Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/sort.h>
9#include "messages.h"
10#include "ctree.h"
11#include "delayed-ref.h"
12#include "extent-tree.h"
13#include "transaction.h"
14#include "qgroup.h"
15#include "space-info.h"
16#include "tree-mod-log.h"
17#include "fs.h"
18
19struct kmem_cache *btrfs_delayed_ref_head_cachep;
20struct kmem_cache *btrfs_delayed_ref_node_cachep;
21struct kmem_cache *btrfs_delayed_extent_op_cachep;
22/*
23 * delayed back reference update tracking. For subvolume trees
24 * we queue up extent allocations and backref maintenance for
25 * delayed processing. This avoids deep call chains where we
26 * add extents in the middle of btrfs_search_slot, and it allows
27 * us to buffer up frequently modified backrefs in an rb tree instead
28 * of hammering updates on the extent allocation tree.
29 */
30
31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32{
33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35 bool ret = false;
36 u64 reserved;
37
38 spin_lock(&global_rsv->lock);
39 reserved = global_rsv->reserved;
40 spin_unlock(&global_rsv->lock);
41
42 /*
43 * Since the global reserve is just kind of magic we don't really want
44 * to rely on it to save our bacon, so if our size is more than the
45 * delayed_refs_rsv and the global rsv then it's time to think about
46 * bailing.
47 */
48 spin_lock(&delayed_refs_rsv->lock);
49 reserved += delayed_refs_rsv->reserved;
50 if (delayed_refs_rsv->size >= reserved)
51 ret = true;
52 spin_unlock(&delayed_refs_rsv->lock);
53 return ret;
54}
55
56/*
57 * Release a ref head's reservation.
58 *
59 * @fs_info: the filesystem
60 * @nr_refs: number of delayed refs to drop
61 * @nr_csums: number of csum items to drop
62 *
63 * Drops the delayed ref head's count from the delayed refs rsv and free any
64 * excess reservation we had.
65 */
66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
67{
68 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
69 u64 num_bytes;
70 u64 released;
71
72 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
73 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
74
75 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
76 if (released)
77 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
78 0, released, 0);
79}
80
81/*
82 * Adjust the size of the delayed refs rsv.
83 *
84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
86 * add it to the delayed_refs_rsv.
87 */
88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
89{
90 struct btrfs_fs_info *fs_info = trans->fs_info;
91 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
92 struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
93 u64 num_bytes;
94 u64 reserved_bytes;
95
96 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
97 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
98 trans->delayed_ref_csum_deletions);
99
100 if (num_bytes == 0)
101 return;
102
103 /*
104 * Try to take num_bytes from the transaction's local delayed reserve.
105 * If not possible, try to take as much as it's available. If the local
106 * reserve doesn't have enough reserved space, the delayed refs reserve
107 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
108 * by someone or if a transaction commit is triggered before that, the
109 * global block reserve will be used. We want to minimize using the
110 * global block reserve for cases we can account for in advance, to
111 * avoid exhausting it and reach -ENOSPC during a transaction commit.
112 */
113 spin_lock(&local_rsv->lock);
114 reserved_bytes = min(num_bytes, local_rsv->reserved);
115 local_rsv->reserved -= reserved_bytes;
116 local_rsv->full = (local_rsv->reserved >= local_rsv->size);
117 spin_unlock(&local_rsv->lock);
118
119 spin_lock(&delayed_rsv->lock);
120 delayed_rsv->size += num_bytes;
121 delayed_rsv->reserved += reserved_bytes;
122 delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
123 spin_unlock(&delayed_rsv->lock);
124 trans->delayed_ref_updates = 0;
125 trans->delayed_ref_csum_deletions = 0;
126}
127
128/*
129 * Adjust the size of the delayed refs block reserve for 1 block group item
130 * insertion, used after allocating a block group.
131 */
132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
133{
134 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
135
136 spin_lock(&delayed_rsv->lock);
137 /*
138 * Inserting a block group item does not require changing the free space
139 * tree, only the extent tree or the block group tree, so this is all we
140 * need.
141 */
142 delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
143 delayed_rsv->full = false;
144 spin_unlock(&delayed_rsv->lock);
145}
146
147/*
148 * Adjust the size of the delayed refs block reserve to release space for 1
149 * block group item insertion.
150 */
151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
152{
153 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
154 const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
155 u64 released;
156
157 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
158 if (released > 0)
159 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
160 0, released, 0);
161}
162
163/*
164 * Adjust the size of the delayed refs block reserve for 1 block group item
165 * update.
166 */
167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
168{
169 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
170
171 spin_lock(&delayed_rsv->lock);
172 /*
173 * Updating a block group item does not result in new nodes/leaves and
174 * does not require changing the free space tree, only the extent tree
175 * or the block group tree, so this is all we need.
176 */
177 delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
178 delayed_rsv->full = false;
179 spin_unlock(&delayed_rsv->lock);
180}
181
182/*
183 * Adjust the size of the delayed refs block reserve to release space for 1
184 * block group item update.
185 */
186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
187{
188 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
189 const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
190 u64 released;
191
192 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
193 if (released > 0)
194 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
195 0, released, 0);
196}
197
198/*
199 * Refill based on our delayed refs usage.
200 *
201 * @fs_info: the filesystem
202 * @flush: control how we can flush for this reservation.
203 *
204 * This will refill the delayed block_rsv up to 1 items size worth of space and
205 * will return -ENOSPC if we can't make the reservation.
206 */
207int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
208 enum btrfs_reserve_flush_enum flush)
209{
210 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
211 struct btrfs_space_info *space_info = block_rsv->space_info;
212 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
213 u64 num_bytes = 0;
214 u64 refilled_bytes;
215 u64 to_free;
216 int ret = -ENOSPC;
217
218 spin_lock(&block_rsv->lock);
219 if (block_rsv->reserved < block_rsv->size) {
220 num_bytes = block_rsv->size - block_rsv->reserved;
221 num_bytes = min(num_bytes, limit);
222 }
223 spin_unlock(&block_rsv->lock);
224
225 if (!num_bytes)
226 return 0;
227
228 ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
229 if (ret)
230 return ret;
231
232 /*
233 * We may have raced with someone else, so check again if we the block
234 * reserve is still not full and release any excess space.
235 */
236 spin_lock(&block_rsv->lock);
237 if (block_rsv->reserved < block_rsv->size) {
238 u64 needed = block_rsv->size - block_rsv->reserved;
239
240 if (num_bytes >= needed) {
241 block_rsv->reserved += needed;
242 block_rsv->full = true;
243 to_free = num_bytes - needed;
244 refilled_bytes = needed;
245 } else {
246 block_rsv->reserved += num_bytes;
247 to_free = 0;
248 refilled_bytes = num_bytes;
249 }
250 } else {
251 to_free = num_bytes;
252 refilled_bytes = 0;
253 }
254 spin_unlock(&block_rsv->lock);
255
256 if (to_free > 0)
257 btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
258
259 if (refilled_bytes > 0)
260 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
261 refilled_bytes, 1);
262 return 0;
263}
264
265/*
266 * compare two delayed data backrefs with same bytenr and type
267 */
268static int comp_data_refs(struct btrfs_delayed_ref_node *ref1,
269 struct btrfs_delayed_ref_node *ref2)
270{
271 if (ref1->data_ref.objectid < ref2->data_ref.objectid)
272 return -1;
273 if (ref1->data_ref.objectid > ref2->data_ref.objectid)
274 return 1;
275 if (ref1->data_ref.offset < ref2->data_ref.offset)
276 return -1;
277 if (ref1->data_ref.offset > ref2->data_ref.offset)
278 return 1;
279 return 0;
280}
281
282static int comp_refs(struct btrfs_delayed_ref_node *ref1,
283 struct btrfs_delayed_ref_node *ref2,
284 bool check_seq)
285{
286 int ret = 0;
287
288 if (ref1->type < ref2->type)
289 return -1;
290 if (ref1->type > ref2->type)
291 return 1;
292 if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
293 ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
294 if (ref1->parent < ref2->parent)
295 return -1;
296 if (ref1->parent > ref2->parent)
297 return 1;
298 } else {
299 if (ref1->ref_root < ref2->ref_root)
300 return -1;
301 if (ref1->ref_root > ref2->ref_root)
302 return 1;
303 if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
304 ret = comp_data_refs(ref1, ref2);
305 }
306 if (ret)
307 return ret;
308 if (check_seq) {
309 if (ref1->seq < ref2->seq)
310 return -1;
311 if (ref1->seq > ref2->seq)
312 return 1;
313 }
314 return 0;
315}
316
317static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
318 struct btrfs_delayed_ref_node *ins)
319{
320 struct rb_node **p = &root->rb_root.rb_node;
321 struct rb_node *node = &ins->ref_node;
322 struct rb_node *parent_node = NULL;
323 struct btrfs_delayed_ref_node *entry;
324 bool leftmost = true;
325
326 while (*p) {
327 int comp;
328
329 parent_node = *p;
330 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
331 ref_node);
332 comp = comp_refs(ins, entry, true);
333 if (comp < 0) {
334 p = &(*p)->rb_left;
335 } else if (comp > 0) {
336 p = &(*p)->rb_right;
337 leftmost = false;
338 } else {
339 return entry;
340 }
341 }
342
343 rb_link_node(node, parent_node, p);
344 rb_insert_color_cached(node, root, leftmost);
345 return NULL;
346}
347
348static struct btrfs_delayed_ref_head *find_first_ref_head(
349 struct btrfs_delayed_ref_root *dr)
350{
351 unsigned long from = 0;
352
353 lockdep_assert_held(&dr->lock);
354
355 return xa_find(&dr->head_refs, &from, ULONG_MAX, XA_PRESENT);
356}
357
358static bool btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
359 struct btrfs_delayed_ref_head *head)
360{
361 lockdep_assert_held(&delayed_refs->lock);
362 if (mutex_trylock(&head->mutex))
363 return true;
364
365 refcount_inc(&head->refs);
366 spin_unlock(&delayed_refs->lock);
367
368 mutex_lock(&head->mutex);
369 spin_lock(&delayed_refs->lock);
370 if (!head->tracked) {
371 mutex_unlock(&head->mutex);
372 btrfs_put_delayed_ref_head(head);
373 return false;
374 }
375 btrfs_put_delayed_ref_head(head);
376 return true;
377}
378
379static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
380 struct btrfs_delayed_ref_root *delayed_refs,
381 struct btrfs_delayed_ref_head *head,
382 struct btrfs_delayed_ref_node *ref)
383{
384 lockdep_assert_held(&head->lock);
385 rb_erase_cached(&ref->ref_node, &head->ref_tree);
386 RB_CLEAR_NODE(&ref->ref_node);
387 if (!list_empty(&ref->add_list))
388 list_del(&ref->add_list);
389 btrfs_put_delayed_ref(ref);
390 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
391}
392
393static bool merge_ref(struct btrfs_fs_info *fs_info,
394 struct btrfs_delayed_ref_root *delayed_refs,
395 struct btrfs_delayed_ref_head *head,
396 struct btrfs_delayed_ref_node *ref,
397 u64 seq)
398{
399 struct btrfs_delayed_ref_node *next;
400 struct rb_node *node = rb_next(&ref->ref_node);
401 bool done = false;
402
403 while (!done && node) {
404 int mod;
405
406 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
407 node = rb_next(node);
408 if (seq && next->seq >= seq)
409 break;
410 if (comp_refs(ref, next, false))
411 break;
412
413 if (ref->action == next->action) {
414 mod = next->ref_mod;
415 } else {
416 if (ref->ref_mod < next->ref_mod) {
417 swap(ref, next);
418 done = true;
419 }
420 mod = -next->ref_mod;
421 }
422
423 drop_delayed_ref(fs_info, delayed_refs, head, next);
424 ref->ref_mod += mod;
425 if (ref->ref_mod == 0) {
426 drop_delayed_ref(fs_info, delayed_refs, head, ref);
427 done = true;
428 } else {
429 /*
430 * Can't have multiples of the same ref on a tree block.
