Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/tcp_ao.h>
  41#include <net/inet_ecn.h>
  42#include <net/dst.h>
  43#include <net/mptcp.h>
  44#include <net/xfrm.h>
  45
  46#include <linux/seq_file.h>
  47#include <linux/memcontrol.h>
  48#include <linux/bpf-cgroup.h>
  49#include <linux/siphash.h>
  50
  51extern struct inet_hashinfo tcp_hashinfo;
  52
  53DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  54int tcp_orphan_count_sum(void);
  55
  56DECLARE_PER_CPU(u32, tcp_tw_isn);
  57
  58void tcp_time_wait(struct sock *sk, int state, int timeo);
  59
  60#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  61#define MAX_TCP_OPTION_SPACE 40
  62#define TCP_MIN_SND_MSS		48
  63#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  64
  65/*
  66 * Never offer a window over 32767 without using window scaling. Some
  67 * poor stacks do signed 16bit maths!
  68 */
  69#define MAX_TCP_WINDOW		32767U
  70
  71/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  72#define TCP_MIN_MSS		88U
  73
  74/* The initial MTU to use for probing */
  75#define TCP_BASE_MSS		1024
  76
  77/* probing interval, default to 10 minutes as per RFC4821 */
  78#define TCP_PROBE_INTERVAL	600
  79
  80/* Specify interval when tcp mtu probing will stop */
  81#define TCP_PROBE_THRESHOLD	8
  82
  83/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  84#define TCP_FASTRETRANS_THRESH 3
  85
  86/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  87#define TCP_MAX_QUICKACKS	16U
  88
  89/* Maximal number of window scale according to RFC1323 */
  90#define TCP_MAX_WSCALE		14U
  91
  92/* urg_data states */
  93#define TCP_URG_VALID	0x0100
  94#define TCP_URG_NOTYET	0x0200
  95#define TCP_URG_READ	0x0400
  96
  97#define TCP_RETR1	3	/*
  98				 * This is how many retries it does before it
  99				 * tries to figure out if the gateway is
 100				 * down. Minimal RFC value is 3; it corresponds
 101				 * to ~3sec-8min depending on RTO.
 102				 */
 103
 104#define TCP_RETR2	15	/*
 105				 * This should take at least
 106				 * 90 minutes to time out.
 107				 * RFC1122 says that the limit is 100 sec.
 108				 * 15 is ~13-30min depending on RTO.
 109				 */
 110
 111#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 112				 * when active opening a connection.
 113				 * RFC1122 says the minimum retry MUST
 114				 * be at least 180secs.  Nevertheless
 115				 * this value is corresponding to
 116				 * 63secs of retransmission with the
 117				 * current initial RTO.
 118				 */
 119
 120#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 121				 * when passive opening a connection.
 122				 * This is corresponding to 31secs of
 123				 * retransmission with the current
 124				 * initial RTO.
 125				 */
 126
 127#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 128				  * state, about 60 seconds	*/
 129#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 130                                 /* BSD style FIN_WAIT2 deadlock breaker.
 131				  * It used to be 3min, new value is 60sec,
 132				  * to combine FIN-WAIT-2 timeout with
 133				  * TIME-WAIT timer.
 134				  */
 135#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 136
 137#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 138static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
 139
 140#if HZ >= 100
 141#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 142#define TCP_ATO_MIN	((unsigned)(HZ/25))
 143#else
 144#define TCP_DELACK_MIN	4U
 145#define TCP_ATO_MIN	4U
 146#endif
 147#define TCP_RTO_MAX	((unsigned)(120*HZ))
 148#define TCP_RTO_MIN	((unsigned)(HZ/5))
 149#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 150
 151#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
 152
 153#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 154#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 155						 * used as a fallback RTO for the
 156						 * initial data transmission if no
 157						 * valid RTT sample has been acquired,
 158						 * most likely due to retrans in 3WHS.
 159						 */
 160
 161#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 162					                 * for local resources.
 163					                 */
 164#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 165#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 166#define TCP_KEEPALIVE_INTVL	(75*HZ)
 167
 168#define MAX_TCP_KEEPIDLE	32767
 169#define MAX_TCP_KEEPINTVL	32767
 170#define MAX_TCP_KEEPCNT		127
 171#define MAX_TCP_SYNCNT		127
 172
 173/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
 174 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
 175 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
 176 */
 177#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
 178
 179#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 180					 * after this time. It should be equal
 181					 * (or greater than) TCP_TIMEWAIT_LEN
 182					 * to provide reliability equal to one
 183					 * provided by timewait state.
 184					 */
 185#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 186					 * timestamps. It must be less than
 187					 * minimal timewait lifetime.
 188					 */
 189/*
 190 *	TCP option
 191 */
 192
 193#define TCPOPT_NOP		1	/* Padding */
 194#define TCPOPT_EOL		0	/* End of options */
 195#define TCPOPT_MSS		2	/* Segment size negotiating */
 196#define TCPOPT_WINDOW		3	/* Window scaling */
 197#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 198#define TCPOPT_SACK             5       /* SACK Block */
 199#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 200#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 201#define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
 202#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 203#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 204#define TCPOPT_EXP		254	/* Experimental */
 205/* Magic number to be after the option value for sharing TCP
 206 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 207 */
 208#define TCPOPT_FASTOPEN_MAGIC	0xF989
 209#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 210
 211/*
 212 *     TCP option lengths
 213 */
 214
 215#define TCPOLEN_MSS            4
 216#define TCPOLEN_WINDOW         3
 217#define TCPOLEN_SACK_PERM      2
 218#define TCPOLEN_TIMESTAMP      10
 219#define TCPOLEN_MD5SIG         18
 220#define TCPOLEN_FASTOPEN_BASE  2
 221#define TCPOLEN_EXP_FASTOPEN_BASE  4
 222#define TCPOLEN_EXP_SMC_BASE   6
 223
 224/* But this is what stacks really send out. */
 225#define TCPOLEN_TSTAMP_ALIGNED		12
 226#define TCPOLEN_WSCALE_ALIGNED		4
 227#define TCPOLEN_SACKPERM_ALIGNED	4
 228#define TCPOLEN_SACK_BASE		2
 229#define TCPOLEN_SACK_BASE_ALIGNED	4
 230#define TCPOLEN_SACK_PERBLOCK		8
 231#define TCPOLEN_MD5SIG_ALIGNED		20
 232#define TCPOLEN_MSS_ALIGNED		4
 233#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 234
 235/* Flags in tp->nonagle */
 236#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 237#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 238#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 239
 240/* TCP thin-stream limits */
 241#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 242
 243/* TCP initial congestion window as per rfc6928 */
 244#define TCP_INIT_CWND		10
 245
 246/* Bit Flags for sysctl_tcp_fastopen */
 247#define	TFO_CLIENT_ENABLE	1
 248#define	TFO_SERVER_ENABLE	2
 249#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 250
 251/* Accept SYN data w/o any cookie option */
 252#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 253
 254/* Force enable TFO on all listeners, i.e., not requiring the
 255 * TCP_FASTOPEN socket option.
 256 */
 257#define	TFO_SERVER_WO_SOCKOPT1	0x400
 258
 259
 260/* sysctl variables for tcp */
 261extern int sysctl_tcp_max_orphans;
 262extern long sysctl_tcp_mem[3];
 263
 264#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 265#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 266#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 267
 268extern atomic_long_t tcp_memory_allocated;
 269DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 270
 271extern struct percpu_counter tcp_sockets_allocated;
 272extern unsigned long tcp_memory_pressure;
 273
 274/* optimized version of sk_under_memory_pressure() for TCP sockets */
 275static inline bool tcp_under_memory_pressure(const struct sock *sk)
 276{
 277	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 278	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 279		return true;
 280
 281	return READ_ONCE(tcp_memory_pressure);
 282}
 283/*
 284 * The next routines deal with comparing 32 bit unsigned ints
 285 * and worry about wraparound (automatic with unsigned arithmetic).
 286 */
 287
 288static inline bool before(__u32 seq1, __u32 seq2)
 289{
 290        return (__s32)(seq1-seq2) < 0;
 291}
 292#define after(seq2, seq1) 	before(seq1, seq2)
 293
 294/* is s2<=s1<=s3 ? */
 295static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 296{
 297	return seq3 - seq2 >= seq1 - seq2;
 298}
 299
 
 
 
 
 
 
 
 
 300static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 301{
 302	sk_wmem_queued_add(sk, -skb->truesize);
 303	if (!skb_zcopy_pure(skb))
 304		sk_mem_uncharge(sk, skb->truesize);
 305	else
 306		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 307	__kfree_skb(skb);
 308}
 309
 310void sk_forced_mem_schedule(struct sock *sk, int size);
 311
 312bool tcp_check_oom(const struct sock *sk, int shift);
 313
 314
 315extern struct proto tcp_prot;
 316
 317#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 318#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 319#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 320#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 321
 322void tcp_tasklet_init(void);
 323
 324int tcp_v4_err(struct sk_buff *skb, u32);
 325
 326void tcp_shutdown(struct sock *sk, int how);
 327
 328int tcp_v4_early_demux(struct sk_buff *skb);
 329int tcp_v4_rcv(struct sk_buff *skb);
 330
 331void tcp_remove_empty_skb(struct sock *sk);
 332int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 333int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 334int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 335			 size_t size, struct ubuf_info *uarg);
 336void tcp_splice_eof(struct socket *sock);
 337int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 338int tcp_wmem_schedule(struct sock *sk, int copy);
 339void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 340	      int size_goal);
 341void tcp_release_cb(struct sock *sk);
 342void tcp_wfree(struct sk_buff *skb);
 343void tcp_write_timer_handler(struct sock *sk);
 344void tcp_delack_timer_handler(struct sock *sk);
 345int tcp_ioctl(struct sock *sk, int cmd, int *karg);
 346enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 347void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 348void tcp_rcv_space_adjust(struct sock *sk);
 349int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 350void tcp_twsk_destructor(struct sock *sk);
 351void tcp_twsk_purge(struct list_head *net_exit_list);
 352ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 353			struct pipe_inode_info *pipe, size_t len,
 354			unsigned int flags);
 355struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 356				     bool force_schedule);
 357
 358static inline void tcp_dec_quickack_mode(struct sock *sk)
 359{
 360	struct inet_connection_sock *icsk = inet_csk(sk);
 361
 362	if (icsk->icsk_ack.quick) {
 363		/* How many ACKs S/ACKing new data have we sent? */
 364		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
 365
 366		if (pkts >= icsk->icsk_ack.quick) {
 367			icsk->icsk_ack.quick = 0;
 368			/* Leaving quickack mode we deflate ATO. */
 369			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 370		} else
 371			icsk->icsk_ack.quick -= pkts;
 372	}
 373}
 374
 375#define	TCP_ECN_OK		1
 376#define	TCP_ECN_QUEUE_CWR	2
 377#define	TCP_ECN_DEMAND_CWR	4
 378#define	TCP_ECN_SEEN		8
 379
 380enum tcp_tw_status {
 381	TCP_TW_SUCCESS = 0,
 382	TCP_TW_RST = 1,
 383	TCP_TW_ACK = 2,
 384	TCP_TW_SYN = 3
 385};
 386
 387
 388enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 389					      struct sk_buff *skb,
 390					      const struct tcphdr *th,
 391					      u32 *tw_isn);
 392struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 393			   struct request_sock *req, bool fastopen,
 394			   bool *lost_race);
 395enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
 396				       struct sk_buff *skb);
 397void tcp_enter_loss(struct sock *sk);
 398void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 399void tcp_clear_retrans(struct tcp_sock *tp);
 400void tcp_update_metrics(struct sock *sk);
 401void tcp_init_metrics(struct sock *sk);
 402void tcp_metrics_init(void);
 403bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 404void __tcp_close(struct sock *sk, long timeout);
 405void tcp_close(struct sock *sk, long timeout);
 406void tcp_init_sock(struct sock *sk);
 407void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 408__poll_t tcp_poll(struct file *file, struct socket *sock,
 409		      struct poll_table_struct *wait);
 410int do_tcp_getsockopt(struct sock *sk, int level,
 411		      int optname, sockptr_t optval, sockptr_t optlen);
 412int tcp_getsockopt(struct sock *sk, int level, int optname,
 413		   char __user *optval, int __user *optlen);
 414bool tcp_bpf_bypass_getsockopt(int level, int optname);
 415int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 416		      sockptr_t optval, unsigned int optlen);
 417int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 418		   unsigned int optlen);
 419void tcp_set_keepalive(struct sock *sk, int val);
 420void tcp_syn_ack_timeout(const struct request_sock *req);
 421int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 422		int flags, int *addr_len);
 423int tcp_set_rcvlowat(struct sock *sk, int val);
 424int tcp_set_window_clamp(struct sock *sk, int val);
 425void tcp_update_recv_tstamps(struct sk_buff *skb,
 426			     struct scm_timestamping_internal *tss);
 427void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 428			struct scm_timestamping_internal *tss);
 429void tcp_data_ready(struct sock *sk);
 430#ifdef CONFIG_MMU
 431int tcp_mmap(struct file *file, struct socket *sock,
 432	     struct vm_area_struct *vma);
 433#endif
 434void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 435		       struct tcp_options_received *opt_rx,
 436		       int estab, struct tcp_fastopen_cookie *foc);
 437
 438/*
 439 *	BPF SKB-less helpers
 440 */
 441u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 442			 struct tcphdr *th, u32 *cookie);
 443u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 444			 struct tcphdr *th, u32 *cookie);
 445u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 446u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 447			  const struct tcp_request_sock_ops *af_ops,
 448			  struct sock *sk, struct tcphdr *th);
 449/*
 450 *	TCP v4 functions exported for the inet6 API
 451 */
 452
 453void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 454void tcp_v4_mtu_reduced(struct sock *sk);
 455void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 456void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 457int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 458struct sock *tcp_create_openreq_child(const struct sock *sk,
 459				      struct request_sock *req,
 460				      struct sk_buff *skb);
 461void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 462struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 463				  struct request_sock *req,
 464				  struct dst_entry *dst,
 465				  struct request_sock *req_unhash,
 466				  bool *own_req);
 467int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 468int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 469int tcp_connect(struct sock *sk);
 470enum tcp_synack_type {
 471	TCP_SYNACK_NORMAL,
 472	TCP_SYNACK_FASTOPEN,
 473	TCP_SYNACK_COOKIE,
 474};
 475struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 476				struct request_sock *req,
 477				struct tcp_fastopen_cookie *foc,
 478				enum tcp_synack_type synack_type,
 479				struct sk_buff *syn_skb);
 480int tcp_disconnect(struct sock *sk, int flags);
 481
 482void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 483int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 484void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 485
 486/* From syncookies.c */
 487struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 488				 struct request_sock *req,
 489				 struct dst_entry *dst);
 490int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
 491struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 492struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 493					    struct sock *sk, struct sk_buff *skb,
 494					    struct tcp_options_received *tcp_opt,
 495					    int mss, u32 tsoff);
 496
 497#if IS_ENABLED(CONFIG_BPF)
 498struct bpf_tcp_req_attrs {
 499	u32 rcv_tsval;
 500	u32 rcv_tsecr;
 501	u16 mss;
 502	u8 rcv_wscale;
 503	u8 snd_wscale;
 504	u8 ecn_ok;
 505	u8 wscale_ok;
 506	u8 sack_ok;
 507	u8 tstamp_ok;
 508	u8 usec_ts_ok;
 509	u8 reserved[3];
 510};
 511#endif
 512
 513#ifdef CONFIG_SYN_COOKIES
 514
 515/* Syncookies use a monotonic timer which increments every 60 seconds.
 516 * This counter is used both as a hash input and partially encoded into
 517 * the cookie value.  A cookie is only validated further if the delta
 518 * between the current counter value and the encoded one is less than this,
 519 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 520 * the counter advances immediately after a cookie is generated).
 521 */
 522#define MAX_SYNCOOKIE_AGE	2
 523#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 524#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 525
 526/* syncookies: remember time of last synqueue overflow
 527 * But do not dirty this field too often (once per second is enough)
 528 * It is racy as we do not hold a lock, but race is very minor.
 529 */
 530static inline void tcp_synq_overflow(const struct sock *sk)
 531{
 532	unsigned int last_overflow;
 533	unsigned int now = jiffies;
 534
 535	if (sk->sk_reuseport) {
 536		struct sock_reuseport *reuse;
 537
 538		reuse = rcu_dereference(sk->sk_reuseport_cb);
 539		if (likely(reuse)) {
 540			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 541			if (!time_between32(now, last_overflow,
 542					    last_overflow + HZ))
 543				WRITE_ONCE(reuse->synq_overflow_ts, now);
 544			return;
 545		}
 546	}
 547
 548	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 549	if (!time_between32(now, last_overflow, last_overflow + HZ))
 550		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
 551}
 552
 553/* syncookies: no recent synqueue overflow on this listening socket? */
 554static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 555{
 556	unsigned int last_overflow;
 557	unsigned int now = jiffies;
 558
 559	if (sk->sk_reuseport) {
 560		struct sock_reuseport *reuse;
 561
 562		reuse = rcu_dereference(sk->sk_reuseport_cb);
 563		if (likely(reuse)) {
 564			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 565			return !time_between32(now, last_overflow - HZ,
 566					       last_overflow +
 567					       TCP_SYNCOOKIE_VALID);
 568		}
 569	}
 570
 571	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 572
 573	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 574	 * then we're under synflood. However, we have to use
 575	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 576	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 577	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 578	 * which could lead to rejecting a valid syncookie.
 579	 */
 580	return !time_between32(now, last_overflow - HZ,
 581			       last_overflow + TCP_SYNCOOKIE_VALID);
 582}
 583
 584static inline u32 tcp_cookie_time(void)
 585{
 586	u64 val = get_jiffies_64();
 587
 588	do_div(val, TCP_SYNCOOKIE_PERIOD);
 589	return val;
 590}
 591
 592/* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
 593static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
 594{
 595	if (usec_ts)
 596		return div_u64(val, NSEC_PER_USEC);
 597
 598	return div_u64(val, NSEC_PER_MSEC);
 599}
 600
 601u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 602			      u16 *mssp);
 603__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 604u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 605bool cookie_timestamp_decode(const struct net *net,
 606			     struct tcp_options_received *opt);
 607
 608static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
 609{
 610	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
 611		dst_feature(dst, RTAX_FEATURE_ECN);
 612}
 613
 614#if IS_ENABLED(CONFIG_BPF)
 615static inline bool cookie_bpf_ok(struct sk_buff *skb)
 616{
 617	return skb->sk;
 618}
 619
 620struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
 621#else
 622static inline bool cookie_bpf_ok(struct sk_buff *skb)
 623{
 624	return false;
 625}
 626
 627static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
 628						    struct sk_buff *skb)
 629{
 630	return NULL;
 631}
 632#endif
 633
 634/* From net/ipv6/syncookies.c */
 635int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
 636struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 637
 638u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 639			      const struct tcphdr *th, u16 *mssp);
 640__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 641#endif
 642/* tcp_output.c */
 643
 644void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 645void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 646void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 647			       int nonagle);
 648int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 649int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 650void tcp_retransmit_timer(struct sock *sk);
 651void tcp_xmit_retransmit_queue(struct sock *);
 652void tcp_simple_retransmit(struct sock *);
 653void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 654int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 655enum tcp_queue {
 656	TCP_FRAG_IN_WRITE_QUEUE,
 657	TCP_FRAG_IN_RTX_QUEUE,
 658};
 659int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 660		 struct sk_buff *skb, u32 len,
 661		 unsigned int mss_now, gfp_t gfp);
 662
 663void tcp_send_probe0(struct sock *);
 664int tcp_write_wakeup(struct sock *, int mib);
 665void tcp_send_fin(struct sock *sk);
 666void tcp_send_active_reset(struct sock *sk, gfp_t priority,
 667			   enum sk_rst_reason reason);
 668int tcp_send_synack(struct sock *);
 669void tcp_push_one(struct sock *, unsigned int mss_now);
 670void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 671void tcp_send_ack(struct sock *sk);
 672void tcp_send_delayed_ack(struct sock *sk);
 673void tcp_send_loss_probe(struct sock *sk);
 674bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 675void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 676			     const struct sk_buff *next_skb);
 677
 678/* tcp_input.c */
 679void tcp_rearm_rto(struct sock *sk);
 680void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 681void tcp_done_with_error(struct sock *sk, int err);
 682void tcp_reset(struct sock *sk, struct sk_buff *skb);
 683void tcp_fin(struct sock *sk);
 684void tcp_check_space(struct sock *sk);
 685void tcp_sack_compress_send_ack(struct sock *sk);
 686
 687static inline void tcp_cleanup_skb(struct sk_buff *skb)
 688{
 689	skb_dst_drop(skb);
 690	secpath_reset(skb);
 691}
 692
 693static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
 694{
 695	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
 696	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
 697	__skb_queue_tail(&sk->sk_receive_queue, skb);
 698}
 699
 700/* tcp_timer.c */
 701void tcp_init_xmit_timers(struct sock *);
 702static inline void tcp_clear_xmit_timers(struct sock *sk)
 703{
 704	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 705		__sock_put(sk);
 706
 707	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 708		__sock_put(sk);
 709
 710	inet_csk_clear_xmit_timers(sk);
 711}
 712
 713unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 714unsigned int tcp_current_mss(struct sock *sk);
 715u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 716
 717/* Bound MSS / TSO packet size with the half of the window */
 718static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 719{
 720	int cutoff;
 721
 722	/* When peer uses tiny windows, there is no use in packetizing
 723	 * to sub-MSS pieces for the sake of SWS or making sure there
 724	 * are enough packets in the pipe for fast recovery.
 725	 *
 726	 * On the other hand, for extremely large MSS devices, handling
 727	 * smaller than MSS windows in this way does make sense.
 728	 */
 729	if (tp->max_window > TCP_MSS_DEFAULT)
 730		cutoff = (tp->max_window >> 1);
 731	else
 732		cutoff = tp->max_window;
 733
 734	if (cutoff && pktsize > cutoff)
 735		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 736	else
 737		return pktsize;
 738}
 739
 740/* tcp.c */
 741void tcp_get_info(struct sock *, struct tcp_info *);
 742
 743/* Read 'sendfile()'-style from a TCP socket */
 744int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 745		  sk_read_actor_t recv_actor);
 746int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 747struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 748void tcp_read_done(struct sock *sk, size_t len);
 749
 750void tcp_initialize_rcv_mss(struct sock *sk);
 751
 752int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 753int tcp_mss_to_mtu(struct sock *sk, int mss);
 754void tcp_mtup_init(struct sock *sk);
 755
 756static inline void tcp_bound_rto(struct sock *sk)
 757{
 758	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 759		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 760}
 761
 762static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 763{
 764	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 765}
 766
 767static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 768{
 769	/* mptcp hooks are only on the slow path */
 770	if (sk_is_mptcp((struct sock *)tp))
 771		return;
 772
 773	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 774			       ntohl(TCP_FLAG_ACK) |
 775			       snd_wnd);
 776}
 777
 778static inline void tcp_fast_path_on(struct tcp_sock *tp)
 779{
 780	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 781}
 782
 783static inline void tcp_fast_path_check(struct sock *sk)
 784{
 785	struct tcp_sock *tp = tcp_sk(sk);
 786
 787	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 788	    tp->rcv_wnd &&
 789	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 790	    !tp->urg_data)
 791		tcp_fast_path_on(tp);
 792}
 793
 794u32 tcp_delack_max(const struct sock *sk);
 795
 796/* Compute the actual rto_min value */
 797static inline u32 tcp_rto_min(const struct sock *sk)
 798{
 799	const struct dst_entry *dst = __sk_dst_get(sk);
 800	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 801
 802	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 803		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 804	return rto_min;
 805}
 806
 807static inline u32 tcp_rto_min_us(const struct sock *sk)
 808{
 809	return jiffies_to_usecs(tcp_rto_min(sk));
 810}
 811
 812static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 813{
 814	return dst_metric_locked(dst, RTAX_CC_ALGO);
 815}
 816
 817/* Minimum RTT in usec. ~0 means not available. */
 818static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 819{
 820	return minmax_get(&tp->rtt_min);
 821}
 822
 823/* Compute the actual receive window we are currently advertising.
 824 * Rcv_nxt can be after the window if our peer push more data
 825 * than the offered window.
 826 */
 827static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 828{
 829	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 830
 831	if (win < 0)
 832		win = 0;
 833	return (u32) win;
 834}
 835
 836/* Choose a new window, without checks for shrinking, and without
 837 * scaling applied to the result.  The caller does these things
 838 * if necessary.  This is a "raw" window selection.
 839 */
 840u32 __tcp_select_window(struct sock *sk);
 841
 842void tcp_send_window_probe(struct sock *sk);
 843
 844/* TCP uses 32bit jiffies to save some space.
 845 * Note that this is different from tcp_time_stamp, which
 846 * historically has been the same until linux-4.13.
 847 */
 848#define tcp_jiffies32 ((u32)jiffies)
 849
 850/*
 851 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 852 * It is no longer tied to jiffies, but to 1 ms clock.
 853 * Note: double check if you want to use tcp_jiffies32 instead of this.
 854 */
 855#define TCP_TS_HZ	1000
 856
 857static inline u64 tcp_clock_ns(void)
 858{
 859	return ktime_get_ns();
 860}
 861
 862static inline u64 tcp_clock_us(void)
 863{
 864	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 865}
 866
 867static inline u64 tcp_clock_ms(void)
 868{
 869	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
 870}
 871
 872/* TCP Timestamp included in TS option (RFC 1323) can either use ms
 873 * or usec resolution. Each socket carries a flag to select one or other
 874 * resolution, as the route attribute could change anytime.
 875 * Each flow must stick to initial resolution.
 876 */
 877static inline u32 tcp_clock_ts(bool usec_ts)
 878{
 879	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
 880}
 881
 882static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
 883{
 884	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
 885}
 886
 887static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
 888{
 889	if (tp->tcp_usec_ts)
 890		return tp->tcp_mstamp;
 891	return tcp_time_stamp_ms(tp);
 892}
 893
 894void tcp_mstamp_refresh(struct tcp_sock *tp);
 895
 896static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 897{
 898	return max_t(s64, t1 - t0, 0);
 899}
 900
 901/* provide the departure time in us unit */
 902static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 903{
 904	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 905}
 906
 907/* Provide skb TSval in usec or ms unit */
 908static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
 909{
 910	if (usec_ts)
 911		return tcp_skb_timestamp_us(skb);
 912
 913	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
 914}
 915
 916static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
 917{
 918	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
 919}
 920
 921static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
 922{
 923	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
 924}
 925
 926#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 927
 928#define TCPHDR_FIN 0x01
 929#define TCPHDR_SYN 0x02
 930#define TCPHDR_RST 0x04
 931#define TCPHDR_PSH 0x08
 932#define TCPHDR_ACK 0x10
 933#define TCPHDR_URG 0x20
 934#define TCPHDR_ECE 0x40
 935#define TCPHDR_CWR 0x80
 936
 937#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 938
 939/* State flags for sacked in struct tcp_skb_cb */
 940enum tcp_skb_cb_sacked_flags {
 941	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
 942	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
 943	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
 944	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
 945				   TCPCB_LOST),	/* All tag bits			*/
 946	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
 947	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
 948	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
 949				   TCPCB_REPAIRED),
 950};
 951
 952/* This is what the send packet queuing engine uses to pass
 953 * TCP per-packet control information to the transmission code.
 954 * We also store the host-order sequence numbers in here too.
 955 * This is 44 bytes if IPV6 is enabled.
 956 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 957 */
 958struct tcp_skb_cb {
 959	__u32		seq;		/* Starting sequence number	*/
 960	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 961	union {
 962		/* Note :
 
