Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "extent-tree.h"
  13#include "transaction.h"
  14#include "qgroup.h"
  15#include "space-info.h"
  16#include "tree-mod-log.h"
  17#include "fs.h"
  18
  19struct kmem_cache *btrfs_delayed_ref_head_cachep;
  20struct kmem_cache *btrfs_delayed_ref_node_cachep;
 
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56/*
  57 * Release a ref head's reservation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58 *
  59 * @fs_info:  the filesystem
  60 * @nr_refs:  number of delayed refs to drop
  61 * @nr_csums: number of csum items to drop
  62 *
  63 * Drops the delayed ref head's count from the delayed refs rsv and free any
  64 * excess reservation we had.
  65 */
  66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
  67{
  68	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  69	u64 num_bytes;
  70	u64 released;
  71
  72	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
  73	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
  74
  75	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  76	if (released)
  77		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  78					      0, released, 0);
  79}
  80
  81/*
  82 * Adjust the size of the delayed refs rsv.
 
  83 *
  84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
  85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
  86 * add it to the delayed_refs_rsv.
  87 */
  88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
  89{
  90	struct btrfs_fs_info *fs_info = trans->fs_info;
  91	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
  92	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
  93	u64 num_bytes;
  94	u64 reserved_bytes;
  95
  96	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
  97	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
  98						       trans->delayed_ref_csum_deletions);
  99
 100	if (num_bytes == 0)
 101		return;
 102
 103	/*
 104	 * Try to take num_bytes from the transaction's local delayed reserve.
 105	 * If not possible, try to take as much as it's available. If the local
 106	 * reserve doesn't have enough reserved space, the delayed refs reserve
 107	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
 108	 * by someone or if a transaction commit is triggered before that, the
 109	 * global block reserve will be used. We want to minimize using the
 110	 * global block reserve for cases we can account for in advance, to
 111	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
 112	 */
 113	spin_lock(&local_rsv->lock);
 114	reserved_bytes = min(num_bytes, local_rsv->reserved);
 115	local_rsv->reserved -= reserved_bytes;
 116	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
 117	spin_unlock(&local_rsv->lock);
 118
 119	spin_lock(&delayed_rsv->lock);
 120	delayed_rsv->size += num_bytes;
 121	delayed_rsv->reserved += reserved_bytes;
 122	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
 123	spin_unlock(&delayed_rsv->lock);
 124	trans->delayed_ref_updates = 0;
 125	trans->delayed_ref_csum_deletions = 0;
 126}
 127
 128/*
 129 * Adjust the size of the delayed refs block reserve for 1 block group item
 130 * insertion, used after allocating a block group.
 131 */
 132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 133{
 134	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 135
 136	spin_lock(&delayed_rsv->lock);
 137	/*
 138	 * Inserting a block group item does not require changing the free space
 139	 * tree, only the extent tree or the block group tree, so this is all we
 140	 * need.
 141	 */
 142	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
 143	delayed_rsv->full = false;
 144	spin_unlock(&delayed_rsv->lock);
 145}
 146
 147/*
 148 * Adjust the size of the delayed refs block reserve to release space for 1
 149 * block group item insertion.
 
 
 
 
 
 
 150 */
 151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 
 
 152{
 153	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 154	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 155	u64 released;
 156
 157	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 158	if (released > 0)
 159		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 160					      0, released, 0);
 161}
 162
 163/*
 164 * Adjust the size of the delayed refs block reserve for 1 block group item
 165 * update.
 166 */
 167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 168{
 169	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 170
 171	spin_lock(&delayed_rsv->lock);
 172	/*
 173	 * Updating a block group item does not result in new nodes/leaves and
 174	 * does not require changing the free space tree, only the extent tree
 175	 * or the block group tree, so this is all we need.
 176	 */
 177	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
 178	delayed_rsv->full = false;
 179	spin_unlock(&delayed_rsv->lock);
 180}
 
 
 181
 182/*
 183 * Adjust the size of the delayed refs block reserve to release space for 1
 184 * block group item update.
 185 */
 186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 187{
 188	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 189	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 190	u64 released;
 191
 192	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 193	if (released > 0)
 194		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 195					      0, released, 0);
 
 
 
 196}
 197
 198/*
 199 * Refill based on our delayed refs usage.
 200 *
 201 * @fs_info: the filesystem
 202 * @flush:   control how we can flush for this reservation.
 203 *
 204 * This will refill the delayed block_rsv up to 1 items size worth of space and
 205 * will return -ENOSPC if we can't make the reservation.
 206 */
 207int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 208				  enum btrfs_reserve_flush_enum flush)
 209{
 210	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 211	struct btrfs_space_info *space_info = block_rsv->space_info;
 212	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
 213	u64 num_bytes = 0;
 214	u64 refilled_bytes;
 215	u64 to_free;
 216	int ret = -ENOSPC;
 217
 218	spin_lock(&block_rsv->lock);
 219	if (block_rsv->reserved < block_rsv->size) {
 220		num_bytes = block_rsv->size - block_rsv->reserved;
 221		num_bytes = min(num_bytes, limit);
 222	}
 223	spin_unlock(&block_rsv->lock);
 224
 225	if (!num_bytes)
 226		return 0;
 227
 228	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
 
 229	if (ret)
 230		return ret;
 
 
 
 
 
 231
 232	/*
 233	 * We may have raced with someone else, so check again if we the block
 234	 * reserve is still not full and release any excess space.
 235	 */
 236	spin_lock(&block_rsv->lock);
 237	if (block_rsv->reserved < block_rsv->size) {
 238		u64 needed = block_rsv->size - block_rsv->reserved;
 239
 240		if (num_bytes >= needed) {
 241			block_rsv->reserved += needed;
 242			block_rsv->full = true;
 243			to_free = num_bytes - needed;
 244			refilled_bytes = needed;
 245		} else {
 246			block_rsv->reserved += num_bytes;
 247			to_free = 0;
 248			refilled_bytes = num_bytes;
 249		}
 250	} else {
 251		to_free = num_bytes;
 252		refilled_bytes = 0;
 
 
 253	}
 254	spin_unlock(&block_rsv->lock);
 255
 256	if (to_free > 0)
 257		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
 258
 259	if (refilled_bytes > 0)
 260		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
 261					      refilled_bytes, 1);
 262	return 0;
 263}
 264
 265/*
 266 * compare two delayed data backrefs with same bytenr and type
 267 */
 268static int comp_data_refs(struct btrfs_delayed_ref_node *ref1,
 269			  struct btrfs_delayed_ref_node *ref2)
 270{
 271	if (ref1->data_ref.objectid < ref2->data_ref.objectid)
 272		return -1;
 273	if (ref1->data_ref.objectid > ref2->data_ref.objectid)
 274		return 1;
 275	if (ref1->data_ref.offset < ref2->data_ref.offset)
 276		return -1;
 277	if (ref1->data_ref.offset > ref2->data_ref.offset)
 278		return 1;
 
 
 
 
 
 
 
 
 
 
 
