Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#ifndef _KERNEL_SCHED_SCHED_H
   6#define _KERNEL_SCHED_SCHED_H
   7
   8#include <linux/sched/affinity.h>
   9#include <linux/sched/autogroup.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/deadline.h>
  12#include <linux/sched.h>
  13#include <linux/sched/loadavg.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/rseq_api.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/smt.h>
  18#include <linux/sched/stat.h>
  19#include <linux/sched/sysctl.h>
  20#include <linux/sched/task_flags.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/topology.h>
  23
  24#include <linux/atomic.h>
  25#include <linux/bitmap.h>
  26#include <linux/bug.h>
  27#include <linux/capability.h>
  28#include <linux/cgroup_api.h>
  29#include <linux/cgroup.h>
  30#include <linux/context_tracking.h>
  31#include <linux/cpufreq.h>
  32#include <linux/cpumask_api.h>
  33#include <linux/ctype.h>
  34#include <linux/file.h>
  35#include <linux/fs_api.h>
  36#include <linux/hrtimer_api.h>
  37#include <linux/interrupt.h>
  38#include <linux/irq_work.h>
  39#include <linux/jiffies.h>
  40#include <linux/kref_api.h>
  41#include <linux/kthread.h>
  42#include <linux/ktime_api.h>
  43#include <linux/lockdep_api.h>
  44#include <linux/lockdep.h>
  45#include <linux/minmax.h>
  46#include <linux/mm.h>
  47#include <linux/module.h>
  48#include <linux/mutex_api.h>
  49#include <linux/plist.h>
  50#include <linux/poll.h>
  51#include <linux/proc_fs.h>
  52#include <linux/profile.h>
  53#include <linux/psi.h>
  54#include <linux/rcupdate.h>
  55#include <linux/seq_file.h>
  56#include <linux/seqlock.h>
  57#include <linux/softirq.h>
  58#include <linux/spinlock_api.h>
  59#include <linux/static_key.h>
  60#include <linux/stop_machine.h>
  61#include <linux/syscalls_api.h>
  62#include <linux/syscalls.h>
  63#include <linux/tick.h>
  64#include <linux/topology.h>
  65#include <linux/types.h>
  66#include <linux/u64_stats_sync_api.h>
  67#include <linux/uaccess.h>
  68#include <linux/wait_api.h>
  69#include <linux/wait_bit.h>
  70#include <linux/workqueue_api.h>
  71#include <linux/delayacct.h>
  72
  73#include <trace/events/power.h>
  74#include <trace/events/sched.h>
  75
  76#include "../workqueue_internal.h"
  77
  78struct rq;
  79struct cfs_rq;
  80struct rt_rq;
  81struct sched_group;
  82struct cpuidle_state;
  83
  84#ifdef CONFIG_PARAVIRT
  85# include <asm/paravirt.h>
  86# include <asm/paravirt_api_clock.h>
  87#endif
  88
  89#include <asm/barrier.h>
  90
  91#include "cpupri.h"
  92#include "cpudeadline.h"
  93
  94#ifdef CONFIG_SCHED_DEBUG
  95# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
  96#else
  97# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
  98#endif
  99
 
 
 
 100/* task_struct::on_rq states: */
 101#define TASK_ON_RQ_QUEUED	1
 102#define TASK_ON_RQ_MIGRATING	2
 103
 104extern __read_mostly int scheduler_running;
 105
 106extern unsigned long calc_load_update;
 107extern atomic_long_t calc_load_tasks;
 108
 109extern void calc_global_load_tick(struct rq *this_rq);
 110extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 111
 112extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 113
 114extern int sysctl_sched_rt_period;
 115extern int sysctl_sched_rt_runtime;
 116extern int sched_rr_timeslice;
 117
 118/*
 119 * Asymmetric CPU capacity bits
 120 */
 121struct asym_cap_data {
 122	struct list_head link;
 123	struct rcu_head rcu;
 124	unsigned long capacity;
 125	unsigned long cpus[];
 126};
 127
 128extern struct list_head asym_cap_list;
 129
 130#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
 131
 132/*
 133 * Helpers for converting nanosecond timing to jiffy resolution
 134 */
 135#define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
 136
 137/*
 138 * Increase resolution of nice-level calculations for 64-bit architectures.
 139 * The extra resolution improves shares distribution and load balancing of
 140 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
 141 * hierarchies, especially on larger systems. This is not a user-visible change
 142 * and does not change the user-interface for setting shares/weights.
 143 *
 144 * We increase resolution only if we have enough bits to allow this increased
 145 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 146 * are pretty high and the returns do not justify the increased costs.
 147 *
 148 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 149 * increase coverage and consistency always enable it on 64-bit platforms.
 150 */
 151#ifdef CONFIG_64BIT
 152# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 153# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 154# define scale_load_down(w)					\
 155({								\
 156	unsigned long __w = (w);				\
 157								\
 158	if (__w)						\
 159		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
 160	__w;							\
 161})
 162#else
 163# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 164# define scale_load(w)		(w)
 165# define scale_load_down(w)	(w)
 166#endif
 167
 168/*
 169 * Task weight (visible to users) and its load (invisible to users) have
 170 * independent resolution, but they should be well calibrated. We use
 171 * scale_load() and scale_load_down(w) to convert between them. The
 172 * following must be true:
 173 *
 174 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 175 *
 176 */
 177#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 178
 179/*
 180 * Single value that decides SCHED_DEADLINE internal math precision.
 181 * 10 -> just above 1us
 182 * 9  -> just above 0.5us
 183 */
 184#define DL_SCALE		10
 185
 186/*
 187 * Single value that denotes runtime == period, ie unlimited time.
 188 */
 189#define RUNTIME_INF		((u64)~0ULL)
 190
 191static inline int idle_policy(int policy)
 192{
 193	return policy == SCHED_IDLE;
 194}
 195
 196static inline int normal_policy(int policy)
 197{
 198#ifdef CONFIG_SCHED_CLASS_EXT
 199	if (policy == SCHED_EXT)
 200		return true;
 201#endif
 202	return policy == SCHED_NORMAL;
 203}
 204
 205static inline int fair_policy(int policy)
 206{
 207	return normal_policy(policy) || policy == SCHED_BATCH;
 208}
 209
 210static inline int rt_policy(int policy)
 211{
 212	return policy == SCHED_FIFO || policy == SCHED_RR;
 213}
 214
 215static inline int dl_policy(int policy)
 216{
 217	return policy == SCHED_DEADLINE;
 218}
 219
 220static inline bool valid_policy(int policy)
 221{
 222	return idle_policy(policy) || fair_policy(policy) ||
 223		rt_policy(policy) || dl_policy(policy);
 224}
 225
 226static inline int task_has_idle_policy(struct task_struct *p)
 227{
 228	return idle_policy(p->policy);
 229}
 230
 231static inline int task_has_rt_policy(struct task_struct *p)
 232{
 233	return rt_policy(p->policy);
 234}
 235
 236static inline int task_has_dl_policy(struct task_struct *p)
 237{
 238	return dl_policy(p->policy);
 239}
 240
 241#define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
 242
 243static inline void update_avg(u64 *avg, u64 sample)
 244{
 245	s64 diff = sample - *avg;
 246
 247	*avg += diff / 8;
 248}
 249
 250/*
 251 * Shifting a value by an exponent greater *or equal* to the size of said value
 252 * is UB; cap at size-1.
 253 */
 254#define shr_bound(val, shift)							\
 255	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 256
 257/*
 258 * cgroup weight knobs should use the common MIN, DFL and MAX values which are
 259 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
 260 * maps pretty well onto the shares value used by scheduler and the round-trip
 261 * conversions preserve the original value over the entire range.
 262 */
 263static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
 264{
 265	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
 266}
 267
 268static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
 269{
 270	return clamp_t(unsigned long,
 271		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
 272		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
 273}
 274
 275/*
 276 * !! For sched_setattr_nocheck() (kernel) only !!
 277 *
 278 * This is actually gross. :(
 279 *
 280 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 281 * tasks, but still be able to sleep. We need this on platforms that cannot
 282 * atomically change clock frequency. Remove once fast switching will be
 283 * available on such platforms.
 284 *
 285 * SUGOV stands for SchedUtil GOVernor.
 286 */
 287#define SCHED_FLAG_SUGOV	0x10000000
 288
 289#define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
 290
 291static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
 292{
 293#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 294	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 295#else
 296	return false;
 297#endif
 298}
 299
 300/*
 301 * Tells if entity @a should preempt entity @b.
 302 */
 303static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
 304				     const struct sched_dl_entity *b)
 305{
 306	return dl_entity_is_special(a) ||
 307	       dl_time_before(a->deadline, b->deadline);
 308}
 309
 310/*
 311 * This is the priority-queue data structure of the RT scheduling class:
 312 */
 313struct rt_prio_array {
 314	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 315	struct list_head queue[MAX_RT_PRIO];
 316};
 317
 318struct rt_bandwidth {
 319	/* nests inside the rq lock: */
 320	raw_spinlock_t		rt_runtime_lock;
 321	ktime_t			rt_period;
 322	u64			rt_runtime;
 323	struct hrtimer		rt_period_timer;
 324	unsigned int		rt_period_active;
 325};
 326
 327static inline int dl_bandwidth_enabled(void)
 328{
 329	return sysctl_sched_rt_runtime >= 0;
 330}
 331
 332/*
 333 * To keep the bandwidth of -deadline tasks under control
 334 * we need some place where:
 335 *  - store the maximum -deadline bandwidth of each cpu;
 336 *  - cache the fraction of bandwidth that is currently allocated in
 337 *    each root domain;
 338 *
 339 * This is all done in the data structure below. It is similar to the
 340 * one used for RT-throttling (rt_bandwidth), with the main difference
 341 * that, since here we are only interested in admission control, we
 342 * do not decrease any runtime while the group "executes", neither we
 343 * need a timer to replenish it.
 344 *
 345 * With respect to SMP, bandwidth is given on a per root domain basis,
 346 * meaning that:
 347 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 348 *  - total_bw is the currently allocated bandwidth in each root domain;
 349 */
 350struct dl_bw {
 351	raw_spinlock_t		lock;
 352	u64			bw;
 353	u64			total_bw;
 354};
 355
 356extern void init_dl_bw(struct dl_bw *dl_b);
 357extern int  sched_dl_global_validate(void);
 358extern void sched_dl_do_global(void);
 359extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 360extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 361extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 362extern bool __checkparam_dl(const struct sched_attr *attr);
 363extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 364extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 365extern int  dl_bw_check_overflow(int cpu);
 366extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
 367/*
 368 * SCHED_DEADLINE supports servers (nested scheduling) with the following
 369 * interface:
 370 *
 371 *   dl_se::rq -- runqueue we belong to.
 372 *
 373 *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
 374 *                                server when it runs out of tasks to run.
 375 *
 376 *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
 377 *                           returns NULL.
 378 *
 379 *   dl_server_update() -- called from update_curr_common(), propagates runtime
 380 *                         to the server.
 381 *
 382 *   dl_server_start()
 383 *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
 384 *
 385 *   dl_server_init() -- initializes the server.
 386 */
 387extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
 388extern void dl_server_start(struct sched_dl_entity *dl_se);
 389extern void dl_server_stop(struct sched_dl_entity *dl_se);
 390extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
 391		    dl_server_has_tasks_f has_tasks,
 392		    dl_server_pick_f pick_task);
 393
 394extern void dl_server_update_idle_time(struct rq *rq,
 395		    struct task_struct *p);
 396extern void fair_server_init(struct rq *rq);
 397extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
 398extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
 399		    u64 runtime, u64 period, bool init);
 400
 401static inline bool dl_server_active(struct sched_dl_entity *dl_se)
 402{
 403	return dl_se->dl_server_active;
 404}
 405
 406#ifdef CONFIG_CGROUP_SCHED
 407
 
 
 
 408extern struct list_head task_groups;
 409
 410struct cfs_bandwidth {
 411#ifdef CONFIG_CFS_BANDWIDTH
 412	raw_spinlock_t		lock;
 413	ktime_t			period;
 414	u64			quota;
 415	u64			runtime;
 416	u64			burst;
 417	u64			runtime_snap;
 418	s64			hierarchical_quota;
 419
 420	u8			idle;
 421	u8			period_active;
 422	u8			slack_started;
 423	struct hrtimer		period_timer;
 424	struct hrtimer		slack_timer;
 425	struct list_head	throttled_cfs_rq;
 426
 427	/* Statistics: */
 428	int			nr_periods;
 429	int			nr_throttled;
 430	int			nr_burst;
 431	u64			throttled_time;
 432	u64			burst_time;
 433#endif
 434};
 435
 436/* Task group related information */
 437struct task_group {
 438	struct cgroup_subsys_state css;
 439
 440#ifdef CONFIG_GROUP_SCHED_WEIGHT
 441	/* A positive value indicates that this is a SCHED_IDLE group. */
 442	int			idle;
 443#endif
 444
 445#ifdef CONFIG_FAIR_GROUP_SCHED
 446	/* schedulable entities of this group on each CPU */
 447	struct sched_entity	**se;
 448	/* runqueue "owned" by this group on each CPU */
 449	struct cfs_rq		**cfs_rq;
 450	unsigned long		shares;
 
 
 
 
 451#ifdef	CONFIG_SMP
 452	/*
 453	 * load_avg can be heavily contended at clock tick time, so put
 454	 * it in its own cache-line separated from the fields above which
 455	 * will also be accessed at each tick.
 456	 */
 457	atomic_long_t		load_avg ____cacheline_aligned;
 458#endif
 459#endif
 460
 461#ifdef CONFIG_RT_GROUP_SCHED
 462	struct sched_rt_entity	**rt_se;
 463	struct rt_rq		**rt_rq;
 464
 465	struct rt_bandwidth	rt_bandwidth;
 466#endif
 467
 468#ifdef CONFIG_EXT_GROUP_SCHED
 469	u32			scx_flags;	/* SCX_TG_* */
 470	u32			scx_weight;
 471#endif
 472
 473	struct rcu_head		rcu;
 474	struct list_head	list;
 475
 476	struct task_group	*parent;
 477	struct list_head	siblings;
 478	struct list_head	children;
 479
 480#ifdef CONFIG_SCHED_AUTOGROUP
 481	struct autogroup	*autogroup;
 482#endif
 483
 484	struct cfs_bandwidth	cfs_bandwidth;
 485
 486#ifdef CONFIG_UCLAMP_TASK_GROUP
 487	/* The two decimal precision [%] value requested from user-space */
 488	unsigned int		uclamp_pct[UCLAMP_CNT];
 489	/* Clamp values requested for a task group */
 490	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 491	/* Effective clamp values used for a task group */
 492	struct uclamp_se	uclamp[UCLAMP_CNT];
 493#endif
 494
 495};
 496
 497#ifdef CONFIG_GROUP_SCHED_WEIGHT
 498#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 499
 500/*
 501 * A weight of 0 or 1 can cause arithmetics problems.
 502 * A weight of a cfs_rq is the sum of weights of which entities
 503 * are queued on this cfs_rq, so a weight of a entity should not be
 504 * too large, so as the shares value of a task group.
 505 * (The default weight is 1024 - so there's no practical
 506 *  limitation from this.)
 507 */
 508#define MIN_SHARES		(1UL <<  1)
 509#define MAX_SHARES		(1UL << 18)
 510#endif
 511
 512typedef int (*tg_visitor)(struct task_group *, void *);
 513
 514extern int walk_tg_tree_from(struct task_group *from,
 515			     tg_visitor down, tg_visitor up, void *data);
 516
 517/*
 518 * Iterate the full tree, calling @down when first entering a node and @up when
 519 * leaving it for the final time.
 520 *
 521 * Caller must hold rcu_lock or sufficient equivalent.
 522 */
 523static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 524{
 525	return walk_tg_tree_from(&root_task_group, down, up, data);
 526}
 527
 528static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
 529{
 530	return css ? container_of(css, struct task_group, css) : NULL;
 531}
 532
 533extern int tg_nop(struct task_group *tg, void *data);
 534
 535#ifdef CONFIG_FAIR_GROUP_SCHED
 536extern void free_fair_sched_group(struct task_group *tg);
 537extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 538extern void online_fair_sched_group(struct task_group *tg);
 539extern void unregister_fair_sched_group(struct task_group *tg);
 540#else
 541static inline void free_fair_sched_group(struct task_group *tg) { }
 542static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 543{
 544       return 1;
 545}
 546static inline void online_fair_sched_group(struct task_group *tg) { }
 547static inline void unregister_fair_sched_group(struct task_group *tg) { }
 548#endif
 549
 550extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 551			struct sched_entity *se, int cpu,
 552			struct sched_entity *parent);
 553extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
 554
 555extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 556extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 557extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 558extern bool cfs_task_bw_constrained(struct task_struct *p);
 559
 560extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 561		struct sched_rt_entity *rt_se, int cpu,
 562		struct sched_rt_entity *parent);
 563extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 564extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 565extern long sched_group_rt_runtime(struct task_group *tg);
 566extern long sched_group_rt_period(struct task_group *tg);
 567extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 568
 569extern struct task_group *sched_create_group(struct task_group *parent);
 570extern void sched_online_group(struct task_group *tg,
 571			       struct task_group *parent);
 572extern void sched_destroy_group(struct task_group *tg);
 573extern void sched_release_group(struct task_group *tg);
 574
 575extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
 576
 577#ifdef CONFIG_FAIR_GROUP_SCHED
 578extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 579
 580extern int sched_group_set_idle(struct task_group *tg, long idle);
 581
 582#ifdef CONFIG_SMP
 583extern void set_task_rq_fair(struct sched_entity *se,
 584			     struct cfs_rq *prev, struct cfs_rq *next);
 585#else /* !CONFIG_SMP */
 586static inline void set_task_rq_fair(struct sched_entity *se,
 587			     struct cfs_rq *prev, struct cfs_rq *next) { }
 588#endif /* CONFIG_SMP */
 589#else /* !CONFIG_FAIR_GROUP_SCHED */
 590static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
 591static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
 592#endif /* CONFIG_FAIR_GROUP_SCHED */
 593
 594#else /* CONFIG_CGROUP_SCHED */
 595
 596struct cfs_bandwidth { };
 597
 598static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
 599
 600#endif	/* CONFIG_CGROUP_SCHED */
 601
 602extern void unregister_rt_sched_group(struct task_group *tg);
 603extern void free_rt_sched_group(struct task_group *tg);
 604extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 605
 606/*
 607 * u64_u32_load/u64_u32_store
 608 *
 609 * Use a copy of a u64 value to protect against data race. This is only
 610 * applicable for 32-bits architectures.
 611 */
 612#ifdef CONFIG_64BIT
 613# define u64_u32_load_copy(var, copy)		var
 614# define u64_u32_store_copy(var, copy, val)	(var = val)
 615#else
 616# define u64_u32_load_copy(var, copy)					\
 617({									\
 618	u64 __val, __val_copy;						\
 619	do {								\
 620		__val_copy = copy;					\
 621		/*							\
 622		 * paired with u64_u32_store_copy(), ordering access	\
 623		 * to var and copy.					\
 624		 */							\
 625		smp_rmb();						\
 626		__val = var;						\
 627	} while (__val != __val_copy);					\
 628	__val;								\
 629})
 630# define u64_u32_store_copy(var, copy, val)				\
 631do {									\
 632	typeof(val) __val = (val);					\
 633	var = __val;							\
 634	/*								\
 635	 * paired with u64_u32_load_copy(), ordering access to var and	\
 636	 * copy.							\
 637	 */								\
 638	smp_wmb();							\
 639	copy = __val;							\
 640} while (0)
 641#endif
 642# define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
 643# define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
 644
 645struct balance_callback {
 646	struct balance_callback *next;
 647	void (*func)(struct rq *rq);
 648};
 649
 650/* CFS-related fields in a runqueue */
 651struct cfs_rq {
 652	struct load_weight	load;
 653	unsigned int		nr_running;
 654	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 655	unsigned int		idle_nr_running;   /* SCHED_IDLE */
 656	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 657	unsigned int		h_nr_delayed;
 658
 659	s64			avg_vruntime;
 660	u64			avg_load;
 661
 
 662	u64			min_vruntime;
 663#ifdef CONFIG_SCHED_CORE
 664	unsigned int		forceidle_seq;
 665	u64			min_vruntime_fi;
 666#endif
 667
 
 
 
 
 668	struct rb_root_cached	tasks_timeline;
 669
 670	/*
 671	 * 'curr' points to currently running entity on this cfs_rq.
 672	 * It is set to NULL otherwise (i.e when none are currently running).
 673	 */
 674	struct sched_entity	*curr;
 675	struct sched_entity	*next;
 676
 
 
 
 
 677#ifdef CONFIG_SMP
 678	/*
 679	 * CFS load tracking
 680	 */
 681	struct sched_avg	avg;
 682#ifndef CONFIG_64BIT
 683	u64			last_update_time_copy;
 684#endif
 685	struct {
 686		raw_spinlock_t	lock ____cacheline_aligned;
 687		int		nr;
 688		unsigned long	load_avg;
 689		unsigned long	util_avg;
 690		unsigned long	runnable_avg;
 691	} removed;
 692
 693#ifdef CONFIG_FAIR_GROUP_SCHED
 694	u64			last_update_tg_load_avg;
 695	unsigned long		tg_load_avg_contrib;
 696	long			propagate;
 697	long			prop_runnable_sum;
 698
 699	/*
 700	 *   h_load = weight * f(tg)
 701	 *
 702	 * Where f(tg) is the recursive weight fraction assigned to
 703	 * this group.
 704	 */
 705	unsigned long		h_load;
 706	u64			last_h_load_update;
 707	struct sched_entity	*h_load_next;
 708#endif /* CONFIG_FAIR_GROUP_SCHED */
 709#endif /* CONFIG_SMP */
 710
 711#ifdef CONFIG_FAIR_GROUP_SCHED
 712	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 713
 714	/*
 715	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 716	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 717	 * (like users, containers etc.)
 718	 *
 719	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 720	 * This list is used during load balance.
 721	 */
 722	int			on_list;
 723	struct list_head	leaf_cfs_rq_list;
 724	struct task_group	*tg;	/* group that "owns" this runqueue */
 725
 726	/* Locally cached copy of our task_group's idle value */
 727	int			idle;
 728
 729#ifdef CONFIG_CFS_BANDWIDTH
 730	int			runtime_enabled;
 731	s64			runtime_remaining;
 732
 733	u64			throttled_pelt_idle;
 734#ifndef CONFIG_64BIT
 735	u64                     throttled_pelt_idle_copy;
 736#endif
 737	u64			throttled_clock;
 738	u64			throttled_clock_pelt;
 739	u64			throttled_clock_pelt_time;
 740	u64			throttled_clock_self;
 741	u64			throttled_clock_self_time;
 742	int			throttled;
 743	int			throttle_count;
 744	struct list_head	throttled_list;
 745	struct list_head	throttled_csd_list;
 746#endif /* CONFIG_CFS_BANDWIDTH */
 747#endif /* CONFIG_FAIR_GROUP_SCHED */
 748};
 749
 750#ifdef CONFIG_SCHED_CLASS_EXT
 751/* scx_rq->flags, protected by the rq lock */
 752enum scx_rq_flags {
 753	/*
 754	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
 755	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
 756	 * only while the BPF scheduler considers the CPU to be online.
 757	 */
 758	SCX_RQ_ONLINE		= 1 << 0,
 759	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
 760	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
 761	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
 762	SCX_RQ_BYPASSING	= 1 << 4,
 763
 764	SCX_RQ_IN_WAKEUP	= 1 << 16,
 765	SCX_RQ_IN_BALANCE	= 1 << 17,
 766};
 767
 768struct scx_rq {
 769	struct scx_dispatch_q	local_dsq;
 770	struct list_head	runnable_list;		/* runnable tasks on this rq */
 771	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
 772	unsigned long		ops_qseq;
 773	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
 774	u32			nr_running;
 775	u32			flags;
 776	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
 777	bool			cpu_released;
 778	cpumask_var_t		cpus_to_kick;
 779	cpumask_var_t		cpus_to_kick_if_idle;
 780	cpumask_var_t		cpus_to_preempt;
 781	cpumask_var_t		cpus_to_wait;
 782	unsigned long		pnt_seq;
 783	struct balance_callback	deferred_bal_cb;
 784	struct irq_work		deferred_irq_work;
 785	struct irq_work		kick_cpus_irq_work;
 786};
 787#endif /* CONFIG_SCHED_CLASS_EXT */
 788
 789static inline int rt_bandwidth_enabled(void)
 790{
 791	return sysctl_sched_rt_runtime >= 0;
 792}
 793
 794/* RT IPI pull logic requires IRQ_WORK */
 795#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 796# define HAVE_RT_PUSH_IPI
 797#endif
 798
 799/* Real-Time classes' related field in a runqueue: */
 800struct rt_rq {
 801	struct rt_prio_array	active;
 802	unsigned int		rt_nr_running;
 803	unsigned int		rr_nr_running;
 804#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 805	struct {
 806		int		curr; /* highest queued rt task prio */
 807#ifdef CONFIG_SMP
 808		int		next; /* next highest */
 809#endif
 810	} highest_prio;
 811#endif
 812#ifdef CONFIG_SMP
 813	bool			overloaded;
 814	struct plist_head	pushable_tasks;
 815
 816#endif /* CONFIG_SMP */
 817	int			rt_queued;
 818
 819#ifdef CONFIG_RT_GROUP_SCHED
 820	int			rt_throttled;
 821	u64			rt_time;
 822	u64			rt_runtime;
 823	/* Nests inside the rq lock: */
 824	raw_spinlock_t		rt_runtime_lock;
 825
 