 
 963		 * 	  tcp_gso_segs/size are used in write queue only,
 964		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 965		 */
 
 966		struct {
 967			u16	tcp_gso_segs;
 968			u16	tcp_gso_size;
 969		};
 970	};
 971	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 972
 973	__u8		sacked;		/* State flags for SACK.	*/
 
 
 
 
 
 
 
 
 
 974	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 975	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 976			eor:1,		/* Is skb MSG_EOR marked? */
 977			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 978			unused:5;
 979	__u32		ack_seq;	/* Sequence number ACK'd	*/
 980	union {
 981		struct {
 982#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 983			/* There is space for up to 24 bytes */
 984			__u32 is_app_limited:1, /* cwnd not fully used? */
 985			      delivered_ce:20,
 986			      unused:11;
 987			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 988			__u32 delivered;
 989			/* start of send pipeline phase */
 990			u64 first_tx_mstamp;
 991			/* when we reached the "delivered" count */
 992			u64 delivered_mstamp;
 993		} tx;   /* only used for outgoing skbs */
 994		union {
 995			struct inet_skb_parm	h4;
 996#if IS_ENABLED(CONFIG_IPV6)
 997			struct inet6_skb_parm	h6;
 998#endif
 999		} header;	/* For incoming skbs */
1000	};
1001};
1002
1003#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1004
1005extern const struct inet_connection_sock_af_ops ipv4_specific;
1006
1007#if IS_ENABLED(CONFIG_IPV6)
1008/* This is the variant of inet6_iif() that must be used by TCP,
1009 * as TCP moves IP6CB into a different location in skb->cb[]
1010 */
1011static inline int tcp_v6_iif(const struct sk_buff *skb)
1012{
1013	return TCP_SKB_CB(skb)->header.h6.iif;
1014}
1015
1016static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1017{
1018	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1019
1020	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1021}
1022
1023/* TCP_SKB_CB reference means this can not be used from early demux */
1024static inline int tcp_v6_sdif(const struct sk_buff *skb)
1025{
1026#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1027	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1028		return TCP_SKB_CB(skb)->header.h6.iif;
1029#endif
1030	return 0;
1031}
1032
1033extern const struct inet_connection_sock_af_ops ipv6_specific;
1034
1035INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1036INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1037void tcp_v6_early_demux(struct sk_buff *skb);
1038
1039#endif
1040
1041/* TCP_SKB_CB reference means this can not be used from early demux */
1042static inline int tcp_v4_sdif(struct sk_buff *skb)
1043{
1044#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1045	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1046		return TCP_SKB_CB(skb)->header.h4.iif;
1047#endif
1048	return 0;
1049}
1050
1051/* Due to TSO, an SKB can be composed of multiple actual
1052 * packets.  To keep these tracked properly, we use this.
1053 */
1054static inline int tcp_skb_pcount(const struct sk_buff *skb)
1055{
1056	return TCP_SKB_CB(skb)->tcp_gso_segs;
1057}
1058
1059static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1060{
1061	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1062}
1063
1064static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1065{
1066	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1067}
1068
1069/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1070static inline int tcp_skb_mss(const struct sk_buff *skb)
1071{
1072	return TCP_SKB_CB(skb)->tcp_gso_size;
1073}
1074
1075static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1076{
1077	return likely(!TCP_SKB_CB(skb)->eor);
1078}
1079
1080static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1081					const struct sk_buff *from)
1082{
1083	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1084	return likely(tcp_skb_can_collapse_to(to) &&
1085		      mptcp_skb_can_collapse(to, from) &&
1086		      skb_pure_zcopy_same(to, from) &&
1087		      skb_frags_readable(to) == skb_frags_readable(from));
1088}
1089
1090static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1091					   const struct sk_buff *from)
1092{
1093	return likely(mptcp_skb_can_collapse(to, from) &&
1094		      !skb_cmp_decrypted(to, from));
1095}
1096
1097/* Events passed to congestion control interface */
1098enum tcp_ca_event {
1099	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1100	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1101	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1102	CA_EVENT_LOSS,		/* loss timeout */
1103	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1104	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1105};
1106
1107/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1108enum tcp_ca_ack_event_flags {
1109	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1110	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1111	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1112};
1113
1114/*
1115 * Interface for adding new TCP congestion control handlers
1116 */
1117#define TCP_CA_NAME_MAX	16
1118#define TCP_CA_MAX	128
1119#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1120
1121#define TCP_CA_UNSPEC	0
1122
1123/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1124#define TCP_CONG_NON_RESTRICTED 0x1
1125/* Requires ECN/ECT set on all packets */
1126#define TCP_CONG_NEEDS_ECN	0x2
1127#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1128
1129union tcp_cc_info;
1130
1131struct ack_sample {
1132	u32 pkts_acked;
1133	s32 rtt_us;
1134	u32 in_flight;
1135};
1136
1137/* A rate sample measures the number of (original/retransmitted) data
1138 * packets delivered "delivered" over an interval of time "interval_us".
1139 * The tcp_rate.c code fills in the rate sample, and congestion
1140 * control modules that define a cong_control function to run at the end
1141 * of ACK processing can optionally chose to consult this sample when
1142 * setting cwnd and pacing rate.
1143 * A sample is invalid if "delivered" or "interval_us" is negative.
1144 */
1145struct rate_sample {
1146	u64  prior_mstamp; /* starting timestamp for interval */
1147	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1148	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1149	s32  delivered;		/* number of packets delivered over interval */
1150	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1151	long interval_us;	/* time for tp->delivered to incr "delivered" */
1152	u32 snd_interval_us;	/* snd interval for delivered packets */
1153	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1154	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1155	int  losses;		/* number of packets marked lost upon ACK */
1156	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1157	u32  prior_in_flight;	/* in flight before this ACK */
1158	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1159	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1160	bool is_retrans;	/* is sample from retransmission? */
1161	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1162};
1163
1164struct tcp_congestion_ops {
1165/* fast path fields are put first to fill one cache line */
1166
1167	/* return slow start threshold (required) */
1168	u32 (*ssthresh)(struct sock *sk);
1169
1170	/* do new cwnd calculation (required) */
1171	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1172
1173	/* call before changing ca_state (optional) */
1174	void (*set_state)(struct sock *sk, u8 new_state);
1175
1176	/* call when cwnd event occurs (optional) */
1177	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1178
1179	/* call when ack arrives (optional) */
1180	void (*in_ack_event)(struct sock *sk, u32 flags);
1181
1182	/* hook for packet ack accounting (optional) */
1183	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1184
1185	/* override sysctl_tcp_min_tso_segs */
1186	u32 (*min_tso_segs)(struct sock *sk);
1187
1188	/* call when packets are delivered to update cwnd and pacing rate,
1189	 * after all the ca_state processing. (optional)
1190	 */
1191	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1192
1193
1194	/* new value of cwnd after loss (required) */
1195	u32  (*undo_cwnd)(struct sock *sk);
1196	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1197	u32 (*sndbuf_expand)(struct sock *sk);
1198
1199/* control/slow paths put last */
1200	/* get info for inet_diag (optional) */
1201	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1202			   union tcp_cc_info *info);
1203
1204	char 			name[TCP_CA_NAME_MAX];
1205	struct module		*owner;
1206	struct list_head	list;
1207	u32			key;
1208	u32			flags;
1209
1210	/* initialize private data (optional) */
1211	void (*init)(struct sock *sk);
1212	/* cleanup private data  (optional) */
1213	void (*release)(struct sock *sk);
1214} ____cacheline_aligned_in_smp;
1215
1216int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1217void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1218int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1219				  struct tcp_congestion_ops *old_type);
1220int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1221
1222void tcp_assign_congestion_control(struct sock *sk);
1223void tcp_init_congestion_control(struct sock *sk);
1224void tcp_cleanup_congestion_control(struct sock *sk);
1225int tcp_set_default_congestion_control(struct net *net, const char *name);
1226void tcp_get_default_congestion_control(struct net *net, char *name);
1227void tcp_get_available_congestion_control(char *buf, size_t len);
1228void tcp_get_allowed_congestion_control(char *buf, size_t len);
1229int tcp_set_allowed_congestion_control(char *allowed);
1230int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1231			       bool cap_net_admin);
1232u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1233void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1234
1235u32 tcp_reno_ssthresh(struct sock *sk);
1236u32 tcp_reno_undo_cwnd(struct sock *sk);
1237void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1238extern struct tcp_congestion_ops tcp_reno;
1239
1240struct tcp_congestion_ops *tcp_ca_find(const char *name);
1241struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1242u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1243#ifdef CONFIG_INET
1244char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1245#else
1246static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1247{
1248	return NULL;
1249}
1250#endif
1251
1252static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1253{
1254	const struct inet_connection_sock *icsk = inet_csk(sk);
1255
1256	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1257}
1258
1259static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1260{
1261	const struct inet_connection_sock *icsk = inet_csk(sk);
1262
1263	if (icsk->icsk_ca_ops->cwnd_event)
1264		icsk->icsk_ca_ops->cwnd_event(sk, event);
1265}
1266
1267/* From tcp_cong.c */
1268void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1269
1270/* From tcp_rate.c */
1271void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1272void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1273			    struct rate_sample *rs);
1274void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1275		  bool is_sack_reneg, struct rate_sample *rs);
1276void tcp_rate_check_app_limited(struct sock *sk);
1277
1278static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1279{
1280	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1281}
1282
1283/* These functions determine how the current flow behaves in respect of SACK
1284 * handling. SACK is negotiated with the peer, and therefore it can vary
1285 * between different flows.
1286 *
1287 * tcp_is_sack - SACK enabled
1288 * tcp_is_reno - No SACK
1289 */
1290static inline int tcp_is_sack(const struct tcp_sock *tp)
1291{
1292	return likely(tp->rx_opt.sack_ok);
1293}
1294
1295static inline bool tcp_is_reno(const struct tcp_sock *tp)
1296{
1297	return !tcp_is_sack(tp);
1298}
1299
1300static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1301{
1302	return tp->sacked_out + tp->lost_out;
1303}
1304
1305/* This determines how many packets are "in the network" to the best
1306 * of our knowledge.  In many cases it is conservative, but where
1307 * detailed information is available from the receiver (via SACK
1308 * blocks etc.) we can make more aggressive calculations.
1309 *
1310 * Use this for decisions involving congestion control, use just
1311 * tp->packets_out to determine if the send queue is empty or not.
1312 *
1313 * Read this equation as:
1314 *
1315 *	"Packets sent once on transmission queue" MINUS
1316 *	"Packets left network, but not honestly ACKed yet" PLUS
1317 *	"Packets fast retransmitted"
1318 */
1319static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1320{
1321	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1322}
1323
1324#define TCP_INFINITE_SSTHRESH	0x7fffffff
1325
1326static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1327{
1328	return tp->snd_cwnd;
1329}
1330
1331static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1332{
1333	WARN_ON_ONCE((int)val <= 0);
1334	tp->snd_cwnd = val;
1335}
1336
1337static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1338{
1339	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1340}
1341
1342static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1343{
1344	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1345}
1346
1347static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1348{
1349	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1350	       (1 << inet_csk(sk)->icsk_ca_state);
1351}
1352
1353/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1354 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1355 * ssthresh.
1356 */
1357static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1358{
1359	const struct tcp_sock *tp = tcp_sk(sk);
1360
1361	if (tcp_in_cwnd_reduction(sk))
1362		return tp->snd_ssthresh;
1363	else
1364		return max(tp->snd_ssthresh,
1365			   ((tcp_snd_cwnd(tp) >> 1) +
1366			    (tcp_snd_cwnd(tp) >> 2)));
1367}
1368
1369/* Use define here intentionally to get WARN_ON location shown at the caller */
1370#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1371
1372void tcp_enter_cwr(struct sock *sk);
1373__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1374
1375/* The maximum number of MSS of available cwnd for which TSO defers
1376 * sending if not using sysctl_tcp_tso_win_divisor.
1377 */
1378static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1379{
1380	return 3;
1381}
1382
1383/* Returns end sequence number of the receiver's advertised window */
1384static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1385{
1386	return tp->snd_una + tp->snd_wnd;
1387}
1388
1389/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1390 * flexible approach. The RFC suggests cwnd should not be raised unless
1391 * it was fully used previously. And that's exactly what we do in
1392 * congestion avoidance mode. But in slow start we allow cwnd to grow
1393 * as long as the application has used half the cwnd.
1394 * Example :
1395 *    cwnd is 10 (IW10), but application sends 9 frames.
1396 *    We allow cwnd to reach 18 when all frames are ACKed.
1397 * This check is safe because it's as aggressive as slow start which already
1398 * risks 100% overshoot. The advantage is that we discourage application to
1399 * either send more filler packets or data to artificially blow up the cwnd
1400 * usage, and allow application-limited process to probe bw more aggressively.
1401 */
1402static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1403{
1404	const struct tcp_sock *tp = tcp_sk(sk);
1405
1406	if (tp->is_cwnd_limited)
1407		return true;
1408
1409	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1410	if (tcp_in_slow_start(tp))
1411		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1412
1413	return false;
1414}
1415
1416/* BBR congestion control needs pacing.
1417 * Same remark for SO_MAX_PACING_RATE.
1418 * sch_fq packet scheduler is efficiently handling pacing,
1419 * but is not always installed/used.
1420 * Return true if TCP stack should pace packets itself.
1421 */
1422static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1423{
1424	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1425}
1426
1427/* Estimates in how many jiffies next packet for this flow can be sent.
1428 * Scheduling a retransmit timer too early would be silly.
1429 */
1430static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1431{
1432	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1433
1434	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1435}
1436
1437static inline void tcp_reset_xmit_timer(struct sock *sk,
1438					const int what,
1439					unsigned long when,
1440					const unsigned long max_when)
1441{
1442	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1443				  max_when);
1444}
1445
1446/* Something is really bad, we could not queue an additional packet,
1447 * because qdisc is full or receiver sent a 0 window, or we are paced.
1448 * We do not want to add fuel to the fire, or abort too early,
1449 * so make sure the timer we arm now is at least 200ms in the future,
1450 * regardless of current icsk_rto value (as it could be ~2ms)
1451 */
1452static inline unsigned long tcp_probe0_base(const struct sock *sk)
1453{
1454	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1455}
1456
1457/* Variant of inet_csk_rto_backoff() used for zero window probes */
1458static inline unsigned long tcp_probe0_when(const struct sock *sk,
1459					    unsigned long max_when)
1460{
1461	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1462			   inet_csk(sk)->icsk_backoff);
1463	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1464
1465	return (unsigned long)min_t(u64, when, max_when);
1466}
1467
1468static inline void tcp_check_probe_timer(struct sock *sk)
1469{
1470	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1471		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1472				     tcp_probe0_base(sk), TCP_RTO_MAX);
1473}
1474
1475static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1476{
1477	tp->snd_wl1 = seq;
1478}
1479
1480static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1481{
1482	tp->snd_wl1 = seq;
1483}
1484
1485/*
1486 * Calculate(/check) TCP checksum
1487 */
1488static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1489				   __be32 daddr, __wsum base)
1490{
1491	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1492}
1493
1494static inline bool tcp_checksum_complete(struct sk_buff *skb)
1495{
1496	return !skb_csum_unnecessary(skb) &&
1497		__skb_checksum_complete(skb);
1498}
1499
1500bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1501		     enum skb_drop_reason *reason);
1502
1503
1504int tcp_filter(struct sock *sk, struct sk_buff *skb);
1505void tcp_set_state(struct sock *sk, int state);
1506void tcp_done(struct sock *sk);
1507int tcp_abort(struct sock *sk, int err);
1508
1509static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1510{
1511	rx_opt->dsack = 0;
1512	rx_opt->num_sacks = 0;
1513}
1514
1515void tcp_cwnd_restart(struct sock *sk, s32 delta);
1516
1517static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1518{
1519	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1520	struct tcp_sock *tp = tcp_sk(sk);
1521	s32 delta;
1522
1523	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1524	    tp->packets_out || ca_ops->cong_control)
1525		return;
1526	delta = tcp_jiffies32 - tp->lsndtime;
1527	if (delta > inet_csk(sk)->icsk_rto)
1528		tcp_cwnd_restart(sk, delta);
1529}
1530
1531/* Determine a window scaling and initial window to offer. */
1532void tcp_select_initial_window(const struct sock *sk, int __space,
1533			       __u32 mss, __u32 *rcv_wnd,
1534			       __u32 *window_clamp, int wscale_ok,
1535			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1536
1537static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1538{
1539	s64 scaled_space = (s64)space * scaling_ratio;
1540
1541	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1542}
1543
1544static inline int tcp_win_from_space(const struct sock *sk, int space)
1545{
1546	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1547}
1548
1549/* inverse of __tcp_win_from_space() */
1550static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1551{
1552	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1553
1554	do_div(val, scaling_ratio);
1555	return val;
1556}
1557
1558static inline int tcp_space_from_win(const struct sock *sk, int win)
1559{
1560	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1561}
1562
1563/* Assume a 50% default for skb->len/skb->truesize ratio.
1564 * This may be adjusted later in tcp_measure_rcv_mss().
1565 */
1566#define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1567
1568static inline void tcp_scaling_ratio_init(struct sock *sk)
1569{
1570	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1571}
1572
1573/* Note: caller must be prepared to deal with negative returns */
1574static inline int tcp_space(const struct sock *sk)
1575{
1576	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1577				  READ_ONCE(sk->sk_backlog.len) -
1578				  atomic_read(&sk->sk_rmem_alloc));
1579}
1580
1581static inline int tcp_full_space(const struct sock *sk)
1582{
1583	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1584}
1585
1586static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1587{
1588	int unused_mem = sk_unused_reserved_mem(sk);
1589	struct tcp_sock *tp = tcp_sk(sk);
1590
1591	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1592	if (unused_mem)
1593		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1594					 tcp_win_from_space(sk, unused_mem));
1595}
1596
1597static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1598{
1599	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1600}
1601
1602void tcp_cleanup_rbuf(struct sock *sk, int copied);
1603void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1604
1605
1606/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1607 * If 87.5 % (7/8) of the space has been consumed, we want to override
1608 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1609 * len/truesize ratio.
1610 */
1611static inline bool tcp_rmem_pressure(const struct sock *sk)
1612{
1613	int rcvbuf, threshold;
1614
1615	if (tcp_under_memory_pressure(sk))
1616		return true;
1617
1618	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1619	threshold = rcvbuf - (rcvbuf >> 3);
1620
1621	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1622}
1623
1624static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1625{
1626	const struct tcp_sock *tp = tcp_sk(sk);
1627	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1628
1629	if (avail <= 0)
1630		return false;
1631
1632	return (avail >= target) || tcp_rmem_pressure(sk) ||
1633	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1634}
1635
1636extern void tcp_openreq_init_rwin(struct request_sock *req,
1637				  const struct sock *sk_listener,
1638				  const struct dst_entry *dst);
1639
1640void tcp_enter_memory_pressure(struct sock *sk);
1641void tcp_leave_memory_pressure(struct sock *sk);
1642
1643static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1644{
1645	struct net *net = sock_net((struct sock *)tp);
1646	int val;
1647
1648	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1649	 * and do_tcp_setsockopt().
1650	 */
1651	val = READ_ONCE(tp->keepalive_intvl);
1652
1653	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1654}
1655
1656static inline int keepalive_time_when(const struct tcp_sock *tp)
1657{
1658	struct net *net = sock_net((struct sock *)tp);
1659	int val;
1660
1661	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1662	val = READ_ONCE(tp->keepalive_time);
1663
1664	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1665}
1666
1667static inline int keepalive_probes(const struct tcp_sock *tp)
1668{
1669	struct net *net = sock_net((struct sock *)tp);
1670	int val;
1671
1672	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1673	 * and do_tcp_setsockopt().
1674	 */
1675	val = READ_ONCE(tp->keepalive_probes);
1676
1677	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1678}
1679
1680static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1681{
1682	const struct inet_connection_sock *icsk = &tp->inet_conn;
1683
1684	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1685			  tcp_jiffies32 - tp->rcv_tstamp);
1686}
1687
1688static inline int tcp_fin_time(const struct sock *sk)
1689{
1690	int fin_timeout = tcp_sk(sk)->linger2 ? :
1691		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1692	const int rto = inet_csk(sk)->icsk_rto;
1693
1694	if (fin_timeout < (rto << 2) - (rto >> 1))
1695		fin_timeout = (rto << 2) - (rto >> 1);
1696
1697	return fin_timeout;
1698}
1699
1700static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1701				  int paws_win)
1702{
1703	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1704		return true;
1705	if (unlikely(!time_before32(ktime_get_seconds(),
1706				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1707		return true;
1708	/*
1709	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1710	 * then following tcp messages have valid values. Ignore 0 value,
1711	 * or else 'negative' tsval might forbid us to accept their packets.
1712	 */
1713	if (!rx_opt->ts_recent)
1714		return true;
1715	return false;
1716}
1717
1718static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1719				   int rst)
1720{
1721	if (tcp_paws_check(rx_opt, 0))
1722		return false;
1723
1724	/* RST segments are not recommended to carry timestamp,
1725	   and, if they do, it is recommended to ignore PAWS because
1726	   "their cleanup function should take precedence over timestamps."
1727	   Certainly, it is mistake. It is necessary to understand the reasons
1728	   of this constraint to relax it: if peer reboots, clock may go
1729	   out-of-sync and half-open connections will not be reset.
1730	   Actually, the problem would be not existing if all
1731	   the implementations followed draft about maintaining clock
1732	   via reboots. Linux-2.2 DOES NOT!
1733
1734	   However, we can relax time bounds for RST segments to MSL.
1735	 */
1736	if (rst && !time_before32(ktime_get_seconds(),
1737				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1738		return false;
1739	return true;
1740}
1741
1742bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1743			  int mib_idx, u32 *last_oow_ack_time);
1744
1745static inline void tcp_mib_init(struct net *net)
1746{
1747	/* See RFC 2012 */
1748	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1749	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1750	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1751	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1752}
1753
1754/* from STCP */
1755static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1756{
1757	tp->lost_skb_hint = NULL;
1758}
1759
1760static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1761{
1762	tcp_clear_retrans_hints_partial(tp);
1763	tp->retransmit_skb_hint = NULL;
1764}
1765
1766#define tcp_md5_addr tcp_ao_addr
1767
1768/* - key database */
1769struct tcp_md5sig_key {
1770	struct hlist_node	node;
1771	u8			keylen;
1772	u8			family; /* AF_INET or AF_INET6 */
1773	u8			prefixlen;
1774	u8			flags;
1775	union tcp_md5_addr	addr;
1776	int			l3index; /* set if key added with L3 scope */
1777	u8			key[TCP_MD5SIG_MAXKEYLEN];
1778	struct rcu_head		rcu;
1779};
1780
1781/* - sock block */
1782struct tcp_md5sig_info {
1783	struct hlist_head	head;
1784	struct rcu_head		rcu;
1785};
1786
1787/* - pseudo header */
1788struct tcp4_pseudohdr {
1789	__be32		saddr;
1790	__be32		daddr;
1791	__u8		pad;
1792	__u8		protocol;
1793	__be16		len;
1794};
1795
1796struct tcp6_pseudohdr {
1797	struct in6_addr	saddr;
1798	struct in6_addr daddr;
1799	__be32		len;
1800	__be32		protocol;	/* including padding */
1801};
1802
1803union tcp_md5sum_block {
1804	struct tcp4_pseudohdr ip4;
1805#if IS_ENABLED(CONFIG_IPV6)
1806	struct tcp6_pseudohdr ip6;
1807#endif
1808};
1809
1810/*
1811 * struct tcp_sigpool - per-CPU pool of ahash_requests
1812 * @scratch: per-CPU temporary area, that can be used between
1813 *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1814 *	     crypto request
1815 * @req: pre-allocated ahash request
1816 */
1817struct tcp_sigpool {
1818	void *scratch;
1819	struct ahash_request *req;
1820};
1821
1822int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1823void tcp_sigpool_get(unsigned int id);
1824void tcp_sigpool_release(unsigned int id);
1825int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1826			      const struct sk_buff *skb,
1827			      unsigned int header_len);
1828
1829/**
1830 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1831 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1832 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1833 *
1834 * Returns 0 on success, error otherwise.
1835 */
1836int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1837/**
1838 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1839 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1840 */
1841void tcp_sigpool_end(struct tcp_sigpool *c);
1842size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1843/* - functions */
1844int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1845			const struct sock *sk, const struct sk_buff *skb);
1846int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1847		   int family, u8 prefixlen, int l3index, u8 flags,
1848		   const u8 *newkey, u8 newkeylen);
1849int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1850		     int family, u8 prefixlen, int l3index,
1851		     struct tcp_md5sig_key *key);
1852
1853int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1854		   int family, u8 prefixlen, int l3index, u8 flags);
1855void tcp_clear_md5_list(struct sock *sk);
1856struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1857					 const struct sock *addr_sk);
1858
1859#ifdef CONFIG_TCP_MD5SIG
1860struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1861					   const union tcp_md5_addr *addr,
1862					   int family, bool any_l3index);
1863static inline struct tcp_md5sig_key *
1864tcp_md5_do_lookup(const struct sock *sk, int l3index,
1865		  const union tcp_md5_addr *addr, int family)
1866{
1867	if (!static_branch_unlikely(&tcp_md5_needed.key))
1868		return NULL;
1869	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1870}
1871
1872static inline struct tcp_md5sig_key *
1873tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1874			      const union tcp_md5_addr *addr, int family)
1875{
1876	if (!static_branch_unlikely(&tcp_md5_needed.key))
1877		return NULL;
1878	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1879}
1880
 
 
 
 
 
 
1881#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1882#else
1883static inline struct tcp_md5sig_key *
1884tcp_md5_do_lookup(const struct sock *sk, int l3index,
1885		  const union tcp_md5_addr *addr, int family)
1886{
1887	return NULL;
1888}
1889
1890static inline struct tcp_md5sig_key *
1891tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1892			      const union tcp_md5_addr *addr, int family)
1893{
1894	return NULL;
1895}
1896
 
 
 
 
 
 
 
