Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/tcp_ao.h>
  41#include <net/inet_ecn.h>
  42#include <net/dst.h>
  43#include <net/mptcp.h>
  44#include <net/xfrm.h>
  45
  46#include <linux/seq_file.h>
  47#include <linux/memcontrol.h>
  48#include <linux/bpf-cgroup.h>
  49#include <linux/siphash.h>
  50
  51extern struct inet_hashinfo tcp_hashinfo;
  52
  53DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  54int tcp_orphan_count_sum(void);
  55
  56DECLARE_PER_CPU(u32, tcp_tw_isn);
  57
  58void tcp_time_wait(struct sock *sk, int state, int timeo);
  59
  60#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  61#define MAX_TCP_OPTION_SPACE 40
  62#define TCP_MIN_SND_MSS		48
  63#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  64
  65/*
  66 * Never offer a window over 32767 without using window scaling. Some
  67 * poor stacks do signed 16bit maths!
  68 */
  69#define MAX_TCP_WINDOW		32767U
  70
  71/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  72#define TCP_MIN_MSS		88U
  73
  74/* The initial MTU to use for probing */
  75#define TCP_BASE_MSS		1024
  76
  77/* probing interval, default to 10 minutes as per RFC4821 */
  78#define TCP_PROBE_INTERVAL	600
  79
  80/* Specify interval when tcp mtu probing will stop */
  81#define TCP_PROBE_THRESHOLD	8
  82
  83/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  84#define TCP_FASTRETRANS_THRESH 3
  85
  86/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  87#define TCP_MAX_QUICKACKS	16U
  88
  89/* Maximal number of window scale according to RFC1323 */
  90#define TCP_MAX_WSCALE		14U
  91
  92/* urg_data states */
  93#define TCP_URG_VALID	0x0100
  94#define TCP_URG_NOTYET	0x0200
  95#define TCP_URG_READ	0x0400
  96
  97#define TCP_RETR1	3	/*
  98				 * This is how many retries it does before it
  99				 * tries to figure out if the gateway is
 100				 * down. Minimal RFC value is 3; it corresponds
 101				 * to ~3sec-8min depending on RTO.
 102				 */
 103
 104#define TCP_RETR2	15	/*
 105				 * This should take at least
 106				 * 90 minutes to time out.
 107				 * RFC1122 says that the limit is 100 sec.
 108				 * 15 is ~13-30min depending on RTO.
 109				 */
 110
 111#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 112				 * when active opening a connection.
 113				 * RFC1122 says the minimum retry MUST
 114				 * be at least 180secs.  Nevertheless
 115				 * this value is corresponding to
 116				 * 63secs of retransmission with the
 117				 * current initial RTO.
 118				 */
 119
 120#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 121				 * when passive opening a connection.
 122				 * This is corresponding to 31secs of
 123				 * retransmission with the current
 124				 * initial RTO.
 125				 */
 126
 127#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 128				  * state, about 60 seconds	*/
 129#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 130                                 /* BSD style FIN_WAIT2 deadlock breaker.
 131				  * It used to be 3min, new value is 60sec,
 132				  * to combine FIN-WAIT-2 timeout with
 133				  * TIME-WAIT timer.
 134				  */
 135#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 136
 137#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 138static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
 139
 140#if HZ >= 100
 141#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 142#define TCP_ATO_MIN	((unsigned)(HZ/25))
 143#else
 144#define TCP_DELACK_MIN	4U
 145#define TCP_ATO_MIN	4U
 146#endif
 147#define TCP_RTO_MAX	((unsigned)(120*HZ))
 148#define TCP_RTO_MIN	((unsigned)(HZ/5))
 149#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 150
 151#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
 152
 153#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 154#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 155						 * used as a fallback RTO for the
 156						 * initial data transmission if no
 157						 * valid RTT sample has been acquired,
 158						 * most likely due to retrans in 3WHS.
 159						 */
 160
 161#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 162					                 * for local resources.
 163					                 */
 164#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 165#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 166#define TCP_KEEPALIVE_INTVL	(75*HZ)
 167
 168#define MAX_TCP_KEEPIDLE	32767
 169#define MAX_TCP_KEEPINTVL	32767
 170#define MAX_TCP_KEEPCNT		127
 171#define MAX_TCP_SYNCNT		127
 172
 173/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
 174 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
 175 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
 176 */
 177#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
 178
 179#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 180					 * after this time. It should be equal
 181					 * (or greater than) TCP_TIMEWAIT_LEN
 182					 * to provide reliability equal to one
 183					 * provided by timewait state.
 184					 */
 185#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 186					 * timestamps. It must be less than
 187					 * minimal timewait lifetime.
 188					 */
 189/*
 190 *	TCP option
 191 */
 192
 193#define TCPOPT_NOP		1	/* Padding */
 194#define TCPOPT_EOL		0	/* End of options */
 195#define TCPOPT_MSS		2	/* Segment size negotiating */
 196#define TCPOPT_WINDOW		3	/* Window scaling */
 197#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 198#define TCPOPT_SACK             5       /* SACK Block */
 199#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 200#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 201#define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
 202#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 203#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 204#define TCPOPT_EXP		254	/* Experimental */
 205/* Magic number to be after the option value for sharing TCP
 206 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 207 */
 208#define TCPOPT_FASTOPEN_MAGIC	0xF989
 209#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 210
 211/*
 212 *     TCP option lengths
 213 */
 214
 215#define TCPOLEN_MSS            4
 216#define TCPOLEN_WINDOW         3
 217#define TCPOLEN_SACK_PERM      2
 218#define TCPOLEN_TIMESTAMP      10
 219#define TCPOLEN_MD5SIG         18
 220#define TCPOLEN_FASTOPEN_BASE  2
 221#define TCPOLEN_EXP_FASTOPEN_BASE  4
 222#define TCPOLEN_EXP_SMC_BASE   6
 223
 224/* But this is what stacks really send out. */
 225#define TCPOLEN_TSTAMP_ALIGNED		12
 226#define TCPOLEN_WSCALE_ALIGNED		4
 227#define TCPOLEN_SACKPERM_ALIGNED	4
 228#define TCPOLEN_SACK_BASE		2
 229#define TCPOLEN_SACK_BASE_ALIGNED	4
 230#define TCPOLEN_SACK_PERBLOCK		8
 231#define TCPOLEN_MD5SIG_ALIGNED		20
 232#define TCPOLEN_MSS_ALIGNED		4
 233#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 234
 235/* Flags in tp->nonagle */
 236#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 237#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 238#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 239
 240/* TCP thin-stream limits */
 241#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 242
 243/* TCP initial congestion window as per rfc6928 */
 244#define TCP_INIT_CWND		10
 245
 246/* Bit Flags for sysctl_tcp_fastopen */
 247#define	TFO_CLIENT_ENABLE	1
 248#define	TFO_SERVER_ENABLE	2
 249#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 250
 251/* Accept SYN data w/o any cookie option */
 252#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 253
 254/* Force enable TFO on all listeners, i.e., not requiring the
 255 * TCP_FASTOPEN socket option.
 256 */
 257#define	TFO_SERVER_WO_SOCKOPT1	0x400
 258
 259
 260/* sysctl variables for tcp */
 261extern int sysctl_tcp_max_orphans;
 262extern long sysctl_tcp_mem[3];
 263
 264#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 265#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 266#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 267
 268extern atomic_long_t tcp_memory_allocated;
 269DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 270
 271extern struct percpu_counter tcp_sockets_allocated;
 272extern unsigned long tcp_memory_pressure;
 273
 274/* optimized version of sk_under_memory_pressure() for TCP sockets */
 275static inline bool tcp_under_memory_pressure(const struct sock *sk)
 276{
 277	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 278	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 279		return true;
 280
 281	return READ_ONCE(tcp_memory_pressure);
 282}
 283/*
 284 * The next routines deal with comparing 32 bit unsigned ints
 285 * and worry about wraparound (automatic with unsigned arithmetic).
 286 */
 287
 288static inline bool before(__u32 seq1, __u32 seq2)
 289{
 290        return (__s32)(seq1-seq2) < 0;
 291}
 292#define after(seq2, seq1) 	before(seq1, seq2)
 293
 294/* is s2<=s1<=s3 ? */
 295static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 296{
 297	return seq3 - seq2 >= seq1 - seq2;
 298}
 299
 
 
 
 
 
 
 
 
 300static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 301{
 302	sk_wmem_queued_add(sk, -skb->truesize);
 303	if (!skb_zcopy_pure(skb))
 304		sk_mem_uncharge(sk, skb->truesize);
 305	else
 306		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 307	__kfree_skb(skb);
 308}
 309
 310void sk_forced_mem_schedule(struct sock *sk, int size);
 311
 312bool tcp_check_oom(const struct sock *sk, int shift);
 313
 314
 315extern struct proto tcp_prot;
 316
 317#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 318#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 319#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 320#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 321
 322void tcp_tasklet_init(void);
 323
 324int tcp_v4_err(struct sk_buff *skb, u32);
 325
 326void tcp_shutdown(struct sock *sk, int how);
 327
 328int tcp_v4_early_demux(struct sk_buff *skb);
 329int tcp_v4_rcv(struct sk_buff *skb);
 330
 331void tcp_remove_empty_skb(struct sock *sk);
 332int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 333int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 334int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 335			 size_t size, struct ubuf_info *uarg);
 336void tcp_splice_eof(struct socket *sock);
 337int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 338int tcp_wmem_schedule(struct sock *sk, int copy);
 339void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 340	      int size_goal);
 341void tcp_release_cb(struct sock *sk);
 342void tcp_wfree(struct sk_buff *skb);
 343void tcp_write_timer_handler(struct sock *sk);
 344void tcp_delack_timer_handler(struct sock *sk);
 345int tcp_ioctl(struct sock *sk, int cmd, int *karg);
 346enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 347void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 348void tcp_rcv_space_adjust(struct sock *sk);
 349int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 350void tcp_twsk_destructor(struct sock *sk);
 351void tcp_twsk_purge(struct list_head *net_exit_list);
 352ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 353			struct pipe_inode_info *pipe, size_t len,
 354			unsigned int flags);
 355struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 356				     bool force_schedule);
 357
 358static inline void tcp_dec_quickack_mode(struct sock *sk)
 359{
 360	struct inet_connection_sock *icsk = inet_csk(sk);
 361
 362	if (icsk->icsk_ack.quick) {
 363		/* How many ACKs S/ACKing new data have we sent? */
 364		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
 365
 366		if (pkts >= icsk->icsk_ack.quick) {
 367			icsk->icsk_ack.quick = 0;
 368			/* Leaving quickack mode we deflate ATO. */
 369			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 370		} else
 371			icsk->icsk_ack.quick -= pkts;
 372	}
 373}
 374
 375#define	TCP_ECN_OK		1
 376#define	TCP_ECN_QUEUE_CWR	2
 377#define	TCP_ECN_DEMAND_CWR	4
 378#define	TCP_ECN_SEEN		8
 379
 380enum tcp_tw_status {
 381	TCP_TW_SUCCESS = 0,
 382	TCP_TW_RST = 1,
 383	TCP_TW_ACK = 2,
 384	TCP_TW_SYN = 3
 385};
 386
 387
 388enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 389					      struct sk_buff *skb,
 390					      const struct tcphdr *th,
 391					      u32 *tw_isn);
 392struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 393			   struct request_sock *req, bool fastopen,
 394			   bool *lost_race);
 395enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
 396				       struct sk_buff *skb);
 397void tcp_enter_loss(struct sock *sk);
 398void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 399void tcp_clear_retrans(struct tcp_sock *tp);
 400void tcp_update_metrics(struct sock *sk);
 401void tcp_init_metrics(struct sock *sk);
 402void tcp_metrics_init(void);
 403bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 404void __tcp_close(struct sock *sk, long timeout);
 405void tcp_close(struct sock *sk, long timeout);
 406void tcp_init_sock(struct sock *sk);
 407void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 408__poll_t tcp_poll(struct file *file, struct socket *sock,
 409		      struct poll_table_struct *wait);
 410int do_tcp_getsockopt(struct sock *sk, int level,
 411		      int optname, sockptr_t optval, sockptr_t optlen);
 412int tcp_getsockopt(struct sock *sk, int level, int optname,
 413		   char __user *optval, int __user *optlen);
 414bool tcp_bpf_bypass_getsockopt(int level, int optname);
 415int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 416		      sockptr_t optval, unsigned int optlen);
 417int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 418		   unsigned int optlen);
 419void tcp_set_keepalive(struct sock *sk, int val);
 420void tcp_syn_ack_timeout(const struct request_sock *req);
 421int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 422		int flags, int *addr_len);
 423int tcp_set_rcvlowat(struct sock *sk, int val);
 424int tcp_set_window_clamp(struct sock *sk, int val);
 425void tcp_update_recv_tstamps(struct sk_buff *skb,
 426			     struct scm_timestamping_internal *tss);
 427void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 428			struct scm_timestamping_internal *tss);
 429void tcp_data_ready(struct sock *sk);
 430#ifdef CONFIG_MMU
 431int tcp_mmap(struct file *file, struct socket *sock,
 432	     struct vm_area_struct *vma);
 433#endif
 434void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 435		       struct tcp_options_received *opt_rx,
 436		       int estab, struct tcp_fastopen_cookie *foc);
 437
 438/*
 439 *	BPF SKB-less helpers
 440 */
 441u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 442			 struct tcphdr *th, u32 *cookie);
 443u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 444			 struct tcphdr *th, u32 *cookie);
 445u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 446u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 447			  const struct tcp_request_sock_ops *af_ops,
 448			  struct sock *sk, struct tcphdr *th);
 449/*
 450 *	TCP v4 functions exported for the inet6 API
 451 */
 452
 453void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 454void tcp_v4_mtu_reduced(struct sock *sk);
 455void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 456void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 457int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 458struct sock *tcp_create_openreq_child(const struct sock *sk,
 459				      struct request_sock *req,
 460				      struct sk_buff *skb);
 461void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 462struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 463				  struct request_sock *req,
 464				  struct dst_entry *dst,
 465				  struct request_sock *req_unhash,
 466				  bool *own_req);
 467int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 468int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 469int tcp_connect(struct sock *sk);
 470enum tcp_synack_type {
 471	TCP_SYNACK_NORMAL,
 472	TCP_SYNACK_FASTOPEN,
 473	TCP_SYNACK_COOKIE,
 474};
 475struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 476				struct request_sock *req,
 477				struct tcp_fastopen_cookie *foc,
 478				enum tcp_synack_type synack_type,
 479				struct sk_buff *syn_skb);
 480int tcp_disconnect(struct sock *sk, int flags);
 481
 482void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 483int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 484void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 485
 486/* From syncookies.c */
 487struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 488				 struct request_sock *req,
 489				 struct dst_entry *dst);
 490int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
 491struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 492struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 493					    struct sock *sk, struct sk_buff *skb,
 494					    struct tcp_options_received *tcp_opt,
 495					    int mss, u32 tsoff);
 496
 497#if IS_ENABLED(CONFIG_BPF)
 498struct bpf_tcp_req_attrs {
 499	u32 rcv_tsval;
 500	u32 rcv_tsecr;
 501	u16 mss;
 502	u8 rcv_wscale;
 503	u8 snd_wscale;
 504	u8 ecn_ok;
 505	u8 wscale_ok;
 506	u8 sack_ok;
 507	u8 tstamp_ok;
 508	u8 usec_ts_ok;
 509	u8 reserved[3];
 510};
 511#endif
 512
 513#ifdef CONFIG_SYN_COOKIES
 514
 515/* Syncookies use a monotonic timer which increments every 60 seconds.
 516 * This counter is used both as a hash input and partially encoded into
 517 * the cookie value.  A cookie is only validated further if the delta
 518 * between the current counter value and the encoded one is less than this,
 519 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 520 * the counter advances immediately after a cookie is generated).
 521 */
 522#define MAX_SYNCOOKIE_AGE	2
 523#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 524#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 525
 526/* syncookies: remember time of last synqueue overflow
 527 * But do not dirty this field too often (once per second is enough)
 528 * It is racy as we do not hold a lock, but race is very minor.
 529 */
 530static inline void tcp_synq_overflow(const struct sock *sk)
 531{
 532	unsigned int last_overflow;
 533	unsigned int now = jiffies;
 534
 535	if (sk->sk_reuseport) {
 536		struct sock_reuseport *reuse;
 537
 538		reuse = rcu_dereference(sk->sk_reuseport_cb);
 539		if (likely(reuse)) {
 540			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 541			if (!time_between32(now, last_overflow,
 542					    last_overflow + HZ))
 543				WRITE_ONCE(reuse->synq_overflow_ts, now);
 544			return;
 545		}
 546	}
 547
 548	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 549	if (!time_between32(now, last_overflow, last_overflow + HZ))
 550		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
 551}
 552
 553/* syncookies: no recent synqueue overflow on this listening socket? */
 554static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 555{
 556	unsigned int last_overflow;
 557	unsigned int now = jiffies;
 558
 559	if (sk->sk_reuseport) {
 560		struct sock_reuseport *reuse;
 561
 562		reuse = rcu_dereference(sk->sk_reuseport_cb);
 563		if (likely(reuse)) {
 564			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 565			return !time_between32(now, last_overflow - HZ,
 566					       last_overflow +
 567					       TCP_SYNCOOKIE_VALID);
 568		}
 569	}
 570
 571	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 572
 573	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 574	 * then we're under synflood. However, we have to use
 575	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 576	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 577	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 578	 * which could lead to rejecting a valid syncookie.
 579	 */
 580	return !time_between32(now, last_overflow - HZ,
 581			       last_overflow + TCP_SYNCOOKIE_VALID);
 582}
 583
 584static inline u32 tcp_cookie_time(void)
 585{
 586	u64 val = get_jiffies_64();
 587
 588	do_div(val, TCP_SYNCOOKIE_PERIOD);
 589	return val;
 590}
 591
 592/* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
 593static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
 594{
 595	if (usec_ts)
 596		return div_u64(val, NSEC_PER_USEC);
 597
 598	return div_u64(val, NSEC_PER_MSEC);
 599}
 600
 601u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 602			      u16 *mssp);
 603__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 604u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 605bool cookie_timestamp_decode(const struct net *net,
 606			     struct tcp_options_received *opt);
 607
 608static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
 609{
 610	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
 611		dst_feature(dst, RTAX_FEATURE_ECN);
 612}
 613
 614#if IS_ENABLED(CONFIG_BPF)
 615static inline bool cookie_bpf_ok(struct sk_buff *skb)
 616{
 617	return skb->sk;
 618}
 619
 620struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
 621#else
 622static inline bool cookie_bpf_ok(struct sk_buff *skb)
 623{
 624	return false;
 625}
 626
 627static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
 628						    struct sk_buff *skb)
 629{
 630	return NULL;
 631}
 632#endif
 633
 634/* From net/ipv6/syncookies.c */
 635int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
 636struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 637
 638u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 639			      const struct tcphdr *th, u16 *mssp);
 640__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 641#endif
 642/* tcp_output.c */
 643
 644void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 645void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 646void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 647			       int nonagle);
 648int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 649int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 650void tcp_retransmit_timer(struct sock *sk);
 651void tcp_xmit_retransmit_queue(struct sock *);
 652void tcp_simple_retransmit(struct sock *);
 653void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 654int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 655enum tcp_queue {
 656	TCP_FRAG_IN_WRITE_QUEUE,
 657	TCP_FRAG_IN_RTX_QUEUE,
 658};
 659int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 660		 struct sk_buff *skb, u32 len,
 661		 unsigned int mss_now, gfp_t gfp);
 662
 663void tcp_send_probe0(struct sock *);
 664int tcp_write_wakeup(struct sock *, int mib);
 665void tcp_send_fin(struct sock *sk);
 666void tcp_send_active_reset(struct sock *sk, gfp_t priority,
 667			   enum sk_rst_reason reason);
 668int tcp_send_synack(struct sock *);
 669void tcp_push_one(struct sock *, unsigned int mss_now);
 670void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 671void tcp_send_ack(struct sock *sk);
 672void tcp_send_delayed_ack(struct sock *sk);
 673void tcp_send_loss_probe(struct sock *sk);
 674bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 675void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 676			     const struct sk_buff *next_skb);
 677
 678/* tcp_input.c */
 679void tcp_rearm_rto(struct sock *sk);
 680void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 681void tcp_done_with_error(struct sock *sk, int err);
 682void tcp_reset(struct sock *sk, struct sk_buff *skb);
 683void tcp_fin(struct sock *sk);
 684void tcp_check_space(struct sock *sk);
 685void tcp_sack_compress_send_ack(struct sock *sk);
 686
 687static inline void tcp_cleanup_skb(struct sk_buff *skb)
 688{
 689	skb_dst_drop(skb);
 690	secpath_reset(skb);
 691}
 692
 693static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
 694{
 695	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
 696	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
 697	__skb_queue_tail(&sk->sk_receive_queue, skb);
 698}
 699
 700/* tcp_timer.c */
 701void tcp_init_xmit_timers(struct sock *);
 702static inline void tcp_clear_xmit_timers(struct sock *sk)
 703{
 704	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 705		__sock_put(sk);
 706
 707	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 708		__sock_put(sk);
 709
 710	inet_csk_clear_xmit_timers(sk);
 711}
 712
 713unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 714unsigned int tcp_current_mss(struct sock *sk);
 715u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 716
 717/* Bound MSS / TSO packet size with the half of the window */
 718static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 719{
 720	int cutoff;
 721
 722	/* When peer uses tiny windows, there is no use in packetizing
 723	 * to sub-MSS pieces for the sake of SWS or making sure there
 724	 * are enough packets in the pipe for fast recovery.
 725	 *
 726	 * On the other hand, for extremely large MSS devices, handling
 727	 * smaller than MSS windows in this way does make sense.
 728	 */
 729	if (tp->max_window > TCP_MSS_DEFAULT)
 730		cutoff = (tp->max_window >> 1);
 731	else
 732		cutoff = tp->max_window;
 733
 734	if (cutoff && pktsize > cutoff)
 735		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 736	else
 737		return pktsize;
 738}
 739
 740/* tcp.c */
 741void tcp_get_info(struct sock *, struct tcp_info *);
 742
 743/* Read 'sendfile()'-style from a TCP socket */
 744int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 745		  sk_read_actor_t recv_actor);
 746int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 747struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 748void tcp_read_done(struct sock *sk, size_t len);
 749
 750void tcp_initialize_rcv_mss(struct sock *sk);
 751
 752int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 753int tcp_mss_to_mtu(struct sock *sk, int mss);
 754void tcp_mtup_init(struct sock *sk);
 755
 756static inline void tcp_bound_rto(struct sock *sk)
 757{
 758	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 759		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 760}
 761
 762static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 763{
 764	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 765}
 766
 767static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 768{
 769	/* mptcp hooks are only on the slow path */
 770	if (sk_is_mptcp((struct sock *)tp))
 771		return;
 772
 773	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 774			       ntohl(TCP_FLAG_ACK) |
 775			       snd_wnd);
 776}
 777
 778static inline void tcp_fast_path_on(struct tcp_sock *tp)
 779{
 780	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 781}
 782
 783static inline void tcp_fast_path_check(struct sock *sk)
 784{
 785	struct tcp_sock *tp = tcp_sk(sk);
 786
 787	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 788	    tp->rcv_wnd &&
 789	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 790	    !tp->urg_data)
 791		tcp_fast_path_on(tp);
 792}
 793
 794u32 tcp_delack_max(const struct sock *sk);
 795
 796/* Compute the actual rto_min value */
 797static inline u32 tcp_rto_min(const struct sock *sk)
 798{
 799	const struct dst_entry *dst = __sk_dst_get(sk);
 800	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 801
 802	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 803		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 804	return rto_min;
 805}
 806
 807static inline u32 tcp_rto_min_us(const struct sock *sk)
 808{
 809	return jiffies_to_usecs(tcp_rto_min(sk));
 810}
 811
 812static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 813{
 814	return dst_metric_locked(dst, RTAX_CC_ALGO);
 815}
 816
 817/* Minimum RTT in usec. ~0 means not available. */
 818static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 819{
 820	return minmax_get(&tp->rtt_min);
 821}
 822
 823/* Compute the actual receive window we are currently advertising.
 824 * Rcv_nxt can be after the window if our peer push more data
 825 * than the offered window.
 826 */
 827static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 828{
 829	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 830
 831	if (win < 0)
 832		win = 0;
 833	return (u32) win;
 834}
 835
 836/* Choose a new window, without checks for shrinking, and without
 837 * scaling applied to the result.  The caller does these things
 838 * if necessary.  This is a "raw" window selection.
 839 */
 840u32 __tcp_select_window(struct sock *sk);
 841
 842void tcp_send_window_probe(struct sock *sk);
 843
 844/* TCP uses 32bit jiffies to save some space.
 845 * Note that this is different from tcp_time_stamp, which
 846 * historically has been the same until linux-4.13.
 847 */
 848#define tcp_jiffies32 ((u32)jiffies)
 849
 850/*
 851 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 852 * It is no longer tied to jiffies, but to 1 ms clock.
 853 * Note: double check if you want to use tcp_jiffies32 instead of this.
 854 */
 855#define TCP_TS_HZ	1000
 856
 857static inline u64 tcp_clock_ns(void)
 858{
 859	return ktime_get_ns();
 860}
 861
 862static inline u64 tcp_clock_us(void)
 863{
 864	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 865}
 866
 867static inline u64 tcp_clock_ms(void)
 868{
 869	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
 870}
 871
 872/* TCP Timestamp included in TS option (RFC 1323) can either use ms
 873 * or usec resolution. Each socket carries a flag to select one or other
 874 * resolution, as the route attribute could change anytime.
 875 * Each flow must stick to initial resolution.
 876 */
 877static inline u32 tcp_clock_ts(bool usec_ts)
 878{
 879	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
 880}
 881
 882static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
 883{
 884	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
 885}
 886
 887static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
 888{
 889	if (tp->tcp_usec_ts)
 890		return tp->tcp_mstamp;
 891	return tcp_time_stamp_ms(tp);
 892}
 893
 894void tcp_mstamp_refresh(struct tcp_sock *tp);
 895
 896static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 897{
 898	return max_t(s64, t1 - t0, 0);
 899}
 900
 901/* provide the departure time in us unit */
 902static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 903{
 904	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 905}
 906
 907/* Provide skb TSval in usec or ms unit */
 908static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
 909{
 910	if (usec_ts)
 911		return tcp_skb_timestamp_us(skb);
 912
 913	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
 914}
 915
 916static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
 917{
 918	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
 919}
 920
 921static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
 922{
 923	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
 924}
 925
 926#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 927
 928#define TCPHDR_FIN 0x01
 929#define TCPHDR_SYN 0x02
 930#define TCPHDR_RST 0x04
 931#define TCPHDR_PSH 0x08
 932#define TCPHDR_ACK 0x10
 933#define TCPHDR_URG 0x20
 934#define TCPHDR_ECE 0x40
 935#define TCPHDR_CWR 0x80
 936
 937#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 938
 939/* State flags for sacked in struct tcp_skb_cb */
 940enum tcp_skb_cb_sacked_flags {
 941	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
 942	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
 943	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
 944	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
 945				   TCPCB_LOST),	/* All tag bits			*/
 946	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
 947	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
 948	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
 949				   TCPCB_REPAIRED),
 950};
 951
 952/* This is what the send packet queuing engine uses to pass
 953 * TCP per-packet control information to the transmission code.
 954 * We also store the host-order sequence numbers in here too.
 955 * This is 44 bytes if IPV6 is enabled.
 956 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 957 */
 958struct tcp_skb_cb {
 959	__u32		seq;		/* Starting sequence number	*/
 960	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 961	union {
 962		/* Note :
 
