Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include <trace/events/btrfs.h>
 12#include "misc.h"
 13#include "ctree.h"
 14#include "extent_io.h"
 15#include "locking.h"
 16
 17/*
 18 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 19 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 20 * the level the eb occupies in the tree.
 21 *
 22 * Different roots are used for different purposes and may nest inside each
 23 * other and they require separate keysets.  As lockdep keys should be
 24 * static, assign keysets according to the purpose of the root as indicated
 25 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 26 * roots have separate keysets.
 27 *
 28 * Lock-nesting across peer nodes is always done with the immediate parent
 29 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 30 * subclass to avoid triggering lockdep warning in such cases.
 31 *
 32 * The key is set by the readpage_end_io_hook after the buffer has passed
 33 * csum validation but before the pages are unlocked.  It is also set by
 34 * btrfs_init_new_buffer on freshly allocated blocks.
 35 *
 36 * We also add a check to make sure the highest level of the tree is the
 37 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 38 * needs update as well.
 39 */
 40#ifdef CONFIG_DEBUG_LOCK_ALLOC
 41#if BTRFS_MAX_LEVEL != 8
 42#error
 43#endif
 44
 45#define DEFINE_LEVEL(stem, level)					\
 46	.names[level] = "btrfs-" stem "-0" #level,
 47
 48#define DEFINE_NAME(stem)						\
 49	DEFINE_LEVEL(stem, 0)						\
 50	DEFINE_LEVEL(stem, 1)						\
 51	DEFINE_LEVEL(stem, 2)						\
 52	DEFINE_LEVEL(stem, 3)						\
 53	DEFINE_LEVEL(stem, 4)						\
 54	DEFINE_LEVEL(stem, 5)						\
 55	DEFINE_LEVEL(stem, 6)						\
 56	DEFINE_LEVEL(stem, 7)
 57
 58static struct btrfs_lockdep_keyset {
 59	u64			id;		/* root objectid */
 60	/* Longest entry: btrfs-block-group-00 */
 61	char			names[BTRFS_MAX_LEVEL][24];
 62	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 63} btrfs_lockdep_keysets[] = {
 64	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 65	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 66	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 67	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 68	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 69	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 70	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 71	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 72	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 73	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 74	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 75	{ .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") },
 76	{ .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") },
 77	{ .id = 0,				DEFINE_NAME("tree")	},
 78};
 79
 80#undef DEFINE_LEVEL
 81#undef DEFINE_NAME
 82
 83void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
 84{
 85	struct btrfs_lockdep_keyset *ks;
 86
 87	ASSERT(level < ARRAY_SIZE(ks->keys));
 88
 89	/* Find the matching keyset, id 0 is the default entry */
 90	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 91		if (ks->id == objectid)
 92			break;
 93
 94	lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
 95}
 96
 97void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
 98{
 99	if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
100		btrfs_set_buffer_lockdep_class(btrfs_root_id(root),
101					       eb, btrfs_header_level(eb));
102}
103
104#endif
105
106#ifdef CONFIG_BTRFS_DEBUG
107static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner)
108{
109	eb->lock_owner = owner;
110}
111#else
112static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { }
113#endif
114
115/*
116 * Extent buffer locking
117 * =====================
118 *
119 * We use a rw_semaphore for tree locking, and the semantics are exactly the
120 * same:
121 *
122 * - reader/writer exclusion
123 * - writer/writer exclusion
124 * - reader/reader sharing
125 * - try-lock semantics for readers and writers
126 *
127 * The rwsem implementation does opportunistic spinning which reduces number of
128 * times the locking task needs to sleep.
129 */
130
131/*
132 * btrfs_tree_read_lock_nested - lock extent buffer for read
133 * @eb:		the eb to be locked
134 * @nest:	the nesting level to be used for lockdep
135 *
136 * This takes the read lock on the extent buffer, using the specified nesting
137 * level for lockdep purposes.
138 */
139void btrfs_tree_read_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
140{
141	u64 start_ns = 0;
142
143	if (trace_btrfs_tree_read_lock_enabled())
144		start_ns = ktime_get_ns();
145
146	down_read_nested(&eb->lock, nest);
147	trace_btrfs_tree_read_lock(eb, start_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148}
149
150/*
151 * Try-lock for read.
152 *
153 * Return 1 if the rwlock has been taken, 0 otherwise
154 */
155int btrfs_try_tree_read_lock(struct extent_buffer *eb)
156{
157	if (down_read_trylock(&eb->lock)) {
158		trace_btrfs_try_tree_read_lock(eb);
159		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160	}
161	return 0;
162}
163
164/*
165 * Release read lock.
 