1897#define tcp_twsk_md5_key(twsk)	NULL
1898#endif
1899
1900int tcp_md5_alloc_sigpool(void);
1901void tcp_md5_release_sigpool(void);
1902void tcp_md5_add_sigpool(void);
1903extern int tcp_md5_sigpool_id;
1904
1905int tcp_md5_hash_key(struct tcp_sigpool *hp,
1906		     const struct tcp_md5sig_key *key);
1907
1908/* From tcp_fastopen.c */
1909void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1910			    struct tcp_fastopen_cookie *cookie);
1911void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1912			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1913			    u16 try_exp);
1914struct tcp_fastopen_request {
1915	/* Fast Open cookie. Size 0 means a cookie request */
1916	struct tcp_fastopen_cookie	cookie;
1917	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1918	size_t				size;
1919	int				copied;	/* queued in tcp_connect() */
1920	struct ubuf_info		*uarg;
1921};
1922void tcp_free_fastopen_req(struct tcp_sock *tp);
1923void tcp_fastopen_destroy_cipher(struct sock *sk);
1924void tcp_fastopen_ctx_destroy(struct net *net);
1925int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1926			      void *primary_key, void *backup_key);
1927int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1928			    u64 *key);
1929void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1930struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1931			      struct request_sock *req,
1932			      struct tcp_fastopen_cookie *foc,
1933			      const struct dst_entry *dst);
1934void tcp_fastopen_init_key_once(struct net *net);
1935bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1936			     struct tcp_fastopen_cookie *cookie);
1937bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1938#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1939#define TCP_FASTOPEN_KEY_MAX 2
1940#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1941	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1942
1943/* Fastopen key context */
1944struct tcp_fastopen_context {
1945	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1946	int		num;
1947	struct rcu_head	rcu;
1948};
1949
1950void tcp_fastopen_active_disable(struct sock *sk);
1951bool tcp_fastopen_active_should_disable(struct sock *sk);
1952void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1953void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1954
1955/* Caller needs to wrap with rcu_read_(un)lock() */
1956static inline
1957struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1958{
1959	struct tcp_fastopen_context *ctx;
1960
1961	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1962	if (!ctx)
1963		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1964	return ctx;
1965}
1966
1967static inline
1968bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1969			       const struct tcp_fastopen_cookie *orig)
1970{
1971	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1972	    orig->len == foc->len &&
1973	    !memcmp(orig->val, foc->val, foc->len))
1974		return true;
1975	return false;
1976}
1977
1978static inline
1979int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1980{
1981	return ctx->num;
1982}
1983
1984/* Latencies incurred by various limits for a sender. They are
1985 * chronograph-like stats that are mutually exclusive.
1986 */
1987enum tcp_chrono {
1988	TCP_CHRONO_UNSPEC,
1989	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1990	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1991	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1992	__TCP_CHRONO_MAX,
1993};
1994
1995void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1996void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1997
1998/* This helper is needed, because skb->tcp_tsorted_anchor uses
1999 * the same memory storage than skb->destructor/_skb_refdst
2000 */
2001static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2002{
2003	skb->destructor = NULL;
2004	skb->_skb_refdst = 0UL;
2005}
2006
2007#define tcp_skb_tsorted_save(skb) {		\
2008	unsigned long _save = skb->_skb_refdst;	\
2009	skb->_skb_refdst = 0UL;
2010
2011#define tcp_skb_tsorted_restore(skb)		\
2012	skb->_skb_refdst = _save;		\
2013}
2014
2015void tcp_write_queue_purge(struct sock *sk);
2016
2017static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2018{
2019	return skb_rb_first(&sk->tcp_rtx_queue);
2020}
2021
2022static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2023{
2024	return skb_rb_last(&sk->tcp_rtx_queue);
2025}
2026
2027static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2028{
2029	return skb_peek_tail(&sk->sk_write_queue);
2030}
2031
2032#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2033	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2034
2035static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2036{
2037	return skb_peek(&sk->sk_write_queue);
2038}
2039
2040static inline bool tcp_skb_is_last(const struct sock *sk,
2041				   const struct sk_buff *skb)
2042{
2043	return skb_queue_is_last(&sk->sk_write_queue, skb);
2044}
2045
2046/**
2047 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2048 * @sk: socket
2049 *
2050 * Since the write queue can have a temporary empty skb in it,
2051 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2052 */
2053static inline bool tcp_write_queue_empty(const struct sock *sk)
2054{
2055	const struct tcp_sock *tp = tcp_sk(sk);
2056
2057	return tp->write_seq == tp->snd_nxt;
2058}
2059
2060static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2061{
2062	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2063}
2064
2065static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2066{
2067	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2068}
2069
2070static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2071{
2072	__skb_queue_tail(&sk->sk_write_queue, skb);
2073
2074	/* Queue it, remembering where we must start sending. */
2075	if (sk->sk_write_queue.next == skb)
2076		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2077}
2078
2079/* Insert new before skb on the write queue of sk.  */
2080static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2081						  struct sk_buff *skb,
2082						  struct sock *sk)
2083{
2084	__skb_queue_before(&sk->sk_write_queue, skb, new);
2085}
2086
2087static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2088{
2089	tcp_skb_tsorted_anchor_cleanup(skb);
2090	__skb_unlink(skb, &sk->sk_write_queue);
2091}
2092
2093void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2094
2095static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2096{
2097	tcp_skb_tsorted_anchor_cleanup(skb);
2098	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2099}
2100
2101static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2102{
2103	list_del(&skb->tcp_tsorted_anchor);
2104	tcp_rtx_queue_unlink(skb, sk);
2105	tcp_wmem_free_skb(sk, skb);
2106}
2107
2108static inline void tcp_write_collapse_fence(struct sock *sk)
2109{
2110	struct sk_buff *skb = tcp_write_queue_tail(sk);
2111
2112	if (skb)
2113		TCP_SKB_CB(skb)->eor = 1;
2114}
2115
2116static inline void tcp_push_pending_frames(struct sock *sk)
2117{
2118	if (tcp_send_head(sk)) {
2119		struct tcp_sock *tp = tcp_sk(sk);
2120
2121		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2122	}
2123}
2124
2125/* Start sequence of the skb just after the highest skb with SACKed
2126 * bit, valid only if sacked_out > 0 or when the caller has ensured
2127 * validity by itself.
2128 */
2129static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2130{
2131	if (!tp->sacked_out)
2132		return tp->snd_una;
2133
2134	if (tp->highest_sack == NULL)
2135		return tp->snd_nxt;
2136
2137	return TCP_SKB_CB(tp->highest_sack)->seq;
2138}
2139
2140static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2141{
2142	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2143}
2144
2145static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2146{
2147	return tcp_sk(sk)->highest_sack;
2148}
2149
2150static inline void tcp_highest_sack_reset(struct sock *sk)
2151{
2152	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2153}
2154
2155/* Called when old skb is about to be deleted and replaced by new skb */
2156static inline void tcp_highest_sack_replace(struct sock *sk,
2157					    struct sk_buff *old,
2158					    struct sk_buff *new)
2159{
2160	if (old == tcp_highest_sack(sk))
2161		tcp_sk(sk)->highest_sack = new;
2162}
2163
2164/* This helper checks if socket has IP_TRANSPARENT set */
2165static inline bool inet_sk_transparent(const struct sock *sk)
2166{
2167	switch (sk->sk_state) {
2168	case TCP_TIME_WAIT:
2169		return inet_twsk(sk)->tw_transparent;
2170	case TCP_NEW_SYN_RECV:
2171		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2172	}
2173	return inet_test_bit(TRANSPARENT, sk);
2174}
2175
2176/* Determines whether this is a thin stream (which may suffer from
2177 * increased latency). Used to trigger latency-reducing mechanisms.
2178 */
2179static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2180{
2181	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2182}
2183
2184/* /proc */
2185enum tcp_seq_states {
2186	TCP_SEQ_STATE_LISTENING,
2187	TCP_SEQ_STATE_ESTABLISHED,
2188};
2189
2190void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2191void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2192void tcp_seq_stop(struct seq_file *seq, void *v);
2193
2194struct tcp_seq_afinfo {
2195	sa_family_t			family;
2196};
2197
2198struct tcp_iter_state {
2199	struct seq_net_private	p;
2200	enum tcp_seq_states	state;
2201	struct sock		*syn_wait_sk;
2202	int			bucket, offset, sbucket, num;
2203	loff_t			last_pos;
2204};
2205
2206extern struct request_sock_ops tcp_request_sock_ops;
2207extern struct request_sock_ops tcp6_request_sock_ops;
2208
2209void tcp_v4_destroy_sock(struct sock *sk);
2210
2211struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2212				netdev_features_t features);
2213struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2214struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2215struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2216				struct tcphdr *th);
2217INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2218INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2219INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2220INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2221#ifdef CONFIG_INET
2222void tcp_gro_complete(struct sk_buff *skb);
2223#else
2224static inline void tcp_gro_complete(struct sk_buff *skb) { }
2225#endif
2226
2227void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2228
2229static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2230{
2231	struct net *net = sock_net((struct sock *)tp);
2232	u32 val;
2233
2234	val = READ_ONCE(tp->notsent_lowat);
2235
2236	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2237}
2238
2239bool tcp_stream_memory_free(const struct sock *sk, int wake);
2240
2241#ifdef CONFIG_PROC_FS
2242int tcp4_proc_init(void);
2243void tcp4_proc_exit(void);
2244#endif
2245
2246int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2247int tcp_conn_request(struct request_sock_ops *rsk_ops,
2248		     const struct tcp_request_sock_ops *af_ops,
2249		     struct sock *sk, struct sk_buff *skb);
2250
2251/* TCP af-specific functions */
2252struct tcp_sock_af_ops {
2253#ifdef CONFIG_TCP_MD5SIG
2254	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2255						const struct sock *addr_sk);
2256	int		(*calc_md5_hash)(char *location,
2257					 const struct tcp_md5sig_key *md5,
2258					 const struct sock *sk,
2259					 const struct sk_buff *skb);
2260	int		(*md5_parse)(struct sock *sk,
2261				     int optname,
2262				     sockptr_t optval,
2263				     int optlen);
2264#endif
2265#ifdef CONFIG_TCP_AO
2266	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2267	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2268					struct sock *addr_sk,
2269					int sndid, int rcvid);
2270	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2271			      const struct sock *sk,
2272			      __be32 sisn, __be32 disn, bool send);
2273	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2274			    const struct sock *sk, const struct sk_buff *skb,
2275			    const u8 *tkey, int hash_offset, u32 sne);
2276#endif
2277};
2278
2279struct tcp_request_sock_ops {
2280	u16 mss_clamp;
2281#ifdef CONFIG_TCP_MD5SIG
2282	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2283						 const struct sock *addr_sk);
2284	int		(*calc_md5_hash) (char *location,
2285					  const struct tcp_md5sig_key *md5,
2286					  const struct sock *sk,
2287					  const struct sk_buff *skb);
2288#endif
2289#ifdef CONFIG_TCP_AO
2290	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2291					struct request_sock *req,
2292					int sndid, int rcvid);
2293	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2294	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2295			      struct request_sock *req, const struct sk_buff *skb,
2296			      int hash_offset, u32 sne);
2297#endif
2298#ifdef CONFIG_SYN_COOKIES
2299	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2300				 __u16 *mss);
2301#endif
2302	struct dst_entry *(*route_req)(const struct sock *sk,
2303				       struct sk_buff *skb,
2304				       struct flowi *fl,
2305				       struct request_sock *req,
2306				       u32 tw_isn);
2307	u32 (*init_seq)(const struct sk_buff *skb);
2308	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2309	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2310			   struct flowi *fl, struct request_sock *req,
2311			   struct tcp_fastopen_cookie *foc,
2312			   enum tcp_synack_type synack_type,
2313			   struct sk_buff *syn_skb);
2314};
2315
2316extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2317#if IS_ENABLED(CONFIG_IPV6)
2318extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2319#endif
2320
2321#ifdef CONFIG_SYN_COOKIES
2322static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2323					 const struct sock *sk, struct sk_buff *skb,
2324					 __u16 *mss)
2325{
2326	tcp_synq_overflow(sk);
2327	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2328	return ops->cookie_init_seq(skb, mss);
2329}
2330#else
2331static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2332					 const struct sock *sk, struct sk_buff *skb,
2333					 __u16 *mss)
2334{
2335	return 0;
2336}
2337#endif
2338
2339struct tcp_key {
2340	union {
2341		struct {
2342			struct tcp_ao_key *ao_key;
2343			char *traffic_key;
2344			u32 sne;
2345			u8 rcv_next;
2346		};
2347		struct tcp_md5sig_key *md5_key;
2348	};
2349	enum {
2350		TCP_KEY_NONE = 0,
2351		TCP_KEY_MD5,
2352		TCP_KEY_AO,
2353	} type;
2354};
2355
2356static inline void tcp_get_current_key(const struct sock *sk,
2357				       struct tcp_key *out)
2358{
2359#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2360	const struct tcp_sock *tp = tcp_sk(sk);
2361#endif
2362
2363#ifdef CONFIG_TCP_AO
2364	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2365		struct tcp_ao_info *ao;
2366
2367		ao = rcu_dereference_protected(tp->ao_info,
2368					       lockdep_sock_is_held(sk));
2369		if (ao) {
2370			out->ao_key = READ_ONCE(ao->current_key);
2371			out->type = TCP_KEY_AO;
2372			return;
2373		}
2374	}
2375#endif
2376#ifdef CONFIG_TCP_MD5SIG
2377	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2378	    rcu_access_pointer(tp->md5sig_info)) {
2379		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2380		if (out->md5_key) {
2381			out->type = TCP_KEY_MD5;
2382			return;
2383		}
2384	}
2385#endif
2386	out->type = TCP_KEY_NONE;
2387}
2388
2389static inline bool tcp_key_is_md5(const struct tcp_key *key)
2390{
2391	if (static_branch_tcp_md5())
2392		return key->type == TCP_KEY_MD5;
 
 
 
2393	return false;
2394}
2395
2396static inline bool tcp_key_is_ao(const struct tcp_key *key)
2397{
2398	if (static_branch_tcp_ao())
2399		return key->type == TCP_KEY_AO;
 
 
 
2400	return false;
2401}
2402
2403int tcpv4_offload_init(void);
2404
2405void tcp_v4_init(void);
2406void tcp_init(void);
2407
2408/* tcp_recovery.c */
2409void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2410void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2411extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2412				u32 reo_wnd);
2413extern bool tcp_rack_mark_lost(struct sock *sk);
2414extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2415			     u64 xmit_time);
2416extern void tcp_rack_reo_timeout(struct sock *sk);
2417extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2418
2419/* tcp_plb.c */
2420
2421/*
2422 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2423 * expects cong_ratio which represents fraction of traffic that experienced
2424 * congestion over a single RTT. In order to avoid floating point operations,
2425 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2426 */
2427#define TCP_PLB_SCALE 8
2428
2429/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2430struct tcp_plb_state {
2431	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2432		unused:3;
2433	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2434};
2435
2436static inline void tcp_plb_init(const struct sock *sk,
2437				struct tcp_plb_state *plb)
2438{
2439	plb->consec_cong_rounds = 0;
2440	plb->pause_until = 0;
2441}
2442void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2443			  const int cong_ratio);
2444void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2445void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2446
2447static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2448{
2449	WARN_ONCE(cond,
2450		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2451		  str,
2452		  tcp_snd_cwnd(tcp_sk(sk)),
2453		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2454		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2455		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2456		  inet_csk(sk)->icsk_ca_state,
2457		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2458		  inet_csk(sk)->icsk_pmtu_cookie);
2459}
2460
2461/* At how many usecs into the future should the RTO fire? */
2462static inline s64 tcp_rto_delta_us(const struct sock *sk)
2463{
2464	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2465	u32 rto = inet_csk(sk)->icsk_rto;
 
2466
2467	if (likely(skb)) {
2468		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2469
2470		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2471	} else {
2472		tcp_warn_once(sk, 1, "rtx queue empty: ");
2473		return jiffies_to_usecs(rto);
2474	}
2475
2476}
2477
2478/*
2479 * Save and compile IPv4 options, return a pointer to it
2480 */
2481static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2482							 struct sk_buff *skb)
2483{
2484	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2485	struct ip_options_rcu *dopt = NULL;
2486
2487	if (opt->optlen) {
2488		int opt_size = sizeof(*dopt) + opt->optlen;
2489
2490		dopt = kmalloc(opt_size, GFP_ATOMIC);
2491		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2492			kfree(dopt);
2493			dopt = NULL;
2494		}
2495	}
2496	return dopt;
2497}
2498
2499/* locally generated TCP pure ACKs have skb->truesize == 2
2500 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2501 * This is much faster than dissecting the packet to find out.
2502 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2503 */
2504static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2505{
2506	return skb->truesize == 2;
2507}
2508
2509static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2510{
2511	skb->truesize = 2;
2512}
2513
2514static inline int tcp_inq(struct sock *sk)
2515{
2516	struct tcp_sock *tp = tcp_sk(sk);
2517	int answ;
2518
2519	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2520		answ = 0;
2521	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2522		   !tp->urg_data ||
2523		   before(tp->urg_seq, tp->copied_seq) ||
2524		   !before(tp->urg_seq, tp->rcv_nxt)) {
2525
2526		answ = tp->rcv_nxt - tp->copied_seq;
2527
2528		/* Subtract 1, if FIN was received */
2529		if (answ && sock_flag(sk, SOCK_DONE))
2530			answ--;
2531	} else {
2532		answ = tp->urg_seq - tp->copied_seq;
2533	}
2534
2535	return answ;
2536}
2537
2538int tcp_peek_len(struct socket *sock);
2539
2540static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2541{
2542	u16 segs_in;
2543
2544	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2545
2546	/* We update these fields while other threads might
2547	 * read them from tcp_get_info()
2548	 */
2549	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2550	if (skb->len > tcp_hdrlen(skb))
2551		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2552}
2553
2554/*
2555 * TCP listen path runs lockless.
2556 * We forced "struct sock" to be const qualified to make sure
2557 * we don't modify one of its field by mistake.
2558 * Here, we increment sk_drops which is an atomic_t, so we can safely
2559 * make sock writable again.
2560 */
2561static inline void tcp_listendrop(const struct sock *sk)
2562{
2563	atomic_inc(&((struct sock *)sk)->sk_drops);
2564	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2565}
2566
2567enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2568
2569/*
2570 * Interface for adding Upper Level Protocols over TCP
2571 */
2572
2573#define TCP_ULP_NAME_MAX	16
2574#define TCP_ULP_MAX		128
2575#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2576
2577struct tcp_ulp_ops {
2578	struct list_head	list;
2579
2580	/* initialize ulp */
2581	int (*init)(struct sock *sk);
2582	/* update ulp */
2583	void (*update)(struct sock *sk, struct proto *p,
2584		       void (*write_space)(struct sock *sk));
2585	/* cleanup ulp */
2586	void (*release)(struct sock *sk);
2587	/* diagnostic */
2588	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2589	size_t (*get_info_size)(const struct sock *sk);
2590	/* clone ulp */
2591	void (*clone)(const struct request_sock *req, struct sock *newsk,
2592		      const gfp_t priority);
2593
2594	char		name[TCP_ULP_NAME_MAX];
2595	struct module	*owner;
2596};
2597int tcp_register_ulp(struct tcp_ulp_ops *type);
2598void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2599int tcp_set_ulp(struct sock *sk, const char *name);
2600void tcp_get_available_ulp(char *buf, size_t len);
2601void tcp_cleanup_ulp(struct sock *sk);
2602void tcp_update_ulp(struct sock *sk, struct proto *p,
2603		    void (*write_space)(struct sock *sk));
2604
2605#define MODULE_ALIAS_TCP_ULP(name)				\
2606	__MODULE_INFO(alias, alias_userspace, name);		\
2607	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2608
2609#ifdef CONFIG_NET_SOCK_MSG
2610struct sk_msg;
2611struct sk_psock;
2612
2613#ifdef CONFIG_BPF_SYSCALL
2614int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2615void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2616#endif /* CONFIG_BPF_SYSCALL */
2617
2618#ifdef CONFIG_INET
2619void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2620#else
2621static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2622{
2623}
2624#endif
2625
2626int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2627			  struct sk_msg *msg, u32 bytes, int flags);
2628#endif /* CONFIG_NET_SOCK_MSG */
2629
2630#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2631static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2632{
2633}
2634#endif
2635
2636#ifdef CONFIG_CGROUP_BPF
2637static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2638				      struct sk_buff *skb,
2639				      unsigned int end_offset)
2640{
2641	skops->skb = skb;
2642	skops->skb_data_end = skb->data + end_offset;
2643}
2644#else
2645static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2646				      struct sk_buff *skb,
2647				      unsigned int end_offset)
2648{
2649}
2650#endif
2651
2652/* Call BPF_SOCK_OPS program that returns an int. If the return value
2653 * is < 0, then the BPF op failed (for example if the loaded BPF
2654 * program does not support the chosen operation or there is no BPF
2655 * program loaded).
2656 */
2657#ifdef CONFIG_BPF
2658static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2659{
2660	struct bpf_sock_ops_kern sock_ops;
2661	int ret;
2662
2663	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2664	if (sk_fullsock(sk)) {
2665		sock_ops.is_fullsock = 1;
2666		sock_owned_by_me(sk);
2667	}
2668
2669	sock_ops.sk = sk;
2670	sock_ops.op = op;
2671	if (nargs > 0)
2672		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2673
2674	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2675	if (ret == 0)
2676		ret = sock_ops.reply;
2677	else
2678		ret = -1;
2679	return ret;
2680}
2681
2682static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2683{
2684	u32 args[2] = {arg1, arg2};
2685
2686	return tcp_call_bpf(sk, op, 2, args);
2687}
2688
2689static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2690				    u32 arg3)
2691{
2692	u32 args[3] = {arg1, arg2, arg3};
2693
2694	return tcp_call_bpf(sk, op, 3, args);
2695}
2696
2697#else
2698static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2699{
2700	return -EPERM;
2701}
2702
2703static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2704{
2705	return -EPERM;
2706}
2707
2708static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2709				    u32 arg3)
2710{
2711	return -EPERM;
2712}
2713
2714#endif
2715
2716static inline u32 tcp_timeout_init(struct sock *sk)
2717{
2718	int timeout;
2719
2720	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2721
2722	if (timeout <= 0)
2723		timeout = TCP_TIMEOUT_INIT;
2724	return min_t(int, timeout, TCP_RTO_MAX);
2725}
2726
2727static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2728{
2729	int rwnd;
2730
2731	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2732
2733	if (rwnd < 0)
2734		rwnd = 0;
2735	return rwnd;
2736}
2737
2738static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2739{
2740	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2741}
2742
2743static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2744{
2745	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2746		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2747}
2748
2749#if IS_ENABLED(CONFIG_SMC)
2750extern struct static_key_false tcp_have_smc;
2751#endif
2752
2753#if IS_ENABLED(CONFIG_TLS_DEVICE)
2754void clean_acked_data_enable(struct inet_connection_sock *icsk,
2755			     void (*cad)(struct sock *sk, u32 ack_seq));
2756void clean_acked_data_disable(struct inet_connection_sock *icsk);
2757void clean_acked_data_flush(void);
2758#endif
2759
2760DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2761static inline void tcp_add_tx_delay(struct sk_buff *skb,
2762				    const struct tcp_sock *tp)
2763{
2764	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2765		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2766}
2767
2768/* Compute Earliest Departure Time for some control packets
2769 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2770 */
2771static inline u64 tcp_transmit_time(const struct sock *sk)
2772{
2773	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2774		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2775			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2776
2777		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2778	}
2779	return 0;
2780}
2781
2782static inline int tcp_parse_auth_options(const struct tcphdr *th,
2783		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2784{
2785	const u8 *md5_tmp, *ao_tmp;
2786	int ret;
2787
2788	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2789	if (ret)
2790		return ret;
2791
2792	if (md5_hash)
2793		*md5_hash = md5_tmp;
2794
2795	if (aoh) {
2796		if (!ao_tmp)
2797			*aoh = NULL;
2798		else
2799			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2800	}
2801
2802	return 0;
2803}
2804
2805static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2806				   int family, int l3index, bool stat_inc)
2807{
2808#ifdef CONFIG_TCP_AO
2809	struct tcp_ao_info *ao_info;
2810	struct tcp_ao_key *ao_key;
2811
2812	if (!static_branch_unlikely(&tcp_ao_needed.key))
2813		return false;
2814
2815	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2816					lockdep_sock_is_held(sk));
2817	if (!ao_info)
2818		return false;
2819
2820	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2821	if (ao_info->ao_required || ao_key) {
2822		if (stat_inc) {
2823			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2824			atomic64_inc(&ao_info->counters.ao_required);
2825		}
2826		return true;
2827	}
2828#endif
2829	return false;
2830}
2831
2832enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2833		const struct request_sock *req, const struct sk_buff *skb,
2834		const void *saddr, const void *daddr,
2835		int family, int dif, int sdif);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2836
2837#endif	/* _TCP_H */
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/tcp_ao.h>
  41#include <net/inet_ecn.h>
  42#include <net/dst.h>
  43#include <net/mptcp.h>
 
  44
  45#include <linux/seq_file.h>
  46#include <linux/memcontrol.h>
  47#include <linux/bpf-cgroup.h>
  48#include <linux/siphash.h>
  49
  50extern struct inet_hashinfo tcp_hashinfo;
  51
  52DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  53int tcp_orphan_count_sum(void);
  54
 