 
 963		 * 	  tcp_gso_segs/size are used in write queue only,
 964		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 965		 */
 
 966		struct {
 967			u16	tcp_gso_segs;
 968			u16	tcp_gso_size;
 969		};
 970	};
 971	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 972
 973	__u8		sacked;		/* State flags for SACK.	*/
 
 
 
 
 
 
 
 
 
 974	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 975	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 976			eor:1,		/* Is skb MSG_EOR marked? */
 977			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 978			unused:5;
 979	__u32		ack_seq;	/* Sequence number ACK'd	*/
 980	union {
 981		struct {
 982#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 983			/* There is space for up to 24 bytes */
 984			__u32 is_app_limited:1, /* cwnd not fully used? */
 985			      delivered_ce:20,
 986			      unused:11;
 987			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 988			__u32 delivered;
 989			/* start of send pipeline phase */
 990			u64 first_tx_mstamp;
 991			/* when we reached the "delivered" count */
 992			u64 delivered_mstamp;
 993		} tx;   /* only used for outgoing skbs */
 994		union {
 995			struct inet_skb_parm	h4;
 996#if IS_ENABLED(CONFIG_IPV6)
 997			struct inet6_skb_parm	h6;
 998#endif
 999		} header;	/* For incoming skbs */
1000	};
1001};
1002
1003#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1004
1005extern const struct inet_connection_sock_af_ops ipv4_specific;
1006
1007#if IS_ENABLED(CONFIG_IPV6)
1008/* This is the variant of inet6_iif() that must be used by TCP,
1009 * as TCP moves IP6CB into a different location in skb->cb[]
1010 */
1011static inline int tcp_v6_iif(const struct sk_buff *skb)
1012{
1013	return TCP_SKB_CB(skb)->header.h6.iif;
1014}
1015
1016static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1017{
1018	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1019
1020	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1021}
1022
1023/* TCP_SKB_CB reference means this can not be used from early demux */
1024static inline int tcp_v6_sdif(const struct sk_buff *skb)
1025{
1026#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1027	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1028		return TCP_SKB_CB(skb)->header.h6.iif;
1029#endif
1030	return 0;
1031}
1032
1033extern const struct inet_connection_sock_af_ops ipv6_specific;
1034
1035INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1036INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1037void tcp_v6_early_demux(struct sk_buff *skb);
1038
1039#endif
1040
1041/* TCP_SKB_CB reference means this can not be used from early demux */
1042static inline int tcp_v4_sdif(struct sk_buff *skb)
1043{
1044#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1045	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1046		return TCP_SKB_CB(skb)->header.h4.iif;
1047#endif
1048	return 0;
1049}
1050
1051/* Due to TSO, an SKB can be composed of multiple actual
1052 * packets.  To keep these tracked properly, we use this.
1053 */
1054static inline int tcp_skb_pcount(const struct sk_buff *skb)
1055{
1056	return TCP_SKB_CB(skb)->tcp_gso_segs;
1057}
1058
1059static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1060{
1061	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1062}
1063
1064static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1065{
1066	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1067}
1068
1069/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1070static inline int tcp_skb_mss(const struct sk_buff *skb)
1071{
1072	return TCP_SKB_CB(skb)->tcp_gso_size;
1073}
1074
1075static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1076{
1077	return likely(!TCP_SKB_CB(skb)->eor);
1078}
1079
1080static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1081					const struct sk_buff *from)
1082{
1083	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1084	return likely(tcp_skb_can_collapse_to(to) &&
1085		      mptcp_skb_can_collapse(to, from) &&
1086		      skb_pure_zcopy_same(to, from) &&
1087		      skb_frags_readable(to) == skb_frags_readable(from));
1088}
1089
1090static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1091					   const struct sk_buff *from)
1092{
1093	return likely(mptcp_skb_can_collapse(to, from) &&
1094		      !skb_cmp_decrypted(to, from));
1095}
1096
1097/* Events passed to congestion control interface */
1098enum tcp_ca_event {
1099	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1100	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1101	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1102	CA_EVENT_LOSS,		/* loss timeout */
1103	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1104	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1105};
1106
1107/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1108enum tcp_ca_ack_event_flags {
1109	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1110	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1111	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1112};
1113
1114/*
1115 * Interface for adding new TCP congestion control handlers
1116 */
1117#define TCP_CA_NAME_MAX	16
1118#define TCP_CA_MAX	128
1119#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1120
1121#define TCP_CA_UNSPEC	0
1122
1123/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1124#define TCP_CONG_NON_RESTRICTED 0x1
1125/* Requires ECN/ECT set on all packets */
1126#define TCP_CONG_NEEDS_ECN	0x2
1127#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1128
1129union tcp_cc_info;
1130
1131struct ack_sample {
1132	u32 pkts_acked;
1133	s32 rtt_us;
1134	u32 in_flight;
1135};
1136
1137/* A rate sample measures the number of (original/retransmitted) data
1138 * packets delivered "delivered" over an interval of time "interval_us".
1139 * The tcp_rate.c code fills in the rate sample, and congestion
1140 * control modules that define a cong_control function to run at the end
1141 * of ACK processing can optionally chose to consult this sample when
1142 * setting cwnd and pacing rate.
1143 * A sample is invalid if "delivered" or "interval_us" is negative.
1144 */
1145struct rate_sample {
1146	u64  prior_mstamp; /* starting timestamp for interval */
1147	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1148	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1149	s32  delivered;		/* number of packets delivered over interval */
1150	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1151	long interval_us;	/* time for tp->delivered to incr "delivered" */
1152	u32 snd_interval_us;	/* snd interval for delivered packets */
1153	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1154	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1155	int  losses;		/* number of packets marked lost upon ACK */
1156	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1157	u32  prior_in_flight;	/* in flight before this ACK */
1158	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1159	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1160	bool is_retrans;	/* is sample from retransmission? */
1161	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1162};
1163
1164struct tcp_congestion_ops {
1165/* fast path fields are put first to fill one cache line */
1166
1167	/* return slow start threshold (required) */
1168	u32 (*ssthresh)(struct sock *sk);
1169
1170	/* do new cwnd calculation (required) */
1171	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1172
1173	/* call before changing ca_state (optional) */
1174	void (*set_state)(struct sock *sk, u8 new_state);
1175
1176	/* call when cwnd event occurs (optional) */
1177	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1178
1179	/* call when ack arrives (optional) */
1180	void (*in_ack_event)(struct sock *sk, u32 flags);
1181
1182	/* hook for packet ack accounting (optional) */
1183	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1184
1185	/* override sysctl_tcp_min_tso_segs */
1186	u32 (*min_tso_segs)(struct sock *sk);
1187
1188	/* call when packets are delivered to update cwnd and pacing rate,
1189	 * after all the ca_state processing. (optional)
1190	 */
1191	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1192
1193
1194	/* new value of cwnd after loss (required) */
1195	u32  (*undo_cwnd)(struct sock *sk);
1196	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1197	u32 (*sndbuf_expand)(struct sock *sk);
1198
1199/* control/slow paths put last */
1200	/* get info for inet_diag (optional) */
1201	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1202			   union tcp_cc_info *info);
1203
1204	char 			name[TCP_CA_NAME_MAX];
1205	struct module		*owner;
1206	struct list_head	list;
1207	u32			key;
1208	u32			flags;
1209
1210	/* initialize private data (optional) */
1211	void (*init)(struct sock *sk);
1212	/* cleanup private data  (optional) */
1213	void (*release)(struct sock *sk);
1214} ____cacheline_aligned_in_smp;
1215
1216int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1217void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1218int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1219				  struct tcp_congestion_ops *old_type);
1220int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1221
1222void tcp_assign_congestion_control(struct sock *sk);
1223void tcp_init_congestion_control(struct sock *sk);
1224void tcp_cleanup_congestion_control(struct sock *sk);
1225int tcp_set_default_congestion_control(struct net *net, const char *name);
1226void tcp_get_default_congestion_control(struct net *net, char *name);
1227void tcp_get_available_congestion_control(char *buf, size_t len);
1228void tcp_get_allowed_congestion_control(char *buf, size_t len);
1229int tcp_set_allowed_congestion_control(char *allowed);
1230int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1231			       bool cap_net_admin);
1232u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1233void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1234
1235u32 tcp_reno_ssthresh(struct sock *sk);
1236u32 tcp_reno_undo_cwnd(struct sock *sk);
1237void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1238extern struct tcp_congestion_ops tcp_reno;
1239
1240struct tcp_congestion_ops *tcp_ca_find(const char *name);
1241struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1242u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1243#ifdef CONFIG_INET
1244char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1245#else
1246static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1247{
1248	return NULL;
1249}
1250#endif
1251
1252static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1253{
1254	const struct inet_connection_sock *icsk = inet_csk(sk);
1255
1256	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1257}
1258
1259static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1260{
1261	const struct inet_connection_sock *icsk = inet_csk(sk);
1262
1263	if (icsk->icsk_ca_ops->cwnd_event)
1264		icsk->icsk_ca_ops->cwnd_event(sk, event);
1265}
1266
1267/* From tcp_cong.c */
1268void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1269
1270/* From tcp_rate.c */
1271void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1272void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1273			    struct rate_sample *rs);
1274void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1275		  bool is_sack_reneg, struct rate_sample *rs);
1276void tcp_rate_check_app_limited(struct sock *sk);
1277
1278static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1279{
1280	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1281}
1282
1283/* These functions determine how the current flow behaves in respect of SACK
1284 * handling. SACK is negotiated with the peer, and therefore it can vary
1285 * between different flows.
1286 *
1287 * tcp_is_sack - SACK enabled
1288 * tcp_is_reno - No SACK
1289 */
1290static inline int tcp_is_sack(const struct tcp_sock *tp)
1291{
1292	return likely(tp->rx_opt.sack_ok);
1293}
1294
1295static inline bool tcp_is_reno(const struct tcp_sock *tp)
1296{
1297	return !tcp_is_sack(tp);
1298}
1299
1300static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1301{
1302	return tp->sacked_out + tp->lost_out;
1303}
1304
1305/* This determines how many packets are "in the network" to the best
1306 * of our knowledge.  In many cases it is conservative, but where
1307 * detailed information is available from the receiver (via SACK
1308 * blocks etc.) we can make more aggressive calculations.
1309 *
1310 * Use this for decisions involving congestion control, use just
1311 * tp->packets_out to determine if the send queue is empty or not.
1312 *
1313 * Read this equation as:
1314 *
1315 *	"Packets sent once on transmission queue" MINUS
1316 *	"Packets left network, but not honestly ACKed yet" PLUS
1317 *	"Packets fast retransmitted"
1318 */
1319static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1320{
1321	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1322}
1323
1324#define TCP_INFINITE_SSTHRESH	0x7fffffff
1325
1326static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1327{
1328	return tp->snd_cwnd;
1329}
1330
1331static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1332{
1333	WARN_ON_ONCE((int)val <= 0);
1334	tp->snd_cwnd = val;
1335}
1336
1337static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1338{
1339	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1340}
1341
1342static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1343{
1344	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1345}
1346
1347static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1348{
1349	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1350	       (1 << inet_csk(sk)->icsk_ca_state);
1351}
1352
1353/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1354 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1355 * ssthresh.
1356 */
1357static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1358{
1359	const struct tcp_sock *tp = tcp_sk(sk);
1360
1361	if (tcp_in_cwnd_reduction(sk))
1362		return tp->snd_ssthresh;
1363	else
1364		return max(tp->snd_ssthresh,
1365			   ((tcp_snd_cwnd(tp) >> 1) +
1366			    (tcp_snd_cwnd(tp) >> 2)));
1367}
1368
1369/* Use define here intentionally to get WARN_ON location shown at the caller */
1370#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1371
1372void tcp_enter_cwr(struct sock *sk);
1373__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1374
1375/* The maximum number of MSS of available cwnd for which TSO defers
1376 * sending if not using sysctl_tcp_tso_win_divisor.
1377 */
1378static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1379{
1380	return 3;
1381}
1382
1383/* Returns end sequence number of the receiver's advertised window */
1384static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1385{
1386	return tp->snd_una + tp->snd_wnd;
1387}
1388
1389/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1390 * flexible approach. The RFC suggests cwnd should not be raised unless
1391 * it was fully used previously. And that's exactly what we do in
1392 * congestion avoidance mode. But in slow start we allow cwnd to grow
1393 * as long as the application has used half the cwnd.
1394 * Example :
1395 *    cwnd is 10 (IW10), but application sends 9 frames.
1396 *    We allow cwnd to reach 18 when all frames are ACKed.
1397 * This check is safe because it's as aggressive as slow start which already
1398 * risks 100% overshoot. The advantage is that we discourage application to
1399 * either send more filler packets or data to artificially blow up the cwnd
1400 * usage, and allow application-limited process to probe bw more aggressively.
1401 */
1402static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1403{
1404	const struct tcp_sock *tp = tcp_sk(sk);
1405
1406	if (tp->is_cwnd_limited)
1407		return true;
1408
1409	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1410	if (tcp_in_slow_start(tp))
1411		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1412
1413	return false;
1414}
1415
1416/* BBR congestion control needs pacing.
1417 * Same remark for SO_MAX_PACING_RATE.
1418 * sch_fq packet scheduler is efficiently handling pacing,
1419 * but is not always installed/used.
1420 * Return true if TCP stack should pace packets itself.
1421 */
1422static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1423{
1424	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1425}
1426
1427/* Estimates in how many jiffies next packet for this flow can be sent.
1428 * Scheduling a retransmit timer too early would be silly.
1429 */
1430static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1431{
1432	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1433
1434	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1435}
1436
1437static inline void tcp_reset_xmit_timer(struct sock *sk,
1438					const int what,
1439					unsigned long when,
1440					const unsigned long max_when)
1441{
1442	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1443				  max_when);
1444}
1445
1446/* Something is really bad, we could not queue an additional packet,
1447 * because qdisc is full or receiver sent a 0 window, or we are paced.
1448 * We do not want to add fuel to the fire, or abort too early,
1449 * so make sure the timer we arm now is at least 200ms in the future,
1450 * regardless of current icsk_rto value (as it could be ~2ms)
1451 */
1452static inline unsigned long tcp_probe0_base(const struct sock *sk)
1453{
1454	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1455}
1456
1457/* Variant of inet_csk_rto_backoff() used for zero window probes */
1458static inline unsigned long tcp_probe0_when(const struct sock *sk,
1459					    unsigned long max_when)
1460{
1461	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1462			   inet_csk(sk)->icsk_backoff);
1463	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1464
1465	return (unsigned long)min_t(u64, when, max_when);
1466}
1467
1468static inline void tcp_check_probe_timer(struct sock *sk)
1469{
1470	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1471		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1472				     tcp_probe0_base(sk), TCP_RTO_MAX);
1473}
1474
1475static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1476{
1477	tp->snd_wl1 = seq;
1478}
1479
1480static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1481{
1482	tp->snd_wl1 = seq;
1483}
1484
1485/*
1486 * Calculate(/check) TCP checksum
1487 */
1488static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1489				   __be32 daddr, __wsum base)
1490{
1491	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1492}
1493
1494static inline bool tcp_checksum_complete(struct sk_buff *skb)
1495{
1496	return !skb_csum_unnecessary(skb) &&
1497		__skb_checksum_complete(skb);
1498}
1499
1500bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1501		     enum skb_drop_reason *reason);
1502
1503
1504int tcp_filter(struct sock *sk, struct sk_buff *skb);
1505void tcp_set_state(struct sock *sk, int state);
1506void tcp_done(struct sock *sk);
1507int tcp_abort(struct sock *sk, int err);
1508
1509static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1510{
1511	rx_opt->dsack = 0;
1512	rx_opt->num_sacks = 0;
1513}
1514
1515void tcp_cwnd_restart(struct sock *sk, s32 delta);
1516
1517static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1518{
1519	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1520	struct tcp_sock *tp = tcp_sk(sk);
1521	s32 delta;
1522
1523	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1524	    tp->packets_out || ca_ops->cong_control)
1525		return;
1526	delta = tcp_jiffies32 - tp->lsndtime;
1527	if (delta > inet_csk(sk)->icsk_rto)
1528		tcp_cwnd_restart(sk, delta);
1529}
1530
1531/* Determine a window scaling and initial window to offer. */
1532void tcp_select_initial_window(const struct sock *sk, int __space,
1533			       __u32 mss, __u32 *rcv_wnd,
1534			       __u32 *window_clamp, int wscale_ok,
1535			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1536
1537static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1538{
1539	s64 scaled_space = (s64)space * scaling_ratio;
1540
1541	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1542}
1543
1544static inline int tcp_win_from_space(const struct sock *sk, int space)
1545{
1546	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1547}
1548
1549/* inverse of __tcp_win_from_space() */
1550static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1551{
1552	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1553
1554	do_div(val, scaling_ratio);
1555	return val;
1556}
1557
1558static inline int tcp_space_from_win(const struct sock *sk, int win)
1559{
1560	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1561}
1562
1563/* Assume a 50% default for skb->len/skb->truesize ratio.
1564 * This may be adjusted later in tcp_measure_rcv_mss().
1565 */
1566#define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
 
