Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_lib.h"
5#include "ice_switch.h"
6#include "ice_trace.h"
7
8#define ICE_ETH_DA_OFFSET 0
9#define ICE_ETH_ETHTYPE_OFFSET 12
10#define ICE_ETH_VLAN_TCI_OFFSET 14
11#define ICE_MAX_VLAN_ID 0xFFF
12#define ICE_IPV6_ETHER_ID 0x86DD
13
14/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
15 * struct to configure any switch filter rules.
16 * {DA (6 bytes), SA(6 bytes),
17 * Ether type (2 bytes for header without VLAN tag) OR
18 * VLAN tag (4 bytes for header with VLAN tag) }
19 *
20 * Word on Hardcoded values
21 * byte 0 = 0x2: to identify it as locally administered DA MAC
22 * byte 6 = 0x2: to identify it as locally administered SA MAC
23 * byte 12 = 0x81 & byte 13 = 0x00:
24 * In case of VLAN filter first two bytes defines ether type (0x8100)
25 * and remaining two bytes are placeholder for programming a given VLAN ID
26 * In case of Ether type filter it is treated as header without VLAN tag
27 * and byte 12 and 13 is used to program a given Ether type instead
28 */
29static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
30 0x2, 0, 0, 0, 0, 0,
31 0x81, 0, 0, 0};
32
33enum {
34 ICE_PKT_OUTER_IPV6 = BIT(0),
35 ICE_PKT_TUN_GTPC = BIT(1),
36 ICE_PKT_TUN_GTPU = BIT(2),
37 ICE_PKT_TUN_NVGRE = BIT(3),
38 ICE_PKT_TUN_UDP = BIT(4),
39 ICE_PKT_INNER_IPV6 = BIT(5),
40 ICE_PKT_INNER_TCP = BIT(6),
41 ICE_PKT_INNER_UDP = BIT(7),
42 ICE_PKT_GTP_NOPAY = BIT(8),
43 ICE_PKT_KMALLOC = BIT(9),
44 ICE_PKT_PPPOE = BIT(10),
45 ICE_PKT_L2TPV3 = BIT(11),
46 ICE_PKT_PFCP = BIT(12),
47};
48
49struct ice_dummy_pkt_offsets {
50 enum ice_protocol_type type;
51 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
52};
53
54struct ice_dummy_pkt_profile {
55 const struct ice_dummy_pkt_offsets *offsets;
56 const u8 *pkt;
57 u32 match;
58 u16 pkt_len;
59 u16 offsets_len;
60};
61
62#define ICE_DECLARE_PKT_OFFSETS(type) \
63 static const struct ice_dummy_pkt_offsets \
64 ice_dummy_##type##_packet_offsets[]
65
66#define ICE_DECLARE_PKT_TEMPLATE(type) \
67 static const u8 ice_dummy_##type##_packet[]
68
69#define ICE_PKT_PROFILE(type, m) { \
70 .match = (m), \
71 .pkt = ice_dummy_##type##_packet, \
72 .pkt_len = sizeof(ice_dummy_##type##_packet), \
73 .offsets = ice_dummy_##type##_packet_offsets, \
74 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \
75}
76
77ICE_DECLARE_PKT_OFFSETS(vlan) = {
78 { ICE_VLAN_OFOS, 12 },
79};
80
81ICE_DECLARE_PKT_TEMPLATE(vlan) = {
82 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
83};
84
85ICE_DECLARE_PKT_OFFSETS(qinq) = {
86 { ICE_VLAN_EX, 12 },
87 { ICE_VLAN_IN, 16 },
88};
89
90ICE_DECLARE_PKT_TEMPLATE(qinq) = {
91 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
92 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
93};
94
95ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
96 { ICE_MAC_OFOS, 0 },
97 { ICE_ETYPE_OL, 12 },
98 { ICE_IPV4_OFOS, 14 },
99 { ICE_NVGRE, 34 },
100 { ICE_MAC_IL, 42 },
101 { ICE_ETYPE_IL, 54 },
102 { ICE_IPV4_IL, 56 },
103 { ICE_TCP_IL, 76 },
104 { ICE_PROTOCOL_LAST, 0 },
105};
106
107ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
108 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
109 0x00, 0x00, 0x00, 0x00,
110 0x00, 0x00, 0x00, 0x00,
111
112 0x08, 0x00, /* ICE_ETYPE_OL 12 */
113
114 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
115 0x00, 0x00, 0x00, 0x00,
116 0x00, 0x2F, 0x00, 0x00,
117 0x00, 0x00, 0x00, 0x00,
118 0x00, 0x00, 0x00, 0x00,
119
120 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
121 0x00, 0x00, 0x00, 0x00,
122
123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
124 0x00, 0x00, 0x00, 0x00,
125 0x00, 0x00, 0x00, 0x00,
126
127 0x08, 0x00, /* ICE_ETYPE_IL 54 */
128
129 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
130 0x00, 0x00, 0x00, 0x00,
131 0x00, 0x06, 0x00, 0x00,
132 0x00, 0x00, 0x00, 0x00,
133 0x00, 0x00, 0x00, 0x00,
134
135 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
136 0x00, 0x00, 0x00, 0x00,
137 0x00, 0x00, 0x00, 0x00,
138 0x50, 0x02, 0x20, 0x00,
139 0x00, 0x00, 0x00, 0x00
140};
141
142ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
143 { ICE_MAC_OFOS, 0 },
144 { ICE_ETYPE_OL, 12 },
145 { ICE_IPV4_OFOS, 14 },
146 { ICE_NVGRE, 34 },
147 { ICE_MAC_IL, 42 },
148 { ICE_ETYPE_IL, 54 },
149 { ICE_IPV4_IL, 56 },
150 { ICE_UDP_ILOS, 76 },
151 { ICE_PROTOCOL_LAST, 0 },
152};
153
154ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
155 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
156 0x00, 0x00, 0x00, 0x00,
157 0x00, 0x00, 0x00, 0x00,
158
159 0x08, 0x00, /* ICE_ETYPE_OL 12 */
160
161 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
162 0x00, 0x00, 0x00, 0x00,
163 0x00, 0x2F, 0x00, 0x00,
164 0x00, 0x00, 0x00, 0x00,
165 0x00, 0x00, 0x00, 0x00,
166
167 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
168 0x00, 0x00, 0x00, 0x00,
169
170 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
171 0x00, 0x00, 0x00, 0x00,
172 0x00, 0x00, 0x00, 0x00,
173
174 0x08, 0x00, /* ICE_ETYPE_IL 54 */
175
176 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
177 0x00, 0x00, 0x00, 0x00,
178 0x00, 0x11, 0x00, 0x00,
179 0x00, 0x00, 0x00, 0x00,
180 0x00, 0x00, 0x00, 0x00,
181
182 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
183 0x00, 0x08, 0x00, 0x00,
184};
185
186ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
187 { ICE_MAC_OFOS, 0 },
188 { ICE_ETYPE_OL, 12 },
189 { ICE_IPV4_OFOS, 14 },
190 { ICE_UDP_OF, 34 },
191 { ICE_VXLAN, 42 },
192 { ICE_GENEVE, 42 },
193 { ICE_VXLAN_GPE, 42 },
194 { ICE_MAC_IL, 50 },
195 { ICE_ETYPE_IL, 62 },
196 { ICE_IPV4_IL, 64 },
197 { ICE_TCP_IL, 84 },
198 { ICE_PROTOCOL_LAST, 0 },
199};
200
201ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
202 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
203 0x00, 0x00, 0x00, 0x00,
204 0x00, 0x00, 0x00, 0x00,
205
206 0x08, 0x00, /* ICE_ETYPE_OL 12 */
207
208 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
209 0x00, 0x01, 0x00, 0x00,
210 0x40, 0x11, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00,
212 0x00, 0x00, 0x00, 0x00,
213
214 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
215 0x00, 0x46, 0x00, 0x00,
216
217 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
218 0x00, 0x00, 0x00, 0x00,
219
220 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
221 0x00, 0x00, 0x00, 0x00,
222 0x00, 0x00, 0x00, 0x00,
223
224 0x08, 0x00, /* ICE_ETYPE_IL 62 */
225
226 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
227 0x00, 0x01, 0x00, 0x00,
228 0x40, 0x06, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00,
230 0x00, 0x00, 0x00, 0x00,
231
232 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
233 0x00, 0x00, 0x00, 0x00,
234 0x00, 0x00, 0x00, 0x00,
235 0x50, 0x02, 0x20, 0x00,
236 0x00, 0x00, 0x00, 0x00
237};
238
239ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
240 { ICE_MAC_OFOS, 0 },
241 { ICE_ETYPE_OL, 12 },
242 { ICE_IPV4_OFOS, 14 },
243 { ICE_UDP_OF, 34 },
244 { ICE_VXLAN, 42 },
245 { ICE_GENEVE, 42 },
246 { ICE_VXLAN_GPE, 42 },
247 { ICE_MAC_IL, 50 },
248 { ICE_ETYPE_IL, 62 },
249 { ICE_IPV4_IL, 64 },
250 { ICE_UDP_ILOS, 84 },
251 { ICE_PROTOCOL_LAST, 0 },
252};
253
254ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
255 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
256 0x00, 0x00, 0x00, 0x00,
257 0x00, 0x00, 0x00, 0x00,
258
259 0x08, 0x00, /* ICE_ETYPE_OL 12 */
260
261 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
262 0x00, 0x01, 0x00, 0x00,
263 0x00, 0x11, 0x00, 0x00,
264 0x00, 0x00, 0x00, 0x00,
265 0x00, 0x00, 0x00, 0x00,
266
267 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
268 0x00, 0x3a, 0x00, 0x00,
269
270 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
271 0x00, 0x00, 0x00, 0x00,
272
273 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
274 0x00, 0x00, 0x00, 0x00,
275 0x00, 0x00, 0x00, 0x00,
276
277 0x08, 0x00, /* ICE_ETYPE_IL 62 */
278
279 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
280 0x00, 0x01, 0x00, 0x00,
281 0x00, 0x11, 0x00, 0x00,
282 0x00, 0x00, 0x00, 0x00,
283 0x00, 0x00, 0x00, 0x00,
284
285 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
286 0x00, 0x08, 0x00, 0x00,
287};
288
289ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
290 { ICE_MAC_OFOS, 0 },
291 { ICE_ETYPE_OL, 12 },
292 { ICE_IPV4_OFOS, 14 },
293 { ICE_NVGRE, 34 },
294 { ICE_MAC_IL, 42 },
295 { ICE_ETYPE_IL, 54 },
296 { ICE_IPV6_IL, 56 },
297 { ICE_TCP_IL, 96 },
298 { ICE_PROTOCOL_LAST, 0 },
299};
300
301ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
302 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
303 0x00, 0x00, 0x00, 0x00,
304 0x00, 0x00, 0x00, 0x00,
305
306 0x08, 0x00, /* ICE_ETYPE_OL 12 */
307
308 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
309 0x00, 0x00, 0x00, 0x00,
310 0x00, 0x2F, 0x00, 0x00,
311 0x00, 0x00, 0x00, 0x00,
312 0x00, 0x00, 0x00, 0x00,
313
314 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
315 0x00, 0x00, 0x00, 0x00,
316
317 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
318 0x00, 0x00, 0x00, 0x00,
319 0x00, 0x00, 0x00, 0x00,
320
321 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
322
323 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
324 0x00, 0x08, 0x06, 0x40,
325 0x00, 0x00, 0x00, 0x00,
326 0x00, 0x00, 0x00, 0x00,
327 0x00, 0x00, 0x00, 0x00,
328 0x00, 0x00, 0x00, 0x00,
329 0x00, 0x00, 0x00, 0x00,
330 0x00, 0x00, 0x00, 0x00,
331 0x00, 0x00, 0x00, 0x00,
332 0x00, 0x00, 0x00, 0x00,
333
334 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
335 0x00, 0x00, 0x00, 0x00,
336 0x00, 0x00, 0x00, 0x00,
337 0x50, 0x02, 0x20, 0x00,
338 0x00, 0x00, 0x00, 0x00
339};
340
341ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
342 { ICE_MAC_OFOS, 0 },
343 { ICE_ETYPE_OL, 12 },
344 { ICE_IPV4_OFOS, 14 },
345 { ICE_NVGRE, 34 },
346 { ICE_MAC_IL, 42 },
347 { ICE_ETYPE_IL, 54 },
348 { ICE_IPV6_IL, 56 },
349 { ICE_UDP_ILOS, 96 },
350 { ICE_PROTOCOL_LAST, 0 },
351};
352
353ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
354 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
355 0x00, 0x00, 0x00, 0x00,
356 0x00, 0x00, 0x00, 0x00,
357
358 0x08, 0x00, /* ICE_ETYPE_OL 12 */
359
360 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
361 0x00, 0x00, 0x00, 0x00,
362 0x00, 0x2F, 0x00, 0x00,
363 0x00, 0x00, 0x00, 0x00,
364 0x00, 0x00, 0x00, 0x00,
365
366 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
367 0x00, 0x00, 0x00, 0x00,
368
369 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
370 0x00, 0x00, 0x00, 0x00,
371 0x00, 0x00, 0x00, 0x00,
372
373 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
374
375 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
376 0x00, 0x08, 0x11, 0x40,
377 0x00, 0x00, 0x00, 0x00,
378 0x00, 0x00, 0x00, 0x00,
379 0x00, 0x00, 0x00, 0x00,
380 0x00, 0x00, 0x00, 0x00,
381 0x00, 0x00, 0x00, 0x00,
382 0x00, 0x00, 0x00, 0x00,
383 0x00, 0x00, 0x00, 0x00,
384 0x00, 0x00, 0x00, 0x00,
385
386 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
387 0x00, 0x08, 0x00, 0x00,
388};
389
390ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
391 { ICE_MAC_OFOS, 0 },
392 { ICE_ETYPE_OL, 12 },
393 { ICE_IPV4_OFOS, 14 },
394 { ICE_UDP_OF, 34 },
395 { ICE_VXLAN, 42 },
396 { ICE_GENEVE, 42 },
397 { ICE_VXLAN_GPE, 42 },
398 { ICE_MAC_IL, 50 },
399 { ICE_ETYPE_IL, 62 },
400 { ICE_IPV6_IL, 64 },
401 { ICE_TCP_IL, 104 },
402 { ICE_PROTOCOL_LAST, 0 },
403};
404
405ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
406 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
407 0x00, 0x00, 0x00, 0x00,
408 0x00, 0x00, 0x00, 0x00,
409
410 0x08, 0x00, /* ICE_ETYPE_OL 12 */
411
412 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
413 0x00, 0x01, 0x00, 0x00,
414 0x40, 0x11, 0x00, 0x00,
415 0x00, 0x00, 0x00, 0x00,
416 0x00, 0x00, 0x00, 0x00,
417
418 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
419 0x00, 0x5a, 0x00, 0x00,
420
421 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
422 0x00, 0x00, 0x00, 0x00,
423
424 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
425 0x00, 0x00, 0x00, 0x00,
426 0x00, 0x00, 0x00, 0x00,
427
428 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
429
430 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
431 0x00, 0x08, 0x06, 0x40,
432 0x00, 0x00, 0x00, 0x00,
433 0x00, 0x00, 0x00, 0x00,
434 0x00, 0x00, 0x00, 0x00,
435 0x00, 0x00, 0x00, 0x00,
436 0x00, 0x00, 0x00, 0x00,
437 0x00, 0x00, 0x00, 0x00,
438 0x00, 0x00, 0x00, 0x00,
439 0x00, 0x00, 0x00, 0x00,
440
441 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
442 0x00, 0x00, 0x00, 0x00,
443 0x00, 0x00, 0x00, 0x00,
444 0x50, 0x02, 0x20, 0x00,
445 0x00, 0x00, 0x00, 0x00
446};
447
448ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
449 { ICE_MAC_OFOS, 0 },
450 { ICE_ETYPE_OL, 12 },
451 { ICE_IPV4_OFOS, 14 },
452 { ICE_UDP_OF, 34 },
453 { ICE_VXLAN, 42 },
454 { ICE_GENEVE, 42 },
455 { ICE_VXLAN_GPE, 42 },
456 { ICE_MAC_IL, 50 },
457 { ICE_ETYPE_IL, 62 },
458 { ICE_IPV6_IL, 64 },
459 { ICE_UDP_ILOS, 104 },
460 { ICE_PROTOCOL_LAST, 0 },
461};
462
463ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
464 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
465 0x00, 0x00, 0x00, 0x00,
466 0x00, 0x00, 0x00, 0x00,
467
468 0x08, 0x00, /* ICE_ETYPE_OL 12 */
469
470 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
471 0x00, 0x01, 0x00, 0x00,
472 0x00, 0x11, 0x00, 0x00,
473 0x00, 0x00, 0x00, 0x00,
474 0x00, 0x00, 0x00, 0x00,
475
476 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
477 0x00, 0x4e, 0x00, 0x00,
478
479 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
480 0x00, 0x00, 0x00, 0x00,
481
482 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
483 0x00, 0x00, 0x00, 0x00,
484 0x00, 0x00, 0x00, 0x00,
485
486 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
487
488 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
489 0x00, 0x08, 0x11, 0x40,
490 0x00, 0x00, 0x00, 0x00,
491 0x00, 0x00, 0x00, 0x00,
492 0x00, 0x00, 0x00, 0x00,
493 0x00, 0x00, 0x00, 0x00,
494 0x00, 0x00, 0x00, 0x00,
495 0x00, 0x00, 0x00, 0x00,
496 0x00, 0x00, 0x00, 0x00,
497 0x00, 0x00, 0x00, 0x00,
498
499 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
500 0x00, 0x08, 0x00, 0x00,
501};
502
503/* offset info for MAC + IPv4 + UDP dummy packet */
504ICE_DECLARE_PKT_OFFSETS(udp) = {
505 { ICE_MAC_OFOS, 0 },
506 { ICE_ETYPE_OL, 12 },
507 { ICE_IPV4_OFOS, 14 },
508 { ICE_UDP_ILOS, 34 },
509 { ICE_PROTOCOL_LAST, 0 },
510};
511
512/* Dummy packet for MAC + IPv4 + UDP */
513ICE_DECLARE_PKT_TEMPLATE(udp) = {
514 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
515 0x00, 0x00, 0x00, 0x00,
516 0x00, 0x00, 0x00, 0x00,
517
518 0x08, 0x00, /* ICE_ETYPE_OL 12 */
519
520 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
521 0x00, 0x01, 0x00, 0x00,
522 0x00, 0x11, 0x00, 0x00,
523 0x00, 0x00, 0x00, 0x00,
524 0x00, 0x00, 0x00, 0x00,
525
526 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
527 0x00, 0x08, 0x00, 0x00,
528
529 0x00, 0x00, /* 2 bytes for 4 byte alignment */
530};
531
532/* offset info for MAC + IPv4 + TCP dummy packet */
533ICE_DECLARE_PKT_OFFSETS(tcp) = {
534 { ICE_MAC_OFOS, 0 },
535 { ICE_ETYPE_OL, 12 },
536 { ICE_IPV4_OFOS, 14 },
537 { ICE_TCP_IL, 34 },
538 { ICE_PROTOCOL_LAST, 0 },
539};
540
541/* Dummy packet for MAC + IPv4 + TCP */
542ICE_DECLARE_PKT_TEMPLATE(tcp) = {
543 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
544 0x00, 0x00, 0x00, 0x00,
545 0x00, 0x00, 0x00, 0x00,
546
547 0x08, 0x00, /* ICE_ETYPE_OL 12 */
548
549 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
550 0x00, 0x01, 0x00, 0x00,
551 0x00, 0x06, 0x00, 0x00,
552 0x00, 0x00, 0x00, 0x00,
553 0x00, 0x00, 0x00, 0x00,
554
555 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
556 0x00, 0x00, 0x00, 0x00,
557 0x00, 0x00, 0x00, 0x00,
558 0x50, 0x00, 0x00, 0x00,
559 0x00, 0x00, 0x00, 0x00,
560
561 0x00, 0x00, /* 2 bytes for 4 byte alignment */
562};
563
564ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
565 { ICE_MAC_OFOS, 0 },
566 { ICE_ETYPE_OL, 12 },
567 { ICE_IPV6_OFOS, 14 },
568 { ICE_TCP_IL, 54 },
569 { ICE_PROTOCOL_LAST, 0 },
570};
571
572ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
573 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
574 0x00, 0x00, 0x00, 0x00,
575 0x00, 0x00, 0x00, 0x00,
576
577 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
578
579 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
580 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
581 0x00, 0x00, 0x00, 0x00,
582 0x00, 0x00, 0x00, 0x00,
583 0x00, 0x00, 0x00, 0x00,
584 0x00, 0x00, 0x00, 0x00,
585 0x00, 0x00, 0x00, 0x00,
586 0x00, 0x00, 0x00, 0x00,
587 0x00, 0x00, 0x00, 0x00,
588 0x00, 0x00, 0x00, 0x00,
589
590 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
591 0x00, 0x00, 0x00, 0x00,
592 0x00, 0x00, 0x00, 0x00,
593 0x50, 0x00, 0x00, 0x00,
594 0x00, 0x00, 0x00, 0x00,
595
596 0x00, 0x00, /* 2 bytes for 4 byte alignment */
597};
598
599/* IPv6 + UDP */
600ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
601 { ICE_MAC_OFOS, 0 },
602 { ICE_ETYPE_OL, 12 },
603 { ICE_IPV6_OFOS, 14 },
604 { ICE_UDP_ILOS, 54 },
605 { ICE_PROTOCOL_LAST, 0 },
606};
607
608/* IPv6 + UDP dummy packet */
609ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
610 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
611 0x00, 0x00, 0x00, 0x00,
612 0x00, 0x00, 0x00, 0x00,
613
614 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
615
616 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
617 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
618 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00,
620 0x00, 0x00, 0x00, 0x00,
621 0x00, 0x00, 0x00, 0x00,
622 0x00, 0x00, 0x00, 0x00,
623 0x00, 0x00, 0x00, 0x00,
624 0x00, 0x00, 0x00, 0x00,
625 0x00, 0x00, 0x00, 0x00,
626
627 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
628 0x00, 0x10, 0x00, 0x00,
629
630 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
631 0x00, 0x00, 0x00, 0x00,
632
633 0x00, 0x00, /* 2 bytes for 4 byte alignment */
634};
635
636/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
637ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
638 { ICE_MAC_OFOS, 0 },
639 { ICE_IPV4_OFOS, 14 },
640 { ICE_UDP_OF, 34 },
641 { ICE_GTP, 42 },
642 { ICE_IPV4_IL, 62 },
643 { ICE_TCP_IL, 82 },
644 { ICE_PROTOCOL_LAST, 0 },
645};
646
647ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
648 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
649 0x00, 0x00, 0x00, 0x00,
650 0x00, 0x00, 0x00, 0x00,
651 0x08, 0x00,
652
653 0x45, 0x00, 0x00, 0x58, /* IP 14 */
654 0x00, 0x00, 0x00, 0x00,
655 0x00, 0x11, 0x00, 0x00,
656 0x00, 0x00, 0x00, 0x00,
657 0x00, 0x00, 0x00, 0x00,
658
659 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
660 0x00, 0x44, 0x00, 0x00,
661
662 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
663 0x00, 0x00, 0x00, 0x00,
664 0x00, 0x00, 0x00, 0x85,
665
666 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
667 0x00, 0x00, 0x00, 0x00,
668
669 0x45, 0x00, 0x00, 0x28, /* IP 62 */
670 0x00, 0x00, 0x00, 0x00,
671 0x00, 0x06, 0x00, 0x00,
672 0x00, 0x00, 0x00, 0x00,
673 0x00, 0x00, 0x00, 0x00,
674
675 0x00, 0x00, 0x00, 0x00, /* TCP 82 */
676 0x00, 0x00, 0x00, 0x00,
677 0x00, 0x00, 0x00, 0x00,
678 0x50, 0x00, 0x00, 0x00,
679 0x00, 0x00, 0x00, 0x00,
680
681 0x00, 0x00, /* 2 bytes for 4 byte alignment */
682};
683
684/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
685ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
686 { ICE_MAC_OFOS, 0 },
687 { ICE_IPV4_OFOS, 14 },
688 { ICE_UDP_OF, 34 },
689 { ICE_GTP, 42 },
690 { ICE_IPV4_IL, 62 },
691 { ICE_UDP_ILOS, 82 },
692 { ICE_PROTOCOL_LAST, 0 },
693};
694
695ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
696 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
697 0x00, 0x00, 0x00, 0x00,
698 0x00, 0x00, 0x00, 0x00,
699 0x08, 0x00,
700
701 0x45, 0x00, 0x00, 0x4c, /* IP 14 */
702 0x00, 0x00, 0x00, 0x00,
703 0x00, 0x11, 0x00, 0x00,
704 0x00, 0x00, 0x00, 0x00,
705 0x00, 0x00, 0x00, 0x00,
706
707 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
708 0x00, 0x38, 0x00, 0x00,
709
710 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
711 0x00, 0x00, 0x00, 0x00,
712 0x00, 0x00, 0x00, 0x85,
713
714 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
715 0x00, 0x00, 0x00, 0x00,
716
717 0x45, 0x00, 0x00, 0x1c, /* IP 62 */
718 0x00, 0x00, 0x00, 0x00,
719 0x00, 0x11, 0x00, 0x00,
720 0x00, 0x00, 0x00, 0x00,
721 0x00, 0x00, 0x00, 0x00,
722
723 0x00, 0x00, 0x00, 0x00, /* UDP 82 */
724 0x00, 0x08, 0x00, 0x00,
725
726 0x00, 0x00, /* 2 bytes for 4 byte alignment */
727};
728
729/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
730ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
731 { ICE_MAC_OFOS, 0 },
732 { ICE_IPV4_OFOS, 14 },
733 { ICE_UDP_OF, 34 },
734 { ICE_GTP, 42 },
735 { ICE_IPV6_IL, 62 },
736 { ICE_TCP_IL, 102 },
737 { ICE_PROTOCOL_LAST, 0 },
738};
739
740ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
741 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
742 0x00, 0x00, 0x00, 0x00,
743 0x00, 0x00, 0x00, 0x00,
744 0x08, 0x00,
745
746 0x45, 0x00, 0x00, 0x6c, /* IP 14 */
747 0x00, 0x00, 0x00, 0x00,
748 0x00, 0x11, 0x00, 0x00,
749 0x00, 0x00, 0x00, 0x00,
750 0x00, 0x00, 0x00, 0x00,
751
752 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
753 0x00, 0x58, 0x00, 0x00,
754
755 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
756 0x00, 0x00, 0x00, 0x00,
757 0x00, 0x00, 0x00, 0x85,
758
759 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
760 0x00, 0x00, 0x00, 0x00,
761
762 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
763 0x00, 0x14, 0x06, 0x00,
764 0x00, 0x00, 0x00, 0x00,
765 0x00, 0x00, 0x00, 0x00,
766 0x00, 0x00, 0x00, 0x00,
767 0x00, 0x00, 0x00, 0x00,
768 0x00, 0x00, 0x00, 0x00,
769 0x00, 0x00, 0x00, 0x00,
770 0x00, 0x00, 0x00, 0x00,
771 0x00, 0x00, 0x00, 0x00,
772
773 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
774 0x00, 0x00, 0x00, 0x00,
775 0x00, 0x00, 0x00, 0x00,
776 0x50, 0x00, 0x00, 0x00,
777 0x00, 0x00, 0x00, 0x00,
778
779 0x00, 0x00, /* 2 bytes for 4 byte alignment */
780};
781
782ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
783 { ICE_MAC_OFOS, 0 },
784 { ICE_IPV4_OFOS, 14 },
785 { ICE_UDP_OF, 34 },
786 { ICE_GTP, 42 },
787 { ICE_IPV6_IL, 62 },
788 { ICE_UDP_ILOS, 102 },
789 { ICE_PROTOCOL_LAST, 0 },
790};
791
792ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
793 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
794 0x00, 0x00, 0x00, 0x00,
795 0x00, 0x00, 0x00, 0x00,
796 0x08, 0x00,
797
798 0x45, 0x00, 0x00, 0x60, /* IP 14 */
799 0x00, 0x00, 0x00, 0x00,
800 0x00, 0x11, 0x00, 0x00,
801 0x00, 0x00, 0x00, 0x00,
802 0x00, 0x00, 0x00, 0x00,
803
804 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
805 0x00, 0x4c, 0x00, 0x00,
806
807 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
808 0x00, 0x00, 0x00, 0x00,
809 0x00, 0x00, 0x00, 0x85,
810
811 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
812 0x00, 0x00, 0x00, 0x00,
813
814 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
815 0x00, 0x08, 0x11, 0x00,
816 0x00, 0x00, 0x00, 0x00,
817 0x00, 0x00, 0x00, 0x00,
818 0x00, 0x00, 0x00, 0x00,
819 0x00, 0x00, 0x00, 0x00,
820 0x00, 0x00, 0x00, 0x00,
821 0x00, 0x00, 0x00, 0x00,
822 0x00, 0x00, 0x00, 0x00,
823 0x00, 0x00, 0x00, 0x00,
824
825 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
826 0x00, 0x08, 0x00, 0x00,
827
828 0x00, 0x00, /* 2 bytes for 4 byte alignment */
829};
830
831ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
832 { ICE_MAC_OFOS, 0 },
833 { ICE_IPV6_OFOS, 14 },
834 { ICE_UDP_OF, 54 },
835 { ICE_GTP, 62 },
836 { ICE_IPV4_IL, 82 },
837 { ICE_TCP_IL, 102 },
838 { ICE_PROTOCOL_LAST, 0 },
839};
840
841ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
842 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
843 0x00, 0x00, 0x00, 0x00,
844 0x00, 0x00, 0x00, 0x00,
845 0x86, 0xdd,
846
847 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
848 0x00, 0x44, 0x11, 0x00,
849 0x00, 0x00, 0x00, 0x00,
850 0x00, 0x00, 0x00, 0x00,
851 0x00, 0x00, 0x00, 0x00,
852 0x00, 0x00, 0x00, 0x00,
853 0x00, 0x00, 0x00, 0x00,
854 0x00, 0x00, 0x00, 0x00,
855 0x00, 0x00, 0x00, 0x00,
856 0x00, 0x00, 0x00, 0x00,
857
858 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
859 0x00, 0x44, 0x00, 0x00,
860
861 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
862 0x00, 0x00, 0x00, 0x00,
863 0x00, 0x00, 0x00, 0x85,
864
865 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
866 0x00, 0x00, 0x00, 0x00,
867
868 0x45, 0x00, 0x00, 0x28, /* IP 82 */
869 0x00, 0x00, 0x00, 0x00,
870 0x00, 0x06, 0x00, 0x00,
871 0x00, 0x00, 0x00, 0x00,
872 0x00, 0x00, 0x00, 0x00,
873
874 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
875 0x00, 0x00, 0x00, 0x00,
876 0x00, 0x00, 0x00, 0x00,
877 0x50, 0x00, 0x00, 0x00,
878 0x00, 0x00, 0x00, 0x00,
879
880 0x00, 0x00, /* 2 bytes for 4 byte alignment */
881};
882
883ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
884 { ICE_MAC_OFOS, 0 },
885 { ICE_IPV6_OFOS, 14 },
886 { ICE_UDP_OF, 54 },
887 { ICE_GTP, 62 },
888 { ICE_IPV4_IL, 82 },
889 { ICE_UDP_ILOS, 102 },
890 { ICE_PROTOCOL_LAST, 0 },
891};
892
893ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
894 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
895 0x00, 0x00, 0x00, 0x00,
896 0x00, 0x00, 0x00, 0x00,
897 0x86, 0xdd,
898
899 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
900 0x00, 0x38, 0x11, 0x00,
901 0x00, 0x00, 0x00, 0x00,
902 0x00, 0x00, 0x00, 0x00,
903 0x00, 0x00, 0x00, 0x00,
904 0x00, 0x00, 0x00, 0x00,
905 0x00, 0x00, 0x00, 0x00,
906 0x00, 0x00, 0x00, 0x00,
907 0x00, 0x00, 0x00, 0x00,
908 0x00, 0x00, 0x00, 0x00,
909
910 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
911 0x00, 0x38, 0x00, 0x00,
912
913 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
914 0x00, 0x00, 0x00, 0x00,
915 0x00, 0x00, 0x00, 0x85,
916
917 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
918 0x00, 0x00, 0x00, 0x00,
919
920 0x45, 0x00, 0x00, 0x1c, /* IP 82 */
921 0x00, 0x00, 0x00, 0x00,
922 0x00, 0x11, 0x00, 0x00,
923 0x00, 0x00, 0x00, 0x00,
924 0x00, 0x00, 0x00, 0x00,
925
926 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
927 0x00, 0x08, 0x00, 0x00,
928
929 0x00, 0x00, /* 2 bytes for 4 byte alignment */
930};
931
932ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
933 { ICE_MAC_OFOS, 0 },
934 { ICE_IPV6_OFOS, 14 },
935 { ICE_UDP_OF, 54 },
936 { ICE_GTP, 62 },
937 { ICE_IPV6_IL, 82 },
938 { ICE_TCP_IL, 122 },
939 { ICE_PROTOCOL_LAST, 0 },
940};
941
942ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
943 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
944 0x00, 0x00, 0x00, 0x00,
945 0x00, 0x00, 0x00, 0x00,
946 0x86, 0xdd,
947
948 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
949 0x00, 0x58, 0x11, 0x00,
950 0x00, 0x00, 0x00, 0x00,
951 0x00, 0x00, 0x00, 0x00,
952 0x00, 0x00, 0x00, 0x00,
953 0x00, 0x00, 0x00, 0x00,
954 0x00, 0x00, 0x00, 0x00,
955 0x00, 0x00, 0x00, 0x00,
956 0x00, 0x00, 0x00, 0x00,
957 0x00, 0x00, 0x00, 0x00,
958
959 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
960 0x00, 0x58, 0x00, 0x00,
961
962 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
963 0x00, 0x00, 0x00, 0x00,
964 0x00, 0x00, 0x00, 0x85,
965
966 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
967 0x00, 0x00, 0x00, 0x00,
968
969 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
970 0x00, 0x14, 0x06, 0x00,
971 0x00, 0x00, 0x00, 0x00,
972 0x00, 0x00, 0x00, 0x00,
973 0x00, 0x00, 0x00, 0x00,
974 0x00, 0x00, 0x00, 0x00,
975 0x00, 0x00, 0x00, 0x00,
976 0x00, 0x00, 0x00, 0x00,
977 0x00, 0x00, 0x00, 0x00,
978 0x00, 0x00, 0x00, 0x00,
979
980 0x00, 0x00, 0x00, 0x00, /* TCP 122 */
981 0x00, 0x00, 0x00, 0x00,
982 0x00, 0x00, 0x00, 0x00,
983 0x50, 0x00, 0x00, 0x00,
984 0x00, 0x00, 0x00, 0x00,
985
986 0x00, 0x00, /* 2 bytes for 4 byte alignment */
987};
988
989ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
990 { ICE_MAC_OFOS, 0 },
991 { ICE_IPV6_OFOS, 14 },
992 { ICE_UDP_OF, 54 },
993 { ICE_GTP, 62 },
994 { ICE_IPV6_IL, 82 },
995 { ICE_UDP_ILOS, 122 },
996 { ICE_PROTOCOL_LAST, 0 },
997};
998
999ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
1000 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1001 0x00, 0x00, 0x00, 0x00,
1002 0x00, 0x00, 0x00, 0x00,
1003 0x86, 0xdd,
1004
1005 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1006 0x00, 0x4c, 0x11, 0x00,
1007 0x00, 0x00, 0x00, 0x00,
1008 0x00, 0x00, 0x00, 0x00,
1009 0x00, 0x00, 0x00, 0x00,
1010 0x00, 0x00, 0x00, 0x00,
1011 0x00, 0x00, 0x00, 0x00,
1012 0x00, 0x00, 0x00, 0x00,
1013 0x00, 0x00, 0x00, 0x00,
1014 0x00, 0x00, 0x00, 0x00,
1015
1016 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1017 0x00, 0x4c, 0x00, 0x00,
1018
1019 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1020 0x00, 0x00, 0x00, 0x00,
1021 0x00, 0x00, 0x00, 0x85,
1022
1023 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1024 0x00, 0x00, 0x00, 0x00,
1025
1026 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1027 0x00, 0x08, 0x11, 0x00,
1028 0x00, 0x00, 0x00, 0x00,
1029 0x00, 0x00, 0x00, 0x00,
1030 0x00, 0x00, 0x00, 0x00,
1031 0x00, 0x00, 0x00, 0x00,
1032 0x00, 0x00, 0x00, 0x00,
1033 0x00, 0x00, 0x00, 0x00,
1034 0x00, 0x00, 0x00, 0x00,
1035 0x00, 0x00, 0x00, 0x00,
1036
1037 0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1038 0x00, 0x08, 0x00, 0x00,
1039
1040 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1041};
1042
1043ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1044 { ICE_MAC_OFOS, 0 },
1045 { ICE_IPV4_OFOS, 14 },
1046 { ICE_UDP_OF, 34 },
1047 { ICE_GTP_NO_PAY, 42 },
1048 { ICE_PROTOCOL_LAST, 0 },
1049};
1050
1051ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1052 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1053 0x00, 0x00, 0x00, 0x00,
1054 0x00, 0x00, 0x00, 0x00,
1055 0x08, 0x00,
1056
1057 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1058 0x00, 0x00, 0x40, 0x00,
1059 0x40, 0x11, 0x00, 0x00,
1060 0x00, 0x00, 0x00, 0x00,
1061 0x00, 0x00, 0x00, 0x00,
1062
1063 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1064 0x00, 0x00, 0x00, 0x00,
1065
1066 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1067 0x00, 0x00, 0x00, 0x00,
1068 0x00, 0x00, 0x00, 0x85,
1069
1070 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1071 0x00, 0x00, 0x00, 0x00,
1072
1073 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1074 0x00, 0x00, 0x40, 0x00,
1075 0x40, 0x00, 0x00, 0x00,
1076 0x00, 0x00, 0x00, 0x00,
1077 0x00, 0x00, 0x00, 0x00,
1078 0x00, 0x00,
1079};
1080
1081ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1082 { ICE_MAC_OFOS, 0 },
1083 { ICE_IPV6_OFOS, 14 },
1084 { ICE_UDP_OF, 54 },
1085 { ICE_GTP_NO_PAY, 62 },
1086 { ICE_PROTOCOL_LAST, 0 },
1087};
1088
1089ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1090 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1091 0x00, 0x00, 0x00, 0x00,
1092 0x00, 0x00, 0x00, 0x00,
1093 0x86, 0xdd,
1094
1095 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1096 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1097 0x00, 0x00, 0x00, 0x00,
1098 0x00, 0x00, 0x00, 0x00,
1099 0x00, 0x00, 0x00, 0x00,
1100 0x00, 0x00, 0x00, 0x00,
1101 0x00, 0x00, 0x00, 0x00,
1102 0x00, 0x00, 0x00, 0x00,
1103 0x00, 0x00, 0x00, 0x00,
1104 0x00, 0x00, 0x00, 0x00,
1105
1106 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1107 0x00, 0x00, 0x00, 0x00,
1108
1109 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1110 0x00, 0x00, 0x00, 0x00,
1111
1112 0x00, 0x00,
1113};
1114
1115ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv4) = {
1116 { ICE_MAC_OFOS, 0 },
1117 { ICE_ETYPE_OL, 12 },
1118 { ICE_IPV4_OFOS, 14 },
1119 { ICE_UDP_ILOS, 34 },
1120 { ICE_PFCP, 42 },
1121 { ICE_PROTOCOL_LAST, 0 },
1122};
1123
1124ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv4) = {
1125 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1126 0x00, 0x00, 0x00, 0x00,
1127 0x00, 0x00, 0x00, 0x00,
1128
1129 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1130
1131 0x45, 0x00, 0x00, 0x2c, /* ICE_IPV4_OFOS 14 */
1132 0x00, 0x01, 0x00, 0x00,
1133 0x00, 0x11, 0x00, 0x00,
1134 0x00, 0x00, 0x00, 0x00,
1135 0x00, 0x00, 0x00, 0x00,
1136
1137 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 34 */
1138 0x00, 0x18, 0x00, 0x00,
1139
1140 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 42 */
1141 0x00, 0x00, 0x00, 0x00,
1142 0x00, 0x00, 0x00, 0x00,
1143 0x00, 0x00, 0x00, 0x00,
1144
1145 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1146};
1147
1148ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv6) = {
1149 { ICE_MAC_OFOS, 0 },
1150 { ICE_ETYPE_OL, 12 },
1151 { ICE_IPV6_OFOS, 14 },
1152 { ICE_UDP_ILOS, 54 },
1153 { ICE_PFCP, 62 },
1154 { ICE_PROTOCOL_LAST, 0 },
1155};
1156
1157ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv6) = {
1158 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1159 0x00, 0x00, 0x00, 0x00,
1160 0x00, 0x00, 0x00, 0x00,
1161
1162 0x86, 0xdd, /* ICE_ETYPE_OL 12 */
1163
1164 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1165 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
1166 0x00, 0x00, 0x00, 0x00,
1167 0x00, 0x00, 0x00, 0x00,
1168 0x00, 0x00, 0x00, 0x00,
1169 0x00, 0x00, 0x00, 0x00,
1170 0x00, 0x00, 0x00, 0x00,
1171 0x00, 0x00, 0x00, 0x00,
1172 0x00, 0x00, 0x00, 0x00,
1173 0x00, 0x00, 0x00, 0x00,
1174
1175 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 54 */
1176 0x00, 0x18, 0x00, 0x00,
1177
1178 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 62 */
1179 0x00, 0x00, 0x00, 0x00,
1180 0x00, 0x00, 0x00, 0x00,
1181 0x00, 0x00, 0x00, 0x00,
1182
1183 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1184};
1185
1186ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1187 { ICE_MAC_OFOS, 0 },
1188 { ICE_ETYPE_OL, 12 },
1189 { ICE_PPPOE, 14 },
1190 { ICE_IPV4_OFOS, 22 },
1191 { ICE_TCP_IL, 42 },
1192 { ICE_PROTOCOL_LAST, 0 },
1193};
1194
1195ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1196 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1197 0x00, 0x00, 0x00, 0x00,
1198 0x00, 0x00, 0x00, 0x00,
1199
1200 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1201
1202 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1203 0x00, 0x16,
1204
1205 0x00, 0x21, /* PPP Link Layer 20 */
1206
1207 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1208 0x00, 0x01, 0x00, 0x00,
1209 0x00, 0x06, 0x00, 0x00,
1210 0x00, 0x00, 0x00, 0x00,
1211 0x00, 0x00, 0x00, 0x00,
1212
1213 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1214 0x00, 0x00, 0x00, 0x00,
1215 0x00, 0x00, 0x00, 0x00,
1216 0x50, 0x00, 0x00, 0x00,
1217 0x00, 0x00, 0x00, 0x00,
1218
1219 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1220};
1221
1222ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1223 { ICE_MAC_OFOS, 0 },
1224 { ICE_ETYPE_OL, 12 },
1225 { ICE_PPPOE, 14 },
1226 { ICE_IPV4_OFOS, 22 },
1227 { ICE_UDP_ILOS, 42 },
1228 { ICE_PROTOCOL_LAST, 0 },
1229};
1230
1231ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1232 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1233 0x00, 0x00, 0x00, 0x00,
1234 0x00, 0x00, 0x00, 0x00,
1235
1236 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1237
1238 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1239 0x00, 0x16,
1240
1241 0x00, 0x21, /* PPP Link Layer 20 */
1242
1243 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1244 0x00, 0x01, 0x00, 0x00,
1245 0x00, 0x11, 0x00, 0x00,
1246 0x00, 0x00, 0x00, 0x00,
1247 0x00, 0x00, 0x00, 0x00,
1248
1249 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1250 0x00, 0x08, 0x00, 0x00,
1251
1252 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1253};
1254
1255ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1256 { ICE_MAC_OFOS, 0 },
1257 { ICE_ETYPE_OL, 12 },
1258 { ICE_PPPOE, 14 },
1259 { ICE_IPV6_OFOS, 22 },
1260 { ICE_TCP_IL, 62 },
1261 { ICE_PROTOCOL_LAST, 0 },
1262};
1263
1264ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1265 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1266 0x00, 0x00, 0x00, 0x00,
1267 0x00, 0x00, 0x00, 0x00,
1268
1269 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1270
1271 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1272 0x00, 0x2a,
1273
1274 0x00, 0x57, /* PPP Link Layer 20 */
1275
1276 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1277 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1278 0x00, 0x00, 0x00, 0x00,
1279 0x00, 0x00, 0x00, 0x00,
1280 0x00, 0x00, 0x00, 0x00,
1281 0x00, 0x00, 0x00, 0x00,
1282 0x00, 0x00, 0x00, 0x00,
1283 0x00, 0x00, 0x00, 0x00,
1284 0x00, 0x00, 0x00, 0x00,
1285 0x00, 0x00, 0x00, 0x00,
1286
1287 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1288 0x00, 0x00, 0x00, 0x00,
1289 0x00, 0x00, 0x00, 0x00,
1290 0x50, 0x00, 0x00, 0x00,
1291 0x00, 0x00, 0x00, 0x00,
1292
1293 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1294};
1295
1296ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1297 { ICE_MAC_OFOS, 0 },
1298 { ICE_ETYPE_OL, 12 },
1299 { ICE_PPPOE, 14 },
1300 { ICE_IPV6_OFOS, 22 },
1301 { ICE_UDP_ILOS, 62 },
1302 { ICE_PROTOCOL_LAST, 0 },
1303};
1304
1305ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1306 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1307 0x00, 0x00, 0x00, 0x00,
1308 0x00, 0x00, 0x00, 0x00,
1309
1310 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1311
1312 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1313 0x00, 0x2a,
1314
1315 0x00, 0x57, /* PPP Link Layer 20 */
1316
1317 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1318 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1319 0x00, 0x00, 0x00, 0x00,
1320 0x00, 0x00, 0x00, 0x00,
1321 0x00, 0x00, 0x00, 0x00,
1322 0x00, 0x00, 0x00, 0x00,
1323 0x00, 0x00, 0x00, 0x00,
1324 0x00, 0x00, 0x00, 0x00,
1325 0x00, 0x00, 0x00, 0x00,
1326 0x00, 0x00, 0x00, 0x00,
1327
1328 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1329 0x00, 0x08, 0x00, 0x00,
1330
1331 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1332};
1333
1334ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1335 { ICE_MAC_OFOS, 0 },
1336 { ICE_ETYPE_OL, 12 },
1337 { ICE_IPV4_OFOS, 14 },
1338 { ICE_L2TPV3, 34 },
1339 { ICE_PROTOCOL_LAST, 0 },
1340};
1341
1342ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1343 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1344 0x00, 0x00, 0x00, 0x00,
1345 0x00, 0x00, 0x00, 0x00,
1346
1347 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1348
1349 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1350 0x00, 0x00, 0x40, 0x00,
1351 0x40, 0x73, 0x00, 0x00,
1352 0x00, 0x00, 0x00, 0x00,
1353 0x00, 0x00, 0x00, 0x00,
1354
1355 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1356 0x00, 0x00, 0x00, 0x00,
1357 0x00, 0x00, 0x00, 0x00,
1358 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1359};
1360
1361ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1362 { ICE_MAC_OFOS, 0 },
1363 { ICE_ETYPE_OL, 12 },
1364 { ICE_IPV6_OFOS, 14 },
1365 { ICE_L2TPV3, 54 },
1366 { ICE_PROTOCOL_LAST, 0 },
1367};
1368
1369ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1370 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1371 0x00, 0x00, 0x00, 0x00,
1372 0x00, 0x00, 0x00, 0x00,
1373
1374 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
1375
1376 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1377 0x00, 0x0c, 0x73, 0x40,
1378 0x00, 0x00, 0x00, 0x00,
1379 0x00, 0x00, 0x00, 0x00,
1380 0x00, 0x00, 0x00, 0x00,
1381 0x00, 0x00, 0x00, 0x00,
1382 0x00, 0x00, 0x00, 0x00,
1383 0x00, 0x00, 0x00, 0x00,
1384 0x00, 0x00, 0x00, 0x00,
1385 0x00, 0x00, 0x00, 0x00,
1386
1387 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1388 0x00, 0x00, 0x00, 0x00,
1389 0x00, 0x00, 0x00, 0x00,
1390 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1391};
1392
1393static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1394 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1395 ICE_PKT_GTP_NOPAY),
1396 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1397 ICE_PKT_OUTER_IPV6 |
1398 ICE_PKT_INNER_IPV6 |
1399 ICE_PKT_INNER_UDP),
1400 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1401 ICE_PKT_OUTER_IPV6 |
1402 ICE_PKT_INNER_IPV6),
1403 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1404 ICE_PKT_OUTER_IPV6 |
1405 ICE_PKT_INNER_UDP),
1406 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1407 ICE_PKT_OUTER_IPV6),
1408 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1409 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1410 ICE_PKT_INNER_IPV6 |
1411 ICE_PKT_INNER_UDP),
1412 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1413 ICE_PKT_INNER_IPV6),
1414 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1415 ICE_PKT_INNER_UDP),
1416 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1417 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1418 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1419 ICE_PKT_PROFILE(pfcp_session_ipv6, ICE_PKT_PFCP | ICE_PKT_OUTER_IPV6),
1420 ICE_PKT_PROFILE(pfcp_session_ipv4, ICE_PKT_PFCP),
1421 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1422 ICE_PKT_INNER_UDP),
1423 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1424 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1425 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1426 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1427 ICE_PKT_INNER_TCP),
1428 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1429 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1430 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1431 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1432 ICE_PKT_INNER_IPV6 |
1433 ICE_PKT_INNER_TCP),
1434 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1435 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1436 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1437 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1438 ICE_PKT_INNER_IPV6),
1439 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1440 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1441 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1442 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1443 ICE_PKT_PROFILE(tcp, 0),
1444};
1445
1446/* this is a recipe to profile association bitmap */
1447static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1448 ICE_MAX_NUM_PROFILES);
1449
1450/* this is a profile to recipe association bitmap */
1451static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1452 ICE_MAX_NUM_RECIPES);
1453
1454/**
1455 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1456 * @hw: pointer to the HW struct
1457 *
1458 * Allocate memory for the entire recipe table and initialize the structures/
1459 * entries corresponding to basic recipes.
1460 */
1461int ice_init_def_sw_recp(struct ice_hw *hw)
1462{
1463 struct ice_sw_recipe *recps;
1464 u8 i;
1465
1466 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1467 sizeof(*recps), GFP_KERNEL);
1468 if (!recps)
1469 return -ENOMEM;
1470
1471 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1472 recps[i].root_rid = i;
1473 INIT_LIST_HEAD(&recps[i].filt_rules);
1474 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1475 mutex_init(&recps[i].filt_rule_lock);
1476 }
1477
1478 hw->switch_info->recp_list = recps;
1479
1480 return 0;
1481}
1482
1483/**
1484 * ice_aq_get_sw_cfg - get switch configuration
1485 * @hw: pointer to the hardware structure
1486 * @buf: pointer to the result buffer
1487 * @buf_size: length of the buffer available for response
1488 * @req_desc: pointer to requested descriptor
1489 * @num_elems: pointer to number of elements
1490 * @cd: pointer to command details structure or NULL
1491 *
1492 * Get switch configuration (0x0200) to be placed in buf.
1493 * This admin command returns information such as initial VSI/port number
1494 * and switch ID it belongs to.
1495 *
1496 * NOTE: *req_desc is both an input/output parameter.
1497 * The caller of this function first calls this function with *request_desc set
1498 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1499 * configuration information has been returned; if non-zero (meaning not all
1500 * the information was returned), the caller should call this function again
1501 * with *req_desc set to the previous value returned by f/w to get the
1502 * next block of switch configuration information.
1503 *
1504 * *num_elems is output only parameter. This reflects the number of elements
1505 * in response buffer. The caller of this function to use *num_elems while
1506 * parsing the response buffer.