 
  55void tcp_time_wait(struct sock *sk, int state, int timeo);
  56
  57#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  58#define MAX_TCP_OPTION_SPACE 40
  59#define TCP_MIN_SND_MSS		48
  60#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  61
  62/*
  63 * Never offer a window over 32767 without using window scaling. Some
  64 * poor stacks do signed 16bit maths!
  65 */
  66#define MAX_TCP_WINDOW		32767U
  67
  68/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  69#define TCP_MIN_MSS		88U
  70
  71/* The initial MTU to use for probing */
  72#define TCP_BASE_MSS		1024
  73
  74/* probing interval, default to 10 minutes as per RFC4821 */
  75#define TCP_PROBE_INTERVAL	600
  76
  77/* Specify interval when tcp mtu probing will stop */
  78#define TCP_PROBE_THRESHOLD	8
  79
  80/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  81#define TCP_FASTRETRANS_THRESH 3
  82
  83/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  84#define TCP_MAX_QUICKACKS	16U
  85
  86/* Maximal number of window scale according to RFC1323 */
  87#define TCP_MAX_WSCALE		14U
  88
  89/* urg_data states */
  90#define TCP_URG_VALID	0x0100
  91#define TCP_URG_NOTYET	0x0200
  92#define TCP_URG_READ	0x0400
  93
  94#define TCP_RETR1	3	/*
  95				 * This is how many retries it does before it
  96				 * tries to figure out if the gateway is
  97				 * down. Minimal RFC value is 3; it corresponds
  98				 * to ~3sec-8min depending on RTO.
  99				 */
 100
 101#define TCP_RETR2	15	/*
 102				 * This should take at least
 103				 * 90 minutes to time out.
 104				 * RFC1122 says that the limit is 100 sec.
 105				 * 15 is ~13-30min depending on RTO.
 106				 */
 107
 108#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 109				 * when active opening a connection.
 110				 * RFC1122 says the minimum retry MUST
 111				 * be at least 180secs.  Nevertheless
 112				 * this value is corresponding to
 113				 * 63secs of retransmission with the
 114				 * current initial RTO.
 115				 */
 116
 117#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 118				 * when passive opening a connection.
 119				 * This is corresponding to 31secs of
 120				 * retransmission with the current
 121				 * initial RTO.
 122				 */
 123
 124#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 125				  * state, about 60 seconds	*/
 126#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 127                                 /* BSD style FIN_WAIT2 deadlock breaker.
 128				  * It used to be 3min, new value is 60sec,
 129				  * to combine FIN-WAIT-2 timeout with
 130				  * TIME-WAIT timer.
 131				  */
 132#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 133
 134#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 135static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
 136
 137#if HZ >= 100
 138#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 139#define TCP_ATO_MIN	((unsigned)(HZ/25))
 140#else
 141#define TCP_DELACK_MIN	4U
 142#define TCP_ATO_MIN	4U
 143#endif
 144#define TCP_RTO_MAX	((unsigned)(120*HZ))
 145#define TCP_RTO_MIN	((unsigned)(HZ/5))
 146#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 147
 148#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
 149
 150#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 151#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 152						 * used as a fallback RTO for the
 153						 * initial data transmission if no
 154						 * valid RTT sample has been acquired,
 155						 * most likely due to retrans in 3WHS.
 156						 */
 157
 158#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 159					                 * for local resources.
 160					                 */
 161#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 162#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 163#define TCP_KEEPALIVE_INTVL	(75*HZ)
 164
 165#define MAX_TCP_KEEPIDLE	32767
 166#define MAX_TCP_KEEPINTVL	32767
 167#define MAX_TCP_KEEPCNT		127
 168#define MAX_TCP_SYNCNT		127
 169
 170/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
 171 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
 172 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
 173 */
 174#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
 175
 176#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 177					 * after this time. It should be equal
 178					 * (or greater than) TCP_TIMEWAIT_LEN
 179					 * to provide reliability equal to one
 180					 * provided by timewait state.
 181					 */
 182#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 183					 * timestamps. It must be less than
 184					 * minimal timewait lifetime.
 185					 */
 186/*
 187 *	TCP option
 188 */
 189
 190#define TCPOPT_NOP		1	/* Padding */
 191#define TCPOPT_EOL		0	/* End of options */
 192#define TCPOPT_MSS		2	/* Segment size negotiating */
 193#define TCPOPT_WINDOW		3	/* Window scaling */
 194#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 195#define TCPOPT_SACK             5       /* SACK Block */
 196#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 197#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 198#define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
 199#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 200#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 201#define TCPOPT_EXP		254	/* Experimental */
 202/* Magic number to be after the option value for sharing TCP
 203 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 204 */
 205#define TCPOPT_FASTOPEN_MAGIC	0xF989
 206#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 207
 208/*
 209 *     TCP option lengths
 210 */
 211
 212#define TCPOLEN_MSS            4
 213#define TCPOLEN_WINDOW         3
 214#define TCPOLEN_SACK_PERM      2
 215#define TCPOLEN_TIMESTAMP      10
 216#define TCPOLEN_MD5SIG         18
 217#define TCPOLEN_FASTOPEN_BASE  2
 218#define TCPOLEN_EXP_FASTOPEN_BASE  4
 219#define TCPOLEN_EXP_SMC_BASE   6
 220
 221/* But this is what stacks really send out. */
 222#define TCPOLEN_TSTAMP_ALIGNED		12
 223#define TCPOLEN_WSCALE_ALIGNED		4
 224#define TCPOLEN_SACKPERM_ALIGNED	4
 225#define TCPOLEN_SACK_BASE		2
 226#define TCPOLEN_SACK_BASE_ALIGNED	4
 227#define TCPOLEN_SACK_PERBLOCK		8
 228#define TCPOLEN_MD5SIG_ALIGNED		20
 229#define TCPOLEN_MSS_ALIGNED		4
 230#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 231
 232/* Flags in tp->nonagle */
 233#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 234#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 235#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 236
 237/* TCP thin-stream limits */
 238#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 239
 240/* TCP initial congestion window as per rfc6928 */
 241#define TCP_INIT_CWND		10
 242
 243/* Bit Flags for sysctl_tcp_fastopen */
 244#define	TFO_CLIENT_ENABLE	1
 245#define	TFO_SERVER_ENABLE	2
 246#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 247
 248/* Accept SYN data w/o any cookie option */
 249#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 250
 251/* Force enable TFO on all listeners, i.e., not requiring the
 252 * TCP_FASTOPEN socket option.
 253 */
 254#define	TFO_SERVER_WO_SOCKOPT1	0x400
 255
 256
 257/* sysctl variables for tcp */
 258extern int sysctl_tcp_max_orphans;
 259extern long sysctl_tcp_mem[3];
 260
 261#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 262#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 263#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 264
 265extern atomic_long_t tcp_memory_allocated;
 266DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 267
 268extern struct percpu_counter tcp_sockets_allocated;
 269extern unsigned long tcp_memory_pressure;
 270
 271/* optimized version of sk_under_memory_pressure() for TCP sockets */
 272static inline bool tcp_under_memory_pressure(const struct sock *sk)
 273{
 274	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 275	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 276		return true;
 277
 278	return READ_ONCE(tcp_memory_pressure);
 279}
 280/*
 281 * The next routines deal with comparing 32 bit unsigned ints
 282 * and worry about wraparound (automatic with unsigned arithmetic).
 283 */
 284
 285static inline bool before(__u32 seq1, __u32 seq2)
 286{
 287        return (__s32)(seq1-seq2) < 0;
 288}
 289#define after(seq2, seq1) 	before(seq1, seq2)
 290
 291/* is s2<=s1<=s3 ? */
 292static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 293{
 294	return seq3 - seq2 >= seq1 - seq2;
 295}
 296
 297static inline bool tcp_out_of_memory(struct sock *sk)
 298{
 299	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 300	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 301		return true;
 302	return false;
 303}
 304
 305static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 306{
 307	sk_wmem_queued_add(sk, -skb->truesize);
 308	if (!skb_zcopy_pure(skb))
 309		sk_mem_uncharge(sk, skb->truesize);
 310	else
 311		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 312	__kfree_skb(skb);
 313}
 314
 315void sk_forced_mem_schedule(struct sock *sk, int size);
 316
 317bool tcp_check_oom(struct sock *sk, int shift);
 318
 319
 320extern struct proto tcp_prot;
 321
 322#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 323#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 324#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 325#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 326
 327void tcp_tasklet_init(void);
 328
 329int tcp_v4_err(struct sk_buff *skb, u32);
 330
 331void tcp_shutdown(struct sock *sk, int how);
 332
 333int tcp_v4_early_demux(struct sk_buff *skb);
 334int tcp_v4_rcv(struct sk_buff *skb);
 335
 336void tcp_remove_empty_skb(struct sock *sk);
 337int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 338int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 339int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 340			 size_t size, struct ubuf_info *uarg);
 341void tcp_splice_eof(struct socket *sock);
 342int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 343int tcp_wmem_schedule(struct sock *sk, int copy);
 344void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 345	      int size_goal);
 346void tcp_release_cb(struct sock *sk);
 347void tcp_wfree(struct sk_buff *skb);
 348void tcp_write_timer_handler(struct sock *sk);
 349void tcp_delack_timer_handler(struct sock *sk);
 350int tcp_ioctl(struct sock *sk, int cmd, int *karg);
 351enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 352void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 353void tcp_rcv_space_adjust(struct sock *sk);
 354int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 355void tcp_twsk_destructor(struct sock *sk);
 356void tcp_twsk_purge(struct list_head *net_exit_list, int family);
 357ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 358			struct pipe_inode_info *pipe, size_t len,
 359			unsigned int flags);
 360struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 361				     bool force_schedule);
 362
 363static inline void tcp_dec_quickack_mode(struct sock *sk)
 364{
 365	struct inet_connection_sock *icsk = inet_csk(sk);
 366
 367	if (icsk->icsk_ack.quick) {
 368		/* How many ACKs S/ACKing new data have we sent? */
 369		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
 370
 371		if (pkts >= icsk->icsk_ack.quick) {
 372			icsk->icsk_ack.quick = 0;
 373			/* Leaving quickack mode we deflate ATO. */
 374			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 375		} else
 376			icsk->icsk_ack.quick -= pkts;
 377	}
 378}
 379
 380#define	TCP_ECN_OK		1
 381#define	TCP_ECN_QUEUE_CWR	2
 382#define	TCP_ECN_DEMAND_CWR	4
 383#define	TCP_ECN_SEEN		8
 384
 385enum tcp_tw_status {
 386	TCP_TW_SUCCESS = 0,
 387	TCP_TW_RST = 1,
 388	TCP_TW_ACK = 2,
 389	TCP_TW_SYN = 3
 390};
 391
 392
 393enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 394					      struct sk_buff *skb,
 395					      const struct tcphdr *th);
 
 396struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 397			   struct request_sock *req, bool fastopen,
 398			   bool *lost_race);
 399enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
 400				       struct sk_buff *skb);
 401void tcp_enter_loss(struct sock *sk);
 402void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 403void tcp_clear_retrans(struct tcp_sock *tp);
 404void tcp_update_metrics(struct sock *sk);
 405void tcp_init_metrics(struct sock *sk);
 406void tcp_metrics_init(void);
 407bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 408void __tcp_close(struct sock *sk, long timeout);
 409void tcp_close(struct sock *sk, long timeout);
 410void tcp_init_sock(struct sock *sk);
 411void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 412__poll_t tcp_poll(struct file *file, struct socket *sock,
 413		      struct poll_table_struct *wait);
 414int do_tcp_getsockopt(struct sock *sk, int level,
 415		      int optname, sockptr_t optval, sockptr_t optlen);
 416int tcp_getsockopt(struct sock *sk, int level, int optname,
 417		   char __user *optval, int __user *optlen);
 418bool tcp_bpf_bypass_getsockopt(int level, int optname);
 419int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 420		      sockptr_t optval, unsigned int optlen);
 421int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 422		   unsigned int optlen);
 423void tcp_set_keepalive(struct sock *sk, int val);
 424void tcp_syn_ack_timeout(const struct request_sock *req);
 425int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 426		int flags, int *addr_len);
 427int tcp_set_rcvlowat(struct sock *sk, int val);
 428int tcp_set_window_clamp(struct sock *sk, int val);
 429void tcp_update_recv_tstamps(struct sk_buff *skb,
 430			     struct scm_timestamping_internal *tss);
 431void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 432			struct scm_timestamping_internal *tss);
 433void tcp_data_ready(struct sock *sk);
 434#ifdef CONFIG_MMU
 435int tcp_mmap(struct file *file, struct socket *sock,
 436	     struct vm_area_struct *vma);
 437#endif
 438void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 439		       struct tcp_options_received *opt_rx,
 440		       int estab, struct tcp_fastopen_cookie *foc);
 441
 442/*
 443 *	BPF SKB-less helpers
 444 */
 445u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 446			 struct tcphdr *th, u32 *cookie);
 447u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 448			 struct tcphdr *th, u32 *cookie);
 449u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 450u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 451			  const struct tcp_request_sock_ops *af_ops,
 452			  struct sock *sk, struct tcphdr *th);
 453/*
 454 *	TCP v4 functions exported for the inet6 API
 455 */
 456
 457void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 458void tcp_v4_mtu_reduced(struct sock *sk);
 459void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 460void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 461int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 462struct sock *tcp_create_openreq_child(const struct sock *sk,
 463				      struct request_sock *req,
 464				      struct sk_buff *skb);
 465void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 466struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 467				  struct request_sock *req,
 468				  struct dst_entry *dst,
 469				  struct request_sock *req_unhash,
 470				  bool *own_req);
 471int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 472int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 473int tcp_connect(struct sock *sk);
 474enum tcp_synack_type {
 475	TCP_SYNACK_NORMAL,
 476	TCP_SYNACK_FASTOPEN,
 477	TCP_SYNACK_COOKIE,
 478};
 479struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 480				struct request_sock *req,
 481				struct tcp_fastopen_cookie *foc,
 482				enum tcp_synack_type synack_type,
 483				struct sk_buff *syn_skb);
 484int tcp_disconnect(struct sock *sk, int flags);
 485
 486void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 487int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 488void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 489
 490/* From syncookies.c */
 491struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 492				 struct request_sock *req,
 493				 struct dst_entry *dst);
 494int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
 495struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 496struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 497					    struct sock *sk, struct sk_buff *skb,
 498					    struct tcp_options_received *tcp_opt,
 499					    int mss, u32 tsoff);
 500
 501#if IS_ENABLED(CONFIG_BPF)
 502struct bpf_tcp_req_attrs {
 503	u32 rcv_tsval;
 504	u32 rcv_tsecr;
 505	u16 mss;
 506	u8 rcv_wscale;
 507	u8 snd_wscale;
 508	u8 ecn_ok;
 509	u8 wscale_ok;
 510	u8 sack_ok;
 511	u8 tstamp_ok;
 512	u8 usec_ts_ok;
 513	u8 reserved[3];
 514};
 515#endif
 516
 517#ifdef CONFIG_SYN_COOKIES
 518
 519/* Syncookies use a monotonic timer which increments every 60 seconds.
 520 * This counter is used both as a hash input and partially encoded into
 521 * the cookie value.  A cookie is only validated further if the delta
 522 * between the current counter value and the encoded one is less than this,
 523 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 524 * the counter advances immediately after a cookie is generated).
 525 */
 526#define MAX_SYNCOOKIE_AGE	2
 527#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 528#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 529
 530/* syncookies: remember time of last synqueue overflow
 531 * But do not dirty this field too often (once per second is enough)
 532 * It is racy as we do not hold a lock, but race is very minor.
 533 */
 534static inline void tcp_synq_overflow(const struct sock *sk)
 535{
 536	unsigned int last_overflow;
 537	unsigned int now = jiffies;
 538
 539	if (sk->sk_reuseport) {
 540		struct sock_reuseport *reuse;
 541
 542		reuse = rcu_dereference(sk->sk_reuseport_cb);
 543		if (likely(reuse)) {
 544			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 545			if (!time_between32(now, last_overflow,
 546					    last_overflow + HZ))
 547				WRITE_ONCE(reuse->synq_overflow_ts, now);
 548			return;
 549		}
 550	}
 551
 552	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 553	if (!time_between32(now, last_overflow, last_overflow + HZ))
 554		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
 555}
 556
 557/* syncookies: no recent synqueue overflow on this listening socket? */
 558static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 559{
 560	unsigned int last_overflow;
 561	unsigned int now = jiffies;
 562
 563	if (sk->sk_reuseport) {
 564		struct sock_reuseport *reuse;
 565
 566		reuse = rcu_dereference(sk->sk_reuseport_cb);
 567		if (likely(reuse)) {
 568			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 569			return !time_between32(now, last_overflow - HZ,
 570					       last_overflow +
 571					       TCP_SYNCOOKIE_VALID);
 572		}
 573	}
 574
 575	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 576
 577	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 578	 * then we're under synflood. However, we have to use
 579	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 580	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 581	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 582	 * which could lead to rejecting a valid syncookie.
 583	 */
 584	return !time_between32(now, last_overflow - HZ,
 585			       last_overflow + TCP_SYNCOOKIE_VALID);
 586}
 587
 588static inline u32 tcp_cookie_time(void)
 589{
 590	u64 val = get_jiffies_64();
 591
 592	do_div(val, TCP_SYNCOOKIE_PERIOD);
 593	return val;
 594}
 595
 596/* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
 597static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
 598{
 599	if (usec_ts)
 600		return div_u64(val, NSEC_PER_USEC);
 601
 602	return div_u64(val, NSEC_PER_MSEC);
 603}
 604
 605u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 606			      u16 *mssp);
 607__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 608u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 609bool cookie_timestamp_decode(const struct net *net,
 610			     struct tcp_options_received *opt);
 611
 612static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
 613{
 614	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
 615		dst_feature(dst, RTAX_FEATURE_ECN);
 616}
 617
 618#if IS_ENABLED(CONFIG_BPF)
 619static inline bool cookie_bpf_ok(struct sk_buff *skb)
 620{
 621	return skb->sk;
 622}
 623
 624struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
 625#else
 626static inline bool cookie_bpf_ok(struct sk_buff *skb)
 627{
 628	return false;
 629}
 630
 631static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
 632						    struct sk_buff *skb)
 633{
 634	return NULL;
 635}
 636#endif
 637
 638/* From net/ipv6/syncookies.c */
 639int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
 640struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 641
 642u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 643			      const struct tcphdr *th, u16 *mssp);
 644__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 645#endif
 646/* tcp_output.c */
 647
 648void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 649void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 650void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 651			       int nonagle);
 652int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 653int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 654void tcp_retransmit_timer(struct sock *sk);
 655void tcp_xmit_retransmit_queue(struct sock *);
 656void tcp_simple_retransmit(struct sock *);
 657void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 658int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 659enum tcp_queue {
 660	TCP_FRAG_IN_WRITE_QUEUE,
 661	TCP_FRAG_IN_RTX_QUEUE,
 662};
 663int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 664		 struct sk_buff *skb, u32 len,
 665		 unsigned int mss_now, gfp_t gfp);
 666
 667void tcp_send_probe0(struct sock *);
 668int tcp_write_wakeup(struct sock *, int mib);
 669void tcp_send_fin(struct sock *sk);
 670void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 
 671int tcp_send_synack(struct sock *);
 672void tcp_push_one(struct sock *, unsigned int mss_now);
 673void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 674void tcp_send_ack(struct sock *sk);
 675void tcp_send_delayed_ack(struct sock *sk);
 676void tcp_send_loss_probe(struct sock *sk);
 677bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 678void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 679			     const struct sk_buff *next_skb);
 680
 681/* tcp_input.c */
 682void tcp_rearm_rto(struct sock *sk);
 683void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 
 684void tcp_reset(struct sock *sk, struct sk_buff *skb);
 685void tcp_fin(struct sock *sk);
 686void tcp_check_space(struct sock *sk);
 687void tcp_sack_compress_send_ack(struct sock *sk);
 688
 