1567
1568static inline void tcp_scaling_ratio_init(struct sock *sk)
1569{
1570	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1571}
1572
1573/* Note: caller must be prepared to deal with negative returns */
1574static inline int tcp_space(const struct sock *sk)
1575{
1576	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1577				  READ_ONCE(sk->sk_backlog.len) -
1578				  atomic_read(&sk->sk_rmem_alloc));
1579}
1580
1581static inline int tcp_full_space(const struct sock *sk)
1582{
1583	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1584}
1585
1586static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1587{
1588	int unused_mem = sk_unused_reserved_mem(sk);
1589	struct tcp_sock *tp = tcp_sk(sk);
1590
1591	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1592	if (unused_mem)
1593		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1594					 tcp_win_from_space(sk, unused_mem));
1595}
1596
1597static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1598{
1599	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1600}
1601
1602void tcp_cleanup_rbuf(struct sock *sk, int copied);
1603void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1604
1605
1606/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1607 * If 87.5 % (7/8) of the space has been consumed, we want to override
1608 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1609 * len/truesize ratio.
1610 */
1611static inline bool tcp_rmem_pressure(const struct sock *sk)
1612{
1613	int rcvbuf, threshold;
1614
1615	if (tcp_under_memory_pressure(sk))
1616		return true;
1617
1618	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1619	threshold = rcvbuf - (rcvbuf >> 3);
1620
1621	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1622}
1623
1624static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1625{
1626	const struct tcp_sock *tp = tcp_sk(sk);
1627	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1628
1629	if (avail <= 0)
1630		return false;
1631
1632	return (avail >= target) || tcp_rmem_pressure(sk) ||
1633	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1634}
1635
1636extern void tcp_openreq_init_rwin(struct request_sock *req,
1637				  const struct sock *sk_listener,
1638				  const struct dst_entry *dst);
1639
1640void tcp_enter_memory_pressure(struct sock *sk);
1641void tcp_leave_memory_pressure(struct sock *sk);
1642
1643static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1644{
1645	struct net *net = sock_net((struct sock *)tp);
1646	int val;
1647
1648	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1649	 * and do_tcp_setsockopt().
1650	 */
1651	val = READ_ONCE(tp->keepalive_intvl);
1652
1653	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1654}
1655
1656static inline int keepalive_time_when(const struct tcp_sock *tp)
1657{
1658	struct net *net = sock_net((struct sock *)tp);
1659	int val;
1660
1661	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1662	val = READ_ONCE(tp->keepalive_time);
1663
1664	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1665}
1666
1667static inline int keepalive_probes(const struct tcp_sock *tp)
1668{
1669	struct net *net = sock_net((struct sock *)tp);
1670	int val;
1671
1672	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1673	 * and do_tcp_setsockopt().
1674	 */
1675	val = READ_ONCE(tp->keepalive_probes);
1676
1677	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1678}
1679
1680static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1681{
1682	const struct inet_connection_sock *icsk = &tp->inet_conn;
1683
1684	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1685			  tcp_jiffies32 - tp->rcv_tstamp);
1686}
1687
1688static inline int tcp_fin_time(const struct sock *sk)
1689{
1690	int fin_timeout = tcp_sk(sk)->linger2 ? :
1691		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1692	const int rto = inet_csk(sk)->icsk_rto;
1693
1694	if (fin_timeout < (rto << 2) - (rto >> 1))
1695		fin_timeout = (rto << 2) - (rto >> 1);
1696
1697	return fin_timeout;
1698}
1699
1700static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1701				  int paws_win)
1702{
1703	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1704		return true;
1705	if (unlikely(!time_before32(ktime_get_seconds(),
1706				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1707		return true;
1708	/*
1709	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1710	 * then following tcp messages have valid values. Ignore 0 value,
1711	 * or else 'negative' tsval might forbid us to accept their packets.
1712	 */
1713	if (!rx_opt->ts_recent)
1714		return true;
1715	return false;
1716}
1717
1718static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1719				   int rst)
1720{
1721	if (tcp_paws_check(rx_opt, 0))
1722		return false;
1723
1724	/* RST segments are not recommended to carry timestamp,
1725	   and, if they do, it is recommended to ignore PAWS because
1726	   "their cleanup function should take precedence over timestamps."
1727	   Certainly, it is mistake. It is necessary to understand the reasons
1728	   of this constraint to relax it: if peer reboots, clock may go
1729	   out-of-sync and half-open connections will not be reset.
1730	   Actually, the problem would be not existing if all
1731	   the implementations followed draft about maintaining clock
1732	   via reboots. Linux-2.2 DOES NOT!
1733
1734	   However, we can relax time bounds for RST segments to MSL.
1735	 */
1736	if (rst && !time_before32(ktime_get_seconds(),
1737				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1738		return false;
1739	return true;
1740}
1741
1742bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1743			  int mib_idx, u32 *last_oow_ack_time);
1744
1745static inline void tcp_mib_init(struct net *net)
1746{
1747	/* See RFC 2012 */
1748	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1749	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1750	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1751	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1752}
1753
1754/* from STCP */
1755static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1756{
1757	tp->lost_skb_hint = NULL;
1758}
1759
1760static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1761{
1762	tcp_clear_retrans_hints_partial(tp);
1763	tp->retransmit_skb_hint = NULL;
1764}
1765
1766#define tcp_md5_addr tcp_ao_addr
1767
1768/* - key database */
1769struct tcp_md5sig_key {
1770	struct hlist_node	node;
1771	u8			keylen;
1772	u8			family; /* AF_INET or AF_INET6 */
1773	u8			prefixlen;
1774	u8			flags;
1775	union tcp_md5_addr	addr;
1776	int			l3index; /* set if key added with L3 scope */
1777	u8			key[TCP_MD5SIG_MAXKEYLEN];
1778	struct rcu_head		rcu;
1779};
1780
1781/* - sock block */
1782struct tcp_md5sig_info {
1783	struct hlist_head	head;
1784	struct rcu_head		rcu;
1785};
1786
1787/* - pseudo header */
1788struct tcp4_pseudohdr {
1789	__be32		saddr;
1790	__be32		daddr;
1791	__u8		pad;
1792	__u8		protocol;
1793	__be16		len;
1794};
1795
1796struct tcp6_pseudohdr {
1797	struct in6_addr	saddr;
1798	struct in6_addr daddr;
1799	__be32		len;
1800	__be32		protocol;	/* including padding */
1801};
1802
1803union tcp_md5sum_block {
1804	struct tcp4_pseudohdr ip4;
1805#if IS_ENABLED(CONFIG_IPV6)
1806	struct tcp6_pseudohdr ip6;
1807#endif
1808};
1809
1810/*
1811 * struct tcp_sigpool - per-CPU pool of ahash_requests
1812 * @scratch: per-CPU temporary area, that can be used between
1813 *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1814 *	     crypto request
1815 * @req: pre-allocated ahash request
1816 */
1817struct tcp_sigpool {
1818	void *scratch;
1819	struct ahash_request *req;
1820};
1821
1822int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1823void tcp_sigpool_get(unsigned int id);
1824void tcp_sigpool_release(unsigned int id);
1825int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1826			      const struct sk_buff *skb,
1827			      unsigned int header_len);
1828
1829/**
1830 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1831 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1832 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1833 *
1834 * Returns 0 on success, error otherwise.
1835 */
1836int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1837/**
1838 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1839 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1840 */
1841void tcp_sigpool_end(struct tcp_sigpool *c);
1842size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1843/* - functions */
1844int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1845			const struct sock *sk, const struct sk_buff *skb);
1846int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1847		   int family, u8 prefixlen, int l3index, u8 flags,
1848		   const u8 *newkey, u8 newkeylen);
1849int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1850		     int family, u8 prefixlen, int l3index,
1851		     struct tcp_md5sig_key *key);
1852
1853int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1854		   int family, u8 prefixlen, int l3index, u8 flags);
1855void tcp_clear_md5_list(struct sock *sk);
1856struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1857					 const struct sock *addr_sk);
1858
1859#ifdef CONFIG_TCP_MD5SIG
1860struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1861					   const union tcp_md5_addr *addr,
1862					   int family, bool any_l3index);
1863static inline struct tcp_md5sig_key *
1864tcp_md5_do_lookup(const struct sock *sk, int l3index,
1865		  const union tcp_md5_addr *addr, int family)
1866{
1867	if (!static_branch_unlikely(&tcp_md5_needed.key))
1868		return NULL;
1869	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1870}
1871
1872static inline struct tcp_md5sig_key *
1873tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1874			      const union tcp_md5_addr *addr, int family)
1875{
1876	if (!static_branch_unlikely(&tcp_md5_needed.key))
1877		return NULL;
1878	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1879}
1880
 
 
 
 
 
 
1881#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1882#else
1883static inline struct tcp_md5sig_key *
1884tcp_md5_do_lookup(const struct sock *sk, int l3index,
1885		  const union tcp_md5_addr *addr, int family)
1886{
1887	return NULL;
1888}
1889
1890static inline struct tcp_md5sig_key *
1891tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1892			      const union tcp_md5_addr *addr, int family)
1893{
1894	return NULL;
1895}
1896
 
 
 
 
 
 
 