 279	return 0;
 280}
 281
 282static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 283		     struct btrfs_delayed_ref_node *ref2,
 284		     bool check_seq)
 285{
 286	int ret = 0;
 287
 288	if (ref1->type < ref2->type)
 289		return -1;
 290	if (ref1->type > ref2->type)
 291		return 1;
 292	if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
 293	    ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
 294		if (ref1->parent < ref2->parent)
 295			return -1;
 296		if (ref1->parent > ref2->parent)
 297			return 1;
 298	} else {
 299		if (ref1->ref_root < ref2->ref_root)
 300			return -1;
 301		if (ref1->ref_root > ref2->ref_root)
 302			return 1;
 303		if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
 304			ret = comp_data_refs(ref1, ref2);
 305	}
 306	if (ret)
 307		return ret;
 308	if (check_seq) {
 309		if (ref1->seq < ref2->seq)
 310			return -1;
 311		if (ref1->seq > ref2->seq)
 312			return 1;
 313	}
 314	return 0;
 315}
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 318		struct btrfs_delayed_ref_node *ins)
 319{
 320	struct rb_node **p = &root->rb_root.rb_node;
 321	struct rb_node *node = &ins->ref_node;
 322	struct rb_node *parent_node = NULL;
 323	struct btrfs_delayed_ref_node *entry;
 324	bool leftmost = true;
 325
 326	while (*p) {
 327		int comp;
 328
 329		parent_node = *p;
 330		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 331				 ref_node);
 332		comp = comp_refs(ins, entry, true);
 333		if (comp < 0) {
 334			p = &(*p)->rb_left;
 335		} else if (comp > 0) {
 336			p = &(*p)->rb_right;
 337			leftmost = false;
 338		} else {
 339			return entry;
 340		}
 341	}
 342
 343	rb_link_node(node, parent_node, p);
 344	rb_insert_color_cached(node, root, leftmost);
 345	return NULL;
 346}
 347
 348static struct btrfs_delayed_ref_head *find_first_ref_head(
 349		struct btrfs_delayed_ref_root *dr)
 350{
 351	unsigned long from = 0;
 
 
 
 
 
 352
 353	lockdep_assert_held(&dr->lock);
 354
 355	return xa_find(&dr->head_refs, &from, ULONG_MAX, XA_PRESENT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356}
 357
 358static bool btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 359				   struct btrfs_delayed_ref_head *head)
 360{
 361	lockdep_assert_held(&delayed_refs->lock);
 362	if (mutex_trylock(&head->mutex))
 363		return true;
 364
 365	refcount_inc(&head->refs);
 366	spin_unlock(&delayed_refs->lock);
 367
 368	mutex_lock(&head->mutex);
 369	spin_lock(&delayed_refs->lock);
 370	if (!head->tracked) {
 371		mutex_unlock(&head->mutex);
 372		btrfs_put_delayed_ref_head(head);
 373		return false;
 374	}
 375	btrfs_put_delayed_ref_head(head);
 376	return true;
 377}
 378
 379static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
 380				    struct btrfs_delayed_ref_root *delayed_refs,
 381				    struct btrfs_delayed_ref_head *head,
 382				    struct btrfs_delayed_ref_node *ref)
 383{
 384	lockdep_assert_held(&head->lock);
 385	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 386	RB_CLEAR_NODE(&ref->ref_node);
 387	if (!list_empty(&ref->add_list))
 388		list_del(&ref->add_list);
 
 389	btrfs_put_delayed_ref(ref);
 390	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
 391}
 392
 393static bool merge_ref(struct btrfs_fs_info *fs_info,
 394		      struct btrfs_delayed_ref_root *delayed_refs,
 395		      struct btrfs_delayed_ref_head *head,
 396		      struct btrfs_delayed_ref_node *ref,
 397		      u64 seq)
 398{
 399	struct btrfs_delayed_ref_node *next;
 400	struct rb_node *node = rb_next(&ref->ref_node);
 401	bool done = false;
 402
 403	while (!done && node) {
 404		int mod;
 405
 406		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 407		node = rb_next(node);
 408		if (seq && next->seq >= seq)
 409			break;
 410		if (comp_refs(ref, next, false))
 411			break;
 412
 413		if (ref->action == next->action) {
 414			mod = next->ref_mod;
 415		} else {
 416			if (ref->ref_mod < next->ref_mod) {
 417				swap(ref, next);
 418				done = true;
 419			}
 420			mod = -next->ref_mod;
 421		}
 422
 423		drop_delayed_ref(fs_info, delayed_refs, head, next);
 424		ref->ref_mod += mod;
 425		if (ref->ref_mod == 0) {
 426			drop_delayed_ref(fs_info, delayed_refs, head, ref);
 427			done = true;
 428		} else {
 429			/*
 430			 * Can't have multiples of the same ref on a tree block.
 431			 */
 432			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 433				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 434		}
 435	}
 436
 437	return done;
 438}
 439
 440void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
 441			      struct btrfs_delayed_ref_root *delayed_refs,
 442			      struct btrfs_delayed_ref_head *head)
 443{
 
 444	struct btrfs_delayed_ref_node *ref;
 445	struct rb_node *node;
 446	u64 seq = 0;
 447
 448	lockdep_assert_held(&head->lock);
 449
 450	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 451		return;
 452
 453	/* We don't have too many refs to merge for data. */
 454	if (head->is_data)
 455		return;
 456
 457	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 458again:
 459	for (node = rb_first_cached(&head->ref_tree); node;
 460	     node = rb_next(node)) {
 461		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 462		if (seq && ref->seq >= seq)
 463			continue;
 464		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
 465			goto again;
 466	}
 467}
 468
 469int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 470{
 471	int ret = 0;
 472	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 473
 474	if (min_seq != 0 && seq >= min_seq) {
 475		btrfs_debug(fs_info,
 476			    "holding back delayed_ref %llu, lowest is %llu",
 477			    seq, min_seq);
 478		ret = 1;
 479	}
 480
 481	return ret;
 482}
 483
 484struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 485		const struct btrfs_fs_info *fs_info,
 486		struct btrfs_delayed_ref_root *delayed_refs)
 487{
 488	struct btrfs_delayed_ref_head *head;
 489	unsigned long start_index;
 490	unsigned long found_index;
 491	bool found_head = false;
 492	bool locked;
 493
 494	spin_lock(&delayed_refs->lock);
 495again:
 496	start_index = (delayed_refs->run_delayed_start >> fs_info->sectorsize_bits);
 497	xa_for_each_start(&delayed_refs->head_refs, found_index, head, start_index) {
 498		if (!head->processing) {
 499			found_head = true;
 500			break;
 501		}
 502	}
 503	if (!found_head) {
 504		if (delayed_refs->run_delayed_start == 0) {
 505			spin_unlock(&delayed_refs->lock);
 506			return NULL;
 
 
 
 
 
 
 
