109	struct ice_fltr_mgmt_list_entry *itr;
4110	struct list_head *rule_head;
4111	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4112	int status = 0;
4113	u8 recipe_id;
4114
4115	if (!ice_is_vsi_valid(hw, vsi_handle))
4116		return -EINVAL;
4117
4118	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4119		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4120	else
4121		recipe_id = ICE_SW_LKUP_PROMISC;
4122
4123	rule_head = &sw->recp_list[recipe_id].filt_rules;
4124	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4125
4126	INIT_LIST_HEAD(&remove_list_head);
4127
4128	mutex_lock(rule_lock);
4129	list_for_each_entry(itr, rule_head, list_entry) {
4130		struct ice_fltr_info *fltr_info;
4131		u8 fltr_promisc_mask = 0;
4132
4133		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4134			continue;
4135		fltr_info = &itr->fltr_info;
4136
4137		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4138		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4139			continue;
4140
4141		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4142
4143		/* Skip if filter is not completely specified by given mask */
4144		if (fltr_promisc_mask & ~promisc_mask)
4145			continue;
4146
4147		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4148							&remove_list_head,
4149							fltr_info);
4150		if (status) {
4151			mutex_unlock(rule_lock);
4152			goto free_fltr_list;
4153		}
4154	}
4155	mutex_unlock(rule_lock);
4156
4157	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4158
4159free_fltr_list:
4160	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4161		list_del(&fm_entry->list_entry);
4162		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4163	}
4164
4165	return status;
4166}
4167
4168/**
4169 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4170 * @hw: pointer to the hardware structure
4171 * @vsi_handle: VSI handle to configure
4172 * @promisc_mask: mask of promiscuous config bits
4173 * @vid: VLAN ID to set VLAN promiscuous
4174 */
4175int
4176ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4177{
4178	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4179	struct ice_fltr_list_entry f_list_entry;
4180	struct ice_fltr_info new_fltr;
4181	bool is_tx_fltr;
4182	int status = 0;
4183	u16 hw_vsi_id;
4184	int pkt_type;
4185	u8 recipe_id;
4186
4187	if (!ice_is_vsi_valid(hw, vsi_handle))
4188		return -EINVAL;
4189	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4190
4191	memset(&new_fltr, 0, sizeof(new_fltr));
4192
4193	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4194		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4195		new_fltr.l_data.mac_vlan.vlan_id = vid;
4196		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4197	} else {
4198		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4199		recipe_id = ICE_SW_LKUP_PROMISC;
4200	}
4201
4202	/* Separate filters must be set for each direction/packet type
4203	 * combination, so we will loop over the mask value, store the
4204	 * individual type, and clear it out in the input mask as it
4205	 * is found.
4206	 */
4207	while (promisc_mask) {
4208		u8 *mac_addr;
4209
4210		pkt_type = 0;
4211		is_tx_fltr = false;
4212
4213		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4214			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4215			pkt_type = UCAST_FLTR;
4216		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4217			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4218			pkt_type = UCAST_FLTR;
4219			is_tx_fltr = true;
4220		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4221			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4222			pkt_type = MCAST_FLTR;
4223		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4224			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4225			pkt_type = MCAST_FLTR;
4226			is_tx_fltr = true;
4227		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4228			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4229			pkt_type = BCAST_FLTR;
4230		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4231			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4232			pkt_type = BCAST_FLTR;
4233			is_tx_fltr = true;
4234		}
4235
4236		/* Check for VLAN promiscuous flag */
4237		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4238			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4239		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4240			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4241			is_tx_fltr = true;
4242		}
4243
4244		/* Set filter DA based on packet type */
4245		mac_addr = new_fltr.l_data.mac.mac_addr;
4246		if (pkt_type == BCAST_FLTR) {
4247			eth_broadcast_addr(mac_addr);
4248		} else if (pkt_type == MCAST_FLTR ||
4249			   pkt_type == UCAST_FLTR) {
4250			/* Use the dummy ether header DA */
4251			ether_addr_copy(mac_addr, dummy_eth_header);
4252			if (pkt_type == MCAST_FLTR)
4253				mac_addr[0] |= 0x1;	/* Set multicast bit */
4254		}
4255
4256		/* Need to reset this to zero for all iterations */
4257		new_fltr.flag = 0;
4258		if (is_tx_fltr) {
4259			new_fltr.flag |= ICE_FLTR_TX;
4260			new_fltr.src = hw_vsi_id;
4261		} else {
4262			new_fltr.flag |= ICE_FLTR_RX;
4263			new_fltr.src = hw->port_info->lport;
4264		}
4265
4266		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4267		new_fltr.vsi_handle = vsi_handle;
4268		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4269		f_list_entry.fltr_info = new_fltr;
4270
4271		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4272		if (status)
4273			goto set_promisc_exit;
4274	}
4275
4276set_promisc_exit:
4277	return status;
4278}
4279
4280/**
4281 * ice_set_vlan_vsi_promisc
4282 * @hw: pointer to the hardware structure
4283 * @vsi_handle: VSI handle to configure
4284 * @promisc_mask: mask of promiscuous config bits
4285 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4286 *
4287 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4288 */
4289int
4290ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4291			 bool rm_vlan_promisc)
4292{
4293	struct ice_switch_info *sw = hw->switch_info;
4294	struct ice_fltr_list_entry *list_itr, *tmp;
4295	struct list_head vsi_list_head;
4296	struct list_head *vlan_head;
4297	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4298	u16 vlan_id;
4299	int status;
4300
4301	INIT_LIST_HEAD(&vsi_list_head);
4302	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4303	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4304	mutex_lock(vlan_lock);
4305	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4306					  &vsi_list_head);
4307	mutex_unlock(vlan_lock);
4308	if (status)
4309		goto free_fltr_list;
4310
4311	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4312		/* Avoid enabling or disabling VLAN zero twice when in double
4313		 * VLAN mode
4314		 */
4315		if (ice_is_dvm_ena(hw) &&
4316		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4317			continue;
4318
4319		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4320		if (rm_vlan_promisc)
4321			status = ice_clear_vsi_promisc(hw, vsi_handle,
4322						       promisc_mask, vlan_id);
4323		else
4324			status = ice_set_vsi_promisc(hw, vsi_handle,
4325						     promisc_mask, vlan_id);
4326		if (status && status != -EEXIST)
4327			break;
4328	}
4329
4330free_fltr_list:
4331	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4332		list_del(&list_itr->list_entry);
4333		devm_kfree(ice_hw_to_dev(hw), list_itr);
4334	}
4335	return status;
4336}
4337
4338/**
4339 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4340 * @hw: pointer to the hardware structure
4341 * @vsi_handle: VSI handle to remove filters from
4342 * @lkup: switch rule filter lookup type
4343 */
4344static void
4345ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4346			 enum ice_sw_lkup_type lkup)
4347{
4348	struct ice_switch_info *sw = hw->switch_info;
4349	struct ice_fltr_list_entry *fm_entry;
4350	struct list_head remove_list_head;
4351	struct list_head *rule_head;
4352	struct ice_fltr_list_entry *tmp;
4353	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4354	int status;
4355
4356	INIT_LIST_HEAD(&remove_list_head);
4357	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4358	rule_head = &sw->recp_list[lkup].filt_rules;
4359	mutex_lock(rule_lock);
4360	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4361					  &remove_list_head);
4362	mutex_unlock(rule_lock);
4363	if (status)
4364		goto free_fltr_list;
4365
4366	switch (lkup) {
4367	case ICE_SW_LKUP_MAC:
4368		ice_remove_mac(hw, &remove_list_head);
4369		break;
4370	case ICE_SW_LKUP_VLAN:
4371		ice_remove_vlan(hw, &remove_list_head);
4372		break;
4373	case ICE_SW_LKUP_PROMISC:
4374	case ICE_SW_LKUP_PROMISC_VLAN:
4375		ice_remove_promisc(hw, lkup, &remove_list_head);
4376		break;
4377	case ICE_SW_LKUP_MAC_VLAN:
4378	case ICE_SW_LKUP_ETHERTYPE:
4379	case ICE_SW_LKUP_ETHERTYPE_MAC:
4380	case ICE_SW_LKUP_DFLT:
4381	case ICE_SW_LKUP_LAST:
4382	default:
4383		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4384		break;
4385	}
4386
4387free_fltr_list:
4388	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4389		list_del(&fm_entry->list_entry);
4390		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4391	}
4392}
4393
4394/**
4395 * ice_remove_vsi_fltr - Remove all filters for a VSI
4396 * @hw: pointer to the hardware structure
4397 * @vsi_handle: VSI handle to remove filters from
4398 */
4399void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4400{
4401	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4402	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4403	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4404	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4405	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4406	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4407	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4408	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4409}
4410
4411/**
4412 * ice_alloc_res_cntr - allocating resource counter
4413 * @hw: pointer to the hardware structure
4414 * @type: type of resource
4415 * @alloc_shared: if set it is shared else dedicated
4416 * @num_items: number of entries requested for FD resource type
4417 * @counter_id: counter index returned by AQ call
4418 */
4419int
4420ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4421		   u16 *counter_id)
4422{
4423	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4424	u16 buf_len = __struct_size(buf);
4425	int status;
4426
4427	buf->num_elems = cpu_to_le16(num_items);
4428	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4429				    alloc_shared);
4430
4431	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4432	if (status)
4433		return status;
4434
4435	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4436	return status;
4437}
4438
4439/**
4440 * ice_free_res_cntr - free resource counter
4441 * @hw: pointer to the hardware structure
4442 * @type: type of resource
4443 * @alloc_shared: if set it is shared else dedicated
4444 * @num_items: number of entries to be freed for FD resource type
4445 * @counter_id: counter ID resource which needs to be freed
4446 */
4447int
4448ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4449		  u16 counter_id)
4450{
4451	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4452	u16 buf_len = __struct_size(buf);
4453	int status;
4454
4455	buf->num_elems = cpu_to_le16(num_items);
4456	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4457				    alloc_shared);
4458	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4459
4460	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4461	if (status)
4462		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4463
4464	return status;
4465}
4466
4467#define ICE_PROTOCOL_ENTRY(id, ...) {		\
4468	.prot_type	= id,			\
4469	.offs		= {__VA_ARGS__},	\
4470}
4471
4472/**
4473 * ice_share_res - set a resource as shared or dedicated
4474 * @hw: hw struct of original owner of resource
4475 * @type: resource type
4476 * @shared: is the resource being set to shared
4477 * @res_id: resource id (descriptor)
4478 */
4479int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4480{
4481	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4482	u16 buf_len = __struct_size(buf);
4483	u16 res_type;
4484	int status;
4485
4486	buf->num_elems = cpu_to_le16(1);
4487	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4488	if (shared)
4489		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4490
4491	buf->res_type = cpu_to_le16(res_type);
4492	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4493	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4494				       ice_aqc_opc_share_res);
4495	if (status)
4496		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4497			  type, res_id, shared ? "SHARED" : "DEDICATED");
4498
4499	return status;
4500}
4501
4502/* This is mapping table entry that maps every word within a given protocol
4503 * structure to the real byte offset as per the specification of that
4504 * protocol header.
4505 * for example dst address is 3 words in ethertype header and corresponding
4506 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4507 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4508 * matching entry describing its field. This needs to be updated if new
4509 * structure is added to that union.
4510 */
4511static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4512	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4513	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4514	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4515	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4516	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4517	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4518	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4519	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4520			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4521	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4522			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4523	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4524	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4525	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4526	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4527	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4528	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4529	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4530	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
 