1897#define tcp_twsk_md5_key(twsk)	NULL
1898#endif
1899
1900int tcp_md5_alloc_sigpool(void);
1901void tcp_md5_release_sigpool(void);
1902void tcp_md5_add_sigpool(void);
1903extern int tcp_md5_sigpool_id;
1904
1905int tcp_md5_hash_key(struct tcp_sigpool *hp,
1906		     const struct tcp_md5sig_key *key);
1907
1908/* From tcp_fastopen.c */
1909void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1910			    struct tcp_fastopen_cookie *cookie);
1911void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1912			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1913			    u16 try_exp);
1914struct tcp_fastopen_request {
1915	/* Fast Open cookie. Size 0 means a cookie request */
1916	struct tcp_fastopen_cookie	cookie;
1917	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1918	size_t				size;
1919	int				copied;	/* queued in tcp_connect() */
1920	struct ubuf_info		*uarg;
1921};
1922void tcp_free_fastopen_req(struct tcp_sock *tp);
1923void tcp_fastopen_destroy_cipher(struct sock *sk);
1924void tcp_fastopen_ctx_destroy(struct net *net);
1925int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1926			      void *primary_key, void *backup_key);
1927int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1928			    u64 *key);
1929void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1930struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1931			      struct request_sock *req,
1932			      struct tcp_fastopen_cookie *foc,
1933			      const struct dst_entry *dst);
1934void tcp_fastopen_init_key_once(struct net *net);
1935bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1936			     struct tcp_fastopen_cookie *cookie);
1937bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1938#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1939#define TCP_FASTOPEN_KEY_MAX 2
1940#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1941	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1942
1943/* Fastopen key context */
1944struct tcp_fastopen_context {
1945	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1946	int		num;
1947	struct rcu_head	rcu;
1948};
1949
1950void tcp_fastopen_active_disable(struct sock *sk);
1951bool tcp_fastopen_active_should_disable(struct sock *sk);
1952void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1953void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1954
1955/* Caller needs to wrap with rcu_read_(un)lock() */
1956static inline
1957struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1958{
1959	struct tcp_fastopen_context *ctx;
1960
1961	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1962	if (!ctx)
1963		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1964	return ctx;
1965}
1966
1967static inline
1968bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1969			       const struct tcp_fastopen_cookie *orig)
1970{
1971	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1972	    orig->len == foc->len &&
1973	    !memcmp(orig->val, foc->val, foc->len))
1974		return true;
1975	return false;
1976}
1977
1978static inline
1979int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1980{
1981	return ctx->num;
1982}
1983
1984/* Latencies incurred by various limits for a sender. They are
1985 * chronograph-like stats that are mutually exclusive.
1986 */
1987enum tcp_chrono {
1988	TCP_CHRONO_UNSPEC,
1989	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1990	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1991	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1992	__TCP_CHRONO_MAX,
1993};
1994
1995void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1996void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1997
1998/* This helper is needed, because skb->tcp_tsorted_anchor uses
1999 * the same memory storage than skb->destructor/_skb_refdst
2000 */
2001static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2002{
2003	skb->destructor = NULL;
2004	skb->_skb_refdst = 0UL;
2005}
2006
2007#define tcp_skb_tsorted_save(skb) {		\
2008	unsigned long _save = skb->_skb_refdst;	\
2009	skb->_skb_refdst = 0UL;
2010
2011#define tcp_skb_tsorted_restore(skb)		\
2012	skb->_skb_refdst = _save;		\
2013}
2014
2015void tcp_write_queue_purge(struct sock *sk);
2016
2017static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2018{
2019	return skb_rb_first(&sk->tcp_rtx_queue);
2020}
2021
2022static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2023{
2024	return skb_rb_last(&sk->tcp_rtx_queue);
2025}
2026
2027static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2028{
2029	return skb_peek_tail(&sk->sk_write_queue);
2030}
2031
2032#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2033	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2034
2035static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2036{
2037	return skb_peek(&sk->sk_write_queue);
2038}
2039
2040static inline bool tcp_skb_is_last(const struct sock *sk,
2041				   const struct sk_buff *skb)
2042{
2043	return skb_queue_is_last(&sk->sk_write_queue, skb);
2044}
2045
2046/**
2047 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2048 * @sk: socket
2049 *
2050 * Since the write queue can have a temporary empty skb in it,
2051 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2052 */
2053static inline bool tcp_write_queue_empty(const struct sock *sk)
2054{
2055	const struct tcp_sock *tp = tcp_sk(sk);
2056
2057	return tp->write_seq == tp->snd_nxt;
2058}
2059
2060static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2061{
2062	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2063}
2064
2065static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2066{
2067	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2068}
2069
2070static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2071{
2072	__skb_queue_tail(&sk->sk_write_queue, skb);
2073
2074	/* Queue it, remembering where we must start sending. */
2075	if (sk->sk_write_queue.next == skb)
2076		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2077}
2078
2079/* Insert new before skb on the write queue of sk.  */
2080static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2081						  struct sk_buff *skb,
2082						  struct sock *sk)
2083{
2084	__skb_queue_before(&sk->sk_write_queue, skb, new);
2085}
2086
2087static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2088{
2089	tcp_skb_tsorted_anchor_cleanup(skb);
2090	__skb_unlink(skb, &sk->sk_write_queue);
2091}
2092
2093void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2094
2095static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2096{
2097	tcp_skb_tsorted_anchor_cleanup(skb);
2098	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2099}
2100
2101static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2102{
2103	list_del(&skb->tcp_tsorted_anchor);
2104	tcp_rtx_queue_unlink(skb, sk);
2105	tcp_wmem_free_skb(sk, skb);
2106}
2107
2108static inline void tcp_write_collapse_fence(struct sock *sk)
2109{
2110	struct sk_buff *skb = tcp_write_queue_tail(sk);
2111
2112	if (skb)
2113		TCP_SKB_CB(skb)->eor = 1;
2114}
2115
2116static inline void tcp_push_pending_frames(struct sock *sk)
2117{
2118	if (tcp_send_head(sk)) {
2119		struct tcp_sock *tp = tcp_sk(sk);
2120
2121		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2122	}
2123}
2124
2125/* Start sequence of the skb just after the highest skb with SACKed
2126 * bit, valid only if sacked_out > 0 or when the caller has ensured
2127 * validity by itself.
2128 */
2129static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2130{
2131	if (!tp->sacked_out)
2132		return tp->snd_una;
2133
2134	if (tp->highest_sack == NULL)
2135		return tp->snd_nxt;
2136
2137	return TCP_SKB_CB(tp->highest_sack)->seq;
2138}
2139
2140static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2141{
2142	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2143}
2144
2145static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2146{
2147	return tcp_sk(sk)->highest_sack;
2148}
2149
2150static inline void tcp_highest_sack_reset(struct sock *sk)
2151{
2152	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2153}
2154
2155/* Called when old skb is about to be deleted and replaced by new skb */
2156static inline void tcp_highest_sack_replace(struct sock *sk,
2157					    struct sk_buff *old,
2158					    struct sk_buff *new)
2159{
2160	if (old == tcp_highest_sack(sk))
2161		tcp_sk(sk)->highest_sack = new;
2162}
2163
2164/* This helper checks if socket has IP_TRANSPARENT set */
2165static inline bool inet_sk_transparent(const struct sock *sk)
2166{
2167	switch (sk->sk_state) {
2168	case TCP_TIME_WAIT:
2169		return inet_twsk(sk)->tw_transparent;
2170	case TCP_NEW_SYN_RECV:
2171		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2172	}
2173	return inet_test_bit(TRANSPARENT, sk);
2174}
2175
2176/* Determines whether this is a thin stream (which may suffer from
2177 * increased latency). Used to trigger latency-reducing mechanisms.
2178 */
2179static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2180{
2181	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2182}
2183
2184/* /proc */
2185enum tcp_seq_states {
2186	TCP_SEQ_STATE_LISTENING,
2187	TCP_SEQ_STATE_ESTABLISHED,
2188};
2189
2190void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2191void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2192void tcp_seq_stop(struct seq_file *seq, void *v);
2193
2194struct tcp_seq_afinfo {
2195	sa_family_t			family;
2196};
2197
2198struct tcp_iter_state {
2199	struct seq_net_private	p;
2200	enum tcp_seq_states	state;
2201	struct sock		*syn_wait_sk;
2202	int			bucket, offset, sbucket, num;
2203	loff_t			last_pos;
2204};
2205
2206extern struct request_sock_ops tcp_request_sock_ops;
2207extern struct request_sock_ops tcp6_request_sock_ops;
2208
2209void tcp_v4_destroy_sock(struct sock *sk);
2210
2211struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2212				netdev_features_t features);
2213struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2214struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2215struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2216				struct tcphdr *th);
2217INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2218INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2219INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2220INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2221#ifdef CONFIG_INET
2222void tcp_gro_complete(struct sk_buff *skb);
2223#else
2224static inline void tcp_gro_complete(struct sk_buff *skb) { }
2225#endif
2226
2227void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2228
2229static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2230{
2231	struct net *net = sock_net((struct sock *)tp);
2232	u32 val;
2233
2234	val = READ_ONCE(tp->notsent_lowat);
2235
2236	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2237}
2238
2239bool tcp_stream_memory_free(const struct sock *sk, int wake);
2240
2241#ifdef CONFIG_PROC_FS
2242int tcp4_proc_init(void);
2243void tcp4_proc_exit(void);
2244#endif
2245
2246int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2247int tcp_conn_request(struct request_sock_ops *rsk_ops,
2248		     const struct tcp_request_sock_ops *af_ops,
2249		     struct sock *sk, struct sk_buff *skb);
2250
2251/* TCP af-specific functions */
2252struct tcp_sock_af_ops {
2253#ifdef CONFIG_TCP_MD5SIG
2254	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2255						const struct sock *addr_sk);
2256	int		(*calc_md5_hash)(char *location,
2257					 const struct tcp_md5sig_key *md5,
2258					 const struct sock *sk,
2259					 const struct sk_buff *skb);
2260	int		(*md5_parse)(struct sock *sk,
2261				     int optname,
2262				     sockptr_t optval,
2263				     int optlen);
2264#endif
2265#ifdef CONFIG_TCP_AO
2266	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2267	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2268					struct sock *addr_sk,
2269					int sndid, int rcvid);
2270	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2271			      const struct sock *sk,
2272			      __be32 sisn, __be32 disn, bool send);
2273	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2274			    const struct sock *sk, const struct sk_buff *skb,
2275			    const u8 *tkey, int hash_offset, u32 sne);
2276#endif
2277};
2278
2279struct tcp_request_sock_ops {
2280	u16 mss_clamp;
2281#ifdef CONFIG_TCP_MD5SIG
2282	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2283						 const struct sock *addr_sk);
2284	int		(*calc_md5_hash) (char *location,
2285					  const struct tcp_md5sig_key *md5,
2286					  const struct sock *sk,
2287					  const struct sk_buff *skb);
2288#endif
2289#ifdef CONFIG_TCP_AO
2290	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2291					struct request_sock *req,
2292					int sndid, int rcvid);
2293	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2294	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2295			      struct request_sock *req, const struct sk_buff *skb,
2296			      int hash_offset, u32 sne);
2297#endif
2298#ifdef CONFIG_SYN_COOKIES
2299	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2300				 __u16 *mss);
2301#endif
2302	struct dst_entry *(*route_req)(const struct sock *sk,
2303				       struct sk_buff *skb,
2304				       struct flowi *fl,
2305				       struct request_sock *req,
2306				       u32 tw_isn);
2307	u32 (*init_seq)(const struct sk_buff *skb);
2308	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2309	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2310			   struct flowi *fl, struct request_sock *req,
2311			   struct tcp_fastopen_cookie *foc,
2312			   enum tcp_synack_type synack_type,
2313			   struct sk_buff *syn_skb);
2314};
2315
2316extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2317#if IS_ENABLED(CONFIG_IPV6)
2318extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2319#endif
2320
2321#ifdef CONFIG_SYN_COOKIES
2322static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2323					 const struct sock *sk, struct sk_buff *skb,
2324					 __u16 *mss)
2325{
2326	tcp_synq_overflow(sk);
2327	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2328	return ops->cookie_init_seq(skb, mss);
2329}
2330#else
2331static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2332					 const struct sock *sk, struct sk_buff *skb,
2333					 __u16 *mss)
2334{
2335	return 0;
2336}
2337#endif
2338
2339struct tcp_key {
2340	union {
2341		struct {
2342			struct tcp_ao_key *ao_key;
2343			char *traffic_key;
2344			u32 sne;
2345			u8 rcv_next;
2346		};
2347		struct tcp_md5sig_key *md5_key;
2348	};
2349	enum {
2350		TCP_KEY_NONE = 0,
2351		TCP_KEY_MD5,
2352		TCP_KEY_AO,
2353	} type;
2354};
2355
2356static inline void tcp_get_current_key(const struct sock *sk,
2357				       struct tcp_key *out)
2358{
2359#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2360	const struct tcp_sock *tp = tcp_sk(sk);
2361#endif
2362
2363#ifdef CONFIG_TCP_AO
2364	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2365		struct tcp_ao_info *ao;
2366
2367		ao = rcu_dereference_protected(tp->ao_info,
2368					       lockdep_sock_is_held(sk));
2369		if (ao) {
2370			out->ao_key = READ_ONCE(ao->current_key);
2371			out->type = TCP_KEY_AO;
2372			return;
2373		}
2374	}
2375#endif
2376#ifdef CONFIG_TCP_MD5SIG
2377	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2378	    rcu_access_pointer(tp->md5sig_info)) {
2379		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2380		if (out->md5_key) {
2381			out->type = TCP_KEY_MD5;
2382			return;
2383		}
2384	}
2385#endif
2386	out->type = TCP_KEY_NONE;
2387}
2388
2389static inline bool tcp_key_is_md5(const struct tcp_key *key)
2390{
2391	if (static_branch_tcp_md5())
2392		return key->type == TCP_KEY_MD5;
 
 
 
2393	return false;
2394}
2395
2396static inline bool tcp_key_is_ao(const struct tcp_key *key)
2397{
2398	if (static_branch_tcp_ao())
2399		return key->type == TCP_KEY_AO;
 
 
 
2400	return false;
2401}
2402
2403int tcpv4_offload_init(void);
2404
2405void tcp_v4_init(void);
2406void tcp_init(void);
2407
2408/* tcp_recovery.c */
2409void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2410void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2411extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2412				u32 reo_wnd);
2413extern bool tcp_rack_mark_lost(struct sock *sk);
2414extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2415			     u64 xmit_time);
2416extern void tcp_rack_reo_timeout(struct sock *sk);
2417extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2418
2419/* tcp_plb.c */
2420
2421/*
2422 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2423 * expects cong_ratio which represents fraction of traffic that experienced
2424 * congestion over a single RTT. In order to avoid floating point operations,
2425 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2426 */
2427#define TCP_PLB_SCALE 8
2428
2429/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2430struct tcp_plb_state {
2431	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2432		unused:3;
2433	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2434};
2435
2436static inline void tcp_plb_init(const struct sock *sk,
2437				struct tcp_plb_state *plb)
2438{
2439	plb->consec_cong_rounds = 0;
2440	plb->pause_until = 0;
2441}
2442void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2443			  const int cong_ratio);
2444void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2445void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2446
2447static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2448{
2449	WARN_ONCE(cond,
2450		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2451		  str,
2452		  tcp_snd_cwnd(tcp_sk(sk)),
2453		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2454		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2455		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2456		  inet_csk(sk)->icsk_ca_state,
2457		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2458		  inet_csk(sk)->icsk_pmtu_cookie);
2459}
2460
2461/* At how many usecs into the future should the RTO fire? */
2462static inline s64 tcp_rto_delta_us(const struct sock *sk)
2463{
2464	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2465	u32 rto = inet_csk(sk)->icsk_rto;
 
2466
2467	if (likely(skb)) {
2468		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2469
2470		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2471	} else {
2472		tcp_warn_once(sk, 1, "rtx queue empty: ");
2473		return jiffies_to_usecs(rto);
2474	}
2475
2476}
2477
2478/*
2479 * Save and compile IPv4 options, return a pointer to it
2480 */
2481static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2482							 struct sk_buff *skb)
2483{
2484	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2485	struct ip_options_rcu *dopt = NULL;
2486
2487	if (opt->optlen) {
2488		int opt_size = sizeof(*dopt) + opt->optlen;
2489
2490		dopt = kmalloc(opt_size, GFP_ATOMIC);
2491		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2492			kfree(dopt);
2493			dopt = NULL;
2494		}
2495	}
2496	return dopt;
2497}
2498
2499/* locally generated TCP pure ACKs have skb->truesize == 2
2500 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2501 * This is much faster than dissecting the packet to find out.
2502 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2503 */
2504static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2505{
2506	return skb->truesize == 2;
2507}
2508
2509static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2510{
2511	skb->truesize = 2;
2512}
2513
2514static inline int tcp_inq(struct sock *sk)
2515{
2516	struct tcp_sock *tp = tcp_sk(sk);
2517	int answ;
2518
2519	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2520		answ = 0;
2521	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2522		   !tp->urg_data ||
2523		   before(tp->urg_seq, tp->copied_seq) ||
2524		   !before(tp->urg_seq, tp->rcv_nxt)) {
2525
2526		answ = tp->rcv_nxt - tp->copied_seq;
2527
2528		/* Subtract 1, if FIN was received */
2529		if (answ && sock_flag(sk, SOCK_DONE))
2530			answ--;
2531	} else {
2532		answ = tp->urg_seq - tp->copied_seq;
2533	}
2534
2535	return answ;
2536}
2537
2538int tcp_peek_len(struct socket *sock);
2539
2540static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2541{
2542	u16 segs_in;
2543
2544	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2545
2546	/* We update these fields while other threads might
2547	 * read them from tcp_get_info()
2548	 */
2549	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2550	if (skb->len > tcp_hdrlen(skb))
2551		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2552}
2553
2554/*
2555 * TCP listen path runs lockless.
2556 * We forced "struct sock" to be const qualified to make sure
2557 * we don't modify one of its field by mistake.
2558 * Here, we increment sk_drops which is an atomic_t, so we can safely
2559 * make sock writable again.
2560 */
2561static inline void tcp_listendrop(const struct sock *sk)
2562{
2563	atomic_inc(&((struct sock *)sk)->sk_drops);
2564	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2565}
2566
2567enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2568
2569/*
2570 * Interface for adding Upper Level Protocols over TCP
2571 */
2572
2573#define TCP_ULP_NAME_MAX	16
2574#define TCP_ULP_MAX		128
2575#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2576
2577struct tcp_ulp_ops {
2578	struct list_head	list;
2579
2580	/* initialize ulp */
2581	int (*init)(struct sock *sk);
2582	/* update ulp */
2583	void (*update)(struct sock *sk, struct proto *p,
2584		       void (*write_space)(struct sock *sk));
2585	/* cleanup ulp */
2586	void (*release)(struct sock *sk);
2587	/* diagnostic */
2588	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2589	size_t (*get_info_size)(const struct sock *sk);
2590	/* clone ulp */
2591	void (*clone)(const struct request_sock *req, struct sock *newsk,
2592		      const gfp_t priority);
2593
2594	char		name[TCP_ULP_NAME_MAX];
2595	struct module	*owner;
2596};
2597int tcp_register_ulp(struct tcp_ulp_ops *type);
2598void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2599int tcp_set_ulp(struct sock *sk, const char *name);
2600void tcp_get_available_ulp(char *buf, size_t len);
2601void tcp_cleanup_ulp(struct sock *sk);
2602void tcp_update_ulp(struct sock *sk, struct proto *p,
2603		    void (*write_space)(struct sock *sk));
2604
2605#define MODULE_ALIAS_TCP_ULP(name)				\
2606	__MODULE_INFO(alias, alias_userspace, name);		\
2607	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2608
2609#ifdef CONFIG_NET_SOCK_MSG
2610struct sk_msg;
2611struct sk_psock;
2612
2613#ifdef CONFIG_BPF_SYSCALL
2614int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2615void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2616#endif /* CONFIG_BPF_SYSCALL */
2617
2618#ifdef CONFIG_INET
2619void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2620#else
2621static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2622{
2623}
2624#endif
2625
2626int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2627			  struct sk_msg *msg, u32 bytes, int flags);
2628#endif /* CONFIG_NET_SOCK_MSG */
2629
2630#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2631static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2632{
2633}
2634#endif
2635
2636#ifdef CONFIG_CGROUP_BPF
2637static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2638				      struct sk_buff *skb,
2639				      unsigned int end_offset)
2640{
2641	skops->skb = skb;
2642	skops->skb_data_end = skb->data + end_offset;
2643}
2644#else
2645static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2646				      struct sk_buff *skb,
2647				      unsigned int end_offset)
2648{
2649}
2650#endif
2651
2652/* Call BPF_SOCK_OPS program that returns an int. If the return value
2653 * is < 0, then the BPF op failed (for example if the loaded BPF
2654 * program does not support the chosen operation or there is no BPF
2655 * program loaded).
2656 */
2657#ifdef CONFIG_BPF
2658static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2659{
2660	struct bpf_sock_ops_kern sock_ops;
2661	int ret;
2662
2663	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2664	if (sk_fullsock(sk)) {
2665		sock_ops.is_fullsock = 1;
2666		sock_owned_by_me(sk);
2667	}
2668
2669	sock_ops.sk = sk;
2670	sock_ops.op = op;
2671	if (nargs > 0)
2672		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2673
2674	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2675	if (ret == 0)
2676		ret = sock_ops.reply;
2677	else
2678		ret = -1;
2679	return ret;
2680}
2681
2682static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2683{
2684	u32 args[2] = {arg1, arg2};
2685
2686	return tcp_call_bpf(sk, op, 2, args);
2687}
2688
2689static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2690				    u32 arg3)
2691{
2692	u32 args[3] = {arg1, arg2, arg3};
2693
2694	return tcp_call_bpf(sk, op, 3, args);
2695}
2696
2697#else
2698static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2699{
2700	return -EPERM;
2701}
2702
2703static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2704{
2705	return -EPERM;
2706}
2707
2708static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2709				    u32 arg3)
2710{
2711	return -EPERM;
2712}
2713
2714#endif
2715
2716static inline u32 tcp_timeout_init(struct sock *sk)
2717{
2718	int timeout;
2719
2720	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2721
2722	if (timeout <= 0)
2723		timeout = TCP_TIMEOUT_INIT;
2724	return min_t(int, timeout, TCP_RTO_MAX);
2725}
2726
2727static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2728{
2729	int rwnd;
2730
2731	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2732
2733	if (rwnd < 0)
2734		rwnd = 0;
2735	return rwnd;
2736}
2737
2738static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2739{
2740	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2741}
2742
2743static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2744{
2745	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2746		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2747}
2748
2749#if IS_ENABLED(CONFIG_SMC)
2750extern struct static_key_false tcp_have_smc;
2751#endif
2752
2753#if IS_ENABLED(CONFIG_TLS_DEVICE)
2754void clean_acked_data_enable(struct inet_connection_sock *icsk,
2755			     void (*cad)(struct sock *sk, u32 ack_seq));
2756void clean_acked_data_disable(struct inet_connection_sock *icsk);
2757void clean_acked_data_flush(void);
2758#endif
2759
2760DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2761static inline void tcp_add_tx_delay(struct sk_buff *skb,
2762				    const struct tcp_sock *tp)
2763{
2764	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2765		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2766}
2767
2768/* Compute Earliest Departure Time for some control packets
2769 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2770 */
2771static inline u64 tcp_transmit_time(const struct sock *sk)
2772{
2773	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2774		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2775			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2776
2777		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2778	}
2779	return 0;
2780}
2781
2782static inline int tcp_parse_auth_options(const struct tcphdr *th,
2783		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2784{
2785	const u8 *md5_tmp, *ao_tmp;
2786	int ret;
2787
2788	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2789	if (ret)
2790		return ret;
2791
2792	if (md5_hash)
2793		*md5_hash = md5_tmp;
2794
2795	if (aoh) {
2796		if (!ao_tmp)
2797			*aoh = NULL;
2798		else
2799			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2800	}
2801
2802	return 0;
2803}
2804
2805static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2806				   int family, int l3index, bool stat_inc)
2807{
2808#ifdef CONFIG_TCP_AO
2809	struct tcp_ao_info *ao_info;
2810	struct tcp_ao_key *ao_key;
2811
2812	if (!static_branch_unlikely(&tcp_ao_needed.key))
2813		return false;
2814
2815	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2816					lockdep_sock_is_held(sk));
2817	if (!ao_info)
2818		return false;
2819
2820	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2821	if (ao_info->ao_required || ao_key) {
2822		if (stat_inc) {
2823			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2824			atomic64_inc(&ao_info->counters.ao_required);
2825		}
2826		return true;
2827	}
2828#endif
2829	return false;
2830}
2831
2832enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2833		const struct request_sock *req, const struct sk_buff *skb,
2834		const void *saddr, const void *daddr,
2835		int family, int dif, int sdif);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2836
2837#endif	/* _TCP_H */
v6.8
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/tcp_ao.h>
  41#include <net/inet_ecn.h>
  42#include <net/dst.h>
  43#include <net/mptcp.h>
 