431 */
432 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
433 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
434 }
435 }
436
437 return done;
438}
439
440void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
441 struct btrfs_delayed_ref_root *delayed_refs,
442 struct btrfs_delayed_ref_head *head)
443{
444 struct btrfs_delayed_ref_node *ref;
445 struct rb_node *node;
446 u64 seq = 0;
447
448 lockdep_assert_held(&head->lock);
449
450 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
451 return;
452
453 /* We don't have too many refs to merge for data. */
454 if (head->is_data)
455 return;
456
457 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
458again:
459 for (node = rb_first_cached(&head->ref_tree); node;
460 node = rb_next(node)) {
461 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
462 if (seq && ref->seq >= seq)
463 continue;
464 if (merge_ref(fs_info, delayed_refs, head, ref, seq))
465 goto again;
466 }
467}
468
469int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
470{
471 int ret = 0;
472 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
473
474 if (min_seq != 0 && seq >= min_seq) {
475 btrfs_debug(fs_info,
476 "holding back delayed_ref %llu, lowest is %llu",
477 seq, min_seq);
478 ret = 1;
479 }
480
481 return ret;
482}
483
484struct btrfs_delayed_ref_head *btrfs_select_ref_head(
485 const struct btrfs_fs_info *fs_info,
486 struct btrfs_delayed_ref_root *delayed_refs)
487{
488 struct btrfs_delayed_ref_head *head;
489 unsigned long start_index;
490 unsigned long found_index;
491 bool found_head = false;
492 bool locked;
493
494 spin_lock(&delayed_refs->lock);
495again:
496 start_index = (delayed_refs->run_delayed_start >> fs_info->sectorsize_bits);
497 xa_for_each_start(&delayed_refs->head_refs, found_index, head, start_index) {
498 if (!head->processing) {
499 found_head = true;
500 break;
501 }
502 }
503 if (!found_head) {
504 if (delayed_refs->run_delayed_start == 0) {
505 spin_unlock(&delayed_refs->lock);
506 return NULL;
507 }
508 delayed_refs->run_delayed_start = 0;
509 goto again;
510 }
511
512 head->processing = true;
513 WARN_ON(delayed_refs->num_heads_ready == 0);
514 delayed_refs->num_heads_ready--;
515 delayed_refs->run_delayed_start = head->bytenr +
516 head->num_bytes;
517
518 locked = btrfs_delayed_ref_lock(delayed_refs, head);
519 spin_unlock(&delayed_refs->lock);
520
521 /*
522 * We may have dropped the spin lock to get the head mutex lock, and
523 * that might have given someone else time to free the head. If that's
524 * true, it has been removed from our list and we can move on.
525 */
526 if (!locked)
527 return ERR_PTR(-EAGAIN);
528
529 return head;
530}
531
532void btrfs_unselect_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
533 struct btrfs_delayed_ref_head *head)
534{
535 spin_lock(&delayed_refs->lock);
536 head->processing = false;
537 delayed_refs->num_heads_ready++;
538 spin_unlock(&delayed_refs->lock);
539 btrfs_delayed_ref_unlock(head);
540}
541
542void btrfs_delete_ref_head(const struct btrfs_fs_info *fs_info,
543 struct btrfs_delayed_ref_root *delayed_refs,
544 struct btrfs_delayed_ref_head *head)
545{
546 const unsigned long index = (head->bytenr >> fs_info->sectorsize_bits);
547
548 lockdep_assert_held(&delayed_refs->lock);
549 lockdep_assert_held(&head->lock);
550
551 xa_erase(&delayed_refs->head_refs, index);
552 head->tracked = false;
553 delayed_refs->num_heads--;
554 if (!head->processing)
555 delayed_refs->num_heads_ready--;
556}
557
558/*
559 * Helper to insert the ref_node to the tail or merge with tail.
560 *
561 * Return false if the ref was inserted.
562 * Return true if the ref was merged into an existing one (and therefore can be
563 * freed by the caller).
564 */
565static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
566 struct btrfs_delayed_ref_head *href,
567 struct btrfs_delayed_ref_node *ref)
568{
569 struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
570 struct btrfs_delayed_ref_node *exist;
571 int mod;
572
573 spin_lock(&href->lock);
574 exist = tree_insert(&href->ref_tree, ref);
575 if (!exist) {
576 if (ref->action == BTRFS_ADD_DELAYED_REF)
577 list_add_tail(&ref->add_list, &href->ref_add_list);
578 spin_unlock(&href->lock);
579 trans->delayed_ref_updates++;
580 return false;
581 }
582
583 /* Now we are sure we can merge */
584 if (exist->action == ref->action) {
585 mod = ref->ref_mod;
586 } else {
587 /* Need to change action */
588 if (exist->ref_mod < ref->ref_mod) {
589 exist->action = ref->action;
590 mod = -exist->ref_mod;
591 exist->ref_mod = ref->ref_mod;
592 if (ref->action == BTRFS_ADD_DELAYED_REF)
593 list_add_tail(&exist->add_list,
594 &href->ref_add_list);
595 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
596 ASSERT(!list_empty(&exist->add_list));
597 list_del_init(&exist->add_list);
598 } else {
599 ASSERT(0);
600 }
601 } else
602 mod = -ref->ref_mod;
603 }
604 exist->ref_mod += mod;
605
606 /* remove existing tail if its ref_mod is zero */
607 if (exist->ref_mod == 0)
608 drop_delayed_ref(trans->fs_info, root, href, exist);
609 spin_unlock(&href->lock);
610 return true;
611}
612
613/*
614 * helper function to update the accounting in the head ref
615 * existing and update must have the same bytenr
616 */
617static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
618 struct btrfs_delayed_ref_head *existing,
619 struct btrfs_delayed_ref_head *update)
620{
621 struct btrfs_delayed_ref_root *delayed_refs =
622 &trans->transaction->delayed_refs;
623 struct btrfs_fs_info *fs_info = trans->fs_info;
624 int old_ref_mod;
625
626 BUG_ON(existing->is_data != update->is_data);
627
628 spin_lock(&existing->lock);
629
630 /*
631 * When freeing an extent, we may not know the owning root when we
632 * first create the head_ref. However, some deref before the last deref
633 * will know it, so we just need to update the head_ref accordingly.
634 */
635 if (!existing->owning_root)
636 existing->owning_root = update->owning_root;
637
638 if (update->must_insert_reserved) {
639 /* if the extent was freed and then
640 * reallocated before the delayed ref
641 * entries were processed, we can end up
642 * with an existing head ref without
643 * the must_insert_reserved flag set.
644 * Set it again here
645 */
646 existing->must_insert_reserved = update->must_insert_reserved;
647 existing->owning_root = update->owning_root;
648
649 /*
650 * update the num_bytes so we make sure the accounting
651 * is done correctly
652 */
653 existing->num_bytes = update->num_bytes;
654
655 }
656
657 if (update->extent_op) {
658 if (!existing->extent_op) {
659 existing->extent_op = update->extent_op;
660 } else {
661 if (update->extent_op->update_key) {
662 memcpy(&existing->extent_op->key,
663 &update->extent_op->key,
664 sizeof(update->extent_op->key));
665 existing->extent_op->update_key = true;
666 }
667 if (update->extent_op->update_flags) {
668 existing->extent_op->flags_to_set |=
669 update->extent_op->flags_to_set;
670 existing->extent_op->update_flags = true;
671 }
672 btrfs_free_delayed_extent_op(update->extent_op);
673 }
674 }
675 /*
676 * update the reference mod on the head to reflect this new operation,
677 * only need the lock for this case cause we could be processing it
678 * currently, for refs we just added we know we're a-ok.
679 */
680 old_ref_mod = existing->total_ref_mod;
681 existing->ref_mod += update->ref_mod;
682 existing->total_ref_mod += update->ref_mod;
683
684 /*
685 * If we are going to from a positive ref mod to a negative or vice
686 * versa we need to make sure to adjust pending_csums accordingly.
687 * We reserve bytes for csum deletion when adding or updating a ref head
688 * see add_delayed_ref_head() for more details.