1507 */
1508static int
1509ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1510 u16 buf_size, u16 *req_desc, u16 *num_elems,
1511 struct ice_sq_cd *cd)
1512{
1513 struct ice_aqc_get_sw_cfg *cmd;
1514 struct ice_aq_desc desc;
1515 int status;
1516
1517 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1518 cmd = &desc.params.get_sw_conf;
1519 cmd->element = cpu_to_le16(*req_desc);
1520
1521 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1522 if (!status) {
1523 *req_desc = le16_to_cpu(cmd->element);
1524 *num_elems = le16_to_cpu(cmd->num_elems);
1525 }
1526
1527 return status;
1528}
1529
1530/**
1531 * ice_aq_add_vsi
1532 * @hw: pointer to the HW struct
1533 * @vsi_ctx: pointer to a VSI context struct
1534 * @cd: pointer to command details structure or NULL
1535 *
1536 * Add a VSI context to the hardware (0x0210)
1537 */
1538static int
1539ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1540 struct ice_sq_cd *cd)
1541{
1542 struct ice_aqc_add_update_free_vsi_resp *res;
1543 struct ice_aqc_add_get_update_free_vsi *cmd;
1544 struct ice_aq_desc desc;
1545 int status;
1546
1547 cmd = &desc.params.vsi_cmd;
1548 res = &desc.params.add_update_free_vsi_res;
1549
1550 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1551
1552 if (!vsi_ctx->alloc_from_pool)
1553 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1554 ICE_AQ_VSI_IS_VALID);
1555 cmd->vf_id = vsi_ctx->vf_num;
1556
1557 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1558
1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 sizeof(vsi_ctx->info), cd);
1563
1564 if (!status) {
1565 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1566 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1567 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1568 }
1569
1570 return status;
1571}
1572
1573/**
1574 * ice_aq_free_vsi
1575 * @hw: pointer to the HW struct
1576 * @vsi_ctx: pointer to a VSI context struct
1577 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1578 * @cd: pointer to command details structure or NULL
1579 *
1580 * Free VSI context info from hardware (0x0213)
1581 */
1582static int
1583ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1584 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1585{
1586 struct ice_aqc_add_update_free_vsi_resp *resp;
1587 struct ice_aqc_add_get_update_free_vsi *cmd;
1588 struct ice_aq_desc desc;
1589 int status;
1590
1591 cmd = &desc.params.vsi_cmd;
1592 resp = &desc.params.add_update_free_vsi_res;
1593
1594 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1595
1596 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1597 if (keep_vsi_alloc)
1598 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1599
1600 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1601 if (!status) {
1602 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1603 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1604 }
1605
1606 return status;
1607}
1608
1609/**
1610 * ice_aq_update_vsi
1611 * @hw: pointer to the HW struct
1612 * @vsi_ctx: pointer to a VSI context struct
1613 * @cd: pointer to command details structure or NULL
1614 *
1615 * Update VSI context in the hardware (0x0211)
1616 */
1617static int
1618ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1619 struct ice_sq_cd *cd)
1620{
1621 struct ice_aqc_add_update_free_vsi_resp *resp;
1622 struct ice_aqc_add_get_update_free_vsi *cmd;
1623 struct ice_aq_desc desc;
1624 int status;
1625
1626 cmd = &desc.params.vsi_cmd;
1627 resp = &desc.params.add_update_free_vsi_res;
1628
1629 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1630
1631 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1632
1633 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1634
1635 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1636 sizeof(vsi_ctx->info), cd);
1637
1638 if (!status) {
1639 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1640 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1641 }
1642
1643 return status;
1644}
1645
1646/**
1647 * ice_is_vsi_valid - check whether the VSI is valid or not
1648 * @hw: pointer to the HW struct
1649 * @vsi_handle: VSI handle
1650 *
1651 * check whether the VSI is valid or not
1652 */
1653bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1654{
1655 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1656}
1657
1658/**
1659 * ice_get_hw_vsi_num - return the HW VSI number
1660 * @hw: pointer to the HW struct
1661 * @vsi_handle: VSI handle
1662 *
1663 * return the HW VSI number
1664 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1665 */
1666u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1667{
1668 return hw->vsi_ctx[vsi_handle]->vsi_num;
1669}
1670
1671/**
1672 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1673 * @hw: pointer to the HW struct
1674 * @vsi_handle: VSI handle
1675 *
1676 * return the VSI context entry for a given VSI handle
1677 */
1678struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1679{
1680 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1681}
1682
1683/**
1684 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1685 * @hw: pointer to the HW struct
1686 * @vsi_handle: VSI handle
1687 * @vsi: VSI context pointer
1688 *
1689 * save the VSI context entry for a given VSI handle
1690 */
1691static void
1692ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1693{
1694 hw->vsi_ctx[vsi_handle] = vsi;
1695}
1696
1697/**
1698 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1699 * @hw: pointer to the HW struct
1700 * @vsi_handle: VSI handle
1701 */
1702static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1703{
1704 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1705 u8 i;
1706
1707 if (!vsi)
1708 return;
1709 ice_for_each_traffic_class(i) {
1710 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1711 vsi->lan_q_ctx[i] = NULL;
1712 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1713 vsi->rdma_q_ctx[i] = NULL;
1714 }
1715}
1716
1717/**
1718 * ice_clear_vsi_ctx - clear the VSI context entry
1719 * @hw: pointer to the HW struct
1720 * @vsi_handle: VSI handle
1721 *
1722 * clear the VSI context entry
1723 */
1724static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1725{
1726 struct ice_vsi_ctx *vsi;
1727
1728 vsi = ice_get_vsi_ctx(hw, vsi_handle);
1729 if (vsi) {
1730 ice_clear_vsi_q_ctx(hw, vsi_handle);
1731 devm_kfree(ice_hw_to_dev(hw), vsi);
1732 hw->vsi_ctx[vsi_handle] = NULL;
1733 }
1734}
1735
1736/**
1737 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1738 * @hw: pointer to the HW struct
1739 */
1740void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1741{
1742 u16 i;
1743
1744 for (i = 0; i < ICE_MAX_VSI; i++)
1745 ice_clear_vsi_ctx(hw, i);
1746}
1747
1748/**
1749 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1750 * @hw: pointer to the HW struct
1751 * @vsi_handle: unique VSI handle provided by drivers
1752 * @vsi_ctx: pointer to a VSI context struct
1753 * @cd: pointer to command details structure or NULL
1754 *
1755 * Add a VSI context to the hardware also add it into the VSI handle list.
1756 * If this function gets called after reset for existing VSIs then update
1757 * with the new HW VSI number in the corresponding VSI handle list entry.
1758 */
1759int
1760ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1761 struct ice_sq_cd *cd)
1762{
1763 struct ice_vsi_ctx *tmp_vsi_ctx;
1764 int status;
1765
1766 if (vsi_handle >= ICE_MAX_VSI)
1767 return -EINVAL;
1768 status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1769 if (status)
1770 return status;
1771 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1772 if (!tmp_vsi_ctx) {
1773 /* Create a new VSI context */
1774 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1775 sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1776 if (!tmp_vsi_ctx) {
1777 ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1778 return -ENOMEM;
1779 }
1780 *tmp_vsi_ctx = *vsi_ctx;
1781 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1782 } else {
1783 /* update with new HW VSI num */
1784 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1785 }
1786
1787 return 0;
1788}
1789
1790/**
1791 * ice_free_vsi- free VSI context from hardware and VSI handle list
1792 * @hw: pointer to the HW struct
1793 * @vsi_handle: unique VSI handle
1794 * @vsi_ctx: pointer to a VSI context struct
1795 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1796 * @cd: pointer to command details structure or NULL
1797 *
1798 * Free VSI context info from hardware as well as from VSI handle list
1799 */
1800int
1801ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1802 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1803{
1804 int status;
1805
1806 if (!ice_is_vsi_valid(hw, vsi_handle))
1807 return -EINVAL;
1808 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1809 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1810 if (!status)
1811 ice_clear_vsi_ctx(hw, vsi_handle);
1812 return status;
1813}
1814
1815/**
1816 * ice_update_vsi
1817 * @hw: pointer to the HW struct
1818 * @vsi_handle: unique VSI handle
1819 * @vsi_ctx: pointer to a VSI context struct
1820 * @cd: pointer to command details structure or NULL
1821 *
1822 * Update VSI context in the hardware
1823 */
1824int
1825ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1826 struct ice_sq_cd *cd)
1827{
1828 if (!ice_is_vsi_valid(hw, vsi_handle))
1829 return -EINVAL;
1830 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1831 return ice_aq_update_vsi(hw, vsi_ctx, cd);
1832}
1833
1834/**
1835 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1836 * @hw: pointer to HW struct
1837 * @vsi_handle: VSI SW index
1838 * @enable: boolean for enable/disable
1839 */
1840int
1841ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1842{
1843 struct ice_vsi_ctx *ctx, *cached_ctx;
1844 int status;
1845
1846 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1847 if (!cached_ctx)
1848 return -ENOENT;
1849
1850 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1851 if (!ctx)
1852 return -ENOMEM;
1853
1854 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1855 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1856 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1857
1858 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1859
1860 if (enable)
1861 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1862 else
1863 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1864
1865 status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1866 if (!status) {
1867 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1868 cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1869 }
1870
1871 kfree(ctx);
1872 return status;
1873}
1874
1875/**
1876 * ice_aq_alloc_free_vsi_list
1877 * @hw: pointer to the HW struct
1878 * @vsi_list_id: VSI list ID returned or used for lookup
1879 * @lkup_type: switch rule filter lookup type
1880 * @opc: switch rules population command type - pass in the command opcode
1881 *
1882 * allocates or free a VSI list resource
1883 */
1884static int
1885ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1886 enum ice_sw_lkup_type lkup_type,
1887 enum ice_adminq_opc opc)
1888{
1889 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1890 u16 buf_len = __struct_size(sw_buf);
1891 struct ice_aqc_res_elem *vsi_ele;
1892 int status;
1893
1894 sw_buf->num_elems = cpu_to_le16(1);
1895
1896 if (lkup_type == ICE_SW_LKUP_MAC ||
1897 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1898 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1899 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1900 lkup_type == ICE_SW_LKUP_PROMISC ||
1901 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1902 lkup_type == ICE_SW_LKUP_DFLT ||
1903 lkup_type == ICE_SW_LKUP_LAST) {
1904 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1905 } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1906 if (opc == ice_aqc_opc_alloc_res)
1907 sw_buf->res_type =
1908 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1909 ICE_AQC_RES_TYPE_FLAG_SHARED);
1910 else
1911 sw_buf->res_type =
1912 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1913 } else {
1914 return -EINVAL;
1915 }
1916
1917 if (opc == ice_aqc_opc_free_res)
1918 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1919
1920 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1921 if (status)
1922 return status;
1923
1924 if (opc == ice_aqc_opc_alloc_res) {
1925 vsi_ele = &sw_buf->elem[0];
1926 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1927 }
1928
1929 return 0;
1930}
1931
1932/**
1933 * ice_aq_sw_rules - add/update/remove switch rules
1934 * @hw: pointer to the HW struct
1935 * @rule_list: pointer to switch rule population list
1936 * @rule_list_sz: total size of the rule list in bytes
1937 * @num_rules: number of switch rules in the rule_list
1938 * @opc: switch rules population command type - pass in the command opcode
1939 * @cd: pointer to command details structure or NULL
1940 *
1941 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1942 */
1943int
1944ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1945 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1946{
1947 struct ice_aq_desc desc;
1948 int status;
1949
1950 if (opc != ice_aqc_opc_add_sw_rules &&
1951 opc != ice_aqc_opc_update_sw_rules &&
1952 opc != ice_aqc_opc_remove_sw_rules)
1953 return -EINVAL;
1954
1955 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1956
1957 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1958 desc.params.sw_rules.num_rules_fltr_entry_index =
1959 cpu_to_le16(num_rules);
1960 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1961 if (opc != ice_aqc_opc_add_sw_rules &&
1962 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1963 status = -ENOENT;
1964
1965 if (!status) {
1966 if (opc == ice_aqc_opc_add_sw_rules)
1967 hw->switch_info->rule_cnt += num_rules;
1968 else if (opc == ice_aqc_opc_remove_sw_rules)
1969 hw->switch_info->rule_cnt -= num_rules;
1970 }
1971
1972 trace_ice_aq_sw_rules(hw->switch_info);
1973
1974 return status;
1975}
1976
1977/**
1978 * ice_aq_add_recipe - add switch recipe
1979 * @hw: pointer to the HW struct
1980 * @s_recipe_list: pointer to switch rule population list
1981 * @num_recipes: number of switch recipes in the list
1982 * @cd: pointer to command details structure or NULL
1983 *
1984 * Add(0x0290)
1985 */
1986int
1987ice_aq_add_recipe(struct ice_hw *hw,
1988 struct ice_aqc_recipe_data_elem *s_recipe_list,
1989 u16 num_recipes, struct ice_sq_cd *cd)
1990{
1991 struct ice_aqc_add_get_recipe *cmd;
1992 struct ice_aq_desc desc;
1993 u16 buf_size;
1994
1995 cmd = &desc.params.add_get_recipe;
1996 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1997
1998 cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1999 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2000
2001 buf_size = num_recipes * sizeof(*s_recipe_list);
2002
2003 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2004}
2005
2006/**
2007 * ice_aq_get_recipe - get switch recipe
2008 * @hw: pointer to the HW struct
2009 * @s_recipe_list: pointer to switch rule population list
2010 * @num_recipes: pointer to the number of recipes (input and output)
2011 * @recipe_root: root recipe number of recipe(s) to retrieve
2012 * @cd: pointer to command details structure or NULL
2013 *
2014 * Get(0x0292)
2015 *
2016 * On input, *num_recipes should equal the number of entries in s_recipe_list.
2017 * On output, *num_recipes will equal the number of entries returned in
2018 * s_recipe_list.
2019 *
2020 * The caller must supply enough space in s_recipe_list to hold all possible
2021 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
2022 */
2023int
2024ice_aq_get_recipe(struct ice_hw *hw,
2025 struct ice_aqc_recipe_data_elem *s_recipe_list,
2026 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
2027{
2028 struct ice_aqc_add_get_recipe *cmd;
2029 struct ice_aq_desc desc;
2030 u16 buf_size;
2031 int status;
2032
2033 if (*num_recipes != ICE_MAX_NUM_RECIPES)
2034 return -EINVAL;
2035
2036 cmd = &desc.params.add_get_recipe;
2037 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
2038
2039 cmd->return_index = cpu_to_le16(recipe_root);
2040 cmd->num_sub_recipes = 0;
2041
2042 buf_size = *num_recipes * sizeof(*s_recipe_list);
2043
2044 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2045 *num_recipes = le16_to_cpu(cmd->num_sub_recipes);
2046
2047 return status;
2048}
2049
2050/**
2051 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
2052 * @hw: pointer to the HW struct
2053 * @params: parameters used to update the default recipe
2054 *
2055 * This function only supports updating default recipes and it only supports
2056 * updating a single recipe based on the lkup_idx at a time.
2057 *
2058 * This is done as a read-modify-write operation. First, get the current recipe
2059 * contents based on the recipe's ID. Then modify the field vector index and
2060 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
2061 * the pre-existing recipe with the modifications.
2062 */
2063int
2064ice_update_recipe_lkup_idx(struct ice_hw *hw,
2065 struct ice_update_recipe_lkup_idx_params *params)
2066{
2067 struct ice_aqc_recipe_data_elem *rcp_list;
2068 u16 num_recps = ICE_MAX_NUM_RECIPES;
2069 int status;
2070
2071 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
2072 if (!rcp_list)
2073 return -ENOMEM;
2074
2075 /* read current recipe list from firmware */
2076 rcp_list->recipe_indx = params->rid;
2077 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
2078 if (status) {
2079 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
2080 params->rid, status);
2081 goto error_out;
2082 }
2083
2084 /* only modify existing recipe's lkup_idx and mask if valid, while
2085 * leaving all other fields the same, then update the recipe firmware
2086 */
2087 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2088 if (params->mask_valid)
2089 rcp_list->content.mask[params->lkup_idx] =
2090 cpu_to_le16(params->mask);
2091
2092 if (params->ignore_valid)
2093 rcp_list->content.lkup_indx[params->lkup_idx] |=
2094 ICE_AQ_RECIPE_LKUP_IGNORE;
2095
2096 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2097 if (status)
2098 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2099 params->rid, params->lkup_idx, params->fv_idx,
2100 params->mask, params->mask_valid ? "true" : "false",
2101 status);
2102
2103error_out:
2104 kfree(rcp_list);
2105 return status;
2106}
2107
2108/**
2109 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2110 * @hw: pointer to the HW struct
2111 * @profile_id: package profile ID to associate the recipe with
2112 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2113 * @cd: pointer to command details structure or NULL
2114 * Recipe to profile association (0x0291)
2115 */
2116int
2117ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2118 struct ice_sq_cd *cd)
2119{
2120 struct ice_aqc_recipe_to_profile *cmd;
2121 struct ice_aq_desc desc;
2122
2123 cmd = &desc.params.recipe_to_profile;
2124 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2125 cmd->profile_id = cpu_to_le16(profile_id);
2126 /* Set the recipe ID bit in the bitmask to let the device know which
2127 * profile we are associating the recipe to
2128 */
2129 cmd->recipe_assoc = cpu_to_le64(r_assoc);
2130
2131 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2132}
2133
2134/**
2135 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2136 * @hw: pointer to the HW struct
2137 * @profile_id: package profile ID to associate the recipe with
2138 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2139 * @cd: pointer to command details structure or NULL
2140 * Associate profile ID with given recipe (0x0293)
2141 */
2142int
2143ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2144 struct ice_sq_cd *cd)
2145{
2146 struct ice_aqc_recipe_to_profile *cmd;
2147 struct ice_aq_desc desc;
2148 int status;
2149
2150 cmd = &desc.params.recipe_to_profile;
2151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2152 cmd->profile_id = cpu_to_le16(profile_id);
2153
2154 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2155 if (!status)
2156 *r_assoc = le64_to_cpu(cmd->recipe_assoc);
2157
2158 return status;
2159}
2160
2161/**
2162 * ice_init_chk_recipe_reuse_support - check if recipe reuse is supported
2163 * @hw: pointer to the hardware structure
2164 */
2165void ice_init_chk_recipe_reuse_support(struct ice_hw *hw)
2166{
2167 struct ice_nvm_info *nvm = &hw->flash.nvm;
2168
2169 hw->recp_reuse = (nvm->major == 0x4 && nvm->minor >= 0x30) ||
2170 nvm->major > 0x4;
2171}
2172
2173/**
2174 * ice_alloc_recipe - add recipe resource
2175 * @hw: pointer to the hardware structure
2176 * @rid: recipe ID returned as response to AQ call
2177 */
2178int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2179{
2180 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2181 u16 buf_len = __struct_size(sw_buf);
2182 u16 res_type;
2183 int status;
2184
2185 sw_buf->num_elems = cpu_to_le16(1);
2186 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE);
2187 if (hw->recp_reuse)
2188 res_type |= ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED;
2189 else
2190 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
2191 sw_buf->res_type = cpu_to_le16(res_type);
2192 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2193 ice_aqc_opc_alloc_res);
2194 if (!status) {
2195 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2196 hw->switch_info->recp_cnt++;
2197 }
2198
2199 return status;
2200}
2201
2202/**
2203 * ice_free_recipe_res - free recipe resource
2204 * @hw: pointer to the hardware structure
2205 * @rid: recipe ID to free
2206 *
2207 * Return: 0 on success, and others on error
2208 */
2209static int ice_free_recipe_res(struct ice_hw *hw, u16 rid)
2210{
2211 int status;
2212
2213 status = ice_free_hw_res(hw, ICE_AQC_RES_TYPE_RECIPE, 1, &rid);
2214 if (!status)
2215 hw->switch_info->recp_cnt--;
2216
2217 return status;
2218}
2219
2220/**
2221 * ice_release_recipe_res - disassociate and free recipe resource
2222 * @hw: pointer to the hardware structure
2223 * @recp: the recipe struct resource to unassociate and free
2224 *
2225 * Return: 0 on success, and others on error
2226 */
2227static int ice_release_recipe_res(struct ice_hw *hw,
2228 struct ice_sw_recipe *recp)
2229{
2230 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2231 struct ice_switch_info *sw = hw->switch_info;
2232 u64 recp_assoc;
2233 u32 rid, prof;
2234 int status;
2235
2236 for_each_set_bit(rid, recp->r_bitmap, ICE_MAX_NUM_RECIPES) {
2237 for_each_set_bit(prof, recipe_to_profile[rid],
2238 ICE_MAX_NUM_PROFILES) {
2239 status = ice_aq_get_recipe_to_profile(hw, prof,
2240 &recp_assoc,
2241 NULL);
2242 if (status)
2243 return status;
2244
2245 bitmap_from_arr64(r_bitmap, &recp_assoc,
2246 ICE_MAX_NUM_RECIPES);
2247 bitmap_andnot(r_bitmap, r_bitmap, recp->r_bitmap,
2248 ICE_MAX_NUM_RECIPES);
2249 bitmap_to_arr64(&recp_assoc, r_bitmap,
2250 ICE_MAX_NUM_RECIPES);
2251 ice_aq_map_recipe_to_profile(hw, prof,
2252 recp_assoc, NULL);
2253
2254 clear_bit(rid, profile_to_recipe[prof]);
2255 clear_bit(prof, recipe_to_profile[rid]);
2256 }
2257
2258 status = ice_free_recipe_res(hw, rid);
2259 if (status)
2260 return status;
2261
2262 sw->recp_list[rid].recp_created = false;
2263 sw->recp_list[rid].adv_rule = false;
2264 memset(&sw->recp_list[rid].lkup_exts, 0,
2265 sizeof(sw->recp_list[rid].lkup_exts));
2266 clear_bit(rid, recp->r_bitmap);
2267 }
2268
2269 return 0;
2270}
2271
2272/**
2273 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2274 * @hw: pointer to hardware structure
2275 *
2276 * This function is used to populate recipe_to_profile matrix where index to
2277 * this array is the recipe ID and the element is the mapping of which profiles
2278 * is this recipe mapped to.
2279 */
2280static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2281{
2282 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2283 u64 recp_assoc;
2284 u16 i;
2285
2286 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2287 u16 j;
2288
2289 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2290 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2291 if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2292 continue;
2293 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2294 bitmap_copy(profile_to_recipe[i], r_bitmap,
2295 ICE_MAX_NUM_RECIPES);
2296 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2297 set_bit(i, recipe_to_profile[j]);
2298 }
2299}
2300
2301/**
2302 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2303 * @hw: pointer to hardware structure
2304 * @recps: struct that we need to populate
2305 * @rid: recipe ID that we are populating
2306 * @refresh_required: true if we should get recipe to profile mapping from FW
2307 * @is_add: flag of adding recipe
2308 *
2309 * This function is used to populate all the necessary entries into our
2310 * bookkeeping so that we have a current list of all the recipes that are
2311 * programmed in the firmware.
2312 */
2313static int
2314ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2315 bool *refresh_required, bool is_add)
2316{
2317 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2318 struct ice_aqc_recipe_data_elem *tmp;
2319 u16 num_recps = ICE_MAX_NUM_RECIPES;
2320 struct ice_prot_lkup_ext *lkup_exts;
2321 u8 fv_word_idx = 0;
2322 u16 sub_recps;
2323 int status;
2324
2325 bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2326
2327 /* we need a buffer big enough to accommodate all the recipes */
2328 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2329 if (!tmp)
2330 return -ENOMEM;
2331
2332 tmp[0].recipe_indx = rid;
2333 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2334 /* non-zero status meaning recipe doesn't exist */
2335 if (status)
2336 goto err_unroll;
2337
2338 /* Get recipe to profile map so that we can get the fv from lkups that
2339 * we read for a recipe from FW. Since we want to minimize the number of
2340 * times we make this FW call, just make one call and cache the copy
2341 * until a new recipe is added. This operation is only required the
2342 * first time to get the changes from FW. Then to search existing
2343 * entries we don't need to update the cache again until another recipe
2344 * gets added.
2345 */
2346 if (*refresh_required) {
2347 ice_get_recp_to_prof_map(hw);
2348 *refresh_required = false;
2349 }
2350
2351 /* Start populating all the entries for recps[rid] based on lkups from
2352 * firmware. Note that we are only creating the root recipe in our
2353 * database.
2354 */
2355 lkup_exts = &recps[rid].lkup_exts;
2356
2357 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2358 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2359 u8 i, prof, idx, prot = 0;
2360 bool is_root;
2361 u16 off = 0;
2362
2363 idx = root_bufs.recipe_indx;
2364 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2365
2366 /* Mark all result indices in this chain */
2367 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2368 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2369 result_bm);
2370
2371 /* get the first profile that is associated with rid */
2372 prof = find_first_bit(recipe_to_profile[idx],
2373 ICE_MAX_NUM_PROFILES);
2374 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2375 u8 lkup_indx = root_bufs.content.lkup_indx[i];
2376 u16 lkup_mask = le16_to_cpu(root_bufs.content.mask[i]);
2377
2378 /* If the recipe is a chained recipe then all its
2379 * child recipe's result will have a result index.
2380 * To fill fv_words we should not use those result
2381 * index, we only need the protocol ids and offsets.
2382 * We will skip all the fv_idx which stores result
2383 * index in them. We also need to skip any fv_idx which
2384 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2385 * valid offset value.
2386 */
2387 if (!lkup_indx ||
2388 (lkup_indx & ICE_AQ_RECIPE_LKUP_IGNORE) ||
2389 test_bit(lkup_indx,
2390 hw->switch_info->prof_res_bm[prof]))
2391 continue;
2392
2393 ice_find_prot_off(hw, ICE_BLK_SW, prof, lkup_indx,
2394 &prot, &off);
2395 lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2396 lkup_exts->fv_words[fv_word_idx].off = off;
2397 lkup_exts->field_mask[fv_word_idx] = lkup_mask;
2398 fv_word_idx++;
2399 }
2400
2401 /* Propagate some data to the recipe database */
2402 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2403 recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl &
2404 ICE_AQ_RECIPE_ACT_NEED_PASS_L2);
2405 recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl &
2406 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2);
2407 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2408 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2409 set_bit(root_bufs.content.result_indx &
2410 ~ICE_AQ_RECIPE_RESULT_EN, recps[idx].res_idxs);
2411 }
2412
2413 if (!is_root) {
2414 if (hw->recp_reuse && is_add)
2415 recps[idx].recp_created = true;
2416
2417 continue;
2418 }
2419
2420 /* Only do the following for root recipes entries */
2421 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2422 sizeof(recps[idx].r_bitmap));
2423 recps[idx].root_rid = root_bufs.content.rid &
2424 ~ICE_AQ_RECIPE_ID_IS_ROOT;
2425 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2426 }
2427
2428 /* Complete initialization of the root recipe entry */
2429 lkup_exts->n_val_words = fv_word_idx;
2430
2431 /* Copy result indexes */
2432 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2433 if (is_add)
2434 recps[rid].recp_created = true;
2435
2436err_unroll:
2437 kfree(tmp);
2438 return status;
2439}
2440
2441/* ice_init_port_info - Initialize port_info with switch configuration data
2442 * @pi: pointer to port_info
2443 * @vsi_port_num: VSI number or port number
2444 * @type: Type of switch element (port or VSI)
2445 * @swid: switch ID of the switch the element is attached to
2446 * @pf_vf_num: PF or VF number
2447 * @is_vf: true if the element is a VF, false otherwise
2448 */
2449static void
2450ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2451 u16 swid, u16 pf_vf_num, bool is_vf)
2452{
2453 switch (type) {
2454 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2455 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2456 pi->sw_id = swid;
2457 pi->pf_vf_num = pf_vf_num;
2458 pi->is_vf = is_vf;
2459 break;
2460 default:
2461 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2462 break;
2463 }
2464}
2465
2466/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2467 * @hw: pointer to the hardware structure
2468 */
2469int ice_get_initial_sw_cfg(struct ice_hw *hw)
2470{
2471 struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2472 u16 req_desc = 0;
2473 u16 num_elems;
2474 int status;
2475 u16 i;
2476
2477 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2478 if (!rbuf)
2479 return -ENOMEM;
2480
2481 /* Multiple calls to ice_aq_get_sw_cfg may be required
2482 * to get all the switch configuration information. The need
2483 * for additional calls is indicated by ice_aq_get_sw_cfg
2484 * writing a non-zero value in req_desc
2485 */
2486 do {
2487 struct ice_aqc_get_sw_cfg_resp_elem *ele;
2488
2489 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2490 &req_desc, &num_elems, NULL);
2491
2492 if (status)
2493 break;
2494
2495 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2496 u16 pf_vf_num, swid, vsi_port_num;
2497 bool is_vf = false;
2498 u8 res_type;
2499
2500 vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2501 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2502
2503 pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2504 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2505
2506 swid = le16_to_cpu(ele->swid);
2507
2508 if (le16_to_cpu(ele->pf_vf_num) &
2509 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2510 is_vf = true;
2511
2512 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2513 ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2514
2515 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2516 /* FW VSI is not needed. Just continue. */
2517 continue;
2518 }
2519
2520 ice_init_port_info(hw->port_info, vsi_port_num,
2521 res_type, swid, pf_vf_num, is_vf);
2522 }
2523 } while (req_desc && !status);
2524
2525 kfree(rbuf);
2526 return status;
2527}
2528
2529/**
2530 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2531 * @hw: pointer to the hardware structure
2532 * @fi: filter info structure to fill/update
2533 *
2534 * This helper function populates the lb_en and lan_en elements of the provided
2535 * ice_fltr_info struct using the switch's type and characteristics of the
2536 * switch rule being configured.
2537 */
2538static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2539{
2540 fi->lb_en = false;
2541 fi->lan_en = false;
2542 if ((fi->flag & ICE_FLTR_TX) &&
2543 (fi->fltr_act == ICE_FWD_TO_VSI ||
2544 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2545 fi->fltr_act == ICE_FWD_TO_Q ||
2546 fi->fltr_act == ICE_FWD_TO_QGRP)) {
2547 /* Setting LB for prune actions will result in replicated
2548 * packets to the internal switch that will be dropped.
2549 */
2550 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2551 fi->lb_en = true;
2552
2553 /* Set lan_en to TRUE if
2554 * 1. The switch is a VEB AND
2555 * 2
2556 * 2.1 The lookup is a directional lookup like ethertype,
2557 * promiscuous, ethertype-MAC, promiscuous-VLAN
2558 * and default-port OR
2559 * 2.2 The lookup is VLAN, OR
2560 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2561 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2562 *
2563 * OR
2564 *
2565 * The switch is a VEPA.
2566 *
2567 * In all other cases, the LAN enable has to be set to false.
2568 */
2569 if (hw->evb_veb) {
2570 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2571 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2572 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2573 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2574 fi->lkup_type == ICE_SW_LKUP_DFLT ||
2575 fi->lkup_type == ICE_SW_LKUP_VLAN ||
2576 (fi->lkup_type == ICE_SW_LKUP_MAC &&
2577 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2578 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2579 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2580 fi->lan_en = true;
2581 } else {
2582 fi->lan_en = true;
2583 }
2584 }
2585
2586 if (fi->flag & ICE_FLTR_TX_ONLY)
2587 fi->lan_en = false;
2588}
2589
2590/**
2591 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2592 * @eth_hdr: pointer to buffer to populate
2593 */
2594void ice_fill_eth_hdr(u8 *eth_hdr)
2595{
2596 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2597}
2598
2599/**
2600 * ice_fill_sw_rule - Helper function to fill switch rule structure
2601 * @hw: pointer to the hardware structure
2602 * @f_info: entry containing packet forwarding information
2603 * @s_rule: switch rule structure to be filled in based on mac_entry
2604 * @opc: switch rules population command type - pass in the command opcode
2605 */
2606static void
2607ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2608 struct ice_sw_rule_lkup_rx_tx *s_rule,
2609 enum ice_adminq_opc opc)
2610{
2611 u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2612 u16 vlan_tpid = ETH_P_8021Q;
2613 void *daddr = NULL;
2614 u16 eth_hdr_sz;
2615 u8 *eth_hdr;
2616 u32 act = 0;
2617 __be16 *off;
2618 u8 q_rgn;
2619
2620 if (opc == ice_aqc_opc_remove_sw_rules) {
2621 s_rule->act = 0;
2622 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2623 s_rule->hdr_len = 0;
2624 return;
2625 }
2626
2627 eth_hdr_sz = sizeof(dummy_eth_header);
2628 eth_hdr = s_rule->hdr_data;
2629
2630 /* initialize the ether header with a dummy header */
2631 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2632 ice_fill_sw_info(hw, f_info);
2633
2634 switch (f_info->fltr_act) {
2635 case ICE_FWD_TO_VSI:
2636 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2637 f_info->fwd_id.hw_vsi_id);
2638 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2639 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2640 ICE_SINGLE_ACT_VALID_BIT;
2641 break;
2642 case ICE_FWD_TO_VSI_LIST:
2643 act |= ICE_SINGLE_ACT_VSI_LIST;
2644 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2645 f_info->fwd_id.vsi_list_id);
2646 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2647 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2648 ICE_SINGLE_ACT_VALID_BIT;
2649 break;
2650 case ICE_FWD_TO_Q:
2651 act |= ICE_SINGLE_ACT_TO_Q;
2652 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2653 f_info->fwd_id.q_id);
2654 break;
2655 case ICE_DROP_PACKET:
2656 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2657 ICE_SINGLE_ACT_VALID_BIT;
2658 break;
2659 case ICE_FWD_TO_QGRP:
2660 q_rgn = f_info->qgrp_size > 0 ?
2661 (u8)ilog2(f_info->qgrp_size) : 0;
2662 act |= ICE_SINGLE_ACT_TO_Q;
2663 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2664 f_info->fwd_id.q_id);
2665 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2666 break;
2667 default:
2668 return;
2669 }
2670
2671 if (f_info->lb_en)
2672 act |= ICE_SINGLE_ACT_LB_ENABLE;
2673 if (f_info->lan_en)
2674 act |= ICE_SINGLE_ACT_LAN_ENABLE;
2675
2676 switch (f_info->lkup_type) {
2677 case ICE_SW_LKUP_MAC:
2678 daddr = f_info->l_data.mac.mac_addr;
2679 break;
2680 case ICE_SW_LKUP_VLAN:
2681 vlan_id = f_info->l_data.vlan.vlan_id;
2682 if (f_info->l_data.vlan.tpid_valid)
2683 vlan_tpid = f_info->l_data.vlan.tpid;
2684 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2685 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2686 act |= ICE_SINGLE_ACT_PRUNE;
2687 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2688 }
2689 break;
2690 case ICE_SW_LKUP_ETHERTYPE_MAC:
2691 daddr = f_info->l_data.ethertype_mac.mac_addr;
2692 fallthrough;
2693 case ICE_SW_LKUP_ETHERTYPE:
2694 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2695 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2696 break;
2697 case ICE_SW_LKUP_MAC_VLAN:
2698 daddr = f_info->l_data.mac_vlan.mac_addr;
2699 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2700 break;
2701 case ICE_SW_LKUP_PROMISC_VLAN:
2702 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2703 fallthrough;
2704 case ICE_SW_LKUP_PROMISC:
2705 daddr = f_info->l_data.mac_vlan.mac_addr;
2706 break;
2707 default:
2708 break;
2709 }
2710
2711 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2712 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2713 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2714
2715 /* Recipe set depending on lookup type */
2716 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2717 s_rule->src = cpu_to_le16(f_info->src);
2718 s_rule->act = cpu_to_le32(act);
2719
2720 if (daddr)
2721 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2722
2723 if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2724 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2725 *off = cpu_to_be16(vlan_id);
2726 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2727 *off = cpu_to_be16(vlan_tpid);
2728 }
2729
2730 /* Create the switch rule with the final dummy Ethernet header */
2731 if (opc != ice_aqc_opc_update_sw_rules)
2732 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2733}
2734
2735/**
2736 * ice_add_marker_act
2737 * @hw: pointer to the hardware structure
2738 * @m_ent: the management entry for which sw marker needs to be added
2739 * @sw_marker: sw marker to tag the Rx descriptor with
2740 * @l_id: large action resource ID
2741 *
2742 * Create a large action to hold software marker and update the switch rule
2743 * entry pointed by m_ent with newly created large action
2744 */
2745static int
2746ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2747 u16 sw_marker, u16 l_id)
2748{
2749 struct ice_sw_rule_lkup_rx_tx *rx_tx;
2750 struct ice_sw_rule_lg_act *lg_act;
2751 /* For software marker we need 3 large actions
2752 * 1. FWD action: FWD TO VSI or VSI LIST
2753 * 2. GENERIC VALUE action to hold the profile ID
2754 * 3. GENERIC VALUE action to hold the software marker ID
2755 */
2756 const u16 num_lg_acts = 3;
2757 u16 lg_act_size;
2758 u16 rules_size;
2759 int status;
2760 u32 act;
2761 u16 id;
2762
2763 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2764 return -EINVAL;
2765
2766 /* Create two back-to-back switch rules and submit them to the HW using
2767 * one memory buffer:
2768 * 1. Large Action
2769 * 2. Look up Tx Rx
2770 */
2771 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2772 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2773 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2774 if (!lg_act)
2775 return -ENOMEM;
2776
2777 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2778
2779 /* Fill in the first switch rule i.e. large action */
2780 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2781 lg_act->index = cpu_to_le16(l_id);
2782 lg_act->size = cpu_to_le16(num_lg_acts);
2783
2784 /* First action VSI forwarding or VSI list forwarding depending on how
2785 * many VSIs
2786 */
2787 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2788 m_ent->fltr_info.fwd_id.hw_vsi_id;
2789
2790 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2791 act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2792 if (m_ent->vsi_count > 1)
2793 act |= ICE_LG_ACT_VSI_LIST;
2794 lg_act->act[0] = cpu_to_le32(act);
2795
2796 /* Second action descriptor type */
2797 act = ICE_LG_ACT_GENERIC;
2798
2799 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2800 lg_act->act[1] = cpu_to_le32(act);
2801
2802 act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2803 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2804
2805 /* Third action Marker value */
2806 act |= ICE_LG_ACT_GENERIC;
2807 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2808
2809 lg_act->act[2] = cpu_to_le32(act);
2810
2811 /* call the fill switch rule to fill the lookup Tx Rx structure */
2812 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2813 ice_aqc_opc_update_sw_rules);
2814
2815 /* Update the action to point to the large action ID */
2816 act = ICE_SINGLE_ACT_PTR;
2817 act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2818 rx_tx->act = cpu_to_le32(act);
2819
2820 /* Use the filter rule ID of the previously created rule with single
2821 * act. Once the update happens, hardware will treat this as large
2822 * action
2823 */
2824 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2825
2826 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2827 ice_aqc_opc_update_sw_rules, NULL);
2828 if (!status) {
2829 m_ent->lg_act_idx = l_id;
2830 m_ent->sw_marker_id = sw_marker;
2831 }
2832
2833 devm_kfree(ice_hw_to_dev(hw), lg_act);
2834 return status;
2835}
2836
2837/**
2838 * ice_create_vsi_list_map
2839 * @hw: pointer to the hardware structure
2840 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2841 * @num_vsi: number of VSI handles in the array
2842 * @vsi_list_id: VSI list ID generated as part of allocate resource
2843 *
2844 * Helper function to create a new entry of VSI list ID to VSI mapping
2845 * using the given VSI list ID
2846 */
2847static struct ice_vsi_list_map_info *
2848ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2849 u16 vsi_list_id)
2850{
2851 struct ice_switch_info *sw = hw->switch_info;
2852 struct ice_vsi_list_map_info *v_map;
2853 int i;
2854
2855 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2856 if (!v_map)
2857 return NULL;
2858
2859 v_map->vsi_list_id = vsi_list_id;
2860 v_map->ref_cnt = 1;
2861 for (i = 0; i < num_vsi; i++)
2862 set_bit(vsi_handle_arr[i], v_map->vsi_map);
2863
2864 list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2865 return v_map;
2866}
2867
2868/**
2869 * ice_update_vsi_list_rule
2870 * @hw: pointer to the hardware structure
2871 * @vsi_handle_arr: array of VSI handles to form a VSI list
2872 * @num_vsi: number of VSI handles in the array
2873 * @vsi_list_id: VSI list ID generated as part of allocate resource
2874 * @remove: Boolean value to indicate if this is a remove action
2875 * @opc: switch rules population command type - pass in the command opcode
2876 * @lkup_type: lookup type of the filter
2877 *
2878 * Call AQ command to add a new switch rule or update existing switch rule
2879 * using the given VSI list ID
2880 */
2881static int
2882ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2883 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2884 enum ice_sw_lkup_type lkup_type)
2885{
2886 struct ice_sw_rule_vsi_list *s_rule;
2887 u16 s_rule_size;
2888 u16 rule_type;
2889 int status;
2890 int i;
2891
2892 if (!num_vsi)
2893 return -EINVAL;
2894
2895 if (lkup_type == ICE_SW_LKUP_MAC ||
2896 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2897 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2898 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2899 lkup_type == ICE_SW_LKUP_PROMISC ||
2900 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2901 lkup_type == ICE_SW_LKUP_DFLT ||
2902 lkup_type == ICE_SW_LKUP_LAST)
2903 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2904 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2905 else if (lkup_type == ICE_SW_LKUP_VLAN)
2906 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2907 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2908 else
2909 return -EINVAL;
2910
2911 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2912 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2913 if (!s_rule)
2914 return -ENOMEM;
2915 for (i = 0; i < num_vsi; i++) {
2916 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2917 status = -EINVAL;
2918 goto exit;
2919 }
2920 /* AQ call requires hw_vsi_id(s) */
2921 s_rule->vsi[i] =
2922 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2923 }
2924
2925 s_rule->hdr.type = cpu_to_le16(rule_type);
2926 s_rule->number_vsi = cpu_to_le16(num_vsi);
2927 s_rule->index = cpu_to_le16(vsi_list_id);
2928
2929 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2930
2931exit:
2932 devm_kfree(ice_hw_to_dev(hw), s_rule);
2933 return status;
2934}
2935
2936/**
2937 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2938 * @hw: pointer to the HW struct
2939 * @vsi_handle_arr: array of VSI handles to form a VSI list
2940 * @num_vsi: number of VSI handles in the array
2941 * @vsi_list_id: stores the ID of the VSI list to be created
2942 * @lkup_type: switch rule filter's lookup type
2943 */
2944static int
2945ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2946 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2947{
2948 int status;
2949
2950 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2951 ice_aqc_opc_alloc_res);
2952 if (status)
2953 return status;
2954
2955 /* Update the newly created VSI list to include the specified VSIs */
2956 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2957 *vsi_list_id, false,
2958 ice_aqc_opc_add_sw_rules, lkup_type);
2959}
2960
2961/**
2962 * ice_create_pkt_fwd_rule
2963 * @hw: pointer to the hardware structure
2964 * @f_entry: entry containing packet forwarding information
2965 *
2966 * Create switch rule with given filter information and add an entry
2967 * to the corresponding filter management list to track this switch rule
2968 * and VSI mapping
2969 */
2970static int
2971ice_create_pkt_fwd_rule(struct ice_hw *hw,
2972 struct ice_fltr_list_entry *f_entry)
2973{
2974 struct ice_fltr_mgmt_list_entry *fm_entry;
2975 struct ice_sw_rule_lkup_rx_tx *s_rule;
2976 enum ice_sw_lkup_type l_type;
2977 struct ice_sw_recipe *recp;
2978 int status;
2979
2980 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2981 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2982 GFP_KERNEL);
2983 if (!s_rule)
2984 return -ENOMEM;
2985 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2986 GFP_KERNEL);
2987 if (!fm_entry) {
2988 status = -ENOMEM;
2989 goto ice_create_pkt_fwd_rule_exit;
2990 }
2991
2992 fm_entry->fltr_info = f_entry->fltr_info;
2993
2994 /* Initialize all the fields for the management entry */
2995 fm_entry->vsi_count = 1;
2996 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2997 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2998 fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2999
3000 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
3001 ice_aqc_opc_add_sw_rules);
3002
3003 status = ice_aq_sw_rules(hw, s_rule,
3004 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3005 ice_aqc_opc_add_sw_rules, NULL);
3006 if (status) {
3007 devm_kfree(ice_hw_to_dev(hw), fm_entry);
3008 goto ice_create_pkt_fwd_rule_exit;
3009 }
3010
3011 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3012 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3013
3014 /* The book keeping entries will get removed when base driver
3015 * calls remove filter AQ command
3016 */
3017 l_type = fm_entry->fltr_info.lkup_type;
3018 recp = &hw->switch_info->recp_list[l_type];
3019 list_add(&fm_entry->list_entry, &recp->filt_rules);
3020
3021ice_create_pkt_fwd_rule_exit:
3022 devm_kfree(ice_hw_to_dev(hw), s_rule);
3023 return status;
3024}
3025
3026/**
3027 * ice_update_pkt_fwd_rule
3028 * @hw: pointer to the hardware structure
3029 * @f_info: filter information for switch rule
3030 *
3031 * Call AQ command to update a previously created switch rule with a
3032 * VSI list ID
3033 */
3034static int
3035ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
3036{
3037 struct ice_sw_rule_lkup_rx_tx *s_rule;
3038 int status;
3039
3040 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3041 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
3042 GFP_KERNEL);
3043 if (!s_rule)
3044 return -ENOMEM;
3045
3046 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
3047
3048 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
3049
3050 /* Update switch rule with new rule set to forward VSI list */
3051 status = ice_aq_sw_rules(hw, s_rule,
3052 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3053 ice_aqc_opc_update_sw_rules, NULL);
3054
3055 devm_kfree(ice_hw_to_dev(hw), s_rule);
3056 return status;
3057}
3058
3059/**
3060 * ice_update_sw_rule_bridge_mode
3061 * @hw: pointer to the HW struct
3062 *
3063 * Updates unicast switch filter rules based on VEB/VEPA mode
3064 */
3065int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
3066{
3067 struct ice_switch_info *sw = hw->switch_info;
3068 struct ice_fltr_mgmt_list_entry *fm_entry;
3069 struct list_head *rule_head;
3070 struct mutex *rule_lock; /* Lock to protect filter rule list */
3071 int status = 0;
3072
3073 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3074 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3075
3076 mutex_lock(rule_lock);
3077 list_for_each_entry(fm_entry, rule_head, list_entry) {
3078 struct ice_fltr_info *fi = &fm_entry->fltr_info;
3079 u8 *addr = fi->l_data.mac.mac_addr;
3080
3081 /* Update unicast Tx rules to reflect the selected
3082 * VEB/VEPA mode
3083 */
3084 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
3085 (fi->fltr_act == ICE_FWD_TO_VSI ||
3086 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
3087 fi->fltr_act == ICE_FWD_TO_Q ||
3088 fi->fltr_act == ICE_FWD_TO_QGRP)) {
3089 status = ice_update_pkt_fwd_rule(hw, fi);
3090 if (status)
3091 break;
3092 }
3093 }
3094
3095 mutex_unlock(rule_lock);
3096
3097 return status;
3098}
3099
3100/**
3101 * ice_add_update_vsi_list
3102 * @hw: pointer to the hardware structure
3103 * @m_entry: pointer to current filter management list entry
3104 * @cur_fltr: filter information from the book keeping entry
3105 * @new_fltr: filter information with the new VSI to be added
3106 *
3107 * Call AQ command to add or update previously created VSI list with new VSI.
3108 *
3109 * Helper function to do book keeping associated with adding filter information
3110 * The algorithm to do the book keeping is described below :
3111 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
3112 * if only one VSI has been added till now
3113 * Allocate a new VSI list and add two VSIs
3114 * to this list using switch rule command
3115 * Update the previously created switch rule with the
3116 * newly created VSI list ID
3117 * if a VSI list was previously created
3118 * Add the new VSI to the previously created VSI list set
3119 * using the update switch rule command
3120 */
3121static int
3122ice_add_update_vsi_list(struct ice_hw *hw,
3123 struct ice_fltr_mgmt_list_entry *m_entry,
3124 struct ice_fltr_info *cur_fltr,
3125 struct ice_fltr_info *new_fltr)
3126{
3127 u16 vsi_list_id = 0;
3128 int status = 0;
3129
3130 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
3131 cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
3132 return -EOPNOTSUPP;
3133
3134 if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
3135 new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
3136 (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
3137 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
3138 return -EOPNOTSUPP;
3139
3140 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3141 /* Only one entry existed in the mapping and it was not already
3142 * a part of a VSI list. So, create a VSI list with the old and
3143 * new VSIs.
3144 */
3145 struct ice_fltr_info tmp_fltr;
3146 u16 vsi_handle_arr[2];
3147
3148 /* A rule already exists with the new VSI being added */
3149 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3150 return -EEXIST;
3151
3152 vsi_handle_arr[0] = cur_fltr->vsi_handle;
3153 vsi_handle_arr[1] = new_fltr->vsi_handle;
3154 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3155 &vsi_list_id,
3156 new_fltr->lkup_type);
3157 if (status)
3158 return status;
3159
3160 tmp_fltr = *new_fltr;
3161 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3162 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3163 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3164 /* Update the previous switch rule of "MAC forward to VSI" to
3165 * "MAC fwd to VSI list"
3166 */
3167 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3168 if (status)
3169 return status;
3170
3171 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3172 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3173 m_entry->vsi_list_info =
3174 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3175 vsi_list_id);
3176
3177 if (!m_entry->vsi_list_info)
3178 return -ENOMEM;
3179
3180 /* If this entry was large action then the large action needs
3181 * to be updated to point to FWD to VSI list
3182 */
3183 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3184 status =
3185 ice_add_marker_act(hw, m_entry,
3186 m_entry->sw_marker_id,
3187 m_entry->lg_act_idx);
3188 } else {
3189 u16 vsi_handle = new_fltr->vsi_handle;
3190 enum ice_adminq_opc opcode;
3191
3192 if (!m_entry->vsi_list_info)
3193 return -EIO;
3194
3195 /* A rule already exists with the new VSI being added */
3196 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3197 return -EEXIST;
3198
3199 /* Update the previously created VSI list set with
3200 * the new VSI ID passed in
3201 */
3202 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3203 opcode = ice_aqc_opc_update_sw_rules;
3204
3205 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3206 vsi_list_id, false, opcode,
3207 new_fltr->lkup_type);
3208 /* update VSI list mapping info with new VSI ID */
3209 if (!status)
3210 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3211 }
3212 if (!status)
3213 m_entry->vsi_count++;
3214 return status;
3215}
3216
3217/**
3218 * ice_find_rule_entry - Search a rule entry
3219 * @hw: pointer to the hardware structure
3220 * @recp_id: lookup type for which the specified rule needs to be searched
3221 * @f_info: rule information
3222 *
3223 * Helper function to search for a given rule entry
3224 * Returns pointer to entry storing the rule if found
3225 */
3226static struct ice_fltr_mgmt_list_entry *
3227ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3228{
3229 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3230 struct ice_switch_info *sw = hw->switch_info;
3231 struct list_head *list_head;
3232
3233 list_head = &sw->recp_list[recp_id].filt_rules;
3234 list_for_each_entry(list_itr, list_head, list_entry) {
3235 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3236 sizeof(f_info->l_data)) &&
3237 f_info->flag == list_itr->fltr_info.flag) {
3238 ret = list_itr;
3239 break;
3240 }
3241 }
3242 return ret;
3243}
3244
3245/**
3246 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3247 * @hw: pointer to the hardware structure
3248 * @recp_id: lookup type for which VSI lists needs to be searched
3249 * @vsi_handle: VSI handle to be found in VSI list
3250 * @vsi_list_id: VSI list ID found containing vsi_handle
3251 *
3252 * Helper function to search a VSI list with single entry containing given VSI
3253 * handle element. This can be extended further to search VSI list with more
3254 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3255 */
3256struct ice_vsi_list_map_info *
3257ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3258 u16 *vsi_list_id)
3259{
3260 struct ice_vsi_list_map_info *map_info = NULL;
3261 struct ice_switch_info *sw = hw->switch_info;
3262 struct ice_fltr_mgmt_list_entry *list_itr;
3263 struct list_head *list_head;
3264
3265 list_head = &sw->recp_list[recp_id].filt_rules;
3266 list_for_each_entry(list_itr, list_head, list_entry) {
3267 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3268 map_info = list_itr->vsi_list_info;
3269 if (test_bit(vsi_handle, map_info->vsi_map)) {
3270 *vsi_list_id = map_info->vsi_list_id;
3271 return map_info;
3272 }
3273 }
3274 }
3275 return NULL;
3276}
3277
3278/**
3279 * ice_add_rule_internal - add rule for a given lookup type
3280 * @hw: pointer to the hardware structure
3281 * @recp_id: lookup type (recipe ID) for which rule has to be added
3282 * @f_entry: structure containing MAC forwarding information
3283 *
3284 * Adds or updates the rule lists for a given recipe
3285 */
3286static int
3287ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3288 struct ice_fltr_list_entry *f_entry)
3289{
3290 struct ice_switch_info *sw = hw->switch_info;
3291 struct ice_fltr_info *new_fltr, *cur_fltr;
3292 struct ice_fltr_mgmt_list_entry *m_entry;
3293 struct mutex *rule_lock; /* Lock to protect filter rule list */
3294 int status = 0;
3295
3296 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3297 return -EINVAL;
3298 f_entry->fltr_info.fwd_id.hw_vsi_id =
3299 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3300
3301 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3302
3303 mutex_lock(rule_lock);
3304 new_fltr = &f_entry->fltr_info;
3305 if (new_fltr->flag & ICE_FLTR_RX)
3306 new_fltr->src = hw->port_info->lport;
3307 else if (new_fltr->flag & ICE_FLTR_TX)
3308 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3309
3310 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3311 if (!m_entry) {
3312 mutex_unlock(rule_lock);
3313 return ice_create_pkt_fwd_rule(hw, f_entry);
3314 }
3315
3316 cur_fltr = &m_entry->fltr_info;
3317 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3318 mutex_unlock(rule_lock);
3319
3320 return status;
3321}
3322
3323/**
3324 * ice_remove_vsi_list_rule
3325 * @hw: pointer to the hardware structure
3326 * @vsi_list_id: VSI list ID generated as part of allocate resource
3327 * @lkup_type: switch rule filter lookup type
3328 *
3329 * The VSI list should be emptied before this function is called to remove the
3330 * VSI list.
