Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include <trace/events/btrfs.h>
 12#include "misc.h"
 13#include "ctree.h"
 14#include "extent_io.h"
 15#include "locking.h"
 16
 17/*
 18 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 19 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 20 * the level the eb occupies in the tree.
 21 *
 22 * Different roots are used for different purposes and may nest inside each
 23 * other and they require separate keysets.  As lockdep keys should be
 24 * static, assign keysets according to the purpose of the root as indicated
 25 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 26 * roots have separate keysets.
 27 *
 28 * Lock-nesting across peer nodes is always done with the immediate parent
 29 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 30 * subclass to avoid triggering lockdep warning in such cases.
 31 *
 32 * The key is set by the readpage_end_io_hook after the buffer has passed
 33 * csum validation but before the pages are unlocked.  It is also set by
 34 * btrfs_init_new_buffer on freshly allocated blocks.
 35 *
 36 * We also add a check to make sure the highest level of the tree is the
 37 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 38 * needs update as well.
 39 */
 40#ifdef CONFIG_DEBUG_LOCK_ALLOC
 41#if BTRFS_MAX_LEVEL != 8
 42#error
 43#endif
 44
 45#define DEFINE_LEVEL(stem, level)					\
 46	.names[level] = "btrfs-" stem "-0" #level,
 47
 48#define DEFINE_NAME(stem)						\
 49	DEFINE_LEVEL(stem, 0)						\
 50	DEFINE_LEVEL(stem, 1)						\
 51	DEFINE_LEVEL(stem, 2)						\
 52	DEFINE_LEVEL(stem, 3)						\
 53	DEFINE_LEVEL(stem, 4)						\
 54	DEFINE_LEVEL(stem, 5)						\
 55	DEFINE_LEVEL(stem, 6)						\
 56	DEFINE_LEVEL(stem, 7)
 57
 58static struct btrfs_lockdep_keyset {
 59	u64			id;		/* root objectid */
 60	/* Longest entry: btrfs-block-group-00 */
 61	char			names[BTRFS_MAX_LEVEL][24];
 62	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 63} btrfs_lockdep_keysets[] = {
 64	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 65	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 66	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 67	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 68	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 69	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 70	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 71	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 72	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 73	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 74	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 75	{ .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") },
 76	{ .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") },
 77	{ .id = 0,				DEFINE_NAME("tree")	},
 78};
 79
 80#undef DEFINE_LEVEL
 81#undef DEFINE_NAME
 82
 83void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
 84{
 85	struct btrfs_lockdep_keyset *ks;
 86
 87	ASSERT(level < ARRAY_SIZE(ks->keys));
 88
 89	/* Find the matching keyset, id 0 is the default entry */
 90	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 91		if (ks->id == objectid)
 92			break;
 93
 94	lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
 95}
 96
 97void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
 98{
 99	if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
100		btrfs_set_buffer_lockdep_class(btrfs_root_id(root),
101					       eb, btrfs_header_level(eb));
102}
103
104#endif
105
106#ifdef CONFIG_BTRFS_DEBUG
107static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner)
108{
109	eb->lock_owner = owner;
110}
111#else
112static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { }
113#endif
114
115/*
116 * Extent buffer locking
117 * =====================
118 *
119 * We use a rw_semaphore for tree locking, and the semantics are exactly the
120 * same:
121 *
122 * - reader/writer exclusion
123 * - writer/writer exclusion
124 * - reader/reader sharing
125 * - try-lock semantics for readers and writers
126 *
127 * The rwsem implementation does opportunistic spinning which reduces number of
128 * times the locking task needs to sleep.
129 */
130
131/*
132 * btrfs_tree_read_lock_nested - lock extent buffer for read
133 * @eb:		the eb to be locked
134 * @nest:	the nesting level to be used for lockdep
135 *
136 * This takes the read lock on the extent buffer, using the specified nesting
137 * level for lockdep purposes.
138 */
139void btrfs_tree_read_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
140{
141	u64 start_ns = 0;
142
143	if (trace_btrfs_tree_read_lock_enabled())
144		start_ns = ktime_get_ns();
145
146	down_read_nested(&eb->lock, nest);
147	trace_btrfs_tree_read_lock(eb, start_ns);
148}
149
 
 
 
 
 
150/*
151 * Try-lock for read.