 
 507		}
 508		delayed_refs->run_delayed_start = 0;
 509		goto again;
 510	}
 511
 512	head->processing = true;
 513	WARN_ON(delayed_refs->num_heads_ready == 0);
 514	delayed_refs->num_heads_ready--;
 515	delayed_refs->run_delayed_start = head->bytenr +
 516		head->num_bytes;
 517
 518	locked = btrfs_delayed_ref_lock(delayed_refs, head);
 519	spin_unlock(&delayed_refs->lock);
 520
 521	/*
 522	 * We may have dropped the spin lock to get the head mutex lock, and
 523	 * that might have given someone else time to free the head.  If that's
 524	 * true, it has been removed from our list and we can move on.
 525	 */
 526	if (!locked)
 527		return ERR_PTR(-EAGAIN);
 528
 529	return head;
 530}
 531
 532void btrfs_unselect_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 533			     struct btrfs_delayed_ref_head *head)
 534{
 535	spin_lock(&delayed_refs->lock);
 536	head->processing = false;
 537	delayed_refs->num_heads_ready++;
 538	spin_unlock(&delayed_refs->lock);
 539	btrfs_delayed_ref_unlock(head);
 540}
 541
 542void btrfs_delete_ref_head(const struct btrfs_fs_info *fs_info,
 543			   struct btrfs_delayed_ref_root *delayed_refs,
 544			   struct btrfs_delayed_ref_head *head)
 545{
 546	const unsigned long index = (head->bytenr >> fs_info->sectorsize_bits);
 547
 548	lockdep_assert_held(&delayed_refs->lock);
 549	lockdep_assert_held(&head->lock);
 550
 551	xa_erase(&delayed_refs->head_refs, index);
 552	head->tracked = false;
 
 553	delayed_refs->num_heads--;
 554	if (!head->processing)
 555		delayed_refs->num_heads_ready--;
 556}
 557
 558/*
 559 * Helper to insert the ref_node to the tail or merge with tail.
 560 *
 561 * Return false if the ref was inserted.
 562 * Return true if the ref was merged into an existing one (and therefore can be
 563 * freed by the caller).
 564 */
 565static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
 566			       struct btrfs_delayed_ref_head *href,
 567			       struct btrfs_delayed_ref_node *ref)
 
 568{
 569	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
 570	struct btrfs_delayed_ref_node *exist;
 571	int mod;
 
 572
 573	spin_lock(&href->lock);
 574	exist = tree_insert(&href->ref_tree, ref);
 575	if (!exist) {
 576		if (ref->action == BTRFS_ADD_DELAYED_REF)
 577			list_add_tail(&ref->add_list, &href->ref_add_list);
 578		spin_unlock(&href->lock);
 579		trans->delayed_ref_updates++;
 580		return false;
 581	}
 582
 583	/* Now we are sure we can merge */
 
 584	if (exist->action == ref->action) {
 585		mod = ref->ref_mod;
 586	} else {
 587		/* Need to change action */
 588		if (exist->ref_mod < ref->ref_mod) {
 589			exist->action = ref->action;
 590			mod = -exist->ref_mod;
 591			exist->ref_mod = ref->ref_mod;
 592			if (ref->action == BTRFS_ADD_DELAYED_REF)
 593				list_add_tail(&exist->add_list,
 594					      &href->ref_add_list);
 595			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 596				ASSERT(!list_empty(&exist->add_list));
 597				list_del_init(&exist->add_list);
 598			} else {
 599				ASSERT(0);
 600			}
 601		} else
 602			mod = -ref->ref_mod;
 603	}
 604	exist->ref_mod += mod;
 605
 606	/* remove existing tail if its ref_mod is zero */
 607	if (exist->ref_mod == 0)
 608		drop_delayed_ref(trans->fs_info, root, href, exist);
 
 
 
 
 
 
 609	spin_unlock(&href->lock);
 610	return true;
 611}
 612
 613/*
 614 * helper function to update the accounting in the head ref
 615 * existing and update must have the same bytenr
 616 */
 617static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 618			 struct btrfs_delayed_ref_head *existing,
 619			 struct btrfs_delayed_ref_head *update)
 620{
 621	struct btrfs_delayed_ref_root *delayed_refs =
 622		&trans->transaction->delayed_refs;
 623	struct btrfs_fs_info *fs_info = trans->fs_info;
 624	int old_ref_mod;
 625
 626	BUG_ON(existing->is_data != update->is_data);
 627
 628	spin_lock(&existing->lock);
 629
 630	/*
 631	 * When freeing an extent, we may not know the owning root when we
 632	 * first create the head_ref. However, some deref before the last deref
 633	 * will know it, so we just need to update the head_ref accordingly.
 634	 */
 635	if (!existing->owning_root)
 636		existing->owning_root = update->owning_root;
 637
 638	if (update->must_insert_reserved) {
 639		/* if the extent was freed and then
 640		 * reallocated before the delayed ref
 641		 * entries were processed, we can end up
 642		 * with an existing head ref without
 643		 * the must_insert_reserved flag set.
 644		 * Set it again here
 645		 */
 646		existing->must_insert_reserved = update->must_insert_reserved;
 647		existing->owning_root = update->owning_root;
 648
 649		/*
 650		 * update the num_bytes so we make sure the accounting
 651		 * is done correctly
 652		 */
 653		existing->num_bytes = update->num_bytes;
 654
 655	}
 656
 657	if (update->extent_op) {
 658		if (!existing->extent_op) {
 659			existing->extent_op = update->extent_op;
 660		} else {
 661			if (update->extent_op->update_key) {
 662				memcpy(&existing->extent_op->key,
 663				       &update->extent_op->key,
 664				       sizeof(update->extent_op->key));
 665				existing->extent_op->update_key = true;
 666			}
 667			if (update->extent_op->update_flags) {
 668				existing->extent_op->flags_to_set |=
 669					update->extent_op->flags_to_set;
 670				existing->extent_op->update_flags = true;
 671			}
 672			btrfs_free_delayed_extent_op(update->extent_op);
 673		}
 674	}
 675	/*
 676	 * update the reference mod on the head to reflect this new operation,
 677	 * only need the lock for this case cause we could be processing it
 678	 * currently, for refs we just added we know we're a-ok.
 679	 */
 680	old_ref_mod = existing->total_ref_mod;
 681	existing->ref_mod += update->ref_mod;
 682	existing->total_ref_mod += update->ref_mod;
 683
 684	/*
 685	 * If we are going to from a positive ref mod to a negative or vice
 686	 * versa we need to make sure to adjust pending_csums accordingly.
 687	 * We reserve bytes for csum deletion when adding or updating a ref head
 688	 * see add_delayed_ref_head() for more details.
 689	 */
 690	if (existing->is_data) {
 691		u64 csum_leaves =
 692			btrfs_csum_bytes_to_leaves(fs_info,
 693						   existing->num_bytes);
 694
 695		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 696			delayed_refs->pending_csums -= existing->num_bytes;
 697			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
 698		}
 699		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 700			delayed_refs->pending_csums += existing->num_bytes;
 701			trans->delayed_ref_csum_deletions += csum_leaves;
 702		}
 703	}
 704
 705	spin_unlock(&existing->lock);
 706}
 707
 708static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 709				  struct btrfs_ref *generic_ref,
 710				  struct btrfs_qgroup_extent_record *qrecord,
 711				  u64 reserved)
 