3331 */
3332static int
3333ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3334 enum ice_sw_lkup_type lkup_type)
3335{
3336 struct ice_sw_rule_vsi_list *s_rule;
3337 u16 s_rule_size;
3338 int status;
3339
3340 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3341 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3342 if (!s_rule)
3343 return -ENOMEM;
3344
3345 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3346 s_rule->index = cpu_to_le16(vsi_list_id);
3347
3348 /* Free the vsi_list resource that we allocated. It is assumed that the
3349 * list is empty at this point.
3350 */
3351 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3352 ice_aqc_opc_free_res);
3353
3354 devm_kfree(ice_hw_to_dev(hw), s_rule);
3355 return status;
3356}
3357
3358/**
3359 * ice_rem_update_vsi_list
3360 * @hw: pointer to the hardware structure
3361 * @vsi_handle: VSI handle of the VSI to remove
3362 * @fm_list: filter management entry for which the VSI list management needs to
3363 * be done
3364 */
3365static int
3366ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3367 struct ice_fltr_mgmt_list_entry *fm_list)
3368{
3369 enum ice_sw_lkup_type lkup_type;
3370 u16 vsi_list_id;
3371 int status = 0;
3372
3373 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3374 fm_list->vsi_count == 0)
3375 return -EINVAL;
3376
3377 /* A rule with the VSI being removed does not exist */
3378 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3379 return -ENOENT;
3380
3381 lkup_type = fm_list->fltr_info.lkup_type;
3382 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3383 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3384 ice_aqc_opc_update_sw_rules,
3385 lkup_type);
3386 if (status)
3387 return status;
3388
3389 fm_list->vsi_count--;
3390 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3391
3392 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3393 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3394 struct ice_vsi_list_map_info *vsi_list_info =
3395 fm_list->vsi_list_info;
3396 u16 rem_vsi_handle;
3397
3398 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3399 ICE_MAX_VSI);
3400 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3401 return -EIO;
3402
3403 /* Make sure VSI list is empty before removing it below */
3404 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3405 vsi_list_id, true,
3406 ice_aqc_opc_update_sw_rules,
3407 lkup_type);
3408 if (status)
3409 return status;
3410
3411 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3412 tmp_fltr_info.fwd_id.hw_vsi_id =
3413 ice_get_hw_vsi_num(hw, rem_vsi_handle);
3414 tmp_fltr_info.vsi_handle = rem_vsi_handle;
3415 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3416 if (status) {
3417 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3418 tmp_fltr_info.fwd_id.hw_vsi_id, status);
3419 return status;
3420 }
3421
3422 fm_list->fltr_info = tmp_fltr_info;
3423 }
3424
3425 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3426 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3427 struct ice_vsi_list_map_info *vsi_list_info =
3428 fm_list->vsi_list_info;
3429
3430 /* Remove the VSI list since it is no longer used */
3431 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3432 if (status) {
3433 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3434 vsi_list_id, status);
3435 return status;
3436 }
3437
3438 list_del(&vsi_list_info->list_entry);
3439 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3440 fm_list->vsi_list_info = NULL;
3441 }
3442
3443 return status;
3444}
3445
3446/**
3447 * ice_remove_rule_internal - Remove a filter rule of a given type
3448 * @hw: pointer to the hardware structure
3449 * @recp_id: recipe ID for which the rule needs to removed
3450 * @f_entry: rule entry containing filter information
3451 */
3452static int
3453ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3454 struct ice_fltr_list_entry *f_entry)
3455{
3456 struct ice_switch_info *sw = hw->switch_info;
3457 struct ice_fltr_mgmt_list_entry *list_elem;
3458 struct mutex *rule_lock; /* Lock to protect filter rule list */
3459 bool remove_rule = false;
3460 u16 vsi_handle;
3461 int status = 0;
3462
3463 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3464 return -EINVAL;
3465 f_entry->fltr_info.fwd_id.hw_vsi_id =
3466 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3467
3468 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3469 mutex_lock(rule_lock);
3470 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3471 if (!list_elem) {
3472 status = -ENOENT;
3473 goto exit;
3474 }
3475
3476 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3477 remove_rule = true;
3478 } else if (!list_elem->vsi_list_info) {
3479 status = -ENOENT;
3480 goto exit;
3481 } else if (list_elem->vsi_list_info->ref_cnt > 1) {
3482 /* a ref_cnt > 1 indicates that the vsi_list is being
3483 * shared by multiple rules. Decrement the ref_cnt and
3484 * remove this rule, but do not modify the list, as it
3485 * is in-use by other rules.
3486 */
3487 list_elem->vsi_list_info->ref_cnt--;
3488 remove_rule = true;
3489 } else {
3490 /* a ref_cnt of 1 indicates the vsi_list is only used
3491 * by one rule. However, the original removal request is only
3492 * for a single VSI. Update the vsi_list first, and only
3493 * remove the rule if there are no further VSIs in this list.
3494 */
3495 vsi_handle = f_entry->fltr_info.vsi_handle;
3496 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3497 if (status)
3498 goto exit;
3499 /* if VSI count goes to zero after updating the VSI list */
3500 if (list_elem->vsi_count == 0)
3501 remove_rule = true;
3502 }
3503
3504 if (remove_rule) {
3505 /* Remove the lookup rule */
3506 struct ice_sw_rule_lkup_rx_tx *s_rule;
3507
3508 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3509 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3510 GFP_KERNEL);
3511 if (!s_rule) {
3512 status = -ENOMEM;
3513 goto exit;
3514 }
3515
3516 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3517 ice_aqc_opc_remove_sw_rules);
3518
3519 status = ice_aq_sw_rules(hw, s_rule,
3520 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3521 1, ice_aqc_opc_remove_sw_rules, NULL);
3522
3523 /* Remove a book keeping from the list */
3524 devm_kfree(ice_hw_to_dev(hw), s_rule);
3525
3526 if (status)
3527 goto exit;
3528
3529 list_del(&list_elem->list_entry);
3530 devm_kfree(ice_hw_to_dev(hw), list_elem);
3531 }
3532exit:
3533 mutex_unlock(rule_lock);
3534 return status;
3535}
3536
3537/**
3538 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3539 * @hw: pointer to the hardware structure
3540 * @vlan_id: VLAN ID
3541 * @vsi_handle: check MAC filter for this VSI
3542 */
3543bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3544{
3545 struct ice_fltr_mgmt_list_entry *entry;
3546 struct list_head *rule_head;
3547 struct ice_switch_info *sw;
3548 struct mutex *rule_lock; /* Lock to protect filter rule list */
3549 u16 hw_vsi_id;
3550
3551 if (vlan_id > ICE_MAX_VLAN_ID)
3552 return false;
3553
3554 if (!ice_is_vsi_valid(hw, vsi_handle))
3555 return false;
3556
3557 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3558 sw = hw->switch_info;
3559 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3560 if (!rule_head)
3561 return false;
3562
3563 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3564 mutex_lock(rule_lock);
3565 list_for_each_entry(entry, rule_head, list_entry) {
3566 struct ice_fltr_info *f_info = &entry->fltr_info;
3567 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3568 struct ice_vsi_list_map_info *map_info;
3569
3570 if (entry_vlan_id > ICE_MAX_VLAN_ID)
3571 continue;
3572
3573 if (f_info->flag != ICE_FLTR_TX ||
3574 f_info->src_id != ICE_SRC_ID_VSI ||
3575 f_info->lkup_type != ICE_SW_LKUP_VLAN)
3576 continue;
3577
3578 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3579 if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3580 f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3581 continue;
3582
3583 if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3584 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3585 continue;
3586 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3587 /* If filter_action is FWD_TO_VSI_LIST, make sure
3588 * that VSI being checked is part of VSI list
3589 */
3590 if (entry->vsi_count == 1 &&
3591 entry->vsi_list_info) {
3592 map_info = entry->vsi_list_info;
3593 if (!test_bit(vsi_handle, map_info->vsi_map))
3594 continue;
3595 }
3596 }
3597
3598 if (vlan_id == entry_vlan_id) {
3599 mutex_unlock(rule_lock);
3600 return true;
3601 }
3602 }
3603 mutex_unlock(rule_lock);
3604
3605 return false;
3606}
3607
3608/**
3609 * ice_add_mac - Add a MAC address based filter rule
3610 * @hw: pointer to the hardware structure
3611 * @m_list: list of MAC addresses and forwarding information
3612 */
3613int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3614{
3615 struct ice_fltr_list_entry *m_list_itr;
3616 int status = 0;
3617
3618 if (!m_list || !hw)
3619 return -EINVAL;
3620
3621 list_for_each_entry(m_list_itr, m_list, list_entry) {
3622 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3623 u16 vsi_handle;
3624 u16 hw_vsi_id;
3625
3626 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3627 vsi_handle = m_list_itr->fltr_info.vsi_handle;
3628 if (!ice_is_vsi_valid(hw, vsi_handle))
3629 return -EINVAL;
3630 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3631 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3632 /* update the src in case it is VSI num */
3633 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3634 return -EINVAL;
3635 m_list_itr->fltr_info.src = hw_vsi_id;
3636 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3637 is_zero_ether_addr(add))
3638 return -EINVAL;
3639
3640 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3641 m_list_itr);
3642 if (m_list_itr->status)
3643 return m_list_itr->status;
3644 }
3645
3646 return status;
3647}
3648
3649/**
3650 * ice_add_vlan_internal - Add one VLAN based filter rule
3651 * @hw: pointer to the hardware structure
3652 * @f_entry: filter entry containing one VLAN information
3653 */
3654static int
3655ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3656{
3657 struct ice_switch_info *sw = hw->switch_info;
3658 struct ice_fltr_mgmt_list_entry *v_list_itr;
3659 struct ice_fltr_info *new_fltr, *cur_fltr;
3660 enum ice_sw_lkup_type lkup_type;
3661 u16 vsi_list_id = 0, vsi_handle;
3662 struct mutex *rule_lock; /* Lock to protect filter rule list */
3663 int status = 0;
3664
3665 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3666 return -EINVAL;
3667
3668 f_entry->fltr_info.fwd_id.hw_vsi_id =
3669 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3670 new_fltr = &f_entry->fltr_info;
3671
3672 /* VLAN ID should only be 12 bits */
3673 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3674 return -EINVAL;
3675
3676 if (new_fltr->src_id != ICE_SRC_ID_VSI)
3677 return -EINVAL;
3678
3679 new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3680 lkup_type = new_fltr->lkup_type;
3681 vsi_handle = new_fltr->vsi_handle;
3682 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3683 mutex_lock(rule_lock);
3684 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3685 if (!v_list_itr) {
3686 struct ice_vsi_list_map_info *map_info = NULL;
3687
3688 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3689 /* All VLAN pruning rules use a VSI list. Check if
3690 * there is already a VSI list containing VSI that we
3691 * want to add. If found, use the same vsi_list_id for
3692 * this new VLAN rule or else create a new list.
3693 */
3694 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3695 vsi_handle,
3696 &vsi_list_id);
3697 if (!map_info) {
3698 status = ice_create_vsi_list_rule(hw,
3699 &vsi_handle,
3700 1,
3701 &vsi_list_id,
3702 lkup_type);
3703 if (status)
3704 goto exit;
3705 }
3706 /* Convert the action to forwarding to a VSI list. */
3707 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3708 new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3709 }
3710
3711 status = ice_create_pkt_fwd_rule(hw, f_entry);
3712 if (!status) {
3713 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3714 new_fltr);
3715 if (!v_list_itr) {
3716 status = -ENOENT;
3717 goto exit;
3718 }
3719 /* reuse VSI list for new rule and increment ref_cnt */
3720 if (map_info) {
3721 v_list_itr->vsi_list_info = map_info;
3722 map_info->ref_cnt++;
3723 } else {
3724 v_list_itr->vsi_list_info =
3725 ice_create_vsi_list_map(hw, &vsi_handle,
3726 1, vsi_list_id);
3727 }
3728 }
3729 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3730 /* Update existing VSI list to add new VSI ID only if it used
3731 * by one VLAN rule.
3732 */
3733 cur_fltr = &v_list_itr->fltr_info;
3734 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3735 new_fltr);
3736 } else {
3737 /* If VLAN rule exists and VSI list being used by this rule is
3738 * referenced by more than 1 VLAN rule. Then create a new VSI
3739 * list appending previous VSI with new VSI and update existing
3740 * VLAN rule to point to new VSI list ID
3741 */
3742 struct ice_fltr_info tmp_fltr;
3743 u16 vsi_handle_arr[2];
3744 u16 cur_handle;
3745
3746 /* Current implementation only supports reusing VSI list with
3747 * one VSI count. We should never hit below condition
3748 */
3749 if (v_list_itr->vsi_count > 1 &&
3750 v_list_itr->vsi_list_info->ref_cnt > 1) {
3751 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3752 status = -EIO;
3753 goto exit;
3754 }
3755
3756 cur_handle =
3757 find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3758 ICE_MAX_VSI);
3759
3760 /* A rule already exists with the new VSI being added */
3761 if (cur_handle == vsi_handle) {
3762 status = -EEXIST;
3763 goto exit;
3764 }
3765
3766 vsi_handle_arr[0] = cur_handle;
3767 vsi_handle_arr[1] = vsi_handle;
3768 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3769 &vsi_list_id, lkup_type);
3770 if (status)
3771 goto exit;
3772
3773 tmp_fltr = v_list_itr->fltr_info;
3774 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3775 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3776 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3777 /* Update the previous switch rule to a new VSI list which
3778 * includes current VSI that is requested
3779 */
3780 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3781 if (status)
3782 goto exit;
3783
3784 /* before overriding VSI list map info. decrement ref_cnt of
3785 * previous VSI list
3786 */
3787 v_list_itr->vsi_list_info->ref_cnt--;
3788
3789 /* now update to newly created list */
3790 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3791 v_list_itr->vsi_list_info =
3792 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3793 vsi_list_id);
3794 v_list_itr->vsi_count++;
3795 }
3796
3797exit:
3798 mutex_unlock(rule_lock);
3799 return status;
3800}
3801
3802/**
3803 * ice_add_vlan - Add VLAN based filter rule
3804 * @hw: pointer to the hardware structure
3805 * @v_list: list of VLAN entries and forwarding information
3806 */
3807int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3808{
3809 struct ice_fltr_list_entry *v_list_itr;
3810
3811 if (!v_list || !hw)
3812 return -EINVAL;
3813
3814 list_for_each_entry(v_list_itr, v_list, list_entry) {
3815 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3816 return -EINVAL;
3817 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3818 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3819 if (v_list_itr->status)
3820 return v_list_itr->status;
3821 }
3822 return 0;
3823}
3824
3825/**
3826 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3827 * @hw: pointer to the hardware structure
3828 * @em_list: list of ether type MAC filter, MAC is optional
3829 *
3830 * This function requires the caller to populate the entries in
3831 * the filter list with the necessary fields (including flags to
3832 * indicate Tx or Rx rules).
3833 */
3834int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3835{
3836 struct ice_fltr_list_entry *em_list_itr;
3837
3838 if (!em_list || !hw)
3839 return -EINVAL;
3840
3841 list_for_each_entry(em_list_itr, em_list, list_entry) {
3842 enum ice_sw_lkup_type l_type =
3843 em_list_itr->fltr_info.lkup_type;
3844
3845 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3846 l_type != ICE_SW_LKUP_ETHERTYPE)
3847 return -EINVAL;
3848
3849 em_list_itr->status = ice_add_rule_internal(hw, l_type,
3850 em_list_itr);
3851 if (em_list_itr->status)
3852 return em_list_itr->status;
3853 }
3854 return 0;
3855}
3856
3857/**
3858 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3859 * @hw: pointer to the hardware structure
3860 * @em_list: list of ethertype or ethertype MAC entries
3861 */
3862int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3863{
3864 struct ice_fltr_list_entry *em_list_itr, *tmp;
3865
3866 if (!em_list || !hw)
3867 return -EINVAL;
3868
3869 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3870 enum ice_sw_lkup_type l_type =
3871 em_list_itr->fltr_info.lkup_type;
3872
3873 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3874 l_type != ICE_SW_LKUP_ETHERTYPE)
3875 return -EINVAL;
3876
3877 em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3878 em_list_itr);
3879 if (em_list_itr->status)
3880 return em_list_itr->status;
3881 }
3882 return 0;
3883}
3884
3885/**
3886 * ice_rem_sw_rule_info
3887 * @hw: pointer to the hardware structure
3888 * @rule_head: pointer to the switch list structure that we want to delete
3889 */
3890static void
3891ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3892{
3893 if (!list_empty(rule_head)) {
3894 struct ice_fltr_mgmt_list_entry *entry;
3895 struct ice_fltr_mgmt_list_entry *tmp;
3896
3897 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3898 list_del(&entry->list_entry);
3899 devm_kfree(ice_hw_to_dev(hw), entry);
3900 }
3901 }
3902}
3903
3904/**
3905 * ice_rem_adv_rule_info
3906 * @hw: pointer to the hardware structure
3907 * @rule_head: pointer to the switch list structure that we want to delete
3908 */
3909static void
3910ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3911{
3912 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3913 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3914
3915 if (list_empty(rule_head))
3916 return;
3917
3918 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3919 list_del(&lst_itr->list_entry);
3920 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3921 devm_kfree(ice_hw_to_dev(hw), lst_itr);
3922 }
3923}
3924
3925/**
3926 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3927 * @pi: pointer to the port_info structure
3928 * @vsi_handle: VSI handle to set as default
3929 * @set: true to add the above mentioned switch rule, false to remove it
3930 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3931 *
3932 * add filter rule to set/unset given VSI as default VSI for the switch
3933 * (represented by swid)
3934 */
3935int
3936ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3937 u8 direction)
3938{
3939 struct ice_fltr_list_entry f_list_entry;
3940 struct ice_fltr_info f_info;
3941 struct ice_hw *hw = pi->hw;
3942 u16 hw_vsi_id;
3943 int status;
3944
3945 if (!ice_is_vsi_valid(hw, vsi_handle))
3946 return -EINVAL;
3947
3948 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3949
3950 memset(&f_info, 0, sizeof(f_info));
3951
3952 f_info.lkup_type = ICE_SW_LKUP_DFLT;
3953 f_info.flag = direction;
3954 f_info.fltr_act = ICE_FWD_TO_VSI;
3955 f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3956 f_info.vsi_handle = vsi_handle;
3957
3958 if (f_info.flag & ICE_FLTR_RX) {
3959 f_info.src = hw->port_info->lport;
3960 f_info.src_id = ICE_SRC_ID_LPORT;
3961 } else if (f_info.flag & ICE_FLTR_TX) {
3962 f_info.src_id = ICE_SRC_ID_VSI;
3963 f_info.src = hw_vsi_id;
3964 f_info.flag |= ICE_FLTR_TX_ONLY;
3965 }
3966 f_list_entry.fltr_info = f_info;
3967
3968 if (set)
3969 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3970 &f_list_entry);
3971 else
3972 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3973 &f_list_entry);
3974
3975 return status;
3976}
3977
3978/**
3979 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3980 * @fm_entry: filter entry to inspect
3981 * @vsi_handle: VSI handle to compare with filter info
3982 */
3983static bool
3984ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3985{
3986 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3987 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3988 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3989 fm_entry->vsi_list_info &&
3990 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3991}
3992
3993/**
3994 * ice_check_if_dflt_vsi - check if VSI is default VSI
3995 * @pi: pointer to the port_info structure
3996 * @vsi_handle: vsi handle to check for in filter list
3997 * @rule_exists: indicates if there are any VSI's in the rule list
3998 *
3999 * checks if the VSI is in a default VSI list, and also indicates
4000 * if the default VSI list is empty
4001 */
4002bool
4003ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
4004 bool *rule_exists)
4005{
4006 struct ice_fltr_mgmt_list_entry *fm_entry;
4007 struct ice_sw_recipe *recp_list;
4008 struct list_head *rule_head;
4009 struct mutex *rule_lock; /* Lock to protect filter rule list */
4010 bool ret = false;
4011
4012 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
4013 rule_lock = &recp_list->filt_rule_lock;
4014 rule_head = &recp_list->filt_rules;
4015
4016 mutex_lock(rule_lock);
4017
4018 if (rule_exists && !list_empty(rule_head))
4019 *rule_exists = true;
4020
4021 list_for_each_entry(fm_entry, rule_head, list_entry) {
4022 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
4023 ret = true;
4024 break;
4025 }
4026 }
4027
4028 mutex_unlock(rule_lock);
4029
4030 return ret;
4031}
4032
4033/**
4034 * ice_remove_mac - remove a MAC address based filter rule
4035 * @hw: pointer to the hardware structure
4036 * @m_list: list of MAC addresses and forwarding information
4037 *
4038 * This function removes either a MAC filter rule or a specific VSI from a
4039 * VSI list for a multicast MAC address.
4040 *
4041 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4042 * be aware that this call will only work if all the entries passed into m_list
4043 * were added previously. It will not attempt to do a partial remove of entries
4044 * that were found.
4045 */
4046int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4047{
4048 struct ice_fltr_list_entry *list_itr, *tmp;
4049
4050 if (!m_list)
4051 return -EINVAL;
4052
4053 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4054 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4055 u16 vsi_handle;
4056
4057 if (l_type != ICE_SW_LKUP_MAC)
4058 return -EINVAL;
4059
4060 vsi_handle = list_itr->fltr_info.vsi_handle;
4061 if (!ice_is_vsi_valid(hw, vsi_handle))
4062 return -EINVAL;
4063
4064 list_itr->fltr_info.fwd_id.hw_vsi_id =
4065 ice_get_hw_vsi_num(hw, vsi_handle);
4066
4067 list_itr->status = ice_remove_rule_internal(hw,
4068 ICE_SW_LKUP_MAC,
4069 list_itr);
4070 if (list_itr->status)
4071 return list_itr->status;
4072 }
4073 return 0;
4074}
4075
4076/**
4077 * ice_remove_vlan - Remove VLAN based filter rule
4078 * @hw: pointer to the hardware structure
4079 * @v_list: list of VLAN entries and forwarding information
4080 */
4081int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4082{
4083 struct ice_fltr_list_entry *v_list_itr, *tmp;
4084
4085 if (!v_list || !hw)
4086 return -EINVAL;
4087
4088 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4089 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4090
4091 if (l_type != ICE_SW_LKUP_VLAN)
4092 return -EINVAL;
4093 v_list_itr->status = ice_remove_rule_internal(hw,
4094 ICE_SW_LKUP_VLAN,
4095 v_list_itr);
4096 if (v_list_itr->status)
4097 return v_list_itr->status;
4098 }
4099 return 0;
4100}
4101
4102/**
4103 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4104 * @hw: pointer to the hardware structure
4105 * @vsi_handle: VSI handle to remove filters from
4106 * @vsi_list_head: pointer to the list to add entry to
4107 * @fi: pointer to fltr_info of filter entry to copy & add
4108 *
4109 * Helper function, used when creating a list of filters to remove from
4110 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4111 * original filter entry, with the exception of fltr_info.fltr_act and
4112 * fltr_info.fwd_id fields. These are set such that later logic can
4113 * extract which VSI to remove the fltr from, and pass on that information.
4114 */
4115static int
4116ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4117 struct list_head *vsi_list_head,
4118 struct ice_fltr_info *fi)
4119{
4120 struct ice_fltr_list_entry *tmp;
4121
4122 /* this memory is freed up in the caller function
4123 * once filters for this VSI are removed
4124 */
4125 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4126 if (!tmp)
4127 return -ENOMEM;
4128
4129 tmp->fltr_info = *fi;
4130
4131 /* Overwrite these fields to indicate which VSI to remove filter from,
4132 * so find and remove logic can extract the information from the
4133 * list entries. Note that original entries will still have proper
4134 * values.
4135 */
4136 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4137 tmp->fltr_info.vsi_handle = vsi_handle;
4138 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4139
4140 list_add(&tmp->list_entry, vsi_list_head);
4141
4142 return 0;
4143}
4144
4145/**
4146 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4147 * @hw: pointer to the hardware structure
4148 * @vsi_handle: VSI handle to remove filters from
4149 * @lkup_list_head: pointer to the list that has certain lookup type filters
4150 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4151 *
4152 * Locates all filters in lkup_list_head that are used by the given VSI,
4153 * and adds COPIES of those entries to vsi_list_head (intended to be used
4154 * to remove the listed filters).
4155 * Note that this means all entries in vsi_list_head must be explicitly
4156 * deallocated by the caller when done with list.
4157 */
4158static int
4159ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4160 struct list_head *lkup_list_head,
4161 struct list_head *vsi_list_head)
4162{
4163 struct ice_fltr_mgmt_list_entry *fm_entry;
4164 int status = 0;
4165
4166 /* check to make sure VSI ID is valid and within boundary */
4167 if (!ice_is_vsi_valid(hw, vsi_handle))
4168 return -EINVAL;
4169
4170 list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4171 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4172 continue;
4173
4174 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4175 vsi_list_head,
4176 &fm_entry->fltr_info);
4177 if (status)
4178 return status;
4179 }
4180 return status;
4181}
4182
4183/**
4184 * ice_determine_promisc_mask
4185 * @fi: filter info to parse
4186 *
4187 * Helper function to determine which ICE_PROMISC_ mask corresponds
4188 * to given filter into.
4189 */
4190static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4191{
4192 u16 vid = fi->l_data.mac_vlan.vlan_id;
4193 u8 *macaddr = fi->l_data.mac.mac_addr;
4194 bool is_tx_fltr = false;
4195 u8 promisc_mask = 0;
4196
4197 if (fi->flag == ICE_FLTR_TX)
4198 is_tx_fltr = true;
4199
4200 if (is_broadcast_ether_addr(macaddr))
4201 promisc_mask |= is_tx_fltr ?
4202 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4203 else if (is_multicast_ether_addr(macaddr))
4204 promisc_mask |= is_tx_fltr ?
4205 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4206 else if (is_unicast_ether_addr(macaddr))
4207 promisc_mask |= is_tx_fltr ?
4208 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4209 if (vid)
4210 promisc_mask |= is_tx_fltr ?
4211 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4212
4213 return promisc_mask;
4214}
4215
4216/**
4217 * ice_remove_promisc - Remove promisc based filter rules
4218 * @hw: pointer to the hardware structure
4219 * @recp_id: recipe ID for which the rule needs to removed
4220 * @v_list: list of promisc entries
4221 */
4222static int
4223ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4224{
4225 struct ice_fltr_list_entry *v_list_itr, *tmp;
4226
4227 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4228 v_list_itr->status =
4229 ice_remove_rule_internal(hw, recp_id, v_list_itr);
4230 if (v_list_itr->status)
4231 return v_list_itr->status;
4232 }
4233 return 0;
4234}
4235
4236/**
4237 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4238 * @hw: pointer to the hardware structure
4239 * @vsi_handle: VSI handle to clear mode
4240 * @promisc_mask: mask of promiscuous config bits to clear
4241 * @vid: VLAN ID to clear VLAN promiscuous
4242 */
4243int
4244ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4245 u16 vid)
4246{
4247 struct ice_switch_info *sw = hw->switch_info;
4248 struct ice_fltr_list_entry *fm_entry, *tmp;
4249 struct list_head remove_list_head;
4250 struct ice_fltr_mgmt_list_entry *itr;
4251 struct list_head *rule_head;
4252 struct mutex *rule_lock; /* Lock to protect filter rule list */
4253 int status = 0;
4254 u8 recipe_id;
4255
4256 if (!ice_is_vsi_valid(hw, vsi_handle))
4257 return -EINVAL;
4258
4259 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4260 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4261 else
4262 recipe_id = ICE_SW_LKUP_PROMISC;
4263
4264 rule_head = &sw->recp_list[recipe_id].filt_rules;
4265 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4266
4267 INIT_LIST_HEAD(&remove_list_head);
4268
4269 mutex_lock(rule_lock);
4270 list_for_each_entry(itr, rule_head, list_entry) {
4271 struct ice_fltr_info *fltr_info;
4272 u8 fltr_promisc_mask = 0;
4273
4274 if (!ice_vsi_uses_fltr(itr, vsi_handle))
4275 continue;
4276 fltr_info = &itr->fltr_info;
4277
4278 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4279 vid != fltr_info->l_data.mac_vlan.vlan_id)
4280 continue;
4281
4282 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4283
4284 /* Skip if filter is not completely specified by given mask */
4285 if (fltr_promisc_mask & ~promisc_mask)
4286 continue;
4287
4288 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4289 &remove_list_head,
4290 fltr_info);
4291 if (status) {
4292 mutex_unlock(rule_lock);
4293 goto free_fltr_list;
4294 }
4295 }
4296 mutex_unlock(rule_lock);
4297
4298 status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4299
4300free_fltr_list:
4301 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4302 list_del(&fm_entry->list_entry);
4303 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4304 }
4305
4306 return status;
4307}
4308
4309/**
4310 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4311 * @hw: pointer to the hardware structure
4312 * @vsi_handle: VSI handle to configure
4313 * @promisc_mask: mask of promiscuous config bits
4314 * @vid: VLAN ID to set VLAN promiscuous
4315 */
4316int
4317ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4318{
4319 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4320 struct ice_fltr_list_entry f_list_entry;
4321 struct ice_fltr_info new_fltr;
4322 bool is_tx_fltr;
4323 int status = 0;
4324 u16 hw_vsi_id;
4325 int pkt_type;
4326 u8 recipe_id;
4327
4328 if (!ice_is_vsi_valid(hw, vsi_handle))
4329 return -EINVAL;
4330 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4331
4332 memset(&new_fltr, 0, sizeof(new_fltr));
4333
4334 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4335 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4336 new_fltr.l_data.mac_vlan.vlan_id = vid;
4337 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4338 } else {
4339 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4340 recipe_id = ICE_SW_LKUP_PROMISC;
4341 }
4342
4343 /* Separate filters must be set for each direction/packet type
4344 * combination, so we will loop over the mask value, store the
4345 * individual type, and clear it out in the input mask as it
4346 * is found.
4347 */
4348 while (promisc_mask) {
4349 u8 *mac_addr;
4350
4351 pkt_type = 0;
4352 is_tx_fltr = false;
4353
4354 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4355 promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4356 pkt_type = UCAST_FLTR;
4357 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4358 promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4359 pkt_type = UCAST_FLTR;
4360 is_tx_fltr = true;
4361 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4362 promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4363 pkt_type = MCAST_FLTR;
4364 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4365 promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4366 pkt_type = MCAST_FLTR;
4367 is_tx_fltr = true;
4368 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4369 promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4370 pkt_type = BCAST_FLTR;
4371 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4372 promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4373 pkt_type = BCAST_FLTR;
4374 is_tx_fltr = true;
4375 }
4376
4377 /* Check for VLAN promiscuous flag */
4378 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4379 promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4380 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4381 promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4382 is_tx_fltr = true;
4383 }
4384
4385 /* Set filter DA based on packet type */
4386 mac_addr = new_fltr.l_data.mac.mac_addr;
4387 if (pkt_type == BCAST_FLTR) {
4388 eth_broadcast_addr(mac_addr);
4389 } else if (pkt_type == MCAST_FLTR ||
4390 pkt_type == UCAST_FLTR) {
4391 /* Use the dummy ether header DA */
4392 ether_addr_copy(mac_addr, dummy_eth_header);
4393 if (pkt_type == MCAST_FLTR)
4394 mac_addr[0] |= 0x1; /* Set multicast bit */
4395 }
4396
4397 /* Need to reset this to zero for all iterations */
4398 new_fltr.flag = 0;
4399 if (is_tx_fltr) {
4400 new_fltr.flag |= ICE_FLTR_TX;
4401 new_fltr.src = hw_vsi_id;
4402 } else {
4403 new_fltr.flag |= ICE_FLTR_RX;
4404 new_fltr.src = hw->port_info->lport;
4405 }
4406
4407 new_fltr.fltr_act = ICE_FWD_TO_VSI;
4408 new_fltr.vsi_handle = vsi_handle;
4409 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4410 f_list_entry.fltr_info = new_fltr;
4411
4412 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4413 if (status)
4414 goto set_promisc_exit;
4415 }
4416
4417set_promisc_exit:
4418 return status;
4419}
4420
4421/**
4422 * ice_set_vlan_vsi_promisc
4423 * @hw: pointer to the hardware structure
4424 * @vsi_handle: VSI handle to configure
4425 * @promisc_mask: mask of promiscuous config bits
4426 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4427 *
4428 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4429 */
4430int
4431ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4432 bool rm_vlan_promisc)
4433{
4434 struct ice_switch_info *sw = hw->switch_info;
4435 struct ice_fltr_list_entry *list_itr, *tmp;
4436 struct list_head vsi_list_head;
4437 struct list_head *vlan_head;
4438 struct mutex *vlan_lock; /* Lock to protect filter rule list */
4439 u16 vlan_id;
4440 int status;
4441
4442 INIT_LIST_HEAD(&vsi_list_head);
4443 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4444 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4445 mutex_lock(vlan_lock);
4446 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4447 &vsi_list_head);
4448 mutex_unlock(vlan_lock);
4449 if (status)
4450 goto free_fltr_list;
4451
4452 list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4453 /* Avoid enabling or disabling VLAN zero twice when in double
4454 * VLAN mode
4455 */
4456 if (ice_is_dvm_ena(hw) &&
4457 list_itr->fltr_info.l_data.vlan.tpid == 0)
4458 continue;
4459
4460 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4461 if (rm_vlan_promisc)
4462 status = ice_clear_vsi_promisc(hw, vsi_handle,
4463 promisc_mask, vlan_id);
4464 else
4465 status = ice_set_vsi_promisc(hw, vsi_handle,
4466 promisc_mask, vlan_id);
4467 if (status && status != -EEXIST)
4468 break;
4469 }
4470
4471free_fltr_list:
4472 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4473 list_del(&list_itr->list_entry);
4474 devm_kfree(ice_hw_to_dev(hw), list_itr);
4475 }
4476 return status;
4477}
4478
4479/**
4480 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4481 * @hw: pointer to the hardware structure
4482 * @vsi_handle: VSI handle to remove filters from
4483 * @lkup: switch rule filter lookup type
4484 */
4485static void
4486ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4487 enum ice_sw_lkup_type lkup)
4488{
4489 struct ice_switch_info *sw = hw->switch_info;
4490 struct ice_fltr_list_entry *fm_entry;
4491 struct list_head remove_list_head;
4492 struct list_head *rule_head;
4493 struct ice_fltr_list_entry *tmp;
4494 struct mutex *rule_lock; /* Lock to protect filter rule list */
4495 int status;
4496
4497 INIT_LIST_HEAD(&remove_list_head);
4498 rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4499 rule_head = &sw->recp_list[lkup].filt_rules;
4500 mutex_lock(rule_lock);
4501 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4502 &remove_list_head);
4503 mutex_unlock(rule_lock);
4504 if (status)
4505 goto free_fltr_list;
4506
4507 switch (lkup) {
4508 case ICE_SW_LKUP_MAC:
4509 ice_remove_mac(hw, &remove_list_head);
4510 break;
4511 case ICE_SW_LKUP_VLAN:
4512 ice_remove_vlan(hw, &remove_list_head);
4513 break;
4514 case ICE_SW_LKUP_PROMISC:
4515 case ICE_SW_LKUP_PROMISC_VLAN:
4516 ice_remove_promisc(hw, lkup, &remove_list_head);
4517 break;
4518 case ICE_SW_LKUP_MAC_VLAN:
4519 case ICE_SW_LKUP_ETHERTYPE:
4520 case ICE_SW_LKUP_ETHERTYPE_MAC:
4521 case ICE_SW_LKUP_DFLT:
4522 case ICE_SW_LKUP_LAST:
4523 default:
4524 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4525 break;
4526 }
4527
4528free_fltr_list:
4529 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4530 list_del(&fm_entry->list_entry);
4531 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4532 }
4533}
4534
4535/**
4536 * ice_remove_vsi_fltr - Remove all filters for a VSI
4537 * @hw: pointer to the hardware structure
4538 * @vsi_handle: VSI handle to remove filters from
4539 */
4540void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4541{
4542 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4543 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4544 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4545 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4546 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4547 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4548 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4549 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4550}
4551
4552/**
4553 * ice_alloc_res_cntr - allocating resource counter
4554 * @hw: pointer to the hardware structure
4555 * @type: type of resource
4556 * @alloc_shared: if set it is shared else dedicated
4557 * @num_items: number of entries requested for FD resource type
4558 * @counter_id: counter index returned by AQ call
4559 */
4560int
4561ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4562 u16 *counter_id)
4563{
4564 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4565 u16 buf_len = __struct_size(buf);
4566 int status;
4567
4568 buf->num_elems = cpu_to_le16(num_items);
4569 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4570 alloc_shared);
4571
4572 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4573 if (status)
4574 return status;
4575
4576 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4577 return status;
4578}
4579
4580/**
4581 * ice_free_res_cntr - free resource counter
4582 * @hw: pointer to the hardware structure
4583 * @type: type of resource
4584 * @alloc_shared: if set it is shared else dedicated
4585 * @num_items: number of entries to be freed for FD resource type
4586 * @counter_id: counter ID resource which needs to be freed
4587 */
4588int
4589ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4590 u16 counter_id)
4591{
4592 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4593 u16 buf_len = __struct_size(buf);
4594 int status;
4595
4596 buf->num_elems = cpu_to_le16(num_items);
4597 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4598 alloc_shared);
4599 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4600
4601 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4602 if (status)
4603 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4604
4605 return status;
4606}
4607
4608#define ICE_PROTOCOL_ENTRY(id, ...) { \
4609 .prot_type = id, \
4610 .offs = {__VA_ARGS__}, \
4611}
4612
4613/**
4614 * ice_share_res - set a resource as shared or dedicated
4615 * @hw: hw struct of original owner of resource
4616 * @type: resource type
4617 * @shared: is the resource being set to shared
4618 * @res_id: resource id (descriptor)
4619 */
4620int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4621{
4622 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4623 u16 buf_len = __struct_size(buf);
4624 u16 res_type;
4625 int status;
4626
4627 buf->num_elems = cpu_to_le16(1);
4628 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4629 if (shared)
4630 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4631
4632 buf->res_type = cpu_to_le16(res_type);
4633 buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4634 status = ice_aq_alloc_free_res(hw, buf, buf_len,
4635 ice_aqc_opc_share_res);
4636 if (status)
4637 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4638 type, res_id, shared ? "SHARED" : "DEDICATED");
4639
4640 return status;
4641}
4642
4643/* This is mapping table entry that maps every word within a given protocol
4644 * structure to the real byte offset as per the specification of that
4645 * protocol header.
4646 * for example dst address is 3 words in ethertype header and corresponding
4647 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4648 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4649 * matching entry describing its field. This needs to be updated if new
4650 * structure is added to that union.
4651 */
4652static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4653 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4654 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4655 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4656 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4657 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4658 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4659 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4660 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4661 20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4662 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4663 22, 24, 26, 28, 30, 32, 34, 36, 38),
4664 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4665 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4666 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4667 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4668 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4669 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4670 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4671 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4672 ICE_PROTOCOL_ENTRY(ICE_PFCP, 8, 10, 12, 14, 16, 18, 20, 22),
4673 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4674 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4675 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4676 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4677 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4678 ICE_SOURCE_PORT_MDID_OFFSET,
4679 ICE_PTYPE_MDID_OFFSET,
4680 ICE_PACKET_LENGTH_MDID_OFFSET,
4681 ICE_SOURCE_VSI_MDID_OFFSET,
4682 ICE_PKT_VLAN_MDID_OFFSET,
4683 ICE_PKT_TUNNEL_MDID_OFFSET,
4684 ICE_PKT_TCP_MDID_OFFSET,
4685 ICE_PKT_ERROR_MDID_OFFSET),
4686};
4687
4688static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4689 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW },
4690 { ICE_MAC_IL, ICE_MAC_IL_HW },
4691 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW },
4692 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW },
4693 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW },
4694 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW },
4695 { ICE_IPV4_IL, ICE_IPV4_IL_HW },
4696 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW },
4697 { ICE_IPV6_IL, ICE_IPV6_IL_HW },
4698 { ICE_TCP_IL, ICE_TCP_IL_HW },
4699 { ICE_UDP_OF, ICE_UDP_OF_HW },
4700 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW },
4701 { ICE_VXLAN, ICE_UDP_OF_HW },
4702 { ICE_GENEVE, ICE_UDP_OF_HW },
4703 { ICE_NVGRE, ICE_GRE_OF_HW },
4704 { ICE_GTP, ICE_UDP_OF_HW },
4705 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW },
4706 { ICE_PFCP, ICE_UDP_ILOS_HW },
4707 { ICE_PPPOE, ICE_PPPOE_HW },
4708 { ICE_L2TPV3, ICE_L2TPV3_HW },
4709 { ICE_VLAN_EX, ICE_VLAN_OF_HW },
4710 { ICE_VLAN_IN, ICE_VLAN_OL_HW },
4711 { ICE_HW_METADATA, ICE_META_DATA_ID_HW },
4712};
4713
4714/**
4715 * ice_find_recp - find a recipe
4716 * @hw: pointer to the hardware structure
4717 * @lkup_exts: extension sequence to match
4718 * @rinfo: information regarding the rule e.g. priority and action info
4719 * @is_add: flag of adding recipe
4720 *
4721 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4722 */
4723static u16
4724ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4725 const struct ice_adv_rule_info *rinfo, bool is_add)
4726{
4727 bool refresh_required = true;
4728 struct ice_sw_recipe *recp;
4729 u8 i;
4730
4731 /* Walk through existing recipes to find a match */
4732 recp = hw->switch_info->recp_list;
4733 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4734 /* If recipe was not created for this ID, in SW bookkeeping,
4735 * check if FW has an entry for this recipe. If the FW has an
4736 * entry update it in our SW bookkeeping and continue with the
4737 * matching.
4738 */
4739 if (hw->recp_reuse) {
4740 if (ice_get_recp_frm_fw(hw,
4741 hw->switch_info->recp_list, i,
4742 &refresh_required, is_add))
4743 continue;
4744 }
4745
4746 /* if number of words we are looking for match */
4747 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4748 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4749 struct ice_fv_word *be = lkup_exts->fv_words;
4750 u16 *cr = recp[i].lkup_exts.field_mask;
4751 u16 *de = lkup_exts->field_mask;
4752 bool found = true;
4753 u8 pe, qr;
4754
4755 /* ar, cr, and qr are related to the recipe words, while
4756 * be, de, and pe are related to the lookup words
4757 */
4758 for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4759 for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4760 qr++) {
4761 if (ar[qr].off == be[pe].off &&
4762 ar[qr].prot_id == be[pe].prot_id &&
4763 cr[qr] == de[pe])
4764 /* Found the "pe"th word in the
4765 * given recipe
4766 */
4767 break;
4768 }
4769 /* After walking through all the words in the
4770 * "i"th recipe if "p"th word was not found then
4771 * this recipe is not what we are looking for.
4772 * So break out from this loop and try the next
4773 * recipe
4774 */
4775 if (qr >= recp[i].lkup_exts.n_val_words) {
4776 found = false;
4777 break;
4778 }
4779 }
4780 /* If for "i"th recipe the found was never set to false
4781 * then it means we found our match
4782 * Also tun type and *_pass_l2 of recipe needs to be
4783 * checked
4784 */
4785 if (found && recp[i].tun_type == rinfo->tun_type &&
4786 recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4787 recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4788 return i; /* Return the recipe ID */
4789 }
4790 }
4791 return ICE_MAX_NUM_RECIPES;
4792}
4793
4794/**
4795 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4796 *
4797 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4798 * supported protocol array record for outer vlan has to be modified to
4799 * reflect the value proper for DVM.
4800 */
4801void ice_change_proto_id_to_dvm(void)
4802{
4803 u8 i;
4804
4805 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4806 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4807 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4808 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4809}
4810
4811/**
4812 * ice_prot_type_to_id - get protocol ID from protocol type
4813 * @type: protocol type
4814 * @id: pointer to variable that will receive the ID
4815 *
4816 * Returns true if found, false otherwise
4817 */
4818static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4819{
4820 u8 i;
4821
4822 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4823 if (ice_prot_id_tbl[i].type == type) {
4824 *id = ice_prot_id_tbl[i].protocol_id;
4825 return true;
4826 }
4827 return false;
4828}
4829
4830/**
4831 * ice_fill_valid_words - count valid words
4832 * @rule: advanced rule with lookup information
4833 * @lkup_exts: byte offset extractions of the words that are valid
4834 *
4835 * calculate valid words in a lookup rule using mask value
4836 */
4837static u8
4838ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4839 struct ice_prot_lkup_ext *lkup_exts)
4840{
4841 u8 j, word, prot_id, ret_val;
4842
4843 if (!ice_prot_type_to_id(rule->type, &prot_id))
4844 return 0;
4845
4846 word = lkup_exts->n_val_words;
4847
4848 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4849 if (((u16 *)&rule->m_u)[j] &&
4850 rule->type < ARRAY_SIZE(ice_prot_ext)) {
4851 /* No more space to accommodate */
4852 if (word >= ICE_MAX_CHAIN_WORDS)
4853 return 0;
4854 lkup_exts->fv_words[word].off =
4855 ice_prot_ext[rule->type].offs[j];
4856 lkup_exts->fv_words[word].prot_id =
4857 ice_prot_id_tbl[rule->type].protocol_id;
4858 lkup_exts->field_mask[word] =
4859 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4860 word++;
4861 }
4862
4863 ret_val = word - lkup_exts->n_val_words;
4864 lkup_exts->n_val_words = word;
4865
4866 return ret_val;
4867}
4868
4869/**
4870 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4871 * @hw: pointer to the hardware structure
4872 * @rm: recipe management list entry
4873 *
4874 * Helper function to fill in the field vector indices for protocol-offset
4875 * pairs. These indexes are then ultimately programmed into a recipe.
4876 */
4877static int
4878ice_fill_fv_word_index(struct ice_hw *hw, struct ice_sw_recipe *rm)
4879{
4880 struct ice_sw_fv_list_entry *fv;
4881 struct ice_fv_word *fv_ext;
4882 u8 i;
4883
4884 if (list_empty(&rm->fv_list))
4885 return -EINVAL;
4886
4887 fv = list_first_entry(&rm->fv_list, struct ice_sw_fv_list_entry,
4888 list_entry);
4889 fv_ext = fv->fv_ptr->ew;
4890
4891 /* Add switch id as the first word. */
4892 rm->fv_idx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4893 rm->fv_mask[0] = ICE_AQ_SW_ID_LKUP_MASK;
4894 rm->n_ext_words++;
4895
4896 for (i = 1; i < rm->n_ext_words; i++) {
4897 struct ice_fv_word *fv_word = &rm->ext_words[i - 1];
4898 u16 fv_mask = rm->word_masks[i - 1];
4899 bool found = false;
4900 u8 j;
4901
4902 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) {
4903 if (fv_ext[j].prot_id == fv_word->prot_id &&
4904 fv_ext[j].off == fv_word->off) {
4905 found = true;
4906
4907 /* Store index of field vector */
4908 rm->fv_idx[i] = j;
4909 rm->fv_mask[i] = fv_mask;
4910 break;
4911 }
4912 }
4913
4914 /* Protocol/offset could not be found, caller gave an invalid
4915 * pair.
4916 */
4917 if (!found)
4918 return -EINVAL;
4919 }
4920
4921 return 0;
4922}
4923
4924/**
4925 * ice_find_free_recp_res_idx - find free result indexes for recipe
4926 * @hw: pointer to hardware structure
4927 * @profiles: bitmap of profiles that will be associated with the new recipe
4928 * @free_idx: pointer to variable to receive the free index bitmap
4929 *
4930 * The algorithm used here is:
4931 * 1. When creating a new recipe, create a set P which contains all
4932 * Profiles that will be associated with our new recipe
4933 *
4934 * 2. For each Profile p in set P:
4935 * a. Add all recipes associated with Profile p into set R
4936 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4937 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4938 * i. Or just assume they all have the same possible indexes:
4939 * 44, 45, 46, 47
4940 * i.e., PossibleIndexes = 0x0000F00000000000
4941 *
4942 * 3. For each Recipe r in set R:
4943 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4944 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4945 *
4946 * FreeIndexes will contain the bits indicating the indexes free for use,
4947 * then the code needs to update the recipe[r].used_result_idx_bits to
4948 * indicate which indexes were selected for use by this recipe.
4949 */
4950static u16
4951ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4952 unsigned long *free_idx)
4953{
4954 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4955 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4956 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4957 u16 bit;
4958
4959 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4960 bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4961
4962 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4963
4964 /* For each profile we are going to associate the recipe with, add the
4965 * recipes that are associated with that profile. This will give us
4966 * the set of recipes that our recipe may collide with. Also, determine
4967 * what possible result indexes are usable given this set of profiles.
4968 */
4969 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4970 bitmap_or(recipes, recipes, profile_to_recipe[bit],
4971 ICE_MAX_NUM_RECIPES);
4972 bitmap_and(possible_idx, possible_idx,
4973 hw->switch_info->prof_res_bm[bit],
4974 ICE_MAX_FV_WORDS);
4975 }
4976
4977 /* For each recipe that our new recipe may collide with, determine
4978 * which indexes have been used.
4979 */
4980 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4981 bitmap_or(used_idx, used_idx,
4982 hw->switch_info->recp_list[bit].res_idxs,
4983 ICE_MAX_FV_WORDS);
4984
4985 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4986
4987 /* return number of free indexes */
4988 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4989}
4990
4991/**
4992 * ice_calc_recp_cnt - calculate number of recipes based on word count
4993 * @word_cnt: number of lookup words
4994 *
4995 * Word count should include switch ID word and regular lookup words.
4996 * Returns: number of recipes required to fit @word_cnt, including extra recipes
4997 * needed for recipe chaining (if needed).
4998 */
4999static int ice_calc_recp_cnt(u8 word_cnt)
5000{
5001 /* All words fit in a single recipe, no need for chaining. */
5002 if (word_cnt <= ICE_NUM_WORDS_RECIPE)
5003 return 1;
5004
5005 /* Recipe chaining required. Result indexes are fitted right after
5006 * regular lookup words. In some cases a new recipe must be added in
5007 * order to fit result indexes.
5008 *
5009 * While the word count increases, every 5 words an extra recipe needs
5010 * to be added. However, by adding a recipe, one word for its result
5011 * index must also be added, therefore every 4 words recipe count
5012 * increases by 1. This calculation does not apply to word count == 1,
5013 * which is handled above.