152 *
153 * Return 1 if the rwlock has been taken, 0 otherwise
154 */
155int btrfs_try_tree_read_lock(struct extent_buffer *eb)
156{
157	if (down_read_trylock(&eb->lock)) {
158		trace_btrfs_try_tree_read_lock(eb);
159		return 1;
160	}
161	return 0;
162}
163
164/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165 * Release read lock.
166 */
167void btrfs_tree_read_unlock(struct extent_buffer *eb)
168{
169	trace_btrfs_tree_read_unlock(eb);
170	up_read(&eb->lock);
171}
172
173/*
174 * Lock eb for write.
175 *
176 * @eb:		the eb to lock
177 * @nest:	the nesting to use for the lock
178 *
179 * Returns with the eb->lock write locked.
180 */
181void btrfs_tree_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
182	__acquires(&eb->lock)
183{
184	u64 start_ns = 0;
185
186	if (trace_btrfs_tree_lock_enabled())
187		start_ns = ktime_get_ns();
188
189	down_write_nested(&eb->lock, nest);
190	btrfs_set_eb_lock_owner(eb, current->pid);
191	trace_btrfs_tree_lock(eb, start_ns);
192}
193
 
 
 
 
 
194/*
195 * Release the write lock.
196 */
197void btrfs_tree_unlock(struct extent_buffer *eb)
198{
199	trace_btrfs_tree_unlock(eb);
200	btrfs_set_eb_lock_owner(eb, 0);
201	up_write(&eb->lock);
202}
203
204/*
205 * This releases any locks held in the path starting at level and going all the
206 * way up to the root.
207 *
208 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
209 * cases, such as COW of the block at slot zero in the node.  This ignores
210 * those rules, and it should only be called when there are no more updates to
211 * be done higher up in the tree.
212 */
213void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
214{
215	int i;
216
217	if (path->keep_locks)
218		return;
219
220	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
221		if (!path->nodes[i])
222			continue;
223		if (!path->locks[i])
224			continue;
225		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
226		path->locks[i] = 0;
227	}
228}
229
230/*
231 * Loop around taking references on and locking the root node of the tree until
232 * we end up with a lock on the root node.
233 *
234 * Return: root extent buffer with write lock held
235 */
236struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
237{
238	struct extent_buffer *eb;
239
240	while (1) {
241		eb = btrfs_root_node(root);
242
243		btrfs_maybe_reset_lockdep_class(root, eb);
244		btrfs_tree_lock(eb);
245		if (eb == root->node)
246			break;
247		btrfs_tree_unlock(eb);
248		free_extent_buffer(eb);
249	}
250	return eb;
251}
252
253/*
254 * Loop around taking references on and locking the root node of the tree until
255 * we end up with a lock on the root node.
256 *
257 * Return: root extent buffer with read lock held
258 */
259struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
260{
261	struct extent_buffer *eb;
262
263	while (1) {
264		eb = btrfs_root_node(root);
265
266		btrfs_maybe_reset_lockdep_class(root, eb);
267		btrfs_tree_read_lock(eb);
268		if (eb == root->node)
269			break;
270		btrfs_tree_read_unlock(eb);
271		free_extent_buffer(eb);
272	}
273	return eb;
274}
275
276/*
277 * Loop around taking references on and locking the root node of the tree in
278 * nowait mode until we end up with a lock on the root node or returning to
279 * avoid blocking.
280 *
281 * Return: root extent buffer with read lock held or -EAGAIN.
282 */
283struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
284{
285	struct extent_buffer *eb;
286
287	while (1) {
288		eb = btrfs_root_node(root);
289		if (!btrfs_try_tree_read_lock(eb)) {
290			free_extent_buffer(eb);
291			return ERR_PTR(-EAGAIN);
292		}
293		if (eb == root->node)
294			break;
295		btrfs_tree_read_unlock(eb);
296		free_extent_buffer(eb);
297	}
298	return eb;
299}
300
301/*
302 * DREW locks
303 * ==========
304 *
305 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
306 * where you want to provide A-B exclusion but not AA or BB.
307 *
308 * Currently implementation gives more priority to reader. If a reader and a
309 * writer both race to acquire their respective sides of the lock the writer
310 * would yield its lock as soon as it detects a concurrent reader. Additionally
311 * if there are pending readers no new writers would be allowed to come in and
312 * acquire the lock.