 826	unsigned int		rt_nr_boosted;
 827
 828	struct rq		*rq;
 829	struct task_group	*tg;
 830#endif
 831};
 832
 833static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 834{
 835	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 836}
 837
 838/* Deadline class' related fields in a runqueue */
 839struct dl_rq {
 840	/* runqueue is an rbtree, ordered by deadline */
 841	struct rb_root_cached	root;
 842
 843	unsigned int		dl_nr_running;
 844
 845#ifdef CONFIG_SMP
 846	/*
 847	 * Deadline values of the currently executing and the
 848	 * earliest ready task on this rq. Caching these facilitates
 849	 * the decision whether or not a ready but not running task
 850	 * should migrate somewhere else.
 851	 */
 852	struct {
 853		u64		curr;
 854		u64		next;
 855	} earliest_dl;
 856
 857	bool			overloaded;
 858
 859	/*
 860	 * Tasks on this rq that can be pushed away. They are kept in
 861	 * an rb-tree, ordered by tasks' deadlines, with caching
 862	 * of the leftmost (earliest deadline) element.
 863	 */
 864	struct rb_root_cached	pushable_dl_tasks_root;
 865#else
 866	struct dl_bw		dl_bw;
 867#endif
 868	/*
 869	 * "Active utilization" for this runqueue: increased when a
 870	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 871	 * task blocks
 872	 */
 873	u64			running_bw;
 874
 875	/*
 876	 * Utilization of the tasks "assigned" to this runqueue (including
 877	 * the tasks that are in runqueue and the tasks that executed on this
 878	 * CPU and blocked). Increased when a task moves to this runqueue, and
 879	 * decreased when the task moves away (migrates, changes scheduling
 880	 * policy, or terminates).
 881	 * This is needed to compute the "inactive utilization" for the
 882	 * runqueue (inactive utilization = this_bw - running_bw).
 883	 */
 884	u64			this_bw;
 885	u64			extra_bw;
 886
 887	/*
 888	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
 889	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
 890	 */
 891	u64			max_bw;
 892
 893	/*
 894	 * Inverse of the fraction of CPU utilization that can be reclaimed
 895	 * by the GRUB algorithm.
 896	 */
 897	u64			bw_ratio;
 898};
 899
 900#ifdef CONFIG_FAIR_GROUP_SCHED
 901
 902/* An entity is a task if it doesn't "own" a runqueue */
 903#define entity_is_task(se)	(!se->my_q)
 904
 905static inline void se_update_runnable(struct sched_entity *se)
 906{
 907	if (!entity_is_task(se)) {
 908		struct cfs_rq *cfs_rq = se->my_q;
 909
 910		se->runnable_weight = cfs_rq->h_nr_running - cfs_rq->h_nr_delayed;
 911	}
 912}
 913
 914static inline long se_runnable(struct sched_entity *se)
 915{
 916	if (se->sched_delayed)
 917		return false;
 918
 919	if (entity_is_task(se))
 920		return !!se->on_rq;
 921	else
 922		return se->runnable_weight;
 923}
 924
 925#else /* !CONFIG_FAIR_GROUP_SCHED: */
 926
 927#define entity_is_task(se)	1
 928
 929static inline void se_update_runnable(struct sched_entity *se) { }
 930
 931static inline long se_runnable(struct sched_entity *se)
 932{
 933	if (se->sched_delayed)
 934		return false;
 935
 936	return !!se->on_rq;
 937}
 938
 939#endif /* !CONFIG_FAIR_GROUP_SCHED */
 940
 941#ifdef CONFIG_SMP
 942/*
 943 * XXX we want to get rid of these helpers and use the full load resolution.
 944 */
 945static inline long se_weight(struct sched_entity *se)
 946{
 947	return scale_load_down(se->load.weight);
 948}
 949
 950
 951static inline bool sched_asym_prefer(int a, int b)
 952{
 953	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 954}
 955
 956struct perf_domain {
 957	struct em_perf_domain *em_pd;
 958	struct perf_domain *next;
 959	struct rcu_head rcu;
 960};
 961
 
 
 
 
 962/*
 963 * We add the notion of a root-domain which will be used to define per-domain
 964 * variables. Each exclusive cpuset essentially defines an island domain by
 965 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 966 * exclusive cpuset is created, we also create and attach a new root-domain
 967 * object.
 968 *
 969 */
 970struct root_domain {
 971	atomic_t		refcount;
 972	atomic_t		rto_count;
 973	struct rcu_head		rcu;
 974	cpumask_var_t		span;
 975	cpumask_var_t		online;
 976
 977	/*
 978	 * Indicate pullable load on at least one CPU, e.g:
 979	 * - More than one runnable task
 980	 * - Running task is misfit
 981	 */
 982	bool			overloaded;
 983
 984	/* Indicate one or more CPUs over-utilized (tipping point) */
 985	bool			overutilized;
 986
 987	/*
 988	 * The bit corresponding to a CPU gets set here if such CPU has more
 989	 * than one runnable -deadline task (as it is below for RT tasks).
 990	 */
 991	cpumask_var_t		dlo_mask;
 992	atomic_t		dlo_count;
 993	struct dl_bw		dl_bw;
 994	struct cpudl		cpudl;
 995
 996	/*
 997	 * Indicate whether a root_domain's dl_bw has been checked or
 998	 * updated. It's monotonously increasing value.
 999	 *
1000	 * Also, some corner cases, like 'wrap around' is dangerous, but given
1001	 * that u64 is 'big enough'. So that shouldn't be a concern.
1002	 */
1003	u64 visit_gen;
1004
1005#ifdef HAVE_RT_PUSH_IPI
1006	/*
1007	 * For IPI pull requests, loop across the rto_mask.
1008	 */
1009	struct irq_work		rto_push_work;
1010	raw_spinlock_t		rto_lock;
1011	/* These are only updated and read within rto_lock */
1012	int			rto_loop;
1013	int			rto_cpu;
1014	/* These atomics are updated outside of a lock */
1015	atomic_t		rto_loop_next;
1016	atomic_t		rto_loop_start;
1017#endif
1018	/*
1019	 * The "RT overload" flag: it gets set if a CPU has more than
1020	 * one runnable RT task.
1021	 */
1022	cpumask_var_t		rto_mask;
1023	struct cpupri		cpupri;
1024
 
 
1025	/*
1026	 * NULL-terminated list of performance domains intersecting with the
1027	 * CPUs of the rd. Protected by RCU.
1028	 */
1029	struct perf_domain __rcu *pd;
1030};
1031
1032extern void init_defrootdomain(void);
1033extern int sched_init_domains(const struct cpumask *cpu_map);
1034extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1035extern void sched_get_rd(struct root_domain *rd);
1036extern void sched_put_rd(struct root_domain *rd);
1037
1038static inline int get_rd_overloaded(struct root_domain *rd)
1039{
1040	return READ_ONCE(rd->overloaded);
1041}
1042
1043static inline void set_rd_overloaded(struct root_domain *rd, int status)
1044{
1045	if (get_rd_overloaded(rd) != status)
1046		WRITE_ONCE(rd->overloaded, status);
1047}
1048
1049#ifdef HAVE_RT_PUSH_IPI
1050extern void rto_push_irq_work_func(struct irq_work *work);
1051#endif
1052#endif /* CONFIG_SMP */
1053
1054#ifdef CONFIG_UCLAMP_TASK
1055/*
1056 * struct uclamp_bucket - Utilization clamp bucket
1057 * @value: utilization clamp value for tasks on this clamp bucket
1058 * @tasks: number of RUNNABLE tasks on this clamp bucket
1059 *
1060 * Keep track of how many tasks are RUNNABLE for a given utilization
1061 * clamp value.
1062 */
1063struct uclamp_bucket {
1064	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1065	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1066};
1067
1068/*
1069 * struct uclamp_rq - rq's utilization clamp
1070 * @value: currently active clamp values for a rq
1071 * @bucket: utilization clamp buckets affecting a rq
1072 *
1073 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1074 * A clamp value is affecting a rq when there is at least one task RUNNABLE
1075 * (or actually running) with that value.
1076 *
1077 * There are up to UCLAMP_CNT possible different clamp values, currently there
1078 * are only two: minimum utilization and maximum utilization.
1079 *
1080 * All utilization clamping values are MAX aggregated, since:
1081 * - for util_min: we want to run the CPU at least at the max of the minimum
1082 *   utilization required by its currently RUNNABLE tasks.
1083 * - for util_max: we want to allow the CPU to run up to the max of the
1084 *   maximum utilization allowed by its currently RUNNABLE tasks.
1085 *
1086 * Since on each system we expect only a limited number of different
1087 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1088 * the metrics required to compute all the per-rq utilization clamp values.
1089 */
1090struct uclamp_rq {
1091	unsigned int value;
1092	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1093};
1094
1095DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1096#endif /* CONFIG_UCLAMP_TASK */
1097
 
 
 
 
 
 
1098/*
1099 * This is the main, per-CPU runqueue data structure.
1100 *
1101 * Locking rule: those places that want to lock multiple runqueues
1102 * (such as the load balancing or the thread migration code), lock
1103 * acquire operations must be ordered by ascending &runqueue.
1104 */
1105struct rq {
1106	/* runqueue lock: */
1107	raw_spinlock_t		__lock;
1108
1109	unsigned int		nr_running;
1110#ifdef CONFIG_NUMA_BALANCING
1111	unsigned int		nr_numa_running;
1112	unsigned int		nr_preferred_running;
1113	unsigned int		numa_migrate_on;
1114#endif
1115#ifdef CONFIG_NO_HZ_COMMON
1116#ifdef CONFIG_SMP
1117	unsigned long		last_blocked_load_update_tick;
1118	unsigned int		has_blocked_load;
1119	call_single_data_t	nohz_csd;
1120#endif /* CONFIG_SMP */
1121	unsigned int		nohz_tick_stopped;
1122	atomic_t		nohz_flags;
1123#endif /* CONFIG_NO_HZ_COMMON */
1124
1125#ifdef CONFIG_SMP
1126	unsigned int		ttwu_pending;
1127#endif
1128	u64			nr_switches;
1129
1130#ifdef CONFIG_UCLAMP_TASK
1131	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1132	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1133	unsigned int		uclamp_flags;
1134#define UCLAMP_FLAG_IDLE 0x01
1135#endif
1136
1137	struct cfs_rq		cfs;
1138	struct rt_rq		rt;
1139	struct dl_rq		dl;
1140#ifdef CONFIG_SCHED_CLASS_EXT
1141	struct scx_rq		scx;
1142#endif
1143
1144	struct sched_dl_entity	fair_server;
1145
1146#ifdef CONFIG_FAIR_GROUP_SCHED
1147	/* list of leaf cfs_rq on this CPU: */
1148	struct list_head	leaf_cfs_rq_list;
1149	struct list_head	*tmp_alone_branch;
1150#endif /* CONFIG_FAIR_GROUP_SCHED */
1151
1152	/*
1153	 * This is part of a global counter where only the total sum
1154	 * over all CPUs matters. A task can increase this counter on
1155	 * one CPU and if it got migrated afterwards it may decrease
1156	 * it on another CPU. Always updated under the runqueue lock:
1157	 */
1158	unsigned int		nr_uninterruptible;
1159
1160	union {
1161		struct task_struct __rcu *donor; /* Scheduler context */
1162		struct task_struct __rcu *curr;  /* Execution context */
1163	};
1164	struct sched_dl_entity	*dl_server;
1165	struct task_struct	*idle;
1166	struct task_struct	*stop;
1167	unsigned long		next_balance;
1168	struct mm_struct	*prev_mm;
1169
1170	unsigned int		clock_update_flags;
1171	u64			clock;
1172	/* Ensure that all clocks are in the same cache line */
1173	u64			clock_task ____cacheline_aligned;
1174	u64			clock_pelt;
1175	unsigned long		lost_idle_time;
1176	u64			clock_pelt_idle;
1177	u64			clock_idle;
1178#ifndef CONFIG_64BIT
1179	u64			clock_pelt_idle_copy;
1180	u64			clock_idle_copy;
1181#endif
1182
1183	atomic_t		nr_iowait;
1184
1185#ifdef CONFIG_SCHED_DEBUG
1186	u64 last_seen_need_resched_ns;
1187	int ticks_without_resched;
1188#endif
1189
1190#ifdef CONFIG_MEMBARRIER
1191	int membarrier_state;
1192#endif
1193
1194#ifdef CONFIG_SMP
1195	struct root_domain		*rd;
1196	struct sched_domain __rcu	*sd;
1197
1198	unsigned long		cpu_capacity;
1199
1200	struct balance_callback *balance_callback;
1201
1202	unsigned char		nohz_idle_balance;
1203	unsigned char		idle_balance;
1204
1205	unsigned long		misfit_task_load;
1206
1207	/* For active balancing */
1208	int			active_balance;
1209	int			push_cpu;
1210	struct cpu_stop_work	active_balance_work;
1211
1212	/* CPU of this runqueue: */
1213	int			cpu;
1214	int			online;
1215
1216	struct list_head cfs_tasks;
1217
1218	struct sched_avg	avg_rt;
1219	struct sched_avg	avg_dl;
1220#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1221	struct sched_avg	avg_irq;
1222#endif
1223#ifdef CONFIG_SCHED_HW_PRESSURE
1224	struct sched_avg	avg_hw;
1225#endif
1226	u64			idle_stamp;
1227	u64			avg_idle;
1228
1229	/* This is used to determine avg_idle's max value */
1230	u64			max_idle_balance_cost;
1231
1232#ifdef CONFIG_HOTPLUG_CPU
1233	struct rcuwait		hotplug_wait;
1234#endif
1235#endif /* CONFIG_SMP */
1236
1237#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1238	u64			prev_irq_time;
1239	u64			psi_irq_time;
1240#endif
1241#ifdef CONFIG_PARAVIRT
1242	u64			prev_steal_time;
1243#endif
1244#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1245	u64			prev_steal_time_rq;
1246#endif
1247
1248	/* calc_load related fields */
1249	unsigned long		calc_load_update;
1250	long			calc_load_active;
1251
1252#ifdef CONFIG_SCHED_HRTICK
1253#ifdef CONFIG_SMP
1254	call_single_data_t	hrtick_csd;
1255#endif
1256	struct hrtimer		hrtick_timer;
1257	ktime_t			hrtick_time;
1258#endif
1259
1260#ifdef CONFIG_SCHEDSTATS
1261	/* latency stats */
1262	struct sched_info	rq_sched_info;
1263	unsigned long long	rq_cpu_time;
 
1264
1265	/* sys_sched_yield() stats */
1266	unsigned int		yld_count;
1267
1268	/* schedule() stats */
1269	unsigned int		sched_count;
1270	unsigned int		sched_goidle;
1271
1272	/* try_to_wake_up() stats */
1273	unsigned int		ttwu_count;
1274	unsigned int		ttwu_local;
1275#endif
1276
1277#ifdef CONFIG_CPU_IDLE
1278	/* Must be inspected within a RCU lock section */
1279	struct cpuidle_state	*idle_state;
1280#endif
1281
1282#ifdef CONFIG_SMP
1283	unsigned int		nr_pinned;
1284#endif
1285	unsigned int		push_busy;
1286	struct cpu_stop_work	push_work;
1287
1288#ifdef CONFIG_SCHED_CORE
1289	/* per rq */
1290	struct rq		*core;
1291	struct task_struct	*core_pick;
1292	struct sched_dl_entity	*core_dl_server;
1293	unsigned int		core_enabled;
1294	unsigned int		core_sched_seq;
1295	struct rb_root		core_tree;
1296
1297	/* shared state -- careful with sched_core_cpu_deactivate() */
1298	unsigned int		core_task_seq;
1299	unsigned int		core_pick_seq;
1300	unsigned long		core_cookie;
1301	unsigned int		core_forceidle_count;
1302	unsigned int		core_forceidle_seq;
1303	unsigned int		core_forceidle_occupation;
1304	u64			core_forceidle_start;
1305#endif
1306
1307	/* Scratch cpumask to be temporarily used under rq_lock */
1308	cpumask_var_t		scratch_mask;
1309
1310#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1311	call_single_data_t	cfsb_csd;
1312	struct list_head	cfsb_csd_list;
1313#endif
1314};
1315
1316#ifdef CONFIG_FAIR_GROUP_SCHED
1317
1318/* CPU runqueue to which this cfs_rq is attached */
1319static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1320{
1321	return cfs_rq->rq;
1322}
1323
1324#else
1325
1326static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1327{
1328	return container_of(cfs_rq, struct rq, cfs);
1329}
1330#endif
1331
1332static inline int cpu_of(struct rq *rq)
1333{
1334#ifdef CONFIG_SMP
1335	return rq->cpu;
1336#else
1337	return 0;
1338#endif
1339}
1340
1341#define MDF_PUSH		0x01
1342
1343static inline bool is_migration_disabled(struct task_struct *p)
1344{
1345#ifdef CONFIG_SMP
1346	return p->migration_disabled;
1347#else
1348	return false;
1349#endif
1350}
1351
1352DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1353
1354#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1355#define this_rq()		this_cpu_ptr(&runqueues)
1356#define task_rq(p)		cpu_rq(task_cpu(p))
1357#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1358#define raw_rq()		raw_cpu_ptr(&runqueues)
1359
1360static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1361{
1362	/* Do nothing */
1363}
1364
1365#ifdef CONFIG_SCHED_CORE
1366static inline struct cpumask *sched_group_span(struct sched_group *sg);
1367
1368DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1369
1370static inline bool sched_core_enabled(struct rq *rq)
1371{
1372	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1373}
1374
1375static inline bool sched_core_disabled(void)
1376{
1377	return !static_branch_unlikely(&__sched_core_enabled);
1378}
1379
1380/*
1381 * Be careful with this function; not for general use. The return value isn't
1382 * stable unless you actually hold a relevant rq->__lock.
1383 */
1384static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1385{
1386	if (sched_core_enabled(rq))
1387		return &rq->core->__lock;
1388
1389	return &rq->__lock;
1390}
1391
1392static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1393{
1394	if (rq->core_enabled)
1395		return &rq->core->__lock;
1396
1397	return &rq->__lock;
1398}
1399
1400extern bool
1401cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1402
1403extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1404
1405/*
1406 * Helpers to check if the CPU's core cookie matches with the task's cookie
1407 * when core scheduling is enabled.
1408 * A special case is that the task's cookie always matches with CPU's core
1409 * cookie if the CPU is in an idle core.
1410 */
1411static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1412{
1413	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1414	if (!sched_core_enabled(rq))
1415		return true;
1416
1417	return rq->core->core_cookie == p->core_cookie;
1418}
1419
1420static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1421{
1422	bool idle_core = true;
1423	int cpu;
1424
1425	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1426	if (!sched_core_enabled(rq))
1427		return true;
1428
1429	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1430		if (!available_idle_cpu(cpu)) {
1431			idle_core = false;
1432			break;
1433		}
1434	}
1435
1436	/*
1437	 * A CPU in an idle core is always the best choice for tasks with
1438	 * cookies.
1439	 */
1440	return idle_core || rq->core->core_cookie == p->core_cookie;
1441}
1442
1443static inline bool sched_group_cookie_match(struct rq *rq,
1444					    struct task_struct *p,
1445					    struct sched_group *group)
1446{
1447	int cpu;
1448
1449	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1450	if (!sched_core_enabled(rq))
1451		return true;
1452
1453	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1454		if (sched_core_cookie_match(cpu_rq(cpu), p))
1455			return true;
1456	}
1457	return false;
1458}
1459
1460static inline bool sched_core_enqueued(struct task_struct *p)
1461{
1462	return !RB_EMPTY_NODE(&p->core_node);
1463}
1464
1465extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1466extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1467
1468extern void sched_core_get(void);
1469extern void sched_core_put(void);
1470
1471#else /* !CONFIG_SCHED_CORE: */
1472
1473static inline bool sched_core_enabled(struct rq *rq)
1474{
1475	return false;
1476}
1477
1478static inline bool sched_core_disabled(void)
1479{
1480	return true;
1481}
1482
1483static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1484{
1485	return &rq->__lock;
1486}
1487
1488static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1489{
1490	return &rq->__lock;
1491}
1492
1493static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1494{
1495	return true;
1496}
1497
1498static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1499{
1500	return true;
1501}
1502
1503static inline bool sched_group_cookie_match(struct rq *rq,
1504					    struct task_struct *p,
1505					    struct sched_group *group)
1506{
1507	return true;
1508}
1509
1510#endif /* !CONFIG_SCHED_CORE */
1511
1512static inline void lockdep_assert_rq_held(struct rq *rq)
1513{
1514	lockdep_assert_held(__rq_lockp(rq));
1515}
1516
1517extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1518extern bool raw_spin_rq_trylock(struct rq *rq);
1519extern void raw_spin_rq_unlock(struct rq *rq);
1520
1521static inline void raw_spin_rq_lock(struct rq *rq)
1522{
1523	raw_spin_rq_lock_nested(rq, 0);
1524}
1525
1526static inline void raw_spin_rq_lock_irq(struct rq *rq)
1527{
1528	local_irq_disable();
1529	raw_spin_rq_lock(rq);
1530}
1531
1532static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1533{
1534	raw_spin_rq_unlock(rq);
1535	local_irq_enable();
1536}
1537
1538static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1539{
1540	unsigned long flags;
1541
1542	local_irq_save(flags);
1543	raw_spin_rq_lock(rq);
1544
1545	return flags;
1546}
1547
1548static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1549{
1550	raw_spin_rq_unlock(rq);
1551	local_irq_restore(flags);
1552}
1553
1554#define raw_spin_rq_lock_irqsave(rq, flags)	\
1555do {						\
1556	flags = _raw_spin_rq_lock_irqsave(rq);	\
1557} while (0)
1558
1559#ifdef CONFIG_SCHED_SMT
1560extern void __update_idle_core(struct rq *rq);
1561
1562static inline void update_idle_core(struct rq *rq)
1563{
1564	if (static_branch_unlikely(&sched_smt_present))
1565		__update_idle_core(rq);
1566}
1567
1568#else
1569static inline void update_idle_core(struct rq *rq) { }
1570#endif
1571
1572#ifdef CONFIG_FAIR_GROUP_SCHED
1573
1574static inline struct task_struct *task_of(struct sched_entity *se)
1575{
1576	SCHED_WARN_ON(!entity_is_task(se));
1577	return container_of(se, struct task_struct, se);
1578}
1579
1580static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1581{
1582	return p->se.cfs_rq;
1583}
1584
1585/* runqueue on which this entity is (to be) queued */
1586static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1587{
1588	return se->cfs_rq;
1589}
1590
1591/* runqueue "owned" by this group */
1592static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1593{
1594	return grp->my_q;
1595}
1596
1597#else /* !CONFIG_FAIR_GROUP_SCHED: */
1598
1599#define task_of(_se)		container_of(_se, struct task_struct, se)
1600
1601static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1602{
1603	return &task_rq(p)->cfs;
1604}
1605
1606static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1607{
1608	const struct task_struct *p = task_of(se);
1609	struct rq *rq = task_rq(p);
1610
1611	return &rq->cfs;
1612}
1613
1614/* runqueue "owned" by this group */
1615static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1616{
1617	return NULL;
1618}
1619
1620#endif /* !CONFIG_FAIR_GROUP_SCHED */
1621
1622extern void update_rq_clock(struct rq *rq);
1623
1624/*
1625 * rq::clock_update_flags bits
1626 *
1627 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1628 *  call to __schedule(). This is an optimisation to avoid
1629 *  neighbouring rq clock updates.
1630 *
1631 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1632 *  in effect and calls to update_rq_clock() are being ignored.
1633 *
1634 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1635 *  made to update_rq_clock() since the last time rq::lock was pinned.
1636 *
1637 * If inside of __schedule(), clock_update_flags will have been
1638 * shifted left (a left shift is a cheap operation for the fast path
1639 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1640 *
1641 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1642 *
1643 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1644 * one position though, because the next rq_unpin_lock() will shift it
1645 * back.
1646 */
1647#define RQCF_REQ_SKIP		0x01
1648#define RQCF_ACT_SKIP		0x02
1649#define RQCF_UPDATED		0x04
1650
1651static inline void assert_clock_updated(struct rq *rq)
1652{
1653	/*
1654	 * The only reason for not seeing a clock update since the
1655	 * last rq_pin_lock() is if we're currently skipping updates.
1656	 */
1657	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1658}
1659
1660static inline u64 rq_clock(struct rq *rq)
1661{
1662	lockdep_assert_rq_held(rq);
1663	assert_clock_updated(rq);
1664
1665	return rq->clock;
1666}
1667
1668static inline u64 rq_clock_task(struct rq *rq)
1669{
1670	lockdep_assert_rq_held(rq);
1671	assert_clock_updated(rq);
1672
1673	return rq->clock_task;
1674}
1675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676static inline void rq_clock_skip_update(struct rq *rq)
1677{
1678	lockdep_assert_rq_held(rq);
1679	rq->clock_update_flags |= RQCF_REQ_SKIP;
1680}
1681
1682/*
1683 * See rt task throttling, which is the only time a skip
1684 * request is canceled.
1685 */
1686static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1687{
1688	lockdep_assert_rq_held(rq);
1689	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1690}
1691
1692/*
1693 * During cpu offlining and rq wide unthrottling, we can trigger
1694 * an update_rq_clock() for several cfs and rt runqueues (Typically
1695 * when using list_for_each_entry_*)
1696 * rq_clock_start_loop_update() can be called after updating the clock
1697 * once and before iterating over the list to prevent multiple update.
1698 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1699 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1700 */
1701static inline void rq_clock_start_loop_update(struct rq *rq)
1702{
1703	lockdep_assert_rq_held(rq);
1704	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1705	rq->clock_update_flags |= RQCF_ACT_SKIP;
1706}
1707
1708static inline void rq_clock_stop_loop_update(struct rq *rq)
1709{
1710	lockdep_assert_rq_held(rq);
1711	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1712}
1713
1714struct rq_flags {
1715	unsigned long flags;
1716	struct pin_cookie cookie;
1717#ifdef CONFIG_SCHED_DEBUG
1718	/*
1719	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1720	 * current pin context is stashed here in case it needs to be
1721	 * restored in rq_repin_lock().
1722	 */
1723	unsigned int clock_update_flags;
1724#endif
1725};
1726
1727extern struct balance_callback balance_push_callback;
1728
1729/*
1730 * Lockdep annotation that avoids accidental unlocks; it's like a
1731 * sticky/continuous lockdep_assert_held().
1732 *
1733 * This avoids code that has access to 'struct rq *rq' (basically everything in
1734 * the scheduler) from accidentally unlocking the rq if they do not also have a
1735 * copy of the (on-stack) 'struct rq_flags rf'.
1736 *
1737 * Also see Documentation/locking/lockdep-design.rst.
1738 */
1739static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1740{
1741	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1742
1743#ifdef CONFIG_SCHED_DEBUG
1744	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1745	rf->clock_update_flags = 0;
1746# ifdef CONFIG_SMP
1747	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1748# endif
1749#endif
1750}
1751
1752static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1753{
1754#ifdef CONFIG_SCHED_DEBUG
1755	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1756		rf->clock_update_flags = RQCF_UPDATED;
1757#endif
1758
1759	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1760}
1761
1762static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1763{
1764	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1765
1766#ifdef CONFIG_SCHED_DEBUG
1767	/*
1768	 * Restore the value we stashed in @rf for this pin context.
1769	 */
1770	rq->clock_update_flags |= rf->clock_update_flags;
1771#endif
1772}
1773
1774extern
1775struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1776	__acquires(rq->lock);
1777
1778extern
1779struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1780	__acquires(p->pi_lock)
1781	__acquires(rq->lock);
1782
1783static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1784	__releases(rq->lock)
1785{
1786	rq_unpin_lock(rq, rf);
1787	raw_spin_rq_unlock(rq);
1788}
1789
1790static inline void
1791task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1792	__releases(rq->lock)
1793	__releases(p->pi_lock)
1794{
1795	rq_unpin_lock(rq, rf);
1796	raw_spin_rq_unlock(rq);
1797	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1798}
1799
1800DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1801		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1802		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1803		    struct rq *rq; struct rq_flags rf)
1804
1805static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
 