5014 */
5015 return (word_cnt + 2) / (ICE_NUM_WORDS_RECIPE - 1);
5016}
5017
5018static void fill_recipe_template(struct ice_aqc_recipe_data_elem *recp, u16 rid,
5019 const struct ice_sw_recipe *rm)
5020{
5021 int i;
5022
5023 recp->recipe_indx = rid;
5024 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_PRUNE_INDX_M;
5025
5026 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
5027 recp->content.lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5028 recp->content.mask[i] = cpu_to_le16(0);
5029 }
5030
5031 set_bit(rid, (unsigned long *)recp->recipe_bitmap);
5032 recp->content.act_ctrl_fwd_priority = rm->priority;
5033
5034 if (rm->need_pass_l2)
5035 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5036
5037 if (rm->allow_pass_l2)
5038 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5039}
5040
5041static void bookkeep_recipe(struct ice_sw_recipe *recipe,
5042 struct ice_aqc_recipe_data_elem *r,
5043 const struct ice_sw_recipe *rm)
5044{
5045 memcpy(recipe->r_bitmap, r->recipe_bitmap, sizeof(recipe->r_bitmap));
5046
5047 recipe->priority = r->content.act_ctrl_fwd_priority;
5048 recipe->tun_type = rm->tun_type;
5049 recipe->need_pass_l2 = rm->need_pass_l2;
5050 recipe->allow_pass_l2 = rm->allow_pass_l2;
5051 recipe->recp_created = true;
5052}
5053
5054/* For memcpy in ice_add_sw_recipe. */
5055static_assert(sizeof_field(struct ice_aqc_recipe_data_elem, recipe_bitmap) ==
5056 sizeof_field(struct ice_sw_recipe, r_bitmap));
5057
5058/**
5059 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5060 * @hw: pointer to hardware structure
5061 * @rm: recipe management list entry
5062 * @profiles: bitmap of profiles that will be associated.
5063 */
5064static int
5065ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5066 unsigned long *profiles)
5067{
5068 struct ice_aqc_recipe_data_elem *buf __free(kfree) = NULL;
5069 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5070 struct ice_aqc_recipe_data_elem *root;
5071 struct ice_sw_recipe *recipe;
5072 u16 free_res_idx, rid;
5073 int lookup = 0;
5074 int recp_cnt;
5075 int status;
5076 int word;
5077 int i;
5078
5079 recp_cnt = ice_calc_recp_cnt(rm->n_ext_words);
5080
5081 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5082 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5083
5084 /* Check number of free result indices */
5085 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5086
5087 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5088 free_res_idx, recp_cnt);
5089
5090 /* Last recipe doesn't need result index */
5091 if (recp_cnt - 1 > free_res_idx)
5092 return -ENOSPC;
5093
5094 if (recp_cnt > ICE_MAX_CHAIN_RECIPE_RES)
5095 return -E2BIG;
5096
5097 buf = kcalloc(recp_cnt, sizeof(*buf), GFP_KERNEL);
5098 if (!buf)
5099 return -ENOMEM;
5100
5101 /* Setup the non-root subrecipes. These do not contain lookups for other
5102 * subrecipes results. Set associated recipe only to own recipe index.
5103 * Each non-root subrecipe needs a free result index from FV.
5104 *
5105 * Note: only done if there is more than one recipe.
5106 */
5107 for (i = 0; i < recp_cnt - 1; i++) {
5108 struct ice_aqc_recipe_content *content;
5109 u8 result_idx;
5110
5111 status = ice_alloc_recipe(hw, &rid);
5112 if (status)
5113 return status;
5114
5115 fill_recipe_template(&buf[i], rid, rm);
5116
5117 result_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5118 /* Check if there really is a valid result index that can be
5119 * used.
5120 */
5121 if (result_idx >= ICE_MAX_FV_WORDS) {
5122 ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5123 return -ENOSPC;
5124 }
5125 clear_bit(result_idx, result_idx_bm);
5126
5127 content = &buf[i].content;
5128 content->result_indx = ICE_AQ_RECIPE_RESULT_EN |
5129 FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5130 result_idx);
5131
5132 /* Set recipe association to be used for root recipe */
5133 set_bit(rid, rm->r_bitmap);
5134
5135 word = 0;
5136 while (lookup < rm->n_ext_words &&
5137 word < ICE_NUM_WORDS_RECIPE) {
5138 content->lkup_indx[word] = rm->fv_idx[lookup];
5139 content->mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5140
5141 lookup++;
5142 word++;
5143 }
5144
5145 recipe = &hw->switch_info->recp_list[rid];
5146 set_bit(result_idx, recipe->res_idxs);
5147 bookkeep_recipe(recipe, &buf[i], rm);
5148 }
5149
5150 /* Setup the root recipe */
5151 status = ice_alloc_recipe(hw, &rid);
5152 if (status)
5153 return status;
5154
5155 recipe = &hw->switch_info->recp_list[rid];
5156 root = &buf[recp_cnt - 1];
5157 fill_recipe_template(root, rid, rm);
5158
5159 /* Set recipe association, use previously set bitmap and own rid */
5160 set_bit(rid, rm->r_bitmap);
5161 memcpy(root->recipe_bitmap, rm->r_bitmap, sizeof(root->recipe_bitmap));
5162
5163 /* For non-root recipes rid should be 0, for root it should be correct
5164 * rid value ored with 0x80 (is root bit).
5165 */
5166 root->content.rid = rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5167
5168 /* Fill remaining lookups in root recipe */
5169 word = 0;
5170 while (lookup < rm->n_ext_words &&
5171 word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5172 root->content.lkup_indx[word] = rm->fv_idx[lookup];
5173 root->content.mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5174
5175 lookup++;
5176 word++;
5177 }
5178
5179 /* Fill result indexes as lookups */
5180 i = 0;
5181 while (i < recp_cnt - 1 &&
5182 word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5183 root->content.lkup_indx[word] = buf[i].content.result_indx &
5184 ~ICE_AQ_RECIPE_RESULT_EN;
5185 root->content.mask[word] = cpu_to_le16(0xffff);
5186 /* For bookkeeping, it is needed to mark FV index as used for
5187 * intermediate result.
5188 */
5189 set_bit(root->content.lkup_indx[word], recipe->res_idxs);
5190
5191 i++;
5192 word++;
5193 }
5194
5195 rm->root_rid = rid;
5196 bookkeep_recipe(&hw->switch_info->recp_list[rid], root, rm);
5197
5198 /* Program the recipe */
5199 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5200 if (status)
5201 return status;
5202
5203 status = ice_aq_add_recipe(hw, buf, recp_cnt, NULL);
5204 ice_release_change_lock(hw);
5205 if (status)
5206 return status;
5207
5208 return 0;
5209}
5210
5211/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5212 * @hw: pointer to hardware structure
5213 * @rinfo: other information regarding the rule e.g. priority and action info
5214 * @bm: pointer to memory for returning the bitmap of field vectors
5215 */
5216static void
5217ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5218 unsigned long *bm)
5219{
5220 enum ice_prof_type prof_type;
5221
5222 bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5223
5224 switch (rinfo->tun_type) {
5225 case ICE_NON_TUN:
5226 prof_type = ICE_PROF_NON_TUN;
5227 break;
5228 case ICE_ALL_TUNNELS:
5229 prof_type = ICE_PROF_TUN_ALL;
5230 break;
5231 case ICE_SW_TUN_GENEVE:
5232 case ICE_SW_TUN_VXLAN:
5233 prof_type = ICE_PROF_TUN_UDP;
5234 break;
5235 case ICE_SW_TUN_NVGRE:
5236 prof_type = ICE_PROF_TUN_GRE;
5237 break;
5238 case ICE_SW_TUN_GTPU:
5239 prof_type = ICE_PROF_TUN_GTPU;
5240 break;
5241 case ICE_SW_TUN_GTPC:
5242 prof_type = ICE_PROF_TUN_GTPC;
5243 break;
5244 case ICE_SW_TUN_PFCP:
5245 prof_type = ICE_PROF_TUN_PFCP;
5246 break;
5247 case ICE_SW_TUN_AND_NON_TUN:
5248 default:
5249 prof_type = ICE_PROF_ALL;
5250 break;
5251 }
5252
5253 ice_get_sw_fv_bitmap(hw, prof_type, bm);
5254}
5255
5256/**
5257 * ice_subscribe_recipe - subscribe to an existing recipe
5258 * @hw: pointer to the hardware structure
5259 * @rid: recipe ID to subscribe to
5260 *
5261 * Return: 0 on success, and others on error
5262 */
5263static int ice_subscribe_recipe(struct ice_hw *hw, u16 rid)
5264{
5265 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
5266 u16 buf_len = __struct_size(sw_buf);
5267 u16 res_type;
5268 int status;
5269
5270 /* Prepare buffer to allocate resource */
5271 sw_buf->num_elems = cpu_to_le16(1);
5272 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE) |
5273 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED |
5274 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_CTL;
5275 sw_buf->res_type = cpu_to_le16(res_type);
5276
5277 sw_buf->elem[0].e.sw_resp = cpu_to_le16(rid);
5278
5279 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
5280 ice_aqc_opc_alloc_res);
5281
5282 return status;
5283}
5284
5285/**
5286 * ice_subscribable_recp_shared - share an existing subscribable recipe
5287 * @hw: pointer to the hardware structure
5288 * @rid: recipe ID to subscribe to
5289 */
5290static void ice_subscribable_recp_shared(struct ice_hw *hw, u16 rid)
5291{
5292 struct ice_sw_recipe *recps = hw->switch_info->recp_list;
5293 u16 sub_rid;
5294
5295 for_each_set_bit(sub_rid, recps[rid].r_bitmap, ICE_MAX_NUM_RECIPES)
5296 ice_subscribe_recipe(hw, sub_rid);
5297}
5298
5299/**
5300 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5301 * @hw: pointer to hardware structure
5302 * @lkups: lookup elements or match criteria for the advanced recipe, one
5303 * structure per protocol header
5304 * @lkups_cnt: number of protocols
5305 * @rinfo: other information regarding the rule e.g. priority and action info
5306 * @rid: return the recipe ID of the recipe created
5307 */
5308static int
5309ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5310 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5311{
5312 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5313 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5314 struct ice_prot_lkup_ext *lkup_exts;
5315 struct ice_sw_fv_list_entry *fvit;
5316 struct ice_sw_fv_list_entry *tmp;
5317 struct ice_sw_recipe *rm;
5318 int status = 0;
5319 u16 rid_tmp;
5320 u8 i;
5321
5322 if (!lkups_cnt)
5323 return -EINVAL;
5324
5325 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5326 if (!lkup_exts)
5327 return -ENOMEM;
5328
5329 /* Determine the number of words to be matched and if it exceeds a
5330 * recipe's restrictions
5331 */
5332 for (i = 0; i < lkups_cnt; i++) {
5333 u16 count;
5334
5335 if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5336 status = -EIO;
5337 goto err_free_lkup_exts;
5338 }
5339
5340 count = ice_fill_valid_words(&lkups[i], lkup_exts);
5341 if (!count) {
5342 status = -EIO;
5343 goto err_free_lkup_exts;
5344 }
5345 }
5346
5347 rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5348 if (!rm) {
5349 status = -ENOMEM;
5350 goto err_free_lkup_exts;
5351 }
5352
5353 /* Get field vectors that contain fields extracted from all the protocol
5354 * headers being programmed.
5355 */
5356 INIT_LIST_HEAD(&rm->fv_list);
5357
5358 /* Get bitmap of field vectors (profiles) that are compatible with the
5359 * rule request; only these will be searched in the subsequent call to
5360 * ice_get_sw_fv_list.
5361 */
5362 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5363
5364 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5365 if (status)
5366 goto err_unroll;
5367
5368 /* Copy FV words and masks from lkup_exts to recipe struct. */
5369 rm->n_ext_words = lkup_exts->n_val_words;
5370 memcpy(rm->ext_words, lkup_exts->fv_words, sizeof(rm->ext_words));
5371 memcpy(rm->word_masks, lkup_exts->field_mask, sizeof(rm->word_masks));
5372
5373 /* set the recipe priority if specified */
5374 rm->priority = (u8)rinfo->priority;
5375
5376 rm->need_pass_l2 = rinfo->need_pass_l2;
5377 rm->allow_pass_l2 = rinfo->allow_pass_l2;
5378
5379 /* Find offsets from the field vector. Pick the first one for all the
5380 * recipes.
5381 */
5382 status = ice_fill_fv_word_index(hw, rm);
5383 if (status)
5384 goto err_unroll;
5385
5386 /* get bitmap of all profiles the recipe will be associated with */
5387 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5388 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5389 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5390 set_bit((u16)fvit->profile_id, profiles);
5391 }
5392
5393 /* Look for a recipe which matches our requested fv / mask list */
5394 *rid = ice_find_recp(hw, lkup_exts, rinfo, true);
5395 if (*rid < ICE_MAX_NUM_RECIPES) {
5396 /* Success if found a recipe that match the existing criteria */
5397 if (hw->recp_reuse)
5398 ice_subscribable_recp_shared(hw, *rid);
5399
5400 goto err_unroll;
5401 }
5402
5403 rm->tun_type = rinfo->tun_type;
5404 /* Recipe we need does not exist, add a recipe */
5405 status = ice_add_sw_recipe(hw, rm, profiles);
5406 if (status)
5407 goto err_unroll;
5408
5409 /* Associate all the recipes created with all the profiles in the
5410 * common field vector.
5411 */
5412 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5413 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5414 u64 recp_assoc;
5415 u16 j;
5416
5417 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5418 &recp_assoc, NULL);
5419 if (status)
5420 goto err_free_recipe;
5421
5422 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5423 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5424 ICE_MAX_NUM_RECIPES);
5425 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5426 if (status)
5427 goto err_free_recipe;
5428
5429 bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5430 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5431 recp_assoc, NULL);
5432 ice_release_change_lock(hw);
5433
5434 if (status)
5435 goto err_free_recipe;
5436
5437 /* Update profile to recipe bitmap array */
5438 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5439 ICE_MAX_NUM_RECIPES);
5440
5441 /* Update recipe to profile bitmap array */
5442 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5443 set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5444 }
5445
5446 *rid = rm->root_rid;
5447 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5448 sizeof(*lkup_exts));
5449 goto err_unroll;
5450
5451err_free_recipe:
5452 if (hw->recp_reuse) {
5453 for_each_set_bit(rid_tmp, rm->r_bitmap, ICE_MAX_NUM_RECIPES) {
5454 if (!ice_free_recipe_res(hw, rid_tmp))
5455 clear_bit(rid_tmp, rm->r_bitmap);
5456 }
5457 }
5458
5459err_unroll:
5460 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5461 list_del(&fvit->list_entry);
5462 devm_kfree(ice_hw_to_dev(hw), fvit);
5463 }
5464
5465 kfree(rm);
5466
5467err_free_lkup_exts:
5468 kfree(lkup_exts);
5469
5470 return status;
5471}
5472
5473/**
5474 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5475 *
5476 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5477 * @num_vlan: number of VLAN tags
5478 */
5479static struct ice_dummy_pkt_profile *
5480ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5481 u32 num_vlan)
5482{
5483 struct ice_dummy_pkt_profile *profile;
5484 struct ice_dummy_pkt_offsets *offsets;
5485 u32 buf_len, off, etype_off, i;
5486 u8 *pkt;
5487
5488 if (num_vlan < 1 || num_vlan > 2)
5489 return ERR_PTR(-EINVAL);
5490
5491 off = num_vlan * VLAN_HLEN;
5492
5493 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5494 dummy_pkt->offsets_len;
5495 offsets = kzalloc(buf_len, GFP_KERNEL);
5496 if (!offsets)
5497 return ERR_PTR(-ENOMEM);
5498
5499 offsets[0] = dummy_pkt->offsets[0];
5500 if (num_vlan == 2) {
5501 offsets[1] = ice_dummy_qinq_packet_offsets[0];
5502 offsets[2] = ice_dummy_qinq_packet_offsets[1];
5503 } else if (num_vlan == 1) {
5504 offsets[1] = ice_dummy_vlan_packet_offsets[0];
5505 }
5506
5507 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5508 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5509 offsets[i + num_vlan].offset =
5510 dummy_pkt->offsets[i].offset + off;
5511 }
5512 offsets[i + num_vlan] = dummy_pkt->offsets[i];
5513
5514 etype_off = dummy_pkt->offsets[1].offset;
5515
5516 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5517 dummy_pkt->pkt_len;
5518 pkt = kzalloc(buf_len, GFP_KERNEL);
5519 if (!pkt) {
5520 kfree(offsets);
5521 return ERR_PTR(-ENOMEM);
5522 }
5523
5524 memcpy(pkt, dummy_pkt->pkt, etype_off);
5525 memcpy(pkt + etype_off,
5526 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5527 off);
5528 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5529 dummy_pkt->pkt_len - etype_off);
5530
5531 profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5532 if (!profile) {
5533 kfree(offsets);
5534 kfree(pkt);
5535 return ERR_PTR(-ENOMEM);
5536 }
5537
5538 profile->offsets = offsets;
5539 profile->pkt = pkt;
5540 profile->pkt_len = buf_len;
5541 profile->match |= ICE_PKT_KMALLOC;
5542
5543 return profile;
5544}
5545
5546/**
5547 * ice_find_dummy_packet - find dummy packet
5548 *
5549 * @lkups: lookup elements or match criteria for the advanced recipe, one
5550 * structure per protocol header
5551 * @lkups_cnt: number of protocols
5552 * @tun_type: tunnel type
5553 *
5554 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5555 */
5556static const struct ice_dummy_pkt_profile *
5557ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5558 enum ice_sw_tunnel_type tun_type)
5559{
5560 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5561 u32 match = 0, vlan_count = 0;
5562 u16 i;
5563
5564 switch (tun_type) {
5565 case ICE_SW_TUN_GTPC:
5566 match |= ICE_PKT_TUN_GTPC;
5567 break;
5568 case ICE_SW_TUN_GTPU:
5569 match |= ICE_PKT_TUN_GTPU;
5570 break;
5571 case ICE_SW_TUN_NVGRE:
5572 match |= ICE_PKT_TUN_NVGRE;
5573 break;
5574 case ICE_SW_TUN_GENEVE:
5575 case ICE_SW_TUN_VXLAN:
5576 match |= ICE_PKT_TUN_UDP;
5577 break;
5578 case ICE_SW_TUN_PFCP:
5579 match |= ICE_PKT_PFCP;
5580 break;
5581 default:
5582 break;
5583 }
5584
5585 for (i = 0; i < lkups_cnt; i++) {
5586 if (lkups[i].type == ICE_UDP_ILOS)
5587 match |= ICE_PKT_INNER_UDP;
5588 else if (lkups[i].type == ICE_TCP_IL)
5589 match |= ICE_PKT_INNER_TCP;
5590 else if (lkups[i].type == ICE_IPV6_OFOS)
5591 match |= ICE_PKT_OUTER_IPV6;
5592 else if (lkups[i].type == ICE_VLAN_OFOS ||
5593 lkups[i].type == ICE_VLAN_EX)
5594 vlan_count++;
5595 else if (lkups[i].type == ICE_VLAN_IN)
5596 vlan_count++;
5597 else if (lkups[i].type == ICE_ETYPE_OL &&
5598 lkups[i].h_u.ethertype.ethtype_id ==
5599 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5600 lkups[i].m_u.ethertype.ethtype_id ==
5601 cpu_to_be16(0xFFFF))
5602 match |= ICE_PKT_OUTER_IPV6;
5603 else if (lkups[i].type == ICE_ETYPE_IL &&
5604 lkups[i].h_u.ethertype.ethtype_id ==
5605 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5606 lkups[i].m_u.ethertype.ethtype_id ==
5607 cpu_to_be16(0xFFFF))
5608 match |= ICE_PKT_INNER_IPV6;
5609 else if (lkups[i].type == ICE_IPV6_IL)
5610 match |= ICE_PKT_INNER_IPV6;
5611 else if (lkups[i].type == ICE_GTP_NO_PAY)
5612 match |= ICE_PKT_GTP_NOPAY;
5613 else if (lkups[i].type == ICE_PPPOE) {
5614 match |= ICE_PKT_PPPOE;
5615 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5616 htons(PPP_IPV6))
5617 match |= ICE_PKT_OUTER_IPV6;
5618 } else if (lkups[i].type == ICE_L2TPV3)
5619 match |= ICE_PKT_L2TPV3;
5620 }
5621
5622 while (ret->match && (match & ret->match) != ret->match)
5623 ret++;
5624
5625 if (vlan_count != 0)
5626 ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5627
5628 return ret;
5629}
5630
5631/**
5632 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5633 *
5634 * @lkups: lookup elements or match criteria for the advanced recipe, one
5635 * structure per protocol header
5636 * @lkups_cnt: number of protocols
5637 * @s_rule: stores rule information from the match criteria
5638 * @profile: dummy packet profile (the template, its size and header offsets)
5639 */
5640static int
5641ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5642 struct ice_sw_rule_lkup_rx_tx *s_rule,
5643 const struct ice_dummy_pkt_profile *profile)
5644{
5645 u8 *pkt;
5646 u16 i;
5647
5648 /* Start with a packet with a pre-defined/dummy content. Then, fill
5649 * in the header values to be looked up or matched.
5650 */
5651 pkt = s_rule->hdr_data;
5652
5653 memcpy(pkt, profile->pkt, profile->pkt_len);
5654
5655 for (i = 0; i < lkups_cnt; i++) {
5656 const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5657 enum ice_protocol_type type;
5658 u16 offset = 0, len = 0, j;
5659 bool found = false;
5660
5661 /* find the start of this layer; it should be found since this
5662 * was already checked when search for the dummy packet
5663 */
5664 type = lkups[i].type;
5665 /* metadata isn't present in the packet */
5666 if (type == ICE_HW_METADATA)
5667 continue;
5668
5669 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5670 if (type == offsets[j].type) {
5671 offset = offsets[j].offset;
5672 found = true;
5673 break;
5674 }
5675 }
5676 /* this should never happen in a correct calling sequence */
5677 if (!found)
5678 return -EINVAL;
5679
5680 switch (lkups[i].type) {
5681 case ICE_MAC_OFOS:
5682 case ICE_MAC_IL:
5683 len = sizeof(struct ice_ether_hdr);
5684 break;
5685 case ICE_ETYPE_OL:
5686 case ICE_ETYPE_IL:
5687 len = sizeof(struct ice_ethtype_hdr);
5688 break;
5689 case ICE_VLAN_OFOS:
5690 case ICE_VLAN_EX:
5691 case ICE_VLAN_IN:
5692 len = sizeof(struct ice_vlan_hdr);
5693 break;
5694 case ICE_IPV4_OFOS:
5695 case ICE_IPV4_IL:
5696 len = sizeof(struct ice_ipv4_hdr);
5697 break;
5698 case ICE_IPV6_OFOS:
5699 case ICE_IPV6_IL:
5700 len = sizeof(struct ice_ipv6_hdr);
5701 break;
5702 case ICE_TCP_IL:
5703 case ICE_UDP_OF:
5704 case ICE_UDP_ILOS:
5705 len = sizeof(struct ice_l4_hdr);
5706 break;
5707 case ICE_SCTP_IL:
5708 len = sizeof(struct ice_sctp_hdr);
5709 break;
5710 case ICE_NVGRE:
5711 len = sizeof(struct ice_nvgre_hdr);
5712 break;
5713 case ICE_VXLAN:
5714 case ICE_GENEVE:
5715 len = sizeof(struct ice_udp_tnl_hdr);
5716 break;
5717 case ICE_GTP_NO_PAY:
5718 case ICE_GTP:
5719 len = sizeof(struct ice_udp_gtp_hdr);
5720 break;
5721 case ICE_PFCP:
5722 len = sizeof(struct ice_pfcp_hdr);
5723 break;
5724 case ICE_PPPOE:
5725 len = sizeof(struct ice_pppoe_hdr);
5726 break;
5727 case ICE_L2TPV3:
5728 len = sizeof(struct ice_l2tpv3_sess_hdr);
5729 break;
5730 default:
5731 return -EINVAL;
5732 }
5733
5734 /* the length should be a word multiple */
5735 if (len % ICE_BYTES_PER_WORD)
5736 return -EIO;
5737
5738 /* We have the offset to the header start, the length, the
5739 * caller's header values and mask. Use this information to
5740 * copy the data into the dummy packet appropriately based on
5741 * the mask. Note that we need to only write the bits as
5742 * indicated by the mask to make sure we don't improperly write
5743 * over any significant packet data.
5744 */
5745 for (j = 0; j < len / sizeof(u16); j++) {
5746 u16 *ptr = (u16 *)(pkt + offset);
5747 u16 mask = lkups[i].m_raw[j];
5748
5749 if (!mask)
5750 continue;
5751
5752 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5753 }
5754 }
5755
5756 s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5757
5758 return 0;
5759}
5760
5761/**
5762 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5763 * @hw: pointer to the hardware structure
5764 * @tun_type: tunnel type
5765 * @pkt: dummy packet to fill in
5766 * @offsets: offset info for the dummy packet
5767 */
5768static int
5769ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5770 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5771{
5772 u16 open_port, i;
5773
5774 switch (tun_type) {
5775 case ICE_SW_TUN_VXLAN:
5776 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5777 return -EIO;
5778 break;
5779 case ICE_SW_TUN_GENEVE:
5780 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5781 return -EIO;
5782 break;
5783 default:
5784 /* Nothing needs to be done for this tunnel type */
5785 return 0;
5786 }
5787
5788 /* Find the outer UDP protocol header and insert the port number */
5789 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5790 if (offsets[i].type == ICE_UDP_OF) {
5791 struct ice_l4_hdr *hdr;
5792 u16 offset;
5793
5794 offset = offsets[i].offset;
5795 hdr = (struct ice_l4_hdr *)&pkt[offset];
5796 hdr->dst_port = cpu_to_be16(open_port);
5797
5798 return 0;
5799 }
5800 }
5801
5802 return -EIO;
5803}
5804
5805/**
5806 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5807 * @hw: pointer to hw structure
5808 * @vlan_type: VLAN tag type
5809 * @pkt: dummy packet to fill in
5810 * @offsets: offset info for the dummy packet
5811 */
5812static int
5813ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5814 const struct ice_dummy_pkt_offsets *offsets)
5815{
5816 u16 i;
5817
5818 /* Check if there is something to do */
5819 if (!vlan_type || !ice_is_dvm_ena(hw))
5820 return 0;
5821
5822 /* Find VLAN header and insert VLAN TPID */
5823 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5824 if (offsets[i].type == ICE_VLAN_OFOS ||
5825 offsets[i].type == ICE_VLAN_EX) {
5826 struct ice_vlan_hdr *hdr;
5827 u16 offset;
5828
5829 offset = offsets[i].offset;
5830 hdr = (struct ice_vlan_hdr *)&pkt[offset];
5831 hdr->type = cpu_to_be16(vlan_type);
5832
5833 return 0;
5834 }
5835 }
5836
5837 return -EIO;
5838}
5839
5840static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5841 const struct ice_adv_rule_info *second)
5842{
5843 return first->sw_act.flag == second->sw_act.flag &&
5844 first->tun_type == second->tun_type &&
5845 first->vlan_type == second->vlan_type &&
5846 first->src_vsi == second->src_vsi &&
5847 first->need_pass_l2 == second->need_pass_l2 &&
5848 first->allow_pass_l2 == second->allow_pass_l2;
5849}
5850
5851/**
5852 * ice_find_adv_rule_entry - Search a rule entry
5853 * @hw: pointer to the hardware structure
5854 * @lkups: lookup elements or match criteria for the advanced recipe, one
5855 * structure per protocol header
5856 * @lkups_cnt: number of protocols
5857 * @recp_id: recipe ID for which we are finding the rule
5858 * @rinfo: other information regarding the rule e.g. priority and action info
5859 *
5860 * Helper function to search for a given advance rule entry
5861 * Returns pointer to entry storing the rule if found
5862 */
5863static struct ice_adv_fltr_mgmt_list_entry *
5864ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5865 u16 lkups_cnt, u16 recp_id,
5866 struct ice_adv_rule_info *rinfo)
5867{
5868 struct ice_adv_fltr_mgmt_list_entry *list_itr;
5869 struct ice_switch_info *sw = hw->switch_info;
5870 int i;
5871
5872 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5873 list_entry) {
5874 bool lkups_matched = true;
5875
5876 if (lkups_cnt != list_itr->lkups_cnt)
5877 continue;
5878 for (i = 0; i < list_itr->lkups_cnt; i++)
5879 if (memcmp(&list_itr->lkups[i], &lkups[i],
5880 sizeof(*lkups))) {
5881 lkups_matched = false;
5882 break;
5883 }
5884 if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5885 lkups_matched)
5886 return list_itr;
5887 }
5888 return NULL;
5889}
5890
5891/**
5892 * ice_adv_add_update_vsi_list
5893 * @hw: pointer to the hardware structure
5894 * @m_entry: pointer to current adv filter management list entry
5895 * @cur_fltr: filter information from the book keeping entry
5896 * @new_fltr: filter information with the new VSI to be added
5897 *
5898 * Call AQ command to add or update previously created VSI list with new VSI.
5899 *
5900 * Helper function to do book keeping associated with adding filter information
5901 * The algorithm to do the booking keeping is described below :
5902 * When a VSI needs to subscribe to a given advanced filter
5903 * if only one VSI has been added till now
5904 * Allocate a new VSI list and add two VSIs
5905 * to this list using switch rule command
5906 * Update the previously created switch rule with the
5907 * newly created VSI list ID
5908 * if a VSI list was previously created
5909 * Add the new VSI to the previously created VSI list set
5910 * using the update switch rule command
5911 */
5912static int
5913ice_adv_add_update_vsi_list(struct ice_hw *hw,
5914 struct ice_adv_fltr_mgmt_list_entry *m_entry,
5915 struct ice_adv_rule_info *cur_fltr,
5916 struct ice_adv_rule_info *new_fltr)
5917{
5918 u16 vsi_list_id = 0;
5919 int status;
5920
5921 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5922 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5923 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5924 return -EOPNOTSUPP;
5925
5926 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5927 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5928 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5929 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5930 return -EOPNOTSUPP;
5931
5932 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5933 /* Only one entry existed in the mapping and it was not already
5934 * a part of a VSI list. So, create a VSI list with the old and
5935 * new VSIs.
5936 */
5937 struct ice_fltr_info tmp_fltr;
5938 u16 vsi_handle_arr[2];
5939
5940 /* A rule already exists with the new VSI being added */
5941 if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5942 new_fltr->sw_act.fwd_id.hw_vsi_id)
5943 return -EEXIST;
5944
5945 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5946 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5947 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5948 &vsi_list_id,
5949 ICE_SW_LKUP_LAST);
5950 if (status)
5951 return status;
5952
5953 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5954 tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5955 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5956 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5957 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5958 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5959
5960 /* Update the previous switch rule of "forward to VSI" to
5961 * "fwd to VSI list"
5962 */
5963 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5964 if (status)
5965 return status;
5966
5967 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5968 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5969 m_entry->vsi_list_info =
5970 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5971 vsi_list_id);
5972 } else {
5973 u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5974
5975 if (!m_entry->vsi_list_info)
5976 return -EIO;
5977
5978 /* A rule already exists with the new VSI being added */
5979 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5980 return 0;
5981
5982 /* Update the previously created VSI list set with
5983 * the new VSI ID passed in
5984 */
5985 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5986
5987 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5988 vsi_list_id, false,
5989 ice_aqc_opc_update_sw_rules,
5990 ICE_SW_LKUP_LAST);
5991 /* update VSI list mapping info with new VSI ID */
5992 if (!status)
5993 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5994 }
5995 if (!status)
5996 m_entry->vsi_count++;
5997 return status;
5998}
5999
6000void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
6001{
6002 lkup->type = ICE_HW_METADATA;
6003 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
6004 cpu_to_be16(ICE_PKT_TUNNEL_MASK);
6005}
6006
6007void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
6008{
6009 lkup->type = ICE_HW_METADATA;
6010 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6011 cpu_to_be16(ICE_PKT_FROM_NETWORK);
6012}
6013
6014void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
6015{
6016 lkup->type = ICE_HW_METADATA;
6017 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6018 cpu_to_be16(ICE_PKT_VLAN_MASK);
6019}
6020
6021void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
6022{
6023 lkup->type = ICE_HW_METADATA;
6024 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
6025}
6026
6027/**
6028 * ice_add_adv_rule - helper function to create an advanced switch rule
6029 * @hw: pointer to the hardware structure
6030 * @lkups: information on the words that needs to be looked up. All words
6031 * together makes one recipe
6032 * @lkups_cnt: num of entries in the lkups array
6033 * @rinfo: other information related to the rule that needs to be programmed
6034 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6035 * ignored is case of error.
6036 *
6037 * This function can program only 1 rule at a time. The lkups is used to
6038 * describe the all the words that forms the "lookup" portion of the recipe.
6039 * These words can span multiple protocols. Callers to this function need to
6040 * pass in a list of protocol headers with lookup information along and mask
6041 * that determines which words are valid from the given protocol header.
6042 * rinfo describes other information related to this rule such as forwarding
6043 * IDs, priority of this rule, etc.
6044 */
6045int
6046ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6047 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6048 struct ice_rule_query_data *added_entry)
6049{
6050 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6051 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6052 const struct ice_dummy_pkt_profile *profile;
6053 u16 rid = 0, i, rule_buf_sz, vsi_handle;
6054 struct list_head *rule_head;
6055 struct ice_switch_info *sw;
6056 u16 word_cnt;
6057 u32 act = 0;
6058 int status;
6059 u8 q_rgn;
6060
6061 /* Initialize profile to result index bitmap */
6062 if (!hw->switch_info->prof_res_bm_init) {
6063 hw->switch_info->prof_res_bm_init = 1;
6064 ice_init_prof_result_bm(hw);
6065 }
6066
6067 if (!lkups_cnt)
6068 return -EINVAL;
6069
6070 /* get # of words we need to match */
6071 word_cnt = 0;
6072 for (i = 0; i < lkups_cnt; i++) {
6073 u16 j;
6074
6075 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6076 if (lkups[i].m_raw[j])
6077 word_cnt++;
6078 }
6079
6080 if (!word_cnt)
6081 return -EINVAL;
6082
6083 if (word_cnt > ICE_MAX_CHAIN_WORDS)
6084 return -ENOSPC;
6085
6086 /* locate a dummy packet */
6087 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6088 if (IS_ERR(profile))
6089 return PTR_ERR(profile);
6090
6091 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6092 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6093 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6094 rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6095 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6096 rinfo->sw_act.fltr_act == ICE_NOP)) {
6097 status = -EIO;
6098 goto free_pkt_profile;
6099 }
6100
6101 vsi_handle = rinfo->sw_act.vsi_handle;
6102 if (!ice_is_vsi_valid(hw, vsi_handle)) {
6103 status = -EINVAL;
6104 goto free_pkt_profile;
6105 }
6106
6107 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6108 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6109 rinfo->sw_act.fltr_act == ICE_NOP) {
6110 rinfo->sw_act.fwd_id.hw_vsi_id =
6111 ice_get_hw_vsi_num(hw, vsi_handle);
6112 }
6113
6114 if (rinfo->src_vsi)
6115 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6116 else
6117 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6118
6119 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6120 if (status)
6121 goto free_pkt_profile;
6122 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6123 if (m_entry) {
6124 /* we have to add VSI to VSI_LIST and increment vsi_count.
6125 * Also Update VSI list so that we can change forwarding rule
6126 * if the rule already exists, we will check if it exists with
6127 * same vsi_id, if not then add it to the VSI list if it already
6128 * exists if not then create a VSI list and add the existing VSI
6129 * ID and the new VSI ID to the list
6130 * We will add that VSI to the list
6131 */
6132 status = ice_adv_add_update_vsi_list(hw, m_entry,
6133 &m_entry->rule_info,
6134 rinfo);
6135 if (added_entry) {
6136 added_entry->rid = rid;
6137 added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6138 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6139 }
6140 goto free_pkt_profile;
6141 }
6142 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6143 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6144 if (!s_rule) {
6145 status = -ENOMEM;
6146 goto free_pkt_profile;
6147 }
6148
6149 if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6150 if (!rinfo->flags_info.act_valid) {
6151 act |= ICE_SINGLE_ACT_LAN_ENABLE;
6152 act |= ICE_SINGLE_ACT_LB_ENABLE;
6153 } else {
6154 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6155 ICE_SINGLE_ACT_LB_ENABLE);
6156 }
6157 }
6158
6159 switch (rinfo->sw_act.fltr_act) {
6160 case ICE_FWD_TO_VSI:
6161 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6162 rinfo->sw_act.fwd_id.hw_vsi_id);
6163 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6164 break;
6165 case ICE_FWD_TO_Q:
6166 act |= ICE_SINGLE_ACT_TO_Q;
6167 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6168 rinfo->sw_act.fwd_id.q_id);
6169 break;
6170 case ICE_FWD_TO_QGRP:
6171 q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6172 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6173 act |= ICE_SINGLE_ACT_TO_Q;
6174 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6175 rinfo->sw_act.fwd_id.q_id);
6176 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6177 break;
6178 case ICE_DROP_PACKET:
6179 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6180 ICE_SINGLE_ACT_VALID_BIT;
6181 break;
6182 case ICE_MIRROR_PACKET:
6183 act |= ICE_SINGLE_ACT_OTHER_ACTS;
6184 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6185 rinfo->sw_act.fwd_id.hw_vsi_id);
6186 break;
6187 case ICE_NOP:
6188 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6189 rinfo->sw_act.fwd_id.hw_vsi_id);
6190 act &= ~ICE_SINGLE_ACT_VALID_BIT;
6191 break;
6192 default:
6193 status = -EIO;
6194 goto err_ice_add_adv_rule;
6195 }
6196
6197 /* If there is no matching criteria for direction there
6198 * is only one difference between Rx and Tx:
6199 * - get switch id base on VSI number from source field (Tx)
6200 * - get switch id base on port number (Rx)
6201 *
6202 * If matching on direction metadata is chose rule direction is
6203 * extracted from type value set here.
6204 */
6205 if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6206 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6207 s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6208 } else {
6209 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6210 s_rule->src = cpu_to_le16(hw->port_info->lport);
6211 }
6212
6213 s_rule->recipe_id = cpu_to_le16(rid);
6214 s_rule->act = cpu_to_le32(act);
6215
6216 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6217 if (status)
6218 goto err_ice_add_adv_rule;
6219
6220 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6221 profile->offsets);
6222 if (status)
6223 goto err_ice_add_adv_rule;
6224
6225 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6226 s_rule->hdr_data,
6227 profile->offsets);
6228 if (status)
6229 goto err_ice_add_adv_rule;
6230
6231 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6232 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6233 NULL);
6234 if (status)
6235 goto err_ice_add_adv_rule;
6236 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6237 sizeof(struct ice_adv_fltr_mgmt_list_entry),
6238 GFP_KERNEL);
6239 if (!adv_fltr) {
6240 status = -ENOMEM;
6241 goto err_ice_add_adv_rule;
6242 }
6243
6244 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6245 lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6246 if (!adv_fltr->lkups) {
6247 status = -ENOMEM;
6248 goto err_ice_add_adv_rule;
6249 }
6250
6251 adv_fltr->lkups_cnt = lkups_cnt;
6252 adv_fltr->rule_info = *rinfo;
6253 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6254 sw = hw->switch_info;
6255 sw->recp_list[rid].adv_rule = true;
6256 rule_head = &sw->recp_list[rid].filt_rules;
6257
6258 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6259 adv_fltr->vsi_count = 1;
6260
6261 /* Add rule entry to book keeping list */
6262 list_add(&adv_fltr->list_entry, rule_head);
6263 if (added_entry) {
6264 added_entry->rid = rid;
6265 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6266 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6267 }
6268err_ice_add_adv_rule:
6269 if (status && adv_fltr) {
6270 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6271 devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6272 }
6273
6274 kfree(s_rule);
6275
6276free_pkt_profile:
6277 if (profile->match & ICE_PKT_KMALLOC) {
6278 kfree(profile->offsets);
6279 kfree(profile->pkt);
6280 kfree(profile);
6281 }
6282
6283 return status;
6284}
6285
6286/**
6287 * ice_replay_vsi_fltr - Replay filters for requested VSI
6288 * @hw: pointer to the hardware structure
6289 * @vsi_handle: driver VSI handle
6290 * @recp_id: Recipe ID for which rules need to be replayed
6291 * @list_head: list for which filters need to be replayed
6292 *
6293 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6294 * It is required to pass valid VSI handle.
6295 */
6296static int
6297ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6298 struct list_head *list_head)
6299{
6300 struct ice_fltr_mgmt_list_entry *itr;
6301 int status = 0;
6302 u16 hw_vsi_id;
6303
6304 if (list_empty(list_head))
6305 return status;
6306 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6307
6308 list_for_each_entry(itr, list_head, list_entry) {
6309 struct ice_fltr_list_entry f_entry;
6310
6311 f_entry.fltr_info = itr->fltr_info;
6312 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6313 itr->fltr_info.vsi_handle == vsi_handle) {
6314 /* update the src in case it is VSI num */
6315 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6316 f_entry.fltr_info.src = hw_vsi_id;
6317 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6318 if (status)
6319 goto end;
6320 continue;
6321 }
6322 if (!itr->vsi_list_info ||
6323 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6324 continue;
6325 f_entry.fltr_info.vsi_handle = vsi_handle;
6326 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6327 /* update the src in case it is VSI num */
6328 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6329 f_entry.fltr_info.src = hw_vsi_id;
6330 if (recp_id == ICE_SW_LKUP_VLAN)
6331 status = ice_add_vlan_internal(hw, &f_entry);
6332 else
6333 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6334 if (status)
6335 goto end;
6336 }
6337end:
6338 return status;
6339}
6340
6341/**
6342 * ice_adv_rem_update_vsi_list
6343 * @hw: pointer to the hardware structure
6344 * @vsi_handle: VSI handle of the VSI to remove
6345 * @fm_list: filter management entry for which the VSI list management needs to
6346 * be done
6347 */
6348static int
6349ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6350 struct ice_adv_fltr_mgmt_list_entry *fm_list)
6351{
6352 struct ice_vsi_list_map_info *vsi_list_info;
6353 enum ice_sw_lkup_type lkup_type;
6354 u16 vsi_list_id;
6355 int status;
6356
6357 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6358 fm_list->vsi_count == 0)
6359 return -EINVAL;
6360
6361 /* A rule with the VSI being removed does not exist */
6362 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6363 return -ENOENT;
6364
6365 lkup_type = ICE_SW_LKUP_LAST;
6366 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6367 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6368 ice_aqc_opc_update_sw_rules,
6369 lkup_type);
6370 if (status)
6371 return status;
6372
6373 fm_list->vsi_count--;
6374 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6375 vsi_list_info = fm_list->vsi_list_info;
6376 if (fm_list->vsi_count == 1) {
6377 struct ice_fltr_info tmp_fltr;
6378 u16 rem_vsi_handle;
6379
6380 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6381 ICE_MAX_VSI);
6382 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6383 return -EIO;
6384
6385 /* Make sure VSI list is empty before removing it below */
6386 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6387 vsi_list_id, true,
6388 ice_aqc_opc_update_sw_rules,
6389 lkup_type);
6390 if (status)
6391 return status;
6392
6393 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6394 tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6395 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6396 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6397 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6398 tmp_fltr.fwd_id.hw_vsi_id =
6399 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6400 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6401 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6402 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6403
6404 /* Update the previous switch rule of "MAC forward to VSI" to
6405 * "MAC fwd to VSI list"
6406 */
6407 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6408 if (status) {
6409 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6410 tmp_fltr.fwd_id.hw_vsi_id, status);
6411 return status;
6412 }
6413 fm_list->vsi_list_info->ref_cnt--;
6414
6415 /* Remove the VSI list since it is no longer used */
6416 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6417 if (status) {
6418 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6419 vsi_list_id, status);
6420 return status;
6421 }
6422
6423 list_del(&vsi_list_info->list_entry);
6424 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6425 fm_list->vsi_list_info = NULL;
6426 }
6427
6428 return status;
6429}
6430
6431/**
6432 * ice_rem_adv_rule - removes existing advanced switch rule
6433 * @hw: pointer to the hardware structure
6434 * @lkups: information on the words that needs to be looked up. All words
6435 * together makes one recipe
6436 * @lkups_cnt: num of entries in the lkups array
6437 * @rinfo: Its the pointer to the rule information for the rule
6438 *
6439 * This function can be used to remove 1 rule at a time. The lkups is
6440 * used to describe all the words that forms the "lookup" portion of the
6441 * rule. These words can span multiple protocols. Callers to this function
6442 * need to pass in a list of protocol headers with lookup information along
6443 * and mask that determines which words are valid from the given protocol
6444 * header. rinfo describes other information related to this rule such as
6445 * forwarding IDs, priority of this rule, etc.
6446 */
6447static int
6448ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6449 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6450{
6451 struct ice_adv_fltr_mgmt_list_entry *list_elem;
6452 struct ice_prot_lkup_ext lkup_exts;
6453 bool remove_rule = false;
6454 struct mutex *rule_lock; /* Lock to protect filter rule list */
6455 u16 i, rid, vsi_handle;
6456 int status = 0;
6457
6458 memset(&lkup_exts, 0, sizeof(lkup_exts));
6459 for (i = 0; i < lkups_cnt; i++) {
6460 u16 count;
6461
6462 if (lkups[i].type >= ICE_PROTOCOL_LAST)
6463 return -EIO;
6464
6465 count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6466 if (!count)
6467 return -EIO;
6468 }
6469
6470 rid = ice_find_recp(hw, &lkup_exts, rinfo, false);
6471 /* If did not find a recipe that match the existing criteria */
6472 if (rid == ICE_MAX_NUM_RECIPES)
6473 return -EINVAL;
6474
6475 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6476 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6477 /* the rule is already removed */
6478 if (!list_elem)
6479 return 0;
6480 mutex_lock(rule_lock);
6481 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6482 remove_rule = true;
6483 } else if (list_elem->vsi_count > 1) {
6484 remove_rule = false;
6485 vsi_handle = rinfo->sw_act.vsi_handle;
6486 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6487 } else {
6488 vsi_handle = rinfo->sw_act.vsi_handle;
6489 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6490 if (status) {
6491 mutex_unlock(rule_lock);
6492 return status;
6493 }
6494 if (list_elem->vsi_count == 0)
6495 remove_rule = true;
6496 }
6497 mutex_unlock(rule_lock);
6498 if (remove_rule) {
6499 struct ice_sw_rule_lkup_rx_tx *s_rule;
6500 u16 rule_buf_sz;
6501
6502 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6503 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6504 if (!s_rule)
6505 return -ENOMEM;
6506 s_rule->act = 0;
6507 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6508 s_rule->hdr_len = 0;
6509 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6510 rule_buf_sz, 1,
6511 ice_aqc_opc_remove_sw_rules, NULL);
6512 if (!status || status == -ENOENT) {
6513 struct ice_switch_info *sw = hw->switch_info;
6514 struct ice_sw_recipe *r_list = sw->recp_list;
6515
6516 mutex_lock(rule_lock);
6517 list_del(&list_elem->list_entry);
6518 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6519 devm_kfree(ice_hw_to_dev(hw), list_elem);
6520 mutex_unlock(rule_lock);
6521 if (list_empty(&r_list[rid].filt_rules)) {
6522 r_list[rid].adv_rule = false;
6523
6524 /* All rules for this recipe are now removed */
6525 if (hw->recp_reuse)
6526 ice_release_recipe_res(hw,
6527 &r_list[rid]);
6528 }
6529 }
6530 kfree(s_rule);
6531 }
6532 return status;
6533}
6534
6535/**
6536 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6537 * @hw: pointer to the hardware structure
6538 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6539 *
6540 * This function is used to remove 1 rule at a time. The removal is based on
6541 * the remove_entry parameter. This function will remove rule for a given
6542 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6543 */
6544int
6545ice_rem_adv_rule_by_id(struct ice_hw *hw,
6546 struct ice_rule_query_data *remove_entry)
6547{
6548 struct ice_adv_fltr_mgmt_list_entry *list_itr;
6549 struct list_head *list_head;
6550 struct ice_adv_rule_info rinfo;
6551 struct ice_switch_info *sw;
6552
6553 sw = hw->switch_info;
6554 if (!sw->recp_list[remove_entry->rid].recp_created)
6555 return -EINVAL;
6556 list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6557 list_for_each_entry(list_itr, list_head, list_entry) {
6558 if (list_itr->rule_info.fltr_rule_id ==
6559 remove_entry->rule_id) {
6560 rinfo = list_itr->rule_info;
6561 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6562 return ice_rem_adv_rule(hw, list_itr->lkups,
6563 list_itr->lkups_cnt, &rinfo);
6564 }
6565 }
6566 /* either list is empty or unable to find rule */
6567 return -ENOENT;
6568}
6569
6570/**
6571 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6572 * @hw: pointer to the hardware structure
6573 * @vsi_handle: driver VSI handle
6574 * @list_head: list for which filters need to be replayed
6575 *
6576 * Replay the advanced rule for the given VSI.
6577 */
6578static int
6579ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6580 struct list_head *list_head)
6581{
6582 struct ice_rule_query_data added_entry = { 0 };
6583 struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6584 int status = 0;
6585
6586 if (list_empty(list_head))
6587 return status;
6588 list_for_each_entry(adv_fltr, list_head, list_entry) {
6589 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6590 u16 lk_cnt = adv_fltr->lkups_cnt;
6591
6592 if (vsi_handle != rinfo->sw_act.vsi_handle)
6593 continue;
6594 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6595 &added_entry);
6596 if (status)
6597 break;
6598 }
6599 return status;
6600}
6601
6602/**
6603 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6604 * @hw: pointer to the hardware structure
6605 * @vsi_handle: driver VSI handle
6606 *
6607 * Replays filters for requested VSI via vsi_handle.
6608 */
6609int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6610{
6611 struct ice_switch_info *sw = hw->switch_info;
6612 int status;
6613 u8 i;
6614
6615 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6616 struct list_head *head;
6617
6618 head = &sw->recp_list[i].filt_replay_rules;
6619 if (!sw->recp_list[i].adv_rule)
6620 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6621 else
6622 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6623 if (status)
6624 return status;
6625 }
6626 return status;
6627}
6628
6629/**
6630 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6631 * @hw: pointer to the HW struct
6632 *
6633 * Deletes the filter replay rules.
6634 */
6635void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6636{
6637 struct ice_switch_info *sw = hw->switch_info;
6638 u8 i;
6639
6640 if (!sw)
6641 return;
6642
6643 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6644 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6645 struct list_head *l_head;
6646
6647 l_head = &sw->recp_list[i].filt_replay_rules;
6648 if (!sw->recp_list[i].adv_rule)
6649 ice_rem_sw_rule_info(hw, l_head);
6650 else
6651 ice_rem_adv_rule_info(hw, l_head);
6652 }
6653 }
6654}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_lib.h"
5#include "ice_switch.h"
6
7#define ICE_ETH_DA_OFFSET 0
8#define ICE_ETH_ETHTYPE_OFFSET 12
9#define ICE_ETH_VLAN_TCI_OFFSET 14
10#define ICE_MAX_VLAN_ID 0xFFF
11#define ICE_IPV6_ETHER_ID 0x86DD
12
13/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14 * struct to configure any switch filter rules.