313 */
314
315void btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
316{
317	atomic_set(&lock->readers, 0);
318	atomic_set(&lock->writers, 0);
319	init_waitqueue_head(&lock->pending_readers);
320	init_waitqueue_head(&lock->pending_writers);
321}
322
323/* Return true if acquisition is successful, false otherwise */
324bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
325{
326	if (atomic_read(&lock->readers))
327		return false;
328
329	atomic_inc(&lock->writers);
330
331	/* Ensure writers count is updated before we check for pending readers */
332	smp_mb__after_atomic();
333	if (atomic_read(&lock->readers)) {
334		btrfs_drew_write_unlock(lock);
335		return false;
336	}
337
338	return true;
339}
340
341void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
342{
343	while (true) {
344		if (btrfs_drew_try_write_lock(lock))
345			return;
346		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
347	}
348}
349
350void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
351{
352	/*
353	 * atomic_dec_and_test() implies a full barrier, so woken up readers are
354	 * guaranteed to see the decrement.
355	 */
356	if (atomic_dec_and_test(&lock->writers))
357		wake_up(&lock->pending_readers);
358}
359
360void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
361{
362	atomic_inc(&lock->readers);
363
364	/*
365	 * Ensure the pending reader count is perceieved BEFORE this reader
366	 * goes to sleep in case of active writers. This guarantees new writers
367	 * won't be allowed and that the current reader will be woken up when
368	 * the last active writer finishes its jobs.
369	 */
370	smp_mb__after_atomic();
371
372	wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0);
373}
374
375void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
376{
377	/*
378	 * atomic_dec_and_test implies a full barrier, so woken up writers
379	 * are guaranteed to see the decrement
380	 */
381	if (atomic_dec_and_test(&lock->readers))
382		wake_up(&lock->pending_writers);
383}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include <trace/events/btrfs.h>
 12#include "misc.h"
 13#include "ctree.h"
 14#include "extent_io.h"
 15#include "locking.h"
 16
 17/*
 18 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 19 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 20 * the level the eb occupies in the tree.
 21 *
 22 * Different roots are used for different purposes and may nest inside each
 23 * other and they require separate keysets.  As lockdep keys should be
 24 * static, assign keysets according to the purpose of the root as indicated
 25 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 26 * roots have separate keysets.
 27 *
 28 * Lock-nesting across peer nodes is always done with the immediate parent
 29 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 30 * subclass to avoid triggering lockdep warning in such cases.
 31 *
 32 * The key is set by the readpage_end_io_hook after the buffer has passed
 33 * csum validation but before the pages are unlocked.  It is also set by
 34 * btrfs_init_new_buffer on freshly allocated blocks.
 35 *
 36 * We also add a check to make sure the highest level of the tree is the
 37 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 38 * needs update as well.
 39 */
 40#ifdef CONFIG_DEBUG_LOCK_ALLOC
 41#if BTRFS_MAX_LEVEL != 8
 42#error
 43#endif
 44
 45#define DEFINE_LEVEL(stem, level)					\
 46	.names[level] = "btrfs-" stem "-0" #level,
 47
 48#define DEFINE_NAME(stem)						\
 49	DEFINE_LEVEL(stem, 0)						\
 50	DEFINE_LEVEL(stem, 1)						\
 51	DEFINE_LEVEL(stem, 2)						\
 52	DEFINE_LEVEL(stem, 3)						\
 53	DEFINE_LEVEL(stem, 4)						\
 54	DEFINE_LEVEL(stem, 5)						\
 55	DEFINE_LEVEL(stem, 6)						\
 56	DEFINE_LEVEL(stem, 7)
 57
 58static struct btrfs_lockdep_keyset {
 59	u64			id;		/* root objectid */
 60	/* Longest entry: btrfs-block-group-00 */
 61	char			names[BTRFS_MAX_LEVEL][24];
 62	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 63} btrfs_lockdep_keysets[] = {
 64	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 65	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 66	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 67	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 68	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 69	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 70	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 71	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 72	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 73	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 74	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 75	{ .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") },
 76	{ .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") },
 77	{ .id = 0,				DEFINE_NAME("tree")	},
 78};
 79
 80#undef DEFINE_LEVEL
 81#undef DEFINE_NAME
 82
 83void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
 84{
 85	struct btrfs_lockdep_keyset *ks;
 86
 87	ASSERT(level < ARRAY_SIZE(ks->keys));
 88
 89	/* Find the matching keyset, id 0 is the default entry */
 90	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 91		if (ks->id == objectid)
 92			break;
 93
 94	lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
 95}
 96
 97void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
 98{
 99	if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
100		btrfs_set_buffer_lockdep_class(root->root_key.objectid,
101					       eb, btrfs_header_level(eb));
102}
103
104#endif
105
106#ifdef CONFIG_BTRFS_DEBUG
107static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner)
108{
109	eb->lock_owner = owner;
110}
111#else
112static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { }
113#endif
114
115/*
116 * Extent buffer locking
117 * =====================
118 *
119 * We use a rw_semaphore for tree locking, and the semantics are exactly the
120 * same:
121 *
122 * - reader/writer exclusion
123 * - writer/writer exclusion
124 * - reader/reader sharing
125 * - try-lock semantics for readers and writers
126 *
127 * The rwsem implementation does opportunistic spinning which reduces number of
128 * times the locking task needs to sleep.
