Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_lib.h"
   5#include "ice_switch.h"
   6#include "ice_trace.h"
   7
   8#define ICE_ETH_DA_OFFSET		0
   9#define ICE_ETH_ETHTYPE_OFFSET		12
  10#define ICE_ETH_VLAN_TCI_OFFSET		14
  11#define ICE_MAX_VLAN_ID			0xFFF
  12#define ICE_IPV6_ETHER_ID		0x86DD
  13
  14/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
  15 * struct to configure any switch filter rules.
  16 * {DA (6 bytes), SA(6 bytes),
  17 * Ether type (2 bytes for header without VLAN tag) OR
  18 * VLAN tag (4 bytes for header with VLAN tag) }
  19 *
  20 * Word on Hardcoded values
  21 * byte 0 = 0x2: to identify it as locally administered DA MAC
  22 * byte 6 = 0x2: to identify it as locally administered SA MAC
  23 * byte 12 = 0x81 & byte 13 = 0x00:
  24 *      In case of VLAN filter first two bytes defines ether type (0x8100)
  25 *      and remaining two bytes are placeholder for programming a given VLAN ID
  26 *      In case of Ether type filter it is treated as header without VLAN tag
  27 *      and byte 12 and 13 is used to program a given Ether type instead
  28 */
 
  29static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
  30							0x2, 0, 0, 0, 0, 0,
  31							0x81, 0, 0, 0};
  32
  33enum {
  34	ICE_PKT_OUTER_IPV6	= BIT(0),
  35	ICE_PKT_TUN_GTPC	= BIT(1),
  36	ICE_PKT_TUN_GTPU	= BIT(2),
  37	ICE_PKT_TUN_NVGRE	= BIT(3),
  38	ICE_PKT_TUN_UDP		= BIT(4),
  39	ICE_PKT_INNER_IPV6	= BIT(5),
  40	ICE_PKT_INNER_TCP	= BIT(6),
  41	ICE_PKT_INNER_UDP	= BIT(7),
  42	ICE_PKT_GTP_NOPAY	= BIT(8),
  43	ICE_PKT_KMALLOC		= BIT(9),
  44	ICE_PKT_PPPOE		= BIT(10),
  45	ICE_PKT_L2TPV3		= BIT(11),
  46	ICE_PKT_PFCP		= BIT(12),
  47};
  48
  49struct ice_dummy_pkt_offsets {
  50	enum ice_protocol_type type;
  51	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
  52};
  53
  54struct ice_dummy_pkt_profile {
  55	const struct ice_dummy_pkt_offsets *offsets;
  56	const u8 *pkt;
  57	u32 match;
  58	u16 pkt_len;
  59	u16 offsets_len;
  60};
  61
  62#define ICE_DECLARE_PKT_OFFSETS(type)					\
  63	static const struct ice_dummy_pkt_offsets			\
  64	ice_dummy_##type##_packet_offsets[]
  65
  66#define ICE_DECLARE_PKT_TEMPLATE(type)					\
  67	static const u8 ice_dummy_##type##_packet[]
  68
  69#define ICE_PKT_PROFILE(type, m) {					\
  70	.match		= (m),						\
  71	.pkt		= ice_dummy_##type##_packet,			\
  72	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
  73	.offsets	= ice_dummy_##type##_packet_offsets,		\
  74	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
  75}
  76
  77ICE_DECLARE_PKT_OFFSETS(vlan) = {
  78	{ ICE_VLAN_OFOS,        12 },
  79};
  80
  81ICE_DECLARE_PKT_TEMPLATE(vlan) = {
  82	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
  83};
  84
  85ICE_DECLARE_PKT_OFFSETS(qinq) = {
  86	{ ICE_VLAN_EX,          12 },
  87	{ ICE_VLAN_IN,          16 },
  88};
  89
  90ICE_DECLARE_PKT_TEMPLATE(qinq) = {
  91	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
  92	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
  93};
  94
  95ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
  96	{ ICE_MAC_OFOS,		0 },
  97	{ ICE_ETYPE_OL,		12 },
  98	{ ICE_IPV4_OFOS,	14 },
  99	{ ICE_NVGRE,		34 },
 100	{ ICE_MAC_IL,		42 },
 101	{ ICE_ETYPE_IL,		54 },
 102	{ ICE_IPV4_IL,		56 },
 103	{ ICE_TCP_IL,		76 },
 104	{ ICE_PROTOCOL_LAST,	0 },
 105};
 106
 107ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
 108	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 109	0x00, 0x00, 0x00, 0x00,
 110	0x00, 0x00, 0x00, 0x00,
 111
 112	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 113
 114	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 115	0x00, 0x00, 0x00, 0x00,
 116	0x00, 0x2F, 0x00, 0x00,
 117	0x00, 0x00, 0x00, 0x00,
 118	0x00, 0x00, 0x00, 0x00,
 119
 120	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 121	0x00, 0x00, 0x00, 0x00,
 122
 123	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 124	0x00, 0x00, 0x00, 0x00,
 125	0x00, 0x00, 0x00, 0x00,
 126
 127	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 128
 129	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 130	0x00, 0x00, 0x00, 0x00,
 131	0x00, 0x06, 0x00, 0x00,
 132	0x00, 0x00, 0x00, 0x00,
 133	0x00, 0x00, 0x00, 0x00,
 134
 135	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
 136	0x00, 0x00, 0x00, 0x00,
 137	0x00, 0x00, 0x00, 0x00,
 138	0x50, 0x02, 0x20, 0x00,
 139	0x00, 0x00, 0x00, 0x00
 140};
 141
 142ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
 143	{ ICE_MAC_OFOS,		0 },
 144	{ ICE_ETYPE_OL,		12 },
 145	{ ICE_IPV4_OFOS,	14 },
 146	{ ICE_NVGRE,		34 },
 147	{ ICE_MAC_IL,		42 },
 148	{ ICE_ETYPE_IL,		54 },
 149	{ ICE_IPV4_IL,		56 },
 150	{ ICE_UDP_ILOS,		76 },
 151	{ ICE_PROTOCOL_LAST,	0 },
 152};
 153
 154ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
 155	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 156	0x00, 0x00, 0x00, 0x00,
 157	0x00, 0x00, 0x00, 0x00,
 158
 159	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 160
 161	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 162	0x00, 0x00, 0x00, 0x00,
 163	0x00, 0x2F, 0x00, 0x00,
 164	0x00, 0x00, 0x00, 0x00,
 165	0x00, 0x00, 0x00, 0x00,
 166
 167	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 168	0x00, 0x00, 0x00, 0x00,
 169
 170	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 171	0x00, 0x00, 0x00, 0x00,
 172	0x00, 0x00, 0x00, 0x00,
 173
 174	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 175
 176	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 177	0x00, 0x00, 0x00, 0x00,
 178	0x00, 0x11, 0x00, 0x00,
 179	0x00, 0x00, 0x00, 0x00,
 180	0x00, 0x00, 0x00, 0x00,
 181
 182	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
 183	0x00, 0x08, 0x00, 0x00,
 184};
 185
 186ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
 187	{ ICE_MAC_OFOS,		0 },
 188	{ ICE_ETYPE_OL,		12 },
 189	{ ICE_IPV4_OFOS,	14 },
 190	{ ICE_UDP_OF,		34 },
 191	{ ICE_VXLAN,		42 },
 192	{ ICE_GENEVE,		42 },
 193	{ ICE_VXLAN_GPE,	42 },
 194	{ ICE_MAC_IL,		50 },
 195	{ ICE_ETYPE_IL,		62 },
 196	{ ICE_IPV4_IL,		64 },
 197	{ ICE_TCP_IL,		84 },
 198	{ ICE_PROTOCOL_LAST,	0 },
 199};
 200
 201ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
 202	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 203	0x00, 0x00, 0x00, 0x00,
 204	0x00, 0x00, 0x00, 0x00,
 205
 206	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 207
 208	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 209	0x00, 0x01, 0x00, 0x00,
 210	0x40, 0x11, 0x00, 0x00,
 211	0x00, 0x00, 0x00, 0x00,
 212	0x00, 0x00, 0x00, 0x00,
 213
 214	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 215	0x00, 0x46, 0x00, 0x00,
 216
 217	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 218	0x00, 0x00, 0x00, 0x00,
 219
 220	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 221	0x00, 0x00, 0x00, 0x00,
 222	0x00, 0x00, 0x00, 0x00,
 223
 224	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 225
 226	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
 227	0x00, 0x01, 0x00, 0x00,
 228	0x40, 0x06, 0x00, 0x00,
 229	0x00, 0x00, 0x00, 0x00,
 230	0x00, 0x00, 0x00, 0x00,
 231
 232	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
 233	0x00, 0x00, 0x00, 0x00,
 234	0x00, 0x00, 0x00, 0x00,
 235	0x50, 0x02, 0x20, 0x00,
 236	0x00, 0x00, 0x00, 0x00
 237};
 238
 239ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
 240	{ ICE_MAC_OFOS,		0 },
 241	{ ICE_ETYPE_OL,		12 },
 242	{ ICE_IPV4_OFOS,	14 },
 243	{ ICE_UDP_OF,		34 },
 244	{ ICE_VXLAN,		42 },
 245	{ ICE_GENEVE,		42 },
 246	{ ICE_VXLAN_GPE,	42 },
 247	{ ICE_MAC_IL,		50 },
 248	{ ICE_ETYPE_IL,		62 },
 249	{ ICE_IPV4_IL,		64 },
 250	{ ICE_UDP_ILOS,		84 },
 251	{ ICE_PROTOCOL_LAST,	0 },
 252};
 253
 254ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
 255	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 256	0x00, 0x00, 0x00, 0x00,
 257	0x00, 0x00, 0x00, 0x00,
 258
 259	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 260
 261	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
 262	0x00, 0x01, 0x00, 0x00,
 263	0x00, 0x11, 0x00, 0x00,
 264	0x00, 0x00, 0x00, 0x00,
 265	0x00, 0x00, 0x00, 0x00,
 266
 267	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 268	0x00, 0x3a, 0x00, 0x00,
 269
 270	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 271	0x00, 0x00, 0x00, 0x00,
 272
 273	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 274	0x00, 0x00, 0x00, 0x00,
 275	0x00, 0x00, 0x00, 0x00,
 276
 277	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 278
 279	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
 280	0x00, 0x01, 0x00, 0x00,
 281	0x00, 0x11, 0x00, 0x00,
 282	0x00, 0x00, 0x00, 0x00,
 283	0x00, 0x00, 0x00, 0x00,
 284
 285	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
 286	0x00, 0x08, 0x00, 0x00,
 287};
 288
 289ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
 290	{ ICE_MAC_OFOS,		0 },
 291	{ ICE_ETYPE_OL,		12 },
 292	{ ICE_IPV4_OFOS,	14 },
 293	{ ICE_NVGRE,		34 },
 294	{ ICE_MAC_IL,		42 },
 295	{ ICE_ETYPE_IL,		54 },
 296	{ ICE_IPV6_IL,		56 },
 297	{ ICE_TCP_IL,		96 },
 298	{ ICE_PROTOCOL_LAST,	0 },
 299};
 300
 301ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
 302	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 303	0x00, 0x00, 0x00, 0x00,
 304	0x00, 0x00, 0x00, 0x00,
 305
 306	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 307
 308	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
 309	0x00, 0x00, 0x00, 0x00,
 310	0x00, 0x2F, 0x00, 0x00,
 311	0x00, 0x00, 0x00, 0x00,
 312	0x00, 0x00, 0x00, 0x00,
 313
 314	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 315	0x00, 0x00, 0x00, 0x00,
 316
 317	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 318	0x00, 0x00, 0x00, 0x00,
 319	0x00, 0x00, 0x00, 0x00,
 320
 321	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 322
 323	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 324	0x00, 0x08, 0x06, 0x40,
 325	0x00, 0x00, 0x00, 0x00,
 326	0x00, 0x00, 0x00, 0x00,
 327	0x00, 0x00, 0x00, 0x00,
 328	0x00, 0x00, 0x00, 0x00,
 329	0x00, 0x00, 0x00, 0x00,
 330	0x00, 0x00, 0x00, 0x00,
 331	0x00, 0x00, 0x00, 0x00,
 332	0x00, 0x00, 0x00, 0x00,
 333
 334	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
 335	0x00, 0x00, 0x00, 0x00,
 336	0x00, 0x00, 0x00, 0x00,
 337	0x50, 0x02, 0x20, 0x00,
 338	0x00, 0x00, 0x00, 0x00
 339};
 340
 341ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
 342	{ ICE_MAC_OFOS,		0 },
 343	{ ICE_ETYPE_OL,		12 },
 344	{ ICE_IPV4_OFOS,	14 },
 345	{ ICE_NVGRE,		34 },
 346	{ ICE_MAC_IL,		42 },
 347	{ ICE_ETYPE_IL,		54 },
 348	{ ICE_IPV6_IL,		56 },
 349	{ ICE_UDP_ILOS,		96 },
 350	{ ICE_PROTOCOL_LAST,	0 },
 351};
 352
 353ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
 354	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 355	0x00, 0x00, 0x00, 0x00,
 356	0x00, 0x00, 0x00, 0x00,
 357
 358	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 359
 360	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 361	0x00, 0x00, 0x00, 0x00,
 362	0x00, 0x2F, 0x00, 0x00,
 363	0x00, 0x00, 0x00, 0x00,
 364	0x00, 0x00, 0x00, 0x00,
 365
 366	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 367	0x00, 0x00, 0x00, 0x00,
 368
 369	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 370	0x00, 0x00, 0x00, 0x00,
 371	0x00, 0x00, 0x00, 0x00,
 372
 373	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 374
 375	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 376	0x00, 0x08, 0x11, 0x40,
 377	0x00, 0x00, 0x00, 0x00,
 378	0x00, 0x00, 0x00, 0x00,
 379	0x00, 0x00, 0x00, 0x00,
 380	0x00, 0x00, 0x00, 0x00,
 381	0x00, 0x00, 0x00, 0x00,
 382	0x00, 0x00, 0x00, 0x00,
 383	0x00, 0x00, 0x00, 0x00,
 384	0x00, 0x00, 0x00, 0x00,
 385
 386	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
 387	0x00, 0x08, 0x00, 0x00,
 388};
 389
 390ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
 391	{ ICE_MAC_OFOS,		0 },
 392	{ ICE_ETYPE_OL,		12 },
 393	{ ICE_IPV4_OFOS,	14 },
 394	{ ICE_UDP_OF,		34 },
 395	{ ICE_VXLAN,		42 },
 396	{ ICE_GENEVE,		42 },
 397	{ ICE_VXLAN_GPE,	42 },
 398	{ ICE_MAC_IL,		50 },
 399	{ ICE_ETYPE_IL,		62 },
 400	{ ICE_IPV6_IL,		64 },
 401	{ ICE_TCP_IL,		104 },
 402	{ ICE_PROTOCOL_LAST,	0 },
 403};
 404
 405ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
 406	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 407	0x00, 0x00, 0x00, 0x00,
 408	0x00, 0x00, 0x00, 0x00,
 409
 410	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 411
 412	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
 413	0x00, 0x01, 0x00, 0x00,
 414	0x40, 0x11, 0x00, 0x00,
 415	0x00, 0x00, 0x00, 0x00,
 416	0x00, 0x00, 0x00, 0x00,
 417
 418	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 419	0x00, 0x5a, 0x00, 0x00,
 420
 421	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 422	0x00, 0x00, 0x00, 0x00,
 423
 424	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 425	0x00, 0x00, 0x00, 0x00,
 426	0x00, 0x00, 0x00, 0x00,
 427
 428	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 429
 430	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 431	0x00, 0x08, 0x06, 0x40,
 432	0x00, 0x00, 0x00, 0x00,
 433	0x00, 0x00, 0x00, 0x00,
 434	0x00, 0x00, 0x00, 0x00,
 435	0x00, 0x00, 0x00, 0x00,
 436	0x00, 0x00, 0x00, 0x00,
 437	0x00, 0x00, 0x00, 0x00,
 438	0x00, 0x00, 0x00, 0x00,
 439	0x00, 0x00, 0x00, 0x00,
 440
 441	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
 442	0x00, 0x00, 0x00, 0x00,
 443	0x00, 0x00, 0x00, 0x00,
 444	0x50, 0x02, 0x20, 0x00,
 445	0x00, 0x00, 0x00, 0x00
 446};
 447
 448ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
 449	{ ICE_MAC_OFOS,		0 },
 450	{ ICE_ETYPE_OL,		12 },
 451	{ ICE_IPV4_OFOS,	14 },
 452	{ ICE_UDP_OF,		34 },
 453	{ ICE_VXLAN,		42 },
 454	{ ICE_GENEVE,		42 },
 455	{ ICE_VXLAN_GPE,	42 },
 456	{ ICE_MAC_IL,		50 },
 457	{ ICE_ETYPE_IL,		62 },
 458	{ ICE_IPV6_IL,		64 },
 459	{ ICE_UDP_ILOS,		104 },
 460	{ ICE_PROTOCOL_LAST,	0 },
 461};
 462
 463ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
 464	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 465	0x00, 0x00, 0x00, 0x00,
 466	0x00, 0x00, 0x00, 0x00,
 467
 468	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 469
 470	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
 471	0x00, 0x01, 0x00, 0x00,
 472	0x00, 0x11, 0x00, 0x00,
 473	0x00, 0x00, 0x00, 0x00,
 474	0x00, 0x00, 0x00, 0x00,
 475
 476	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 477	0x00, 0x4e, 0x00, 0x00,
 478
 479	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 480	0x00, 0x00, 0x00, 0x00,
 481
 482	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 483	0x00, 0x00, 0x00, 0x00,
 484	0x00, 0x00, 0x00, 0x00,
 485
 486	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 487
 488	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 489	0x00, 0x08, 0x11, 0x40,
 490	0x00, 0x00, 0x00, 0x00,
 491	0x00, 0x00, 0x00, 0x00,
 492	0x00, 0x00, 0x00, 0x00,
 493	0x00, 0x00, 0x00, 0x00,
 494	0x00, 0x00, 0x00, 0x00,
 495	0x00, 0x00, 0x00, 0x00,
 496	0x00, 0x00, 0x00, 0x00,
 497	0x00, 0x00, 0x00, 0x00,
 498
 499	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
 500	0x00, 0x08, 0x00, 0x00,
 501};
 502
 503/* offset info for MAC + IPv4 + UDP dummy packet */
 504ICE_DECLARE_PKT_OFFSETS(udp) = {
 505	{ ICE_MAC_OFOS,		0 },
 506	{ ICE_ETYPE_OL,		12 },
 507	{ ICE_IPV4_OFOS,	14 },
 508	{ ICE_UDP_ILOS,		34 },
 509	{ ICE_PROTOCOL_LAST,	0 },
 510};
 511
 512/* Dummy packet for MAC + IPv4 + UDP */
 513ICE_DECLARE_PKT_TEMPLATE(udp) = {
 514	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 515	0x00, 0x00, 0x00, 0x00,
 516	0x00, 0x00, 0x00, 0x00,
 517
 518	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 519
 520	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
 521	0x00, 0x01, 0x00, 0x00,
 522	0x00, 0x11, 0x00, 0x00,
 523	0x00, 0x00, 0x00, 0x00,
 524	0x00, 0x00, 0x00, 0x00,
 525
 526	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
 527	0x00, 0x08, 0x00, 0x00,
 528
 529	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 530};
 531
 532/* offset info for MAC + IPv4 + TCP dummy packet */
 533ICE_DECLARE_PKT_OFFSETS(tcp) = {
 534	{ ICE_MAC_OFOS,		0 },
 535	{ ICE_ETYPE_OL,		12 },
 536	{ ICE_IPV4_OFOS,	14 },
 537	{ ICE_TCP_IL,		34 },
 538	{ ICE_PROTOCOL_LAST,	0 },
 539};
 540
 541/* Dummy packet for MAC + IPv4 + TCP */
 542ICE_DECLARE_PKT_TEMPLATE(tcp) = {
 543	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 544	0x00, 0x00, 0x00, 0x00,
 545	0x00, 0x00, 0x00, 0x00,
 546
 547	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 548
 549	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
 550	0x00, 0x01, 0x00, 0x00,
 551	0x00, 0x06, 0x00, 0x00,
 552	0x00, 0x00, 0x00, 0x00,
 553	0x00, 0x00, 0x00, 0x00,
 554
 555	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
 556	0x00, 0x00, 0x00, 0x00,
 557	0x00, 0x00, 0x00, 0x00,
 558	0x50, 0x00, 0x00, 0x00,
 559	0x00, 0x00, 0x00, 0x00,
 560
 561	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 562};
 563
 564ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
 565	{ ICE_MAC_OFOS,		0 },
 566	{ ICE_ETYPE_OL,		12 },
 567	{ ICE_IPV6_OFOS,	14 },
 568	{ ICE_TCP_IL,		54 },
 569	{ ICE_PROTOCOL_LAST,	0 },
 570};
 571
 572ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
 573	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 574	0x00, 0x00, 0x00, 0x00,
 575	0x00, 0x00, 0x00, 0x00,
 576
 577	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 578
 579	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 580	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
 581	0x00, 0x00, 0x00, 0x00,
 582	0x00, 0x00, 0x00, 0x00,
 583	0x00, 0x00, 0x00, 0x00,
 584	0x00, 0x00, 0x00, 0x00,
 585	0x00, 0x00, 0x00, 0x00,
 586	0x00, 0x00, 0x00, 0x00,
 587	0x00, 0x00, 0x00, 0x00,
 588	0x00, 0x00, 0x00, 0x00,
 589
 590	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
 591	0x00, 0x00, 0x00, 0x00,
 592	0x00, 0x00, 0x00, 0x00,
 593	0x50, 0x00, 0x00, 0x00,
 594	0x00, 0x00, 0x00, 0x00,
 595
 596	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 597};
 598
 599/* IPv6 + UDP */
 600ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
 601	{ ICE_MAC_OFOS,		0 },
 602	{ ICE_ETYPE_OL,		12 },
 603	{ ICE_IPV6_OFOS,	14 },
 604	{ ICE_UDP_ILOS,		54 },
 605	{ ICE_PROTOCOL_LAST,	0 },
 606};
 607
 608/* IPv6 + UDP dummy packet */
 609ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
 610	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 611	0x00, 0x00, 0x00, 0x00,
 612	0x00, 0x00, 0x00, 0x00,
 613
 614	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 615
 616	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 617	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
 618	0x00, 0x00, 0x00, 0x00,
 619	0x00, 0x00, 0x00, 0x00,
 620	0x00, 0x00, 0x00, 0x00,
 621	0x00, 0x00, 0x00, 0x00,
 622	0x00, 0x00, 0x00, 0x00,
 623	0x00, 0x00, 0x00, 0x00,
 624	0x00, 0x00, 0x00, 0x00,
 625	0x00, 0x00, 0x00, 0x00,
 626
 627	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
 628	0x00, 0x10, 0x00, 0x00,
 629
 630	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
 631	0x00, 0x00, 0x00, 0x00,
 632
 633	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 634};
 635
 636/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 637ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
 638	{ ICE_MAC_OFOS,		0 },
 639	{ ICE_IPV4_OFOS,	14 },
 640	{ ICE_UDP_OF,		34 },
 641	{ ICE_GTP,		42 },
 642	{ ICE_IPV4_IL,		62 },
 643	{ ICE_TCP_IL,		82 },
 644	{ ICE_PROTOCOL_LAST,	0 },
 645};
 646
 647ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
 648	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 649	0x00, 0x00, 0x00, 0x00,
 650	0x00, 0x00, 0x00, 0x00,
 651	0x08, 0x00,
 652
 653	0x45, 0x00, 0x00, 0x58, /* IP 14 */
 654	0x00, 0x00, 0x00, 0x00,
 655	0x00, 0x11, 0x00, 0x00,
 656	0x00, 0x00, 0x00, 0x00,
 657	0x00, 0x00, 0x00, 0x00,
 658
 659	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 660	0x00, 0x44, 0x00, 0x00,
 661
 662	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
 663	0x00, 0x00, 0x00, 0x00,
 664	0x00, 0x00, 0x00, 0x85,
 665
 666	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 667	0x00, 0x00, 0x00, 0x00,
 668
 669	0x45, 0x00, 0x00, 0x28, /* IP 62 */
 670	0x00, 0x00, 0x00, 0x00,
 671	0x00, 0x06, 0x00, 0x00,
 672	0x00, 0x00, 0x00, 0x00,
 673	0x00, 0x00, 0x00, 0x00,
 674
 675	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
 676	0x00, 0x00, 0x00, 0x00,
 677	0x00, 0x00, 0x00, 0x00,
 678	0x50, 0x00, 0x00, 0x00,
 679	0x00, 0x00, 0x00, 0x00,
 680
 681	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 682};
 683
 684/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
 685ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
 686	{ ICE_MAC_OFOS,		0 },
 687	{ ICE_IPV4_OFOS,	14 },
 688	{ ICE_UDP_OF,		34 },
 689	{ ICE_GTP,		42 },
 690	{ ICE_IPV4_IL,		62 },
 691	{ ICE_UDP_ILOS,		82 },
 692	{ ICE_PROTOCOL_LAST,	0 },
 693};
 694
 695ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
 696	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 697	0x00, 0x00, 0x00, 0x00,
 698	0x00, 0x00, 0x00, 0x00,
 699	0x08, 0x00,
 700
 701	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
 702	0x00, 0x00, 0x00, 0x00,
 703	0x00, 0x11, 0x00, 0x00,
 704	0x00, 0x00, 0x00, 0x00,
 705	0x00, 0x00, 0x00, 0x00,
 706
 707	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 708	0x00, 0x38, 0x00, 0x00,
 709
 710	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
 711	0x00, 0x00, 0x00, 0x00,
 712	0x00, 0x00, 0x00, 0x85,
 713
 714	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 715	0x00, 0x00, 0x00, 0x00,
 716
 717	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
 718	0x00, 0x00, 0x00, 0x00,
 719	0x00, 0x11, 0x00, 0x00,
 720	0x00, 0x00, 0x00, 0x00,
 721	0x00, 0x00, 0x00, 0x00,
 722
 723	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
 724	0x00, 0x08, 0x00, 0x00,
 725
 726	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 727};
 728
 729/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 730ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
 731	{ ICE_MAC_OFOS,		0 },
 732	{ ICE_IPV4_OFOS,	14 },
 733	{ ICE_UDP_OF,		34 },
 734	{ ICE_GTP,		42 },
 735	{ ICE_IPV6_IL,		62 },
 736	{ ICE_TCP_IL,		102 },
 737	{ ICE_PROTOCOL_LAST,	0 },
 738};
 739
 740ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
 741	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 742	0x00, 0x00, 0x00, 0x00,
 743	0x00, 0x00, 0x00, 0x00,
 744	0x08, 0x00,
 745
 746	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
 747	0x00, 0x00, 0x00, 0x00,
 748	0x00, 0x11, 0x00, 0x00,
 749	0x00, 0x00, 0x00, 0x00,
 750	0x00, 0x00, 0x00, 0x00,
 751
 752	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 753	0x00, 0x58, 0x00, 0x00,
 754
 755	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
 756	0x00, 0x00, 0x00, 0x00,
 757	0x00, 0x00, 0x00, 0x85,
 758
 759	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 760	0x00, 0x00, 0x00, 0x00,
 761
 762	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 763	0x00, 0x14, 0x06, 0x00,
 764	0x00, 0x00, 0x00, 0x00,
 765	0x00, 0x00, 0x00, 0x00,
 766	0x00, 0x00, 0x00, 0x00,
 767	0x00, 0x00, 0x00, 0x00,
 768	0x00, 0x00, 0x00, 0x00,
 769	0x00, 0x00, 0x00, 0x00,
 770	0x00, 0x00, 0x00, 0x00,
 771	0x00, 0x00, 0x00, 0x00,
 772
 773	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 774	0x00, 0x00, 0x00, 0x00,
 775	0x00, 0x00, 0x00, 0x00,
 776	0x50, 0x00, 0x00, 0x00,
 777	0x00, 0x00, 0x00, 0x00,
 778
 779	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 780};
 781
 782ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
 783	{ ICE_MAC_OFOS,		0 },
 784	{ ICE_IPV4_OFOS,	14 },
 785	{ ICE_UDP_OF,		34 },
 786	{ ICE_GTP,		42 },
 787	{ ICE_IPV6_IL,		62 },
 788	{ ICE_UDP_ILOS,		102 },
 789	{ ICE_PROTOCOL_LAST,	0 },
 790};
 791
 792ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
 793	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 794	0x00, 0x00, 0x00, 0x00,
 795	0x00, 0x00, 0x00, 0x00,
 796	0x08, 0x00,
 797
 798	0x45, 0x00, 0x00, 0x60, /* IP 14 */
 799	0x00, 0x00, 0x00, 0x00,
 800	0x00, 0x11, 0x00, 0x00,
 801	0x00, 0x00, 0x00, 0x00,
 802	0x00, 0x00, 0x00, 0x00,
 803
 804	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 805	0x00, 0x4c, 0x00, 0x00,
 806
 807	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
 808	0x00, 0x00, 0x00, 0x00,
 809	0x00, 0x00, 0x00, 0x85,
 810
 811	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 812	0x00, 0x00, 0x00, 0x00,
 813
 814	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 815	0x00, 0x08, 0x11, 0x00,
 816	0x00, 0x00, 0x00, 0x00,
 817	0x00, 0x00, 0x00, 0x00,
 818	0x00, 0x00, 0x00, 0x00,
 819	0x00, 0x00, 0x00, 0x00,
 820	0x00, 0x00, 0x00, 0x00,
 821	0x00, 0x00, 0x00, 0x00,
 822	0x00, 0x00, 0x00, 0x00,
 823	0x00, 0x00, 0x00, 0x00,
 824
 825	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 826	0x00, 0x08, 0x00, 0x00,
 827
 828	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 829};
 830
 831ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
 832	{ ICE_MAC_OFOS,		0 },
 833	{ ICE_IPV6_OFOS,	14 },
 834	{ ICE_UDP_OF,		54 },
 835	{ ICE_GTP,		62 },
 836	{ ICE_IPV4_IL,		82 },
 837	{ ICE_TCP_IL,		102 },
 838	{ ICE_PROTOCOL_LAST,	0 },
 839};
 840
 841ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
 842	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 843	0x00, 0x00, 0x00, 0x00,
 844	0x00, 0x00, 0x00, 0x00,
 845	0x86, 0xdd,
 846
 847	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 848	0x00, 0x44, 0x11, 0x00,
 849	0x00, 0x00, 0x00, 0x00,
 850	0x00, 0x00, 0x00, 0x00,
 851	0x00, 0x00, 0x00, 0x00,
 852	0x00, 0x00, 0x00, 0x00,
 853	0x00, 0x00, 0x00, 0x00,
 854	0x00, 0x00, 0x00, 0x00,
 855	0x00, 0x00, 0x00, 0x00,
 856	0x00, 0x00, 0x00, 0x00,
 857
 858	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 859	0x00, 0x44, 0x00, 0x00,
 860
 861	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
 862	0x00, 0x00, 0x00, 0x00,
 863	0x00, 0x00, 0x00, 0x85,
 864
 865	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 866	0x00, 0x00, 0x00, 0x00,
 867
 868	0x45, 0x00, 0x00, 0x28, /* IP 82 */
 869	0x00, 0x00, 0x00, 0x00,
 870	0x00, 0x06, 0x00, 0x00,
 871	0x00, 0x00, 0x00, 0x00,
 872	0x00, 0x00, 0x00, 0x00,
 873
 874	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 875	0x00, 0x00, 0x00, 0x00,
 876	0x00, 0x00, 0x00, 0x00,
 877	0x50, 0x00, 0x00, 0x00,
 878	0x00, 0x00, 0x00, 0x00,
 879
 880	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 881};
 882
 883ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
 884	{ ICE_MAC_OFOS,		0 },
 885	{ ICE_IPV6_OFOS,	14 },
 886	{ ICE_UDP_OF,		54 },
 887	{ ICE_GTP,		62 },
 888	{ ICE_IPV4_IL,		82 },
 889	{ ICE_UDP_ILOS,		102 },
 890	{ ICE_PROTOCOL_LAST,	0 },
 891};
 892
 893ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
 894	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 895	0x00, 0x00, 0x00, 0x00,
 896	0x00, 0x00, 0x00, 0x00,
 897	0x86, 0xdd,
 898
 899	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 900	0x00, 0x38, 0x11, 0x00,
 901	0x00, 0x00, 0x00, 0x00,
 902	0x00, 0x00, 0x00, 0x00,
 903	0x00, 0x00, 0x00, 0x00,
 904	0x00, 0x00, 0x00, 0x00,
 905	0x00, 0x00, 0x00, 0x00,
 906	0x00, 0x00, 0x00, 0x00,
 907	0x00, 0x00, 0x00, 0x00,
 908	0x00, 0x00, 0x00, 0x00,
 909
 910	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 911	0x00, 0x38, 0x00, 0x00,
 912
 913	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
 914	0x00, 0x00, 0x00, 0x00,
 915	0x00, 0x00, 0x00, 0x85,
 916
 917	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 918	0x00, 0x00, 0x00, 0x00,
 919
 920	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
 921	0x00, 0x00, 0x00, 0x00,
 922	0x00, 0x11, 0x00, 0x00,
 923	0x00, 0x00, 0x00, 0x00,
 924	0x00, 0x00, 0x00, 0x00,
 925
 926	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 927	0x00, 0x08, 0x00, 0x00,
 928
 929	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 930};
 931
 932ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
 933	{ ICE_MAC_OFOS,		0 },
 934	{ ICE_IPV6_OFOS,	14 },
 935	{ ICE_UDP_OF,		54 },
 936	{ ICE_GTP,		62 },
 937	{ ICE_IPV6_IL,		82 },
 938	{ ICE_TCP_IL,		122 },
 939	{ ICE_PROTOCOL_LAST,	0 },
 940};
 941
 942ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
 943	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 944	0x00, 0x00, 0x00, 0x00,
 945	0x00, 0x00, 0x00, 0x00,
 946	0x86, 0xdd,
 947
 948	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 949	0x00, 0x58, 0x11, 0x00,
 950	0x00, 0x00, 0x00, 0x00,
 951	0x00, 0x00, 0x00, 0x00,
 952	0x00, 0x00, 0x00, 0x00,
 953	0x00, 0x00, 0x00, 0x00,
 954	0x00, 0x00, 0x00, 0x00,
 955	0x00, 0x00, 0x00, 0x00,
 956	0x00, 0x00, 0x00, 0x00,
 957	0x00, 0x00, 0x00, 0x00,
 958
 959	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 960	0x00, 0x58, 0x00, 0x00,
 961
 962	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
 963	0x00, 0x00, 0x00, 0x00,
 964	0x00, 0x00, 0x00, 0x85,
 965
 966	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 967	0x00, 0x00, 0x00, 0x00,
 968
 969	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
 970	0x00, 0x14, 0x06, 0x00,
 971	0x00, 0x00, 0x00, 0x00,
 972	0x00, 0x00, 0x00, 0x00,
 973	0x00, 0x00, 0x00, 0x00,
 974	0x00, 0x00, 0x00, 0x00,
 975	0x00, 0x00, 0x00, 0x00,
 976	0x00, 0x00, 0x00, 0x00,
 977	0x00, 0x00, 0x00, 0x00,
 978	0x00, 0x00, 0x00, 0x00,
 979
 980	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
 981	0x00, 0x00, 0x00, 0x00,
 982	0x00, 0x00, 0x00, 0x00,
 983	0x50, 0x00, 0x00, 0x00,
 984	0x00, 0x00, 0x00, 0x00,
 985
 986	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 987};
 988
 989ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
 990	{ ICE_MAC_OFOS,		0 },
 991	{ ICE_IPV6_OFOS,	14 },
 992	{ ICE_UDP_OF,		54 },
 993	{ ICE_GTP,		62 },
 994	{ ICE_IPV6_IL,		82 },
 995	{ ICE_UDP_ILOS,		122 },
 996	{ ICE_PROTOCOL_LAST,	0 },
 997};
 998
 999ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
1000	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1001	0x00, 0x00, 0x00, 0x00,
1002	0x00, 0x00, 0x00, 0x00,
1003	0x86, 0xdd,
1004
1005	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1006	0x00, 0x4c, 0x11, 0x00,
1007	0x00, 0x00, 0x00, 0x00,
1008	0x00, 0x00, 0x00, 0x00,
1009	0x00, 0x00, 0x00, 0x00,
1010	0x00, 0x00, 0x00, 0x00,
1011	0x00, 0x00, 0x00, 0x00,
1012	0x00, 0x00, 0x00, 0x00,
1013	0x00, 0x00, 0x00, 0x00,
1014	0x00, 0x00, 0x00, 0x00,
1015
1016	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1017	0x00, 0x4c, 0x00, 0x00,
1018
1019	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1020	0x00, 0x00, 0x00, 0x00,
1021	0x00, 0x00, 0x00, 0x85,
1022
1023	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1024	0x00, 0x00, 0x00, 0x00,
1025
1026	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1027	0x00, 0x08, 0x11, 0x00,
1028	0x00, 0x00, 0x00, 0x00,
1029	0x00, 0x00, 0x00, 0x00,
1030	0x00, 0x00, 0x00, 0x00,
1031	0x00, 0x00, 0x00, 0x00,
1032	0x00, 0x00, 0x00, 0x00,
1033	0x00, 0x00, 0x00, 0x00,
1034	0x00, 0x00, 0x00, 0x00,
1035	0x00, 0x00, 0x00, 0x00,
1036
1037	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1038	0x00, 0x08, 0x00, 0x00,
1039
1040	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1041};
1042
1043ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1044	{ ICE_MAC_OFOS,		0 },
1045	{ ICE_IPV4_OFOS,	14 },
1046	{ ICE_UDP_OF,		34 },
1047	{ ICE_GTP_NO_PAY,	42 },
1048	{ ICE_PROTOCOL_LAST,	0 },
1049};
1050
1051ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1052	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1053	0x00, 0x00, 0x00, 0x00,
1054	0x00, 0x00, 0x00, 0x00,
1055	0x08, 0x00,
1056
1057	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1058	0x00, 0x00, 0x40, 0x00,
1059	0x40, 0x11, 0x00, 0x00,
1060	0x00, 0x00, 0x00, 0x00,
1061	0x00, 0x00, 0x00, 0x00,
1062
1063	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1064	0x00, 0x00, 0x00, 0x00,
1065
1066	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1067	0x00, 0x00, 0x00, 0x00,
1068	0x00, 0x00, 0x00, 0x85,
1069
1070	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1071	0x00, 0x00, 0x00, 0x00,
1072
1073	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1074	0x00, 0x00, 0x40, 0x00,
1075	0x40, 0x00, 0x00, 0x00,
1076	0x00, 0x00, 0x00, 0x00,
1077	0x00, 0x00, 0x00, 0x00,
1078	0x00, 0x00,
1079};
1080
1081ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1082	{ ICE_MAC_OFOS,		0 },
1083	{ ICE_IPV6_OFOS,	14 },
1084	{ ICE_UDP_OF,		54 },
1085	{ ICE_GTP_NO_PAY,	62 },
1086	{ ICE_PROTOCOL_LAST,	0 },
1087};
1088
1089ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1090	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1091	0x00, 0x00, 0x00, 0x00,
1092	0x00, 0x00, 0x00, 0x00,
1093	0x86, 0xdd,
1094
1095	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1096	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1097	0x00, 0x00, 0x00, 0x00,
1098	0x00, 0x00, 0x00, 0x00,
1099	0x00, 0x00, 0x00, 0x00,
1100	0x00, 0x00, 0x00, 0x00,
1101	0x00, 0x00, 0x00, 0x00,
1102	0x00, 0x00, 0x00, 0x00,
1103	0x00, 0x00, 0x00, 0x00,
1104	0x00, 0x00, 0x00, 0x00,
1105
1106	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1107	0x00, 0x00, 0x00, 0x00,
1108
1109	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1110	0x00, 0x00, 0x00, 0x00,
1111
1112	0x00, 0x00,
1113};
1114
1115ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv4) = {
1116	{ ICE_MAC_OFOS,		0 },
1117	{ ICE_ETYPE_OL,		12 },
1118	{ ICE_IPV4_OFOS,	14 },
1119	{ ICE_UDP_ILOS,		34 },
1120	{ ICE_PFCP,		42 },
1121	{ ICE_PROTOCOL_LAST,	0 },
1122};
1123
1124ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv4) = {
1125	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1126	0x00, 0x00, 0x00, 0x00,
1127	0x00, 0x00, 0x00, 0x00,
1128
1129	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1130
1131	0x45, 0x00, 0x00, 0x2c, /* ICE_IPV4_OFOS 14 */
1132	0x00, 0x01, 0x00, 0x00,
1133	0x00, 0x11, 0x00, 0x00,
1134	0x00, 0x00, 0x00, 0x00,
1135	0x00, 0x00, 0x00, 0x00,
1136
1137	0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 34 */
1138	0x00, 0x18, 0x00, 0x00,
1139
1140	0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 42 */
1141	0x00, 0x00, 0x00, 0x00,
1142	0x00, 0x00, 0x00, 0x00,
1143	0x00, 0x00, 0x00, 0x00,
1144
1145	0x00, 0x00,		/* 2 bytes for 4 byte alignment */
1146};
1147
1148ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv6) = {
1149	{ ICE_MAC_OFOS,		0 },
1150	{ ICE_ETYPE_OL,		12 },
1151	{ ICE_IPV6_OFOS,	14 },
1152	{ ICE_UDP_ILOS,		54 },
1153	{ ICE_PFCP,		62 },
1154	{ ICE_PROTOCOL_LAST,	0 },
1155};
1156
1157ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv6) = {
1158	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1159	0x00, 0x00, 0x00, 0x00,
1160	0x00, 0x00, 0x00, 0x00,
1161
1162	0x86, 0xdd,		/* ICE_ETYPE_OL 12 */
1163
1164	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1165	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
1166	0x00, 0x00, 0x00, 0x00,
1167	0x00, 0x00, 0x00, 0x00,
1168	0x00, 0x00, 0x00, 0x00,
1169	0x00, 0x00, 0x00, 0x00,
1170	0x00, 0x00, 0x00, 0x00,
1171	0x00, 0x00, 0x00, 0x00,
1172	0x00, 0x00, 0x00, 0x00,
1173	0x00, 0x00, 0x00, 0x00,
1174
1175	0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 54 */
1176	0x00, 0x18, 0x00, 0x00,
1177
1178	0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 62 */
1179	0x00, 0x00, 0x00, 0x00,
1180	0x00, 0x00, 0x00, 0x00,
1181	0x00, 0x00, 0x00, 0x00,
1182
1183	0x00, 0x00,		/* 2 bytes for 4 byte alignment */
1184};
1185
1186ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1187	{ ICE_MAC_OFOS,		0 },
1188	{ ICE_ETYPE_OL,		12 },
1189	{ ICE_PPPOE,		14 },
1190	{ ICE_IPV4_OFOS,	22 },
1191	{ ICE_TCP_IL,		42 },
1192	{ ICE_PROTOCOL_LAST,	0 },
1193};
1194
1195ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1196	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1197	0x00, 0x00, 0x00, 0x00,
1198	0x00, 0x00, 0x00, 0x00,
1199
1200	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1201
1202	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1203	0x00, 0x16,
1204
1205	0x00, 0x21,		/* PPP Link Layer 20 */
1206
1207	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1208	0x00, 0x01, 0x00, 0x00,
1209	0x00, 0x06, 0x00, 0x00,
1210	0x00, 0x00, 0x00, 0x00,
1211	0x00, 0x00, 0x00, 0x00,
1212
1213	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1214	0x00, 0x00, 0x00, 0x00,
1215	0x00, 0x00, 0x00, 0x00,
1216	0x50, 0x00, 0x00, 0x00,
1217	0x00, 0x00, 0x00, 0x00,
1218
1219	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1220};
1221
1222ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1223	{ ICE_MAC_OFOS,		0 },
1224	{ ICE_ETYPE_OL,		12 },
1225	{ ICE_PPPOE,		14 },
1226	{ ICE_IPV4_OFOS,	22 },
1227	{ ICE_UDP_ILOS,		42 },
1228	{ ICE_PROTOCOL_LAST,	0 },
1229};
1230
1231ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1232	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1233	0x00, 0x00, 0x00, 0x00,
1234	0x00, 0x00, 0x00, 0x00,
1235
1236	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1237
1238	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1239	0x00, 0x16,
1240
1241	0x00, 0x21,		/* PPP Link Layer 20 */
1242
1243	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1244	0x00, 0x01, 0x00, 0x00,
1245	0x00, 0x11, 0x00, 0x00,
1246	0x00, 0x00, 0x00, 0x00,
1247	0x00, 0x00, 0x00, 0x00,
1248
1249	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1250	0x00, 0x08, 0x00, 0x00,
1251
1252	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1253};
1254
1255ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1256	{ ICE_MAC_OFOS,		0 },
1257	{ ICE_ETYPE_OL,		12 },
1258	{ ICE_PPPOE,		14 },
1259	{ ICE_IPV6_OFOS,	22 },
1260	{ ICE_TCP_IL,		62 },
1261	{ ICE_PROTOCOL_LAST,	0 },
1262};
1263
1264ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1265	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1266	0x00, 0x00, 0x00, 0x00,
1267	0x00, 0x00, 0x00, 0x00,
1268
1269	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1270
1271	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1272	0x00, 0x2a,
1273
1274	0x00, 0x57,		/* PPP Link Layer 20 */
1275
1276	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1277	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1278	0x00, 0x00, 0x00, 0x00,
1279	0x00, 0x00, 0x00, 0x00,
1280	0x00, 0x00, 0x00, 0x00,
1281	0x00, 0x00, 0x00, 0x00,
1282	0x00, 0x00, 0x00, 0x00,
1283	0x00, 0x00, 0x00, 0x00,
1284	0x00, 0x00, 0x00, 0x00,
1285	0x00, 0x00, 0x00, 0x00,
1286
1287	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1288	0x00, 0x00, 0x00, 0x00,
1289	0x00, 0x00, 0x00, 0x00,
1290	0x50, 0x00, 0x00, 0x00,
1291	0x00, 0x00, 0x00, 0x00,
1292
1293	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1294};
1295
1296ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1297	{ ICE_MAC_OFOS,		0 },
1298	{ ICE_ETYPE_OL,		12 },
1299	{ ICE_PPPOE,		14 },
1300	{ ICE_IPV6_OFOS,	22 },
1301	{ ICE_UDP_ILOS,		62 },
1302	{ ICE_PROTOCOL_LAST,	0 },
1303};
1304
1305ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1306	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1307	0x00, 0x00, 0x00, 0x00,
1308	0x00, 0x00, 0x00, 0x00,
1309
1310	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1311
1312	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1313	0x00, 0x2a,
1314
1315	0x00, 0x57,		/* PPP Link Layer 20 */
1316
1317	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1318	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1319	0x00, 0x00, 0x00, 0x00,
1320	0x00, 0x00, 0x00, 0x00,
1321	0x00, 0x00, 0x00, 0x00,
1322	0x00, 0x00, 0x00, 0x00,
1323	0x00, 0x00, 0x00, 0x00,
1324	0x00, 0x00, 0x00, 0x00,
1325	0x00, 0x00, 0x00, 0x00,
1326	0x00, 0x00, 0x00, 0x00,
1327
1328	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1329	0x00, 0x08, 0x00, 0x00,
1330
1331	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1332};
1333
1334ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1335	{ ICE_MAC_OFOS,		0 },
1336	{ ICE_ETYPE_OL,		12 },
1337	{ ICE_IPV4_OFOS,	14 },
1338	{ ICE_L2TPV3,		34 },
1339	{ ICE_PROTOCOL_LAST,	0 },
1340};
1341
1342ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1343	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1344	0x00, 0x00, 0x00, 0x00,
1345	0x00, 0x00, 0x00, 0x00,
1346
1347	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1348
1349	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1350	0x00, 0x00, 0x40, 0x00,
1351	0x40, 0x73, 0x00, 0x00,
1352	0x00, 0x00, 0x00, 0x00,
1353	0x00, 0x00, 0x00, 0x00,
1354
1355	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1356	0x00, 0x00, 0x00, 0x00,
1357	0x00, 0x00, 0x00, 0x00,
1358	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1359};
1360
1361ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1362	{ ICE_MAC_OFOS,		0 },
1363	{ ICE_ETYPE_OL,		12 },
1364	{ ICE_IPV6_OFOS,	14 },
1365	{ ICE_L2TPV3,		54 },
1366	{ ICE_PROTOCOL_LAST,	0 },
1367};
1368
1369ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1370	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1371	0x00, 0x00, 0x00, 0x00,
1372	0x00, 0x00, 0x00, 0x00,
1373
1374	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1375
1376	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1377	0x00, 0x0c, 0x73, 0x40,
1378	0x00, 0x00, 0x00, 0x00,
1379	0x00, 0x00, 0x00, 0x00,
1380	0x00, 0x00, 0x00, 0x00,
1381	0x00, 0x00, 0x00, 0x00,
1382	0x00, 0x00, 0x00, 0x00,
1383	0x00, 0x00, 0x00, 0x00,
1384	0x00, 0x00, 0x00, 0x00,
1385	0x00, 0x00, 0x00, 0x00,
1386
1387	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1388	0x00, 0x00, 0x00, 0x00,
1389	0x00, 0x00, 0x00, 0x00,
1390	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1391};
1392
1393static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1394	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1395				  ICE_PKT_GTP_NOPAY),
1396	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1397					    ICE_PKT_OUTER_IPV6 |
1398					    ICE_PKT_INNER_IPV6 |
1399					    ICE_PKT_INNER_UDP),
1400	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1401					    ICE_PKT_OUTER_IPV6 |
1402					    ICE_PKT_INNER_IPV6),
1403	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1404					    ICE_PKT_OUTER_IPV6 |
1405					    ICE_PKT_INNER_UDP),
1406	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1407					    ICE_PKT_OUTER_IPV6),
1408	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1409	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1410					    ICE_PKT_INNER_IPV6 |
1411					    ICE_PKT_INNER_UDP),
1412	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1413					    ICE_PKT_INNER_IPV6),
1414	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1415					    ICE_PKT_INNER_UDP),
1416	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1417	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1418	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1419	ICE_PKT_PROFILE(pfcp_session_ipv6, ICE_PKT_PFCP | ICE_PKT_OUTER_IPV6),
1420	ICE_PKT_PROFILE(pfcp_session_ipv4, ICE_PKT_PFCP),
1421	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1422					ICE_PKT_INNER_UDP),
1423	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1424	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1425	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1426	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1427				      ICE_PKT_INNER_TCP),
1428	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1429	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1430	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1431	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1432					  ICE_PKT_INNER_IPV6 |
1433					  ICE_PKT_INNER_TCP),
1434	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1435	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1436	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1437	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1438					  ICE_PKT_INNER_IPV6),
1439	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1440	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1441	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1442	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1443	ICE_PKT_PROFILE(tcp, 0),
1444};
1445
 
 
 
 
 
 
 
 
1446/* this is a recipe to profile association bitmap */
1447static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1448			  ICE_MAX_NUM_PROFILES);
1449
1450/* this is a profile to recipe association bitmap */
1451static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1452			  ICE_MAX_NUM_RECIPES);
1453
1454/**
1455 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1456 * @hw: pointer to the HW struct
1457 *
1458 * Allocate memory for the entire recipe table and initialize the structures/
1459 * entries corresponding to basic recipes.
1460 */
1461int ice_init_def_sw_recp(struct ice_hw *hw)
1462{
1463	struct ice_sw_recipe *recps;
1464	u8 i;
1465
1466	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1467			     sizeof(*recps), GFP_KERNEL);
1468	if (!recps)
1469		return -ENOMEM;
1470
1471	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1472		recps[i].root_rid = i;
1473		INIT_LIST_HEAD(&recps[i].filt_rules);
1474		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
 