15 * {DA (6 bytes), SA(6 bytes),
16 * Ether type (2 bytes for header without VLAN tag) OR
17 * VLAN tag (4 bytes for header with VLAN tag) }
18 *
19 * Word on Hardcoded values
20 * byte 0 = 0x2: to identify it as locally administered DA MAC
21 * byte 6 = 0x2: to identify it as locally administered SA MAC
22 * byte 12 = 0x81 & byte 13 = 0x00:
23 * In case of VLAN filter first two bytes defines ether type (0x8100)
24 * and remaining two bytes are placeholder for programming a given VLAN ID
25 * In case of Ether type filter it is treated as header without VLAN tag
26 * and byte 12 and 13 is used to program a given Ether type instead
27 */
28#define DUMMY_ETH_HDR_LEN 16
29static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
30 0x2, 0, 0, 0, 0, 0,
31 0x81, 0, 0, 0};
32
33enum {
34 ICE_PKT_OUTER_IPV6 = BIT(0),
35 ICE_PKT_TUN_GTPC = BIT(1),
36 ICE_PKT_TUN_GTPU = BIT(2),
37 ICE_PKT_TUN_NVGRE = BIT(3),
38 ICE_PKT_TUN_UDP = BIT(4),
39 ICE_PKT_INNER_IPV6 = BIT(5),
40 ICE_PKT_INNER_TCP = BIT(6),
41 ICE_PKT_INNER_UDP = BIT(7),
42 ICE_PKT_GTP_NOPAY = BIT(8),
43 ICE_PKT_KMALLOC = BIT(9),
44 ICE_PKT_PPPOE = BIT(10),
45 ICE_PKT_L2TPV3 = BIT(11),
46};
47
48struct ice_dummy_pkt_offsets {
49 enum ice_protocol_type type;
50 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
51};
52
53struct ice_dummy_pkt_profile {
54 const struct ice_dummy_pkt_offsets *offsets;
55 const u8 *pkt;
56 u32 match;
57 u16 pkt_len;
58 u16 offsets_len;
59};
60
61#define ICE_DECLARE_PKT_OFFSETS(type) \
62 static const struct ice_dummy_pkt_offsets \
63 ice_dummy_##type##_packet_offsets[]
64
65#define ICE_DECLARE_PKT_TEMPLATE(type) \
66 static const u8 ice_dummy_##type##_packet[]
67
68#define ICE_PKT_PROFILE(type, m) { \
69 .match = (m), \
70 .pkt = ice_dummy_##type##_packet, \
71 .pkt_len = sizeof(ice_dummy_##type##_packet), \
72 .offsets = ice_dummy_##type##_packet_offsets, \
73 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \
74}
75
76ICE_DECLARE_PKT_OFFSETS(vlan) = {
77 { ICE_VLAN_OFOS, 12 },
78};
79
80ICE_DECLARE_PKT_TEMPLATE(vlan) = {
81 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
82};
83
84ICE_DECLARE_PKT_OFFSETS(qinq) = {
85 { ICE_VLAN_EX, 12 },
86 { ICE_VLAN_IN, 16 },
87};
88
89ICE_DECLARE_PKT_TEMPLATE(qinq) = {
90 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
91 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
92};
93
94ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
95 { ICE_MAC_OFOS, 0 },
96 { ICE_ETYPE_OL, 12 },
97 { ICE_IPV4_OFOS, 14 },
98 { ICE_NVGRE, 34 },
99 { ICE_MAC_IL, 42 },
100 { ICE_ETYPE_IL, 54 },
101 { ICE_IPV4_IL, 56 },
102 { ICE_TCP_IL, 76 },
103 { ICE_PROTOCOL_LAST, 0 },
104};
105
106ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
107 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
108 0x00, 0x00, 0x00, 0x00,
109 0x00, 0x00, 0x00, 0x00,
110
111 0x08, 0x00, /* ICE_ETYPE_OL 12 */
112
113 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
114 0x00, 0x00, 0x00, 0x00,
115 0x00, 0x2F, 0x00, 0x00,
116 0x00, 0x00, 0x00, 0x00,
117 0x00, 0x00, 0x00, 0x00,
118
119 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
120 0x00, 0x00, 0x00, 0x00,
121
122 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
123 0x00, 0x00, 0x00, 0x00,
124 0x00, 0x00, 0x00, 0x00,
125
126 0x08, 0x00, /* ICE_ETYPE_IL 54 */
127
128 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
129 0x00, 0x00, 0x00, 0x00,
130 0x00, 0x06, 0x00, 0x00,
131 0x00, 0x00, 0x00, 0x00,
132 0x00, 0x00, 0x00, 0x00,
133
134 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
135 0x00, 0x00, 0x00, 0x00,
136 0x00, 0x00, 0x00, 0x00,
137 0x50, 0x02, 0x20, 0x00,
138 0x00, 0x00, 0x00, 0x00
139};
140
141ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
142 { ICE_MAC_OFOS, 0 },
143 { ICE_ETYPE_OL, 12 },
144 { ICE_IPV4_OFOS, 14 },
145 { ICE_NVGRE, 34 },
146 { ICE_MAC_IL, 42 },
147 { ICE_ETYPE_IL, 54 },
148 { ICE_IPV4_IL, 56 },
149 { ICE_UDP_ILOS, 76 },
150 { ICE_PROTOCOL_LAST, 0 },
151};
152
153ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
154 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
155 0x00, 0x00, 0x00, 0x00,
156 0x00, 0x00, 0x00, 0x00,
157
158 0x08, 0x00, /* ICE_ETYPE_OL 12 */
159
160 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
161 0x00, 0x00, 0x00, 0x00,
162 0x00, 0x2F, 0x00, 0x00,
163 0x00, 0x00, 0x00, 0x00,
164 0x00, 0x00, 0x00, 0x00,
165
166 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
167 0x00, 0x00, 0x00, 0x00,
168
169 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
170 0x00, 0x00, 0x00, 0x00,
171 0x00, 0x00, 0x00, 0x00,
172
173 0x08, 0x00, /* ICE_ETYPE_IL 54 */
174
175 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
176 0x00, 0x00, 0x00, 0x00,
177 0x00, 0x11, 0x00, 0x00,
178 0x00, 0x00, 0x00, 0x00,
179 0x00, 0x00, 0x00, 0x00,
180
181 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
182 0x00, 0x08, 0x00, 0x00,
183};
184
185ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
186 { ICE_MAC_OFOS, 0 },
187 { ICE_ETYPE_OL, 12 },
188 { ICE_IPV4_OFOS, 14 },
189 { ICE_UDP_OF, 34 },
190 { ICE_VXLAN, 42 },
191 { ICE_GENEVE, 42 },
192 { ICE_VXLAN_GPE, 42 },
193 { ICE_MAC_IL, 50 },
194 { ICE_ETYPE_IL, 62 },
195 { ICE_IPV4_IL, 64 },
196 { ICE_TCP_IL, 84 },
197 { ICE_PROTOCOL_LAST, 0 },
198};
199
200ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
201 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
202 0x00, 0x00, 0x00, 0x00,
203 0x00, 0x00, 0x00, 0x00,
204
205 0x08, 0x00, /* ICE_ETYPE_OL 12 */
206
207 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
208 0x00, 0x01, 0x00, 0x00,
209 0x40, 0x11, 0x00, 0x00,
210 0x00, 0x00, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00,
212
213 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
214 0x00, 0x46, 0x00, 0x00,
215
216 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
217 0x00, 0x00, 0x00, 0x00,
218
219 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
220 0x00, 0x00, 0x00, 0x00,
221 0x00, 0x00, 0x00, 0x00,
222
223 0x08, 0x00, /* ICE_ETYPE_IL 62 */
224
225 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
226 0x00, 0x01, 0x00, 0x00,
227 0x40, 0x06, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00,
230
231 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
232 0x00, 0x00, 0x00, 0x00,
233 0x00, 0x00, 0x00, 0x00,
234 0x50, 0x02, 0x20, 0x00,
235 0x00, 0x00, 0x00, 0x00
236};
237
238ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
239 { ICE_MAC_OFOS, 0 },
240 { ICE_ETYPE_OL, 12 },
241 { ICE_IPV4_OFOS, 14 },
242 { ICE_UDP_OF, 34 },
243 { ICE_VXLAN, 42 },
244 { ICE_GENEVE, 42 },
245 { ICE_VXLAN_GPE, 42 },
246 { ICE_MAC_IL, 50 },
247 { ICE_ETYPE_IL, 62 },
248 { ICE_IPV4_IL, 64 },
249 { ICE_UDP_ILOS, 84 },
250 { ICE_PROTOCOL_LAST, 0 },
251};
252
253ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
254 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
255 0x00, 0x00, 0x00, 0x00,
256 0x00, 0x00, 0x00, 0x00,
257
258 0x08, 0x00, /* ICE_ETYPE_OL 12 */
259
260 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
261 0x00, 0x01, 0x00, 0x00,
262 0x00, 0x11, 0x00, 0x00,
263 0x00, 0x00, 0x00, 0x00,
264 0x00, 0x00, 0x00, 0x00,
265
266 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
267 0x00, 0x3a, 0x00, 0x00,
268
269 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
270 0x00, 0x00, 0x00, 0x00,
271
272 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
273 0x00, 0x00, 0x00, 0x00,
274 0x00, 0x00, 0x00, 0x00,
275
276 0x08, 0x00, /* ICE_ETYPE_IL 62 */
277
278 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
279 0x00, 0x01, 0x00, 0x00,
280 0x00, 0x11, 0x00, 0x00,
281 0x00, 0x00, 0x00, 0x00,
282 0x00, 0x00, 0x00, 0x00,
283
284 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
285 0x00, 0x08, 0x00, 0x00,
286};
287
288ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
289 { ICE_MAC_OFOS, 0 },
290 { ICE_ETYPE_OL, 12 },
291 { ICE_IPV4_OFOS, 14 },
292 { ICE_NVGRE, 34 },
293 { ICE_MAC_IL, 42 },
294 { ICE_ETYPE_IL, 54 },
295 { ICE_IPV6_IL, 56 },
296 { ICE_TCP_IL, 96 },
297 { ICE_PROTOCOL_LAST, 0 },
298};
299
300ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
301 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
302 0x00, 0x00, 0x00, 0x00,
303 0x00, 0x00, 0x00, 0x00,
304
305 0x08, 0x00, /* ICE_ETYPE_OL 12 */
306
307 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
308 0x00, 0x00, 0x00, 0x00,
309 0x00, 0x2F, 0x00, 0x00,
310 0x00, 0x00, 0x00, 0x00,
311 0x00, 0x00, 0x00, 0x00,
312
313 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
314 0x00, 0x00, 0x00, 0x00,
315
316 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
317 0x00, 0x00, 0x00, 0x00,
318 0x00, 0x00, 0x00, 0x00,
319
320 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
321
322 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
323 0x00, 0x08, 0x06, 0x40,
324 0x00, 0x00, 0x00, 0x00,
325 0x00, 0x00, 0x00, 0x00,
326 0x00, 0x00, 0x00, 0x00,
327 0x00, 0x00, 0x00, 0x00,
328 0x00, 0x00, 0x00, 0x00,
329 0x00, 0x00, 0x00, 0x00,
330 0x00, 0x00, 0x00, 0x00,
331 0x00, 0x00, 0x00, 0x00,
332
333 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
334 0x00, 0x00, 0x00, 0x00,
335 0x00, 0x00, 0x00, 0x00,
336 0x50, 0x02, 0x20, 0x00,
337 0x00, 0x00, 0x00, 0x00
338};
339
340ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
341 { ICE_MAC_OFOS, 0 },
342 { ICE_ETYPE_OL, 12 },
343 { ICE_IPV4_OFOS, 14 },
344 { ICE_NVGRE, 34 },
345 { ICE_MAC_IL, 42 },
346 { ICE_ETYPE_IL, 54 },
347 { ICE_IPV6_IL, 56 },
348 { ICE_UDP_ILOS, 96 },
349 { ICE_PROTOCOL_LAST, 0 },
350};
351
352ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
353 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
354 0x00, 0x00, 0x00, 0x00,
355 0x00, 0x00, 0x00, 0x00,
356
357 0x08, 0x00, /* ICE_ETYPE_OL 12 */
358
359 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
360 0x00, 0x00, 0x00, 0x00,
361 0x00, 0x2F, 0x00, 0x00,
362 0x00, 0x00, 0x00, 0x00,
363 0x00, 0x00, 0x00, 0x00,
364
365 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
366 0x00, 0x00, 0x00, 0x00,
367
368 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
369 0x00, 0x00, 0x00, 0x00,
370 0x00, 0x00, 0x00, 0x00,
371
372 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
373
374 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
375 0x00, 0x08, 0x11, 0x40,
376 0x00, 0x00, 0x00, 0x00,
377 0x00, 0x00, 0x00, 0x00,
378 0x00, 0x00, 0x00, 0x00,
379 0x00, 0x00, 0x00, 0x00,
380 0x00, 0x00, 0x00, 0x00,
381 0x00, 0x00, 0x00, 0x00,
382 0x00, 0x00, 0x00, 0x00,
383 0x00, 0x00, 0x00, 0x00,
384
385 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
386 0x00, 0x08, 0x00, 0x00,
387};
388
389ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
390 { ICE_MAC_OFOS, 0 },
391 { ICE_ETYPE_OL, 12 },
392 { ICE_IPV4_OFOS, 14 },
393 { ICE_UDP_OF, 34 },
394 { ICE_VXLAN, 42 },
395 { ICE_GENEVE, 42 },
396 { ICE_VXLAN_GPE, 42 },
397 { ICE_MAC_IL, 50 },
398 { ICE_ETYPE_IL, 62 },
399 { ICE_IPV6_IL, 64 },
400 { ICE_TCP_IL, 104 },
401 { ICE_PROTOCOL_LAST, 0 },
402};
403
404ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
405 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
406 0x00, 0x00, 0x00, 0x00,
407 0x00, 0x00, 0x00, 0x00,
408
409 0x08, 0x00, /* ICE_ETYPE_OL 12 */
410
411 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
412 0x00, 0x01, 0x00, 0x00,
413 0x40, 0x11, 0x00, 0x00,
414 0x00, 0x00, 0x00, 0x00,
415 0x00, 0x00, 0x00, 0x00,
416
417 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
418 0x00, 0x5a, 0x00, 0x00,
419
420 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
421 0x00, 0x00, 0x00, 0x00,
422
423 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
424 0x00, 0x00, 0x00, 0x00,
425 0x00, 0x00, 0x00, 0x00,
426
427 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
428
429 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
430 0x00, 0x08, 0x06, 0x40,
431 0x00, 0x00, 0x00, 0x00,
432 0x00, 0x00, 0x00, 0x00,
433 0x00, 0x00, 0x00, 0x00,
434 0x00, 0x00, 0x00, 0x00,
435 0x00, 0x00, 0x00, 0x00,
436 0x00, 0x00, 0x00, 0x00,
437 0x00, 0x00, 0x00, 0x00,
438 0x00, 0x00, 0x00, 0x00,
439
440 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
441 0x00, 0x00, 0x00, 0x00,
442 0x00, 0x00, 0x00, 0x00,
443 0x50, 0x02, 0x20, 0x00,
444 0x00, 0x00, 0x00, 0x00
445};
446
447ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
448 { ICE_MAC_OFOS, 0 },
449 { ICE_ETYPE_OL, 12 },
450 { ICE_IPV4_OFOS, 14 },
451 { ICE_UDP_OF, 34 },
452 { ICE_VXLAN, 42 },
453 { ICE_GENEVE, 42 },
454 { ICE_VXLAN_GPE, 42 },
455 { ICE_MAC_IL, 50 },
456 { ICE_ETYPE_IL, 62 },
457 { ICE_IPV6_IL, 64 },
458 { ICE_UDP_ILOS, 104 },
459 { ICE_PROTOCOL_LAST, 0 },
460};
461
462ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
463 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
464 0x00, 0x00, 0x00, 0x00,
465 0x00, 0x00, 0x00, 0x00,
466
467 0x08, 0x00, /* ICE_ETYPE_OL 12 */
468
469 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
470 0x00, 0x01, 0x00, 0x00,
471 0x00, 0x11, 0x00, 0x00,
472 0x00, 0x00, 0x00, 0x00,
473 0x00, 0x00, 0x00, 0x00,
474
475 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
476 0x00, 0x4e, 0x00, 0x00,
477
478 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
479 0x00, 0x00, 0x00, 0x00,
480
481 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
482 0x00, 0x00, 0x00, 0x00,
483 0x00, 0x00, 0x00, 0x00,
484
485 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
486
487 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
488 0x00, 0x08, 0x11, 0x40,
489 0x00, 0x00, 0x00, 0x00,
490 0x00, 0x00, 0x00, 0x00,
491 0x00, 0x00, 0x00, 0x00,
492 0x00, 0x00, 0x00, 0x00,
493 0x00, 0x00, 0x00, 0x00,
494 0x00, 0x00, 0x00, 0x00,
495 0x00, 0x00, 0x00, 0x00,
496 0x00, 0x00, 0x00, 0x00,
497
498 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
499 0x00, 0x08, 0x00, 0x00,
500};
501
502/* offset info for MAC + IPv4 + UDP dummy packet */
503ICE_DECLARE_PKT_OFFSETS(udp) = {
504 { ICE_MAC_OFOS, 0 },
505 { ICE_ETYPE_OL, 12 },
506 { ICE_IPV4_OFOS, 14 },
507 { ICE_UDP_ILOS, 34 },
508 { ICE_PROTOCOL_LAST, 0 },
509};
510
511/* Dummy packet for MAC + IPv4 + UDP */
512ICE_DECLARE_PKT_TEMPLATE(udp) = {
513 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
514 0x00, 0x00, 0x00, 0x00,
515 0x00, 0x00, 0x00, 0x00,
516
517 0x08, 0x00, /* ICE_ETYPE_OL 12 */
518
519 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
520 0x00, 0x01, 0x00, 0x00,
521 0x00, 0x11, 0x00, 0x00,
522 0x00, 0x00, 0x00, 0x00,
523 0x00, 0x00, 0x00, 0x00,
524
525 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
526 0x00, 0x08, 0x00, 0x00,
527
528 0x00, 0x00, /* 2 bytes for 4 byte alignment */
529};
530
531/* offset info for MAC + IPv4 + TCP dummy packet */
532ICE_DECLARE_PKT_OFFSETS(tcp) = {
533 { ICE_MAC_OFOS, 0 },
534 { ICE_ETYPE_OL, 12 },
535 { ICE_IPV4_OFOS, 14 },
536 { ICE_TCP_IL, 34 },
537 { ICE_PROTOCOL_LAST, 0 },
538};
539
540/* Dummy packet for MAC + IPv4 + TCP */
541ICE_DECLARE_PKT_TEMPLATE(tcp) = {
542 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
543 0x00, 0x00, 0x00, 0x00,
544 0x00, 0x00, 0x00, 0x00,
545
546 0x08, 0x00, /* ICE_ETYPE_OL 12 */
547
548 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
549 0x00, 0x01, 0x00, 0x00,
550 0x00, 0x06, 0x00, 0x00,
551 0x00, 0x00, 0x00, 0x00,
552 0x00, 0x00, 0x00, 0x00,
553
554 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
555 0x00, 0x00, 0x00, 0x00,
556 0x00, 0x00, 0x00, 0x00,
557 0x50, 0x00, 0x00, 0x00,
558 0x00, 0x00, 0x00, 0x00,
559
560 0x00, 0x00, /* 2 bytes for 4 byte alignment */
561};
562
563ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
564 { ICE_MAC_OFOS, 0 },
565 { ICE_ETYPE_OL, 12 },
566 { ICE_IPV6_OFOS, 14 },
567 { ICE_TCP_IL, 54 },
568 { ICE_PROTOCOL_LAST, 0 },
569};
570
571ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
572 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
573 0x00, 0x00, 0x00, 0x00,
574 0x00, 0x00, 0x00, 0x00,
575
576 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
577
578 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
579 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
580 0x00, 0x00, 0x00, 0x00,
581 0x00, 0x00, 0x00, 0x00,
582 0x00, 0x00, 0x00, 0x00,
583 0x00, 0x00, 0x00, 0x00,
584 0x00, 0x00, 0x00, 0x00,
585 0x00, 0x00, 0x00, 0x00,
586 0x00, 0x00, 0x00, 0x00,
587 0x00, 0x00, 0x00, 0x00,
588
589 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
590 0x00, 0x00, 0x00, 0x00,
591 0x00, 0x00, 0x00, 0x00,
592 0x50, 0x00, 0x00, 0x00,
593 0x00, 0x00, 0x00, 0x00,
594
595 0x00, 0x00, /* 2 bytes for 4 byte alignment */
596};
597
598/* IPv6 + UDP */
599ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
600 { ICE_MAC_OFOS, 0 },
601 { ICE_ETYPE_OL, 12 },
602 { ICE_IPV6_OFOS, 14 },
603 { ICE_UDP_ILOS, 54 },
604 { ICE_PROTOCOL_LAST, 0 },
605};
606
607/* IPv6 + UDP dummy packet */
608ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
609 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
610 0x00, 0x00, 0x00, 0x00,
611 0x00, 0x00, 0x00, 0x00,
612
613 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
614
615 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
616 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
617 0x00, 0x00, 0x00, 0x00,
618 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00,
620 0x00, 0x00, 0x00, 0x00,
621 0x00, 0x00, 0x00, 0x00,
622 0x00, 0x00, 0x00, 0x00,
623 0x00, 0x00, 0x00, 0x00,
624 0x00, 0x00, 0x00, 0x00,
625
626 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
627 0x00, 0x10, 0x00, 0x00,
628
629 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
630 0x00, 0x00, 0x00, 0x00,
631
632 0x00, 0x00, /* 2 bytes for 4 byte alignment */
633};
634
635/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
636ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
637 { ICE_MAC_OFOS, 0 },
638 { ICE_IPV4_OFOS, 14 },
639 { ICE_UDP_OF, 34 },
640 { ICE_GTP, 42 },
641 { ICE_IPV4_IL, 62 },
642 { ICE_TCP_IL, 82 },
643 { ICE_PROTOCOL_LAST, 0 },
644};
645
646ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
647 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
648 0x00, 0x00, 0x00, 0x00,
649 0x00, 0x00, 0x00, 0x00,
650 0x08, 0x00,
651
652 0x45, 0x00, 0x00, 0x58, /* IP 14 */
653 0x00, 0x00, 0x00, 0x00,
654 0x00, 0x11, 0x00, 0x00,
655 0x00, 0x00, 0x00, 0x00,
656 0x00, 0x00, 0x00, 0x00,
657
658 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
659 0x00, 0x44, 0x00, 0x00,
660
661 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
662 0x00, 0x00, 0x00, 0x00,
663 0x00, 0x00, 0x00, 0x85,
664
665 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
666 0x00, 0x00, 0x00, 0x00,
667
668 0x45, 0x00, 0x00, 0x28, /* IP 62 */
669 0x00, 0x00, 0x00, 0x00,
670 0x00, 0x06, 0x00, 0x00,
671 0x00, 0x00, 0x00, 0x00,
672 0x00, 0x00, 0x00, 0x00,
673
674 0x00, 0x00, 0x00, 0x00, /* TCP 82 */
675 0x00, 0x00, 0x00, 0x00,
676 0x00, 0x00, 0x00, 0x00,
677 0x50, 0x00, 0x00, 0x00,
678 0x00, 0x00, 0x00, 0x00,
679
680 0x00, 0x00, /* 2 bytes for 4 byte alignment */
681};
682
683/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
684ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
685 { ICE_MAC_OFOS, 0 },
686 { ICE_IPV4_OFOS, 14 },
687 { ICE_UDP_OF, 34 },
688 { ICE_GTP, 42 },
689 { ICE_IPV4_IL, 62 },
690 { ICE_UDP_ILOS, 82 },
691 { ICE_PROTOCOL_LAST, 0 },
692};
693
694ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
695 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
696 0x00, 0x00, 0x00, 0x00,
697 0x00, 0x00, 0x00, 0x00,
698 0x08, 0x00,
699
700 0x45, 0x00, 0x00, 0x4c, /* IP 14 */
701 0x00, 0x00, 0x00, 0x00,
702 0x00, 0x11, 0x00, 0x00,
703 0x00, 0x00, 0x00, 0x00,
704 0x00, 0x00, 0x00, 0x00,
705
706 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
707 0x00, 0x38, 0x00, 0x00,
708
709 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
710 0x00, 0x00, 0x00, 0x00,
711 0x00, 0x00, 0x00, 0x85,
712
713 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
714 0x00, 0x00, 0x00, 0x00,
715
716 0x45, 0x00, 0x00, 0x1c, /* IP 62 */
717 0x00, 0x00, 0x00, 0x00,
718 0x00, 0x11, 0x00, 0x00,
719 0x00, 0x00, 0x00, 0x00,
720 0x00, 0x00, 0x00, 0x00,
721
722 0x00, 0x00, 0x00, 0x00, /* UDP 82 */
723 0x00, 0x08, 0x00, 0x00,
724
725 0x00, 0x00, /* 2 bytes for 4 byte alignment */
726};
727
728/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
729ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
730 { ICE_MAC_OFOS, 0 },
731 { ICE_IPV4_OFOS, 14 },
732 { ICE_UDP_OF, 34 },
733 { ICE_GTP, 42 },
734 { ICE_IPV6_IL, 62 },
735 { ICE_TCP_IL, 102 },
736 { ICE_PROTOCOL_LAST, 0 },
737};
738
739ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
740 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
741 0x00, 0x00, 0x00, 0x00,
742 0x00, 0x00, 0x00, 0x00,
743 0x08, 0x00,
744
745 0x45, 0x00, 0x00, 0x6c, /* IP 14 */
746 0x00, 0x00, 0x00, 0x00,
747 0x00, 0x11, 0x00, 0x00,
748 0x00, 0x00, 0x00, 0x00,
749 0x00, 0x00, 0x00, 0x00,
750
751 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
752 0x00, 0x58, 0x00, 0x00,
753
754 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
755 0x00, 0x00, 0x00, 0x00,
756 0x00, 0x00, 0x00, 0x85,
757
758 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
759 0x00, 0x00, 0x00, 0x00,
760
761 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
762 0x00, 0x14, 0x06, 0x00,
763 0x00, 0x00, 0x00, 0x00,
764 0x00, 0x00, 0x00, 0x00,
765 0x00, 0x00, 0x00, 0x00,
766 0x00, 0x00, 0x00, 0x00,
767 0x00, 0x00, 0x00, 0x00,
768 0x00, 0x00, 0x00, 0x00,
769 0x00, 0x00, 0x00, 0x00,
770 0x00, 0x00, 0x00, 0x00,
771
772 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
773 0x00, 0x00, 0x00, 0x00,
774 0x00, 0x00, 0x00, 0x00,
775 0x50, 0x00, 0x00, 0x00,
776 0x00, 0x00, 0x00, 0x00,
777
778 0x00, 0x00, /* 2 bytes for 4 byte alignment */
779};
780
781ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
782 { ICE_MAC_OFOS, 0 },
783 { ICE_IPV4_OFOS, 14 },
784 { ICE_UDP_OF, 34 },
785 { ICE_GTP, 42 },
786 { ICE_IPV6_IL, 62 },
787 { ICE_UDP_ILOS, 102 },
788 { ICE_PROTOCOL_LAST, 0 },
789};
790
791ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
792 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
793 0x00, 0x00, 0x00, 0x00,
794 0x00, 0x00, 0x00, 0x00,
795 0x08, 0x00,
796
797 0x45, 0x00, 0x00, 0x60, /* IP 14 */
798 0x00, 0x00, 0x00, 0x00,
799 0x00, 0x11, 0x00, 0x00,
800 0x00, 0x00, 0x00, 0x00,
801 0x00, 0x00, 0x00, 0x00,
802
803 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
804 0x00, 0x4c, 0x00, 0x00,
805
806 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
807 0x00, 0x00, 0x00, 0x00,
808 0x00, 0x00, 0x00, 0x85,
809
810 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
811 0x00, 0x00, 0x00, 0x00,
812
813 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
814 0x00, 0x08, 0x11, 0x00,
815 0x00, 0x00, 0x00, 0x00,
816 0x00, 0x00, 0x00, 0x00,
817 0x00, 0x00, 0x00, 0x00,
818 0x00, 0x00, 0x00, 0x00,
819 0x00, 0x00, 0x00, 0x00,
820 0x00, 0x00, 0x00, 0x00,
821 0x00, 0x00, 0x00, 0x00,
822 0x00, 0x00, 0x00, 0x00,
823
824 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
825 0x00, 0x08, 0x00, 0x00,
826
827 0x00, 0x00, /* 2 bytes for 4 byte alignment */
828};
829
830ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
831 { ICE_MAC_OFOS, 0 },
832 { ICE_IPV6_OFOS, 14 },
833 { ICE_UDP_OF, 54 },
834 { ICE_GTP, 62 },
835 { ICE_IPV4_IL, 82 },
836 { ICE_TCP_IL, 102 },
837 { ICE_PROTOCOL_LAST, 0 },
838};
839
840ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
841 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
842 0x00, 0x00, 0x00, 0x00,
843 0x00, 0x00, 0x00, 0x00,
844 0x86, 0xdd,
845
846 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
847 0x00, 0x44, 0x11, 0x00,
848 0x00, 0x00, 0x00, 0x00,
849 0x00, 0x00, 0x00, 0x00,
850 0x00, 0x00, 0x00, 0x00,
851 0x00, 0x00, 0x00, 0x00,
852 0x00, 0x00, 0x00, 0x00,
853 0x00, 0x00, 0x00, 0x00,
854 0x00, 0x00, 0x00, 0x00,
855 0x00, 0x00, 0x00, 0x00,
856
857 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
858 0x00, 0x44, 0x00, 0x00,
859
860 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
861 0x00, 0x00, 0x00, 0x00,
862 0x00, 0x00, 0x00, 0x85,
863
864 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
865 0x00, 0x00, 0x00, 0x00,
866
867 0x45, 0x00, 0x00, 0x28, /* IP 82 */
868 0x00, 0x00, 0x00, 0x00,
869 0x00, 0x06, 0x00, 0x00,
870 0x00, 0x00, 0x00, 0x00,
871 0x00, 0x00, 0x00, 0x00,
872
873 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
874 0x00, 0x00, 0x00, 0x00,
875 0x00, 0x00, 0x00, 0x00,
876 0x50, 0x00, 0x00, 0x00,
877 0x00, 0x00, 0x00, 0x00,
878
879 0x00, 0x00, /* 2 bytes for 4 byte alignment */
880};
881
882ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
883 { ICE_MAC_OFOS, 0 },
884 { ICE_IPV6_OFOS, 14 },
885 { ICE_UDP_OF, 54 },
886 { ICE_GTP, 62 },
887 { ICE_IPV4_IL, 82 },
888 { ICE_UDP_ILOS, 102 },
889 { ICE_PROTOCOL_LAST, 0 },
890};
891
892ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
893 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
894 0x00, 0x00, 0x00, 0x00,
895 0x00, 0x00, 0x00, 0x00,
896 0x86, 0xdd,
897
898 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
899 0x00, 0x38, 0x11, 0x00,
900 0x00, 0x00, 0x00, 0x00,
901 0x00, 0x00, 0x00, 0x00,
902 0x00, 0x00, 0x00, 0x00,
903 0x00, 0x00, 0x00, 0x00,
904 0x00, 0x00, 0x00, 0x00,
905 0x00, 0x00, 0x00, 0x00,
906 0x00, 0x00, 0x00, 0x00,
907 0x00, 0x00, 0x00, 0x00,
908
909 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
910 0x00, 0x38, 0x00, 0x00,
911
912 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
913 0x00, 0x00, 0x00, 0x00,
914 0x00, 0x00, 0x00, 0x85,
915
916 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
917 0x00, 0x00, 0x00, 0x00,
918
919 0x45, 0x00, 0x00, 0x1c, /* IP 82 */
920 0x00, 0x00, 0x00, 0x00,
921 0x00, 0x11, 0x00, 0x00,
922 0x00, 0x00, 0x00, 0x00,
923 0x00, 0x00, 0x00, 0x00,
924
925 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
926 0x00, 0x08, 0x00, 0x00,
927
928 0x00, 0x00, /* 2 bytes for 4 byte alignment */
929};
930
931ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
932 { ICE_MAC_OFOS, 0 },
933 { ICE_IPV6_OFOS, 14 },
934 { ICE_UDP_OF, 54 },
935 { ICE_GTP, 62 },
936 { ICE_IPV6_IL, 82 },
937 { ICE_TCP_IL, 122 },
938 { ICE_PROTOCOL_LAST, 0 },
939};
940
941ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
942 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
943 0x00, 0x00, 0x00, 0x00,
944 0x00, 0x00, 0x00, 0x00,
945 0x86, 0xdd,
946
947 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
948 0x00, 0x58, 0x11, 0x00,
949 0x00, 0x00, 0x00, 0x00,
950 0x00, 0x00, 0x00, 0x00,
951 0x00, 0x00, 0x00, 0x00,
952 0x00, 0x00, 0x00, 0x00,
953 0x00, 0x00, 0x00, 0x00,
954 0x00, 0x00, 0x00, 0x00,
955 0x00, 0x00, 0x00, 0x00,
956 0x00, 0x00, 0x00, 0x00,
957
958 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
959 0x00, 0x58, 0x00, 0x00,
960
961 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
962 0x00, 0x00, 0x00, 0x00,
963 0x00, 0x00, 0x00, 0x85,
964
965 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
966 0x00, 0x00, 0x00, 0x00,
967
968 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
969 0x00, 0x14, 0x06, 0x00,
970 0x00, 0x00, 0x00, 0x00,
971 0x00, 0x00, 0x00, 0x00,
972 0x00, 0x00, 0x00, 0x00,
973 0x00, 0x00, 0x00, 0x00,
974 0x00, 0x00, 0x00, 0x00,
975 0x00, 0x00, 0x00, 0x00,
976 0x00, 0x00, 0x00, 0x00,
977 0x00, 0x00, 0x00, 0x00,
978
979 0x00, 0x00, 0x00, 0x00, /* TCP 122 */
980 0x00, 0x00, 0x00, 0x00,
981 0x00, 0x00, 0x00, 0x00,
982 0x50, 0x00, 0x00, 0x00,
983 0x00, 0x00, 0x00, 0x00,
984
985 0x00, 0x00, /* 2 bytes for 4 byte alignment */
986};
987
988ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
989 { ICE_MAC_OFOS, 0 },
990 { ICE_IPV6_OFOS, 14 },
991 { ICE_UDP_OF, 54 },
992 { ICE_GTP, 62 },
993 { ICE_IPV6_IL, 82 },
994 { ICE_UDP_ILOS, 122 },
995 { ICE_PROTOCOL_LAST, 0 },
996};
997
998ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
999 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1000 0x00, 0x00, 0x00, 0x00,
1001 0x00, 0x00, 0x00, 0x00,
1002 0x86, 0xdd,
1003
1004 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1005 0x00, 0x4c, 0x11, 0x00,
1006 0x00, 0x00, 0x00, 0x00,
1007 0x00, 0x00, 0x00, 0x00,
1008 0x00, 0x00, 0x00, 0x00,
1009 0x00, 0x00, 0x00, 0x00,
1010 0x00, 0x00, 0x00, 0x00,
1011 0x00, 0x00, 0x00, 0x00,
1012 0x00, 0x00, 0x00, 0x00,
1013 0x00, 0x00, 0x00, 0x00,
1014
1015 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1016 0x00, 0x4c, 0x00, 0x00,
1017
1018 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1019 0x00, 0x00, 0x00, 0x00,
1020 0x00, 0x00, 0x00, 0x85,
1021
1022 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1023 0x00, 0x00, 0x00, 0x00,
1024
1025 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1026 0x00, 0x08, 0x11, 0x00,
1027 0x00, 0x00, 0x00, 0x00,
1028 0x00, 0x00, 0x00, 0x00,
1029 0x00, 0x00, 0x00, 0x00,
1030 0x00, 0x00, 0x00, 0x00,
1031 0x00, 0x00, 0x00, 0x00,
1032 0x00, 0x00, 0x00, 0x00,
1033 0x00, 0x00, 0x00, 0x00,
1034 0x00, 0x00, 0x00, 0x00,
1035
1036 0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1037 0x00, 0x08, 0x00, 0x00,
1038
1039 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1040};
1041
1042ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1043 { ICE_MAC_OFOS, 0 },
1044 { ICE_IPV4_OFOS, 14 },
1045 { ICE_UDP_OF, 34 },
1046 { ICE_GTP_NO_PAY, 42 },
1047 { ICE_PROTOCOL_LAST, 0 },
1048};
1049
1050ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1051 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1052 0x00, 0x00, 0x00, 0x00,
1053 0x00, 0x00, 0x00, 0x00,
1054 0x08, 0x00,
1055
1056 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1057 0x00, 0x00, 0x40, 0x00,
1058 0x40, 0x11, 0x00, 0x00,
1059 0x00, 0x00, 0x00, 0x00,
1060 0x00, 0x00, 0x00, 0x00,
1061
1062 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1063 0x00, 0x00, 0x00, 0x00,
1064
1065 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1066 0x00, 0x00, 0x00, 0x00,
1067 0x00, 0x00, 0x00, 0x85,
1068
1069 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1070 0x00, 0x00, 0x00, 0x00,
1071
1072 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1073 0x00, 0x00, 0x40, 0x00,
1074 0x40, 0x00, 0x00, 0x00,
1075 0x00, 0x00, 0x00, 0x00,
1076 0x00, 0x00, 0x00, 0x00,
1077 0x00, 0x00,
1078};
1079
1080ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1081 { ICE_MAC_OFOS, 0 },
1082 { ICE_IPV6_OFOS, 14 },
1083 { ICE_UDP_OF, 54 },
1084 { ICE_GTP_NO_PAY, 62 },
1085 { ICE_PROTOCOL_LAST, 0 },
1086};
1087
1088ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1089 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1090 0x00, 0x00, 0x00, 0x00,
1091 0x00, 0x00, 0x00, 0x00,
1092 0x86, 0xdd,
1093
1094 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1095 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1096 0x00, 0x00, 0x00, 0x00,
1097 0x00, 0x00, 0x00, 0x00,
1098 0x00, 0x00, 0x00, 0x00,
1099 0x00, 0x00, 0x00, 0x00,
1100 0x00, 0x00, 0x00, 0x00,
1101 0x00, 0x00, 0x00, 0x00,
1102 0x00, 0x00, 0x00, 0x00,
1103 0x00, 0x00, 0x00, 0x00,
1104
1105 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1106 0x00, 0x00, 0x00, 0x00,
1107
1108 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1109 0x00, 0x00, 0x00, 0x00,
1110
1111 0x00, 0x00,
1112};
1113
1114ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1115 { ICE_MAC_OFOS, 0 },
1116 { ICE_ETYPE_OL, 12 },
1117 { ICE_PPPOE, 14 },
1118 { ICE_IPV4_OFOS, 22 },
1119 { ICE_TCP_IL, 42 },
1120 { ICE_PROTOCOL_LAST, 0 },
1121};
1122
1123ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1124 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1125 0x00, 0x00, 0x00, 0x00,
1126 0x00, 0x00, 0x00, 0x00,
1127
1128 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1129
1130 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1131 0x00, 0x16,
1132
1133 0x00, 0x21, /* PPP Link Layer 20 */
1134
1135 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1136 0x00, 0x01, 0x00, 0x00,
1137 0x00, 0x06, 0x00, 0x00,
1138 0x00, 0x00, 0x00, 0x00,
1139 0x00, 0x00, 0x00, 0x00,
1140
1141 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1142 0x00, 0x00, 0x00, 0x00,
1143 0x00, 0x00, 0x00, 0x00,
1144 0x50, 0x00, 0x00, 0x00,
1145 0x00, 0x00, 0x00, 0x00,
1146
1147 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1148};
1149
1150ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1151 { ICE_MAC_OFOS, 0 },
1152 { ICE_ETYPE_OL, 12 },
1153 { ICE_PPPOE, 14 },
1154 { ICE_IPV4_OFOS, 22 },
1155 { ICE_UDP_ILOS, 42 },
1156 { ICE_PROTOCOL_LAST, 0 },
1157};
1158
1159ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1160 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1161 0x00, 0x00, 0x00, 0x00,
1162 0x00, 0x00, 0x00, 0x00,
1163
1164 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1165
1166 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1167 0x00, 0x16,
1168
1169 0x00, 0x21, /* PPP Link Layer 20 */
1170
1171 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1172 0x00, 0x01, 0x00, 0x00,
1173 0x00, 0x11, 0x00, 0x00,
1174 0x00, 0x00, 0x00, 0x00,
1175 0x00, 0x00, 0x00, 0x00,
1176
1177 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1178 0x00, 0x08, 0x00, 0x00,
1179
1180 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1181};
1182
1183ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1184 { ICE_MAC_OFOS, 0 },
1185 { ICE_ETYPE_OL, 12 },
1186 { ICE_PPPOE, 14 },
1187 { ICE_IPV6_OFOS, 22 },
1188 { ICE_TCP_IL, 62 },
1189 { ICE_PROTOCOL_LAST, 0 },
1190};
1191
1192ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1193 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1194 0x00, 0x00, 0x00, 0x00,
1195 0x00, 0x00, 0x00, 0x00,
1196
1197 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1198
1199 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1200 0x00, 0x2a,
1201
1202 0x00, 0x57, /* PPP Link Layer 20 */
1203
1204 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1205 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1206 0x00, 0x00, 0x00, 0x00,
1207 0x00, 0x00, 0x00, 0x00,
1208 0x00, 0x00, 0x00, 0x00,
1209 0x00, 0x00, 0x00, 0x00,
1210 0x00, 0x00, 0x00, 0x00,
1211 0x00, 0x00, 0x00, 0x00,
1212 0x00, 0x00, 0x00, 0x00,
1213 0x00, 0x00, 0x00, 0x00,
1214
1215 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1216 0x00, 0x00, 0x00, 0x00,
1217 0x00, 0x00, 0x00, 0x00,
1218 0x50, 0x00, 0x00, 0x00,
1219 0x00, 0x00, 0x00, 0x00,
1220
1221 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1222};
1223
1224ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1225 { ICE_MAC_OFOS, 0 },
1226 { ICE_ETYPE_OL, 12 },
1227 { ICE_PPPOE, 14 },
1228 { ICE_IPV6_OFOS, 22 },
1229 { ICE_UDP_ILOS, 62 },
1230 { ICE_PROTOCOL_LAST, 0 },
1231};
1232
1233ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1234 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1235 0x00, 0x00, 0x00, 0x00,
1236 0x00, 0x00, 0x00, 0x00,
1237
1238 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1239
1240 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1241 0x00, 0x2a,
1242
1243 0x00, 0x57, /* PPP Link Layer 20 */
1244
1245 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1246 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1247 0x00, 0x00, 0x00, 0x00,
1248 0x00, 0x00, 0x00, 0x00,
1249 0x00, 0x00, 0x00, 0x00,
1250 0x00, 0x00, 0x00, 0x00,
1251 0x00, 0x00, 0x00, 0x00,
1252 0x00, 0x00, 0x00, 0x00,
1253 0x00, 0x00, 0x00, 0x00,
1254 0x00, 0x00, 0x00, 0x00,
1255
1256 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1257 0x00, 0x08, 0x00, 0x00,
1258
1259 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1260};
1261
1262ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1263 { ICE_MAC_OFOS, 0 },
1264 { ICE_ETYPE_OL, 12 },
1265 { ICE_IPV4_OFOS, 14 },
1266 { ICE_L2TPV3, 34 },
1267 { ICE_PROTOCOL_LAST, 0 },
1268};
1269
1270ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1271 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1272 0x00, 0x00, 0x00, 0x00,
1273 0x00, 0x00, 0x00, 0x00,
1274
1275 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1276
1277 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1278 0x00, 0x00, 0x40, 0x00,
1279 0x40, 0x73, 0x00, 0x00,
1280 0x00, 0x00, 0x00, 0x00,
1281 0x00, 0x00, 0x00, 0x00,
1282
1283 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1284 0x00, 0x00, 0x00, 0x00,
1285 0x00, 0x00, 0x00, 0x00,
1286 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1287};
1288
1289ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1290 { ICE_MAC_OFOS, 0 },
1291 { ICE_ETYPE_OL, 12 },
1292 { ICE_IPV6_OFOS, 14 },
1293 { ICE_L2TPV3, 54 },
1294 { ICE_PROTOCOL_LAST, 0 },
1295};
1296
1297ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1298 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1299 0x00, 0x00, 0x00, 0x00,
1300 0x00, 0x00, 0x00, 0x00,
1301
1302 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
1303
1304 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1305 0x00, 0x0c, 0x73, 0x40,
1306 0x00, 0x00, 0x00, 0x00,
1307 0x00, 0x00, 0x00, 0x00,
1308 0x00, 0x00, 0x00, 0x00,
1309 0x00, 0x00, 0x00, 0x00,
1310 0x00, 0x00, 0x00, 0x00,
1311 0x00, 0x00, 0x00, 0x00,
1312 0x00, 0x00, 0x00, 0x00,
1313 0x00, 0x00, 0x00, 0x00,
1314
1315 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1316 0x00, 0x00, 0x00, 0x00,
1317 0x00, 0x00, 0x00, 0x00,
1318 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1319};
1320
1321static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1322 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1323 ICE_PKT_GTP_NOPAY),
1324 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1325 ICE_PKT_OUTER_IPV6 |
1326 ICE_PKT_INNER_IPV6 |
1327 ICE_PKT_INNER_UDP),
1328 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1329 ICE_PKT_OUTER_IPV6 |
1330 ICE_PKT_INNER_IPV6),
1331 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1332 ICE_PKT_OUTER_IPV6 |
1333 ICE_PKT_INNER_UDP),
1334 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1335 ICE_PKT_OUTER_IPV6),
1336 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1337 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1338 ICE_PKT_INNER_IPV6 |
1339 ICE_PKT_INNER_UDP),
1340 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1341 ICE_PKT_INNER_IPV6),
1342 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1343 ICE_PKT_INNER_UDP),
1344 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1345 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1346 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1347 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1348 ICE_PKT_INNER_UDP),
1349 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1350 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1351 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1352 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1353 ICE_PKT_INNER_TCP),
1354 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1355 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1356 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1357 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1358 ICE_PKT_INNER_IPV6 |
1359 ICE_PKT_INNER_TCP),
1360 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1361 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1362 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1363 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1364 ICE_PKT_INNER_IPV6),
1365 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1366 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1367 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1368 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1369 ICE_PKT_PROFILE(tcp, 0),
1370};
1371
1372#define ICE_SW_RULE_RX_TX_HDR_SIZE(s, l) struct_size((s), hdr_data, (l))
1373#define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s) \
1374 ICE_SW_RULE_RX_TX_HDR_SIZE((s), DUMMY_ETH_HDR_LEN)
1375#define ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s) \
1376 ICE_SW_RULE_RX_TX_HDR_SIZE((s), 0)
1377#define ICE_SW_RULE_LG_ACT_SIZE(s, n) struct_size((s), act, (n))
1378#define ICE_SW_RULE_VSI_LIST_SIZE(s, n) struct_size((s), vsi, (n))
1379
1380/* this is a recipe to profile association bitmap */
1381static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1382 ICE_MAX_NUM_PROFILES);
1383
1384/* this is a profile to recipe association bitmap */
1385static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1386 ICE_MAX_NUM_RECIPES);
1387
1388/**
1389 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1390 * @hw: pointer to the HW struct
1391 *
1392 * Allocate memory for the entire recipe table and initialize the structures/
1393 * entries corresponding to basic recipes.
1394 */
1395int ice_init_def_sw_recp(struct ice_hw *hw)
1396{
1397 struct ice_sw_recipe *recps;
1398 u8 i;
1399
1400 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1401 sizeof(*recps), GFP_KERNEL);
1402 if (!recps)
1403 return -ENOMEM;
1404
1405 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1406 recps[i].root_rid = i;
1407 INIT_LIST_HEAD(&recps[i].filt_rules);
1408 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1409 INIT_LIST_HEAD(&recps[i].rg_list);
1410 mutex_init(&recps[i].filt_rule_lock);
1411 }
1412
1413 hw->switch_info->recp_list = recps;
1414
1415 return 0;
1416}
1417
1418/**
1419 * ice_aq_get_sw_cfg - get switch configuration
1420 * @hw: pointer to the hardware structure
1421 * @buf: pointer to the result buffer
1422 * @buf_size: length of the buffer available for response
1423 * @req_desc: pointer to requested descriptor
1424 * @num_elems: pointer to number of elements
1425 * @cd: pointer to command details structure or NULL
1426 *
1427 * Get switch configuration (0x0200) to be placed in buf.
1428 * This admin command returns information such as initial VSI/port number
1429 * and switch ID it belongs to.
1430 *
1431 * NOTE: *req_desc is both an input/output parameter.
1432 * The caller of this function first calls this function with *request_desc set
1433 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1434 * configuration information has been returned; if non-zero (meaning not all
1435 * the information was returned), the caller should call this function again
1436 * with *req_desc set to the previous value returned by f/w to get the
1437 * next block of switch configuration information.
1438 *
1439 * *num_elems is output only parameter. This reflects the number of elements
1440 * in response buffer. The caller of this function to use *num_elems while
1441 * parsing the response buffer.
1442 */
1443static int
1444ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1445 u16 buf_size, u16 *req_desc, u16 *num_elems,
1446 struct ice_sq_cd *cd)
1447{
1448 struct ice_aqc_get_sw_cfg *cmd;
1449 struct ice_aq_desc desc;
1450 int status;
1451
1452 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1453 cmd = &desc.params.get_sw_conf;
1454 cmd->element = cpu_to_le16(*req_desc);
1455
1456 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1457 if (!status) {
1458 *req_desc = le16_to_cpu(cmd->element);
1459 *num_elems = le16_to_cpu(cmd->num_elems);
1460 }
1461
1462 return status;
1463}
1464
1465/**
1466 * ice_aq_add_vsi
1467 * @hw: pointer to the HW struct
1468 * @vsi_ctx: pointer to a VSI context struct
1469 * @cd: pointer to command details structure or NULL
1470 *
1471 * Add a VSI context to the hardware (0x0210)
1472 */
1473static int
1474ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1475 struct ice_sq_cd *cd)
1476{
1477 struct ice_aqc_add_update_free_vsi_resp *res;
1478 struct ice_aqc_add_get_update_free_vsi *cmd;
1479 struct ice_aq_desc desc;
1480 int status;
1481
1482 cmd = &desc.params.vsi_cmd;
1483 res = &desc.params.add_update_free_vsi_res;
1484
1485 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1486
1487 if (!vsi_ctx->alloc_from_pool)
1488 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1489 ICE_AQ_VSI_IS_VALID);
1490 cmd->vf_id = vsi_ctx->vf_num;
1491
1492 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1493
1494 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1495
1496 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1497 sizeof(vsi_ctx->info), cd);
1498
1499 if (!status) {
1500 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1501 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1502 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1503 }
1504
1505 return status;
1506}
1507
1508/**
1509 * ice_aq_free_vsi
1510 * @hw: pointer to the HW struct
1511 * @vsi_ctx: pointer to a VSI context struct
1512 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1513 * @cd: pointer to command details structure or NULL
1514 *
1515 * Free VSI context info from hardware (0x0213)
1516 */
1517static int
1518ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1519 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1520{
1521 struct ice_aqc_add_update_free_vsi_resp *resp;
1522 struct ice_aqc_add_get_update_free_vsi *cmd;
1523 struct ice_aq_desc desc;
1524 int status;
1525
1526 cmd = &desc.params.vsi_cmd;
1527 resp = &desc.params.add_update_free_vsi_res;
1528
1529 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1530
1531 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1532 if (keep_vsi_alloc)
1533 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1534
1535 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1536 if (!status) {
1537 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1538 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1539 }
1540
1541 return status;
1542}
1543
1544/**
1545 * ice_aq_update_vsi
1546 * @hw: pointer to the HW struct
1547 * @vsi_ctx: pointer to a VSI context struct
1548 * @cd: pointer to command details structure or NULL
1549 *
1550 * Update VSI context in the hardware (0x0211)
1551 */
1552static int
1553ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1554 struct ice_sq_cd *cd)
1555{
1556 struct ice_aqc_add_update_free_vsi_resp *resp;
1557 struct ice_aqc_add_get_update_free_vsi *cmd;
1558 struct ice_aq_desc desc;
1559 int status;
1560
1561 cmd = &desc.params.vsi_cmd;
1562 resp = &desc.params.add_update_free_vsi_res;
1563
1564 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1565
1566 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1567
1568 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1569
1570 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1571 sizeof(vsi_ctx->info), cd);
1572
1573 if (!status) {
1574 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1575 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1576 }
1577
1578 return status;
1579}
1580
1581/**
1582 * ice_is_vsi_valid - check whether the VSI is valid or not
1583 * @hw: pointer to the HW struct
1584 * @vsi_handle: VSI handle
1585 *
1586 * check whether the VSI is valid or not
1587 */
1588bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1589{
1590 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1591}
1592
1593/**
1594 * ice_get_hw_vsi_num - return the HW VSI number
1595 * @hw: pointer to the HW struct
1596 * @vsi_handle: VSI handle
1597 *
1598 * return the HW VSI number
1599 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1600 */
1601u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1602{
1603 return hw->vsi_ctx[vsi_handle]->vsi_num;
1604}
1605
1606/**
1607 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1608 * @hw: pointer to the HW struct
1609 * @vsi_handle: VSI handle
1610 *
1611 * return the VSI context entry for a given VSI handle
1612 */
1613struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1614{
1615 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1616}
1617
1618/**
1619 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1620 * @hw: pointer to the HW struct
1621 * @vsi_handle: VSI handle
1622 * @vsi: VSI context pointer
1623 *
1624 * save the VSI context entry for a given VSI handle
1625 */
1626static void
1627ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1628{
1629 hw->vsi_ctx[vsi_handle] = vsi;
1630}
1631
1632/**
1633 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1634 * @hw: pointer to the HW struct
1635 * @vsi_handle: VSI handle
1636 */
1637static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1638{
1639 struct ice_vsi_ctx *vsi;
1640 u8 i;
1641
1642 vsi = ice_get_vsi_ctx(hw, vsi_handle);
1643 if (!vsi)
1644 return;
1645 ice_for_each_traffic_class(i) {
1646 if (vsi->lan_q_ctx[i]) {
1647 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1648 vsi->lan_q_ctx[i] = NULL;
1649 }
1650 if (vsi->rdma_q_ctx[i]) {
1651 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1652 vsi->rdma_q_ctx[i] = NULL;
1653 }
1654 }
1655}
1656
1657/**
1658 * ice_clear_vsi_ctx - clear the VSI context entry
1659 * @hw: pointer to the HW struct
1660 * @vsi_handle: VSI handle
1661 *
1662 * clear the VSI context entry
1663 */
1664static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1665{
1666 struct ice_vsi_ctx *vsi;
1667
1668 vsi = ice_get_vsi_ctx(hw, vsi_handle);
1669 if (vsi) {
1670 ice_clear_vsi_q_ctx(hw, vsi_handle);
1671 devm_kfree(ice_hw_to_dev(hw), vsi);
1672 hw->vsi_ctx[vsi_handle] = NULL;
1673 }
1674}
1675
1676/**
1677 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1678 * @hw: pointer to the HW struct
1679 */
1680void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1681{
1682 u16 i;
1683
1684 for (i = 0; i < ICE_MAX_VSI; i++)
1685 ice_clear_vsi_ctx(hw, i);
1686}
1687
1688/**
1689 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1690 * @hw: pointer to the HW struct
1691 * @vsi_handle: unique VSI handle provided by drivers
1692 * @vsi_ctx: pointer to a VSI context struct
1693 * @cd: pointer to command details structure or NULL
1694 *
1695 * Add a VSI context to the hardware also add it into the VSI handle list.