1806	__acquires(rq->lock)
1807{
1808	raw_spin_rq_lock_irqsave(rq, rf->flags);
1809	rq_pin_lock(rq, rf);
1810}
1811
1812static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
 
1813	__acquires(rq->lock)
1814{
1815	raw_spin_rq_lock_irq(rq);
1816	rq_pin_lock(rq, rf);
1817}
1818
1819static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
 
1820	__acquires(rq->lock)
1821{
1822	raw_spin_rq_lock(rq);
1823	rq_pin_lock(rq, rf);
1824}
1825
1826static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
 
1827	__releases(rq->lock)
1828{
1829	rq_unpin_lock(rq, rf);
1830	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1831}
1832
1833static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
 
1834	__releases(rq->lock)
1835{
1836	rq_unpin_lock(rq, rf);
1837	raw_spin_rq_unlock_irq(rq);
1838}
1839
1840static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
 
1841	__releases(rq->lock)
1842{
1843	rq_unpin_lock(rq, rf);
1844	raw_spin_rq_unlock(rq);
1845}
1846
1847DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1848		    rq_lock(_T->lock, &_T->rf),
1849		    rq_unlock(_T->lock, &_T->rf),
1850		    struct rq_flags rf)
1851
1852DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1853		    rq_lock_irq(_T->lock, &_T->rf),
1854		    rq_unlock_irq(_T->lock, &_T->rf),
1855		    struct rq_flags rf)
1856
1857DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1858		    rq_lock_irqsave(_T->lock, &_T->rf),
1859		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1860		    struct rq_flags rf)
1861
1862static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
 
1863	__acquires(rq->lock)
1864{
1865	struct rq *rq;
1866
1867	local_irq_disable();
1868	rq = this_rq();
1869	rq_lock(rq, rf);
1870
1871	return rq;
1872}
1873
1874#ifdef CONFIG_NUMA
1875
1876enum numa_topology_type {
1877	NUMA_DIRECT,
1878	NUMA_GLUELESS_MESH,
1879	NUMA_BACKPLANE,
1880};
1881
1882extern enum numa_topology_type sched_numa_topology_type;
1883extern int sched_max_numa_distance;
1884extern bool find_numa_distance(int distance);
1885extern void sched_init_numa(int offline_node);
1886extern void sched_update_numa(int cpu, bool online);
1887extern void sched_domains_numa_masks_set(unsigned int cpu);
1888extern void sched_domains_numa_masks_clear(unsigned int cpu);
1889extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1890
1891#else /* !CONFIG_NUMA: */
1892
1893static inline void sched_init_numa(int offline_node) { }
1894static inline void sched_update_numa(int cpu, bool online) { }
1895static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1896static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1897
1898static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1899{
1900	return nr_cpu_ids;
1901}
1902
1903#endif /* !CONFIG_NUMA */
1904
1905#ifdef CONFIG_NUMA_BALANCING
1906
1907/* The regions in numa_faults array from task_struct */
1908enum numa_faults_stats {
1909	NUMA_MEM = 0,
1910	NUMA_CPU,
1911	NUMA_MEMBUF,
1912	NUMA_CPUBUF
1913};
1914
1915extern void sched_setnuma(struct task_struct *p, int node);
1916extern int migrate_task_to(struct task_struct *p, int cpu);
1917extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1918			int cpu, int scpu);
1919extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1920
1921#else /* !CONFIG_NUMA_BALANCING: */
1922
1923static inline void
1924init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1925{
1926}
1927
1928#endif /* !CONFIG_NUMA_BALANCING */
1929
1930#ifdef CONFIG_SMP
1931
1932static inline void
1933queue_balance_callback(struct rq *rq,
1934		       struct balance_callback *head,
1935		       void (*func)(struct rq *rq))
1936{
1937	lockdep_assert_rq_held(rq);
1938
1939	/*
1940	 * Don't (re)queue an already queued item; nor queue anything when
1941	 * balance_push() is active, see the comment with
1942	 * balance_push_callback.
1943	 */
1944	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1945		return;
1946
1947	head->func = func;
1948	head->next = rq->balance_callback;
1949	rq->balance_callback = head;
1950}
1951
1952#define rcu_dereference_check_sched_domain(p) \
1953	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
 
1954
1955/*
1956 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1957 * See destroy_sched_domains: call_rcu for details.
1958 *
1959 * The domain tree of any CPU may only be accessed from within
1960 * preempt-disabled sections.
1961 */
1962#define for_each_domain(cpu, __sd) \
1963	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1964			__sd; __sd = __sd->parent)
1965
1966/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1967#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1968static const unsigned int SD_SHARED_CHILD_MASK =
1969#include <linux/sched/sd_flags.h>
19700;
1971#undef SD_FLAG
1972
1973/**
1974 * highest_flag_domain - Return highest sched_domain containing flag.
1975 * @cpu:	The CPU whose highest level of sched domain is to
1976 *		be returned.
1977 * @flag:	The flag to check for the highest sched_domain
1978 *		for the given CPU.
1979 *
1980 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1981 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1982 */
1983static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1984{
1985	struct sched_domain *sd, *hsd = NULL;
1986
1987	for_each_domain(cpu, sd) {
1988		if (sd->flags & flag) {
1989			hsd = sd;
1990			continue;
1991		}
1992
1993		/*
1994		 * Stop the search if @flag is known to be shared at lower
1995		 * levels. It will not be found further up.
1996		 */
1997		if (flag & SD_SHARED_CHILD_MASK)
1998			break;
1999	}
2000
2001	return hsd;
2002}
2003
2004static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2005{
2006	struct sched_domain *sd;
2007
2008	for_each_domain(cpu, sd) {
2009		if (sd->flags & flag)
2010			break;
2011	}
2012
2013	return sd;
2014}
2015
2016DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2017DECLARE_PER_CPU(int, sd_llc_size);
2018DECLARE_PER_CPU(int, sd_llc_id);
2019DECLARE_PER_CPU(int, sd_share_id);
2020DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2021DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2022DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2023DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2024
2025extern struct static_key_false sched_asym_cpucapacity;
2026extern struct static_key_false sched_cluster_active;
2027
2028static __always_inline bool sched_asym_cpucap_active(void)
2029{
2030	return static_branch_unlikely(&sched_asym_cpucapacity);
2031}
2032
2033struct sched_group_capacity {
2034	atomic_t		ref;
2035	/*
2036	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2037	 * for a single CPU.
2038	 */
2039	unsigned long		capacity;
2040	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2041	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2042	unsigned long		next_update;
2043	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2044
2045#ifdef CONFIG_SCHED_DEBUG
2046	int			id;
2047#endif
2048
2049	unsigned long		cpumask[];		/* Balance mask */
2050};
2051
2052struct sched_group {
2053	struct sched_group	*next;			/* Must be a circular list */
2054	atomic_t		ref;
2055
2056	unsigned int		group_weight;
2057	unsigned int		cores;
2058	struct sched_group_capacity *sgc;
2059	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2060	int			flags;
2061
2062	/*
2063	 * The CPUs this group covers.
2064	 *
2065	 * NOTE: this field is variable length. (Allocated dynamically
2066	 * by attaching extra space to the end of the structure,
2067	 * depending on how many CPUs the kernel has booted up with)
2068	 */
2069	unsigned long		cpumask[];
2070};
2071
2072static inline struct cpumask *sched_group_span(struct sched_group *sg)
2073{
2074	return to_cpumask(sg->cpumask);
2075}
2076
2077/*
2078 * See build_balance_mask().
2079 */
2080static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2081{
2082	return to_cpumask(sg->sgc->cpumask);
2083}
2084
2085extern int group_balance_cpu(struct sched_group *sg);
2086
2087#ifdef CONFIG_SCHED_DEBUG
2088extern void update_sched_domain_debugfs(void);
2089extern void dirty_sched_domain_sysctl(int cpu);
2090#else
2091static inline void update_sched_domain_debugfs(void) { }
2092static inline void dirty_sched_domain_sysctl(int cpu) { }
 
 
 
 
2093#endif
2094
2095extern int sched_update_scaling(void);
2096
2097static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2098{
2099	if (!p->user_cpus_ptr)
2100		return cpu_possible_mask; /* &init_task.cpus_mask */
2101	return p->user_cpus_ptr;
2102}
2103
2104#endif /* CONFIG_SMP */
2105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106#ifdef CONFIG_CGROUP_SCHED
2107
2108/*
2109 * Return the group to which this tasks belongs.
2110 *
2111 * We cannot use task_css() and friends because the cgroup subsystem
2112 * changes that value before the cgroup_subsys::attach() method is called,
2113 * therefore we cannot pin it and might observe the wrong value.
2114 *
2115 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2116 * core changes this before calling sched_move_task().
2117 *
2118 * Instead we use a 'copy' which is updated from sched_move_task() while
2119 * holding both task_struct::pi_lock and rq::lock.
2120 */
2121static inline struct task_group *task_group(struct task_struct *p)
2122{
2123	return p->sched_task_group;
2124}
2125
2126/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2127static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2128{
2129#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2130	struct task_group *tg = task_group(p);
2131#endif
2132
2133#ifdef CONFIG_FAIR_GROUP_SCHED
2134	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2135	p->se.cfs_rq = tg->cfs_rq[cpu];
2136	p->se.parent = tg->se[cpu];
2137	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2138#endif
2139
2140#ifdef CONFIG_RT_GROUP_SCHED
2141	p->rt.rt_rq  = tg->rt_rq[cpu];
2142	p->rt.parent = tg->rt_se[cpu];
2143#endif
2144}
2145
2146#else /* !CONFIG_CGROUP_SCHED: */
2147
2148static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2149
2150static inline struct task_group *task_group(struct task_struct *p)
2151{
2152	return NULL;
2153}
2154
2155#endif /* !CONFIG_CGROUP_SCHED */
2156
2157static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2158{
2159	set_task_rq(p, cpu);
2160#ifdef CONFIG_SMP
2161	/*
2162	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2163	 * successfully executed on another CPU. We must ensure that updates of
2164	 * per-task data have been completed by this moment.
2165	 */
2166	smp_wmb();
2167	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2168	p->wake_cpu = cpu;
2169#endif
2170}
2171
2172/*
2173 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2174 */
2175#ifdef CONFIG_SCHED_DEBUG
2176# define const_debug __read_mostly
2177#else
2178# define const_debug const
2179#endif
2180
2181#define SCHED_FEAT(name, enabled)	\
2182	__SCHED_FEAT_##name ,
2183
2184enum {
2185#include "features.h"
2186	__SCHED_FEAT_NR,
2187};
2188
2189#undef SCHED_FEAT
2190
2191#ifdef CONFIG_SCHED_DEBUG
2192
2193/*
2194 * To support run-time toggling of sched features, all the translation units
2195 * (but core.c) reference the sysctl_sched_features defined in core.c.
2196 */
2197extern const_debug unsigned int sysctl_sched_features;
2198
2199#ifdef CONFIG_JUMP_LABEL
2200
2201#define SCHED_FEAT(name, enabled)					\
2202static __always_inline bool static_branch_##name(struct static_key *key) \
2203{									\
2204	return static_key_##enabled(key);				\
2205}
2206
2207#include "features.h"
2208#undef SCHED_FEAT
2209
2210extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2211#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2212
2213#else /* !CONFIG_JUMP_LABEL: */
2214
2215#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2216
2217#endif /* !CONFIG_JUMP_LABEL */
2218
2219#else /* !SCHED_DEBUG: */
2220
2221/*
2222 * Each translation unit has its own copy of sysctl_sched_features to allow
2223 * constants propagation at compile time and compiler optimization based on
2224 * features default.
2225 */
2226#define SCHED_FEAT(name, enabled)	\
2227	(1UL << __SCHED_FEAT_##name) * enabled |
2228static const_debug __maybe_unused unsigned int sysctl_sched_features =
2229#include "features.h"
2230	0;
2231#undef SCHED_FEAT
2232
2233#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2234
2235#endif /* !SCHED_DEBUG */
2236
2237extern struct static_key_false sched_numa_balancing;
2238extern struct static_key_false sched_schedstats;
2239
2240static inline u64 global_rt_period(void)
2241{
2242	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2243}
2244
2245static inline u64 global_rt_runtime(void)
2246{
2247	if (sysctl_sched_rt_runtime < 0)
2248		return RUNTIME_INF;
2249
2250	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2251}
2252
2253/*
2254 * Is p the current execution context?
2255 */
2256static inline int task_current(struct rq *rq, struct task_struct *p)
2257{
2258	return rq->curr == p;
2259}
2260
2261/*
2262 * Is p the current scheduling context?
2263 *
2264 * Note that it might be the current execution context at the same time if
2265 * rq->curr == rq->donor == p.
2266 */
2267static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2268{
2269	return rq->donor == p;
2270}
2271
2272static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2273{
2274#ifdef CONFIG_SMP
2275	return p->on_cpu;
2276#else
2277	return task_current(rq, p);
2278#endif
2279}
2280
2281static inline int task_on_rq_queued(struct task_struct *p)
2282{
2283	return p->on_rq == TASK_ON_RQ_QUEUED;
2284}
2285
2286static inline int task_on_rq_migrating(struct task_struct *p)
2287{
2288	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2289}
2290
2291/* Wake flags. The first three directly map to some SD flag value */
2292#define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2293#define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2294#define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2295
2296#define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2297#define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2298#define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2299#define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2300
2301#ifdef CONFIG_SMP
2302static_assert(WF_EXEC == SD_BALANCE_EXEC);
2303static_assert(WF_FORK == SD_BALANCE_FORK);
2304static_assert(WF_TTWU == SD_BALANCE_WAKE);
2305#endif
2306
2307/*
2308 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2309 * of tasks with abnormal "nice" values across CPUs the contribution that
2310 * each task makes to its run queue's load is weighted according to its
2311 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2312 * scaled version of the new time slice allocation that they receive on time
2313 * slice expiry etc.
2314 */
2315
2316#define WEIGHT_IDLEPRIO		3
2317#define WMULT_IDLEPRIO		1431655765
2318
2319extern const int		sched_prio_to_weight[40];
2320extern const u32		sched_prio_to_wmult[40];
2321
2322/*
2323 * {de,en}queue flags:
2324 *
2325 * DEQUEUE_SLEEP  - task is no longer runnable
2326 * ENQUEUE_WAKEUP - task just became runnable
2327 *
2328 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2329 *                are in a known state which allows modification. Such pairs
2330 *                should preserve as much state as possible.
2331 *
2332 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2333 *        in the runqueue.
2334 *
2335 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2336 *
2337 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2338 *
2339 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2340 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2341 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2342 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2343 *
2344 */
2345
2346#define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2347#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2348#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2349#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2350#define DEQUEUE_SPECIAL		0x10
2351#define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2352#define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2353
2354#define ENQUEUE_WAKEUP		0x01
2355#define ENQUEUE_RESTORE		0x02
2356#define ENQUEUE_MOVE		0x04
2357#define ENQUEUE_NOCLOCK		0x08
2358
2359#define ENQUEUE_HEAD		0x10
2360#define ENQUEUE_REPLENISH	0x20
2361#ifdef CONFIG_SMP
2362#define ENQUEUE_MIGRATED	0x40
2363#else
2364#define ENQUEUE_MIGRATED	0x00
2365#endif
2366#define ENQUEUE_INITIAL		0x80
2367#define ENQUEUE_MIGRATING	0x100
2368#define ENQUEUE_DELAYED		0x200
2369#define ENQUEUE_RQ_SELECTED	0x400
2370
2371#define RETRY_TASK		((void *)-1UL)
2372
2373struct affinity_context {
2374	const struct cpumask	*new_mask;
2375	struct cpumask		*user_mask;
2376	unsigned int		flags;
2377};
2378
2379extern s64 update_curr_common(struct rq *rq);
2380
2381struct sched_class {
2382
2383#ifdef CONFIG_UCLAMP_TASK
2384	int uclamp_enabled;
2385#endif
2386
2387	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2388	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2389	void (*yield_task)   (struct rq *rq);
2390	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2391
2392	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2393
2394	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2395	struct task_struct *(*pick_task)(struct rq *rq);
2396	/*
2397	 * Optional! When implemented pick_next_task() should be equivalent to:
2398	 *
2399	 *   next = pick_task();
2400	 *   if (next) {
2401	 *       put_prev_task(prev);
2402	 *       set_next_task_first(next);
2403	 *   }
2404	 */
2405	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2406
2407	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2408	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2409
2410#ifdef CONFIG_SMP
 
2411	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2412
 
 
2413	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2414
2415	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2416
2417	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2418
2419	void (*rq_online)(struct rq *rq);
2420	void (*rq_offline)(struct rq *rq);
2421
2422	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2423#endif
2424
2425	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2426	void (*task_fork)(struct task_struct *p);
2427	void (*task_dead)(struct task_struct *p);
2428
2429	/*
2430	 * The switched_from() call is allowed to drop rq->lock, therefore we
2431	 * cannot assume the switched_from/switched_to pair is serialized by
2432	 * rq->lock. They are however serialized by p->pi_lock.
2433	 */
2434	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2435	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2436	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2437	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2438			      const struct load_weight *lw);
2439	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2440			      int oldprio);
2441
2442	unsigned int (*get_rr_interval)(struct rq *rq,
2443					struct task_struct *task);
2444
2445	void (*update_curr)(struct rq *rq);
2446
2447#ifdef CONFIG_FAIR_GROUP_SCHED
2448	void (*task_change_group)(struct task_struct *p);
2449#endif
2450
2451#ifdef CONFIG_SCHED_CORE
2452	int (*task_is_throttled)(struct task_struct *p, int cpu);
2453#endif
2454};
2455
2456static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2457{
2458	WARN_ON_ONCE(rq->donor != prev);
2459	prev->sched_class->put_prev_task(rq, prev, NULL);
2460}
2461
2462static inline void set_next_task(struct rq *rq, struct task_struct *next)
2463{
2464	next->sched_class->set_next_task(rq, next, false);
2465}
2466
2467static inline void
2468__put_prev_set_next_dl_server(struct rq *rq,
2469			      struct task_struct *prev,
2470			      struct task_struct *next)
2471{
2472	prev->dl_server = NULL;
2473	next->dl_server = rq->dl_server;
2474	rq->dl_server = NULL;
2475}
2476
2477static inline void put_prev_set_next_task(struct rq *rq,
2478					  struct task_struct *prev,
2479					  struct task_struct *next)
2480{
2481	WARN_ON_ONCE(rq->curr != prev);
2482
2483	__put_prev_set_next_dl_server(rq, prev, next);
2484
2485	if (next == prev)
2486		return;
2487
2488	prev->sched_class->put_prev_task(rq, prev, next);
2489	next->sched_class->set_next_task(rq, next, true);
2490}
2491
2492/*
2493 * Helper to define a sched_class instance; each one is placed in a separate
2494 * section which is ordered by the linker script:
2495 *
2496 *   include/asm-generic/vmlinux.lds.h
2497 *
2498 * *CAREFUL* they are laid out in *REVERSE* order!!!
2499 *
2500 * Also enforce alignment on the instance, not the type, to guarantee layout.
2501 */
2502#define DEFINE_SCHED_CLASS(name) \
2503const struct sched_class name##_sched_class \
2504	__aligned(__alignof__(struct sched_class)) \
2505	__section("__" #name "_sched_class")
2506
2507/* Defined in include/asm-generic/vmlinux.lds.h */
2508extern struct sched_class __sched_class_highest[];
2509extern struct sched_class __sched_class_lowest[];
2510
2511extern const struct sched_class stop_sched_class;
2512extern const struct sched_class dl_sched_class;
2513extern const struct sched_class rt_sched_class;
2514extern const struct sched_class fair_sched_class;
2515extern const struct sched_class idle_sched_class;
2516
2517#ifdef CONFIG_SCHED_CLASS_EXT
2518extern const struct sched_class ext_sched_class;
2519
2520DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);	/* SCX BPF scheduler loaded */
2521DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
2522
2523#define scx_enabled()		static_branch_unlikely(&__scx_ops_enabled)
2524#define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
2525#else /* !CONFIG_SCHED_CLASS_EXT */
2526#define scx_enabled()		false
2527#define scx_switched_all()	false
2528#endif /* !CONFIG_SCHED_CLASS_EXT */
2529
2530/*
2531 * Iterate only active classes. SCX can take over all fair tasks or be
2532 * completely disabled. If the former, skip fair. If the latter, skip SCX.
2533 */
2534static inline const struct sched_class *next_active_class(const struct sched_class *class)
2535{
2536	class++;
2537#ifdef CONFIG_SCHED_CLASS_EXT
2538	if (scx_switched_all() && class == &fair_sched_class)
2539		class++;
2540	if (!scx_enabled() && class == &ext_sched_class)
2541		class++;
2542#endif
2543	return class;
2544}
2545
2546#define for_class_range(class, _from, _to) \
2547	for (class = (_from); class < (_to); class++)
2548
2549#define for_each_class(class) \
2550	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2551
2552#define for_active_class_range(class, _from, _to)				\
2553	for (class = (_from); class != (_to); class = next_active_class(class))
2554
2555#define for_each_active_class(class)						\
2556	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2557
2558#define sched_class_above(_a, _b)	((_a) < (_b))
2559
 
 
 
 
 
 
2560static inline bool sched_stop_runnable(struct rq *rq)
2561{
2562	return rq->stop && task_on_rq_queued(rq->stop);
2563}
2564
2565static inline bool sched_dl_runnable(struct rq *rq)
2566{
2567	return rq->dl.dl_nr_running > 0;
2568}
2569
2570static inline bool sched_rt_runnable(struct rq *rq)
2571{
2572	return rq->rt.rt_queued > 0;
2573}
2574
2575static inline bool sched_fair_runnable(struct rq *rq)
2576{
2577	return rq->cfs.nr_running > 0;
2578}
2579
2580extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2581extern struct task_struct *pick_task_idle(struct rq *rq);
2582
2583#define SCA_CHECK		0x01
2584#define SCA_MIGRATE_DISABLE	0x02
2585#define SCA_MIGRATE_ENABLE	0x04
2586#define SCA_USER		0x08
2587
2588#ifdef CONFIG_SMP
2589
2590extern void update_group_capacity(struct sched_domain *sd, int cpu);
2591
2592extern void sched_balance_trigger(struct rq *rq);
2593
2594extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2595extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2596
2597static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2598{
2599	/* When not in the task's cpumask, no point in looking further. */
2600	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2601		return false;
2602
2603	/* Can @cpu run a user thread? */
2604	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2605		return false;
2606
2607	return true;
2608}
2609
2610static inline cpumask_t *alloc_user_cpus_ptr(int node)
2611{
2612	/*
2613	 * See do_set_cpus_allowed() above for the rcu_head usage.
2614	 */
2615	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2616
2617	return kmalloc_node(size, GFP_KERNEL, node);
2618}
2619
2620static inline struct task_struct *get_push_task(struct rq *rq)
2621{
2622	struct task_struct *p = rq->donor;
2623
2624	lockdep_assert_rq_held(rq);
2625
2626	if (rq->push_busy)
2627		return NULL;
2628
2629	if (p->nr_cpus_allowed == 1)
2630		return NULL;
2631
2632	if (p->migration_disabled)
2633		return NULL;
2634
2635	rq->push_busy = true;
2636	return get_task_struct(p);
2637}
2638
2639extern int push_cpu_stop(void *arg);
2640
2641#else /* !CONFIG_SMP: */
2642
2643static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2644{
2645	return true;
2646}
2647
2648static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2649					 struct affinity_context *ctx)
2650{
2651	return set_cpus_allowed_ptr(p, ctx->new_mask);
2652}
2653
2654static inline cpumask_t *alloc_user_cpus_ptr(int node)
2655{
2656	return NULL;
2657}
2658
2659#endif /* !CONFIG_SMP */
2660
2661#ifdef CONFIG_CPU_IDLE
2662
2663static inline void idle_set_state(struct rq *rq,
2664				  struct cpuidle_state *idle_state)
2665{
2666	rq->idle_state = idle_state;
2667}
2668
2669static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2670{
2671	SCHED_WARN_ON(!rcu_read_lock_held());
2672
2673	return rq->idle_state;
2674}
2675
2676#else /* !CONFIG_CPU_IDLE: */
2677
2678static inline void idle_set_state(struct rq *rq,
2679				  struct cpuidle_state *idle_state)
2680{
2681}
2682
2683static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2684{
2685	return NULL;
2686}
2687
2688#endif /* !CONFIG_CPU_IDLE */
2689
2690extern void schedule_idle(void);
2691asmlinkage void schedule_user(void);
2692
2693extern void sysrq_sched_debug_show(void);
2694extern void sched_init_granularity(void);
2695extern void update_max_interval(void);
2696
2697extern void init_sched_dl_class(void);
2698extern void init_sched_rt_class(void);
2699extern void init_sched_fair_class(void);
2700
 
 
2701extern void resched_curr(struct rq *rq);
2702extern void resched_curr_lazy(struct rq *rq);
2703extern void resched_cpu(int cpu);
2704
 
2705extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2706extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2707
2708extern void init_dl_entity(struct sched_dl_entity *dl_se);
2709
2710#define BW_SHIFT		20
2711#define BW_UNIT			(1 << BW_SHIFT)
2712#define RATIO_SHIFT		8
2713#define MAX_BW_BITS		(64 - BW_SHIFT)
2714#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2715
2716extern unsigned long to_ratio(u64 period, u64 runtime);
2717
2718extern void init_entity_runnable_average(struct sched_entity *se);
2719extern void post_init_entity_util_avg(struct task_struct *p);
2720
2721#ifdef CONFIG_NO_HZ_FULL
2722extern bool sched_can_stop_tick(struct rq *rq);
2723extern int __init sched_tick_offload_init(void);
2724
2725/*
2726 * Tick may be needed by tasks in the runqueue depending on their policy and
2727 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2728 * nohz mode if necessary.
2729 */
2730static inline void sched_update_tick_dependency(struct rq *rq)
2731{
2732	int cpu = cpu_of(rq);
2733
2734	if (!tick_nohz_full_cpu(cpu))
2735		return;
2736
2737	if (sched_can_stop_tick(rq))
2738		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2739	else
2740		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2741}
2742#else /* !CONFIG_NO_HZ_FULL: */
2743static inline int sched_tick_offload_init(void) { return 0; }
2744static inline void sched_update_tick_dependency(struct rq *rq) { }
2745#endif /* !CONFIG_NO_HZ_FULL */
2746
2747static inline void add_nr_running(struct rq *rq, unsigned count)
2748{
2749	unsigned prev_nr = rq->nr_running;
2750
2751	rq->nr_running = prev_nr + count;
2752	if (trace_sched_update_nr_running_tp_enabled()) {
2753		call_trace_sched_update_nr_running(rq, count);
2754	}
2755
2756#ifdef CONFIG_SMP
2757	if (prev_nr < 2 && rq->nr_running >= 2)
2758		set_rd_overloaded(rq->rd, 1);
 