4531	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4532	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4533	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4534	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4535	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4536			   ICE_SOURCE_PORT_MDID_OFFSET,
4537			   ICE_PTYPE_MDID_OFFSET,
4538			   ICE_PACKET_LENGTH_MDID_OFFSET,
4539			   ICE_SOURCE_VSI_MDID_OFFSET,
4540			   ICE_PKT_VLAN_MDID_OFFSET,
4541			   ICE_PKT_TUNNEL_MDID_OFFSET,
4542			   ICE_PKT_TCP_MDID_OFFSET,
4543			   ICE_PKT_ERROR_MDID_OFFSET),
4544};
4545
4546static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4547	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4548	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4549	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4550	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4551	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4552	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4553	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4554	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4555	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4556	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4557	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4558	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4559	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4560	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4561	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4562	{ ICE_GTP,		ICE_UDP_OF_HW },
4563	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
 
4564	{ ICE_PPPOE,		ICE_PPPOE_HW },
4565	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4566	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4567	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4568	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4569};
4570
4571/**
4572 * ice_find_recp - find a recipe
4573 * @hw: pointer to the hardware structure
4574 * @lkup_exts: extension sequence to match
4575 * @rinfo: information regarding the rule e.g. priority and action info
 
4576 *
4577 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4578 */
4579static u16
4580ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4581	      const struct ice_adv_rule_info *rinfo)
4582{
4583	bool refresh_required = true;
4584	struct ice_sw_recipe *recp;
4585	u8 i;
4586
4587	/* Walk through existing recipes to find a match */
4588	recp = hw->switch_info->recp_list;
4589	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4590		/* If recipe was not created for this ID, in SW bookkeeping,
4591		 * check if FW has an entry for this recipe. If the FW has an
4592		 * entry update it in our SW bookkeeping and continue with the
4593		 * matching.
4594		 */
4595		if (!recp[i].recp_created)
4596			if (ice_get_recp_frm_fw(hw,
4597						hw->switch_info->recp_list, i,
4598						&refresh_required))
4599				continue;
4600
4601		/* Skip inverse action recipes */
4602		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4603		    ICE_AQ_RECIPE_ACT_INV_ACT)
4604			continue;
4605
4606		/* if number of words we are looking for match */
4607		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4608			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4609			struct ice_fv_word *be = lkup_exts->fv_words;
4610			u16 *cr = recp[i].lkup_exts.field_mask;
4611			u16 *de = lkup_exts->field_mask;
4612			bool found = true;
4613			u8 pe, qr;
4614
4615			/* ar, cr, and qr are related to the recipe words, while
4616			 * be, de, and pe are related to the lookup words
4617			 */
4618			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4619				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4620				     qr++) {
4621					if (ar[qr].off == be[pe].off &&
4622					    ar[qr].prot_id == be[pe].prot_id &&
4623					    cr[qr] == de[pe])
4624						/* Found the "pe"th word in the
4625						 * given recipe
4626						 */
4627						break;
4628				}
4629				/* After walking through all the words in the
4630				 * "i"th recipe if "p"th word was not found then
4631				 * this recipe is not what we are looking for.
4632				 * So break out from this loop and try the next
4633				 * recipe
4634				 */
4635				if (qr >= recp[i].lkup_exts.n_val_words) {
4636					found = false;
4637					break;
4638				}
4639			}
4640			/* If for "i"th recipe the found was never set to false
4641			 * then it means we found our match
4642			 * Also tun type and *_pass_l2 of recipe needs to be
4643			 * checked
4644			 */
4645			if (found && recp[i].tun_type == rinfo->tun_type &&
4646			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4647			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4648				return i; /* Return the recipe ID */
4649		}
4650	}
4651	return ICE_MAX_NUM_RECIPES;
4652}
4653
4654/**
4655 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4656 *
4657 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4658 * supported protocol array record for outer vlan has to be modified to
4659 * reflect the value proper for DVM.
4660 */
4661void ice_change_proto_id_to_dvm(void)
4662{
4663	u8 i;
4664
4665	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4666		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4667		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4668			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4669}
4670
4671/**
4672 * ice_prot_type_to_id - get protocol ID from protocol type
4673 * @type: protocol type
4674 * @id: pointer to variable that will receive the ID
4675 *
4676 * Returns true if found, false otherwise
4677 */
4678static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4679{
4680	u8 i;
4681
4682	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4683		if (ice_prot_id_tbl[i].type == type) {
4684			*id = ice_prot_id_tbl[i].protocol_id;
4685			return true;
4686		}
4687	return false;
4688}
4689
4690/**
4691 * ice_fill_valid_words - count valid words
4692 * @rule: advanced rule with lookup information
4693 * @lkup_exts: byte offset extractions of the words that are valid
4694 *
4695 * calculate valid words in a lookup rule using mask value
4696 */
4697static u8
4698ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4699		     struct ice_prot_lkup_ext *lkup_exts)
4700{
4701	u8 j, word, prot_id, ret_val;
4702
4703	if (!ice_prot_type_to_id(rule->type, &prot_id))
4704		return 0;
4705
4706	word = lkup_exts->n_val_words;
4707
4708	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4709		if (((u16 *)&rule->m_u)[j] &&
4710		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4711			/* No more space to accommodate */
4712			if (word >= ICE_MAX_CHAIN_WORDS)
4713				return 0;
4714			lkup_exts->fv_words[word].off =
4715				ice_prot_ext[rule->type].offs[j];
4716			lkup_exts->fv_words[word].prot_id =
4717				ice_prot_id_tbl[rule->type].protocol_id;
4718			lkup_exts->field_mask[word] =
4719				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4720			word++;
4721		}
4722
4723	ret_val = word - lkup_exts->n_val_words;
4724	lkup_exts->n_val_words = word;
4725
4726	return ret_val;
4727}
4728
4729/**
4730 * ice_create_first_fit_recp_def - Create a recipe grouping
4731 * @hw: pointer to the hardware structure
4732 * @lkup_exts: an array of protocol header extractions
4733 * @rg_list: pointer to a list that stores new recipe groups
4734 * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4735 *
4736 * Using first fit algorithm, take all the words that are still not done
4737 * and start grouping them in 4-word groups. Each group makes up one
4738 * recipe.
4739 */
4740static int
4741ice_create_first_fit_recp_def(struct ice_hw *hw,
4742			      struct ice_prot_lkup_ext *lkup_exts,
4743			      struct list_head *rg_list,
4744			      u8 *recp_cnt)
4745{
4746	struct ice_pref_recipe_group *grp = NULL;
4747	u8 j;
4748
4749	*recp_cnt = 0;
4750
4751	/* Walk through every word in the rule to check if it is not done. If so
4752	 * then this word needs to be part of a new recipe.
4753	 */
4754	for (j = 0; j < lkup_exts->n_val_words; j++)
4755		if (!test_bit(j, lkup_exts->done)) {
4756			if (!grp ||
4757			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4758				struct ice_recp_grp_entry *entry;
4759
4760				entry = devm_kzalloc(ice_hw_to_dev(hw),
4761						     sizeof(*entry),
4762						     GFP_KERNEL);
4763				if (!entry)
4764					return -ENOMEM;
4765				list_add(&entry->l_entry, rg_list);
4766				grp = &entry->r_group;
4767				(*recp_cnt)++;
4768			}
4769
4770			grp->pairs[grp->n_val_pairs].prot_id =
4771				lkup_exts->fv_words[j].prot_id;
4772			grp->pairs[grp->n_val_pairs].off =
4773				lkup_exts->fv_words[j].off;
4774			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4775			grp->n_val_pairs++;
4776		}
4777
4778	return 0;
4779}
4780
4781/**
4782 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4783 * @hw: pointer to the hardware structure
4784 * @fv_list: field vector with the extraction sequence information
4785 * @rg_list: recipe groupings with protocol-offset pairs
4786 *
4787 * Helper function to fill in the field vector indices for protocol-offset
4788 * pairs. These indexes are then ultimately programmed into a recipe.
4789 */
4790static int
4791ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4792		       struct list_head *rg_list)
4793{
4794	struct ice_sw_fv_list_entry *fv;
4795	struct ice_recp_grp_entry *rg;
4796	struct ice_fv_word *fv_ext;
 