689 */
690 if (existing->is_data) {
691 u64 csum_leaves =
692 btrfs_csum_bytes_to_leaves(fs_info,
693 existing->num_bytes);
694
695 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
696 delayed_refs->pending_csums -= existing->num_bytes;
697 btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
698 }
699 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
700 delayed_refs->pending_csums += existing->num_bytes;
701 trans->delayed_ref_csum_deletions += csum_leaves;
702 }
703 }
704
705 spin_unlock(&existing->lock);
706}
707
708static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
709 struct btrfs_ref *generic_ref,
710 struct btrfs_qgroup_extent_record *qrecord,
711 u64 reserved)
712{
713 int count_mod = 1;
714 bool must_insert_reserved = false;
715
716 /* If reserved is provided, it must be a data extent. */
717 BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
718
719 switch (generic_ref->action) {
720 case BTRFS_ADD_DELAYED_REF:
721 /* count_mod is already set to 1. */
722 break;
723 case BTRFS_UPDATE_DELAYED_HEAD:
724 count_mod = 0;
725 break;
726 case BTRFS_DROP_DELAYED_REF:
727 /*
728 * The head node stores the sum of all the mods, so dropping a ref
729 * should drop the sum in the head node by one.
730 */
731 count_mod = -1;
732 break;
733 case BTRFS_ADD_DELAYED_EXTENT:
734 /*
735 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
736 * reserved accounting when the extent is finally added, or if a
737 * later modification deletes the delayed ref without ever
738 * inserting the extent into the extent allocation tree.
739 * ref->must_insert_reserved is the flag used to record that
740 * accounting mods are required.
741 *
742 * Once we record must_insert_reserved, switch the action to
743 * BTRFS_ADD_DELAYED_REF because other special casing is not
744 * required.
745 */
746 must_insert_reserved = true;
747 break;
748 }
749
750 refcount_set(&head_ref->refs, 1);
751 head_ref->bytenr = generic_ref->bytenr;
752 head_ref->num_bytes = generic_ref->num_bytes;
753 head_ref->ref_mod = count_mod;
754 head_ref->reserved_bytes = reserved;
755 head_ref->must_insert_reserved = must_insert_reserved;
756 head_ref->owning_root = generic_ref->owning_root;
757 head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
758 head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
759 head_ref->ref_tree = RB_ROOT_CACHED;
760 INIT_LIST_HEAD(&head_ref->ref_add_list);
761 head_ref->tracked = false;
762 head_ref->processing = false;
763 head_ref->total_ref_mod = count_mod;
764 spin_lock_init(&head_ref->lock);
765 mutex_init(&head_ref->mutex);
766
767 /* If not metadata set an impossible level to help debugging. */
768 if (generic_ref->type == BTRFS_REF_METADATA)
769 head_ref->level = generic_ref->tree_ref.level;
770 else
771 head_ref->level = U8_MAX;
772
773 if (qrecord) {
774 if (generic_ref->ref_root && reserved) {
775 qrecord->data_rsv = reserved;
776 qrecord->data_rsv_refroot = generic_ref->ref_root;
777 }
778 qrecord->num_bytes = generic_ref->num_bytes;
779 qrecord->old_roots = NULL;
780 }
781}
782
783/*
784 * helper function to actually insert a head node into the rbtree.
785 * this does all the dirty work in terms of maintaining the correct
786 * overall modification count.
787 *
788 * Returns an error pointer in case of an error.
789 */
790static noinline struct btrfs_delayed_ref_head *
791add_delayed_ref_head(struct btrfs_trans_handle *trans,
792 struct btrfs_delayed_ref_head *head_ref,
793 struct btrfs_qgroup_extent_record *qrecord,
794 int action, bool *qrecord_inserted_ret)
795{
796 struct btrfs_fs_info *fs_info = trans->fs_info;
797 struct btrfs_delayed_ref_head *existing;
798 struct btrfs_delayed_ref_root *delayed_refs;
799 const unsigned long index = (head_ref->bytenr >> fs_info->sectorsize_bits);
800 bool qrecord_inserted = false;
801
802 delayed_refs = &trans->transaction->delayed_refs;
803 lockdep_assert_held(&delayed_refs->lock);
804
805#if BITS_PER_LONG == 32
806 if (head_ref->bytenr >= MAX_LFS_FILESIZE) {
807 if (qrecord)
808 xa_release(&delayed_refs->dirty_extents, index);
809 btrfs_err_rl(fs_info,
810"delayed ref head %llu is beyond 32bit page cache and xarray index limit",
811 head_ref->bytenr);
812 btrfs_err_32bit_limit(fs_info);
813 return ERR_PTR(-EOVERFLOW);
814 }
815#endif
816
817 /* Record qgroup extent info if provided */
818 if (qrecord) {
819 int ret;
820
821 ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord,
822 head_ref->bytenr);
823 if (ret) {
824 /* Clean up if insertion fails or item exists. */
825 xa_release(&delayed_refs->dirty_extents, index);
826 /* Caller responsible for freeing qrecord on error. */
827 if (ret < 0)
828 return ERR_PTR(ret);
829 kfree(qrecord);
830 } else {
831 qrecord_inserted = true;
832 }
833 }
834
835 trace_add_delayed_ref_head(fs_info, head_ref, action);
836
837 existing = xa_load(&delayed_refs->head_refs, index);
838 if (existing) {
839 update_existing_head_ref(trans, existing, head_ref);
840 /*
841 * we've updated the existing ref, free the newly
842 * allocated ref
843 */
844 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
845 head_ref = existing;
846 } else {
847 existing = xa_store(&delayed_refs->head_refs, index, head_ref, GFP_ATOMIC);
848 if (xa_is_err(existing)) {
849 /* Memory was preallocated by the caller. */
850 ASSERT(xa_err(existing) != -ENOMEM);
851 return ERR_PTR(xa_err(existing));
852 } else if (WARN_ON(existing)) {
853 /*
854 * Shouldn't happen we just did a lookup before under
855 * delayed_refs->lock.
856 */
857 return ERR_PTR(-EEXIST);
858 }
859 head_ref->tracked = true;
860 /*
861 * We reserve the amount of bytes needed to delete csums when
862 * adding the ref head and not when adding individual drop refs
863 * since the csum items are deleted only after running the last
864 * delayed drop ref (the data extent's ref count drops to 0).
865 */
866 if (head_ref->is_data && head_ref->ref_mod < 0) {
867 delayed_refs->pending_csums += head_ref->num_bytes;
868 trans->delayed_ref_csum_deletions +=
869 btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes);
870 }
871 delayed_refs->num_heads++;
872 delayed_refs->num_heads_ready++;
873 }
874 if (qrecord_inserted_ret)
875 *qrecord_inserted_ret = qrecord_inserted;
876
877 return head_ref;
878}
879
880/*
881 * Initialize the structure which represents a modification to a an extent.
882 *
883 * @fs_info: Internal to the mounted filesystem mount structure.
884 *
885 * @ref: The structure which is going to be initialized.
886 *
887 * @bytenr: The logical address of the extent for which a modification is
888 * going to be recorded.
889 *
890 * @num_bytes: Size of the extent whose modification is being recorded.
891 *
892 * @ref_root: The id of the root where this modification has originated, this
893 * can be either one of the well-known metadata trees or the
894 * subvolume id which references this extent.
895 *
896 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
897 * BTRFS_ADD_DELAYED_EXTENT
898 *
899 * @ref_type: Holds the type of the extent which is being recorded, can be
900 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
901 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
902 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
903 */
904static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
905 struct btrfs_delayed_ref_node *ref,
906 struct btrfs_ref *generic_ref)
907{
908 int action = generic_ref->action;
909 u64 seq = 0;
910
911 if (action == BTRFS_ADD_DELAYED_EXTENT)
912 action = BTRFS_ADD_DELAYED_REF;
913
914 if (is_fstree(generic_ref->ref_root))
915 seq = atomic64_read(&fs_info->tree_mod_seq);
916
917 refcount_set(&ref->refs, 1);
918 ref->bytenr = generic_ref->bytenr;
919 ref->num_bytes = generic_ref->num_bytes;
920 ref->ref_mod = 1;
921 ref->action = action;
922 ref->seq = seq;
923 ref->type = btrfs_ref_type(generic_ref);
924 ref->ref_root = generic_ref->ref_root;
925 ref->parent = generic_ref->parent;
926 RB_CLEAR_NODE(&ref->ref_node);
927 INIT_LIST_HEAD(&ref->add_list);
928
929 if (generic_ref->type == BTRFS_REF_DATA)
930 ref->data_ref = generic_ref->data_ref;
931 else
932 ref->tree_ref = generic_ref->tree_ref;
933}
934
935void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
936 bool skip_qgroup)
937{
938#ifdef CONFIG_BTRFS_FS_REF_VERIFY
939 /* If @real_root not set, use @root as fallback */
940 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
941#endif
942 generic_ref->tree_ref.level = level;
943 generic_ref->type = BTRFS_REF_METADATA;
944 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
945 (!mod_root || is_fstree(mod_root))))
946 generic_ref->skip_qgroup = true;
947 else
948 generic_ref->skip_qgroup = false;
949
950}
951
952void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
953 u64 mod_root, bool skip_qgroup)
954{
955#ifdef CONFIG_BTRFS_FS_REF_VERIFY
956 /* If @real_root not set, use @root as fallback */
957 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
958#endif
959 generic_ref->data_ref.objectid = ino;
960 generic_ref->data_ref.offset = offset;
961 generic_ref->type = BTRFS_REF_DATA;
962 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
963 (!mod_root || is_fstree(mod_root))))
964 generic_ref->skip_qgroup = true;
965 else
966 generic_ref->skip_qgroup = false;
967}
968
969static int add_delayed_ref(struct btrfs_trans_handle *trans,
970 struct btrfs_ref *generic_ref,
971 struct btrfs_delayed_extent_op *extent_op,
972 u64 reserved)
973{
974 struct btrfs_fs_info *fs_info = trans->fs_info;
975 struct btrfs_delayed_ref_node *node;
976 struct btrfs_delayed_ref_head *head_ref;
977 struct btrfs_delayed_ref_head *new_head_ref;
978 struct btrfs_delayed_ref_root *delayed_refs;
979 struct btrfs_qgroup_extent_record *record = NULL;
980 const unsigned long index = (generic_ref->bytenr >> fs_info->sectorsize_bits);
981 bool qrecord_reserved = false;
982 bool qrecord_inserted;
983 int action = generic_ref->action;
984 bool merged;
985 int ret;
986
987 node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
988 if (!node)
989 return -ENOMEM;
990
991 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
992 if (!head_ref) {
993 ret = -ENOMEM;
994 goto free_node;
995 }
996
997 delayed_refs = &trans->transaction->delayed_refs;
998
999 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1000 record = kzalloc(sizeof(*record), GFP_NOFS);
1001 if (!record) {
1002 ret = -ENOMEM;
1003 goto free_head_ref;
1004 }
1005 if (xa_reserve(&delayed_refs->dirty_extents, index, GFP_NOFS)) {
1006 ret = -ENOMEM;
1007 goto free_record;
1008 }
1009 qrecord_reserved = true;
1010 }
1011
1012 ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1013 if (ret) {
1014 if (qrecord_reserved)
1015 xa_release(&delayed_refs->dirty_extents, index);
1016 goto free_record;
1017 }
1018
1019 init_delayed_ref_common(fs_info, node, generic_ref);
1020 init_delayed_ref_head(head_ref, generic_ref, record, reserved);
1021 head_ref->extent_op = extent_op;
1022
1023 spin_lock(&delayed_refs->lock);
1024
1025 /*
1026 * insert both the head node and the new ref without dropping
1027 * the spin lock
1028 */
1029 new_head_ref = add_delayed_ref_head(trans, head_ref, record,
1030 action, &qrecord_inserted);
1031 if (IS_ERR(new_head_ref)) {
1032 xa_release(&delayed_refs->head_refs, index);
1033 spin_unlock(&delayed_refs->lock);
1034 ret = PTR_ERR(new_head_ref);
1035 goto free_record;
1036 }
1037 head_ref = new_head_ref;
1038
1039 merged = insert_delayed_ref(trans, head_ref, node);
1040 spin_unlock(&delayed_refs->lock);
1041
1042 /*
1043 * Need to update the delayed_refs_rsv with any changes we may have
1044 * made.