 
2759#endif
2760
2761	sched_update_tick_dependency(rq);
2762}
2763
2764static inline void sub_nr_running(struct rq *rq, unsigned count)
2765{
2766	rq->nr_running -= count;
2767	if (trace_sched_update_nr_running_tp_enabled()) {
2768		call_trace_sched_update_nr_running(rq, -count);
2769	}
2770
2771	/* Check if we still need preemption */
2772	sched_update_tick_dependency(rq);
2773}
2774
2775static inline void __block_task(struct rq *rq, struct task_struct *p)
2776{
2777	if (p->sched_contributes_to_load)
2778		rq->nr_uninterruptible++;
2779
2780	if (p->in_iowait) {
2781		atomic_inc(&rq->nr_iowait);
2782		delayacct_blkio_start();
2783	}
2784
2785	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2786
2787	/*
2788	 * The moment this write goes through, ttwu() can swoop in and migrate
2789	 * this task, rendering our rq->__lock ineffective.
2790	 *
2791	 * __schedule()				try_to_wake_up()
2792	 *   LOCK rq->__lock			  LOCK p->pi_lock
2793	 *   pick_next_task()
2794	 *     pick_next_task_fair()
2795	 *       pick_next_entity()
2796	 *         dequeue_entities()
2797	 *           __block_task()
2798	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2799	 *					    break;
2800	 *
2801	 *					  ACQUIRE (after ctrl-dep)
2802	 *
2803	 *					  cpu = select_task_rq();
2804	 *					  set_task_cpu(p, cpu);
2805	 *					  ttwu_queue()
2806	 *					    ttwu_do_activate()
2807	 *					      LOCK rq->__lock
2808	 *					      activate_task()
2809	 *					        STORE p->on_rq = 1
2810	 *   UNLOCK rq->__lock
2811	 *
2812	 * Callers must ensure to not reference @p after this -- we no longer
2813	 * own it.
2814	 */
2815	smp_store_release(&p->on_rq, 0);
2816}
2817
2818extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2819extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2820
2821extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2822
2823#ifdef CONFIG_PREEMPT_RT
2824# define SCHED_NR_MIGRATE_BREAK 8
2825#else
2826# define SCHED_NR_MIGRATE_BREAK 32
2827#endif
2828
2829extern const_debug unsigned int sysctl_sched_nr_migrate;
2830extern const_debug unsigned int sysctl_sched_migration_cost;
2831
2832extern unsigned int sysctl_sched_base_slice;
2833
2834#ifdef CONFIG_SCHED_DEBUG
2835extern int sysctl_resched_latency_warn_ms;
2836extern int sysctl_resched_latency_warn_once;
2837
2838extern unsigned int sysctl_sched_tunable_scaling;
2839
2840extern unsigned int sysctl_numa_balancing_scan_delay;
2841extern unsigned int sysctl_numa_balancing_scan_period_min;
2842extern unsigned int sysctl_numa_balancing_scan_period_max;
2843extern unsigned int sysctl_numa_balancing_scan_size;
2844extern unsigned int sysctl_numa_balancing_hot_threshold;
2845#endif
2846
2847#ifdef CONFIG_SCHED_HRTICK
2848
2849/*
2850 * Use hrtick when:
2851 *  - enabled by features
2852 *  - hrtimer is actually high res
2853 */
2854static inline int hrtick_enabled(struct rq *rq)
2855{
2856	if (!cpu_active(cpu_of(rq)))
2857		return 0;
2858	return hrtimer_is_hres_active(&rq->hrtick_timer);
2859}
2860
2861static inline int hrtick_enabled_fair(struct rq *rq)
2862{
2863	if (!sched_feat(HRTICK))
2864		return 0;
2865	return hrtick_enabled(rq);
2866}
2867
2868static inline int hrtick_enabled_dl(struct rq *rq)
2869{
2870	if (!sched_feat(HRTICK_DL))
2871		return 0;
2872	return hrtick_enabled(rq);
2873}
2874
2875extern void hrtick_start(struct rq *rq, u64 delay);
2876
2877#else /* !CONFIG_SCHED_HRTICK: */
2878
2879static inline int hrtick_enabled_fair(struct rq *rq)
2880{
2881	return 0;
2882}
2883
2884static inline int hrtick_enabled_dl(struct rq *rq)
2885{
2886	return 0;
2887}
2888
2889static inline int hrtick_enabled(struct rq *rq)
2890{
2891	return 0;
2892}
2893
2894#endif /* !CONFIG_SCHED_HRTICK */
2895
2896#ifndef arch_scale_freq_tick
2897static __always_inline void arch_scale_freq_tick(void) { }
 
 
 
2898#endif
2899
2900#ifndef arch_scale_freq_capacity
2901/**
2902 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2903 * @cpu: the CPU in question.
2904 *
2905 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2906 *
2907 *     f_curr
2908 *     ------ * SCHED_CAPACITY_SCALE
2909 *     f_max
2910 */
2911static __always_inline
2912unsigned long arch_scale_freq_capacity(int cpu)
2913{
2914	return SCHED_CAPACITY_SCALE;
2915}
2916#endif
2917
2918#ifdef CONFIG_SCHED_DEBUG
2919/*
2920 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2921 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2922 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2923 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2924 */
2925static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2926{
2927	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2928	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2929#ifdef CONFIG_SMP
2930	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2931#endif
2932}
2933#else
2934static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
2935#endif
2936
2937#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2938__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2939static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2940{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2941  _lock; return _t; }
2942
2943#ifdef CONFIG_SMP
2944
2945static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2946{
2947#ifdef CONFIG_SCHED_CORE
2948	/*
2949	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2950	 * order by core-id first and cpu-id second.
2951	 *
2952	 * Notably:
2953	 *
2954	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2955	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2956	 *
2957	 * when only cpu-id is considered.
2958	 */
2959	if (rq1->core->cpu < rq2->core->cpu)
2960		return true;
2961	if (rq1->core->cpu > rq2->core->cpu)
2962		return false;
2963
2964	/*
2965	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2966	 */
2967#endif
2968	return rq1->cpu < rq2->cpu;
2969}
2970
2971extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2972
2973#ifdef CONFIG_PREEMPTION
2974
2975/*
2976 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2977 * way at the expense of forcing extra atomic operations in all
2978 * invocations.  This assures that the double_lock is acquired using the
2979 * same underlying policy as the spinlock_t on this architecture, which
2980 * reduces latency compared to the unfair variant below.  However, it
2981 * also adds more overhead and therefore may reduce throughput.
2982 */
2983static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2984	__releases(this_rq->lock)
2985	__acquires(busiest->lock)
2986	__acquires(this_rq->lock)
2987{
2988	raw_spin_rq_unlock(this_rq);
2989	double_rq_lock(this_rq, busiest);
2990
2991	return 1;
2992}
2993
2994#else /* !CONFIG_PREEMPTION: */
2995/*
2996 * Unfair double_lock_balance: Optimizes throughput at the expense of
2997 * latency by eliminating extra atomic operations when the locks are
2998 * already in proper order on entry.  This favors lower CPU-ids and will
2999 * grant the double lock to lower CPUs over higher ids under contention,
3000 * regardless of entry order into the function.
3001 */
3002static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3003	__releases(this_rq->lock)
3004	__acquires(busiest->lock)
3005	__acquires(this_rq->lock)
3006{
3007	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
3008	    likely(raw_spin_rq_trylock(busiest))) {
3009		double_rq_clock_clear_update(this_rq, busiest);
3010		return 0;
3011	}
3012
3013	if (rq_order_less(this_rq, busiest)) {
3014		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3015		double_rq_clock_clear_update(this_rq, busiest);
3016		return 0;
3017	}
3018
3019	raw_spin_rq_unlock(this_rq);
3020	double_rq_lock(this_rq, busiest);
3021
3022	return 1;
3023}
3024
3025#endif /* !CONFIG_PREEMPTION */
3026
3027/*
3028 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3029 */
3030static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3031{
3032	lockdep_assert_irqs_disabled();
3033
3034	return _double_lock_balance(this_rq, busiest);
3035}
3036
3037static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3038	__releases(busiest->lock)
3039{
3040	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3041		raw_spin_rq_unlock(busiest);
3042	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3043}
3044
3045static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3046{
3047	if (l1 > l2)
3048		swap(l1, l2);
3049
3050	spin_lock(l1);
3051	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3052}
3053
3054static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3055{
3056	if (l1 > l2)
3057		swap(l1, l2);
3058
3059	spin_lock_irq(l1);
3060	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3061}
3062
3063static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3064{
3065	if (l1 > l2)
3066		swap(l1, l2);
3067
3068	raw_spin_lock(l1);
3069	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3070}
3071
3072static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3073{
3074	raw_spin_unlock(l1);
3075	raw_spin_unlock(l2);
3076}
3077
3078DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3079		    double_raw_lock(_T->lock, _T->lock2),
3080		    double_raw_unlock(_T->lock, _T->lock2))
3081
3082/*
3083 * double_rq_unlock - safely unlock two runqueues
3084 *
3085 * Note this does not restore interrupts like task_rq_unlock,
3086 * you need to do so manually after calling.
3087 */
3088static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3089	__releases(rq1->lock)
3090	__releases(rq2->lock)
3091{
3092	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3093		raw_spin_rq_unlock(rq2);
3094	else
3095		__release(rq2->lock);
3096	raw_spin_rq_unlock(rq1);
3097}
3098
3099extern void set_rq_online (struct rq *rq);
3100extern void set_rq_offline(struct rq *rq);
3101
3102extern bool sched_smp_initialized;
3103
3104#else /* !CONFIG_SMP: */
3105
3106/*
3107 * double_rq_lock - safely lock two runqueues
3108 *
3109 * Note this does not disable interrupts like task_rq_lock,
3110 * you need to do so manually before calling.
3111 */
3112static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
3113	__acquires(rq1->lock)
3114	__acquires(rq2->lock)
3115{
3116	WARN_ON_ONCE(!irqs_disabled());
3117	WARN_ON_ONCE(rq1 != rq2);
3118	raw_spin_rq_lock(rq1);
3119	__acquire(rq2->lock);	/* Fake it out ;) */
3120	double_rq_clock_clear_update(rq1, rq2);
3121}
3122
3123/*
3124 * double_rq_unlock - safely unlock two runqueues
3125 *
3126 * Note this does not restore interrupts like task_rq_unlock,
3127 * you need to do so manually after calling.
3128 */
3129static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3130	__releases(rq1->lock)
3131	__releases(rq2->lock)
3132{
3133	WARN_ON_ONCE(rq1 != rq2);
3134	raw_spin_rq_unlock(rq1);
3135	__release(rq2->lock);
3136}
3137
3138#endif /* !CONFIG_SMP */
3139
3140DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3141		    double_rq_lock(_T->lock, _T->lock2),
3142		    double_rq_unlock(_T->lock, _T->lock2))
3143
3144extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3145extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3146extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3147
3148#ifdef	CONFIG_SCHED_DEBUG
3149extern bool sched_debug_verbose;
3150
3151extern void print_cfs_stats(struct seq_file *m, int cpu);
3152extern void print_rt_stats(struct seq_file *m, int cpu);
3153extern void print_dl_stats(struct seq_file *m, int cpu);
3154extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3155extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3156extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3157
3158extern void resched_latency_warn(int cpu, u64 latency);
3159# ifdef CONFIG_NUMA_BALANCING
3160extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
 
3161extern void
3162print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3163		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3164# endif /* CONFIG_NUMA_BALANCING */
3165#else /* !CONFIG_SCHED_DEBUG: */
3166static inline void resched_latency_warn(int cpu, u64 latency) { }
3167#endif /* !CONFIG_SCHED_DEBUG */
3168
3169extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3170extern void init_rt_rq(struct rt_rq *rt_rq);
3171extern void init_dl_rq(struct dl_rq *dl_rq);
3172
3173extern void cfs_bandwidth_usage_inc(void);
3174extern void cfs_bandwidth_usage_dec(void);
3175
3176#ifdef CONFIG_NO_HZ_COMMON
3177
3178#define NOHZ_BALANCE_KICK_BIT	0
3179#define NOHZ_STATS_KICK_BIT	1
3180#define NOHZ_NEWILB_KICK_BIT	2
3181#define NOHZ_NEXT_KICK_BIT	3
3182
3183/* Run sched_balance_domains() */
3184#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3185/* Update blocked load */
3186#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3187/* Update blocked load when entering idle */
3188#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3189/* Update nohz.next_balance */
3190#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3191
3192#define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3193
3194#define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3195
3196extern void nohz_balance_exit_idle(struct rq *rq);
3197#else /* !CONFIG_NO_HZ_COMMON: */
3198static inline void nohz_balance_exit_idle(struct rq *rq) { }
3199#endif /* !CONFIG_NO_HZ_COMMON */
3200
3201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3202extern void nohz_run_idle_balance(int cpu);
3203#else
3204static inline void nohz_run_idle_balance(int cpu) { }
3205#endif
3206
3207#include "stats.h"
3208
3209#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3210
3211extern void __sched_core_account_forceidle(struct rq *rq);
3212
3213static inline void sched_core_account_forceidle(struct rq *rq)
3214{
3215	if (schedstat_enabled())
3216		__sched_core_account_forceidle(rq);
3217}
3218
3219extern void __sched_core_tick(struct rq *rq);
3220
3221static inline void sched_core_tick(struct rq *rq)
3222{
3223	if (sched_core_enabled(rq) && schedstat_enabled())
3224		__sched_core_tick(rq);
3225}
3226
3227#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3228
3229static inline void sched_core_account_forceidle(struct rq *rq) { }
3230
3231static inline void sched_core_tick(struct rq *rq) { }
3232
3233#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3234
3235#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3236
3237struct irqtime {
3238	u64			total;
3239	u64			tick_delta;
3240	u64			irq_start_time;
3241	struct u64_stats_sync	sync;
3242};
3243
3244DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3245
3246/*
3247 * Returns the irqtime minus the softirq time computed by ksoftirqd.
3248 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3249 * and never move forward.
3250 */
3251static inline u64 irq_time_read(int cpu)
3252{
3253	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3254	unsigned int seq;
3255	u64 total;
3256
3257	do {
3258		seq = __u64_stats_fetch_begin(&irqtime->sync);
3259		total = irqtime->total;
3260	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3261
3262	return total;
3263}
3264
3265#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3266
3267#ifdef CONFIG_CPU_FREQ
3268
3269DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3270
3271/**
3272 * cpufreq_update_util - Take a note about CPU utilization changes.
3273 * @rq: Runqueue to carry out the update for.
3274 * @flags: Update reason flags.
3275 *
3276 * This function is called by the scheduler on the CPU whose utilization is
3277 * being updated.
3278 *
3279 * It can only be called from RCU-sched read-side critical sections.
3280 *
3281 * The way cpufreq is currently arranged requires it to evaluate the CPU
3282 * performance state (frequency/voltage) on a regular basis to prevent it from
3283 * being stuck in a completely inadequate performance level for too long.
3284 * That is not guaranteed to happen if the updates are only triggered from CFS
3285 * and DL, though, because they may not be coming in if only RT tasks are
3286 * active all the time (or there are RT tasks only).
3287 *
3288 * As a workaround for that issue, this function is called periodically by the
3289 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3290 * but that really is a band-aid.  Going forward it should be replaced with
3291 * solutions targeted more specifically at RT tasks.
3292 */
3293static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3294{
3295	struct update_util_data *data;
3296
3297	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3298						  cpu_of(rq)));
3299	if (data)
3300		data->func(data, rq_clock(rq), flags);
3301}
3302#else /* !CONFIG_CPU_FREQ: */
3303static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3304#endif /* !CONFIG_CPU_FREQ */
3305
3306#ifdef arch_scale_freq_capacity
3307# ifndef arch_scale_freq_invariant
3308#  define arch_scale_freq_invariant()	true
3309# endif
3310#else
3311# define arch_scale_freq_invariant()	false
3312#endif
3313
3314#ifdef CONFIG_SMP
3315
3316unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3317				 unsigned long *min,
3318				 unsigned long *max);
3319
3320unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3321				 unsigned long min,
3322				 unsigned long max);
3323
3324
3325/*
3326 * Verify the fitness of task @p to run on @cpu taking into account the
3327 * CPU original capacity and the runtime/deadline ratio of the task.
3328 *
3329 * The function will return true if the original capacity of @cpu is
3330 * greater than or equal to task's deadline density right shifted by
3331 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3332 */
3333static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3334{
3335	unsigned long cap = arch_scale_cpu_capacity(cpu);
3336
3337	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3338}
3339
3340static inline unsigned long cpu_bw_dl(struct rq *rq)
3341{
3342	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3343}
3344
3345static inline unsigned long cpu_util_dl(struct rq *rq)
3346{
3347	return READ_ONCE(rq->avg_dl.util_avg);
3348}
3349
3350
3351extern unsigned long cpu_util_cfs(int cpu);
3352extern unsigned long cpu_util_cfs_boost(int cpu);
3353
3354static inline unsigned long cpu_util_rt(struct rq *rq)
3355{
3356	return READ_ONCE(rq->avg_rt.util_avg);
3357}
3358
3359#else /* !CONFIG_SMP */
3360static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3361#endif /* CONFIG_SMP */
3362
3363#ifdef CONFIG_UCLAMP_TASK
3364
3365unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3366
3367static inline unsigned long uclamp_rq_get(struct rq *rq,
3368					  enum uclamp_id clamp_id)
3369{
3370	return READ_ONCE(rq->uclamp[clamp_id].value);
3371}
3372
3373static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3374				 unsigned int value)
3375{
3376	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3377}
3378
3379static inline bool uclamp_rq_is_idle(struct rq *rq)
3380{
3381	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3382}
3383
3384/* Is the rq being capped/throttled by uclamp_max? */
3385static inline bool uclamp_rq_is_capped(struct rq *rq)
3386{
3387	unsigned long rq_util;
3388	unsigned long max_util;
3389
3390	if (!static_branch_likely(&sched_uclamp_used))
3391		return false;
3392
3393	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3394	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3395
3396	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3397}
3398
3399/*
3400 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3401 * by default in the fast path and only gets turned on once userspace performs
3402 * an operation that requires it.
3403 *
3404 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3405 * hence is active.
3406 */
3407static inline bool uclamp_is_used(void)
3408{
3409	return static_branch_likely(&sched_uclamp_used);
3410}
3411
3412#define for_each_clamp_id(clamp_id) \
3413	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3414
3415extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3416
3417
3418static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3419{
3420	if (clamp_id == UCLAMP_MIN)
3421		return 0;
3422	return SCHED_CAPACITY_SCALE;
3423}
3424
3425/* Integer rounded range for each bucket */
3426#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3427
3428static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3429{
3430	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3431}
3432
3433static inline void
3434uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3435{
3436	uc_se->value = value;
3437	uc_se->bucket_id = uclamp_bucket_id(value);
3438	uc_se->user_defined = user_defined;
3439}
3440
3441#else /* !CONFIG_UCLAMP_TASK: */
3442
3443static inline unsigned long
3444uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3445{
3446	if (clamp_id == UCLAMP_MIN)
3447		return 0;
3448
3449	return SCHED_CAPACITY_SCALE;
3450}
3451
3452static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3453
3454static inline bool uclamp_is_used(void)
3455{
3456	return false;
3457}
3458
3459static inline unsigned long
3460uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3461{
3462	if (clamp_id == UCLAMP_MIN)
3463		return 0;
3464
3465	return SCHED_CAPACITY_SCALE;
3466}
3467
3468static inline void
3469uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3470{
3471}
3472
3473static inline bool uclamp_rq_is_idle(struct rq *rq)
3474{
3475	return false;
3476}
3477
3478#endif /* !CONFIG_UCLAMP_TASK */
3479
3480#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3481
3482static inline unsigned long cpu_util_irq(struct rq *rq)
3483{
3484	return READ_ONCE(rq->avg_irq.util_avg);
3485}
3486
3487static inline
3488unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3489{
3490	util *= (max - irq);
3491	util /= max;
3492
3493	return util;
3494
3495}
3496
3497#else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3498
3499static inline unsigned long cpu_util_irq(struct rq *rq)
3500{
3501	return 0;
3502}
3503
3504static inline
3505unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3506{
3507	return util;
3508}
3509
3510#endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3511
3512#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3513
3514#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3515
3516DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3517
3518static inline bool sched_energy_enabled(void)
3519{
3520	return static_branch_unlikely(&sched_energy_present);
3521}
3522
3523extern struct cpufreq_governor schedutil_gov;
3524
3525#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3526
3527#define perf_domain_span(pd) NULL
3528
3529static inline bool sched_energy_enabled(void) { return false; }
3530
3531#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3532
3533#ifdef CONFIG_MEMBARRIER
3534
3535/*
3536 * The scheduler provides memory barriers required by membarrier between:
3537 * - prior user-space memory accesses and store to rq->membarrier_state,
3538 * - store to rq->membarrier_state and following user-space memory accesses.
3539 * In the same way it provides those guarantees around store to rq->curr.
3540 */
3541static inline void membarrier_switch_mm(struct rq *rq,
3542					struct mm_struct *prev_mm,
3543					struct mm_struct *next_mm)
3544{
3545	int membarrier_state;
3546
3547	if (prev_mm == next_mm)
3548		return;
3549
3550	membarrier_state = atomic_read(&next_mm->membarrier_state);
3551	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3552		return;
3553
3554	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3555}
3556
3557#else /* !CONFIG_MEMBARRIER :*/
3558
3559static inline void membarrier_switch_mm(struct rq *rq,
3560					struct mm_struct *prev_mm,
3561					struct mm_struct *next_mm)
3562{
3563}
3564
3565#endif /* !CONFIG_MEMBARRIER */
3566
3567#ifdef CONFIG_SMP
3568static inline bool is_per_cpu_kthread(struct task_struct *p)
3569{
3570	if (!(p->flags & PF_KTHREAD))
3571		return false;
3572
3573	if (p->nr_cpus_allowed != 1)
3574		return false;
3575
3576	return true;
3577}
3578#endif
3579
3580extern void swake_up_all_locked(struct swait_queue_head *q);
3581extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3582
3583extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3584
3585#ifdef CONFIG_PREEMPT_DYNAMIC
3586extern int preempt_dynamic_mode;
3587extern int sched_dynamic_mode(const char *str);
3588extern void sched_dynamic_update(int mode);
3589#endif
3590
3591#ifdef CONFIG_SCHED_MM_CID
3592
3593#define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3594#define MM_CID_SCAN_DELAY	100			/* 100ms */
3595
3596extern raw_spinlock_t cid_lock;
3597extern int use_cid_lock;
3598
3599extern void sched_mm_cid_migrate_from(struct task_struct *t);
3600extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3601extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3602extern void init_sched_mm_cid(struct task_struct *t);
3603
3604static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3605{
3606	if (cid < 0)
3607		return;
3608	cpumask_clear_cpu(cid, mm_cidmask(mm));
3609}
3610
3611/*
3612 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3613 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3614 * be held to transition to other states.
3615 *
3616 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3617 * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3618 */
3619static inline void mm_cid_put_lazy(struct task_struct *t)
3620{
3621	struct mm_struct *mm = t->mm;
3622	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3623	int cid;
3624
3625	lockdep_assert_irqs_disabled();
3626	cid = __this_cpu_read(pcpu_cid->cid);
3627	if (!mm_cid_is_lazy_put(cid) ||
3628	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3629		return;
3630	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3631}
3632
3633static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3634{
3635	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3636	int cid, res;
3637
3638	lockdep_assert_irqs_disabled();
3639	cid = __this_cpu_read(pcpu_cid->cid);
3640	for (;;) {
3641		if (mm_cid_is_unset(cid))
3642			return MM_CID_UNSET;
3643		/*
3644		 * Attempt transition from valid or lazy-put to unset.
3645		 */
3646		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3647		if (res == cid)
3648			break;
3649		cid = res;
3650	}
3651	return cid;
3652}
3653
3654static inline void mm_cid_put(struct mm_struct *mm)
3655{
3656	int cid;
3657
3658	lockdep_assert_irqs_disabled();
3659	cid = mm_cid_pcpu_unset(mm);
3660	if (cid == MM_CID_UNSET)
3661		return;
3662	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3663}
3664
3665static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3666{
3667	struct cpumask *cidmask = mm_cidmask(mm);
3668	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3669	int cid, max_nr_cid, allowed_max_nr_cid;
3670
 