129 */
130
131/*
132 * __btrfs_tree_read_lock - lock extent buffer for read
133 * @eb:		the eb to be locked
134 * @nest:	the nesting level to be used for lockdep
135 *
136 * This takes the read lock on the extent buffer, using the specified nesting
137 * level for lockdep purposes.
138 */
139void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
140{
141	u64 start_ns = 0;
142
143	if (trace_btrfs_tree_read_lock_enabled())
144		start_ns = ktime_get_ns();
145
146	down_read_nested(&eb->lock, nest);
147	trace_btrfs_tree_read_lock(eb, start_ns);
148}
149
150void btrfs_tree_read_lock(struct extent_buffer *eb)
151{
152	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
153}
154
155/*
156 * Try-lock for read.
157 *
158 * Return 1 if the rwlock has been taken, 0 otherwise
159 */
160int btrfs_try_tree_read_lock(struct extent_buffer *eb)
161{
162	if (down_read_trylock(&eb->lock)) {
163		trace_btrfs_try_tree_read_lock(eb);
164		return 1;
165	}
166	return 0;
167}
168
169/*
170 * Try-lock for write.
171 *
172 * Return 1 if the rwlock has been taken, 0 otherwise
173 */
174int btrfs_try_tree_write_lock(struct extent_buffer *eb)
175{
176	if (down_write_trylock(&eb->lock)) {
177		btrfs_set_eb_lock_owner(eb, current->pid);
178		trace_btrfs_try_tree_write_lock(eb);
179		return 1;
180	}
181	return 0;
182}
183
184/*
185 * Release read lock.
186 */
187void btrfs_tree_read_unlock(struct extent_buffer *eb)
188{
189	trace_btrfs_tree_read_unlock(eb);
190	up_read(&eb->lock);
191}
192
193/*
194 * Lock eb for write.
195 *
196 * @eb:		the eb to lock
197 * @nest:	the nesting to use for the lock
198 *
199 * Returns with the eb->lock write locked.
200 */
201void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
202	__acquires(&eb->lock)
203{
204	u64 start_ns = 0;
205
206	if (trace_btrfs_tree_lock_enabled())
207		start_ns = ktime_get_ns();
208
209	down_write_nested(&eb->lock, nest);
210	btrfs_set_eb_lock_owner(eb, current->pid);
211	trace_btrfs_tree_lock(eb, start_ns);
212}
213
214void btrfs_tree_lock(struct extent_buffer *eb)
215{
216	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
217}
218
219/*
220 * Release the write lock.
221 */
222void btrfs_tree_unlock(struct extent_buffer *eb)
223{
224	trace_btrfs_tree_unlock(eb);
225	btrfs_set_eb_lock_owner(eb, 0);
226	up_write(&eb->lock);
227}
228
229/*
230 * This releases any locks held in the path starting at level and going all the
231 * way up to the root.
232 *
233 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
234 * cases, such as COW of the block at slot zero in the node.  This ignores
235 * those rules, and it should only be called when there are no more updates to
236 * be done higher up in the tree.