1045 */
1046 btrfs_update_delayed_refs_rsv(trans);
1047
1048 if (generic_ref->type == BTRFS_REF_DATA)
1049 trace_add_delayed_data_ref(trans->fs_info, node);
1050 else
1051 trace_add_delayed_tree_ref(trans->fs_info, node);
1052 if (merged)
1053 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1054
1055 if (qrecord_inserted)
1056 return btrfs_qgroup_trace_extent_post(trans, record, generic_ref->bytenr);
1057 return 0;
1058
1059free_record:
1060 kfree(record);
1061free_head_ref:
1062 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1063free_node:
1064 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1065 return ret;
1066}
1067
1068/*
1069 * Add a delayed tree ref. This does all of the accounting required to make sure
1070 * the delayed ref is eventually processed before this transaction commits.
1071 */
1072int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_ref *generic_ref,
1074 struct btrfs_delayed_extent_op *extent_op)
1075{
1076 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1077 return add_delayed_ref(trans, generic_ref, extent_op, 0);
1078}
1079
1080/*
1081 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1082 */
1083int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1084 struct btrfs_ref *generic_ref,
1085 u64 reserved)
1086{
1087 ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1088 return add_delayed_ref(trans, generic_ref, NULL, reserved);
1089}
1090
1091int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1092 u64 bytenr, u64 num_bytes, u8 level,
1093 struct btrfs_delayed_extent_op *extent_op)
1094{
1095 const unsigned long index = (bytenr >> trans->fs_info->sectorsize_bits);
1096 struct btrfs_delayed_ref_head *head_ref;
1097 struct btrfs_delayed_ref_head *head_ref_ret;
1098 struct btrfs_delayed_ref_root *delayed_refs;
1099 struct btrfs_ref generic_ref = {
1100 .type = BTRFS_REF_METADATA,
1101 .action = BTRFS_UPDATE_DELAYED_HEAD,
1102 .bytenr = bytenr,
1103 .num_bytes = num_bytes,
1104 .tree_ref.level = level,
1105 };
1106 int ret;
1107
1108 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1109 if (!head_ref)
1110 return -ENOMEM;
1111
1112 init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1113 head_ref->extent_op = extent_op;
1114
1115 delayed_refs = &trans->transaction->delayed_refs;
1116
1117 ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1118 if (ret) {
1119 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1120 return ret;
1121 }
1122
1123 spin_lock(&delayed_refs->lock);
1124 head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL,
1125 BTRFS_UPDATE_DELAYED_HEAD, NULL);
1126 if (IS_ERR(head_ref_ret)) {
1127 xa_release(&delayed_refs->head_refs, index);
1128 spin_unlock(&delayed_refs->lock);
1129 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1130 return PTR_ERR(head_ref_ret);
1131 }
1132 spin_unlock(&delayed_refs->lock);
1133
1134 /*
1135 * Need to update the delayed_refs_rsv with any changes we may have
1136 * made.
1137 */
1138 btrfs_update_delayed_refs_rsv(trans);
1139 return 0;
1140}
1141
1142void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1143{
1144 if (refcount_dec_and_test(&ref->refs)) {
1145 WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1146 kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1147 }
1148}
1149
1150/*
1151 * This does a simple search for the head node for a given extent. Returns the
1152 * head node if found, or NULL if not.
1153 */
1154struct btrfs_delayed_ref_head *
1155btrfs_find_delayed_ref_head(const struct btrfs_fs_info *fs_info,
1156 struct btrfs_delayed_ref_root *delayed_refs,
1157 u64 bytenr)
1158{
1159 const unsigned long index = (bytenr >> fs_info->sectorsize_bits);
1160
1161 lockdep_assert_held(&delayed_refs->lock);
1162
1163 return xa_load(&delayed_refs->head_refs, index);
1164}
1165
1166static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent)
1167{
1168 int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY;
1169
1170 if (type < entry->type)
1171 return -1;
1172 if (type > entry->type)
1173 return 1;
1174
1175 if (type == BTRFS_TREE_BLOCK_REF_KEY) {
1176 if (root < entry->ref_root)
1177 return -1;
1178 if (root > entry->ref_root)
1179 return 1;
1180 } else {
1181 if (parent < entry->parent)
1182 return -1;
1183 if (parent > entry->parent)
1184 return 1;
1185 }
1186 return 0;
1187}
1188
1189/*
1190 * Check to see if a given root/parent reference is attached to the head. This
1191 * only checks for BTRFS_ADD_DELAYED_REF references that match, as that
1192 * indicates the reference exists for the given root or parent. This is for
1193 * tree blocks only.
1194 *
1195 * @head: the head of the bytenr we're searching.
1196 * @root: the root objectid of the reference if it is a normal reference.
1197 * @parent: the parent if this is a shared backref.
1198 */
1199bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
1200 u64 root, u64 parent)
1201{
1202 struct rb_node *node;
1203 bool found = false;
1204
1205 lockdep_assert_held(&head->mutex);
1206
1207 spin_lock(&head->lock);
1208 node = head->ref_tree.rb_root.rb_node;
1209 while (node) {
1210 struct btrfs_delayed_ref_node *entry;
1211 int ret;
1212
1213 entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
1214 ret = find_comp(entry, root, parent);
1215 if (ret < 0) {
1216 node = node->rb_left;
1217 } else if (ret > 0) {
1218 node = node->rb_right;
1219 } else {
1220 /*
1221 * We only want to count ADD actions, as drops mean the
1222 * ref doesn't exist.
1223 */
1224 if (entry->action == BTRFS_ADD_DELAYED_REF)
1225 found = true;
1226 break;
1227 }
1228 }
1229 spin_unlock(&head->lock);
1230 return found;
1231}
1232
1233void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans)
1234{
1235 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
1236 struct btrfs_fs_info *fs_info = trans->fs_info;
1237
1238 spin_lock(&delayed_refs->lock);
1239 while (true) {
1240 struct btrfs_delayed_ref_head *head;
1241 struct rb_node *n;
1242 bool pin_bytes = false;
1243
1244 head = find_first_ref_head(delayed_refs);
1245 if (!head)
1246 break;
1247
1248 if (!btrfs_delayed_ref_lock(delayed_refs, head))
1249 continue;
1250
1251 spin_lock(&head->lock);
1252 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
1253 struct btrfs_delayed_ref_node *ref;
1254
1255 ref = rb_entry(n, struct btrfs_delayed_ref_node, ref_node);
1256 drop_delayed_ref(fs_info, delayed_refs, head, ref);
1257 }
1258 if (head->must_insert_reserved)
1259 pin_bytes = true;
1260 btrfs_free_delayed_extent_op(head->extent_op);
1261 btrfs_delete_ref_head(fs_info, delayed_refs, head);
1262 spin_unlock(&head->lock);
1263 spin_unlock(&delayed_refs->lock);
1264 mutex_unlock(&head->mutex);
1265
1266 if (pin_bytes) {
1267 struct btrfs_block_group *bg;
1268
1269 bg = btrfs_lookup_block_group(fs_info, head->bytenr);
1270 if (WARN_ON_ONCE(bg == NULL)) {
1271 /*
1272 * Unexpected and there's nothing we can do here
1273 * because we are in a transaction abort path,
1274 * so any errors can only be ignored or reported
1275 * while attempting to cleanup all resources.