  44
  45#include <linux/seq_file.h>
  46#include <linux/memcontrol.h>
  47#include <linux/bpf-cgroup.h>
  48#include <linux/siphash.h>
  49
  50extern struct inet_hashinfo tcp_hashinfo;
  51
  52DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  53int tcp_orphan_count_sum(void);
  54
 
 
  55void tcp_time_wait(struct sock *sk, int state, int timeo);
  56
  57#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  58#define MAX_TCP_OPTION_SPACE 40
  59#define TCP_MIN_SND_MSS		48
  60#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  61
  62/*
  63 * Never offer a window over 32767 without using window scaling. Some
  64 * poor stacks do signed 16bit maths!
  65 */
  66#define MAX_TCP_WINDOW		32767U
  67
  68/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  69#define TCP_MIN_MSS		88U
  70
  71/* The initial MTU to use for probing */
  72#define TCP_BASE_MSS		1024
  73
  74/* probing interval, default to 10 minutes as per RFC4821 */
  75#define TCP_PROBE_INTERVAL	600
  76
  77/* Specify interval when tcp mtu probing will stop */
  78#define TCP_PROBE_THRESHOLD	8
  79
  80/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  81#define TCP_FASTRETRANS_THRESH 3
  82
  83/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  84#define TCP_MAX_QUICKACKS	16U
  85
  86/* Maximal number of window scale according to RFC1323 */
  87#define TCP_MAX_WSCALE		14U
  88
  89/* urg_data states */
  90#define TCP_URG_VALID	0x0100
  91#define TCP_URG_NOTYET	0x0200
  92#define TCP_URG_READ	0x0400
  93
  94#define TCP_RETR1	3	/*
  95				 * This is how many retries it does before it
  96				 * tries to figure out if the gateway is
  97				 * down. Minimal RFC value is 3; it corresponds
  98				 * to ~3sec-8min depending on RTO.
  99				 */
 100
 101#define TCP_RETR2	15	/*
 102				 * This should take at least
 103				 * 90 minutes to time out.
 104				 * RFC1122 says that the limit is 100 sec.
 105				 * 15 is ~13-30min depending on RTO.
 106				 */
 107
 108#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 109				 * when active opening a connection.
 110				 * RFC1122 says the minimum retry MUST
 111				 * be at least 180secs.  Nevertheless
 112				 * this value is corresponding to
 113				 * 63secs of retransmission with the
 114				 * current initial RTO.
 115				 */
 116
 117#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 118				 * when passive opening a connection.
 119				 * This is corresponding to 31secs of
 120				 * retransmission with the current
 121				 * initial RTO.
 122				 */
 123
 124#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 125				  * state, about 60 seconds	*/
 126#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 127                                 /* BSD style FIN_WAIT2 deadlock breaker.
 128				  * It used to be 3min, new value is 60sec,
 129				  * to combine FIN-WAIT-2 timeout with
 130				  * TIME-WAIT timer.
 131				  */
 132#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 133
 134#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 135static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
 136
 137#if HZ >= 100
 138#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 139#define TCP_ATO_MIN	((unsigned)(HZ/25))
 140#else
 141#define TCP_DELACK_MIN	4U
 142#define TCP_ATO_MIN	4U
 143#endif
 144#define TCP_RTO_MAX	((unsigned)(120*HZ))
 145#define TCP_RTO_MIN	((unsigned)(HZ/5))
 146#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 147
 148#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
 149
 150#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 151#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 152						 * used as a fallback RTO for the
 153						 * initial data transmission if no
 154						 * valid RTT sample has been acquired,
 155						 * most likely due to retrans in 3WHS.
 156						 */
 157
 158#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 159					                 * for local resources.
 160					                 */
 161#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 162#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 163#define TCP_KEEPALIVE_INTVL	(75*HZ)
 164
 165#define MAX_TCP_KEEPIDLE	32767
 166#define MAX_TCP_KEEPINTVL	32767
 167#define MAX_TCP_KEEPCNT		127
 168#define MAX_TCP_SYNCNT		127
 169
 170/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
 171 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
 172 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
 173 */
 174#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
 175
 176#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 177					 * after this time. It should be equal
 178					 * (or greater than) TCP_TIMEWAIT_LEN
 179					 * to provide reliability equal to one
 180					 * provided by timewait state.
 181					 */
 182#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 183					 * timestamps. It must be less than
 184					 * minimal timewait lifetime.
 185					 */
 186/*
 187 *	TCP option
 188 */
 189
 190#define TCPOPT_NOP		1	/* Padding */
 191#define TCPOPT_EOL		0	/* End of options */
 192#define TCPOPT_MSS		2	/* Segment size negotiating */
 193#define TCPOPT_WINDOW		3	/* Window scaling */
 194#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 195#define TCPOPT_SACK             5       /* SACK Block */
 196#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 197#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 198#define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
 199#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 200#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 201#define TCPOPT_EXP		254	/* Experimental */
 202/* Magic number to be after the option value for sharing TCP
 203 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 204 */
 205#define TCPOPT_FASTOPEN_MAGIC	0xF989
 206#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 207
 208/*
 209 *     TCP option lengths
 210 */
 211
 212#define TCPOLEN_MSS            4
 213#define TCPOLEN_WINDOW         3
 214#define TCPOLEN_SACK_PERM      2
 215#define TCPOLEN_TIMESTAMP      10
 216#define TCPOLEN_MD5SIG         18
 217#define TCPOLEN_FASTOPEN_BASE  2
 218#define TCPOLEN_EXP_FASTOPEN_BASE  4
 219#define TCPOLEN_EXP_SMC_BASE   6
 220
 221/* But this is what stacks really send out. */
 222#define TCPOLEN_TSTAMP_ALIGNED		12
 223#define TCPOLEN_WSCALE_ALIGNED		4
 224#define TCPOLEN_SACKPERM_ALIGNED	4
 225#define TCPOLEN_SACK_BASE		2
 226#define TCPOLEN_SACK_BASE_ALIGNED	4
 227#define TCPOLEN_SACK_PERBLOCK		8
 228#define TCPOLEN_MD5SIG_ALIGNED		20
 229#define TCPOLEN_MSS_ALIGNED		4
 230#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 231
 232/* Flags in tp->nonagle */
 233#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 234#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 235#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 236
 237/* TCP thin-stream limits */
 238#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 239
 240/* TCP initial congestion window as per rfc6928 */
 241#define TCP_INIT_CWND		10
 242
 243/* Bit Flags for sysctl_tcp_fastopen */
 244#define	TFO_CLIENT_ENABLE	1
 245#define	TFO_SERVER_ENABLE	2
 246#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 247
 248/* Accept SYN data w/o any cookie option */
 249#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 250
 251/* Force enable TFO on all listeners, i.e., not requiring the
 252 * TCP_FASTOPEN socket option.
 253 */
 254#define	TFO_SERVER_WO_SOCKOPT1	0x400
 255
 256
 257/* sysctl variables for tcp */
 258extern int sysctl_tcp_max_orphans;
 259extern long sysctl_tcp_mem[3];
 260
 261#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 262#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 263#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 264
 265extern atomic_long_t tcp_memory_allocated;
 266DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 267
 268extern struct percpu_counter tcp_sockets_allocated;
 269extern unsigned long tcp_memory_pressure;
 270
 271/* optimized version of sk_under_memory_pressure() for TCP sockets */
 272static inline bool tcp_under_memory_pressure(const struct sock *sk)
 273{
 274	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 275	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 276		return true;
 277
 278	return READ_ONCE(tcp_memory_pressure);
 279}
 280/*
 281 * The next routines deal with comparing 32 bit unsigned ints
 282 * and worry about wraparound (automatic with unsigned arithmetic).
 283 */
 284
 285static inline bool before(__u32 seq1, __u32 seq2)
 286{
 287        return (__s32)(seq1-seq2) < 0;
 288}
 289#define after(seq2, seq1) 	before(seq1, seq2)
 290
 291/* is s2<=s1<=s3 ? */
 292static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 293{
 294	return seq3 - seq2 >= seq1 - seq2;
 295}
 296
 297static inline bool tcp_out_of_memory(struct sock *sk)
 298{
 299	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 300	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 301		return true;
 302	return false;
 303}
 304
 305static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 306{
 307	sk_wmem_queued_add(sk, -skb->truesize);
 308	if (!skb_zcopy_pure(skb))
 309		sk_mem_uncharge(sk, skb->truesize);
 310	else
 311		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 312	__kfree_skb(skb);
 313}
 314
 315void sk_forced_mem_schedule(struct sock *sk, int size);
 316
 317bool tcp_check_oom(struct sock *sk, int shift);
 318
 319
 320extern struct proto tcp_prot;
 321
 322#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 323#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 324#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 325#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 326
 327void tcp_tasklet_init(void);
 328
 329int tcp_v4_err(struct sk_buff *skb, u32);
 330
 331void tcp_shutdown(struct sock *sk, int how);
 332
 333int tcp_v4_early_demux(struct sk_buff *skb);
 334int tcp_v4_rcv(struct sk_buff *skb);
 335
 336void tcp_remove_empty_skb(struct sock *sk);
 337int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 338int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 339int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 340			 size_t size, struct ubuf_info *uarg);
 341void tcp_splice_eof(struct socket *sock);
 342int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 343int tcp_wmem_schedule(struct sock *sk, int copy);
 344void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 345	      int size_goal);
 346void tcp_release_cb(struct sock *sk);
 347void tcp_wfree(struct sk_buff *skb);
 348void tcp_write_timer_handler(struct sock *sk);
 349void tcp_delack_timer_handler(struct sock *sk);
 350int tcp_ioctl(struct sock *sk, int cmd, int *karg);
 351int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 352void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 353void tcp_rcv_space_adjust(struct sock *sk);
 354int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 355void tcp_twsk_destructor(struct sock *sk);
 356void tcp_twsk_purge(struct list_head *net_exit_list, int family);
 357ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 358			struct pipe_inode_info *pipe, size_t len,
 359			unsigned int flags);
 360struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 361				     bool force_schedule);
 362
 363static inline void tcp_dec_quickack_mode(struct sock *sk)
 364{
 365	struct inet_connection_sock *icsk = inet_csk(sk);
 366
 367	if (icsk->icsk_ack.quick) {
 368		/* How many ACKs S/ACKing new data have we sent? */
 369		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
 370
 371		if (pkts >= icsk->icsk_ack.quick) {
 372			icsk->icsk_ack.quick = 0;
 373			/* Leaving quickack mode we deflate ATO. */
 374			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 375		} else
 376			icsk->icsk_ack.quick -= pkts;
 377	}
 378}
 379
 380#define	TCP_ECN_OK		1
 381#define	TCP_ECN_QUEUE_CWR	2
 382#define	TCP_ECN_DEMAND_CWR	4
 383#define	TCP_ECN_SEEN		8
 384
 385enum tcp_tw_status {
 386	TCP_TW_SUCCESS = 0,
 387	TCP_TW_RST = 1,
 388	TCP_TW_ACK = 2,
 389	TCP_TW_SYN = 3
 390};
 391
 392
 393enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 394					      struct sk_buff *skb,
 395					      const struct tcphdr *th);
 
 396struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 397			   struct request_sock *req, bool fastopen,
 398			   bool *lost_race);
 399int tcp_child_process(struct sock *parent, struct sock *child,
 400		      struct sk_buff *skb);
 401void tcp_enter_loss(struct sock *sk);
 402void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 403void tcp_clear_retrans(struct tcp_sock *tp);
 404void tcp_update_metrics(struct sock *sk);
 405void tcp_init_metrics(struct sock *sk);
 406void tcp_metrics_init(void);
 407bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 408void __tcp_close(struct sock *sk, long timeout);
 409void tcp_close(struct sock *sk, long timeout);
 410void tcp_init_sock(struct sock *sk);
 411void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 412__poll_t tcp_poll(struct file *file, struct socket *sock,
 413		      struct poll_table_struct *wait);
 414int do_tcp_getsockopt(struct sock *sk, int level,
 415		      int optname, sockptr_t optval, sockptr_t optlen);
 416int tcp_getsockopt(struct sock *sk, int level, int optname,
 417		   char __user *optval, int __user *optlen);
 418bool tcp_bpf_bypass_getsockopt(int level, int optname);
 419int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 420		      sockptr_t optval, unsigned int optlen);
 421int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 422		   unsigned int optlen);
 423void tcp_set_keepalive(struct sock *sk, int val);
 424void tcp_syn_ack_timeout(const struct request_sock *req);
 425int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 426		int flags, int *addr_len);
 427int tcp_set_rcvlowat(struct sock *sk, int val);
 428int tcp_set_window_clamp(struct sock *sk, int val);
 429void tcp_update_recv_tstamps(struct sk_buff *skb,
 430			     struct scm_timestamping_internal *tss);
 431void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 432			struct scm_timestamping_internal *tss);
 433void tcp_data_ready(struct sock *sk);
 434#ifdef CONFIG_MMU
 435int tcp_mmap(struct file *file, struct socket *sock,
 436	     struct vm_area_struct *vma);
 437#endif
 438void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 439		       struct tcp_options_received *opt_rx,
 440		       int estab, struct tcp_fastopen_cookie *foc);
 441
 442/*
 443 *	BPF SKB-less helpers
 444 */
 445u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 446			 struct tcphdr *th, u32 *cookie);
 447u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 448			 struct tcphdr *th, u32 *cookie);
 449u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 450u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 451			  const struct tcp_request_sock_ops *af_ops,
 452			  struct sock *sk, struct tcphdr *th);
 453/*
 454 *	TCP v4 functions exported for the inet6 API
 455 */
 456
 457void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 458void tcp_v4_mtu_reduced(struct sock *sk);
 459void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 460void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 461int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 462struct sock *tcp_create_openreq_child(const struct sock *sk,
 463				      struct request_sock *req,
 464				      struct sk_buff *skb);
 465void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 466struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 467				  struct request_sock *req,
 468				  struct dst_entry *dst,
 469				  struct request_sock *req_unhash,
 470				  bool *own_req);
 471int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 472int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 473int tcp_connect(struct sock *sk);
 474enum tcp_synack_type {
 475	TCP_SYNACK_NORMAL,
 476	TCP_SYNACK_FASTOPEN,
 477	TCP_SYNACK_COOKIE,
 478};
 479struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 480				struct request_sock *req,
 481				struct tcp_fastopen_cookie *foc,
 482				enum tcp_synack_type synack_type,
 483				struct sk_buff *syn_skb);
 484int tcp_disconnect(struct sock *sk, int flags);
 485
 486void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 487int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 488void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 489
 490/* From syncookies.c */
 491struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 492				 struct request_sock *req,
 493				 struct dst_entry *dst);
 494int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
 495struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 496struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 497					    struct sock *sk, struct sk_buff *skb,
 498					    struct tcp_options_received *tcp_opt,
 499					    int mss, u32 tsoff);
 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501#ifdef CONFIG_SYN_COOKIES
 502
 503/* Syncookies use a monotonic timer which increments every 60 seconds.
 504 * This counter is used both as a hash input and partially encoded into
 505 * the cookie value.  A cookie is only validated further if the delta
 506 * between the current counter value and the encoded one is less than this,
 507 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 508 * the counter advances immediately after a cookie is generated).
 509 */
 510#define MAX_SYNCOOKIE_AGE	2
 511#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 512#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 513
 514/* syncookies: remember time of last synqueue overflow
 515 * But do not dirty this field too often (once per second is enough)
 516 * It is racy as we do not hold a lock, but race is very minor.
 517 */
 518static inline void tcp_synq_overflow(const struct sock *sk)
 519{
 520	unsigned int last_overflow;
 521	unsigned int now = jiffies;
 522
 523	if (sk->sk_reuseport) {
 524		struct sock_reuseport *reuse;
 525
 526		reuse = rcu_dereference(sk->sk_reuseport_cb);
 527		if (likely(reuse)) {
 528			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 529			if (!time_between32(now, last_overflow,
 530					    last_overflow + HZ))
 531				WRITE_ONCE(reuse->synq_overflow_ts, now);
 532			return;
 533		}
 534	}
 535
 536	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 537	if (!time_between32(now, last_overflow, last_overflow + HZ))
 538		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
 539}
 540
 541/* syncookies: no recent synqueue overflow on this listening socket? */
 542static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 543{
 544	unsigned int last_overflow;
 545	unsigned int now = jiffies;
 546
 547	if (sk->sk_reuseport) {
 548		struct sock_reuseport *reuse;
 549
 550		reuse = rcu_dereference(sk->sk_reuseport_cb);
 551		if (likely(reuse)) {
 552			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 553			return !time_between32(now, last_overflow - HZ,
 554					       last_overflow +
 555					       TCP_SYNCOOKIE_VALID);
 556		}
 557	}
 558
 559	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 560
 561	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 562	 * then we're under synflood. However, we have to use
 563	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 564	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 565	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 566	 * which could lead to rejecting a valid syncookie.
 567	 */
 568	return !time_between32(now, last_overflow - HZ,
 569			       last_overflow + TCP_SYNCOOKIE_VALID);
 570}
 571
 572static inline u32 tcp_cookie_time(void)
 573{
 574	u64 val = get_jiffies_64();
 575
 576	do_div(val, TCP_SYNCOOKIE_PERIOD);
 577	return val;
 578}
 579
 
 
 
 
 
 
 
 
 
 580u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 581			      u16 *mssp);
 582__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 583u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 584bool cookie_timestamp_decode(const struct net *net,
 585			     struct tcp_options_received *opt);
 586
 587static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
 588{
 589	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
 590		dst_feature(dst, RTAX_FEATURE_ECN);
 591}
 592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593/* From net/ipv6/syncookies.c */
 594int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
 595struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 596
 597u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 598			      const struct tcphdr *th, u16 *mssp);
 599__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 600#endif
 601/* tcp_output.c */
 602
 603void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 604void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 605void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 606			       int nonagle);
 607int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 608int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 609void tcp_retransmit_timer(struct sock *sk);
 610void tcp_xmit_retransmit_queue(struct sock *);
 611void tcp_simple_retransmit(struct sock *);
 612void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 613int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 614enum tcp_queue {
 615	TCP_FRAG_IN_WRITE_QUEUE,
 616	TCP_FRAG_IN_RTX_QUEUE,
 617};
 618int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 619		 struct sk_buff *skb, u32 len,
 620		 unsigned int mss_now, gfp_t gfp);
 621
 622void tcp_send_probe0(struct sock *);
 623int tcp_write_wakeup(struct sock *, int mib);
 624void tcp_send_fin(struct sock *sk);
 625void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 
 626int tcp_send_synack(struct sock *);
 627void tcp_push_one(struct sock *, unsigned int mss_now);
 628void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 629void tcp_send_ack(struct sock *sk);
 630void tcp_send_delayed_ack(struct sock *sk);
 631void tcp_send_loss_probe(struct sock *sk);
 632bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 633void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 634			     const struct sk_buff *next_skb);
 635
 636/* tcp_input.c */
 637void tcp_rearm_rto(struct sock *sk);
 638void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 
 639void tcp_reset(struct sock *sk, struct sk_buff *skb);
 640void tcp_fin(struct sock *sk);
 641void tcp_check_space(struct sock *sk);
 642void tcp_sack_compress_send_ack(struct sock *sk);
 643
 
 
 
 
 
 
 
 
 
 
 
 
 