1475		mutex_init(&recps[i].filt_rule_lock);
1476	}
1477
1478	hw->switch_info->recp_list = recps;
1479
1480	return 0;
1481}
1482
1483/**
1484 * ice_aq_get_sw_cfg - get switch configuration
1485 * @hw: pointer to the hardware structure
1486 * @buf: pointer to the result buffer
1487 * @buf_size: length of the buffer available for response
1488 * @req_desc: pointer to requested descriptor
1489 * @num_elems: pointer to number of elements
1490 * @cd: pointer to command details structure or NULL
1491 *
1492 * Get switch configuration (0x0200) to be placed in buf.
1493 * This admin command returns information such as initial VSI/port number
1494 * and switch ID it belongs to.
1495 *
1496 * NOTE: *req_desc is both an input/output parameter.
1497 * The caller of this function first calls this function with *request_desc set
1498 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1499 * configuration information has been returned; if non-zero (meaning not all
1500 * the information was returned), the caller should call this function again
1501 * with *req_desc set to the previous value returned by f/w to get the
1502 * next block of switch configuration information.
1503 *
1504 * *num_elems is output only parameter. This reflects the number of elements
1505 * in response buffer. The caller of this function to use *num_elems while
1506 * parsing the response buffer.
1507 */
1508static int
1509ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1510		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1511		  struct ice_sq_cd *cd)
1512{
1513	struct ice_aqc_get_sw_cfg *cmd;
1514	struct ice_aq_desc desc;
1515	int status;
1516
1517	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1518	cmd = &desc.params.get_sw_conf;
1519	cmd->element = cpu_to_le16(*req_desc);
1520
1521	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1522	if (!status) {
1523		*req_desc = le16_to_cpu(cmd->element);
1524		*num_elems = le16_to_cpu(cmd->num_elems);
1525	}
1526
1527	return status;
1528}
1529
1530/**
1531 * ice_aq_add_vsi
1532 * @hw: pointer to the HW struct
1533 * @vsi_ctx: pointer to a VSI context struct
1534 * @cd: pointer to command details structure or NULL
1535 *
1536 * Add a VSI context to the hardware (0x0210)
1537 */
1538static int
1539ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1540	       struct ice_sq_cd *cd)
1541{
1542	struct ice_aqc_add_update_free_vsi_resp *res;
1543	struct ice_aqc_add_get_update_free_vsi *cmd;
1544	struct ice_aq_desc desc;
1545	int status;
1546
1547	cmd = &desc.params.vsi_cmd;
1548	res = &desc.params.add_update_free_vsi_res;
1549
1550	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1551
1552	if (!vsi_ctx->alloc_from_pool)
1553		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1554					   ICE_AQ_VSI_IS_VALID);
1555	cmd->vf_id = vsi_ctx->vf_num;
1556
1557	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1558
1559	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562				 sizeof(vsi_ctx->info), cd);
1563
1564	if (!status) {
1565		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1566		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1567		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1568	}
1569
1570	return status;
1571}
1572
1573/**
1574 * ice_aq_free_vsi
1575 * @hw: pointer to the HW struct
1576 * @vsi_ctx: pointer to a VSI context struct
1577 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1578 * @cd: pointer to command details structure or NULL
1579 *
1580 * Free VSI context info from hardware (0x0213)
1581 */
1582static int
1583ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1584		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1585{
1586	struct ice_aqc_add_update_free_vsi_resp *resp;
1587	struct ice_aqc_add_get_update_free_vsi *cmd;
1588	struct ice_aq_desc desc;
1589	int status;
1590
1591	cmd = &desc.params.vsi_cmd;
1592	resp = &desc.params.add_update_free_vsi_res;
1593
1594	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1595
1596	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1597	if (keep_vsi_alloc)
1598		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1599
1600	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1601	if (!status) {
1602		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1603		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1604	}
1605
1606	return status;
1607}
1608
1609/**
1610 * ice_aq_update_vsi
1611 * @hw: pointer to the HW struct
1612 * @vsi_ctx: pointer to a VSI context struct
1613 * @cd: pointer to command details structure or NULL
1614 *
1615 * Update VSI context in the hardware (0x0211)
1616 */
1617static int
1618ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1619		  struct ice_sq_cd *cd)
1620{
1621	struct ice_aqc_add_update_free_vsi_resp *resp;
1622	struct ice_aqc_add_get_update_free_vsi *cmd;
1623	struct ice_aq_desc desc;
1624	int status;
1625
1626	cmd = &desc.params.vsi_cmd;
1627	resp = &desc.params.add_update_free_vsi_res;
1628
1629	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1630
1631	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1632
1633	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1634
1635	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1636				 sizeof(vsi_ctx->info), cd);
1637
1638	if (!status) {
1639		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1640		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1641	}
1642
1643	return status;
1644}
1645
1646/**
1647 * ice_is_vsi_valid - check whether the VSI is valid or not
1648 * @hw: pointer to the HW struct
1649 * @vsi_handle: VSI handle
1650 *
1651 * check whether the VSI is valid or not
1652 */
1653bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1654{
1655	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1656}
1657
1658/**
1659 * ice_get_hw_vsi_num - return the HW VSI number
1660 * @hw: pointer to the HW struct
1661 * @vsi_handle: VSI handle
1662 *
1663 * return the HW VSI number
1664 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1665 */
1666u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1667{
1668	return hw->vsi_ctx[vsi_handle]->vsi_num;
1669}
1670
1671/**
1672 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1673 * @hw: pointer to the HW struct
1674 * @vsi_handle: VSI handle
1675 *
1676 * return the VSI context entry for a given VSI handle
1677 */
1678struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1679{
1680	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1681}
1682
1683/**
1684 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1685 * @hw: pointer to the HW struct
1686 * @vsi_handle: VSI handle
1687 * @vsi: VSI context pointer
1688 *
1689 * save the VSI context entry for a given VSI handle
1690 */
1691static void
1692ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1693{
1694	hw->vsi_ctx[vsi_handle] = vsi;
1695}
1696
1697/**
1698 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1699 * @hw: pointer to the HW struct
1700 * @vsi_handle: VSI handle
1701 */
1702static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1703{
1704	struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1705	u8 i;
1706
 
1707	if (!vsi)
1708		return;
1709	ice_for_each_traffic_class(i) {
1710		devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1711		vsi->lan_q_ctx[i] = NULL;
1712		devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1713		vsi->rdma_q_ctx[i] = NULL;
 
 
 
 
1714	}
1715}
1716
1717/**
1718 * ice_clear_vsi_ctx - clear the VSI context entry
1719 * @hw: pointer to the HW struct
1720 * @vsi_handle: VSI handle
1721 *
1722 * clear the VSI context entry
1723 */
1724static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1725{
1726	struct ice_vsi_ctx *vsi;
1727
1728	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1729	if (vsi) {
1730		ice_clear_vsi_q_ctx(hw, vsi_handle);
1731		devm_kfree(ice_hw_to_dev(hw), vsi);
1732		hw->vsi_ctx[vsi_handle] = NULL;
1733	}
1734}
1735
1736/**
1737 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1738 * @hw: pointer to the HW struct
1739 */
1740void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1741{
1742	u16 i;
1743
1744	for (i = 0; i < ICE_MAX_VSI; i++)
1745		ice_clear_vsi_ctx(hw, i);
1746}
1747
1748/**
1749 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1750 * @hw: pointer to the HW struct
1751 * @vsi_handle: unique VSI handle provided by drivers
1752 * @vsi_ctx: pointer to a VSI context struct
1753 * @cd: pointer to command details structure or NULL
1754 *
1755 * Add a VSI context to the hardware also add it into the VSI handle list.
1756 * If this function gets called after reset for existing VSIs then update
1757 * with the new HW VSI number in the corresponding VSI handle list entry.
1758 */
1759int
1760ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1761	    struct ice_sq_cd *cd)
1762{
1763	struct ice_vsi_ctx *tmp_vsi_ctx;
1764	int status;
1765
1766	if (vsi_handle >= ICE_MAX_VSI)
1767		return -EINVAL;
1768	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1769	if (status)
1770		return status;
1771	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1772	if (!tmp_vsi_ctx) {
1773		/* Create a new VSI context */
1774		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1775					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1776		if (!tmp_vsi_ctx) {
1777			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1778			return -ENOMEM;
1779		}
1780		*tmp_vsi_ctx = *vsi_ctx;
1781		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1782	} else {
1783		/* update with new HW VSI num */
1784		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1785	}
1786
1787	return 0;
1788}
1789
1790/**
1791 * ice_free_vsi- free VSI context from hardware and VSI handle list
1792 * @hw: pointer to the HW struct
1793 * @vsi_handle: unique VSI handle
1794 * @vsi_ctx: pointer to a VSI context struct
1795 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1796 * @cd: pointer to command details structure or NULL
1797 *
1798 * Free VSI context info from hardware as well as from VSI handle list
1799 */
1800int
1801ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1802	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1803{
1804	int status;
1805
1806	if (!ice_is_vsi_valid(hw, vsi_handle))
1807		return -EINVAL;
1808	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1809	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1810	if (!status)
1811		ice_clear_vsi_ctx(hw, vsi_handle);
1812	return status;
1813}
1814
1815/**
1816 * ice_update_vsi
1817 * @hw: pointer to the HW struct
1818 * @vsi_handle: unique VSI handle
1819 * @vsi_ctx: pointer to a VSI context struct
1820 * @cd: pointer to command details structure or NULL
1821 *
1822 * Update VSI context in the hardware
1823 */
1824int
1825ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1826	       struct ice_sq_cd *cd)
1827{
1828	if (!ice_is_vsi_valid(hw, vsi_handle))
1829		return -EINVAL;
1830	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1831	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1832}
1833
1834/**
1835 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1836 * @hw: pointer to HW struct
1837 * @vsi_handle: VSI SW index
1838 * @enable: boolean for enable/disable
1839 */
1840int
1841ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1842{
1843	struct ice_vsi_ctx *ctx, *cached_ctx;
1844	int status;
1845
1846	cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1847	if (!cached_ctx)
1848		return -ENOENT;
1849
1850	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1851	if (!ctx)
1852		return -ENOMEM;
1853
1854	ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1855	ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1856	ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1857
1858	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1859
1860	if (enable)
1861		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1862	else
1863		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1864
1865	status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1866	if (!status) {
1867		cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1868		cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1869	}
1870
1871	kfree(ctx);
1872	return status;
1873}
1874
1875/**
1876 * ice_aq_alloc_free_vsi_list
1877 * @hw: pointer to the HW struct
1878 * @vsi_list_id: VSI list ID returned or used for lookup
1879 * @lkup_type: switch rule filter lookup type
1880 * @opc: switch rules population command type - pass in the command opcode
1881 *
1882 * allocates or free a VSI list resource
1883 */
1884static int
1885ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1886			   enum ice_sw_lkup_type lkup_type,
1887			   enum ice_adminq_opc opc)
1888{
1889	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1890	u16 buf_len = __struct_size(sw_buf);
1891	struct ice_aqc_res_elem *vsi_ele;
 
1892	int status;
1893
 
 
 
 
1894	sw_buf->num_elems = cpu_to_le16(1);
1895
1896	if (lkup_type == ICE_SW_LKUP_MAC ||
1897	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1898	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1899	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1900	    lkup_type == ICE_SW_LKUP_PROMISC ||
1901	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1902	    lkup_type == ICE_SW_LKUP_DFLT ||
1903	    lkup_type == ICE_SW_LKUP_LAST) {
1904		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1905	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1906		if (opc == ice_aqc_opc_alloc_res)
1907			sw_buf->res_type =
1908				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1909					    ICE_AQC_RES_TYPE_FLAG_SHARED);
1910		else
1911			sw_buf->res_type =
1912				cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1913	} else {
1914		return -EINVAL;
 
1915	}
1916
1917	if (opc == ice_aqc_opc_free_res)
1918		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1919
1920	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1921	if (status)
1922		return status;
1923
1924	if (opc == ice_aqc_opc_alloc_res) {
1925		vsi_ele = &sw_buf->elem[0];
1926		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1927	}
1928
1929	return 0;
 
 
1930}
1931
1932/**
1933 * ice_aq_sw_rules - add/update/remove switch rules
1934 * @hw: pointer to the HW struct
1935 * @rule_list: pointer to switch rule population list
1936 * @rule_list_sz: total size of the rule list in bytes
1937 * @num_rules: number of switch rules in the rule_list
1938 * @opc: switch rules population command type - pass in the command opcode
1939 * @cd: pointer to command details structure or NULL
1940 *
1941 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1942 */
1943int
1944ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1945		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1946{
1947	struct ice_aq_desc desc;
1948	int status;
1949
1950	if (opc != ice_aqc_opc_add_sw_rules &&
1951	    opc != ice_aqc_opc_update_sw_rules &&
1952	    opc != ice_aqc_opc_remove_sw_rules)
1953		return -EINVAL;
1954
1955	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1956
1957	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1958	desc.params.sw_rules.num_rules_fltr_entry_index =
1959		cpu_to_le16(num_rules);
1960	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1961	if (opc != ice_aqc_opc_add_sw_rules &&
1962	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1963		status = -ENOENT;
1964
1965	if (!status) {
1966		if (opc == ice_aqc_opc_add_sw_rules)
1967			hw->switch_info->rule_cnt += num_rules;
1968		else if (opc == ice_aqc_opc_remove_sw_rules)
1969			hw->switch_info->rule_cnt -= num_rules;
1970	}
1971
1972	trace_ice_aq_sw_rules(hw->switch_info);
1973
1974	return status;
1975}
1976
1977/**
1978 * ice_aq_add_recipe - add switch recipe
1979 * @hw: pointer to the HW struct
1980 * @s_recipe_list: pointer to switch rule population list
1981 * @num_recipes: number of switch recipes in the list
1982 * @cd: pointer to command details structure or NULL
1983 *
1984 * Add(0x0290)
1985 */
1986int
1987ice_aq_add_recipe(struct ice_hw *hw,
1988		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1989		  u16 num_recipes, struct ice_sq_cd *cd)
1990{
1991	struct ice_aqc_add_get_recipe *cmd;
1992	struct ice_aq_desc desc;
1993	u16 buf_size;
1994
1995	cmd = &desc.params.add_get_recipe;
1996	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1997
1998	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1999	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2000
2001	buf_size = num_recipes * sizeof(*s_recipe_list);
2002
2003	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2004}
2005
2006/**
2007 * ice_aq_get_recipe - get switch recipe
2008 * @hw: pointer to the HW struct
2009 * @s_recipe_list: pointer to switch rule population list
2010 * @num_recipes: pointer to the number of recipes (input and output)
2011 * @recipe_root: root recipe number of recipe(s) to retrieve
2012 * @cd: pointer to command details structure or NULL
2013 *
2014 * Get(0x0292)
2015 *
2016 * On input, *num_recipes should equal the number of entries in s_recipe_list.
2017 * On output, *num_recipes will equal the number of entries returned in
2018 * s_recipe_list.
2019 *
2020 * The caller must supply enough space in s_recipe_list to hold all possible
2021 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
2022 */
2023int
2024ice_aq_get_recipe(struct ice_hw *hw,
2025		  struct ice_aqc_recipe_data_elem *s_recipe_list,
2026		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
2027{
2028	struct ice_aqc_add_get_recipe *cmd;
2029	struct ice_aq_desc desc;
2030	u16 buf_size;
2031	int status;
2032
2033	if (*num_recipes != ICE_MAX_NUM_RECIPES)
2034		return -EINVAL;
2035
2036	cmd = &desc.params.add_get_recipe;
2037	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
2038
2039	cmd->return_index = cpu_to_le16(recipe_root);
2040	cmd->num_sub_recipes = 0;
2041
2042	buf_size = *num_recipes * sizeof(*s_recipe_list);
2043
2044	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2045	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
2046
2047	return status;
2048}
2049
2050/**
2051 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
2052 * @hw: pointer to the HW struct
2053 * @params: parameters used to update the default recipe
2054 *
2055 * This function only supports updating default recipes and it only supports
2056 * updating a single recipe based on the lkup_idx at a time.
2057 *
2058 * This is done as a read-modify-write operation. First, get the current recipe
2059 * contents based on the recipe's ID. Then modify the field vector index and
2060 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
2061 * the pre-existing recipe with the modifications.
2062 */
2063int
2064ice_update_recipe_lkup_idx(struct ice_hw *hw,
2065			   struct ice_update_recipe_lkup_idx_params *params)
2066{
2067	struct ice_aqc_recipe_data_elem *rcp_list;
2068	u16 num_recps = ICE_MAX_NUM_RECIPES;
2069	int status;
2070
2071	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
2072	if (!rcp_list)
2073		return -ENOMEM;
2074
2075	/* read current recipe list from firmware */
2076	rcp_list->recipe_indx = params->rid;
2077	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
2078	if (status) {
2079		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
2080			  params->rid, status);
2081		goto error_out;
2082	}
2083
2084	/* only modify existing recipe's lkup_idx and mask if valid, while
2085	 * leaving all other fields the same, then update the recipe firmware
2086	 */
2087	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2088	if (params->mask_valid)
2089		rcp_list->content.mask[params->lkup_idx] =
2090			cpu_to_le16(params->mask);
2091
2092	if (params->ignore_valid)
2093		rcp_list->content.lkup_indx[params->lkup_idx] |=
2094			ICE_AQ_RECIPE_LKUP_IGNORE;
2095
2096	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2097	if (status)
2098		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2099			  params->rid, params->lkup_idx, params->fv_idx,
2100			  params->mask, params->mask_valid ? "true" : "false",
2101			  status);
2102
2103error_out:
2104	kfree(rcp_list);
2105	return status;
2106}
2107
2108/**
2109 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2110 * @hw: pointer to the HW struct
2111 * @profile_id: package profile ID to associate the recipe with
2112 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2113 * @cd: pointer to command details structure or NULL
2114 * Recipe to profile association (0x0291)
2115 */
2116int
2117ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2118			     struct ice_sq_cd *cd)
2119{
2120	struct ice_aqc_recipe_to_profile *cmd;
2121	struct ice_aq_desc desc;
2122
2123	cmd = &desc.params.recipe_to_profile;
2124	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2125	cmd->profile_id = cpu_to_le16(profile_id);
2126	/* Set the recipe ID bit in the bitmask to let the device know which
2127	 * profile we are associating the recipe to
2128	 */
2129	cmd->recipe_assoc = cpu_to_le64(r_assoc);
2130
2131	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2132}
2133
2134/**
2135 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2136 * @hw: pointer to the HW struct
2137 * @profile_id: package profile ID to associate the recipe with
2138 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2139 * @cd: pointer to command details structure or NULL
2140 * Associate profile ID with given recipe (0x0293)
2141 */
2142int
2143ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2144			     struct ice_sq_cd *cd)
2145{
2146	struct ice_aqc_recipe_to_profile *cmd;
2147	struct ice_aq_desc desc;
2148	int status;
2149
2150	cmd = &desc.params.recipe_to_profile;
2151	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2152	cmd->profile_id = cpu_to_le16(profile_id);
2153
2154	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2155	if (!status)
2156		*r_assoc = le64_to_cpu(cmd->recipe_assoc);
2157
2158	return status;
2159}
2160
2161/**
2162 * ice_init_chk_recipe_reuse_support - check if recipe reuse is supported
2163 * @hw: pointer to the hardware structure
2164 */
2165void ice_init_chk_recipe_reuse_support(struct ice_hw *hw)
2166{
2167	struct ice_nvm_info *nvm = &hw->flash.nvm;
2168
2169	hw->recp_reuse = (nvm->major == 0x4 && nvm->minor >= 0x30) ||
2170			 nvm->major > 0x4;
2171}
2172
2173/**
2174 * ice_alloc_recipe - add recipe resource
2175 * @hw: pointer to the hardware structure
2176 * @rid: recipe ID returned as response to AQ call
2177 */
2178int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2179{
2180	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2181	u16 buf_len = __struct_size(sw_buf);
2182	u16 res_type;
2183	int status;
2184
2185	sw_buf->num_elems = cpu_to_le16(1);
2186	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE);
2187	if (hw->recp_reuse)
2188		res_type |= ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED;
2189	else
2190		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
2191	sw_buf->res_type = cpu_to_le16(res_type);
2192	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2193				       ice_aqc_opc_alloc_res);
2194	if (!status) {
2195		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2196		hw->switch_info->recp_cnt++;
2197	}
2198
2199	return status;
2200}
2201
2202/**
2203 * ice_free_recipe_res - free recipe resource
2204 * @hw: pointer to the hardware structure
2205 * @rid: recipe ID to free
2206 *
2207 * Return: 0 on success, and others on error
2208 */
2209static int ice_free_recipe_res(struct ice_hw *hw, u16 rid)
2210{
2211	int status;
2212
2213	status = ice_free_hw_res(hw, ICE_AQC_RES_TYPE_RECIPE, 1, &rid);
 
 
 
 
 
2214	if (!status)
2215		hw->switch_info->recp_cnt--;
 
2216
2217	return status;
2218}
2219
2220/**
2221 * ice_release_recipe_res - disassociate and free recipe resource
2222 * @hw: pointer to the hardware structure
2223 * @recp: the recipe struct resource to unassociate and free
2224 *
2225 * Return: 0 on success, and others on error
2226 */
2227static int ice_release_recipe_res(struct ice_hw *hw,
2228				  struct ice_sw_recipe *recp)
2229{
2230	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2231	struct ice_switch_info *sw = hw->switch_info;
2232	u64 recp_assoc;
2233	u32 rid, prof;
2234	int status;
2235
2236	for_each_set_bit(rid, recp->r_bitmap, ICE_MAX_NUM_RECIPES) {
2237		for_each_set_bit(prof, recipe_to_profile[rid],
2238				 ICE_MAX_NUM_PROFILES) {
2239			status = ice_aq_get_recipe_to_profile(hw, prof,
2240							      &recp_assoc,
2241							      NULL);
2242			if (status)
2243				return status;
2244
2245			bitmap_from_arr64(r_bitmap, &recp_assoc,
2246					  ICE_MAX_NUM_RECIPES);
2247			bitmap_andnot(r_bitmap, r_bitmap, recp->r_bitmap,
2248				      ICE_MAX_NUM_RECIPES);
2249			bitmap_to_arr64(&recp_assoc, r_bitmap,
2250					ICE_MAX_NUM_RECIPES);
2251			ice_aq_map_recipe_to_profile(hw, prof,
2252						     recp_assoc, NULL);
2253
2254			clear_bit(rid, profile_to_recipe[prof]);
2255			clear_bit(prof, recipe_to_profile[rid]);
2256		}
2257
2258		status = ice_free_recipe_res(hw, rid);
2259		if (status)
2260			return status;
2261
2262		sw->recp_list[rid].recp_created = false;
2263		sw->recp_list[rid].adv_rule = false;
2264		memset(&sw->recp_list[rid].lkup_exts, 0,
2265		       sizeof(sw->recp_list[rid].lkup_exts));
2266		clear_bit(rid, recp->r_bitmap);
2267	}
2268
2269	return 0;
2270}
2271
2272/**
2273 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2274 * @hw: pointer to hardware structure
2275 *
2276 * This function is used to populate recipe_to_profile matrix where index to
2277 * this array is the recipe ID and the element is the mapping of which profiles
2278 * is this recipe mapped to.
2279 */
2280static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2281{
2282	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2283	u64 recp_assoc;
2284	u16 i;
2285
2286	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2287		u16 j;
2288
2289		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2290		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2291		if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2292			continue;
2293		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2294		bitmap_copy(profile_to_recipe[i], r_bitmap,
2295			    ICE_MAX_NUM_RECIPES);
2296		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2297			set_bit(i, recipe_to_profile[j]);
2298	}
2299}
2300
2301/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2303 * @hw: pointer to hardware structure
2304 * @recps: struct that we need to populate
2305 * @rid: recipe ID that we are populating
2306 * @refresh_required: true if we should get recipe to profile mapping from FW
2307 * @is_add: flag of adding recipe
2308 *
2309 * This function is used to populate all the necessary entries into our
2310 * bookkeeping so that we have a current list of all the recipes that are
2311 * programmed in the firmware.
2312 */
2313static int
2314ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2315		    bool *refresh_required, bool is_add)
2316{
2317	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2318	struct ice_aqc_recipe_data_elem *tmp;
2319	u16 num_recps = ICE_MAX_NUM_RECIPES;
2320	struct ice_prot_lkup_ext *lkup_exts;
2321	u8 fv_word_idx = 0;
2322	u16 sub_recps;
2323	int status;
2324
2325	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2326
2327	/* we need a buffer big enough to accommodate all the recipes */
2328	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2329	if (!tmp)
2330		return -ENOMEM;
2331
2332	tmp[0].recipe_indx = rid;
2333	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2334	/* non-zero status meaning recipe doesn't exist */
2335	if (status)
2336		goto err_unroll;
2337
2338	/* Get recipe to profile map so that we can get the fv from lkups that
2339	 * we read for a recipe from FW. Since we want to minimize the number of
2340	 * times we make this FW call, just make one call and cache the copy
2341	 * until a new recipe is added. This operation is only required the
2342	 * first time to get the changes from FW. Then to search existing
2343	 * entries we don't need to update the cache again until another recipe
2344	 * gets added.
2345	 */
2346	if (*refresh_required) {
2347		ice_get_recp_to_prof_map(hw);
2348		*refresh_required = false;
2349	}
2350
2351	/* Start populating all the entries for recps[rid] based on lkups from
2352	 * firmware. Note that we are only creating the root recipe in our
2353	 * database.
2354	 */
2355	lkup_exts = &recps[rid].lkup_exts;
2356
2357	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2358		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
 
2359		u8 i, prof, idx, prot = 0;
2360		bool is_root;
2361		u16 off = 0;
2362
 
 
 
 
 
 
 
2363		idx = root_bufs.recipe_indx;
2364		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2365
2366		/* Mark all result indices in this chain */
2367		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2368			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2369				result_bm);
2370
2371		/* get the first profile that is associated with rid */
2372		prof = find_first_bit(recipe_to_profile[idx],
2373				      ICE_MAX_NUM_PROFILES);
2374		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2375			u8 lkup_indx = root_bufs.content.lkup_indx[i];
2376			u16 lkup_mask = le16_to_cpu(root_bufs.content.mask[i]);
 
 
 
2377
2378			/* If the recipe is a chained recipe then all its
2379			 * child recipe's result will have a result index.
2380			 * To fill fv_words we should not use those result
2381			 * index, we only need the protocol ids and offsets.
2382			 * We will skip all the fv_idx which stores result
2383			 * index in them. We also need to skip any fv_idx which
2384			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2385			 * valid offset value.
2386			 */
2387			if (!lkup_indx ||
2388			    (lkup_indx & ICE_AQ_RECIPE_LKUP_IGNORE) ||
2389			    test_bit(lkup_indx,
2390				     hw->switch_info->prof_res_bm[prof]))
2391				continue;
2392
2393			ice_find_prot_off(hw, ICE_BLK_SW, prof, lkup_indx,
2394					  &prot, &off);
2395			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2396			lkup_exts->fv_words[fv_word_idx].off = off;
2397			lkup_exts->field_mask[fv_word_idx] = lkup_mask;
 
2398			fv_word_idx++;
2399		}
 
 
 
 
2400
2401		/* Propagate some data to the recipe database */
 
2402		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2403		recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl &
2404					     ICE_AQ_RECIPE_ACT_NEED_PASS_L2);
2405		recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl &
2406					      ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2);
2407		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2408		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2409			set_bit(root_bufs.content.result_indx &
2410				~ICE_AQ_RECIPE_RESULT_EN, recps[idx].res_idxs);
 
 
 
2411		}
2412
2413		if (!is_root) {
2414			if (hw->recp_reuse && is_add)
2415				recps[idx].recp_created = true;
2416
2417			continue;
2418		}
2419
2420		/* Only do the following for root recipes entries */
2421		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2422		       sizeof(recps[idx].r_bitmap));
2423		recps[idx].root_rid = root_bufs.content.rid &
2424			~ICE_AQ_RECIPE_ID_IS_ROOT;
2425		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2426	}
2427
2428	/* Complete initialization of the root recipe entry */
2429	lkup_exts->n_val_words = fv_word_idx;
 
 
 
 
 
 
 
 
 
2430
2431	/* Copy result indexes */
2432	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2433	if (is_add)
2434		recps[rid].recp_created = true;
2435
2436err_unroll:
2437	kfree(tmp);
2438	return status;
2439}
2440
2441/* ice_init_port_info - Initialize port_info with switch configuration data
2442 * @pi: pointer to port_info
2443 * @vsi_port_num: VSI number or port number
2444 * @type: Type of switch element (port or VSI)
2445 * @swid: switch ID of the switch the element is attached to
2446 * @pf_vf_num: PF or VF number
2447 * @is_vf: true if the element is a VF, false otherwise
2448 */
2449static void
2450ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2451		   u16 swid, u16 pf_vf_num, bool is_vf)
2452{
2453	switch (type) {
2454	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2455		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2456		pi->sw_id = swid;
2457		pi->pf_vf_num = pf_vf_num;
2458		pi->is_vf = is_vf;
2459		break;
2460	default:
2461		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2462		break;
2463	}
2464}
2465
2466/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2467 * @hw: pointer to the hardware structure
2468 */
2469int ice_get_initial_sw_cfg(struct ice_hw *hw)
2470{
2471	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2472	u16 req_desc = 0;
2473	u16 num_elems;
2474	int status;
2475	u16 i;
2476
2477	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2478	if (!rbuf)
2479		return -ENOMEM;
2480
2481	/* Multiple calls to ice_aq_get_sw_cfg may be required
2482	 * to get all the switch configuration information. The need
2483	 * for additional calls is indicated by ice_aq_get_sw_cfg
2484	 * writing a non-zero value in req_desc
2485	 */
2486	do {
2487		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2488
2489		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2490					   &req_desc, &num_elems, NULL);
2491
2492		if (status)
2493			break;
2494
2495		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2496			u16 pf_vf_num, swid, vsi_port_num;
2497			bool is_vf = false;
2498			u8 res_type;
2499
2500			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2501				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2502
2503			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2504				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2505
2506			swid = le16_to_cpu(ele->swid);
2507
2508			if (le16_to_cpu(ele->pf_vf_num) &
2509			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2510				is_vf = true;
2511
2512			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2513					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2514
2515			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2516				/* FW VSI is not needed. Just continue. */
2517				continue;
2518			}
2519
2520			ice_init_port_info(hw->port_info, vsi_port_num,
2521					   res_type, swid, pf_vf_num, is_vf);
2522		}
2523	} while (req_desc && !status);
2524
2525	kfree(rbuf);
2526	return status;
2527}
2528
2529/**
2530 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2531 * @hw: pointer to the hardware structure
2532 * @fi: filter info structure to fill/update
2533 *
2534 * This helper function populates the lb_en and lan_en elements of the provided
2535 * ice_fltr_info struct using the switch's type and characteristics of the
2536 * switch rule being configured.
2537 */
2538static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2539{
2540	fi->lb_en = false;
2541	fi->lan_en = false;
2542	if ((fi->flag & ICE_FLTR_TX) &&
2543	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2544	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2545	     fi->fltr_act == ICE_FWD_TO_Q ||
2546	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2547		/* Setting LB for prune actions will result in replicated
2548		 * packets to the internal switch that will be dropped.
2549		 */
2550		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2551			fi->lb_en = true;
2552
2553		/* Set lan_en to TRUE if
2554		 * 1. The switch is a VEB AND
2555		 * 2
2556		 * 2.1 The lookup is a directional lookup like ethertype,
2557		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2558		 * and default-port OR
2559		 * 2.2 The lookup is VLAN, OR
2560		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2561		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2562		 *
2563		 * OR
2564		 *
2565		 * The switch is a VEPA.
2566		 *
2567		 * In all other cases, the LAN enable has to be set to false.
2568		 */
2569		if (hw->evb_veb) {
2570			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2571			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2572			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2573			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2574			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2575			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2576			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2577			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2578			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2579			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2580				fi->lan_en = true;
2581		} else {
2582			fi->lan_en = true;
2583		}
2584	}
2585
2586	if (fi->flag & ICE_FLTR_TX_ONLY)
2587		fi->lan_en = false;
2588}
2589
2590/**
2591 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2592 * @eth_hdr: pointer to buffer to populate
2593 */
2594void ice_fill_eth_hdr(u8 *eth_hdr)
2595{
2596	memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2597}
2598
2599/**
2600 * ice_fill_sw_rule - Helper function to fill switch rule structure
2601 * @hw: pointer to the hardware structure
2602 * @f_info: entry containing packet forwarding information
2603 * @s_rule: switch rule structure to be filled in based on mac_entry
2604 * @opc: switch rules population command type - pass in the command opcode
2605 */
2606static void
2607ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2608		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2609		 enum ice_adminq_opc opc)
2610{
2611	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2612	u16 vlan_tpid = ETH_P_8021Q;
2613	void *daddr = NULL;
2614	u16 eth_hdr_sz;
2615	u8 *eth_hdr;
2616	u32 act = 0;
2617	__be16 *off;
2618	u8 q_rgn;
2619
2620	if (opc == ice_aqc_opc_remove_sw_rules) {
2621		s_rule->act = 0;
2622		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2623		s_rule->hdr_len = 0;
2624		return;
2625	}
2626
2627	eth_hdr_sz = sizeof(dummy_eth_header);
2628	eth_hdr = s_rule->hdr_data;
2629
2630	/* initialize the ether header with a dummy header */
2631	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2632	ice_fill_sw_info(hw, f_info);
2633
2634	switch (f_info->fltr_act) {
2635	case ICE_FWD_TO_VSI:
2636		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2637				  f_info->fwd_id.hw_vsi_id);
2638		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2639			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2640				ICE_SINGLE_ACT_VALID_BIT;
2641		break;
2642	case ICE_FWD_TO_VSI_LIST:
2643		act |= ICE_SINGLE_ACT_VSI_LIST;
2644		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2645				  f_info->fwd_id.vsi_list_id);
 
2646		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2647			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2648				ICE_SINGLE_ACT_VALID_BIT;
2649		break;
2650	case ICE_FWD_TO_Q:
2651		act |= ICE_SINGLE_ACT_TO_Q;
2652		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2653				  f_info->fwd_id.q_id);
2654		break;
2655	case ICE_DROP_PACKET:
2656		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2657			ICE_SINGLE_ACT_VALID_BIT;
2658		break;
2659	case ICE_FWD_TO_QGRP:
2660		q_rgn = f_info->qgrp_size > 0 ?
2661			(u8)ilog2(f_info->qgrp_size) : 0;
2662		act |= ICE_SINGLE_ACT_TO_Q;
2663		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2664				  f_info->fwd_id.q_id);
2665		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
 
2666		break;
2667	default:
2668		return;
2669	}
2670
2671	if (f_info->lb_en)
2672		act |= ICE_SINGLE_ACT_LB_ENABLE;
2673	if (f_info->lan_en)
2674		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2675
2676	switch (f_info->lkup_type) {
2677	case ICE_SW_LKUP_MAC:
2678		daddr = f_info->l_data.mac.mac_addr;
2679		break;
2680	case ICE_SW_LKUP_VLAN:
2681		vlan_id = f_info->l_data.vlan.vlan_id;
2682		if (f_info->l_data.vlan.tpid_valid)
2683			vlan_tpid = f_info->l_data.vlan.tpid;
2684		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2685		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2686			act |= ICE_SINGLE_ACT_PRUNE;
2687			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2688		}
2689		break;
2690	case ICE_SW_LKUP_ETHERTYPE_MAC:
2691		daddr = f_info->l_data.ethertype_mac.mac_addr;
2692		fallthrough;
2693	case ICE_SW_LKUP_ETHERTYPE:
2694		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2695		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2696		break;
2697	case ICE_SW_LKUP_MAC_VLAN:
2698		daddr = f_info->l_data.mac_vlan.mac_addr;
2699		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2700		break;
2701	case ICE_SW_LKUP_PROMISC_VLAN:
2702		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2703		fallthrough;
2704	case ICE_SW_LKUP_PROMISC:
2705		daddr = f_info->l_data.mac_vlan.mac_addr;
2706		break;
2707	default:
2708		break;
2709	}
2710
2711	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2712		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2713		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2714
2715	/* Recipe set depending on lookup type */
2716	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2717	s_rule->src = cpu_to_le16(f_info->src);
2718	s_rule->act = cpu_to_le32(act);
2719
2720	if (daddr)
2721		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2722
2723	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2724		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2725		*off = cpu_to_be16(vlan_id);
2726		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2727		*off = cpu_to_be16(vlan_tpid);
2728	}
2729
2730	/* Create the switch rule with the final dummy Ethernet header */
2731	if (opc != ice_aqc_opc_update_sw_rules)
2732		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2733}
2734
2735/**
2736 * ice_add_marker_act
2737 * @hw: pointer to the hardware structure
2738 * @m_ent: the management entry for which sw marker needs to be added
2739 * @sw_marker: sw marker to tag the Rx descriptor with
2740 * @l_id: large action resource ID
2741 *
2742 * Create a large action to hold software marker and update the switch rule
2743 * entry pointed by m_ent with newly created large action
2744 */
2745static int
2746ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2747		   u16 sw_marker, u16 l_id)
2748{
2749	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2750	struct ice_sw_rule_lg_act *lg_act;
2751	/* For software marker we need 3 large actions
2752	 * 1. FWD action: FWD TO VSI or VSI LIST
2753	 * 2. GENERIC VALUE action to hold the profile ID
2754	 * 3. GENERIC VALUE action to hold the software marker ID
2755	 */
2756	const u16 num_lg_acts = 3;
2757	u16 lg_act_size;
2758	u16 rules_size;
2759	int status;
2760	u32 act;
2761	u16 id;
2762
2763	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2764		return -EINVAL;
2765
2766	/* Create two back-to-back switch rules and submit them to the HW using
2767	 * one memory buffer:
2768	 *    1. Large Action
2769	 *    2. Look up Tx Rx
2770	 */
2771	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2772	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2773	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2774	if (!lg_act)
2775		return -ENOMEM;
2776
2777	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2778
2779	/* Fill in the first switch rule i.e. large action */
2780	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2781	lg_act->index = cpu_to_le16(l_id);
2782	lg_act->size = cpu_to_le16(num_lg_acts);
2783
2784	/* First action VSI forwarding or VSI list forwarding depending on how
2785	 * many VSIs
2786	 */
2787	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2788		m_ent->fltr_info.fwd_id.hw_vsi_id;
2789
2790	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2791	act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2792	if (m_ent->vsi_count > 1)
2793		act |= ICE_LG_ACT_VSI_LIST;
2794	lg_act->act[0] = cpu_to_le32(act);
2795
2796	/* Second action descriptor type */
2797	act = ICE_LG_ACT_GENERIC;
2798
2799	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2800	lg_act->act[1] = cpu_to_le32(act);
2801
2802	act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2803			 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2804
2805	/* Third action Marker value */
2806	act |= ICE_LG_ACT_GENERIC;
2807	act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
 