1276 */
1277 btrfs_err(fs_info,
1278"block group for delayed ref at %llu was not found while destroying ref head",
1279 head->bytenr);
1280 } else {
1281 spin_lock(&bg->space_info->lock);
1282 spin_lock(&bg->lock);
1283 bg->pinned += head->num_bytes;
1284 btrfs_space_info_update_bytes_pinned(fs_info,
1285 bg->space_info,
1286 head->num_bytes);
1287 bg->reserved -= head->num_bytes;
1288 bg->space_info->bytes_reserved -= head->num_bytes;
1289 spin_unlock(&bg->lock);
1290 spin_unlock(&bg->space_info->lock);
1291
1292 btrfs_put_block_group(bg);
1293 }
1294
1295 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
1296 head->bytenr + head->num_bytes - 1);
1297 }
1298 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1299 btrfs_put_delayed_ref_head(head);
1300 cond_resched();
1301 spin_lock(&delayed_refs->lock);
1302 }
1303 btrfs_qgroup_destroy_extent_records(trans);
1304
1305 spin_unlock(&delayed_refs->lock);
1306}
1307
1308void __cold btrfs_delayed_ref_exit(void)
1309{
1310 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1311 kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
1312 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1313}
1314
1315int __init btrfs_delayed_ref_init(void)
1316{
1317 btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1318 if (!btrfs_delayed_ref_head_cachep)
1319 goto fail;
1320
1321 btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1322 if (!btrfs_delayed_ref_node_cachep)
1323 goto fail;
1324
1325 btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1326 if (!btrfs_delayed_extent_op_cachep)
1327 goto fail;
1328
1329 return 0;
1330fail:
1331 btrfs_delayed_ref_exit();
1332 return -ENOMEM;
1333}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/sort.h>
9#include "messages.h"
10#include "ctree.h"
11#include "delayed-ref.h"
12#include "transaction.h"
13#include "qgroup.h"
14#include "space-info.h"
15#include "tree-mod-log.h"
16#include "fs.h"
17
18struct kmem_cache *btrfs_delayed_ref_head_cachep;
19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
20struct kmem_cache *btrfs_delayed_data_ref_cachep;
21struct kmem_cache *btrfs_delayed_extent_op_cachep;
22/*
23 * delayed back reference update tracking. For subvolume trees
24 * we queue up extent allocations and backref maintenance for
25 * delayed processing. This avoids deep call chains where we
26 * add extents in the middle of btrfs_search_slot, and it allows
27 * us to buffer up frequently modified backrefs in an rb tree instead
28 * of hammering updates on the extent allocation tree.
29 */
30
31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32{
33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35 bool ret = false;
36 u64 reserved;
37
38 spin_lock(&global_rsv->lock);
39 reserved = global_rsv->reserved;
40 spin_unlock(&global_rsv->lock);
41
42 /*
43 * Since the global reserve is just kind of magic we don't really want
44 * to rely on it to save our bacon, so if our size is more than the
45 * delayed_refs_rsv and the global rsv then it's time to think about
46 * bailing.
47 */
48 spin_lock(&delayed_refs_rsv->lock);
49 reserved += delayed_refs_rsv->reserved;
50 if (delayed_refs_rsv->size >= reserved)
51 ret = true;
52 spin_unlock(&delayed_refs_rsv->lock);
53 return ret;
54}
55
56/*
57 * Release a ref head's reservation.
58 *
59 * @fs_info: the filesystem
60 * @nr_refs: number of delayed refs to drop
61 * @nr_csums: number of csum items to drop
62 *
63 * Drops the delayed ref head's count from the delayed refs rsv and free any
64 * excess reservation we had.
65 */
66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
67{
68 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
69 u64 num_bytes;
70 u64 released;
71
72 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
73 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
74
75 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
76 if (released)
77 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
78 0, released, 0);
79}
80
81/*
82 * Adjust the size of the delayed refs rsv.
83 *
84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
86 * add it to the delayed_refs_rsv.
87 */
88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
89{
90 struct btrfs_fs_info *fs_info = trans->fs_info;
91 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
92 struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
93 u64 num_bytes;
94 u64 reserved_bytes;
95
96 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
97 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
98 trans->delayed_ref_csum_deletions);
99
100 if (num_bytes == 0)
101 return;
102
103 /*
104 * Try to take num_bytes from the transaction's local delayed reserve.
105 * If not possible, try to take as much as it's available. If the local
106 * reserve doesn't have enough reserved space, the delayed refs reserve
107 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
108 * by someone or if a transaction commit is triggered before that, the
109 * global block reserve will be used. We want to minimize using the
110 * global block reserve for cases we can account for in advance, to
111 * avoid exhausting it and reach -ENOSPC during a transaction commit.
112 */
113 spin_lock(&local_rsv->lock);
114 reserved_bytes = min(num_bytes, local_rsv->reserved);
115 local_rsv->reserved -= reserved_bytes;
116 local_rsv->full = (local_rsv->reserved >= local_rsv->size);
117 spin_unlock(&local_rsv->lock);
118
119 spin_lock(&delayed_rsv->lock);
120 delayed_rsv->size += num_bytes;
121 delayed_rsv->reserved += reserved_bytes;
122 delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
123 spin_unlock(&delayed_rsv->lock);
124 trans->delayed_ref_updates = 0;
125 trans->delayed_ref_csum_deletions = 0;
126}
127
128/*
129 * Adjust the size of the delayed refs block reserve for 1 block group item
130 * insertion, used after allocating a block group.
131 */
132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
133{
134 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
135
136 spin_lock(&delayed_rsv->lock);
137 /*
138 * Inserting a block group item does not require changing the free space
139 * tree, only the extent tree or the block group tree, so this is all we
140 * need.
141 */
142 delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
143 delayed_rsv->full = false;
144 spin_unlock(&delayed_rsv->lock);
145}
146
147/*
148 * Adjust the size of the delayed refs block reserve to release space for 1
149 * block group item insertion.
150 */
151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
152{
153 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
154 const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
155 u64 released;
156
157 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
158 if (released > 0)
159 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
160 0, released, 0);
161}
162
163/*
164 * Adjust the size of the delayed refs block reserve for 1 block group item
165 * update.
166 */
167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
168{
169 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
170
171 spin_lock(&delayed_rsv->lock);
172 /*
173 * Updating a block group item does not result in new nodes/leaves and
174 * does not require changing the free space tree, only the extent tree
175 * or the block group tree, so this is all we need.
176 */
177 delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
178 delayed_rsv->full = false;
179 spin_unlock(&delayed_rsv->lock);
180}
181
182/*
183 * Adjust the size of the delayed refs block reserve to release space for 1
184 * block group item update.
185 */
186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
187{
188 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
189 const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
190 u64 released;
191
192 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
193 if (released > 0)
194 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
195 0, released, 0);
196}
197
198/*
199 * Transfer bytes to our delayed refs rsv.
200 *
201 * @fs_info: the filesystem
202 * @num_bytes: number of bytes to transfer
203 *
204 * This transfers up to the num_bytes amount, previously reserved, to the
205 * delayed_refs_rsv. Any extra bytes are returned to the space info.
206 */
207void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
208 u64 num_bytes)
209{
210 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
211 u64 to_free = 0;
212
213 spin_lock(&delayed_refs_rsv->lock);
214 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
215 u64 delta = delayed_refs_rsv->size -
216 delayed_refs_rsv->reserved;
217 if (num_bytes > delta) {
218 to_free = num_bytes - delta;
219 num_bytes = delta;
220 }
221 } else {
222 to_free = num_bytes;
223 num_bytes = 0;
224 }
225
226 if (num_bytes)
227 delayed_refs_rsv->reserved += num_bytes;
228 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
229 delayed_refs_rsv->full = true;
230 spin_unlock(&delayed_refs_rsv->lock);
231
232 if (num_bytes)
233 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
234 0, num_bytes, 1);
235 if (to_free)
236 btrfs_space_info_free_bytes_may_use(fs_info,
237 delayed_refs_rsv->space_info, to_free);
238}
239
240/*
241 * Refill based on our delayed refs usage.
242 *
243 * @fs_info: the filesystem
244 * @flush: control how we can flush for this reservation.
245 *
246 * This will refill the delayed block_rsv up to 1 items size worth of space and
247 * will return -ENOSPC if we can't make the reservation.
248 */
249int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
250 enum btrfs_reserve_flush_enum flush)
251{
252 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
253 struct btrfs_space_info *space_info = block_rsv->space_info;
254 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
255 u64 num_bytes = 0;
256 u64 refilled_bytes;
257 u64 to_free;
258 int ret = -ENOSPC;
259
260 spin_lock(&block_rsv->lock);
261 if (block_rsv->reserved < block_rsv->size) {
262 num_bytes = block_rsv->size - block_rsv->reserved;
263 num_bytes = min(num_bytes, limit);
264 }
265 spin_unlock(&block_rsv->lock);
266
267 if (!num_bytes)
268 return 0;
269
270 ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
271 if (ret)
272 return ret;
273
274 /*
275 * We may have raced with someone else, so check again if we the block
276 * reserve is still not full and release any excess space.