 
 
 
 
 
 
 
 
 
 
 
 
 689/* tcp_timer.c */
 690void tcp_init_xmit_timers(struct sock *);
 691static inline void tcp_clear_xmit_timers(struct sock *sk)
 692{
 693	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 694		__sock_put(sk);
 695
 696	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 697		__sock_put(sk);
 698
 699	inet_csk_clear_xmit_timers(sk);
 700}
 701
 702unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 703unsigned int tcp_current_mss(struct sock *sk);
 704u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 705
 706/* Bound MSS / TSO packet size with the half of the window */
 707static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 708{
 709	int cutoff;
 710
 711	/* When peer uses tiny windows, there is no use in packetizing
 712	 * to sub-MSS pieces for the sake of SWS or making sure there
 713	 * are enough packets in the pipe for fast recovery.
 714	 *
 715	 * On the other hand, for extremely large MSS devices, handling
 716	 * smaller than MSS windows in this way does make sense.
 717	 */
 718	if (tp->max_window > TCP_MSS_DEFAULT)
 719		cutoff = (tp->max_window >> 1);
 720	else
 721		cutoff = tp->max_window;
 722
 723	if (cutoff && pktsize > cutoff)
 724		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 725	else
 726		return pktsize;
 727}
 728
 729/* tcp.c */
 730void tcp_get_info(struct sock *, struct tcp_info *);
 731
 732/* Read 'sendfile()'-style from a TCP socket */
 733int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 734		  sk_read_actor_t recv_actor);
 735int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 736struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 737void tcp_read_done(struct sock *sk, size_t len);
 738
 739void tcp_initialize_rcv_mss(struct sock *sk);
 740
 741int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 742int tcp_mss_to_mtu(struct sock *sk, int mss);
 743void tcp_mtup_init(struct sock *sk);
 744
 745static inline void tcp_bound_rto(const struct sock *sk)
 746{
 747	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 748		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 749}
 750
 751static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 752{
 753	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 754}
 755
 756static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 757{
 758	/* mptcp hooks are only on the slow path */
 759	if (sk_is_mptcp((struct sock *)tp))
 760		return;
 761
 762	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 763			       ntohl(TCP_FLAG_ACK) |
 764			       snd_wnd);
 765}
 766
 767static inline void tcp_fast_path_on(struct tcp_sock *tp)
 768{
 769	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 770}
 771
 772static inline void tcp_fast_path_check(struct sock *sk)
 773{
 774	struct tcp_sock *tp = tcp_sk(sk);
 775
 776	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 777	    tp->rcv_wnd &&
 778	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 779	    !tp->urg_data)
 780		tcp_fast_path_on(tp);
 781}
 782
 783u32 tcp_delack_max(const struct sock *sk);
 784
 785/* Compute the actual rto_min value */
 786static inline u32 tcp_rto_min(const struct sock *sk)
 787{
 788	const struct dst_entry *dst = __sk_dst_get(sk);
 789	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 790
 791	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 792		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 793	return rto_min;
 794}
 795
 796static inline u32 tcp_rto_min_us(const struct sock *sk)
 797{
 798	return jiffies_to_usecs(tcp_rto_min(sk));
 799}
 800
 801static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 802{
 803	return dst_metric_locked(dst, RTAX_CC_ALGO);
 804}
 805
 806/* Minimum RTT in usec. ~0 means not available. */
 807static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 808{
 809	return minmax_get(&tp->rtt_min);
 810}
 811
 812/* Compute the actual receive window we are currently advertising.
 813 * Rcv_nxt can be after the window if our peer push more data
 814 * than the offered window.
 815 */
 816static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 817{
 818	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 819
 820	if (win < 0)
 821		win = 0;
 822	return (u32) win;
 823}
 824
 825/* Choose a new window, without checks for shrinking, and without
 826 * scaling applied to the result.  The caller does these things
 827 * if necessary.  This is a "raw" window selection.
 828 */
 829u32 __tcp_select_window(struct sock *sk);
 830
 831void tcp_send_window_probe(struct sock *sk);
 832
 833/* TCP uses 32bit jiffies to save some space.
 834 * Note that this is different from tcp_time_stamp, which
 835 * historically has been the same until linux-4.13.
 836 */
 837#define tcp_jiffies32 ((u32)jiffies)
 838
 839/*
 840 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 841 * It is no longer tied to jiffies, but to 1 ms clock.
 842 * Note: double check if you want to use tcp_jiffies32 instead of this.
 843 */
 844#define TCP_TS_HZ	1000
 845
 846static inline u64 tcp_clock_ns(void)
 847{
 848	return ktime_get_ns();
 849}
 850
 851static inline u64 tcp_clock_us(void)
 852{
 853	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 854}
 855
 856static inline u64 tcp_clock_ms(void)
 857{
 858	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
 859}
 860
 861/* TCP Timestamp included in TS option (RFC 1323) can either use ms
 862 * or usec resolution. Each socket carries a flag to select one or other
 863 * resolution, as the route attribute could change anytime.
 864 * Each flow must stick to initial resolution.
 865 */
 866static inline u32 tcp_clock_ts(bool usec_ts)
 867{
 868	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
 869}
 870
 871static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
 872{
 873	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
 874}
 875
 876static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
 877{
 878	if (tp->tcp_usec_ts)
 879		return tp->tcp_mstamp;
 880	return tcp_time_stamp_ms(tp);
 881}
 882
 883void tcp_mstamp_refresh(struct tcp_sock *tp);
 884
 885static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 886{
 887	return max_t(s64, t1 - t0, 0);
 888}
 889
 890/* provide the departure time in us unit */
 891static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 892{
 893	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 894}
 895
 896/* Provide skb TSval in usec or ms unit */
 897static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
 898{
 899	if (usec_ts)
 900		return tcp_skb_timestamp_us(skb);
 901
 902	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
 903}
 904
 905static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
 906{
 907	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
 908}
 909
 910static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
 911{
 912	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
 913}
 914
 915#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 916
 917#define TCPHDR_FIN 0x01
 918#define TCPHDR_SYN 0x02
 919#define TCPHDR_RST 0x04
 920#define TCPHDR_PSH 0x08
 921#define TCPHDR_ACK 0x10
 922#define TCPHDR_URG 0x20
 923#define TCPHDR_ECE 0x40
 924#define TCPHDR_CWR 0x80
 925
 926#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 928/* This is what the send packet queuing engine uses to pass
 929 * TCP per-packet control information to the transmission code.
 930 * We also store the host-order sequence numbers in here too.
 931 * This is 44 bytes if IPV6 is enabled.
 932 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 933 */
 934struct tcp_skb_cb {
 935	__u32		seq;		/* Starting sequence number	*/
 936	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 937	union {
 938		/* Note : tcp_tw_isn is used in input path only
 939		 *	  (isn chosen by tcp_timewait_state_process())
 940		 *
 941		 * 	  tcp_gso_segs/size are used in write queue only,
 942		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 943		 */
 944		__u32		tcp_tw_isn;
 945		struct {
 946			u16	tcp_gso_segs;
 947			u16	tcp_gso_size;
 948		};
 949	};
 950	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 951
 952	__u8		sacked;		/* State flags for SACK.	*/
 953#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 954#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 955#define TCPCB_LOST		0x04	/* SKB is lost			*/
 956#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 957#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 958#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 959#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 960				TCPCB_REPAIRED)
 961
 962	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 963	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 964			eor:1,		/* Is skb MSG_EOR marked? */
 965			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 966			unused:5;
 967	__u32		ack_seq;	/* Sequence number ACK'd	*/
 968	union {
 969		struct {
 970#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 971			/* There is space for up to 24 bytes */
 972			__u32 is_app_limited:1, /* cwnd not fully used? */
 973			      delivered_ce:20,
 974			      unused:11;
 975			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 976			__u32 delivered;
 977			/* start of send pipeline phase */
 978			u64 first_tx_mstamp;
 979			/* when we reached the "delivered" count */
 980			u64 delivered_mstamp;
 981		} tx;   /* only used for outgoing skbs */
 982		union {
 983			struct inet_skb_parm	h4;
 984#if IS_ENABLED(CONFIG_IPV6)
 985			struct inet6_skb_parm	h6;
 986#endif
 987		} header;	/* For incoming skbs */
 988	};
 989};
 990
 991#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 992
 993extern const struct inet_connection_sock_af_ops ipv4_specific;
 994
 995#if IS_ENABLED(CONFIG_IPV6)
 996/* This is the variant of inet6_iif() that must be used by TCP,
 997 * as TCP moves IP6CB into a different location in skb->cb[]
 998 */
 999static inline int tcp_v6_iif(const struct sk_buff *skb)
1000{
1001	return TCP_SKB_CB(skb)->header.h6.iif;
1002}
1003
1004static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1005{
1006	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1007
1008	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1009}
1010
1011/* TCP_SKB_CB reference means this can not be used from early demux */
1012static inline int tcp_v6_sdif(const struct sk_buff *skb)
1013{
1014#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1015	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1016		return TCP_SKB_CB(skb)->header.h6.iif;
1017#endif
1018	return 0;
1019}
1020
1021extern const struct inet_connection_sock_af_ops ipv6_specific;
1022
1023INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1024INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1025void tcp_v6_early_demux(struct sk_buff *skb);
1026
1027#endif
1028
1029/* TCP_SKB_CB reference means this can not be used from early demux */
1030static inline int tcp_v4_sdif(struct sk_buff *skb)
1031{
1032#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1033	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1034		return TCP_SKB_CB(skb)->header.h4.iif;
1035#endif
1036	return 0;
1037}
1038
1039/* Due to TSO, an SKB can be composed of multiple actual
1040 * packets.  To keep these tracked properly, we use this.
1041 */
1042static inline int tcp_skb_pcount(const struct sk_buff *skb)
1043{
1044	return TCP_SKB_CB(skb)->tcp_gso_segs;
1045}
1046
1047static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1048{
1049	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1050}
1051
1052static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1053{
1054	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1055}
1056
1057/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1058static inline int tcp_skb_mss(const struct sk_buff *skb)
1059{
1060	return TCP_SKB_CB(skb)->tcp_gso_size;
1061}
1062
1063static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1064{
1065	return likely(!TCP_SKB_CB(skb)->eor);
1066}
1067
1068static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1069					const struct sk_buff *from)
1070{
 
1071	return likely(tcp_skb_can_collapse_to(to) &&
1072		      mptcp_skb_can_collapse(to, from) &&
1073		      skb_pure_zcopy_same(to, from));
 
 
 
 
 
 
 