2808
2809	lg_act->act[2] = cpu_to_le32(act);
2810
2811	/* call the fill switch rule to fill the lookup Tx Rx structure */
2812	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2813			 ice_aqc_opc_update_sw_rules);
2814
2815	/* Update the action to point to the large action ID */
2816	act = ICE_SINGLE_ACT_PTR;
2817	act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2818	rx_tx->act = cpu_to_le32(act);
2819
2820	/* Use the filter rule ID of the previously created rule with single
2821	 * act. Once the update happens, hardware will treat this as large
2822	 * action
2823	 */
2824	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2825
2826	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2827				 ice_aqc_opc_update_sw_rules, NULL);
2828	if (!status) {
2829		m_ent->lg_act_idx = l_id;
2830		m_ent->sw_marker_id = sw_marker;
2831	}
2832
2833	devm_kfree(ice_hw_to_dev(hw), lg_act);
2834	return status;
2835}
2836
2837/**
2838 * ice_create_vsi_list_map
2839 * @hw: pointer to the hardware structure
2840 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2841 * @num_vsi: number of VSI handles in the array
2842 * @vsi_list_id: VSI list ID generated as part of allocate resource
2843 *
2844 * Helper function to create a new entry of VSI list ID to VSI mapping
2845 * using the given VSI list ID
2846 */
2847static struct ice_vsi_list_map_info *
2848ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2849			u16 vsi_list_id)
2850{
2851	struct ice_switch_info *sw = hw->switch_info;
2852	struct ice_vsi_list_map_info *v_map;
2853	int i;
2854
2855	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2856	if (!v_map)
2857		return NULL;
2858
2859	v_map->vsi_list_id = vsi_list_id;
2860	v_map->ref_cnt = 1;
2861	for (i = 0; i < num_vsi; i++)
2862		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2863
2864	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2865	return v_map;
2866}
2867
2868/**
2869 * ice_update_vsi_list_rule
2870 * @hw: pointer to the hardware structure
2871 * @vsi_handle_arr: array of VSI handles to form a VSI list
2872 * @num_vsi: number of VSI handles in the array
2873 * @vsi_list_id: VSI list ID generated as part of allocate resource
2874 * @remove: Boolean value to indicate if this is a remove action
2875 * @opc: switch rules population command type - pass in the command opcode
2876 * @lkup_type: lookup type of the filter
2877 *
2878 * Call AQ command to add a new switch rule or update existing switch rule
2879 * using the given VSI list ID
2880 */
2881static int
2882ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2883			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2884			 enum ice_sw_lkup_type lkup_type)
2885{
2886	struct ice_sw_rule_vsi_list *s_rule;
2887	u16 s_rule_size;
2888	u16 rule_type;
2889	int status;
2890	int i;
2891
2892	if (!num_vsi)
2893		return -EINVAL;
2894
2895	if (lkup_type == ICE_SW_LKUP_MAC ||
2896	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2897	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2898	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2899	    lkup_type == ICE_SW_LKUP_PROMISC ||
2900	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2901	    lkup_type == ICE_SW_LKUP_DFLT ||
2902	    lkup_type == ICE_SW_LKUP_LAST)
2903		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2904			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2905	else if (lkup_type == ICE_SW_LKUP_VLAN)
2906		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2907			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2908	else
2909		return -EINVAL;
2910
2911	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2912	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2913	if (!s_rule)
2914		return -ENOMEM;
2915	for (i = 0; i < num_vsi; i++) {
2916		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2917			status = -EINVAL;
2918			goto exit;
2919		}
2920		/* AQ call requires hw_vsi_id(s) */
2921		s_rule->vsi[i] =
2922			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2923	}
2924
2925	s_rule->hdr.type = cpu_to_le16(rule_type);
2926	s_rule->number_vsi = cpu_to_le16(num_vsi);
2927	s_rule->index = cpu_to_le16(vsi_list_id);
2928
2929	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2930
2931exit:
2932	devm_kfree(ice_hw_to_dev(hw), s_rule);
2933	return status;
2934}
2935
2936/**
2937 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2938 * @hw: pointer to the HW struct
2939 * @vsi_handle_arr: array of VSI handles to form a VSI list
2940 * @num_vsi: number of VSI handles in the array
2941 * @vsi_list_id: stores the ID of the VSI list to be created
2942 * @lkup_type: switch rule filter's lookup type
2943 */
2944static int
2945ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2946			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2947{
2948	int status;
2949
2950	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2951					    ice_aqc_opc_alloc_res);
2952	if (status)
2953		return status;
2954
2955	/* Update the newly created VSI list to include the specified VSIs */
2956	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2957					*vsi_list_id, false,
2958					ice_aqc_opc_add_sw_rules, lkup_type);
2959}
2960
2961/**
2962 * ice_create_pkt_fwd_rule
2963 * @hw: pointer to the hardware structure
2964 * @f_entry: entry containing packet forwarding information
2965 *
2966 * Create switch rule with given filter information and add an entry
2967 * to the corresponding filter management list to track this switch rule
2968 * and VSI mapping
2969 */
2970static int
2971ice_create_pkt_fwd_rule(struct ice_hw *hw,
2972			struct ice_fltr_list_entry *f_entry)
2973{
2974	struct ice_fltr_mgmt_list_entry *fm_entry;
2975	struct ice_sw_rule_lkup_rx_tx *s_rule;
2976	enum ice_sw_lkup_type l_type;
2977	struct ice_sw_recipe *recp;
2978	int status;
2979
2980	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2981			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2982			      GFP_KERNEL);
2983	if (!s_rule)
2984		return -ENOMEM;
2985	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2986				GFP_KERNEL);
2987	if (!fm_entry) {
2988		status = -ENOMEM;
2989		goto ice_create_pkt_fwd_rule_exit;
2990	}
2991
2992	fm_entry->fltr_info = f_entry->fltr_info;
2993
2994	/* Initialize all the fields for the management entry */
2995	fm_entry->vsi_count = 1;
2996	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2997	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2998	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2999
3000	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
3001			 ice_aqc_opc_add_sw_rules);
3002
3003	status = ice_aq_sw_rules(hw, s_rule,
3004				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3005				 ice_aqc_opc_add_sw_rules, NULL);
3006	if (status) {
3007		devm_kfree(ice_hw_to_dev(hw), fm_entry);
3008		goto ice_create_pkt_fwd_rule_exit;
3009	}
3010
3011	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3012	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3013
3014	/* The book keeping entries will get removed when base driver
3015	 * calls remove filter AQ command
3016	 */
3017	l_type = fm_entry->fltr_info.lkup_type;
3018	recp = &hw->switch_info->recp_list[l_type];
3019	list_add(&fm_entry->list_entry, &recp->filt_rules);
3020
3021ice_create_pkt_fwd_rule_exit:
3022	devm_kfree(ice_hw_to_dev(hw), s_rule);
3023	return status;
3024}
3025
3026/**
3027 * ice_update_pkt_fwd_rule
3028 * @hw: pointer to the hardware structure
3029 * @f_info: filter information for switch rule
3030 *
3031 * Call AQ command to update a previously created switch rule with a
3032 * VSI list ID
3033 */
3034static int
3035ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
3036{
3037	struct ice_sw_rule_lkup_rx_tx *s_rule;
3038	int status;
3039
3040	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3041			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
3042			      GFP_KERNEL);
3043	if (!s_rule)
3044		return -ENOMEM;
3045
3046	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
3047
3048	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
3049
3050	/* Update switch rule with new rule set to forward VSI list */
3051	status = ice_aq_sw_rules(hw, s_rule,
3052				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3053				 ice_aqc_opc_update_sw_rules, NULL);
3054
3055	devm_kfree(ice_hw_to_dev(hw), s_rule);
3056	return status;
3057}
3058
3059/**
3060 * ice_update_sw_rule_bridge_mode
3061 * @hw: pointer to the HW struct
3062 *
3063 * Updates unicast switch filter rules based on VEB/VEPA mode
3064 */
3065int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
3066{
3067	struct ice_switch_info *sw = hw->switch_info;
3068	struct ice_fltr_mgmt_list_entry *fm_entry;
3069	struct list_head *rule_head;
3070	struct mutex *rule_lock; /* Lock to protect filter rule list */
3071	int status = 0;
3072
3073	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3074	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3075
3076	mutex_lock(rule_lock);
3077	list_for_each_entry(fm_entry, rule_head, list_entry) {
3078		struct ice_fltr_info *fi = &fm_entry->fltr_info;
3079		u8 *addr = fi->l_data.mac.mac_addr;
3080
3081		/* Update unicast Tx rules to reflect the selected
3082		 * VEB/VEPA mode
3083		 */
3084		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
3085		    (fi->fltr_act == ICE_FWD_TO_VSI ||
3086		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
3087		     fi->fltr_act == ICE_FWD_TO_Q ||
3088		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
3089			status = ice_update_pkt_fwd_rule(hw, fi);
3090			if (status)
3091				break;
3092		}
3093	}
3094
3095	mutex_unlock(rule_lock);
3096
3097	return status;
3098}
3099
3100/**
3101 * ice_add_update_vsi_list
3102 * @hw: pointer to the hardware structure
3103 * @m_entry: pointer to current filter management list entry
3104 * @cur_fltr: filter information from the book keeping entry
3105 * @new_fltr: filter information with the new VSI to be added
3106 *
3107 * Call AQ command to add or update previously created VSI list with new VSI.
3108 *
3109 * Helper function to do book keeping associated with adding filter information
3110 * The algorithm to do the book keeping is described below :
3111 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
3112 *	if only one VSI has been added till now
3113 *		Allocate a new VSI list and add two VSIs
3114 *		to this list using switch rule command
3115 *		Update the previously created switch rule with the
3116 *		newly created VSI list ID
3117 *	if a VSI list was previously created
3118 *		Add the new VSI to the previously created VSI list set
3119 *		using the update switch rule command
3120 */
3121static int
3122ice_add_update_vsi_list(struct ice_hw *hw,
3123			struct ice_fltr_mgmt_list_entry *m_entry,
3124			struct ice_fltr_info *cur_fltr,
3125			struct ice_fltr_info *new_fltr)
3126{
3127	u16 vsi_list_id = 0;
3128	int status = 0;
3129
3130	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
3131	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
3132		return -EOPNOTSUPP;
3133
3134	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
3135	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
3136	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
3137	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
3138		return -EOPNOTSUPP;
3139
3140	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3141		/* Only one entry existed in the mapping and it was not already
3142		 * a part of a VSI list. So, create a VSI list with the old and
3143		 * new VSIs.
3144		 */
3145		struct ice_fltr_info tmp_fltr;
3146		u16 vsi_handle_arr[2];
3147
3148		/* A rule already exists with the new VSI being added */
3149		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3150			return -EEXIST;
3151
3152		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3153		vsi_handle_arr[1] = new_fltr->vsi_handle;
3154		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3155						  &vsi_list_id,
3156						  new_fltr->lkup_type);
3157		if (status)
3158			return status;
3159
3160		tmp_fltr = *new_fltr;
3161		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3162		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3163		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3164		/* Update the previous switch rule of "MAC forward to VSI" to
3165		 * "MAC fwd to VSI list"
3166		 */
3167		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3168		if (status)
3169			return status;
3170
3171		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3172		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3173		m_entry->vsi_list_info =
3174			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3175						vsi_list_id);
3176
3177		if (!m_entry->vsi_list_info)
3178			return -ENOMEM;
3179
3180		/* If this entry was large action then the large action needs
3181		 * to be updated to point to FWD to VSI list
3182		 */
3183		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3184			status =
3185			    ice_add_marker_act(hw, m_entry,
3186					       m_entry->sw_marker_id,
3187					       m_entry->lg_act_idx);
3188	} else {
3189		u16 vsi_handle = new_fltr->vsi_handle;
3190		enum ice_adminq_opc opcode;
3191
3192		if (!m_entry->vsi_list_info)
3193			return -EIO;
3194
3195		/* A rule already exists with the new VSI being added */
3196		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3197			return -EEXIST;
3198
3199		/* Update the previously created VSI list set with
3200		 * the new VSI ID passed in
3201		 */
3202		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3203		opcode = ice_aqc_opc_update_sw_rules;
3204
3205		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3206						  vsi_list_id, false, opcode,
3207						  new_fltr->lkup_type);
3208		/* update VSI list mapping info with new VSI ID */
3209		if (!status)
3210			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3211	}
3212	if (!status)
3213		m_entry->vsi_count++;
3214	return status;
3215}
3216
3217/**
3218 * ice_find_rule_entry - Search a rule entry
3219 * @hw: pointer to the hardware structure
3220 * @recp_id: lookup type for which the specified rule needs to be searched
3221 * @f_info: rule information
3222 *
3223 * Helper function to search for a given rule entry
3224 * Returns pointer to entry storing the rule if found
3225 */
3226static struct ice_fltr_mgmt_list_entry *
3227ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3228{
3229	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3230	struct ice_switch_info *sw = hw->switch_info;
3231	struct list_head *list_head;
3232
3233	list_head = &sw->recp_list[recp_id].filt_rules;
3234	list_for_each_entry(list_itr, list_head, list_entry) {
3235		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3236			    sizeof(f_info->l_data)) &&
3237		    f_info->flag == list_itr->fltr_info.flag) {
3238			ret = list_itr;
3239			break;
3240		}
3241	}
3242	return ret;
3243}
3244
3245/**
3246 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3247 * @hw: pointer to the hardware structure
3248 * @recp_id: lookup type for which VSI lists needs to be searched
3249 * @vsi_handle: VSI handle to be found in VSI list
3250 * @vsi_list_id: VSI list ID found containing vsi_handle
3251 *
3252 * Helper function to search a VSI list with single entry containing given VSI
3253 * handle element. This can be extended further to search VSI list with more
3254 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3255 */
3256struct ice_vsi_list_map_info *
3257ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3258			u16 *vsi_list_id)
3259{
3260	struct ice_vsi_list_map_info *map_info = NULL;
3261	struct ice_switch_info *sw = hw->switch_info;
3262	struct ice_fltr_mgmt_list_entry *list_itr;
3263	struct list_head *list_head;
3264
3265	list_head = &sw->recp_list[recp_id].filt_rules;
3266	list_for_each_entry(list_itr, list_head, list_entry) {
3267		if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3268			map_info = list_itr->vsi_list_info;
3269			if (test_bit(vsi_handle, map_info->vsi_map)) {
3270				*vsi_list_id = map_info->vsi_list_id;
3271				return map_info;
3272			}
3273		}
3274	}
3275	return NULL;
3276}
3277
3278/**
3279 * ice_add_rule_internal - add rule for a given lookup type
3280 * @hw: pointer to the hardware structure
3281 * @recp_id: lookup type (recipe ID) for which rule has to be added
3282 * @f_entry: structure containing MAC forwarding information
3283 *
3284 * Adds or updates the rule lists for a given recipe
3285 */
3286static int
3287ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3288		      struct ice_fltr_list_entry *f_entry)
3289{
3290	struct ice_switch_info *sw = hw->switch_info;
3291	struct ice_fltr_info *new_fltr, *cur_fltr;
3292	struct ice_fltr_mgmt_list_entry *m_entry;
3293	struct mutex *rule_lock; /* Lock to protect filter rule list */
3294	int status = 0;
3295
3296	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3297		return -EINVAL;
3298	f_entry->fltr_info.fwd_id.hw_vsi_id =
3299		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3300
3301	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3302
3303	mutex_lock(rule_lock);
3304	new_fltr = &f_entry->fltr_info;
3305	if (new_fltr->flag & ICE_FLTR_RX)
3306		new_fltr->src = hw->port_info->lport;
3307	else if (new_fltr->flag & ICE_FLTR_TX)
3308		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3309
3310	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3311	if (!m_entry) {
3312		mutex_unlock(rule_lock);
3313		return ice_create_pkt_fwd_rule(hw, f_entry);
3314	}
3315
3316	cur_fltr = &m_entry->fltr_info;
3317	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3318	mutex_unlock(rule_lock);
3319
3320	return status;
3321}
3322
3323/**
3324 * ice_remove_vsi_list_rule
3325 * @hw: pointer to the hardware structure
3326 * @vsi_list_id: VSI list ID generated as part of allocate resource
3327 * @lkup_type: switch rule filter lookup type
3328 *
3329 * The VSI list should be emptied before this function is called to remove the
3330 * VSI list.
3331 */
3332static int
3333ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3334			 enum ice_sw_lkup_type lkup_type)
3335{
3336	struct ice_sw_rule_vsi_list *s_rule;
3337	u16 s_rule_size;
3338	int status;
3339
3340	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3341	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3342	if (!s_rule)
3343		return -ENOMEM;
3344
3345	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3346	s_rule->index = cpu_to_le16(vsi_list_id);
3347
3348	/* Free the vsi_list resource that we allocated. It is assumed that the
3349	 * list is empty at this point.
3350	 */
3351	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3352					    ice_aqc_opc_free_res);
3353
3354	devm_kfree(ice_hw_to_dev(hw), s_rule);
3355	return status;
3356}
3357
3358/**
3359 * ice_rem_update_vsi_list
3360 * @hw: pointer to the hardware structure
3361 * @vsi_handle: VSI handle of the VSI to remove
3362 * @fm_list: filter management entry for which the VSI list management needs to
3363 *           be done
3364 */
3365static int
3366ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3367			struct ice_fltr_mgmt_list_entry *fm_list)
3368{
3369	enum ice_sw_lkup_type lkup_type;
3370	u16 vsi_list_id;
3371	int status = 0;
3372
3373	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3374	    fm_list->vsi_count == 0)
3375		return -EINVAL;
3376
3377	/* A rule with the VSI being removed does not exist */
3378	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3379		return -ENOENT;
3380
3381	lkup_type = fm_list->fltr_info.lkup_type;
3382	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3383	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3384					  ice_aqc_opc_update_sw_rules,
3385					  lkup_type);
3386	if (status)
3387		return status;
3388
3389	fm_list->vsi_count--;
3390	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3391
3392	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3393		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3394		struct ice_vsi_list_map_info *vsi_list_info =
3395			fm_list->vsi_list_info;
3396		u16 rem_vsi_handle;
3397
3398		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3399						ICE_MAX_VSI);
3400		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3401			return -EIO;
3402
3403		/* Make sure VSI list is empty before removing it below */
3404		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3405						  vsi_list_id, true,
3406						  ice_aqc_opc_update_sw_rules,
3407						  lkup_type);
3408		if (status)
3409			return status;
3410
3411		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3412		tmp_fltr_info.fwd_id.hw_vsi_id =
3413			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3414		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3415		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3416		if (status) {
3417			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3418				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3419			return status;
3420		}
3421
3422		fm_list->fltr_info = tmp_fltr_info;
3423	}
3424
3425	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3426	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3427		struct ice_vsi_list_map_info *vsi_list_info =
3428			fm_list->vsi_list_info;
3429
3430		/* Remove the VSI list since it is no longer used */
3431		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3432		if (status) {
3433			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3434				  vsi_list_id, status);
3435			return status;
3436		}
3437
3438		list_del(&vsi_list_info->list_entry);
3439		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3440		fm_list->vsi_list_info = NULL;
3441	}
3442
3443	return status;
3444}
3445
3446/**
3447 * ice_remove_rule_internal - Remove a filter rule of a given type
3448 * @hw: pointer to the hardware structure
3449 * @recp_id: recipe ID for which the rule needs to removed
3450 * @f_entry: rule entry containing filter information
3451 */
3452static int
3453ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3454			 struct ice_fltr_list_entry *f_entry)
3455{
3456	struct ice_switch_info *sw = hw->switch_info;
3457	struct ice_fltr_mgmt_list_entry *list_elem;
3458	struct mutex *rule_lock; /* Lock to protect filter rule list */
3459	bool remove_rule = false;
3460	u16 vsi_handle;
3461	int status = 0;
3462
3463	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3464		return -EINVAL;
3465	f_entry->fltr_info.fwd_id.hw_vsi_id =
3466		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3467
3468	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3469	mutex_lock(rule_lock);
3470	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3471	if (!list_elem) {
3472		status = -ENOENT;
3473		goto exit;
3474	}
3475
3476	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3477		remove_rule = true;
3478	} else if (!list_elem->vsi_list_info) {
3479		status = -ENOENT;
3480		goto exit;
3481	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3482		/* a ref_cnt > 1 indicates that the vsi_list is being
3483		 * shared by multiple rules. Decrement the ref_cnt and
3484		 * remove this rule, but do not modify the list, as it
3485		 * is in-use by other rules.
3486		 */
3487		list_elem->vsi_list_info->ref_cnt--;
3488		remove_rule = true;
3489	} else {
3490		/* a ref_cnt of 1 indicates the vsi_list is only used
3491		 * by one rule. However, the original removal request is only
3492		 * for a single VSI. Update the vsi_list first, and only
3493		 * remove the rule if there are no further VSIs in this list.
3494		 */
3495		vsi_handle = f_entry->fltr_info.vsi_handle;
3496		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3497		if (status)
3498			goto exit;
3499		/* if VSI count goes to zero after updating the VSI list */
3500		if (list_elem->vsi_count == 0)
3501			remove_rule = true;
3502	}
3503
3504	if (remove_rule) {
3505		/* Remove the lookup rule */
3506		struct ice_sw_rule_lkup_rx_tx *s_rule;
3507
3508		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3509				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3510				      GFP_KERNEL);
3511		if (!s_rule) {
3512			status = -ENOMEM;
3513			goto exit;
3514		}
3515
3516		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3517				 ice_aqc_opc_remove_sw_rules);
3518
3519		status = ice_aq_sw_rules(hw, s_rule,
3520					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3521					 1, ice_aqc_opc_remove_sw_rules, NULL);
3522
3523		/* Remove a book keeping from the list */
3524		devm_kfree(ice_hw_to_dev(hw), s_rule);
3525
3526		if (status)
3527			goto exit;
3528
3529		list_del(&list_elem->list_entry);
3530		devm_kfree(ice_hw_to_dev(hw), list_elem);
3531	}
3532exit:
3533	mutex_unlock(rule_lock);
3534	return status;
3535}
3536
3537/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3538 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3539 * @hw: pointer to the hardware structure
3540 * @vlan_id: VLAN ID
3541 * @vsi_handle: check MAC filter for this VSI
3542 */
3543bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3544{
3545	struct ice_fltr_mgmt_list_entry *entry;
3546	struct list_head *rule_head;
3547	struct ice_switch_info *sw;
3548	struct mutex *rule_lock; /* Lock to protect filter rule list */
3549	u16 hw_vsi_id;
3550
3551	if (vlan_id > ICE_MAX_VLAN_ID)
3552		return false;
3553
3554	if (!ice_is_vsi_valid(hw, vsi_handle))
3555		return false;
3556
3557	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3558	sw = hw->switch_info;
3559	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3560	if (!rule_head)
3561		return false;
3562
3563	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3564	mutex_lock(rule_lock);
3565	list_for_each_entry(entry, rule_head, list_entry) {
3566		struct ice_fltr_info *f_info = &entry->fltr_info;
3567		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3568		struct ice_vsi_list_map_info *map_info;
3569
3570		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3571			continue;
3572
3573		if (f_info->flag != ICE_FLTR_TX ||
3574		    f_info->src_id != ICE_SRC_ID_VSI ||
3575		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3576			continue;
3577
3578		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3579		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3580		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3581			continue;
3582
3583		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3584			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3585				continue;
3586		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3587			/* If filter_action is FWD_TO_VSI_LIST, make sure
3588			 * that VSI being checked is part of VSI list
3589			 */
3590			if (entry->vsi_count == 1 &&
3591			    entry->vsi_list_info) {
3592				map_info = entry->vsi_list_info;
3593				if (!test_bit(vsi_handle, map_info->vsi_map))
3594					continue;
3595			}
3596		}
3597
3598		if (vlan_id == entry_vlan_id) {
3599			mutex_unlock(rule_lock);
3600			return true;
3601		}
3602	}
3603	mutex_unlock(rule_lock);
3604
3605	return false;
3606}
3607
3608/**
3609 * ice_add_mac - Add a MAC address based filter rule
3610 * @hw: pointer to the hardware structure
3611 * @m_list: list of MAC addresses and forwarding information
3612 */
3613int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3614{
3615	struct ice_fltr_list_entry *m_list_itr;
3616	int status = 0;
3617
3618	if (!m_list || !hw)
3619		return -EINVAL;
3620
3621	list_for_each_entry(m_list_itr, m_list, list_entry) {
3622		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3623		u16 vsi_handle;
3624		u16 hw_vsi_id;
3625
3626		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3627		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3628		if (!ice_is_vsi_valid(hw, vsi_handle))
3629			return -EINVAL;
3630		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3631		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3632		/* update the src in case it is VSI num */
3633		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3634			return -EINVAL;
3635		m_list_itr->fltr_info.src = hw_vsi_id;
3636		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3637		    is_zero_ether_addr(add))
3638			return -EINVAL;
3639
3640		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3641							   m_list_itr);
3642		if (m_list_itr->status)
3643			return m_list_itr->status;
3644	}
3645
3646	return status;
3647}
3648
3649/**
3650 * ice_add_vlan_internal - Add one VLAN based filter rule
3651 * @hw: pointer to the hardware structure
3652 * @f_entry: filter entry containing one VLAN information
3653 */
3654static int
3655ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3656{
3657	struct ice_switch_info *sw = hw->switch_info;
3658	struct ice_fltr_mgmt_list_entry *v_list_itr;
3659	struct ice_fltr_info *new_fltr, *cur_fltr;
3660	enum ice_sw_lkup_type lkup_type;
3661	u16 vsi_list_id = 0, vsi_handle;
3662	struct mutex *rule_lock; /* Lock to protect filter rule list */
3663	int status = 0;
3664
3665	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3666		return -EINVAL;
3667
3668	f_entry->fltr_info.fwd_id.hw_vsi_id =
3669		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3670	new_fltr = &f_entry->fltr_info;
3671
3672	/* VLAN ID should only be 12 bits */
3673	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3674		return -EINVAL;
3675
3676	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3677		return -EINVAL;
3678
3679	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3680	lkup_type = new_fltr->lkup_type;
3681	vsi_handle = new_fltr->vsi_handle;
3682	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3683	mutex_lock(rule_lock);
3684	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3685	if (!v_list_itr) {
3686		struct ice_vsi_list_map_info *map_info = NULL;
3687
3688		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3689			/* All VLAN pruning rules use a VSI list. Check if
3690			 * there is already a VSI list containing VSI that we
3691			 * want to add. If found, use the same vsi_list_id for
3692			 * this new VLAN rule or else create a new list.
3693			 */
3694			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3695							   vsi_handle,
3696							   &vsi_list_id);
3697			if (!map_info) {
3698				status = ice_create_vsi_list_rule(hw,
3699								  &vsi_handle,
3700								  1,
3701								  &vsi_list_id,
3702								  lkup_type);
3703				if (status)
3704					goto exit;
3705			}
3706			/* Convert the action to forwarding to a VSI list. */
3707			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3708			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3709		}
3710
3711		status = ice_create_pkt_fwd_rule(hw, f_entry);
3712		if (!status) {
3713			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3714							 new_fltr);
3715			if (!v_list_itr) {
3716				status = -ENOENT;
3717				goto exit;
3718			}
3719			/* reuse VSI list for new rule and increment ref_cnt */
3720			if (map_info) {
3721				v_list_itr->vsi_list_info = map_info;
3722				map_info->ref_cnt++;
3723			} else {
3724				v_list_itr->vsi_list_info =
3725					ice_create_vsi_list_map(hw, &vsi_handle,
3726								1, vsi_list_id);
3727			}
3728		}
3729	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3730		/* Update existing VSI list to add new VSI ID only if it used
3731		 * by one VLAN rule.
3732		 */
3733		cur_fltr = &v_list_itr->fltr_info;
3734		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3735						 new_fltr);
3736	} else {
3737		/* If VLAN rule exists and VSI list being used by this rule is
3738		 * referenced by more than 1 VLAN rule. Then create a new VSI
3739		 * list appending previous VSI with new VSI and update existing
3740		 * VLAN rule to point to new VSI list ID
3741		 */
3742		struct ice_fltr_info tmp_fltr;
3743		u16 vsi_handle_arr[2];
3744		u16 cur_handle;
3745
3746		/* Current implementation only supports reusing VSI list with
3747		 * one VSI count. We should never hit below condition
3748		 */
3749		if (v_list_itr->vsi_count > 1 &&
3750		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3751			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3752			status = -EIO;
3753			goto exit;
3754		}
3755
3756		cur_handle =
3757			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3758				       ICE_MAX_VSI);
3759
3760		/* A rule already exists with the new VSI being added */
3761		if (cur_handle == vsi_handle) {
3762			status = -EEXIST;
3763			goto exit;
3764		}
3765
3766		vsi_handle_arr[0] = cur_handle;
3767		vsi_handle_arr[1] = vsi_handle;
3768		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3769						  &vsi_list_id, lkup_type);
3770		if (status)
3771			goto exit;
3772
3773		tmp_fltr = v_list_itr->fltr_info;
3774		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3775		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3776		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3777		/* Update the previous switch rule to a new VSI list which
3778		 * includes current VSI that is requested
3779		 */
3780		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3781		if (status)
3782			goto exit;
3783
3784		/* before overriding VSI list map info. decrement ref_cnt of
3785		 * previous VSI list
3786		 */
3787		v_list_itr->vsi_list_info->ref_cnt--;
3788
3789		/* now update to newly created list */
3790		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3791		v_list_itr->vsi_list_info =
3792			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3793						vsi_list_id);
3794		v_list_itr->vsi_count++;
3795	}
3796
3797exit:
3798	mutex_unlock(rule_lock);
3799	return status;
3800}
3801
3802/**
3803 * ice_add_vlan - Add VLAN based filter rule
3804 * @hw: pointer to the hardware structure
3805 * @v_list: list of VLAN entries and forwarding information
3806 */
3807int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3808{
3809	struct ice_fltr_list_entry *v_list_itr;
3810
3811	if (!v_list || !hw)
3812		return -EINVAL;
3813
3814	list_for_each_entry(v_list_itr, v_list, list_entry) {
3815		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3816			return -EINVAL;
3817		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3818		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3819		if (v_list_itr->status)
3820			return v_list_itr->status;
3821	}
3822	return 0;
3823}
3824
3825/**
3826 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3827 * @hw: pointer to the hardware structure
3828 * @em_list: list of ether type MAC filter, MAC is optional
3829 *
3830 * This function requires the caller to populate the entries in
3831 * the filter list with the necessary fields (including flags to
3832 * indicate Tx or Rx rules).
3833 */
3834int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3835{
3836	struct ice_fltr_list_entry *em_list_itr;
3837
3838	if (!em_list || !hw)
3839		return -EINVAL;
3840
3841	list_for_each_entry(em_list_itr, em_list, list_entry) {
3842		enum ice_sw_lkup_type l_type =
3843			em_list_itr->fltr_info.lkup_type;
3844
3845		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3846		    l_type != ICE_SW_LKUP_ETHERTYPE)
3847			return -EINVAL;
3848
3849		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3850							    em_list_itr);
3851		if (em_list_itr->status)
3852			return em_list_itr->status;
3853	}
3854	return 0;
3855}
3856
3857/**
3858 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3859 * @hw: pointer to the hardware structure
3860 * @em_list: list of ethertype or ethertype MAC entries
3861 */
3862int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3863{
3864	struct ice_fltr_list_entry *em_list_itr, *tmp;
3865
3866	if (!em_list || !hw)
3867		return -EINVAL;
3868
3869	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3870		enum ice_sw_lkup_type l_type =
3871			em_list_itr->fltr_info.lkup_type;
3872
3873		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3874		    l_type != ICE_SW_LKUP_ETHERTYPE)
3875			return -EINVAL;
3876
3877		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3878							       em_list_itr);
3879		if (em_list_itr->status)
3880			return em_list_itr->status;
3881	}
3882	return 0;
3883}
3884
3885/**
3886 * ice_rem_sw_rule_info
3887 * @hw: pointer to the hardware structure
3888 * @rule_head: pointer to the switch list structure that we want to delete
3889 */
3890static void
3891ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3892{
3893	if (!list_empty(rule_head)) {
3894		struct ice_fltr_mgmt_list_entry *entry;
3895		struct ice_fltr_mgmt_list_entry *tmp;
3896
3897		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3898			list_del(&entry->list_entry);
3899			devm_kfree(ice_hw_to_dev(hw), entry);
3900		}
3901	}
3902}
3903
3904/**
3905 * ice_rem_adv_rule_info
3906 * @hw: pointer to the hardware structure
3907 * @rule_head: pointer to the switch list structure that we want to delete
3908 */
3909static void
3910ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3911{
3912	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3913	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3914
3915	if (list_empty(rule_head))
3916		return;
3917
3918	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3919		list_del(&lst_itr->list_entry);
3920		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3921		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3922	}
3923}
3924
3925/**
3926 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3927 * @pi: pointer to the port_info structure
3928 * @vsi_handle: VSI handle to set as default
3929 * @set: true to add the above mentioned switch rule, false to remove it
3930 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3931 *
3932 * add filter rule to set/unset given VSI as default VSI for the switch
3933 * (represented by swid)
3934 */
3935int
3936ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3937		 u8 direction)
3938{
3939	struct ice_fltr_list_entry f_list_entry;
3940	struct ice_fltr_info f_info;
3941	struct ice_hw *hw = pi->hw;
3942	u16 hw_vsi_id;
3943	int status;
3944
3945	if (!ice_is_vsi_valid(hw, vsi_handle))
3946		return -EINVAL;
3947
3948	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3949
3950	memset(&f_info, 0, sizeof(f_info));
3951
3952	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3953	f_info.flag = direction;
3954	f_info.fltr_act = ICE_FWD_TO_VSI;
3955	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3956	f_info.vsi_handle = vsi_handle;
3957
3958	if (f_info.flag & ICE_FLTR_RX) {
3959		f_info.src = hw->port_info->lport;
3960		f_info.src_id = ICE_SRC_ID_LPORT;
3961	} else if (f_info.flag & ICE_FLTR_TX) {
3962		f_info.src_id = ICE_SRC_ID_VSI;
3963		f_info.src = hw_vsi_id;
3964		f_info.flag |= ICE_FLTR_TX_ONLY;
3965	}
3966	f_list_entry.fltr_info = f_info;
3967
3968	if (set)
3969		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3970					       &f_list_entry);
3971	else
3972		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3973						  &f_list_entry);
3974
3975	return status;
3976}
3977
3978/**
3979 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3980 * @fm_entry: filter entry to inspect
3981 * @vsi_handle: VSI handle to compare with filter info
3982 */
3983static bool
3984ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3985{
3986	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3987		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3988		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3989		 fm_entry->vsi_list_info &&
3990		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3991}
3992
3993/**
3994 * ice_check_if_dflt_vsi - check if VSI is default VSI
3995 * @pi: pointer to the port_info structure
3996 * @vsi_handle: vsi handle to check for in filter list
3997 * @rule_exists: indicates if there are any VSI's in the rule list
3998 *
3999 * checks if the VSI is in a default VSI list, and also indicates
4000 * if the default VSI list is empty
4001 */
4002bool
4003ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
4004		      bool *rule_exists)
4005{
4006	struct ice_fltr_mgmt_list_entry *fm_entry;
4007	struct ice_sw_recipe *recp_list;
4008	struct list_head *rule_head;
4009	struct mutex *rule_lock; /* Lock to protect filter rule list */
4010	bool ret = false;
4011
4012	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
4013	rule_lock = &recp_list->filt_rule_lock;
4014	rule_head = &recp_list->filt_rules;
4015
4016	mutex_lock(rule_lock);
4017
4018	if (rule_exists && !list_empty(rule_head))
4019		*rule_exists = true;
4020
4021	list_for_each_entry(fm_entry, rule_head, list_entry) {
4022		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
4023			ret = true;
4024			break;
4025		}
4026	}
4027
4028	mutex_unlock(rule_lock);
4029
4030	return ret;
4031}
4032
4033/**
4034 * ice_remove_mac - remove a MAC address based filter rule
4035 * @hw: pointer to the hardware structure
4036 * @m_list: list of MAC addresses and forwarding information
4037 *
4038 * This function removes either a MAC filter rule or a specific VSI from a
4039 * VSI list for a multicast MAC address.
4040 *
4041 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4042 * be aware that this call will only work if all the entries passed into m_list
4043 * were added previously. It will not attempt to do a partial remove of entries
4044 * that were found.
4045 */
4046int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4047{
4048	struct ice_fltr_list_entry *list_itr, *tmp;
4049
4050	if (!m_list)
4051		return -EINVAL;
4052
4053	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4054		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4055		u16 vsi_handle;
4056
4057		if (l_type != ICE_SW_LKUP_MAC)
4058			return -EINVAL;
4059
4060		vsi_handle = list_itr->fltr_info.vsi_handle;
4061		if (!ice_is_vsi_valid(hw, vsi_handle))
4062			return -EINVAL;
4063
4064		list_itr->fltr_info.fwd_id.hw_vsi_id =
4065					ice_get_hw_vsi_num(hw, vsi_handle);
4066
4067		list_itr->status = ice_remove_rule_internal(hw,
4068							    ICE_SW_LKUP_MAC,
4069							    list_itr);
4070		if (list_itr->status)
4071			return list_itr->status;
4072	}
4073	return 0;
4074}
4075
4076/**
4077 * ice_remove_vlan - Remove VLAN based filter rule
4078 * @hw: pointer to the hardware structure
4079 * @v_list: list of VLAN entries and forwarding information
4080 */
4081int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4082{
4083	struct ice_fltr_list_entry *v_list_itr, *tmp;
4084
4085	if (!v_list || !hw)
4086		return -EINVAL;
4087
4088	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4089		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4090
4091		if (l_type != ICE_SW_LKUP_VLAN)
4092			return -EINVAL;
4093		v_list_itr->status = ice_remove_rule_internal(hw,
4094							      ICE_SW_LKUP_VLAN,
4095							      v_list_itr);
4096		if (v_list_itr->status)
4097			return v_list_itr->status;
4098	}
4099	return 0;
4100}
4101
4102/**
4103 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4104 * @hw: pointer to the hardware structure
4105 * @vsi_handle: VSI handle to remove filters from
4106 * @vsi_list_head: pointer to the list to add entry to
4107 * @fi: pointer to fltr_info of filter entry to copy & add
4108 *
4109 * Helper function, used when creating a list of filters to remove from
4110 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4111 * original filter entry, with the exception of fltr_info.fltr_act and
4112 * fltr_info.fwd_id fields. These are set such that later logic can
4113 * extract which VSI to remove the fltr from, and pass on that information.
4114 */
4115static int
4116ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4117			       struct list_head *vsi_list_head,
4118			       struct ice_fltr_info *fi)
4119{
4120	struct ice_fltr_list_entry *tmp;
4121
4122	/* this memory is freed up in the caller function
4123	 * once filters for this VSI are removed
4124	 */
4125	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4126	if (!tmp)
4127		return -ENOMEM;
4128
4129	tmp->fltr_info = *fi;
4130
4131	/* Overwrite these fields to indicate which VSI to remove filter from,
4132	 * so find and remove logic can extract the information from the
4133	 * list entries. Note that original entries will still have proper
4134	 * values.
4135	 */
4136	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4137	tmp->fltr_info.vsi_handle = vsi_handle;
4138	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4139
4140	list_add(&tmp->list_entry, vsi_list_head);
4141
4142	return 0;
4143}
4144
4145/**
4146 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4147 * @hw: pointer to the hardware structure
4148 * @vsi_handle: VSI handle to remove filters from
4149 * @lkup_list_head: pointer to the list that has certain lookup type filters
4150 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4151 *
4152 * Locates all filters in lkup_list_head that are used by the given VSI,
4153 * and adds COPIES of those entries to vsi_list_head (intended to be used
4154 * to remove the listed filters).
4155 * Note that this means all entries in vsi_list_head must be explicitly
4156 * deallocated by the caller when done with list.
4157 */
4158static int
4159ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4160			 struct list_head *lkup_list_head,
4161			 struct list_head *vsi_list_head)
4162{
4163	struct ice_fltr_mgmt_list_entry *fm_entry;
4164	int status = 0;
4165
4166	/* check to make sure VSI ID is valid and within boundary */
4167	if (!ice_is_vsi_valid(hw, vsi_handle))
4168		return -EINVAL;
4169
4170	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4171		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4172			continue;
4173
4174		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4175							vsi_list_head,
4176							&fm_entry->fltr_info);
4177		if (status)
4178			return status;
4179	}
4180	return status;
4181}
4182
4183/**
4184 * ice_determine_promisc_mask
4185 * @fi: filter info to parse
4186 *
4187 * Helper function to determine which ICE_PROMISC_ mask corresponds
4188 * to given filter into.
4189 */
4190static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4191{
4192	u16 vid = fi->l_data.mac_vlan.vlan_id;
4193	u8 *macaddr = fi->l_data.mac.mac_addr;
4194	bool is_tx_fltr = false;
4195	u8 promisc_mask = 0;
4196
4197	if (fi->flag == ICE_FLTR_TX)
4198		is_tx_fltr = true;
4199
4200	if (is_broadcast_ether_addr(macaddr))
4201		promisc_mask |= is_tx_fltr ?
4202			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4203	else if (is_multicast_ether_addr(macaddr))
4204		promisc_mask |= is_tx_fltr ?
4205			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4206	else if (is_unicast_ether_addr(macaddr))
4207		promisc_mask |= is_tx_fltr ?
4208			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4209	if (vid)
4210		promisc_mask |= is_tx_fltr ?
4211			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4212
4213	return promisc_mask;
4214}
4215
4216/**
4217 * ice_remove_promisc - Remove promisc based filter rules
4218 * @hw: pointer to the hardware structure
4219 * @recp_id: recipe ID for which the rule needs to removed
4220 * @v_list: list of promisc entries
4221 */
4222static int
4223ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4224{
4225	struct ice_fltr_list_entry *v_list_itr, *tmp;
4226
4227	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4228		v_list_itr->status =
4229			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4230		if (v_list_itr->status)
4231			return v_list_itr->status;
4232	}
4233	return 0;
4234}
4235
4236/**
4237 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4238 * @hw: pointer to the hardware structure
4239 * @vsi_handle: VSI handle to clear mode
4240 * @promisc_mask: mask of promiscuous config bits to clear
4241 * @vid: VLAN ID to clear VLAN promiscuous
4242 */
4243int
4244ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4245		      u16 vid)
4246{
4247	struct ice_switch_info *sw = hw->switch_info;
4248	struct ice_fltr_list_entry *fm_entry, *tmp;
4249	struct list_head remove_list_head;
4250	struct ice_fltr_mgmt_list_entry *itr;
4251	struct list_head *rule_head;
4252	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4253	int status = 0;
4254	u8 recipe_id;
4255
4256	if (!ice_is_vsi_valid(hw, vsi_handle))
4257		return -EINVAL;
4258
4259	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4260		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4261	else
4262		recipe_id = ICE_SW_LKUP_PROMISC;
4263
4264	rule_head = &sw->recp_list[recipe_id].filt_rules;
4265	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4266
4267	INIT_LIST_HEAD(&remove_list_head);
4268
4269	mutex_lock(rule_lock);
4270	list_for_each_entry(itr, rule_head, list_entry) {
4271		struct ice_fltr_info *fltr_info;
4272		u8 fltr_promisc_mask = 0;
4273
4274		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4275			continue;
4276		fltr_info = &itr->fltr_info;
4277
4278		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4279		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4280			continue;
4281
4282		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4283
4284		/* Skip if filter is not completely specified by given mask */
4285		if (fltr_promisc_mask & ~promisc_mask)
4286			continue;
4287
4288		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4289							&remove_list_head,
4290							fltr_info);
4291		if (status) {
4292			mutex_unlock(rule_lock);
4293			goto free_fltr_list;
4294		}
4295	}
4296	mutex_unlock(rule_lock);
4297
4298	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4299
4300free_fltr_list:
4301	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4302		list_del(&fm_entry->list_entry);
4303		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4304	}
4305
4306	return status;
4307}
4308
4309/**
4310 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4311 * @hw: pointer to the hardware structure
4312 * @vsi_handle: VSI handle to configure
4313 * @promisc_mask: mask of promiscuous config bits
4314 * @vid: VLAN ID to set VLAN promiscuous
4315 */
4316int
4317ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4318{
4319	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4320	struct ice_fltr_list_entry f_list_entry;
4321	struct ice_fltr_info new_fltr;
4322	bool is_tx_fltr;
4323	int status = 0;
4324	u16 hw_vsi_id;
4325	int pkt_type;
4326	u8 recipe_id;
4327
4328	if (!ice_is_vsi_valid(hw, vsi_handle))
4329		return -EINVAL;
4330	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4331
4332	memset(&new_fltr, 0, sizeof(new_fltr));
4333
4334	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4335		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4336		new_fltr.l_data.mac_vlan.vlan_id = vid;
4337		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4338	} else {
4339		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4340		recipe_id = ICE_SW_LKUP_PROMISC;
4341	}
4342
4343	/* Separate filters must be set for each direction/packet type
4344	 * combination, so we will loop over the mask value, store the
4345	 * individual type, and clear it out in the input mask as it
4346	 * is found.
4347	 */
4348	while (promisc_mask) {
4349		u8 *mac_addr;
4350
4351		pkt_type = 0;
4352		is_tx_fltr = false;
4353
4354		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4355			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4356			pkt_type = UCAST_FLTR;
4357		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4358			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4359			pkt_type = UCAST_FLTR;
4360			is_tx_fltr = true;
4361		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4362			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4363			pkt_type = MCAST_FLTR;
4364		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4365			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4366			pkt_type = MCAST_FLTR;
4367			is_tx_fltr = true;
4368		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4369			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4370			pkt_type = BCAST_FLTR;
4371		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4372			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4373			pkt_type = BCAST_FLTR;
4374			is_tx_fltr = true;
4375		}
4376
4377		/* Check for VLAN promiscuous flag */
4378		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4379			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4380		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4381			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4382			is_tx_fltr = true;
4383		}
4384
4385		/* Set filter DA based on packet type */
4386		mac_addr = new_fltr.l_data.mac.mac_addr;
4387		if (pkt_type == BCAST_FLTR) {
4388			eth_broadcast_addr(mac_addr);
4389		} else if (pkt_type == MCAST_FLTR ||
4390			   pkt_type == UCAST_FLTR) {
4391			/* Use the dummy ether header DA */
4392			ether_addr_copy(mac_addr, dummy_eth_header);
4393			if (pkt_type == MCAST_FLTR)
4394				mac_addr[0] |= 0x1;	/* Set multicast bit */
4395		}
4396
4397		/* Need to reset this to zero for all iterations */
4398		new_fltr.flag = 0;
4399		if (is_tx_fltr) {
4400			new_fltr.flag |= ICE_FLTR_TX;
4401			new_fltr.src = hw_vsi_id;
4402		} else {
4403			new_fltr.flag |= ICE_FLTR_RX;
4404			new_fltr.src = hw->port_info->lport;
4405		}
4406
4407		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4408		new_fltr.vsi_handle = vsi_handle;
4409		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4410		f_list_entry.fltr_info = new_fltr;
4411
4412		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4413		if (status)
4414			goto set_promisc_exit;
4415	}
4416
4417set_promisc_exit:
4418	return status;
4419}
4420
4421/**
4422 * ice_set_vlan_vsi_promisc
4423 * @hw: pointer to the hardware structure
4424 * @vsi_handle: VSI handle to configure
4425 * @promisc_mask: mask of promiscuous config bits
4426 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4427 *
4428 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4429 */
4430int
4431ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4432			 bool rm_vlan_promisc)
4433{
4434	struct ice_switch_info *sw = hw->switch_info;
4435	struct ice_fltr_list_entry *list_itr, *tmp;
4436	struct list_head vsi_list_head;
4437	struct list_head *vlan_head;
4438	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4439	u16 vlan_id;
4440	int status;
4441
4442	INIT_LIST_HEAD(&vsi_list_head);
4443	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4444	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4445	mutex_lock(vlan_lock);
4446	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4447					  &vsi_list_head);
4448	mutex_unlock(vlan_lock);
4449	if (status)
4450		goto free_fltr_list;
4451
4452	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4453		/* Avoid enabling or disabling VLAN zero twice when in double
4454		 * VLAN mode
4455		 */
4456		if (ice_is_dvm_ena(hw) &&
4457		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4458			continue;
4459
4460		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4461		if (rm_vlan_promisc)
4462			status = ice_clear_vsi_promisc(hw, vsi_handle,
4463						       promisc_mask, vlan_id);
4464		else
4465			status = ice_set_vsi_promisc(hw, vsi_handle,
4466						     promisc_mask, vlan_id);
4467		if (status && status != -EEXIST)
4468			break;
4469	}
4470
4471free_fltr_list:
4472	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4473		list_del(&list_itr->list_entry);
4474		devm_kfree(ice_hw_to_dev(hw), list_itr);
4475	}
4476	return status;
4477}
4478
4479/**
4480 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4481 * @hw: pointer to the hardware structure
4482 * @vsi_handle: VSI handle to remove filters from
4483 * @lkup: switch rule filter lookup type
4484 */
4485static void
4486ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4487			 enum ice_sw_lkup_type lkup)
4488{
4489	struct ice_switch_info *sw = hw->switch_info;
4490	struct ice_fltr_list_entry *fm_entry;
4491	struct list_head remove_list_head;
4492	struct list_head *rule_head;
4493	struct ice_fltr_list_entry *tmp;
4494	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4495	int status;
4496
4497	INIT_LIST_HEAD(&remove_list_head);
4498	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4499	rule_head = &sw->recp_list[lkup].filt_rules;
4500	mutex_lock(rule_lock);
4501	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4502					  &remove_list_head);
4503	mutex_unlock(rule_lock);
4504	if (status)
4505		goto free_fltr_list;
4506
4507	switch (lkup) {
4508	case ICE_SW_LKUP_MAC:
4509		ice_remove_mac(hw, &remove_list_head);
4510		break;
4511	case ICE_SW_LKUP_VLAN:
4512		ice_remove_vlan(hw, &remove_list_head);
4513		break;
4514	case ICE_SW_LKUP_PROMISC:
4515	case ICE_SW_LKUP_PROMISC_VLAN:
4516		ice_remove_promisc(hw, lkup, &remove_list_head);
4517		break;
4518	case ICE_SW_LKUP_MAC_VLAN:
4519	case ICE_SW_LKUP_ETHERTYPE:
4520	case ICE_SW_LKUP_ETHERTYPE_MAC:
4521	case ICE_SW_LKUP_DFLT:
4522	case ICE_SW_LKUP_LAST:
4523	default:
4524		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4525		break;
4526	}
4527
4528free_fltr_list:
4529	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4530		list_del(&fm_entry->list_entry);
4531		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4532	}
4533}
4534
4535/**
4536 * ice_remove_vsi_fltr - Remove all filters for a VSI
4537 * @hw: pointer to the hardware structure
4538 * @vsi_handle: VSI handle to remove filters from
4539 */
4540void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4541{
4542	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4543	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4544	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4545	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4546	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4547	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4548	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4549	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4550}
4551
4552/**
4553 * ice_alloc_res_cntr - allocating resource counter
4554 * @hw: pointer to the hardware structure
4555 * @type: type of resource
4556 * @alloc_shared: if set it is shared else dedicated
4557 * @num_items: number of entries requested for FD resource type
4558 * @counter_id: counter index returned by AQ call
4559 */
4560int
4561ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4562		   u16 *counter_id)
4563{
4564	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4565	u16 buf_len = __struct_size(buf);
4566	int status;
4567
 
 
 
 
 
 
4568	buf->num_elems = cpu_to_le16(num_items);
4569	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4570				    alloc_shared);
4571
4572	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
 
4573	if (status)
4574		return status;
4575
4576	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
 
 
 
4577	return status;
4578}
4579
4580/**
4581 * ice_free_res_cntr - free resource counter
4582 * @hw: pointer to the hardware structure
4583 * @type: type of resource
4584 * @alloc_shared: if set it is shared else dedicated
4585 * @num_items: number of entries to be freed for FD resource type
4586 * @counter_id: counter ID resource which needs to be freed
4587 */
4588int
4589ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4590		  u16 counter_id)
4591{
4592	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4593	u16 buf_len = __struct_size(buf);
4594	int status;
4595
 
 
 
 
 
 
4596	buf->num_elems = cpu_to_le16(num_items);
4597	buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4598				    alloc_shared);
4599	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4600
4601	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
 
4602	if (status)
4603		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4604
4605	return status;
4606}
4607
4608#define ICE_PROTOCOL_ENTRY(id, ...) {		\
4609	.prot_type	= id,			\
4610	.offs		= {__VA_ARGS__},	\
4611}
4612
4613/**
4614 * ice_share_res - set a resource as shared or dedicated
4615 * @hw: hw struct of original owner of resource
4616 * @type: resource type
4617 * @shared: is the resource being set to shared
4618 * @res_id: resource id (descriptor)
4619 */
4620int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4621{
4622	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4623	u16 buf_len = __struct_size(buf);
4624	u16 res_type;
4625	int status;
4626
4627	buf->num_elems = cpu_to_le16(1);
4628	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4629	if (shared)
4630		res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4631
4632	buf->res_type = cpu_to_le16(res_type);
4633	buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4634	status = ice_aq_alloc_free_res(hw, buf, buf_len,
4635				       ice_aqc_opc_share_res);
4636	if (status)
4637		ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4638			  type, res_id, shared ? "SHARED" : "DEDICATED");
4639
4640	return status;
4641}
4642
4643/* This is mapping table entry that maps every word within a given protocol
4644 * structure to the real byte offset as per the specification of that
4645 * protocol header.
4646 * for example dst address is 3 words in ethertype header and corresponding
4647 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4648 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4649 * matching entry describing its field. This needs to be updated if new
4650 * structure is added to that union.
4651 */
4652static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4653	ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4654	ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4655	ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4656	ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4657	ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4658	ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4659	ICE_PROTOCOL_ENTRY(ICE_IPV4_IL,	0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4660	ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4661			   20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4662	ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4663			   22, 24, 26, 28, 30, 32, 34, 36, 38),
4664	ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4665	ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4666	ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4667	ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4668	ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4669	ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4670	ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4671	ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4672	ICE_PROTOCOL_ENTRY(ICE_PFCP, 8, 10, 12, 14, 16, 18, 20, 22),
4673	ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4674	ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4675	ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4676	ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4677	ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4678			   ICE_SOURCE_PORT_MDID_OFFSET,
4679			   ICE_PTYPE_MDID_OFFSET,
4680			   ICE_PACKET_LENGTH_MDID_OFFSET,
4681			   ICE_SOURCE_VSI_MDID_OFFSET,
4682			   ICE_PKT_VLAN_MDID_OFFSET,
4683			   ICE_PKT_TUNNEL_MDID_OFFSET,
4684			   ICE_PKT_TCP_MDID_OFFSET,
4685			   ICE_PKT_ERROR_MDID_OFFSET),
4686};
4687
4688static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4689	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4690	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4691	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4692	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4693	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4694	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4695	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4696	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4697	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4698	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4699	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4700	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4701	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4702	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4703	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4704	{ ICE_GTP,		ICE_UDP_OF_HW },
4705	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
4706	{ ICE_PFCP,		ICE_UDP_ILOS_HW },
4707	{ ICE_PPPOE,		ICE_PPPOE_HW },
4708	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4709	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4710	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4711	{ ICE_HW_METADATA,      ICE_META_DATA_ID_HW },
4712};
4713
4714/**
4715 * ice_find_recp - find a recipe
4716 * @hw: pointer to the hardware structure
4717 * @lkup_exts: extension sequence to match
4718 * @rinfo: information regarding the rule e.g. priority and action info
4719 * @is_add: flag of adding recipe
4720 *
4721 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4722 */
4723static u16
4724ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4725	      const struct ice_adv_rule_info *rinfo, bool is_add)
4726{
4727	bool refresh_required = true;
4728	struct ice_sw_recipe *recp;
4729	u8 i;
4730
4731	/* Walk through existing recipes to find a match */
4732	recp = hw->switch_info->recp_list;
4733	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4734		/* If recipe was not created for this ID, in SW bookkeeping,
4735		 * check if FW has an entry for this recipe. If the FW has an
4736		 * entry update it in our SW bookkeeping and continue with the
4737		 * matching.
4738		 */
4739		if (hw->recp_reuse) {
4740			if (ice_get_recp_frm_fw(hw,
4741						hw->switch_info->recp_list, i,
4742						&refresh_required, is_add))
4743				continue;
4744		}
 
 
 
 
4745
4746		/* if number of words we are looking for match */
4747		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4748			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4749			struct ice_fv_word *be = lkup_exts->fv_words;
4750			u16 *cr = recp[i].lkup_exts.field_mask;
4751			u16 *de = lkup_exts->field_mask;
4752			bool found = true;
4753			u8 pe, qr;
4754
4755			/* ar, cr, and qr are related to the recipe words, while
4756			 * be, de, and pe are related to the lookup words
4757			 */
4758			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4759				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4760				     qr++) {
4761					if (ar[qr].off == be[pe].off &&
4762					    ar[qr].prot_id == be[pe].prot_id &&
4763					    cr[qr] == de[pe])
4764						/* Found the "pe"th word in the
4765						 * given recipe
4766						 */
4767						break;
4768				}
4769				/* After walking through all the words in the
4770				 * "i"th recipe if "p"th word was not found then
4771				 * this recipe is not what we are looking for.
4772				 * So break out from this loop and try the next
4773				 * recipe
4774				 */
4775				if (qr >= recp[i].lkup_exts.n_val_words) {
4776					found = false;
4777					break;
4778				}
4779			}
4780			/* If for "i"th recipe the found was never set to false
4781			 * then it means we found our match
4782			 * Also tun type and *_pass_l2 of recipe needs to be
4783			 * checked
4784			 */
4785			if (found && recp[i].tun_type == rinfo->tun_type &&
4786			    recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4787			    recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4788				return i; /* Return the recipe ID */
4789		}
4790	}
4791	return ICE_MAX_NUM_RECIPES;
4792}
4793
4794/**
4795 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4796 *
4797 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4798 * supported protocol array record for outer vlan has to be modified to
4799 * reflect the value proper for DVM.
4800 */
4801void ice_change_proto_id_to_dvm(void)
4802{
4803	u8 i;
4804
4805	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4806		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4807		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4808			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4809}
4810
4811/**
4812 * ice_prot_type_to_id - get protocol ID from protocol type
4813 * @type: protocol type
4814 * @id: pointer to variable that will receive the ID
4815 *
4816 * Returns true if found, false otherwise
4817 */
4818static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4819{
4820	u8 i;
4821
4822	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4823		if (ice_prot_id_tbl[i].type == type) {
4824			*id = ice_prot_id_tbl[i].protocol_id;
4825			return true;
4826		}
4827	return false;
4828}
4829
4830/**
4831 * ice_fill_valid_words - count valid words
4832 * @rule: advanced rule with lookup information
4833 * @lkup_exts: byte offset extractions of the words that are valid
4834 *
4835 * calculate valid words in a lookup rule using mask value
4836 */
4837static u8
4838ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4839		     struct ice_prot_lkup_ext *lkup_exts)
4840{
4841	u8 j, word, prot_id, ret_val;
4842
4843	if (!ice_prot_type_to_id(rule->type, &prot_id))
4844		return 0;
4845
4846	word = lkup_exts->n_val_words;
4847
4848	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4849		if (((u16 *)&rule->m_u)[j] &&
4850		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4851			/* No more space to accommodate */
4852			if (word >= ICE_MAX_CHAIN_WORDS)
4853				return 0;
4854			lkup_exts->fv_words[word].off =
4855				ice_prot_ext[rule->type].offs[j];
4856			lkup_exts->fv_words[word].prot_id =
4857				ice_prot_id_tbl[rule->type].protocol_id;
4858			lkup_exts->field_mask[word] =
4859				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4860			word++;
4861		}
4862
4863	ret_val = word - lkup_exts->n_val_words;
4864	lkup_exts->n_val_words = word;
4865
4866	return ret_val;
4867}
4868
4869/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4870 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4871 * @hw: pointer to the hardware structure
4872 * @rm: recipe management list entry
 
4873 *
4874 * Helper function to fill in the field vector indices for protocol-offset
4875 * pairs. These indexes are then ultimately programmed into a recipe.
4876 */
4877static int
4878ice_fill_fv_word_index(struct ice_hw *hw, struct ice_sw_recipe *rm)
 
4879{
4880	struct ice_sw_fv_list_entry *fv;
 
4881	struct ice_fv_word *fv_ext;
4882	u8 i;
4883
4884	if (list_empty(&rm->fv_list))
4885		return -EINVAL;
4886
4887	fv = list_first_entry(&rm->fv_list, struct ice_sw_fv_list_entry,
4888			      list_entry);
4889	fv_ext = fv->fv_ptr->ew;
4890
4891	/* Add switch id as the first word. */
4892	rm->fv_idx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4893	rm->fv_mask[0] = ICE_AQ_SW_ID_LKUP_MASK;
4894	rm->n_ext_words++;
4895
4896	for (i = 1; i < rm->n_ext_words; i++) {
4897		struct ice_fv_word *fv_word = &rm->ext_words[i - 1];
4898		u16 fv_mask = rm->word_masks[i - 1];
4899		bool found = false;
4900		u8 j;
4901
4902		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) {
4903			if (fv_ext[j].prot_id == fv_word->prot_id &&
4904			    fv_ext[j].off == fv_word->off) {
4905				found = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4906
4907				/* Store index of field vector */
4908				rm->fv_idx[i] = j;
4909				rm->fv_mask[i] = fv_mask;
4910				break;
4911			}
4912		}
4913
4914		/* Protocol/offset could not be found, caller gave an invalid
4915		 * pair.
4916		 */
4917		if (!found)
4918			return -EINVAL;
4919	}
4920
4921	return 0;
4922}
4923
4924/**
4925 * ice_find_free_recp_res_idx - find free result indexes for recipe
4926 * @hw: pointer to hardware structure
4927 * @profiles: bitmap of profiles that will be associated with the new recipe
4928 * @free_idx: pointer to variable to receive the free index bitmap
4929 *
4930 * The algorithm used here is:
4931 *	1. When creating a new recipe, create a set P which contains all
4932 *	   Profiles that will be associated with our new recipe
4933 *
4934 *	2. For each Profile p in set P:
4935 *	    a. Add all recipes associated with Profile p into set R
4936 *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4937 *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4938 *		i. Or just assume they all have the same possible indexes:
4939 *			44, 45, 46, 47
4940 *			i.e., PossibleIndexes = 0x0000F00000000000
4941 *
4942 *	3. For each Recipe r in set R:
4943 *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4944 *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4945 *
4946 *	FreeIndexes will contain the bits indicating the indexes free for use,
4947 *      then the code needs to update the recipe[r].used_result_idx_bits to
4948 *      indicate which indexes were selected for use by this recipe.
4949 */
4950static u16
4951ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4952			   unsigned long *free_idx)
4953{
4954	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4955	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4956	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4957	u16 bit;
4958
4959	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4960	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4961
4962	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4963
4964	/* For each profile we are going to associate the recipe with, add the
4965	 * recipes that are associated with that profile. This will give us
4966	 * the set of recipes that our recipe may collide with. Also, determine
4967	 * what possible result indexes are usable given this set of profiles.
4968	 */
4969	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4970		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4971			  ICE_MAX_NUM_RECIPES);
4972		bitmap_and(possible_idx, possible_idx,
4973			   hw->switch_info->prof_res_bm[bit],
4974			   ICE_MAX_FV_WORDS);
4975	}
4976
4977	/* For each recipe that our new recipe may collide with, determine
4978	 * which indexes have been used.
4979	 */
4980	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4981		bitmap_or(used_idx, used_idx,
4982			  hw->switch_info->recp_list[bit].res_idxs,
4983			  ICE_MAX_FV_WORDS);
4984
4985	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4986
4987	/* return number of free indexes */
4988	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4989}
4990
4991/**
4992 * ice_calc_recp_cnt - calculate number of recipes based on word count
4993 * @word_cnt: number of lookup words
4994 *
4995 * Word count should include switch ID word and regular lookup words.
4996 * Returns: number of recipes required to fit @word_cnt, including extra recipes
4997 * needed for recipe chaining (if needed).
4998 */
4999static int ice_calc_recp_cnt(u8 word_cnt)
5000{
5001	/* All words fit in a single recipe, no need for chaining. */
5002	if (word_cnt <= ICE_NUM_WORDS_RECIPE)
5003		return 1;
5004
5005	/* Recipe chaining required. Result indexes are fitted right after
5006	 * regular lookup words. In some cases a new recipe must be added in
5007	 * order to fit result indexes.
5008	 *
5009	 * While the word count increases, every 5 words an extra recipe needs
5010	 * to be added. However, by adding a recipe, one word for its result
5011	 * index must also be added, therefore every 4 words recipe count
5012	 * increases by 1. This calculation does not apply to word count == 1,
5013	 * which is handled above.
5014	 */
5015	return (word_cnt + 2) / (ICE_NUM_WORDS_RECIPE - 1);
5016}
5017
5018static void fill_recipe_template(struct ice_aqc_recipe_data_elem *recp, u16 rid,
5019				 const struct ice_sw_recipe *rm)
5020{
5021	int i;
5022
5023	recp->recipe_indx = rid;
5024	recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_PRUNE_INDX_M;
5025
5026	for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
5027		recp->content.lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5028		recp->content.mask[i] = cpu_to_le16(0);
5029	}
5030
5031	set_bit(rid, (unsigned long *)recp->recipe_bitmap);
5032	recp->content.act_ctrl_fwd_priority = rm->priority;
5033
5034	if (rm->need_pass_l2)
5035		recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5036
5037	if (rm->allow_pass_l2)
5038		recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5039}
5040
5041static void bookkeep_recipe(struct ice_sw_recipe *recipe,
5042			    struct ice_aqc_recipe_data_elem *r,
5043			    const struct ice_sw_recipe *rm)
5044{
5045	memcpy(recipe->r_bitmap, r->recipe_bitmap, sizeof(recipe->r_bitmap));
5046
5047	recipe->priority = r->content.act_ctrl_fwd_priority;
5048	recipe->tun_type = rm->tun_type;
5049	recipe->need_pass_l2 = rm->need_pass_l2;
5050	recipe->allow_pass_l2 = rm->allow_pass_l2;
5051	recipe->recp_created = true;
5052}
5053
5054/* For memcpy in ice_add_sw_recipe. */
5055static_assert(sizeof_field(struct ice_aqc_recipe_data_elem, recipe_bitmap) ==
5056	      sizeof_field(struct ice_sw_recipe, r_bitmap));
5057
5058/**
5059 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5060 * @hw: pointer to hardware structure
5061 * @rm: recipe management list entry
5062 * @profiles: bitmap of profiles that will be associated.
5063 */
5064static int
5065ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5066		  unsigned long *profiles)
5067{
5068	struct ice_aqc_recipe_data_elem *buf __free(kfree) = NULL;
5069	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5070	struct ice_aqc_recipe_data_elem *root;
5071	struct ice_sw_recipe *recipe;
5072	u16 free_res_idx, rid;
5073	int lookup = 0;
5074	int recp_cnt;
 
 
5075	int status;
5076	int word;
5077	int i;
5078
5079	recp_cnt = ice_calc_recp_cnt(rm->n_ext_words);
5080
 
 
 
 
 
 
5081	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5082	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5083
5084	/* Check number of free result indices */
5085	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5086
5087	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5088		  free_res_idx, recp_cnt);
5089
5090	/* Last recipe doesn't need result index */
5091	if (recp_cnt - 1 > free_res_idx)
5092		return -ENOSPC;
 
 
 
5093
5094	if (recp_cnt > ICE_MAX_CHAIN_RECIPE_RES)
5095		return -E2BIG;
5096
5097	buf = kcalloc(recp_cnt, sizeof(*buf), GFP_KERNEL);
5098	if (!buf)
5099		return -ENOMEM;
5100
5101	/* Setup the non-root subrecipes. These do not contain lookups for other
5102	 * subrecipes results. Set associated recipe only to own recipe index.
5103	 * Each non-root subrecipe needs a free result index from FV.
5104	 *
5105	 * Note: only done if there is more than one recipe.
 