 
 712{
 713	int count_mod = 1;
 714	bool must_insert_reserved = false;
 715
 716	/* If reserved is provided, it must be a data extent. */
 717	BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
 718
 719	switch (generic_ref->action) {
 720	case BTRFS_ADD_DELAYED_REF:
 721		/* count_mod is already set to 1. */
 722		break;
 723	case BTRFS_UPDATE_DELAYED_HEAD:
 724		count_mod = 0;
 725		break;
 726	case BTRFS_DROP_DELAYED_REF:
 727		/*
 728		 * The head node stores the sum of all the mods, so dropping a ref
 729		 * should drop the sum in the head node by one.
 730		 */
 731		count_mod = -1;
 732		break;
 733	case BTRFS_ADD_DELAYED_EXTENT:
 734		/*
 735		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
 736		 * reserved accounting when the extent is finally added, or if a
 737		 * later modification deletes the delayed ref without ever
 738		 * inserting the extent into the extent allocation tree.
 739		 * ref->must_insert_reserved is the flag used to record that
 740		 * accounting mods are required.
 741		 *
 742		 * Once we record must_insert_reserved, switch the action to
 743		 * BTRFS_ADD_DELAYED_REF because other special casing is not
 744		 * required.
 745		 */
 746		must_insert_reserved = true;
 747		break;
 748	}
 749
 750	refcount_set(&head_ref->refs, 1);
 751	head_ref->bytenr = generic_ref->bytenr;
 752	head_ref->num_bytes = generic_ref->num_bytes;
 753	head_ref->ref_mod = count_mod;
 754	head_ref->reserved_bytes = reserved;
 755	head_ref->must_insert_reserved = must_insert_reserved;
 756	head_ref->owning_root = generic_ref->owning_root;
 757	head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
 758	head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
 759	head_ref->ref_tree = RB_ROOT_CACHED;
 760	INIT_LIST_HEAD(&head_ref->ref_add_list);
 761	head_ref->tracked = false;
 762	head_ref->processing = false;
 763	head_ref->total_ref_mod = count_mod;
 764	spin_lock_init(&head_ref->lock);
 765	mutex_init(&head_ref->mutex);
 766
 767	/* If not metadata set an impossible level to help debugging. */
 768	if (generic_ref->type == BTRFS_REF_METADATA)
 769		head_ref->level = generic_ref->tree_ref.level;
 770	else
 771		head_ref->level = U8_MAX;
 772
 773	if (qrecord) {
 774		if (generic_ref->ref_root && reserved) {
 775			qrecord->data_rsv = reserved;
 776			qrecord->data_rsv_refroot = generic_ref->ref_root;
 777		}
 778		qrecord->num_bytes = generic_ref->num_bytes;
 
 779		qrecord->old_roots = NULL;
 780	}
 781}
 782
 783/*
 784 * helper function to actually insert a head node into the rbtree.
 785 * this does all the dirty work in terms of maintaining the correct
 786 * overall modification count.
 787 *
 788 * Returns an error pointer in case of an error.
 789 */
 790static noinline struct btrfs_delayed_ref_head *
 791add_delayed_ref_head(struct btrfs_trans_handle *trans,
 792		     struct btrfs_delayed_ref_head *head_ref,
 793		     struct btrfs_qgroup_extent_record *qrecord,
 794		     int action, bool *qrecord_inserted_ret)
 795{
 796	struct btrfs_fs_info *fs_info = trans->fs_info;
 797	struct btrfs_delayed_ref_head *existing;
 798	struct btrfs_delayed_ref_root *delayed_refs;
 799	const unsigned long index = (head_ref->bytenr >> fs_info->sectorsize_bits);
 800	bool qrecord_inserted = false;
 801
 802	delayed_refs = &trans->transaction->delayed_refs;
 803	lockdep_assert_held(&delayed_refs->lock);
 804
 805#if BITS_PER_LONG == 32
 806	if (head_ref->bytenr >= MAX_LFS_FILESIZE) {
 807		if (qrecord)
 808			xa_release(&delayed_refs->dirty_extents, index);
 809		btrfs_err_rl(fs_info,
 810"delayed ref head %llu is beyond 32bit page cache and xarray index limit",
 811			     head_ref->bytenr);
 812		btrfs_err_32bit_limit(fs_info);
 813		return ERR_PTR(-EOVERFLOW);
 814	}
 815#endif
 816
 817	/* Record qgroup extent info if provided */
 818	if (qrecord) {
 819		int ret;
 820
 821		ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord,
 822						       head_ref->bytenr);
 823		if (ret) {
 824			/* Clean up if insertion fails or item exists. */
 825			xa_release(&delayed_refs->dirty_extents, index);
 826			/* Caller responsible for freeing qrecord on error. */
 827			if (ret < 0)
 828				return ERR_PTR(ret);
 829			kfree(qrecord);
 830		} else {
 831			qrecord_inserted = true;
 832		}
 833	}
 834
 835	trace_add_delayed_ref_head(fs_info, head_ref, action);
 836
 837	existing = xa_load(&delayed_refs->head_refs, index);
 
 838	if (existing) {
 839		update_existing_head_ref(trans, existing, head_ref);
 840		/*
 841		 * we've updated the existing ref, free the newly
 842		 * allocated ref
 843		 */
 844		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 845		head_ref = existing;
 846	} else {
 847		existing = xa_store(&delayed_refs->head_refs, index, head_ref, GFP_ATOMIC);
 848		if (xa_is_err(existing)) {
 849			/* Memory was preallocated by the caller. */
 850			ASSERT(xa_err(existing) != -ENOMEM);
 851			return ERR_PTR(xa_err(existing));
 852		} else if (WARN_ON(existing)) {
 853			/*
 854			 * Shouldn't happen we just did a lookup before under
 855			 * delayed_refs->lock.
 856			 */
 857			return ERR_PTR(-EEXIST);
 858		}
 859		head_ref->tracked = true;
 860		/*
 861		 * We reserve the amount of bytes needed to delete csums when
 862		 * adding the ref head and not when adding individual drop refs
 863		 * since the csum items are deleted only after running the last
 864		 * delayed drop ref (the data extent's ref count drops to 0).
 865		 */
 866		if (head_ref->is_data && head_ref->ref_mod < 0) {
 867			delayed_refs->pending_csums += head_ref->num_bytes;
 868			trans->delayed_ref_csum_deletions +=
 869				btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes);
 
 870		}
 871		delayed_refs->num_heads++;
 872		delayed_refs->num_heads_ready++;
 
 
 873	}
 874	if (qrecord_inserted_ret)
 875		*qrecord_inserted_ret = qrecord_inserted;
 876
 877	return head_ref;
 878}
 879
 880/*
 881 * Initialize the structure which represents a modification to a an extent.
 