4797
4798	if (list_empty(fv_list))
4799		return 0;
4800
4801	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4802			      list_entry);
4803	fv_ext = fv->fv_ptr->ew;
4804
4805	list_for_each_entry(rg, rg_list, l_entry) {
4806		u8 i;
 
 
 
 
 
 
 
 
4807
4808		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4809			struct ice_fv_word *pr;
4810			bool found = false;
4811			u16 mask;
4812			u8 j;
4813
4814			pr = &rg->r_group.pairs[i];
4815			mask = rg->r_group.mask[i];
4816
4817			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4818				if (fv_ext[j].prot_id == pr->prot_id &&
4819				    fv_ext[j].off == pr->off) {
4820					found = true;
4821
4822					/* Store index of field vector */
4823					rg->fv_idx[i] = j;
4824					rg->fv_mask[i] = mask;
4825					break;
4826				}
4827
4828			/* Protocol/offset could not be found, caller gave an
4829			 * invalid pair
4830			 */
4831			if (!found)
4832				return -EINVAL;
4833		}
 
 
 
 
 
 
4834	}
4835
4836	return 0;
4837}
4838
4839/**
4840 * ice_find_free_recp_res_idx - find free result indexes for recipe
4841 * @hw: pointer to hardware structure
4842 * @profiles: bitmap of profiles that will be associated with the new recipe
4843 * @free_idx: pointer to variable to receive the free index bitmap
4844 *
4845 * The algorithm used here is:
4846 *	1. When creating a new recipe, create a set P which contains all
4847 *	   Profiles that will be associated with our new recipe
4848 *
4849 *	2. For each Profile p in set P:
4850 *	    a. Add all recipes associated with Profile p into set R
4851 *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4852 *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4853 *		i. Or just assume they all have the same possible indexes:
4854 *			44, 45, 46, 47
4855 *			i.e., PossibleIndexes = 0x0000F00000000000
4856 *
4857 *	3. For each Recipe r in set R:
4858 *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4859 *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4860 *
4861 *	FreeIndexes will contain the bits indicating the indexes free for use,
4862 *      then the code needs to update the recipe[r].used_result_idx_bits to
4863 *      indicate which indexes were selected for use by this recipe.
4864 */
4865static u16
4866ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4867			   unsigned long *free_idx)
4868{
4869	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4870	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4871	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4872	u16 bit;
4873
4874	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4875	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4876
4877	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4878
4879	/* For each profile we are going to associate the recipe with, add the
4880	 * recipes that are associated with that profile. This will give us
4881	 * the set of recipes that our recipe may collide with. Also, determine
4882	 * what possible result indexes are usable given this set of profiles.
4883	 */
4884	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4885		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4886			  ICE_MAX_NUM_RECIPES);
4887		bitmap_and(possible_idx, possible_idx,
4888			   hw->switch_info->prof_res_bm[bit],
4889			   ICE_MAX_FV_WORDS);
4890	}
4891
4892	/* For each recipe that our new recipe may collide with, determine
4893	 * which indexes have been used.
4894	 */
4895	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4896		bitmap_or(used_idx, used_idx,
4897			  hw->switch_info->recp_list[bit].res_idxs,
4898			  ICE_MAX_FV_WORDS);
4899
4900	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4901
4902	/* return number of free indexes */
4903	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4904}
4905
4906/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4907 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4908 * @hw: pointer to hardware structure
4909 * @rm: recipe management list entry
4910 * @profiles: bitmap of profiles that will be associated.
4911 */
4912static int
4913ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4914		  unsigned long *profiles)
4915{
 
4916	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4917	struct ice_aqc_recipe_content *content;
4918	struct ice_aqc_recipe_data_elem *tmp;
4919	struct ice_aqc_recipe_data_elem *buf;
4920	struct ice_recp_grp_entry *entry;
4921	u16 free_res_idx;
4922	u16 recipe_count;
4923	u8 chain_idx;
4924	u8 recps = 0;
4925	int status;
 
 
 
 
4926
4927	/* When more than one recipe are required, another recipe is needed to
4928	 * chain them together. Matching a tunnel metadata ID takes up one of
4929	 * the match fields in the chaining recipe reducing the number of
4930	 * chained recipes by one.
4931	 */
4932	 /* check number of free result indices */
4933	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
 
 
 
4934	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4935
4936	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4937		  free_res_idx, rm->n_grp_count);
4938
4939	if (rm->n_grp_count > 1) {
4940		if (rm->n_grp_count > free_res_idx)
4941			return -ENOSPC;
4942
4943		rm->n_grp_count++;
4944	}
4945
4946	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4947		return -ENOSPC;
4948
4949	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4950	if (!tmp)
4951		return -ENOMEM;
4952
4953	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4954			   GFP_KERNEL);
4955	if (!buf) {
4956		status = -ENOMEM;
4957		goto err_mem;
4958	}
4959
4960	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4961	recipe_count = ICE_MAX_NUM_RECIPES;
4962	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4963				   NULL);
4964	if (status || recipe_count == 0)
4965		goto err_unroll;
4966
4967	/* Allocate the recipe resources, and configure them according to the
4968	 * match fields from protocol headers and extracted field vectors.
4969	 */
4970	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4971	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4972		u8 i;
4973
4974		status = ice_alloc_recipe(hw, &entry->rid);
4975		if (status)
4976			goto err_unroll;
4977
4978		content = &buf[recps].content;
4979
4980		/* Clear the result index of the located recipe, as this will be
4981		 * updated, if needed, later in the recipe creation process.
 
4982		 */
4983		tmp[0].content.result_indx = 0;
4984
4985		buf[recps] = tmp[0];
4986		buf[recps].recipe_indx = (u8)entry->rid;
4987		/* if the recipe is a non-root recipe RID should be programmed
4988		 * as 0 for the rules to be applied correctly.
4989		 */
4990		content->rid = 0;
4991		memset(&content->lkup_indx, 0,
4992		       sizeof(content->lkup_indx));
4993
4994		/* All recipes use look-up index 0 to match switch ID. */
4995		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4996		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
4997		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4998		 * to be 0
4999		 */
5000		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5001			content->lkup_indx[i] = 0x80;
5002			content->mask[i] = 0;
5003		}
 
5004
5005		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5006			content->lkup_indx[i + 1] = entry->fv_idx[i];
5007			content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
5008		}
5009
5010		if (rm->n_grp_count > 1) {
5011			/* Checks to see if there really is a valid result index
5012			 * that can be used.
5013			 */
5014			if (chain_idx >= ICE_MAX_FV_WORDS) {
5015				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5016				status = -ENOSPC;
5017				goto err_unroll;
5018			}
5019
5020			entry->chain_idx = chain_idx;
5021			content->result_indx =
5022				ICE_AQ_RECIPE_RESULT_EN |
5023				FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5024					   chain_idx);
5025			clear_bit(chain_idx, result_idx_bm);
5026			chain_idx = find_first_bit(result_idx_bm,
5027						   ICE_MAX_FV_WORDS);
5028		}
5029
5030		/* fill recipe dependencies */
5031		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5032			    ICE_MAX_NUM_RECIPES);
5033		set_bit(buf[recps].recipe_indx,
5034			(unsigned long *)buf[recps].recipe_bitmap);
5035		content->act_ctrl_fwd_priority = rm->priority;
5036
5037		if (rm->need_pass_l2)
5038			content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5039
5040		if (rm->allow_pass_l2)
5041			content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5042		recps++;
5043	}
5044
5045	if (rm->n_grp_count == 1) {
5046		rm->root_rid = buf[0].recipe_indx;
5047		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5048		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5049		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5050			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5051			       sizeof(buf[0].recipe_bitmap));
5052		} else {
5053			status = -EINVAL;
5054			goto err_unroll;
5055		}
5056		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5057		 * the recipe which is getting created if specified
5058		 * by user. Usually any advanced switch filter, which results
5059		 * into new extraction sequence, ended up creating a new recipe
5060		 * of type ROOT and usually recipes are associated with profiles
5061		 * Switch rule referreing newly created recipe, needs to have
5062		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5063		 * evaluation will not happen correctly. In other words, if
5064		 * switch rule to be evaluated on priority basis, then recipe
5065		 * needs to have priority, otherwise it will be evaluated last.
5066		 */
5067		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5068	} else {
5069		struct ice_recp_grp_entry *last_chain_entry;
5070		u16 rid, i;
5071
5072		/* Allocate the last recipe that will chain the outcomes of the
5073		 * other recipes together
5074		 */
5075		status = ice_alloc_recipe(hw, &rid);
5076		if (status)
5077			goto err_unroll;
5078
5079		content = &buf[recps].content;
5080
5081		buf[recps].recipe_indx = (u8)rid;
5082		content->rid = (u8)rid;
5083		content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5084		/* the new entry created should also be part of rg_list to
5085		 * make sure we have complete recipe
5086		 */
5087		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5088						sizeof(*last_chain_entry),
5089						GFP_KERNEL);
5090		if (!last_chain_entry) {
5091			status = -ENOMEM;
5092			goto err_unroll;
5093		}
5094		last_chain_entry->rid = rid;
5095		memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
5096		/* All recipes use look-up index 0 to match switch ID. */
5097		content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5098		content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5099		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5100			content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5101			content->mask[i] = 0;
5102		}
5103
5104		i = 1;
5105		/* update r_bitmap with the recp that is used for chaining */
5106		set_bit(rid, rm->r_bitmap);
5107		/* this is the recipe that chains all the other recipes so it
5108		 * should not have a chaining ID to indicate the same
5109		 */
5110		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5111		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5112			last_chain_entry->fv_idx[i] = entry->chain_idx;
5113			content->lkup_indx[i] = entry->chain_idx;
5114			content->mask[i++] = cpu_to_le16(0xFFFF);
5115			set_bit(entry->rid, rm->r_bitmap);
5116		}
5117		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5118		if (sizeof(buf[recps].recipe_bitmap) >=
5119		    sizeof(rm->r_bitmap)) {
5120			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5121			       sizeof(buf[recps].recipe_bitmap));
5122		} else {
5123			status = -EINVAL;
5124			goto err_unroll;
5125		}
5126		content->act_ctrl_fwd_priority = rm->priority;
5127
5128		recps++;
5129		rm->root_rid = (u8)rid;
5130	}
5131	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5132	if (status)
5133		goto err_unroll;
5134
5135	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5136	ice_release_change_lock(hw);
5137	if (status)
5138		goto err_unroll;
 