166 */
167void btrfs_tree_read_unlock(struct extent_buffer *eb)
168{
169	trace_btrfs_tree_read_unlock(eb);
170	up_read(&eb->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171}
172
173/*
174 * Lock eb for write.
175 *
176 * @eb:		the eb to lock
177 * @nest:	the nesting to use for the lock
178 *
179 * Returns with the eb->lock write locked.
180 */
181void btrfs_tree_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
182	__acquires(&eb->lock)
183{
184	u64 start_ns = 0;
 
185
186	if (trace_btrfs_tree_lock_enabled())
187		start_ns = ktime_get_ns();
188
189	down_write_nested(&eb->lock, nest);
190	btrfs_set_eb_lock_owner(eb, current->pid);
191	trace_btrfs_tree_lock(eb, start_ns);
192}
193
194/*
195 * Release the write lock.
196 */
197void btrfs_tree_unlock(struct extent_buffer *eb)
198{
199	trace_btrfs_tree_unlock(eb);
200	btrfs_set_eb_lock_owner(eb, 0);
201	up_write(&eb->lock);
202}
203
204/*
205 * This releases any locks held in the path starting at level and going all the
206 * way up to the root.
207 *
208 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
209 * cases, such as COW of the block at slot zero in the node.  This ignores
210 * those rules, and it should only be called when there are no more updates to
211 * be done higher up in the tree.
212 */
213void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
214{
215	int i;
 
216
217	if (path->keep_locks)
218		return;
219
220	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
221		if (!path->nodes[i])
222			continue;
223		if (!path->locks[i])
224			continue;
225		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
226		path->locks[i] = 0;
227	}
 
 
 
228}
229
230/*
231 * Loop around taking references on and locking the root node of the tree until
232 * we end up with a lock on the root node.
233 *
234 * Return: root extent buffer with write lock held
235 */
236struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
237{
238	struct extent_buffer *eb;
 
 
239
240	while (1) {
241		eb = btrfs_root_node(root);
242
243		btrfs_maybe_reset_lockdep_class(root, eb);
244		btrfs_tree_lock(eb);
245		if (eb == root->node)
246			break;
247		btrfs_tree_unlock(eb);
248		free_extent_buffer(eb);
249	}
250	return eb;
 
 
 
251}
252
253/*
254 * Loop around taking references on and locking the root node of the tree until
255 * we end up with a lock on the root node.
256 *
257 * Return: root extent buffer with read lock held
258 */
259struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
260{
261	struct extent_buffer *eb;
262
263	while (1) {
264		eb = btrfs_root_node(root);
265
266		btrfs_maybe_reset_lockdep_class(root, eb);
267		btrfs_tree_read_lock(eb);
268		if (eb == root->node)
269			break;
270		btrfs_tree_read_unlock(eb);
271		free_extent_buffer(eb);
272	}
273	return eb;
 
 
 
 
274}
275
276/*
277 * Loop around taking references on and locking the root node of the tree in
278 * nowait mode until we end up with a lock on the root node or returning to
279 * avoid blocking.
280 *
281 * Return: root extent buffer with read lock held or -EAGAIN.
282 */
283struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
284{
285	struct extent_buffer *eb;
286
287	while (1) {
288		eb = btrfs_root_node(root);
289		if (!btrfs_try_tree_read_lock(eb)) {
290			free_extent_buffer(eb);
291			return ERR_PTR(-EAGAIN);
292		}
293		if (eb == root->node)
294			break;
295		btrfs_tree_read_unlock(eb);
296		free_extent_buffer(eb);
297	}
298	return eb;
 
 
 
 
 
 
 