 
 
 
 
 
 
 
 
 
 
5106	 */
5107	for (i = 0; i < recp_cnt - 1; i++) {
5108		struct ice_aqc_recipe_content *content;
5109		u8 result_idx;
5110
5111		status = ice_alloc_recipe(hw, &rid);
5112		if (status)
5113			return status;
5114
5115		fill_recipe_template(&buf[i], rid, rm);
 
 
 
5116
5117		result_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5118		/* Check if there really is a valid result index that can be
5119		 * used.
 
5120		 */
5121		if (result_idx >= ICE_MAX_FV_WORDS) {
5122			ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5123			return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
5124		}
5125		clear_bit(result_idx, result_idx_bm);
5126
5127		content = &buf[i].content;
5128		content->result_indx = ICE_AQ_RECIPE_RESULT_EN |
5129				       FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5130						  result_idx);
5131
5132		/* Set recipe association to be used for root recipe */
5133		set_bit(rid, rm->r_bitmap);
5134
5135		word = 0;
5136		while (lookup < rm->n_ext_words &&
5137		       word < ICE_NUM_WORDS_RECIPE) {
5138			content->lkup_indx[word] = rm->fv_idx[lookup];
5139			content->mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
 
 
 
 
5140
5141			lookup++;
5142			word++;
 
 
 
 
 
 
5143		}
5144
5145		recipe = &hw->switch_info->recp_list[rid];
5146		set_bit(result_idx, recipe->res_idxs);
5147		bookkeep_recipe(recipe, &buf[i], rm);
 
 
 
 
5148	}
5149
5150	/* Setup the root recipe */
5151	status = ice_alloc_recipe(hw, &rid);
5152	if (status)
5153		return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5154
5155	recipe = &hw->switch_info->recp_list[rid];
5156	root = &buf[recp_cnt - 1];
5157	fill_recipe_template(root, rid, rm);
5158
5159	/* Set recipe association, use previously set bitmap and own rid */
5160	set_bit(rid, rm->r_bitmap);
5161	memcpy(root->recipe_bitmap, rm->r_bitmap, sizeof(root->recipe_bitmap));
5162
5163	/* For non-root recipes rid should be 0, for root it should be correct
5164	 * rid value ored with 0x80 (is root bit).
5165	 */
5166	root->content.rid = rid | ICE_AQ_RECIPE_ID_IS_ROOT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5167
5168	/* Fill remaining lookups in root recipe */
5169	word = 0;
5170	while (lookup < rm->n_ext_words &&
5171	       word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5172		root->content.lkup_indx[word] = rm->fv_idx[lookup];
5173		root->content.mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5174
5175		lookup++;
5176		word++;
5177	}
5178
5179	/* Fill result indexes as lookups */
5180	i = 0;
5181	while (i < recp_cnt - 1 &&
5182	       word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5183		root->content.lkup_indx[word] = buf[i].content.result_indx &
5184						~ICE_AQ_RECIPE_RESULT_EN;
5185		root->content.mask[word] = cpu_to_le16(0xffff);
5186		/* For bookkeeping, it is needed to mark FV index as used for
5187		 * intermediate result.
5188		 */
5189		set_bit(root->content.lkup_indx[word], recipe->res_idxs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5190
5191		i++;
5192		word++;
5193	}
5194
5195	rm->root_rid = rid;
5196	bookkeep_recipe(&hw->switch_info->recp_list[rid], root, rm);
5197
5198	/* Program the recipe */
5199	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5200	if (status)
5201		return status;
5202
5203	status = ice_aq_add_recipe(hw, buf, recp_cnt, NULL);
5204	ice_release_change_lock(hw);
5205	if (status)
5206		return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5207
5208	return 0;
5209}
5210
5211/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5212 * @hw: pointer to hardware structure
5213 * @rinfo: other information regarding the rule e.g. priority and action info
5214 * @bm: pointer to memory for returning the bitmap of field vectors
5215 */
5216static void
5217ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5218			 unsigned long *bm)
5219{
5220	enum ice_prof_type prof_type;
5221
5222	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5223
5224	switch (rinfo->tun_type) {
5225	case ICE_NON_TUN:
5226		prof_type = ICE_PROF_NON_TUN;
5227		break;
5228	case ICE_ALL_TUNNELS:
5229		prof_type = ICE_PROF_TUN_ALL;
5230		break;
5231	case ICE_SW_TUN_GENEVE:
5232	case ICE_SW_TUN_VXLAN:
5233		prof_type = ICE_PROF_TUN_UDP;
5234		break;
5235	case ICE_SW_TUN_NVGRE:
5236		prof_type = ICE_PROF_TUN_GRE;
5237		break;
5238	case ICE_SW_TUN_GTPU:
5239		prof_type = ICE_PROF_TUN_GTPU;
5240		break;
5241	case ICE_SW_TUN_GTPC:
5242		prof_type = ICE_PROF_TUN_GTPC;
5243		break;
5244	case ICE_SW_TUN_PFCP:
5245		prof_type = ICE_PROF_TUN_PFCP;
5246		break;
5247	case ICE_SW_TUN_AND_NON_TUN:
5248	default:
5249		prof_type = ICE_PROF_ALL;
5250		break;
5251	}
5252
5253	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5254}
5255
5256/**
5257 * ice_subscribe_recipe - subscribe to an existing recipe
5258 * @hw: pointer to the hardware structure
5259 * @rid: recipe ID to subscribe to
5260 *
5261 * Return: 0 on success, and others on error
5262 */
5263static int ice_subscribe_recipe(struct ice_hw *hw, u16 rid)
5264{
5265	DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
5266	u16 buf_len = __struct_size(sw_buf);
5267	u16 res_type;
5268	int status;
5269
5270	/* Prepare buffer to allocate resource */
5271	sw_buf->num_elems = cpu_to_le16(1);
5272	res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE) |
5273		   ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED |
5274		   ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_CTL;
5275	sw_buf->res_type = cpu_to_le16(res_type);
5276
5277	sw_buf->elem[0].e.sw_resp = cpu_to_le16(rid);
5278
5279	status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
5280				       ice_aqc_opc_alloc_res);
5281
5282	return status;
5283}
5284
5285/**
5286 * ice_subscribable_recp_shared - share an existing subscribable recipe
5287 * @hw: pointer to the hardware structure
5288 * @rid: recipe ID to subscribe to
5289 */
5290static void ice_subscribable_recp_shared(struct ice_hw *hw, u16 rid)
5291{
5292	struct ice_sw_recipe *recps = hw->switch_info->recp_list;
5293	u16 sub_rid;
5294
5295	for_each_set_bit(sub_rid, recps[rid].r_bitmap, ICE_MAX_NUM_RECIPES)
5296		ice_subscribe_recipe(hw, sub_rid);
5297}
5298
5299/**
5300 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5301 * @hw: pointer to hardware structure
5302 * @lkups: lookup elements or match criteria for the advanced recipe, one
5303 *  structure per protocol header
5304 * @lkups_cnt: number of protocols
5305 * @rinfo: other information regarding the rule e.g. priority and action info
5306 * @rid: return the recipe ID of the recipe created
5307 */
5308static int
5309ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5310		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5311{
5312	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5313	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5314	struct ice_prot_lkup_ext *lkup_exts;
 
5315	struct ice_sw_fv_list_entry *fvit;
 
5316	struct ice_sw_fv_list_entry *tmp;
5317	struct ice_sw_recipe *rm;
5318	int status = 0;
5319	u16 rid_tmp;
5320	u8 i;
5321
5322	if (!lkups_cnt)
5323		return -EINVAL;
5324
5325	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5326	if (!lkup_exts)
5327		return -ENOMEM;
5328
5329	/* Determine the number of words to be matched and if it exceeds a
5330	 * recipe's restrictions
5331	 */
5332	for (i = 0; i < lkups_cnt; i++) {
5333		u16 count;
5334
5335		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5336			status = -EIO;
5337			goto err_free_lkup_exts;
5338		}
5339
5340		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5341		if (!count) {
5342			status = -EIO;
5343			goto err_free_lkup_exts;
5344		}
5345	}
5346
5347	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5348	if (!rm) {
5349		status = -ENOMEM;
5350		goto err_free_lkup_exts;
5351	}
5352
5353	/* Get field vectors that contain fields extracted from all the protocol
5354	 * headers being programmed.
5355	 */
5356	INIT_LIST_HEAD(&rm->fv_list);
 
5357
5358	/* Get bitmap of field vectors (profiles) that are compatible with the
5359	 * rule request; only these will be searched in the subsequent call to
5360	 * ice_get_sw_fv_list.
5361	 */
5362	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5363
5364	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5365	if (status)
5366		goto err_unroll;
5367
5368	/* Copy FV words and masks from lkup_exts to recipe struct. */
5369	rm->n_ext_words = lkup_exts->n_val_words;
5370	memcpy(rm->ext_words, lkup_exts->fv_words, sizeof(rm->ext_words));
5371	memcpy(rm->word_masks, lkup_exts->field_mask, sizeof(rm->word_masks));
 
 
 
 
 
 
 
 
 
5372
5373	/* set the recipe priority if specified */
5374	rm->priority = (u8)rinfo->priority;
5375
5376	rm->need_pass_l2 = rinfo->need_pass_l2;
5377	rm->allow_pass_l2 = rinfo->allow_pass_l2;
5378
5379	/* Find offsets from the field vector. Pick the first one for all the
5380	 * recipes.
5381	 */
5382	status = ice_fill_fv_word_index(hw, rm);
5383	if (status)
5384		goto err_unroll;
5385
5386	/* get bitmap of all profiles the recipe will be associated with */
5387	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5388	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5389		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5390		set_bit((u16)fvit->profile_id, profiles);
5391	}
5392
5393	/* Look for a recipe which matches our requested fv / mask list */
5394	*rid = ice_find_recp(hw, lkup_exts, rinfo, true);
5395	if (*rid < ICE_MAX_NUM_RECIPES) {
5396		/* Success if found a recipe that match the existing criteria */
5397		if (hw->recp_reuse)
5398			ice_subscribable_recp_shared(hw, *rid);
5399
5400		goto err_unroll;
5401	}
5402
5403	rm->tun_type = rinfo->tun_type;
5404	/* Recipe we need does not exist, add a recipe */
5405	status = ice_add_sw_recipe(hw, rm, profiles);
5406	if (status)
5407		goto err_unroll;
5408
5409	/* Associate all the recipes created with all the profiles in the
5410	 * common field vector.
5411	 */
5412	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5413		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5414		u64 recp_assoc;
5415		u16 j;
5416
5417		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5418						      &recp_assoc, NULL);
5419		if (status)
5420			goto err_free_recipe;
5421
5422		bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5423		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5424			  ICE_MAX_NUM_RECIPES);
5425		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5426		if (status)
5427			goto err_free_recipe;
5428
5429		bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5430		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5431						      recp_assoc, NULL);
 
5432		ice_release_change_lock(hw);
5433
5434		if (status)
5435			goto err_free_recipe;
5436
5437		/* Update profile to recipe bitmap array */
5438		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5439			    ICE_MAX_NUM_RECIPES);
5440
5441		/* Update recipe to profile bitmap array */
5442		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5443			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5444	}
5445
5446	*rid = rm->root_rid;
5447	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5448	       sizeof(*lkup_exts));
5449	goto err_unroll;
5450
5451err_free_recipe:
5452	if (hw->recp_reuse) {
5453		for_each_set_bit(rid_tmp, rm->r_bitmap, ICE_MAX_NUM_RECIPES) {
5454			if (!ice_free_recipe_res(hw, rid_tmp))
5455				clear_bit(rid_tmp, rm->r_bitmap);
5456		}
5457	}
5458
5459err_unroll:
5460	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5461		list_del(&fvit->list_entry);
5462		devm_kfree(ice_hw_to_dev(hw), fvit);
5463	}
5464
 
 
 
5465	kfree(rm);
5466
5467err_free_lkup_exts:
5468	kfree(lkup_exts);
5469
5470	return status;
5471}
5472
5473/**
5474 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5475 *
5476 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5477 * @num_vlan: number of VLAN tags
5478 */
5479static struct ice_dummy_pkt_profile *
5480ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5481			  u32 num_vlan)
5482{
5483	struct ice_dummy_pkt_profile *profile;
5484	struct ice_dummy_pkt_offsets *offsets;
5485	u32 buf_len, off, etype_off, i;
5486	u8 *pkt;
5487
5488	if (num_vlan < 1 || num_vlan > 2)
5489		return ERR_PTR(-EINVAL);
5490
5491	off = num_vlan * VLAN_HLEN;
5492
5493	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5494		  dummy_pkt->offsets_len;
5495	offsets = kzalloc(buf_len, GFP_KERNEL);
5496	if (!offsets)
5497		return ERR_PTR(-ENOMEM);
5498
5499	offsets[0] = dummy_pkt->offsets[0];
5500	if (num_vlan == 2) {
5501		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5502		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5503	} else if (num_vlan == 1) {
5504		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5505	}
5506
5507	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5508		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5509		offsets[i + num_vlan].offset =
5510			dummy_pkt->offsets[i].offset + off;
5511	}
5512	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5513
5514	etype_off = dummy_pkt->offsets[1].offset;
5515
5516	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5517		  dummy_pkt->pkt_len;
5518	pkt = kzalloc(buf_len, GFP_KERNEL);
5519	if (!pkt) {
5520		kfree(offsets);
5521		return ERR_PTR(-ENOMEM);
5522	}
5523
5524	memcpy(pkt, dummy_pkt->pkt, etype_off);
5525	memcpy(pkt + etype_off,
5526	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5527	       off);
5528	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5529	       dummy_pkt->pkt_len - etype_off);
5530
5531	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5532	if (!profile) {
5533		kfree(offsets);
5534		kfree(pkt);
5535		return ERR_PTR(-ENOMEM);
5536	}
5537
5538	profile->offsets = offsets;
5539	profile->pkt = pkt;
5540	profile->pkt_len = buf_len;
5541	profile->match |= ICE_PKT_KMALLOC;
5542
5543	return profile;
5544}
5545
5546/**
5547 * ice_find_dummy_packet - find dummy packet
5548 *
5549 * @lkups: lookup elements or match criteria for the advanced recipe, one
5550 *	   structure per protocol header
5551 * @lkups_cnt: number of protocols
5552 * @tun_type: tunnel type
5553 *
5554 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5555 */
5556static const struct ice_dummy_pkt_profile *
5557ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5558		      enum ice_sw_tunnel_type tun_type)
5559{
5560	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5561	u32 match = 0, vlan_count = 0;
5562	u16 i;
5563
5564	switch (tun_type) {
5565	case ICE_SW_TUN_GTPC:
5566		match |= ICE_PKT_TUN_GTPC;
5567		break;
5568	case ICE_SW_TUN_GTPU:
5569		match |= ICE_PKT_TUN_GTPU;
5570		break;
5571	case ICE_SW_TUN_NVGRE:
5572		match |= ICE_PKT_TUN_NVGRE;
5573		break;
5574	case ICE_SW_TUN_GENEVE:
5575	case ICE_SW_TUN_VXLAN:
5576		match |= ICE_PKT_TUN_UDP;
5577		break;
5578	case ICE_SW_TUN_PFCP:
5579		match |= ICE_PKT_PFCP;
5580		break;
5581	default:
5582		break;
5583	}
5584
5585	for (i = 0; i < lkups_cnt; i++) {
5586		if (lkups[i].type == ICE_UDP_ILOS)
5587			match |= ICE_PKT_INNER_UDP;
5588		else if (lkups[i].type == ICE_TCP_IL)
5589			match |= ICE_PKT_INNER_TCP;
5590		else if (lkups[i].type == ICE_IPV6_OFOS)
5591			match |= ICE_PKT_OUTER_IPV6;
5592		else if (lkups[i].type == ICE_VLAN_OFOS ||
5593			 lkups[i].type == ICE_VLAN_EX)
5594			vlan_count++;
5595		else if (lkups[i].type == ICE_VLAN_IN)
5596			vlan_count++;
5597		else if (lkups[i].type == ICE_ETYPE_OL &&
5598			 lkups[i].h_u.ethertype.ethtype_id ==
5599				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5600			 lkups[i].m_u.ethertype.ethtype_id ==
5601				cpu_to_be16(0xFFFF))
5602			match |= ICE_PKT_OUTER_IPV6;
5603		else if (lkups[i].type == ICE_ETYPE_IL &&
5604			 lkups[i].h_u.ethertype.ethtype_id ==
5605				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5606			 lkups[i].m_u.ethertype.ethtype_id ==
5607				cpu_to_be16(0xFFFF))
5608			match |= ICE_PKT_INNER_IPV6;
5609		else if (lkups[i].type == ICE_IPV6_IL)
5610			match |= ICE_PKT_INNER_IPV6;
5611		else if (lkups[i].type == ICE_GTP_NO_PAY)
5612			match |= ICE_PKT_GTP_NOPAY;
5613		else if (lkups[i].type == ICE_PPPOE) {
5614			match |= ICE_PKT_PPPOE;
5615			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5616			    htons(PPP_IPV6))
5617				match |= ICE_PKT_OUTER_IPV6;
5618		} else if (lkups[i].type == ICE_L2TPV3)
5619			match |= ICE_PKT_L2TPV3;
5620	}
5621
5622	while (ret->match && (match & ret->match) != ret->match)
5623		ret++;
5624
5625	if (vlan_count != 0)
5626		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5627
5628	return ret;
5629}
5630
5631/**
5632 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5633 *
5634 * @lkups: lookup elements or match criteria for the advanced recipe, one
5635 *	   structure per protocol header
5636 * @lkups_cnt: number of protocols
5637 * @s_rule: stores rule information from the match criteria
5638 * @profile: dummy packet profile (the template, its size and header offsets)
5639 */
5640static int
5641ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5642			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5643			  const struct ice_dummy_pkt_profile *profile)
5644{
5645	u8 *pkt;
5646	u16 i;
5647
5648	/* Start with a packet with a pre-defined/dummy content. Then, fill
5649	 * in the header values to be looked up or matched.
5650	 */
5651	pkt = s_rule->hdr_data;
5652
5653	memcpy(pkt, profile->pkt, profile->pkt_len);
5654
5655	for (i = 0; i < lkups_cnt; i++) {
5656		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5657		enum ice_protocol_type type;
5658		u16 offset = 0, len = 0, j;
5659		bool found = false;
5660
5661		/* find the start of this layer; it should be found since this
5662		 * was already checked when search for the dummy packet
5663		 */
5664		type = lkups[i].type;
5665		/* metadata isn't present in the packet */
5666		if (type == ICE_HW_METADATA)
5667			continue;
5668
5669		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5670			if (type == offsets[j].type) {
5671				offset = offsets[j].offset;
5672				found = true;
5673				break;
5674			}
5675		}
5676		/* this should never happen in a correct calling sequence */
5677		if (!found)
5678			return -EINVAL;
5679
5680		switch (lkups[i].type) {
5681		case ICE_MAC_OFOS:
5682		case ICE_MAC_IL:
5683			len = sizeof(struct ice_ether_hdr);
5684			break;
5685		case ICE_ETYPE_OL:
5686		case ICE_ETYPE_IL:
5687			len = sizeof(struct ice_ethtype_hdr);
5688			break;
5689		case ICE_VLAN_OFOS:
5690		case ICE_VLAN_EX:
5691		case ICE_VLAN_IN:
5692			len = sizeof(struct ice_vlan_hdr);
5693			break;
5694		case ICE_IPV4_OFOS:
5695		case ICE_IPV4_IL:
5696			len = sizeof(struct ice_ipv4_hdr);
5697			break;
5698		case ICE_IPV6_OFOS:
5699		case ICE_IPV6_IL:
5700			len = sizeof(struct ice_ipv6_hdr);
5701			break;
5702		case ICE_TCP_IL:
5703		case ICE_UDP_OF:
5704		case ICE_UDP_ILOS:
5705			len = sizeof(struct ice_l4_hdr);
5706			break;
5707		case ICE_SCTP_IL:
5708			len = sizeof(struct ice_sctp_hdr);
5709			break;
5710		case ICE_NVGRE:
5711			len = sizeof(struct ice_nvgre_hdr);
5712			break;
5713		case ICE_VXLAN:
5714		case ICE_GENEVE:
5715			len = sizeof(struct ice_udp_tnl_hdr);
5716			break;
5717		case ICE_GTP_NO_PAY:
5718		case ICE_GTP:
5719			len = sizeof(struct ice_udp_gtp_hdr);
5720			break;
5721		case ICE_PFCP:
5722			len = sizeof(struct ice_pfcp_hdr);
5723			break;
5724		case ICE_PPPOE:
5725			len = sizeof(struct ice_pppoe_hdr);
5726			break;
5727		case ICE_L2TPV3:
5728			len = sizeof(struct ice_l2tpv3_sess_hdr);
5729			break;
5730		default:
5731			return -EINVAL;
5732		}
5733
5734		/* the length should be a word multiple */
5735		if (len % ICE_BYTES_PER_WORD)
5736			return -EIO;
5737
5738		/* We have the offset to the header start, the length, the
5739		 * caller's header values and mask. Use this information to
5740		 * copy the data into the dummy packet appropriately based on
5741		 * the mask. Note that we need to only write the bits as
5742		 * indicated by the mask to make sure we don't improperly write
5743		 * over any significant packet data.
5744		 */
5745		for (j = 0; j < len / sizeof(u16); j++) {
5746			u16 *ptr = (u16 *)(pkt + offset);
5747			u16 mask = lkups[i].m_raw[j];
5748
5749			if (!mask)
5750				continue;
5751
5752			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5753		}
5754	}
5755
5756	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5757
5758	return 0;
5759}
5760
5761/**
5762 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5763 * @hw: pointer to the hardware structure
5764 * @tun_type: tunnel type
5765 * @pkt: dummy packet to fill in
5766 * @offsets: offset info for the dummy packet
5767 */
5768static int
5769ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5770			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5771{
5772	u16 open_port, i;
5773
5774	switch (tun_type) {
5775	case ICE_SW_TUN_VXLAN:
5776		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5777			return -EIO;
5778		break;
5779	case ICE_SW_TUN_GENEVE:
5780		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5781			return -EIO;
5782		break;
5783	default:
5784		/* Nothing needs to be done for this tunnel type */
5785		return 0;
5786	}
5787
5788	/* Find the outer UDP protocol header and insert the port number */
5789	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5790		if (offsets[i].type == ICE_UDP_OF) {
5791			struct ice_l4_hdr *hdr;
5792			u16 offset;
5793
5794			offset = offsets[i].offset;
5795			hdr = (struct ice_l4_hdr *)&pkt[offset];
5796			hdr->dst_port = cpu_to_be16(open_port);
5797
5798			return 0;
5799		}
5800	}
5801
5802	return -EIO;
5803}
5804
5805/**
5806 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5807 * @hw: pointer to hw structure
5808 * @vlan_type: VLAN tag type
5809 * @pkt: dummy packet to fill in
5810 * @offsets: offset info for the dummy packet
5811 */
5812static int
5813ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5814			 const struct ice_dummy_pkt_offsets *offsets)
5815{
5816	u16 i;
5817
5818	/* Check if there is something to do */
5819	if (!vlan_type || !ice_is_dvm_ena(hw))
5820		return 0;
5821
5822	/* Find VLAN header and insert VLAN TPID */
5823	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5824		if (offsets[i].type == ICE_VLAN_OFOS ||
5825		    offsets[i].type == ICE_VLAN_EX) {
5826			struct ice_vlan_hdr *hdr;
5827			u16 offset;
5828
5829			offset = offsets[i].offset;
5830			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5831			hdr->type = cpu_to_be16(vlan_type);
5832
5833			return 0;
5834		}
5835	}
5836
5837	return -EIO;
5838}
5839
5840static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5841			    const struct ice_adv_rule_info *second)
5842{
5843	return first->sw_act.flag == second->sw_act.flag &&
5844	       first->tun_type == second->tun_type &&
5845	       first->vlan_type == second->vlan_type &&
5846	       first->src_vsi == second->src_vsi &&
5847	       first->need_pass_l2 == second->need_pass_l2 &&
5848	       first->allow_pass_l2 == second->allow_pass_l2;
5849}
5850
5851/**
5852 * ice_find_adv_rule_entry - Search a rule entry
5853 * @hw: pointer to the hardware structure
5854 * @lkups: lookup elements or match criteria for the advanced recipe, one
5855 *	   structure per protocol header
5856 * @lkups_cnt: number of protocols
5857 * @recp_id: recipe ID for which we are finding the rule
5858 * @rinfo: other information regarding the rule e.g. priority and action info
5859 *
5860 * Helper function to search for a given advance rule entry
5861 * Returns pointer to entry storing the rule if found
5862 */
5863static struct ice_adv_fltr_mgmt_list_entry *
5864ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5865			u16 lkups_cnt, u16 recp_id,
5866			struct ice_adv_rule_info *rinfo)
5867{
5868	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5869	struct ice_switch_info *sw = hw->switch_info;
5870	int i;
5871
5872	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5873			    list_entry) {
5874		bool lkups_matched = true;
5875
5876		if (lkups_cnt != list_itr->lkups_cnt)
5877			continue;
5878		for (i = 0; i < list_itr->lkups_cnt; i++)
5879			if (memcmp(&list_itr->lkups[i], &lkups[i],
5880				   sizeof(*lkups))) {
5881				lkups_matched = false;
5882				break;
5883			}
5884		if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
 
 
5885		    lkups_matched)
5886			return list_itr;
5887	}
5888	return NULL;
5889}
5890
5891/**
5892 * ice_adv_add_update_vsi_list
5893 * @hw: pointer to the hardware structure
5894 * @m_entry: pointer to current adv filter management list entry
5895 * @cur_fltr: filter information from the book keeping entry
5896 * @new_fltr: filter information with the new VSI to be added
5897 *
5898 * Call AQ command to add or update previously created VSI list with new VSI.
5899 *
5900 * Helper function to do book keeping associated with adding filter information
5901 * The algorithm to do the booking keeping is described below :
5902 * When a VSI needs to subscribe to a given advanced filter
5903 *	if only one VSI has been added till now
5904 *		Allocate a new VSI list and add two VSIs
5905 *		to this list using switch rule command
5906 *		Update the previously created switch rule with the
5907 *		newly created VSI list ID
5908 *	if a VSI list was previously created
5909 *		Add the new VSI to the previously created VSI list set
5910 *		using the update switch rule command
5911 */
5912static int
5913ice_adv_add_update_vsi_list(struct ice_hw *hw,
5914			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5915			    struct ice_adv_rule_info *cur_fltr,
5916			    struct ice_adv_rule_info *new_fltr)
5917{
5918	u16 vsi_list_id = 0;
5919	int status;
5920
5921	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5922	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5923	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5924		return -EOPNOTSUPP;
5925
5926	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5927	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5928	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5929	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5930		return -EOPNOTSUPP;
5931
5932	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5933		 /* Only one entry existed in the mapping and it was not already
5934		  * a part of a VSI list. So, create a VSI list with the old and
5935		  * new VSIs.
5936		  */
5937		struct ice_fltr_info tmp_fltr;
5938		u16 vsi_handle_arr[2];
5939
5940		/* A rule already exists with the new VSI being added */
5941		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5942		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5943			return -EEXIST;
5944
5945		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5946		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5947		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5948						  &vsi_list_id,
5949						  ICE_SW_LKUP_LAST);
5950		if (status)
5951			return status;
5952
5953		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5954		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5955		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5956		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5957		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5958		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5959
5960		/* Update the previous switch rule of "forward to VSI" to
5961		 * "fwd to VSI list"
5962		 */
5963		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5964		if (status)
5965			return status;
5966
5967		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5968		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5969		m_entry->vsi_list_info =
5970			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5971						vsi_list_id);
5972	} else {
5973		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5974
5975		if (!m_entry->vsi_list_info)
5976			return -EIO;
5977
5978		/* A rule already exists with the new VSI being added */
5979		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5980			return 0;
5981
5982		/* Update the previously created VSI list set with
5983		 * the new VSI ID passed in
5984		 */
5985		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5986
5987		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5988						  vsi_list_id, false,
5989						  ice_aqc_opc_update_sw_rules,
5990						  ICE_SW_LKUP_LAST);
5991		/* update VSI list mapping info with new VSI ID */
5992		if (!status)
5993			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5994	}
5995	if (!status)
5996		m_entry->vsi_count++;
5997	return status;
5998}
5999
6000void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
6001{
6002	lkup->type = ICE_HW_METADATA;
6003	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
6004		cpu_to_be16(ICE_PKT_TUNNEL_MASK);
6005}
6006
6007void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
6008{
6009	lkup->type = ICE_HW_METADATA;
6010	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6011		cpu_to_be16(ICE_PKT_FROM_NETWORK);
6012}
6013
6014void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
6015{
6016	lkup->type = ICE_HW_METADATA;
6017	lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6018		cpu_to_be16(ICE_PKT_VLAN_MASK);
6019}
6020
6021void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
6022{
6023	lkup->type = ICE_HW_METADATA;
6024	lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
6025}
6026
6027/**
6028 * ice_add_adv_rule - helper function to create an advanced switch rule
6029 * @hw: pointer to the hardware structure
6030 * @lkups: information on the words that needs to be looked up. All words
6031 * together makes one recipe
6032 * @lkups_cnt: num of entries in the lkups array
6033 * @rinfo: other information related to the rule that needs to be programmed
6034 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6035 *               ignored is case of error.
6036 *
6037 * This function can program only 1 rule at a time. The lkups is used to
6038 * describe the all the words that forms the "lookup" portion of the recipe.
6039 * These words can span multiple protocols. Callers to this function need to
6040 * pass in a list of protocol headers with lookup information along and mask
6041 * that determines which words are valid from the given protocol header.
6042 * rinfo describes other information related to this rule such as forwarding
6043 * IDs, priority of this rule, etc.
6044 */
6045int
6046ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6047		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6048		 struct ice_rule_query_data *added_entry)
6049{
6050	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6051	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6052	const struct ice_dummy_pkt_profile *profile;
6053	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6054	struct list_head *rule_head;
6055	struct ice_switch_info *sw;
6056	u16 word_cnt;
6057	u32 act = 0;
6058	int status;
6059	u8 q_rgn;
6060
6061	/* Initialize profile to result index bitmap */
6062	if (!hw->switch_info->prof_res_bm_init) {
6063		hw->switch_info->prof_res_bm_init = 1;
6064		ice_init_prof_result_bm(hw);
6065	}
6066
6067	if (!lkups_cnt)
6068		return -EINVAL;
6069
6070	/* get # of words we need to match */
6071	word_cnt = 0;
6072	for (i = 0; i < lkups_cnt; i++) {
6073		u16 j;
6074
6075		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6076			if (lkups[i].m_raw[j])
6077				word_cnt++;
6078	}
6079
6080	if (!word_cnt)
6081		return -EINVAL;
6082
6083	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6084		return -ENOSPC;
6085
6086	/* locate a dummy packet */
6087	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6088	if (IS_ERR(profile))
6089		return PTR_ERR(profile);
6090
6091	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6092	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6093	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6094	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6095	      rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6096	      rinfo->sw_act.fltr_act == ICE_NOP)) {
6097		status = -EIO;
6098		goto free_pkt_profile;
6099	}
6100
6101	vsi_handle = rinfo->sw_act.vsi_handle;
6102	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6103		status =  -EINVAL;
6104		goto free_pkt_profile;
6105	}
6106
6107	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6108	    rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6109	    rinfo->sw_act.fltr_act == ICE_NOP) {
6110		rinfo->sw_act.fwd_id.hw_vsi_id =
6111			ice_get_hw_vsi_num(hw, vsi_handle);
6112	}
6113
6114	if (rinfo->src_vsi)
6115		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6116	else
6117		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6118
6119	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6120	if (status)
6121		goto free_pkt_profile;
6122	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6123	if (m_entry) {
6124		/* we have to add VSI to VSI_LIST and increment vsi_count.
6125		 * Also Update VSI list so that we can change forwarding rule
6126		 * if the rule already exists, we will check if it exists with
6127		 * same vsi_id, if not then add it to the VSI list if it already
6128		 * exists if not then create a VSI list and add the existing VSI
6129		 * ID and the new VSI ID to the list
6130		 * We will add that VSI to the list
6131		 */
6132		status = ice_adv_add_update_vsi_list(hw, m_entry,
6133						     &m_entry->rule_info,
6134						     rinfo);
6135		if (added_entry) {
6136			added_entry->rid = rid;
6137			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6138			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6139		}
6140		goto free_pkt_profile;
6141	}
6142	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6143	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6144	if (!s_rule) {
6145		status = -ENOMEM;
6146		goto free_pkt_profile;
6147	}
6148
6149	if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6150		if (!rinfo->flags_info.act_valid) {
6151			act |= ICE_SINGLE_ACT_LAN_ENABLE;
6152			act |= ICE_SINGLE_ACT_LB_ENABLE;
6153		} else {
6154			act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6155							ICE_SINGLE_ACT_LB_ENABLE);
6156		}
6157	}
6158
6159	switch (rinfo->sw_act.fltr_act) {
6160	case ICE_FWD_TO_VSI:
6161		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6162				  rinfo->sw_act.fwd_id.hw_vsi_id);
6163		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6164		break;
6165	case ICE_FWD_TO_Q:
6166		act |= ICE_SINGLE_ACT_TO_Q;
6167		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6168				  rinfo->sw_act.fwd_id.q_id);
6169		break;
6170	case ICE_FWD_TO_QGRP:
6171		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6172			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6173		act |= ICE_SINGLE_ACT_TO_Q;
6174		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6175				  rinfo->sw_act.fwd_id.q_id);
6176		act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
 
6177		break;
6178	case ICE_DROP_PACKET:
6179		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6180		       ICE_SINGLE_ACT_VALID_BIT;
6181		break;
6182	case ICE_MIRROR_PACKET:
6183		act |= ICE_SINGLE_ACT_OTHER_ACTS;
6184		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6185				  rinfo->sw_act.fwd_id.hw_vsi_id);
6186		break;
6187	case ICE_NOP:
6188		act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6189				  rinfo->sw_act.fwd_id.hw_vsi_id);
6190		act &= ~ICE_SINGLE_ACT_VALID_BIT;
6191		break;
6192	default:
6193		status = -EIO;
6194		goto err_ice_add_adv_rule;
6195	}
6196
6197	/* If there is no matching criteria for direction there
6198	 * is only one difference between Rx and Tx:
6199	 * - get switch id base on VSI number from source field (Tx)
6200	 * - get switch id base on port number (Rx)
6201	 *
6202	 * If matching on direction metadata is chose rule direction is
6203	 * extracted from type value set here.
 
6204	 */
6205	if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6206		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6207		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6208	} else {
6209		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6210		s_rule->src = cpu_to_le16(hw->port_info->lport);
 
 
 
6211	}
6212
6213	s_rule->recipe_id = cpu_to_le16(rid);
6214	s_rule->act = cpu_to_le32(act);
6215
6216	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6217	if (status)
6218		goto err_ice_add_adv_rule;
6219
6220	status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6221					 profile->offsets);
6222	if (status)
6223		goto err_ice_add_adv_rule;
 
 
 
 
6224
6225	status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6226					  s_rule->hdr_data,
6227					  profile->offsets);
6228	if (status)
6229		goto err_ice_add_adv_rule;
 
 
6230
6231	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6232				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6233				 NULL);
6234	if (status)
6235		goto err_ice_add_adv_rule;
6236	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6237				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6238				GFP_KERNEL);
6239	if (!adv_fltr) {
6240		status = -ENOMEM;
6241		goto err_ice_add_adv_rule;
6242	}
6243
6244	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6245				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6246	if (!adv_fltr->lkups) {
6247		status = -ENOMEM;
6248		goto err_ice_add_adv_rule;
6249	}
6250
6251	adv_fltr->lkups_cnt = lkups_cnt;
6252	adv_fltr->rule_info = *rinfo;
6253	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6254	sw = hw->switch_info;
6255	sw->recp_list[rid].adv_rule = true;
6256	rule_head = &sw->recp_list[rid].filt_rules;
6257
6258	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6259		adv_fltr->vsi_count = 1;
6260
6261	/* Add rule entry to book keeping list */
6262	list_add(&adv_fltr->list_entry, rule_head);
6263	if (added_entry) {
6264		added_entry->rid = rid;
6265		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6266		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6267	}
6268err_ice_add_adv_rule:
6269	if (status && adv_fltr) {
6270		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6271		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6272	}
6273
6274	kfree(s_rule);
6275
6276free_pkt_profile:
6277	if (profile->match & ICE_PKT_KMALLOC) {
6278		kfree(profile->offsets);
6279		kfree(profile->pkt);
6280		kfree(profile);
6281	}
6282
6283	return status;
6284}
6285
6286/**
6287 * ice_replay_vsi_fltr - Replay filters for requested VSI
6288 * @hw: pointer to the hardware structure
6289 * @vsi_handle: driver VSI handle
6290 * @recp_id: Recipe ID for which rules need to be replayed
6291 * @list_head: list for which filters need to be replayed
6292 *
6293 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6294 * It is required to pass valid VSI handle.
6295 */
6296static int
6297ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6298		    struct list_head *list_head)
6299{
6300	struct ice_fltr_mgmt_list_entry *itr;
6301	int status = 0;
6302	u16 hw_vsi_id;
6303
6304	if (list_empty(list_head))
6305		return status;
6306	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6307
6308	list_for_each_entry(itr, list_head, list_entry) {
6309		struct ice_fltr_list_entry f_entry;
6310
6311		f_entry.fltr_info = itr->fltr_info;
6312		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6313		    itr->fltr_info.vsi_handle == vsi_handle) {
6314			/* update the src in case it is VSI num */
6315			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6316				f_entry.fltr_info.src = hw_vsi_id;
6317			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6318			if (status)
6319				goto end;
6320			continue;
6321		}
6322		if (!itr->vsi_list_info ||
6323		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6324			continue;
 
 
6325		f_entry.fltr_info.vsi_handle = vsi_handle;
6326		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6327		/* update the src in case it is VSI num */
6328		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6329			f_entry.fltr_info.src = hw_vsi_id;
6330		if (recp_id == ICE_SW_LKUP_VLAN)
6331			status = ice_add_vlan_internal(hw, &f_entry);
6332		else
6333			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6334		if (status)
6335			goto end;
6336	}
6337end:
6338	return status;
6339}
6340
6341/**
6342 * ice_adv_rem_update_vsi_list
6343 * @hw: pointer to the hardware structure
6344 * @vsi_handle: VSI handle of the VSI to remove
6345 * @fm_list: filter management entry for which the VSI list management needs to
6346 *	     be done
6347 */
6348static int
6349ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6350			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6351{
6352	struct ice_vsi_list_map_info *vsi_list_info;
6353	enum ice_sw_lkup_type lkup_type;
6354	u16 vsi_list_id;
6355	int status;
6356
6357	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6358	    fm_list->vsi_count == 0)
6359		return -EINVAL;
6360
6361	/* A rule with the VSI being removed does not exist */
6362	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6363		return -ENOENT;
6364
6365	lkup_type = ICE_SW_LKUP_LAST;
6366	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6367	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6368					  ice_aqc_opc_update_sw_rules,
6369					  lkup_type);
6370	if (status)
6371		return status;
6372
6373	fm_list->vsi_count--;
6374	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6375	vsi_list_info = fm_list->vsi_list_info;
6376	if (fm_list->vsi_count == 1) {
6377		struct ice_fltr_info tmp_fltr;
6378		u16 rem_vsi_handle;
6379
6380		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6381						ICE_MAX_VSI);
6382		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6383			return -EIO;
6384
6385		/* Make sure VSI list is empty before removing it below */
6386		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6387						  vsi_list_id, true,
6388						  ice_aqc_opc_update_sw_rules,
6389						  lkup_type);
6390		if (status)
6391			return status;
6392
6393		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6394		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6395		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6396		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6397		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6398		tmp_fltr.fwd_id.hw_vsi_id =
6399			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6400		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6401			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6402		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6403
6404		/* Update the previous switch rule of "MAC forward to VSI" to
6405		 * "MAC fwd to VSI list"
6406		 */
6407		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6408		if (status) {
6409			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6410				  tmp_fltr.fwd_id.hw_vsi_id, status);
6411			return status;
6412		}
6413		fm_list->vsi_list_info->ref_cnt--;
6414
6415		/* Remove the VSI list since it is no longer used */
6416		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6417		if (status) {
6418			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6419				  vsi_list_id, status);
6420			return status;
6421		}
6422
6423		list_del(&vsi_list_info->list_entry);
6424		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6425		fm_list->vsi_list_info = NULL;
6426	}
6427
6428	return status;
6429}
6430
6431/**
6432 * ice_rem_adv_rule - removes existing advanced switch rule
6433 * @hw: pointer to the hardware structure
6434 * @lkups: information on the words that needs to be looked up. All words
6435 *         together makes one recipe
6436 * @lkups_cnt: num of entries in the lkups array
6437 * @rinfo: Its the pointer to the rule information for the rule
6438 *
6439 * This function can be used to remove 1 rule at a time. The lkups is
6440 * used to describe all the words that forms the "lookup" portion of the
6441 * rule. These words can span multiple protocols. Callers to this function
6442 * need to pass in a list of protocol headers with lookup information along
6443 * and mask that determines which words are valid from the given protocol
6444 * header. rinfo describes other information related to this rule such as
6445 * forwarding IDs, priority of this rule, etc.
6446 */
6447static int
6448ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6449		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6450{
6451	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6452	struct ice_prot_lkup_ext lkup_exts;
6453	bool remove_rule = false;
6454	struct mutex *rule_lock; /* Lock to protect filter rule list */
6455	u16 i, rid, vsi_handle;
6456	int status = 0;
6457
6458	memset(&lkup_exts, 0, sizeof(lkup_exts));
6459	for (i = 0; i < lkups_cnt; i++) {
6460		u16 count;
6461
6462		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6463			return -EIO;
6464
6465		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6466		if (!count)
6467			return -EIO;
6468	}
6469
6470	rid = ice_find_recp(hw, &lkup_exts, rinfo, false);
 
 
 
 
 
 
 
6471	/* If did not find a recipe that match the existing criteria */
6472	if (rid == ICE_MAX_NUM_RECIPES)
6473		return -EINVAL;
6474
6475	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6476	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6477	/* the rule is already removed */
6478	if (!list_elem)
6479		return 0;
6480	mutex_lock(rule_lock);
6481	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6482		remove_rule = true;
6483	} else if (list_elem->vsi_count > 1) {
6484		remove_rule = false;
6485		vsi_handle = rinfo->sw_act.vsi_handle;
6486		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6487	} else {
6488		vsi_handle = rinfo->sw_act.vsi_handle;
6489		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6490		if (status) {
6491			mutex_unlock(rule_lock);
6492			return status;
6493		}
6494		if (list_elem->vsi_count == 0)
6495			remove_rule = true;
6496	}
6497	mutex_unlock(rule_lock);
6498	if (remove_rule) {
6499		struct ice_sw_rule_lkup_rx_tx *s_rule;
6500		u16 rule_buf_sz;
6501
6502		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6503		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6504		if (!s_rule)
6505			return -ENOMEM;
6506		s_rule->act = 0;
6507		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6508		s_rule->hdr_len = 0;
6509		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6510					 rule_buf_sz, 1,
6511					 ice_aqc_opc_remove_sw_rules, NULL);
6512		if (!status || status == -ENOENT) {
6513			struct ice_switch_info *sw = hw->switch_info;
6514			struct ice_sw_recipe *r_list = sw->recp_list;
6515
6516			mutex_lock(rule_lock);
6517			list_del(&list_elem->list_entry);
6518			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6519			devm_kfree(ice_hw_to_dev(hw), list_elem);
6520			mutex_unlock(rule_lock);
6521			if (list_empty(&r_list[rid].filt_rules)) {
6522				r_list[rid].adv_rule = false;
6523
6524				/* All rules for this recipe are now removed */
6525				if (hw->recp_reuse)
6526					ice_release_recipe_res(hw,
6527							       &r_list[rid]);
6528			}
6529		}
6530		kfree(s_rule);
6531	}
6532	return status;
6533}
6534
6535/**
6536 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6537 * @hw: pointer to the hardware structure
6538 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6539 *
6540 * This function is used to remove 1 rule at a time. The removal is based on
6541 * the remove_entry parameter. This function will remove rule for a given
6542 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6543 */
6544int
6545ice_rem_adv_rule_by_id(struct ice_hw *hw,
6546		       struct ice_rule_query_data *remove_entry)
6547{
6548	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6549	struct list_head *list_head;
6550	struct ice_adv_rule_info rinfo;
6551	struct ice_switch_info *sw;
6552
6553	sw = hw->switch_info;
6554	if (!sw->recp_list[remove_entry->rid].recp_created)
6555		return -EINVAL;
6556	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6557	list_for_each_entry(list_itr, list_head, list_entry) {
6558		if (list_itr->rule_info.fltr_rule_id ==
6559		    remove_entry->rule_id) {
6560			rinfo = list_itr->rule_info;
6561			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6562			return ice_rem_adv_rule(hw, list_itr->lkups,
6563						list_itr->lkups_cnt, &rinfo);
6564		}
6565	}
6566	/* either list is empty or unable to find rule */
6567	return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6568}
6569
6570/**
6571 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6572 * @hw: pointer to the hardware structure
6573 * @vsi_handle: driver VSI handle
6574 * @list_head: list for which filters need to be replayed
6575 *
6576 * Replay the advanced rule for the given VSI.
6577 */
6578static int
6579ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6580			struct list_head *list_head)
6581{
6582	struct ice_rule_query_data added_entry = { 0 };
6583	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6584	int status = 0;
6585
6586	if (list_empty(list_head))
6587		return status;
6588	list_for_each_entry(adv_fltr, list_head, list_entry) {
6589		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6590		u16 lk_cnt = adv_fltr->lkups_cnt;
6591
6592		if (vsi_handle != rinfo->sw_act.vsi_handle)
6593			continue;
6594		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6595					  &added_entry);
6596		if (status)
6597			break;
6598	}
6599	return status;
6600}
6601
6602/**
6603 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6604 * @hw: pointer to the hardware structure
6605 * @vsi_handle: driver VSI handle
6606 *
6607 * Replays filters for requested VSI via vsi_handle.
6608 */
6609int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6610{
6611	struct ice_switch_info *sw = hw->switch_info;
6612	int status;
6613	u8 i;
6614
6615	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6616		struct list_head *head;
6617
6618		head = &sw->recp_list[i].filt_replay_rules;
6619		if (!sw->recp_list[i].adv_rule)
6620			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6621		else
6622			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6623		if (status)
6624			return status;
6625	}
6626	return status;
6627}
6628
6629/**
6630 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6631 * @hw: pointer to the HW struct
6632 *
6633 * Deletes the filter replay rules.
6634 */
6635void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6636{
6637	struct ice_switch_info *sw = hw->switch_info;
6638	u8 i;
6639
6640	if (!sw)
6641		return;
6642
6643	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6644		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6645			struct list_head *l_head;
6646
6647			l_head = &sw->recp_list[i].filt_replay_rules;
6648			if (!sw->recp_list[i].adv_rule)
6649				ice_rem_sw_rule_info(hw, l_head);
6650			else
6651				ice_rem_adv_rule_info(hw, l_head);
6652		}
6653	}
6654}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_lib.h"
   5#include "ice_switch.h"
 
   6
   7#define ICE_ETH_DA_OFFSET		0
   8#define ICE_ETH_ETHTYPE_OFFSET		12
   9#define ICE_ETH_VLAN_TCI_OFFSET		14
  10#define ICE_MAX_VLAN_ID			0xFFF
  11#define ICE_IPV6_ETHER_ID		0x86DD
  12
  13/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
  14 * struct to configure any switch filter rules.
  15 * {DA (6 bytes), SA(6 bytes),
  16 * Ether type (2 bytes for header without VLAN tag) OR
  17 * VLAN tag (4 bytes for header with VLAN tag) }
  18 *
  19 * Word on Hardcoded values
  20 * byte 0 = 0x2: to identify it as locally administered DA MAC
  21 * byte 6 = 0x2: to identify it as locally administered SA MAC
  22 * byte 12 = 0x81 & byte 13 = 0x00:
  23 *	In case of VLAN filter first two bytes defines ether type (0x8100)
  24 *	and remaining two bytes are placeholder for programming a given VLAN ID
  25 *	In case of Ether type filter it is treated as header without VLAN tag
  26 *	and byte 12 and 13 is used to program a given Ether type instead
  27 */
  28#define DUMMY_ETH_HDR_LEN		16
  29static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
  30							0x2, 0, 0, 0, 0, 0,
  31							0x81, 0, 0, 0};
  32
  33enum {
  34	ICE_PKT_OUTER_IPV6	= BIT(0),
  35	ICE_PKT_TUN_GTPC	= BIT(1),
  36	ICE_PKT_TUN_GTPU	= BIT(2),
  37	ICE_PKT_TUN_NVGRE	= BIT(3),
  38	ICE_PKT_TUN_UDP		= BIT(4),
  39	ICE_PKT_INNER_IPV6	= BIT(5),
  40	ICE_PKT_INNER_TCP	= BIT(6),
  41	ICE_PKT_INNER_UDP	= BIT(7),
  42	ICE_PKT_GTP_NOPAY	= BIT(8),
  43	ICE_PKT_KMALLOC		= BIT(9),
  44	ICE_PKT_PPPOE		= BIT(10),
  45	ICE_PKT_L2TPV3		= BIT(11),
 