3671	/*
3672	 * After shrinking the number of threads or reducing the number
3673	 * of allowed cpus, reduce the value of max_nr_cid so expansion
3674	 * of cid allocation will preserve cache locality if the number
3675	 * of threads or allowed cpus increase again.
3676	 */
3677	max_nr_cid = atomic_read(&mm->max_nr_cid);
3678	while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed),
3679					   atomic_read(&mm->mm_users))),
3680	       max_nr_cid > allowed_max_nr_cid) {
3681		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */
3682		if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) {
3683			max_nr_cid = allowed_max_nr_cid;
3684			break;
3685		}
3686	}
3687	/* Try to re-use recent cid. This improves cache locality. */
3688	cid = __this_cpu_read(pcpu_cid->recent_cid);
3689	if (!mm_cid_is_unset(cid) && cid < max_nr_cid &&
3690	    !cpumask_test_and_set_cpu(cid, cidmask))
3691		return cid;
3692	/*
3693	 * Expand cid allocation if the maximum number of concurrency
3694	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3695	 * and number of threads. Expanding cid allocation as much as
3696	 * possible improves cache locality.
3697	 */
3698	cid = max_nr_cid;
3699	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3700		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */
3701		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3702			continue;
3703		if (!cpumask_test_and_set_cpu(cid, cidmask))
3704			return cid;
3705	}
3706	/*
3707	 * Find the first available concurrency id.
3708	 * Retry finding first zero bit if the mask is temporarily
3709	 * filled. This only happens during concurrent remote-clear
3710	 * which owns a cid without holding a rq lock.
3711	 */
3712	for (;;) {
3713		cid = cpumask_first_zero(cidmask);
3714		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3715			break;
3716		cpu_relax();
3717	}
3718	if (cpumask_test_and_set_cpu(cid, cidmask))
3719		return -1;
3720
3721	return cid;
3722}
3723
3724/*
3725 * Save a snapshot of the current runqueue time of this cpu
3726 * with the per-cpu cid value, allowing to estimate how recently it was used.
3727 */
3728static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3729{
3730	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3731
3732	lockdep_assert_rq_held(rq);
3733	WRITE_ONCE(pcpu_cid->time, rq->clock);
3734}
3735
3736static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3737			       struct mm_struct *mm)
3738{
3739	int cid;
3740
3741	/*
3742	 * All allocations (even those using the cid_lock) are lock-free. If
3743	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3744	 * guarantee forward progress.
3745	 */
3746	if (!READ_ONCE(use_cid_lock)) {
3747		cid = __mm_cid_try_get(t, mm);
3748		if (cid >= 0)
3749			goto end;
3750		raw_spin_lock(&cid_lock);
3751	} else {
3752		raw_spin_lock(&cid_lock);
3753		cid = __mm_cid_try_get(t, mm);
3754		if (cid >= 0)
3755			goto unlock;
3756	}
3757
3758	/*
3759	 * cid concurrently allocated. Retry while forcing following
3760	 * allocations to use the cid_lock to ensure forward progress.
3761	 */
3762	WRITE_ONCE(use_cid_lock, 1);
3763	/*
3764	 * Set use_cid_lock before allocation. Only care about program order
3765	 * because this is only required for forward progress.
3766	 */
3767	barrier();
3768	/*
3769	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3770	 * all newcoming allocations observe the use_cid_lock flag set.
3771	 */
3772	do {
3773		cid = __mm_cid_try_get(t, mm);
3774		cpu_relax();
3775	} while (cid < 0);
3776	/*
3777	 * Allocate before clearing use_cid_lock. Only care about
3778	 * program order because this is for forward progress.
3779	 */
3780	barrier();
3781	WRITE_ONCE(use_cid_lock, 0);
3782unlock:
3783	raw_spin_unlock(&cid_lock);
3784end:
3785	mm_cid_snapshot_time(rq, mm);
3786
3787	return cid;
3788}
3789
3790static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3791			     struct mm_struct *mm)
3792{
3793	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3794	struct cpumask *cpumask;
3795	int cid;
3796
3797	lockdep_assert_rq_held(rq);
3798	cpumask = mm_cidmask(mm);
3799	cid = __this_cpu_read(pcpu_cid->cid);
3800	if (mm_cid_is_valid(cid)) {
3801		mm_cid_snapshot_time(rq, mm);
3802		return cid;
3803	}
3804	if (mm_cid_is_lazy_put(cid)) {
3805		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3806			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3807	}
3808	cid = __mm_cid_get(rq, t, mm);
3809	__this_cpu_write(pcpu_cid->cid, cid);
3810	__this_cpu_write(pcpu_cid->recent_cid, cid);
3811
3812	return cid;
3813}
3814
3815static inline void switch_mm_cid(struct rq *rq,
3816				 struct task_struct *prev,
3817				 struct task_struct *next)
3818{
3819	/*
3820	 * Provide a memory barrier between rq->curr store and load of
3821	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3822	 *
3823	 * Should be adapted if context_switch() is modified.
3824	 */
3825	if (!next->mm) {                                // to kernel
3826		/*
3827		 * user -> kernel transition does not guarantee a barrier, but
3828		 * we can use the fact that it performs an atomic operation in
3829		 * mmgrab().
3830		 */
3831		if (prev->mm)                           // from user
3832			smp_mb__after_mmgrab();
3833		/*
3834		 * kernel -> kernel transition does not change rq->curr->mm
3835		 * state. It stays NULL.
3836		 */
3837	} else {                                        // to user
3838		/*
3839		 * kernel -> user transition does not provide a barrier
3840		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3841		 * Provide it here.
3842		 */
3843		if (!prev->mm) {                        // from kernel
3844			smp_mb();
3845		} else {				// from user
3846			/*
3847			 * user->user transition relies on an implicit
3848			 * memory barrier in switch_mm() when
3849			 * current->mm changes. If the architecture
3850			 * switch_mm() does not have an implicit memory
3851			 * barrier, it is emitted here.  If current->mm
3852			 * is unchanged, no barrier is needed.
3853			 */
3854			smp_mb__after_switch_mm();
3855		}
3856	}
3857	if (prev->mm_cid_active) {
3858		mm_cid_snapshot_time(rq, prev->mm);
3859		mm_cid_put_lazy(prev);
3860		prev->mm_cid = -1;
3861	}
3862	if (next->mm_cid_active)
3863		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3864}
3865
3866#else /* !CONFIG_SCHED_MM_CID: */
3867static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3868static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3869static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3870static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3871static inline void init_sched_mm_cid(struct task_struct *t) { }
3872#endif /* !CONFIG_SCHED_MM_CID */
3873
3874extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3875extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3876#ifdef CONFIG_SMP
3877static inline
3878void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3879{
3880	lockdep_assert_rq_held(src_rq);
3881	lockdep_assert_rq_held(dst_rq);
3882
3883	deactivate_task(src_rq, task, 0);
3884	set_task_cpu(task, dst_rq->cpu);
3885	activate_task(dst_rq, task, 0);
3886}
3887
3888static inline
3889bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3890{
3891	if (!task_on_cpu(rq, p) &&
3892	    cpumask_test_cpu(cpu, &p->cpus_mask))
3893		return true;
3894
3895	return false;
3896}
3897#endif
3898
3899#ifdef CONFIG_RT_MUTEXES
3900
3901static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3902{
3903	if (pi_task)
3904		prio = min(prio, pi_task->prio);
3905
3906	return prio;
3907}
3908
3909static inline int rt_effective_prio(struct task_struct *p, int prio)
3910{
3911	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3912
3913	return __rt_effective_prio(pi_task, prio);
3914}
3915
3916#else /* !CONFIG_RT_MUTEXES: */
3917
3918static inline int rt_effective_prio(struct task_struct *p, int prio)
3919{
3920	return prio;
3921}
3922
3923#endif /* !CONFIG_RT_MUTEXES */
3924
3925extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3926extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3927extern const struct sched_class *__setscheduler_class(int policy, int prio);
3928extern void set_load_weight(struct task_struct *p, bool update_load);
3929extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3930extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3931
3932extern void check_class_changing(struct rq *rq, struct task_struct *p,
3933				 const struct sched_class *prev_class);
3934extern void check_class_changed(struct rq *rq, struct task_struct *p,
3935				const struct sched_class *prev_class,
3936				int oldprio);
3937
3938#ifdef CONFIG_SMP
3939extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3940extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3941#else
3942
3943static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
3944{
3945	return NULL;
3946}
3947
3948static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
3949{
3950}
3951
3952#endif
3953
3954#ifdef CONFIG_SCHED_CLASS_EXT
3955/*
3956 * Used by SCX in the enable/disable paths to move tasks between sched_classes
3957 * and establish invariants.
3958 */
3959struct sched_enq_and_set_ctx {
3960	struct task_struct	*p;
3961	int			queue_flags;
3962	bool			queued;
3963	bool			running;
3964};
3965
3966void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3967			    struct sched_enq_and_set_ctx *ctx);
3968void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3969
3970#endif /* CONFIG_SCHED_CLASS_EXT */
3971
3972#include "ext.h"
3973
3974#endif /* _KERNEL_SCHED_SCHED_H */
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#ifndef _KERNEL_SCHED_SCHED_H
   6#define _KERNEL_SCHED_SCHED_H
   7
   8#include <linux/sched/affinity.h>
   9#include <linux/sched/autogroup.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/deadline.h>
  12#include <linux/sched.h>
  13#include <linux/sched/loadavg.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/rseq_api.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/smt.h>
  18#include <linux/sched/stat.h>
  19#include <linux/sched/sysctl.h>
  20#include <linux/sched/task_flags.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/topology.h>
  23
  24#include <linux/atomic.h>
  25#include <linux/bitmap.h>
  26#include <linux/bug.h>
  27#include <linux/capability.h>
  28#include <linux/cgroup_api.h>
  29#include <linux/cgroup.h>
  30#include <linux/context_tracking.h>
  31#include <linux/cpufreq.h>
  32#include <linux/cpumask_api.h>
  33#include <linux/ctype.h>
  34#include <linux/file.h>
  35#include <linux/fs_api.h>
  36#include <linux/hrtimer_api.h>
  37#include <linux/interrupt.h>
  38#include <linux/irq_work.h>
  39#include <linux/jiffies.h>
  40#include <linux/kref_api.h>
  41#include <linux/kthread.h>
  42#include <linux/ktime_api.h>
  43#include <linux/lockdep_api.h>
  44#include <linux/lockdep.h>
  45#include <linux/minmax.h>
  46#include <linux/mm.h>
  47#include <linux/module.h>
  48#include <linux/mutex_api.h>
  49#include <linux/plist.h>
  50#include <linux/poll.h>
  51#include <linux/proc_fs.h>
  52#include <linux/profile.h>
  53#include <linux/psi.h>
  54#include <linux/rcupdate.h>
  55#include <linux/seq_file.h>
  56#include <linux/seqlock.h>
  57#include <linux/softirq.h>
  58#include <linux/spinlock_api.h>
  59#include <linux/static_key.h>
  60#include <linux/stop_machine.h>
  61#include <linux/syscalls_api.h>
  62#include <linux/syscalls.h>
  63#include <linux/tick.h>
  64#include <linux/topology.h>
  65#include <linux/types.h>
  66#include <linux/u64_stats_sync_api.h>
  67#include <linux/uaccess.h>
  68#include <linux/wait_api.h>
  69#include <linux/wait_bit.h>
  70#include <linux/workqueue_api.h>
 
  71
  72#include <trace/events/power.h>
  73#include <trace/events/sched.h>
  74
  75#include "../workqueue_internal.h"
  76
 
 
 
 
 
 
  77#ifdef CONFIG_PARAVIRT
  78# include <asm/paravirt.h>
  79# include <asm/paravirt_api_clock.h>
  80#endif
  81
  82#include <asm/barrier.h>
  83
  84#include "cpupri.h"
  85#include "cpudeadline.h"
  86
  87#ifdef CONFIG_SCHED_DEBUG
  88# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
  89#else
  90# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
  91#endif
  92
  93struct rq;
  94struct cpuidle_state;
  95
  96/* task_struct::on_rq states: */
  97#define TASK_ON_RQ_QUEUED	1
  98#define TASK_ON_RQ_MIGRATING	2
  99
 100extern __read_mostly int scheduler_running;
 101
 102extern unsigned long calc_load_update;
 103extern atomic_long_t calc_load_tasks;
 104
 105extern void calc_global_load_tick(struct rq *this_rq);
 106extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 107
 108extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 109
 110extern int sysctl_sched_rt_period;
 111extern int sysctl_sched_rt_runtime;
 112extern int sched_rr_timeslice;
 113
 114/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115 * Helpers for converting nanosecond timing to jiffy resolution
 116 */
 117#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 118
 119/*
 120 * Increase resolution of nice-level calculations for 64-bit architectures.
 121 * The extra resolution improves shares distribution and load balancing of
 122 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 123 * hierarchies, especially on larger systems. This is not a user-visible change
 124 * and does not change the user-interface for setting shares/weights.
 125 *
 126 * We increase resolution only if we have enough bits to allow this increased
 127 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 128 * are pretty high and the returns do not justify the increased costs.
 129 *
 130 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 131 * increase coverage and consistency always enable it on 64-bit platforms.
 132 */
 133#ifdef CONFIG_64BIT
 134# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 135# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 136# define scale_load_down(w) \
 137({ \
 138	unsigned long __w = (w); \
 139	if (__w) \
 140		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 141	__w; \
 
 142})
 143#else
 144# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 145# define scale_load(w)		(w)
 146# define scale_load_down(w)	(w)
 147#endif
 148
 149/*
 150 * Task weight (visible to users) and its load (invisible to users) have
 151 * independent resolution, but they should be well calibrated. We use
 152 * scale_load() and scale_load_down(w) to convert between them. The
 153 * following must be true:
 154 *
 155 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 156 *
 157 */
 158#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 159
 160/*
 161 * Single value that decides SCHED_DEADLINE internal math precision.
 162 * 10 -> just above 1us
 163 * 9  -> just above 0.5us
 164 */
 165#define DL_SCALE		10
 166
 167/*
 168 * Single value that denotes runtime == period, ie unlimited time.
 169 */
 170#define RUNTIME_INF		((u64)~0ULL)
 171
 172static inline int idle_policy(int policy)
 173{
 174	return policy == SCHED_IDLE;
 175}
 
 
 
 
 
 
 
 
 
 
 176static inline int fair_policy(int policy)
 177{
 178	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 179}
 180
 181static inline int rt_policy(int policy)
 182{
 183	return policy == SCHED_FIFO || policy == SCHED_RR;
 184}
 185
 186static inline int dl_policy(int policy)
 187{
 188	return policy == SCHED_DEADLINE;
 189}
 
 190static inline bool valid_policy(int policy)
 191{
 192	return idle_policy(policy) || fair_policy(policy) ||
 193		rt_policy(policy) || dl_policy(policy);
 194}
 195
 196static inline int task_has_idle_policy(struct task_struct *p)
 197{
 198	return idle_policy(p->policy);
 199}
 200
 201static inline int task_has_rt_policy(struct task_struct *p)
 202{
 203	return rt_policy(p->policy);
 204}
 205
 206static inline int task_has_dl_policy(struct task_struct *p)
 207{
 208	return dl_policy(p->policy);
 209}
 210
 211#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 212
 213static inline void update_avg(u64 *avg, u64 sample)
 214{
 215	s64 diff = sample - *avg;
 
 216	*avg += diff / 8;
 217}
 218
 219/*
 220 * Shifting a value by an exponent greater *or equal* to the size of said value
 221 * is UB; cap at size-1.
 222 */
 223#define shr_bound(val, shift)							\
 224	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 225
 226/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227 * !! For sched_setattr_nocheck() (kernel) only !!
 228 *
 229 * This is actually gross. :(
 230 *
 231 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 232 * tasks, but still be able to sleep. We need this on platforms that cannot
 233 * atomically change clock frequency. Remove once fast switching will be
 234 * available on such platforms.
 235 *
 236 * SUGOV stands for SchedUtil GOVernor.
 237 */
 238#define SCHED_FLAG_SUGOV	0x10000000
 239
 240#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
 241
 242static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
 243{
 244#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 245	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 246#else
 247	return false;
 248#endif
 249}
 250
 251/*
 252 * Tells if entity @a should preempt entity @b.
 253 */
 254static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
 255				     const struct sched_dl_entity *b)
 256{
 257	return dl_entity_is_special(a) ||
 258	       dl_time_before(a->deadline, b->deadline);
 259}
 260
 261/*
 262 * This is the priority-queue data structure of the RT scheduling class:
 263 */
 264struct rt_prio_array {
 265	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 266	struct list_head queue[MAX_RT_PRIO];
 267};
 268
 269struct rt_bandwidth {
 270	/* nests inside the rq lock: */
 271	raw_spinlock_t		rt_runtime_lock;
 272	ktime_t			rt_period;
 273	u64			rt_runtime;
 274	struct hrtimer		rt_period_timer;
 275	unsigned int		rt_period_active;
 276};
 277
 278static inline int dl_bandwidth_enabled(void)
 279{
 280	return sysctl_sched_rt_runtime >= 0;
 281}
 282
 283/*
 284 * To keep the bandwidth of -deadline tasks under control
 285 * we need some place where:
 286 *  - store the maximum -deadline bandwidth of each cpu;
 287 *  - cache the fraction of bandwidth that is currently allocated in
 288 *    each root domain;
 289 *
 290 * This is all done in the data structure below. It is similar to the
 291 * one used for RT-throttling (rt_bandwidth), with the main difference
 292 * that, since here we are only interested in admission control, we
 293 * do not decrease any runtime while the group "executes", neither we
 294 * need a timer to replenish it.
 295 *
 296 * With respect to SMP, bandwidth is given on a per root domain basis,
 297 * meaning that:
 298 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 299 *  - total_bw is the currently allocated bandwidth in each root domain;
 300 */
 301struct dl_bw {
 302	raw_spinlock_t		lock;
 303	u64			bw;
 304	u64			total_bw;
 305};
 306
 307extern void init_dl_bw(struct dl_bw *dl_b);
 308extern int  sched_dl_global_validate(void);
 309extern void sched_dl_do_global(void);
 310extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 311extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 312extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 313extern bool __checkparam_dl(const struct sched_attr *attr);
 314extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 315extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 316extern int  dl_bw_check_overflow(int cpu);
 317
 318/*
 319 * SCHED_DEADLINE supports servers (nested scheduling) with the following
 320 * interface:
 321 *
 322 *   dl_se::rq -- runqueue we belong to.
 323 *
 324 *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
 325 *                                server when it runs out of tasks to run.
 326 *
 327 *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
 328 *                           returns NULL.
 329 *
 330 *   dl_server_update() -- called from update_curr_common(), propagates runtime
 331 *                         to the server.
 332 *
 333 *   dl_server_start()
 334 *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
 335 *
 336 *   dl_server_init() -- initializes the server.
 337 */
 338extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
 339extern void dl_server_start(struct sched_dl_entity *dl_se);
 340extern void dl_server_stop(struct sched_dl_entity *dl_se);
 341extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
 342		    dl_server_has_tasks_f has_tasks,
 343		    dl_server_pick_f pick);
 
 
 
 
 
 
 
 
 
 
 
 
 344
 345#ifdef CONFIG_CGROUP_SCHED
 346
 347struct cfs_rq;
 348struct rt_rq;
 349
 350extern struct list_head task_groups;
 351
 352struct cfs_bandwidth {
 353#ifdef CONFIG_CFS_BANDWIDTH
 354	raw_spinlock_t		lock;
 355	ktime_t			period;
 356	u64			quota;
 357	u64			runtime;
 358	u64			burst;
 359	u64			runtime_snap;
 360	s64			hierarchical_quota;
 361
 362	u8			idle;
 363	u8			period_active;
 364	u8			slack_started;
 365	struct hrtimer		period_timer;
 366	struct hrtimer		slack_timer;
 367	struct list_head	throttled_cfs_rq;
 368
 369	/* Statistics: */
 370	int			nr_periods;
 371	int			nr_throttled;
 372	int			nr_burst;
 373	u64			throttled_time;
 374	u64			burst_time;
 375#endif
 376};
 377
 378/* Task group related information */
 379struct task_group {
 380	struct cgroup_subsys_state css;
 381
 
 
 
 
 
 382#ifdef CONFIG_FAIR_GROUP_SCHED
 383	/* schedulable entities of this group on each CPU */
 384	struct sched_entity	**se;
 385	/* runqueue "owned" by this group on each CPU */
 386	struct cfs_rq		**cfs_rq;
 387	unsigned long		shares;
 388
 389	/* A positive value indicates that this is a SCHED_IDLE group. */
 390	int			idle;
 391
 392#ifdef	CONFIG_SMP
 393	/*
 394	 * load_avg can be heavily contended at clock tick time, so put
 395	 * it in its own cacheline separated from the fields above which
 396	 * will also be accessed at each tick.
 397	 */
 398	atomic_long_t		load_avg ____cacheline_aligned;
 399#endif
 400#endif
 401
 402#ifdef CONFIG_RT_GROUP_SCHED
 403	struct sched_rt_entity	**rt_se;
 404	struct rt_rq		**rt_rq;
 405
 406	struct rt_bandwidth	rt_bandwidth;
 407#endif
 408
 
 
 
 
 
 409	struct rcu_head		rcu;
 410	struct list_head	list;
 411
 412	struct task_group	*parent;
 413	struct list_head	siblings;
 414	struct list_head	children;
 415
 416#ifdef CONFIG_SCHED_AUTOGROUP
 417	struct autogroup	*autogroup;
 418#endif
 419
 420	struct cfs_bandwidth	cfs_bandwidth;
 421
 422#ifdef CONFIG_UCLAMP_TASK_GROUP
 423	/* The two decimal precision [%] value requested from user-space */
 424	unsigned int		uclamp_pct[UCLAMP_CNT];
 425	/* Clamp values requested for a task group */
 426	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 427	/* Effective clamp values used for a task group */
 428	struct uclamp_se	uclamp[UCLAMP_CNT];
 429#endif
 430
 431};
 432
 433#ifdef CONFIG_FAIR_GROUP_SCHED
 434#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 435
 436/*
 437 * A weight of 0 or 1 can cause arithmetics problems.
 438 * A weight of a cfs_rq is the sum of weights of which entities
 439 * are queued on this cfs_rq, so a weight of a entity should not be
 440 * too large, so as the shares value of a task group.
 441 * (The default weight is 1024 - so there's no practical
 442 *  limitation from this.)
 443 */
 444#define MIN_SHARES		(1UL <<  1)
 445#define MAX_SHARES		(1UL << 18)
 446#endif
 447
 448typedef int (*tg_visitor)(struct task_group *, void *);
 449
 450extern int walk_tg_tree_from(struct task_group *from,
 451			     tg_visitor down, tg_visitor up, void *data);
 452
 453/*
 454 * Iterate the full tree, calling @down when first entering a node and @up when
 455 * leaving it for the final time.
 456 *
 457 * Caller must hold rcu_lock or sufficient equivalent.
 458 */
 459static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 460{
 461	return walk_tg_tree_from(&root_task_group, down, up, data);
 462}
 463
 
 
 
 
 
 464extern int tg_nop(struct task_group *tg, void *data);
 465
 466#ifdef CONFIG_FAIR_GROUP_SCHED
 467extern void free_fair_sched_group(struct task_group *tg);
 468extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 469extern void online_fair_sched_group(struct task_group *tg);
 470extern void unregister_fair_sched_group(struct task_group *tg);
 471#else
 472static inline void free_fair_sched_group(struct task_group *tg) { }
 473static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 474{
 475       return 1;
 476}
 477static inline void online_fair_sched_group(struct task_group *tg) { }
 478static inline void unregister_fair_sched_group(struct task_group *tg) { }
 479#endif
 480
 481extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 482			struct sched_entity *se, int cpu,
 483			struct sched_entity *parent);
 484extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
 485
 486extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 487extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 488extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 489extern bool cfs_task_bw_constrained(struct task_struct *p);
 490
 491extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 492		struct sched_rt_entity *rt_se, int cpu,
 493		struct sched_rt_entity *parent);
 494extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 495extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 496extern long sched_group_rt_runtime(struct task_group *tg);
 497extern long sched_group_rt_period(struct task_group *tg);
 498extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 499
 500extern struct task_group *sched_create_group(struct task_group *parent);
 501extern void sched_online_group(struct task_group *tg,
 502			       struct task_group *parent);
 503extern void sched_destroy_group(struct task_group *tg);
 504extern void sched_release_group(struct task_group *tg);
 505
 506extern void sched_move_task(struct task_struct *tsk);
 507
 508#ifdef CONFIG_FAIR_GROUP_SCHED
 509extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 510
 511extern int sched_group_set_idle(struct task_group *tg, long idle);
 512
 513#ifdef CONFIG_SMP
 514extern void set_task_rq_fair(struct sched_entity *se,
 515			     struct cfs_rq *prev, struct cfs_rq *next);
 516#else /* !CONFIG_SMP */
 517static inline void set_task_rq_fair(struct sched_entity *se,
 518			     struct cfs_rq *prev, struct cfs_rq *next) { }
 519#endif /* CONFIG_SMP */
 
 
 
 520#endif /* CONFIG_FAIR_GROUP_SCHED */
 521
 522#else /* CONFIG_CGROUP_SCHED */
 523
 524struct cfs_bandwidth { };
 
 525static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
 526
 527#endif	/* CONFIG_CGROUP_SCHED */
 528
 529extern void unregister_rt_sched_group(struct task_group *tg);
 530extern void free_rt_sched_group(struct task_group *tg);
 531extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 532
 533/*
 534 * u64_u32_load/u64_u32_store
 535 *
 536 * Use a copy of a u64 value to protect against data race. This is only
 537 * applicable for 32-bits architectures.
 538 */
 539#ifdef CONFIG_64BIT
 540# define u64_u32_load_copy(var, copy)       var
 541# define u64_u32_store_copy(var, copy, val) (var = val)
 542#else
 543# define u64_u32_load_copy(var, copy)					\
 544({									\
 545	u64 __val, __val_copy;						\
 546	do {								\
 547		__val_copy = copy;					\
 548		/*							\
 549		 * paired with u64_u32_store_copy(), ordering access	\
 550		 * to var and copy.					\
 551		 */							\
 552		smp_rmb();						\
 553		__val = var;						\
 554	} while (__val != __val_copy);					\
 555	__val;								\
 556})
 557# define u64_u32_store_copy(var, copy, val)				\
 558do {									\
 559	typeof(val) __val = (val);					\
 560	var = __val;							\
 561	/*								\
 562	 * paired with u64_u32_load_copy(), ordering access to var and	\
 563	 * copy.							\
 564	 */								\
 565	smp_wmb();							\
 566	copy = __val;							\
 567} while (0)
 568#endif
 569# define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
 570# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
 
 
 
 
 