 
299}
300
301/*
302 * DREW locks
303 * ==========
304 *
305 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
306 * where you want to provide A-B exclusion but not AA or BB.
307 *
308 * Currently implementation gives more priority to reader. If a reader and a
309 * writer both race to acquire their respective sides of the lock the writer
310 * would yield its lock as soon as it detects a concurrent reader. Additionally
311 * if there are pending readers no new writers would be allowed to come in and
312 * acquire the lock.
313 */
314
315void btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
316{
317	atomic_set(&lock->readers, 0);
318	atomic_set(&lock->writers, 0);
319	init_waitqueue_head(&lock->pending_readers);
320	init_waitqueue_head(&lock->pending_writers);
 
 
 
 
 
 
 
321}
322
323/* Return true if acquisition is successful, false otherwise */
324bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
 
 
325{
326	if (atomic_read(&lock->readers))
327		return false;
328
329	atomic_inc(&lock->writers);
330
331	/* Ensure writers count is updated before we check for pending readers */
332	smp_mb__after_atomic();
333	if (atomic_read(&lock->readers)) {
334		btrfs_drew_write_unlock(lock);
335		return false;
 
 
 
 
 
 
 
 
 
 
 
 
336	}
337
338	return true;
339}
340
341void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
342{
343	while (true) {
344		if (btrfs_drew_try_write_lock(lock))
345			return;
346		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
347	}
348}
349
350void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
351{
352	/*
353	 * atomic_dec_and_test() implies a full barrier, so woken up readers are
354	 * guaranteed to see the decrement.
355	 */
356	if (atomic_dec_and_test(&lock->writers))
357		wake_up(&lock->pending_readers);
358}
359
360void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
361{
362	atomic_inc(&lock->readers);
363
364	/*
365	 * Ensure the pending reader count is perceieved BEFORE this reader
366	 * goes to sleep in case of active writers. This guarantees new writers
367	 * won't be allowed and that the current reader will be woken up when
368	 * the last active writer finishes its jobs.
369	 */
370	smp_mb__after_atomic();
371
372	wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0);
373}
374
375void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
376{
377	/*
378	 * atomic_dec_and_test implies a full barrier, so woken up writers
379	 * are guaranteed to see the decrement
380	 */
381	if (atomic_dec_and_test(&lock->readers))
382		wake_up(&lock->pending_writers);
383}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 
 
 11#include "ctree.h"
 12#include "extent_io.h"
 13#include "locking.h"
 14
 15static void btrfs_assert_tree_read_locked(struct extent_buffer *eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 16
 17/*
 18 * if we currently have a spinning reader or writer lock
 19 * (indicated by the rw flag) this will bump the count
 20 * of blocking holders and drop the spinlock.
 
 
 
 21 */
 22void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw)
 23{
 24	/*
 25	 * no lock is required.  The lock owner may change if
 26	 * we have a read lock, but it won't change to or away
 27	 * from us.  If we have the write lock, we are the owner
 28	 * and it'll never change.
 29	 */
 30	if (eb->lock_nested && current->pid == eb->lock_owner)
 31		return;
 32	if (rw == BTRFS_WRITE_LOCK) {
 33		if (atomic_read(&eb->blocking_writers) == 0) {
 34			WARN_ON(atomic_read(&eb->spinning_writers) != 1);
 35			atomic_dec(&eb->spinning_writers);
 36			btrfs_assert_tree_locked(eb);
 37			atomic_inc(&eb->blocking_writers);
 38			write_unlock(&eb->lock);
 39		}
 40	} else if (rw == BTRFS_READ_LOCK) {
 41		btrfs_assert_tree_read_locked(eb);
 42		atomic_inc(&eb->blocking_readers);
 43		WARN_ON(atomic_read(&eb->spinning_readers) == 0);
 44		atomic_dec(&eb->spinning_readers);
 45		read_unlock(&eb->lock);
 46	}
 47}
 48
 49/*
 50 * if we currently have a blocking lock, take the spinlock
 51 * and drop our blocking count
 