 
 
5139
5140	/* Every recipe that just got created add it to the recipe
5141	 * book keeping list
5142	 */
5143	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5144		struct ice_switch_info *sw = hw->switch_info;
5145		bool is_root, idx_found = false;
5146		struct ice_sw_recipe *recp;
5147		u16 idx, buf_idx = 0;
5148
5149		/* find buffer index for copying some data */
5150		for (idx = 0; idx < rm->n_grp_count; idx++)
5151			if (buf[idx].recipe_indx == entry->rid) {
5152				buf_idx = idx;
5153				idx_found = true;
5154			}
5155
5156		if (!idx_found) {
5157			status = -EIO;
5158			goto err_unroll;
5159		}
5160
5161		recp = &sw->recp_list[entry->rid];
5162		is_root = (rm->root_rid == entry->rid);
5163		recp->is_root = is_root;
5164
5165		recp->root_rid = entry->rid;
5166		recp->big_recp = (is_root && rm->n_grp_count > 1);
5167
5168		memcpy(&recp->ext_words, entry->r_group.pairs,
5169		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5170
5171		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5172		       sizeof(recp->r_bitmap));
5173
5174		/* Copy non-result fv index values and masks to recipe. This
5175		 * call will also update the result recipe bitmask.
 
 
 
 
 
 
 
 
 
 
 
 
5176		 */
5177		ice_collect_result_idx(&buf[buf_idx], recp);
5178
5179		/* for non-root recipes, also copy to the root, this allows
5180		 * easier matching of a complete chained recipe
5181		 */
5182		if (!is_root)
5183			ice_collect_result_idx(&buf[buf_idx],
5184					       &sw->recp_list[rm->root_rid]);
5185
5186		recp->n_ext_words = entry->r_group.n_val_pairs;
5187		recp->chain_idx = entry->chain_idx;
5188		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5189		recp->n_grp_count = rm->n_grp_count;
5190		recp->tun_type = rm->tun_type;
5191		recp->need_pass_l2 = rm->need_pass_l2;
5192		recp->allow_pass_l2 = rm->allow_pass_l2;
5193		recp->recp_created = true;
5194	}
5195	rm->root_buf = buf;
5196	kfree(tmp);
5197	return status;
5198
5199err_unroll:
5200err_mem:
5201	kfree(tmp);
5202	devm_kfree(ice_hw_to_dev(hw), buf);
5203	return status;
5204}
5205
5206/**
5207 * ice_create_recipe_group - creates recipe group
5208 * @hw: pointer to hardware structure
5209 * @rm: recipe management list entry
5210 * @lkup_exts: lookup elements
5211 */
5212static int
5213ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5214			struct ice_prot_lkup_ext *lkup_exts)
5215{
5216	u8 recp_count = 0;
5217	int status;
5218
5219	rm->n_grp_count = 0;
 
 
 
5220
5221	/* Create recipes for words that are marked not done by packing them
5222	 * as best fit.
5223	 */
5224	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5225					       &rm->rg_list, &recp_count);
5226	if (!status) {
5227		rm->n_grp_count += recp_count;
5228		rm->n_ext_words = lkup_exts->n_val_words;
5229		memcpy(&rm->ext_words, lkup_exts->fv_words,
5230		       sizeof(rm->ext_words));
5231		memcpy(rm->word_masks, lkup_exts->field_mask,
5232		       sizeof(rm->word_masks));
5233	}
5234
5235	return status;
5236}
5237
5238/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5239 * @hw: pointer to hardware structure
5240 * @rinfo: other information regarding the rule e.g. priority and action info
5241 * @bm: pointer to memory for returning the bitmap of field vectors
5242 */
5243static void
5244ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5245			 unsigned long *bm)
5246{
5247	enum ice_prof_type prof_type;
5248
5249	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5250
5251	switch (rinfo->tun_type) {
5252	case ICE_NON_TUN:
5253		prof_type = ICE_PROF_NON_TUN;
5254		break;
5255	case ICE_ALL_TUNNELS:
5256		prof_type = ICE_PROF_TUN_ALL;
5257		break;
5258	case ICE_SW_TUN_GENEVE:
5259	case ICE_SW_TUN_VXLAN:
5260		prof_type = ICE_PROF_TUN_UDP;
5261		break;
5262	case ICE_SW_TUN_NVGRE:
5263		prof_type = ICE_PROF_TUN_GRE;
5264		break;
5265	case ICE_SW_TUN_GTPU:
5266		prof_type = ICE_PROF_TUN_GTPU;
5267		break;
5268	case ICE_SW_TUN_GTPC:
5269		prof_type = ICE_PROF_TUN_GTPC;
5270		break;
 
 
 
5271	case ICE_SW_TUN_AND_NON_TUN:
5272	default:
5273		prof_type = ICE_PROF_ALL;
5274		break;
5275	}
5276
5277	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5278}
5279
5280/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5281 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5282 * @hw: pointer to hardware structure
5283 * @lkups: lookup elements or match criteria for the advanced recipe, one
5284 *  structure per protocol header
5285 * @lkups_cnt: number of protocols
5286 * @rinfo: other information regarding the rule e.g. priority and action info
5287 * @rid: return the recipe ID of the recipe created
5288 */
5289static int
5290ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5291		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5292{
5293	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5294	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5295	struct ice_prot_lkup_ext *lkup_exts;
5296	struct ice_recp_grp_entry *r_entry;
5297	struct ice_sw_fv_list_entry *fvit;
5298	struct ice_recp_grp_entry *r_tmp;
5299	struct ice_sw_fv_list_entry *tmp;
5300	struct ice_sw_recipe *rm;
5301	int status = 0;
 
5302	u8 i;
5303
5304	if (!lkups_cnt)
5305		return -EINVAL;
5306
5307	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5308	if (!lkup_exts)
5309		return -ENOMEM;
5310
5311	/* Determine the number of words to be matched and if it exceeds a
5312	 * recipe's restrictions
5313	 */
5314	for (i = 0; i < lkups_cnt; i++) {
5315		u16 count;
5316
5317		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5318			status = -EIO;
5319			goto err_free_lkup_exts;
5320		}
5321
5322		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5323		if (!count) {
5324			status = -EIO;
5325			goto err_free_lkup_exts;
5326		}
5327	}
5328
5329	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5330	if (!rm) {
5331		status = -ENOMEM;
5332		goto err_free_lkup_exts;
5333	}
5334
5335	/* Get field vectors that contain fields extracted from all the protocol
5336	 * headers being programmed.
5337	 */
5338	INIT_LIST_HEAD(&rm->fv_list);
5339	INIT_LIST_HEAD(&rm->rg_list);
5340
5341	/* Get bitmap of field vectors (profiles) that are compatible with the
5342	 * rule request; only these will be searched in the subsequent call to
5343	 * ice_get_sw_fv_list.
5344	 */
5345	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5346
5347	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5348	if (status)
5349		goto err_unroll;
5350
5351	/* Group match words into recipes using preferred recipe grouping
5352	 * criteria.
5353	 */
5354	status = ice_create_recipe_group(hw, rm, lkup_exts);
5355	if (status)
5356		goto err_unroll;
5357
5358	/* set the recipe priority if specified */
5359	rm->priority = (u8)rinfo->priority;
5360
5361	rm->need_pass_l2 = rinfo->need_pass_l2;
5362	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5363
5364	/* Find offsets from the field vector. Pick the first one for all the
5365	 * recipes.
5366	 */
5367	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5368	if (status)
5369		goto err_unroll;
5370
5371	/* get bitmap of all profiles the recipe will be associated with */
5372	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5373	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5374		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5375		set_bit((u16)fvit->profile_id, profiles);
5376	}
5377
5378	/* Look for a recipe which matches our requested fv / mask list */
5379	*rid = ice_find_recp(hw, lkup_exts, rinfo);
5380	if (*rid < ICE_MAX_NUM_RECIPES)
5381		/* Success if found a recipe that match the existing criteria */
 