 571
 572/* CFS-related fields in a runqueue */
 573struct cfs_rq {
 574	struct load_weight	load;
 575	unsigned int		nr_running;
 576	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 577	unsigned int		idle_nr_running;   /* SCHED_IDLE */
 578	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 
 579
 580	s64			avg_vruntime;
 581	u64			avg_load;
 582
 583	u64			exec_clock;
 584	u64			min_vruntime;
 585#ifdef CONFIG_SCHED_CORE
 586	unsigned int		forceidle_seq;
 587	u64			min_vruntime_fi;
 588#endif
 589
 590#ifndef CONFIG_64BIT
 591	u64			min_vruntime_copy;
 592#endif
 593
 594	struct rb_root_cached	tasks_timeline;
 595
 596	/*
 597	 * 'curr' points to currently running entity on this cfs_rq.
 598	 * It is set to NULL otherwise (i.e when none are currently running).
 599	 */
 600	struct sched_entity	*curr;
 601	struct sched_entity	*next;
 602
 603#ifdef	CONFIG_SCHED_DEBUG
 604	unsigned int		nr_spread_over;
 605#endif
 606
 607#ifdef CONFIG_SMP
 608	/*
 609	 * CFS load tracking
 610	 */
 611	struct sched_avg	avg;
 612#ifndef CONFIG_64BIT
 613	u64			last_update_time_copy;
 614#endif
 615	struct {
 616		raw_spinlock_t	lock ____cacheline_aligned;
 617		int		nr;
 618		unsigned long	load_avg;
 619		unsigned long	util_avg;
 620		unsigned long	runnable_avg;
 621	} removed;
 622
 623#ifdef CONFIG_FAIR_GROUP_SCHED
 624	u64			last_update_tg_load_avg;
 625	unsigned long		tg_load_avg_contrib;
 626	long			propagate;
 627	long			prop_runnable_sum;
 628
 629	/*
 630	 *   h_load = weight * f(tg)
 631	 *
 632	 * Where f(tg) is the recursive weight fraction assigned to
 633	 * this group.
 634	 */
 635	unsigned long		h_load;
 636	u64			last_h_load_update;
 637	struct sched_entity	*h_load_next;
 638#endif /* CONFIG_FAIR_GROUP_SCHED */
 639#endif /* CONFIG_SMP */
 640
 641#ifdef CONFIG_FAIR_GROUP_SCHED
 642	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 643
 644	/*
 645	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 646	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 647	 * (like users, containers etc.)
 648	 *
 649	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 650	 * This list is used during load balance.
 651	 */
 652	int			on_list;
 653	struct list_head	leaf_cfs_rq_list;
 654	struct task_group	*tg;	/* group that "owns" this runqueue */
 655
 656	/* Locally cached copy of our task_group's idle value */
 657	int			idle;
 658
 659#ifdef CONFIG_CFS_BANDWIDTH
 660	int			runtime_enabled;
 661	s64			runtime_remaining;
 662
 663	u64			throttled_pelt_idle;
 664#ifndef CONFIG_64BIT
 665	u64                     throttled_pelt_idle_copy;
 666#endif
 667	u64			throttled_clock;
 668	u64			throttled_clock_pelt;
 669	u64			throttled_clock_pelt_time;
 670	u64			throttled_clock_self;
 671	u64			throttled_clock_self_time;
 672	int			throttled;
 673	int			throttle_count;
 674	struct list_head	throttled_list;
 675	struct list_head	throttled_csd_list;
 676#endif /* CONFIG_CFS_BANDWIDTH */
 677#endif /* CONFIG_FAIR_GROUP_SCHED */
 678};
 679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680static inline int rt_bandwidth_enabled(void)
 681{
 682	return sysctl_sched_rt_runtime >= 0;
 683}
 684
 685/* RT IPI pull logic requires IRQ_WORK */
 686#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 687# define HAVE_RT_PUSH_IPI
 688#endif
 689
 690/* Real-Time classes' related field in a runqueue: */
 691struct rt_rq {
 692	struct rt_prio_array	active;
 693	unsigned int		rt_nr_running;
 694	unsigned int		rr_nr_running;
 695#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 696	struct {
 697		int		curr; /* highest queued rt task prio */
 698#ifdef CONFIG_SMP
 699		int		next; /* next highest */
 700#endif
 701	} highest_prio;
 702#endif
 703#ifdef CONFIG_SMP
 704	int			overloaded;
 705	struct plist_head	pushable_tasks;
 706
 707#endif /* CONFIG_SMP */
 708	int			rt_queued;
 709
 
 710	int			rt_throttled;
 711	u64			rt_time;
 712	u64			rt_runtime;
 713	/* Nests inside the rq lock: */
 714	raw_spinlock_t		rt_runtime_lock;
 715
 716#ifdef CONFIG_RT_GROUP_SCHED
 717	unsigned int		rt_nr_boosted;
 718
 719	struct rq		*rq;
 720	struct task_group	*tg;
 721#endif
 722};
 723
 724static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 725{
 726	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 727}
 728
 729/* Deadline class' related fields in a runqueue */
 730struct dl_rq {
 731	/* runqueue is an rbtree, ordered by deadline */
 732	struct rb_root_cached	root;
 733
 734	unsigned int		dl_nr_running;
 735
 736#ifdef CONFIG_SMP
 737	/*
 738	 * Deadline values of the currently executing and the
 739	 * earliest ready task on this rq. Caching these facilitates
 740	 * the decision whether or not a ready but not running task
 741	 * should migrate somewhere else.
 742	 */
 743	struct {
 744		u64		curr;
 745		u64		next;
 746	} earliest_dl;
 747
 748	int			overloaded;
 749
 750	/*
 751	 * Tasks on this rq that can be pushed away. They are kept in
 752	 * an rb-tree, ordered by tasks' deadlines, with caching
 753	 * of the leftmost (earliest deadline) element.
 754	 */
 755	struct rb_root_cached	pushable_dl_tasks_root;
 756#else
 757	struct dl_bw		dl_bw;
 758#endif
 759	/*
 760	 * "Active utilization" for this runqueue: increased when a
 761	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 762	 * task blocks
 763	 */
 764	u64			running_bw;
 765
 766	/*
 767	 * Utilization of the tasks "assigned" to this runqueue (including
 768	 * the tasks that are in runqueue and the tasks that executed on this
 769	 * CPU and blocked). Increased when a task moves to this runqueue, and
 770	 * decreased when the task moves away (migrates, changes scheduling
 771	 * policy, or terminates).
 772	 * This is needed to compute the "inactive utilization" for the
 773	 * runqueue (inactive utilization = this_bw - running_bw).
 774	 */
 775	u64			this_bw;
 776	u64			extra_bw;
 777
 778	/*
 779	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
 780	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
 781	 */
 782	u64			max_bw;
 783
 784	/*
 785	 * Inverse of the fraction of CPU utilization that can be reclaimed
 786	 * by the GRUB algorithm.
 787	 */
 788	u64			bw_ratio;
 789};
 790
 791#ifdef CONFIG_FAIR_GROUP_SCHED
 
 792/* An entity is a task if it doesn't "own" a runqueue */
 793#define entity_is_task(se)	(!se->my_q)
 794
 795static inline void se_update_runnable(struct sched_entity *se)
 796{
 797	if (!entity_is_task(se))
 798		se->runnable_weight = se->my_q->h_nr_running;
 
 
 
 799}
 800
 801static inline long se_runnable(struct sched_entity *se)
 802{
 
 
 
 803	if (entity_is_task(se))
 804		return !!se->on_rq;
 805	else
 806		return se->runnable_weight;
 807}
 808
 809#else
 
 810#define entity_is_task(se)	1
 811
 812static inline void se_update_runnable(struct sched_entity *se) {}
 813
 814static inline long se_runnable(struct sched_entity *se)
 815{
 
 
 
 816	return !!se->on_rq;
 817}
 818#endif
 
 819
 820#ifdef CONFIG_SMP
 821/*
 822 * XXX we want to get rid of these helpers and use the full load resolution.
 823 */
 824static inline long se_weight(struct sched_entity *se)
 825{
 826	return scale_load_down(se->load.weight);
 827}
 828
 829
 830static inline bool sched_asym_prefer(int a, int b)
 831{
 832	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 833}
 834
 835struct perf_domain {
 836	struct em_perf_domain *em_pd;
 837	struct perf_domain *next;
 838	struct rcu_head rcu;
 839};
 840
 841/* Scheduling group status flags */
 842#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 843#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 844
 845/*
 846 * We add the notion of a root-domain which will be used to define per-domain
 847 * variables. Each exclusive cpuset essentially defines an island domain by
 848 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 849 * exclusive cpuset is created, we also create and attach a new root-domain
 850 * object.
 851 *
 852 */
 853struct root_domain {
 854	atomic_t		refcount;
 855	atomic_t		rto_count;
 856	struct rcu_head		rcu;
 857	cpumask_var_t		span;
 858	cpumask_var_t		online;
 859
 860	/*
 861	 * Indicate pullable load on at least one CPU, e.g:
 862	 * - More than one runnable task
 863	 * - Running task is misfit
 864	 */
 865	int			overload;
 866
 867	/* Indicate one or more cpus over-utilized (tipping point) */
 868	int			overutilized;
 869
 870	/*
 871	 * The bit corresponding to a CPU gets set here if such CPU has more
 872	 * than one runnable -deadline task (as it is below for RT tasks).
 873	 */
 874	cpumask_var_t		dlo_mask;
 875	atomic_t		dlo_count;
 876	struct dl_bw		dl_bw;
 877	struct cpudl		cpudl;
 878
 879	/*
 880	 * Indicate whether a root_domain's dl_bw has been checked or
 881	 * updated. It's monotonously increasing value.
 882	 *
 883	 * Also, some corner cases, like 'wrap around' is dangerous, but given
 884	 * that u64 is 'big enough'. So that shouldn't be a concern.
 885	 */
 886	u64 visit_gen;
 887
 888#ifdef HAVE_RT_PUSH_IPI
 889	/*
 890	 * For IPI pull requests, loop across the rto_mask.
 891	 */
 892	struct irq_work		rto_push_work;
 893	raw_spinlock_t		rto_lock;
 894	/* These are only updated and read within rto_lock */
 895	int			rto_loop;
 896	int			rto_cpu;
 897	/* These atomics are updated outside of a lock */
 898	atomic_t		rto_loop_next;
 899	atomic_t		rto_loop_start;
 900#endif
 901	/*
 902	 * The "RT overload" flag: it gets set if a CPU has more than
 903	 * one runnable RT task.
 904	 */
 905	cpumask_var_t		rto_mask;
 906	struct cpupri		cpupri;
 907
 908	unsigned long		max_cpu_capacity;
 909
 910	/*
 911	 * NULL-terminated list of performance domains intersecting with the
 912	 * CPUs of the rd. Protected by RCU.
 913	 */
 914	struct perf_domain __rcu *pd;
 915};
 916
 917extern void init_defrootdomain(void);
 918extern int sched_init_domains(const struct cpumask *cpu_map);
 919extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 920extern void sched_get_rd(struct root_domain *rd);
 921extern void sched_put_rd(struct root_domain *rd);
 922
 
 
 
 
 
 
 
 
 
 
 
 923#ifdef HAVE_RT_PUSH_IPI
 924extern void rto_push_irq_work_func(struct irq_work *work);
 925#endif
 926#endif /* CONFIG_SMP */
 927
 928#ifdef CONFIG_UCLAMP_TASK
 929/*
 930 * struct uclamp_bucket - Utilization clamp bucket
 931 * @value: utilization clamp value for tasks on this clamp bucket
 932 * @tasks: number of RUNNABLE tasks on this clamp bucket
 933 *
 934 * Keep track of how many tasks are RUNNABLE for a given utilization
 935 * clamp value.
 936 */
 937struct uclamp_bucket {
 938	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 939	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 940};
 941
 942/*
 943 * struct uclamp_rq - rq's utilization clamp
 944 * @value: currently active clamp values for a rq
 945 * @bucket: utilization clamp buckets affecting a rq
 946 *
 947 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 948 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 949 * (or actually running) with that value.
 950 *
 951 * There are up to UCLAMP_CNT possible different clamp values, currently there
 952 * are only two: minimum utilization and maximum utilization.
 953 *
 954 * All utilization clamping values are MAX aggregated, since:
 955 * - for util_min: we want to run the CPU at least at the max of the minimum
 956 *   utilization required by its currently RUNNABLE tasks.
 957 * - for util_max: we want to allow the CPU to run up to the max of the
 958 *   maximum utilization allowed by its currently RUNNABLE tasks.
 959 *
 960 * Since on each system we expect only a limited number of different
 961 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 962 * the metrics required to compute all the per-rq utilization clamp values.
 963 */
 964struct uclamp_rq {
 965	unsigned int value;
 966	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 967};
 968
 969DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 970#endif /* CONFIG_UCLAMP_TASK */
 971
 972struct rq;
 973struct balance_callback {
 974	struct balance_callback *next;
 975	void (*func)(struct rq *rq);
 976};
 977
 978/*
 979 * This is the main, per-CPU runqueue data structure.
 980 *
 981 * Locking rule: those places that want to lock multiple runqueues
 982 * (such as the load balancing or the thread migration code), lock
 983 * acquire operations must be ordered by ascending &runqueue.
 984 */
 985struct rq {
 986	/* runqueue lock: */
 987	raw_spinlock_t		__lock;
 988
 989	unsigned int		nr_running;
 990#ifdef CONFIG_NUMA_BALANCING
 991	unsigned int		nr_numa_running;
 992	unsigned int		nr_preferred_running;
 993	unsigned int		numa_migrate_on;
 994#endif
 995#ifdef CONFIG_NO_HZ_COMMON
 996#ifdef CONFIG_SMP
 997	unsigned long		last_blocked_load_update_tick;
 998	unsigned int		has_blocked_load;
 999	call_single_data_t	nohz_csd;
1000#endif /* CONFIG_SMP */
1001	unsigned int		nohz_tick_stopped;
1002	atomic_t		nohz_flags;
1003#endif /* CONFIG_NO_HZ_COMMON */
1004
1005#ifdef CONFIG_SMP
1006	unsigned int		ttwu_pending;
1007#endif
1008	u64			nr_switches;
1009
1010#ifdef CONFIG_UCLAMP_TASK
1011	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1012	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1013	unsigned int		uclamp_flags;
1014#define UCLAMP_FLAG_IDLE 0x01
1015#endif
1016
1017	struct cfs_rq		cfs;
1018	struct rt_rq		rt;
1019	struct dl_rq		dl;
 
 
 
 
 
1020
1021#ifdef CONFIG_FAIR_GROUP_SCHED
1022	/* list of leaf cfs_rq on this CPU: */
1023	struct list_head	leaf_cfs_rq_list;
1024	struct list_head	*tmp_alone_branch;
1025#endif /* CONFIG_FAIR_GROUP_SCHED */
1026
1027	/*
1028	 * This is part of a global counter where only the total sum
1029	 * over all CPUs matters. A task can increase this counter on
1030	 * one CPU and if it got migrated afterwards it may decrease
1031	 * it on another CPU. Always updated under the runqueue lock:
1032	 */
1033	unsigned int		nr_uninterruptible;
1034
1035	struct task_struct __rcu	*curr;
 
 
 
 
1036	struct task_struct	*idle;
1037	struct task_struct	*stop;
1038	unsigned long		next_balance;
1039	struct mm_struct	*prev_mm;
1040
1041	unsigned int		clock_update_flags;
1042	u64			clock;
1043	/* Ensure that all clocks are in the same cache line */
1044	u64			clock_task ____cacheline_aligned;
1045	u64			clock_pelt;
1046	unsigned long		lost_idle_time;
1047	u64			clock_pelt_idle;
1048	u64			clock_idle;
1049#ifndef CONFIG_64BIT
1050	u64			clock_pelt_idle_copy;
1051	u64			clock_idle_copy;
1052#endif
1053
1054	atomic_t		nr_iowait;
1055
1056#ifdef CONFIG_SCHED_DEBUG
1057	u64 last_seen_need_resched_ns;
1058	int ticks_without_resched;
1059#endif
1060
1061#ifdef CONFIG_MEMBARRIER
1062	int membarrier_state;
1063#endif
1064
1065#ifdef CONFIG_SMP
1066	struct root_domain		*rd;
1067	struct sched_domain __rcu	*sd;
1068
1069	unsigned long		cpu_capacity;
1070
1071	struct balance_callback *balance_callback;
1072
1073	unsigned char		nohz_idle_balance;
1074	unsigned char		idle_balance;
1075
1076	unsigned long		misfit_task_load;
1077
1078	/* For active balancing */
1079	int			active_balance;
1080	int			push_cpu;
1081	struct cpu_stop_work	active_balance_work;
1082
1083	/* CPU of this runqueue: */
1084	int			cpu;
1085	int			online;
1086
1087	struct list_head cfs_tasks;
1088
1089	struct sched_avg	avg_rt;
1090	struct sched_avg	avg_dl;
1091#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1092	struct sched_avg	avg_irq;
1093#endif
1094#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1095	struct sched_avg	avg_thermal;
1096#endif
1097	u64			idle_stamp;
1098	u64			avg_idle;
1099
1100	/* This is used to determine avg_idle's max value */
1101	u64			max_idle_balance_cost;
1102
1103#ifdef CONFIG_HOTPLUG_CPU
1104	struct rcuwait		hotplug_wait;
1105#endif
1106#endif /* CONFIG_SMP */
1107
1108#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1109	u64			prev_irq_time;
 
1110#endif
1111#ifdef CONFIG_PARAVIRT
1112	u64			prev_steal_time;
1113#endif
1114#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1115	u64			prev_steal_time_rq;
1116#endif
1117
1118	/* calc_load related fields */
1119	unsigned long		calc_load_update;
1120	long			calc_load_active;
1121
1122#ifdef CONFIG_SCHED_HRTICK
1123#ifdef CONFIG_SMP
1124	call_single_data_t	hrtick_csd;
1125#endif
1126	struct hrtimer		hrtick_timer;
1127	ktime_t 		hrtick_time;
1128#endif
1129
1130#ifdef CONFIG_SCHEDSTATS
1131	/* latency stats */
1132	struct sched_info	rq_sched_info;
1133	unsigned long long	rq_cpu_time;
1134	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1135
1136	/* sys_sched_yield() stats */
1137	unsigned int		yld_count;
1138
1139	/* schedule() stats */
1140	unsigned int		sched_count;
1141	unsigned int		sched_goidle;
1142
1143	/* try_to_wake_up() stats */
1144	unsigned int		ttwu_count;
1145	unsigned int		ttwu_local;
1146#endif
1147
1148#ifdef CONFIG_CPU_IDLE
1149	/* Must be inspected within a rcu lock section */
1150	struct cpuidle_state	*idle_state;
1151#endif
1152
1153#ifdef CONFIG_SMP
1154	unsigned int		nr_pinned;
1155#endif
1156	unsigned int		push_busy;
1157	struct cpu_stop_work	push_work;
1158
1159#ifdef CONFIG_SCHED_CORE
1160	/* per rq */
1161	struct rq		*core;
1162	struct task_struct	*core_pick;
 
1163	unsigned int		core_enabled;
1164	unsigned int		core_sched_seq;
1165	struct rb_root		core_tree;
1166
1167	/* shared state -- careful with sched_core_cpu_deactivate() */
1168	unsigned int		core_task_seq;
1169	unsigned int		core_pick_seq;
1170	unsigned long		core_cookie;
1171	unsigned int		core_forceidle_count;
1172	unsigned int		core_forceidle_seq;
1173	unsigned int		core_forceidle_occupation;
1174	u64			core_forceidle_start;
1175#endif
1176
1177	/* Scratch cpumask to be temporarily used under rq_lock */
1178	cpumask_var_t		scratch_mask;
1179
1180#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1181	call_single_data_t	cfsb_csd;
1182	struct list_head	cfsb_csd_list;
1183#endif
1184};
1185
1186#ifdef CONFIG_FAIR_GROUP_SCHED
1187
1188/* CPU runqueue to which this cfs_rq is attached */
1189static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1190{
1191	return cfs_rq->rq;
1192}
1193
1194#else
1195
1196static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1197{
1198	return container_of(cfs_rq, struct rq, cfs);
1199}
1200#endif
1201
1202static inline int cpu_of(struct rq *rq)
1203{
1204#ifdef CONFIG_SMP
1205	return rq->cpu;
1206#else
1207	return 0;
1208#endif
1209}
1210
1211#define MDF_PUSH	0x01
1212
1213static inline bool is_migration_disabled(struct task_struct *p)
1214{
1215#ifdef CONFIG_SMP
1216	return p->migration_disabled;
1217#else
1218	return false;
1219#endif
1220}
1221
1222DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1223
1224#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1225#define this_rq()		this_cpu_ptr(&runqueues)
1226#define task_rq(p)		cpu_rq(task_cpu(p))
1227#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1228#define raw_rq()		raw_cpu_ptr(&runqueues)
1229
1230struct sched_group;
 
 
 
 
1231#ifdef CONFIG_SCHED_CORE
1232static inline struct cpumask *sched_group_span(struct sched_group *sg);
1233
1234DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1235
1236static inline bool sched_core_enabled(struct rq *rq)
1237{
1238	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1239}
1240
1241static inline bool sched_core_disabled(void)
1242{
1243	return !static_branch_unlikely(&__sched_core_enabled);
1244}
1245
1246/*
1247 * Be careful with this function; not for general use. The return value isn't
1248 * stable unless you actually hold a relevant rq->__lock.
1249 */
1250static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1251{
1252	if (sched_core_enabled(rq))
1253		return &rq->core->__lock;
1254
1255	return &rq->__lock;
1256}
1257
1258static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1259{
1260	if (rq->core_enabled)
1261		return &rq->core->__lock;
1262
1263	return &rq->__lock;
1264}
1265
1266bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1267			bool fi);
1268void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
 
1269
1270/*
1271 * Helpers to check if the CPU's core cookie matches with the task's cookie
1272 * when core scheduling is enabled.
1273 * A special case is that the task's cookie always matches with CPU's core
1274 * cookie if the CPU is in an idle core.
1275 */
1276static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1277{
1278	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1279	if (!sched_core_enabled(rq))
1280		return true;
1281
1282	return rq->core->core_cookie == p->core_cookie;
1283}
1284
1285static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1286{
1287	bool idle_core = true;
1288	int cpu;
1289
1290	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1291	if (!sched_core_enabled(rq))
1292		return true;
1293
1294	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1295		if (!available_idle_cpu(cpu)) {
1296			idle_core = false;
1297			break;
1298		}
1299	}
1300
1301	/*
1302	 * A CPU in an idle core is always the best choice for tasks with
1303	 * cookies.
1304	 */
1305	return idle_core || rq->core->core_cookie == p->core_cookie;
1306}
1307
1308static inline bool sched_group_cookie_match(struct rq *rq,
1309					    struct task_struct *p,
1310					    struct sched_group *group)
1311{
1312	int cpu;
1313
1314	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1315	if (!sched_core_enabled(rq))
1316		return true;
1317
1318	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1319		if (sched_core_cookie_match(cpu_rq(cpu), p))
1320			return true;
1321	}
1322	return false;
1323}
1324
1325static inline bool sched_core_enqueued(struct task_struct *p)
1326{
1327	return !RB_EMPTY_NODE(&p->core_node);
1328}
1329
1330extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1331extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1332
1333extern void sched_core_get(void);
1334extern void sched_core_put(void);
1335
1336#else /* !CONFIG_SCHED_CORE */
1337
1338static inline bool sched_core_enabled(struct rq *rq)
1339{
1340	return false;
1341}
1342
1343static inline bool sched_core_disabled(void)
1344{
1345	return true;
1346}
1347
1348static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1349{
1350	return &rq->__lock;
1351}
1352
1353static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1354{
1355	return &rq->__lock;
1356}
1357
1358static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1359{
1360	return true;
1361}
1362
1363static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1364{
1365	return true;
1366}
1367
1368static inline bool sched_group_cookie_match(struct rq *rq,
1369					    struct task_struct *p,
1370					    struct sched_group *group)
1371{
1372	return true;
1373}
1374#endif /* CONFIG_SCHED_CORE */
 
1375
1376static inline void lockdep_assert_rq_held(struct rq *rq)
1377{
1378	lockdep_assert_held(__rq_lockp(rq));
1379}
1380
1381extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1382extern bool raw_spin_rq_trylock(struct rq *rq);
1383extern void raw_spin_rq_unlock(struct rq *rq);
1384
1385static inline void raw_spin_rq_lock(struct rq *rq)
1386{
1387	raw_spin_rq_lock_nested(rq, 0);
1388}
1389
1390static inline void raw_spin_rq_lock_irq(struct rq *rq)
1391{
1392	local_irq_disable();
1393	raw_spin_rq_lock(rq);
1394}
1395
1396static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1397{
1398	raw_spin_rq_unlock(rq);
1399	local_irq_enable();
1400}
1401
1402static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1403{
1404	unsigned long flags;
 
1405	local_irq_save(flags);
1406	raw_spin_rq_lock(rq);
 
1407	return flags;
1408}
1409
1410static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1411{
1412	raw_spin_rq_unlock(rq);
1413	local_irq_restore(flags);
1414}
1415
1416#define raw_spin_rq_lock_irqsave(rq, flags)	\
1417do {						\
1418	flags = _raw_spin_rq_lock_irqsave(rq);	\
1419} while (0)
1420
1421#ifdef CONFIG_SCHED_SMT
1422extern void __update_idle_core(struct rq *rq);
1423
1424static inline void update_idle_core(struct rq *rq)
1425{
1426	if (static_branch_unlikely(&sched_smt_present))
1427		__update_idle_core(rq);
1428}
1429
1430#else
1431static inline void update_idle_core(struct rq *rq) { }
1432#endif
1433
1434#ifdef CONFIG_FAIR_GROUP_SCHED
 
1435static inline struct task_struct *task_of(struct sched_entity *se)
1436{
1437	SCHED_WARN_ON(!entity_is_task(se));
1438	return container_of(se, struct task_struct, se);
1439}
1440
1441static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1442{
1443	return p->se.cfs_rq;
1444}
1445
1446/* runqueue on which this entity is (to be) queued */
1447static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1448{
1449	return se->cfs_rq;
1450}
1451
1452/* runqueue "owned" by this group */
1453static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1454{
1455	return grp->my_q;
1456}
1457
1458#else
1459
1460#define task_of(_se)	container_of(_se, struct task_struct, se)
1461
1462static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1463{
1464	return &task_rq(p)->cfs;
1465}
1466
1467static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1468{
1469	const struct task_struct *p = task_of(se);
1470	struct rq *rq = task_rq(p);
1471
1472	return &rq->cfs;
1473}
1474
1475/* runqueue "owned" by this group */
1476static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1477{
1478	return NULL;
1479}
1480#endif
 