 52 */
 53void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw)
 54{
 55	/*
 56	 * no lock is required.  The lock owner may change if
 57	 * we have a read lock, but it won't change to or away
 58	 * from us.  If we have the write lock, we are the owner
 59	 * and it'll never change.
 60	 */
 61	if (eb->lock_nested && current->pid == eb->lock_owner)
 62		return;
 63
 64	if (rw == BTRFS_WRITE_LOCK_BLOCKING) {
 65		BUG_ON(atomic_read(&eb->blocking_writers) != 1);
 66		write_lock(&eb->lock);
 67		WARN_ON(atomic_read(&eb->spinning_writers));
 68		atomic_inc(&eb->spinning_writers);
 69		/*
 70		 * atomic_dec_and_test implies a barrier for waitqueue_active
 71		 */
 72		if (atomic_dec_and_test(&eb->blocking_writers) &&
 73		    waitqueue_active(&eb->write_lock_wq))
 74			wake_up(&eb->write_lock_wq);
 75	} else if (rw == BTRFS_READ_LOCK_BLOCKING) {
 76		BUG_ON(atomic_read(&eb->blocking_readers) == 0);
 77		read_lock(&eb->lock);
 78		atomic_inc(&eb->spinning_readers);
 79		/*
 80		 * atomic_dec_and_test implies a barrier for waitqueue_active
 81		 */
 82		if (atomic_dec_and_test(&eb->blocking_readers) &&
 83		    waitqueue_active(&eb->read_lock_wq))
 84			wake_up(&eb->read_lock_wq);
 85	}
 
 86}
 87
 88/*
 89 * take a spinning read lock.  This will wait for any blocking
 90 * writers
 91 */
 92void btrfs_tree_read_lock(struct extent_buffer *eb)
 93{
 94again:
 95	BUG_ON(!atomic_read(&eb->blocking_writers) &&
 96	       current->pid == eb->lock_owner);
 97
 98	read_lock(&eb->lock);
 99	if (atomic_read(&eb->blocking_writers) &&
100	    current->pid == eb->lock_owner) {
101		/*
102		 * This extent is already write-locked by our thread. We allow
103		 * an additional read lock to be added because it's for the same
104		 * thread. btrfs_find_all_roots() depends on this as it may be
105		 * called on a partly (write-)locked tree.
106		 */
107		BUG_ON(eb->lock_nested);
108		eb->lock_nested = 1;
109		read_unlock(&eb->lock);
110		return;
111	}
112	if (atomic_read(&eb->blocking_writers)) {
113		read_unlock(&eb->lock);
114		wait_event(eb->write_lock_wq,
115			   atomic_read(&eb->blocking_writers) == 0);
116		goto again;
117	}
118	atomic_inc(&eb->read_locks);
119	atomic_inc(&eb->spinning_readers);
120}
121
122/*
123 * take a spinning read lock.
124 * returns 1 if we get the read lock and 0 if we don't
125 * this won't wait for blocking writers
 
 
 
126 */
127int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
 
128{
129	if (atomic_read(&eb->blocking_writers))
130		return 0;
131
132	read_lock(&eb->lock);
133	if (atomic_read(&eb->blocking_writers)) {
134		read_unlock(&eb->lock);
135		return 0;
136	}
137	atomic_inc(&eb->read_locks);
138	atomic_inc(&eb->spinning_readers);
139	return 1;
 
 
 
 
 
 
 
 
140}
141
142/*
143 * returns 1 if we get the read lock and 0 if we don't
144 * this won't wait for blocking writers
 
 
 
 
 
145 */
146int btrfs_try_tree_read_lock(struct extent_buffer *eb)
147{
148	if (atomic_read(&eb->blocking_writers))
149		return 0;
150
151	if (!read_trylock(&eb->lock))
152		return 0;
153
154	if (atomic_read(&eb->blocking_writers)) {
155		read_unlock(&eb->lock);
156		return 0;
 
 
 
 
157	}
158	atomic_inc(&eb->read_locks);
159	atomic_inc(&eb->spinning_readers);
160	return 1;
161}
162
163/*
164 * returns 1 if we get the read lock and 0 if we don't
165 * this won't wait for blocking writers or readers
 
 
166 */
167int btrfs_try_tree_write_lock(struct extent_buffer *eb)
168{
169	if (atomic_read(&eb->blocking_writers) ||
170	    atomic_read(&eb->blocking_readers))
171		return 0;
172
173	write_lock(&eb->lock);
174	if (atomic_read(&eb->blocking_writers) ||
175	    atomic_read(&eb->blocking_readers)) {
176		write_unlock(&eb->lock);
177		return 0;
 
 
 