 
1074}
1075
1076/* Events passed to congestion control interface */
1077enum tcp_ca_event {
1078	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1079	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1080	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1081	CA_EVENT_LOSS,		/* loss timeout */
1082	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1083	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1084};
1085
1086/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1087enum tcp_ca_ack_event_flags {
1088	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1089	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1090	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1091};
1092
1093/*
1094 * Interface for adding new TCP congestion control handlers
1095 */
1096#define TCP_CA_NAME_MAX	16
1097#define TCP_CA_MAX	128
1098#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1099
1100#define TCP_CA_UNSPEC	0
1101
1102/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1103#define TCP_CONG_NON_RESTRICTED 0x1
1104/* Requires ECN/ECT set on all packets */
1105#define TCP_CONG_NEEDS_ECN	0x2
1106#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1107
1108union tcp_cc_info;
1109
1110struct ack_sample {
1111	u32 pkts_acked;
1112	s32 rtt_us;
1113	u32 in_flight;
1114};
1115
1116/* A rate sample measures the number of (original/retransmitted) data
1117 * packets delivered "delivered" over an interval of time "interval_us".
1118 * The tcp_rate.c code fills in the rate sample, and congestion
1119 * control modules that define a cong_control function to run at the end
1120 * of ACK processing can optionally chose to consult this sample when
1121 * setting cwnd and pacing rate.
1122 * A sample is invalid if "delivered" or "interval_us" is negative.
1123 */
1124struct rate_sample {
1125	u64  prior_mstamp; /* starting timestamp for interval */
1126	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1127	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1128	s32  delivered;		/* number of packets delivered over interval */
1129	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1130	long interval_us;	/* time for tp->delivered to incr "delivered" */
1131	u32 snd_interval_us;	/* snd interval for delivered packets */
1132	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1133	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1134	int  losses;		/* number of packets marked lost upon ACK */
1135	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1136	u32  prior_in_flight;	/* in flight before this ACK */
1137	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1138	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1139	bool is_retrans;	/* is sample from retransmission? */
1140	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1141};
1142
1143struct tcp_congestion_ops {
1144/* fast path fields are put first to fill one cache line */
1145
1146	/* return slow start threshold (required) */
1147	u32 (*ssthresh)(struct sock *sk);
1148
1149	/* do new cwnd calculation (required) */
1150	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1151
1152	/* call before changing ca_state (optional) */
1153	void (*set_state)(struct sock *sk, u8 new_state);
1154
1155	/* call when cwnd event occurs (optional) */
1156	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1157
1158	/* call when ack arrives (optional) */
1159	void (*in_ack_event)(struct sock *sk, u32 flags);
1160
1161	/* hook for packet ack accounting (optional) */
1162	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1163
1164	/* override sysctl_tcp_min_tso_segs */
1165	u32 (*min_tso_segs)(struct sock *sk);
1166
1167	/* call when packets are delivered to update cwnd and pacing rate,
1168	 * after all the ca_state processing. (optional)
1169	 */
1170	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1171
1172
1173	/* new value of cwnd after loss (required) */
1174	u32  (*undo_cwnd)(struct sock *sk);
1175	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1176	u32 (*sndbuf_expand)(struct sock *sk);
1177
1178/* control/slow paths put last */
1179	/* get info for inet_diag (optional) */
1180	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1181			   union tcp_cc_info *info);
1182
1183	char 			name[TCP_CA_NAME_MAX];
1184	struct module		*owner;
1185	struct list_head	list;
1186	u32			key;
1187	u32			flags;
1188
1189	/* initialize private data (optional) */
1190	void (*init)(struct sock *sk);
1191	/* cleanup private data  (optional) */
1192	void (*release)(struct sock *sk);
1193} ____cacheline_aligned_in_smp;
1194
1195int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1196void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1197int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1198				  struct tcp_congestion_ops *old_type);
1199int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1200
1201void tcp_assign_congestion_control(struct sock *sk);
1202void tcp_init_congestion_control(struct sock *sk);
1203void tcp_cleanup_congestion_control(struct sock *sk);
1204int tcp_set_default_congestion_control(struct net *net, const char *name);
1205void tcp_get_default_congestion_control(struct net *net, char *name);
1206void tcp_get_available_congestion_control(char *buf, size_t len);
1207void tcp_get_allowed_congestion_control(char *buf, size_t len);
1208int tcp_set_allowed_congestion_control(char *allowed);
1209int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1210			       bool cap_net_admin);
1211u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1212void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1213
1214u32 tcp_reno_ssthresh(struct sock *sk);
1215u32 tcp_reno_undo_cwnd(struct sock *sk);
1216void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1217extern struct tcp_congestion_ops tcp_reno;
1218
1219struct tcp_congestion_ops *tcp_ca_find(const char *name);
1220struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1221u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1222#ifdef CONFIG_INET
1223char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1224#else
1225static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1226{
1227	return NULL;
1228}
1229#endif
1230
1231static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1232{
1233	const struct inet_connection_sock *icsk = inet_csk(sk);
1234
1235	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1236}
1237
1238static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1239{
1240	const struct inet_connection_sock *icsk = inet_csk(sk);
1241
1242	if (icsk->icsk_ca_ops->cwnd_event)
1243		icsk->icsk_ca_ops->cwnd_event(sk, event);
1244}
1245
1246/* From tcp_cong.c */
1247void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1248
1249/* From tcp_rate.c */
1250void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1251void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1252			    struct rate_sample *rs);
1253void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1254		  bool is_sack_reneg, struct rate_sample *rs);
1255void tcp_rate_check_app_limited(struct sock *sk);
1256
1257static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1258{
1259	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1260}
1261
1262/* These functions determine how the current flow behaves in respect of SACK
1263 * handling. SACK is negotiated with the peer, and therefore it can vary
1264 * between different flows.
1265 *
1266 * tcp_is_sack - SACK enabled
1267 * tcp_is_reno - No SACK
1268 */
1269static inline int tcp_is_sack(const struct tcp_sock *tp)
1270{
1271	return likely(tp->rx_opt.sack_ok);
1272}
1273
1274static inline bool tcp_is_reno(const struct tcp_sock *tp)
1275{
1276	return !tcp_is_sack(tp);
1277}
1278
1279static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1280{
1281	return tp->sacked_out + tp->lost_out;
1282}
1283
1284/* This determines how many packets are "in the network" to the best
1285 * of our knowledge.  In many cases it is conservative, but where
1286 * detailed information is available from the receiver (via SACK
1287 * blocks etc.) we can make more aggressive calculations.
1288 *
1289 * Use this for decisions involving congestion control, use just
1290 * tp->packets_out to determine if the send queue is empty or not.
1291 *
1292 * Read this equation as:
1293 *
1294 *	"Packets sent once on transmission queue" MINUS
1295 *	"Packets left network, but not honestly ACKed yet" PLUS
1296 *	"Packets fast retransmitted"
1297 */
1298static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1299{
1300	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1301}
1302
1303#define TCP_INFINITE_SSTHRESH	0x7fffffff
1304
1305static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1306{
1307	return tp->snd_cwnd;
1308}
1309
1310static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1311{
1312	WARN_ON_ONCE((int)val <= 0);
1313	tp->snd_cwnd = val;
1314}
1315
1316static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1317{
1318	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1319}
1320
1321static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1322{
1323	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1324}
1325
1326static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1327{
1328	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1329	       (1 << inet_csk(sk)->icsk_ca_state);
1330}
1331
1332/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1333 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1334 * ssthresh.
1335 */
1336static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1337{
1338	const struct tcp_sock *tp = tcp_sk(sk);
1339
1340	if (tcp_in_cwnd_reduction(sk))
1341		return tp->snd_ssthresh;
1342	else
1343		return max(tp->snd_ssthresh,
1344			   ((tcp_snd_cwnd(tp) >> 1) +
1345			    (tcp_snd_cwnd(tp) >> 2)));
1346}
1347
1348/* Use define here intentionally to get WARN_ON location shown at the caller */
1349#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1350
1351void tcp_enter_cwr(struct sock *sk);
1352__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1353
1354/* The maximum number of MSS of available cwnd for which TSO defers
1355 * sending if not using sysctl_tcp_tso_win_divisor.
1356 */
1357static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1358{
1359	return 3;
1360}
1361
1362/* Returns end sequence number of the receiver's advertised window */
1363static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1364{
1365	return tp->snd_una + tp->snd_wnd;
1366}
1367
1368/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1369 * flexible approach. The RFC suggests cwnd should not be raised unless
1370 * it was fully used previously. And that's exactly what we do in
1371 * congestion avoidance mode. But in slow start we allow cwnd to grow
1372 * as long as the application has used half the cwnd.
1373 * Example :
1374 *    cwnd is 10 (IW10), but application sends 9 frames.
1375 *    We allow cwnd to reach 18 when all frames are ACKed.
1376 * This check is safe because it's as aggressive as slow start which already
1377 * risks 100% overshoot. The advantage is that we discourage application to
1378 * either send more filler packets or data to artificially blow up the cwnd
1379 * usage, and allow application-limited process to probe bw more aggressively.
1380 */
1381static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1382{
1383	const struct tcp_sock *tp = tcp_sk(sk);
1384
1385	if (tp->is_cwnd_limited)
1386		return true;
1387
1388	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1389	if (tcp_in_slow_start(tp))
1390		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1391
1392	return false;
1393}
1394
1395/* BBR congestion control needs pacing.
1396 * Same remark for SO_MAX_PACING_RATE.
1397 * sch_fq packet scheduler is efficiently handling pacing,
1398 * but is not always installed/used.
1399 * Return true if TCP stack should pace packets itself.
1400 */
1401static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1402{
1403	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1404}
1405
1406/* Estimates in how many jiffies next packet for this flow can be sent.
1407 * Scheduling a retransmit timer too early would be silly.
1408 */
1409static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1410{
1411	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1412
1413	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1414}
1415
1416static inline void tcp_reset_xmit_timer(struct sock *sk,
1417					const int what,
1418					unsigned long when,
1419					const unsigned long max_when)
1420{
1421	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1422				  max_when);
1423}
1424
1425/* Something is really bad, we could not queue an additional packet,
1426 * because qdisc is full or receiver sent a 0 window, or we are paced.
1427 * We do not want to add fuel to the fire, or abort too early,
1428 * so make sure the timer we arm now is at least 200ms in the future,
1429 * regardless of current icsk_rto value (as it could be ~2ms)
1430 */
1431static inline unsigned long tcp_probe0_base(const struct sock *sk)
1432{
1433	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1434}
1435
1436/* Variant of inet_csk_rto_backoff() used for zero window probes */
1437static inline unsigned long tcp_probe0_when(const struct sock *sk,
1438					    unsigned long max_when)
1439{
1440	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1441			   inet_csk(sk)->icsk_backoff);
1442	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1443
1444	return (unsigned long)min_t(u64, when, max_when);
1445}
1446
1447static inline void tcp_check_probe_timer(struct sock *sk)
1448{
1449	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1450		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1451				     tcp_probe0_base(sk), TCP_RTO_MAX);
1452}
1453
1454static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1455{
1456	tp->snd_wl1 = seq;
1457}
1458
1459static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1460{
1461	tp->snd_wl1 = seq;
1462}
1463
1464/*
1465 * Calculate(/check) TCP checksum
1466 */
1467static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1468				   __be32 daddr, __wsum base)
1469{
1470	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1471}
1472
1473static inline bool tcp_checksum_complete(struct sk_buff *skb)
1474{
1475	return !skb_csum_unnecessary(skb) &&
1476		__skb_checksum_complete(skb);
1477}
1478
1479bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1480		     enum skb_drop_reason *reason);
1481
1482
1483int tcp_filter(struct sock *sk, struct sk_buff *skb);
1484void tcp_set_state(struct sock *sk, int state);
1485void tcp_done(struct sock *sk);
1486int tcp_abort(struct sock *sk, int err);
1487
1488static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1489{
1490	rx_opt->dsack = 0;
1491	rx_opt->num_sacks = 0;
1492}
1493
1494void tcp_cwnd_restart(struct sock *sk, s32 delta);
1495
1496static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1497{
1498	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1499	struct tcp_sock *tp = tcp_sk(sk);
1500	s32 delta;
1501
1502	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1503	    tp->packets_out || ca_ops->cong_control)
1504		return;
1505	delta = tcp_jiffies32 - tp->lsndtime;
1506	if (delta > inet_csk(sk)->icsk_rto)
1507		tcp_cwnd_restart(sk, delta);
1508}
1509
1510/* Determine a window scaling and initial window to offer. */
1511void tcp_select_initial_window(const struct sock *sk, int __space,
1512			       __u32 mss, __u32 *rcv_wnd,
1513			       __u32 *window_clamp, int wscale_ok,
1514			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1515
1516static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1517{
1518	s64 scaled_space = (s64)space * scaling_ratio;
1519
1520	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1521}
1522
1523static inline int tcp_win_from_space(const struct sock *sk, int space)
1524{
1525	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1526}
1527
1528/* inverse of __tcp_win_from_space() */
1529static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1530{
1531	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1532
1533	do_div(val, scaling_ratio);
1534	return val;
1535}
1536
1537static inline int tcp_space_from_win(const struct sock *sk, int win)
1538{
1539	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1540}
1541
1542/* Assume a 50% default for skb->len/skb->truesize ratio.
1543 * This may be adjusted later in tcp_measure_rcv_mss().
1544 */
1545#define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1546
1547static inline void tcp_scaling_ratio_init(struct sock *sk)
1548{
1549	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1550}
1551
1552/* Note: caller must be prepared to deal with negative returns */
1553static inline int tcp_space(const struct sock *sk)
1554{
1555	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1556				  READ_ONCE(sk->sk_backlog.len) -
1557				  atomic_read(&sk->sk_rmem_alloc));
1558}
1559
1560static inline int tcp_full_space(const struct sock *sk)
1561{
1562	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1563}
1564