  46};
  47
  48struct ice_dummy_pkt_offsets {
  49	enum ice_protocol_type type;
  50	u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
  51};
  52
  53struct ice_dummy_pkt_profile {
  54	const struct ice_dummy_pkt_offsets *offsets;
  55	const u8 *pkt;
  56	u32 match;
  57	u16 pkt_len;
  58	u16 offsets_len;
  59};
  60
  61#define ICE_DECLARE_PKT_OFFSETS(type)					\
  62	static const struct ice_dummy_pkt_offsets			\
  63	ice_dummy_##type##_packet_offsets[]
  64
  65#define ICE_DECLARE_PKT_TEMPLATE(type)					\
  66	static const u8 ice_dummy_##type##_packet[]
  67
  68#define ICE_PKT_PROFILE(type, m) {					\
  69	.match		= (m),						\
  70	.pkt		= ice_dummy_##type##_packet,			\
  71	.pkt_len	= sizeof(ice_dummy_##type##_packet),		\
  72	.offsets	= ice_dummy_##type##_packet_offsets,		\
  73	.offsets_len	= sizeof(ice_dummy_##type##_packet_offsets),	\
  74}
  75
  76ICE_DECLARE_PKT_OFFSETS(vlan) = {
  77	{ ICE_VLAN_OFOS,        12 },
  78};
  79
  80ICE_DECLARE_PKT_TEMPLATE(vlan) = {
  81	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
  82};
  83
  84ICE_DECLARE_PKT_OFFSETS(qinq) = {
  85	{ ICE_VLAN_EX,          12 },
  86	{ ICE_VLAN_IN,          16 },
  87};
  88
  89ICE_DECLARE_PKT_TEMPLATE(qinq) = {
  90	0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
  91	0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
  92};
  93
  94ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
  95	{ ICE_MAC_OFOS,		0 },
  96	{ ICE_ETYPE_OL,		12 },
  97	{ ICE_IPV4_OFOS,	14 },
  98	{ ICE_NVGRE,		34 },
  99	{ ICE_MAC_IL,		42 },
 100	{ ICE_ETYPE_IL,		54 },
 101	{ ICE_IPV4_IL,		56 },
 102	{ ICE_TCP_IL,		76 },
 103	{ ICE_PROTOCOL_LAST,	0 },
 104};
 105
 106ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
 107	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 108	0x00, 0x00, 0x00, 0x00,
 109	0x00, 0x00, 0x00, 0x00,
 110
 111	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 112
 113	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 114	0x00, 0x00, 0x00, 0x00,
 115	0x00, 0x2F, 0x00, 0x00,
 116	0x00, 0x00, 0x00, 0x00,
 117	0x00, 0x00, 0x00, 0x00,
 118
 119	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 120	0x00, 0x00, 0x00, 0x00,
 121
 122	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 123	0x00, 0x00, 0x00, 0x00,
 124	0x00, 0x00, 0x00, 0x00,
 125
 126	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 127
 128	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 129	0x00, 0x00, 0x00, 0x00,
 130	0x00, 0x06, 0x00, 0x00,
 131	0x00, 0x00, 0x00, 0x00,
 132	0x00, 0x00, 0x00, 0x00,
 133
 134	0x00, 0x00, 0x00, 0x00,	/* ICE_TCP_IL 76 */
 135	0x00, 0x00, 0x00, 0x00,
 136	0x00, 0x00, 0x00, 0x00,
 137	0x50, 0x02, 0x20, 0x00,
 138	0x00, 0x00, 0x00, 0x00
 139};
 140
 141ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
 142	{ ICE_MAC_OFOS,		0 },
 143	{ ICE_ETYPE_OL,		12 },
 144	{ ICE_IPV4_OFOS,	14 },
 145	{ ICE_NVGRE,		34 },
 146	{ ICE_MAC_IL,		42 },
 147	{ ICE_ETYPE_IL,		54 },
 148	{ ICE_IPV4_IL,		56 },
 149	{ ICE_UDP_ILOS,		76 },
 150	{ ICE_PROTOCOL_LAST,	0 },
 151};
 152
 153ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
 154	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_OFOS 0 */
 155	0x00, 0x00, 0x00, 0x00,
 156	0x00, 0x00, 0x00, 0x00,
 157
 158	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 159
 160	0x45, 0x00, 0x00, 0x3E,	/* ICE_IPV4_OFOS 14 */
 161	0x00, 0x00, 0x00, 0x00,
 162	0x00, 0x2F, 0x00, 0x00,
 163	0x00, 0x00, 0x00, 0x00,
 164	0x00, 0x00, 0x00, 0x00,
 165
 166	0x80, 0x00, 0x65, 0x58,	/* ICE_NVGRE 34 */
 167	0x00, 0x00, 0x00, 0x00,
 168
 169	0x00, 0x00, 0x00, 0x00,	/* ICE_MAC_IL 42 */
 170	0x00, 0x00, 0x00, 0x00,
 171	0x00, 0x00, 0x00, 0x00,
 172
 173	0x08, 0x00,		/* ICE_ETYPE_IL 54 */
 174
 175	0x45, 0x00, 0x00, 0x14,	/* ICE_IPV4_IL 56 */
 176	0x00, 0x00, 0x00, 0x00,
 177	0x00, 0x11, 0x00, 0x00,
 178	0x00, 0x00, 0x00, 0x00,
 179	0x00, 0x00, 0x00, 0x00,
 180
 181	0x00, 0x00, 0x00, 0x00,	/* ICE_UDP_ILOS 76 */
 182	0x00, 0x08, 0x00, 0x00,
 183};
 184
 185ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
 186	{ ICE_MAC_OFOS,		0 },
 187	{ ICE_ETYPE_OL,		12 },
 188	{ ICE_IPV4_OFOS,	14 },
 189	{ ICE_UDP_OF,		34 },
 190	{ ICE_VXLAN,		42 },
 191	{ ICE_GENEVE,		42 },
 192	{ ICE_VXLAN_GPE,	42 },
 193	{ ICE_MAC_IL,		50 },
 194	{ ICE_ETYPE_IL,		62 },
 195	{ ICE_IPV4_IL,		64 },
 196	{ ICE_TCP_IL,		84 },
 197	{ ICE_PROTOCOL_LAST,	0 },
 198};
 199
 200ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
 201	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 202	0x00, 0x00, 0x00, 0x00,
 203	0x00, 0x00, 0x00, 0x00,
 204
 205	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 206
 207	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 208	0x00, 0x01, 0x00, 0x00,
 209	0x40, 0x11, 0x00, 0x00,
 210	0x00, 0x00, 0x00, 0x00,
 211	0x00, 0x00, 0x00, 0x00,
 212
 213	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 214	0x00, 0x46, 0x00, 0x00,
 215
 216	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 217	0x00, 0x00, 0x00, 0x00,
 218
 219	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 220	0x00, 0x00, 0x00, 0x00,
 221	0x00, 0x00, 0x00, 0x00,
 222
 223	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 224
 225	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
 226	0x00, 0x01, 0x00, 0x00,
 227	0x40, 0x06, 0x00, 0x00,
 228	0x00, 0x00, 0x00, 0x00,
 229	0x00, 0x00, 0x00, 0x00,
 230
 231	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
 232	0x00, 0x00, 0x00, 0x00,
 233	0x00, 0x00, 0x00, 0x00,
 234	0x50, 0x02, 0x20, 0x00,
 235	0x00, 0x00, 0x00, 0x00
 236};
 237
 238ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
 239	{ ICE_MAC_OFOS,		0 },
 240	{ ICE_ETYPE_OL,		12 },
 241	{ ICE_IPV4_OFOS,	14 },
 242	{ ICE_UDP_OF,		34 },
 243	{ ICE_VXLAN,		42 },
 244	{ ICE_GENEVE,		42 },
 245	{ ICE_VXLAN_GPE,	42 },
 246	{ ICE_MAC_IL,		50 },
 247	{ ICE_ETYPE_IL,		62 },
 248	{ ICE_IPV4_IL,		64 },
 249	{ ICE_UDP_ILOS,		84 },
 250	{ ICE_PROTOCOL_LAST,	0 },
 251};
 252
 253ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
 254	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 255	0x00, 0x00, 0x00, 0x00,
 256	0x00, 0x00, 0x00, 0x00,
 257
 258	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 259
 260	0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
 261	0x00, 0x01, 0x00, 0x00,
 262	0x00, 0x11, 0x00, 0x00,
 263	0x00, 0x00, 0x00, 0x00,
 264	0x00, 0x00, 0x00, 0x00,
 265
 266	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 267	0x00, 0x3a, 0x00, 0x00,
 268
 269	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 270	0x00, 0x00, 0x00, 0x00,
 271
 272	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 273	0x00, 0x00, 0x00, 0x00,
 274	0x00, 0x00, 0x00, 0x00,
 275
 276	0x08, 0x00,		/* ICE_ETYPE_IL 62 */
 277
 278	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
 279	0x00, 0x01, 0x00, 0x00,
 280	0x00, 0x11, 0x00, 0x00,
 281	0x00, 0x00, 0x00, 0x00,
 282	0x00, 0x00, 0x00, 0x00,
 283
 284	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
 285	0x00, 0x08, 0x00, 0x00,
 286};
 287
 288ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
 289	{ ICE_MAC_OFOS,		0 },
 290	{ ICE_ETYPE_OL,		12 },
 291	{ ICE_IPV4_OFOS,	14 },
 292	{ ICE_NVGRE,		34 },
 293	{ ICE_MAC_IL,		42 },
 294	{ ICE_ETYPE_IL,		54 },
 295	{ ICE_IPV6_IL,		56 },
 296	{ ICE_TCP_IL,		96 },
 297	{ ICE_PROTOCOL_LAST,	0 },
 298};
 299
 300ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
 301	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 302	0x00, 0x00, 0x00, 0x00,
 303	0x00, 0x00, 0x00, 0x00,
 304
 305	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 306
 307	0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
 308	0x00, 0x00, 0x00, 0x00,
 309	0x00, 0x2F, 0x00, 0x00,
 310	0x00, 0x00, 0x00, 0x00,
 311	0x00, 0x00, 0x00, 0x00,
 312
 313	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 314	0x00, 0x00, 0x00, 0x00,
 315
 316	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 317	0x00, 0x00, 0x00, 0x00,
 318	0x00, 0x00, 0x00, 0x00,
 319
 320	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 321
 322	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 323	0x00, 0x08, 0x06, 0x40,
 324	0x00, 0x00, 0x00, 0x00,
 325	0x00, 0x00, 0x00, 0x00,
 326	0x00, 0x00, 0x00, 0x00,
 327	0x00, 0x00, 0x00, 0x00,
 328	0x00, 0x00, 0x00, 0x00,
 329	0x00, 0x00, 0x00, 0x00,
 330	0x00, 0x00, 0x00, 0x00,
 331	0x00, 0x00, 0x00, 0x00,
 332
 333	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
 334	0x00, 0x00, 0x00, 0x00,
 335	0x00, 0x00, 0x00, 0x00,
 336	0x50, 0x02, 0x20, 0x00,
 337	0x00, 0x00, 0x00, 0x00
 338};
 339
 340ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
 341	{ ICE_MAC_OFOS,		0 },
 342	{ ICE_ETYPE_OL,		12 },
 343	{ ICE_IPV4_OFOS,	14 },
 344	{ ICE_NVGRE,		34 },
 345	{ ICE_MAC_IL,		42 },
 346	{ ICE_ETYPE_IL,		54 },
 347	{ ICE_IPV6_IL,		56 },
 348	{ ICE_UDP_ILOS,		96 },
 349	{ ICE_PROTOCOL_LAST,	0 },
 350};
 351
 352ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
 353	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 354	0x00, 0x00, 0x00, 0x00,
 355	0x00, 0x00, 0x00, 0x00,
 356
 357	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 358
 359	0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
 360	0x00, 0x00, 0x00, 0x00,
 361	0x00, 0x2F, 0x00, 0x00,
 362	0x00, 0x00, 0x00, 0x00,
 363	0x00, 0x00, 0x00, 0x00,
 364
 365	0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
 366	0x00, 0x00, 0x00, 0x00,
 367
 368	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
 369	0x00, 0x00, 0x00, 0x00,
 370	0x00, 0x00, 0x00, 0x00,
 371
 372	0x86, 0xdd,		/* ICE_ETYPE_IL 54 */
 373
 374	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
 375	0x00, 0x08, 0x11, 0x40,
 376	0x00, 0x00, 0x00, 0x00,
 377	0x00, 0x00, 0x00, 0x00,
 378	0x00, 0x00, 0x00, 0x00,
 379	0x00, 0x00, 0x00, 0x00,
 380	0x00, 0x00, 0x00, 0x00,
 381	0x00, 0x00, 0x00, 0x00,
 382	0x00, 0x00, 0x00, 0x00,
 383	0x00, 0x00, 0x00, 0x00,
 384
 385	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
 386	0x00, 0x08, 0x00, 0x00,
 387};
 388
 389ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
 390	{ ICE_MAC_OFOS,		0 },
 391	{ ICE_ETYPE_OL,		12 },
 392	{ ICE_IPV4_OFOS,	14 },
 393	{ ICE_UDP_OF,		34 },
 394	{ ICE_VXLAN,		42 },
 395	{ ICE_GENEVE,		42 },
 396	{ ICE_VXLAN_GPE,	42 },
 397	{ ICE_MAC_IL,		50 },
 398	{ ICE_ETYPE_IL,		62 },
 399	{ ICE_IPV6_IL,		64 },
 400	{ ICE_TCP_IL,		104 },
 401	{ ICE_PROTOCOL_LAST,	0 },
 402};
 403
 404ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
 405	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 406	0x00, 0x00, 0x00, 0x00,
 407	0x00, 0x00, 0x00, 0x00,
 408
 409	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 410
 411	0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
 412	0x00, 0x01, 0x00, 0x00,
 413	0x40, 0x11, 0x00, 0x00,
 414	0x00, 0x00, 0x00, 0x00,
 415	0x00, 0x00, 0x00, 0x00,
 416
 417	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 418	0x00, 0x5a, 0x00, 0x00,
 419
 420	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 421	0x00, 0x00, 0x00, 0x00,
 422
 423	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 424	0x00, 0x00, 0x00, 0x00,
 425	0x00, 0x00, 0x00, 0x00,
 426
 427	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 428
 429	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 430	0x00, 0x08, 0x06, 0x40,
 431	0x00, 0x00, 0x00, 0x00,
 432	0x00, 0x00, 0x00, 0x00,
 433	0x00, 0x00, 0x00, 0x00,
 434	0x00, 0x00, 0x00, 0x00,
 435	0x00, 0x00, 0x00, 0x00,
 436	0x00, 0x00, 0x00, 0x00,
 437	0x00, 0x00, 0x00, 0x00,
 438	0x00, 0x00, 0x00, 0x00,
 439
 440	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
 441	0x00, 0x00, 0x00, 0x00,
 442	0x00, 0x00, 0x00, 0x00,
 443	0x50, 0x02, 0x20, 0x00,
 444	0x00, 0x00, 0x00, 0x00
 445};
 446
 447ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
 448	{ ICE_MAC_OFOS,		0 },
 449	{ ICE_ETYPE_OL,		12 },
 450	{ ICE_IPV4_OFOS,	14 },
 451	{ ICE_UDP_OF,		34 },
 452	{ ICE_VXLAN,		42 },
 453	{ ICE_GENEVE,		42 },
 454	{ ICE_VXLAN_GPE,	42 },
 455	{ ICE_MAC_IL,		50 },
 456	{ ICE_ETYPE_IL,		62 },
 457	{ ICE_IPV6_IL,		64 },
 458	{ ICE_UDP_ILOS,		104 },
 459	{ ICE_PROTOCOL_LAST,	0 },
 460};
 461
 462ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
 463	0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
 464	0x00, 0x00, 0x00, 0x00,
 465	0x00, 0x00, 0x00, 0x00,
 466
 467	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 468
 469	0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
 470	0x00, 0x01, 0x00, 0x00,
 471	0x00, 0x11, 0x00, 0x00,
 472	0x00, 0x00, 0x00, 0x00,
 473	0x00, 0x00, 0x00, 0x00,
 474
 475	0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
 476	0x00, 0x4e, 0x00, 0x00,
 477
 478	0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
 479	0x00, 0x00, 0x00, 0x00,
 480
 481	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
 482	0x00, 0x00, 0x00, 0x00,
 483	0x00, 0x00, 0x00, 0x00,
 484
 485	0x86, 0xdd,		/* ICE_ETYPE_IL 62 */
 486
 487	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
 488	0x00, 0x08, 0x11, 0x40,
 489	0x00, 0x00, 0x00, 0x00,
 490	0x00, 0x00, 0x00, 0x00,
 491	0x00, 0x00, 0x00, 0x00,
 492	0x00, 0x00, 0x00, 0x00,
 493	0x00, 0x00, 0x00, 0x00,
 494	0x00, 0x00, 0x00, 0x00,
 495	0x00, 0x00, 0x00, 0x00,
 496	0x00, 0x00, 0x00, 0x00,
 497
 498	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
 499	0x00, 0x08, 0x00, 0x00,
 500};
 501
 502/* offset info for MAC + IPv4 + UDP dummy packet */
 503ICE_DECLARE_PKT_OFFSETS(udp) = {
 504	{ ICE_MAC_OFOS,		0 },
 505	{ ICE_ETYPE_OL,		12 },
 506	{ ICE_IPV4_OFOS,	14 },
 507	{ ICE_UDP_ILOS,		34 },
 508	{ ICE_PROTOCOL_LAST,	0 },
 509};
 510
 511/* Dummy packet for MAC + IPv4 + UDP */
 512ICE_DECLARE_PKT_TEMPLATE(udp) = {
 513	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 514	0x00, 0x00, 0x00, 0x00,
 515	0x00, 0x00, 0x00, 0x00,
 516
 517	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 518
 519	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
 520	0x00, 0x01, 0x00, 0x00,
 521	0x00, 0x11, 0x00, 0x00,
 522	0x00, 0x00, 0x00, 0x00,
 523	0x00, 0x00, 0x00, 0x00,
 524
 525	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
 526	0x00, 0x08, 0x00, 0x00,
 527
 528	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 529};
 530
 531/* offset info for MAC + IPv4 + TCP dummy packet */
 532ICE_DECLARE_PKT_OFFSETS(tcp) = {
 533	{ ICE_MAC_OFOS,		0 },
 534	{ ICE_ETYPE_OL,		12 },
 535	{ ICE_IPV4_OFOS,	14 },
 536	{ ICE_TCP_IL,		34 },
 537	{ ICE_PROTOCOL_LAST,	0 },
 538};
 539
 540/* Dummy packet for MAC + IPv4 + TCP */
 541ICE_DECLARE_PKT_TEMPLATE(tcp) = {
 542	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 543	0x00, 0x00, 0x00, 0x00,
 544	0x00, 0x00, 0x00, 0x00,
 545
 546	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
 547
 548	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
 549	0x00, 0x01, 0x00, 0x00,
 550	0x00, 0x06, 0x00, 0x00,
 551	0x00, 0x00, 0x00, 0x00,
 552	0x00, 0x00, 0x00, 0x00,
 553
 554	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
 555	0x00, 0x00, 0x00, 0x00,
 556	0x00, 0x00, 0x00, 0x00,
 557	0x50, 0x00, 0x00, 0x00,
 558	0x00, 0x00, 0x00, 0x00,
 559
 560	0x00, 0x00,	/* 2 bytes for 4 byte alignment */
 561};
 562
 563ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
 564	{ ICE_MAC_OFOS,		0 },
 565	{ ICE_ETYPE_OL,		12 },
 566	{ ICE_IPV6_OFOS,	14 },
 567	{ ICE_TCP_IL,		54 },
 568	{ ICE_PROTOCOL_LAST,	0 },
 569};
 570
 571ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
 572	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 573	0x00, 0x00, 0x00, 0x00,
 574	0x00, 0x00, 0x00, 0x00,
 575
 576	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 577
 578	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 579	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
 580	0x00, 0x00, 0x00, 0x00,
 581	0x00, 0x00, 0x00, 0x00,
 582	0x00, 0x00, 0x00, 0x00,
 583	0x00, 0x00, 0x00, 0x00,
 584	0x00, 0x00, 0x00, 0x00,
 585	0x00, 0x00, 0x00, 0x00,
 586	0x00, 0x00, 0x00, 0x00,
 587	0x00, 0x00, 0x00, 0x00,
 588
 589	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
 590	0x00, 0x00, 0x00, 0x00,
 591	0x00, 0x00, 0x00, 0x00,
 592	0x50, 0x00, 0x00, 0x00,
 593	0x00, 0x00, 0x00, 0x00,
 594
 595	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 596};
 597
 598/* IPv6 + UDP */
 599ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
 600	{ ICE_MAC_OFOS,		0 },
 601	{ ICE_ETYPE_OL,		12 },
 602	{ ICE_IPV6_OFOS,	14 },
 603	{ ICE_UDP_ILOS,		54 },
 604	{ ICE_PROTOCOL_LAST,	0 },
 605};
 606
 607/* IPv6 + UDP dummy packet */
 608ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
 609	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
 610	0x00, 0x00, 0x00, 0x00,
 611	0x00, 0x00, 0x00, 0x00,
 612
 613	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
 614
 615	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
 616	0x00, 0x10, 0x11, 0x00, /* Next header UDP */
 617	0x00, 0x00, 0x00, 0x00,
 618	0x00, 0x00, 0x00, 0x00,
 619	0x00, 0x00, 0x00, 0x00,
 620	0x00, 0x00, 0x00, 0x00,
 621	0x00, 0x00, 0x00, 0x00,
 622	0x00, 0x00, 0x00, 0x00,
 623	0x00, 0x00, 0x00, 0x00,
 624	0x00, 0x00, 0x00, 0x00,
 625
 626	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
 627	0x00, 0x10, 0x00, 0x00,
 628
 629	0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
 630	0x00, 0x00, 0x00, 0x00,
 631
 632	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 633};
 634
 635/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 636ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
 637	{ ICE_MAC_OFOS,		0 },
 638	{ ICE_IPV4_OFOS,	14 },
 639	{ ICE_UDP_OF,		34 },
 640	{ ICE_GTP,		42 },
 641	{ ICE_IPV4_IL,		62 },
 642	{ ICE_TCP_IL,		82 },
 643	{ ICE_PROTOCOL_LAST,	0 },
 644};
 645
 646ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
 647	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 648	0x00, 0x00, 0x00, 0x00,
 649	0x00, 0x00, 0x00, 0x00,
 650	0x08, 0x00,
 651
 652	0x45, 0x00, 0x00, 0x58, /* IP 14 */
 653	0x00, 0x00, 0x00, 0x00,
 654	0x00, 0x11, 0x00, 0x00,
 655	0x00, 0x00, 0x00, 0x00,
 656	0x00, 0x00, 0x00, 0x00,
 657
 658	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 659	0x00, 0x44, 0x00, 0x00,
 660
 661	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
 662	0x00, 0x00, 0x00, 0x00,
 663	0x00, 0x00, 0x00, 0x85,
 664
 665	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 666	0x00, 0x00, 0x00, 0x00,
 667
 668	0x45, 0x00, 0x00, 0x28, /* IP 62 */
 669	0x00, 0x00, 0x00, 0x00,
 670	0x00, 0x06, 0x00, 0x00,
 671	0x00, 0x00, 0x00, 0x00,
 672	0x00, 0x00, 0x00, 0x00,
 673
 674	0x00, 0x00, 0x00, 0x00, /* TCP 82 */
 675	0x00, 0x00, 0x00, 0x00,
 676	0x00, 0x00, 0x00, 0x00,
 677	0x50, 0x00, 0x00, 0x00,
 678	0x00, 0x00, 0x00, 0x00,
 679
 680	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 681};
 682
 683/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
 684ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
 685	{ ICE_MAC_OFOS,		0 },
 686	{ ICE_IPV4_OFOS,	14 },
 687	{ ICE_UDP_OF,		34 },
 688	{ ICE_GTP,		42 },
 689	{ ICE_IPV4_IL,		62 },
 690	{ ICE_UDP_ILOS,		82 },
 691	{ ICE_PROTOCOL_LAST,	0 },
 692};
 693
 694ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
 695	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 696	0x00, 0x00, 0x00, 0x00,
 697	0x00, 0x00, 0x00, 0x00,
 698	0x08, 0x00,
 699
 700	0x45, 0x00, 0x00, 0x4c, /* IP 14 */
 701	0x00, 0x00, 0x00, 0x00,
 702	0x00, 0x11, 0x00, 0x00,
 703	0x00, 0x00, 0x00, 0x00,
 704	0x00, 0x00, 0x00, 0x00,
 705
 706	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 707	0x00, 0x38, 0x00, 0x00,
 708
 709	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
 710	0x00, 0x00, 0x00, 0x00,
 711	0x00, 0x00, 0x00, 0x85,
 712
 713	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 714	0x00, 0x00, 0x00, 0x00,
 715
 716	0x45, 0x00, 0x00, 0x1c, /* IP 62 */
 717	0x00, 0x00, 0x00, 0x00,
 718	0x00, 0x11, 0x00, 0x00,
 719	0x00, 0x00, 0x00, 0x00,
 720	0x00, 0x00, 0x00, 0x00,
 721
 722	0x00, 0x00, 0x00, 0x00, /* UDP 82 */
 723	0x00, 0x08, 0x00, 0x00,
 724
 725	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 726};
 727
 728/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
 729ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
 730	{ ICE_MAC_OFOS,		0 },
 731	{ ICE_IPV4_OFOS,	14 },
 732	{ ICE_UDP_OF,		34 },
 733	{ ICE_GTP,		42 },
 734	{ ICE_IPV6_IL,		62 },
 735	{ ICE_TCP_IL,		102 },
 736	{ ICE_PROTOCOL_LAST,	0 },
 737};
 738
 739ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
 740	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 741	0x00, 0x00, 0x00, 0x00,
 742	0x00, 0x00, 0x00, 0x00,
 743	0x08, 0x00,
 744
 745	0x45, 0x00, 0x00, 0x6c, /* IP 14 */
 746	0x00, 0x00, 0x00, 0x00,
 747	0x00, 0x11, 0x00, 0x00,
 748	0x00, 0x00, 0x00, 0x00,
 749	0x00, 0x00, 0x00, 0x00,
 750
 751	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 752	0x00, 0x58, 0x00, 0x00,
 753
 754	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
 755	0x00, 0x00, 0x00, 0x00,
 756	0x00, 0x00, 0x00, 0x85,
 757
 758	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 759	0x00, 0x00, 0x00, 0x00,
 760
 761	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 762	0x00, 0x14, 0x06, 0x00,
 763	0x00, 0x00, 0x00, 0x00,
 764	0x00, 0x00, 0x00, 0x00,
 765	0x00, 0x00, 0x00, 0x00,
 766	0x00, 0x00, 0x00, 0x00,
 767	0x00, 0x00, 0x00, 0x00,
 768	0x00, 0x00, 0x00, 0x00,
 769	0x00, 0x00, 0x00, 0x00,
 770	0x00, 0x00, 0x00, 0x00,
 771
 772	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 773	0x00, 0x00, 0x00, 0x00,
 774	0x00, 0x00, 0x00, 0x00,
 775	0x50, 0x00, 0x00, 0x00,
 776	0x00, 0x00, 0x00, 0x00,
 777
 778	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 779};
 780
 781ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
 782	{ ICE_MAC_OFOS,		0 },
 783	{ ICE_IPV4_OFOS,	14 },
 784	{ ICE_UDP_OF,		34 },
 785	{ ICE_GTP,		42 },
 786	{ ICE_IPV6_IL,		62 },
 787	{ ICE_UDP_ILOS,		102 },
 788	{ ICE_PROTOCOL_LAST,	0 },
 789};
 790
 791ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
 792	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 793	0x00, 0x00, 0x00, 0x00,
 794	0x00, 0x00, 0x00, 0x00,
 795	0x08, 0x00,
 796
 797	0x45, 0x00, 0x00, 0x60, /* IP 14 */
 798	0x00, 0x00, 0x00, 0x00,
 799	0x00, 0x11, 0x00, 0x00,
 800	0x00, 0x00, 0x00, 0x00,
 801	0x00, 0x00, 0x00, 0x00,
 802
 803	0x00, 0x00, 0x08, 0x68, /* UDP 34 */
 804	0x00, 0x4c, 0x00, 0x00,
 805
 806	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
 807	0x00, 0x00, 0x00, 0x00,
 808	0x00, 0x00, 0x00, 0x85,
 809
 810	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
 811	0x00, 0x00, 0x00, 0x00,
 812
 813	0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
 814	0x00, 0x08, 0x11, 0x00,
 815	0x00, 0x00, 0x00, 0x00,
 816	0x00, 0x00, 0x00, 0x00,
 817	0x00, 0x00, 0x00, 0x00,
 818	0x00, 0x00, 0x00, 0x00,
 819	0x00, 0x00, 0x00, 0x00,
 820	0x00, 0x00, 0x00, 0x00,
 821	0x00, 0x00, 0x00, 0x00,
 822	0x00, 0x00, 0x00, 0x00,
 823
 824	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 825	0x00, 0x08, 0x00, 0x00,
 826
 827	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 828};
 829
 830ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
 831	{ ICE_MAC_OFOS,		0 },
 832	{ ICE_IPV6_OFOS,	14 },
 833	{ ICE_UDP_OF,		54 },
 834	{ ICE_GTP,		62 },
 835	{ ICE_IPV4_IL,		82 },
 836	{ ICE_TCP_IL,		102 },
 837	{ ICE_PROTOCOL_LAST,	0 },
 838};
 839
 840ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
 841	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 842	0x00, 0x00, 0x00, 0x00,
 843	0x00, 0x00, 0x00, 0x00,
 844	0x86, 0xdd,
 845
 846	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 847	0x00, 0x44, 0x11, 0x00,
 848	0x00, 0x00, 0x00, 0x00,
 849	0x00, 0x00, 0x00, 0x00,
 850	0x00, 0x00, 0x00, 0x00,
 851	0x00, 0x00, 0x00, 0x00,
 852	0x00, 0x00, 0x00, 0x00,
 853	0x00, 0x00, 0x00, 0x00,
 854	0x00, 0x00, 0x00, 0x00,
 855	0x00, 0x00, 0x00, 0x00,
 856
 857	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 858	0x00, 0x44, 0x00, 0x00,
 859
 860	0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
 861	0x00, 0x00, 0x00, 0x00,
 862	0x00, 0x00, 0x00, 0x85,
 863
 864	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 865	0x00, 0x00, 0x00, 0x00,
 866
 867	0x45, 0x00, 0x00, 0x28, /* IP 82 */
 868	0x00, 0x00, 0x00, 0x00,
 869	0x00, 0x06, 0x00, 0x00,
 870	0x00, 0x00, 0x00, 0x00,
 871	0x00, 0x00, 0x00, 0x00,
 872
 873	0x00, 0x00, 0x00, 0x00, /* TCP 102 */
 874	0x00, 0x00, 0x00, 0x00,
 875	0x00, 0x00, 0x00, 0x00,
 876	0x50, 0x00, 0x00, 0x00,
 877	0x00, 0x00, 0x00, 0x00,
 878
 879	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 880};
 881
 882ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
 883	{ ICE_MAC_OFOS,		0 },
 884	{ ICE_IPV6_OFOS,	14 },
 885	{ ICE_UDP_OF,		54 },
 886	{ ICE_GTP,		62 },
 887	{ ICE_IPV4_IL,		82 },
 888	{ ICE_UDP_ILOS,		102 },
 889	{ ICE_PROTOCOL_LAST,	0 },
 890};
 891
 892ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
 893	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 894	0x00, 0x00, 0x00, 0x00,
 895	0x00, 0x00, 0x00, 0x00,
 896	0x86, 0xdd,
 897
 898	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 899	0x00, 0x38, 0x11, 0x00,
 900	0x00, 0x00, 0x00, 0x00,
 901	0x00, 0x00, 0x00, 0x00,
 902	0x00, 0x00, 0x00, 0x00,
 903	0x00, 0x00, 0x00, 0x00,
 904	0x00, 0x00, 0x00, 0x00,
 905	0x00, 0x00, 0x00, 0x00,
 906	0x00, 0x00, 0x00, 0x00,
 907	0x00, 0x00, 0x00, 0x00,
 908
 909	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 910	0x00, 0x38, 0x00, 0x00,
 911
 912	0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
 913	0x00, 0x00, 0x00, 0x00,
 914	0x00, 0x00, 0x00, 0x85,
 915
 916	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 917	0x00, 0x00, 0x00, 0x00,
 918
 919	0x45, 0x00, 0x00, 0x1c, /* IP 82 */
 920	0x00, 0x00, 0x00, 0x00,
 921	0x00, 0x11, 0x00, 0x00,
 922	0x00, 0x00, 0x00, 0x00,
 923	0x00, 0x00, 0x00, 0x00,
 924
 925	0x00, 0x00, 0x00, 0x00, /* UDP 102 */
 926	0x00, 0x08, 0x00, 0x00,
 927
 928	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 929};
 930
 931ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
 932	{ ICE_MAC_OFOS,		0 },
 933	{ ICE_IPV6_OFOS,	14 },
 934	{ ICE_UDP_OF,		54 },
 935	{ ICE_GTP,		62 },
 936	{ ICE_IPV6_IL,		82 },
 937	{ ICE_TCP_IL,		122 },
 938	{ ICE_PROTOCOL_LAST,	0 },
 939};
 940
 941ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
 942	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
 943	0x00, 0x00, 0x00, 0x00,
 944	0x00, 0x00, 0x00, 0x00,
 945	0x86, 0xdd,
 946
 947	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
 948	0x00, 0x58, 0x11, 0x00,
 949	0x00, 0x00, 0x00, 0x00,
 950	0x00, 0x00, 0x00, 0x00,
 951	0x00, 0x00, 0x00, 0x00,
 952	0x00, 0x00, 0x00, 0x00,
 953	0x00, 0x00, 0x00, 0x00,
 954	0x00, 0x00, 0x00, 0x00,
 955	0x00, 0x00, 0x00, 0x00,
 956	0x00, 0x00, 0x00, 0x00,
 957
 958	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
 959	0x00, 0x58, 0x00, 0x00,
 960
 961	0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
 962	0x00, 0x00, 0x00, 0x00,
 963	0x00, 0x00, 0x00, 0x85,
 964
 965	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
 966	0x00, 0x00, 0x00, 0x00,
 967
 968	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
 969	0x00, 0x14, 0x06, 0x00,
 970	0x00, 0x00, 0x00, 0x00,
 971	0x00, 0x00, 0x00, 0x00,
 972	0x00, 0x00, 0x00, 0x00,
 973	0x00, 0x00, 0x00, 0x00,
 974	0x00, 0x00, 0x00, 0x00,
 975	0x00, 0x00, 0x00, 0x00,
 976	0x00, 0x00, 0x00, 0x00,
 977	0x00, 0x00, 0x00, 0x00,
 978
 979	0x00, 0x00, 0x00, 0x00, /* TCP 122 */
 980	0x00, 0x00, 0x00, 0x00,
 981	0x00, 0x00, 0x00, 0x00,
 982	0x50, 0x00, 0x00, 0x00,
 983	0x00, 0x00, 0x00, 0x00,
 984
 985	0x00, 0x00, /* 2 bytes for 4 byte alignment */
 986};
 987
 988ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
 989	{ ICE_MAC_OFOS,		0 },
 990	{ ICE_IPV6_OFOS,	14 },
 991	{ ICE_UDP_OF,		54 },
 992	{ ICE_GTP,		62 },
 993	{ ICE_IPV6_IL,		82 },
 994	{ ICE_UDP_ILOS,		122 },
 995	{ ICE_PROTOCOL_LAST,	0 },
 996};
 997
 998ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
 999	0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1000	0x00, 0x00, 0x00, 0x00,
1001	0x00, 0x00, 0x00, 0x00,
1002	0x86, 0xdd,
1003
1004	0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1005	0x00, 0x4c, 0x11, 0x00,
1006	0x00, 0x00, 0x00, 0x00,
1007	0x00, 0x00, 0x00, 0x00,
1008	0x00, 0x00, 0x00, 0x00,
1009	0x00, 0x00, 0x00, 0x00,
1010	0x00, 0x00, 0x00, 0x00,
1011	0x00, 0x00, 0x00, 0x00,
1012	0x00, 0x00, 0x00, 0x00,
1013	0x00, 0x00, 0x00, 0x00,
1014
1015	0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1016	0x00, 0x4c, 0x00, 0x00,
1017
1018	0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1019	0x00, 0x00, 0x00, 0x00,
1020	0x00, 0x00, 0x00, 0x85,
1021
1022	0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1023	0x00, 0x00, 0x00, 0x00,
1024
1025	0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1026	0x00, 0x08, 0x11, 0x00,
1027	0x00, 0x00, 0x00, 0x00,
1028	0x00, 0x00, 0x00, 0x00,
1029	0x00, 0x00, 0x00, 0x00,
1030	0x00, 0x00, 0x00, 0x00,
1031	0x00, 0x00, 0x00, 0x00,
1032	0x00, 0x00, 0x00, 0x00,
1033	0x00, 0x00, 0x00, 0x00,
1034	0x00, 0x00, 0x00, 0x00,
1035
1036	0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1037	0x00, 0x08, 0x00, 0x00,
1038
1039	0x00, 0x00, /* 2 bytes for 4 byte alignment */
1040};
1041
1042ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1043	{ ICE_MAC_OFOS,		0 },
1044	{ ICE_IPV4_OFOS,	14 },
1045	{ ICE_UDP_OF,		34 },
1046	{ ICE_GTP_NO_PAY,	42 },
1047	{ ICE_PROTOCOL_LAST,	0 },
1048};
1049
1050ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1051	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1052	0x00, 0x00, 0x00, 0x00,
1053	0x00, 0x00, 0x00, 0x00,
1054	0x08, 0x00,
1055
1056	0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1057	0x00, 0x00, 0x40, 0x00,
1058	0x40, 0x11, 0x00, 0x00,
1059	0x00, 0x00, 0x00, 0x00,
1060	0x00, 0x00, 0x00, 0x00,
1061
1062	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1063	0x00, 0x00, 0x00, 0x00,
1064
1065	0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1066	0x00, 0x00, 0x00, 0x00,
1067	0x00, 0x00, 0x00, 0x85,
1068
1069	0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1070	0x00, 0x00, 0x00, 0x00,
1071
1072	0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1073	0x00, 0x00, 0x40, 0x00,
1074	0x40, 0x00, 0x00, 0x00,
1075	0x00, 0x00, 0x00, 0x00,
1076	0x00, 0x00, 0x00, 0x00,
1077	0x00, 0x00,
1078};
1079
1080ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1081	{ ICE_MAC_OFOS,		0 },
1082	{ ICE_IPV6_OFOS,	14 },
1083	{ ICE_UDP_OF,		54 },
1084	{ ICE_GTP_NO_PAY,	62 },
1085	{ ICE_PROTOCOL_LAST,	0 },
1086};
1087
1088ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1089	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1090	0x00, 0x00, 0x00, 0x00,
1091	0x00, 0x00, 0x00, 0x00,
1092	0x86, 0xdd,
1093
1094	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1095	0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1096	0x00, 0x00, 0x00, 0x00,
1097	0x00, 0x00, 0x00, 0x00,
1098	0x00, 0x00, 0x00, 0x00,
1099	0x00, 0x00, 0x00, 0x00,
1100	0x00, 0x00, 0x00, 0x00,
1101	0x00, 0x00, 0x00, 0x00,
1102	0x00, 0x00, 0x00, 0x00,
1103	0x00, 0x00, 0x00, 0x00,
1104
1105	0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1106	0x00, 0x00, 0x00, 0x00,
1107
1108	0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1109	0x00, 0x00, 0x00, 0x00,
1110
1111	0x00, 0x00,
1112};
1113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1115	{ ICE_MAC_OFOS,		0 },
1116	{ ICE_ETYPE_OL,		12 },
1117	{ ICE_PPPOE,		14 },
1118	{ ICE_IPV4_OFOS,	22 },
1119	{ ICE_TCP_IL,		42 },
1120	{ ICE_PROTOCOL_LAST,	0 },
1121};
1122
1123ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1124	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1125	0x00, 0x00, 0x00, 0x00,
1126	0x00, 0x00, 0x00, 0x00,
1127
1128	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1129
1130	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1131	0x00, 0x16,
1132
1133	0x00, 0x21,		/* PPP Link Layer 20 */
1134
1135	0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1136	0x00, 0x01, 0x00, 0x00,
1137	0x00, 0x06, 0x00, 0x00,
1138	0x00, 0x00, 0x00, 0x00,
1139	0x00, 0x00, 0x00, 0x00,
1140
1141	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1142	0x00, 0x00, 0x00, 0x00,
1143	0x00, 0x00, 0x00, 0x00,
1144	0x50, 0x00, 0x00, 0x00,
1145	0x00, 0x00, 0x00, 0x00,
1146
1147	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1148};
1149
1150ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1151	{ ICE_MAC_OFOS,		0 },
1152	{ ICE_ETYPE_OL,		12 },
1153	{ ICE_PPPOE,		14 },
1154	{ ICE_IPV4_OFOS,	22 },
1155	{ ICE_UDP_ILOS,		42 },
1156	{ ICE_PROTOCOL_LAST,	0 },
1157};
1158
1159ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1160	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1161	0x00, 0x00, 0x00, 0x00,
1162	0x00, 0x00, 0x00, 0x00,
1163
1164	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1165
1166	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1167	0x00, 0x16,
1168
1169	0x00, 0x21,		/* PPP Link Layer 20 */
1170
1171	0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1172	0x00, 0x01, 0x00, 0x00,
1173	0x00, 0x11, 0x00, 0x00,
1174	0x00, 0x00, 0x00, 0x00,
1175	0x00, 0x00, 0x00, 0x00,
1176
1177	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1178	0x00, 0x08, 0x00, 0x00,
1179
1180	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1181};
1182
1183ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1184	{ ICE_MAC_OFOS,		0 },
1185	{ ICE_ETYPE_OL,		12 },
1186	{ ICE_PPPOE,		14 },
1187	{ ICE_IPV6_OFOS,	22 },
1188	{ ICE_TCP_IL,		62 },
1189	{ ICE_PROTOCOL_LAST,	0 },
1190};
1191
1192ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1193	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1194	0x00, 0x00, 0x00, 0x00,
1195	0x00, 0x00, 0x00, 0x00,
1196
1197	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1198
1199	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1200	0x00, 0x2a,
1201
1202	0x00, 0x57,		/* PPP Link Layer 20 */
1203
1204	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1205	0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1206	0x00, 0x00, 0x00, 0x00,
1207	0x00, 0x00, 0x00, 0x00,
1208	0x00, 0x00, 0x00, 0x00,
1209	0x00, 0x00, 0x00, 0x00,
1210	0x00, 0x00, 0x00, 0x00,
1211	0x00, 0x00, 0x00, 0x00,
1212	0x00, 0x00, 0x00, 0x00,
1213	0x00, 0x00, 0x00, 0x00,
1214
1215	0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1216	0x00, 0x00, 0x00, 0x00,
1217	0x00, 0x00, 0x00, 0x00,
1218	0x50, 0x00, 0x00, 0x00,
1219	0x00, 0x00, 0x00, 0x00,
1220
1221	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1222};
1223
1224ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1225	{ ICE_MAC_OFOS,		0 },
1226	{ ICE_ETYPE_OL,		12 },
1227	{ ICE_PPPOE,		14 },
1228	{ ICE_IPV6_OFOS,	22 },
1229	{ ICE_UDP_ILOS,		62 },
1230	{ ICE_PROTOCOL_LAST,	0 },
1231};
1232
1233ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1234	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1235	0x00, 0x00, 0x00, 0x00,
1236	0x00, 0x00, 0x00, 0x00,
1237
1238	0x88, 0x64,		/* ICE_ETYPE_OL 12 */
1239
1240	0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1241	0x00, 0x2a,
1242
1243	0x00, 0x57,		/* PPP Link Layer 20 */
1244
1245	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1246	0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1247	0x00, 0x00, 0x00, 0x00,
1248	0x00, 0x00, 0x00, 0x00,
1249	0x00, 0x00, 0x00, 0x00,
1250	0x00, 0x00, 0x00, 0x00,
1251	0x00, 0x00, 0x00, 0x00,
1252	0x00, 0x00, 0x00, 0x00,
1253	0x00, 0x00, 0x00, 0x00,
1254	0x00, 0x00, 0x00, 0x00,
1255
1256	0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1257	0x00, 0x08, 0x00, 0x00,
1258
1259	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1260};
1261
1262ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1263	{ ICE_MAC_OFOS,		0 },
1264	{ ICE_ETYPE_OL,		12 },
1265	{ ICE_IPV4_OFOS,	14 },
1266	{ ICE_L2TPV3,		34 },
1267	{ ICE_PROTOCOL_LAST,	0 },
1268};
1269
1270ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1271	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1272	0x00, 0x00, 0x00, 0x00,
1273	0x00, 0x00, 0x00, 0x00,
1274
1275	0x08, 0x00,		/* ICE_ETYPE_OL 12 */
1276
1277	0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1278	0x00, 0x00, 0x40, 0x00,
1279	0x40, 0x73, 0x00, 0x00,
1280	0x00, 0x00, 0x00, 0x00,
1281	0x00, 0x00, 0x00, 0x00,
1282
1283	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1284	0x00, 0x00, 0x00, 0x00,
1285	0x00, 0x00, 0x00, 0x00,
1286	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1287};
1288
1289ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1290	{ ICE_MAC_OFOS,		0 },
1291	{ ICE_ETYPE_OL,		12 },
1292	{ ICE_IPV6_OFOS,	14 },
1293	{ ICE_L2TPV3,		54 },
1294	{ ICE_PROTOCOL_LAST,	0 },
1295};
1296
1297ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1298	0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1299	0x00, 0x00, 0x00, 0x00,
1300	0x00, 0x00, 0x00, 0x00,
1301
1302	0x86, 0xDD,		/* ICE_ETYPE_OL 12 */
1303
1304	0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1305	0x00, 0x0c, 0x73, 0x40,
1306	0x00, 0x00, 0x00, 0x00,
1307	0x00, 0x00, 0x00, 0x00,
1308	0x00, 0x00, 0x00, 0x00,
1309	0x00, 0x00, 0x00, 0x00,
1310	0x00, 0x00, 0x00, 0x00,
1311	0x00, 0x00, 0x00, 0x00,
1312	0x00, 0x00, 0x00, 0x00,
1313	0x00, 0x00, 0x00, 0x00,
1314
1315	0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1316	0x00, 0x00, 0x00, 0x00,
1317	0x00, 0x00, 0x00, 0x00,
1318	0x00, 0x00,		/* 2 bytes for 4 bytes alignment */
1319};
1320
1321static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1322	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1323				  ICE_PKT_GTP_NOPAY),
1324	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1325					    ICE_PKT_OUTER_IPV6 |
1326					    ICE_PKT_INNER_IPV6 |
1327					    ICE_PKT_INNER_UDP),
1328	ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1329					    ICE_PKT_OUTER_IPV6 |
1330					    ICE_PKT_INNER_IPV6),
1331	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1332					    ICE_PKT_OUTER_IPV6 |
1333					    ICE_PKT_INNER_UDP),
1334	ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1335					    ICE_PKT_OUTER_IPV6),
1336	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1337	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1338					    ICE_PKT_INNER_IPV6 |
1339					    ICE_PKT_INNER_UDP),
1340	ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1341					    ICE_PKT_INNER_IPV6),
1342	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1343					    ICE_PKT_INNER_UDP),
1344	ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1345	ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1346	ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
 
 
1347	ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1348					ICE_PKT_INNER_UDP),
1349	ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1350	ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1351	ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1352	ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1353				      ICE_PKT_INNER_TCP),
1354	ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1355	ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1356	ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1357	ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1358					  ICE_PKT_INNER_IPV6 |
1359					  ICE_PKT_INNER_TCP),
1360	ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1361	ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1362	ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1363	ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1364					  ICE_PKT_INNER_IPV6),
1365	ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1366	ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1367	ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1368	ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1369	ICE_PKT_PROFILE(tcp, 0),
1370};
1371
1372#define ICE_SW_RULE_RX_TX_HDR_SIZE(s, l)	struct_size((s), hdr_data, (l))
1373#define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s)	\
1374	ICE_SW_RULE_RX_TX_HDR_SIZE((s), DUMMY_ETH_HDR_LEN)
1375#define ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s)	\
1376	ICE_SW_RULE_RX_TX_HDR_SIZE((s), 0)
1377#define ICE_SW_RULE_LG_ACT_SIZE(s, n)		struct_size((s), act, (n))
1378#define ICE_SW_RULE_VSI_LIST_SIZE(s, n)		struct_size((s), vsi, (n))
1379
1380/* this is a recipe to profile association bitmap */
1381static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1382			  ICE_MAX_NUM_PROFILES);
1383
1384/* this is a profile to recipe association bitmap */
1385static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1386			  ICE_MAX_NUM_RECIPES);
1387
1388/**
1389 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1390 * @hw: pointer to the HW struct
1391 *
1392 * Allocate memory for the entire recipe table and initialize the structures/
1393 * entries corresponding to basic recipes.
1394 */
1395int ice_init_def_sw_recp(struct ice_hw *hw)
1396{
1397	struct ice_sw_recipe *recps;
1398	u8 i;
1399
1400	recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1401			     sizeof(*recps), GFP_KERNEL);
1402	if (!recps)
1403		return -ENOMEM;
1404
1405	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1406		recps[i].root_rid = i;
1407		INIT_LIST_HEAD(&recps[i].filt_rules);
1408		INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1409		INIT_LIST_HEAD(&recps[i].rg_list);
1410		mutex_init(&recps[i].filt_rule_lock);
1411	}
1412
1413	hw->switch_info->recp_list = recps;
1414
1415	return 0;
1416}
1417
1418/**
1419 * ice_aq_get_sw_cfg - get switch configuration
1420 * @hw: pointer to the hardware structure
1421 * @buf: pointer to the result buffer
1422 * @buf_size: length of the buffer available for response
1423 * @req_desc: pointer to requested descriptor
1424 * @num_elems: pointer to number of elements
1425 * @cd: pointer to command details structure or NULL
1426 *
1427 * Get switch configuration (0x0200) to be placed in buf.
1428 * This admin command returns information such as initial VSI/port number
1429 * and switch ID it belongs to.
1430 *
1431 * NOTE: *req_desc is both an input/output parameter.
1432 * The caller of this function first calls this function with *request_desc set
1433 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1434 * configuration information has been returned; if non-zero (meaning not all
1435 * the information was returned), the caller should call this function again
1436 * with *req_desc set to the previous value returned by f/w to get the
1437 * next block of switch configuration information.
1438 *
1439 * *num_elems is output only parameter. This reflects the number of elements
1440 * in response buffer. The caller of this function to use *num_elems while
1441 * parsing the response buffer.
1442 */
1443static int
1444ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1445		  u16 buf_size, u16 *req_desc, u16 *num_elems,
1446		  struct ice_sq_cd *cd)
1447{
1448	struct ice_aqc_get_sw_cfg *cmd;
1449	struct ice_aq_desc desc;
1450	int status;
1451
1452	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1453	cmd = &desc.params.get_sw_conf;
1454	cmd->element = cpu_to_le16(*req_desc);
1455
1456	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1457	if (!status) {
1458		*req_desc = le16_to_cpu(cmd->element);
1459		*num_elems = le16_to_cpu(cmd->num_elems);
1460	}
1461
1462	return status;
1463}
1464
1465/**
1466 * ice_aq_add_vsi
1467 * @hw: pointer to the HW struct
1468 * @vsi_ctx: pointer to a VSI context struct
1469 * @cd: pointer to command details structure or NULL
1470 *
1471 * Add a VSI context to the hardware (0x0210)
1472 */
1473static int
1474ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1475	       struct ice_sq_cd *cd)
1476{
1477	struct ice_aqc_add_update_free_vsi_resp *res;
1478	struct ice_aqc_add_get_update_free_vsi *cmd;
1479	struct ice_aq_desc desc;
1480	int status;
1481
1482	cmd = &desc.params.vsi_cmd;
1483	res = &desc.params.add_update_free_vsi_res;
1484
1485	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1486
1487	if (!vsi_ctx->alloc_from_pool)
1488		cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1489					   ICE_AQ_VSI_IS_VALID);
1490	cmd->vf_id = vsi_ctx->vf_num;
1491
1492	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1493
1494	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1495
1496	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1497				 sizeof(vsi_ctx->info), cd);
1498
1499	if (!status) {
1500		vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1501		vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1502		vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1503	}
1504
1505	return status;
1506}
1507
1508/**
1509 * ice_aq_free_vsi
1510 * @hw: pointer to the HW struct
1511 * @vsi_ctx: pointer to a VSI context struct
1512 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1513 * @cd: pointer to command details structure or NULL
1514 *
1515 * Free VSI context info from hardware (0x0213)
1516 */
1517static int
1518ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1519		bool keep_vsi_alloc, struct ice_sq_cd *cd)
1520{
1521	struct ice_aqc_add_update_free_vsi_resp *resp;
1522	struct ice_aqc_add_get_update_free_vsi *cmd;
1523	struct ice_aq_desc desc;
1524	int status;
1525
1526	cmd = &desc.params.vsi_cmd;
1527	resp = &desc.params.add_update_free_vsi_res;
1528
1529	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1530
1531	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1532	if (keep_vsi_alloc)
1533		cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1534
1535	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1536	if (!status) {
1537		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1538		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1539	}
1540
1541	return status;
1542}
1543
1544/**
1545 * ice_aq_update_vsi
1546 * @hw: pointer to the HW struct
1547 * @vsi_ctx: pointer to a VSI context struct
1548 * @cd: pointer to command details structure or NULL
1549 *
1550 * Update VSI context in the hardware (0x0211)
1551 */
1552static int
1553ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1554		  struct ice_sq_cd *cd)
1555{
1556	struct ice_aqc_add_update_free_vsi_resp *resp;
1557	struct ice_aqc_add_get_update_free_vsi *cmd;
1558	struct ice_aq_desc desc;
1559	int status;
1560
1561	cmd = &desc.params.vsi_cmd;
1562	resp = &desc.params.add_update_free_vsi_res;
1563
1564	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1565
1566	cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1567
1568	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1569
1570	status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1571				 sizeof(vsi_ctx->info), cd);
1572
1573	if (!status) {
1574		vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1575		vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1576	}
1577
1578	return status;
1579}
1580
1581/**
1582 * ice_is_vsi_valid - check whether the VSI is valid or not
1583 * @hw: pointer to the HW struct
1584 * @vsi_handle: VSI handle
1585 *
1586 * check whether the VSI is valid or not
1587 */
1588bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1589{
1590	return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1591}
1592
1593/**
1594 * ice_get_hw_vsi_num - return the HW VSI number
1595 * @hw: pointer to the HW struct
1596 * @vsi_handle: VSI handle
1597 *
1598 * return the HW VSI number
1599 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1600 */
1601u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1602{
1603	return hw->vsi_ctx[vsi_handle]->vsi_num;
1604}
1605
1606/**
1607 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1608 * @hw: pointer to the HW struct
1609 * @vsi_handle: VSI handle
1610 *
1611 * return the VSI context entry for a given VSI handle
1612 */
1613struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1614{
1615	return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1616}
1617
1618/**
1619 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1620 * @hw: pointer to the HW struct
1621 * @vsi_handle: VSI handle
1622 * @vsi: VSI context pointer
1623 *
1624 * save the VSI context entry for a given VSI handle
1625 */
1626static void
1627ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1628{
1629	hw->vsi_ctx[vsi_handle] = vsi;
1630}
1631
1632/**
1633 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1634 * @hw: pointer to the HW struct
1635 * @vsi_handle: VSI handle
1636 */
1637static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1638{
1639	struct ice_vsi_ctx *vsi;
1640	u8 i;
1641
1642	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1643	if (!vsi)
1644		return;
1645	ice_for_each_traffic_class(i) {
1646		if (vsi->lan_q_ctx[i]) {
1647			devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1648			vsi->lan_q_ctx[i] = NULL;
1649		}
1650		if (vsi->rdma_q_ctx[i]) {
1651			devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1652			vsi->rdma_q_ctx[i] = NULL;
1653		}
1654	}
1655}
1656
1657/**
1658 * ice_clear_vsi_ctx - clear the VSI context entry
1659 * @hw: pointer to the HW struct
1660 * @vsi_handle: VSI handle
1661 *
1662 * clear the VSI context entry
1663 */
1664static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1665{
1666	struct ice_vsi_ctx *vsi;
1667
1668	vsi = ice_get_vsi_ctx(hw, vsi_handle);
1669	if (vsi) {
1670		ice_clear_vsi_q_ctx(hw, vsi_handle);
1671		devm_kfree(ice_hw_to_dev(hw), vsi);
1672		hw->vsi_ctx[vsi_handle] = NULL;
1673	}
1674}
1675
1676/**
1677 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1678 * @hw: pointer to the HW struct
1679 */
1680void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1681{
1682	u16 i;
1683
1684	for (i = 0; i < ICE_MAX_VSI; i++)
1685		ice_clear_vsi_ctx(hw, i);
1686}
1687
1688/**
1689 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1690 * @hw: pointer to the HW struct
1691 * @vsi_handle: unique VSI handle provided by drivers
1692 * @vsi_ctx: pointer to a VSI context struct
1693 * @cd: pointer to command details structure or NULL
1694 *
1695 * Add a VSI context to the hardware also add it into the VSI handle list.
1696 * If this function gets called after reset for existing VSIs then update
1697 * with the new HW VSI number in the corresponding VSI handle list entry.
1698 */
1699int
1700ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1701	    struct ice_sq_cd *cd)
1702{
1703	struct ice_vsi_ctx *tmp_vsi_ctx;
1704	int status;
1705
1706	if (vsi_handle >= ICE_MAX_VSI)
1707		return -EINVAL;
1708	status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1709	if (status)
1710		return status;
1711	tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1712	if (!tmp_vsi_ctx) {
1713		/* Create a new VSI context */
1714		tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1715					   sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1716		if (!tmp_vsi_ctx) {
1717			ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1718			return -ENOMEM;
1719		}
1720		*tmp_vsi_ctx = *vsi_ctx;
1721		ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1722	} else {
1723		/* update with new HW VSI num */
1724		tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1725	}
1726
1727	return 0;
1728}
1729
1730/**
1731 * ice_free_vsi- free VSI context from hardware and VSI handle list
1732 * @hw: pointer to the HW struct
1733 * @vsi_handle: unique VSI handle
1734 * @vsi_ctx: pointer to a VSI context struct
1735 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1736 * @cd: pointer to command details structure or NULL
1737 *
1738 * Free VSI context info from hardware as well as from VSI handle list
1739 */
1740int
1741ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1742	     bool keep_vsi_alloc, struct ice_sq_cd *cd)
1743{
1744	int status;
1745
1746	if (!ice_is_vsi_valid(hw, vsi_handle))
1747		return -EINVAL;
1748	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1749	status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1750	if (!status)
1751		ice_clear_vsi_ctx(hw, vsi_handle);
1752	return status;
1753}
1754
1755/**
1756 * ice_update_vsi
1757 * @hw: pointer to the HW struct
1758 * @vsi_handle: unique VSI handle
1759 * @vsi_ctx: pointer to a VSI context struct
1760 * @cd: pointer to command details structure or NULL
1761 *
1762 * Update VSI context in the hardware
1763 */
1764int
1765ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1766	       struct ice_sq_cd *cd)
1767{
1768	if (!ice_is_vsi_valid(hw, vsi_handle))
1769		return -EINVAL;
1770	vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1771	return ice_aq_update_vsi(hw, vsi_ctx, cd);
1772}
1773
1774/**
1775 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1776 * @hw: pointer to HW struct
1777 * @vsi_handle: VSI SW index
1778 * @enable: boolean for enable/disable
1779 */
1780int
1781ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1782{
1783	struct ice_vsi_ctx *ctx;
 