1481
1482extern void update_rq_clock(struct rq *rq);
1483
1484/*
1485 * rq::clock_update_flags bits
1486 *
1487 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1488 *  call to __schedule(). This is an optimisation to avoid
1489 *  neighbouring rq clock updates.
1490 *
1491 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1492 *  in effect and calls to update_rq_clock() are being ignored.
1493 *
1494 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1495 *  made to update_rq_clock() since the last time rq::lock was pinned.
1496 *
1497 * If inside of __schedule(), clock_update_flags will have been
1498 * shifted left (a left shift is a cheap operation for the fast path
1499 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1500 *
1501 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1502 *
1503 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1504 * one position though, because the next rq_unpin_lock() will shift it
1505 * back.
1506 */
1507#define RQCF_REQ_SKIP		0x01
1508#define RQCF_ACT_SKIP		0x02
1509#define RQCF_UPDATED		0x04
1510
1511static inline void assert_clock_updated(struct rq *rq)
1512{
1513	/*
1514	 * The only reason for not seeing a clock update since the
1515	 * last rq_pin_lock() is if we're currently skipping updates.
1516	 */
1517	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1518}
1519
1520static inline u64 rq_clock(struct rq *rq)
1521{
1522	lockdep_assert_rq_held(rq);
1523	assert_clock_updated(rq);
1524
1525	return rq->clock;
1526}
1527
1528static inline u64 rq_clock_task(struct rq *rq)
1529{
1530	lockdep_assert_rq_held(rq);
1531	assert_clock_updated(rq);
1532
1533	return rq->clock_task;
1534}
1535
1536/**
1537 * By default the decay is the default pelt decay period.
1538 * The decay shift can change the decay period in
1539 * multiples of 32.
1540 *  Decay shift		Decay period(ms)
1541 *	0			32
1542 *	1			64
1543 *	2			128
1544 *	3			256
1545 *	4			512
1546 */
1547extern int sched_thermal_decay_shift;
1548
1549static inline u64 rq_clock_thermal(struct rq *rq)
1550{
1551	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1552}
1553
1554static inline void rq_clock_skip_update(struct rq *rq)
1555{
1556	lockdep_assert_rq_held(rq);
1557	rq->clock_update_flags |= RQCF_REQ_SKIP;
1558}
1559
1560/*
1561 * See rt task throttling, which is the only time a skip
1562 * request is canceled.
1563 */
1564static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1565{
1566	lockdep_assert_rq_held(rq);
1567	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1568}
1569
1570/*
1571 * During cpu offlining and rq wide unthrottling, we can trigger
1572 * an update_rq_clock() for several cfs and rt runqueues (Typically
1573 * when using list_for_each_entry_*)
1574 * rq_clock_start_loop_update() can be called after updating the clock
1575 * once and before iterating over the list to prevent multiple update.
1576 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1577 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1578 */
1579static inline void rq_clock_start_loop_update(struct rq *rq)
1580{
1581	lockdep_assert_rq_held(rq);
1582	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1583	rq->clock_update_flags |= RQCF_ACT_SKIP;
1584}
1585
1586static inline void rq_clock_stop_loop_update(struct rq *rq)
1587{
1588	lockdep_assert_rq_held(rq);
1589	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1590}
1591
1592struct rq_flags {
1593	unsigned long flags;
1594	struct pin_cookie cookie;
1595#ifdef CONFIG_SCHED_DEBUG
1596	/*
1597	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1598	 * current pin context is stashed here in case it needs to be
1599	 * restored in rq_repin_lock().
1600	 */
1601	unsigned int clock_update_flags;
1602#endif
1603};
1604
1605extern struct balance_callback balance_push_callback;
1606
1607/*
1608 * Lockdep annotation that avoids accidental unlocks; it's like a
1609 * sticky/continuous lockdep_assert_held().
1610 *
1611 * This avoids code that has access to 'struct rq *rq' (basically everything in
1612 * the scheduler) from accidentally unlocking the rq if they do not also have a
1613 * copy of the (on-stack) 'struct rq_flags rf'.
1614 *
1615 * Also see Documentation/locking/lockdep-design.rst.
1616 */
1617static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1618{
1619	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1620
1621#ifdef CONFIG_SCHED_DEBUG
1622	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1623	rf->clock_update_flags = 0;
1624#ifdef CONFIG_SMP
1625	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1626#endif
1627#endif
1628}
1629
1630static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1631{
1632#ifdef CONFIG_SCHED_DEBUG
1633	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1634		rf->clock_update_flags = RQCF_UPDATED;
1635#endif
1636
1637	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1638}
1639
1640static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1641{
1642	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1643
1644#ifdef CONFIG_SCHED_DEBUG
1645	/*
1646	 * Restore the value we stashed in @rf for this pin context.
1647	 */
1648	rq->clock_update_flags |= rf->clock_update_flags;
1649#endif
1650}
1651
 
1652struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1653	__acquires(rq->lock);
1654
 
1655struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1656	__acquires(p->pi_lock)
1657	__acquires(rq->lock);
1658
1659static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1660	__releases(rq->lock)
1661{
1662	rq_unpin_lock(rq, rf);
1663	raw_spin_rq_unlock(rq);
1664}
1665
1666static inline void
1667task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1668	__releases(rq->lock)
1669	__releases(p->pi_lock)
1670{
1671	rq_unpin_lock(rq, rf);
1672	raw_spin_rq_unlock(rq);
1673	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1674}
1675
1676DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1677		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1678		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1679		    struct rq *rq; struct rq_flags rf)
1680
1681static inline void
1682rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1683	__acquires(rq->lock)
1684{
1685	raw_spin_rq_lock_irqsave(rq, rf->flags);
1686	rq_pin_lock(rq, rf);
1687}
1688
1689static inline void
1690rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1691	__acquires(rq->lock)
1692{
1693	raw_spin_rq_lock_irq(rq);
1694	rq_pin_lock(rq, rf);
1695}
1696
1697static inline void
1698rq_lock(struct rq *rq, struct rq_flags *rf)
1699	__acquires(rq->lock)
1700{
1701	raw_spin_rq_lock(rq);
1702	rq_pin_lock(rq, rf);
1703}
1704
1705static inline void
1706rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1707	__releases(rq->lock)
1708{
1709	rq_unpin_lock(rq, rf);
1710	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1711}
1712
1713static inline void
1714rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1715	__releases(rq->lock)
1716{
1717	rq_unpin_lock(rq, rf);
1718	raw_spin_rq_unlock_irq(rq);
1719}
1720
1721static inline void
1722rq_unlock(struct rq *rq, struct rq_flags *rf)
1723	__releases(rq->lock)
1724{
1725	rq_unpin_lock(rq, rf);
1726	raw_spin_rq_unlock(rq);
1727}
1728
1729DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1730		    rq_lock(_T->lock, &_T->rf),
1731		    rq_unlock(_T->lock, &_T->rf),
1732		    struct rq_flags rf)
1733
1734DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1735		    rq_lock_irq(_T->lock, &_T->rf),
1736		    rq_unlock_irq(_T->lock, &_T->rf),
1737		    struct rq_flags rf)
1738
1739DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1740		    rq_lock_irqsave(_T->lock, &_T->rf),
1741		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1742		    struct rq_flags rf)
1743
1744static inline struct rq *
1745this_rq_lock_irq(struct rq_flags *rf)
1746	__acquires(rq->lock)
1747{
1748	struct rq *rq;
1749
1750	local_irq_disable();
1751	rq = this_rq();
1752	rq_lock(rq, rf);
 
1753	return rq;
1754}
1755
1756#ifdef CONFIG_NUMA
 
1757enum numa_topology_type {
1758	NUMA_DIRECT,
1759	NUMA_GLUELESS_MESH,
1760	NUMA_BACKPLANE,
1761};
 
1762extern enum numa_topology_type sched_numa_topology_type;
1763extern int sched_max_numa_distance;
1764extern bool find_numa_distance(int distance);
1765extern void sched_init_numa(int offline_node);
1766extern void sched_update_numa(int cpu, bool online);
1767extern void sched_domains_numa_masks_set(unsigned int cpu);
1768extern void sched_domains_numa_masks_clear(unsigned int cpu);
1769extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1770#else
 
 
1771static inline void sched_init_numa(int offline_node) { }
1772static inline void sched_update_numa(int cpu, bool online) { }
1773static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1774static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
 
1775static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1776{
1777	return nr_cpu_ids;
1778}
1779#endif
 
1780
1781#ifdef CONFIG_NUMA_BALANCING
 
1782/* The regions in numa_faults array from task_struct */
1783enum numa_faults_stats {
1784	NUMA_MEM = 0,
1785	NUMA_CPU,
1786	NUMA_MEMBUF,
1787	NUMA_CPUBUF
1788};
 
1789extern void sched_setnuma(struct task_struct *p, int node);
1790extern int migrate_task_to(struct task_struct *p, int cpu);
1791extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1792			int cpu, int scpu);
1793extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1794#else
 
 
1795static inline void
1796init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1797{
1798}
1799#endif /* CONFIG_NUMA_BALANCING */
 
1800
1801#ifdef CONFIG_SMP
1802
1803static inline void
1804queue_balance_callback(struct rq *rq,
1805		       struct balance_callback *head,
1806		       void (*func)(struct rq *rq))
1807{
1808	lockdep_assert_rq_held(rq);
1809
1810	/*
1811	 * Don't (re)queue an already queued item; nor queue anything when
1812	 * balance_push() is active, see the comment with
1813	 * balance_push_callback.
1814	 */
1815	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1816		return;
1817
1818	head->func = func;
1819	head->next = rq->balance_callback;
1820	rq->balance_callback = head;
1821}
1822
1823#define rcu_dereference_check_sched_domain(p) \
1824	rcu_dereference_check((p), \
1825			      lockdep_is_held(&sched_domains_mutex))
1826
1827/*
1828 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1829 * See destroy_sched_domains: call_rcu for details.
1830 *
1831 * The domain tree of any CPU may only be accessed from within
1832 * preempt-disabled sections.
1833 */
1834#define for_each_domain(cpu, __sd) \
1835	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1836			__sd; __sd = __sd->parent)
1837
1838/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1839#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1840static const unsigned int SD_SHARED_CHILD_MASK =
1841#include <linux/sched/sd_flags.h>
18420;
1843#undef SD_FLAG
1844
1845/**
1846 * highest_flag_domain - Return highest sched_domain containing flag.
1847 * @cpu:	The CPU whose highest level of sched domain is to
1848 *		be returned.
1849 * @flag:	The flag to check for the highest sched_domain
1850 *		for the given CPU.
1851 *
1852 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1853 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1854 */
1855static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1856{
1857	struct sched_domain *sd, *hsd = NULL;
1858
1859	for_each_domain(cpu, sd) {
1860		if (sd->flags & flag) {
1861			hsd = sd;
1862			continue;
1863		}
1864
1865		/*
1866		 * Stop the search if @flag is known to be shared at lower
1867		 * levels. It will not be found further up.
1868		 */
1869		if (flag & SD_SHARED_CHILD_MASK)
1870			break;
1871	}
1872
1873	return hsd;
1874}
1875
1876static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1877{
1878	struct sched_domain *sd;
1879
1880	for_each_domain(cpu, sd) {
1881		if (sd->flags & flag)
1882			break;
1883	}
1884
1885	return sd;
1886}
1887
1888DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1889DECLARE_PER_CPU(int, sd_llc_size);
1890DECLARE_PER_CPU(int, sd_llc_id);
1891DECLARE_PER_CPU(int, sd_share_id);
1892DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1893DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1894DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1895DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 
1896extern struct static_key_false sched_asym_cpucapacity;
1897extern struct static_key_false sched_cluster_active;
1898
1899static __always_inline bool sched_asym_cpucap_active(void)
1900{
1901	return static_branch_unlikely(&sched_asym_cpucapacity);
1902}
1903
1904struct sched_group_capacity {
1905	atomic_t		ref;
1906	/*
1907	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1908	 * for a single CPU.
1909	 */
1910	unsigned long		capacity;
1911	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1912	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1913	unsigned long		next_update;
1914	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1915
1916#ifdef CONFIG_SCHED_DEBUG
1917	int			id;
1918#endif
1919
1920	unsigned long		cpumask[];		/* Balance mask */
1921};
1922
1923struct sched_group {
1924	struct sched_group	*next;			/* Must be a circular list */
1925	atomic_t		ref;
1926
1927	unsigned int		group_weight;
1928	unsigned int		cores;
1929	struct sched_group_capacity *sgc;
1930	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1931	int			flags;
1932
1933	/*
1934	 * The CPUs this group covers.
1935	 *
1936	 * NOTE: this field is variable length. (Allocated dynamically
1937	 * by attaching extra space to the end of the structure,
1938	 * depending on how many CPUs the kernel has booted up with)
1939	 */
1940	unsigned long		cpumask[];
1941};
1942
1943static inline struct cpumask *sched_group_span(struct sched_group *sg)
1944{
1945	return to_cpumask(sg->cpumask);
1946}
1947
1948/*
1949 * See build_balance_mask().
1950 */
1951static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1952{
1953	return to_cpumask(sg->sgc->cpumask);
1954}
1955
1956extern int group_balance_cpu(struct sched_group *sg);
1957
1958#ifdef CONFIG_SCHED_DEBUG
1959void update_sched_domain_debugfs(void);
1960void dirty_sched_domain_sysctl(int cpu);
1961#else
1962static inline void update_sched_domain_debugfs(void)
1963{
1964}
1965static inline void dirty_sched_domain_sysctl(int cpu)
1966{
1967}
1968#endif
1969
1970extern int sched_update_scaling(void);
1971
1972static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1973{
1974	if (!p->user_cpus_ptr)
1975		return cpu_possible_mask; /* &init_task.cpus_mask */
1976	return p->user_cpus_ptr;
1977}
 
1978#endif /* CONFIG_SMP */
1979
1980#include "stats.h"
1981
1982#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1983
1984extern void __sched_core_account_forceidle(struct rq *rq);
1985
1986static inline void sched_core_account_forceidle(struct rq *rq)
1987{
1988	if (schedstat_enabled())
1989		__sched_core_account_forceidle(rq);
1990}
1991
1992extern void __sched_core_tick(struct rq *rq);
1993
1994static inline void sched_core_tick(struct rq *rq)
1995{
1996	if (sched_core_enabled(rq) && schedstat_enabled())
1997		__sched_core_tick(rq);
1998}
1999
2000#else
2001
2002static inline void sched_core_account_forceidle(struct rq *rq) {}
2003
2004static inline void sched_core_tick(struct rq *rq) {}
2005
2006#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
2007
2008#ifdef CONFIG_CGROUP_SCHED
2009
2010/*
2011 * Return the group to which this tasks belongs.
2012 *
2013 * We cannot use task_css() and friends because the cgroup subsystem
2014 * changes that value before the cgroup_subsys::attach() method is called,
2015 * therefore we cannot pin it and might observe the wrong value.
2016 *
2017 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2018 * core changes this before calling sched_move_task().
2019 *
2020 * Instead we use a 'copy' which is updated from sched_move_task() while
2021 * holding both task_struct::pi_lock and rq::lock.
2022 */
2023static inline struct task_group *task_group(struct task_struct *p)
2024{
2025	return p->sched_task_group;
2026}
2027
2028/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2029static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2030{
2031#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2032	struct task_group *tg = task_group(p);
2033#endif
2034
2035#ifdef CONFIG_FAIR_GROUP_SCHED
2036	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2037	p->se.cfs_rq = tg->cfs_rq[cpu];
2038	p->se.parent = tg->se[cpu];
2039	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2040#endif
2041
2042#ifdef CONFIG_RT_GROUP_SCHED
2043	p->rt.rt_rq  = tg->rt_rq[cpu];
2044	p->rt.parent = tg->rt_se[cpu];
2045#endif
2046}
2047
2048#else /* CONFIG_CGROUP_SCHED */
2049
2050static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 
2051static inline struct task_group *task_group(struct task_struct *p)
2052{
2053	return NULL;
2054}
2055
2056#endif /* CONFIG_CGROUP_SCHED */
2057
2058static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2059{
2060	set_task_rq(p, cpu);
2061#ifdef CONFIG_SMP
2062	/*
2063	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2064	 * successfully executed on another CPU. We must ensure that updates of
2065	 * per-task data have been completed by this moment.
2066	 */
2067	smp_wmb();
2068	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2069	p->wake_cpu = cpu;
2070#endif
2071}
2072
2073/*
2074 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2075 */
2076#ifdef CONFIG_SCHED_DEBUG
2077# define const_debug __read_mostly
2078#else
2079# define const_debug const
2080#endif
2081
2082#define SCHED_FEAT(name, enabled)	\
2083	__SCHED_FEAT_##name ,
2084
2085enum {
2086#include "features.h"
2087	__SCHED_FEAT_NR,
2088};
2089
2090#undef SCHED_FEAT
2091
2092#ifdef CONFIG_SCHED_DEBUG
2093
2094/*
2095 * To support run-time toggling of sched features, all the translation units
2096 * (but core.c) reference the sysctl_sched_features defined in core.c.
2097 */
2098extern const_debug unsigned int sysctl_sched_features;
2099
2100#ifdef CONFIG_JUMP_LABEL
 
2101#define SCHED_FEAT(name, enabled)					\
2102static __always_inline bool static_branch_##name(struct static_key *key) \
2103{									\
2104	return static_key_##enabled(key);				\
2105}
2106
2107#include "features.h"
2108#undef SCHED_FEAT
2109
2110extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2111#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2112
2113#else /* !CONFIG_JUMP_LABEL */
2114
2115#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2116
2117#endif /* CONFIG_JUMP_LABEL */
2118
2119#else /* !SCHED_DEBUG */
2120
2121/*
2122 * Each translation unit has its own copy of sysctl_sched_features to allow
2123 * constants propagation at compile time and compiler optimization based on
2124 * features default.
2125 */
2126#define SCHED_FEAT(name, enabled)	\
2127	(1UL << __SCHED_FEAT_##name) * enabled |
2128static const_debug __maybe_unused unsigned int sysctl_sched_features =
2129#include "features.h"
2130	0;
2131#undef SCHED_FEAT
2132
2133#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2134
2135#endif /* SCHED_DEBUG */
2136
2137extern struct static_key_false sched_numa_balancing;
2138extern struct static_key_false sched_schedstats;
2139
2140static inline u64 global_rt_period(void)
2141{
2142	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2143}
2144
2145static inline u64 global_rt_runtime(void)
2146{
2147	if (sysctl_sched_rt_runtime < 0)
2148		return RUNTIME_INF;
2149
2150	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2151}
2152
 
 
 
2153static inline int task_current(struct rq *rq, struct task_struct *p)
2154{
2155	return rq->curr == p;
2156}
2157
 
 
 
 
 
 
 
 
 
 
 
2158static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2159{
2160#ifdef CONFIG_SMP
2161	return p->on_cpu;
2162#else
2163	return task_current(rq, p);
2164#endif
2165}
2166
2167static inline int task_on_rq_queued(struct task_struct *p)
2168{
2169	return p->on_rq == TASK_ON_RQ_QUEUED;
2170}
2171
2172static inline int task_on_rq_migrating(struct task_struct *p)
2173{
2174	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2175}
2176
2177/* Wake flags. The first three directly map to some SD flag value */
2178#define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2179#define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2180#define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2181
2182#define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2183#define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2184#define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
 
2185
2186#ifdef CONFIG_SMP
2187static_assert(WF_EXEC == SD_BALANCE_EXEC);
2188static_assert(WF_FORK == SD_BALANCE_FORK);
2189static_assert(WF_TTWU == SD_BALANCE_WAKE);
2190#endif
2191
2192/*
2193 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2194 * of tasks with abnormal "nice" values across CPUs the contribution that
2195 * each task makes to its run queue's load is weighted according to its
2196 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2197 * scaled version of the new time slice allocation that they receive on time
2198 * slice expiry etc.
2199 */
2200
2201#define WEIGHT_IDLEPRIO		3
2202#define WMULT_IDLEPRIO		1431655765
2203
2204extern const int		sched_prio_to_weight[40];
2205extern const u32		sched_prio_to_wmult[40];
2206
2207/*
2208 * {de,en}queue flags:
2209 *
2210 * DEQUEUE_SLEEP  - task is no longer runnable
2211 * ENQUEUE_WAKEUP - task just became runnable
2212 *
2213 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2214 *                are in a known state which allows modification. Such pairs
2215 *                should preserve as much state as possible.
2216 *
2217 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2218 *        in the runqueue.
2219 *
2220 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2221 *
2222 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2223 *
2224 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2225 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2226 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
 
2227 *
2228 */
2229
2230#define DEQUEUE_SLEEP		0x01
2231#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2232#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2233#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
 
2234#define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
 
2235
2236#define ENQUEUE_WAKEUP		0x01
2237#define ENQUEUE_RESTORE		0x02
2238#define ENQUEUE_MOVE		0x04
2239#define ENQUEUE_NOCLOCK		0x08
2240
2241#define ENQUEUE_HEAD		0x10
2242#define ENQUEUE_REPLENISH	0x20
2243#ifdef CONFIG_SMP
2244#define ENQUEUE_MIGRATED	0x40
2245#else
2246#define ENQUEUE_MIGRATED	0x00
2247#endif
2248#define ENQUEUE_INITIAL		0x80
2249#define ENQUEUE_MIGRATING	0x100
 
 
2250
2251#define RETRY_TASK		((void *)-1UL)
2252
2253struct affinity_context {
2254	const struct cpumask *new_mask;
2255	struct cpumask *user_mask;
2256	unsigned int flags;
2257};
2258
2259extern s64 update_curr_common(struct rq *rq);
2260
2261struct sched_class {
2262
2263#ifdef CONFIG_UCLAMP_TASK
2264	int uclamp_enabled;
2265#endif
2266
2267	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2268	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2269	void (*yield_task)   (struct rq *rq);
2270	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2271
2272	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2273
2274	struct task_struct *(*pick_next_task)(struct rq *rq);
 
 
 
 
 
 
 
 
 
 
 
2275
2276	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2277	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2278
2279#ifdef CONFIG_SMP
2280	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2281	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2282
2283	struct task_struct * (*pick_task)(struct rq *rq);
2284
2285	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2286
2287	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2288
2289	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2290
2291	void (*rq_online)(struct rq *rq);
2292	void (*rq_offline)(struct rq *rq);
2293
2294	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2295#endif
2296
2297	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2298	void (*task_fork)(struct task_struct *p);
2299	void (*task_dead)(struct task_struct *p);
2300
2301	/*
2302	 * The switched_from() call is allowed to drop rq->lock, therefore we
2303	 * cannot assume the switched_from/switched_to pair is serialized by
2304	 * rq->lock. They are however serialized by p->pi_lock.
2305	 */
 
2306	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2307	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
 
 
2308	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2309			      int oldprio);
2310
2311	unsigned int (*get_rr_interval)(struct rq *rq,
2312					struct task_struct *task);
2313
2314	void (*update_curr)(struct rq *rq);
2315
2316#ifdef CONFIG_FAIR_GROUP_SCHED
2317	void (*task_change_group)(struct task_struct *p);
2318#endif
2319
2320#ifdef CONFIG_SCHED_CORE
2321	int (*task_is_throttled)(struct task_struct *p, int cpu);
2322#endif
2323};
2324
2325static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2326{
2327	WARN_ON_ONCE(rq->curr != prev);
2328	prev->sched_class->put_prev_task(rq, prev);
2329}
2330
2331static inline void set_next_task(struct rq *rq, struct task_struct *next)
2332{
2333	next->sched_class->set_next_task(rq, next, false);
2334}
2335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336
2337/*
2338 * Helper to define a sched_class instance; each one is placed in a separate
2339 * section which is ordered by the linker script:
2340 *
2341 *   include/asm-generic/vmlinux.lds.h
2342 *
2343 * *CAREFUL* they are laid out in *REVERSE* order!!!
2344 *
2345 * Also enforce alignment on the instance, not the type, to guarantee layout.
2346 */
2347#define DEFINE_SCHED_CLASS(name) \
2348const struct sched_class name##_sched_class \
2349	__aligned(__alignof__(struct sched_class)) \
2350	__section("__" #name "_sched_class")
2351
2352/* Defined in include/asm-generic/vmlinux.lds.h */
2353extern struct sched_class __sched_class_highest[];
2354extern struct sched_class __sched_class_lowest[];
2355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356#define for_class_range(class, _from, _to) \
2357	for (class = (_from); class < (_to); class++)
2358
2359#define for_each_class(class) \
2360	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2361
 
 
 
 
 
 
2362#define sched_class_above(_a, _b)	((_a) < (_b))
2363
2364extern const struct sched_class stop_sched_class;
2365extern const struct sched_class dl_sched_class;
2366extern const struct sched_class rt_sched_class;
2367extern const struct sched_class fair_sched_class;
2368extern const struct sched_class idle_sched_class;
2369
2370static inline bool sched_stop_runnable(struct rq *rq)
2371{
2372	return rq->stop && task_on_rq_queued(rq->stop);
2373}
2374
2375static inline bool sched_dl_runnable(struct rq *rq)
2376{
2377	return rq->dl.dl_nr_running > 0;
2378}
2379
2380static inline bool sched_rt_runnable(struct rq *rq)
2381{
2382	return rq->rt.rt_queued > 0;
2383}
2384
2385static inline bool sched_fair_runnable(struct rq *rq)
2386{
2387	return rq->cfs.nr_running > 0;
2388}
2389
2390extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2391extern struct task_struct *pick_next_task_idle(struct rq *rq);
2392
2393#define SCA_CHECK		0x01
2394#define SCA_MIGRATE_DISABLE	0x02
2395#define SCA_MIGRATE_ENABLE	0x04
2396#define SCA_USER		0x08
2397
2398#ifdef CONFIG_SMP
2399
2400extern void update_group_capacity(struct sched_domain *sd, int cpu);
2401
2402extern void trigger_load_balance(struct rq *rq);
2403
 
2404extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406static inline struct task_struct *get_push_task(struct rq *rq)
2407{
2408	struct task_struct *p = rq->curr;
2409
2410	lockdep_assert_rq_held(rq);
2411
2412	if (rq->push_busy)
2413		return NULL;
2414
2415	if (p->nr_cpus_allowed == 1)
2416		return NULL;
2417
2418	if (p->migration_disabled)
2419		return NULL;
2420
2421	rq->push_busy = true;
2422	return get_task_struct(p);
2423}
2424
2425extern int push_cpu_stop(void *arg);
2426
2427#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2428
2429#ifdef CONFIG_CPU_IDLE
 
2430static inline void idle_set_state(struct rq *rq,
2431				  struct cpuidle_state *idle_state)
2432{
2433	rq->idle_state = idle_state;
2434}
2435
2436static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2437{
2438	SCHED_WARN_ON(!rcu_read_lock_held());
2439
2440	return rq->idle_state;
2441}
2442#else
 
 
2443static inline void idle_set_state(struct rq *rq,
2444				  struct cpuidle_state *idle_state)
2445{
2446}
2447
2448static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2449{
2450	return NULL;
2451}
2452#endif
 
2453
2454extern void schedule_idle(void);
2455asmlinkage void schedule_user(void);
2456
2457extern void sysrq_sched_debug_show(void);
2458extern void sched_init_granularity(void);
2459extern void update_max_interval(void);
2460
2461extern void init_sched_dl_class(void);
2462extern void init_sched_rt_class(void);
2463extern void init_sched_fair_class(void);
2464
2465extern void reweight_task(struct task_struct *p, int prio);
2466
2467extern void resched_curr(struct rq *rq);
 
2468extern void resched_cpu(int cpu);
2469
2470extern struct rt_bandwidth def_rt_bandwidth;
2471extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2472extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2473
2474extern void init_dl_entity(struct sched_dl_entity *dl_se);
2475
2476#define BW_SHIFT		20
2477#define BW_UNIT			(1 << BW_SHIFT)
2478#define RATIO_SHIFT		8
2479#define MAX_BW_BITS		(64 - BW_SHIFT)
2480#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2481unsigned long to_ratio(u64 period, u64 runtime);
 