277 */
278 spin_lock(&block_rsv->lock);
279 if (block_rsv->reserved < block_rsv->size) {
280 u64 needed = block_rsv->size - block_rsv->reserved;
281
282 if (num_bytes >= needed) {
283 block_rsv->reserved += needed;
284 block_rsv->full = true;
285 to_free = num_bytes - needed;
286 refilled_bytes = needed;
287 } else {
288 block_rsv->reserved += num_bytes;
289 to_free = 0;
290 refilled_bytes = num_bytes;
291 }
292 } else {
293 to_free = num_bytes;
294 refilled_bytes = 0;
295 }
296 spin_unlock(&block_rsv->lock);
297
298 if (to_free > 0)
299 btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
300
301 if (refilled_bytes > 0)
302 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
303 refilled_bytes, 1);
304 return 0;
305}
306
307/*
308 * compare two delayed tree backrefs with same bytenr and type
309 */
310static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
311 struct btrfs_delayed_tree_ref *ref2)
312{
313 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
314 if (ref1->root < ref2->root)
315 return -1;
316 if (ref1->root > ref2->root)
317 return 1;
318 } else {
319 if (ref1->parent < ref2->parent)
320 return -1;
321 if (ref1->parent > ref2->parent)
322 return 1;
323 }
324 return 0;
325}
326
327/*
328 * compare two delayed data backrefs with same bytenr and type
329 */
330static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
331 struct btrfs_delayed_data_ref *ref2)
332{
333 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
334 if (ref1->root < ref2->root)
335 return -1;
336 if (ref1->root > ref2->root)
337 return 1;
338 if (ref1->objectid < ref2->objectid)
339 return -1;
340 if (ref1->objectid > ref2->objectid)
341 return 1;
342 if (ref1->offset < ref2->offset)
343 return -1;
344 if (ref1->offset > ref2->offset)
345 return 1;
346 } else {
347 if (ref1->parent < ref2->parent)
348 return -1;
349 if (ref1->parent > ref2->parent)
350 return 1;
351 }
352 return 0;
353}
354
355static int comp_refs(struct btrfs_delayed_ref_node *ref1,
356 struct btrfs_delayed_ref_node *ref2,
357 bool check_seq)
358{
359 int ret = 0;
360
361 if (ref1->type < ref2->type)
362 return -1;
363 if (ref1->type > ref2->type)
364 return 1;
365 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
366 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
367 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
368 btrfs_delayed_node_to_tree_ref(ref2));
369 else
370 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
371 btrfs_delayed_node_to_data_ref(ref2));
372 if (ret)
373 return ret;
374 if (check_seq) {
375 if (ref1->seq < ref2->seq)
376 return -1;
377 if (ref1->seq > ref2->seq)
378 return 1;
379 }
380 return 0;
381}
382
383/* insert a new ref to head ref rbtree */
384static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
385 struct rb_node *node)
386{
387 struct rb_node **p = &root->rb_root.rb_node;
388 struct rb_node *parent_node = NULL;
389 struct btrfs_delayed_ref_head *entry;
390 struct btrfs_delayed_ref_head *ins;
391 u64 bytenr;
392 bool leftmost = true;
393
394 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
395 bytenr = ins->bytenr;
396 while (*p) {
397 parent_node = *p;
398 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
399 href_node);
400
401 if (bytenr < entry->bytenr) {
402 p = &(*p)->rb_left;
403 } else if (bytenr > entry->bytenr) {
404 p = &(*p)->rb_right;
405 leftmost = false;
406 } else {
407 return entry;
408 }
409 }
410
411 rb_link_node(node, parent_node, p);
412 rb_insert_color_cached(node, root, leftmost);
413 return NULL;
414}
415
416static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
417 struct btrfs_delayed_ref_node *ins)
418{
419 struct rb_node **p = &root->rb_root.rb_node;
420 struct rb_node *node = &ins->ref_node;
421 struct rb_node *parent_node = NULL;
422 struct btrfs_delayed_ref_node *entry;
423 bool leftmost = true;
424
425 while (*p) {
426 int comp;
427
428 parent_node = *p;
429 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
430 ref_node);
431 comp = comp_refs(ins, entry, true);
432 if (comp < 0) {
433 p = &(*p)->rb_left;
434 } else if (comp > 0) {
435 p = &(*p)->rb_right;
436 leftmost = false;
437 } else {
438 return entry;
439 }
440 }
441
442 rb_link_node(node, parent_node, p);
443 rb_insert_color_cached(node, root, leftmost);
444 return NULL;
445}
446
447static struct btrfs_delayed_ref_head *find_first_ref_head(
448 struct btrfs_delayed_ref_root *dr)
449{
450 struct rb_node *n;
451 struct btrfs_delayed_ref_head *entry;
452
453 n = rb_first_cached(&dr->href_root);
454 if (!n)
455 return NULL;
456
457 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
458
459 return entry;
460}
461
462/*
463 * Find a head entry based on bytenr. This returns the delayed ref head if it
464 * was able to find one, or NULL if nothing was in that spot. If return_bigger
465 * is given, the next bigger entry is returned if no exact match is found.
466 */
467static struct btrfs_delayed_ref_head *find_ref_head(
468 struct btrfs_delayed_ref_root *dr, u64 bytenr,
469 bool return_bigger)
470{
471 struct rb_root *root = &dr->href_root.rb_root;
472 struct rb_node *n;
473 struct btrfs_delayed_ref_head *entry;
474
475 n = root->rb_node;
476 entry = NULL;
477 while (n) {
478 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
479
480 if (bytenr < entry->bytenr)
481 n = n->rb_left;
482 else if (bytenr > entry->bytenr)
483 n = n->rb_right;
484 else
485 return entry;
486 }
487 if (entry && return_bigger) {
488 if (bytenr > entry->bytenr) {
489 n = rb_next(&entry->href_node);
490 if (!n)
491 return NULL;
492 entry = rb_entry(n, struct btrfs_delayed_ref_head,
493 href_node);
494 }
495 return entry;
496 }
497 return NULL;
498}
499
500int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
501 struct btrfs_delayed_ref_head *head)
502{
503 lockdep_assert_held(&delayed_refs->lock);
504 if (mutex_trylock(&head->mutex))
505 return 0;
506
507 refcount_inc(&head->refs);
508 spin_unlock(&delayed_refs->lock);
509
510 mutex_lock(&head->mutex);
511 spin_lock(&delayed_refs->lock);
512 if (RB_EMPTY_NODE(&head->href_node)) {
513 mutex_unlock(&head->mutex);
514 btrfs_put_delayed_ref_head(head);
515 return -EAGAIN;
516 }
517 btrfs_put_delayed_ref_head(head);
518 return 0;
519}
520
521static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
522 struct btrfs_delayed_ref_root *delayed_refs,
523 struct btrfs_delayed_ref_head *head,
524 struct btrfs_delayed_ref_node *ref)
525{
526 lockdep_assert_held(&head->lock);
527 rb_erase_cached(&ref->ref_node, &head->ref_tree);
528 RB_CLEAR_NODE(&ref->ref_node);
529 if (!list_empty(&ref->add_list))
530 list_del(&ref->add_list);
531 btrfs_put_delayed_ref(ref);
532 atomic_dec(&delayed_refs->num_entries);
533 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
534}
535
536static bool merge_ref(struct btrfs_fs_info *fs_info,
537 struct btrfs_delayed_ref_root *delayed_refs,
538 struct btrfs_delayed_ref_head *head,
539 struct btrfs_delayed_ref_node *ref,
540 u64 seq)
541{
542 struct btrfs_delayed_ref_node *next;
543 struct rb_node *node = rb_next(&ref->ref_node);
544 bool done = false;
545
546 while (!done && node) {
547 int mod;
548
549 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
550 node = rb_next(node);
551 if (seq && next->seq >= seq)
552 break;
553 if (comp_refs(ref, next, false))
554 break;
555
556 if (ref->action == next->action) {
557 mod = next->ref_mod;
558 } else {
559 if (ref->ref_mod < next->ref_mod) {
560 swap(ref, next);
561 done = true;
562 }
563 mod = -next->ref_mod;
564 }
565
566 drop_delayed_ref(fs_info, delayed_refs, head, next);
567 ref->ref_mod += mod;
568 if (ref->ref_mod == 0) {
569 drop_delayed_ref(fs_info, delayed_refs, head, ref);
570 done = true;
571 } else {
572 /*
573 * Can't have multiples of the same ref on a tree block.
574 */
575 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
576 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
577 }
578 }
579
580 return done;
581}
582
583void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
584 struct btrfs_delayed_ref_root *delayed_refs,
585 struct btrfs_delayed_ref_head *head)
586{
587 struct btrfs_delayed_ref_node *ref;
588 struct rb_node *node;
589 u64 seq = 0;
590
591 lockdep_assert_held(&head->lock);
592
593 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
594 return;
595
596 /* We don't have too many refs to merge for data. */
597 if (head->is_data)
598 return;
599
600 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
601again:
602 for (node = rb_first_cached(&head->ref_tree); node;
603 node = rb_next(node)) {
604 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
605 if (seq && ref->seq >= seq)
606 continue;
607 if (merge_ref(fs_info, delayed_refs, head, ref, seq))
608 goto again;
609 }
610}
611
612int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
613{
614 int ret = 0;
615 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
616
617 if (min_seq != 0 && seq >= min_seq) {
618 btrfs_debug(fs_info,
619 "holding back delayed_ref %llu, lowest is %llu",
620 seq, min_seq);
621 ret = 1;
622 }
623
624 return ret;
625}
626
627struct btrfs_delayed_ref_head *btrfs_select_ref_head(
628 struct btrfs_delayed_ref_root *delayed_refs)
629{
630 struct btrfs_delayed_ref_head *head;
631
632 lockdep_assert_held(&delayed_refs->lock);
633again:
634 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
635 true);
636 if (!head && delayed_refs->run_delayed_start != 0) {
637 delayed_refs->run_delayed_start = 0;
638 head = find_first_ref_head(delayed_refs);
639 }
640 if (!head)
641 return NULL;
642
643 while (head->processing) {
644 struct rb_node *node;
645
646 node = rb_next(&head->href_node);
647 if (!node) {
648 if (delayed_refs->run_delayed_start == 0)
649 return NULL;
650 delayed_refs->run_delayed_start = 0;
651 goto again;
652 }
653 head = rb_entry(node, struct btrfs_delayed_ref_head,
654 href_node);
655 }
656
657 head->processing = true;
658 WARN_ON(delayed_refs->num_heads_ready == 0);
659 delayed_refs->num_heads_ready--;
660 delayed_refs->run_delayed_start = head->bytenr +
661 head->num_bytes;
662 return head;
663}
664
665void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
666 struct btrfs_delayed_ref_head *head)
667{
668 lockdep_assert_held(&delayed_refs->lock);
669 lockdep_assert_held(&head->lock);
670
671 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
672 RB_CLEAR_NODE(&head->href_node);
673 atomic_dec(&delayed_refs->num_entries);
674 delayed_refs->num_heads--;
675 if (!head->processing)
676 delayed_refs->num_heads_ready--;
677}
678
679/*
680 * Helper to insert the ref_node to the tail or merge with tail.
681 *
682 * Return false if the ref was inserted.
683 * Return true if the ref was merged into an existing one (and therefore can be
684 * freed by the caller).