 
 
 
 
1784
1785	ctx = ice_get_vsi_ctx(hw, vsi_handle);
1786	if (!ctx)
1787		return -EIO;
 
 
 
 
 
 
1788
1789	if (enable)
1790		ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1791	else
1792		ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1793
1794	return ice_update_vsi(hw, vsi_handle, ctx, NULL);
 
 
 
 
 
 
 
1795}
1796
1797/**
1798 * ice_aq_alloc_free_vsi_list
1799 * @hw: pointer to the HW struct
1800 * @vsi_list_id: VSI list ID returned or used for lookup
1801 * @lkup_type: switch rule filter lookup type
1802 * @opc: switch rules population command type - pass in the command opcode
1803 *
1804 * allocates or free a VSI list resource
1805 */
1806static int
1807ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1808			   enum ice_sw_lkup_type lkup_type,
1809			   enum ice_adminq_opc opc)
1810{
1811	struct ice_aqc_alloc_free_res_elem *sw_buf;
 
1812	struct ice_aqc_res_elem *vsi_ele;
1813	u16 buf_len;
1814	int status;
1815
1816	buf_len = struct_size(sw_buf, elem, 1);
1817	sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL);
1818	if (!sw_buf)
1819		return -ENOMEM;
1820	sw_buf->num_elems = cpu_to_le16(1);
1821
1822	if (lkup_type == ICE_SW_LKUP_MAC ||
1823	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826	    lkup_type == ICE_SW_LKUP_PROMISC ||
1827	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828	    lkup_type == ICE_SW_LKUP_DFLT) {
 
1829		sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830	} else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831		sw_buf->res_type =
1832			cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
 
 
 
 
 
1833	} else {
1834		status = -EINVAL;
1835		goto ice_aq_alloc_free_vsi_list_exit;
1836	}
1837
1838	if (opc == ice_aqc_opc_free_res)
1839		sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1840
1841	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
1842	if (status)
1843		goto ice_aq_alloc_free_vsi_list_exit;
1844
1845	if (opc == ice_aqc_opc_alloc_res) {
1846		vsi_ele = &sw_buf->elem[0];
1847		*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1848	}
1849
1850ice_aq_alloc_free_vsi_list_exit:
1851	devm_kfree(ice_hw_to_dev(hw), sw_buf);
1852	return status;
1853}
1854
1855/**
1856 * ice_aq_sw_rules - add/update/remove switch rules
1857 * @hw: pointer to the HW struct
1858 * @rule_list: pointer to switch rule population list
1859 * @rule_list_sz: total size of the rule list in bytes
1860 * @num_rules: number of switch rules in the rule_list
1861 * @opc: switch rules population command type - pass in the command opcode
1862 * @cd: pointer to command details structure or NULL
1863 *
1864 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1865 */
1866int
1867ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1868		u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1869{
1870	struct ice_aq_desc desc;
1871	int status;
1872
1873	if (opc != ice_aqc_opc_add_sw_rules &&
1874	    opc != ice_aqc_opc_update_sw_rules &&
1875	    opc != ice_aqc_opc_remove_sw_rules)
1876		return -EINVAL;
1877
1878	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1879
1880	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1881	desc.params.sw_rules.num_rules_fltr_entry_index =
1882		cpu_to_le16(num_rules);
1883	status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1884	if (opc != ice_aqc_opc_add_sw_rules &&
1885	    hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1886		status = -ENOENT;
1887
 
 
 
 
 
 
 
 
 
1888	return status;
1889}
1890
1891/**
1892 * ice_aq_add_recipe - add switch recipe
1893 * @hw: pointer to the HW struct
1894 * @s_recipe_list: pointer to switch rule population list
1895 * @num_recipes: number of switch recipes in the list
1896 * @cd: pointer to command details structure or NULL
1897 *
1898 * Add(0x0290)
1899 */
1900static int
1901ice_aq_add_recipe(struct ice_hw *hw,
1902		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1903		  u16 num_recipes, struct ice_sq_cd *cd)
1904{
1905	struct ice_aqc_add_get_recipe *cmd;
1906	struct ice_aq_desc desc;
1907	u16 buf_size;
1908
1909	cmd = &desc.params.add_get_recipe;
1910	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1911
1912	cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1913	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1914
1915	buf_size = num_recipes * sizeof(*s_recipe_list);
1916
1917	return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1918}
1919
1920/**
1921 * ice_aq_get_recipe - get switch recipe
1922 * @hw: pointer to the HW struct
1923 * @s_recipe_list: pointer to switch rule population list
1924 * @num_recipes: pointer to the number of recipes (input and output)
1925 * @recipe_root: root recipe number of recipe(s) to retrieve
1926 * @cd: pointer to command details structure or NULL
1927 *
1928 * Get(0x0292)
1929 *
1930 * On input, *num_recipes should equal the number of entries in s_recipe_list.
1931 * On output, *num_recipes will equal the number of entries returned in
1932 * s_recipe_list.
1933 *
1934 * The caller must supply enough space in s_recipe_list to hold all possible
1935 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1936 */
1937static int
1938ice_aq_get_recipe(struct ice_hw *hw,
1939		  struct ice_aqc_recipe_data_elem *s_recipe_list,
1940		  u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1941{
1942	struct ice_aqc_add_get_recipe *cmd;
1943	struct ice_aq_desc desc;
1944	u16 buf_size;
1945	int status;
1946
1947	if (*num_recipes != ICE_MAX_NUM_RECIPES)
1948		return -EINVAL;
1949
1950	cmd = &desc.params.add_get_recipe;
1951	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1952
1953	cmd->return_index = cpu_to_le16(recipe_root);
1954	cmd->num_sub_recipes = 0;
1955
1956	buf_size = *num_recipes * sizeof(*s_recipe_list);
1957
1958	status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1959	*num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1960
1961	return status;
1962}
1963
1964/**
1965 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1966 * @hw: pointer to the HW struct
1967 * @params: parameters used to update the default recipe
1968 *
1969 * This function only supports updating default recipes and it only supports
1970 * updating a single recipe based on the lkup_idx at a time.
1971 *
1972 * This is done as a read-modify-write operation. First, get the current recipe
1973 * contents based on the recipe's ID. Then modify the field vector index and
1974 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1975 * the pre-existing recipe with the modifications.
1976 */
1977int
1978ice_update_recipe_lkup_idx(struct ice_hw *hw,
1979			   struct ice_update_recipe_lkup_idx_params *params)
1980{
1981	struct ice_aqc_recipe_data_elem *rcp_list;
1982	u16 num_recps = ICE_MAX_NUM_RECIPES;
1983	int status;
1984
1985	rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1986	if (!rcp_list)
1987		return -ENOMEM;
1988
1989	/* read current recipe list from firmware */
1990	rcp_list->recipe_indx = params->rid;
1991	status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1992	if (status) {
1993		ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1994			  params->rid, status);
1995		goto error_out;
1996	}
1997
1998	/* only modify existing recipe's lkup_idx and mask if valid, while
1999	 * leaving all other fields the same, then update the recipe firmware
2000	 */
2001	rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2002	if (params->mask_valid)
2003		rcp_list->content.mask[params->lkup_idx] =
2004			cpu_to_le16(params->mask);
2005
2006	if (params->ignore_valid)
2007		rcp_list->content.lkup_indx[params->lkup_idx] |=
2008			ICE_AQ_RECIPE_LKUP_IGNORE;
2009
2010	status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2011	if (status)
2012		ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2013			  params->rid, params->lkup_idx, params->fv_idx,
2014			  params->mask, params->mask_valid ? "true" : "false",
2015			  status);
2016
2017error_out:
2018	kfree(rcp_list);
2019	return status;
2020}
2021
2022/**
2023 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2024 * @hw: pointer to the HW struct
2025 * @profile_id: package profile ID to associate the recipe with
2026 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2027 * @cd: pointer to command details structure or NULL
2028 * Recipe to profile association (0x0291)
2029 */
2030static int
2031ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2032			     struct ice_sq_cd *cd)
2033{
2034	struct ice_aqc_recipe_to_profile *cmd;
2035	struct ice_aq_desc desc;
2036
2037	cmd = &desc.params.recipe_to_profile;
2038	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2039	cmd->profile_id = cpu_to_le16(profile_id);
2040	/* Set the recipe ID bit in the bitmask to let the device know which
2041	 * profile we are associating the recipe to
2042	 */
2043	memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
2044
2045	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2046}
2047
2048/**
2049 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2050 * @hw: pointer to the HW struct
2051 * @profile_id: package profile ID to associate the recipe with
2052 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2053 * @cd: pointer to command details structure or NULL
2054 * Associate profile ID with given recipe (0x0293)
2055 */
2056static int
2057ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2058			     struct ice_sq_cd *cd)
2059{
2060	struct ice_aqc_recipe_to_profile *cmd;
2061	struct ice_aq_desc desc;
2062	int status;
2063
2064	cmd = &desc.params.recipe_to_profile;
2065	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2066	cmd->profile_id = cpu_to_le16(profile_id);
2067
2068	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2069	if (!status)
2070		memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2071
2072	return status;
2073}
2074
2075/**
 
 
 
 
 
 
 
 
 
 
 
 
2076 * ice_alloc_recipe - add recipe resource
2077 * @hw: pointer to the hardware structure
2078 * @rid: recipe ID returned as response to AQ call
2079 */
2080static int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2081{
2082	struct ice_aqc_alloc_free_res_elem *sw_buf;
2083	u16 buf_len;
 
2084	int status;
2085
2086	buf_len = struct_size(sw_buf, elem, 1);
2087	sw_buf = kzalloc(buf_len, GFP_KERNEL);
2088	if (!sw_buf)
2089		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090
2091	sw_buf->num_elems = cpu_to_le16(1);
2092	sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2093					ICE_AQC_RES_TYPE_S) |
2094					ICE_AQC_RES_TYPE_FLAG_SHARED);
2095	status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2096				       ice_aqc_opc_alloc_res, NULL);
2097	if (!status)
2098		*rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2099	kfree(sw_buf);
2100
2101	return status;
2102}
2103
2104/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2106 * @hw: pointer to hardware structure
2107 *
2108 * This function is used to populate recipe_to_profile matrix where index to
2109 * this array is the recipe ID and the element is the mapping of which profiles
2110 * is this recipe mapped to.
2111 */
2112static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2113{
2114	DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
 
2115	u16 i;
2116
2117	for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2118		u16 j;
2119
2120		bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2121		bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2122		if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2123			continue;
 
2124		bitmap_copy(profile_to_recipe[i], r_bitmap,
2125			    ICE_MAX_NUM_RECIPES);
2126		for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2127			set_bit(i, recipe_to_profile[j]);
2128	}
2129}
2130
2131/**
2132 * ice_collect_result_idx - copy result index values
2133 * @buf: buffer that contains the result index
2134 * @recp: the recipe struct to copy data into
2135 */
2136static void
2137ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2138		       struct ice_sw_recipe *recp)
2139{
2140	if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2141		set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2142			recp->res_idxs);
2143}
2144
2145/**
2146 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2147 * @hw: pointer to hardware structure
2148 * @recps: struct that we need to populate
2149 * @rid: recipe ID that we are populating
2150 * @refresh_required: true if we should get recipe to profile mapping from FW
 
2151 *
2152 * This function is used to populate all the necessary entries into our
2153 * bookkeeping so that we have a current list of all the recipes that are
2154 * programmed in the firmware.
2155 */
2156static int
2157ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2158		    bool *refresh_required)
2159{
2160	DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2161	struct ice_aqc_recipe_data_elem *tmp;
2162	u16 num_recps = ICE_MAX_NUM_RECIPES;
2163	struct ice_prot_lkup_ext *lkup_exts;
2164	u8 fv_word_idx = 0;
2165	u16 sub_recps;
2166	int status;
2167
2168	bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2169
2170	/* we need a buffer big enough to accommodate all the recipes */
2171	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2172	if (!tmp)
2173		return -ENOMEM;
2174
2175	tmp[0].recipe_indx = rid;
2176	status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2177	/* non-zero status meaning recipe doesn't exist */
2178	if (status)
2179		goto err_unroll;
2180
2181	/* Get recipe to profile map so that we can get the fv from lkups that
2182	 * we read for a recipe from FW. Since we want to minimize the number of
2183	 * times we make this FW call, just make one call and cache the copy
2184	 * until a new recipe is added. This operation is only required the
2185	 * first time to get the changes from FW. Then to search existing
2186	 * entries we don't need to update the cache again until another recipe
2187	 * gets added.
2188	 */
2189	if (*refresh_required) {
2190		ice_get_recp_to_prof_map(hw);
2191		*refresh_required = false;
2192	}
2193
2194	/* Start populating all the entries for recps[rid] based on lkups from
2195	 * firmware. Note that we are only creating the root recipe in our
2196	 * database.
2197	 */
2198	lkup_exts = &recps[rid].lkup_exts;
2199
2200	for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2201		struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2202		struct ice_recp_grp_entry *rg_entry;
2203		u8 i, prof, idx, prot = 0;
2204		bool is_root;
2205		u16 off = 0;
2206
2207		rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2208					GFP_KERNEL);
2209		if (!rg_entry) {
2210			status = -ENOMEM;
2211			goto err_unroll;
2212		}
2213
2214		idx = root_bufs.recipe_indx;
2215		is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2216
2217		/* Mark all result indices in this chain */
2218		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2219			set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2220				result_bm);
2221
2222		/* get the first profile that is associated with rid */
2223		prof = find_first_bit(recipe_to_profile[idx],
2224				      ICE_MAX_NUM_PROFILES);
2225		for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2226			u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2227
2228			rg_entry->fv_idx[i] = lkup_indx;
2229			rg_entry->fv_mask[i] =
2230				le16_to_cpu(root_bufs.content.mask[i + 1]);
2231
2232			/* If the recipe is a chained recipe then all its
2233			 * child recipe's result will have a result index.
2234			 * To fill fv_words we should not use those result
2235			 * index, we only need the protocol ids and offsets.
2236			 * We will skip all the fv_idx which stores result
2237			 * index in them. We also need to skip any fv_idx which
2238			 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2239			 * valid offset value.
2240			 */
2241			if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2242			    rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2243			    rg_entry->fv_idx[i] == 0)
 
2244				continue;
2245
2246			ice_find_prot_off(hw, ICE_BLK_SW, prof,
2247					  rg_entry->fv_idx[i], &prot, &off);
2248			lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2249			lkup_exts->fv_words[fv_word_idx].off = off;
2250			lkup_exts->field_mask[fv_word_idx] =
2251				rg_entry->fv_mask[i];
2252			fv_word_idx++;
2253		}
2254		/* populate rg_list with the data from the child entry of this
2255		 * recipe
2256		 */
2257		list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2258
2259		/* Propagate some data to the recipe database */
2260		recps[idx].is_root = !!is_root;
2261		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
 
 
 
 
2262		bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2263		if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2264			recps[idx].chain_idx = root_bufs.content.result_indx &
2265				~ICE_AQ_RECIPE_RESULT_EN;
2266			set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2267		} else {
2268			recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2269		}
2270
2271		if (!is_root)
 
 
 
2272			continue;
 
2273
2274		/* Only do the following for root recipes entries */
2275		memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2276		       sizeof(recps[idx].r_bitmap));
2277		recps[idx].root_rid = root_bufs.content.rid &
2278			~ICE_AQ_RECIPE_ID_IS_ROOT;
2279		recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2280	}
2281
2282	/* Complete initialization of the root recipe entry */
2283	lkup_exts->n_val_words = fv_word_idx;
2284	recps[rid].big_recp = (num_recps > 1);
2285	recps[rid].n_grp_count = (u8)num_recps;
2286	recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2287					   recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2288					   GFP_KERNEL);
2289	if (!recps[rid].root_buf) {
2290		status = -ENOMEM;
2291		goto err_unroll;
2292	}
2293
2294	/* Copy result indexes */
2295	bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2296	recps[rid].recp_created = true;
 
2297
2298err_unroll:
2299	kfree(tmp);
2300	return status;
2301}
2302
2303/* ice_init_port_info - Initialize port_info with switch configuration data
2304 * @pi: pointer to port_info
2305 * @vsi_port_num: VSI number or port number
2306 * @type: Type of switch element (port or VSI)
2307 * @swid: switch ID of the switch the element is attached to
2308 * @pf_vf_num: PF or VF number
2309 * @is_vf: true if the element is a VF, false otherwise
2310 */
2311static void
2312ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2313		   u16 swid, u16 pf_vf_num, bool is_vf)
2314{
2315	switch (type) {
2316	case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2317		pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2318		pi->sw_id = swid;
2319		pi->pf_vf_num = pf_vf_num;
2320		pi->is_vf = is_vf;
2321		break;
2322	default:
2323		ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2324		break;
2325	}
2326}
2327
2328/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2329 * @hw: pointer to the hardware structure
2330 */
2331int ice_get_initial_sw_cfg(struct ice_hw *hw)
2332{
2333	struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2334	u16 req_desc = 0;
2335	u16 num_elems;
2336	int status;
2337	u16 i;
2338
2339	rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2340	if (!rbuf)
2341		return -ENOMEM;
2342
2343	/* Multiple calls to ice_aq_get_sw_cfg may be required
2344	 * to get all the switch configuration information. The need
2345	 * for additional calls is indicated by ice_aq_get_sw_cfg
2346	 * writing a non-zero value in req_desc
2347	 */
2348	do {
2349		struct ice_aqc_get_sw_cfg_resp_elem *ele;
2350
2351		status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2352					   &req_desc, &num_elems, NULL);
2353
2354		if (status)
2355			break;
2356
2357		for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2358			u16 pf_vf_num, swid, vsi_port_num;
2359			bool is_vf = false;
2360			u8 res_type;
2361
2362			vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2363				ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2364
2365			pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2366				ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2367
2368			swid = le16_to_cpu(ele->swid);
2369
2370			if (le16_to_cpu(ele->pf_vf_num) &
2371			    ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2372				is_vf = true;
2373
2374			res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2375					ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2376
2377			if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2378				/* FW VSI is not needed. Just continue. */
2379				continue;
2380			}
2381
2382			ice_init_port_info(hw->port_info, vsi_port_num,
2383					   res_type, swid, pf_vf_num, is_vf);
2384		}
2385	} while (req_desc && !status);
2386
2387	kfree(rbuf);
2388	return status;
2389}
2390
2391/**
2392 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2393 * @hw: pointer to the hardware structure
2394 * @fi: filter info structure to fill/update
2395 *
2396 * This helper function populates the lb_en and lan_en elements of the provided
2397 * ice_fltr_info struct using the switch's type and characteristics of the
2398 * switch rule being configured.
2399 */
2400static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2401{
2402	fi->lb_en = false;
2403	fi->lan_en = false;
2404	if ((fi->flag & ICE_FLTR_TX) &&
2405	    (fi->fltr_act == ICE_FWD_TO_VSI ||
2406	     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2407	     fi->fltr_act == ICE_FWD_TO_Q ||
2408	     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2409		/* Setting LB for prune actions will result in replicated
2410		 * packets to the internal switch that will be dropped.
2411		 */
2412		if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2413			fi->lb_en = true;
2414
2415		/* Set lan_en to TRUE if
2416		 * 1. The switch is a VEB AND
2417		 * 2
2418		 * 2.1 The lookup is a directional lookup like ethertype,
2419		 * promiscuous, ethertype-MAC, promiscuous-VLAN
2420		 * and default-port OR
2421		 * 2.2 The lookup is VLAN, OR
2422		 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2423		 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2424		 *
2425		 * OR
2426		 *
2427		 * The switch is a VEPA.
2428		 *
2429		 * In all other cases, the LAN enable has to be set to false.
2430		 */
2431		if (hw->evb_veb) {
2432			if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2433			    fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2434			    fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2435			    fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2436			    fi->lkup_type == ICE_SW_LKUP_DFLT ||
2437			    fi->lkup_type == ICE_SW_LKUP_VLAN ||
2438			    (fi->lkup_type == ICE_SW_LKUP_MAC &&
2439			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2440			    (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2441			     !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2442				fi->lan_en = true;
2443		} else {
2444			fi->lan_en = true;
2445		}
2446	}
 
 
 
 
 
 
 
 
 
 
 
 
2447}
2448
2449/**
2450 * ice_fill_sw_rule - Helper function to fill switch rule structure
2451 * @hw: pointer to the hardware structure
2452 * @f_info: entry containing packet forwarding information
2453 * @s_rule: switch rule structure to be filled in based on mac_entry
2454 * @opc: switch rules population command type - pass in the command opcode
2455 */
2456static void
2457ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2458		 struct ice_sw_rule_lkup_rx_tx *s_rule,
2459		 enum ice_adminq_opc opc)
2460{
2461	u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2462	u16 vlan_tpid = ETH_P_8021Q;
2463	void *daddr = NULL;
2464	u16 eth_hdr_sz;
2465	u8 *eth_hdr;
2466	u32 act = 0;
2467	__be16 *off;
2468	u8 q_rgn;
2469
2470	if (opc == ice_aqc_opc_remove_sw_rules) {
2471		s_rule->act = 0;
2472		s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2473		s_rule->hdr_len = 0;
2474		return;
2475	}
2476
2477	eth_hdr_sz = sizeof(dummy_eth_header);
2478	eth_hdr = s_rule->hdr_data;
2479
2480	/* initialize the ether header with a dummy header */
2481	memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2482	ice_fill_sw_info(hw, f_info);
2483
2484	switch (f_info->fltr_act) {
2485	case ICE_FWD_TO_VSI:
2486		act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
2487			ICE_SINGLE_ACT_VSI_ID_M;
2488		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2489			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2490				ICE_SINGLE_ACT_VALID_BIT;
2491		break;
2492	case ICE_FWD_TO_VSI_LIST:
2493		act |= ICE_SINGLE_ACT_VSI_LIST;
2494		act |= (f_info->fwd_id.vsi_list_id <<
2495			ICE_SINGLE_ACT_VSI_LIST_ID_S) &
2496			ICE_SINGLE_ACT_VSI_LIST_ID_M;
2497		if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2498			act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2499				ICE_SINGLE_ACT_VALID_BIT;
2500		break;
2501	case ICE_FWD_TO_Q:
2502		act |= ICE_SINGLE_ACT_TO_Q;
2503		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2504			ICE_SINGLE_ACT_Q_INDEX_M;
2505		break;
2506	case ICE_DROP_PACKET:
2507		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2508			ICE_SINGLE_ACT_VALID_BIT;
2509		break;
2510	case ICE_FWD_TO_QGRP:
2511		q_rgn = f_info->qgrp_size > 0 ?
2512			(u8)ilog2(f_info->qgrp_size) : 0;
2513		act |= ICE_SINGLE_ACT_TO_Q;
2514		act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2515			ICE_SINGLE_ACT_Q_INDEX_M;
2516		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
2517			ICE_SINGLE_ACT_Q_REGION_M;
2518		break;
2519	default:
2520		return;
2521	}
2522
2523	if (f_info->lb_en)
2524		act |= ICE_SINGLE_ACT_LB_ENABLE;
2525	if (f_info->lan_en)
2526		act |= ICE_SINGLE_ACT_LAN_ENABLE;
2527
2528	switch (f_info->lkup_type) {
2529	case ICE_SW_LKUP_MAC:
2530		daddr = f_info->l_data.mac.mac_addr;
2531		break;
2532	case ICE_SW_LKUP_VLAN:
2533		vlan_id = f_info->l_data.vlan.vlan_id;
2534		if (f_info->l_data.vlan.tpid_valid)
2535			vlan_tpid = f_info->l_data.vlan.tpid;
2536		if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2537		    f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2538			act |= ICE_SINGLE_ACT_PRUNE;
2539			act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2540		}
2541		break;
2542	case ICE_SW_LKUP_ETHERTYPE_MAC:
2543		daddr = f_info->l_data.ethertype_mac.mac_addr;
2544		fallthrough;
2545	case ICE_SW_LKUP_ETHERTYPE:
2546		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2547		*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2548		break;
2549	case ICE_SW_LKUP_MAC_VLAN:
2550		daddr = f_info->l_data.mac_vlan.mac_addr;
2551		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2552		break;
2553	case ICE_SW_LKUP_PROMISC_VLAN:
2554		vlan_id = f_info->l_data.mac_vlan.vlan_id;
2555		fallthrough;
2556	case ICE_SW_LKUP_PROMISC:
2557		daddr = f_info->l_data.mac_vlan.mac_addr;
2558		break;
2559	default:
2560		break;
2561	}
2562
2563	s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2564		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2565		cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2566
2567	/* Recipe set depending on lookup type */
2568	s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2569	s_rule->src = cpu_to_le16(f_info->src);
2570	s_rule->act = cpu_to_le32(act);
2571
2572	if (daddr)
2573		ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2574
2575	if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2576		off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2577		*off = cpu_to_be16(vlan_id);
2578		off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2579		*off = cpu_to_be16(vlan_tpid);
2580	}
2581
2582	/* Create the switch rule with the final dummy Ethernet header */
2583	if (opc != ice_aqc_opc_update_sw_rules)
2584		s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2585}
2586
2587/**
2588 * ice_add_marker_act
2589 * @hw: pointer to the hardware structure
2590 * @m_ent: the management entry for which sw marker needs to be added
2591 * @sw_marker: sw marker to tag the Rx descriptor with
2592 * @l_id: large action resource ID
2593 *
2594 * Create a large action to hold software marker and update the switch rule
2595 * entry pointed by m_ent with newly created large action
2596 */
2597static int
2598ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2599		   u16 sw_marker, u16 l_id)
2600{
2601	struct ice_sw_rule_lkup_rx_tx *rx_tx;
2602	struct ice_sw_rule_lg_act *lg_act;
2603	/* For software marker we need 3 large actions
2604	 * 1. FWD action: FWD TO VSI or VSI LIST
2605	 * 2. GENERIC VALUE action to hold the profile ID
2606	 * 3. GENERIC VALUE action to hold the software marker ID
2607	 */
2608	const u16 num_lg_acts = 3;
2609	u16 lg_act_size;
2610	u16 rules_size;
2611	int status;
2612	u32 act;
2613	u16 id;
2614
2615	if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2616		return -EINVAL;
2617
2618	/* Create two back-to-back switch rules and submit them to the HW using
2619	 * one memory buffer:
2620	 *    1. Large Action
2621	 *    2. Look up Tx Rx
2622	 */
2623	lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2624	rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2625	lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2626	if (!lg_act)
2627		return -ENOMEM;
2628
2629	rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2630
2631	/* Fill in the first switch rule i.e. large action */
2632	lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2633	lg_act->index = cpu_to_le16(l_id);
2634	lg_act->size = cpu_to_le16(num_lg_acts);
2635
2636	/* First action VSI forwarding or VSI list forwarding depending on how
2637	 * many VSIs
2638	 */
2639	id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2640		m_ent->fltr_info.fwd_id.hw_vsi_id;
2641
2642	act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2643	act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
2644	if (m_ent->vsi_count > 1)
2645		act |= ICE_LG_ACT_VSI_LIST;
2646	lg_act->act[0] = cpu_to_le32(act);
2647
2648	/* Second action descriptor type */
2649	act = ICE_LG_ACT_GENERIC;
2650
2651	act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
2652	lg_act->act[1] = cpu_to_le32(act);
2653
2654	act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
2655	       ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
2656
2657	/* Third action Marker value */
2658	act |= ICE_LG_ACT_GENERIC;
2659	act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
2660		ICE_LG_ACT_GENERIC_VALUE_M;
2661
2662	lg_act->act[2] = cpu_to_le32(act);
2663
2664	/* call the fill switch rule to fill the lookup Tx Rx structure */
2665	ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2666			 ice_aqc_opc_update_sw_rules);
2667
2668	/* Update the action to point to the large action ID */
2669	rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR |
2670				 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
2671				  ICE_SINGLE_ACT_PTR_VAL_M));
2672
2673	/* Use the filter rule ID of the previously created rule with single
2674	 * act. Once the update happens, hardware will treat this as large
2675	 * action
2676	 */
2677	rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2678
2679	status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2680				 ice_aqc_opc_update_sw_rules, NULL);
2681	if (!status) {
2682		m_ent->lg_act_idx = l_id;
2683		m_ent->sw_marker_id = sw_marker;
2684	}
2685
2686	devm_kfree(ice_hw_to_dev(hw), lg_act);
2687	return status;
2688}
2689
2690/**
2691 * ice_create_vsi_list_map
2692 * @hw: pointer to the hardware structure
2693 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2694 * @num_vsi: number of VSI handles in the array
2695 * @vsi_list_id: VSI list ID generated as part of allocate resource
2696 *
2697 * Helper function to create a new entry of VSI list ID to VSI mapping
2698 * using the given VSI list ID
2699 */
2700static struct ice_vsi_list_map_info *
2701ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2702			u16 vsi_list_id)
2703{
2704	struct ice_switch_info *sw = hw->switch_info;
2705	struct ice_vsi_list_map_info *v_map;
2706	int i;
2707
2708	v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2709	if (!v_map)
2710		return NULL;
2711
2712	v_map->vsi_list_id = vsi_list_id;
2713	v_map->ref_cnt = 1;
2714	for (i = 0; i < num_vsi; i++)
2715		set_bit(vsi_handle_arr[i], v_map->vsi_map);
2716
2717	list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2718	return v_map;
2719}
2720
2721/**
2722 * ice_update_vsi_list_rule
2723 * @hw: pointer to the hardware structure
2724 * @vsi_handle_arr: array of VSI handles to form a VSI list
2725 * @num_vsi: number of VSI handles in the array
2726 * @vsi_list_id: VSI list ID generated as part of allocate resource
2727 * @remove: Boolean value to indicate if this is a remove action
2728 * @opc: switch rules population command type - pass in the command opcode
2729 * @lkup_type: lookup type of the filter
2730 *
2731 * Call AQ command to add a new switch rule or update existing switch rule
2732 * using the given VSI list ID
2733 */
2734static int
2735ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2736			 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2737			 enum ice_sw_lkup_type lkup_type)
2738{
2739	struct ice_sw_rule_vsi_list *s_rule;
2740	u16 s_rule_size;
2741	u16 rule_type;
2742	int status;
2743	int i;
2744
2745	if (!num_vsi)
2746		return -EINVAL;
2747
2748	if (lkup_type == ICE_SW_LKUP_MAC ||
2749	    lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2750	    lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2751	    lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2752	    lkup_type == ICE_SW_LKUP_PROMISC ||
2753	    lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2754	    lkup_type == ICE_SW_LKUP_DFLT)
 
2755		rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2756			ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2757	else if (lkup_type == ICE_SW_LKUP_VLAN)
2758		rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2759			ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2760	else
2761		return -EINVAL;
2762
2763	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2764	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2765	if (!s_rule)
2766		return -ENOMEM;
2767	for (i = 0; i < num_vsi; i++) {
2768		if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2769			status = -EINVAL;
2770			goto exit;
2771		}
2772		/* AQ call requires hw_vsi_id(s) */
2773		s_rule->vsi[i] =
2774			cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2775	}
2776
2777	s_rule->hdr.type = cpu_to_le16(rule_type);
2778	s_rule->number_vsi = cpu_to_le16(num_vsi);
2779	s_rule->index = cpu_to_le16(vsi_list_id);
2780
2781	status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2782
2783exit:
2784	devm_kfree(ice_hw_to_dev(hw), s_rule);
2785	return status;
2786}
2787
2788/**
2789 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2790 * @hw: pointer to the HW struct
2791 * @vsi_handle_arr: array of VSI handles to form a VSI list
2792 * @num_vsi: number of VSI handles in the array
2793 * @vsi_list_id: stores the ID of the VSI list to be created
2794 * @lkup_type: switch rule filter's lookup type
2795 */
2796static int
2797ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2798			 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2799{
2800	int status;
2801
2802	status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2803					    ice_aqc_opc_alloc_res);
2804	if (status)
2805		return status;
2806
2807	/* Update the newly created VSI list to include the specified VSIs */
2808	return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2809					*vsi_list_id, false,
2810					ice_aqc_opc_add_sw_rules, lkup_type);
2811}
2812
2813/**
2814 * ice_create_pkt_fwd_rule
2815 * @hw: pointer to the hardware structure
2816 * @f_entry: entry containing packet forwarding information
2817 *
2818 * Create switch rule with given filter information and add an entry
2819 * to the corresponding filter management list to track this switch rule
2820 * and VSI mapping
2821 */
2822static int
2823ice_create_pkt_fwd_rule(struct ice_hw *hw,
2824			struct ice_fltr_list_entry *f_entry)
2825{
2826	struct ice_fltr_mgmt_list_entry *fm_entry;
2827	struct ice_sw_rule_lkup_rx_tx *s_rule;
2828	enum ice_sw_lkup_type l_type;
2829	struct ice_sw_recipe *recp;
2830	int status;
2831
2832	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2833			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2834			      GFP_KERNEL);
2835	if (!s_rule)
2836		return -ENOMEM;
2837	fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2838				GFP_KERNEL);
2839	if (!fm_entry) {
2840		status = -ENOMEM;
2841		goto ice_create_pkt_fwd_rule_exit;
2842	}
2843
2844	fm_entry->fltr_info = f_entry->fltr_info;
2845
2846	/* Initialize all the fields for the management entry */
2847	fm_entry->vsi_count = 1;
2848	fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2849	fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2850	fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2851
2852	ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2853			 ice_aqc_opc_add_sw_rules);
2854
2855	status = ice_aq_sw_rules(hw, s_rule,
2856				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2857				 ice_aqc_opc_add_sw_rules, NULL);
2858	if (status) {
2859		devm_kfree(ice_hw_to_dev(hw), fm_entry);
2860		goto ice_create_pkt_fwd_rule_exit;
2861	}
2862
2863	f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2864	fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2865
2866	/* The book keeping entries will get removed when base driver
2867	 * calls remove filter AQ command
2868	 */
2869	l_type = fm_entry->fltr_info.lkup_type;
2870	recp = &hw->switch_info->recp_list[l_type];
2871	list_add(&fm_entry->list_entry, &recp->filt_rules);
2872
2873ice_create_pkt_fwd_rule_exit:
2874	devm_kfree(ice_hw_to_dev(hw), s_rule);
2875	return status;
2876}
2877
2878/**
2879 * ice_update_pkt_fwd_rule
2880 * @hw: pointer to the hardware structure
2881 * @f_info: filter information for switch rule
2882 *
2883 * Call AQ command to update a previously created switch rule with a
2884 * VSI list ID
2885 */
2886static int
2887ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2888{
2889	struct ice_sw_rule_lkup_rx_tx *s_rule;
2890	int status;
2891
2892	s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2893			      ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2894			      GFP_KERNEL);
2895	if (!s_rule)
2896		return -ENOMEM;
2897
2898	ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2899
2900	s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2901
2902	/* Update switch rule with new rule set to forward VSI list */
2903	status = ice_aq_sw_rules(hw, s_rule,
2904				 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2905				 ice_aqc_opc_update_sw_rules, NULL);
2906
2907	devm_kfree(ice_hw_to_dev(hw), s_rule);
2908	return status;
2909}
2910
2911/**
2912 * ice_update_sw_rule_bridge_mode
2913 * @hw: pointer to the HW struct
2914 *
2915 * Updates unicast switch filter rules based on VEB/VEPA mode
2916 */
2917int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2918{
2919	struct ice_switch_info *sw = hw->switch_info;
2920	struct ice_fltr_mgmt_list_entry *fm_entry;
2921	struct list_head *rule_head;
2922	struct mutex *rule_lock; /* Lock to protect filter rule list */
2923	int status = 0;
2924
2925	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2926	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2927
2928	mutex_lock(rule_lock);
2929	list_for_each_entry(fm_entry, rule_head, list_entry) {
2930		struct ice_fltr_info *fi = &fm_entry->fltr_info;
2931		u8 *addr = fi->l_data.mac.mac_addr;
2932
2933		/* Update unicast Tx rules to reflect the selected
2934		 * VEB/VEPA mode
2935		 */
2936		if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2937		    (fi->fltr_act == ICE_FWD_TO_VSI ||
2938		     fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2939		     fi->fltr_act == ICE_FWD_TO_Q ||
2940		     fi->fltr_act == ICE_FWD_TO_QGRP)) {
2941			status = ice_update_pkt_fwd_rule(hw, fi);
2942			if (status)
2943				break;
2944		}
2945	}
2946
2947	mutex_unlock(rule_lock);
2948
2949	return status;
2950}
2951
2952/**
2953 * ice_add_update_vsi_list
2954 * @hw: pointer to the hardware structure
2955 * @m_entry: pointer to current filter management list entry
2956 * @cur_fltr: filter information from the book keeping entry
2957 * @new_fltr: filter information with the new VSI to be added
2958 *
2959 * Call AQ command to add or update previously created VSI list with new VSI.
2960 *
2961 * Helper function to do book keeping associated with adding filter information
2962 * The algorithm to do the book keeping is described below :
2963 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2964 *	if only one VSI has been added till now
2965 *		Allocate a new VSI list and add two VSIs
2966 *		to this list using switch rule command
2967 *		Update the previously created switch rule with the
2968 *		newly created VSI list ID
2969 *	if a VSI list was previously created
2970 *		Add the new VSI to the previously created VSI list set
2971 *		using the update switch rule command
2972 */
2973static int
2974ice_add_update_vsi_list(struct ice_hw *hw,
2975			struct ice_fltr_mgmt_list_entry *m_entry,
2976			struct ice_fltr_info *cur_fltr,
2977			struct ice_fltr_info *new_fltr)
2978{
2979	u16 vsi_list_id = 0;
2980	int status = 0;
2981
2982	if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2983	     cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2984		return -EOPNOTSUPP;
2985
2986	if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2987	     new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2988	    (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2989	     cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2990		return -EOPNOTSUPP;
2991
2992	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2993		/* Only one entry existed in the mapping and it was not already
2994		 * a part of a VSI list. So, create a VSI list with the old and
2995		 * new VSIs.
2996		 */
2997		struct ice_fltr_info tmp_fltr;
2998		u16 vsi_handle_arr[2];
2999
3000		/* A rule already exists with the new VSI being added */
3001		if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3002			return -EEXIST;
3003
3004		vsi_handle_arr[0] = cur_fltr->vsi_handle;
3005		vsi_handle_arr[1] = new_fltr->vsi_handle;
3006		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3007						  &vsi_list_id,
3008						  new_fltr->lkup_type);
3009		if (status)
3010			return status;
3011
3012		tmp_fltr = *new_fltr;
3013		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3014		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3015		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3016		/* Update the previous switch rule of "MAC forward to VSI" to
3017		 * "MAC fwd to VSI list"
3018		 */
3019		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3020		if (status)
3021			return status;
3022
3023		cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3024		cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3025		m_entry->vsi_list_info =
3026			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3027						vsi_list_id);
3028
3029		if (!m_entry->vsi_list_info)
3030			return -ENOMEM;
3031
3032		/* If this entry was large action then the large action needs
3033		 * to be updated to point to FWD to VSI list
3034		 */
3035		if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3036			status =
3037			    ice_add_marker_act(hw, m_entry,
3038					       m_entry->sw_marker_id,
3039					       m_entry->lg_act_idx);
3040	} else {
3041		u16 vsi_handle = new_fltr->vsi_handle;
3042		enum ice_adminq_opc opcode;
3043
3044		if (!m_entry->vsi_list_info)
3045			return -EIO;
3046
3047		/* A rule already exists with the new VSI being added */
3048		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3049			return 0;
3050
3051		/* Update the previously created VSI list set with
3052		 * the new VSI ID passed in
3053		 */
3054		vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3055		opcode = ice_aqc_opc_update_sw_rules;
3056
3057		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3058						  vsi_list_id, false, opcode,
3059						  new_fltr->lkup_type);
3060		/* update VSI list mapping info with new VSI ID */
3061		if (!status)
3062			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3063	}
3064	if (!status)
3065		m_entry->vsi_count++;
3066	return status;
3067}
3068
3069/**
3070 * ice_find_rule_entry - Search a rule entry
3071 * @hw: pointer to the hardware structure
3072 * @recp_id: lookup type for which the specified rule needs to be searched
3073 * @f_info: rule information
3074 *
3075 * Helper function to search for a given rule entry
3076 * Returns pointer to entry storing the rule if found
3077 */
3078static struct ice_fltr_mgmt_list_entry *
3079ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3080{
3081	struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3082	struct ice_switch_info *sw = hw->switch_info;
3083	struct list_head *list_head;
3084
3085	list_head = &sw->recp_list[recp_id].filt_rules;
3086	list_for_each_entry(list_itr, list_head, list_entry) {
3087		if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3088			    sizeof(f_info->l_data)) &&
3089		    f_info->flag == list_itr->fltr_info.flag) {
3090			ret = list_itr;
3091			break;
3092		}
3093	}
3094	return ret;
3095}
3096
3097/**
3098 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3099 * @hw: pointer to the hardware structure
3100 * @recp_id: lookup type for which VSI lists needs to be searched
3101 * @vsi_handle: VSI handle to be found in VSI list
3102 * @vsi_list_id: VSI list ID found containing vsi_handle
3103 *
3104 * Helper function to search a VSI list with single entry containing given VSI
3105 * handle element. This can be extended further to search VSI list with more
3106 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3107 */
3108static struct ice_vsi_list_map_info *
3109ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3110			u16 *vsi_list_id)
3111{
3112	struct ice_vsi_list_map_info *map_info = NULL;
3113	struct ice_switch_info *sw = hw->switch_info;
3114	struct ice_fltr_mgmt_list_entry *list_itr;
3115	struct list_head *list_head;
3116
3117	list_head = &sw->recp_list[recp_id].filt_rules;
3118	list_for_each_entry(list_itr, list_head, list_entry) {
3119		if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3120			map_info = list_itr->vsi_list_info;
3121			if (test_bit(vsi_handle, map_info->vsi_map)) {
3122				*vsi_list_id = map_info->vsi_list_id;
3123				return map_info;
3124			}
3125		}
3126	}
3127	return NULL;
3128}
3129
3130/**
3131 * ice_add_rule_internal - add rule for a given lookup type
3132 * @hw: pointer to the hardware structure
3133 * @recp_id: lookup type (recipe ID) for which rule has to be added
3134 * @f_entry: structure containing MAC forwarding information
3135 *
3136 * Adds or updates the rule lists for a given recipe
3137 */
3138static int
3139ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3140		      struct ice_fltr_list_entry *f_entry)
3141{
3142	struct ice_switch_info *sw = hw->switch_info;
3143	struct ice_fltr_info *new_fltr, *cur_fltr;
3144	struct ice_fltr_mgmt_list_entry *m_entry;
3145	struct mutex *rule_lock; /* Lock to protect filter rule list */
3146	int status = 0;
3147
3148	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3149		return -EINVAL;
3150	f_entry->fltr_info.fwd_id.hw_vsi_id =
3151		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3152
3153	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3154
3155	mutex_lock(rule_lock);
3156	new_fltr = &f_entry->fltr_info;
3157	if (new_fltr->flag & ICE_FLTR_RX)
3158		new_fltr->src = hw->port_info->lport;
3159	else if (new_fltr->flag & ICE_FLTR_TX)
3160		new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3161
3162	m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3163	if (!m_entry) {
3164		mutex_unlock(rule_lock);
3165		return ice_create_pkt_fwd_rule(hw, f_entry);
3166	}
3167
3168	cur_fltr = &m_entry->fltr_info;
3169	status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3170	mutex_unlock(rule_lock);
3171
3172	return status;
3173}
3174
3175/**
3176 * ice_remove_vsi_list_rule
3177 * @hw: pointer to the hardware structure
3178 * @vsi_list_id: VSI list ID generated as part of allocate resource
3179 * @lkup_type: switch rule filter lookup type
3180 *
3181 * The VSI list should be emptied before this function is called to remove the
3182 * VSI list.
3183 */
3184static int
3185ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3186			 enum ice_sw_lkup_type lkup_type)
3187{
3188	struct ice_sw_rule_vsi_list *s_rule;
3189	u16 s_rule_size;
3190	int status;
3191
3192	s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3193	s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3194	if (!s_rule)
3195		return -ENOMEM;
3196
3197	s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3198	s_rule->index = cpu_to_le16(vsi_list_id);
3199
3200	/* Free the vsi_list resource that we allocated. It is assumed that the
3201	 * list is empty at this point.
3202	 */
3203	status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3204					    ice_aqc_opc_free_res);
3205
3206	devm_kfree(ice_hw_to_dev(hw), s_rule);
3207	return status;
3208}
3209
3210/**
3211 * ice_rem_update_vsi_list
3212 * @hw: pointer to the hardware structure
3213 * @vsi_handle: VSI handle of the VSI to remove
3214 * @fm_list: filter management entry for which the VSI list management needs to
3215 *           be done
3216 */
3217static int
3218ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3219			struct ice_fltr_mgmt_list_entry *fm_list)
3220{
3221	enum ice_sw_lkup_type lkup_type;
3222	u16 vsi_list_id;
3223	int status = 0;
3224
3225	if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3226	    fm_list->vsi_count == 0)
3227		return -EINVAL;
3228
3229	/* A rule with the VSI being removed does not exist */
3230	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3231		return -ENOENT;
3232
3233	lkup_type = fm_list->fltr_info.lkup_type;
3234	vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3235	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3236					  ice_aqc_opc_update_sw_rules,
3237					  lkup_type);
3238	if (status)
3239		return status;
3240
3241	fm_list->vsi_count--;
3242	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3243
3244	if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3245		struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3246		struct ice_vsi_list_map_info *vsi_list_info =
3247			fm_list->vsi_list_info;
3248		u16 rem_vsi_handle;
3249
3250		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3251						ICE_MAX_VSI);
3252		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3253			return -EIO;
3254
3255		/* Make sure VSI list is empty before removing it below */
3256		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3257						  vsi_list_id, true,
3258						  ice_aqc_opc_update_sw_rules,
3259						  lkup_type);
3260		if (status)
3261			return status;
3262
3263		tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3264		tmp_fltr_info.fwd_id.hw_vsi_id =
3265			ice_get_hw_vsi_num(hw, rem_vsi_handle);
3266		tmp_fltr_info.vsi_handle = rem_vsi_handle;
3267		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3268		if (status) {
3269			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3270				  tmp_fltr_info.fwd_id.hw_vsi_id, status);
3271			return status;
3272		}
3273
3274		fm_list->fltr_info = tmp_fltr_info;
3275	}
3276
3277	if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3278	    (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3279		struct ice_vsi_list_map_info *vsi_list_info =
3280			fm_list->vsi_list_info;
3281
3282		/* Remove the VSI list since it is no longer used */
3283		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3284		if (status) {
3285			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3286				  vsi_list_id, status);
3287			return status;
3288		}
3289
3290		list_del(&vsi_list_info->list_entry);
3291		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3292		fm_list->vsi_list_info = NULL;
3293	}
3294
3295	return status;
3296}
3297
3298/**
3299 * ice_remove_rule_internal - Remove a filter rule of a given type
3300 * @hw: pointer to the hardware structure
3301 * @recp_id: recipe ID for which the rule needs to removed
3302 * @f_entry: rule entry containing filter information
3303 */
3304static int
3305ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3306			 struct ice_fltr_list_entry *f_entry)
3307{
3308	struct ice_switch_info *sw = hw->switch_info;
3309	struct ice_fltr_mgmt_list_entry *list_elem;
3310	struct mutex *rule_lock; /* Lock to protect filter rule list */
3311	bool remove_rule = false;
3312	u16 vsi_handle;
3313	int status = 0;
3314
3315	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3316		return -EINVAL;
3317	f_entry->fltr_info.fwd_id.hw_vsi_id =
3318		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3319
3320	rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3321	mutex_lock(rule_lock);
3322	list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3323	if (!list_elem) {
3324		status = -ENOENT;
3325		goto exit;
3326	}
3327
3328	if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3329		remove_rule = true;
3330	} else if (!list_elem->vsi_list_info) {
3331		status = -ENOENT;
3332		goto exit;
3333	} else if (list_elem->vsi_list_info->ref_cnt > 1) {
3334		/* a ref_cnt > 1 indicates that the vsi_list is being
3335		 * shared by multiple rules. Decrement the ref_cnt and
3336		 * remove this rule, but do not modify the list, as it
3337		 * is in-use by other rules.
3338		 */
3339		list_elem->vsi_list_info->ref_cnt--;
3340		remove_rule = true;
3341	} else {
3342		/* a ref_cnt of 1 indicates the vsi_list is only used
3343		 * by one rule. However, the original removal request is only
3344		 * for a single VSI. Update the vsi_list first, and only
3345		 * remove the rule if there are no further VSIs in this list.
3346		 */
3347		vsi_handle = f_entry->fltr_info.vsi_handle;
3348		status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3349		if (status)
3350			goto exit;
3351		/* if VSI count goes to zero after updating the VSI list */
3352		if (list_elem->vsi_count == 0)
3353			remove_rule = true;
3354	}
3355
3356	if (remove_rule) {
3357		/* Remove the lookup rule */
3358		struct ice_sw_rule_lkup_rx_tx *s_rule;
3359
3360		s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3361				      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3362				      GFP_KERNEL);
3363		if (!s_rule) {
3364			status = -ENOMEM;
3365			goto exit;
3366		}
3367
3368		ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3369				 ice_aqc_opc_remove_sw_rules);
3370
3371		status = ice_aq_sw_rules(hw, s_rule,
3372					 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3373					 1, ice_aqc_opc_remove_sw_rules, NULL);
3374
3375		/* Remove a book keeping from the list */
3376		devm_kfree(ice_hw_to_dev(hw), s_rule);
3377
3378		if (status)
3379			goto exit;
3380
3381		list_del(&list_elem->list_entry);
3382		devm_kfree(ice_hw_to_dev(hw), list_elem);
3383	}
3384exit:
3385	mutex_unlock(rule_lock);
3386	return status;
3387}
3388
3389/**
3390 * ice_mac_fltr_exist - does this MAC filter exist for given VSI
3391 * @hw: pointer to the hardware structure
3392 * @mac: MAC address to be checked (for MAC filter)
3393 * @vsi_handle: check MAC filter for this VSI
3394 */
3395bool ice_mac_fltr_exist(struct ice_hw *hw, u8 *mac, u16 vsi_handle)
3396{
3397	struct ice_fltr_mgmt_list_entry *entry;
3398	struct list_head *rule_head;
3399	struct ice_switch_info *sw;
3400	struct mutex *rule_lock; /* Lock to protect filter rule list */
3401	u16 hw_vsi_id;
3402
3403	if (!ice_is_vsi_valid(hw, vsi_handle))
3404		return false;
3405
3406	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3407	sw = hw->switch_info;
3408	rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3409	if (!rule_head)
3410		return false;
3411
3412	rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3413	mutex_lock(rule_lock);
3414	list_for_each_entry(entry, rule_head, list_entry) {
3415		struct ice_fltr_info *f_info = &entry->fltr_info;
3416		u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3417
3418		if (is_zero_ether_addr(mac_addr))
3419			continue;
3420
3421		if (f_info->flag != ICE_FLTR_TX ||
3422		    f_info->src_id != ICE_SRC_ID_VSI ||
3423		    f_info->lkup_type != ICE_SW_LKUP_MAC ||
3424		    f_info->fltr_act != ICE_FWD_TO_VSI ||
3425		    hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3426			continue;
3427
3428		if (ether_addr_equal(mac, mac_addr)) {
3429			mutex_unlock(rule_lock);
3430			return true;
3431		}
3432	}
3433	mutex_unlock(rule_lock);
3434	return false;
3435}
3436
3437/**
3438 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3439 * @hw: pointer to the hardware structure
3440 * @vlan_id: VLAN ID
3441 * @vsi_handle: check MAC filter for this VSI
3442 */
3443bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3444{
3445	struct ice_fltr_mgmt_list_entry *entry;
3446	struct list_head *rule_head;
3447	struct ice_switch_info *sw;
3448	struct mutex *rule_lock; /* Lock to protect filter rule list */
3449	u16 hw_vsi_id;
3450
3451	if (vlan_id > ICE_MAX_VLAN_ID)
3452		return false;
3453
3454	if (!ice_is_vsi_valid(hw, vsi_handle))
3455		return false;
3456
3457	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3458	sw = hw->switch_info;
3459	rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3460	if (!rule_head)
3461		return false;
3462
3463	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3464	mutex_lock(rule_lock);
3465	list_for_each_entry(entry, rule_head, list_entry) {
3466		struct ice_fltr_info *f_info = &entry->fltr_info;
3467		u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3468		struct ice_vsi_list_map_info *map_info;
3469
3470		if (entry_vlan_id > ICE_MAX_VLAN_ID)
3471			continue;
3472
3473		if (f_info->flag != ICE_FLTR_TX ||
3474		    f_info->src_id != ICE_SRC_ID_VSI ||
3475		    f_info->lkup_type != ICE_SW_LKUP_VLAN)
3476			continue;
3477
3478		/* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3479		if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3480		    f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3481			continue;
3482
3483		if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3484			if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3485				continue;
3486		} else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3487			/* If filter_action is FWD_TO_VSI_LIST, make sure
3488			 * that VSI being checked is part of VSI list
3489			 */
3490			if (entry->vsi_count == 1 &&
3491			    entry->vsi_list_info) {
3492				map_info = entry->vsi_list_info;
3493				if (!test_bit(vsi_handle, map_info->vsi_map))
3494					continue;
3495			}
3496		}
3497
3498		if (vlan_id == entry_vlan_id) {
3499			mutex_unlock(rule_lock);
3500			return true;
3501		}
3502	}
3503	mutex_unlock(rule_lock);
3504
3505	return false;
3506}
3507
3508/**
3509 * ice_add_mac - Add a MAC address based filter rule
3510 * @hw: pointer to the hardware structure
3511 * @m_list: list of MAC addresses and forwarding information
3512 */
3513int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3514{
3515	struct ice_fltr_list_entry *m_list_itr;
3516	int status = 0;
3517
3518	if (!m_list || !hw)
3519		return -EINVAL;
3520
3521	list_for_each_entry(m_list_itr, m_list, list_entry) {
3522		u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3523		u16 vsi_handle;
3524		u16 hw_vsi_id;
3525
3526		m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3527		vsi_handle = m_list_itr->fltr_info.vsi_handle;
3528		if (!ice_is_vsi_valid(hw, vsi_handle))
3529			return -EINVAL;
3530		hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3531		m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3532		/* update the src in case it is VSI num */
3533		if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3534			return -EINVAL;
3535		m_list_itr->fltr_info.src = hw_vsi_id;
3536		if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3537		    is_zero_ether_addr(add))
3538			return -EINVAL;
3539
3540		m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3541							   m_list_itr);
3542		if (m_list_itr->status)
3543			return m_list_itr->status;
3544	}
3545
3546	return status;
3547}
3548
3549/**
3550 * ice_add_vlan_internal - Add one VLAN based filter rule
3551 * @hw: pointer to the hardware structure
3552 * @f_entry: filter entry containing one VLAN information
3553 */
3554static int
3555ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3556{
3557	struct ice_switch_info *sw = hw->switch_info;
3558	struct ice_fltr_mgmt_list_entry *v_list_itr;
3559	struct ice_fltr_info *new_fltr, *cur_fltr;
3560	enum ice_sw_lkup_type lkup_type;
3561	u16 vsi_list_id = 0, vsi_handle;
3562	struct mutex *rule_lock; /* Lock to protect filter rule list */
3563	int status = 0;
3564
3565	if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3566		return -EINVAL;
3567
3568	f_entry->fltr_info.fwd_id.hw_vsi_id =
3569		ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3570	new_fltr = &f_entry->fltr_info;
3571
3572	/* VLAN ID should only be 12 bits */
3573	if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3574		return -EINVAL;
3575
3576	if (new_fltr->src_id != ICE_SRC_ID_VSI)
3577		return -EINVAL;
3578
3579	new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3580	lkup_type = new_fltr->lkup_type;
3581	vsi_handle = new_fltr->vsi_handle;
3582	rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3583	mutex_lock(rule_lock);
3584	v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3585	if (!v_list_itr) {
3586		struct ice_vsi_list_map_info *map_info = NULL;
3587
3588		if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3589			/* All VLAN pruning rules use a VSI list. Check if
3590			 * there is already a VSI list containing VSI that we
3591			 * want to add. If found, use the same vsi_list_id for
3592			 * this new VLAN rule or else create a new list.
3593			 */
3594			map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3595							   vsi_handle,
3596							   &vsi_list_id);
3597			if (!map_info) {
3598				status = ice_create_vsi_list_rule(hw,
3599								  &vsi_handle,
3600								  1,
3601								  &vsi_list_id,
3602								  lkup_type);
3603				if (status)
3604					goto exit;
3605			}
3606			/* Convert the action to forwarding to a VSI list. */
3607			new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3608			new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3609		}
3610
3611		status = ice_create_pkt_fwd_rule(hw, f_entry);
3612		if (!status) {
3613			v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3614							 new_fltr);
3615			if (!v_list_itr) {
3616				status = -ENOENT;
3617				goto exit;
3618			}
3619			/* reuse VSI list for new rule and increment ref_cnt */
3620			if (map_info) {
3621				v_list_itr->vsi_list_info = map_info;
3622				map_info->ref_cnt++;
3623			} else {
3624				v_list_itr->vsi_list_info =
3625					ice_create_vsi_list_map(hw, &vsi_handle,
3626								1, vsi_list_id);
3627			}
3628		}
3629	} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3630		/* Update existing VSI list to add new VSI ID only if it used
3631		 * by one VLAN rule.
3632		 */
3633		cur_fltr = &v_list_itr->fltr_info;
3634		status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3635						 new_fltr);
3636	} else {
3637		/* If VLAN rule exists and VSI list being used by this rule is
3638		 * referenced by more than 1 VLAN rule. Then create a new VSI
3639		 * list appending previous VSI with new VSI and update existing
3640		 * VLAN rule to point to new VSI list ID
3641		 */
3642		struct ice_fltr_info tmp_fltr;
3643		u16 vsi_handle_arr[2];
3644		u16 cur_handle;
3645
3646		/* Current implementation only supports reusing VSI list with
3647		 * one VSI count. We should never hit below condition
3648		 */
3649		if (v_list_itr->vsi_count > 1 &&
3650		    v_list_itr->vsi_list_info->ref_cnt > 1) {
3651			ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3652			status = -EIO;
3653			goto exit;
3654		}
3655
3656		cur_handle =
3657			find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3658				       ICE_MAX_VSI);
3659
3660		/* A rule already exists with the new VSI being added */
3661		if (cur_handle == vsi_handle) {
3662			status = -EEXIST;
3663			goto exit;
3664		}
3665
3666		vsi_handle_arr[0] = cur_handle;
3667		vsi_handle_arr[1] = vsi_handle;
3668		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3669						  &vsi_list_id, lkup_type);
3670		if (status)
3671			goto exit;
3672
3673		tmp_fltr = v_list_itr->fltr_info;
3674		tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3675		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3676		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3677		/* Update the previous switch rule to a new VSI list which
3678		 * includes current VSI that is requested
3679		 */
3680		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3681		if (status)
3682			goto exit;
3683
3684		/* before overriding VSI list map info. decrement ref_cnt of
3685		 * previous VSI list
3686		 */
3687		v_list_itr->vsi_list_info->ref_cnt--;
3688
3689		/* now update to newly created list */
3690		v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3691		v_list_itr->vsi_list_info =
3692			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3693						vsi_list_id);
3694		v_list_itr->vsi_count++;
3695	}
3696
3697exit:
3698	mutex_unlock(rule_lock);
3699	return status;
3700}
3701
3702/**
3703 * ice_add_vlan - Add VLAN based filter rule
3704 * @hw: pointer to the hardware structure
3705 * @v_list: list of VLAN entries and forwarding information
3706 */
3707int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3708{
3709	struct ice_fltr_list_entry *v_list_itr;
3710
3711	if (!v_list || !hw)
3712		return -EINVAL;
3713
3714	list_for_each_entry(v_list_itr, v_list, list_entry) {
3715		if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3716			return -EINVAL;
3717		v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3718		v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3719		if (v_list_itr->status)
3720			return v_list_itr->status;
3721	}
3722	return 0;
3723}
3724
3725/**
3726 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3727 * @hw: pointer to the hardware structure
3728 * @em_list: list of ether type MAC filter, MAC is optional
3729 *
3730 * This function requires the caller to populate the entries in
3731 * the filter list with the necessary fields (including flags to
3732 * indicate Tx or Rx rules).
3733 */
3734int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3735{
3736	struct ice_fltr_list_entry *em_list_itr;
3737
3738	if (!em_list || !hw)
3739		return -EINVAL;
3740
3741	list_for_each_entry(em_list_itr, em_list, list_entry) {
3742		enum ice_sw_lkup_type l_type =
3743			em_list_itr->fltr_info.lkup_type;
3744
3745		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3746		    l_type != ICE_SW_LKUP_ETHERTYPE)
3747			return -EINVAL;
3748
3749		em_list_itr->status = ice_add_rule_internal(hw, l_type,
3750							    em_list_itr);
3751		if (em_list_itr->status)
3752			return em_list_itr->status;
3753	}
3754	return 0;
3755}
3756
3757/**
3758 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3759 * @hw: pointer to the hardware structure
3760 * @em_list: list of ethertype or ethertype MAC entries
3761 */
3762int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3763{
3764	struct ice_fltr_list_entry *em_list_itr, *tmp;
3765
3766	if (!em_list || !hw)
3767		return -EINVAL;
3768
3769	list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3770		enum ice_sw_lkup_type l_type =
3771			em_list_itr->fltr_info.lkup_type;
3772
3773		if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3774		    l_type != ICE_SW_LKUP_ETHERTYPE)
3775			return -EINVAL;
3776
3777		em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3778							       em_list_itr);
3779		if (em_list_itr->status)
3780			return em_list_itr->status;
3781	}
3782	return 0;
3783}
3784
3785/**
3786 * ice_rem_sw_rule_info
3787 * @hw: pointer to the hardware structure
3788 * @rule_head: pointer to the switch list structure that we want to delete
3789 */
3790static void
3791ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3792{
3793	if (!list_empty(rule_head)) {
3794		struct ice_fltr_mgmt_list_entry *entry;
3795		struct ice_fltr_mgmt_list_entry *tmp;
3796
3797		list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3798			list_del(&entry->list_entry);
3799			devm_kfree(ice_hw_to_dev(hw), entry);
3800		}
3801	}
3802}
3803
3804/**
3805 * ice_rem_adv_rule_info
3806 * @hw: pointer to the hardware structure
3807 * @rule_head: pointer to the switch list structure that we want to delete
3808 */
3809static void
3810ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3811{
3812	struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3813	struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3814
3815	if (list_empty(rule_head))
3816		return;
3817
3818	list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3819		list_del(&lst_itr->list_entry);
3820		devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3821		devm_kfree(ice_hw_to_dev(hw), lst_itr);
3822	}
3823}
3824
3825/**
3826 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3827 * @pi: pointer to the port_info structure
3828 * @vsi_handle: VSI handle to set as default
3829 * @set: true to add the above mentioned switch rule, false to remove it
3830 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3831 *
3832 * add filter rule to set/unset given VSI as default VSI for the switch
3833 * (represented by swid)
3834 */
3835int
3836ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3837		 u8 direction)
3838{
3839	struct ice_fltr_list_entry f_list_entry;
3840	struct ice_fltr_info f_info;
3841	struct ice_hw *hw = pi->hw;
3842	u16 hw_vsi_id;
3843	int status;
3844
3845	if (!ice_is_vsi_valid(hw, vsi_handle))
3846		return -EINVAL;
3847
3848	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3849
3850	memset(&f_info, 0, sizeof(f_info));
3851
3852	f_info.lkup_type = ICE_SW_LKUP_DFLT;
3853	f_info.flag = direction;
3854	f_info.fltr_act = ICE_FWD_TO_VSI;
3855	f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3856	f_info.vsi_handle = vsi_handle;
3857
3858	if (f_info.flag & ICE_FLTR_RX) {
3859		f_info.src = hw->port_info->lport;
3860		f_info.src_id = ICE_SRC_ID_LPORT;
3861	} else if (f_info.flag & ICE_FLTR_TX) {
3862		f_info.src_id = ICE_SRC_ID_VSI;
3863		f_info.src = hw_vsi_id;
 