 
178	}
179	atomic_inc(&eb->write_locks);
180	atomic_inc(&eb->spinning_writers);
181	eb->lock_owner = current->pid;
182	return 1;
183}
184
185/*
186 * drop a spinning read lock
 
 
 
187 */
188void btrfs_tree_read_unlock(struct extent_buffer *eb)
189{
190	/*
191	 * if we're nested, we have the write lock.  No new locking
192	 * is needed as long as we are the lock owner.
193	 * The write unlock will do a barrier for us, and the lock_nested
194	 * field only matters to the lock owner.
195	 */
196	if (eb->lock_nested && current->pid == eb->lock_owner) {
197		eb->lock_nested = 0;
198		return;
 
 
199	}
200	btrfs_assert_tree_read_locked(eb);
201	WARN_ON(atomic_read(&eb->spinning_readers) == 0);
202	atomic_dec(&eb->spinning_readers);
203	atomic_dec(&eb->read_locks);
204	read_unlock(&eb->lock);
205}
206
207/*
208 * drop a blocking read lock
 
 
 
 
209 */
210void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
211{
212	/*
213	 * if we're nested, we have the write lock.  No new locking
214	 * is needed as long as we are the lock owner.
215	 * The write unlock will do a barrier for us, and the lock_nested
216	 * field only matters to the lock owner.
217	 */
218	if (eb->lock_nested && current->pid == eb->lock_owner) {
219		eb->lock_nested = 0;
220		return;
 
 
 
221	}
222	btrfs_assert_tree_read_locked(eb);
223	WARN_ON(atomic_read(&eb->blocking_readers) == 0);
224	/*
225	 * atomic_dec_and_test implies a barrier for waitqueue_active
226	 */
227	if (atomic_dec_and_test(&eb->blocking_readers) &&
228	    waitqueue_active(&eb->read_lock_wq))
229		wake_up(&eb->read_lock_wq);
230	atomic_dec(&eb->read_locks);
231}
232
233/*
234 * take a spinning write lock.  This will wait for both
235 * blocking readers or writers
236 */
237void btrfs_tree_lock(struct extent_buffer *eb)
238{
239	WARN_ON(eb->lock_owner == current->pid);
240again:
241	wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
242	wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
243	write_lock(&eb->lock);
244	if (atomic_read(&eb->blocking_readers)) {
245		write_unlock(&eb->lock);
246		wait_event(eb->read_lock_wq,
247			   atomic_read(&eb->blocking_readers) == 0);
248		goto again;
249	}
250	if (atomic_read(&eb->blocking_writers)) {
251		write_unlock(&eb->lock);
252		wait_event(eb->write_lock_wq,
253			   atomic_read(&eb->blocking_writers) == 0);
254		goto again;
255	}
256	WARN_ON(atomic_read(&eb->spinning_writers));
257	atomic_inc(&eb->spinning_writers);
258	atomic_inc(&eb->write_locks);
259	eb->lock_owner = current->pid;
260}
261
262/*
263 * drop a spinning or a blocking write lock.
264 */
265void btrfs_tree_unlock(struct extent_buffer *eb)
266{
267	int blockers = atomic_read(&eb->blocking_writers);
 
268
269	BUG_ON(blockers > 1);
270
271	btrfs_assert_tree_locked(eb);
272	eb->lock_owner = 0;
273	atomic_dec(&eb->write_locks);
274
275	if (blockers) {
276		WARN_ON(atomic_read(&eb->spinning_writers));
277		atomic_dec(&eb->blocking_writers);
278		/*
279		 * Make sure counter is updated before we wake up waiters.
280		 */
281		smp_mb__after_atomic();
282		if (waitqueue_active(&eb->write_lock_wq))
283			wake_up(&eb->write_lock_wq);
284	} else {
285		WARN_ON(atomic_read(&eb->spinning_writers) != 1);
286		atomic_dec(&eb->spinning_writers);
287		write_unlock(&eb->lock);
288	}
 
 
289}
290
291void btrfs_assert_tree_locked(struct extent_buffer *eb)
292{
293	BUG_ON(!atomic_read(&eb->write_locks));
 
 
 
 
294}
295
296static void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
297{
298	BUG_ON(!atomic_read(&eb->read_locks));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299}