237 */
238void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
239{
240	int i;
241
242	if (path->keep_locks)
243		return;
244
245	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
246		if (!path->nodes[i])
247			continue;
248		if (!path->locks[i])
249			continue;
250		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
251		path->locks[i] = 0;
252	}
253}
254
255/*
256 * Loop around taking references on and locking the root node of the tree until
257 * we end up with a lock on the root node.
258 *
259 * Return: root extent buffer with write lock held
260 */
261struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
262{
263	struct extent_buffer *eb;
264
265	while (1) {
266		eb = btrfs_root_node(root);
267
268		btrfs_maybe_reset_lockdep_class(root, eb);
269		btrfs_tree_lock(eb);
270		if (eb == root->node)
271			break;
272		btrfs_tree_unlock(eb);
273		free_extent_buffer(eb);
274	}
275	return eb;
276}
277
278/*
279 * Loop around taking references on and locking the root node of the tree until
280 * we end up with a lock on the root node.
281 *
282 * Return: root extent buffer with read lock held
283 */
284struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
285{
286	struct extent_buffer *eb;
287
288	while (1) {
289		eb = btrfs_root_node(root);
290
291		btrfs_maybe_reset_lockdep_class(root, eb);
292		btrfs_tree_read_lock(eb);
293		if (eb == root->node)
294			break;
295		btrfs_tree_read_unlock(eb);
296		free_extent_buffer(eb);
297	}
298	return eb;
299}
300
301/*
302 * Loop around taking references on and locking the root node of the tree in
303 * nowait mode until we end up with a lock on the root node or returning to
304 * avoid blocking.
305 *
306 * Return: root extent buffer with read lock held or -EAGAIN.
307 */
308struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
309{
310	struct extent_buffer *eb;
311
312	while (1) {
313		eb = btrfs_root_node(root);
314		if (!btrfs_try_tree_read_lock(eb)) {
315			free_extent_buffer(eb);
316			return ERR_PTR(-EAGAIN);
317		}
318		if (eb == root->node)
319			break;
320		btrfs_tree_read_unlock(eb);
321		free_extent_buffer(eb);
322	}
323	return eb;
324}
325
326/*
327 * DREW locks
328 * ==========
329 *
330 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
331 * where you want to provide A-B exclusion but not AA or BB.
332 *
333 * Currently implementation gives more priority to reader. If a reader and a
334 * writer both race to acquire their respective sides of the lock the writer
335 * would yield its lock as soon as it detects a concurrent reader. Additionally
336 * if there are pending readers no new writers would be allowed to come in and
337 * acquire the lock.
338 */
339
340void btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
341{
342	atomic_set(&lock->readers, 0);
343	atomic_set(&lock->writers, 0);
344	init_waitqueue_head(&lock->pending_readers);
345	init_waitqueue_head(&lock->pending_writers);
346}
347
348/* Return true if acquisition is successful, false otherwise */
349bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
350{
351	if (atomic_read(&lock->readers))
352		return false;
353
354	atomic_inc(&lock->writers);
355
356	/* Ensure writers count is updated before we check for pending readers */
357	smp_mb__after_atomic();
358	if (atomic_read(&lock->readers)) {
359		btrfs_drew_write_unlock(lock);
360		return false;
361	}
362
363	return true;
364}
365
366void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
367{
368	while (true) {
369		if (btrfs_drew_try_write_lock(lock))
370			return;
371		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
372	}
373}
374
375void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
376{
377	atomic_dec(&lock->writers);
378	cond_wake_up(&lock->pending_readers);
 
 
 
 
379}
380
381void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
382{
383	atomic_inc(&lock->readers);
384
385	/*
386	 * Ensure the pending reader count is perceieved BEFORE this reader
387	 * goes to sleep in case of active writers. This guarantees new writers
388	 * won't be allowed and that the current reader will be woken up when
389	 * the last active writer finishes its jobs.
390	 */
391	smp_mb__after_atomic();
392
393	wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0);
394}
395
396void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
397{
398	/*
399	 * atomic_dec_and_test implies a full barrier, so woken up writers
400	 * are guaranteed to see the decrement
401	 */
402	if (atomic_dec_and_test(&lock->readers))
403		wake_up(&lock->pending_writers);
404}