1696 * If this function gets called after reset for existing VSIs then update
1697 * with the new HW VSI number in the corresponding VSI handle list entry.
1698 */
1699int
1700ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1701 struct ice_sq_cd *cd)
1702{
1703 struct ice_vsi_ctx *tmp_vsi_ctx;
1704 int status;
1705
1706 if (vsi_handle >= ICE_MAX_VSI)
1707 return -EINVAL;
1708 status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1709 if (status)
1710 return status;
1711 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1712 if (!tmp_vsi_ctx) {
1713 /* Create a new VSI context */
1714 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1715 sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1716 if (!tmp_vsi_ctx) {
1717 ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1718 return -ENOMEM;
1719 }
1720 *tmp_vsi_ctx = *vsi_ctx;
1721 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1722 } else {
1723 /* update with new HW VSI num */
1724 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1725 }
1726
1727 return 0;
1728}
1729
1730/**
1731 * ice_free_vsi- free VSI context from hardware and VSI handle list
1732 * @hw: pointer to the HW struct
1733 * @vsi_handle: unique VSI handle
1734 * @vsi_ctx: pointer to a VSI context struct
1735 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1736 * @cd: pointer to command details structure or NULL
1737 *
1738 * Free VSI context info from hardware as well as from VSI handle list
1739 */
1740int
1741ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1742 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1743{
1744 int status;
1745
1746 if (!ice_is_vsi_valid(hw, vsi_handle))
1747 return -EINVAL;
1748 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1749 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1750 if (!status)
1751 ice_clear_vsi_ctx(hw, vsi_handle);
1752 return status;
1753}
1754
1755/**
1756 * ice_update_vsi
1757 * @hw: pointer to the HW struct
1758 * @vsi_handle: unique VSI handle
1759 * @vsi_ctx: pointer to a VSI context struct
1760 * @cd: pointer to command details structure or NULL
1761 *
1762 * Update VSI context in the hardware
1763 */
1764int
1765ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1766 struct ice_sq_cd *cd)
1767{
1768 if (!ice_is_vsi_valid(hw, vsi_handle))
1769 return -EINVAL;
1770 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1771 return ice_aq_update_vsi(hw, vsi_ctx, cd);
1772}
1773
1774/**
1775 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1776 * @hw: pointer to HW struct
1777 * @vsi_handle: VSI SW index
1778 * @enable: boolean for enable/disable
1779 */
1780int
1781ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1782{
1783 struct ice_vsi_ctx *ctx;
1784
1785 ctx = ice_get_vsi_ctx(hw, vsi_handle);
1786 if (!ctx)
1787 return -EIO;
1788
1789 if (enable)
1790 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1791 else
1792 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1793
1794 return ice_update_vsi(hw, vsi_handle, ctx, NULL);
1795}
1796
1797/**
1798 * ice_aq_alloc_free_vsi_list
1799 * @hw: pointer to the HW struct
1800 * @vsi_list_id: VSI list ID returned or used for lookup
1801 * @lkup_type: switch rule filter lookup type
1802 * @opc: switch rules population command type - pass in the command opcode
1803 *
1804 * allocates or free a VSI list resource
1805 */
1806static int
1807ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1808 enum ice_sw_lkup_type lkup_type,
1809 enum ice_adminq_opc opc)
1810{
1811 struct ice_aqc_alloc_free_res_elem *sw_buf;
1812 struct ice_aqc_res_elem *vsi_ele;
1813 u16 buf_len;
1814 int status;
1815
1816 buf_len = struct_size(sw_buf, elem, 1);
1817 sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL);
1818 if (!sw_buf)
1819 return -ENOMEM;
1820 sw_buf->num_elems = cpu_to_le16(1);
1821
1822 if (lkup_type == ICE_SW_LKUP_MAC ||
1823 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826 lkup_type == ICE_SW_LKUP_PROMISC ||
1827 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828 lkup_type == ICE_SW_LKUP_DFLT) {
1829 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830 } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831 sw_buf->res_type =
1832 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1833 } else {
1834 status = -EINVAL;
1835 goto ice_aq_alloc_free_vsi_list_exit;
1836 }
1837
1838 if (opc == ice_aqc_opc_free_res)
1839 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1840
1841 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
1842 if (status)
1843 goto ice_aq_alloc_free_vsi_list_exit;
1844
1845 if (opc == ice_aqc_opc_alloc_res) {
1846 vsi_ele = &sw_buf->elem[0];
1847 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1848 }
1849
1850ice_aq_alloc_free_vsi_list_exit:
1851 devm_kfree(ice_hw_to_dev(hw), sw_buf);
1852 return status;
1853}
1854
1855/**
1856 * ice_aq_sw_rules - add/update/remove switch rules
1857 * @hw: pointer to the HW struct
1858 * @rule_list: pointer to switch rule population list
1859 * @rule_list_sz: total size of the rule list in bytes
1860 * @num_rules: number of switch rules in the rule_list
1861 * @opc: switch rules population command type - pass in the command opcode
1862 * @cd: pointer to command details structure or NULL
1863 *
1864 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1865 */
1866int
1867ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1868 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1869{
1870 struct ice_aq_desc desc;
1871 int status;
1872
1873 if (opc != ice_aqc_opc_add_sw_rules &&
1874 opc != ice_aqc_opc_update_sw_rules &&
1875 opc != ice_aqc_opc_remove_sw_rules)
1876 return -EINVAL;
1877
1878 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1879
1880 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1881 desc.params.sw_rules.num_rules_fltr_entry_index =
1882 cpu_to_le16(num_rules);
1883 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1884 if (opc != ice_aqc_opc_add_sw_rules &&
1885 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1886 status = -ENOENT;
1887
1888 return status;
1889}
1890
1891/**
1892 * ice_aq_add_recipe - add switch recipe
1893 * @hw: pointer to the HW struct
1894 * @s_recipe_list: pointer to switch rule population list
1895 * @num_recipes: number of switch recipes in the list
1896 * @cd: pointer to command details structure or NULL
1897 *
1898 * Add(0x0290)
1899 */
1900static int
1901ice_aq_add_recipe(struct ice_hw *hw,
1902 struct ice_aqc_recipe_data_elem *s_recipe_list,
1903 u16 num_recipes, struct ice_sq_cd *cd)
1904{
1905 struct ice_aqc_add_get_recipe *cmd;
1906 struct ice_aq_desc desc;
1907 u16 buf_size;
1908
1909 cmd = &desc.params.add_get_recipe;
1910 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1911
1912 cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1913 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1914
1915 buf_size = num_recipes * sizeof(*s_recipe_list);
1916
1917 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1918}
1919
1920/**
1921 * ice_aq_get_recipe - get switch recipe
1922 * @hw: pointer to the HW struct
1923 * @s_recipe_list: pointer to switch rule population list
1924 * @num_recipes: pointer to the number of recipes (input and output)
1925 * @recipe_root: root recipe number of recipe(s) to retrieve
1926 * @cd: pointer to command details structure or NULL
1927 *
1928 * Get(0x0292)
1929 *
1930 * On input, *num_recipes should equal the number of entries in s_recipe_list.
1931 * On output, *num_recipes will equal the number of entries returned in
1932 * s_recipe_list.
1933 *
1934 * The caller must supply enough space in s_recipe_list to hold all possible
1935 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1936 */
1937static int
1938ice_aq_get_recipe(struct ice_hw *hw,
1939 struct ice_aqc_recipe_data_elem *s_recipe_list,
1940 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1941{
1942 struct ice_aqc_add_get_recipe *cmd;
1943 struct ice_aq_desc desc;
1944 u16 buf_size;
1945 int status;
1946
1947 if (*num_recipes != ICE_MAX_NUM_RECIPES)
1948 return -EINVAL;
1949
1950 cmd = &desc.params.add_get_recipe;
1951 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1952
1953 cmd->return_index = cpu_to_le16(recipe_root);
1954 cmd->num_sub_recipes = 0;
1955
1956 buf_size = *num_recipes * sizeof(*s_recipe_list);
1957
1958 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1959 *num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1960
1961 return status;
1962}
1963
1964/**
1965 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1966 * @hw: pointer to the HW struct
1967 * @params: parameters used to update the default recipe
1968 *
1969 * This function only supports updating default recipes and it only supports
1970 * updating a single recipe based on the lkup_idx at a time.
1971 *
1972 * This is done as a read-modify-write operation. First, get the current recipe
1973 * contents based on the recipe's ID. Then modify the field vector index and
1974 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1975 * the pre-existing recipe with the modifications.
1976 */
1977int
1978ice_update_recipe_lkup_idx(struct ice_hw *hw,
1979 struct ice_update_recipe_lkup_idx_params *params)
1980{
1981 struct ice_aqc_recipe_data_elem *rcp_list;
1982 u16 num_recps = ICE_MAX_NUM_RECIPES;
1983 int status;
1984
1985 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1986 if (!rcp_list)
1987 return -ENOMEM;
1988
1989 /* read current recipe list from firmware */
1990 rcp_list->recipe_indx = params->rid;
1991 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1992 if (status) {
1993 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1994 params->rid, status);
1995 goto error_out;
1996 }
1997
1998 /* only modify existing recipe's lkup_idx and mask if valid, while
1999 * leaving all other fields the same, then update the recipe firmware
2000 */
2001 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2002 if (params->mask_valid)
2003 rcp_list->content.mask[params->lkup_idx] =
2004 cpu_to_le16(params->mask);
2005
2006 if (params->ignore_valid)
2007 rcp_list->content.lkup_indx[params->lkup_idx] |=
2008 ICE_AQ_RECIPE_LKUP_IGNORE;
2009
2010 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2011 if (status)
2012 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2013 params->rid, params->lkup_idx, params->fv_idx,
2014 params->mask, params->mask_valid ? "true" : "false",
2015 status);
2016
2017error_out:
2018 kfree(rcp_list);
2019 return status;
2020}
2021
2022/**
2023 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2024 * @hw: pointer to the HW struct
2025 * @profile_id: package profile ID to associate the recipe with
2026 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2027 * @cd: pointer to command details structure or NULL
2028 * Recipe to profile association (0x0291)
2029 */
2030static int
2031ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2032 struct ice_sq_cd *cd)
2033{
2034 struct ice_aqc_recipe_to_profile *cmd;
2035 struct ice_aq_desc desc;
2036
2037 cmd = &desc.params.recipe_to_profile;
2038 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2039 cmd->profile_id = cpu_to_le16(profile_id);
2040 /* Set the recipe ID bit in the bitmask to let the device know which
2041 * profile we are associating the recipe to
2042 */
2043 memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
2044
2045 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2046}
2047
2048/**
2049 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2050 * @hw: pointer to the HW struct
2051 * @profile_id: package profile ID to associate the recipe with
2052 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2053 * @cd: pointer to command details structure or NULL
2054 * Associate profile ID with given recipe (0x0293)
2055 */
2056static int
2057ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2058 struct ice_sq_cd *cd)
2059{
2060 struct ice_aqc_recipe_to_profile *cmd;
2061 struct ice_aq_desc desc;
2062 int status;
2063
2064 cmd = &desc.params.recipe_to_profile;
2065 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2066 cmd->profile_id = cpu_to_le16(profile_id);
2067
2068 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2069 if (!status)
2070 memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2071
2072 return status;
2073}
2074
2075/**
2076 * ice_alloc_recipe - add recipe resource
2077 * @hw: pointer to the hardware structure
2078 * @rid: recipe ID returned as response to AQ call
2079 */
2080static int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2081{
2082 struct ice_aqc_alloc_free_res_elem *sw_buf;
2083 u16 buf_len;
2084 int status;
2085
2086 buf_len = struct_size(sw_buf, elem, 1);
2087 sw_buf = kzalloc(buf_len, GFP_KERNEL);
2088 if (!sw_buf)
2089 return -ENOMEM;
2090
2091 sw_buf->num_elems = cpu_to_le16(1);
2092 sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2093 ICE_AQC_RES_TYPE_S) |
2094 ICE_AQC_RES_TYPE_FLAG_SHARED);
2095 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2096 ice_aqc_opc_alloc_res, NULL);
2097 if (!status)
2098 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2099 kfree(sw_buf);
2100
2101 return status;
2102}
2103
2104/**
2105 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2106 * @hw: pointer to hardware structure
2107 *
2108 * This function is used to populate recipe_to_profile matrix where index to
2109 * this array is the recipe ID and the element is the mapping of which profiles
2110 * is this recipe mapped to.
2111 */
2112static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2113{
2114 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2115 u16 i;
2116
2117 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2118 u16 j;
2119
2120 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2121 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2122 if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2123 continue;
2124 bitmap_copy(profile_to_recipe[i], r_bitmap,
2125 ICE_MAX_NUM_RECIPES);
2126 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2127 set_bit(i, recipe_to_profile[j]);
2128 }
2129}
2130
2131/**
2132 * ice_collect_result_idx - copy result index values
2133 * @buf: buffer that contains the result index
2134 * @recp: the recipe struct to copy data into
2135 */
2136static void
2137ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2138 struct ice_sw_recipe *recp)
2139{
2140 if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2141 set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2142 recp->res_idxs);
2143}
2144
2145/**
2146 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2147 * @hw: pointer to hardware structure
2148 * @recps: struct that we need to populate
2149 * @rid: recipe ID that we are populating
2150 * @refresh_required: true if we should get recipe to profile mapping from FW
2151 *
2152 * This function is used to populate all the necessary entries into our
2153 * bookkeeping so that we have a current list of all the recipes that are
2154 * programmed in the firmware.
2155 */
2156static int
2157ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2158 bool *refresh_required)
2159{
2160 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2161 struct ice_aqc_recipe_data_elem *tmp;
2162 u16 num_recps = ICE_MAX_NUM_RECIPES;
2163 struct ice_prot_lkup_ext *lkup_exts;
2164 u8 fv_word_idx = 0;
2165 u16 sub_recps;
2166 int status;
2167
2168 bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2169
2170 /* we need a buffer big enough to accommodate all the recipes */
2171 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2172 if (!tmp)
2173 return -ENOMEM;
2174
2175 tmp[0].recipe_indx = rid;
2176 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2177 /* non-zero status meaning recipe doesn't exist */
2178 if (status)
2179 goto err_unroll;
2180
2181 /* Get recipe to profile map so that we can get the fv from lkups that
2182 * we read for a recipe from FW. Since we want to minimize the number of
2183 * times we make this FW call, just make one call and cache the copy
2184 * until a new recipe is added. This operation is only required the
2185 * first time to get the changes from FW. Then to search existing
2186 * entries we don't need to update the cache again until another recipe
2187 * gets added.
2188 */
2189 if (*refresh_required) {
2190 ice_get_recp_to_prof_map(hw);
2191 *refresh_required = false;
2192 }
2193
2194 /* Start populating all the entries for recps[rid] based on lkups from
2195 * firmware. Note that we are only creating the root recipe in our
2196 * database.
2197 */
2198 lkup_exts = &recps[rid].lkup_exts;
2199
2200 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2201 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2202 struct ice_recp_grp_entry *rg_entry;
2203 u8 i, prof, idx, prot = 0;
2204 bool is_root;
2205 u16 off = 0;
2206
2207 rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2208 GFP_KERNEL);
2209 if (!rg_entry) {
2210 status = -ENOMEM;
2211 goto err_unroll;
2212 }
2213
2214 idx = root_bufs.recipe_indx;
2215 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2216
2217 /* Mark all result indices in this chain */
2218 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2219 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2220 result_bm);
2221
2222 /* get the first profile that is associated with rid */
2223 prof = find_first_bit(recipe_to_profile[idx],
2224 ICE_MAX_NUM_PROFILES);
2225 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2226 u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2227
2228 rg_entry->fv_idx[i] = lkup_indx;
2229 rg_entry->fv_mask[i] =
2230 le16_to_cpu(root_bufs.content.mask[i + 1]);
2231
2232 /* If the recipe is a chained recipe then all its
2233 * child recipe's result will have a result index.
2234 * To fill fv_words we should not use those result
2235 * index, we only need the protocol ids and offsets.
2236 * We will skip all the fv_idx which stores result
2237 * index in them. We also need to skip any fv_idx which
2238 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2239 * valid offset value.
2240 */
2241 if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2242 rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2243 rg_entry->fv_idx[i] == 0)
2244 continue;
2245
2246 ice_find_prot_off(hw, ICE_BLK_SW, prof,
2247 rg_entry->fv_idx[i], &prot, &off);
2248 lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2249 lkup_exts->fv_words[fv_word_idx].off = off;
2250 lkup_exts->field_mask[fv_word_idx] =
2251 rg_entry->fv_mask[i];
2252 fv_word_idx++;
2253 }
2254 /* populate rg_list with the data from the child entry of this
2255 * recipe
2256 */
2257 list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2258
2259 /* Propagate some data to the recipe database */
2260 recps[idx].is_root = !!is_root;
2261 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2262 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2263 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2264 recps[idx].chain_idx = root_bufs.content.result_indx &
2265 ~ICE_AQ_RECIPE_RESULT_EN;
2266 set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2267 } else {
2268 recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2269 }
2270
2271 if (!is_root)
2272 continue;
2273
2274 /* Only do the following for root recipes entries */
2275 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2276 sizeof(recps[idx].r_bitmap));
2277 recps[idx].root_rid = root_bufs.content.rid &
2278 ~ICE_AQ_RECIPE_ID_IS_ROOT;
2279 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2280 }
2281
2282 /* Complete initialization of the root recipe entry */
2283 lkup_exts->n_val_words = fv_word_idx;
2284 recps[rid].big_recp = (num_recps > 1);
2285 recps[rid].n_grp_count = (u8)num_recps;
2286 recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2287 recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2288 GFP_KERNEL);
2289 if (!recps[rid].root_buf) {
2290 status = -ENOMEM;
2291 goto err_unroll;
2292 }
2293
2294 /* Copy result indexes */
2295 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2296 recps[rid].recp_created = true;
2297
2298err_unroll:
2299 kfree(tmp);
2300 return status;
2301}
2302
2303/* ice_init_port_info - Initialize port_info with switch configuration data
2304 * @pi: pointer to port_info
2305 * @vsi_port_num: VSI number or port number
2306 * @type: Type of switch element (port or VSI)
2307 * @swid: switch ID of the switch the element is attached to
2308 * @pf_vf_num: PF or VF number
2309 * @is_vf: true if the element is a VF, false otherwise
2310 */
2311static void
2312ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2313 u16 swid, u16 pf_vf_num, bool is_vf)
2314{
2315 switch (type) {
2316 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2317 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2318 pi->sw_id = swid;
2319 pi->pf_vf_num = pf_vf_num;
2320 pi->is_vf = is_vf;
2321 break;
2322 default:
2323 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2324 break;
2325 }
2326}
2327
2328/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2329 * @hw: pointer to the hardware structure
2330 */
2331int ice_get_initial_sw_cfg(struct ice_hw *hw)
2332{
2333 struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2334 u16 req_desc = 0;
2335 u16 num_elems;
2336 int status;
2337 u16 i;
2338
2339 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2340 if (!rbuf)
2341 return -ENOMEM;
2342
2343 /* Multiple calls to ice_aq_get_sw_cfg may be required
2344 * to get all the switch configuration information. The need
2345 * for additional calls is indicated by ice_aq_get_sw_cfg
2346 * writing a non-zero value in req_desc
2347 */
2348 do {
2349 struct ice_aqc_get_sw_cfg_resp_elem *ele;
2350
2351 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2352 &req_desc, &num_elems, NULL);
2353
2354 if (status)
2355 break;
2356
2357 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2358 u16 pf_vf_num, swid, vsi_port_num;
2359 bool is_vf = false;
2360 u8 res_type;
2361
2362 vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2363 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2364
2365 pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2366 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2367
2368 swid = le16_to_cpu(ele->swid);
2369
2370 if (le16_to_cpu(ele->pf_vf_num) &
2371 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2372 is_vf = true;
2373
2374 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2375 ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2376
2377 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2378 /* FW VSI is not needed. Just continue. */
2379 continue;
2380 }
2381
2382 ice_init_port_info(hw->port_info, vsi_port_num,
2383 res_type, swid, pf_vf_num, is_vf);
2384 }
2385 } while (req_desc && !status);
2386
2387 kfree(rbuf);
2388 return status;
2389}
2390
2391/**
2392 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2393 * @hw: pointer to the hardware structure
2394 * @fi: filter info structure to fill/update
2395 *
2396 * This helper function populates the lb_en and lan_en elements of the provided
2397 * ice_fltr_info struct using the switch's type and characteristics of the
2398 * switch rule being configured.
2399 */
2400static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2401{
2402 fi->lb_en = false;
2403 fi->lan_en = false;
2404 if ((fi->flag & ICE_FLTR_TX) &&
2405 (fi->fltr_act == ICE_FWD_TO_VSI ||
2406 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2407 fi->fltr_act == ICE_FWD_TO_Q ||
2408 fi->fltr_act == ICE_FWD_TO_QGRP)) {
2409 /* Setting LB for prune actions will result in replicated
2410 * packets to the internal switch that will be dropped.
2411 */
2412 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2413 fi->lb_en = true;
2414
2415 /* Set lan_en to TRUE if
2416 * 1. The switch is a VEB AND
2417 * 2
2418 * 2.1 The lookup is a directional lookup like ethertype,
2419 * promiscuous, ethertype-MAC, promiscuous-VLAN
2420 * and default-port OR
2421 * 2.2 The lookup is VLAN, OR
2422 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2423 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2424 *
2425 * OR
2426 *
2427 * The switch is a VEPA.
2428 *
2429 * In all other cases, the LAN enable has to be set to false.
2430 */
2431 if (hw->evb_veb) {
2432 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2433 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2434 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2435 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2436 fi->lkup_type == ICE_SW_LKUP_DFLT ||
2437 fi->lkup_type == ICE_SW_LKUP_VLAN ||
2438 (fi->lkup_type == ICE_SW_LKUP_MAC &&
2439 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2440 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2441 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2442 fi->lan_en = true;
2443 } else {
2444 fi->lan_en = true;
2445 }
2446 }
2447}
2448
2449/**
2450 * ice_fill_sw_rule - Helper function to fill switch rule structure
2451 * @hw: pointer to the hardware structure
2452 * @f_info: entry containing packet forwarding information
2453 * @s_rule: switch rule structure to be filled in based on mac_entry
2454 * @opc: switch rules population command type - pass in the command opcode
2455 */
2456static void
2457ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2458 struct ice_sw_rule_lkup_rx_tx *s_rule,
2459 enum ice_adminq_opc opc)
2460{
2461 u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2462 u16 vlan_tpid = ETH_P_8021Q;
2463 void *daddr = NULL;
2464 u16 eth_hdr_sz;
2465 u8 *eth_hdr;
2466 u32 act = 0;
2467 __be16 *off;
2468 u8 q_rgn;
2469
2470 if (opc == ice_aqc_opc_remove_sw_rules) {
2471 s_rule->act = 0;
2472 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2473 s_rule->hdr_len = 0;
2474 return;
2475 }
2476
2477 eth_hdr_sz = sizeof(dummy_eth_header);
2478 eth_hdr = s_rule->hdr_data;
2479
2480 /* initialize the ether header with a dummy header */
2481 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2482 ice_fill_sw_info(hw, f_info);
2483
2484 switch (f_info->fltr_act) {
2485 case ICE_FWD_TO_VSI:
2486 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
2487 ICE_SINGLE_ACT_VSI_ID_M;
2488 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2489 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2490 ICE_SINGLE_ACT_VALID_BIT;
2491 break;
2492 case ICE_FWD_TO_VSI_LIST:
2493 act |= ICE_SINGLE_ACT_VSI_LIST;
2494 act |= (f_info->fwd_id.vsi_list_id <<
2495 ICE_SINGLE_ACT_VSI_LIST_ID_S) &
2496 ICE_SINGLE_ACT_VSI_LIST_ID_M;
2497 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2498 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2499 ICE_SINGLE_ACT_VALID_BIT;
2500 break;
2501 case ICE_FWD_TO_Q:
2502 act |= ICE_SINGLE_ACT_TO_Q;
2503 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2504 ICE_SINGLE_ACT_Q_INDEX_M;
2505 break;
2506 case ICE_DROP_PACKET:
2507 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2508 ICE_SINGLE_ACT_VALID_BIT;
2509 break;
2510 case ICE_FWD_TO_QGRP:
2511 q_rgn = f_info->qgrp_size > 0 ?
2512 (u8)ilog2(f_info->qgrp_size) : 0;
2513 act |= ICE_SINGLE_ACT_TO_Q;
2514 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2515 ICE_SINGLE_ACT_Q_INDEX_M;
2516 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
2517 ICE_SINGLE_ACT_Q_REGION_M;
2518 break;
2519 default:
2520 return;
2521 }
2522
2523 if (f_info->lb_en)
2524 act |= ICE_SINGLE_ACT_LB_ENABLE;
2525 if (f_info->lan_en)
2526 act |= ICE_SINGLE_ACT_LAN_ENABLE;
2527
2528 switch (f_info->lkup_type) {
2529 case ICE_SW_LKUP_MAC:
2530 daddr = f_info->l_data.mac.mac_addr;
2531 break;
2532 case ICE_SW_LKUP_VLAN:
2533 vlan_id = f_info->l_data.vlan.vlan_id;
2534 if (f_info->l_data.vlan.tpid_valid)
2535 vlan_tpid = f_info->l_data.vlan.tpid;
2536 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2537 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2538 act |= ICE_SINGLE_ACT_PRUNE;
2539 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2540 }
2541 break;
2542 case ICE_SW_LKUP_ETHERTYPE_MAC:
2543 daddr = f_info->l_data.ethertype_mac.mac_addr;
2544 fallthrough;
2545 case ICE_SW_LKUP_ETHERTYPE:
2546 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2547 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2548 break;
2549 case ICE_SW_LKUP_MAC_VLAN:
2550 daddr = f_info->l_data.mac_vlan.mac_addr;
2551 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2552 break;
2553 case ICE_SW_LKUP_PROMISC_VLAN:
2554 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2555 fallthrough;
2556 case ICE_SW_LKUP_PROMISC:
2557 daddr = f_info->l_data.mac_vlan.mac_addr;
2558 break;
2559 default:
2560 break;
2561 }
2562
2563 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2564 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2565 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2566
2567 /* Recipe set depending on lookup type */
2568 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2569 s_rule->src = cpu_to_le16(f_info->src);
2570 s_rule->act = cpu_to_le32(act);
2571
2572 if (daddr)
2573 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2574
2575 if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2576 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2577 *off = cpu_to_be16(vlan_id);
2578 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2579 *off = cpu_to_be16(vlan_tpid);
2580 }
2581
2582 /* Create the switch rule with the final dummy Ethernet header */
2583 if (opc != ice_aqc_opc_update_sw_rules)
2584 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2585}
2586
2587/**
2588 * ice_add_marker_act
2589 * @hw: pointer to the hardware structure
2590 * @m_ent: the management entry for which sw marker needs to be added
2591 * @sw_marker: sw marker to tag the Rx descriptor with
2592 * @l_id: large action resource ID
2593 *
2594 * Create a large action to hold software marker and update the switch rule
2595 * entry pointed by m_ent with newly created large action
2596 */
2597static int
2598ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2599 u16 sw_marker, u16 l_id)
2600{
2601 struct ice_sw_rule_lkup_rx_tx *rx_tx;
2602 struct ice_sw_rule_lg_act *lg_act;
2603 /* For software marker we need 3 large actions
2604 * 1. FWD action: FWD TO VSI or VSI LIST
2605 * 2. GENERIC VALUE action to hold the profile ID
2606 * 3. GENERIC VALUE action to hold the software marker ID
2607 */
2608 const u16 num_lg_acts = 3;
2609 u16 lg_act_size;
2610 u16 rules_size;
2611 int status;
2612 u32 act;
2613 u16 id;
2614
2615 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2616 return -EINVAL;
2617
2618 /* Create two back-to-back switch rules and submit them to the HW using
2619 * one memory buffer:
2620 * 1. Large Action
2621 * 2. Look up Tx Rx
2622 */
2623 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2624 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2625 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2626 if (!lg_act)
2627 return -ENOMEM;
2628
2629 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2630
2631 /* Fill in the first switch rule i.e. large action */
2632 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2633 lg_act->index = cpu_to_le16(l_id);
2634 lg_act->size = cpu_to_le16(num_lg_acts);
2635
2636 /* First action VSI forwarding or VSI list forwarding depending on how
2637 * many VSIs
2638 */
2639 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2640 m_ent->fltr_info.fwd_id.hw_vsi_id;
2641
2642 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2643 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
2644 if (m_ent->vsi_count > 1)
2645 act |= ICE_LG_ACT_VSI_LIST;
2646 lg_act->act[0] = cpu_to_le32(act);
2647
2648 /* Second action descriptor type */
2649 act = ICE_LG_ACT_GENERIC;
2650
2651 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
2652 lg_act->act[1] = cpu_to_le32(act);
2653
2654 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
2655 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
2656
2657 /* Third action Marker value */
2658 act |= ICE_LG_ACT_GENERIC;
2659 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
2660 ICE_LG_ACT_GENERIC_VALUE_M;
2661
2662 lg_act->act[2] = cpu_to_le32(act);
2663
2664 /* call the fill switch rule to fill the lookup Tx Rx structure */
2665 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2666 ice_aqc_opc_update_sw_rules);
2667
2668 /* Update the action to point to the large action ID */
2669 rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR |
2670 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
2671 ICE_SINGLE_ACT_PTR_VAL_M));
2672
2673 /* Use the filter rule ID of the previously created rule with single
2674 * act. Once the update happens, hardware will treat this as large
2675 * action
2676 */
2677 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2678
2679 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2680 ice_aqc_opc_update_sw_rules, NULL);
2681 if (!status) {
2682 m_ent->lg_act_idx = l_id;
2683 m_ent->sw_marker_id = sw_marker;
2684 }
2685
2686 devm_kfree(ice_hw_to_dev(hw), lg_act);
2687 return status;
2688}
2689
2690/**
2691 * ice_create_vsi_list_map
2692 * @hw: pointer to the hardware structure
2693 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2694 * @num_vsi: number of VSI handles in the array
2695 * @vsi_list_id: VSI list ID generated as part of allocate resource
2696 *
2697 * Helper function to create a new entry of VSI list ID to VSI mapping
2698 * using the given VSI list ID
2699 */
2700static struct ice_vsi_list_map_info *
2701ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2702 u16 vsi_list_id)
2703{
2704 struct ice_switch_info *sw = hw->switch_info;
2705 struct ice_vsi_list_map_info *v_map;
2706 int i;
2707
2708 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2709 if (!v_map)
2710 return NULL;
2711
2712 v_map->vsi_list_id = vsi_list_id;
2713 v_map->ref_cnt = 1;
2714 for (i = 0; i < num_vsi; i++)
2715 set_bit(vsi_handle_arr[i], v_map->vsi_map);
2716
2717 list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2718 return v_map;
2719}
2720
2721/**
2722 * ice_update_vsi_list_rule
2723 * @hw: pointer to the hardware structure
2724 * @vsi_handle_arr: array of VSI handles to form a VSI list
2725 * @num_vsi: number of VSI handles in the array
2726 * @vsi_list_id: VSI list ID generated as part of allocate resource
2727 * @remove: Boolean value to indicate if this is a remove action
2728 * @opc: switch rules population command type - pass in the command opcode
2729 * @lkup_type: lookup type of the filter
2730 *
2731 * Call AQ command to add a new switch rule or update existing switch rule
2732 * using the given VSI list ID
2733 */
2734static int
2735ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2736 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2737 enum ice_sw_lkup_type lkup_type)
2738{
2739 struct ice_sw_rule_vsi_list *s_rule;
2740 u16 s_rule_size;
2741 u16 rule_type;
2742 int status;
2743 int i;
2744
2745 if (!num_vsi)
2746 return -EINVAL;
2747
2748 if (lkup_type == ICE_SW_LKUP_MAC ||
2749 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2750 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2751 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2752 lkup_type == ICE_SW_LKUP_PROMISC ||
2753 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2754 lkup_type == ICE_SW_LKUP_DFLT)
2755 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2756 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2757 else if (lkup_type == ICE_SW_LKUP_VLAN)
2758 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2759 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2760 else
2761 return -EINVAL;
2762
2763 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2764 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2765 if (!s_rule)
2766 return -ENOMEM;
2767 for (i = 0; i < num_vsi; i++) {
2768 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2769 status = -EINVAL;
2770 goto exit;
2771 }
2772 /* AQ call requires hw_vsi_id(s) */
2773 s_rule->vsi[i] =
2774 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2775 }
2776
2777 s_rule->hdr.type = cpu_to_le16(rule_type);
2778 s_rule->number_vsi = cpu_to_le16(num_vsi);
2779 s_rule->index = cpu_to_le16(vsi_list_id);
2780
2781 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2782
2783exit:
2784 devm_kfree(ice_hw_to_dev(hw), s_rule);
2785 return status;
2786}
2787
2788/**
2789 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2790 * @hw: pointer to the HW struct
2791 * @vsi_handle_arr: array of VSI handles to form a VSI list
2792 * @num_vsi: number of VSI handles in the array
2793 * @vsi_list_id: stores the ID of the VSI list to be created
2794 * @lkup_type: switch rule filter's lookup type
2795 */
2796static int
2797ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2798 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2799{
2800 int status;
2801
2802 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2803 ice_aqc_opc_alloc_res);
2804 if (status)
2805 return status;
2806
2807 /* Update the newly created VSI list to include the specified VSIs */
2808 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2809 *vsi_list_id, false,
2810 ice_aqc_opc_add_sw_rules, lkup_type);
2811}
2812
2813/**
2814 * ice_create_pkt_fwd_rule
2815 * @hw: pointer to the hardware structure
2816 * @f_entry: entry containing packet forwarding information
2817 *
2818 * Create switch rule with given filter information and add an entry
2819 * to the corresponding filter management list to track this switch rule
2820 * and VSI mapping
2821 */
2822static int
2823ice_create_pkt_fwd_rule(struct ice_hw *hw,
2824 struct ice_fltr_list_entry *f_entry)
2825{
2826 struct ice_fltr_mgmt_list_entry *fm_entry;
2827 struct ice_sw_rule_lkup_rx_tx *s_rule;
2828 enum ice_sw_lkup_type l_type;
2829 struct ice_sw_recipe *recp;
2830 int status;
2831
2832 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2833 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2834 GFP_KERNEL);
2835 if (!s_rule)
2836 return -ENOMEM;
2837 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2838 GFP_KERNEL);
2839 if (!fm_entry) {
2840 status = -ENOMEM;
2841 goto ice_create_pkt_fwd_rule_exit;
2842 }
2843
2844 fm_entry->fltr_info = f_entry->fltr_info;
2845
2846 /* Initialize all the fields for the management entry */
2847 fm_entry->vsi_count = 1;
2848 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2849 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2850 fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2851
2852 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2853 ice_aqc_opc_add_sw_rules);
2854
2855 status = ice_aq_sw_rules(hw, s_rule,
2856 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2857 ice_aqc_opc_add_sw_rules, NULL);
2858 if (status) {
2859 devm_kfree(ice_hw_to_dev(hw), fm_entry);
2860 goto ice_create_pkt_fwd_rule_exit;
2861 }
2862
2863 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2864 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2865
2866 /* The book keeping entries will get removed when base driver
2867 * calls remove filter AQ command
2868 */
2869 l_type = fm_entry->fltr_info.lkup_type;
2870 recp = &hw->switch_info->recp_list[l_type];
2871 list_add(&fm_entry->list_entry, &recp->filt_rules);
2872
2873ice_create_pkt_fwd_rule_exit:
2874 devm_kfree(ice_hw_to_dev(hw), s_rule);
2875 return status;
2876}
2877
2878/**
2879 * ice_update_pkt_fwd_rule
2880 * @hw: pointer to the hardware structure
2881 * @f_info: filter information for switch rule
2882 *
2883 * Call AQ command to update a previously created switch rule with a
2884 * VSI list ID
2885 */
2886static int
2887ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2888{
2889 struct ice_sw_rule_lkup_rx_tx *s_rule;
2890 int status;
2891
2892 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2893 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2894 GFP_KERNEL);
2895 if (!s_rule)
2896 return -ENOMEM;
2897
2898 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2899
2900 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2901
2902 /* Update switch rule with new rule set to forward VSI list */
2903 status = ice_aq_sw_rules(hw, s_rule,
2904 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2905 ice_aqc_opc_update_sw_rules, NULL);
2906
2907 devm_kfree(ice_hw_to_dev(hw), s_rule);
2908 return status;
2909}
2910
2911/**
2912 * ice_update_sw_rule_bridge_mode
2913 * @hw: pointer to the HW struct
2914 *
2915 * Updates unicast switch filter rules based on VEB/VEPA mode
2916 */
2917int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2918{
2919 struct ice_switch_info *sw = hw->switch_info;
2920 struct ice_fltr_mgmt_list_entry *fm_entry;
2921 struct list_head *rule_head;
2922 struct mutex *rule_lock; /* Lock to protect filter rule list */
2923 int status = 0;
2924
2925 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2926 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2927
2928 mutex_lock(rule_lock);
2929 list_for_each_entry(fm_entry, rule_head, list_entry) {
2930 struct ice_fltr_info *fi = &fm_entry->fltr_info;
2931 u8 *addr = fi->l_data.mac.mac_addr;
2932
2933 /* Update unicast Tx rules to reflect the selected
2934 * VEB/VEPA mode
2935 */
2936 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2937 (fi->fltr_act == ICE_FWD_TO_VSI ||
2938 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2939 fi->fltr_act == ICE_FWD_TO_Q ||
2940 fi->fltr_act == ICE_FWD_TO_QGRP)) {
2941 status = ice_update_pkt_fwd_rule(hw, fi);
2942 if (status)
2943 break;
2944 }
2945 }
2946
2947 mutex_unlock(rule_lock);
2948
2949 return status;
2950}
2951
2952/**
2953 * ice_add_update_vsi_list
2954 * @hw: pointer to the hardware structure
2955 * @m_entry: pointer to current filter management list entry
2956 * @cur_fltr: filter information from the book keeping entry
2957 * @new_fltr: filter information with the new VSI to be added
2958 *
2959 * Call AQ command to add or update previously created VSI list with new VSI.
2960 *
2961 * Helper function to do book keeping associated with adding filter information
2962 * The algorithm to do the book keeping is described below :
2963 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2964 * if only one VSI has been added till now
2965 * Allocate a new VSI list and add two VSIs
2966 * to this list using switch rule command
2967 * Update the previously created switch rule with the
2968 * newly created VSI list ID
2969 * if a VSI list was previously created
2970 * Add the new VSI to the previously created VSI list set
2971 * using the update switch rule command
2972 */
2973static int
2974ice_add_update_vsi_list(struct ice_hw *hw,
2975 struct ice_fltr_mgmt_list_entry *m_entry,
2976 struct ice_fltr_info *cur_fltr,
2977 struct ice_fltr_info *new_fltr)
2978{
2979 u16 vsi_list_id = 0;
2980 int status = 0;
2981
2982 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2983 cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2984 return -EOPNOTSUPP;
2985
2986 if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2987 new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2988 (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2989 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2990 return -EOPNOTSUPP;
2991
2992 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2993 /* Only one entry existed in the mapping and it was not already
2994 * a part of a VSI list. So, create a VSI list with the old and
2995 * new VSIs.
2996 */
2997 struct ice_fltr_info tmp_fltr;
2998 u16 vsi_handle_arr[2];
2999
3000 /* A rule already exists with the new VSI being added */
3001 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3002 return -EEXIST;
3003
3004 vsi_handle_arr[0] = cur_fltr->vsi_handle;
3005 vsi_handle_arr[1] = new_fltr->vsi_handle;
3006 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3007 &vsi_list_id,
3008 new_fltr->lkup_type);
3009 if (status)
3010 return status;
3011
3012 tmp_fltr = *new_fltr;
3013 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3014 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3015 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3016 /* Update the previous switch rule of "MAC forward to VSI" to
3017 * "MAC fwd to VSI list"
3018 */
3019 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3020 if (status)
3021 return status;
3022
3023 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3024 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3025 m_entry->vsi_list_info =
3026 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3027 vsi_list_id);
3028
3029 if (!m_entry->vsi_list_info)
3030 return -ENOMEM;
3031
3032 /* If this entry was large action then the large action needs
3033 * to be updated to point to FWD to VSI list
3034 */
3035 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3036 status =
3037 ice_add_marker_act(hw, m_entry,
3038 m_entry->sw_marker_id,
3039 m_entry->lg_act_idx);
3040 } else {
3041 u16 vsi_handle = new_fltr->vsi_handle;
3042 enum ice_adminq_opc opcode;
3043
3044 if (!m_entry->vsi_list_info)
3045 return -EIO;
3046
3047 /* A rule already exists with the new VSI being added */
3048 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3049 return 0;
3050
3051 /* Update the previously created VSI list set with
3052 * the new VSI ID passed in
3053 */
3054 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3055 opcode = ice_aqc_opc_update_sw_rules;
3056
3057 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3058 vsi_list_id, false, opcode,
3059 new_fltr->lkup_type);
3060 /* update VSI list mapping info with new VSI ID */
3061 if (!status)
3062 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3063 }
3064 if (!status)
3065 m_entry->vsi_count++;
3066 return status;
3067}
3068
3069/**
3070 * ice_find_rule_entry - Search a rule entry
3071 * @hw: pointer to the hardware structure
3072 * @recp_id: lookup type for which the specified rule needs to be searched
3073 * @f_info: rule information
3074 *
3075 * Helper function to search for a given rule entry
3076 * Returns pointer to entry storing the rule if found
3077 */
3078static struct ice_fltr_mgmt_list_entry *
3079ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3080{
3081 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3082 struct ice_switch_info *sw = hw->switch_info;
3083 struct list_head *list_head;
3084
3085 list_head = &sw->recp_list[recp_id].filt_rules;
3086 list_for_each_entry(list_itr, list_head, list_entry) {
3087 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3088 sizeof(f_info->l_data)) &&
3089 f_info->flag == list_itr->fltr_info.flag) {
3090 ret = list_itr;
3091 break;
3092 }
3093 }
3094 return ret;
3095}
3096
3097/**
3098 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3099 * @hw: pointer to the hardware structure
3100 * @recp_id: lookup type for which VSI lists needs to be searched
3101 * @vsi_handle: VSI handle to be found in VSI list
3102 * @vsi_list_id: VSI list ID found containing vsi_handle
3103 *
3104 * Helper function to search a VSI list with single entry containing given VSI
3105 * handle element. This can be extended further to search VSI list with more
3106 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3107 */
3108static struct ice_vsi_list_map_info *
3109ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3110 u16 *vsi_list_id)
3111{
3112 struct ice_vsi_list_map_info *map_info = NULL;
3113 struct ice_switch_info *sw = hw->switch_info;
3114 struct ice_fltr_mgmt_list_entry *list_itr;
3115 struct list_head *list_head;
3116
3117 list_head = &sw->recp_list[recp_id].filt_rules;
3118 list_for_each_entry(list_itr, list_head, list_entry) {
3119 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3120 map_info = list_itr->vsi_list_info;
3121 if (test_bit(vsi_handle, map_info->vsi_map)) {
3122 *vsi_list_id = map_info->vsi_list_id;
3123 return map_info;
3124 }
3125 }
3126 }
3127 return NULL;
3128}
3129
3130/**
3131 * ice_add_rule_internal - add rule for a given lookup type
3132 * @hw: pointer to the hardware structure
3133 * @recp_id: lookup type (recipe ID) for which rule has to be added
3134 * @f_entry: structure containing MAC forwarding information
3135 *
3136 * Adds or updates the rule lists for a given recipe
3137 */
3138static int
3139ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3140 struct ice_fltr_list_entry *f_entry)
3141{
3142 struct ice_switch_info *sw = hw->switch_info;
3143 struct ice_fltr_info *new_fltr, *cur_fltr;
3144 struct ice_fltr_mgmt_list_entry *m_entry;
3145 struct mutex *rule_lock; /* Lock to protect filter rule list */
3146 int status = 0;
3147
3148 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3149 return -EINVAL;
3150 f_entry->fltr_info.fwd_id.hw_vsi_id =
3151 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3152
3153 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3154
3155 mutex_lock(rule_lock);
3156 new_fltr = &f_entry->fltr_info;
3157 if (new_fltr->flag & ICE_FLTR_RX)
3158 new_fltr->src = hw->port_info->lport;
3159 else if (new_fltr->flag & ICE_FLTR_TX)
3160 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3161
3162 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3163 if (!m_entry) {
3164 mutex_unlock(rule_lock);
3165 return ice_create_pkt_fwd_rule(hw, f_entry);
3166 }
3167
3168 cur_fltr = &m_entry->fltr_info;
3169 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3170 mutex_unlock(rule_lock);
3171
3172 return status;
3173}
3174
3175/**
3176 * ice_remove_vsi_list_rule
3177 * @hw: pointer to the hardware structure
3178 * @vsi_list_id: VSI list ID generated as part of allocate resource
3179 * @lkup_type: switch rule filter lookup type
3180 *
3181 * The VSI list should be emptied before this function is called to remove the
3182 * VSI list.
3183 */
3184static int
3185ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3186 enum ice_sw_lkup_type lkup_type)
3187{
3188 struct ice_sw_rule_vsi_list *s_rule;
3189 u16 s_rule_size;
3190 int status;
3191
3192 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3193 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3194 if (!s_rule)
3195 return -ENOMEM;
3196
3197 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3198 s_rule->index = cpu_to_le16(vsi_list_id);
3199
3200 /* Free the vsi_list resource that we allocated. It is assumed that the
3201 * list is empty at this point.
3202 */
3203 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3204 ice_aqc_opc_free_res);
3205
3206 devm_kfree(ice_hw_to_dev(hw), s_rule);
3207 return status;
3208}
3209
3210/**
3211 * ice_rem_update_vsi_list
3212 * @hw: pointer to the hardware structure
3213 * @vsi_handle: VSI handle of the VSI to remove
3214 * @fm_list: filter management entry for which the VSI list management needs to
3215 * be done
3216 */
3217static int
3218ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3219 struct ice_fltr_mgmt_list_entry *fm_list)
3220{
3221 enum ice_sw_lkup_type lkup_type;
3222 u16 vsi_list_id;
3223 int status = 0;
3224
3225 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3226 fm_list->vsi_count == 0)
3227 return -EINVAL;
3228
3229 /* A rule with the VSI being removed does not exist */
3230 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3231 return -ENOENT;
3232
3233 lkup_type = fm_list->fltr_info.lkup_type;
3234 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3235 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3236 ice_aqc_opc_update_sw_rules,
3237 lkup_type);
3238 if (status)
3239 return status;
3240
3241 fm_list->vsi_count--;
3242 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3243
3244 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3245 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3246 struct ice_vsi_list_map_info *vsi_list_info =
3247 fm_list->vsi_list_info;
3248 u16 rem_vsi_handle;
3249
3250 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3251 ICE_MAX_VSI);
3252 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3253 return -EIO;
3254
3255 /* Make sure VSI list is empty before removing it below */
3256 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3257 vsi_list_id, true,
3258 ice_aqc_opc_update_sw_rules,
3259 lkup_type);
3260 if (status)
3261 return status;
3262
3263 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3264 tmp_fltr_info.fwd_id.hw_vsi_id =
3265 ice_get_hw_vsi_num(hw, rem_vsi_handle);
3266 tmp_fltr_info.vsi_handle = rem_vsi_handle;
3267 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3268 if (status) {
3269 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3270 tmp_fltr_info.fwd_id.hw_vsi_id, status);
3271 return status;
3272 }
3273
3274 fm_list->fltr_info = tmp_fltr_info;
3275 }
3276
3277 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3278 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3279 struct ice_vsi_list_map_info *vsi_list_info =
3280 fm_list->vsi_list_info;
3281
3282 /* Remove the VSI list since it is no longer used */
3283 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3284 if (status) {
3285 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3286 vsi_list_id, status);
3287 return status;
3288 }
3289
3290 list_del(&vsi_list_info->list_entry);
3291 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3292 fm_list->vsi_list_info = NULL;
3293 }
3294
3295 return status;
3296}
3297
3298/**
3299 * ice_remove_rule_internal - Remove a filter rule of a given type
3300 * @hw: pointer to the hardware structure
3301 * @recp_id: recipe ID for which the rule needs to removed
3302 * @f_entry: rule entry containing filter information
3303 */
3304static int
3305ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3306 struct ice_fltr_list_entry *f_entry)
3307{
3308 struct ice_switch_info *sw = hw->switch_info;
3309 struct ice_fltr_mgmt_list_entry *list_elem;
3310 struct mutex *rule_lock; /* Lock to protect filter rule list */
3311 bool remove_rule = false;
3312 u16 vsi_handle;
3313 int status = 0;
3314
3315 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3316 return -EINVAL;
3317 f_entry->fltr_info.fwd_id.hw_vsi_id =
3318 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3319
3320 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3321 mutex_lock(rule_lock);
3322 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3323 if (!list_elem) {
3324 status = -ENOENT;
3325 goto exit;
3326 }
3327
3328 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3329 remove_rule = true;
3330 } else if (!list_elem->vsi_list_info) {
3331 status = -ENOENT;
3332 goto exit;
3333 } else if (list_elem->vsi_list_info->ref_cnt > 1) {
3334 /* a ref_cnt > 1 indicates that the vsi_list is being
3335 * shared by multiple rules. Decrement the ref_cnt and
3336 * remove this rule, but do not modify the list, as it
3337 * is in-use by other rules.