 644/* tcp_timer.c */
 645void tcp_init_xmit_timers(struct sock *);
 646static inline void tcp_clear_xmit_timers(struct sock *sk)
 647{
 648	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 649		__sock_put(sk);
 650
 651	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 652		__sock_put(sk);
 653
 654	inet_csk_clear_xmit_timers(sk);
 655}
 656
 657unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 658unsigned int tcp_current_mss(struct sock *sk);
 659u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 660
 661/* Bound MSS / TSO packet size with the half of the window */
 662static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 663{
 664	int cutoff;
 665
 666	/* When peer uses tiny windows, there is no use in packetizing
 667	 * to sub-MSS pieces for the sake of SWS or making sure there
 668	 * are enough packets in the pipe for fast recovery.
 669	 *
 670	 * On the other hand, for extremely large MSS devices, handling
 671	 * smaller than MSS windows in this way does make sense.
 672	 */
 673	if (tp->max_window > TCP_MSS_DEFAULT)
 674		cutoff = (tp->max_window >> 1);
 675	else
 676		cutoff = tp->max_window;
 677
 678	if (cutoff && pktsize > cutoff)
 679		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 680	else
 681		return pktsize;
 682}
 683
 684/* tcp.c */
 685void tcp_get_info(struct sock *, struct tcp_info *);
 686
 687/* Read 'sendfile()'-style from a TCP socket */
 688int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 689		  sk_read_actor_t recv_actor);
 690int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 691struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 692void tcp_read_done(struct sock *sk, size_t len);
 693
 694void tcp_initialize_rcv_mss(struct sock *sk);
 695
 696int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 697int tcp_mss_to_mtu(struct sock *sk, int mss);
 698void tcp_mtup_init(struct sock *sk);
 699
 700static inline void tcp_bound_rto(const struct sock *sk)
 701{
 702	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 703		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 704}
 705
 706static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 707{
 708	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 709}
 710
 711static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 712{
 713	/* mptcp hooks are only on the slow path */
 714	if (sk_is_mptcp((struct sock *)tp))
 715		return;
 716
 717	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 718			       ntohl(TCP_FLAG_ACK) |
 719			       snd_wnd);
 720}
 721
 722static inline void tcp_fast_path_on(struct tcp_sock *tp)
 723{
 724	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 725}
 726
 727static inline void tcp_fast_path_check(struct sock *sk)
 728{
 729	struct tcp_sock *tp = tcp_sk(sk);
 730
 731	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 732	    tp->rcv_wnd &&
 733	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 734	    !tp->urg_data)
 735		tcp_fast_path_on(tp);
 736}
 737
 738u32 tcp_delack_max(const struct sock *sk);
 739
 740/* Compute the actual rto_min value */
 741static inline u32 tcp_rto_min(const struct sock *sk)
 742{
 743	const struct dst_entry *dst = __sk_dst_get(sk);
 744	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 745
 746	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 747		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 748	return rto_min;
 749}
 750
 751static inline u32 tcp_rto_min_us(const struct sock *sk)
 752{
 753	return jiffies_to_usecs(tcp_rto_min(sk));
 754}
 755
 756static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 757{
 758	return dst_metric_locked(dst, RTAX_CC_ALGO);
 759}
 760
 761/* Minimum RTT in usec. ~0 means not available. */
 762static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 763{
 764	return minmax_get(&tp->rtt_min);
 765}
 766
 767/* Compute the actual receive window we are currently advertising.
 768 * Rcv_nxt can be after the window if our peer push more data
 769 * than the offered window.
 770 */
 771static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 772{
 773	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 774
 775	if (win < 0)
 776		win = 0;
 777	return (u32) win;
 778}
 779
 780/* Choose a new window, without checks for shrinking, and without
 781 * scaling applied to the result.  The caller does these things
 782 * if necessary.  This is a "raw" window selection.
 783 */
 784u32 __tcp_select_window(struct sock *sk);
 785
 786void tcp_send_window_probe(struct sock *sk);
 787
 788/* TCP uses 32bit jiffies to save some space.
 789 * Note that this is different from tcp_time_stamp, which
 790 * historically has been the same until linux-4.13.
 791 */
 792#define tcp_jiffies32 ((u32)jiffies)
 793
 794/*
 795 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 796 * It is no longer tied to jiffies, but to 1 ms clock.
 797 * Note: double check if you want to use tcp_jiffies32 instead of this.
 798 */
 799#define TCP_TS_HZ	1000
 800
 801static inline u64 tcp_clock_ns(void)
 802{
 803	return ktime_get_ns();
 804}
 805
 806static inline u64 tcp_clock_us(void)
 807{
 808	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 809}
 810
 811static inline u64 tcp_clock_ms(void)
 812{
 813	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
 814}
 815
 816/* TCP Timestamp included in TS option (RFC 1323) can either use ms
 817 * or usec resolution. Each socket carries a flag to select one or other
 818 * resolution, as the route attribute could change anytime.
 819 * Each flow must stick to initial resolution.
 820 */
 821static inline u32 tcp_clock_ts(bool usec_ts)
 822{
 823	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
 824}
 825
 826static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
 827{
 828	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
 829}
 830
 831static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
 832{
 833	if (tp->tcp_usec_ts)
 834		return tp->tcp_mstamp;
 835	return tcp_time_stamp_ms(tp);
 836}
 837
 838void tcp_mstamp_refresh(struct tcp_sock *tp);
 839
 840static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 841{
 842	return max_t(s64, t1 - t0, 0);
 843}
 844
 845/* provide the departure time in us unit */
 846static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 847{
 848	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 849}
 850
 851/* Provide skb TSval in usec or ms unit */
 852static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
 853{
 854	if (usec_ts)
 855		return tcp_skb_timestamp_us(skb);
 856
 857	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
 858}
 859
 860static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
 861{
 862	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
 863}
 864
 865static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
 866{
 867	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
 868}
 869
 870#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 871
 872#define TCPHDR_FIN 0x01
 873#define TCPHDR_SYN 0x02
 874#define TCPHDR_RST 0x04
 875#define TCPHDR_PSH 0x08
 876#define TCPHDR_ACK 0x10
 877#define TCPHDR_URG 0x20
 878#define TCPHDR_ECE 0x40
 879#define TCPHDR_CWR 0x80
 880
 881#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 882
 
 
 
 
 
 
 
 
 
 
 
 
 
 883/* This is what the send packet queuing engine uses to pass
 884 * TCP per-packet control information to the transmission code.
 885 * We also store the host-order sequence numbers in here too.
 886 * This is 44 bytes if IPV6 is enabled.
 887 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 888 */
 889struct tcp_skb_cb {
 890	__u32		seq;		/* Starting sequence number	*/
 891	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 892	union {
 893		/* Note : tcp_tw_isn is used in input path only
 894		 *	  (isn chosen by tcp_timewait_state_process())
 895		 *
 896		 * 	  tcp_gso_segs/size are used in write queue only,
 897		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 898		 */
 899		__u32		tcp_tw_isn;
 900		struct {
 901			u16	tcp_gso_segs;
 902			u16	tcp_gso_size;
 903		};
 904	};
 905	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 906
 907	__u8		sacked;		/* State flags for SACK.	*/
 908#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 909#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 910#define TCPCB_LOST		0x04	/* SKB is lost			*/
 911#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 912#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 913#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 914#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 915				TCPCB_REPAIRED)
 916
 917	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 918	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 919			eor:1,		/* Is skb MSG_EOR marked? */
 920			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 921			unused:5;
 922	__u32		ack_seq;	/* Sequence number ACK'd	*/
 923	union {
 924		struct {
 925#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 926			/* There is space for up to 24 bytes */
 927			__u32 is_app_limited:1, /* cwnd not fully used? */
 928			      delivered_ce:20,
 929			      unused:11;
 930			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 931			__u32 delivered;
 932			/* start of send pipeline phase */
 933			u64 first_tx_mstamp;
 934			/* when we reached the "delivered" count */
 935			u64 delivered_mstamp;
 936		} tx;   /* only used for outgoing skbs */
 937		union {
 938			struct inet_skb_parm	h4;
 939#if IS_ENABLED(CONFIG_IPV6)
 940			struct inet6_skb_parm	h6;
 941#endif
 942		} header;	/* For incoming skbs */
 943	};
 944};
 945
 946#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 947
 948extern const struct inet_connection_sock_af_ops ipv4_specific;
 949
 950#if IS_ENABLED(CONFIG_IPV6)
 951/* This is the variant of inet6_iif() that must be used by TCP,
 952 * as TCP moves IP6CB into a different location in skb->cb[]
 953 */
 954static inline int tcp_v6_iif(const struct sk_buff *skb)
 955{
 956	return TCP_SKB_CB(skb)->header.h6.iif;
 957}
 958
 959static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 960{
 961	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 962
 963	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 964}
 965
 966/* TCP_SKB_CB reference means this can not be used from early demux */
 967static inline int tcp_v6_sdif(const struct sk_buff *skb)
 968{
 969#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 970	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 971		return TCP_SKB_CB(skb)->header.h6.iif;
 972#endif
 973	return 0;
 974}
 975
 976extern const struct inet_connection_sock_af_ops ipv6_specific;
 977
 978INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 979INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 980void tcp_v6_early_demux(struct sk_buff *skb);
 981
 982#endif
 983
 984/* TCP_SKB_CB reference means this can not be used from early demux */
 985static inline int tcp_v4_sdif(struct sk_buff *skb)
 986{
 987#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 988	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 989		return TCP_SKB_CB(skb)->header.h4.iif;
 990#endif
 991	return 0;
 992}
 993
 994/* Due to TSO, an SKB can be composed of multiple actual
 995 * packets.  To keep these tracked properly, we use this.
 996 */
 997static inline int tcp_skb_pcount(const struct sk_buff *skb)
 998{
 999	return TCP_SKB_CB(skb)->tcp_gso_segs;
1000}
1001
1002static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1003{
1004	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1005}
1006
1007static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1008{
1009	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1010}
1011
1012/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1013static inline int tcp_skb_mss(const struct sk_buff *skb)
1014{
1015	return TCP_SKB_CB(skb)->tcp_gso_size;
1016}
1017
1018static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1019{
1020	return likely(!TCP_SKB_CB(skb)->eor);
1021}
1022
1023static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1024					const struct sk_buff *from)
1025{
 
1026	return likely(tcp_skb_can_collapse_to(to) &&
1027		      mptcp_skb_can_collapse(to, from) &&
1028		      skb_pure_zcopy_same(to, from));
 
 
 
 
 
 
 