 
 
5382		goto err_unroll;
 
5383
5384	rm->tun_type = rinfo->tun_type;
5385	/* Recipe we need does not exist, add a recipe */
5386	status = ice_add_sw_recipe(hw, rm, profiles);
5387	if (status)
5388		goto err_unroll;
5389
5390	/* Associate all the recipes created with all the profiles in the
5391	 * common field vector.
5392	 */
5393	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5394		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5395		u64 recp_assoc;
5396		u16 j;
5397
5398		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5399						      &recp_assoc, NULL);
5400		if (status)
5401			goto err_unroll;
5402
5403		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5404		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5405			  ICE_MAX_NUM_RECIPES);
5406		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5407		if (status)
5408			goto err_unroll;
5409
5410		bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5411		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5412						      recp_assoc, NULL);
5413		ice_release_change_lock(hw);
5414
5415		if (status)
5416			goto err_unroll;
5417
5418		/* Update profile to recipe bitmap array */
5419		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5420			    ICE_MAX_NUM_RECIPES);
5421
5422		/* Update recipe to profile bitmap array */
5423		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5424			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5425	}
5426
5427	*rid = rm->root_rid;
5428	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5429	       sizeof(*lkup_exts));
5430err_unroll:
5431	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5432		list_del(&r_entry->l_entry);
5433		devm_kfree(ice_hw_to_dev(hw), r_entry);
 
 
 
 
5434	}
5435
 
5436	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5437		list_del(&fvit->list_entry);
5438		devm_kfree(ice_hw_to_dev(hw), fvit);
5439	}
5440
5441	devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5442	kfree(rm);
5443
5444err_free_lkup_exts:
5445	kfree(lkup_exts);
5446
5447	return status;
5448}
5449
5450/**
5451 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5452 *
5453 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5454 * @num_vlan: number of VLAN tags
5455 */
5456static struct ice_dummy_pkt_profile *
5457ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5458			  u32 num_vlan)
5459{
5460	struct ice_dummy_pkt_profile *profile;
5461	struct ice_dummy_pkt_offsets *offsets;
5462	u32 buf_len, off, etype_off, i;
5463	u8 *pkt;
5464
5465	if (num_vlan < 1 || num_vlan > 2)
5466		return ERR_PTR(-EINVAL);
5467
5468	off = num_vlan * VLAN_HLEN;
5469
5470	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5471		  dummy_pkt->offsets_len;
5472	offsets = kzalloc(buf_len, GFP_KERNEL);
5473	if (!offsets)
5474		return ERR_PTR(-ENOMEM);
5475
5476	offsets[0] = dummy_pkt->offsets[0];
5477	if (num_vlan == 2) {
5478		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5479		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5480	} else if (num_vlan == 1) {
5481		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5482	}
5483
5484	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5485		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5486		offsets[i + num_vlan].offset =
5487			dummy_pkt->offsets[i].offset + off;
5488	}
5489	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5490
5491	etype_off = dummy_pkt->offsets[1].offset;
5492
5493	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5494		  dummy_pkt->pkt_len;
5495	pkt = kzalloc(buf_len, GFP_KERNEL);
5496	if (!pkt) {
5497		kfree(offsets);
5498		return ERR_PTR(-ENOMEM);
5499	}
5500
5501	memcpy(pkt, dummy_pkt->pkt, etype_off);
5502	memcpy(pkt + etype_off,
5503	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5504	       off);
5505	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5506	       dummy_pkt->pkt_len - etype_off);
5507
5508	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5509	if (!profile) {
5510		kfree(offsets);
5511		kfree(pkt);
5512		return ERR_PTR(-ENOMEM);
5513	}
5514
5515	profile->offsets = offsets;
5516	profile->pkt = pkt;
5517	profile->pkt_len = buf_len;
5518	profile->match |= ICE_PKT_KMALLOC;
5519
5520	return profile;
5521}
5522
5523/**
5524 * ice_find_dummy_packet - find dummy packet
5525 *
5526 * @lkups: lookup elements or match criteria for the advanced recipe, one
5527 *	   structure per protocol header
5528 * @lkups_cnt: number of protocols
5529 * @tun_type: tunnel type
5530 *
5531 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5532 */
5533static const struct ice_dummy_pkt_profile *
5534ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5535		      enum ice_sw_tunnel_type tun_type)
5536{
5537	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5538	u32 match = 0, vlan_count = 0;
5539	u16 i;
5540
5541	switch (tun_type) {
5542	case ICE_SW_TUN_GTPC:
5543		match |= ICE_PKT_TUN_GTPC;
5544		break;
5545	case ICE_SW_TUN_GTPU:
5546		match |= ICE_PKT_TUN_GTPU;
5547		break;
5548	case ICE_SW_TUN_NVGRE:
5549		match |= ICE_PKT_TUN_NVGRE;
5550		break;
5551	case ICE_SW_TUN_GENEVE:
5552	case ICE_SW_TUN_VXLAN:
5553		match |= ICE_PKT_TUN_UDP;
5554		break;
 
 
 
5555	default:
5556		break;
5557	}
5558
5559	for (i = 0; i < lkups_cnt; i++) {
5560		if (lkups[i].type == ICE_UDP_ILOS)
5561			match |= ICE_PKT_INNER_UDP;
5562		else if (lkups[i].type == ICE_TCP_IL)
5563			match |= ICE_PKT_INNER_TCP;
5564		else if (lkups[i].type == ICE_IPV6_OFOS)
5565			match |= ICE_PKT_OUTER_IPV6;
5566		else if (lkups[i].type == ICE_VLAN_OFOS ||
5567			 lkups[i].type == ICE_VLAN_EX)
5568			vlan_count++;
5569		else if (lkups[i].type == ICE_VLAN_IN)
5570			vlan_count++;
5571		else if (lkups[i].type == ICE_ETYPE_OL &&
5572			 lkups[i].h_u.ethertype.ethtype_id ==
5573				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5574			 lkups[i].m_u.ethertype.ethtype_id ==
5575				cpu_to_be16(0xFFFF))
5576			match |= ICE_PKT_OUTER_IPV6;
5577		else if (lkups[i].type == ICE_ETYPE_IL &&
5578			 lkups[i].h_u.ethertype.ethtype_id ==
5579				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5580			 lkups[i].m_u.ethertype.ethtype_id ==
5581				cpu_to_be16(0xFFFF))
5582			match |= ICE_PKT_INNER_IPV6;
5583		else if (lkups[i].type == ICE_IPV6_IL)
5584			match |= ICE_PKT_INNER_IPV6;
5585		else if (lkups[i].type == ICE_GTP_NO_PAY)
5586			match |= ICE_PKT_GTP_NOPAY;
5587		else if (lkups[i].type == ICE_PPPOE) {
5588			match |= ICE_PKT_PPPOE;
5589			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5590			    htons(PPP_IPV6))
5591				match |= ICE_PKT_OUTER_IPV6;
5592		} else if (lkups[i].type == ICE_L2TPV3)
5593			match |= ICE_PKT_L2TPV3;
5594	}
5595
5596	while (ret->match && (match & ret->match) != ret->match)
5597		ret++;
5598
5599	if (vlan_count != 0)
5600		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5601
5602	return ret;
5603}
5604
5605/**
5606 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5607 *
5608 * @lkups: lookup elements or match criteria for the advanced recipe, one
5609 *	   structure per protocol header
5610 * @lkups_cnt: number of protocols
5611 * @s_rule: stores rule information from the match criteria
5612 * @profile: dummy packet profile (the template, its size and header offsets)
5613 */
5614static int
5615ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5616			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5617			  const struct ice_dummy_pkt_profile *profile)
5618{
5619	u8 *pkt;
5620	u16 i;
5621
5622	/* Start with a packet with a pre-defined/dummy content. Then, fill
5623	 * in the header values to be looked up or matched.
5624	 */
5625	pkt = s_rule->hdr_data;
5626
5627	memcpy(pkt, profile->pkt, profile->pkt_len);
5628
5629	for (i = 0; i < lkups_cnt; i++) {
5630		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5631		enum ice_protocol_type type;
5632		u16 offset = 0, len = 0, j;
5633		bool found = false;
5634
5635		/* find the start of this layer; it should be found since this
5636		 * was already checked when search for the dummy packet
5637		 */
5638		type = lkups[i].type;
5639		/* metadata isn't present in the packet */
5640		if (type == ICE_HW_METADATA)
5641			continue;
5642
5643		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5644			if (type == offsets[j].type) {
5645				offset = offsets[j].offset;
5646				found = true;
5647				break;
5648			}
5649		}
5650		/* this should never happen in a correct calling sequence */
5651		if (!found)
5652			return -EINVAL;
5653
5654		switch (lkups[i].type) {
5655		case ICE_MAC_OFOS:
5656		case ICE_MAC_IL:
5657			len = sizeof(struct ice_ether_hdr);
5658			break;
5659		case ICE_ETYPE_OL:
5660		case ICE_ETYPE_IL:
5661			len = sizeof(struct ice_ethtype_hdr);
5662			break;
5663		case ICE_VLAN_OFOS:
5664		case ICE_VLAN_EX:
5665		case ICE_VLAN_IN:
5666			len = sizeof(struct ice_vlan_hdr);
5667			break;
5668		case ICE_IPV4_OFOS:
5669		case ICE_IPV4_IL:
5670			len = sizeof(struct ice_ipv4_hdr);
5671			break;
5672		case ICE_IPV6_OFOS:
5673		case ICE_IPV6_IL:
5674			len = sizeof(struct ice_ipv6_hdr);
5675			break;
5676		case ICE_TCP_IL:
5677		case ICE_UDP_OF:
5678		case ICE_UDP_ILOS:
5679			len = sizeof(struct ice_l4_hdr);
5680			break;
5681		case ICE_SCTP_IL:
5682			len = sizeof(struct ice_sctp_hdr);
5683			break;
5684		case ICE_NVGRE:
5685			len = sizeof(struct ice_nvgre_hdr);
5686			break;
5687		case ICE_VXLAN:
5688		case ICE_GENEVE:
5689			len = sizeof(struct ice_udp_tnl_hdr);
5690			break;
5691		case ICE_GTP_NO_PAY:
5692		case ICE_GTP:
5693			len = sizeof(struct ice_udp_gtp_hdr);
5694			break;
 