685 */
686static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
687 struct btrfs_delayed_ref_head *href,
688 struct btrfs_delayed_ref_node *ref)
689{
690 struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
691 struct btrfs_delayed_ref_node *exist;
692 int mod;
693
694 spin_lock(&href->lock);
695 exist = tree_insert(&href->ref_tree, ref);
696 if (!exist) {
697 if (ref->action == BTRFS_ADD_DELAYED_REF)
698 list_add_tail(&ref->add_list, &href->ref_add_list);
699 atomic_inc(&root->num_entries);
700 spin_unlock(&href->lock);
701 trans->delayed_ref_updates++;
702 return false;
703 }
704
705 /* Now we are sure we can merge */
706 if (exist->action == ref->action) {
707 mod = ref->ref_mod;
708 } else {
709 /* Need to change action */
710 if (exist->ref_mod < ref->ref_mod) {
711 exist->action = ref->action;
712 mod = -exist->ref_mod;
713 exist->ref_mod = ref->ref_mod;
714 if (ref->action == BTRFS_ADD_DELAYED_REF)
715 list_add_tail(&exist->add_list,
716 &href->ref_add_list);
717 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
718 ASSERT(!list_empty(&exist->add_list));
719 list_del(&exist->add_list);
720 } else {
721 ASSERT(0);
722 }
723 } else
724 mod = -ref->ref_mod;
725 }
726 exist->ref_mod += mod;
727
728 /* remove existing tail if its ref_mod is zero */
729 if (exist->ref_mod == 0)
730 drop_delayed_ref(trans->fs_info, root, href, exist);
731 spin_unlock(&href->lock);
732 return true;
733}
734
735/*
736 * helper function to update the accounting in the head ref
737 * existing and update must have the same bytenr
738 */
739static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
740 struct btrfs_delayed_ref_head *existing,
741 struct btrfs_delayed_ref_head *update)
742{
743 struct btrfs_delayed_ref_root *delayed_refs =
744 &trans->transaction->delayed_refs;
745 struct btrfs_fs_info *fs_info = trans->fs_info;
746 int old_ref_mod;
747
748 BUG_ON(existing->is_data != update->is_data);
749
750 spin_lock(&existing->lock);
751
752 /*
753 * When freeing an extent, we may not know the owning root when we
754 * first create the head_ref. However, some deref before the last deref
755 * will know it, so we just need to update the head_ref accordingly.
756 */
757 if (!existing->owning_root)
758 existing->owning_root = update->owning_root;
759
760 if (update->must_insert_reserved) {
761 /* if the extent was freed and then
762 * reallocated before the delayed ref
763 * entries were processed, we can end up
764 * with an existing head ref without
765 * the must_insert_reserved flag set.
766 * Set it again here
767 */
768 existing->must_insert_reserved = update->must_insert_reserved;
769 existing->owning_root = update->owning_root;
770
771 /*
772 * update the num_bytes so we make sure the accounting
773 * is done correctly
774 */
775 existing->num_bytes = update->num_bytes;
776
777 }
778
779 if (update->extent_op) {
780 if (!existing->extent_op) {
781 existing->extent_op = update->extent_op;
782 } else {
783 if (update->extent_op->update_key) {
784 memcpy(&existing->extent_op->key,
785 &update->extent_op->key,
786 sizeof(update->extent_op->key));
787 existing->extent_op->update_key = true;
788 }
789 if (update->extent_op->update_flags) {
790 existing->extent_op->flags_to_set |=
791 update->extent_op->flags_to_set;
792 existing->extent_op->update_flags = true;
793 }
794 btrfs_free_delayed_extent_op(update->extent_op);
795 }
796 }
797 /*
798 * update the reference mod on the head to reflect this new operation,
799 * only need the lock for this case cause we could be processing it
800 * currently, for refs we just added we know we're a-ok.
801 */
802 old_ref_mod = existing->total_ref_mod;
803 existing->ref_mod += update->ref_mod;
804 existing->total_ref_mod += update->ref_mod;
805
806 /*
807 * If we are going to from a positive ref mod to a negative or vice
808 * versa we need to make sure to adjust pending_csums accordingly.
809 * We reserve bytes for csum deletion when adding or updating a ref head
810 * see add_delayed_ref_head() for more details.
811 */
812 if (existing->is_data) {
813 u64 csum_leaves =
814 btrfs_csum_bytes_to_leaves(fs_info,
815 existing->num_bytes);
816
817 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
818 delayed_refs->pending_csums -= existing->num_bytes;
819 btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
820 }
821 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
822 delayed_refs->pending_csums += existing->num_bytes;
823 trans->delayed_ref_csum_deletions += csum_leaves;
824 }
825 }
826
827 spin_unlock(&existing->lock);
828}
829
830static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
831 struct btrfs_qgroup_extent_record *qrecord,
832 u64 bytenr, u64 num_bytes, u64 ref_root,
833 u64 reserved, int action, bool is_data,
834 bool is_system, u64 owning_root)
835{
836 int count_mod = 1;
837 bool must_insert_reserved = false;
838
839 /* If reserved is provided, it must be a data extent. */
840 BUG_ON(!is_data && reserved);
841
842 switch (action) {
843 case BTRFS_UPDATE_DELAYED_HEAD:
844 count_mod = 0;
845 break;
846 case BTRFS_DROP_DELAYED_REF:
847 /*
848 * The head node stores the sum of all the mods, so dropping a ref
849 * should drop the sum in the head node by one.
850 */
851 count_mod = -1;
852 break;
853 case BTRFS_ADD_DELAYED_EXTENT:
854 /*
855 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
856 * reserved accounting when the extent is finally added, or if a
857 * later modification deletes the delayed ref without ever
858 * inserting the extent into the extent allocation tree.
859 * ref->must_insert_reserved is the flag used to record that
860 * accounting mods are required.
861 *
862 * Once we record must_insert_reserved, switch the action to
863 * BTRFS_ADD_DELAYED_REF because other special casing is not
864 * required.
865 */
866 must_insert_reserved = true;
867 break;
868 }
869
870 refcount_set(&head_ref->refs, 1);
871 head_ref->bytenr = bytenr;
872 head_ref->num_bytes = num_bytes;
873 head_ref->ref_mod = count_mod;
874 head_ref->reserved_bytes = reserved;
875 head_ref->must_insert_reserved = must_insert_reserved;
876 head_ref->owning_root = owning_root;
877 head_ref->is_data = is_data;
878 head_ref->is_system = is_system;
879 head_ref->ref_tree = RB_ROOT_CACHED;
880 INIT_LIST_HEAD(&head_ref->ref_add_list);
881 RB_CLEAR_NODE(&head_ref->href_node);
882 head_ref->processing = false;
883 head_ref->total_ref_mod = count_mod;
884 spin_lock_init(&head_ref->lock);
885 mutex_init(&head_ref->mutex);
886
887 if (qrecord) {
888 if (ref_root && reserved) {
889 qrecord->data_rsv = reserved;
890 qrecord->data_rsv_refroot = ref_root;
891 }
892 qrecord->bytenr = bytenr;
893 qrecord->num_bytes = num_bytes;
894 qrecord->old_roots = NULL;
895 }
896}
897
898/*
899 * helper function to actually insert a head node into the rbtree.
900 * this does all the dirty work in terms of maintaining the correct
901 * overall modification count.
902 */
903static noinline struct btrfs_delayed_ref_head *
904add_delayed_ref_head(struct btrfs_trans_handle *trans,
905 struct btrfs_delayed_ref_head *head_ref,
906 struct btrfs_qgroup_extent_record *qrecord,
907 int action, bool *qrecord_inserted_ret)
908{
909 struct btrfs_delayed_ref_head *existing;
910 struct btrfs_delayed_ref_root *delayed_refs;
911 bool qrecord_inserted = false;
912
913 delayed_refs = &trans->transaction->delayed_refs;
914
915 /* Record qgroup extent info if provided */
916 if (qrecord) {
917 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
918 delayed_refs, qrecord))
919 kfree(qrecord);
920 else
921 qrecord_inserted = true;
922 }
923
924 trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
925
926 existing = htree_insert(&delayed_refs->href_root,
927 &head_ref->href_node);
928 if (existing) {
929 update_existing_head_ref(trans, existing, head_ref);
930 /*
931 * we've updated the existing ref, free the newly
932 * allocated ref
933 */
934 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
935 head_ref = existing;
936 } else {
937 /*
938 * We reserve the amount of bytes needed to delete csums when
939 * adding the ref head and not when adding individual drop refs
940 * since the csum items are deleted only after running the last
941 * delayed drop ref (the data extent's ref count drops to 0).
942 */
943 if (head_ref->is_data && head_ref->ref_mod < 0) {
944 delayed_refs->pending_csums += head_ref->num_bytes;
945 trans->delayed_ref_csum_deletions +=
946 btrfs_csum_bytes_to_leaves(trans->fs_info,
947 head_ref->num_bytes);
948 }
949 delayed_refs->num_heads++;
950 delayed_refs->num_heads_ready++;
951 atomic_inc(&delayed_refs->num_entries);
952 }
953 if (qrecord_inserted_ret)
954 *qrecord_inserted_ret = qrecord_inserted;
955
956 return head_ref;
957}
958
959/*
960 * Initialize the structure which represents a modification to a an extent.
961 *
962 * @fs_info: Internal to the mounted filesystem mount structure.
963 *
964 * @ref: The structure which is going to be initialized.
965 *
966 * @bytenr: The logical address of the extent for which a modification is
967 * going to be recorded.
968 *
969 * @num_bytes: Size of the extent whose modification is being recorded.
970 *
971 * @ref_root: The id of the root where this modification has originated, this
972 * can be either one of the well-known metadata trees or the
973 * subvolume id which references this extent.