 
1029}
1030
1031/* Events passed to congestion control interface */
1032enum tcp_ca_event {
1033	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1034	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1035	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1036	CA_EVENT_LOSS,		/* loss timeout */
1037	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1038	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1039};
1040
1041/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1042enum tcp_ca_ack_event_flags {
1043	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1044	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1045	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1046};
1047
1048/*
1049 * Interface for adding new TCP congestion control handlers
1050 */
1051#define TCP_CA_NAME_MAX	16
1052#define TCP_CA_MAX	128
1053#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1054
1055#define TCP_CA_UNSPEC	0
1056
1057/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1058#define TCP_CONG_NON_RESTRICTED 0x1
1059/* Requires ECN/ECT set on all packets */
1060#define TCP_CONG_NEEDS_ECN	0x2
1061#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1062
1063union tcp_cc_info;
1064
1065struct ack_sample {
1066	u32 pkts_acked;
1067	s32 rtt_us;
1068	u32 in_flight;
1069};
1070
1071/* A rate sample measures the number of (original/retransmitted) data
1072 * packets delivered "delivered" over an interval of time "interval_us".
1073 * The tcp_rate.c code fills in the rate sample, and congestion
1074 * control modules that define a cong_control function to run at the end
1075 * of ACK processing can optionally chose to consult this sample when
1076 * setting cwnd and pacing rate.
1077 * A sample is invalid if "delivered" or "interval_us" is negative.
1078 */
1079struct rate_sample {
1080	u64  prior_mstamp; /* starting timestamp for interval */
1081	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1082	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1083	s32  delivered;		/* number of packets delivered over interval */
1084	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1085	long interval_us;	/* time for tp->delivered to incr "delivered" */
1086	u32 snd_interval_us;	/* snd interval for delivered packets */
1087	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1088	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1089	int  losses;		/* number of packets marked lost upon ACK */
1090	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1091	u32  prior_in_flight;	/* in flight before this ACK */
1092	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1093	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1094	bool is_retrans;	/* is sample from retransmission? */
1095	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1096};
1097
1098struct tcp_congestion_ops {
1099/* fast path fields are put first to fill one cache line */
1100
1101	/* return slow start threshold (required) */
1102	u32 (*ssthresh)(struct sock *sk);
1103
1104	/* do new cwnd calculation (required) */
1105	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1106
1107	/* call before changing ca_state (optional) */
1108	void (*set_state)(struct sock *sk, u8 new_state);
1109
1110	/* call when cwnd event occurs (optional) */
1111	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1112
1113	/* call when ack arrives (optional) */
1114	void (*in_ack_event)(struct sock *sk, u32 flags);
1115
1116	/* hook for packet ack accounting (optional) */
1117	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1118
1119	/* override sysctl_tcp_min_tso_segs */
1120	u32 (*min_tso_segs)(struct sock *sk);
1121
1122	/* call when packets are delivered to update cwnd and pacing rate,
1123	 * after all the ca_state processing. (optional)
1124	 */
1125	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1126
1127
1128	/* new value of cwnd after loss (required) */
1129	u32  (*undo_cwnd)(struct sock *sk);
1130	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1131	u32 (*sndbuf_expand)(struct sock *sk);
1132
1133/* control/slow paths put last */
1134	/* get info for inet_diag (optional) */
1135	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1136			   union tcp_cc_info *info);
1137
1138	char 			name[TCP_CA_NAME_MAX];
1139	struct module		*owner;
1140	struct list_head	list;
1141	u32			key;
1142	u32			flags;
1143
1144	/* initialize private data (optional) */
1145	void (*init)(struct sock *sk);
1146	/* cleanup private data  (optional) */
1147	void (*release)(struct sock *sk);
1148} ____cacheline_aligned_in_smp;
1149
1150int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1151void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1152int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1153				  struct tcp_congestion_ops *old_type);
1154int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1155
1156void tcp_assign_congestion_control(struct sock *sk);
1157void tcp_init_congestion_control(struct sock *sk);
1158void tcp_cleanup_congestion_control(struct sock *sk);
1159int tcp_set_default_congestion_control(struct net *net, const char *name);
1160void tcp_get_default_congestion_control(struct net *net, char *name);
1161void tcp_get_available_congestion_control(char *buf, size_t len);
1162void tcp_get_allowed_congestion_control(char *buf, size_t len);
1163int tcp_set_allowed_congestion_control(char *allowed);
1164int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1165			       bool cap_net_admin);
1166u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1167void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1168
1169u32 tcp_reno_ssthresh(struct sock *sk);
1170u32 tcp_reno_undo_cwnd(struct sock *sk);
1171void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1172extern struct tcp_congestion_ops tcp_reno;
1173
1174struct tcp_congestion_ops *tcp_ca_find(const char *name);
1175struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1176u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1177#ifdef CONFIG_INET
1178char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1179#else
1180static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1181{
1182	return NULL;
1183}
1184#endif
1185
1186static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1187{
1188	const struct inet_connection_sock *icsk = inet_csk(sk);
1189
1190	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1191}
1192
1193static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1194{
1195	const struct inet_connection_sock *icsk = inet_csk(sk);
1196
1197	if (icsk->icsk_ca_ops->cwnd_event)
1198		icsk->icsk_ca_ops->cwnd_event(sk, event);
1199}
1200
1201/* From tcp_cong.c */
1202void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1203
1204/* From tcp_rate.c */
1205void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1206void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1207			    struct rate_sample *rs);
1208void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1209		  bool is_sack_reneg, struct rate_sample *rs);
1210void tcp_rate_check_app_limited(struct sock *sk);
1211
1212static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1213{
1214	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1215}
1216
1217/* These functions determine how the current flow behaves in respect of SACK
1218 * handling. SACK is negotiated with the peer, and therefore it can vary
1219 * between different flows.
1220 *
1221 * tcp_is_sack - SACK enabled
1222 * tcp_is_reno - No SACK
1223 */
1224static inline int tcp_is_sack(const struct tcp_sock *tp)
1225{
1226	return likely(tp->rx_opt.sack_ok);
1227}
1228
1229static inline bool tcp_is_reno(const struct tcp_sock *tp)
1230{
1231	return !tcp_is_sack(tp);
1232}
1233
1234static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1235{
1236	return tp->sacked_out + tp->lost_out;
1237}
1238
1239/* This determines how many packets are "in the network" to the best
1240 * of our knowledge.  In many cases it is conservative, but where
1241 * detailed information is available from the receiver (via SACK
1242 * blocks etc.) we can make more aggressive calculations.
1243 *
1244 * Use this for decisions involving congestion control, use just
1245 * tp->packets_out to determine if the send queue is empty or not.
1246 *
1247 * Read this equation as:
1248 *
1249 *	"Packets sent once on transmission queue" MINUS
1250 *	"Packets left network, but not honestly ACKed yet" PLUS
1251 *	"Packets fast retransmitted"
1252 */
1253static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1254{
1255	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1256}
1257
1258#define TCP_INFINITE_SSTHRESH	0x7fffffff
1259
1260static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1261{
1262	return tp->snd_cwnd;
1263}
1264
1265static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1266{
1267	WARN_ON_ONCE((int)val <= 0);
1268	tp->snd_cwnd = val;
1269}
1270
1271static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1272{
1273	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1274}
1275
1276static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1277{
1278	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1279}
1280
1281static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1282{
1283	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1284	       (1 << inet_csk(sk)->icsk_ca_state);
1285}
1286
1287/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1288 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1289 * ssthresh.
1290 */
1291static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1292{
1293	const struct tcp_sock *tp = tcp_sk(sk);
1294
1295	if (tcp_in_cwnd_reduction(sk))
1296		return tp->snd_ssthresh;
1297	else
1298		return max(tp->snd_ssthresh,
1299			   ((tcp_snd_cwnd(tp) >> 1) +
1300			    (tcp_snd_cwnd(tp) >> 2)));
1301}
1302
1303/* Use define here intentionally to get WARN_ON location shown at the caller */
1304#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1305
1306void tcp_enter_cwr(struct sock *sk);
1307__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1308
1309/* The maximum number of MSS of available cwnd for which TSO defers
1310 * sending if not using sysctl_tcp_tso_win_divisor.
1311 */
1312static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1313{
1314	return 3;
1315}
1316
1317/* Returns end sequence number of the receiver's advertised window */
1318static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1319{
1320	return tp->snd_una + tp->snd_wnd;
1321}
1322
1323/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1324 * flexible approach. The RFC suggests cwnd should not be raised unless
1325 * it was fully used previously. And that's exactly what we do in
1326 * congestion avoidance mode. But in slow start we allow cwnd to grow
1327 * as long as the application has used half the cwnd.
1328 * Example :
1329 *    cwnd is 10 (IW10), but application sends 9 frames.
1330 *    We allow cwnd to reach 18 when all frames are ACKed.
1331 * This check is safe because it's as aggressive as slow start which already
1332 * risks 100% overshoot. The advantage is that we discourage application to
1333 * either send more filler packets or data to artificially blow up the cwnd
1334 * usage, and allow application-limited process to probe bw more aggressively.
1335 */
1336static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1337{
1338	const struct tcp_sock *tp = tcp_sk(sk);
1339
1340	if (tp->is_cwnd_limited)
1341		return true;
1342
1343	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1344	if (tcp_in_slow_start(tp))
1345		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1346
1347	return false;
1348}
1349
1350/* BBR congestion control needs pacing.
1351 * Same remark for SO_MAX_PACING_RATE.
1352 * sch_fq packet scheduler is efficiently handling pacing,
1353 * but is not always installed/used.
1354 * Return true if TCP stack should pace packets itself.
1355 */
1356static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1357{
1358	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1359}
1360
1361/* Estimates in how many jiffies next packet for this flow can be sent.
1362 * Scheduling a retransmit timer too early would be silly.
1363 */
1364static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1365{
1366	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1367
1368	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1369}
1370
1371static inline void tcp_reset_xmit_timer(struct sock *sk,
1372					const int what,
1373					unsigned long when,
1374					const unsigned long max_when)
1375{
1376	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1377				  max_when);
1378}
1379
1380/* Something is really bad, we could not queue an additional packet,
1381 * because qdisc is full or receiver sent a 0 window, or we are paced.
1382 * We do not want to add fuel to the fire, or abort too early,
1383 * so make sure the timer we arm now is at least 200ms in the future,
1384 * regardless of current icsk_rto value (as it could be ~2ms)
1385 */
1386static inline unsigned long tcp_probe0_base(const struct sock *sk)
1387{
1388	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1389}
1390
1391/* Variant of inet_csk_rto_backoff() used for zero window probes */
1392static inline unsigned long tcp_probe0_when(const struct sock *sk,
1393					    unsigned long max_when)
1394{
1395	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1396			   inet_csk(sk)->icsk_backoff);
1397	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1398
1399	return (unsigned long)min_t(u64, when, max_when);
1400}
1401
1402static inline void tcp_check_probe_timer(struct sock *sk)
1403{
1404	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1405		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1406				     tcp_probe0_base(sk), TCP_RTO_MAX);
1407}
1408
1409static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1410{
1411	tp->snd_wl1 = seq;
1412}
1413
1414static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1415{
1416	tp->snd_wl1 = seq;
1417}
1418
1419/*
1420 * Calculate(/check) TCP checksum
1421 */
1422static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1423				   __be32 daddr, __wsum base)
1424{
1425	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1426}
1427
1428static inline bool tcp_checksum_complete(struct sk_buff *skb)
1429{
1430	return !skb_csum_unnecessary(skb) &&
1431		__skb_checksum_complete(skb);
1432}
1433
1434bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1435		     enum skb_drop_reason *reason);
1436
1437
1438int tcp_filter(struct sock *sk, struct sk_buff *skb);
1439void tcp_set_state(struct sock *sk, int state);
1440void tcp_done(struct sock *sk);
1441int tcp_abort(struct sock *sk, int err);
1442
1443static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1444{
1445	rx_opt->dsack = 0;
1446	rx_opt->num_sacks = 0;
1447}
1448
1449void tcp_cwnd_restart(struct sock *sk, s32 delta);
1450
1451static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1452{
1453	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1454	struct tcp_sock *tp = tcp_sk(sk);
1455	s32 delta;
1456
1457	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1458	    tp->packets_out || ca_ops->cong_control)
1459		return;
1460	delta = tcp_jiffies32 - tp->lsndtime;
1461	if (delta > inet_csk(sk)->icsk_rto)
1462		tcp_cwnd_restart(sk, delta);
1463}
1464
1465/* Determine a window scaling and initial window to offer. */
1466void tcp_select_initial_window(const struct sock *sk, int __space,
1467			       __u32 mss, __u32 *rcv_wnd,
1468			       __u32 *window_clamp, int wscale_ok,
1469			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1470
1471static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1472{
1473	s64 scaled_space = (s64)space * scaling_ratio;
1474
1475	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1476}
1477
1478static inline int tcp_win_from_space(const struct sock *sk, int space)
1479{
1480	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1481}
1482
1483/* inverse of __tcp_win_from_space() */
1484static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1485{
1486	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1487
1488	do_div(val, scaling_ratio);
1489	return val;
1490}
1491
1492static inline int tcp_space_from_win(const struct sock *sk, int win)
1493{
1494	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1495}
1496
1497/* Assume a conservative default of 1200 bytes of payload per 4K page.
1498 * This may be adjusted later in tcp_measure_rcv_mss().
1499 */
1500#define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1501				   SKB_TRUESIZE(4096))
1502
1503static inline void tcp_scaling_ratio_init(struct sock *sk)
1504{
1505	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1506}
1507
1508/* Note: caller must be prepared to deal with negative returns */
1509static inline int tcp_space(const struct sock *sk)
1510{
1511	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1512				  READ_ONCE(sk->sk_backlog.len) -
1513				  atomic_read(&sk->sk_rmem_alloc));
1514}
1515
1516static inline int tcp_full_space(const struct sock *sk)
1517{
1518	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1519}
1520
1521static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1522{
1523	int unused_mem = sk_unused_reserved_mem(sk);
1524	struct tcp_sock *tp = tcp_sk(sk);
1525
1526	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1527	if (unused_mem)
1528		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1529					 tcp_win_from_space(sk, unused_mem));
1530}
1531
1532static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1533{
1534	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1535}
1536
1537void tcp_cleanup_rbuf(struct sock *sk, int copied);
1538void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1539
1540
1541/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1542 * If 87.5 % (7/8) of the space has been consumed, we want to override
1543 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1544 * len/truesize ratio.
1545 */
1546static inline bool tcp_rmem_pressure(const struct sock *sk)
1547{
1548	int rcvbuf, threshold;
1549
1550	if (tcp_under_memory_pressure(sk))
1551		return true;
1552
1553	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1554	threshold = rcvbuf - (rcvbuf >> 3);
1555
1556	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1557}
1558
1559static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1560{
1561	const struct tcp_sock *tp = tcp_sk(sk);
1562	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1563
1564	if (avail <= 0)
1565		return false;
1566
1567	return (avail >= target) || tcp_rmem_pressure(sk) ||
1568	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1569}
1570
1571extern void tcp_openreq_init_rwin(struct request_sock *req,
1572				  const struct sock *sk_listener,
1573				  const struct dst_entry *dst);
1574
1575void tcp_enter_memory_pressure(struct sock *sk);
1576void tcp_leave_memory_pressure(struct sock *sk);
1577
1578static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1579{
1580	struct net *net = sock_net((struct sock *)tp);
1581	int val;
1582
1583	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1584	 * and do_tcp_setsockopt().
1585	 */
1586	val = READ_ONCE(tp->keepalive_intvl);
1587
1588	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1589}
1590
1591static inline int keepalive_time_when(const struct tcp_sock *tp)
1592{
1593	struct net *net = sock_net((struct sock *)tp);
1594	int val;
1595
1596	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1597	val = READ_ONCE(tp->keepalive_time);
1598
1599	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1600}
1601
1602static inline int keepalive_probes(const struct tcp_sock *tp)
1603{
1604	struct net *net = sock_net((struct sock *)tp);
1605	int val;
1606
1607	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1608	 * and do_tcp_setsockopt().
1609	 */
1610	val = READ_ONCE(tp->keepalive_probes);
1611
1612	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1613}
1614
1615static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1616{
1617	const struct inet_connection_sock *icsk = &tp->inet_conn;
1618
1619	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1620			  tcp_jiffies32 - tp->rcv_tstamp);
1621}
1622
1623static inline int tcp_fin_time(const struct sock *sk)
1624{
1625	int fin_timeout = tcp_sk(sk)->linger2 ? :
1626		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1627	const int rto = inet_csk(sk)->icsk_rto;
1628
1629	if (fin_timeout < (rto << 2) - (rto >> 1))
1630		fin_timeout = (rto << 2) - (rto >> 1);
1631
1632	return fin_timeout;
1633}
1634
1635static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1636				  int paws_win)
1637{
1638	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1639		return true;
1640	if (unlikely(!time_before32(ktime_get_seconds(),
1641				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1642		return true;
1643	/*
1644	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1645	 * then following tcp messages have valid values. Ignore 0 value,
1646	 * or else 'negative' tsval might forbid us to accept their packets.
1647	 */
1648	if (!rx_opt->ts_recent)
1649		return true;
1650	return false;
1651}
1652
1653static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1654				   int rst)
1655{
1656	if (tcp_paws_check(rx_opt, 0))
1657		return false;
1658
1659	/* RST segments are not recommended to carry timestamp,
1660	   and, if they do, it is recommended to ignore PAWS because
1661	   "their cleanup function should take precedence over timestamps."
1662	   Certainly, it is mistake. It is necessary to understand the reasons
1663	   of this constraint to relax it: if peer reboots, clock may go
1664	   out-of-sync and half-open connections will not be reset.
1665	   Actually, the problem would be not existing if all
1666	   the implementations followed draft about maintaining clock
1667	   via reboots. Linux-2.2 DOES NOT!
1668
1669	   However, we can relax time bounds for RST segments to MSL.
1670	 */
1671	if (rst && !time_before32(ktime_get_seconds(),
1672				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1673		return false;
1674	return true;
1675}
1676
1677bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1678			  int mib_idx, u32 *last_oow_ack_time);
1679
1680static inline void tcp_mib_init(struct net *net)
1681{
1682	/* See RFC 2012 */
1683	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1684	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1685	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1686	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1687}
1688
1689/* from STCP */
1690static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1691{
1692	tp->lost_skb_hint = NULL;
1693}
1694
1695static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1696{
1697	tcp_clear_retrans_hints_partial(tp);
1698	tp->retransmit_skb_hint = NULL;
1699}
1700
1701#define tcp_md5_addr tcp_ao_addr
1702
1703/* - key database */
1704struct tcp_md5sig_key {
1705	struct hlist_node	node;
1706	u8			keylen;
1707	u8			family; /* AF_INET or AF_INET6 */
1708	u8			prefixlen;
1709	u8			flags;
1710	union tcp_md5_addr	addr;
1711	int			l3index; /* set if key added with L3 scope */
1712	u8			key[TCP_MD5SIG_MAXKEYLEN];
1713	struct rcu_head		rcu;
1714};
1715
1716/* - sock block */
1717struct tcp_md5sig_info {
1718	struct hlist_head	head;
1719	struct rcu_head		rcu;
1720};
1721
1722/* - pseudo header */
1723struct tcp4_pseudohdr {
1724	__be32		saddr;
1725	__be32		daddr;
1726	__u8		pad;
1727	__u8		protocol;
1728	__be16		len;
1729};
1730
1731struct tcp6_pseudohdr {
1732	struct in6_addr	saddr;
1733	struct in6_addr daddr;
1734	__be32		len;
1735	__be32		protocol;	/* including padding */
1736};
1737
1738union tcp_md5sum_block {
1739	struct tcp4_pseudohdr ip4;
1740#if IS_ENABLED(CONFIG_IPV6)
1741	struct tcp6_pseudohdr ip6;
1742#endif
1743};
1744
1745/*
1746 * struct tcp_sigpool - per-CPU pool of ahash_requests
1747 * @scratch: per-CPU temporary area, that can be used between
1748 *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1749 *	     crypto request
1750 * @req: pre-allocated ahash request
1751 */
1752struct tcp_sigpool {
1753	void *scratch;
1754	struct ahash_request *req;
1755};
1756
1757int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1758void tcp_sigpool_get(unsigned int id);
1759void tcp_sigpool_release(unsigned int id);
1760int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1761			      const struct sk_buff *skb,
1762			      unsigned int header_len);
1763
1764/**
1765 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1766 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1767 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1768 *
1769 * Returns 0 on success, error otherwise.
1770 */
1771int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1772/**
1773 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1774 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1775 */
1776void tcp_sigpool_end(struct tcp_sigpool *c);
1777size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1778/* - functions */
1779int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1780			const struct sock *sk, const struct sk_buff *skb);
1781int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1782		   int family, u8 prefixlen, int l3index, u8 flags,
1783		   const u8 *newkey, u8 newkeylen);
1784int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1785		     int family, u8 prefixlen, int l3index,
1786		     struct tcp_md5sig_key *key);
1787
1788int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1789		   int family, u8 prefixlen, int l3index, u8 flags);
1790void tcp_clear_md5_list(struct sock *sk);
1791struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1792					 const struct sock *addr_sk);
1793
1794#ifdef CONFIG_TCP_MD5SIG
1795struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1796					   const union tcp_md5_addr *addr,
1797					   int family, bool any_l3index);
1798static inline struct tcp_md5sig_key *
1799tcp_md5_do_lookup(const struct sock *sk, int l3index,
1800		  const union tcp_md5_addr *addr, int family)
1801{
1802	if (!static_branch_unlikely(&tcp_md5_needed.key))
1803		return NULL;
1804	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1805}
1806
1807static inline struct tcp_md5sig_key *
1808tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1809			      const union tcp_md5_addr *addr, int family)
1810{
1811	if (!static_branch_unlikely(&tcp_md5_needed.key))
1812		return NULL;
1813	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1814}
1815
1816enum skb_drop_reason
1817tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1818		     const void *saddr, const void *daddr,
1819		     int family, int l3index, const __u8 *hash_location);
1820
1821
1822#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1823#else
1824static inline struct tcp_md5sig_key *
1825tcp_md5_do_lookup(const struct sock *sk, int l3index,
1826		  const union tcp_md5_addr *addr, int family)
1827{
1828	return NULL;
1829}
1830
1831static inline struct tcp_md5sig_key *
1832tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1833			      const union tcp_md5_addr *addr, int family)
1834{
1835	return NULL;
1836}
1837
1838static inline enum skb_drop_reason
1839tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1840		     const void *saddr, const void *daddr,
1841		     int family, int l3index, const __u8 *hash_location)
1842{
1843	return SKB_NOT_DROPPED_YET;
1844}
1845#define tcp_twsk_md5_key(twsk)	NULL
1846#endif
1847
1848int tcp_md5_alloc_sigpool(void);
1849void tcp_md5_release_sigpool(void);
1850void tcp_md5_add_sigpool(void);
1851extern int tcp_md5_sigpool_id;
1852
1853int tcp_md5_hash_key(struct tcp_sigpool *hp,
1854		     const struct tcp_md5sig_key *key);
1855
1856/* From tcp_fastopen.c */
1857void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1858			    struct tcp_fastopen_cookie *cookie);
1859void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1860			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1861			    u16 try_exp);
1862struct tcp_fastopen_request {
1863	/* Fast Open cookie. Size 0 means a cookie request */
1864	struct tcp_fastopen_cookie	cookie;
1865	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1866	size_t				size;
1867	int				copied;	/* queued in tcp_connect() */
1868	struct ubuf_info		*uarg;
1869};
1870void tcp_free_fastopen_req(struct tcp_sock *tp);
1871void tcp_fastopen_destroy_cipher(struct sock *sk);
1872void tcp_fastopen_ctx_destroy(struct net *net);
1873int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1874			      void *primary_key, void *backup_key);
1875int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1876			    u64 *key);
1877void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1878struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1879			      struct request_sock *req,
1880			      struct tcp_fastopen_cookie *foc,
1881			      const struct dst_entry *dst);
1882void tcp_fastopen_init_key_once(struct net *net);
1883bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1884			     struct tcp_fastopen_cookie *cookie);
1885bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1886#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1887#define TCP_FASTOPEN_KEY_MAX 2
1888#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1889	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1890
1891/* Fastopen key context */
1892struct tcp_fastopen_context {
1893	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1894	int		num;
1895	struct rcu_head	rcu;
1896};
1897
1898void tcp_fastopen_active_disable(struct sock *sk);
1899bool tcp_fastopen_active_should_disable(struct sock *sk);
1900void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1901void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1902
1903/* Caller needs to wrap with rcu_read_(un)lock() */
1904static inline
1905struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1906{
1907	struct tcp_fastopen_context *ctx;
1908
1909	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1910	if (!ctx)
1911		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1912	return ctx;
1913}
1914
1915static inline
1916bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1917			       const struct tcp_fastopen_cookie *orig)
1918{
1919	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1920	    orig->len == foc->len &&
1921	    !memcmp(orig->val, foc->val, foc->len))
1922		return true;
1923	return false;
1924}
1925
1926static inline
1927int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1928{
1929	return ctx->num;
1930}
1931
1932/* Latencies incurred by various limits for a sender. They are
1933 * chronograph-like stats that are mutually exclusive.
1934 */
1935enum tcp_chrono {
1936	TCP_CHRONO_UNSPEC,
1937	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1938	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1939	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1940	__TCP_CHRONO_MAX,
1941};
1942
1943void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1944void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1945
1946/* This helper is needed, because skb->tcp_tsorted_anchor uses
1947 * the same memory storage than skb->destructor/_skb_refdst
1948 */
1949static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1950{
1951	skb->destructor = NULL;
1952	skb->_skb_refdst = 0UL;
1953}
1954
1955#define tcp_skb_tsorted_save(skb) {		\
1956	unsigned long _save = skb->_skb_refdst;	\
1957	skb->_skb_refdst = 0UL;
1958
1959#define tcp_skb_tsorted_restore(skb)		\
1960	skb->_skb_refdst = _save;		\
1961}
1962
1963void tcp_write_queue_purge(struct sock *sk);
1964
1965static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1966{
1967	return skb_rb_first(&sk->tcp_rtx_queue);
1968}
1969
1970static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1971{
1972	return skb_rb_last(&sk->tcp_rtx_queue);
1973}
1974
1975static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1976{
1977	return skb_peek_tail(&sk->sk_write_queue);
1978}
1979
1980#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1981	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1982
1983static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1984{
1985	return skb_peek(&sk->sk_write_queue);
1986}
1987
1988static inline bool tcp_skb_is_last(const struct sock *sk,
1989				   const struct sk_buff *skb)
1990{
1991	return skb_queue_is_last(&sk->sk_write_queue, skb);
1992}
1993
1994/**
1995 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1996 * @sk: socket
1997 *
1998 * Since the write queue can have a temporary empty skb in it,
1999 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2000 */
2001static inline bool tcp_write_queue_empty(const struct sock *sk)
2002{
2003	const struct tcp_sock *tp = tcp_sk(sk);
2004
2005	return tp->write_seq == tp->snd_nxt;
2006}
2007
2008static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2009{
2010	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2011}
2012
2013static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2014{
2015	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2016}
2017
2018static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2019{
2020	__skb_queue_tail(&sk->sk_write_queue, skb);
2021
2022	/* Queue it, remembering where we must start sending. */
2023	if (sk->sk_write_queue.next == skb)
2024		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2025}
2026
2027/* Insert new before skb on the write queue of sk.  */
2028static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2029						  struct sk_buff *skb,
2030						  struct sock *sk)
2031{
2032	__skb_queue_before(&sk->sk_write_queue, skb, new);
2033}
2034
2035static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2036{
2037	tcp_skb_tsorted_anchor_cleanup(skb);
2038	__skb_unlink(skb, &sk->sk_write_queue);
2039}
2040
2041void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2042
2043static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2044{
2045	tcp_skb_tsorted_anchor_cleanup(skb);
2046	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2047}
2048
2049static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2050{
2051	list_del(&skb->tcp_tsorted_anchor);
2052	tcp_rtx_queue_unlink(skb, sk);
2053	tcp_wmem_free_skb(sk, skb);
2054}
2055
 
 
 
 
 
 
 