3864	}
3865	f_list_entry.fltr_info = f_info;
3866
3867	if (set)
3868		status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3869					       &f_list_entry);
3870	else
3871		status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3872						  &f_list_entry);
3873
3874	return status;
3875}
3876
3877/**
3878 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3879 * @fm_entry: filter entry to inspect
3880 * @vsi_handle: VSI handle to compare with filter info
3881 */
3882static bool
3883ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3884{
3885	return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3886		 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3887		(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3888		 fm_entry->vsi_list_info &&
3889		 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3890}
3891
3892/**
3893 * ice_check_if_dflt_vsi - check if VSI is default VSI
3894 * @pi: pointer to the port_info structure
3895 * @vsi_handle: vsi handle to check for in filter list
3896 * @rule_exists: indicates if there are any VSI's in the rule list
3897 *
3898 * checks if the VSI is in a default VSI list, and also indicates
3899 * if the default VSI list is empty
3900 */
3901bool
3902ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3903		      bool *rule_exists)
3904{
3905	struct ice_fltr_mgmt_list_entry *fm_entry;
3906	struct ice_sw_recipe *recp_list;
3907	struct list_head *rule_head;
3908	struct mutex *rule_lock; /* Lock to protect filter rule list */
3909	bool ret = false;
3910
3911	recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3912	rule_lock = &recp_list->filt_rule_lock;
3913	rule_head = &recp_list->filt_rules;
3914
3915	mutex_lock(rule_lock);
3916
3917	if (rule_exists && !list_empty(rule_head))
3918		*rule_exists = true;
3919
3920	list_for_each_entry(fm_entry, rule_head, list_entry) {
3921		if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3922			ret = true;
3923			break;
3924		}
3925	}
3926
3927	mutex_unlock(rule_lock);
3928
3929	return ret;
3930}
3931
3932/**
3933 * ice_remove_mac - remove a MAC address based filter rule
3934 * @hw: pointer to the hardware structure
3935 * @m_list: list of MAC addresses and forwarding information
3936 *
3937 * This function removes either a MAC filter rule or a specific VSI from a
3938 * VSI list for a multicast MAC address.
3939 *
3940 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3941 * be aware that this call will only work if all the entries passed into m_list
3942 * were added previously. It will not attempt to do a partial remove of entries
3943 * that were found.
3944 */
3945int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3946{
3947	struct ice_fltr_list_entry *list_itr, *tmp;
3948
3949	if (!m_list)
3950		return -EINVAL;
3951
3952	list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3953		enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3954		u16 vsi_handle;
3955
3956		if (l_type != ICE_SW_LKUP_MAC)
3957			return -EINVAL;
3958
3959		vsi_handle = list_itr->fltr_info.vsi_handle;
3960		if (!ice_is_vsi_valid(hw, vsi_handle))
3961			return -EINVAL;
3962
3963		list_itr->fltr_info.fwd_id.hw_vsi_id =
3964					ice_get_hw_vsi_num(hw, vsi_handle);
3965
3966		list_itr->status = ice_remove_rule_internal(hw,
3967							    ICE_SW_LKUP_MAC,
3968							    list_itr);
3969		if (list_itr->status)
3970			return list_itr->status;
3971	}
3972	return 0;
3973}
3974
3975/**
3976 * ice_remove_vlan - Remove VLAN based filter rule
3977 * @hw: pointer to the hardware structure
3978 * @v_list: list of VLAN entries and forwarding information
3979 */
3980int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3981{
3982	struct ice_fltr_list_entry *v_list_itr, *tmp;
3983
3984	if (!v_list || !hw)
3985		return -EINVAL;
3986
3987	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3988		enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3989
3990		if (l_type != ICE_SW_LKUP_VLAN)
3991			return -EINVAL;
3992		v_list_itr->status = ice_remove_rule_internal(hw,
3993							      ICE_SW_LKUP_VLAN,
3994							      v_list_itr);
3995		if (v_list_itr->status)
3996			return v_list_itr->status;
3997	}
3998	return 0;
3999}
4000
4001/**
4002 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4003 * @hw: pointer to the hardware structure
4004 * @vsi_handle: VSI handle to remove filters from
4005 * @vsi_list_head: pointer to the list to add entry to
4006 * @fi: pointer to fltr_info of filter entry to copy & add
4007 *
4008 * Helper function, used when creating a list of filters to remove from
4009 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4010 * original filter entry, with the exception of fltr_info.fltr_act and
4011 * fltr_info.fwd_id fields. These are set such that later logic can
4012 * extract which VSI to remove the fltr from, and pass on that information.
4013 */
4014static int
4015ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4016			       struct list_head *vsi_list_head,
4017			       struct ice_fltr_info *fi)
4018{
4019	struct ice_fltr_list_entry *tmp;
4020
4021	/* this memory is freed up in the caller function
4022	 * once filters for this VSI are removed
4023	 */
4024	tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4025	if (!tmp)
4026		return -ENOMEM;
4027
4028	tmp->fltr_info = *fi;
4029
4030	/* Overwrite these fields to indicate which VSI to remove filter from,
4031	 * so find and remove logic can extract the information from the
4032	 * list entries. Note that original entries will still have proper
4033	 * values.
4034	 */
4035	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4036	tmp->fltr_info.vsi_handle = vsi_handle;
4037	tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4038
4039	list_add(&tmp->list_entry, vsi_list_head);
4040
4041	return 0;
4042}
4043
4044/**
4045 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4046 * @hw: pointer to the hardware structure
4047 * @vsi_handle: VSI handle to remove filters from
4048 * @lkup_list_head: pointer to the list that has certain lookup type filters
4049 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4050 *
4051 * Locates all filters in lkup_list_head that are used by the given VSI,
4052 * and adds COPIES of those entries to vsi_list_head (intended to be used
4053 * to remove the listed filters).
4054 * Note that this means all entries in vsi_list_head must be explicitly
4055 * deallocated by the caller when done with list.
4056 */
4057static int
4058ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4059			 struct list_head *lkup_list_head,
4060			 struct list_head *vsi_list_head)
4061{
4062	struct ice_fltr_mgmt_list_entry *fm_entry;
4063	int status = 0;
4064
4065	/* check to make sure VSI ID is valid and within boundary */
4066	if (!ice_is_vsi_valid(hw, vsi_handle))
4067		return -EINVAL;
4068
4069	list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4070		if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4071			continue;
4072
4073		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4074							vsi_list_head,
4075							&fm_entry->fltr_info);
4076		if (status)
4077			return status;
4078	}
4079	return status;
4080}
4081
4082/**
4083 * ice_determine_promisc_mask
4084 * @fi: filter info to parse
4085 *
4086 * Helper function to determine which ICE_PROMISC_ mask corresponds
4087 * to given filter into.
4088 */
4089static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4090{
4091	u16 vid = fi->l_data.mac_vlan.vlan_id;
4092	u8 *macaddr = fi->l_data.mac.mac_addr;
4093	bool is_tx_fltr = false;
4094	u8 promisc_mask = 0;
4095
4096	if (fi->flag == ICE_FLTR_TX)
4097		is_tx_fltr = true;
4098
4099	if (is_broadcast_ether_addr(macaddr))
4100		promisc_mask |= is_tx_fltr ?
4101			ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4102	else if (is_multicast_ether_addr(macaddr))
4103		promisc_mask |= is_tx_fltr ?
4104			ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4105	else if (is_unicast_ether_addr(macaddr))
4106		promisc_mask |= is_tx_fltr ?
4107			ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4108	if (vid)
4109		promisc_mask |= is_tx_fltr ?
4110			ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4111
4112	return promisc_mask;
4113}
4114
4115/**
4116 * ice_remove_promisc - Remove promisc based filter rules
4117 * @hw: pointer to the hardware structure
4118 * @recp_id: recipe ID for which the rule needs to removed
4119 * @v_list: list of promisc entries
4120 */
4121static int
4122ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4123{
4124	struct ice_fltr_list_entry *v_list_itr, *tmp;
4125
4126	list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4127		v_list_itr->status =
4128			ice_remove_rule_internal(hw, recp_id, v_list_itr);
4129		if (v_list_itr->status)
4130			return v_list_itr->status;
4131	}
4132	return 0;
4133}
4134
4135/**
4136 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4137 * @hw: pointer to the hardware structure
4138 * @vsi_handle: VSI handle to clear mode
4139 * @promisc_mask: mask of promiscuous config bits to clear
4140 * @vid: VLAN ID to clear VLAN promiscuous
4141 */
4142int
4143ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4144		      u16 vid)
4145{
4146	struct ice_switch_info *sw = hw->switch_info;
4147	struct ice_fltr_list_entry *fm_entry, *tmp;
4148	struct list_head remove_list_head;
4149	struct ice_fltr_mgmt_list_entry *itr;
4150	struct list_head *rule_head;
4151	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4152	int status = 0;
4153	u8 recipe_id;
4154
4155	if (!ice_is_vsi_valid(hw, vsi_handle))
4156		return -EINVAL;
4157
4158	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4159		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4160	else
4161		recipe_id = ICE_SW_LKUP_PROMISC;
4162
4163	rule_head = &sw->recp_list[recipe_id].filt_rules;
4164	rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4165
4166	INIT_LIST_HEAD(&remove_list_head);
4167
4168	mutex_lock(rule_lock);
4169	list_for_each_entry(itr, rule_head, list_entry) {
4170		struct ice_fltr_info *fltr_info;
4171		u8 fltr_promisc_mask = 0;
4172
4173		if (!ice_vsi_uses_fltr(itr, vsi_handle))
4174			continue;
4175		fltr_info = &itr->fltr_info;
4176
4177		if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4178		    vid != fltr_info->l_data.mac_vlan.vlan_id)
4179			continue;
4180
4181		fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4182
4183		/* Skip if filter is not completely specified by given mask */
4184		if (fltr_promisc_mask & ~promisc_mask)
4185			continue;
4186
4187		status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4188							&remove_list_head,
4189							fltr_info);
4190		if (status) {
4191			mutex_unlock(rule_lock);
4192			goto free_fltr_list;
4193		}
4194	}
4195	mutex_unlock(rule_lock);
4196
4197	status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4198
4199free_fltr_list:
4200	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4201		list_del(&fm_entry->list_entry);
4202		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4203	}
4204
4205	return status;
4206}
4207
4208/**
4209 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4210 * @hw: pointer to the hardware structure
4211 * @vsi_handle: VSI handle to configure
4212 * @promisc_mask: mask of promiscuous config bits
4213 * @vid: VLAN ID to set VLAN promiscuous
4214 */
4215int
4216ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4217{
4218	enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4219	struct ice_fltr_list_entry f_list_entry;
4220	struct ice_fltr_info new_fltr;
4221	bool is_tx_fltr;
4222	int status = 0;
4223	u16 hw_vsi_id;
4224	int pkt_type;
4225	u8 recipe_id;
4226
4227	if (!ice_is_vsi_valid(hw, vsi_handle))
4228		return -EINVAL;
4229	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4230
4231	memset(&new_fltr, 0, sizeof(new_fltr));
4232
4233	if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4234		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4235		new_fltr.l_data.mac_vlan.vlan_id = vid;
4236		recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4237	} else {
4238		new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4239		recipe_id = ICE_SW_LKUP_PROMISC;
4240	}
4241
4242	/* Separate filters must be set for each direction/packet type
4243	 * combination, so we will loop over the mask value, store the
4244	 * individual type, and clear it out in the input mask as it
4245	 * is found.
4246	 */
4247	while (promisc_mask) {
4248		u8 *mac_addr;
4249
4250		pkt_type = 0;
4251		is_tx_fltr = false;
4252
4253		if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4254			promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4255			pkt_type = UCAST_FLTR;
4256		} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4257			promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4258			pkt_type = UCAST_FLTR;
4259			is_tx_fltr = true;
4260		} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4261			promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4262			pkt_type = MCAST_FLTR;
4263		} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4264			promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4265			pkt_type = MCAST_FLTR;
4266			is_tx_fltr = true;
4267		} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4268			promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4269			pkt_type = BCAST_FLTR;
4270		} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4271			promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4272			pkt_type = BCAST_FLTR;
4273			is_tx_fltr = true;
4274		}
4275
4276		/* Check for VLAN promiscuous flag */
4277		if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4278			promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4279		} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4280			promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4281			is_tx_fltr = true;
4282		}
4283
4284		/* Set filter DA based on packet type */
4285		mac_addr = new_fltr.l_data.mac.mac_addr;
4286		if (pkt_type == BCAST_FLTR) {
4287			eth_broadcast_addr(mac_addr);
4288		} else if (pkt_type == MCAST_FLTR ||
4289			   pkt_type == UCAST_FLTR) {
4290			/* Use the dummy ether header DA */
4291			ether_addr_copy(mac_addr, dummy_eth_header);
4292			if (pkt_type == MCAST_FLTR)
4293				mac_addr[0] |= 0x1;	/* Set multicast bit */
4294		}
4295
4296		/* Need to reset this to zero for all iterations */
4297		new_fltr.flag = 0;
4298		if (is_tx_fltr) {
4299			new_fltr.flag |= ICE_FLTR_TX;
4300			new_fltr.src = hw_vsi_id;
4301		} else {
4302			new_fltr.flag |= ICE_FLTR_RX;
4303			new_fltr.src = hw->port_info->lport;
4304		}
4305
4306		new_fltr.fltr_act = ICE_FWD_TO_VSI;
4307		new_fltr.vsi_handle = vsi_handle;
4308		new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4309		f_list_entry.fltr_info = new_fltr;
4310
4311		status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4312		if (status)
4313			goto set_promisc_exit;
4314	}
4315
4316set_promisc_exit:
4317	return status;
4318}
4319
4320/**
4321 * ice_set_vlan_vsi_promisc
4322 * @hw: pointer to the hardware structure
4323 * @vsi_handle: VSI handle to configure
4324 * @promisc_mask: mask of promiscuous config bits
4325 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4326 *
4327 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4328 */
4329int
4330ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4331			 bool rm_vlan_promisc)
4332{
4333	struct ice_switch_info *sw = hw->switch_info;
4334	struct ice_fltr_list_entry *list_itr, *tmp;
4335	struct list_head vsi_list_head;
4336	struct list_head *vlan_head;
4337	struct mutex *vlan_lock; /* Lock to protect filter rule list */
4338	u16 vlan_id;
4339	int status;
4340
4341	INIT_LIST_HEAD(&vsi_list_head);
4342	vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4343	vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4344	mutex_lock(vlan_lock);
4345	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4346					  &vsi_list_head);
4347	mutex_unlock(vlan_lock);
4348	if (status)
4349		goto free_fltr_list;
4350
4351	list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4352		/* Avoid enabling or disabling VLAN zero twice when in double
4353		 * VLAN mode
4354		 */
4355		if (ice_is_dvm_ena(hw) &&
4356		    list_itr->fltr_info.l_data.vlan.tpid == 0)
4357			continue;
4358
4359		vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4360		if (rm_vlan_promisc)
4361			status = ice_clear_vsi_promisc(hw, vsi_handle,
4362						       promisc_mask, vlan_id);
4363		else
4364			status = ice_set_vsi_promisc(hw, vsi_handle,
4365						     promisc_mask, vlan_id);
4366		if (status && status != -EEXIST)
4367			break;
4368	}
4369
4370free_fltr_list:
4371	list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4372		list_del(&list_itr->list_entry);
4373		devm_kfree(ice_hw_to_dev(hw), list_itr);
4374	}
4375	return status;
4376}
4377
4378/**
4379 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4380 * @hw: pointer to the hardware structure
4381 * @vsi_handle: VSI handle to remove filters from
4382 * @lkup: switch rule filter lookup type
4383 */
4384static void
4385ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4386			 enum ice_sw_lkup_type lkup)
4387{
4388	struct ice_switch_info *sw = hw->switch_info;
4389	struct ice_fltr_list_entry *fm_entry;
4390	struct list_head remove_list_head;
4391	struct list_head *rule_head;
4392	struct ice_fltr_list_entry *tmp;
4393	struct mutex *rule_lock;	/* Lock to protect filter rule list */
4394	int status;
4395
4396	INIT_LIST_HEAD(&remove_list_head);
4397	rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4398	rule_head = &sw->recp_list[lkup].filt_rules;
4399	mutex_lock(rule_lock);
4400	status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4401					  &remove_list_head);
4402	mutex_unlock(rule_lock);
4403	if (status)
4404		goto free_fltr_list;
4405
4406	switch (lkup) {
4407	case ICE_SW_LKUP_MAC:
4408		ice_remove_mac(hw, &remove_list_head);
4409		break;
4410	case ICE_SW_LKUP_VLAN:
4411		ice_remove_vlan(hw, &remove_list_head);
4412		break;
4413	case ICE_SW_LKUP_PROMISC:
4414	case ICE_SW_LKUP_PROMISC_VLAN:
4415		ice_remove_promisc(hw, lkup, &remove_list_head);
4416		break;
4417	case ICE_SW_LKUP_MAC_VLAN:
4418	case ICE_SW_LKUP_ETHERTYPE:
4419	case ICE_SW_LKUP_ETHERTYPE_MAC:
4420	case ICE_SW_LKUP_DFLT:
4421	case ICE_SW_LKUP_LAST:
4422	default:
4423		ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4424		break;
4425	}
4426
4427free_fltr_list:
4428	list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4429		list_del(&fm_entry->list_entry);
4430		devm_kfree(ice_hw_to_dev(hw), fm_entry);
4431	}
4432}
4433
4434/**
4435 * ice_remove_vsi_fltr - Remove all filters for a VSI
4436 * @hw: pointer to the hardware structure
4437 * @vsi_handle: VSI handle to remove filters from
4438 */
4439void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4440{
4441	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4442	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4443	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4444	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4445	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4446	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4447	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4448	ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4449}
4450
4451/**
4452 * ice_alloc_res_cntr - allocating resource counter
4453 * @hw: pointer to the hardware structure
4454 * @type: type of resource
4455 * @alloc_shared: if set it is shared else dedicated
4456 * @num_items: number of entries requested for FD resource type
4457 * @counter_id: counter index returned by AQ call
4458 */
4459int
4460ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4461		   u16 *counter_id)
4462{
4463	struct ice_aqc_alloc_free_res_elem *buf;
4464	u16 buf_len;
4465	int status;
4466
4467	/* Allocate resource */
4468	buf_len = struct_size(buf, elem, 1);
4469	buf = kzalloc(buf_len, GFP_KERNEL);
4470	if (!buf)
4471		return -ENOMEM;
4472
4473	buf->num_elems = cpu_to_le16(num_items);
4474	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4475				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4476
4477	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4478				       ice_aqc_opc_alloc_res, NULL);
4479	if (status)
4480		goto exit;
4481
4482	*counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4483
4484exit:
4485	kfree(buf);
4486	return status;
4487}
4488
4489/**
4490 * ice_free_res_cntr - free resource counter
4491 * @hw: pointer to the hardware structure
4492 * @type: type of resource
4493 * @alloc_shared: if set it is shared else dedicated
4494 * @num_items: number of entries to be freed for FD resource type
4495 * @counter_id: counter ID resource which needs to be freed
4496 */
4497int
4498ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4499		  u16 counter_id)
4500{
4501	struct ice_aqc_alloc_free_res_elem *buf;
4502	u16 buf_len;
4503	int status;
4504
4505	/* Free resource */
4506	buf_len = struct_size(buf, elem, 1);
4507	buf = kzalloc(buf_len, GFP_KERNEL);
4508	if (!buf)
4509		return -ENOMEM;
4510
4511	buf->num_elems = cpu_to_le16(num_items);
4512	buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4513				      ICE_AQC_RES_TYPE_M) | alloc_shared);
4514	buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4515
4516	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4517				       ice_aqc_opc_free_res, NULL);
4518	if (status)
4519		ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4520
4521	kfree(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522	return status;
4523}
4524
4525/* This is mapping table entry that maps every word within a given protocol
4526 * structure to the real byte offset as per the specification of that
4527 * protocol header.
4528 * for example dst address is 3 words in ethertype header and corresponding
4529 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4530 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4531 * matching entry describing its field. This needs to be updated if new
4532 * structure is added to that union.
4533 */
4534static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4535	{ ICE_MAC_OFOS,		{ 0, 2, 4, 6, 8, 10, 12 } },
4536	{ ICE_MAC_IL,		{ 0, 2, 4, 6, 8, 10, 12 } },
4537	{ ICE_ETYPE_OL,		{ 0 } },
4538	{ ICE_ETYPE_IL,		{ 0 } },
4539	{ ICE_VLAN_OFOS,	{ 2, 0 } },
4540	{ ICE_IPV4_OFOS,	{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4541	{ ICE_IPV4_IL,		{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4542	{ ICE_IPV6_OFOS,	{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4543				 26, 28, 30, 32, 34, 36, 38 } },
4544	{ ICE_IPV6_IL,		{ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4545				 26, 28, 30, 32, 34, 36, 38 } },
4546	{ ICE_TCP_IL,		{ 0, 2 } },
4547	{ ICE_UDP_OF,		{ 0, 2 } },
4548	{ ICE_UDP_ILOS,		{ 0, 2 } },
4549	{ ICE_VXLAN,		{ 8, 10, 12, 14 } },
4550	{ ICE_GENEVE,		{ 8, 10, 12, 14 } },
4551	{ ICE_NVGRE,		{ 0, 2, 4, 6 } },
4552	{ ICE_GTP,		{ 8, 10, 12, 14, 16, 18, 20, 22 } },
4553	{ ICE_GTP_NO_PAY,	{ 8, 10, 12, 14 } },
4554	{ ICE_PPPOE,		{ 0, 2, 4, 6 } },
4555	{ ICE_L2TPV3,		{ 0, 2, 4, 6, 8, 10 } },
4556	{ ICE_VLAN_EX,          { 2, 0 } },
4557	{ ICE_VLAN_IN,          { 2, 0 } },
 
 
 
 
 
 
 
 
 
 
4558};
4559
4560static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4561	{ ICE_MAC_OFOS,		ICE_MAC_OFOS_HW },
4562	{ ICE_MAC_IL,		ICE_MAC_IL_HW },
4563	{ ICE_ETYPE_OL,		ICE_ETYPE_OL_HW },
4564	{ ICE_ETYPE_IL,		ICE_ETYPE_IL_HW },
4565	{ ICE_VLAN_OFOS,	ICE_VLAN_OL_HW },
4566	{ ICE_IPV4_OFOS,	ICE_IPV4_OFOS_HW },
4567	{ ICE_IPV4_IL,		ICE_IPV4_IL_HW },
4568	{ ICE_IPV6_OFOS,	ICE_IPV6_OFOS_HW },
4569	{ ICE_IPV6_IL,		ICE_IPV6_IL_HW },
4570	{ ICE_TCP_IL,		ICE_TCP_IL_HW },
4571	{ ICE_UDP_OF,		ICE_UDP_OF_HW },
4572	{ ICE_UDP_ILOS,		ICE_UDP_ILOS_HW },
4573	{ ICE_VXLAN,		ICE_UDP_OF_HW },
4574	{ ICE_GENEVE,		ICE_UDP_OF_HW },
4575	{ ICE_NVGRE,		ICE_GRE_OF_HW },
4576	{ ICE_GTP,		ICE_UDP_OF_HW },
4577	{ ICE_GTP_NO_PAY,	ICE_UDP_ILOS_HW },
 
4578	{ ICE_PPPOE,		ICE_PPPOE_HW },
4579	{ ICE_L2TPV3,		ICE_L2TPV3_HW },
4580	{ ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4581	{ ICE_VLAN_IN,          ICE_VLAN_OL_HW },
 
4582};
4583
4584/**
4585 * ice_find_recp - find a recipe
4586 * @hw: pointer to the hardware structure
4587 * @lkup_exts: extension sequence to match
4588 * @tun_type: type of recipe tunnel
 
4589 *
4590 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4591 */
4592static u16
4593ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4594	      enum ice_sw_tunnel_type tun_type)
4595{
4596	bool refresh_required = true;
4597	struct ice_sw_recipe *recp;
4598	u8 i;
4599
4600	/* Walk through existing recipes to find a match */
4601	recp = hw->switch_info->recp_list;
4602	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4603		/* If recipe was not created for this ID, in SW bookkeeping,
4604		 * check if FW has an entry for this recipe. If the FW has an
4605		 * entry update it in our SW bookkeeping and continue with the
4606		 * matching.
4607		 */
4608		if (!recp[i].recp_created)
4609			if (ice_get_recp_frm_fw(hw,
4610						hw->switch_info->recp_list, i,
4611						&refresh_required))
4612				continue;
4613
4614		/* Skip inverse action recipes */
4615		if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4616		    ICE_AQ_RECIPE_ACT_INV_ACT)
4617			continue;
4618
4619		/* if number of words we are looking for match */
4620		if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4621			struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4622			struct ice_fv_word *be = lkup_exts->fv_words;
4623			u16 *cr = recp[i].lkup_exts.field_mask;
4624			u16 *de = lkup_exts->field_mask;
4625			bool found = true;
4626			u8 pe, qr;
4627
4628			/* ar, cr, and qr are related to the recipe words, while
4629			 * be, de, and pe are related to the lookup words
4630			 */
4631			for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4632				for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4633				     qr++) {
4634					if (ar[qr].off == be[pe].off &&
4635					    ar[qr].prot_id == be[pe].prot_id &&
4636					    cr[qr] == de[pe])
4637						/* Found the "pe"th word in the
4638						 * given recipe
4639						 */
4640						break;
4641				}
4642				/* After walking through all the words in the
4643				 * "i"th recipe if "p"th word was not found then
4644				 * this recipe is not what we are looking for.
4645				 * So break out from this loop and try the next
4646				 * recipe
4647				 */
4648				if (qr >= recp[i].lkup_exts.n_val_words) {
4649					found = false;
4650					break;
4651				}
4652			}
4653			/* If for "i"th recipe the found was never set to false
4654			 * then it means we found our match
4655			 * Also tun type of recipe needs to be checked
 
4656			 */
4657			if (found && recp[i].tun_type == tun_type)
 
 
4658				return i; /* Return the recipe ID */
4659		}
4660	}
4661	return ICE_MAX_NUM_RECIPES;
4662}
4663
4664/**
4665 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4666 *
4667 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4668 * supported protocol array record for outer vlan has to be modified to
4669 * reflect the value proper for DVM.
4670 */
4671void ice_change_proto_id_to_dvm(void)
4672{
4673	u8 i;
4674
4675	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4676		if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4677		    ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4678			ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4679}
4680
4681/**
4682 * ice_prot_type_to_id - get protocol ID from protocol type
4683 * @type: protocol type
4684 * @id: pointer to variable that will receive the ID
4685 *
4686 * Returns true if found, false otherwise
4687 */
4688static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4689{
4690	u8 i;
4691
4692	for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4693		if (ice_prot_id_tbl[i].type == type) {
4694			*id = ice_prot_id_tbl[i].protocol_id;
4695			return true;
4696		}
4697	return false;
4698}
4699
4700/**
4701 * ice_fill_valid_words - count valid words
4702 * @rule: advanced rule with lookup information
4703 * @lkup_exts: byte offset extractions of the words that are valid
4704 *
4705 * calculate valid words in a lookup rule using mask value
4706 */
4707static u8
4708ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4709		     struct ice_prot_lkup_ext *lkup_exts)
4710{
4711	u8 j, word, prot_id, ret_val;
4712
4713	if (!ice_prot_type_to_id(rule->type, &prot_id))
4714		return 0;
4715
4716	word = lkup_exts->n_val_words;
4717
4718	for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4719		if (((u16 *)&rule->m_u)[j] &&
4720		    rule->type < ARRAY_SIZE(ice_prot_ext)) {
4721			/* No more space to accommodate */
4722			if (word >= ICE_MAX_CHAIN_WORDS)
4723				return 0;
4724			lkup_exts->fv_words[word].off =
4725				ice_prot_ext[rule->type].offs[j];
4726			lkup_exts->fv_words[word].prot_id =
4727				ice_prot_id_tbl[rule->type].protocol_id;
4728			lkup_exts->field_mask[word] =
4729				be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4730			word++;
4731		}
4732
4733	ret_val = word - lkup_exts->n_val_words;
4734	lkup_exts->n_val_words = word;
4735
4736	return ret_val;
4737}
4738
4739/**
4740 * ice_create_first_fit_recp_def - Create a recipe grouping
4741 * @hw: pointer to the hardware structure
4742 * @lkup_exts: an array of protocol header extractions
4743 * @rg_list: pointer to a list that stores new recipe groups
4744 * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4745 *
4746 * Using first fit algorithm, take all the words that are still not done
4747 * and start grouping them in 4-word groups. Each group makes up one
4748 * recipe.
4749 */
4750static int
4751ice_create_first_fit_recp_def(struct ice_hw *hw,
4752			      struct ice_prot_lkup_ext *lkup_exts,
4753			      struct list_head *rg_list,
4754			      u8 *recp_cnt)
4755{
4756	struct ice_pref_recipe_group *grp = NULL;
4757	u8 j;
4758
4759	*recp_cnt = 0;
4760
4761	/* Walk through every word in the rule to check if it is not done. If so
4762	 * then this word needs to be part of a new recipe.
4763	 */
4764	for (j = 0; j < lkup_exts->n_val_words; j++)
4765		if (!test_bit(j, lkup_exts->done)) {
4766			if (!grp ||
4767			    grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4768				struct ice_recp_grp_entry *entry;
4769
4770				entry = devm_kzalloc(ice_hw_to_dev(hw),
4771						     sizeof(*entry),
4772						     GFP_KERNEL);
4773				if (!entry)
4774					return -ENOMEM;
4775				list_add(&entry->l_entry, rg_list);
4776				grp = &entry->r_group;
4777				(*recp_cnt)++;
4778			}
4779
4780			grp->pairs[grp->n_val_pairs].prot_id =
4781				lkup_exts->fv_words[j].prot_id;
4782			grp->pairs[grp->n_val_pairs].off =
4783				lkup_exts->fv_words[j].off;
4784			grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4785			grp->n_val_pairs++;
4786		}
4787
4788	return 0;
4789}
4790
4791/**
4792 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4793 * @hw: pointer to the hardware structure
4794 * @fv_list: field vector with the extraction sequence information
4795 * @rg_list: recipe groupings with protocol-offset pairs
4796 *
4797 * Helper function to fill in the field vector indices for protocol-offset
4798 * pairs. These indexes are then ultimately programmed into a recipe.
4799 */
4800static int
4801ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4802		       struct list_head *rg_list)
4803{
4804	struct ice_sw_fv_list_entry *fv;
4805	struct ice_recp_grp_entry *rg;
4806	struct ice_fv_word *fv_ext;
 
4807
4808	if (list_empty(fv_list))
4809		return 0;
4810
4811	fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4812			      list_entry);
4813	fv_ext = fv->fv_ptr->ew;
4814
4815	list_for_each_entry(rg, rg_list, l_entry) {
4816		u8 i;
 
 
 
 
 
 
 
 
4817
4818		for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4819			struct ice_fv_word *pr;
4820			bool found = false;
4821			u16 mask;
4822			u8 j;
4823
4824			pr = &rg->r_group.pairs[i];
4825			mask = rg->r_group.mask[i];
4826
4827			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4828				if (fv_ext[j].prot_id == pr->prot_id &&
4829				    fv_ext[j].off == pr->off) {
4830					found = true;
4831
4832					/* Store index of field vector */
4833					rg->fv_idx[i] = j;
4834					rg->fv_mask[i] = mask;
4835					break;
4836				}
4837
4838			/* Protocol/offset could not be found, caller gave an
4839			 * invalid pair
4840			 */
4841			if (!found)
4842				return -EINVAL;
4843		}
 
 
 
 
 
 
4844	}
4845
4846	return 0;
4847}
4848
4849/**
4850 * ice_find_free_recp_res_idx - find free result indexes for recipe
4851 * @hw: pointer to hardware structure
4852 * @profiles: bitmap of profiles that will be associated with the new recipe
4853 * @free_idx: pointer to variable to receive the free index bitmap
4854 *
4855 * The algorithm used here is:
4856 *	1. When creating a new recipe, create a set P which contains all
4857 *	   Profiles that will be associated with our new recipe
4858 *
4859 *	2. For each Profile p in set P:
4860 *	    a. Add all recipes associated with Profile p into set R
4861 *	    b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4862 *		[initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4863 *		i. Or just assume they all have the same possible indexes:
4864 *			44, 45, 46, 47
4865 *			i.e., PossibleIndexes = 0x0000F00000000000
4866 *
4867 *	3. For each Recipe r in set R:
4868 *	    a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4869 *	    b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4870 *
4871 *	FreeIndexes will contain the bits indicating the indexes free for use,
4872 *      then the code needs to update the recipe[r].used_result_idx_bits to
4873 *      indicate which indexes were selected for use by this recipe.
4874 */
4875static u16
4876ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4877			   unsigned long *free_idx)
4878{
4879	DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4880	DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4881	DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4882	u16 bit;
4883
4884	bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4885	bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4886
4887	bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4888
4889	/* For each profile we are going to associate the recipe with, add the
4890	 * recipes that are associated with that profile. This will give us
4891	 * the set of recipes that our recipe may collide with. Also, determine
4892	 * what possible result indexes are usable given this set of profiles.
4893	 */
4894	for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4895		bitmap_or(recipes, recipes, profile_to_recipe[bit],
4896			  ICE_MAX_NUM_RECIPES);
4897		bitmap_and(possible_idx, possible_idx,
4898			   hw->switch_info->prof_res_bm[bit],
4899			   ICE_MAX_FV_WORDS);
4900	}
4901
4902	/* For each recipe that our new recipe may collide with, determine
4903	 * which indexes have been used.
4904	 */
4905	for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4906		bitmap_or(used_idx, used_idx,
4907			  hw->switch_info->recp_list[bit].res_idxs,
4908			  ICE_MAX_FV_WORDS);
4909
4910	bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4911
4912	/* return number of free indexes */
4913	return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4914}
4915
4916/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4918 * @hw: pointer to hardware structure
4919 * @rm: recipe management list entry
4920 * @profiles: bitmap of profiles that will be associated.
4921 */
4922static int
4923ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4924		  unsigned long *profiles)
4925{
 
4926	DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4927	struct ice_aqc_recipe_data_elem *tmp;
4928	struct ice_aqc_recipe_data_elem *buf;
4929	struct ice_recp_grp_entry *entry;
4930	u16 free_res_idx;
4931	u16 recipe_count;
4932	u8 chain_idx;
4933	u8 recps = 0;
4934	int status;
 
 
 
 
4935
4936	/* When more than one recipe are required, another recipe is needed to
4937	 * chain them together. Matching a tunnel metadata ID takes up one of
4938	 * the match fields in the chaining recipe reducing the number of
4939	 * chained recipes by one.
4940	 */
4941	 /* check number of free result indices */
4942	bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
 
 
 
4943	free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4944
4945	ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4946		  free_res_idx, rm->n_grp_count);
4947
4948	if (rm->n_grp_count > 1) {
4949		if (rm->n_grp_count > free_res_idx)
4950			return -ENOSPC;
4951
4952		rm->n_grp_count++;
4953	}
4954
4955	if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4956		return -ENOSPC;
4957
4958	tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4959	if (!tmp)
4960		return -ENOMEM;
4961
4962	buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4963			   GFP_KERNEL);
4964	if (!buf) {
4965		status = -ENOMEM;
4966		goto err_mem;
4967	}
4968
4969	bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4970	recipe_count = ICE_MAX_NUM_RECIPES;
4971	status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4972				   NULL);
4973	if (status || recipe_count == 0)
4974		goto err_unroll;
4975
4976	/* Allocate the recipe resources, and configure them according to the
4977	 * match fields from protocol headers and extracted field vectors.
4978	 */
4979	chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4980	list_for_each_entry(entry, &rm->rg_list, l_entry) {
4981		u8 i;
4982
4983		status = ice_alloc_recipe(hw, &entry->rid);
4984		if (status)
4985			goto err_unroll;
4986
4987		/* Clear the result index of the located recipe, as this will be
4988		 * updated, if needed, later in the recipe creation process.
4989		 */
4990		tmp[0].content.result_indx = 0;
4991
4992		buf[recps] = tmp[0];
4993		buf[recps].recipe_indx = (u8)entry->rid;
4994		/* if the recipe is a non-root recipe RID should be programmed
4995		 * as 0 for the rules to be applied correctly.
4996		 */
4997		buf[recps].content.rid = 0;
4998		memset(&buf[recps].content.lkup_indx, 0,
4999		       sizeof(buf[recps].content.lkup_indx));
5000
5001		/* All recipes use look-up index 0 to match switch ID. */
5002		buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5003		buf[recps].content.mask[0] =
5004			cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5005		/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
5006		 * to be 0
5007		 */
5008		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5009			buf[recps].content.lkup_indx[i] = 0x80;
5010			buf[recps].content.mask[i] = 0;
5011		}
 
5012
5013		for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5014			buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
5015			buf[recps].content.mask[i + 1] =
5016				cpu_to_le16(entry->fv_mask[i]);
5017		}
 
 
5018
5019		if (rm->n_grp_count > 1) {
5020			/* Checks to see if there really is a valid result index
5021			 * that can be used.
5022			 */
5023			if (chain_idx >= ICE_MAX_FV_WORDS) {
5024				ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5025				status = -ENOSPC;
5026				goto err_unroll;
5027			}
5028
5029			entry->chain_idx = chain_idx;
5030			buf[recps].content.result_indx =
5031				ICE_AQ_RECIPE_RESULT_EN |
5032				((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
5033				 ICE_AQ_RECIPE_RESULT_DATA_M);
5034			clear_bit(chain_idx, result_idx_bm);
5035			chain_idx = find_first_bit(result_idx_bm,
5036						   ICE_MAX_FV_WORDS);
5037		}
5038
5039		/* fill recipe dependencies */
5040		bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5041			    ICE_MAX_NUM_RECIPES);
5042		set_bit(buf[recps].recipe_indx,
5043			(unsigned long *)buf[recps].recipe_bitmap);
5044		buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5045		recps++;
5046	}
5047
5048	if (rm->n_grp_count == 1) {
5049		rm->root_rid = buf[0].recipe_indx;
5050		set_bit(buf[0].recipe_indx, rm->r_bitmap);
5051		buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5052		if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5053			memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5054			       sizeof(buf[0].recipe_bitmap));
5055		} else {
5056			status = -EINVAL;
5057			goto err_unroll;
5058		}
5059		/* Applicable only for ROOT_RECIPE, set the fwd_priority for
5060		 * the recipe which is getting created if specified
5061		 * by user. Usually any advanced switch filter, which results
5062		 * into new extraction sequence, ended up creating a new recipe
5063		 * of type ROOT and usually recipes are associated with profiles
5064		 * Switch rule referreing newly created recipe, needs to have
5065		 * either/or 'fwd' or 'join' priority, otherwise switch rule
5066		 * evaluation will not happen correctly. In other words, if
5067		 * switch rule to be evaluated on priority basis, then recipe
5068		 * needs to have priority, otherwise it will be evaluated last.
5069		 */
5070		buf[0].content.act_ctrl_fwd_priority = rm->priority;
5071	} else {
5072		struct ice_recp_grp_entry *last_chain_entry;
5073		u16 rid, i;
5074
5075		/* Allocate the last recipe that will chain the outcomes of the
5076		 * other recipes together
5077		 */
5078		status = ice_alloc_recipe(hw, &rid);
5079		if (status)
5080			goto err_unroll;
 