1565static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1566{
1567	int unused_mem = sk_unused_reserved_mem(sk);
1568	struct tcp_sock *tp = tcp_sk(sk);
1569
1570	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1571	if (unused_mem)
1572		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1573					 tcp_win_from_space(sk, unused_mem));
1574}
1575
1576static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1577{
1578	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1579}
1580
1581void tcp_cleanup_rbuf(struct sock *sk, int copied);
1582void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1583
1584
1585/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1586 * If 87.5 % (7/8) of the space has been consumed, we want to override
1587 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1588 * len/truesize ratio.
1589 */
1590static inline bool tcp_rmem_pressure(const struct sock *sk)
1591{
1592	int rcvbuf, threshold;
1593
1594	if (tcp_under_memory_pressure(sk))
1595		return true;
1596
1597	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1598	threshold = rcvbuf - (rcvbuf >> 3);
1599
1600	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1601}
1602
1603static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1604{
1605	const struct tcp_sock *tp = tcp_sk(sk);
1606	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1607
1608	if (avail <= 0)
1609		return false;
1610
1611	return (avail >= target) || tcp_rmem_pressure(sk) ||
1612	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1613}
1614
1615extern void tcp_openreq_init_rwin(struct request_sock *req,
1616				  const struct sock *sk_listener,
1617				  const struct dst_entry *dst);
1618
1619void tcp_enter_memory_pressure(struct sock *sk);
1620void tcp_leave_memory_pressure(struct sock *sk);
1621
1622static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1623{
1624	struct net *net = sock_net((struct sock *)tp);
1625	int val;
1626
1627	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1628	 * and do_tcp_setsockopt().
1629	 */
1630	val = READ_ONCE(tp->keepalive_intvl);
1631
1632	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1633}
1634
1635static inline int keepalive_time_when(const struct tcp_sock *tp)
1636{
1637	struct net *net = sock_net((struct sock *)tp);
1638	int val;
1639
1640	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1641	val = READ_ONCE(tp->keepalive_time);
1642
1643	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1644}
1645
1646static inline int keepalive_probes(const struct tcp_sock *tp)
1647{
1648	struct net *net = sock_net((struct sock *)tp);
1649	int val;
1650
1651	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1652	 * and do_tcp_setsockopt().
1653	 */
1654	val = READ_ONCE(tp->keepalive_probes);
1655
1656	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1657}
1658
1659static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1660{
1661	const struct inet_connection_sock *icsk = &tp->inet_conn;
1662
1663	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1664			  tcp_jiffies32 - tp->rcv_tstamp);
1665}
1666
1667static inline int tcp_fin_time(const struct sock *sk)
1668{
1669	int fin_timeout = tcp_sk(sk)->linger2 ? :
1670		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1671	const int rto = inet_csk(sk)->icsk_rto;
1672
1673	if (fin_timeout < (rto << 2) - (rto >> 1))
1674		fin_timeout = (rto << 2) - (rto >> 1);
1675
1676	return fin_timeout;
1677}
1678
1679static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1680				  int paws_win)
1681{
1682	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1683		return true;
1684	if (unlikely(!time_before32(ktime_get_seconds(),
1685				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1686		return true;
1687	/*
1688	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1689	 * then following tcp messages have valid values. Ignore 0 value,
1690	 * or else 'negative' tsval might forbid us to accept their packets.
1691	 */
1692	if (!rx_opt->ts_recent)
1693		return true;
1694	return false;
1695}
1696
1697static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1698				   int rst)
1699{
1700	if (tcp_paws_check(rx_opt, 0))
1701		return false;
1702
1703	/* RST segments are not recommended to carry timestamp,
1704	   and, if they do, it is recommended to ignore PAWS because
1705	   "their cleanup function should take precedence over timestamps."
1706	   Certainly, it is mistake. It is necessary to understand the reasons
1707	   of this constraint to relax it: if peer reboots, clock may go
1708	   out-of-sync and half-open connections will not be reset.
1709	   Actually, the problem would be not existing if all
1710	   the implementations followed draft about maintaining clock
1711	   via reboots. Linux-2.2 DOES NOT!
1712
1713	   However, we can relax time bounds for RST segments to MSL.
1714	 */
1715	if (rst && !time_before32(ktime_get_seconds(),
1716				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1717		return false;
1718	return true;
1719}
1720
1721bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1722			  int mib_idx, u32 *last_oow_ack_time);
1723
1724static inline void tcp_mib_init(struct net *net)
1725{
1726	/* See RFC 2012 */
1727	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1728	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1729	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1730	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1731}
1732
1733/* from STCP */
1734static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1735{
1736	tp->lost_skb_hint = NULL;
1737}
1738
1739static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1740{
1741	tcp_clear_retrans_hints_partial(tp);
1742	tp->retransmit_skb_hint = NULL;
1743}
1744
1745#define tcp_md5_addr tcp_ao_addr
1746
1747/* - key database */
1748struct tcp_md5sig_key {
1749	struct hlist_node	node;
1750	u8			keylen;
1751	u8			family; /* AF_INET or AF_INET6 */
1752	u8			prefixlen;
1753	u8			flags;
1754	union tcp_md5_addr	addr;
1755	int			l3index; /* set if key added with L3 scope */
1756	u8			key[TCP_MD5SIG_MAXKEYLEN];
1757	struct rcu_head		rcu;
1758};
1759
1760/* - sock block */
1761struct tcp_md5sig_info {
1762	struct hlist_head	head;
1763	struct rcu_head		rcu;
1764};
1765
1766/* - pseudo header */
1767struct tcp4_pseudohdr {
1768	__be32		saddr;
1769	__be32		daddr;
1770	__u8		pad;
1771	__u8		protocol;
1772	__be16		len;
1773};
1774
1775struct tcp6_pseudohdr {
1776	struct in6_addr	saddr;
1777	struct in6_addr daddr;
1778	__be32		len;
1779	__be32		protocol;	/* including padding */
1780};
1781
1782union tcp_md5sum_block {
1783	struct tcp4_pseudohdr ip4;
1784#if IS_ENABLED(CONFIG_IPV6)
1785	struct tcp6_pseudohdr ip6;
1786#endif
1787};
1788
1789/*
1790 * struct tcp_sigpool - per-CPU pool of ahash_requests
1791 * @scratch: per-CPU temporary area, that can be used between
1792 *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1793 *	     crypto request
1794 * @req: pre-allocated ahash request
1795 */
1796struct tcp_sigpool {
1797	void *scratch;
1798	struct ahash_request *req;
1799};
1800
1801int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1802void tcp_sigpool_get(unsigned int id);
1803void tcp_sigpool_release(unsigned int id);
1804int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1805			      const struct sk_buff *skb,
1806			      unsigned int header_len);
1807
1808/**
1809 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1810 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1811 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1812 *
1813 * Returns 0 on success, error otherwise.
1814 */
1815int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1816/**
1817 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1818 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1819 */
1820void tcp_sigpool_end(struct tcp_sigpool *c);
1821size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1822/* - functions */
1823int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1824			const struct sock *sk, const struct sk_buff *skb);
1825int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1826		   int family, u8 prefixlen, int l3index, u8 flags,
1827		   const u8 *newkey, u8 newkeylen);
1828int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1829		     int family, u8 prefixlen, int l3index,
1830		     struct tcp_md5sig_key *key);
1831
1832int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1833		   int family, u8 prefixlen, int l3index, u8 flags);
1834void tcp_clear_md5_list(struct sock *sk);
1835struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1836					 const struct sock *addr_sk);
1837
1838#ifdef CONFIG_TCP_MD5SIG
1839struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1840					   const union tcp_md5_addr *addr,
1841					   int family, bool any_l3index);
1842static inline struct tcp_md5sig_key *
1843tcp_md5_do_lookup(const struct sock *sk, int l3index,
1844		  const union tcp_md5_addr *addr, int family)
1845{
1846	if (!static_branch_unlikely(&tcp_md5_needed.key))
1847		return NULL;
1848	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1849}
1850
1851static inline struct tcp_md5sig_key *
1852tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1853			      const union tcp_md5_addr *addr, int family)
1854{
1855	if (!static_branch_unlikely(&tcp_md5_needed.key))
1856		return NULL;
1857	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1858}
1859
1860enum skb_drop_reason
1861tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1862		     const void *saddr, const void *daddr,
1863		     int family, int l3index, const __u8 *hash_location);
1864
1865
1866#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1867#else
1868static inline struct tcp_md5sig_key *
1869tcp_md5_do_lookup(const struct sock *sk, int l3index,
1870		  const union tcp_md5_addr *addr, int family)
1871{
1872	return NULL;
1873}
1874
1875static inline struct tcp_md5sig_key *
1876tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1877			      const union tcp_md5_addr *addr, int family)
1878{
1879	return NULL;
1880}
1881
1882static inline enum skb_drop_reason
1883tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1884		     const void *saddr, const void *daddr,
1885		     int family, int l3index, const __u8 *hash_location)
1886{
1887	return SKB_NOT_DROPPED_YET;
1888}
1889#define tcp_twsk_md5_key(twsk)	NULL
1890#endif
1891
1892int tcp_md5_alloc_sigpool(void);
1893void tcp_md5_release_sigpool(void);
1894void tcp_md5_add_sigpool(void);
1895extern int tcp_md5_sigpool_id;
1896
1897int tcp_md5_hash_key(struct tcp_sigpool *hp,
1898		     const struct tcp_md5sig_key *key);
1899
1900/* From tcp_fastopen.c */
1901void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1902			    struct tcp_fastopen_cookie *cookie);
1903void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1904			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1905			    u16 try_exp);
1906struct tcp_fastopen_request {
1907	/* Fast Open cookie. Size 0 means a cookie request */
1908	struct tcp_fastopen_cookie	cookie;
1909	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1910	size_t				size;
1911	int				copied;	/* queued in tcp_connect() */
1912	struct ubuf_info		*uarg;
1913};
1914void tcp_free_fastopen_req(struct tcp_sock *tp);
1915void tcp_fastopen_destroy_cipher(struct sock *sk);
1916void tcp_fastopen_ctx_destroy(struct net *net);
1917int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1918			      void *primary_key, void *backup_key);
1919int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1920			    u64 *key);
1921void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1922struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1923			      struct request_sock *req,
1924			      struct tcp_fastopen_cookie *foc,
1925			      const struct dst_entry *dst);
1926void tcp_fastopen_init_key_once(struct net *net);
1927bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1928			     struct tcp_fastopen_cookie *cookie);
1929bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1930#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1931#define TCP_FASTOPEN_KEY_MAX 2
1932#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1933	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1934
1935/* Fastopen key context */
1936struct tcp_fastopen_context {
1937	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1938	int		num;
1939	struct rcu_head	rcu;
1940};
1941
1942void tcp_fastopen_active_disable(struct sock *sk);
1943bool tcp_fastopen_active_should_disable(struct sock *sk);
1944void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1945void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1946
1947/* Caller needs to wrap with rcu_read_(un)lock() */
1948static inline
1949struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1950{
1951	struct tcp_fastopen_context *ctx;
1952
1953	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1954	if (!ctx)
1955		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1956	return ctx;
1957}
1958
1959static inline
1960bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1961			       const struct tcp_fastopen_cookie *orig)
1962{
1963	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1964	    orig->len == foc->len &&
1965	    !memcmp(orig->val, foc->val, foc->len))
1966		return true;
1967	return false;
1968}
1969
1970static inline
1971int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1972{
1973	return ctx->num;
1974}
1975
1976/* Latencies incurred by various limits for a sender. They are
1977 * chronograph-like stats that are mutually exclusive.
1978 */
1979enum tcp_chrono {
1980	TCP_CHRONO_UNSPEC,
1981	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1982	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1983	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1984	__TCP_CHRONO_MAX,
1985};
1986
1987void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1988void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1989
1990/* This helper is needed, because skb->tcp_tsorted_anchor uses
1991 * the same memory storage than skb->destructor/_skb_refdst
1992 */
1993static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1994{
1995	skb->destructor = NULL;
1996	skb->_skb_refdst = 0UL;
1997}
1998
1999#define tcp_skb_tsorted_save(skb) {		\
2000	unsigned long _save = skb->_skb_refdst;	\
2001	skb->_skb_refdst = 0UL;
2002
2003#define tcp_skb_tsorted_restore(skb)		\
2004	skb->_skb_refdst = _save;		\
2005}
2006
2007void tcp_write_queue_purge(struct sock *sk);
2008
2009static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2010{
2011	return skb_rb_first(&sk->tcp_rtx_queue);
2012}
2013
2014static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2015{
2016	return skb_rb_last(&sk->tcp_rtx_queue);
2017}
2018
2019static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2020{
2021	return skb_peek_tail(&sk->sk_write_queue);
2022}
2023
2024#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2025	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2026
2027static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2028{
2029	return skb_peek(&sk->sk_write_queue);
2030}
2031
2032static inline bool tcp_skb_is_last(const struct sock *sk,
2033				   const struct sk_buff *skb)
2034{
2035	return skb_queue_is_last(&sk->sk_write_queue, skb);
2036}
2037
2038/**
2039 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2040 * @sk: socket
2041 *
2042 * Since the write queue can have a temporary empty skb in it,
2043 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2044 */
2045static inline bool tcp_write_queue_empty(const struct sock *sk)
2046{
2047	const struct tcp_sock *tp = tcp_sk(sk);
2048
2049	return tp->write_seq == tp->snd_nxt;
2050}
2051
2052static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2053{
2054	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2055}
2056
2057static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2058{
2059	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2060}
2061
2062static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2063{
2064	__skb_queue_tail(&sk->sk_write_queue, skb);
2065
2066	/* Queue it, remembering where we must start sending. */
2067	if (sk->sk_write_queue.next == skb)
2068		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2069}
2070
2071/* Insert new before skb on the write queue of sk.  */
2072static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2073						  struct sk_buff *skb,
2074						  struct sock *sk)
2075{
2076	__skb_queue_before(&sk->sk_write_queue, skb, new);
2077}
2078
2079static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2080{
2081	tcp_skb_tsorted_anchor_cleanup(skb);
2082	__skb_unlink(skb, &sk->sk_write_queue);
2083}
2084
2085void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2086
2087static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2088{
2089	tcp_skb_tsorted_anchor_cleanup(skb);
2090	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2091}
2092
2093static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2094{
2095	list_del(&skb->tcp_tsorted_anchor);
2096	tcp_rtx_queue_unlink(skb, sk);
2097	tcp_wmem_free_skb(sk, skb);
2098}
2099
 
 
 
 
 
 
 