 
2056static inline void tcp_push_pending_frames(struct sock *sk)
2057{
2058	if (tcp_send_head(sk)) {
2059		struct tcp_sock *tp = tcp_sk(sk);
2060
2061		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2062	}
2063}
2064
2065/* Start sequence of the skb just after the highest skb with SACKed
2066 * bit, valid only if sacked_out > 0 or when the caller has ensured
2067 * validity by itself.
2068 */
2069static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2070{
2071	if (!tp->sacked_out)
2072		return tp->snd_una;
2073
2074	if (tp->highest_sack == NULL)
2075		return tp->snd_nxt;
2076
2077	return TCP_SKB_CB(tp->highest_sack)->seq;
2078}
2079
2080static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2081{
2082	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2083}
2084
2085static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2086{
2087	return tcp_sk(sk)->highest_sack;
2088}
2089
2090static inline void tcp_highest_sack_reset(struct sock *sk)
2091{
2092	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2093}
2094
2095/* Called when old skb is about to be deleted and replaced by new skb */
2096static inline void tcp_highest_sack_replace(struct sock *sk,
2097					    struct sk_buff *old,
2098					    struct sk_buff *new)
2099{
2100	if (old == tcp_highest_sack(sk))
2101		tcp_sk(sk)->highest_sack = new;
2102}
2103
2104/* This helper checks if socket has IP_TRANSPARENT set */
2105static inline bool inet_sk_transparent(const struct sock *sk)
2106{
2107	switch (sk->sk_state) {
2108	case TCP_TIME_WAIT:
2109		return inet_twsk(sk)->tw_transparent;
2110	case TCP_NEW_SYN_RECV:
2111		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2112	}
2113	return inet_test_bit(TRANSPARENT, sk);
2114}
2115
2116/* Determines whether this is a thin stream (which may suffer from
2117 * increased latency). Used to trigger latency-reducing mechanisms.
2118 */
2119static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2120{
2121	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2122}
2123
2124/* /proc */
2125enum tcp_seq_states {
2126	TCP_SEQ_STATE_LISTENING,
2127	TCP_SEQ_STATE_ESTABLISHED,
2128};
2129
2130void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2131void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2132void tcp_seq_stop(struct seq_file *seq, void *v);
2133
2134struct tcp_seq_afinfo {
2135	sa_family_t			family;
2136};
2137
2138struct tcp_iter_state {
2139	struct seq_net_private	p;
2140	enum tcp_seq_states	state;
2141	struct sock		*syn_wait_sk;
2142	int			bucket, offset, sbucket, num;
2143	loff_t			last_pos;
2144};
2145
2146extern struct request_sock_ops tcp_request_sock_ops;
2147extern struct request_sock_ops tcp6_request_sock_ops;
2148
2149void tcp_v4_destroy_sock(struct sock *sk);
2150
2151struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2152				netdev_features_t features);
2153struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
 
 
 
2154INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2155INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2156INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2157INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2158#ifdef CONFIG_INET
2159void tcp_gro_complete(struct sk_buff *skb);
2160#else
2161static inline void tcp_gro_complete(struct sk_buff *skb) { }
2162#endif
2163
2164void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2165
2166static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2167{
2168	struct net *net = sock_net((struct sock *)tp);
2169	u32 val;
2170
2171	val = READ_ONCE(tp->notsent_lowat);
2172
2173	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2174}
2175
2176bool tcp_stream_memory_free(const struct sock *sk, int wake);
2177
2178#ifdef CONFIG_PROC_FS
2179int tcp4_proc_init(void);
2180void tcp4_proc_exit(void);
2181#endif
2182
2183int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2184int tcp_conn_request(struct request_sock_ops *rsk_ops,
2185		     const struct tcp_request_sock_ops *af_ops,
2186		     struct sock *sk, struct sk_buff *skb);
2187
2188/* TCP af-specific functions */
2189struct tcp_sock_af_ops {
2190#ifdef CONFIG_TCP_MD5SIG
2191	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2192						const struct sock *addr_sk);
2193	int		(*calc_md5_hash)(char *location,
2194					 const struct tcp_md5sig_key *md5,
2195					 const struct sock *sk,
2196					 const struct sk_buff *skb);
2197	int		(*md5_parse)(struct sock *sk,
2198				     int optname,
2199				     sockptr_t optval,
2200				     int optlen);
2201#endif
2202#ifdef CONFIG_TCP_AO
2203	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2204	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2205					struct sock *addr_sk,
2206					int sndid, int rcvid);
2207	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2208			      const struct sock *sk,
2209			      __be32 sisn, __be32 disn, bool send);
2210	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2211			    const struct sock *sk, const struct sk_buff *skb,
2212			    const u8 *tkey, int hash_offset, u32 sne);
2213#endif
2214};
2215
2216struct tcp_request_sock_ops {
2217	u16 mss_clamp;
2218#ifdef CONFIG_TCP_MD5SIG
2219	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2220						 const struct sock *addr_sk);
2221	int		(*calc_md5_hash) (char *location,
2222					  const struct tcp_md5sig_key *md5,
2223					  const struct sock *sk,
2224					  const struct sk_buff *skb);
2225#endif
2226#ifdef CONFIG_TCP_AO
2227	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2228					struct request_sock *req,
2229					int sndid, int rcvid);
2230	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2231	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2232			      struct request_sock *req, const struct sk_buff *skb,
2233			      int hash_offset, u32 sne);
2234#endif
2235#ifdef CONFIG_SYN_COOKIES
2236	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2237				 __u16 *mss);
2238#endif
2239	struct dst_entry *(*route_req)(const struct sock *sk,
2240				       struct sk_buff *skb,
2241				       struct flowi *fl,
2242				       struct request_sock *req);
 
2243	u32 (*init_seq)(const struct sk_buff *skb);
2244	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2245	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2246			   struct flowi *fl, struct request_sock *req,
2247			   struct tcp_fastopen_cookie *foc,
2248			   enum tcp_synack_type synack_type,
2249			   struct sk_buff *syn_skb);
2250};
2251
2252extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2253#if IS_ENABLED(CONFIG_IPV6)
2254extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2255#endif
2256
2257#ifdef CONFIG_SYN_COOKIES
2258static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2259					 const struct sock *sk, struct sk_buff *skb,
2260					 __u16 *mss)
2261{
2262	tcp_synq_overflow(sk);
2263	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2264	return ops->cookie_init_seq(skb, mss);
2265}
2266#else
2267static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2268					 const struct sock *sk, struct sk_buff *skb,
2269					 __u16 *mss)
2270{
2271	return 0;
2272}
2273#endif
2274
2275struct tcp_key {
2276	union {
2277		struct {
2278			struct tcp_ao_key *ao_key;
2279			char *traffic_key;
2280			u32 sne;
2281			u8 rcv_next;
2282		};
2283		struct tcp_md5sig_key *md5_key;
2284	};
2285	enum {
2286		TCP_KEY_NONE = 0,
2287		TCP_KEY_MD5,
2288		TCP_KEY_AO,
2289	} type;
2290};
2291
2292static inline void tcp_get_current_key(const struct sock *sk,
2293				       struct tcp_key *out)
2294{
2295#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2296	const struct tcp_sock *tp = tcp_sk(sk);
2297#endif
2298
2299#ifdef CONFIG_TCP_AO
2300	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2301		struct tcp_ao_info *ao;
2302
2303		ao = rcu_dereference_protected(tp->ao_info,
2304					       lockdep_sock_is_held(sk));
2305		if (ao) {
2306			out->ao_key = READ_ONCE(ao->current_key);
2307			out->type = TCP_KEY_AO;
2308			return;
2309		}
2310	}
2311#endif
2312#ifdef CONFIG_TCP_MD5SIG
2313	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2314	    rcu_access_pointer(tp->md5sig_info)) {
2315		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2316		if (out->md5_key) {
2317			out->type = TCP_KEY_MD5;
2318			return;
2319		}
2320	}
2321#endif
2322	out->type = TCP_KEY_NONE;
2323}
2324
2325static inline bool tcp_key_is_md5(const struct tcp_key *key)
2326{
2327#ifdef CONFIG_TCP_MD5SIG
2328	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2329	    key->type == TCP_KEY_MD5)
2330		return true;
2331#endif
2332	return false;
2333}
2334
2335static inline bool tcp_key_is_ao(const struct tcp_key *key)
2336{
2337#ifdef CONFIG_TCP_AO
2338	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2339	    key->type == TCP_KEY_AO)
2340		return true;
2341#endif
2342	return false;
2343}
2344
2345int tcpv4_offload_init(void);
2346
2347void tcp_v4_init(void);
2348void tcp_init(void);
2349
2350/* tcp_recovery.c */
2351void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2352void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2353extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2354				u32 reo_wnd);
2355extern bool tcp_rack_mark_lost(struct sock *sk);
2356extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2357			     u64 xmit_time);
2358extern void tcp_rack_reo_timeout(struct sock *sk);
2359extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2360
2361/* tcp_plb.c */
2362
2363/*
2364 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2365 * expects cong_ratio which represents fraction of traffic that experienced
2366 * congestion over a single RTT. In order to avoid floating point operations,
2367 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2368 */
2369#define TCP_PLB_SCALE 8
2370
2371/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2372struct tcp_plb_state {
2373	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2374		unused:3;
2375	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2376};
2377
2378static inline void tcp_plb_init(const struct sock *sk,
2379				struct tcp_plb_state *plb)
2380{
2381	plb->consec_cong_rounds = 0;
2382	plb->pause_until = 0;
2383}
2384void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2385			  const int cong_ratio);
2386void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2387void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389/* At how many usecs into the future should the RTO fire? */
2390static inline s64 tcp_rto_delta_us(const struct sock *sk)
2391{
2392	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2393	u32 rto = inet_csk(sk)->icsk_rto;
2394	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2395
2396	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
 
 
 
 
 
 
 
 
2397}
2398
2399/*
2400 * Save and compile IPv4 options, return a pointer to it
2401 */
2402static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2403							 struct sk_buff *skb)
2404{
2405	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2406	struct ip_options_rcu *dopt = NULL;
2407
2408	if (opt->optlen) {
2409		int opt_size = sizeof(*dopt) + opt->optlen;
2410
2411		dopt = kmalloc(opt_size, GFP_ATOMIC);
2412		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2413			kfree(dopt);
2414			dopt = NULL;
2415		}
2416	}
2417	return dopt;
2418}
2419
2420/* locally generated TCP pure ACKs have skb->truesize == 2
2421 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2422 * This is much faster than dissecting the packet to find out.
2423 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2424 */
2425static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2426{
2427	return skb->truesize == 2;
2428}
2429
2430static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2431{
2432	skb->truesize = 2;
2433}
2434
2435static inline int tcp_inq(struct sock *sk)
2436{
2437	struct tcp_sock *tp = tcp_sk(sk);
2438	int answ;
2439
2440	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2441		answ = 0;
2442	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2443		   !tp->urg_data ||
2444		   before(tp->urg_seq, tp->copied_seq) ||
2445		   !before(tp->urg_seq, tp->rcv_nxt)) {
2446
2447		answ = tp->rcv_nxt - tp->copied_seq;
2448
2449		/* Subtract 1, if FIN was received */
2450		if (answ && sock_flag(sk, SOCK_DONE))
2451			answ--;
2452	} else {
2453		answ = tp->urg_seq - tp->copied_seq;
2454	}
2455
2456	return answ;
2457}
2458
2459int tcp_peek_len(struct socket *sock);
2460
2461static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2462{
2463	u16 segs_in;
2464
2465	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2466
2467	/* We update these fields while other threads might
2468	 * read them from tcp_get_info()
2469	 */
2470	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2471	if (skb->len > tcp_hdrlen(skb))
2472		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2473}
2474
2475/*
2476 * TCP listen path runs lockless.
2477 * We forced "struct sock" to be const qualified to make sure
2478 * we don't modify one of its field by mistake.
2479 * Here, we increment sk_drops which is an atomic_t, so we can safely
2480 * make sock writable again.
2481 */
2482static inline void tcp_listendrop(const struct sock *sk)
2483{
2484	atomic_inc(&((struct sock *)sk)->sk_drops);
2485	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2486}
2487
2488enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2489
2490/*
2491 * Interface for adding Upper Level Protocols over TCP
2492 */
2493
2494#define TCP_ULP_NAME_MAX	16
2495#define TCP_ULP_MAX		128
2496#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2497
2498struct tcp_ulp_ops {
2499	struct list_head	list;
2500
2501	/* initialize ulp */
2502	int (*init)(struct sock *sk);
2503	/* update ulp */
2504	void (*update)(struct sock *sk, struct proto *p,
2505		       void (*write_space)(struct sock *sk));
2506	/* cleanup ulp */
2507	void (*release)(struct sock *sk);
2508	/* diagnostic */
2509	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2510	size_t (*get_info_size)(const struct sock *sk);
2511	/* clone ulp */
2512	void (*clone)(const struct request_sock *req, struct sock *newsk,
2513		      const gfp_t priority);
2514
2515	char		name[TCP_ULP_NAME_MAX];
2516	struct module	*owner;
2517};
2518int tcp_register_ulp(struct tcp_ulp_ops *type);
2519void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2520int tcp_set_ulp(struct sock *sk, const char *name);
2521void tcp_get_available_ulp(char *buf, size_t len);
2522void tcp_cleanup_ulp(struct sock *sk);
2523void tcp_update_ulp(struct sock *sk, struct proto *p,
2524		    void (*write_space)(struct sock *sk));
2525
2526#define MODULE_ALIAS_TCP_ULP(name)				\
2527	__MODULE_INFO(alias, alias_userspace, name);		\
2528	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2529
2530#ifdef CONFIG_NET_SOCK_MSG
2531struct sk_msg;
2532struct sk_psock;
2533
2534#ifdef CONFIG_BPF_SYSCALL
2535int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2536void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2537#endif /* CONFIG_BPF_SYSCALL */
2538
2539#ifdef CONFIG_INET
2540void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2541#else
2542static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2543{
2544}
2545#endif
2546
2547int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2548			  struct sk_msg *msg, u32 bytes, int flags);
2549#endif /* CONFIG_NET_SOCK_MSG */
2550
2551#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2552static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2553{
2554}
2555#endif
2556
2557#ifdef CONFIG_CGROUP_BPF
2558static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2559				      struct sk_buff *skb,
2560				      unsigned int end_offset)
2561{
2562	skops->skb = skb;
2563	skops->skb_data_end = skb->data + end_offset;
2564}
2565#else
2566static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2567				      struct sk_buff *skb,
2568				      unsigned int end_offset)
2569{
2570}
2571#endif
2572
2573/* Call BPF_SOCK_OPS program that returns an int. If the return value
2574 * is < 0, then the BPF op failed (for example if the loaded BPF
2575 * program does not support the chosen operation or there is no BPF
2576 * program loaded).
2577 */
2578#ifdef CONFIG_BPF
2579static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2580{
2581	struct bpf_sock_ops_kern sock_ops;
2582	int ret;
2583
2584	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2585	if (sk_fullsock(sk)) {
2586		sock_ops.is_fullsock = 1;
2587		sock_owned_by_me(sk);
2588	}
2589
2590	sock_ops.sk = sk;
2591	sock_ops.op = op;
2592	if (nargs > 0)
2593		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2594
2595	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2596	if (ret == 0)
2597		ret = sock_ops.reply;
2598	else
2599		ret = -1;
2600	return ret;
2601}
2602
2603static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2604{
2605	u32 args[2] = {arg1, arg2};
2606
2607	return tcp_call_bpf(sk, op, 2, args);
2608}
2609
2610static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2611				    u32 arg3)
2612{
2613	u32 args[3] = {arg1, arg2, arg3};
2614
2615	return tcp_call_bpf(sk, op, 3, args);
2616}
2617
2618#else
2619static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2620{
2621	return -EPERM;
2622}
2623
2624static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2625{
2626	return -EPERM;
2627}
2628
2629static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2630				    u32 arg3)
2631{
2632	return -EPERM;
2633}
2634
2635#endif
2636
2637static inline u32 tcp_timeout_init(struct sock *sk)
2638{
2639	int timeout;
2640
2641	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2642
2643	if (timeout <= 0)
2644		timeout = TCP_TIMEOUT_INIT;
2645	return min_t(int, timeout, TCP_RTO_MAX);
2646}
2647
2648static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2649{
2650	int rwnd;
2651
2652	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2653
2654	if (rwnd < 0)
2655		rwnd = 0;
2656	return rwnd;
2657}
2658
2659static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2660{
2661	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2662}
2663
2664static inline void tcp_bpf_rtt(struct sock *sk)
2665{
2666	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2667		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2668}
2669
2670#if IS_ENABLED(CONFIG_SMC)
2671extern struct static_key_false tcp_have_smc;
2672#endif
2673
2674#if IS_ENABLED(CONFIG_TLS_DEVICE)
2675void clean_acked_data_enable(struct inet_connection_sock *icsk,
2676			     void (*cad)(struct sock *sk, u32 ack_seq));
2677void clean_acked_data_disable(struct inet_connection_sock *icsk);
2678void clean_acked_data_flush(void);
2679#endif
2680
2681DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2682static inline void tcp_add_tx_delay(struct sk_buff *skb,
2683				    const struct tcp_sock *tp)
2684{
2685	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2686		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2687}
2688
2689/* Compute Earliest Departure Time for some control packets
2690 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2691 */
2692static inline u64 tcp_transmit_time(const struct sock *sk)
2693{
2694	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2695		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2696			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2697
2698		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2699	}
2700	return 0;
2701}
2702
2703static inline int tcp_parse_auth_options(const struct tcphdr *th,
2704		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2705{
2706	const u8 *md5_tmp, *ao_tmp;
2707	int ret;
2708
2709	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2710	if (ret)
2711		return ret;
2712
2713	if (md5_hash)
2714		*md5_hash = md5_tmp;
2715
2716	if (aoh) {
2717		if (!ao_tmp)
2718			*aoh = NULL;
2719		else
2720			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2721	}
2722
2723	return 0;
2724}
2725
2726static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2727				   int family, int l3index, bool stat_inc)
2728{
2729#ifdef CONFIG_TCP_AO
2730	struct tcp_ao_info *ao_info;
2731	struct tcp_ao_key *ao_key;
2732
2733	if (!static_branch_unlikely(&tcp_ao_needed.key))
2734		return false;
2735
2736	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2737					lockdep_sock_is_held(sk));
2738	if (!ao_info)
2739		return false;
2740
2741	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2742	if (ao_info->ao_required || ao_key) {
2743		if (stat_inc) {
2744			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2745			atomic64_inc(&ao_info->counters.ao_required);
2746		}
2747		return true;
2748	}
2749#endif
2750	return false;
2751}
2752
2753/* Called with rcu_read_lock() */
2754static inline enum skb_drop_reason
2755tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2756		 const struct sk_buff *skb,
2757		 const void *saddr, const void *daddr,
2758		 int family, int dif, int sdif)
2759{
2760	const struct tcphdr *th = tcp_hdr(skb);
2761	const struct tcp_ao_hdr *aoh;
2762	const __u8 *md5_location;
2763	int l3index;
2764
2765	/* Invalid option or two times meet any of auth options */
2766	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2767		tcp_hash_fail("TCP segment has incorrect auth options set",
2768			      family, skb, "");
2769		return SKB_DROP_REASON_TCP_AUTH_HDR;
2770	}
2771
2772	if (req) {
2773		if (tcp_rsk_used_ao(req) != !!aoh) {
2774			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2775			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2776				      family, skb, "%s",
2777				      !aoh ? "missing AO" : "AO signed");
2778			return SKB_DROP_REASON_TCP_AOFAILURE;
2779		}
2780	}
2781
2782	/* sdif set, means packet ingressed via a device
2783	 * in an L3 domain and dif is set to the l3mdev
2784	 */
2785	l3index = sdif ? dif : 0;
2786
2787	/* Fast path: unsigned segments */
2788	if (likely(!md5_location && !aoh)) {
2789		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2790		 * for the remote peer. On TCP-AO established connection
2791		 * the last key is impossible to remove, so there's
2792		 * always at least one current_key.
2793		 */
2794		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2795			tcp_hash_fail("AO hash is required, but not found",
2796					family, skb, "L3 index %d", l3index);
2797			return SKB_DROP_REASON_TCP_AONOTFOUND;
2798		}
2799		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2800			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2801			tcp_hash_fail("MD5 Hash not found",
2802				      family, skb, "L3 index %d", l3index);
2803			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2804		}
2805		return SKB_NOT_DROPPED_YET;
2806	}
2807
2808	if (aoh)
2809		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2810
2811	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2812				    l3index, md5_location);
2813}
2814
2815#endif	/* _TCP_H */