3338 */
3339 list_elem->vsi_list_info->ref_cnt--;
3340 remove_rule = true;
3341 } else {
3342 /* a ref_cnt of 1 indicates the vsi_list is only used
3343 * by one rule. However, the original removal request is only
3344 * for a single VSI. Update the vsi_list first, and only
3345 * remove the rule if there are no further VSIs in this list.
3346 */
3347 vsi_handle = f_entry->fltr_info.vsi_handle;
3348 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3349 if (status)
3350 goto exit;
3351 /* if VSI count goes to zero after updating the VSI list */
3352 if (list_elem->vsi_count == 0)
3353 remove_rule = true;
3354 }
3355
3356 if (remove_rule) {
3357 /* Remove the lookup rule */
3358 struct ice_sw_rule_lkup_rx_tx *s_rule;
3359
3360 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3361 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3362 GFP_KERNEL);
3363 if (!s_rule) {
3364 status = -ENOMEM;
3365 goto exit;
3366 }
3367
3368 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3369 ice_aqc_opc_remove_sw_rules);
3370
3371 status = ice_aq_sw_rules(hw, s_rule,
3372 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3373 1, ice_aqc_opc_remove_sw_rules, NULL);
3374
3375 /* Remove a book keeping from the list */
3376 devm_kfree(ice_hw_to_dev(hw), s_rule);
3377
3378 if (status)
3379 goto exit;
3380
3381 list_del(&list_elem->list_entry);
3382 devm_kfree(ice_hw_to_dev(hw), list_elem);
3383 }
3384exit:
3385 mutex_unlock(rule_lock);
3386 return status;
3387}
3388
3389/**
3390 * ice_mac_fltr_exist - does this MAC filter exist for given VSI
3391 * @hw: pointer to the hardware structure
3392 * @mac: MAC address to be checked (for MAC filter)
3393 * @vsi_handle: check MAC filter for this VSI
3394 */
3395bool ice_mac_fltr_exist(struct ice_hw *hw, u8 *mac, u16 vsi_handle)
3396{
3397 struct ice_fltr_mgmt_list_entry *entry;
3398 struct list_head *rule_head;
3399 struct ice_switch_info *sw;
3400 struct mutex *rule_lock; /* Lock to protect filter rule list */
3401 u16 hw_vsi_id;
3402
3403 if (!ice_is_vsi_valid(hw, vsi_handle))
3404 return false;
3405
3406 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3407 sw = hw->switch_info;
3408 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3409 if (!rule_head)
3410 return false;
3411
3412 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3413 mutex_lock(rule_lock);
3414 list_for_each_entry(entry, rule_head, list_entry) {
3415 struct ice_fltr_info *f_info = &entry->fltr_info;
3416 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3417
3418 if (is_zero_ether_addr(mac_addr))
3419 continue;
3420
3421 if (f_info->flag != ICE_FLTR_TX ||
3422 f_info->src_id != ICE_SRC_ID_VSI ||
3423 f_info->lkup_type != ICE_SW_LKUP_MAC ||
3424 f_info->fltr_act != ICE_FWD_TO_VSI ||
3425 hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3426 continue;
3427
3428 if (ether_addr_equal(mac, mac_addr)) {
3429 mutex_unlock(rule_lock);
3430 return true;
3431 }
3432 }
3433 mutex_unlock(rule_lock);
3434 return false;
3435}
3436
3437/**
3438 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3439 * @hw: pointer to the hardware structure
3440 * @vlan_id: VLAN ID
3441 * @vsi_handle: check MAC filter for this VSI
3442 */
3443bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3444{
3445 struct ice_fltr_mgmt_list_entry *entry;
3446 struct list_head *rule_head;
3447 struct ice_switch_info *sw;
3448 struct mutex *rule_lock; /* Lock to protect filter rule list */
3449 u16 hw_vsi_id;
3450
3451 if (vlan_id > ICE_MAX_VLAN_ID)
3452 return false;
3453
3454 if (!ice_is_vsi_valid(hw, vsi_handle))
3455 return false;
3456
3457 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3458 sw = hw->switch_info;
3459 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3460 if (!rule_head)
3461 return false;
3462
3463 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3464 mutex_lock(rule_lock);
3465 list_for_each_entry(entry, rule_head, list_entry) {
3466 struct ice_fltr_info *f_info = &entry->fltr_info;
3467 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3468 struct ice_vsi_list_map_info *map_info;
3469
3470 if (entry_vlan_id > ICE_MAX_VLAN_ID)
3471 continue;
3472
3473 if (f_info->flag != ICE_FLTR_TX ||
3474 f_info->src_id != ICE_SRC_ID_VSI ||
3475 f_info->lkup_type != ICE_SW_LKUP_VLAN)
3476 continue;
3477
3478 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3479 if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3480 f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3481 continue;
3482
3483 if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3484 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3485 continue;
3486 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3487 /* If filter_action is FWD_TO_VSI_LIST, make sure
3488 * that VSI being checked is part of VSI list
3489 */
3490 if (entry->vsi_count == 1 &&
3491 entry->vsi_list_info) {
3492 map_info = entry->vsi_list_info;
3493 if (!test_bit(vsi_handle, map_info->vsi_map))
3494 continue;
3495 }
3496 }
3497
3498 if (vlan_id == entry_vlan_id) {
3499 mutex_unlock(rule_lock);
3500 return true;
3501 }
3502 }
3503 mutex_unlock(rule_lock);
3504
3505 return false;
3506}
3507
3508/**
3509 * ice_add_mac - Add a MAC address based filter rule
3510 * @hw: pointer to the hardware structure
3511 * @m_list: list of MAC addresses and forwarding information
3512 */
3513int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3514{
3515 struct ice_fltr_list_entry *m_list_itr;
3516 int status = 0;
3517
3518 if (!m_list || !hw)
3519 return -EINVAL;
3520
3521 list_for_each_entry(m_list_itr, m_list, list_entry) {
3522 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3523 u16 vsi_handle;
3524 u16 hw_vsi_id;
3525
3526 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3527 vsi_handle = m_list_itr->fltr_info.vsi_handle;
3528 if (!ice_is_vsi_valid(hw, vsi_handle))
3529 return -EINVAL;
3530 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3531 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3532 /* update the src in case it is VSI num */
3533 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3534 return -EINVAL;
3535 m_list_itr->fltr_info.src = hw_vsi_id;
3536 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3537 is_zero_ether_addr(add))
3538 return -EINVAL;
3539
3540 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3541 m_list_itr);
3542 if (m_list_itr->status)
3543 return m_list_itr->status;
3544 }
3545
3546 return status;
3547}
3548
3549/**
3550 * ice_add_vlan_internal - Add one VLAN based filter rule
3551 * @hw: pointer to the hardware structure
3552 * @f_entry: filter entry containing one VLAN information
3553 */
3554static int
3555ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3556{
3557 struct ice_switch_info *sw = hw->switch_info;
3558 struct ice_fltr_mgmt_list_entry *v_list_itr;
3559 struct ice_fltr_info *new_fltr, *cur_fltr;
3560 enum ice_sw_lkup_type lkup_type;
3561 u16 vsi_list_id = 0, vsi_handle;
3562 struct mutex *rule_lock; /* Lock to protect filter rule list */
3563 int status = 0;
3564
3565 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3566 return -EINVAL;
3567
3568 f_entry->fltr_info.fwd_id.hw_vsi_id =
3569 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3570 new_fltr = &f_entry->fltr_info;
3571
3572 /* VLAN ID should only be 12 bits */
3573 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3574 return -EINVAL;
3575
3576 if (new_fltr->src_id != ICE_SRC_ID_VSI)
3577 return -EINVAL;
3578
3579 new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3580 lkup_type = new_fltr->lkup_type;
3581 vsi_handle = new_fltr->vsi_handle;
3582 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3583 mutex_lock(rule_lock);
3584 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3585 if (!v_list_itr) {
3586 struct ice_vsi_list_map_info *map_info = NULL;
3587
3588 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3589 /* All VLAN pruning rules use a VSI list. Check if
3590 * there is already a VSI list containing VSI that we
3591 * want to add. If found, use the same vsi_list_id for
3592 * this new VLAN rule or else create a new list.
3593 */
3594 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3595 vsi_handle,
3596 &vsi_list_id);
3597 if (!map_info) {
3598 status = ice_create_vsi_list_rule(hw,
3599 &vsi_handle,
3600 1,
3601 &vsi_list_id,
3602 lkup_type);
3603 if (status)
3604 goto exit;
3605 }
3606 /* Convert the action to forwarding to a VSI list. */
3607 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3608 new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3609 }
3610
3611 status = ice_create_pkt_fwd_rule(hw, f_entry);
3612 if (!status) {
3613 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3614 new_fltr);
3615 if (!v_list_itr) {
3616 status = -ENOENT;
3617 goto exit;
3618 }
3619 /* reuse VSI list for new rule and increment ref_cnt */
3620 if (map_info) {
3621 v_list_itr->vsi_list_info = map_info;
3622 map_info->ref_cnt++;
3623 } else {
3624 v_list_itr->vsi_list_info =
3625 ice_create_vsi_list_map(hw, &vsi_handle,
3626 1, vsi_list_id);
3627 }
3628 }
3629 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3630 /* Update existing VSI list to add new VSI ID only if it used
3631 * by one VLAN rule.
3632 */
3633 cur_fltr = &v_list_itr->fltr_info;
3634 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3635 new_fltr);
3636 } else {
3637 /* If VLAN rule exists and VSI list being used by this rule is
3638 * referenced by more than 1 VLAN rule. Then create a new VSI
3639 * list appending previous VSI with new VSI and update existing
3640 * VLAN rule to point to new VSI list ID
3641 */
3642 struct ice_fltr_info tmp_fltr;
3643 u16 vsi_handle_arr[2];
3644 u16 cur_handle;
3645
3646 /* Current implementation only supports reusing VSI list with
3647 * one VSI count. We should never hit below condition
3648 */
3649 if (v_list_itr->vsi_count > 1 &&
3650 v_list_itr->vsi_list_info->ref_cnt > 1) {
3651 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3652 status = -EIO;
3653 goto exit;
3654 }
3655
3656 cur_handle =
3657 find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3658 ICE_MAX_VSI);
3659
3660 /* A rule already exists with the new VSI being added */
3661 if (cur_handle == vsi_handle) {
3662 status = -EEXIST;
3663 goto exit;
3664 }
3665
3666 vsi_handle_arr[0] = cur_handle;
3667 vsi_handle_arr[1] = vsi_handle;
3668 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3669 &vsi_list_id, lkup_type);
3670 if (status)
3671 goto exit;
3672
3673 tmp_fltr = v_list_itr->fltr_info;
3674 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3675 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3676 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3677 /* Update the previous switch rule to a new VSI list which
3678 * includes current VSI that is requested
3679 */
3680 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3681 if (status)
3682 goto exit;
3683
3684 /* before overriding VSI list map info. decrement ref_cnt of
3685 * previous VSI list
3686 */
3687 v_list_itr->vsi_list_info->ref_cnt--;
3688
3689 /* now update to newly created list */
3690 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3691 v_list_itr->vsi_list_info =
3692 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3693 vsi_list_id);
3694 v_list_itr->vsi_count++;
3695 }
3696
3697exit:
3698 mutex_unlock(rule_lock);
3699 return status;
3700}
3701
3702/**
3703 * ice_add_vlan - Add VLAN based filter rule
3704 * @hw: pointer to the hardware structure
3705 * @v_list: list of VLAN entries and forwarding information
3706 */
3707int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3708{
3709 struct ice_fltr_list_entry *v_list_itr;
3710
3711 if (!v_list || !hw)
3712 return -EINVAL;
3713
3714 list_for_each_entry(v_list_itr, v_list, list_entry) {
3715 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3716 return -EINVAL;
3717 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3718 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3719 if (v_list_itr->status)
3720 return v_list_itr->status;
3721 }
3722 return 0;
3723}
3724
3725/**
3726 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3727 * @hw: pointer to the hardware structure
3728 * @em_list: list of ether type MAC filter, MAC is optional
3729 *
3730 * This function requires the caller to populate the entries in
3731 * the filter list with the necessary fields (including flags to
3732 * indicate Tx or Rx rules).
3733 */
3734int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3735{
3736 struct ice_fltr_list_entry *em_list_itr;
3737
3738 if (!em_list || !hw)
3739 return -EINVAL;
3740
3741 list_for_each_entry(em_list_itr, em_list, list_entry) {
3742 enum ice_sw_lkup_type l_type =
3743 em_list_itr->fltr_info.lkup_type;
3744
3745 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3746 l_type != ICE_SW_LKUP_ETHERTYPE)
3747 return -EINVAL;
3748
3749 em_list_itr->status = ice_add_rule_internal(hw, l_type,
3750 em_list_itr);
3751 if (em_list_itr->status)
3752 return em_list_itr->status;
3753 }
3754 return 0;
3755}
3756
3757/**
3758 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3759 * @hw: pointer to the hardware structure
3760 * @em_list: list of ethertype or ethertype MAC entries
3761 */
3762int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3763{
3764 struct ice_fltr_list_entry *em_list_itr, *tmp;
3765
3766 if (!em_list || !hw)
3767 return -EINVAL;
3768
3769 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3770 enum ice_sw_lkup_type l_type =
3771 em_list_itr->fltr_info.lkup_type;
3772
3773 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3774 l_type != ICE_SW_LKUP_ETHERTYPE)
3775 return -EINVAL;
3776
3777 em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3778 em_list_itr);
3779 if (em_list_itr->status)
3780 return em_list_itr->status;
3781 }
3782 return 0;
3783}
3784
3785/**
3786 * ice_rem_sw_rule_info
3787 * @hw: pointer to the hardware structure
3788 * @rule_head: pointer to the switch list structure that we want to delete
3789 */
3790static void
3791ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3792{
3793 if (!list_empty(rule_head)) {
3794 struct ice_fltr_mgmt_list_entry *entry;
3795 struct ice_fltr_mgmt_list_entry *tmp;
3796
3797 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3798 list_del(&entry->list_entry);
3799 devm_kfree(ice_hw_to_dev(hw), entry);
3800 }
3801 }
3802}
3803
3804/**
3805 * ice_rem_adv_rule_info
3806 * @hw: pointer to the hardware structure
3807 * @rule_head: pointer to the switch list structure that we want to delete
3808 */
3809static void
3810ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3811{
3812 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3813 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3814
3815 if (list_empty(rule_head))
3816 return;
3817
3818 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3819 list_del(&lst_itr->list_entry);
3820 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3821 devm_kfree(ice_hw_to_dev(hw), lst_itr);
3822 }
3823}
3824
3825/**
3826 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3827 * @pi: pointer to the port_info structure
3828 * @vsi_handle: VSI handle to set as default
3829 * @set: true to add the above mentioned switch rule, false to remove it
3830 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3831 *
3832 * add filter rule to set/unset given VSI as default VSI for the switch
3833 * (represented by swid)
3834 */
3835int
3836ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3837 u8 direction)
3838{
3839 struct ice_fltr_list_entry f_list_entry;
3840 struct ice_fltr_info f_info;
3841 struct ice_hw *hw = pi->hw;
3842 u16 hw_vsi_id;
3843 int status;
3844
3845 if (!ice_is_vsi_valid(hw, vsi_handle))
3846 return -EINVAL;
3847
3848 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3849
3850 memset(&f_info, 0, sizeof(f_info));
3851
3852 f_info.lkup_type = ICE_SW_LKUP_DFLT;
3853 f_info.flag = direction;
3854 f_info.fltr_act = ICE_FWD_TO_VSI;
3855 f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3856 f_info.vsi_handle = vsi_handle;
3857
3858 if (f_info.flag & ICE_FLTR_RX) {
3859 f_info.src = hw->port_info->lport;
3860 f_info.src_id = ICE_SRC_ID_LPORT;
3861 } else if (f_info.flag & ICE_FLTR_TX) {
3862 f_info.src_id = ICE_SRC_ID_VSI;
3863 f_info.src = hw_vsi_id;
3864 }
3865 f_list_entry.fltr_info = f_info;
3866
3867 if (set)
3868 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3869 &f_list_entry);
3870 else
3871 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3872 &f_list_entry);
3873
3874 return status;
3875}
3876
3877/**
3878 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3879 * @fm_entry: filter entry to inspect
3880 * @vsi_handle: VSI handle to compare with filter info
3881 */
3882static bool
3883ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3884{
3885 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3886 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3887 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3888 fm_entry->vsi_list_info &&
3889 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3890}
3891
3892/**
3893 * ice_check_if_dflt_vsi - check if VSI is default VSI
3894 * @pi: pointer to the port_info structure
3895 * @vsi_handle: vsi handle to check for in filter list
3896 * @rule_exists: indicates if there are any VSI's in the rule list
3897 *
3898 * checks if the VSI is in a default VSI list, and also indicates
3899 * if the default VSI list is empty
3900 */
3901bool
3902ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3903 bool *rule_exists)
3904{
3905 struct ice_fltr_mgmt_list_entry *fm_entry;
3906 struct ice_sw_recipe *recp_list;
3907 struct list_head *rule_head;
3908 struct mutex *rule_lock; /* Lock to protect filter rule list */
3909 bool ret = false;
3910
3911 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3912 rule_lock = &recp_list->filt_rule_lock;
3913 rule_head = &recp_list->filt_rules;
3914
3915 mutex_lock(rule_lock);
3916
3917 if (rule_exists && !list_empty(rule_head))
3918 *rule_exists = true;
3919
3920 list_for_each_entry(fm_entry, rule_head, list_entry) {
3921 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3922 ret = true;
3923 break;
3924 }
3925 }
3926
3927 mutex_unlock(rule_lock);
3928
3929 return ret;
3930}
3931
3932/**
3933 * ice_remove_mac - remove a MAC address based filter rule
3934 * @hw: pointer to the hardware structure
3935 * @m_list: list of MAC addresses and forwarding information
3936 *
3937 * This function removes either a MAC filter rule or a specific VSI from a
3938 * VSI list for a multicast MAC address.
3939 *
3940 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3941 * be aware that this call will only work if all the entries passed into m_list
3942 * were added previously. It will not attempt to do a partial remove of entries
3943 * that were found.
3944 */
3945int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3946{
3947 struct ice_fltr_list_entry *list_itr, *tmp;
3948
3949 if (!m_list)
3950 return -EINVAL;
3951
3952 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3953 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3954 u16 vsi_handle;
3955
3956 if (l_type != ICE_SW_LKUP_MAC)
3957 return -EINVAL;
3958
3959 vsi_handle = list_itr->fltr_info.vsi_handle;
3960 if (!ice_is_vsi_valid(hw, vsi_handle))
3961 return -EINVAL;
3962
3963 list_itr->fltr_info.fwd_id.hw_vsi_id =
3964 ice_get_hw_vsi_num(hw, vsi_handle);
3965
3966 list_itr->status = ice_remove_rule_internal(hw,
3967 ICE_SW_LKUP_MAC,
3968 list_itr);
3969 if (list_itr->status)
3970 return list_itr->status;
3971 }
3972 return 0;
3973}
3974
3975/**
3976 * ice_remove_vlan - Remove VLAN based filter rule
3977 * @hw: pointer to the hardware structure
3978 * @v_list: list of VLAN entries and forwarding information
3979 */
3980int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3981{
3982 struct ice_fltr_list_entry *v_list_itr, *tmp;
3983
3984 if (!v_list || !hw)
3985 return -EINVAL;
3986
3987 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3988 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3989
3990 if (l_type != ICE_SW_LKUP_VLAN)
3991 return -EINVAL;
3992 v_list_itr->status = ice_remove_rule_internal(hw,
3993 ICE_SW_LKUP_VLAN,
3994 v_list_itr);
3995 if (v_list_itr->status)
3996 return v_list_itr->status;
3997 }
3998 return 0;
3999}
4000
4001/**
4002 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4003 * @hw: pointer to the hardware structure
4004 * @vsi_handle: VSI handle to remove filters from
4005 * @vsi_list_head: pointer to the list to add entry to
4006 * @fi: pointer to fltr_info of filter entry to copy & add
4007 *
4008 * Helper function, used when creating a list of filters to remove from
4009 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4010 * original filter entry, with the exception of fltr_info.fltr_act and
4011 * fltr_info.fwd_id fields. These are set such that later logic can
4012 * extract which VSI to remove the fltr from, and pass on that information.
4013 */
4014static int
4015ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4016 struct list_head *vsi_list_head,
4017 struct ice_fltr_info *fi)
4018{
4019 struct ice_fltr_list_entry *tmp;
4020
4021 /* this memory is freed up in the caller function
4022 * once filters for this VSI are removed
4023 */
4024 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4025 if (!tmp)
4026 return -ENOMEM;
4027
4028 tmp->fltr_info = *fi;
4029
4030 /* Overwrite these fields to indicate which VSI to remove filter from,
4031 * so find and remove logic can extract the information from the
4032 * list entries. Note that original entries will still have proper
4033 * values.
4034 */
4035 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4036 tmp->fltr_info.vsi_handle = vsi_handle;
4037 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4038
4039 list_add(&tmp->list_entry, vsi_list_head);
4040
4041 return 0;
4042}
4043
4044/**
4045 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4046 * @hw: pointer to the hardware structure
4047 * @vsi_handle: VSI handle to remove filters from
4048 * @lkup_list_head: pointer to the list that has certain lookup type filters
4049 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4050 *
4051 * Locates all filters in lkup_list_head that are used by the given VSI,
4052 * and adds COPIES of those entries to vsi_list_head (intended to be used
4053 * to remove the listed filters).
4054 * Note that this means all entries in vsi_list_head must be explicitly
4055 * deallocated by the caller when done with list.
4056 */
4057static int
4058ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4059 struct list_head *lkup_list_head,
4060 struct list_head *vsi_list_head)
4061{
4062 struct ice_fltr_mgmt_list_entry *fm_entry;
4063 int status = 0;
4064
4065 /* check to make sure VSI ID is valid and within boundary */
4066 if (!ice_is_vsi_valid(hw, vsi_handle))
4067 return -EINVAL;
4068
4069 list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4070 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4071 continue;
4072
4073 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4074 vsi_list_head,
4075 &fm_entry->fltr_info);
4076 if (status)
4077 return status;
4078 }
4079 return status;
4080}
4081
4082/**
4083 * ice_determine_promisc_mask
4084 * @fi: filter info to parse
4085 *
4086 * Helper function to determine which ICE_PROMISC_ mask corresponds
4087 * to given filter into.
4088 */
4089static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4090{
4091 u16 vid = fi->l_data.mac_vlan.vlan_id;
4092 u8 *macaddr = fi->l_data.mac.mac_addr;
4093 bool is_tx_fltr = false;
4094 u8 promisc_mask = 0;
4095
4096 if (fi->flag == ICE_FLTR_TX)
4097 is_tx_fltr = true;
4098
4099 if (is_broadcast_ether_addr(macaddr))
4100 promisc_mask |= is_tx_fltr ?
4101 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4102 else if (is_multicast_ether_addr(macaddr))
4103 promisc_mask |= is_tx_fltr ?
4104 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4105 else if (is_unicast_ether_addr(macaddr))
4106 promisc_mask |= is_tx_fltr ?
4107 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4108 if (vid)
4109 promisc_mask |= is_tx_fltr ?
4110 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4111
4112 return promisc_mask;
4113}
4114
4115/**
4116 * ice_remove_promisc - Remove promisc based filter rules
4117 * @hw: pointer to the hardware structure
4118 * @recp_id: recipe ID for which the rule needs to removed
4119 * @v_list: list of promisc entries
4120 */
4121static int
4122ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4123{
4124 struct ice_fltr_list_entry *v_list_itr, *tmp;
4125
4126 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4127 v_list_itr->status =
4128 ice_remove_rule_internal(hw, recp_id, v_list_itr);
4129 if (v_list_itr->status)
4130 return v_list_itr->status;
4131 }
4132 return 0;
4133}
4134
4135/**
4136 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4137 * @hw: pointer to the hardware structure
4138 * @vsi_handle: VSI handle to clear mode
4139 * @promisc_mask: mask of promiscuous config bits to clear
4140 * @vid: VLAN ID to clear VLAN promiscuous
4141 */
4142int
4143ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4144 u16 vid)
4145{
4146 struct ice_switch_info *sw = hw->switch_info;
4147 struct ice_fltr_list_entry *fm_entry, *tmp;
4148 struct list_head remove_list_head;
4149 struct ice_fltr_mgmt_list_entry *itr;
4150 struct list_head *rule_head;
4151 struct mutex *rule_lock; /* Lock to protect filter rule list */
4152 int status = 0;
4153 u8 recipe_id;
4154
4155 if (!ice_is_vsi_valid(hw, vsi_handle))
4156 return -EINVAL;
4157
4158 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4159 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4160 else
4161 recipe_id = ICE_SW_LKUP_PROMISC;
4162
4163 rule_head = &sw->recp_list[recipe_id].filt_rules;
4164 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4165
4166 INIT_LIST_HEAD(&remove_list_head);
4167
4168 mutex_lock(rule_lock);
4169 list_for_each_entry(itr, rule_head, list_entry) {
4170 struct ice_fltr_info *fltr_info;
4171 u8 fltr_promisc_mask = 0;
4172
4173 if (!ice_vsi_uses_fltr(itr, vsi_handle))
4174 continue;
4175 fltr_info = &itr->fltr_info;
4176
4177 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4178 vid != fltr_info->l_data.mac_vlan.vlan_id)
4179 continue;
4180
4181 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4182
4183 /* Skip if filter is not completely specified by given mask */
4184 if (fltr_promisc_mask & ~promisc_mask)
4185 continue;
4186
4187 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4188 &remove_list_head,
4189 fltr_info);
4190 if (status) {
4191 mutex_unlock(rule_lock);
4192 goto free_fltr_list;
4193 }
4194 }
4195 mutex_unlock(rule_lock);
4196
4197 status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4198
4199free_fltr_list:
4200 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4201 list_del(&fm_entry->list_entry);
4202 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4203 }
4204
4205 return status;
4206}
4207
4208/**
4209 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4210 * @hw: pointer to the hardware structure
4211 * @vsi_handle: VSI handle to configure
4212 * @promisc_mask: mask of promiscuous config bits
4213 * @vid: VLAN ID to set VLAN promiscuous
4214 */
4215int
4216ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4217{
4218 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4219 struct ice_fltr_list_entry f_list_entry;
4220 struct ice_fltr_info new_fltr;
4221 bool is_tx_fltr;
4222 int status = 0;
4223 u16 hw_vsi_id;
4224 int pkt_type;
4225 u8 recipe_id;
4226
4227 if (!ice_is_vsi_valid(hw, vsi_handle))
4228 return -EINVAL;
4229 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4230
4231 memset(&new_fltr, 0, sizeof(new_fltr));
4232
4233 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4234 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4235 new_fltr.l_data.mac_vlan.vlan_id = vid;
4236 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4237 } else {
4238 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4239 recipe_id = ICE_SW_LKUP_PROMISC;
4240 }
4241
4242 /* Separate filters must be set for each direction/packet type
4243 * combination, so we will loop over the mask value, store the
4244 * individual type, and clear it out in the input mask as it
4245 * is found.
4246 */
4247 while (promisc_mask) {
4248 u8 *mac_addr;
4249
4250 pkt_type = 0;
4251 is_tx_fltr = false;
4252
4253 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4254 promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4255 pkt_type = UCAST_FLTR;
4256 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4257 promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4258 pkt_type = UCAST_FLTR;
4259 is_tx_fltr = true;
4260 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4261 promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4262 pkt_type = MCAST_FLTR;
4263 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4264 promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4265 pkt_type = MCAST_FLTR;
4266 is_tx_fltr = true;
4267 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4268 promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4269 pkt_type = BCAST_FLTR;
4270 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4271 promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4272 pkt_type = BCAST_FLTR;
4273 is_tx_fltr = true;
4274 }
4275
4276 /* Check for VLAN promiscuous flag */
4277 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4278 promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4279 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4280 promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4281 is_tx_fltr = true;
4282 }
4283
4284 /* Set filter DA based on packet type */
4285 mac_addr = new_fltr.l_data.mac.mac_addr;
4286 if (pkt_type == BCAST_FLTR) {
4287 eth_broadcast_addr(mac_addr);
4288 } else if (pkt_type == MCAST_FLTR ||
4289 pkt_type == UCAST_FLTR) {
4290 /* Use the dummy ether header DA */
4291 ether_addr_copy(mac_addr, dummy_eth_header);
4292 if (pkt_type == MCAST_FLTR)
4293 mac_addr[0] |= 0x1; /* Set multicast bit */
4294 }
4295
4296 /* Need to reset this to zero for all iterations */
4297 new_fltr.flag = 0;
4298 if (is_tx_fltr) {
4299 new_fltr.flag |= ICE_FLTR_TX;
4300 new_fltr.src = hw_vsi_id;
4301 } else {
4302 new_fltr.flag |= ICE_FLTR_RX;
4303 new_fltr.src = hw->port_info->lport;
4304 }
4305
4306 new_fltr.fltr_act = ICE_FWD_TO_VSI;
4307 new_fltr.vsi_handle = vsi_handle;
4308 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4309 f_list_entry.fltr_info = new_fltr;
4310
4311 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4312 if (status)
4313 goto set_promisc_exit;
4314 }
4315
4316set_promisc_exit:
4317 return status;
4318}
4319
4320/**
4321 * ice_set_vlan_vsi_promisc
4322 * @hw: pointer to the hardware structure
4323 * @vsi_handle: VSI handle to configure
4324 * @promisc_mask: mask of promiscuous config bits
4325 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4326 *
4327 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4328 */
4329int
4330ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4331 bool rm_vlan_promisc)
4332{
4333 struct ice_switch_info *sw = hw->switch_info;
4334 struct ice_fltr_list_entry *list_itr, *tmp;
4335 struct list_head vsi_list_head;
4336 struct list_head *vlan_head;
4337 struct mutex *vlan_lock; /* Lock to protect filter rule list */
4338 u16 vlan_id;
4339 int status;
4340
4341 INIT_LIST_HEAD(&vsi_list_head);
4342 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4343 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4344 mutex_lock(vlan_lock);
4345 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4346 &vsi_list_head);
4347 mutex_unlock(vlan_lock);
4348 if (status)
4349 goto free_fltr_list;
4350
4351 list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4352 /* Avoid enabling or disabling VLAN zero twice when in double
4353 * VLAN mode
4354 */
4355 if (ice_is_dvm_ena(hw) &&
4356 list_itr->fltr_info.l_data.vlan.tpid == 0)
4357 continue;
4358
4359 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4360 if (rm_vlan_promisc)
4361 status = ice_clear_vsi_promisc(hw, vsi_handle,
4362 promisc_mask, vlan_id);
4363 else
4364 status = ice_set_vsi_promisc(hw, vsi_handle,
4365 promisc_mask, vlan_id);
4366 if (status && status != -EEXIST)
4367 break;
4368 }
4369
4370free_fltr_list:
4371 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4372 list_del(&list_itr->list_entry);
4373 devm_kfree(ice_hw_to_dev(hw), list_itr);
4374 }
4375 return status;
4376}
4377
4378/**
4379 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4380 * @hw: pointer to the hardware structure
4381 * @vsi_handle: VSI handle to remove filters from
4382 * @lkup: switch rule filter lookup type
4383 */
4384static void
4385ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4386 enum ice_sw_lkup_type lkup)
4387{
4388 struct ice_switch_info *sw = hw->switch_info;
4389 struct ice_fltr_list_entry *fm_entry;
4390 struct list_head remove_list_head;
4391 struct list_head *rule_head;
4392 struct ice_fltr_list_entry *tmp;
4393 struct mutex *rule_lock; /* Lock to protect filter rule list */
4394 int status;
4395
4396 INIT_LIST_HEAD(&remove_list_head);
4397 rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4398 rule_head = &sw->recp_list[lkup].filt_rules;
4399 mutex_lock(rule_lock);
4400 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4401 &remove_list_head);
4402 mutex_unlock(rule_lock);
4403 if (status)
4404 goto free_fltr_list;
4405
4406 switch (lkup) {
4407 case ICE_SW_LKUP_MAC:
4408 ice_remove_mac(hw, &remove_list_head);
4409 break;
4410 case ICE_SW_LKUP_VLAN:
4411 ice_remove_vlan(hw, &remove_list_head);
4412 break;
4413 case ICE_SW_LKUP_PROMISC:
4414 case ICE_SW_LKUP_PROMISC_VLAN:
4415 ice_remove_promisc(hw, lkup, &remove_list_head);
4416 break;
4417 case ICE_SW_LKUP_MAC_VLAN:
4418 case ICE_SW_LKUP_ETHERTYPE:
4419 case ICE_SW_LKUP_ETHERTYPE_MAC:
4420 case ICE_SW_LKUP_DFLT:
4421 case ICE_SW_LKUP_LAST:
4422 default:
4423 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4424 break;
4425 }
4426
4427free_fltr_list:
4428 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4429 list_del(&fm_entry->list_entry);
4430 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4431 }
4432}
4433
4434/**
4435 * ice_remove_vsi_fltr - Remove all filters for a VSI
4436 * @hw: pointer to the hardware structure
4437 * @vsi_handle: VSI handle to remove filters from
4438 */
4439void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4440{
4441 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4442 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4443 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4444 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4445 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4446 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4447 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4448 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4449}
4450
4451/**
4452 * ice_alloc_res_cntr - allocating resource counter
4453 * @hw: pointer to the hardware structure
4454 * @type: type of resource
4455 * @alloc_shared: if set it is shared else dedicated
4456 * @num_items: number of entries requested for FD resource type
4457 * @counter_id: counter index returned by AQ call
4458 */
4459int
4460ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4461 u16 *counter_id)
4462{
4463 struct ice_aqc_alloc_free_res_elem *buf;
4464 u16 buf_len;
4465 int status;
4466
4467 /* Allocate resource */
4468 buf_len = struct_size(buf, elem, 1);
4469 buf = kzalloc(buf_len, GFP_KERNEL);
4470 if (!buf)
4471 return -ENOMEM;
4472
4473 buf->num_elems = cpu_to_le16(num_items);
4474 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4475 ICE_AQC_RES_TYPE_M) | alloc_shared);
4476
4477 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4478 ice_aqc_opc_alloc_res, NULL);
4479 if (status)
4480 goto exit;
4481
4482 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4483
4484exit:
4485 kfree(buf);
4486 return status;
4487}
4488
4489/**
4490 * ice_free_res_cntr - free resource counter
4491 * @hw: pointer to the hardware structure
4492 * @type: type of resource
4493 * @alloc_shared: if set it is shared else dedicated
4494 * @num_items: number of entries to be freed for FD resource type
4495 * @counter_id: counter ID resource which needs to be freed
4496 */
4497int
4498ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4499 u16 counter_id)
4500{
4501 struct ice_aqc_alloc_free_res_elem *buf;
4502 u16 buf_len;
4503 int status;
4504
4505 /* Free resource */
4506 buf_len = struct_size(buf, elem, 1);
4507 buf = kzalloc(buf_len, GFP_KERNEL);
4508 if (!buf)
4509 return -ENOMEM;
4510
4511 buf->num_elems = cpu_to_le16(num_items);
4512 buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4513 ICE_AQC_RES_TYPE_M) | alloc_shared);
4514 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4515
4516 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4517 ice_aqc_opc_free_res, NULL);
4518 if (status)
4519 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4520
4521 kfree(buf);
4522 return status;
4523}
4524
4525/* This is mapping table entry that maps every word within a given protocol
4526 * structure to the real byte offset as per the specification of that
4527 * protocol header.
4528 * for example dst address is 3 words in ethertype header and corresponding
4529 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4530 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4531 * matching entry describing its field. This needs to be updated if new
4532 * structure is added to that union.
4533 */
4534static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4535 { ICE_MAC_OFOS, { 0, 2, 4, 6, 8, 10, 12 } },
4536 { ICE_MAC_IL, { 0, 2, 4, 6, 8, 10, 12 } },
4537 { ICE_ETYPE_OL, { 0 } },
4538 { ICE_ETYPE_IL, { 0 } },
4539 { ICE_VLAN_OFOS, { 2, 0 } },
4540 { ICE_IPV4_OFOS, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4541 { ICE_IPV4_IL, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4542 { ICE_IPV6_OFOS, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4543 26, 28, 30, 32, 34, 36, 38 } },
4544 { ICE_IPV6_IL, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4545 26, 28, 30, 32, 34, 36, 38 } },
4546 { ICE_TCP_IL, { 0, 2 } },
4547 { ICE_UDP_OF, { 0, 2 } },
4548 { ICE_UDP_ILOS, { 0, 2 } },
4549 { ICE_VXLAN, { 8, 10, 12, 14 } },
4550 { ICE_GENEVE, { 8, 10, 12, 14 } },
4551 { ICE_NVGRE, { 0, 2, 4, 6 } },
4552 { ICE_GTP, { 8, 10, 12, 14, 16, 18, 20, 22 } },
4553 { ICE_GTP_NO_PAY, { 8, 10, 12, 14 } },
4554 { ICE_PPPOE, { 0, 2, 4, 6 } },
4555 { ICE_L2TPV3, { 0, 2, 4, 6, 8, 10 } },
4556 { ICE_VLAN_EX, { 2, 0 } },
4557 { ICE_VLAN_IN, { 2, 0 } },
4558};
4559
4560static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4561 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW },
4562 { ICE_MAC_IL, ICE_MAC_IL_HW },
4563 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW },
4564 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW },
4565 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW },
4566 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW },
4567 { ICE_IPV4_IL, ICE_IPV4_IL_HW },
4568 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW },
4569 { ICE_IPV6_IL, ICE_IPV6_IL_HW },
4570 { ICE_TCP_IL, ICE_TCP_IL_HW },
4571 { ICE_UDP_OF, ICE_UDP_OF_HW },
4572 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW },
4573 { ICE_VXLAN, ICE_UDP_OF_HW },
4574 { ICE_GENEVE, ICE_UDP_OF_HW },
4575 { ICE_NVGRE, ICE_GRE_OF_HW },
4576 { ICE_GTP, ICE_UDP_OF_HW },
4577 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW },
4578 { ICE_PPPOE, ICE_PPPOE_HW },
4579 { ICE_L2TPV3, ICE_L2TPV3_HW },
4580 { ICE_VLAN_EX, ICE_VLAN_OF_HW },
4581 { ICE_VLAN_IN, ICE_VLAN_OL_HW },
4582};
4583
4584/**
4585 * ice_find_recp - find a recipe
4586 * @hw: pointer to the hardware structure
4587 * @lkup_exts: extension sequence to match
4588 * @tun_type: type of recipe tunnel
4589 *
4590 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4591 */
4592static u16
4593ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4594 enum ice_sw_tunnel_type tun_type)
4595{
4596 bool refresh_required = true;
4597 struct ice_sw_recipe *recp;
4598 u8 i;
4599
4600 /* Walk through existing recipes to find a match */
4601 recp = hw->switch_info->recp_list;
4602 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4603 /* If recipe was not created for this ID, in SW bookkeeping,
4604 * check if FW has an entry for this recipe. If the FW has an
4605 * entry update it in our SW bookkeeping and continue with the
4606 * matching.
4607 */
4608 if (!recp[i].recp_created)
4609 if (ice_get_recp_frm_fw(hw,
4610 hw->switch_info->recp_list, i,
4611 &refresh_required))
4612 continue;
4613
4614 /* Skip inverse action recipes */
4615 if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4616 ICE_AQ_RECIPE_ACT_INV_ACT)
4617 continue;
4618
4619 /* if number of words we are looking for match */
4620 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4621 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4622 struct ice_fv_word *be = lkup_exts->fv_words;
4623 u16 *cr = recp[i].lkup_exts.field_mask;
4624 u16 *de = lkup_exts->field_mask;
4625 bool found = true;
4626 u8 pe, qr;
4627
4628 /* ar, cr, and qr are related to the recipe words, while
4629 * be, de, and pe are related to the lookup words
4630 */
4631 for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4632 for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4633 qr++) {
4634 if (ar[qr].off == be[pe].off &&
4635 ar[qr].prot_id == be[pe].prot_id &&
4636 cr[qr] == de[pe])
4637 /* Found the "pe"th word in the
4638 * given recipe
4639 */
4640 break;
4641 }
4642 /* After walking through all the words in the
4643 * "i"th recipe if "p"th word was not found then
4644 * this recipe is not what we are looking for.
4645 * So break out from this loop and try the next
4646 * recipe
4647 */
4648 if (qr >= recp[i].lkup_exts.n_val_words) {
4649 found = false;
4650 break;
4651 }
4652 }
4653 /* If for "i"th recipe the found was never set to false
4654 * then it means we found our match
4655 * Also tun type of recipe needs to be checked
4656 */
4657 if (found && recp[i].tun_type == tun_type)
4658 return i; /* Return the recipe ID */
4659 }
4660 }
4661 return ICE_MAX_NUM_RECIPES;
4662}
4663
4664/**
4665 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4666 *
4667 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4668 * supported protocol array record for outer vlan has to be modified to
4669 * reflect the value proper for DVM.
4670 */
4671void ice_change_proto_id_to_dvm(void)
4672{
4673 u8 i;
4674
4675 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4676 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4677 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4678 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4679}
4680
4681/**
4682 * ice_prot_type_to_id - get protocol ID from protocol type
4683 * @type: protocol type
4684 * @id: pointer to variable that will receive the ID
4685 *
4686 * Returns true if found, false otherwise
4687 */
4688static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4689{
4690 u8 i;
4691
4692 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4693 if (ice_prot_id_tbl[i].type == type) {
4694 *id = ice_prot_id_tbl[i].protocol_id;
4695 return true;
4696 }
4697 return false;
4698}
4699
4700/**
4701 * ice_fill_valid_words - count valid words
4702 * @rule: advanced rule with lookup information
4703 * @lkup_exts: byte offset extractions of the words that are valid
4704 *
4705 * calculate valid words in a lookup rule using mask value
4706 */
4707static u8
4708ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4709 struct ice_prot_lkup_ext *lkup_exts)
4710{
4711 u8 j, word, prot_id, ret_val;
4712
4713 if (!ice_prot_type_to_id(rule->type, &prot_id))
4714 return 0;
4715
4716 word = lkup_exts->n_val_words;
4717
4718 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4719 if (((u16 *)&rule->m_u)[j] &&
4720 rule->type < ARRAY_SIZE(ice_prot_ext)) {
4721 /* No more space to accommodate */
4722 if (word >= ICE_MAX_CHAIN_WORDS)
4723 return 0;
4724 lkup_exts->fv_words[word].off =
4725 ice_prot_ext[rule->type].offs[j];
4726 lkup_exts->fv_words[word].prot_id =
4727 ice_prot_id_tbl[rule->type].protocol_id;
4728 lkup_exts->field_mask[word] =
4729 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4730 word++;
4731 }
4732
4733 ret_val = word - lkup_exts->n_val_words;
4734 lkup_exts->n_val_words = word;
4735
4736 return ret_val;
4737}
4738
4739/**
4740 * ice_create_first_fit_recp_def - Create a recipe grouping
4741 * @hw: pointer to the hardware structure
4742 * @lkup_exts: an array of protocol header extractions
4743 * @rg_list: pointer to a list that stores new recipe groups
4744 * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4745 *
4746 * Using first fit algorithm, take all the words that are still not done
4747 * and start grouping them in 4-word groups. Each group makes up one
4748 * recipe.
4749 */
4750static int
4751ice_create_first_fit_recp_def(struct ice_hw *hw,
4752 struct ice_prot_lkup_ext *lkup_exts,
4753 struct list_head *rg_list,
4754 u8 *recp_cnt)
4755{
4756 struct ice_pref_recipe_group *grp = NULL;
4757 u8 j;
4758
4759 *recp_cnt = 0;
4760
4761 /* Walk through every word in the rule to check if it is not done. If so
4762 * then this word needs to be part of a new recipe.
4763 */
4764 for (j = 0; j < lkup_exts->n_val_words; j++)
4765 if (!test_bit(j, lkup_exts->done)) {
4766 if (!grp ||
4767 grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4768 struct ice_recp_grp_entry *entry;
4769
4770 entry = devm_kzalloc(ice_hw_to_dev(hw),
4771 sizeof(*entry),
4772 GFP_KERNEL);
4773 if (!entry)
4774 return -ENOMEM;
4775 list_add(&entry->l_entry, rg_list);
4776 grp = &entry->r_group;
4777 (*recp_cnt)++;
4778 }
4779
4780 grp->pairs[grp->n_val_pairs].prot_id =
4781 lkup_exts->fv_words[j].prot_id;
4782 grp->pairs[grp->n_val_pairs].off =
4783 lkup_exts->fv_words[j].off;
4784 grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4785 grp->n_val_pairs++;
4786 }
4787
4788 return 0;
4789}
4790
4791/**
4792 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4793 * @hw: pointer to the hardware structure
4794 * @fv_list: field vector with the extraction sequence information
4795 * @rg_list: recipe groupings with protocol-offset pairs
4796 *
4797 * Helper function to fill in the field vector indices for protocol-offset
4798 * pairs. These indexes are then ultimately programmed into a recipe.
4799 */
4800static int
4801ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4802 struct list_head *rg_list)
4803{
4804 struct ice_sw_fv_list_entry *fv;
4805 struct ice_recp_grp_entry *rg;
4806 struct ice_fv_word *fv_ext;
4807
4808 if (list_empty(fv_list))
4809 return 0;
4810
4811 fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4812 list_entry);
4813 fv_ext = fv->fv_ptr->ew;
4814
4815 list_for_each_entry(rg, rg_list, l_entry) {
4816 u8 i;
4817
4818 for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4819 struct ice_fv_word *pr;
4820 bool found = false;
4821 u16 mask;
4822 u8 j;
4823
4824 pr = &rg->r_group.pairs[i];
4825 mask = rg->r_group.mask[i];
4826
4827 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4828 if (fv_ext[j].prot_id == pr->prot_id &&
4829 fv_ext[j].off == pr->off) {
4830 found = true;
4831
4832 /* Store index of field vector */
4833 rg->fv_idx[i] = j;
4834 rg->fv_mask[i] = mask;
4835 break;
4836 }
4837
4838 /* Protocol/offset could not be found, caller gave an
4839 * invalid pair
4840 */
4841 if (!found)
4842 return -EINVAL;
4843 }
4844 }
4845
4846 return 0;
4847}
4848
4849/**
4850 * ice_find_free_recp_res_idx - find free result indexes for recipe
4851 * @hw: pointer to hardware structure
4852 * @profiles: bitmap of profiles that will be associated with the new recipe
4853 * @free_idx: pointer to variable to receive the free index bitmap
4854 *
4855 * The algorithm used here is:
4856 * 1. When creating a new recipe, create a set P which contains all
4857 * Profiles that will be associated with our new recipe
4858 *
4859 * 2. For each Profile p in set P:
4860 * a. Add all recipes associated with Profile p into set R
4861 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4862 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4863 * i. Or just assume they all have the same possible indexes:
4864 * 44, 45, 46, 47
4865 * i.e., PossibleIndexes = 0x0000F00000000000
4866 *
4867 * 3. For each Recipe r in set R:
4868 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4869 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4870 *
4871 * FreeIndexes will contain the bits indicating the indexes free for use,
4872 * then the code needs to update the recipe[r].used_result_idx_bits to
4873 * indicate which indexes were selected for use by this recipe.
4874 */
4875static u16
4876ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4877 unsigned long *free_idx)
4878{
4879 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4880 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4881 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4882 u16 bit;
4883
4884 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4885 bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4886
4887 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4888
4889 /* For each profile we are going to associate the recipe with, add the
4890 * recipes that are associated with that profile. This will give us
4891 * the set of recipes that our recipe may collide with. Also, determine
4892 * what possible result indexes are usable given this set of profiles.
4893 */
4894 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4895 bitmap_or(recipes, recipes, profile_to_recipe[bit],
4896 ICE_MAX_NUM_RECIPES);
4897 bitmap_and(possible_idx, possible_idx,
4898 hw->switch_info->prof_res_bm[bit],
4899 ICE_MAX_FV_WORDS);
4900 }
4901
4902 /* For each recipe that our new recipe may collide with, determine
4903 * which indexes have been used.
4904 */
4905 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4906 bitmap_or(used_idx, used_idx,
4907 hw->switch_info->recp_list[bit].res_idxs,
4908 ICE_MAX_FV_WORDS);
4909
4910 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4911
4912 /* return number of free indexes */
4913 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4914}
4915
4916/**
4917 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4918 * @hw: pointer to hardware structure
4919 * @rm: recipe management list entry
4920 * @profiles: bitmap of profiles that will be associated.
4921 */
4922static int
4923ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4924 unsigned long *profiles)
4925{
4926 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4927 struct ice_aqc_recipe_data_elem *tmp;
4928 struct ice_aqc_recipe_data_elem *buf;
4929 struct ice_recp_grp_entry *entry;
4930 u16 free_res_idx;
4931 u16 recipe_count;
4932 u8 chain_idx;
4933 u8 recps = 0;
4934 int status;
4935
4936 /* When more than one recipe are required, another recipe is needed to
4937 * chain them together. Matching a tunnel metadata ID takes up one of
4938 * the match fields in the chaining recipe reducing the number of
4939 * chained recipes by one.
4940 */
4941 /* check number of free result indices */
4942 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4943 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4944
4945 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4946 free_res_idx, rm->n_grp_count);
4947
4948 if (rm->n_grp_count > 1) {
4949 if (rm->n_grp_count > free_res_idx)
4950 return -ENOSPC;
4951
4952 rm->n_grp_count++;
4953 }
4954
4955 if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4956 return -ENOSPC;
4957
4958 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4959 if (!tmp)
4960 return -ENOMEM;
4961
4962 buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4963 GFP_KERNEL);
4964 if (!buf) {
4965 status = -ENOMEM;
4966 goto err_mem;
4967 }
4968
4969 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4970 recipe_count = ICE_MAX_NUM_RECIPES;
4971 status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4972 NULL);
4973 if (status || recipe_count == 0)
4974 goto err_unroll;
4975
4976 /* Allocate the recipe resources, and configure them according to the
4977 * match fields from protocol headers and extracted field vectors.
4978 */
4979 chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4980 list_for_each_entry(entry, &rm->rg_list, l_entry) {
4981 u8 i;
4982
4983 status = ice_alloc_recipe(hw, &entry->rid);
4984 if (status)
4985 goto err_unroll;
4986
4987 /* Clear the result index of the located recipe, as this will be
4988 * updated, if needed, later in the recipe creation process.
4989 */
4990 tmp[0].content.result_indx = 0;
4991
4992 buf[recps] = tmp[0];
4993 buf[recps].recipe_indx = (u8)entry->rid;
4994 /* if the recipe is a non-root recipe RID should be programmed
4995 * as 0 for the rules to be applied correctly.
4996 */
4997 buf[recps].content.rid = 0;
4998 memset(&buf[recps].content.lkup_indx, 0,
4999 sizeof(buf[recps].content.lkup_indx));
5000
5001 /* All recipes use look-up index 0 to match switch ID. */
5002 buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5003 buf[recps].content.mask[0] =
5004 cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5005 /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
5006 * to be 0
5007 */
5008 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5009 buf[recps].content.lkup_indx[i] = 0x80;
5010 buf[recps].content.mask[i] = 0;
5011 }
5012
5013 for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5014 buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
5015 buf[recps].content.mask[i + 1] =
5016 cpu_to_le16(entry->fv_mask[i]);
5017 }
5018
5019 if (rm->n_grp_count > 1) {
5020 /* Checks to see if there really is a valid result index
5021 * that can be used.