 882 *
 883 * @fs_info:    Internal to the mounted filesystem mount structure.
 884 *
 885 * @ref:	The structure which is going to be initialized.
 886 *
 887 * @bytenr:	The logical address of the extent for which a modification is
 888 *		going to be recorded.
 889 *
 890 * @num_bytes:  Size of the extent whose modification is being recorded.
 891 *
 892 * @ref_root:	The id of the root where this modification has originated, this
 893 *		can be either one of the well-known metadata trees or the
 894 *		subvolume id which references this extent.
 895 *
 896 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 897 *		BTRFS_ADD_DELAYED_EXTENT
 898 *
 899 * @ref_type:	Holds the type of the extent which is being recorded, can be
 900 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 901 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 902 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 903 */
 904static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 905				    struct btrfs_delayed_ref_node *ref,
 906				    struct btrfs_ref *generic_ref)
 
 907{
 908	int action = generic_ref->action;
 909	u64 seq = 0;
 910
 911	if (action == BTRFS_ADD_DELAYED_EXTENT)
 912		action = BTRFS_ADD_DELAYED_REF;
 913
 914	if (is_fstree(generic_ref->ref_root))
 915		seq = atomic64_read(&fs_info->tree_mod_seq);
 916
 917	refcount_set(&ref->refs, 1);
 918	ref->bytenr = generic_ref->bytenr;
 919	ref->num_bytes = generic_ref->num_bytes;
 920	ref->ref_mod = 1;
 921	ref->action = action;
 
 
 922	ref->seq = seq;
 923	ref->type = btrfs_ref_type(generic_ref);
 924	ref->ref_root = generic_ref->ref_root;
 925	ref->parent = generic_ref->parent;
 926	RB_CLEAR_NODE(&ref->ref_node);
 927	INIT_LIST_HEAD(&ref->add_list);
 928
 929	if (generic_ref->type == BTRFS_REF_DATA)
 930		ref->data_ref = generic_ref->data_ref;
 931	else
 932		ref->tree_ref = generic_ref->tree_ref;
 933}
 934
 935void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
 936			 bool skip_qgroup)
 937{
 938#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 939	/* If @real_root not set, use @root as fallback */
 940	generic_ref->real_root = mod_root ?: generic_ref->ref_root;
 941#endif
 942	generic_ref->tree_ref.level = level;
 943	generic_ref->type = BTRFS_REF_METADATA;
 944	if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
 945			     (!mod_root || is_fstree(mod_root))))
 946		generic_ref->skip_qgroup = true;
 947	else
 948		generic_ref->skip_qgroup = false;
 949
 950}
 951
 952void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
 953			 u64 mod_root, bool skip_qgroup)
 954{
 955#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 956	/* If @real_root not set, use @root as fallback */
 957	generic_ref->real_root = mod_root ?: generic_ref->ref_root;
 958#endif
 959	generic_ref->data_ref.objectid = ino;
 960	generic_ref->data_ref.offset = offset;
 961	generic_ref->type = BTRFS_REF_DATA;
 962	if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
 963			     (!mod_root || is_fstree(mod_root))))
 964		generic_ref->skip_qgroup = true;
 965	else
 966		generic_ref->skip_qgroup = false;
 967}
 968
 969static int add_delayed_ref(struct btrfs_trans_handle *trans,
 970			   struct btrfs_ref *generic_ref,
 971			   struct btrfs_delayed_extent_op *extent_op,
 972			   u64 reserved)
 
 
 
 
 973{
 974	struct btrfs_fs_info *fs_info = trans->fs_info;
 975	struct btrfs_delayed_ref_node *node;
 976	struct btrfs_delayed_ref_head *head_ref;
 977	struct btrfs_delayed_ref_head *new_head_ref;
 978	struct btrfs_delayed_ref_root *delayed_refs;
 979	struct btrfs_qgroup_extent_record *record = NULL;
 980	const unsigned long index = (generic_ref->bytenr >> fs_info->sectorsize_bits);
 981	bool qrecord_reserved = false;
 982	bool qrecord_inserted;
 983	int action = generic_ref->action;
 984	bool merged;
 985	int ret;
 
 
 
 
 
 
 986
 987	node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
 988	if (!node)
 
 
 989		return -ENOMEM;
 990
 991	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 992	if (!head_ref) {
 993		ret = -ENOMEM;
 994		goto free_node;
 995	}
 996
 997	delayed_refs = &trans->transaction->delayed_refs;
 998
 999	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
 
1000		record = kzalloc(sizeof(*record), GFP_NOFS);
1001		if (!record) {
1002			ret = -ENOMEM;
1003			goto free_head_ref;
1004		}
1005		if (xa_reserve(&delayed_refs->dirty_extents, index, GFP_NOFS)) {
1006			ret = -ENOMEM;
1007			goto free_record;
1008		}
1009		qrecord_reserved = true;
1010	}
1011
1012	ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1013	if (ret) {
1014		if (qrecord_reserved)
1015			xa_release(&delayed_refs->dirty_extents, index);
1016		goto free_record;
1017	}
1018
1019	init_delayed_ref_common(fs_info, node, generic_ref);
1020	init_delayed_ref_head(head_ref, generic_ref, record, reserved);
 
 
 
 
 
 
 
1021	head_ref->extent_op = extent_op;
1022
 
1023	spin_lock(&delayed_refs->lock);
1024
1025	/*
1026	 * insert both the head node and the new ref without dropping
1027	 * the spin lock
1028	 */
1029	new_head_ref = add_delayed_ref_head(trans, head_ref, record,
1030					    action, &qrecord_inserted);
1031	if (IS_ERR(new_head_ref)) {
1032		xa_release(&delayed_refs->head_refs, index);
1033		spin_unlock(&delayed_refs->lock);
1034		ret = PTR_ERR(new_head_ref);
1035		goto free_record;
1036	}
1037	head_ref = new_head_ref;
1038
1039	merged = insert_delayed_ref(trans, head_ref, node);
1040	spin_unlock(&delayed_refs->lock);
1041
1042	/*
1043	 * Need to update the delayed_refs_rsv with any changes we may have
1044	 * made.
1045	 */
1046	btrfs_update_delayed_refs_rsv(trans);
1047
1048	if (generic_ref->type == BTRFS_REF_DATA)
1049		trace_add_delayed_data_ref(trans->fs_info, node);
1050	else
1051		trace_add_delayed_tree_ref(trans->fs_info, node);
1052	if (merged)
1053		kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1054
1055	if (qrecord_inserted)
1056		return btrfs_qgroup_trace_extent_post(trans, record, generic_ref->bytenr);
1057	return 0;
1058
1059free_record:
1060	kfree(record);
1061free_head_ref:
1062	kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1063free_node:
1064	kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1065	return ret;
1066}
1067
1068/*
1069 * Add a delayed tree ref. This does all of the accounting required to make sure
1070 * the delayed ref is eventually processed before this transaction commits.
1071 */
1072int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1073			       struct btrfs_ref *generic_ref,
1074			       struct btrfs_delayed_extent_op *extent_op)
1075{
1076	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1077	return add_delayed_ref(trans, generic_ref, extent_op, 0);
1078}
1079
1080/*
1081 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1082 */
1083int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1084			       struct btrfs_ref *generic_ref,
1085			       u64 reserved)
1086{
1087	ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1088	return add_delayed_ref(trans, generic_ref, NULL, reserved);
1089}
1090
1091int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1092				u64 bytenr, u64 num_bytes, u8 level,
1093				struct btrfs_delayed_extent_op *extent_op)
1094{
1095	const unsigned long index = (bytenr >> trans->fs_info->sectorsize_bits);
1096	struct btrfs_delayed_ref_head *head_ref;
1097	struct btrfs_delayed_ref_head *head_ref_ret;
1098	struct btrfs_delayed_ref_root *delayed_refs;
1099	struct btrfs_ref generic_ref = {
1100		.type = BTRFS_REF_METADATA,
1101		.action = BTRFS_UPDATE_DELAYED_HEAD,
1102		.bytenr = bytenr,
1103		.num_bytes = num_bytes,
1104		.tree_ref.level = level,
1105	};
1106	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
1108	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1109	if (!head_ref)
 