5081
5082		buf[recps].recipe_indx = (u8)rid;
5083		buf[recps].content.rid = (u8)rid;
5084		buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5085		/* the new entry created should also be part of rg_list to
5086		 * make sure we have complete recipe
5087		 */
5088		last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5089						sizeof(*last_chain_entry),
5090						GFP_KERNEL);
5091		if (!last_chain_entry) {
5092			status = -ENOMEM;
5093			goto err_unroll;
5094		}
5095		last_chain_entry->rid = rid;
5096		memset(&buf[recps].content.lkup_indx, 0,
5097		       sizeof(buf[recps].content.lkup_indx));
5098		/* All recipes use look-up index 0 to match switch ID. */
5099		buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5100		buf[recps].content.mask[0] =
5101			cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5102		for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5103			buf[recps].content.lkup_indx[i] =
5104				ICE_AQ_RECIPE_LKUP_IGNORE;
5105			buf[recps].content.mask[i] = 0;
5106		}
5107
5108		i = 1;
5109		/* update r_bitmap with the recp that is used for chaining */
5110		set_bit(rid, rm->r_bitmap);
5111		/* this is the recipe that chains all the other recipes so it
5112		 * should not have a chaining ID to indicate the same
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5113		 */
5114		last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5115		list_for_each_entry(entry, &rm->rg_list, l_entry) {
5116			last_chain_entry->fv_idx[i] = entry->chain_idx;
5117			buf[recps].content.lkup_indx[i] = entry->chain_idx;
5118			buf[recps].content.mask[i++] = cpu_to_le16(0xFFFF);
5119			set_bit(entry->rid, rm->r_bitmap);
5120		}
5121		list_add(&last_chain_entry->l_entry, &rm->rg_list);
5122		if (sizeof(buf[recps].recipe_bitmap) >=
5123		    sizeof(rm->r_bitmap)) {
5124			memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5125			       sizeof(buf[recps].recipe_bitmap));
5126		} else {
5127			status = -EINVAL;
5128			goto err_unroll;
5129		}
5130		buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5131
5132		recps++;
5133		rm->root_rid = (u8)rid;
5134	}
 
 
 
 
 
5135	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5136	if (status)
5137		goto err_unroll;
5138
5139	status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5140	ice_release_change_lock(hw);
5141	if (status)
5142		goto err_unroll;
5143
5144	/* Every recipe that just got created add it to the recipe
5145	 * book keeping list
5146	 */
5147	list_for_each_entry(entry, &rm->rg_list, l_entry) {
5148		struct ice_switch_info *sw = hw->switch_info;
5149		bool is_root, idx_found = false;
5150		struct ice_sw_recipe *recp;
5151		u16 idx, buf_idx = 0;
5152
5153		/* find buffer index for copying some data */
5154		for (idx = 0; idx < rm->n_grp_count; idx++)
5155			if (buf[idx].recipe_indx == entry->rid) {
5156				buf_idx = idx;
5157				idx_found = true;
5158			}
5159
5160		if (!idx_found) {
5161			status = -EIO;
5162			goto err_unroll;
5163		}
5164
5165		recp = &sw->recp_list[entry->rid];
5166		is_root = (rm->root_rid == entry->rid);
5167		recp->is_root = is_root;
5168
5169		recp->root_rid = entry->rid;
5170		recp->big_recp = (is_root && rm->n_grp_count > 1);
5171
5172		memcpy(&recp->ext_words, entry->r_group.pairs,
5173		       entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5174
5175		memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5176		       sizeof(recp->r_bitmap));
5177
5178		/* Copy non-result fv index values and masks to recipe. This
5179		 * call will also update the result recipe bitmask.
5180		 */
5181		ice_collect_result_idx(&buf[buf_idx], recp);
5182
5183		/* for non-root recipes, also copy to the root, this allows
5184		 * easier matching of a complete chained recipe
5185		 */
5186		if (!is_root)
5187			ice_collect_result_idx(&buf[buf_idx],
5188					       &sw->recp_list[rm->root_rid]);
5189
5190		recp->n_ext_words = entry->r_group.n_val_pairs;
5191		recp->chain_idx = entry->chain_idx;
5192		recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5193		recp->n_grp_count = rm->n_grp_count;
5194		recp->tun_type = rm->tun_type;
5195		recp->recp_created = true;
5196	}
5197	rm->root_buf = buf;
5198	kfree(tmp);
5199	return status;
5200
5201err_unroll:
5202err_mem:
5203	kfree(tmp);
5204	devm_kfree(ice_hw_to_dev(hw), buf);
5205	return status;
5206}
5207
5208/**
5209 * ice_create_recipe_group - creates recipe group
5210 * @hw: pointer to hardware structure
5211 * @rm: recipe management list entry
5212 * @lkup_exts: lookup elements
5213 */
5214static int
5215ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5216			struct ice_prot_lkup_ext *lkup_exts)
5217{
5218	u8 recp_count = 0;
5219	int status;
5220
5221	rm->n_grp_count = 0;
5222
5223	/* Create recipes for words that are marked not done by packing them
5224	 * as best fit.
5225	 */
5226	status = ice_create_first_fit_recp_def(hw, lkup_exts,
5227					       &rm->rg_list, &recp_count);
5228	if (!status) {
5229		rm->n_grp_count += recp_count;
5230		rm->n_ext_words = lkup_exts->n_val_words;
5231		memcpy(&rm->ext_words, lkup_exts->fv_words,
5232		       sizeof(rm->ext_words));
5233		memcpy(rm->word_masks, lkup_exts->field_mask,
5234		       sizeof(rm->word_masks));
5235	}
5236
5237	return status;
5238}
5239
5240/**
5241 * ice_tun_type_match_word - determine if tun type needs a match mask
5242 * @tun_type: tunnel type
5243 * @mask: mask to be used for the tunnel
5244 */
5245static bool ice_tun_type_match_word(enum ice_sw_tunnel_type tun_type, u16 *mask)
5246{
5247	switch (tun_type) {
5248	case ICE_SW_TUN_GENEVE:
5249	case ICE_SW_TUN_VXLAN:
5250	case ICE_SW_TUN_NVGRE:
5251	case ICE_SW_TUN_GTPU:
5252	case ICE_SW_TUN_GTPC:
5253		*mask = ICE_TUN_FLAG_MASK;
5254		return true;
5255
5256	default:
5257		*mask = 0;
5258		return false;
5259	}
5260}
5261
5262/**
5263 * ice_add_special_words - Add words that are not protocols, such as metadata
5264 * @rinfo: other information regarding the rule e.g. priority and action info
5265 * @lkup_exts: lookup word structure
5266 * @dvm_ena: is double VLAN mode enabled
5267 */
5268static int
5269ice_add_special_words(struct ice_adv_rule_info *rinfo,
5270		      struct ice_prot_lkup_ext *lkup_exts, bool dvm_ena)
5271{
5272	u16 mask;
5273
5274	/* If this is a tunneled packet, then add recipe index to match the
5275	 * tunnel bit in the packet metadata flags.
5276	 */
5277	if (ice_tun_type_match_word(rinfo->tun_type, &mask)) {
5278		if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5279			u8 word = lkup_exts->n_val_words++;
5280
5281			lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5282			lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID_OFF;
5283			lkup_exts->field_mask[word] = mask;
5284		} else {
5285			return -ENOSPC;
5286		}
5287	}
5288
5289	if (rinfo->vlan_type != 0 && dvm_ena) {
5290		if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5291			u8 word = lkup_exts->n_val_words++;
5292
5293			lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5294			lkup_exts->fv_words[word].off = ICE_VLAN_FLAG_MDID_OFF;
5295			lkup_exts->field_mask[word] =
5296					ICE_PKT_FLAGS_0_TO_15_VLAN_FLAGS_MASK;
5297		} else {
5298			return -ENOSPC;
5299		}
5300	}
5301
5302	return 0;
5303}
5304
5305/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5306 * @hw: pointer to hardware structure
5307 * @rinfo: other information regarding the rule e.g. priority and action info
5308 * @bm: pointer to memory for returning the bitmap of field vectors
5309 */
5310static void
5311ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5312			 unsigned long *bm)
5313{
5314	enum ice_prof_type prof_type;
5315
5316	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5317
5318	switch (rinfo->tun_type) {
5319	case ICE_NON_TUN:
5320		prof_type = ICE_PROF_NON_TUN;
5321		break;
5322	case ICE_ALL_TUNNELS:
5323		prof_type = ICE_PROF_TUN_ALL;
5324		break;
5325	case ICE_SW_TUN_GENEVE:
5326	case ICE_SW_TUN_VXLAN:
5327		prof_type = ICE_PROF_TUN_UDP;
5328		break;
5329	case ICE_SW_TUN_NVGRE:
5330		prof_type = ICE_PROF_TUN_GRE;
5331		break;
5332	case ICE_SW_TUN_GTPU:
5333		prof_type = ICE_PROF_TUN_GTPU;
5334		break;
5335	case ICE_SW_TUN_GTPC:
5336		prof_type = ICE_PROF_TUN_GTPC;
5337		break;
 
 
 
5338	case ICE_SW_TUN_AND_NON_TUN:
5339	default:
5340		prof_type = ICE_PROF_ALL;
5341		break;
5342	}
5343
5344	ice_get_sw_fv_bitmap(hw, prof_type, bm);
5345}
5346
5347/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5348 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5349 * @hw: pointer to hardware structure
5350 * @lkups: lookup elements or match criteria for the advanced recipe, one
5351 *  structure per protocol header
5352 * @lkups_cnt: number of protocols
5353 * @rinfo: other information regarding the rule e.g. priority and action info
5354 * @rid: return the recipe ID of the recipe created
5355 */
5356static int
5357ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5358		   u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5359{
5360	DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5361	DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5362	struct ice_prot_lkup_ext *lkup_exts;
5363	struct ice_recp_grp_entry *r_entry;
5364	struct ice_sw_fv_list_entry *fvit;
5365	struct ice_recp_grp_entry *r_tmp;
5366	struct ice_sw_fv_list_entry *tmp;
5367	struct ice_sw_recipe *rm;
5368	int status = 0;
 
5369	u8 i;
5370
5371	if (!lkups_cnt)
5372		return -EINVAL;
5373
5374	lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5375	if (!lkup_exts)
5376		return -ENOMEM;
5377
5378	/* Determine the number of words to be matched and if it exceeds a
5379	 * recipe's restrictions
5380	 */
5381	for (i = 0; i < lkups_cnt; i++) {
5382		u16 count;
5383
5384		if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5385			status = -EIO;
5386			goto err_free_lkup_exts;
5387		}
5388
5389		count = ice_fill_valid_words(&lkups[i], lkup_exts);
5390		if (!count) {
5391			status = -EIO;
5392			goto err_free_lkup_exts;
5393		}
5394	}
5395
5396	rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5397	if (!rm) {
5398		status = -ENOMEM;
5399		goto err_free_lkup_exts;
5400	}
5401
5402	/* Get field vectors that contain fields extracted from all the protocol
5403	 * headers being programmed.
5404	 */
5405	INIT_LIST_HEAD(&rm->fv_list);
5406	INIT_LIST_HEAD(&rm->rg_list);
5407
5408	/* Get bitmap of field vectors (profiles) that are compatible with the
5409	 * rule request; only these will be searched in the subsequent call to
5410	 * ice_get_sw_fv_list.
5411	 */
5412	ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5413
5414	status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5415	if (status)
5416		goto err_unroll;
5417
5418	/* Create any special protocol/offset pairs, such as looking at tunnel
5419	 * bits by extracting metadata
5420	 */
5421	status = ice_add_special_words(rinfo, lkup_exts, ice_is_dvm_ena(hw));
5422	if (status)
5423		goto err_unroll;
5424
5425	/* Group match words into recipes using preferred recipe grouping
5426	 * criteria.
5427	 */
5428	status = ice_create_recipe_group(hw, rm, lkup_exts);
5429	if (status)
5430		goto err_unroll;
5431
5432	/* set the recipe priority if specified */
5433	rm->priority = (u8)rinfo->priority;
5434
 
 
 
5435	/* Find offsets from the field vector. Pick the first one for all the
5436	 * recipes.
5437	 */
5438	status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5439	if (status)
5440		goto err_unroll;
5441
5442	/* get bitmap of all profiles the recipe will be associated with */
5443	bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5444	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5445		ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5446		set_bit((u16)fvit->profile_id, profiles);
5447	}
5448
5449	/* Look for a recipe which matches our requested fv / mask list */
5450	*rid = ice_find_recp(hw, lkup_exts, rinfo->tun_type);
5451	if (*rid < ICE_MAX_NUM_RECIPES)
5452		/* Success if found a recipe that match the existing criteria */
 
 
 
5453		goto err_unroll;
 
5454
5455	rm->tun_type = rinfo->tun_type;
5456	/* Recipe we need does not exist, add a recipe */
5457	status = ice_add_sw_recipe(hw, rm, profiles);
5458	if (status)
5459		goto err_unroll;
5460
5461	/* Associate all the recipes created with all the profiles in the
5462	 * common field vector.
5463	 */
5464	list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5465		DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
 
5466		u16 j;
5467
5468		status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5469						      (u8 *)r_bitmap, NULL);
5470		if (status)
5471			goto err_unroll;
5472
 
5473		bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5474			  ICE_MAX_NUM_RECIPES);
5475		status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5476		if (status)
5477			goto err_unroll;
5478
 
5479		status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5480						      (u8 *)r_bitmap,
5481						      NULL);
5482		ice_release_change_lock(hw);
5483
5484		if (status)
5485			goto err_unroll;
5486
5487		/* Update profile to recipe bitmap array */
5488		bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5489			    ICE_MAX_NUM_RECIPES);
5490
5491		/* Update recipe to profile bitmap array */
5492		for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5493			set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5494	}
5495
5496	*rid = rm->root_rid;
5497	memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5498	       sizeof(*lkup_exts));
5499err_unroll:
5500	list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5501		list_del(&r_entry->l_entry);
5502		devm_kfree(ice_hw_to_dev(hw), r_entry);
 
 
 
 
5503	}
5504
 
5505	list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5506		list_del(&fvit->list_entry);
5507		devm_kfree(ice_hw_to_dev(hw), fvit);
5508	}
5509
5510	if (rm->root_buf)
5511		devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5512
5513	kfree(rm);
5514
5515err_free_lkup_exts:
5516	kfree(lkup_exts);
5517
5518	return status;
5519}
5520
5521/**
5522 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5523 *
5524 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5525 * @num_vlan: number of VLAN tags
5526 */
5527static struct ice_dummy_pkt_profile *
5528ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5529			  u32 num_vlan)
5530{
5531	struct ice_dummy_pkt_profile *profile;
5532	struct ice_dummy_pkt_offsets *offsets;
5533	u32 buf_len, off, etype_off, i;
5534	u8 *pkt;
5535
5536	if (num_vlan < 1 || num_vlan > 2)
5537		return ERR_PTR(-EINVAL);
5538
5539	off = num_vlan * VLAN_HLEN;
5540
5541	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5542		  dummy_pkt->offsets_len;
5543	offsets = kzalloc(buf_len, GFP_KERNEL);
5544	if (!offsets)
5545		return ERR_PTR(-ENOMEM);
5546
5547	offsets[0] = dummy_pkt->offsets[0];
5548	if (num_vlan == 2) {
5549		offsets[1] = ice_dummy_qinq_packet_offsets[0];
5550		offsets[2] = ice_dummy_qinq_packet_offsets[1];
5551	} else if (num_vlan == 1) {
5552		offsets[1] = ice_dummy_vlan_packet_offsets[0];
5553	}
5554
5555	for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5556		offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5557		offsets[i + num_vlan].offset =
5558			dummy_pkt->offsets[i].offset + off;
5559	}
5560	offsets[i + num_vlan] = dummy_pkt->offsets[i];
5561
5562	etype_off = dummy_pkt->offsets[1].offset;
5563
5564	buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5565		  dummy_pkt->pkt_len;
5566	pkt = kzalloc(buf_len, GFP_KERNEL);
5567	if (!pkt) {
5568		kfree(offsets);
5569		return ERR_PTR(-ENOMEM);
5570	}
5571
5572	memcpy(pkt, dummy_pkt->pkt, etype_off);
5573	memcpy(pkt + etype_off,
5574	       num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5575	       off);
5576	memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5577	       dummy_pkt->pkt_len - etype_off);
5578
5579	profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5580	if (!profile) {
5581		kfree(offsets);
5582		kfree(pkt);
5583		return ERR_PTR(-ENOMEM);
5584	}
5585
5586	profile->offsets = offsets;
5587	profile->pkt = pkt;
5588	profile->pkt_len = buf_len;
5589	profile->match |= ICE_PKT_KMALLOC;
5590
5591	return profile;
5592}
5593
5594/**
5595 * ice_find_dummy_packet - find dummy packet
5596 *
5597 * @lkups: lookup elements or match criteria for the advanced recipe, one
5598 *	   structure per protocol header
5599 * @lkups_cnt: number of protocols
5600 * @tun_type: tunnel type
5601 *
5602 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5603 */
5604static const struct ice_dummy_pkt_profile *
5605ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5606		      enum ice_sw_tunnel_type tun_type)
5607{
5608	const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5609	u32 match = 0, vlan_count = 0;
5610	u16 i;
5611
5612	switch (tun_type) {
5613	case ICE_SW_TUN_GTPC:
5614		match |= ICE_PKT_TUN_GTPC;
5615		break;
5616	case ICE_SW_TUN_GTPU:
5617		match |= ICE_PKT_TUN_GTPU;
5618		break;
5619	case ICE_SW_TUN_NVGRE:
5620		match |= ICE_PKT_TUN_NVGRE;
5621		break;
5622	case ICE_SW_TUN_GENEVE:
5623	case ICE_SW_TUN_VXLAN:
5624		match |= ICE_PKT_TUN_UDP;
5625		break;
 
 
 
5626	default:
5627		break;
5628	}
5629
5630	for (i = 0; i < lkups_cnt; i++) {
5631		if (lkups[i].type == ICE_UDP_ILOS)
5632			match |= ICE_PKT_INNER_UDP;
5633		else if (lkups[i].type == ICE_TCP_IL)
5634			match |= ICE_PKT_INNER_TCP;
5635		else if (lkups[i].type == ICE_IPV6_OFOS)
5636			match |= ICE_PKT_OUTER_IPV6;
5637		else if (lkups[i].type == ICE_VLAN_OFOS ||
5638			 lkups[i].type == ICE_VLAN_EX)
5639			vlan_count++;
5640		else if (lkups[i].type == ICE_VLAN_IN)
5641			vlan_count++;
5642		else if (lkups[i].type == ICE_ETYPE_OL &&
5643			 lkups[i].h_u.ethertype.ethtype_id ==
5644				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5645			 lkups[i].m_u.ethertype.ethtype_id ==
5646				cpu_to_be16(0xFFFF))
5647			match |= ICE_PKT_OUTER_IPV6;
5648		else if (lkups[i].type == ICE_ETYPE_IL &&
5649			 lkups[i].h_u.ethertype.ethtype_id ==
5650				cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5651			 lkups[i].m_u.ethertype.ethtype_id ==
5652				cpu_to_be16(0xFFFF))
5653			match |= ICE_PKT_INNER_IPV6;
5654		else if (lkups[i].type == ICE_IPV6_IL)
5655			match |= ICE_PKT_INNER_IPV6;
5656		else if (lkups[i].type == ICE_GTP_NO_PAY)
5657			match |= ICE_PKT_GTP_NOPAY;
5658		else if (lkups[i].type == ICE_PPPOE) {
5659			match |= ICE_PKT_PPPOE;
5660			if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5661			    htons(PPP_IPV6))
5662				match |= ICE_PKT_OUTER_IPV6;
5663		} else if (lkups[i].type == ICE_L2TPV3)
5664			match |= ICE_PKT_L2TPV3;
5665	}
5666
5667	while (ret->match && (match & ret->match) != ret->match)
5668		ret++;
5669
5670	if (vlan_count != 0)
5671		ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5672
5673	return ret;
5674}
5675
5676/**
5677 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5678 *
5679 * @lkups: lookup elements or match criteria for the advanced recipe, one
5680 *	   structure per protocol header
5681 * @lkups_cnt: number of protocols
5682 * @s_rule: stores rule information from the match criteria
5683 * @profile: dummy packet profile (the template, its size and header offsets)
5684 */
5685static int
5686ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5687			  struct ice_sw_rule_lkup_rx_tx *s_rule,
5688			  const struct ice_dummy_pkt_profile *profile)
5689{
5690	u8 *pkt;
5691	u16 i;
5692
5693	/* Start with a packet with a pre-defined/dummy content. Then, fill
5694	 * in the header values to be looked up or matched.
5695	 */
5696	pkt = s_rule->hdr_data;
5697
5698	memcpy(pkt, profile->pkt, profile->pkt_len);
5699
5700	for (i = 0; i < lkups_cnt; i++) {
5701		const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5702		enum ice_protocol_type type;
5703		u16 offset = 0, len = 0, j;
5704		bool found = false;
5705
5706		/* find the start of this layer; it should be found since this
5707		 * was already checked when search for the dummy packet
5708		 */
5709		type = lkups[i].type;
 
 
 
 
5710		for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5711			if (type == offsets[j].type) {
5712				offset = offsets[j].offset;
5713				found = true;
5714				break;
5715			}
5716		}
5717		/* this should never happen in a correct calling sequence */
5718		if (!found)
5719			return -EINVAL;
5720
5721		switch (lkups[i].type) {
5722		case ICE_MAC_OFOS:
5723		case ICE_MAC_IL:
5724			len = sizeof(struct ice_ether_hdr);
5725			break;
5726		case ICE_ETYPE_OL:
5727		case ICE_ETYPE_IL:
5728			len = sizeof(struct ice_ethtype_hdr);
5729			break;
5730		case ICE_VLAN_OFOS:
5731		case ICE_VLAN_EX:
5732		case ICE_VLAN_IN:
5733			len = sizeof(struct ice_vlan_hdr);
5734			break;
5735		case ICE_IPV4_OFOS:
5736		case ICE_IPV4_IL:
5737			len = sizeof(struct ice_ipv4_hdr);
5738			break;
5739		case ICE_IPV6_OFOS:
5740		case ICE_IPV6_IL:
5741			len = sizeof(struct ice_ipv6_hdr);
5742			break;
5743		case ICE_TCP_IL:
5744		case ICE_UDP_OF:
5745		case ICE_UDP_ILOS:
5746			len = sizeof(struct ice_l4_hdr);
5747			break;
5748		case ICE_SCTP_IL:
5749			len = sizeof(struct ice_sctp_hdr);
5750			break;
5751		case ICE_NVGRE:
5752			len = sizeof(struct ice_nvgre_hdr);
5753			break;
5754		case ICE_VXLAN:
5755		case ICE_GENEVE:
5756			len = sizeof(struct ice_udp_tnl_hdr);
5757			break;
5758		case ICE_GTP_NO_PAY:
5759		case ICE_GTP:
5760			len = sizeof(struct ice_udp_gtp_hdr);
5761			break;
 
 
 
5762		case ICE_PPPOE:
5763			len = sizeof(struct ice_pppoe_hdr);
5764			break;
5765		case ICE_L2TPV3:
5766			len = sizeof(struct ice_l2tpv3_sess_hdr);
5767			break;
5768		default:
5769			return -EINVAL;
5770		}
5771
5772		/* the length should be a word multiple */
5773		if (len % ICE_BYTES_PER_WORD)
5774			return -EIO;
5775
5776		/* We have the offset to the header start, the length, the
5777		 * caller's header values and mask. Use this information to
5778		 * copy the data into the dummy packet appropriately based on
5779		 * the mask. Note that we need to only write the bits as
5780		 * indicated by the mask to make sure we don't improperly write
5781		 * over any significant packet data.
5782		 */
5783		for (j = 0; j < len / sizeof(u16); j++) {
5784			u16 *ptr = (u16 *)(pkt + offset);
5785			u16 mask = lkups[i].m_raw[j];
5786
5787			if (!mask)
5788				continue;
5789
5790			ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5791		}
5792	}
5793
5794	s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5795
5796	return 0;
5797}
5798
5799/**
5800 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5801 * @hw: pointer to the hardware structure
5802 * @tun_type: tunnel type
5803 * @pkt: dummy packet to fill in
5804 * @offsets: offset info for the dummy packet
5805 */
5806static int
5807ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5808			u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5809{
5810	u16 open_port, i;
5811
5812	switch (tun_type) {
5813	case ICE_SW_TUN_VXLAN:
5814		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5815			return -EIO;
5816		break;
5817	case ICE_SW_TUN_GENEVE:
5818		if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5819			return -EIO;
5820		break;
5821	default:
5822		/* Nothing needs to be done for this tunnel type */
5823		return 0;
5824	}
5825
5826	/* Find the outer UDP protocol header and insert the port number */
5827	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5828		if (offsets[i].type == ICE_UDP_OF) {
5829			struct ice_l4_hdr *hdr;
5830			u16 offset;
5831
5832			offset = offsets[i].offset;
5833			hdr = (struct ice_l4_hdr *)&pkt[offset];
5834			hdr->dst_port = cpu_to_be16(open_port);
5835
5836			return 0;
5837		}
5838	}
5839
5840	return -EIO;
5841}
5842
5843/**
5844 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
 
5845 * @vlan_type: VLAN tag type
5846 * @pkt: dummy packet to fill in
5847 * @offsets: offset info for the dummy packet
5848 */
5849static int
5850ice_fill_adv_packet_vlan(u16 vlan_type, u8 *pkt,
5851			 const struct ice_dummy_pkt_offsets *offsets)
5852{
5853	u16 i;
5854
 
 
 
 
5855	/* Find VLAN header and insert VLAN TPID */
5856	for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5857		if (offsets[i].type == ICE_VLAN_OFOS ||
5858		    offsets[i].type == ICE_VLAN_EX) {
5859			struct ice_vlan_hdr *hdr;
5860			u16 offset;
5861
5862			offset = offsets[i].offset;
5863			hdr = (struct ice_vlan_hdr *)&pkt[offset];
5864			hdr->type = cpu_to_be16(vlan_type);
5865
5866			return 0;
5867		}
5868	}
5869
5870	return -EIO;
5871}
5872
 
 
 
 
 
 
 
 
 
 
 
5873/**
5874 * ice_find_adv_rule_entry - Search a rule entry
5875 * @hw: pointer to the hardware structure
5876 * @lkups: lookup elements or match criteria for the advanced recipe, one
5877 *	   structure per protocol header
5878 * @lkups_cnt: number of protocols
5879 * @recp_id: recipe ID for which we are finding the rule
5880 * @rinfo: other information regarding the rule e.g. priority and action info
5881 *
5882 * Helper function to search for a given advance rule entry
5883 * Returns pointer to entry storing the rule if found
5884 */
5885static struct ice_adv_fltr_mgmt_list_entry *
5886ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5887			u16 lkups_cnt, u16 recp_id,
5888			struct ice_adv_rule_info *rinfo)
5889{
5890	struct ice_adv_fltr_mgmt_list_entry *list_itr;
5891	struct ice_switch_info *sw = hw->switch_info;
5892	int i;
5893
5894	list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5895			    list_entry) {
5896		bool lkups_matched = true;
5897
5898		if (lkups_cnt != list_itr->lkups_cnt)
5899			continue;
5900		for (i = 0; i < list_itr->lkups_cnt; i++)
5901			if (memcmp(&list_itr->lkups[i], &lkups[i],
5902				   sizeof(*lkups))) {
5903				lkups_matched = false;
5904				break;
5905			}
5906		if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
5907		    rinfo->tun_type == list_itr->rule_info.tun_type &&
5908		    rinfo->vlan_type == list_itr->rule_info.vlan_type &&
5909		    lkups_matched)
5910			return list_itr;
5911	}
5912	return NULL;
5913}
5914
5915/**
5916 * ice_adv_add_update_vsi_list
5917 * @hw: pointer to the hardware structure
5918 * @m_entry: pointer to current adv filter management list entry
5919 * @cur_fltr: filter information from the book keeping entry
5920 * @new_fltr: filter information with the new VSI to be added
5921 *
5922 * Call AQ command to add or update previously created VSI list with new VSI.
5923 *
5924 * Helper function to do book keeping associated with adding filter information
5925 * The algorithm to do the booking keeping is described below :
5926 * When a VSI needs to subscribe to a given advanced filter
5927 *	if only one VSI has been added till now
5928 *		Allocate a new VSI list and add two VSIs
5929 *		to this list using switch rule command
5930 *		Update the previously created switch rule with the
5931 *		newly created VSI list ID
5932 *	if a VSI list was previously created
5933 *		Add the new VSI to the previously created VSI list set
5934 *		using the update switch rule command
5935 */
5936static int
5937ice_adv_add_update_vsi_list(struct ice_hw *hw,
5938			    struct ice_adv_fltr_mgmt_list_entry *m_entry,
5939			    struct ice_adv_rule_info *cur_fltr,
5940			    struct ice_adv_rule_info *new_fltr)
5941{
5942	u16 vsi_list_id = 0;
5943	int status;
5944
5945	if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5946	    cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5947	    cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5948		return -EOPNOTSUPP;
5949
5950	if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5951	     new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5952	    (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5953	     cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5954		return -EOPNOTSUPP;
5955
5956	if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5957		 /* Only one entry existed in the mapping and it was not already
5958		  * a part of a VSI list. So, create a VSI list with the old and
5959		  * new VSIs.
5960		  */
5961		struct ice_fltr_info tmp_fltr;
5962		u16 vsi_handle_arr[2];
5963
5964		/* A rule already exists with the new VSI being added */
5965		if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5966		    new_fltr->sw_act.fwd_id.hw_vsi_id)
5967			return -EEXIST;
5968
5969		vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5970		vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5971		status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5972						  &vsi_list_id,
5973						  ICE_SW_LKUP_LAST);
5974		if (status)
5975			return status;
5976
5977		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5978		tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5979		tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5980		tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5981		tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5982		tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5983
5984		/* Update the previous switch rule of "forward to VSI" to
5985		 * "fwd to VSI list"
5986		 */
5987		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5988		if (status)
5989			return status;
5990
5991		cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5992		cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5993		m_entry->vsi_list_info =
5994			ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5995						vsi_list_id);
5996	} else {
5997		u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5998
5999		if (!m_entry->vsi_list_info)
6000			return -EIO;
6001
6002		/* A rule already exists with the new VSI being added */
6003		if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
6004			return 0;
6005
6006		/* Update the previously created VSI list set with
6007		 * the new VSI ID passed in
6008		 */
6009		vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
6010
6011		status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
6012						  vsi_list_id, false,
6013						  ice_aqc_opc_update_sw_rules,
6014						  ICE_SW_LKUP_LAST);
6015		/* update VSI list mapping info with new VSI ID */
6016		if (!status)
6017			set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
6018	}
6019	if (!status)
6020		m_entry->vsi_count++;
6021	return status;
6022}
6023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6024/**
6025 * ice_add_adv_rule - helper function to create an advanced switch rule
6026 * @hw: pointer to the hardware structure
6027 * @lkups: information on the words that needs to be looked up. All words
6028 * together makes one recipe
6029 * @lkups_cnt: num of entries in the lkups array
6030 * @rinfo: other information related to the rule that needs to be programmed
6031 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6032 *               ignored is case of error.
6033 *
6034 * This function can program only 1 rule at a time. The lkups is used to
6035 * describe the all the words that forms the "lookup" portion of the recipe.
6036 * These words can span multiple protocols. Callers to this function need to
6037 * pass in a list of protocol headers with lookup information along and mask
6038 * that determines which words are valid from the given protocol header.
6039 * rinfo describes other information related to this rule such as forwarding
6040 * IDs, priority of this rule, etc.
6041 */
6042int
6043ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6044		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6045		 struct ice_rule_query_data *added_entry)
6046{
6047	struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6048	struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6049	const struct ice_dummy_pkt_profile *profile;
6050	u16 rid = 0, i, rule_buf_sz, vsi_handle;
6051	struct list_head *rule_head;
6052	struct ice_switch_info *sw;
6053	u16 word_cnt;
6054	u32 act = 0;
6055	int status;
6056	u8 q_rgn;
6057
6058	/* Initialize profile to result index bitmap */
6059	if (!hw->switch_info->prof_res_bm_init) {
6060		hw->switch_info->prof_res_bm_init = 1;
6061		ice_init_prof_result_bm(hw);
6062	}
6063
6064	if (!lkups_cnt)
6065		return -EINVAL;
6066
6067	/* get # of words we need to match */
6068	word_cnt = 0;
6069	for (i = 0; i < lkups_cnt; i++) {
6070		u16 j;
6071
6072		for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6073			if (lkups[i].m_raw[j])
6074				word_cnt++;
6075	}
6076
6077	if (!word_cnt)
6078		return -EINVAL;
6079
6080	if (word_cnt > ICE_MAX_CHAIN_WORDS)
6081		return -ENOSPC;
6082
6083	/* locate a dummy packet */
6084	profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6085	if (IS_ERR(profile))
6086		return PTR_ERR(profile);
6087
6088	if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6089	      rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6090	      rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6091	      rinfo->sw_act.fltr_act == ICE_DROP_PACKET)) {
 
 
6092		status = -EIO;
6093		goto free_pkt_profile;
6094	}
6095
6096	vsi_handle = rinfo->sw_act.vsi_handle;
6097	if (!ice_is_vsi_valid(hw, vsi_handle)) {
6098		status =  -EINVAL;
6099		goto free_pkt_profile;
6100	}
6101
6102	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
 
 
6103		rinfo->sw_act.fwd_id.hw_vsi_id =
6104			ice_get_hw_vsi_num(hw, vsi_handle);
6105	if (rinfo->sw_act.flag & ICE_FLTR_TX)
 
 
 
 
6106		rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6107
6108	status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6109	if (status)
6110		goto free_pkt_profile;
6111	m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6112	if (m_entry) {
6113		/* we have to add VSI to VSI_LIST and increment vsi_count.
6114		 * Also Update VSI list so that we can change forwarding rule
6115		 * if the rule already exists, we will check if it exists with
6116		 * same vsi_id, if not then add it to the VSI list if it already
6117		 * exists if not then create a VSI list and add the existing VSI
6118		 * ID and the new VSI ID to the list
6119		 * We will add that VSI to the list
6120		 */
6121		status = ice_adv_add_update_vsi_list(hw, m_entry,
6122						     &m_entry->rule_info,
6123						     rinfo);
6124		if (added_entry) {
6125			added_entry->rid = rid;
6126			added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6127			added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6128		}
6129		goto free_pkt_profile;
6130	}
6131	rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6132	s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6133	if (!s_rule) {
6134		status = -ENOMEM;
6135		goto free_pkt_profile;
6136	}
6137	if (!rinfo->flags_info.act_valid) {
6138		act |= ICE_SINGLE_ACT_LAN_ENABLE;
6139		act |= ICE_SINGLE_ACT_LB_ENABLE;
6140	} else {
6141		act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6142						ICE_SINGLE_ACT_LB_ENABLE);
 
 
 
6143	}
6144
6145	switch (rinfo->sw_act.fltr_act) {
6146	case ICE_FWD_TO_VSI:
6147		act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
6148			ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
6149		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6150		break;
6151	case ICE_FWD_TO_Q:
6152		act |= ICE_SINGLE_ACT_TO_Q;
6153		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6154		       ICE_SINGLE_ACT_Q_INDEX_M;
6155		break;
6156	case ICE_FWD_TO_QGRP:
6157		q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6158			(u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6159		act |= ICE_SINGLE_ACT_TO_Q;
6160		act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6161		       ICE_SINGLE_ACT_Q_INDEX_M;
6162		act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
6163		       ICE_SINGLE_ACT_Q_REGION_M;
6164		break;
6165	case ICE_DROP_PACKET:
6166		act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6167		       ICE_SINGLE_ACT_VALID_BIT;
6168		break;
 
 
 
 
 
 
 
 
 
 
6169	default:
6170		status = -EIO;
6171		goto err_ice_add_adv_rule;
6172	}
6173
6174	/* set the rule LOOKUP type based on caller specified 'Rx'
6175	 * instead of hardcoding it to be either LOOKUP_TX/RX
 
 
6176	 *
6177	 * for 'Rx' set the source to be the port number
6178	 * for 'Tx' set the source to be the source HW VSI number (determined
6179	 * by caller)
6180	 */
6181	if (rinfo->rx) {
 
 
 
6182		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6183		s_rule->src = cpu_to_le16(hw->port_info->lport);
6184	} else {
6185		s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6186		s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6187	}
6188
6189	s_rule->recipe_id = cpu_to_le16(rid);
6190	s_rule->act = cpu_to_le32(act);
6191
6192	status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6193	if (status)
6194		goto err_ice_add_adv_rule;
6195
6196	if (rinfo->tun_type != ICE_NON_TUN &&
6197	    rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) {
6198		status = ice_fill_adv_packet_tun(hw, rinfo->tun_type,
6199						 s_rule->hdr_data,
6200						 profile->offsets);
6201		if (status)
6202			goto err_ice_add_adv_rule;
6203	}
6204
6205	if (rinfo->vlan_type != 0 && ice_is_dvm_ena(hw)) {
6206		status = ice_fill_adv_packet_vlan(rinfo->vlan_type,
6207						  s_rule->hdr_data,
6208						  profile->offsets);
6209		if (status)
6210			goto err_ice_add_adv_rule;
6211	}
6212
6213	status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6214				 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6215				 NULL);
6216	if (status)
6217		goto err_ice_add_adv_rule;
6218	adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6219				sizeof(struct ice_adv_fltr_mgmt_list_entry),
6220				GFP_KERNEL);
6221	if (!adv_fltr) {
6222		status = -ENOMEM;
6223		goto err_ice_add_adv_rule;
6224	}
6225
6226	adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6227				       lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6228	if (!adv_fltr->lkups) {
6229		status = -ENOMEM;
6230		goto err_ice_add_adv_rule;
6231	}
6232
6233	adv_fltr->lkups_cnt = lkups_cnt;
6234	adv_fltr->rule_info = *rinfo;
6235	adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6236	sw = hw->switch_info;
6237	sw->recp_list[rid].adv_rule = true;
6238	rule_head = &sw->recp_list[rid].filt_rules;
6239
6240	if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6241		adv_fltr->vsi_count = 1;
6242
6243	/* Add rule entry to book keeping list */
6244	list_add(&adv_fltr->list_entry, rule_head);
6245	if (added_entry) {
6246		added_entry->rid = rid;
6247		added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6248		added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6249	}
6250err_ice_add_adv_rule:
6251	if (status && adv_fltr) {
6252		devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6253		devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6254	}
6255
6256	kfree(s_rule);
6257
6258free_pkt_profile:
6259	if (profile->match & ICE_PKT_KMALLOC) {
6260		kfree(profile->offsets);
6261		kfree(profile->pkt);
6262		kfree(profile);
6263	}
6264
6265	return status;
6266}
6267
6268/**
6269 * ice_replay_vsi_fltr - Replay filters for requested VSI
6270 * @hw: pointer to the hardware structure
6271 * @vsi_handle: driver VSI handle
6272 * @recp_id: Recipe ID for which rules need to be replayed
6273 * @list_head: list for which filters need to be replayed
6274 *
6275 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6276 * It is required to pass valid VSI handle.
6277 */
6278static int
6279ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6280		    struct list_head *list_head)
6281{
6282	struct ice_fltr_mgmt_list_entry *itr;
6283	int status = 0;
6284	u16 hw_vsi_id;
6285
6286	if (list_empty(list_head))
6287		return status;
6288	hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6289
6290	list_for_each_entry(itr, list_head, list_entry) {
6291		struct ice_fltr_list_entry f_entry;
6292
6293		f_entry.fltr_info = itr->fltr_info;
6294		if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6295		    itr->fltr_info.vsi_handle == vsi_handle) {
6296			/* update the src in case it is VSI num */
6297			if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6298				f_entry.fltr_info.src = hw_vsi_id;
6299			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6300			if (status)
6301				goto end;
6302			continue;
6303		}
6304		if (!itr->vsi_list_info ||
6305		    !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6306			continue;
6307		/* Clearing it so that the logic can add it back */
6308		clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6309		f_entry.fltr_info.vsi_handle = vsi_handle;
6310		f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6311		/* update the src in case it is VSI num */
6312		if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6313			f_entry.fltr_info.src = hw_vsi_id;
6314		if (recp_id == ICE_SW_LKUP_VLAN)
6315			status = ice_add_vlan_internal(hw, &f_entry);
6316		else
6317			status = ice_add_rule_internal(hw, recp_id, &f_entry);
6318		if (status)
6319			goto end;
6320	}
6321end:
6322	return status;
6323}
6324
6325/**
6326 * ice_adv_rem_update_vsi_list
6327 * @hw: pointer to the hardware structure
6328 * @vsi_handle: VSI handle of the VSI to remove
6329 * @fm_list: filter management entry for which the VSI list management needs to
6330 *	     be done
6331 */
6332static int
6333ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6334			    struct ice_adv_fltr_mgmt_list_entry *fm_list)
6335{
6336	struct ice_vsi_list_map_info *vsi_list_info;
6337	enum ice_sw_lkup_type lkup_type;
6338	u16 vsi_list_id;
6339	int status;
6340
6341	if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6342	    fm_list->vsi_count == 0)
6343		return -EINVAL;
6344
6345	/* A rule with the VSI being removed does not exist */
6346	if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6347		return -ENOENT;
6348
6349	lkup_type = ICE_SW_LKUP_LAST;
6350	vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6351	status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6352					  ice_aqc_opc_update_sw_rules,
6353					  lkup_type);
6354	if (status)
6355		return status;
6356
6357	fm_list->vsi_count--;
6358	clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6359	vsi_list_info = fm_list->vsi_list_info;
6360	if (fm_list->vsi_count == 1) {
6361		struct ice_fltr_info tmp_fltr;
6362		u16 rem_vsi_handle;
6363
6364		rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6365						ICE_MAX_VSI);
6366		if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6367			return -EIO;
6368
6369		/* Make sure VSI list is empty before removing it below */
6370		status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6371						  vsi_list_id, true,
6372						  ice_aqc_opc_update_sw_rules,
6373						  lkup_type);
6374		if (status)
6375			return status;
6376
6377		memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6378		tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6379		tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6380		fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6381		tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6382		tmp_fltr.fwd_id.hw_vsi_id =
6383			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6384		fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6385			ice_get_hw_vsi_num(hw, rem_vsi_handle);
6386		fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6387
6388		/* Update the previous switch rule of "MAC forward to VSI" to
6389		 * "MAC fwd to VSI list"
6390		 */
6391		status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6392		if (status) {
6393			ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6394				  tmp_fltr.fwd_id.hw_vsi_id, status);
6395			return status;
6396		}
6397		fm_list->vsi_list_info->ref_cnt--;
6398
6399		/* Remove the VSI list since it is no longer used */
6400		status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6401		if (status) {
6402			ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6403				  vsi_list_id, status);
6404			return status;
6405		}
6406
6407		list_del(&vsi_list_info->list_entry);
6408		devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6409		fm_list->vsi_list_info = NULL;
6410	}
6411
6412	return status;
6413}
6414
6415/**
6416 * ice_rem_adv_rule - removes existing advanced switch rule
6417 * @hw: pointer to the hardware structure
6418 * @lkups: information on the words that needs to be looked up. All words
6419 *         together makes one recipe
6420 * @lkups_cnt: num of entries in the lkups array
6421 * @rinfo: Its the pointer to the rule information for the rule
6422 *
6423 * This function can be used to remove 1 rule at a time. The lkups is
6424 * used to describe all the words that forms the "lookup" portion of the
6425 * rule. These words can span multiple protocols. Callers to this function
6426 * need to pass in a list of protocol headers with lookup information along
6427 * and mask that determines which words are valid from the given protocol
6428 * header. rinfo describes other information related to this rule such as
6429 * forwarding IDs, priority of this rule, etc.
6430 */
6431static int
6432ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6433		 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6434{
6435	struct ice_adv_fltr_mgmt_list_entry *list_elem;
6436	struct ice_prot_lkup_ext lkup_exts;
6437	bool remove_rule = false;
6438	struct mutex *rule_lock; /* Lock to protect filter rule list */
6439	u16 i, rid, vsi_handle;
6440	int status = 0;
6441
6442	memset(&lkup_exts, 0, sizeof(lkup_exts));
6443	for (i = 0; i < lkups_cnt; i++) {
6444		u16 count;
6445
6446		if (lkups[i].type >= ICE_PROTOCOL_LAST)
6447			return -EIO;
6448
6449		count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6450		if (!count)
6451			return -EIO;
6452	}
6453
6454	/* Create any special protocol/offset pairs, such as looking at tunnel
6455	 * bits by extracting metadata
6456	 */
6457	status = ice_add_special_words(rinfo, &lkup_exts, ice_is_dvm_ena(hw));
6458	if (status)
6459		return status;
6460
6461	rid = ice_find_recp(hw, &lkup_exts, rinfo->tun_type);
6462	/* If did not find a recipe that match the existing criteria */
6463	if (rid == ICE_MAX_NUM_RECIPES)
6464		return -EINVAL;
6465
6466	rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6467	list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6468	/* the rule is already removed */
6469	if (!list_elem)
6470		return 0;
6471	mutex_lock(rule_lock);
6472	if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6473		remove_rule = true;
6474	} else if (list_elem->vsi_count > 1) {
6475		remove_rule = false;
6476		vsi_handle = rinfo->sw_act.vsi_handle;
6477		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6478	} else {
6479		vsi_handle = rinfo->sw_act.vsi_handle;
6480		status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6481		if (status) {
6482			mutex_unlock(rule_lock);
6483			return status;
6484		}
6485		if (list_elem->vsi_count == 0)
6486			remove_rule = true;
6487	}
6488	mutex_unlock(rule_lock);
6489	if (remove_rule) {
6490		struct ice_sw_rule_lkup_rx_tx *s_rule;
6491		u16 rule_buf_sz;
6492
6493		rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6494		s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6495		if (!s_rule)
6496			return -ENOMEM;
6497		s_rule->act = 0;
6498		s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6499		s_rule->hdr_len = 0;
6500		status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6501					 rule_buf_sz, 1,
6502					 ice_aqc_opc_remove_sw_rules, NULL);
6503		if (!status || status == -ENOENT) {
6504			struct ice_switch_info *sw = hw->switch_info;
 
6505
6506			mutex_lock(rule_lock);
6507			list_del(&list_elem->list_entry);
6508			devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6509			devm_kfree(ice_hw_to_dev(hw), list_elem);
6510			mutex_unlock(rule_lock);
6511			if (list_empty(&sw->recp_list[rid].filt_rules))
6512				sw->recp_list[rid].adv_rule = false;
 
 
 
 
 
 
6513		}
6514		kfree(s_rule);
6515	}
6516	return status;
6517}
6518
6519/**
6520 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6521 * @hw: pointer to the hardware structure
6522 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6523 *
6524 * This function is used to remove 1 rule at a time. The removal is based on
6525 * the remove_entry parameter. This function will remove rule for a given
6526 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6527 */
6528int
6529ice_rem_adv_rule_by_id(struct ice_hw *hw,
6530		       struct ice_rule_query_data *remove_entry)
6531{
6532	struct ice_adv_fltr_mgmt_list_entry *list_itr;
6533	struct list_head *list_head;
6534	struct ice_adv_rule_info rinfo;
6535	struct ice_switch_info *sw;
6536
6537	sw = hw->switch_info;
6538	if (!sw->recp_list[remove_entry->rid].recp_created)
6539		return -EINVAL;
6540	list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6541	list_for_each_entry(list_itr, list_head, list_entry) {
6542		if (list_itr->rule_info.fltr_rule_id ==
6543		    remove_entry->rule_id) {
6544			rinfo = list_itr->rule_info;
6545			rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6546			return ice_rem_adv_rule(hw, list_itr->lkups,
6547						list_itr->lkups_cnt, &rinfo);
6548		}
6549	}
6550	/* either list is empty or unable to find rule */
6551	return -ENOENT;
6552}
6553
6554/**
6555 * ice_rem_adv_rule_for_vsi - removes existing advanced switch rules for a
6556 *                            given VSI handle
6557 * @hw: pointer to the hardware structure
6558 * @vsi_handle: VSI handle for which we are supposed to remove all the rules.
6559 *
6560 * This function is used to remove all the rules for a given VSI and as soon
6561 * as removing a rule fails, it will return immediately with the error code,
6562 * else it will return success.
6563 */
6564int ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
6565{
6566	struct ice_adv_fltr_mgmt_list_entry *list_itr, *tmp_entry;
6567	struct ice_vsi_list_map_info *map_info;
6568	struct ice_adv_rule_info rinfo;
6569	struct list_head *list_head;
6570	struct ice_switch_info *sw;
6571	int status;
6572	u8 rid;
6573
6574	sw = hw->switch_info;
6575	for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
6576		if (!sw->recp_list[rid].recp_created)
6577			continue;
6578		if (!sw->recp_list[rid].adv_rule)
6579			continue;
6580
6581		list_head = &sw->recp_list[rid].filt_rules;
6582		list_for_each_entry_safe(list_itr, tmp_entry, list_head,
6583					 list_entry) {
6584			rinfo = list_itr->rule_info;
6585
6586			if (rinfo.sw_act.fltr_act == ICE_FWD_TO_VSI_LIST) {
6587				map_info = list_itr->vsi_list_info;
6588				if (!map_info)
6589					continue;
6590
6591				if (!test_bit(vsi_handle, map_info->vsi_map))
6592					continue;
6593			} else if (rinfo.sw_act.vsi_handle != vsi_handle) {
6594				continue;
6595			}
6596
6597			rinfo.sw_act.vsi_handle = vsi_handle;
6598			status = ice_rem_adv_rule(hw, list_itr->lkups,
6599						  list_itr->lkups_cnt, &rinfo);
6600			if (status)
6601				return status;
6602		}
6603	}
6604	return 0;
6605}
6606
6607/**
6608 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6609 * @hw: pointer to the hardware structure
6610 * @vsi_handle: driver VSI handle
6611 * @list_head: list for which filters need to be replayed
6612 *
6613 * Replay the advanced rule for the given VSI.
6614 */
6615static int
6616ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6617			struct list_head *list_head)
6618{
6619	struct ice_rule_query_data added_entry = { 0 };
6620	struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6621	int status = 0;
6622
6623	if (list_empty(list_head))
6624		return status;
6625	list_for_each_entry(adv_fltr, list_head, list_entry) {
6626		struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6627		u16 lk_cnt = adv_fltr->lkups_cnt;
6628
6629		if (vsi_handle != rinfo->sw_act.vsi_handle)
6630			continue;
6631		status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6632					  &added_entry);
6633		if (status)
6634			break;
6635	}
6636	return status;
6637}
6638
6639/**
6640 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6641 * @hw: pointer to the hardware structure
6642 * @vsi_handle: driver VSI handle
6643 *
6644 * Replays filters for requested VSI via vsi_handle.
6645 */
6646int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6647{
6648	struct ice_switch_info *sw = hw->switch_info;
6649	int status;
6650	u8 i;
6651
6652	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6653		struct list_head *head;
6654
6655		head = &sw->recp_list[i].filt_replay_rules;
6656		if (!sw->recp_list[i].adv_rule)
6657			status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6658		else
6659			status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6660		if (status)
6661			return status;
6662	}
6663	return status;
6664}
6665
6666/**
6667 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6668 * @hw: pointer to the HW struct
6669 *
6670 * Deletes the filter replay rules.
6671 */
6672void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6673{
6674	struct ice_switch_info *sw = hw->switch_info;
6675	u8 i;
6676
6677	if (!sw)
6678		return;
6679
6680	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6681		if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6682			struct list_head *l_head;
6683
6684			l_head = &sw->recp_list[i].filt_replay_rules;
6685			if (!sw->recp_list[i].adv_rule)
6686				ice_rem_sw_rule_info(hw, l_head);
6687			else
6688				ice_rem_adv_rule_info(hw, l_head);
6689		}
6690	}
6691}