5022 */
5023 if (chain_idx >= ICE_MAX_FV_WORDS) {
5024 ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5025 status = -ENOSPC;
5026 goto err_unroll;
5027 }
5028
5029 entry->chain_idx = chain_idx;
5030 buf[recps].content.result_indx =
5031 ICE_AQ_RECIPE_RESULT_EN |
5032 ((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
5033 ICE_AQ_RECIPE_RESULT_DATA_M);
5034 clear_bit(chain_idx, result_idx_bm);
5035 chain_idx = find_first_bit(result_idx_bm,
5036 ICE_MAX_FV_WORDS);
5037 }
5038
5039 /* fill recipe dependencies */
5040 bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5041 ICE_MAX_NUM_RECIPES);
5042 set_bit(buf[recps].recipe_indx,
5043 (unsigned long *)buf[recps].recipe_bitmap);
5044 buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5045 recps++;
5046 }
5047
5048 if (rm->n_grp_count == 1) {
5049 rm->root_rid = buf[0].recipe_indx;
5050 set_bit(buf[0].recipe_indx, rm->r_bitmap);
5051 buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5052 if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5053 memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5054 sizeof(buf[0].recipe_bitmap));
5055 } else {
5056 status = -EINVAL;
5057 goto err_unroll;
5058 }
5059 /* Applicable only for ROOT_RECIPE, set the fwd_priority for
5060 * the recipe which is getting created if specified
5061 * by user. Usually any advanced switch filter, which results
5062 * into new extraction sequence, ended up creating a new recipe
5063 * of type ROOT and usually recipes are associated with profiles
5064 * Switch rule referreing newly created recipe, needs to have
5065 * either/or 'fwd' or 'join' priority, otherwise switch rule
5066 * evaluation will not happen correctly. In other words, if
5067 * switch rule to be evaluated on priority basis, then recipe
5068 * needs to have priority, otherwise it will be evaluated last.
5069 */
5070 buf[0].content.act_ctrl_fwd_priority = rm->priority;
5071 } else {
5072 struct ice_recp_grp_entry *last_chain_entry;
5073 u16 rid, i;
5074
5075 /* Allocate the last recipe that will chain the outcomes of the
5076 * other recipes together
5077 */
5078 status = ice_alloc_recipe(hw, &rid);
5079 if (status)
5080 goto err_unroll;
5081
5082 buf[recps].recipe_indx = (u8)rid;
5083 buf[recps].content.rid = (u8)rid;
5084 buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5085 /* the new entry created should also be part of rg_list to
5086 * make sure we have complete recipe
5087 */
5088 last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5089 sizeof(*last_chain_entry),
5090 GFP_KERNEL);
5091 if (!last_chain_entry) {
5092 status = -ENOMEM;
5093 goto err_unroll;
5094 }
5095 last_chain_entry->rid = rid;
5096 memset(&buf[recps].content.lkup_indx, 0,
5097 sizeof(buf[recps].content.lkup_indx));
5098 /* All recipes use look-up index 0 to match switch ID. */
5099 buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5100 buf[recps].content.mask[0] =
5101 cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5102 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5103 buf[recps].content.lkup_indx[i] =
5104 ICE_AQ_RECIPE_LKUP_IGNORE;
5105 buf[recps].content.mask[i] = 0;
5106 }
5107
5108 i = 1;
5109 /* update r_bitmap with the recp that is used for chaining */
5110 set_bit(rid, rm->r_bitmap);
5111 /* this is the recipe that chains all the other recipes so it
5112 * should not have a chaining ID to indicate the same
5113 */
5114 last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5115 list_for_each_entry(entry, &rm->rg_list, l_entry) {
5116 last_chain_entry->fv_idx[i] = entry->chain_idx;
5117 buf[recps].content.lkup_indx[i] = entry->chain_idx;
5118 buf[recps].content.mask[i++] = cpu_to_le16(0xFFFF);
5119 set_bit(entry->rid, rm->r_bitmap);
5120 }
5121 list_add(&last_chain_entry->l_entry, &rm->rg_list);
5122 if (sizeof(buf[recps].recipe_bitmap) >=
5123 sizeof(rm->r_bitmap)) {
5124 memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5125 sizeof(buf[recps].recipe_bitmap));
5126 } else {
5127 status = -EINVAL;
5128 goto err_unroll;
5129 }
5130 buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5131
5132 recps++;
5133 rm->root_rid = (u8)rid;
5134 }
5135 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5136 if (status)
5137 goto err_unroll;
5138
5139 status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5140 ice_release_change_lock(hw);
5141 if (status)
5142 goto err_unroll;
5143
5144 /* Every recipe that just got created add it to the recipe
5145 * book keeping list
5146 */
5147 list_for_each_entry(entry, &rm->rg_list, l_entry) {
5148 struct ice_switch_info *sw = hw->switch_info;
5149 bool is_root, idx_found = false;
5150 struct ice_sw_recipe *recp;
5151 u16 idx, buf_idx = 0;
5152
5153 /* find buffer index for copying some data */
5154 for (idx = 0; idx < rm->n_grp_count; idx++)
5155 if (buf[idx].recipe_indx == entry->rid) {
5156 buf_idx = idx;
5157 idx_found = true;
5158 }
5159
5160 if (!idx_found) {
5161 status = -EIO;
5162 goto err_unroll;
5163 }
5164
5165 recp = &sw->recp_list[entry->rid];
5166 is_root = (rm->root_rid == entry->rid);
5167 recp->is_root = is_root;
5168
5169 recp->root_rid = entry->rid;
5170 recp->big_recp = (is_root && rm->n_grp_count > 1);
5171
5172 memcpy(&recp->ext_words, entry->r_group.pairs,
5173 entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5174
5175 memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5176 sizeof(recp->r_bitmap));
5177
5178 /* Copy non-result fv index values and masks to recipe. This
5179 * call will also update the result recipe bitmask.
5180 */
5181 ice_collect_result_idx(&buf[buf_idx], recp);
5182
5183 /* for non-root recipes, also copy to the root, this allows
5184 * easier matching of a complete chained recipe
5185 */
5186 if (!is_root)
5187 ice_collect_result_idx(&buf[buf_idx],
5188 &sw->recp_list[rm->root_rid]);
5189
5190 recp->n_ext_words = entry->r_group.n_val_pairs;
5191 recp->chain_idx = entry->chain_idx;
5192 recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5193 recp->n_grp_count = rm->n_grp_count;
5194 recp->tun_type = rm->tun_type;
5195 recp->recp_created = true;
5196 }
5197 rm->root_buf = buf;
5198 kfree(tmp);
5199 return status;
5200
5201err_unroll:
5202err_mem:
5203 kfree(tmp);
5204 devm_kfree(ice_hw_to_dev(hw), buf);
5205 return status;
5206}
5207
5208/**
5209 * ice_create_recipe_group - creates recipe group
5210 * @hw: pointer to hardware structure
5211 * @rm: recipe management list entry
5212 * @lkup_exts: lookup elements
5213 */
5214static int
5215ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5216 struct ice_prot_lkup_ext *lkup_exts)
5217{
5218 u8 recp_count = 0;
5219 int status;
5220
5221 rm->n_grp_count = 0;
5222
5223 /* Create recipes for words that are marked not done by packing them
5224 * as best fit.
5225 */
5226 status = ice_create_first_fit_recp_def(hw, lkup_exts,
5227 &rm->rg_list, &recp_count);
5228 if (!status) {
5229 rm->n_grp_count += recp_count;
5230 rm->n_ext_words = lkup_exts->n_val_words;
5231 memcpy(&rm->ext_words, lkup_exts->fv_words,
5232 sizeof(rm->ext_words));
5233 memcpy(rm->word_masks, lkup_exts->field_mask,
5234 sizeof(rm->word_masks));
5235 }
5236
5237 return status;
5238}
5239
5240/**
5241 * ice_tun_type_match_word - determine if tun type needs a match mask
5242 * @tun_type: tunnel type
5243 * @mask: mask to be used for the tunnel
5244 */
5245static bool ice_tun_type_match_word(enum ice_sw_tunnel_type tun_type, u16 *mask)
5246{
5247 switch (tun_type) {
5248 case ICE_SW_TUN_GENEVE:
5249 case ICE_SW_TUN_VXLAN:
5250 case ICE_SW_TUN_NVGRE:
5251 case ICE_SW_TUN_GTPU:
5252 case ICE_SW_TUN_GTPC:
5253 *mask = ICE_TUN_FLAG_MASK;
5254 return true;
5255
5256 default:
5257 *mask = 0;
5258 return false;
5259 }
5260}
5261
5262/**
5263 * ice_add_special_words - Add words that are not protocols, such as metadata
5264 * @rinfo: other information regarding the rule e.g. priority and action info
5265 * @lkup_exts: lookup word structure
5266 * @dvm_ena: is double VLAN mode enabled
5267 */
5268static int
5269ice_add_special_words(struct ice_adv_rule_info *rinfo,
5270 struct ice_prot_lkup_ext *lkup_exts, bool dvm_ena)
5271{
5272 u16 mask;
5273
5274 /* If this is a tunneled packet, then add recipe index to match the
5275 * tunnel bit in the packet metadata flags.
5276 */
5277 if (ice_tun_type_match_word(rinfo->tun_type, &mask)) {
5278 if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5279 u8 word = lkup_exts->n_val_words++;
5280
5281 lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5282 lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID_OFF;
5283 lkup_exts->field_mask[word] = mask;
5284 } else {
5285 return -ENOSPC;
5286 }
5287 }
5288
5289 if (rinfo->vlan_type != 0 && dvm_ena) {
5290 if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5291 u8 word = lkup_exts->n_val_words++;
5292
5293 lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5294 lkup_exts->fv_words[word].off = ICE_VLAN_FLAG_MDID_OFF;
5295 lkup_exts->field_mask[word] =
5296 ICE_PKT_FLAGS_0_TO_15_VLAN_FLAGS_MASK;
5297 } else {
5298 return -ENOSPC;
5299 }
5300 }
5301
5302 return 0;
5303}
5304
5305/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5306 * @hw: pointer to hardware structure
5307 * @rinfo: other information regarding the rule e.g. priority and action info
5308 * @bm: pointer to memory for returning the bitmap of field vectors
5309 */
5310static void
5311ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5312 unsigned long *bm)
5313{
5314 enum ice_prof_type prof_type;
5315
5316 bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5317
5318 switch (rinfo->tun_type) {
5319 case ICE_NON_TUN:
5320 prof_type = ICE_PROF_NON_TUN;
5321 break;
5322 case ICE_ALL_TUNNELS:
5323 prof_type = ICE_PROF_TUN_ALL;
5324 break;
5325 case ICE_SW_TUN_GENEVE:
5326 case ICE_SW_TUN_VXLAN:
5327 prof_type = ICE_PROF_TUN_UDP;
5328 break;
5329 case ICE_SW_TUN_NVGRE:
5330 prof_type = ICE_PROF_TUN_GRE;
5331 break;
5332 case ICE_SW_TUN_GTPU:
5333 prof_type = ICE_PROF_TUN_GTPU;
5334 break;
5335 case ICE_SW_TUN_GTPC:
5336 prof_type = ICE_PROF_TUN_GTPC;
5337 break;
5338 case ICE_SW_TUN_AND_NON_TUN:
5339 default:
5340 prof_type = ICE_PROF_ALL;
5341 break;
5342 }
5343
5344 ice_get_sw_fv_bitmap(hw, prof_type, bm);
5345}
5346
5347/**
5348 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5349 * @hw: pointer to hardware structure
5350 * @lkups: lookup elements or match criteria for the advanced recipe, one
5351 * structure per protocol header
5352 * @lkups_cnt: number of protocols
5353 * @rinfo: other information regarding the rule e.g. priority and action info
5354 * @rid: return the recipe ID of the recipe created
5355 */
5356static int
5357ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5358 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5359{
5360 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5361 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5362 struct ice_prot_lkup_ext *lkup_exts;
5363 struct ice_recp_grp_entry *r_entry;
5364 struct ice_sw_fv_list_entry *fvit;
5365 struct ice_recp_grp_entry *r_tmp;
5366 struct ice_sw_fv_list_entry *tmp;
5367 struct ice_sw_recipe *rm;
5368 int status = 0;
5369 u8 i;
5370
5371 if (!lkups_cnt)
5372 return -EINVAL;
5373
5374 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5375 if (!lkup_exts)
5376 return -ENOMEM;
5377
5378 /* Determine the number of words to be matched and if it exceeds a
5379 * recipe's restrictions
5380 */
5381 for (i = 0; i < lkups_cnt; i++) {
5382 u16 count;
5383
5384 if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5385 status = -EIO;
5386 goto err_free_lkup_exts;
5387 }
5388
5389 count = ice_fill_valid_words(&lkups[i], lkup_exts);
5390 if (!count) {
5391 status = -EIO;
5392 goto err_free_lkup_exts;
5393 }
5394 }
5395
5396 rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5397 if (!rm) {
5398 status = -ENOMEM;
5399 goto err_free_lkup_exts;
5400 }
5401
5402 /* Get field vectors that contain fields extracted from all the protocol
5403 * headers being programmed.
5404 */
5405 INIT_LIST_HEAD(&rm->fv_list);
5406 INIT_LIST_HEAD(&rm->rg_list);
5407
5408 /* Get bitmap of field vectors (profiles) that are compatible with the
5409 * rule request; only these will be searched in the subsequent call to
5410 * ice_get_sw_fv_list.
5411 */
5412 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5413
5414 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5415 if (status)
5416 goto err_unroll;
5417
5418 /* Create any special protocol/offset pairs, such as looking at tunnel
5419 * bits by extracting metadata
5420 */
5421 status = ice_add_special_words(rinfo, lkup_exts, ice_is_dvm_ena(hw));
5422 if (status)
5423 goto err_unroll;
5424
5425 /* Group match words into recipes using preferred recipe grouping
5426 * criteria.
5427 */
5428 status = ice_create_recipe_group(hw, rm, lkup_exts);
5429 if (status)
5430 goto err_unroll;
5431
5432 /* set the recipe priority if specified */
5433 rm->priority = (u8)rinfo->priority;
5434
5435 /* Find offsets from the field vector. Pick the first one for all the
5436 * recipes.
5437 */
5438 status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5439 if (status)
5440 goto err_unroll;
5441
5442 /* get bitmap of all profiles the recipe will be associated with */
5443 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5444 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5445 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5446 set_bit((u16)fvit->profile_id, profiles);
5447 }
5448
5449 /* Look for a recipe which matches our requested fv / mask list */
5450 *rid = ice_find_recp(hw, lkup_exts, rinfo->tun_type);
5451 if (*rid < ICE_MAX_NUM_RECIPES)
5452 /* Success if found a recipe that match the existing criteria */
5453 goto err_unroll;
5454
5455 rm->tun_type = rinfo->tun_type;
5456 /* Recipe we need does not exist, add a recipe */
5457 status = ice_add_sw_recipe(hw, rm, profiles);
5458 if (status)
5459 goto err_unroll;
5460
5461 /* Associate all the recipes created with all the profiles in the
5462 * common field vector.
5463 */
5464 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5465 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5466 u16 j;
5467
5468 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5469 (u8 *)r_bitmap, NULL);
5470 if (status)
5471 goto err_unroll;
5472
5473 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5474 ICE_MAX_NUM_RECIPES);
5475 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5476 if (status)
5477 goto err_unroll;
5478
5479 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5480 (u8 *)r_bitmap,
5481 NULL);
5482 ice_release_change_lock(hw);
5483
5484 if (status)
5485 goto err_unroll;
5486
5487 /* Update profile to recipe bitmap array */
5488 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5489 ICE_MAX_NUM_RECIPES);
5490
5491 /* Update recipe to profile bitmap array */
5492 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5493 set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5494 }
5495
5496 *rid = rm->root_rid;
5497 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5498 sizeof(*lkup_exts));
5499err_unroll:
5500 list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5501 list_del(&r_entry->l_entry);
5502 devm_kfree(ice_hw_to_dev(hw), r_entry);
5503 }
5504
5505 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5506 list_del(&fvit->list_entry);
5507 devm_kfree(ice_hw_to_dev(hw), fvit);
5508 }
5509
5510 if (rm->root_buf)
5511 devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5512
5513 kfree(rm);
5514
5515err_free_lkup_exts:
5516 kfree(lkup_exts);
5517
5518 return status;
5519}
5520
5521/**
5522 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5523 *
5524 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5525 * @num_vlan: number of VLAN tags
5526 */
5527static struct ice_dummy_pkt_profile *
5528ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5529 u32 num_vlan)
5530{
5531 struct ice_dummy_pkt_profile *profile;
5532 struct ice_dummy_pkt_offsets *offsets;
5533 u32 buf_len, off, etype_off, i;
5534 u8 *pkt;
5535
5536 if (num_vlan < 1 || num_vlan > 2)
5537 return ERR_PTR(-EINVAL);
5538
5539 off = num_vlan * VLAN_HLEN;
5540
5541 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5542 dummy_pkt->offsets_len;
5543 offsets = kzalloc(buf_len, GFP_KERNEL);
5544 if (!offsets)
5545 return ERR_PTR(-ENOMEM);
5546
5547 offsets[0] = dummy_pkt->offsets[0];
5548 if (num_vlan == 2) {
5549 offsets[1] = ice_dummy_qinq_packet_offsets[0];
5550 offsets[2] = ice_dummy_qinq_packet_offsets[1];
5551 } else if (num_vlan == 1) {
5552 offsets[1] = ice_dummy_vlan_packet_offsets[0];
5553 }
5554
5555 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5556 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5557 offsets[i + num_vlan].offset =
5558 dummy_pkt->offsets[i].offset + off;
5559 }
5560 offsets[i + num_vlan] = dummy_pkt->offsets[i];
5561
5562 etype_off = dummy_pkt->offsets[1].offset;
5563
5564 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5565 dummy_pkt->pkt_len;
5566 pkt = kzalloc(buf_len, GFP_KERNEL);
5567 if (!pkt) {
5568 kfree(offsets);
5569 return ERR_PTR(-ENOMEM);
5570 }
5571
5572 memcpy(pkt, dummy_pkt->pkt, etype_off);
5573 memcpy(pkt + etype_off,
5574 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5575 off);
5576 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5577 dummy_pkt->pkt_len - etype_off);
5578
5579 profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5580 if (!profile) {
5581 kfree(offsets);
5582 kfree(pkt);
5583 return ERR_PTR(-ENOMEM);
5584 }
5585
5586 profile->offsets = offsets;
5587 profile->pkt = pkt;
5588 profile->pkt_len = buf_len;
5589 profile->match |= ICE_PKT_KMALLOC;
5590
5591 return profile;
5592}
5593
5594/**
5595 * ice_find_dummy_packet - find dummy packet
5596 *
5597 * @lkups: lookup elements or match criteria for the advanced recipe, one
5598 * structure per protocol header
5599 * @lkups_cnt: number of protocols
5600 * @tun_type: tunnel type
5601 *
5602 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5603 */
5604static const struct ice_dummy_pkt_profile *
5605ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5606 enum ice_sw_tunnel_type tun_type)
5607{
5608 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5609 u32 match = 0, vlan_count = 0;
5610 u16 i;
5611
5612 switch (tun_type) {
5613 case ICE_SW_TUN_GTPC:
5614 match |= ICE_PKT_TUN_GTPC;
5615 break;
5616 case ICE_SW_TUN_GTPU:
5617 match |= ICE_PKT_TUN_GTPU;
5618 break;
5619 case ICE_SW_TUN_NVGRE:
5620 match |= ICE_PKT_TUN_NVGRE;
5621 break;
5622 case ICE_SW_TUN_GENEVE:
5623 case ICE_SW_TUN_VXLAN:
5624 match |= ICE_PKT_TUN_UDP;
5625 break;
5626 default:
5627 break;
5628 }
5629
5630 for (i = 0; i < lkups_cnt; i++) {
5631 if (lkups[i].type == ICE_UDP_ILOS)
5632 match |= ICE_PKT_INNER_UDP;
5633 else if (lkups[i].type == ICE_TCP_IL)
5634 match |= ICE_PKT_INNER_TCP;
5635 else if (lkups[i].type == ICE_IPV6_OFOS)
5636 match |= ICE_PKT_OUTER_IPV6;
5637 else if (lkups[i].type == ICE_VLAN_OFOS ||
5638 lkups[i].type == ICE_VLAN_EX)
5639 vlan_count++;
5640 else if (lkups[i].type == ICE_VLAN_IN)
5641 vlan_count++;
5642 else if (lkups[i].type == ICE_ETYPE_OL &&
5643 lkups[i].h_u.ethertype.ethtype_id ==
5644 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5645 lkups[i].m_u.ethertype.ethtype_id ==
5646 cpu_to_be16(0xFFFF))
5647 match |= ICE_PKT_OUTER_IPV6;
5648 else if (lkups[i].type == ICE_ETYPE_IL &&
5649 lkups[i].h_u.ethertype.ethtype_id ==
5650 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5651 lkups[i].m_u.ethertype.ethtype_id ==
5652 cpu_to_be16(0xFFFF))
5653 match |= ICE_PKT_INNER_IPV6;
5654 else if (lkups[i].type == ICE_IPV6_IL)
5655 match |= ICE_PKT_INNER_IPV6;
5656 else if (lkups[i].type == ICE_GTP_NO_PAY)
5657 match |= ICE_PKT_GTP_NOPAY;
5658 else if (lkups[i].type == ICE_PPPOE) {
5659 match |= ICE_PKT_PPPOE;
5660 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5661 htons(PPP_IPV6))
5662 match |= ICE_PKT_OUTER_IPV6;
5663 } else if (lkups[i].type == ICE_L2TPV3)
5664 match |= ICE_PKT_L2TPV3;
5665 }
5666
5667 while (ret->match && (match & ret->match) != ret->match)
5668 ret++;
5669
5670 if (vlan_count != 0)
5671 ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5672
5673 return ret;
5674}
5675
5676/**
5677 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5678 *
5679 * @lkups: lookup elements or match criteria for the advanced recipe, one
5680 * structure per protocol header
5681 * @lkups_cnt: number of protocols
5682 * @s_rule: stores rule information from the match criteria
5683 * @profile: dummy packet profile (the template, its size and header offsets)
5684 */
5685static int
5686ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5687 struct ice_sw_rule_lkup_rx_tx *s_rule,
5688 const struct ice_dummy_pkt_profile *profile)
5689{
5690 u8 *pkt;
5691 u16 i;
5692
5693 /* Start with a packet with a pre-defined/dummy content. Then, fill
5694 * in the header values to be looked up or matched.
5695 */
5696 pkt = s_rule->hdr_data;
5697
5698 memcpy(pkt, profile->pkt, profile->pkt_len);
5699
5700 for (i = 0; i < lkups_cnt; i++) {
5701 const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5702 enum ice_protocol_type type;
5703 u16 offset = 0, len = 0, j;
5704 bool found = false;
5705
5706 /* find the start of this layer; it should be found since this
5707 * was already checked when search for the dummy packet
5708 */
5709 type = lkups[i].type;
5710 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5711 if (type == offsets[j].type) {
5712 offset = offsets[j].offset;
5713 found = true;
5714 break;
5715 }
5716 }
5717 /* this should never happen in a correct calling sequence */
5718 if (!found)
5719 return -EINVAL;
5720
5721 switch (lkups[i].type) {
5722 case ICE_MAC_OFOS:
5723 case ICE_MAC_IL:
5724 len = sizeof(struct ice_ether_hdr);
5725 break;
5726 case ICE_ETYPE_OL:
5727 case ICE_ETYPE_IL:
5728 len = sizeof(struct ice_ethtype_hdr);
5729 break;
5730 case ICE_VLAN_OFOS:
5731 case ICE_VLAN_EX:
5732 case ICE_VLAN_IN:
5733 len = sizeof(struct ice_vlan_hdr);
5734 break;
5735 case ICE_IPV4_OFOS:
5736 case ICE_IPV4_IL:
5737 len = sizeof(struct ice_ipv4_hdr);
5738 break;
5739 case ICE_IPV6_OFOS:
5740 case ICE_IPV6_IL:
5741 len = sizeof(struct ice_ipv6_hdr);
5742 break;
5743 case ICE_TCP_IL:
5744 case ICE_UDP_OF:
5745 case ICE_UDP_ILOS:
5746 len = sizeof(struct ice_l4_hdr);
5747 break;
5748 case ICE_SCTP_IL:
5749 len = sizeof(struct ice_sctp_hdr);
5750 break;
5751 case ICE_NVGRE:
5752 len = sizeof(struct ice_nvgre_hdr);
5753 break;
5754 case ICE_VXLAN:
5755 case ICE_GENEVE:
5756 len = sizeof(struct ice_udp_tnl_hdr);
5757 break;
5758 case ICE_GTP_NO_PAY:
5759 case ICE_GTP:
5760 len = sizeof(struct ice_udp_gtp_hdr);
5761 break;
5762 case ICE_PPPOE:
5763 len = sizeof(struct ice_pppoe_hdr);
5764 break;
5765 case ICE_L2TPV3:
5766 len = sizeof(struct ice_l2tpv3_sess_hdr);
5767 break;
5768 default:
5769 return -EINVAL;
5770 }
5771
5772 /* the length should be a word multiple */
5773 if (len % ICE_BYTES_PER_WORD)
5774 return -EIO;
5775
5776 /* We have the offset to the header start, the length, the
5777 * caller's header values and mask. Use this information to
5778 * copy the data into the dummy packet appropriately based on
5779 * the mask. Note that we need to only write the bits as
5780 * indicated by the mask to make sure we don't improperly write
5781 * over any significant packet data.
5782 */
5783 for (j = 0; j < len / sizeof(u16); j++) {
5784 u16 *ptr = (u16 *)(pkt + offset);
5785 u16 mask = lkups[i].m_raw[j];
5786
5787 if (!mask)
5788 continue;
5789
5790 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5791 }
5792 }
5793
5794 s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5795
5796 return 0;
5797}
5798
5799/**
5800 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5801 * @hw: pointer to the hardware structure
5802 * @tun_type: tunnel type
5803 * @pkt: dummy packet to fill in
5804 * @offsets: offset info for the dummy packet
5805 */
5806static int
5807ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5808 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5809{
5810 u16 open_port, i;
5811
5812 switch (tun_type) {
5813 case ICE_SW_TUN_VXLAN:
5814 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5815 return -EIO;
5816 break;
5817 case ICE_SW_TUN_GENEVE:
5818 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5819 return -EIO;
5820 break;
5821 default:
5822 /* Nothing needs to be done for this tunnel type */
5823 return 0;
5824 }
5825
5826 /* Find the outer UDP protocol header and insert the port number */
5827 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5828 if (offsets[i].type == ICE_UDP_OF) {
5829 struct ice_l4_hdr *hdr;
5830 u16 offset;
5831
5832 offset = offsets[i].offset;
5833 hdr = (struct ice_l4_hdr *)&pkt[offset];
5834 hdr->dst_port = cpu_to_be16(open_port);
5835
5836 return 0;
5837 }
5838 }
5839
5840 return -EIO;
5841}
5842
5843/**
5844 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5845 * @vlan_type: VLAN tag type
5846 * @pkt: dummy packet to fill in
5847 * @offsets: offset info for the dummy packet
5848 */
5849static int
5850ice_fill_adv_packet_vlan(u16 vlan_type, u8 *pkt,
5851 const struct ice_dummy_pkt_offsets *offsets)
5852{
5853 u16 i;
5854
5855 /* Find VLAN header and insert VLAN TPID */
5856 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5857 if (offsets[i].type == ICE_VLAN_OFOS ||
5858 offsets[i].type == ICE_VLAN_EX) {
5859 struct ice_vlan_hdr *hdr;
5860 u16 offset;
5861
5862 offset = offsets[i].offset;
5863 hdr = (struct ice_vlan_hdr *)&pkt[offset];
5864 hdr->type = cpu_to_be16(vlan_type);
5865
5866 return 0;
5867 }
5868 }
5869
5870 return -EIO;
5871}
5872
5873/**
5874 * ice_find_adv_rule_entry - Search a rule entry
5875 * @hw: pointer to the hardware structure
5876 * @lkups: lookup elements or match criteria for the advanced recipe, one
5877 * structure per protocol header
5878 * @lkups_cnt: number of protocols
5879 * @recp_id: recipe ID for which we are finding the rule
5880 * @rinfo: other information regarding the rule e.g. priority and action info
5881 *
5882 * Helper function to search for a given advance rule entry
5883 * Returns pointer to entry storing the rule if found
5884 */
5885static struct ice_adv_fltr_mgmt_list_entry *
5886ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5887 u16 lkups_cnt, u16 recp_id,
5888 struct ice_adv_rule_info *rinfo)
5889{
5890 struct ice_adv_fltr_mgmt_list_entry *list_itr;
5891 struct ice_switch_info *sw = hw->switch_info;
5892 int i;
5893
5894 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5895 list_entry) {
5896 bool lkups_matched = true;
5897
5898 if (lkups_cnt != list_itr->lkups_cnt)
5899 continue;
5900 for (i = 0; i < list_itr->lkups_cnt; i++)
5901 if (memcmp(&list_itr->lkups[i], &lkups[i],
5902 sizeof(*lkups))) {
5903 lkups_matched = false;
5904 break;
5905 }
5906 if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
5907 rinfo->tun_type == list_itr->rule_info.tun_type &&
5908 rinfo->vlan_type == list_itr->rule_info.vlan_type &&
5909 lkups_matched)
5910 return list_itr;
5911 }
5912 return NULL;
5913}
5914
5915/**
5916 * ice_adv_add_update_vsi_list
5917 * @hw: pointer to the hardware structure
5918 * @m_entry: pointer to current adv filter management list entry
5919 * @cur_fltr: filter information from the book keeping entry
5920 * @new_fltr: filter information with the new VSI to be added
5921 *
5922 * Call AQ command to add or update previously created VSI list with new VSI.
5923 *
5924 * Helper function to do book keeping associated with adding filter information
5925 * The algorithm to do the booking keeping is described below :
5926 * When a VSI needs to subscribe to a given advanced filter
5927 * if only one VSI has been added till now
5928 * Allocate a new VSI list and add two VSIs
5929 * to this list using switch rule command
5930 * Update the previously created switch rule with the
5931 * newly created VSI list ID
5932 * if a VSI list was previously created
5933 * Add the new VSI to the previously created VSI list set
5934 * using the update switch rule command
5935 */
5936static int
5937ice_adv_add_update_vsi_list(struct ice_hw *hw,
5938 struct ice_adv_fltr_mgmt_list_entry *m_entry,
5939 struct ice_adv_rule_info *cur_fltr,
5940 struct ice_adv_rule_info *new_fltr)
5941{
5942 u16 vsi_list_id = 0;
5943 int status;
5944
5945 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5946 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5947 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5948 return -EOPNOTSUPP;
5949
5950 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5951 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5952 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5953 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5954 return -EOPNOTSUPP;
5955
5956 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5957 /* Only one entry existed in the mapping and it was not already
5958 * a part of a VSI list. So, create a VSI list with the old and
5959 * new VSIs.
5960 */
5961 struct ice_fltr_info tmp_fltr;
5962 u16 vsi_handle_arr[2];
5963
5964 /* A rule already exists with the new VSI being added */
5965 if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5966 new_fltr->sw_act.fwd_id.hw_vsi_id)
5967 return -EEXIST;
5968
5969 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5970 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5971 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5972 &vsi_list_id,
5973 ICE_SW_LKUP_LAST);
5974 if (status)
5975 return status;
5976
5977 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5978 tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5979 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5980 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5981 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5982 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5983
5984 /* Update the previous switch rule of "forward to VSI" to
5985 * "fwd to VSI list"
5986 */
5987 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5988 if (status)
5989 return status;
5990
5991 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5992 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5993 m_entry->vsi_list_info =
5994 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5995 vsi_list_id);
5996 } else {
5997 u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5998
5999 if (!m_entry->vsi_list_info)
6000 return -EIO;
6001
6002 /* A rule already exists with the new VSI being added */
6003 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
6004 return 0;
6005
6006 /* Update the previously created VSI list set with
6007 * the new VSI ID passed in
6008 */
6009 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
6010
6011 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
6012 vsi_list_id, false,
6013 ice_aqc_opc_update_sw_rules,
6014 ICE_SW_LKUP_LAST);
6015 /* update VSI list mapping info with new VSI ID */
6016 if (!status)
6017 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
6018 }
6019 if (!status)
6020 m_entry->vsi_count++;
6021 return status;
6022}
6023
6024/**
6025 * ice_add_adv_rule - helper function to create an advanced switch rule
6026 * @hw: pointer to the hardware structure
6027 * @lkups: information on the words that needs to be looked up. All words
6028 * together makes one recipe
6029 * @lkups_cnt: num of entries in the lkups array
6030 * @rinfo: other information related to the rule that needs to be programmed
6031 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6032 * ignored is case of error.
6033 *
6034 * This function can program only 1 rule at a time. The lkups is used to
6035 * describe the all the words that forms the "lookup" portion of the recipe.
6036 * These words can span multiple protocols. Callers to this function need to
6037 * pass in a list of protocol headers with lookup information along and mask
6038 * that determines which words are valid from the given protocol header.
6039 * rinfo describes other information related to this rule such as forwarding
6040 * IDs, priority of this rule, etc.
6041 */
6042int
6043ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6044 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6045 struct ice_rule_query_data *added_entry)
6046{
6047 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6048 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6049 const struct ice_dummy_pkt_profile *profile;
6050 u16 rid = 0, i, rule_buf_sz, vsi_handle;
6051 struct list_head *rule_head;
6052 struct ice_switch_info *sw;
6053 u16 word_cnt;
6054 u32 act = 0;
6055 int status;
6056 u8 q_rgn;
6057
6058 /* Initialize profile to result index bitmap */
6059 if (!hw->switch_info->prof_res_bm_init) {
6060 hw->switch_info->prof_res_bm_init = 1;
6061 ice_init_prof_result_bm(hw);
6062 }
6063
6064 if (!lkups_cnt)
6065 return -EINVAL;
6066
6067 /* get # of words we need to match */
6068 word_cnt = 0;
6069 for (i = 0; i < lkups_cnt; i++) {
6070 u16 j;
6071
6072 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6073 if (lkups[i].m_raw[j])
6074 word_cnt++;
6075 }
6076
6077 if (!word_cnt)
6078 return -EINVAL;
6079
6080 if (word_cnt > ICE_MAX_CHAIN_WORDS)
6081 return -ENOSPC;
6082
6083 /* locate a dummy packet */
6084 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6085 if (IS_ERR(profile))
6086 return PTR_ERR(profile);
6087
6088 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6089 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6090 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6091 rinfo->sw_act.fltr_act == ICE_DROP_PACKET)) {
6092 status = -EIO;
6093 goto free_pkt_profile;
6094 }
6095
6096 vsi_handle = rinfo->sw_act.vsi_handle;
6097 if (!ice_is_vsi_valid(hw, vsi_handle)) {
6098 status = -EINVAL;
6099 goto free_pkt_profile;
6100 }
6101
6102 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6103 rinfo->sw_act.fwd_id.hw_vsi_id =
6104 ice_get_hw_vsi_num(hw, vsi_handle);
6105 if (rinfo->sw_act.flag & ICE_FLTR_TX)
6106 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6107
6108 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6109 if (status)
6110 goto free_pkt_profile;
6111 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6112 if (m_entry) {
6113 /* we have to add VSI to VSI_LIST and increment vsi_count.
6114 * Also Update VSI list so that we can change forwarding rule
6115 * if the rule already exists, we will check if it exists with
6116 * same vsi_id, if not then add it to the VSI list if it already
6117 * exists if not then create a VSI list and add the existing VSI
6118 * ID and the new VSI ID to the list
6119 * We will add that VSI to the list
6120 */
6121 status = ice_adv_add_update_vsi_list(hw, m_entry,
6122 &m_entry->rule_info,
6123 rinfo);
6124 if (added_entry) {
6125 added_entry->rid = rid;
6126 added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6127 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6128 }
6129 goto free_pkt_profile;
6130 }
6131 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6132 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6133 if (!s_rule) {
6134 status = -ENOMEM;
6135 goto free_pkt_profile;
6136 }
6137 if (!rinfo->flags_info.act_valid) {
6138 act |= ICE_SINGLE_ACT_LAN_ENABLE;
6139 act |= ICE_SINGLE_ACT_LB_ENABLE;
6140 } else {
6141 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6142 ICE_SINGLE_ACT_LB_ENABLE);
6143 }
6144
6145 switch (rinfo->sw_act.fltr_act) {
6146 case ICE_FWD_TO_VSI:
6147 act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
6148 ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
6149 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6150 break;
6151 case ICE_FWD_TO_Q:
6152 act |= ICE_SINGLE_ACT_TO_Q;
6153 act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6154 ICE_SINGLE_ACT_Q_INDEX_M;
6155 break;
6156 case ICE_FWD_TO_QGRP:
6157 q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6158 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6159 act |= ICE_SINGLE_ACT_TO_Q;
6160 act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6161 ICE_SINGLE_ACT_Q_INDEX_M;
6162 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
6163 ICE_SINGLE_ACT_Q_REGION_M;
6164 break;
6165 case ICE_DROP_PACKET:
6166 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6167 ICE_SINGLE_ACT_VALID_BIT;
6168 break;
6169 default:
6170 status = -EIO;
6171 goto err_ice_add_adv_rule;
6172 }
6173
6174 /* set the rule LOOKUP type based on caller specified 'Rx'
6175 * instead of hardcoding it to be either LOOKUP_TX/RX
6176 *
6177 * for 'Rx' set the source to be the port number
6178 * for 'Tx' set the source to be the source HW VSI number (determined
6179 * by caller)
6180 */
6181 if (rinfo->rx) {
6182 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6183 s_rule->src = cpu_to_le16(hw->port_info->lport);
6184 } else {
6185 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6186 s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6187 }
6188
6189 s_rule->recipe_id = cpu_to_le16(rid);
6190 s_rule->act = cpu_to_le32(act);
6191
6192 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6193 if (status)
6194 goto err_ice_add_adv_rule;
6195
6196 if (rinfo->tun_type != ICE_NON_TUN &&
6197 rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) {
6198 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type,
6199 s_rule->hdr_data,
6200 profile->offsets);
6201 if (status)
6202 goto err_ice_add_adv_rule;
6203 }
6204
6205 if (rinfo->vlan_type != 0 && ice_is_dvm_ena(hw)) {
6206 status = ice_fill_adv_packet_vlan(rinfo->vlan_type,
6207 s_rule->hdr_data,
6208 profile->offsets);
6209 if (status)
6210 goto err_ice_add_adv_rule;
6211 }
6212
6213 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6214 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6215 NULL);
6216 if (status)
6217 goto err_ice_add_adv_rule;
6218 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6219 sizeof(struct ice_adv_fltr_mgmt_list_entry),
6220 GFP_KERNEL);
6221 if (!adv_fltr) {
6222 status = -ENOMEM;
6223 goto err_ice_add_adv_rule;
6224 }
6225
6226 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6227 lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6228 if (!adv_fltr->lkups) {
6229 status = -ENOMEM;
6230 goto err_ice_add_adv_rule;
6231 }
6232
6233 adv_fltr->lkups_cnt = lkups_cnt;
6234 adv_fltr->rule_info = *rinfo;
6235 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6236 sw = hw->switch_info;
6237 sw->recp_list[rid].adv_rule = true;
6238 rule_head = &sw->recp_list[rid].filt_rules;
6239
6240 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6241 adv_fltr->vsi_count = 1;
6242
6243 /* Add rule entry to book keeping list */
6244 list_add(&adv_fltr->list_entry, rule_head);
6245 if (added_entry) {
6246 added_entry->rid = rid;
6247 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6248 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6249 }
6250err_ice_add_adv_rule:
6251 if (status && adv_fltr) {
6252 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6253 devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6254 }
6255
6256 kfree(s_rule);
6257
6258free_pkt_profile:
6259 if (profile->match & ICE_PKT_KMALLOC) {
6260 kfree(profile->offsets);
6261 kfree(profile->pkt);
6262 kfree(profile);
6263 }
6264
6265 return status;
6266}
6267
6268/**
6269 * ice_replay_vsi_fltr - Replay filters for requested VSI
6270 * @hw: pointer to the hardware structure
6271 * @vsi_handle: driver VSI handle
6272 * @recp_id: Recipe ID for which rules need to be replayed
6273 * @list_head: list for which filters need to be replayed
6274 *
6275 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6276 * It is required to pass valid VSI handle.
6277 */
6278static int
6279ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6280 struct list_head *list_head)
6281{
6282 struct ice_fltr_mgmt_list_entry *itr;
6283 int status = 0;
6284 u16 hw_vsi_id;
6285
6286 if (list_empty(list_head))
6287 return status;
6288 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6289
6290 list_for_each_entry(itr, list_head, list_entry) {
6291 struct ice_fltr_list_entry f_entry;
6292
6293 f_entry.fltr_info = itr->fltr_info;
6294 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6295 itr->fltr_info.vsi_handle == vsi_handle) {
6296 /* update the src in case it is VSI num */
6297 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6298 f_entry.fltr_info.src = hw_vsi_id;
6299 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6300 if (status)
6301 goto end;
6302 continue;
6303 }
6304 if (!itr->vsi_list_info ||
6305 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6306 continue;
6307 /* Clearing it so that the logic can add it back */
6308 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6309 f_entry.fltr_info.vsi_handle = vsi_handle;
6310 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6311 /* update the src in case it is VSI num */
6312 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6313 f_entry.fltr_info.src = hw_vsi_id;
6314 if (recp_id == ICE_SW_LKUP_VLAN)
6315 status = ice_add_vlan_internal(hw, &f_entry);
6316 else
6317 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6318 if (status)
6319 goto end;
6320 }
6321end:
6322 return status;
6323}
6324
6325/**
6326 * ice_adv_rem_update_vsi_list
6327 * @hw: pointer to the hardware structure
6328 * @vsi_handle: VSI handle of the VSI to remove
6329 * @fm_list: filter management entry for which the VSI list management needs to
6330 * be done
6331 */
6332static int
6333ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6334 struct ice_adv_fltr_mgmt_list_entry *fm_list)
6335{
6336 struct ice_vsi_list_map_info *vsi_list_info;
6337 enum ice_sw_lkup_type lkup_type;
6338 u16 vsi_list_id;
6339 int status;
6340
6341 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6342 fm_list->vsi_count == 0)
6343 return -EINVAL;
6344
6345 /* A rule with the VSI being removed does not exist */
6346 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6347 return -ENOENT;
6348
6349 lkup_type = ICE_SW_LKUP_LAST;
6350 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6351 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6352 ice_aqc_opc_update_sw_rules,
6353 lkup_type);
6354 if (status)
6355 return status;
6356
6357 fm_list->vsi_count--;
6358 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6359 vsi_list_info = fm_list->vsi_list_info;
6360 if (fm_list->vsi_count == 1) {
6361 struct ice_fltr_info tmp_fltr;
6362 u16 rem_vsi_handle;
6363
6364 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6365 ICE_MAX_VSI);
6366 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6367 return -EIO;
6368
6369 /* Make sure VSI list is empty before removing it below */
6370 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6371 vsi_list_id, true,
6372 ice_aqc_opc_update_sw_rules,
6373 lkup_type);
6374 if (status)
6375 return status;
6376
6377 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6378 tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6379 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6380 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6381 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6382 tmp_fltr.fwd_id.hw_vsi_id =
6383 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6384 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6385 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6386 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6387
6388 /* Update the previous switch rule of "MAC forward to VSI" to
6389 * "MAC fwd to VSI list"
6390 */
6391 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6392 if (status) {
6393 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6394 tmp_fltr.fwd_id.hw_vsi_id, status);
6395 return status;
6396 }
6397 fm_list->vsi_list_info->ref_cnt--;
6398
6399 /* Remove the VSI list since it is no longer used */
6400 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6401 if (status) {
6402 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6403 vsi_list_id, status);
6404 return status;
6405 }
6406
6407 list_del(&vsi_list_info->list_entry);
6408 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6409 fm_list->vsi_list_info = NULL;
6410 }
6411
6412 return status;
6413}
6414
6415/**
6416 * ice_rem_adv_rule - removes existing advanced switch rule
6417 * @hw: pointer to the hardware structure
6418 * @lkups: information on the words that needs to be looked up. All words
6419 * together makes one recipe
6420 * @lkups_cnt: num of entries in the lkups array
6421 * @rinfo: Its the pointer to the rule information for the rule
6422 *
6423 * This function can be used to remove 1 rule at a time. The lkups is
6424 * used to describe all the words that forms the "lookup" portion of the
6425 * rule. These words can span multiple protocols. Callers to this function
6426 * need to pass in a list of protocol headers with lookup information along
6427 * and mask that determines which words are valid from the given protocol
6428 * header. rinfo describes other information related to this rule such as
6429 * forwarding IDs, priority of this rule, etc.
6430 */
6431static int
6432ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6433 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6434{
6435 struct ice_adv_fltr_mgmt_list_entry *list_elem;
6436 struct ice_prot_lkup_ext lkup_exts;
6437 bool remove_rule = false;
6438 struct mutex *rule_lock; /* Lock to protect filter rule list */
6439 u16 i, rid, vsi_handle;
6440 int status = 0;
6441
6442 memset(&lkup_exts, 0, sizeof(lkup_exts));
6443 for (i = 0; i < lkups_cnt; i++) {
6444 u16 count;
6445
6446 if (lkups[i].type >= ICE_PROTOCOL_LAST)
6447 return -EIO;
6448
6449 count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6450 if (!count)
6451 return -EIO;
6452 }
6453
6454 /* Create any special protocol/offset pairs, such as looking at tunnel
6455 * bits by extracting metadata
6456 */
6457 status = ice_add_special_words(rinfo, &lkup_exts, ice_is_dvm_ena(hw));
6458 if (status)
6459 return status;
6460
6461 rid = ice_find_recp(hw, &lkup_exts, rinfo->tun_type);
6462 /* If did not find a recipe that match the existing criteria */
6463 if (rid == ICE_MAX_NUM_RECIPES)
6464 return -EINVAL;
6465
6466 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6467 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6468 /* the rule is already removed */
6469 if (!list_elem)
6470 return 0;
6471 mutex_lock(rule_lock);
6472 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6473 remove_rule = true;
6474 } else if (list_elem->vsi_count > 1) {
6475 remove_rule = false;
6476 vsi_handle = rinfo->sw_act.vsi_handle;
6477 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6478 } else {
6479 vsi_handle = rinfo->sw_act.vsi_handle;
6480 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6481 if (status) {
6482 mutex_unlock(rule_lock);
6483 return status;
6484 }
6485 if (list_elem->vsi_count == 0)
6486 remove_rule = true;
6487 }
6488 mutex_unlock(rule_lock);
6489 if (remove_rule) {
6490 struct ice_sw_rule_lkup_rx_tx *s_rule;
6491 u16 rule_buf_sz;
6492
6493 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6494 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6495 if (!s_rule)
6496 return -ENOMEM;
6497 s_rule->act = 0;
6498 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6499 s_rule->hdr_len = 0;
6500 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6501 rule_buf_sz, 1,
6502 ice_aqc_opc_remove_sw_rules, NULL);
6503 if (!status || status == -ENOENT) {
6504 struct ice_switch_info *sw = hw->switch_info;
6505
6506 mutex_lock(rule_lock);
6507 list_del(&list_elem->list_entry);
6508 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6509 devm_kfree(ice_hw_to_dev(hw), list_elem);
6510 mutex_unlock(rule_lock);
6511 if (list_empty(&sw->recp_list[rid].filt_rules))
6512 sw->recp_list[rid].adv_rule = false;
6513 }
6514 kfree(s_rule);
6515 }
6516 return status;
6517}
6518
6519/**
6520 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6521 * @hw: pointer to the hardware structure
6522 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6523 *
6524 * This function is used to remove 1 rule at a time. The removal is based on
6525 * the remove_entry parameter. This function will remove rule for a given
6526 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6527 */
6528int
6529ice_rem_adv_rule_by_id(struct ice_hw *hw,
6530 struct ice_rule_query_data *remove_entry)
6531{
6532 struct ice_adv_fltr_mgmt_list_entry *list_itr;
6533 struct list_head *list_head;
6534 struct ice_adv_rule_info rinfo;
6535 struct ice_switch_info *sw;
6536
6537 sw = hw->switch_info;
6538 if (!sw->recp_list[remove_entry->rid].recp_created)
6539 return -EINVAL;
6540 list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6541 list_for_each_entry(list_itr, list_head, list_entry) {
6542 if (list_itr->rule_info.fltr_rule_id ==
6543 remove_entry->rule_id) {
6544 rinfo = list_itr->rule_info;
6545 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6546 return ice_rem_adv_rule(hw, list_itr->lkups,
6547 list_itr->lkups_cnt, &rinfo);
6548 }
6549 }
6550 /* either list is empty or unable to find rule */
6551 return -ENOENT;
6552}
6553
6554/**
6555 * ice_rem_adv_rule_for_vsi - removes existing advanced switch rules for a
6556 * given VSI handle
6557 * @hw: pointer to the hardware structure
6558 * @vsi_handle: VSI handle for which we are supposed to remove all the rules.
6559 *
6560 * This function is used to remove all the rules for a given VSI and as soon
6561 * as removing a rule fails, it will return immediately with the error code,
6562 * else it will return success.
6563 */
6564int ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
6565{
6566 struct ice_adv_fltr_mgmt_list_entry *list_itr, *tmp_entry;
6567 struct ice_vsi_list_map_info *map_info;
6568 struct ice_adv_rule_info rinfo;
6569 struct list_head *list_head;
6570 struct ice_switch_info *sw;
6571 int status;
6572 u8 rid;
6573
6574 sw = hw->switch_info;
6575 for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
6576 if (!sw->recp_list[rid].recp_created)
6577 continue;
6578 if (!sw->recp_list[rid].adv_rule)
6579 continue;
6580
6581 list_head = &sw->recp_list[rid].filt_rules;
6582 list_for_each_entry_safe(list_itr, tmp_entry, list_head,
6583 list_entry) {
6584 rinfo = list_itr->rule_info;
6585
6586 if (rinfo.sw_act.fltr_act == ICE_FWD_TO_VSI_LIST) {
6587 map_info = list_itr->vsi_list_info;
6588 if (!map_info)
6589 continue;
6590
6591 if (!test_bit(vsi_handle, map_info->vsi_map))
6592 continue;
6593 } else if (rinfo.sw_act.vsi_handle != vsi_handle) {
6594 continue;
6595 }
6596
6597 rinfo.sw_act.vsi_handle = vsi_handle;
6598 status = ice_rem_adv_rule(hw, list_itr->lkups,
6599 list_itr->lkups_cnt, &rinfo);
6600 if (status)
6601 return status;
6602 }
6603 }
6604 return 0;
6605}
6606
6607/**
6608 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6609 * @hw: pointer to the hardware structure
6610 * @vsi_handle: driver VSI handle
6611 * @list_head: list for which filters need to be replayed
6612 *
6613 * Replay the advanced rule for the given VSI.
6614 */
6615static int
6616ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6617 struct list_head *list_head)
6618{
6619 struct ice_rule_query_data added_entry = { 0 };
6620 struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6621 int status = 0;
6622
6623 if (list_empty(list_head))
6624 return status;
6625 list_for_each_entry(adv_fltr, list_head, list_entry) {
6626 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6627 u16 lk_cnt = adv_fltr->lkups_cnt;
6628
6629 if (vsi_handle != rinfo->sw_act.vsi_handle)
6630 continue;
6631 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6632 &added_entry);
6633 if (status)
6634 break;
6635 }
6636 return status;
6637}
6638
6639/**
6640 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6641 * @hw: pointer to the hardware structure
6642 * @vsi_handle: driver VSI handle
6643 *
6644 * Replays filters for requested VSI via vsi_handle.
6645 */
6646int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6647{
6648 struct ice_switch_info *sw = hw->switch_info;
6649 int status;
6650 u8 i;
6651
6652 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6653 struct list_head *head;
6654
6655 head = &sw->recp_list[i].filt_replay_rules;
6656 if (!sw->recp_list[i].adv_rule)
6657 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6658 else
6659 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6660 if (status)
6661 return status;
6662 }
6663 return status;
6664}
6665
6666/**
6667 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6668 * @hw: pointer to the HW struct
6669 *
6670 * Deletes the filter replay rules.
6671 */
6672void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6673{
6674 struct ice_switch_info *sw = hw->switch_info;
6675 u8 i;
6676
6677 if (!sw)
6678 return;
6679
6680 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6681 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6682 struct list_head *l_head;
6683
6684 l_head = &sw->recp_list[i].filt_replay_rules;
6685 if (!sw->recp_list[i].adv_rule)
6686 ice_rem_sw_rule_info(hw, l_head);
6687 else
6688 ice_rem_adv_rule_info(hw, l_head);
6689 }
6690 }
6691}