1110		return -ENOMEM;
 
1111
1112	init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1113	head_ref->extent_op = extent_op;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
1115	delayed_refs = &trans->transaction->delayed_refs;
 
1116
1117	ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1118	if (ret) {
1119		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1120		return ret;
1121	}
 
1122
1123	spin_lock(&delayed_refs->lock);
1124	head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL,
1125					    BTRFS_UPDATE_DELAYED_HEAD, NULL);
1126	if (IS_ERR(head_ref_ret)) {
1127		xa_release(&delayed_refs->head_refs, index);
1128		spin_unlock(&delayed_refs->lock);
1129		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1130		return PTR_ERR(head_ref_ret);
1131	}
1132	spin_unlock(&delayed_refs->lock);
1133
1134	/*
1135	 * Need to update the delayed_refs_rsv with any changes we may have
1136	 * made.
1137	 */
1138	btrfs_update_delayed_refs_rsv(trans);
 
 
 
 
 
 
 
 
 
 
1139	return 0;
1140}
1141
1142void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
 
 
1143{
1144	if (refcount_dec_and_test(&ref->refs)) {
1145		WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1146		kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1147	}
1148}
1149
1150/*
1151 * This does a simple search for the head node for a given extent.  Returns the
1152 * head node if found, or NULL if not.
1153 */
1154struct btrfs_delayed_ref_head *
1155btrfs_find_delayed_ref_head(const struct btrfs_fs_info *fs_info,
1156			    struct btrfs_delayed_ref_root *delayed_refs,
1157			    u64 bytenr)
1158{
1159	const unsigned long index = (bytenr >> fs_info->sectorsize_bits);
1160
1161	lockdep_assert_held(&delayed_refs->lock);
 
 
 
1162
1163	return xa_load(&delayed_refs->head_refs, index);
1164}
1165
1166static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent)
1167{
1168	int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY;
1169
1170	if (type < entry->type)
1171		return -1;
1172	if (type > entry->type)
1173		return 1;
1174
1175	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
1176		if (root < entry->ref_root)
1177			return -1;
1178		if (root > entry->ref_root)
1179			return 1;
1180	} else {
1181		if (parent < entry->parent)
1182			return -1;
1183		if (parent > entry->parent)
1184			return 1;
1185	}
1186	return 0;
1187}
1188
1189/*
1190 * Check to see if a given root/parent reference is attached to the head.  This
1191 * only checks for BTRFS_ADD_DELAYED_REF references that match, as that
1192 * indicates the reference exists for the given root or parent.  This is for
1193 * tree blocks only.
1194 *
1195 * @head: the head of the bytenr we're searching.
1196 * @root: the root objectid of the reference if it is a normal reference.
1197 * @parent: the parent if this is a shared backref.
1198 */
1199bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
1200				 u64 root, u64 parent)
1201{
1202	struct rb_node *node;
1203	bool found = false;
1204
1205	lockdep_assert_held(&head->mutex);
1206
1207	spin_lock(&head->lock);
1208	node = head->ref_tree.rb_root.rb_node;
1209	while (node) {
1210		struct btrfs_delayed_ref_node *entry;
1211		int ret;
1212
1213		entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
1214		ret = find_comp(entry, root, parent);
1215		if (ret < 0) {
1216			node = node->rb_left;
1217		} else if (ret > 0) {
1218			node = node->rb_right;
1219		} else {
1220			/*
1221			 * We only want to count ADD actions, as drops mean the
1222			 * ref doesn't exist.
1223			 */
1224			if (entry->action == BTRFS_ADD_DELAYED_REF)
1225				found = true;
1226			break;
1227		}
1228	}
1229	spin_unlock(&head->lock);
1230	return found;
1231}
1232
1233void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans)
1234{
1235	struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
1236	struct btrfs_fs_info *fs_info = trans->fs_info;
1237
1238	spin_lock(&delayed_refs->lock);
1239	while (true) {
1240		struct btrfs_delayed_ref_head *head;
1241		struct rb_node *n;
1242		bool pin_bytes = false;
1243
1244		head = find_first_ref_head(delayed_refs);
1245		if (!head)
1246			break;
1247
1248		if (!btrfs_delayed_ref_lock(delayed_refs, head))
1249			continue;
1250
1251		spin_lock(&head->lock);
1252		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
1253			struct btrfs_delayed_ref_node *ref;
1254
1255			ref = rb_entry(n, struct btrfs_delayed_ref_node, ref_node);
1256			drop_delayed_ref(fs_info, delayed_refs, head, ref);
1257		}
1258		if (head->must_insert_reserved)
1259			pin_bytes = true;
1260		btrfs_free_delayed_extent_op(head->extent_op);
1261		btrfs_delete_ref_head(fs_info, delayed_refs, head);
1262		spin_unlock(&head->lock);
1263		spin_unlock(&delayed_refs->lock);
1264		mutex_unlock(&head->mutex);
1265
1266		if (pin_bytes) {
1267			struct btrfs_block_group *bg;
1268
1269			bg = btrfs_lookup_block_group(fs_info, head->bytenr);
1270			if (WARN_ON_ONCE(bg == NULL)) {
1271				/*
1272				 * Unexpected and there's nothing we can do here
1273				 * because we are in a transaction abort path,
1274				 * so any errors can only be ignored or reported
1275				 * while attempting to cleanup all resources.
1276				 */
1277				btrfs_err(fs_info,
1278"block group for delayed ref at %llu was not found while destroying ref head",
1279					  head->bytenr);
1280			} else {
1281				spin_lock(&bg->space_info->lock);
1282				spin_lock(&bg->lock);
1283				bg->pinned += head->num_bytes;
1284				btrfs_space_info_update_bytes_pinned(fs_info,
1285								     bg->space_info,
1286								     head->num_bytes);
1287				bg->reserved -= head->num_bytes;
1288				bg->space_info->bytes_reserved -= head->num_bytes;
1289				spin_unlock(&bg->lock);
1290				spin_unlock(&bg->space_info->lock);
1291
1292				btrfs_put_block_group(bg);
1293			}
1294
1295			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
1296				head->bytenr + head->num_bytes - 1);
1297		}
1298		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1299		btrfs_put_delayed_ref_head(head);
1300		cond_resched();
1301		spin_lock(&delayed_refs->lock);
1302	}
1303	btrfs_qgroup_destroy_extent_records(trans);
1304
1305	spin_unlock(&delayed_refs->lock);
1306}
1307
1308void __cold btrfs_delayed_ref_exit(void)
1309{
1310	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1311	kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
 
1312	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1313}
1314
1315int __init btrfs_delayed_ref_init(void)
1316{
1317	btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
 
 
 
1318	if (!btrfs_delayed_ref_head_cachep)
1319		goto fail;
1320
1321	btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1322	if (!btrfs_delayed_ref_node_cachep)
 