 
 
5695		case ICE_PPPOE:
5696			len = sizeof(struct ice_pppoe_hdr);
5697			break;
5698		case ICE_L2TPV3:
5699			len = sizeof(struct ice_l2tpv3_sess_hdr);
5700			break;
5701		default:
5702			return -EINVAL;
5703		}
5704
5705		/* the length should be a word multiple */
5706		if (len % ICE_BYTES_PER_WORD)
5707			return -EIO;
5708
5709		/* We have the offset to the header start, the length, the
5710		 * caller's header values and mask. Use this information to
5711		 * copy the data into the dummy packet appropriately based on
5712		 * the mask. Note that we need to only write the bits as
5713		 * indicated by the mask to make sure we don't improperly write
5714		 * over any significant packet data.
5715		 */
5716		for (j = 0; j < len / sizeof(u16); j++) {
5717			u16 *ptr = (u16 *)(pkt + offset);
5718			u16 mask = lkups[i].m_raw[j];
5719
5720			if (!mask)
5721				continue;
5722
5723			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5724		}
5725	}
5726
5727	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5728
5729	return 0;
5730}
5731
5732/**
5733 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5734 * @hw: pointer to the hardware structure
5735 * @tun_type: tunnel type
5736 * @pkt: dummy packet to fill in
5737 * @offsets: offset info for the dummy packet
5738 */
5739static int
5740ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5741			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5742{
5743	u16 open_port, i;
5744
5745	switch (tun_type) {
5746	case ICE_SW_TUN_VXLAN:
5747		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5748			return -EIO;
5749		break;
5750	case ICE_SW_TUN_GENEVE:
5751		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5752			return -EIO;
5753		break;
5754	default:
5755		/* Nothing needs to be done for this tunnel type */
5756		return 0;
5757	}
5758
5759	/* Find the outer UDP protocol header and insert the port number */
5760	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5761		if (offsets[i].type == ICE_UDP_OF) {
5762			struct ice_l4_hdr *hdr;
5763			u16 offset;
5764
5765			offset = offsets[i].offset;
5766			hdr = (struct ice_l4_hdr *)&pkt[offset];
5767			hdr->dst_port = cpu_to_be16(open_port);
5768
5769			return 0;
5770		}
5771	}
5772
5773	return -EIO;
5774}
5775
5776/**
5777 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5778 * @hw: pointer to hw structure
5779 * @vlan_type: VLAN tag type
5780 * @pkt: dummy packet to fill in
5781 * @offsets: offset info for the dummy packet
5782 */
5783static int
5784ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5785			 const struct ice_dummy_pkt_offsets *offsets)
5786{
5787	u16 i;
5788
5789	/* Check if there is something to do */
5790	if (!vlan_type || !ice_is_dvm_ena(hw))
5791		return 0;
5792
5793	/* Find VLAN header and insert VLAN TPID */
5794	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5795		if (offsets[i].type == ICE_VLAN_OFOS ||
5796		    offsets[i].type == ICE_VLAN_EX) {
5797			struct ice_vlan_hdr *hdr;
5798			u16 offset;
5799
5800			offset = offsets[i].offset;
5801			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5802			hdr->type = cpu_to_be16(vlan_type);
5803
5804			return 0;
5805		}
5806	}
5807
5808	return -EIO;
5809}
5810
5811static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5812			    const struct ice_adv_rule_info *second)
5813{
5814	return first->sw_act.flag == second->sw_act.flag &&
5815	       first->tun_type == second->tun_type &&
5816	       first->vlan_type == second->vlan_type &&
5817	       first->src_vsi == second->src_vsi &&
5818	       first->need_pass_l2 == second->need_pass_l2 &&
5819	       first->allow_pass_l2 == second->allow_pass_l2;
5820}
5821
5822/**
5823 * ice_find_adv_rule_entry - Search a rule entry
5824 * @hw: pointer to the hardware structure
5825 * @lkups: lookup elements or match criteria for the advanced recipe, one
5826 *	   structure per protocol header
5827 * @lkups_cnt: number of protocols
5828 * @recp_id: recipe ID for which we are finding the rule
5829 * @rinfo: other information regarding the rule e.g. priority and action info
5830 *
5831 * Helper function to search for a given advance rule entry
5832 * Returns pointer to entry storing the rule if found
5833 */
5834static struct ice_adv_fltr_mgmt_list_entry *
5835ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5836			u16 lkups_cnt, u16 recp_id,
5837			struct ice_adv_rule_info *rinfo)
5838{
5839	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5840	struct ice_switch_info *sw = hw->switch_info;
5841	int i;
5842
5843	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5844			    list_entry) {
5845		bool lkups_matched = true;
5846
5847		if (lkups_cnt != list_itr->lkups_cnt)
5848			continue;
5849		for (i = 0; i < list_itr->lkups_cnt; i++)
5850			if (memcmp(&list_itr->lkups[i], &lkups[i],
5851				   sizeof(*lkups))) {
5852				lkups_matched = false;
5853				break;
5854			}
5855		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5856		    lkups_matched)
5857			return list_itr;
5858	}
5859	return NULL;
5860}
5861
5862/**
5863 * ice_adv_add_update_vsi_list
5864 * @hw: pointer to the hardware structure
5865 * @m_entry: pointer to current adv filter management list entry
5866 * @cur_fltr: filter information from the book keeping entry
5867 * @new_fltr: filter information with the new VSI to be added
5868 *
5869 * Call AQ command to add or update previously created VSI list with new VSI.
5870 *
5871 * Helper function to do book keeping associated with adding filter information
5872 * The algorithm to do the booking keeping is described below :
5873 * When a VSI needs to subscribe to a given advanced filter
5874 *	if only one VSI has been added till now
5875 *		Allocate a new VSI list and add two VSIs
5876 *		to this list using switch rule command
5877 *		Update the previously created switch rule with the
5878 *		newly created VSI list ID
5879 *	if a VSI list was previously created
5880 *		Add the new VSI to the previously created VSI list set
5881 *		using the update switch rule command
5882 */
5883static int
5884ice_adv_add_update_vsi_list(struct ice_hw *hw,
5885			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5886			    struct ice_adv_rule_info *cur_fltr,
5887			    struct ice_adv_rule_info *new_fltr)
5888{
5889	u16 vsi_list_id = 0;
5890	int status;
5891
5892	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5893	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5894	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5895		return -EOPNOTSUPP;
5896
5897	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5898	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5899	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5900	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5901		return -EOPNOTSUPP;
5902
5903	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5904		 /* Only one entry existed in the mapping and it was not already
5905		  * a part of a VSI list. So, create a VSI list with the old and
5906		  * new VSIs.
5907		  */
5908		struct ice_fltr_info tmp_fltr;
5909		u16 vsi_handle_arr[2];
5910
5911		/* A rule already exists with the new VSI being added */
5912		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5913		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5914			return -EEXIST;
5915
5916		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5917		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5918		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5919						  &vsi_list_id,
5920						  ICE_SW_LKUP_LAST);
5921		if (status)
5922			return status;
5923
5924		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5925		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5926		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5927		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5928		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5929		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5930
5931		/* Update the previous switch rule of "forward to VSI" to
5932		 * "fwd to VSI list"
5933		 */
5934		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5935		if (status)
5936			return status;
5937
5938		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5939		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5940		m_entry->vsi_list_info =
5941			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5942						vsi_list_id);
5943	} else {
5944		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5945
5946		if (!m_entry->vsi_list_info)
5947			return -EIO;
5948
5949		/* A rule already exists with the new VSI being added */
5950		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5951			return 0;
5952
5953		/* Update the previously created VSI list set with
5954		 * the new VSI ID passed in
5955		 */
5956		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5957
5958		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5959						  vsi_list_id, false,
5960						  ice_aqc_opc_update_sw_rules,
5961						  ICE_SW_LKUP_LAST);
5962		/* update VSI list mapping info with new VSI ID */
5963		if (!status)
5964			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5965	}
5966	if (!status)
5967		m_entry->vsi_count++;
5968	return status;
5969}
5970
5971void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
5972{
5973	lkup->type = ICE_HW_METADATA;
5974	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
5975		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
5976}
5977
5978void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
5979{
5980	lkup->type = ICE_HW_METADATA;
5981	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5982		cpu_to_be16(ICE_PKT_FROM_NETWORK);
5983}
5984
5985void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
5986{
5987	lkup->type = ICE_HW_METADATA;
5988	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5989		cpu_to_be16(ICE_PKT_VLAN_MASK);
5990}
5991
5992void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
5993{
5994	lkup->type = ICE_HW_METADATA;
5995	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
5996}
5997
5998/**
5999 * ice_add_adv_rule - helper function to create an advanced switch rule
6000 * @hw: pointer to the hardware structure
6001 * @lkups: information on the words that needs to be looked up. All words
6002 * together makes one recipe
6003 * @lkups_cnt: num of entries in the lkups array
6004 * @rinfo: other information related to the rule that needs to be programmed
6005 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6006 *               ignored is case of error.
6007 *
6008 * This function can program only 1 rule at a time. The lkups is used to
6009 * describe the all the words that forms the "lookup" portion of the recipe.
6010 * These words can span multiple protocols. Callers to this function need to
6011 * pass in a list of protocol headers with lookup information along and mask
6012 * that determines which words are valid from the given protocol header.
6013 * rinfo describes other information related to this rule such as forwarding
6014 * IDs, priority of this rule, etc.
6015 */
6016int
6017ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6018		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6019		 struct ice_rule_query_data *added_entry)
6020{
6021	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6022	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6023	const struct ice_dummy_pkt_profile *profile;
6024	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6025	struct list_head *rule_head;
6026	struct ice_switch_info *sw;
6027	u16 word_cnt;
6028	u32 act = 0;
6029	int status;
6030	u8 q_rgn;
6031
6032	/* Initialize profile to result index bitmap */
6033	if (!hw->switch_info->prof_res_bm_init) {
6034		hw->switch_info->prof_res_bm_init = 1;
6035		ice_init_prof_result_bm(hw);
6036	}
6037
6038	if (!lkups_cnt)
6039		return -EINVAL;
6040
6041	/* get # of words we need to match */
6042	word_cnt = 0;
6043	for (i = 0; i < lkups_cnt; i++) {
6044		u16 j;
6045
6046		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6047			if (lkups[i].m_raw[j])
6048				word_cnt++;
6049	}
6050
6051	if (!word_cnt)
6052		return -EINVAL;
6053
6054	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6055		return -ENOSPC;
6056
6057	/* locate a dummy packet */
6058	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6059	if (IS_ERR(profile))
6060		return PTR_ERR(profile);
6061
6062	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6063	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6064	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6065	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6066	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6067	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6068		status = -EIO;
6069		goto free_pkt_profile;
6070	}
6071
6072	vsi_handle = rinfo->sw_act.vsi_handle;
6073	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6074		status =  -EINVAL;
6075		goto free_pkt_profile;
6076	}
6077
6078	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6079	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6080	    rinfo->sw_act.fltr_act == ICE_NOP) {
6081		rinfo->sw_act.fwd_id.hw_vsi_id =
6082			ice_get_hw_vsi_num(hw, vsi_handle);
6083	}
6084
6085	if (rinfo->src_vsi)
6086		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6087	else
6088		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6089
6090	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6091	if (status)
6092		goto free_pkt_profile;
6093	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6094	if (m_entry) {
6095		/* we have to add VSI to VSI_LIST and increment vsi_count.
6096		 * Also Update VSI list so that we can change forwarding rule