 
2100static inline void tcp_push_pending_frames(struct sock *sk)
2101{
2102	if (tcp_send_head(sk)) {
2103		struct tcp_sock *tp = tcp_sk(sk);
2104
2105		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2106	}
2107}
2108
2109/* Start sequence of the skb just after the highest skb with SACKed
2110 * bit, valid only if sacked_out > 0 or when the caller has ensured
2111 * validity by itself.
2112 */
2113static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2114{
2115	if (!tp->sacked_out)
2116		return tp->snd_una;
2117
2118	if (tp->highest_sack == NULL)
2119		return tp->snd_nxt;
2120
2121	return TCP_SKB_CB(tp->highest_sack)->seq;
2122}
2123
2124static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2125{
2126	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2127}
2128
2129static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2130{
2131	return tcp_sk(sk)->highest_sack;
2132}
2133
2134static inline void tcp_highest_sack_reset(struct sock *sk)
2135{
2136	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2137}
2138
2139/* Called when old skb is about to be deleted and replaced by new skb */
2140static inline void tcp_highest_sack_replace(struct sock *sk,
2141					    struct sk_buff *old,
2142					    struct sk_buff *new)
2143{
2144	if (old == tcp_highest_sack(sk))
2145		tcp_sk(sk)->highest_sack = new;
2146}
2147
2148/* This helper checks if socket has IP_TRANSPARENT set */
2149static inline bool inet_sk_transparent(const struct sock *sk)
2150{
2151	switch (sk->sk_state) {
2152	case TCP_TIME_WAIT:
2153		return inet_twsk(sk)->tw_transparent;
2154	case TCP_NEW_SYN_RECV:
2155		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2156	}
2157	return inet_test_bit(TRANSPARENT, sk);
2158}
2159
2160/* Determines whether this is a thin stream (which may suffer from
2161 * increased latency). Used to trigger latency-reducing mechanisms.
2162 */
2163static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2164{
2165	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2166}
2167
2168/* /proc */
2169enum tcp_seq_states {
2170	TCP_SEQ_STATE_LISTENING,
2171	TCP_SEQ_STATE_ESTABLISHED,
2172};
2173
2174void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2175void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2176void tcp_seq_stop(struct seq_file *seq, void *v);
2177
2178struct tcp_seq_afinfo {
2179	sa_family_t			family;
2180};
2181
2182struct tcp_iter_state {
2183	struct seq_net_private	p;
2184	enum tcp_seq_states	state;
2185	struct sock		*syn_wait_sk;
2186	int			bucket, offset, sbucket, num;
2187	loff_t			last_pos;
2188};
2189
2190extern struct request_sock_ops tcp_request_sock_ops;
2191extern struct request_sock_ops tcp6_request_sock_ops;
2192
2193void tcp_v4_destroy_sock(struct sock *sk);
2194
2195struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2196				netdev_features_t features);
2197struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
 
 
 
2198INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2199INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2200INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2201INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2202#ifdef CONFIG_INET
2203void tcp_gro_complete(struct sk_buff *skb);
2204#else
2205static inline void tcp_gro_complete(struct sk_buff *skb) { }
2206#endif
2207
2208void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2209
2210static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2211{
2212	struct net *net = sock_net((struct sock *)tp);
2213	u32 val;
2214
2215	val = READ_ONCE(tp->notsent_lowat);
2216
2217	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2218}
2219
2220bool tcp_stream_memory_free(const struct sock *sk, int wake);
2221
2222#ifdef CONFIG_PROC_FS
2223int tcp4_proc_init(void);
2224void tcp4_proc_exit(void);
2225#endif
2226
2227int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2228int tcp_conn_request(struct request_sock_ops *rsk_ops,
2229		     const struct tcp_request_sock_ops *af_ops,
2230		     struct sock *sk, struct sk_buff *skb);
2231
2232/* TCP af-specific functions */
2233struct tcp_sock_af_ops {
2234#ifdef CONFIG_TCP_MD5SIG
2235	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2236						const struct sock *addr_sk);
2237	int		(*calc_md5_hash)(char *location,
2238					 const struct tcp_md5sig_key *md5,
2239					 const struct sock *sk,
2240					 const struct sk_buff *skb);
2241	int		(*md5_parse)(struct sock *sk,
2242				     int optname,
2243				     sockptr_t optval,
2244				     int optlen);
2245#endif
2246#ifdef CONFIG_TCP_AO
2247	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2248	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2249					struct sock *addr_sk,
2250					int sndid, int rcvid);
2251	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2252			      const struct sock *sk,
2253			      __be32 sisn, __be32 disn, bool send);
2254	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2255			    const struct sock *sk, const struct sk_buff *skb,
2256			    const u8 *tkey, int hash_offset, u32 sne);
2257#endif
2258};
2259
2260struct tcp_request_sock_ops {
2261	u16 mss_clamp;
2262#ifdef CONFIG_TCP_MD5SIG
2263	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2264						 const struct sock *addr_sk);
2265	int		(*calc_md5_hash) (char *location,
2266					  const struct tcp_md5sig_key *md5,
2267					  const struct sock *sk,
2268					  const struct sk_buff *skb);
2269#endif
2270#ifdef CONFIG_TCP_AO
2271	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2272					struct request_sock *req,
2273					int sndid, int rcvid);
2274	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2275	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2276			      struct request_sock *req, const struct sk_buff *skb,
2277			      int hash_offset, u32 sne);
2278#endif
2279#ifdef CONFIG_SYN_COOKIES
2280	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2281				 __u16 *mss);
2282#endif
2283	struct dst_entry *(*route_req)(const struct sock *sk,
2284				       struct sk_buff *skb,
2285				       struct flowi *fl,
2286				       struct request_sock *req);
 
2287	u32 (*init_seq)(const struct sk_buff *skb);
2288	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2289	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2290			   struct flowi *fl, struct request_sock *req,
2291			   struct tcp_fastopen_cookie *foc,
2292			   enum tcp_synack_type synack_type,
2293			   struct sk_buff *syn_skb);
2294};
2295
2296extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2297#if IS_ENABLED(CONFIG_IPV6)
2298extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2299#endif
2300
2301#ifdef CONFIG_SYN_COOKIES
2302static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2303					 const struct sock *sk, struct sk_buff *skb,
2304					 __u16 *mss)
2305{
2306	tcp_synq_overflow(sk);
2307	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2308	return ops->cookie_init_seq(skb, mss);
2309}
2310#else
2311static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2312					 const struct sock *sk, struct sk_buff *skb,
2313					 __u16 *mss)
2314{
2315	return 0;
2316}
2317#endif
2318
2319struct tcp_key {
2320	union {
2321		struct {
2322			struct tcp_ao_key *ao_key;
2323			char *traffic_key;
2324			u32 sne;
2325			u8 rcv_next;
2326		};
2327		struct tcp_md5sig_key *md5_key;
2328	};
2329	enum {
2330		TCP_KEY_NONE = 0,
2331		TCP_KEY_MD5,
2332		TCP_KEY_AO,
2333	} type;
2334};
2335
2336static inline void tcp_get_current_key(const struct sock *sk,
2337				       struct tcp_key *out)
2338{
2339#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2340	const struct tcp_sock *tp = tcp_sk(sk);
2341#endif
2342
2343#ifdef CONFIG_TCP_AO
2344	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2345		struct tcp_ao_info *ao;
2346
2347		ao = rcu_dereference_protected(tp->ao_info,
2348					       lockdep_sock_is_held(sk));
2349		if (ao) {
2350			out->ao_key = READ_ONCE(ao->current_key);
2351			out->type = TCP_KEY_AO;
2352			return;
2353		}
2354	}
2355#endif
2356#ifdef CONFIG_TCP_MD5SIG
2357	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2358	    rcu_access_pointer(tp->md5sig_info)) {
2359		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2360		if (out->md5_key) {
2361			out->type = TCP_KEY_MD5;
2362			return;
2363		}
2364	}
2365#endif
2366	out->type = TCP_KEY_NONE;
2367}
2368
2369static inline bool tcp_key_is_md5(const struct tcp_key *key)
2370{
2371#ifdef CONFIG_TCP_MD5SIG
2372	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2373	    key->type == TCP_KEY_MD5)
2374		return true;
2375#endif
2376	return false;
2377}
2378
2379static inline bool tcp_key_is_ao(const struct tcp_key *key)
2380{
2381#ifdef CONFIG_TCP_AO
2382	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2383	    key->type == TCP_KEY_AO)
2384		return true;
2385#endif
2386	return false;
2387}
2388
2389int tcpv4_offload_init(void);
2390
2391void tcp_v4_init(void);
2392void tcp_init(void);
2393
2394/* tcp_recovery.c */
2395void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2396void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2397extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2398				u32 reo_wnd);
2399extern bool tcp_rack_mark_lost(struct sock *sk);
2400extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2401			     u64 xmit_time);
2402extern void tcp_rack_reo_timeout(struct sock *sk);
2403extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2404
2405/* tcp_plb.c */
2406
2407/*
2408 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2409 * expects cong_ratio which represents fraction of traffic that experienced
2410 * congestion over a single RTT. In order to avoid floating point operations,
2411 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2412 */
2413#define TCP_PLB_SCALE 8
2414
2415/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2416struct tcp_plb_state {
2417	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2418		unused:3;
2419	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2420};
2421
2422static inline void tcp_plb_init(const struct sock *sk,
2423				struct tcp_plb_state *plb)
2424{
2425	plb->consec_cong_rounds = 0;
2426	plb->pause_until = 0;
2427}
2428void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2429			  const int cong_ratio);
2430void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2431void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2433/* At how many usecs into the future should the RTO fire? */
2434static inline s64 tcp_rto_delta_us(const struct sock *sk)
2435{
2436	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2437	u32 rto = inet_csk(sk)->icsk_rto;
2438	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2439
2440	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
 
 
 
 
 
 
 
 
2441}
2442
2443/*
2444 * Save and compile IPv4 options, return a pointer to it
2445 */
2446static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2447							 struct sk_buff *skb)
2448{
2449	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2450	struct ip_options_rcu *dopt = NULL;
2451
2452	if (opt->optlen) {
2453		int opt_size = sizeof(*dopt) + opt->optlen;
2454
2455		dopt = kmalloc(opt_size, GFP_ATOMIC);
2456		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2457			kfree(dopt);
2458			dopt = NULL;
2459		}
2460	}
2461	return dopt;
2462}
2463
2464/* locally generated TCP pure ACKs have skb->truesize == 2
2465 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2466 * This is much faster than dissecting the packet to find out.
2467 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2468 */
2469static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2470{
2471	return skb->truesize == 2;
2472}
2473
2474static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2475{
2476	skb->truesize = 2;
2477}
2478
2479static inline int tcp_inq(struct sock *sk)
2480{
2481	struct tcp_sock *tp = tcp_sk(sk);
2482	int answ;
2483
2484	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2485		answ = 0;
2486	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2487		   !tp->urg_data ||
2488		   before(tp->urg_seq, tp->copied_seq) ||
2489		   !before(tp->urg_seq, tp->rcv_nxt)) {
2490
2491		answ = tp->rcv_nxt - tp->copied_seq;
2492
2493		/* Subtract 1, if FIN was received */
2494		if (answ && sock_flag(sk, SOCK_DONE))
2495			answ--;
2496	} else {
2497		answ = tp->urg_seq - tp->copied_seq;
2498	}
2499
2500	return answ;
2501}
2502
2503int tcp_peek_len(struct socket *sock);
2504
2505static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2506{
2507	u16 segs_in;
2508
2509	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2510
2511	/* We update these fields while other threads might
2512	 * read them from tcp_get_info()
2513	 */
2514	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2515	if (skb->len > tcp_hdrlen(skb))
2516		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2517}
2518
2519/*
2520 * TCP listen path runs lockless.
2521 * We forced "struct sock" to be const qualified to make sure
2522 * we don't modify one of its field by mistake.
2523 * Here, we increment sk_drops which is an atomic_t, so we can safely
2524 * make sock writable again.
2525 */
2526static inline void tcp_listendrop(const struct sock *sk)
2527{
2528	atomic_inc(&((struct sock *)sk)->sk_drops);
2529	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2530}
2531
2532enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2533
2534/*
2535 * Interface for adding Upper Level Protocols over TCP
2536 */
2537
2538#define TCP_ULP_NAME_MAX	16
2539#define TCP_ULP_MAX		128
2540#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2541
2542struct tcp_ulp_ops {
2543	struct list_head	list;
2544
2545	/* initialize ulp */
2546	int (*init)(struct sock *sk);
2547	/* update ulp */
2548	void (*update)(struct sock *sk, struct proto *p,
2549		       void (*write_space)(struct sock *sk));
2550	/* cleanup ulp */
2551	void (*release)(struct sock *sk);
2552	/* diagnostic */
2553	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2554	size_t (*get_info_size)(const struct sock *sk);
2555	/* clone ulp */
2556	void (*clone)(const struct request_sock *req, struct sock *newsk,
2557		      const gfp_t priority);
2558
2559	char		name[TCP_ULP_NAME_MAX];
2560	struct module	*owner;
2561};
2562int tcp_register_ulp(struct tcp_ulp_ops *type);
2563void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2564int tcp_set_ulp(struct sock *sk, const char *name);
2565void tcp_get_available_ulp(char *buf, size_t len);
2566void tcp_cleanup_ulp(struct sock *sk);
2567void tcp_update_ulp(struct sock *sk, struct proto *p,
2568		    void (*write_space)(struct sock *sk));
2569
2570#define MODULE_ALIAS_TCP_ULP(name)				\
2571	__MODULE_INFO(alias, alias_userspace, name);		\
2572	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2573
2574#ifdef CONFIG_NET_SOCK_MSG
2575struct sk_msg;
2576struct sk_psock;
2577
2578#ifdef CONFIG_BPF_SYSCALL
2579int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2580void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2581#endif /* CONFIG_BPF_SYSCALL */
2582
2583#ifdef CONFIG_INET
2584void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2585#else
2586static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2587{
2588}
2589#endif
2590
2591int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2592			  struct sk_msg *msg, u32 bytes, int flags);
2593#endif /* CONFIG_NET_SOCK_MSG */
2594
2595#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2596static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2597{
2598}
2599#endif
2600
2601#ifdef CONFIG_CGROUP_BPF
2602static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2603				      struct sk_buff *skb,
2604				      unsigned int end_offset)
2605{
2606	skops->skb = skb;
2607	skops->skb_data_end = skb->data + end_offset;
2608}
2609#else
2610static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2611				      struct sk_buff *skb,
2612				      unsigned int end_offset)
2613{
2614}
2615#endif
2616
2617/* Call BPF_SOCK_OPS program that returns an int. If the return value
2618 * is < 0, then the BPF op failed (for example if the loaded BPF
2619 * program does not support the chosen operation or there is no BPF
2620 * program loaded).
2621 */
2622#ifdef CONFIG_BPF
2623static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2624{
2625	struct bpf_sock_ops_kern sock_ops;
2626	int ret;
2627
2628	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2629	if (sk_fullsock(sk)) {
2630		sock_ops.is_fullsock = 1;
2631		sock_owned_by_me(sk);
2632	}
2633
2634	sock_ops.sk = sk;
2635	sock_ops.op = op;
2636	if (nargs > 0)
2637		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2638
2639	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2640	if (ret == 0)
2641		ret = sock_ops.reply;
2642	else
2643		ret = -1;
2644	return ret;
2645}
2646
2647static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2648{
2649	u32 args[2] = {arg1, arg2};
2650
2651	return tcp_call_bpf(sk, op, 2, args);
2652}
2653
2654static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2655				    u32 arg3)
2656{
2657	u32 args[3] = {arg1, arg2, arg3};
2658
2659	return tcp_call_bpf(sk, op, 3, args);
2660}
2661
2662#else
2663static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2664{
2665	return -EPERM;
2666}
2667
2668static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2669{
2670	return -EPERM;
2671}
2672
2673static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2674				    u32 arg3)
2675{
2676	return -EPERM;
2677}
2678
2679#endif
2680
2681static inline u32 tcp_timeout_init(struct sock *sk)
2682{
2683	int timeout;
2684
2685	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2686
2687	if (timeout <= 0)
2688		timeout = TCP_TIMEOUT_INIT;
2689	return min_t(int, timeout, TCP_RTO_MAX);
2690}
2691
2692static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2693{
2694	int rwnd;
2695
2696	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2697
2698	if (rwnd < 0)
2699		rwnd = 0;
2700	return rwnd;
2701}
2702
2703static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2704{
2705	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2706}
2707
2708static inline void tcp_bpf_rtt(struct sock *sk)
2709{
2710	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2711		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2712}
2713
2714#if IS_ENABLED(CONFIG_SMC)
2715extern struct static_key_false tcp_have_smc;
2716#endif
2717
2718#if IS_ENABLED(CONFIG_TLS_DEVICE)
2719void clean_acked_data_enable(struct inet_connection_sock *icsk,
2720			     void (*cad)(struct sock *sk, u32 ack_seq));
2721void clean_acked_data_disable(struct inet_connection_sock *icsk);
2722void clean_acked_data_flush(void);
2723#endif
2724
2725DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2726static inline void tcp_add_tx_delay(struct sk_buff *skb,
2727				    const struct tcp_sock *tp)
2728{
2729	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2730		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2731}
2732
2733/* Compute Earliest Departure Time for some control packets
2734 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2735 */
2736static inline u64 tcp_transmit_time(const struct sock *sk)
2737{
2738	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2739		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2740			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2741
2742		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2743	}
2744	return 0;
2745}
2746
2747static inline int tcp_parse_auth_options(const struct tcphdr *th,
2748		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2749{
2750	const u8 *md5_tmp, *ao_tmp;
2751	int ret;
2752
2753	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2754	if (ret)
2755		return ret;
2756
2757	if (md5_hash)
2758		*md5_hash = md5_tmp;
2759
2760	if (aoh) {
2761		if (!ao_tmp)
2762			*aoh = NULL;
2763		else
2764			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2765	}
2766
2767	return 0;
2768}
2769
2770static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2771				   int family, int l3index, bool stat_inc)
2772{
2773#ifdef CONFIG_TCP_AO
2774	struct tcp_ao_info *ao_info;
2775	struct tcp_ao_key *ao_key;
2776
2777	if (!static_branch_unlikely(&tcp_ao_needed.key))
2778		return false;
2779
2780	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2781					lockdep_sock_is_held(sk));
2782	if (!ao_info)
2783		return false;
2784
2785	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2786	if (ao_info->ao_required || ao_key) {
2787		if (stat_inc) {
2788			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2789			atomic64_inc(&ao_info->counters.ao_required);
2790		}
2791		return true;
2792	}
2793#endif
2794	return false;
2795}
2796
2797/* Called with rcu_read_lock() */
2798static inline enum skb_drop_reason
2799tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2800		 const struct sk_buff *skb,
2801		 const void *saddr, const void *daddr,
2802		 int family, int dif, int sdif)
2803{
2804	const struct tcphdr *th = tcp_hdr(skb);
2805	const struct tcp_ao_hdr *aoh;
2806	const __u8 *md5_location;
2807	int l3index;
2808
2809	/* Invalid option or two times meet any of auth options */
2810	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2811		tcp_hash_fail("TCP segment has incorrect auth options set",
2812			      family, skb, "");
2813		return SKB_DROP_REASON_TCP_AUTH_HDR;
2814	}
2815
2816	if (req) {
2817		if (tcp_rsk_used_ao(req) != !!aoh) {
2818			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2819			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2820				      family, skb, "%s",
2821				      !aoh ? "missing AO" : "AO signed");
2822			return SKB_DROP_REASON_TCP_AOFAILURE;
2823		}
2824	}
2825
2826	/* sdif set, means packet ingressed via a device
2827	 * in an L3 domain and dif is set to the l3mdev
2828	 */
2829	l3index = sdif ? dif : 0;
2830
2831	/* Fast path: unsigned segments */
2832	if (likely(!md5_location && !aoh)) {
2833		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2834		 * for the remote peer. On TCP-AO established connection
2835		 * the last key is impossible to remove, so there's
2836		 * always at least one current_key.
2837		 */
2838		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2839			tcp_hash_fail("AO hash is required, but not found",
2840					family, skb, "L3 index %d", l3index);
2841			return SKB_DROP_REASON_TCP_AONOTFOUND;
2842		}
2843		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2844			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2845			tcp_hash_fail("MD5 Hash not found",
2846				      family, skb, "L3 index %d", l3index);
2847			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2848		}
2849		return SKB_NOT_DROPPED_YET;
2850	}
2851
2852	if (aoh)
2853		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2854
2855	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2856				    l3index, md5_location);
2857}
2858
2859#endif	/* _TCP_H */