 
 
 
 
 
 
 
 
 
1323		goto fail;
1324
1325	btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
 
 
 
1326	if (!btrfs_delayed_extent_op_cachep)
1327		goto fail;
1328
1329	return 0;
1330fail:
1331	btrfs_delayed_ref_exit();
1332	return -ENOMEM;
1333}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
 
   9#include "ctree.h"
  10#include "delayed-ref.h"
 
  11#include "transaction.h"
  12#include "qgroup.h"
  13#include "space-info.h"
  14#include "tree-mod-log.h"
 
  15
  16struct kmem_cache *btrfs_delayed_ref_head_cachep;
  17struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  18struct kmem_cache *btrfs_delayed_data_ref_cachep;
  19struct kmem_cache *btrfs_delayed_extent_op_cachep;
  20/*
  21 * delayed back reference update tracking.  For subvolume trees
  22 * we queue up extent allocations and backref maintenance for
  23 * delayed processing.   This avoids deep call chains where we
  24 * add extents in the middle of btrfs_search_slot, and it allows
  25 * us to buffer up frequently modified backrefs in an rb tree instead
  26 * of hammering updates on the extent allocation tree.
  27 */
  28
  29bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  30{
  31	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  32	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  33	bool ret = false;
  34	u64 reserved;
  35
  36	spin_lock(&global_rsv->lock);
  37	reserved = global_rsv->reserved;
  38	spin_unlock(&global_rsv->lock);
  39
  40	/*
  41	 * Since the global reserve is just kind of magic we don't really want
  42	 * to rely on it to save our bacon, so if our size is more than the
  43	 * delayed_refs_rsv and the global rsv then it's time to think about
  44	 * bailing.
  45	 */
  46	spin_lock(&delayed_refs_rsv->lock);
  47	reserved += delayed_refs_rsv->reserved;
  48	if (delayed_refs_rsv->size >= reserved)
  49		ret = true;
  50	spin_unlock(&delayed_refs_rsv->lock);
  51	return ret;
  52}
  53
  54int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  55{
  56	u64 num_entries =
  57		atomic_read(&trans->transaction->delayed_refs.num_entries);
  58	u64 avg_runtime;
  59	u64 val;
  60
  61	smp_mb();
  62	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  63	val = num_entries * avg_runtime;
  64	if (val >= NSEC_PER_SEC)
  65		return 1;
  66	if (val >= NSEC_PER_SEC / 2)
  67		return 2;
  68
  69	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  70}
  71
  72/**
  73 * Release a ref head's reservation
  74 *
  75 * @fs_info:  the filesystem
  76 * @nr:       number of items to drop
 
  77 *
  78 * This drops the delayed ref head's count from the delayed refs rsv and frees
  79 * any excess reservation we had.
  80 */
  81void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  82{
  83	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  84	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  85	u64 released = 0;
 
 
 
  86
  87	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  88	if (released)
  89		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  90					      0, released, 0);
  91}
  92
  93/*
  94 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
  95 * @trans - the trans that may have generated delayed refs
  96 *
  97 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
  98 * it'll calculate the additional size and add it to the delayed_refs_rsv.
 
  99 */
 100void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 101{
 102	struct btrfs_fs_info *fs_info = trans->fs_info;
 103	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 
 104	u64 num_bytes;
 
 
 
 
 
 105
 106	if (!trans->delayed_ref_updates)
 107		return;
 108
 109	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 110						    trans->delayed_ref_updates);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111	spin_lock(&delayed_rsv->lock);
 112	delayed_rsv->size += num_bytes;
 113	delayed_rsv->full = 0;
 
 114	spin_unlock(&delayed_rsv->lock);
 115	trans->delayed_ref_updates = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116}
 117
 118/**
 119 * Transfer bytes to our delayed refs rsv
 120 *
 121 * @fs_info:   the filesystem
 122 * @src:       source block rsv to transfer from
 123 * @num_bytes: number of bytes to transfer
 124 *
 125 * This transfers up to the num_bytes amount from the src rsv to the
 126 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 127 */
 128void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 129				       struct btrfs_block_rsv *src,
 130				       u64 num_bytes)
 131{
 132	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 133	u64 to_free = 0;
 
 
 
 
 
 
 
 134
 135	spin_lock(&src->lock);
 136	src->reserved -= num_bytes;
 137	src->size -= num_bytes;
 138	spin_unlock(&src->lock);
 
 
 
 139
 140	spin_lock(&delayed_refs_rsv->lock);
 141	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 142		u64 delta = delayed_refs_rsv->size -
 143			delayed_refs_rsv->reserved;
 144		if (num_bytes > delta) {
 145			to_free = num_bytes - delta;
 146			num_bytes = delta;
 147		}
 148	} else {
 149		to_free = num_bytes;
 150		num_bytes = 0;
 151	}
 152
 153	if (num_bytes)
 154		delayed_refs_rsv->reserved += num_bytes;
 155	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 156		delayed_refs_rsv->full = 1;
 157	spin_unlock(&delayed_refs_rsv->lock);
 
 
 
 
 158
 159	if (num_bytes)
 
 160		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 161					      0, num_bytes, 1);
 162	if (to_free)
 163		btrfs_space_info_free_bytes_may_use(fs_info,
 164				delayed_refs_rsv->space_info, to_free);
 165}
 166
 167/**
 168 * Refill based on our delayed refs usage
 169 *
 170 * @fs_info: the filesystem
 171 * @flush:   control how we can flush for this reservation.
 172 *
 173 * This will refill the delayed block_rsv up to 1 items size worth of space and
 174 * will return -ENOSPC if we can't make the reservation.
 175 */
 176int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 177				  enum btrfs_reserve_flush_enum flush)
 178{
 179	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 180	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 
 181	u64 num_bytes = 0;
 
 
 182	int ret = -ENOSPC;
 183
 184	spin_lock(&block_rsv->lock);
 185	if (block_rsv->reserved < block_rsv->size) {
 186		num_bytes = block_rsv->size - block_rsv->reserved;
 187		num_bytes = min(num_bytes, limit);
 188	}
 189	spin_unlock(&block_rsv->lock);
 190
 191	if (!num_bytes)
 192		return 0;
 193
 194	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
 195					   num_bytes, flush);
 196	if (ret)
 197		return ret;
 198	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 199	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 200				      0, num_bytes, 1);
 201	return 0;
 202}
 203
 204/*
 205 * compare two delayed tree backrefs with same bytenr and type
 206 */
 207static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 208			  struct btrfs_delayed_tree_ref *ref2)
 209{
 210	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 211		if (ref1->root < ref2->root)
 212			return -1;
 213		if (ref1->root > ref2->root)
 214			return 1;
 
 
 
 
 
 
 
 215	} else {
 216		if (ref1->parent < ref2->parent)
 217			return -1;
 218		if (ref1->parent > ref2->parent)
 219			return 1;
 220	}
 
 
 
 
 
 
 