6097		 * if the rule already exists, we will check if it exists with
6098		 * same vsi_id, if not then add it to the VSI list if it already
6099		 * exists if not then create a VSI list and add the existing VSI
6100		 * ID and the new VSI ID to the list
6101		 * We will add that VSI to the list
6102		 */
6103		status = ice_adv_add_update_vsi_list(hw, m_entry,
6104						     &m_entry->rule_info,
6105						     rinfo);
6106		if (added_entry) {
6107			added_entry->rid = rid;
6108			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6109			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6110		}
6111		goto free_pkt_profile;
6112	}
6113	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6114	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6115	if (!s_rule) {
6116		status = -ENOMEM;
6117		goto free_pkt_profile;
6118	}
6119
6120	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6121		if (!rinfo->flags_info.act_valid) {
6122			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6123			act |= ICE_SINGLE_ACT_LB_ENABLE;
6124		} else {
6125			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6126							ICE_SINGLE_ACT_LB_ENABLE);
6127		}
6128	}
6129
6130	switch (rinfo->sw_act.fltr_act) {
6131	case ICE_FWD_TO_VSI:
6132		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6133				  rinfo->sw_act.fwd_id.hw_vsi_id);
6134		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6135		break;
6136	case ICE_FWD_TO_Q:
6137		act |= ICE_SINGLE_ACT_TO_Q;
6138		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6139				  rinfo->sw_act.fwd_id.q_id);
6140		break;
6141	case ICE_FWD_TO_QGRP:
6142		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6143			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6144		act |= ICE_SINGLE_ACT_TO_Q;
6145		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6146				  rinfo->sw_act.fwd_id.q_id);
6147		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6148		break;
6149	case ICE_DROP_PACKET:
6150		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6151		       ICE_SINGLE_ACT_VALID_BIT;
6152		break;
6153	case ICE_MIRROR_PACKET:
6154		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6155		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6156				  rinfo->sw_act.fwd_id.hw_vsi_id);
6157		break;
6158	case ICE_NOP:
6159		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6160				  rinfo->sw_act.fwd_id.hw_vsi_id);
6161		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6162		break;
6163	default:
6164		status = -EIO;
6165		goto err_ice_add_adv_rule;
6166	}
6167
6168	/* If there is no matching criteria for direction there
6169	 * is only one difference between Rx and Tx:
6170	 * - get switch id base on VSI number from source field (Tx)
6171	 * - get switch id base on port number (Rx)
6172	 *
6173	 * If matching on direction metadata is chose rule direction is
6174	 * extracted from type value set here.
6175	 */
6176	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6177		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6178		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6179	} else {
6180		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6181		s_rule->src = cpu_to_le16(hw->port_info->lport);
6182	}
6183
6184	s_rule->recipe_id = cpu_to_le16(rid);
6185	s_rule->act = cpu_to_le32(act);
6186
6187	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6188	if (status)
6189		goto err_ice_add_adv_rule;
6190
6191	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6192					 profile->offsets);
6193	if (status)
6194		goto err_ice_add_adv_rule;
6195
6196	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6197					  s_rule->hdr_data,
6198					  profile->offsets);
6199	if (status)
6200		goto err_ice_add_adv_rule;
6201
6202	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6203				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6204				 NULL);
6205	if (status)
6206		goto err_ice_add_adv_rule;
6207	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6208				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6209				GFP_KERNEL);
6210	if (!adv_fltr) {
6211		status = -ENOMEM;
6212		goto err_ice_add_adv_rule;
6213	}
6214
6215	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6216				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6217	if (!adv_fltr->lkups) {
6218		status = -ENOMEM;
6219		goto err_ice_add_adv_rule;
6220	}
6221
6222	adv_fltr->lkups_cnt = lkups_cnt;
6223	adv_fltr->rule_info = *rinfo;
6224	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6225	sw = hw->switch_info;
6226	sw->recp_list[rid].adv_rule = true;
6227	rule_head = &sw->recp_list[rid].filt_rules;
6228
6229	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6230		adv_fltr->vsi_count = 1;
6231
6232	/* Add rule entry to book keeping list */
6233	list_add(&adv_fltr->list_entry, rule_head);
6234	if (added_entry) {
6235		added_entry->rid = rid;
6236		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6237		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6238	}
6239err_ice_add_adv_rule:
6240	if (status && adv_fltr) {
6241		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6242		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6243	}
6244
6245	kfree(s_rule);
6246
6247free_pkt_profile:
6248	if (profile->match & ICE_PKT_KMALLOC) {
6249		kfree(profile->offsets);
6250		kfree(profile->pkt);
6251		kfree(profile);
6252	}
6253
6254	return status;
6255}
6256
6257/**
6258 * ice_replay_vsi_fltr - Replay filters for requested VSI
6259 * @hw: pointer to the hardware structure
6260 * @vsi_handle: driver VSI handle
6261 * @recp_id: Recipe ID for which rules need to be replayed
6262 * @list_head: list for which filters need to be replayed
6263 *
6264 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6265 * It is required to pass valid VSI handle.
6266 */
6267static int
6268ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6269		    struct list_head *list_head)
6270{
6271	struct ice_fltr_mgmt_list_entry *itr;
6272	int status = 0;
6273	u16 hw_vsi_id;
6274
6275	if (list_empty(list_head))
6276		return status;
6277	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6278
6279	list_for_each_entry(itr, list_head, list_entry) {
6280		struct ice_fltr_list_entry f_entry;
6281
6282		f_entry.fltr_info = itr->fltr_info;
6283		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6284		    itr->fltr_info.vsi_handle == vsi_handle) {
6285			/* update the src in case it is VSI num */
6286			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6287				f_entry.fltr_info.src = hw_vsi_id;
6288			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6289			if (status)
6290				goto end;
6291			continue;
6292		}
6293		if (!itr->vsi_list_info ||
6294		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6295			continue;
6296		/* Clearing it so that the logic can add it back */
6297		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6298		f_entry.fltr_info.vsi_handle = vsi_handle;
6299		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6300		/* update the src in case it is VSI num */
6301		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6302			f_entry.fltr_info.src = hw_vsi_id;
6303		if (recp_id == ICE_SW_LKUP_VLAN)
6304			status = ice_add_vlan_internal(hw, &f_entry);
6305		else
6306			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6307		if (status)
6308			goto end;
6309	}
6310end:
6311	return status;
6312}
6313
6314/**
6315 * ice_adv_rem_update_vsi_list
6316 * @hw: pointer to the hardware structure
6317 * @vsi_handle: VSI handle of the VSI to remove
6318 * @fm_list: filter management entry for which the VSI list management needs to
6319 *	     be done
6320 */
6321static int
6322ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6323			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6324{
6325	struct ice_vsi_list_map_info *vsi_list_info;
6326	enum ice_sw_lkup_type lkup_type;
6327	u16 vsi_list_id;
6328	int status;
6329
6330	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6331	    fm_list->vsi_count == 0)
6332		return -EINVAL;
6333
6334	/* A rule with the VSI being removed does not exist */
6335	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6336		return -ENOENT;
6337
6338	lkup_type = ICE_SW_LKUP_LAST;
6339	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6340	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6341					  ice_aqc_opc_update_sw_rules,
6342					  lkup_type);
6343	if (status)
6344		return status;
6345
6346	fm_list->vsi_count--;
6347	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6348	vsi_list_info = fm_list->vsi_list_info;
6349	if (fm_list->vsi_count == 1) {
6350		struct ice_fltr_info tmp_fltr;
6351		u16 rem_vsi_handle;
6352
6353		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6354						ICE_MAX_VSI);
6355		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6356			return -EIO;
6357
6358		/* Make sure VSI list is empty before removing it below */
6359		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6360						  vsi_list_id, true,
6361						  ice_aqc_opc_update_sw_rules,
6362						  lkup_type);
6363		if (status)
6364			return status;
6365
6366		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6367		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6368		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6369		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6370		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6371		tmp_fltr.fwd_id.hw_vsi_id =
6372			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6373		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6374			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6375		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6376
6377		/* Update the previous switch rule of "MAC forward to VSI" to
6378		 * "MAC fwd to VSI list"
6379		 */
6380		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6381		if (status) {
6382			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6383				  tmp_fltr.fwd_id.hw_vsi_id, status);
6384			return status;
6385		}
6386		fm_list->vsi_list_info->ref_cnt--;
6387
6388		/* Remove the VSI list since it is no longer used */
6389		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6390		if (status) {
6391			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6392				  vsi_list_id, status);
6393			return status;
6394		}
6395
6396		list_del(&vsi_list_info->list_entry);
6397		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6398		fm_list->vsi_list_info = NULL;
6399	}
6400
6401	return status;
6402}
6403
6404/**
6405 * ice_rem_adv_rule - removes existing advanced switch rule
6406 * @hw: pointer to the hardware structure
6407 * @lkups: information on the words that needs to be looked up. All words
6408 *         together makes one recipe
6409 * @lkups_cnt: num of entries in the lkups array
6410 * @rinfo: Its the pointer to the rule information for the rule
6411 *
6412 * This function can be used to remove 1 rule at a time. The lkups is
6413 * used to describe all the words that forms the "lookup" portion of the
6414 * rule. These words can span multiple protocols. Callers to this function
6415 * need to pass in a list of protocol headers with lookup information along
6416 * and mask that determines which words are valid from the given protocol
6417 * header. rinfo describes other information related to this rule such as
6418 * forwarding IDs, priority of this rule, etc.
6419 */
6420static int
6421ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6422		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6423{
6424	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6425	struct ice_prot_lkup_ext lkup_exts;
6426	bool remove_rule = false;
6427	struct mutex *rule_lock; /* Lock to protect filter rule list */
6428	u16 i, rid, vsi_handle;
6429	int status = 0;
6430
6431	memset(&lkup_exts, 0, sizeof(lkup_exts));
6432	for (i = 0; i < lkups_cnt; i++) {
6433		u16 count;
6434
6435		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6436			return -EIO;
6437
6438		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6439		if (!count)
6440			return -EIO;
6441	}
6442
6443	rid = ice_find_recp(hw, &lkup_exts, rinfo);
6444	/* If did not find a recipe that match the existing criteria */
6445	if (rid == ICE_MAX_NUM_RECIPES)
6446		return -EINVAL;
6447
6448	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6449	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6450	/* the rule is already removed */
6451	if (!list_elem)
6452		return 0;
6453	mutex_lock(rule_lock);
6454	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6455		remove_rule = true;
6456	} else if (list_elem->vsi_count > 1) {
6457		remove_rule = false;
6458		vsi_handle = rinfo->sw_act.vsi_handle;
6459		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6460	} else {
6461		vsi_handle = rinfo->sw_act.vsi_handle;
6462		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6463		if (status) {
6464			mutex_unlock(rule_lock);
6465			return status;
6466		}
6467		if (list_elem->vsi_count == 0)
6468			remove_rule = true;
6469	}
6470	mutex_unlock(rule_lock);
6471	if (remove_rule) {
6472		struct ice_sw_rule_lkup_rx_tx *s_rule;
6473		u16 rule_buf_sz;
6474
6475		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6476		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6477		if (!s_rule)
6478			return -ENOMEM;
6479		s_rule->act = 0;
6480		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6481		s_rule->hdr_len = 0;
6482		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6483					 rule_buf_sz, 1,
6484					 ice_aqc_opc_remove_sw_rules, NULL);
6485		if (!status || status == -ENOENT) {
6486			struct ice_switch_info *sw = hw->switch_info;
 