2482
2483extern void init_entity_runnable_average(struct sched_entity *se);
2484extern void post_init_entity_util_avg(struct task_struct *p);
2485
2486#ifdef CONFIG_NO_HZ_FULL
2487extern bool sched_can_stop_tick(struct rq *rq);
2488extern int __init sched_tick_offload_init(void);
2489
2490/*
2491 * Tick may be needed by tasks in the runqueue depending on their policy and
2492 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2493 * nohz mode if necessary.
2494 */
2495static inline void sched_update_tick_dependency(struct rq *rq)
2496{
2497	int cpu = cpu_of(rq);
2498
2499	if (!tick_nohz_full_cpu(cpu))
2500		return;
2501
2502	if (sched_can_stop_tick(rq))
2503		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2504	else
2505		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2506}
2507#else
2508static inline int sched_tick_offload_init(void) { return 0; }
2509static inline void sched_update_tick_dependency(struct rq *rq) { }
2510#endif
2511
2512static inline void add_nr_running(struct rq *rq, unsigned count)
2513{
2514	unsigned prev_nr = rq->nr_running;
2515
2516	rq->nr_running = prev_nr + count;
2517	if (trace_sched_update_nr_running_tp_enabled()) {
2518		call_trace_sched_update_nr_running(rq, count);
2519	}
2520
2521#ifdef CONFIG_SMP
2522	if (prev_nr < 2 && rq->nr_running >= 2) {
2523		if (!READ_ONCE(rq->rd->overload))
2524			WRITE_ONCE(rq->rd->overload, 1);
2525	}
2526#endif
2527
2528	sched_update_tick_dependency(rq);
2529}
2530
2531static inline void sub_nr_running(struct rq *rq, unsigned count)
2532{
2533	rq->nr_running -= count;
2534	if (trace_sched_update_nr_running_tp_enabled()) {
2535		call_trace_sched_update_nr_running(rq, -count);
2536	}
2537
2538	/* Check if we still need preemption */
2539	sched_update_tick_dependency(rq);
2540}
2541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2543extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2544
2545extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2546
2547#ifdef CONFIG_PREEMPT_RT
2548#define SCHED_NR_MIGRATE_BREAK 8
2549#else
2550#define SCHED_NR_MIGRATE_BREAK 32
2551#endif
2552
2553extern const_debug unsigned int sysctl_sched_nr_migrate;
2554extern const_debug unsigned int sysctl_sched_migration_cost;
2555
2556extern unsigned int sysctl_sched_base_slice;
2557
2558#ifdef CONFIG_SCHED_DEBUG
2559extern int sysctl_resched_latency_warn_ms;
2560extern int sysctl_resched_latency_warn_once;
2561
2562extern unsigned int sysctl_sched_tunable_scaling;
2563
2564extern unsigned int sysctl_numa_balancing_scan_delay;
2565extern unsigned int sysctl_numa_balancing_scan_period_min;
2566extern unsigned int sysctl_numa_balancing_scan_period_max;
2567extern unsigned int sysctl_numa_balancing_scan_size;
2568extern unsigned int sysctl_numa_balancing_hot_threshold;
2569#endif
2570
2571#ifdef CONFIG_SCHED_HRTICK
2572
2573/*
2574 * Use hrtick when:
2575 *  - enabled by features
2576 *  - hrtimer is actually high res
2577 */
2578static inline int hrtick_enabled(struct rq *rq)
2579{
2580	if (!cpu_active(cpu_of(rq)))
2581		return 0;
2582	return hrtimer_is_hres_active(&rq->hrtick_timer);
2583}
2584
2585static inline int hrtick_enabled_fair(struct rq *rq)
2586{
2587	if (!sched_feat(HRTICK))
2588		return 0;
2589	return hrtick_enabled(rq);
2590}
2591
2592static inline int hrtick_enabled_dl(struct rq *rq)
2593{
2594	if (!sched_feat(HRTICK_DL))
2595		return 0;
2596	return hrtick_enabled(rq);
2597}
2598
2599void hrtick_start(struct rq *rq, u64 delay);
2600
2601#else
2602
2603static inline int hrtick_enabled_fair(struct rq *rq)
2604{
2605	return 0;
2606}
2607
2608static inline int hrtick_enabled_dl(struct rq *rq)
2609{
2610	return 0;
2611}
2612
2613static inline int hrtick_enabled(struct rq *rq)
2614{
2615	return 0;
2616}
2617
2618#endif /* CONFIG_SCHED_HRTICK */
2619
2620#ifndef arch_scale_freq_tick
2621static __always_inline
2622void arch_scale_freq_tick(void)
2623{
2624}
2625#endif
2626
2627#ifndef arch_scale_freq_capacity
2628/**
2629 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2630 * @cpu: the CPU in question.
2631 *
2632 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2633 *
2634 *     f_curr
2635 *     ------ * SCHED_CAPACITY_SCALE
2636 *     f_max
2637 */
2638static __always_inline
2639unsigned long arch_scale_freq_capacity(int cpu)
2640{
2641	return SCHED_CAPACITY_SCALE;
2642}
2643#endif
2644
2645#ifdef CONFIG_SCHED_DEBUG
2646/*
2647 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2648 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2649 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2650 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2651 */
2652static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2653{
2654	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2655	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2656#ifdef CONFIG_SMP
2657	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2658#endif
2659}
2660#else
2661static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2662#endif
2663
2664#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2665__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2666static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2667{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2668  _lock; return _t; }
2669
2670#ifdef CONFIG_SMP
2671
2672static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2673{
2674#ifdef CONFIG_SCHED_CORE
2675	/*
2676	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2677	 * order by core-id first and cpu-id second.
2678	 *
2679	 * Notably:
2680	 *
2681	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2682	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2683	 *
2684	 * when only cpu-id is considered.
2685	 */
2686	if (rq1->core->cpu < rq2->core->cpu)
2687		return true;
2688	if (rq1->core->cpu > rq2->core->cpu)
2689		return false;
2690
2691	/*
2692	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2693	 */
2694#endif
2695	return rq1->cpu < rq2->cpu;
2696}
2697
2698extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2699
2700#ifdef CONFIG_PREEMPTION
2701
2702/*
2703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2704 * way at the expense of forcing extra atomic operations in all
2705 * invocations.  This assures that the double_lock is acquired using the
2706 * same underlying policy as the spinlock_t on this architecture, which
2707 * reduces latency compared to the unfair variant below.  However, it
2708 * also adds more overhead and therefore may reduce throughput.
2709 */
2710static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2711	__releases(this_rq->lock)
2712	__acquires(busiest->lock)
2713	__acquires(this_rq->lock)
2714{
2715	raw_spin_rq_unlock(this_rq);
2716	double_rq_lock(this_rq, busiest);
2717
2718	return 1;
2719}
2720
2721#else
2722/*
2723 * Unfair double_lock_balance: Optimizes throughput at the expense of
2724 * latency by eliminating extra atomic operations when the locks are
2725 * already in proper order on entry.  This favors lower CPU-ids and will
2726 * grant the double lock to lower CPUs over higher ids under contention,
2727 * regardless of entry order into the function.
2728 */
2729static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2730	__releases(this_rq->lock)
2731	__acquires(busiest->lock)
2732	__acquires(this_rq->lock)
2733{
2734	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2735	    likely(raw_spin_rq_trylock(busiest))) {
2736		double_rq_clock_clear_update(this_rq, busiest);
2737		return 0;
2738	}
2739
2740	if (rq_order_less(this_rq, busiest)) {
2741		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2742		double_rq_clock_clear_update(this_rq, busiest);
2743		return 0;
2744	}
2745
2746	raw_spin_rq_unlock(this_rq);
2747	double_rq_lock(this_rq, busiest);
2748
2749	return 1;
2750}
2751
2752#endif /* CONFIG_PREEMPTION */
2753
2754/*
2755 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2756 */
2757static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2758{
2759	lockdep_assert_irqs_disabled();
2760
2761	return _double_lock_balance(this_rq, busiest);
2762}
2763
2764static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2765	__releases(busiest->lock)
2766{
2767	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2768		raw_spin_rq_unlock(busiest);
2769	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2770}
2771
2772static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2773{
2774	if (l1 > l2)
2775		swap(l1, l2);
2776
2777	spin_lock(l1);
2778	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2779}
2780
2781static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2782{
2783	if (l1 > l2)
2784		swap(l1, l2);
2785
2786	spin_lock_irq(l1);
2787	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2788}
2789
2790static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2791{
2792	if (l1 > l2)
2793		swap(l1, l2);
2794
2795	raw_spin_lock(l1);
2796	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2797}
2798
2799static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2800{
2801	raw_spin_unlock(l1);
2802	raw_spin_unlock(l2);
2803}
2804
2805DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2806		    double_raw_lock(_T->lock, _T->lock2),
2807		    double_raw_unlock(_T->lock, _T->lock2))
2808
2809/*
2810 * double_rq_unlock - safely unlock two runqueues
2811 *
2812 * Note this does not restore interrupts like task_rq_unlock,
2813 * you need to do so manually after calling.
2814 */
2815static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2816	__releases(rq1->lock)
2817	__releases(rq2->lock)
2818{
2819	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2820		raw_spin_rq_unlock(rq2);
2821	else
2822		__release(rq2->lock);
2823	raw_spin_rq_unlock(rq1);
2824}
2825
2826extern void set_rq_online (struct rq *rq);
2827extern void set_rq_offline(struct rq *rq);
 
2828extern bool sched_smp_initialized;
2829
2830#else /* CONFIG_SMP */
2831
2832/*
2833 * double_rq_lock - safely lock two runqueues
2834 *
2835 * Note this does not disable interrupts like task_rq_lock,
2836 * you need to do so manually before calling.
2837 */
2838static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2839	__acquires(rq1->lock)
2840	__acquires(rq2->lock)
2841{
2842	WARN_ON_ONCE(!irqs_disabled());
2843	WARN_ON_ONCE(rq1 != rq2);
2844	raw_spin_rq_lock(rq1);
2845	__acquire(rq2->lock);	/* Fake it out ;) */
2846	double_rq_clock_clear_update(rq1, rq2);
2847}
2848
2849/*
2850 * double_rq_unlock - safely unlock two runqueues
2851 *
2852 * Note this does not restore interrupts like task_rq_unlock,
2853 * you need to do so manually after calling.
2854 */
2855static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2856	__releases(rq1->lock)
2857	__releases(rq2->lock)
2858{
2859	WARN_ON_ONCE(rq1 != rq2);
2860	raw_spin_rq_unlock(rq1);
2861	__release(rq2->lock);
2862}
2863
2864#endif
2865
2866DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2867		    double_rq_lock(_T->lock, _T->lock2),
2868		    double_rq_unlock(_T->lock, _T->lock2))
2869
2870extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
2871extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2872extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2873
2874#ifdef	CONFIG_SCHED_DEBUG
2875extern bool sched_debug_verbose;
2876
2877extern void print_cfs_stats(struct seq_file *m, int cpu);
2878extern void print_rt_stats(struct seq_file *m, int cpu);
2879extern void print_dl_stats(struct seq_file *m, int cpu);
2880extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2881extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2882extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2883
2884extern void resched_latency_warn(int cpu, u64 latency);
2885#ifdef CONFIG_NUMA_BALANCING
2886extern void
2887show_numa_stats(struct task_struct *p, struct seq_file *m);
2888extern void
2889print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2890	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2891#endif /* CONFIG_NUMA_BALANCING */
2892#else
2893static inline void resched_latency_warn(int cpu, u64 latency) {}
2894#endif /* CONFIG_SCHED_DEBUG */
2895
2896extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2897extern void init_rt_rq(struct rt_rq *rt_rq);
2898extern void init_dl_rq(struct dl_rq *dl_rq);
2899
2900extern void cfs_bandwidth_usage_inc(void);
2901extern void cfs_bandwidth_usage_dec(void);
2902
2903#ifdef CONFIG_NO_HZ_COMMON
 
2904#define NOHZ_BALANCE_KICK_BIT	0
2905#define NOHZ_STATS_KICK_BIT	1
2906#define NOHZ_NEWILB_KICK_BIT	2
2907#define NOHZ_NEXT_KICK_BIT	3
2908
2909/* Run rebalance_domains() */
2910#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2911/* Update blocked load */
2912#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2913/* Update blocked load when entering idle */
2914#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2915/* Update nohz.next_balance */
2916#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2917
2918#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2919
2920#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2921
2922extern void nohz_balance_exit_idle(struct rq *rq);
2923#else
2924static inline void nohz_balance_exit_idle(struct rq *rq) { }
2925#endif
2926
2927#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2928extern void nohz_run_idle_balance(int cpu);
2929#else
2930static inline void nohz_run_idle_balance(int cpu) { }
2931#endif
2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2933#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 
2934struct irqtime {
2935	u64			total;
2936	u64			tick_delta;
2937	u64			irq_start_time;
2938	struct u64_stats_sync	sync;
2939};
2940
2941DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2942
2943/*
2944 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2945 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2946 * and never move forward.
2947 */
2948static inline u64 irq_time_read(int cpu)
2949{
2950	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2951	unsigned int seq;
2952	u64 total;
2953
2954	do {
2955		seq = __u64_stats_fetch_begin(&irqtime->sync);
2956		total = irqtime->total;
2957	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2958
2959	return total;
2960}
 
2961#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2962
2963#ifdef CONFIG_CPU_FREQ
 
2964DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2965
2966/**
2967 * cpufreq_update_util - Take a note about CPU utilization changes.
2968 * @rq: Runqueue to carry out the update for.
2969 * @flags: Update reason flags.
2970 *
2971 * This function is called by the scheduler on the CPU whose utilization is
2972 * being updated.
2973 *
2974 * It can only be called from RCU-sched read-side critical sections.
2975 *
2976 * The way cpufreq is currently arranged requires it to evaluate the CPU
2977 * performance state (frequency/voltage) on a regular basis to prevent it from
2978 * being stuck in a completely inadequate performance level for too long.
2979 * That is not guaranteed to happen if the updates are only triggered from CFS
2980 * and DL, though, because they may not be coming in if only RT tasks are
2981 * active all the time (or there are RT tasks only).
2982 *
2983 * As a workaround for that issue, this function is called periodically by the
2984 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2985 * but that really is a band-aid.  Going forward it should be replaced with
2986 * solutions targeted more specifically at RT tasks.
2987 */
2988static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2989{
2990	struct update_util_data *data;
2991
2992	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2993						  cpu_of(rq)));
2994	if (data)
2995		data->func(data, rq_clock(rq), flags);
2996}
2997#else
2998static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2999#endif /* CONFIG_CPU_FREQ */
3000
3001#ifdef arch_scale_freq_capacity
3002# ifndef arch_scale_freq_invariant
3003#  define arch_scale_freq_invariant()	true
3004# endif
3005#else
3006# define arch_scale_freq_invariant()	false
3007#endif
3008
3009#ifdef CONFIG_SMP
 
3010unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3011				 unsigned long *min,
3012				 unsigned long *max);
3013
3014unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3015				 unsigned long min,
3016				 unsigned long max);
3017
3018
3019/*
3020 * Verify the fitness of task @p to run on @cpu taking into account the
3021 * CPU original capacity and the runtime/deadline ratio of the task.
3022 *
3023 * The function will return true if the original capacity of @cpu is
3024 * greater than or equal to task's deadline density right shifted by
3025 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3026 */
3027static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3028{
3029	unsigned long cap = arch_scale_cpu_capacity(cpu);
3030
3031	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3032}
3033
3034static inline unsigned long cpu_bw_dl(struct rq *rq)
3035{
3036	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3037}
3038
3039static inline unsigned long cpu_util_dl(struct rq *rq)
3040{
3041	return READ_ONCE(rq->avg_dl.util_avg);
3042}
3043
3044
3045extern unsigned long cpu_util_cfs(int cpu);
3046extern unsigned long cpu_util_cfs_boost(int cpu);
3047
3048static inline unsigned long cpu_util_rt(struct rq *rq)
3049{
3050	return READ_ONCE(rq->avg_rt.util_avg);
3051}
3052#endif
 
 
 
3053
3054#ifdef CONFIG_UCLAMP_TASK
 
3055unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3056
3057static inline unsigned long uclamp_rq_get(struct rq *rq,
3058					  enum uclamp_id clamp_id)
3059{
3060	return READ_ONCE(rq->uclamp[clamp_id].value);
3061}
3062
3063static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3064				 unsigned int value)
3065{
3066	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3067}
3068
3069static inline bool uclamp_rq_is_idle(struct rq *rq)
3070{
3071	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3072}
3073
3074/* Is the rq being capped/throttled by uclamp_max? */
3075static inline bool uclamp_rq_is_capped(struct rq *rq)
3076{
3077	unsigned long rq_util;
3078	unsigned long max_util;
3079
3080	if (!static_branch_likely(&sched_uclamp_used))
3081		return false;
3082
3083	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3084	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3085
3086	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3087}
3088
3089/*
3090 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3091 * by default in the fast path and only gets turned on once userspace performs
3092 * an operation that requires it.
3093 *
3094 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3095 * hence is active.
3096 */
3097static inline bool uclamp_is_used(void)
3098{
3099	return static_branch_likely(&sched_uclamp_used);
3100}
3101#else /* CONFIG_UCLAMP_TASK */
3102static inline unsigned long uclamp_eff_value(struct task_struct *p,
3103					     enum uclamp_id clamp_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104{
3105	if (clamp_id == UCLAMP_MIN)
3106		return 0;
3107
3108	return SCHED_CAPACITY_SCALE;
3109}
3110
3111static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3112
3113static inline bool uclamp_is_used(void)
3114{
3115	return false;
3116}
3117
3118static inline unsigned long uclamp_rq_get(struct rq *rq,
3119					  enum uclamp_id clamp_id)
3120{
3121	if (clamp_id == UCLAMP_MIN)
3122		return 0;
3123
3124	return SCHED_CAPACITY_SCALE;
3125}
3126
3127static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3128				 unsigned int value)
3129{
3130}
3131
3132static inline bool uclamp_rq_is_idle(struct rq *rq)
3133{
3134	return false;
3135}
3136#endif /* CONFIG_UCLAMP_TASK */
 
3137
3138#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 
3139static inline unsigned long cpu_util_irq(struct rq *rq)
3140{
3141	return READ_ONCE(rq->avg_irq.util_avg);
3142}
3143
3144static inline
3145unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3146{
3147	util *= (max - irq);
3148	util /= max;
3149
3150	return util;
3151
3152}
3153#else
 
 
3154static inline unsigned long cpu_util_irq(struct rq *rq)
3155{
3156	return 0;
3157}
3158
3159static inline
3160unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3161{
3162	return util;
3163}
3164#endif
 
3165
3166#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3167
3168#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3169
3170DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3171
3172static inline bool sched_energy_enabled(void)
3173{
3174	return static_branch_unlikely(&sched_energy_present);
3175}
3176
3177extern struct cpufreq_governor schedutil_gov;
3178
3179#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3180
3181#define perf_domain_span(pd) NULL
 
3182static inline bool sched_energy_enabled(void) { return false; }
3183
3184#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3185
3186#ifdef CONFIG_MEMBARRIER
 
3187/*
3188 * The scheduler provides memory barriers required by membarrier between:
3189 * - prior user-space memory accesses and store to rq->membarrier_state,
3190 * - store to rq->membarrier_state and following user-space memory accesses.
3191 * In the same way it provides those guarantees around store to rq->curr.
3192 */
3193static inline void membarrier_switch_mm(struct rq *rq,
3194					struct mm_struct *prev_mm,
3195					struct mm_struct *next_mm)
3196{
3197	int membarrier_state;
3198
3199	if (prev_mm == next_mm)
3200		return;
3201
3202	membarrier_state = atomic_read(&next_mm->membarrier_state);
3203	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3204		return;
3205
3206	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3207}
3208#else
 
 
3209static inline void membarrier_switch_mm(struct rq *rq,
3210					struct mm_struct *prev_mm,
3211					struct mm_struct *next_mm)
3212{
3213}
3214#endif
 
3215
3216#ifdef CONFIG_SMP
3217static inline bool is_per_cpu_kthread(struct task_struct *p)
3218{
3219	if (!(p->flags & PF_KTHREAD))
3220		return false;
3221
3222	if (p->nr_cpus_allowed != 1)
3223		return false;
3224
3225	return true;
3226}
3227#endif
3228
3229extern void swake_up_all_locked(struct swait_queue_head *q);
3230extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3231
3232extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3233
3234#ifdef CONFIG_PREEMPT_DYNAMIC
3235extern int preempt_dynamic_mode;
3236extern int sched_dynamic_mode(const char *str);
3237extern void sched_dynamic_update(int mode);
3238#endif
3239
3240#ifdef CONFIG_SCHED_MM_CID
3241
3242#define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3243#define MM_CID_SCAN_DELAY	100			/* 100ms */
3244
3245extern raw_spinlock_t cid_lock;
3246extern int use_cid_lock;
3247
3248extern void sched_mm_cid_migrate_from(struct task_struct *t);
3249extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3250extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3251extern void init_sched_mm_cid(struct task_struct *t);
3252
3253static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3254{
3255	if (cid < 0)
3256		return;
3257	cpumask_clear_cpu(cid, mm_cidmask(mm));
3258}
3259
3260/*
3261 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3262 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3263 * be held to transition to other states.
3264 *
3265 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3266 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3267 */
3268static inline void mm_cid_put_lazy(struct task_struct *t)
3269{
3270	struct mm_struct *mm = t->mm;
3271	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3272	int cid;
3273
3274	lockdep_assert_irqs_disabled();
3275	cid = __this_cpu_read(pcpu_cid->cid);
3276	if (!mm_cid_is_lazy_put(cid) ||
3277	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3278		return;
3279	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3280}
3281
3282static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3283{
3284	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3285	int cid, res;
3286
3287	lockdep_assert_irqs_disabled();
3288	cid = __this_cpu_read(pcpu_cid->cid);
3289	for (;;) {
3290		if (mm_cid_is_unset(cid))
3291			return MM_CID_UNSET;
3292		/*
3293		 * Attempt transition from valid or lazy-put to unset.
3294		 */
3295		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3296		if (res == cid)
3297			break;
3298		cid = res;
3299	}
3300	return cid;
3301}
3302
3303static inline void mm_cid_put(struct mm_struct *mm)
3304{
3305	int cid;
3306
3307	lockdep_assert_irqs_disabled();
3308	cid = mm_cid_pcpu_unset(mm);
3309	if (cid == MM_CID_UNSET)
3310		return;
3311	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3312}
3313
3314static inline int __mm_cid_try_get(struct mm_struct *mm)
3315{
3316	struct cpumask *cpumask;
3317	int cid;
 
3318
3319	cpumask = mm_cidmask(mm);
3320	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3321	 * Retry finding first zero bit if the mask is temporarily
3322	 * filled. This only happens during concurrent remote-clear
3323	 * which owns a cid without holding a rq lock.
3324	 */
3325	for (;;) {
3326		cid = cpumask_first_zero(cpumask);
3327		if (cid < nr_cpu_ids)
3328			break;
3329		cpu_relax();
3330	}
3331	if (cpumask_test_and_set_cpu(cid, cpumask))
3332		return -1;
 
3333	return cid;
3334}
3335
3336/*
3337 * Save a snapshot of the current runqueue time of this cpu
3338 * with the per-cpu cid value, allowing to estimate how recently it was used.
3339 */
3340static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3341{
3342	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3343
3344	lockdep_assert_rq_held(rq);
3345	WRITE_ONCE(pcpu_cid->time, rq->clock);
3346}
3347
3348static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
 
3349{
3350	int cid;
3351
3352	/*
3353	 * All allocations (even those using the cid_lock) are lock-free. If
3354	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3355	 * guarantee forward progress.
3356	 */
3357	if (!READ_ONCE(use_cid_lock)) {
3358		cid = __mm_cid_try_get(mm);
3359		if (cid >= 0)
3360			goto end;
3361		raw_spin_lock(&cid_lock);
3362	} else {
3363		raw_spin_lock(&cid_lock);
3364		cid = __mm_cid_try_get(mm);
3365		if (cid >= 0)
3366			goto unlock;
3367	}
3368
3369	/*
3370	 * cid concurrently allocated. Retry while forcing following
3371	 * allocations to use the cid_lock to ensure forward progress.
3372	 */
3373	WRITE_ONCE(use_cid_lock, 1);
3374	/*
3375	 * Set use_cid_lock before allocation. Only care about program order
3376	 * because this is only required for forward progress.
3377	 */
3378	barrier();
3379	/*
3380	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3381	 * all newcoming allocations observe the use_cid_lock flag set.
3382	 */
3383	do {
3384		cid = __mm_cid_try_get(mm);
3385		cpu_relax();
3386	} while (cid < 0);
3387	/*
3388	 * Allocate before clearing use_cid_lock. Only care about
3389	 * program order because this is for forward progress.
3390	 */
3391	barrier();
3392	WRITE_ONCE(use_cid_lock, 0);
3393unlock:
3394	raw_spin_unlock(&cid_lock);
3395end:
3396	mm_cid_snapshot_time(rq, mm);
 
3397	return cid;
3398}
3399
3400static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
 
3401{
3402	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3403	struct cpumask *cpumask;
3404	int cid;
3405
3406	lockdep_assert_rq_held(rq);
3407	cpumask = mm_cidmask(mm);
3408	cid = __this_cpu_read(pcpu_cid->cid);
3409	if (mm_cid_is_valid(cid)) {
3410		mm_cid_snapshot_time(rq, mm);
3411		return cid;
3412	}
3413	if (mm_cid_is_lazy_put(cid)) {
3414		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3415			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3416	}
3417	cid = __mm_cid_get(rq, mm);
3418	__this_cpu_write(pcpu_cid->cid, cid);
 
 
3419	return cid;
3420}
3421
3422static inline void switch_mm_cid(struct rq *rq,
3423				 struct task_struct *prev,
3424				 struct task_struct *next)
3425{
3426	/*
3427	 * Provide a memory barrier between rq->curr store and load of
3428	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3429	 *
3430	 * Should be adapted if context_switch() is modified.
3431	 */
3432	if (!next->mm) {                                // to kernel
3433		/*
3434		 * user -> kernel transition does not guarantee a barrier, but
3435		 * we can use the fact that it performs an atomic operation in
3436		 * mmgrab().
3437		 */
3438		if (prev->mm)                           // from user
3439			smp_mb__after_mmgrab();
3440		/*
3441		 * kernel -> kernel transition does not change rq->curr->mm
3442		 * state. It stays NULL.
3443		 */
3444	} else {                                        // to user
3445		/*
3446		 * kernel -> user transition does not provide a barrier
3447		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3448		 * Provide it here.
3449		 */
3450		if (!prev->mm) {                        // from kernel
3451			smp_mb();
3452		} else {				// from user
3453			/*
3454			 * user->user transition relies on an implicit
3455			 * memory barrier in switch_mm() when
3456			 * current->mm changes. If the architecture
3457			 * switch_mm() does not have an implicit memory
3458			 * barrier, it is emitted here.  If current->mm
3459			 * is unchanged, no barrier is needed.
3460			 */
3461			smp_mb__after_switch_mm();
3462		}
3463	}
3464	if (prev->mm_cid_active) {
3465		mm_cid_snapshot_time(rq, prev->mm);
3466		mm_cid_put_lazy(prev);
3467		prev->mm_cid = -1;
3468	}
3469	if (next->mm_cid_active)
3470		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3471}
3472
3473#else
3474static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3475static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3476static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3477static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3478static inline void init_sched_mm_cid(struct task_struct *t) { }
3479#endif
3480
3481extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3482extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3483
3484#endif /* _KERNEL_SCHED_SCHED_H */