974 *
975 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
976 * BTRFS_ADD_DELAYED_EXTENT
977 *
978 * @ref_type: Holds the type of the extent which is being recorded, can be
979 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
980 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
981 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
982 */
983static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
984 struct btrfs_delayed_ref_node *ref,
985 u64 bytenr, u64 num_bytes, u64 ref_root,
986 int action, u8 ref_type)
987{
988 u64 seq = 0;
989
990 if (action == BTRFS_ADD_DELAYED_EXTENT)
991 action = BTRFS_ADD_DELAYED_REF;
992
993 if (is_fstree(ref_root))
994 seq = atomic64_read(&fs_info->tree_mod_seq);
995
996 refcount_set(&ref->refs, 1);
997 ref->bytenr = bytenr;
998 ref->num_bytes = num_bytes;
999 ref->ref_mod = 1;
1000 ref->action = action;
1001 ref->seq = seq;
1002 ref->type = ref_type;
1003 RB_CLEAR_NODE(&ref->ref_node);
1004 INIT_LIST_HEAD(&ref->add_list);
1005}
1006
1007void btrfs_init_generic_ref(struct btrfs_ref *generic_ref, int action, u64 bytenr,
1008 u64 len, u64 parent, u64 owning_root)
1009{
1010 generic_ref->action = action;
1011 generic_ref->bytenr = bytenr;
1012 generic_ref->len = len;
1013 generic_ref->parent = parent;
1014 generic_ref->owning_root = owning_root;
1015}
1016
1017void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 root,
1018 u64 mod_root, bool skip_qgroup)
1019{
1020#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1021 /* If @real_root not set, use @root as fallback */
1022 generic_ref->real_root = mod_root ?: root;
1023#endif
1024 generic_ref->tree_ref.level = level;
1025 generic_ref->tree_ref.ref_root = root;
1026 generic_ref->type = BTRFS_REF_METADATA;
1027 if (skip_qgroup || !(is_fstree(root) &&
1028 (!mod_root || is_fstree(mod_root))))
1029 generic_ref->skip_qgroup = true;
1030 else
1031 generic_ref->skip_qgroup = false;
1032
1033}
1034
1035void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ref_root, u64 ino,
1036 u64 offset, u64 mod_root, bool skip_qgroup)
1037{
1038#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1039 /* If @real_root not set, use @root as fallback */
1040 generic_ref->real_root = mod_root ?: ref_root;
1041#endif
1042 generic_ref->data_ref.ref_root = ref_root;
1043 generic_ref->data_ref.ino = ino;
1044 generic_ref->data_ref.offset = offset;
1045 generic_ref->type = BTRFS_REF_DATA;
1046 if (skip_qgroup || !(is_fstree(ref_root) &&
1047 (!mod_root || is_fstree(mod_root))))
1048 generic_ref->skip_qgroup = true;
1049 else
1050 generic_ref->skip_qgroup = false;
1051}
1052
1053/*
1054 * add a delayed tree ref. This does all of the accounting required
1055 * to make sure the delayed ref is eventually processed before this
1056 * transaction commits.
1057 */
1058int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1059 struct btrfs_ref *generic_ref,
1060 struct btrfs_delayed_extent_op *extent_op)
1061{
1062 struct btrfs_fs_info *fs_info = trans->fs_info;
1063 struct btrfs_delayed_tree_ref *ref;
1064 struct btrfs_delayed_ref_head *head_ref;
1065 struct btrfs_delayed_ref_root *delayed_refs;
1066 struct btrfs_qgroup_extent_record *record = NULL;
1067 bool qrecord_inserted;
1068 bool is_system;
1069 bool merged;
1070 int action = generic_ref->action;
1071 int level = generic_ref->tree_ref.level;
1072 u64 bytenr = generic_ref->bytenr;
1073 u64 num_bytes = generic_ref->len;
1074 u64 parent = generic_ref->parent;
1075 u8 ref_type;
1076
1077 is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1078
1079 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1080 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1081 if (!ref)
1082 return -ENOMEM;
1083
1084 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1085 if (!head_ref) {
1086 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1087 return -ENOMEM;
1088 }
1089
1090 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1091 record = kzalloc(sizeof(*record), GFP_NOFS);
1092 if (!record) {
1093 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1095 return -ENOMEM;
1096 }
1097 }
1098
1099 if (parent)
1100 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1101 else
1102 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1103
1104 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1105 generic_ref->tree_ref.ref_root, action,
1106 ref_type);
1107 ref->root = generic_ref->tree_ref.ref_root;
1108 ref->parent = parent;
1109 ref->level = level;
1110
1111 init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1112 generic_ref->tree_ref.ref_root, 0, action,
1113 false, is_system, generic_ref->owning_root);
1114 head_ref->extent_op = extent_op;
1115
1116 delayed_refs = &trans->transaction->delayed_refs;
1117 spin_lock(&delayed_refs->lock);
1118
1119 /*
1120 * insert both the head node and the new ref without dropping
1121 * the spin lock
1122 */
1123 head_ref = add_delayed_ref_head(trans, head_ref, record,
1124 action, &qrecord_inserted);
1125
1126 merged = insert_delayed_ref(trans, head_ref, &ref->node);
1127 spin_unlock(&delayed_refs->lock);
1128
1129 /*
1130 * Need to update the delayed_refs_rsv with any changes we may have
1131 * made.
1132 */
1133 btrfs_update_delayed_refs_rsv(trans);
1134
1135 trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1136 action == BTRFS_ADD_DELAYED_EXTENT ?
1137 BTRFS_ADD_DELAYED_REF : action);
1138 if (merged)
1139 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1140
1141 if (qrecord_inserted)
1142 btrfs_qgroup_trace_extent_post(trans, record);
1143
1144 return 0;
1145}
1146
1147/*
1148 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1149 */
1150int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1151 struct btrfs_ref *generic_ref,
1152 u64 reserved)
1153{
1154 struct btrfs_fs_info *fs_info = trans->fs_info;
1155 struct btrfs_delayed_data_ref *ref;
1156 struct btrfs_delayed_ref_head *head_ref;
1157 struct btrfs_delayed_ref_root *delayed_refs;
1158 struct btrfs_qgroup_extent_record *record = NULL;
1159 bool qrecord_inserted;
1160 int action = generic_ref->action;
1161 bool merged;
1162 u64 bytenr = generic_ref->bytenr;
1163 u64 num_bytes = generic_ref->len;
1164 u64 parent = generic_ref->parent;
1165 u64 ref_root = generic_ref->data_ref.ref_root;
1166 u64 owner = generic_ref->data_ref.ino;
1167 u64 offset = generic_ref->data_ref.offset;
1168 u8 ref_type;
1169
1170 ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1171 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1172 if (!ref)
1173 return -ENOMEM;
1174
1175 if (parent)
1176 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1177 else
1178 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1179 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1180 ref_root, action, ref_type);
1181 ref->root = ref_root;
1182 ref->parent = parent;
1183 ref->objectid = owner;
1184 ref->offset = offset;
1185
1186
1187 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1188 if (!head_ref) {
1189 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1190 return -ENOMEM;
1191 }
1192
1193 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1194 record = kzalloc(sizeof(*record), GFP_NOFS);
1195 if (!record) {
1196 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1197 kmem_cache_free(btrfs_delayed_ref_head_cachep,
1198 head_ref);
1199 return -ENOMEM;
1200 }
1201 }
1202
1203 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1204 reserved, action, true, false, generic_ref->owning_root);
1205 head_ref->extent_op = NULL;
1206
1207 delayed_refs = &trans->transaction->delayed_refs;
1208 spin_lock(&delayed_refs->lock);
1209
1210 /*
1211 * insert both the head node and the new ref without dropping
1212 * the spin lock
1213 */
1214 head_ref = add_delayed_ref_head(trans, head_ref, record,
1215 action, &qrecord_inserted);
1216
1217 merged = insert_delayed_ref(trans, head_ref, &ref->node);
1218 spin_unlock(&delayed_refs->lock);
1219
1220 /*
1221 * Need to update the delayed_refs_rsv with any changes we may have
1222 * made.
1223 */
1224 btrfs_update_delayed_refs_rsv(trans);
1225
1226 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1227 action == BTRFS_ADD_DELAYED_EXTENT ?
1228 BTRFS_ADD_DELAYED_REF : action);
1229 if (merged)
1230 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1231
1232
1233 if (qrecord_inserted)
1234 return btrfs_qgroup_trace_extent_post(trans, record);
1235 return 0;
1236}
1237
1238int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1239 u64 bytenr, u64 num_bytes,
1240 struct btrfs_delayed_extent_op *extent_op)
1241{
1242 struct btrfs_delayed_ref_head *head_ref;
1243 struct btrfs_delayed_ref_root *delayed_refs;
1244
1245 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1246 if (!head_ref)
1247 return -ENOMEM;
1248
1249 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1250 BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
1251 head_ref->extent_op = extent_op;
1252
1253 delayed_refs = &trans->transaction->delayed_refs;
1254 spin_lock(&delayed_refs->lock);
1255
1256 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1257 NULL);
1258
1259 spin_unlock(&delayed_refs->lock);
1260
1261 /*
1262 * Need to update the delayed_refs_rsv with any changes we may have
1263 * made.
1264 */
1265 btrfs_update_delayed_refs_rsv(trans);
1266 return 0;
1267}
1268
1269void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1270{
1271 if (refcount_dec_and_test(&ref->refs)) {
1272 WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1273 switch (ref->type) {
1274 case BTRFS_TREE_BLOCK_REF_KEY:
1275 case BTRFS_SHARED_BLOCK_REF_KEY:
1276 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1277 break;
1278 case BTRFS_EXTENT_DATA_REF_KEY:
1279 case BTRFS_SHARED_DATA_REF_KEY:
1280 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1281 break;
1282 default:
1283 BUG();
1284 }
1285 }
1286}
1287
1288/*
1289 * This does a simple search for the head node for a given extent. Returns the
1290 * head node if found, or NULL if not.
1291 */
1292struct btrfs_delayed_ref_head *
1293btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1294{
1295 lockdep_assert_held(&delayed_refs->lock);
1296
1297 return find_ref_head(delayed_refs, bytenr, false);
1298}
1299
1300void __cold btrfs_delayed_ref_exit(void)
1301{
1302 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1303 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1304 kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1305 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1306}
1307
1308int __init btrfs_delayed_ref_init(void)
1309{
1310 btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1311 if (!btrfs_delayed_ref_head_cachep)
1312 goto fail;
1313
1314 btrfs_delayed_tree_ref_cachep = KMEM_CACHE(btrfs_delayed_tree_ref, 0);
1315 if (!btrfs_delayed_tree_ref_cachep)
1316 goto fail;
1317
1318 btrfs_delayed_data_ref_cachep = KMEM_CACHE(btrfs_delayed_data_ref, 0);
1319 if (!btrfs_delayed_data_ref_cachep)
1320 goto fail;
1321
1322 btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1323 if (!btrfs_delayed_extent_op_cachep)
1324 goto fail;
1325
1326 return 0;
1327fail:
1328 btrfs_delayed_ref_exit();
1329 return -ENOMEM;
1330}