6487
6488			mutex_lock(rule_lock);
6489			list_del(&list_elem->list_entry);
6490			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6491			devm_kfree(ice_hw_to_dev(hw), list_elem);
6492			mutex_unlock(rule_lock);
6493			if (list_empty(&sw->recp_list[rid].filt_rules))
6494				sw->recp_list[rid].adv_rule = false;
 
 
 
 
 
 
6495		}
6496		kfree(s_rule);
6497	}
6498	return status;
6499}
6500
6501/**
6502 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6503 * @hw: pointer to the hardware structure
6504 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6505 *
6506 * This function is used to remove 1 rule at a time. The removal is based on
6507 * the remove_entry parameter. This function will remove rule for a given
6508 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6509 */
6510int
6511ice_rem_adv_rule_by_id(struct ice_hw *hw,
6512		       struct ice_rule_query_data *remove_entry)
6513{
6514	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6515	struct list_head *list_head;
6516	struct ice_adv_rule_info rinfo;
6517	struct ice_switch_info *sw;
6518
6519	sw = hw->switch_info;
6520	if (!sw->recp_list[remove_entry->rid].recp_created)
6521		return -EINVAL;
6522	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6523	list_for_each_entry(list_itr, list_head, list_entry) {
6524		if (list_itr->rule_info.fltr_rule_id ==
6525		    remove_entry->rule_id) {
6526			rinfo = list_itr->rule_info;
6527			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6528			return ice_rem_adv_rule(hw, list_itr->lkups,
6529						list_itr->lkups_cnt, &rinfo);
6530		}
6531	}
6532	/* either list is empty or unable to find rule */
6533	return -ENOENT;
6534}
6535
6536/**
6537 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6538 * @hw: pointer to the hardware structure
6539 * @vsi_handle: driver VSI handle
6540 * @list_head: list for which filters need to be replayed
6541 *
6542 * Replay the advanced rule for the given VSI.
6543 */
6544static int
6545ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6546			struct list_head *list_head)
6547{
6548	struct ice_rule_query_data added_entry = { 0 };
6549	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6550	int status = 0;
6551
6552	if (list_empty(list_head))
6553		return status;
6554	list_for_each_entry(adv_fltr, list_head, list_entry) {
6555		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6556		u16 lk_cnt = adv_fltr->lkups_cnt;
6557
6558		if (vsi_handle != rinfo->sw_act.vsi_handle)
6559			continue;
6560		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6561					  &added_entry);
6562		if (status)
6563			break;
6564	}
6565	return status;
6566}
6567
6568/**
6569 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6570 * @hw: pointer to the hardware structure
6571 * @vsi_handle: driver VSI handle
6572 *
6573 * Replays filters for requested VSI via vsi_handle.
6574 */
6575int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6576{
6577	struct ice_switch_info *sw = hw->switch_info;
6578	int status;
6579	u8 i;
6580
6581	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6582		struct list_head *head;
6583
6584		head = &sw->recp_list[i].filt_replay_rules;
6585		if (!sw->recp_list[i].adv_rule)
6586			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6587		else
6588			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6589		if (status)
6590			return status;
6591	}
6592	return status;
6593}
6594
6595/**
6596 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6597 * @hw: pointer to the HW struct
6598 *
6599 * Deletes the filter replay rules.
6600 */
6601void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6602{
6603	struct ice_switch_info *sw = hw->switch_info;
6604	u8 i;
6605
6606	if (!sw)
6607		return;
6608
6609	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6610		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6611			struct list_head *l_head;
6612
6613			l_head = &sw->recp_list[i].filt_replay_rules;
6614			if (!sw->recp_list[i].adv_rule)
6615				ice_rem_sw_rule_info(hw, l_head);
6616			else
6617				ice_rem_adv_rule_info(hw, l_head);
6618		}
6619	}
6620}