 
 221	return 0;
 222}
 223
 224/*
 225 * compare two delayed data backrefs with same bytenr and type
 226 */
 227static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 228			  struct btrfs_delayed_data_ref *ref2)
 229{
 230	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 231		if (ref1->root < ref2->root)
 232			return -1;
 233		if (ref1->root > ref2->root)
 234			return 1;
 235		if (ref1->objectid < ref2->objectid)
 236			return -1;
 237		if (ref1->objectid > ref2->objectid)
 238			return 1;
 239		if (ref1->offset < ref2->offset)
 240			return -1;
 241		if (ref1->offset > ref2->offset)
 242			return 1;
 243	} else {
 244		if (ref1->parent < ref2->parent)
 245			return -1;
 246		if (ref1->parent > ref2->parent)
 247			return 1;
 248	}
 249	return 0;
 250}
 251
 252static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 253		     struct btrfs_delayed_ref_node *ref2,
 254		     bool check_seq)
 255{
 256	int ret = 0;
 257
 258	if (ref1->type < ref2->type)
 259		return -1;
 260	if (ref1->type > ref2->type)
 261		return 1;
 262	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 263	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 264		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 265				     btrfs_delayed_node_to_tree_ref(ref2));
 266	else
 267		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 268				     btrfs_delayed_node_to_data_ref(ref2));
 
 
 
 
 
 
 
 269	if (ret)
 270		return ret;
 271	if (check_seq) {
 272		if (ref1->seq < ref2->seq)
 273			return -1;
 274		if (ref1->seq > ref2->seq)
 275			return 1;
 276	}
 277	return 0;
 278}
 279
 280/* insert a new ref to head ref rbtree */
 281static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 282						   struct rb_node *node)
 283{
 284	struct rb_node **p = &root->rb_root.rb_node;
 285	struct rb_node *parent_node = NULL;
 286	struct btrfs_delayed_ref_head *entry;
 287	struct btrfs_delayed_ref_head *ins;
 288	u64 bytenr;
 289	bool leftmost = true;
 290
 291	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 292	bytenr = ins->bytenr;
 293	while (*p) {
 294		parent_node = *p;
 295		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 296				 href_node);
 297
 298		if (bytenr < entry->bytenr) {
 299			p = &(*p)->rb_left;
 300		} else if (bytenr > entry->bytenr) {
 301			p = &(*p)->rb_right;
 302			leftmost = false;
 303		} else {
 304			return entry;
 305		}
 306	}
 307
 308	rb_link_node(node, parent_node, p);
 309	rb_insert_color_cached(node, root, leftmost);
 310	return NULL;
 311}
 312
 313static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 314		struct btrfs_delayed_ref_node *ins)
 315{
 316	struct rb_node **p = &root->rb_root.rb_node;
 317	struct rb_node *node = &ins->ref_node;
 318	struct rb_node *parent_node = NULL;
 319	struct btrfs_delayed_ref_node *entry;
 320	bool leftmost = true;
 321
 322	while (*p) {
 323		int comp;
 324
 325		parent_node = *p;
 326		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 327				 ref_node);
 328		comp = comp_refs(ins, entry, true);
 329		if (comp < 0) {
 330			p = &(*p)->rb_left;
 331		} else if (comp > 0) {
 332			p = &(*p)->rb_right;
 333			leftmost = false;
 334		} else {
 335			return entry;
 336		}
 337	}
 338
 339	rb_link_node(node, parent_node, p);
 340	rb_insert_color_cached(node, root, leftmost);
 341	return NULL;
 342}
 343
 344static struct btrfs_delayed_ref_head *find_first_ref_head(
 345		struct btrfs_delayed_ref_root *dr)
 346{
 347	struct rb_node *n;
 348	struct btrfs_delayed_ref_head *entry;
 349
 350	n = rb_first_cached(&dr->href_root);
 351	if (!n)
 352		return NULL;
 353
 354	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 355
 356	return entry;
 357}
 358
 359/*
 360 * Find a head entry based on bytenr. This returns the delayed ref head if it
 361 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 362 * is given, the next bigger entry is returned if no exact match is found.
 363 */
 364static struct btrfs_delayed_ref_head *find_ref_head(
 365		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 366		bool return_bigger)
 367{
 368	struct rb_root *root = &dr->href_root.rb_root;
 369	struct rb_node *n;
 370	struct btrfs_delayed_ref_head *entry;
 371
 372	n = root->rb_node;
 373	entry = NULL;
 374	while (n) {
 375		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 376
 377		if (bytenr < entry->bytenr)
 378			n = n->rb_left;
 379		else if (bytenr > entry->bytenr)
 380			n = n->rb_right;
 381		else
 382			return entry;
 383	}
 384	if (entry && return_bigger) {
 385		if (bytenr > entry->bytenr) {
 386			n = rb_next(&entry->href_node);
 387			if (!n)
 388				return NULL;
 389			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 390					 href_node);
 391		}
 392		return entry;
 393	}
 394	return NULL;
 395}
 396
 397int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 398			   struct btrfs_delayed_ref_head *head)
 399{
 400	lockdep_assert_held(&delayed_refs->lock);
 401	if (mutex_trylock(&head->mutex))
 402		return 0;
 403
 404	refcount_inc(&head->refs);
 405	spin_unlock(&delayed_refs->lock);
 406
 407	mutex_lock(&head->mutex);
 408	spin_lock(&delayed_refs->lock);
 409	if (RB_EMPTY_NODE(&head->href_node)) {
 410		mutex_unlock(&head->mutex);
 411		btrfs_put_delayed_ref_head(head);
 412		return -EAGAIN;
 413	}
 414	btrfs_put_delayed_ref_head(head);
 415	return 0;
 416}
 417
 418static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 419				    struct btrfs_delayed_ref_root *delayed_refs,
 420				    struct btrfs_delayed_ref_head *head,
 421				    struct btrfs_delayed_ref_node *ref)
 422{
 423	lockdep_assert_held(&head->lock);
 424	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 425	RB_CLEAR_NODE(&ref->ref_node);
 426	if (!list_empty(&ref->add_list))
 427		list_del(&ref->add_list);
 428	ref->in_tree = 0;
 429	btrfs_put_delayed_ref(ref);
 430	atomic_dec(&delayed_refs->num_entries);
 431}
 432
 433static bool merge_ref(struct btrfs_trans_handle *trans,
 434		      struct btrfs_delayed_ref_root *delayed_refs,
 435		      struct btrfs_delayed_ref_head *head,
 436		      struct btrfs_delayed_ref_node *ref,
 437		      u64 seq)
 438{
 439	struct btrfs_delayed_ref_node *next;
 440	struct rb_node *node = rb_next(&ref->ref_node);
 441	bool done = false;
 442
 443	while (!done && node) {
 444		int mod;
 445
 446		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 447		node = rb_next(node);
 448		if (seq && next->seq >= seq)
 449			break;
 450		if (comp_refs(ref, next, false))
 451			break;
 452
 453		if (ref->action == next->action) {
 454			mod = next->ref_mod;
 455		} else {
 456			if (ref->ref_mod < next->ref_mod) {
 457				swap(ref, next);
 458				done = true;
 459			}
 460			mod = -next->ref_mod;
 461		}
 462
 463		drop_delayed_ref(trans, delayed_refs, head, next);
 464		ref->ref_mod += mod;
 465		if (ref->ref_mod == 0) {
 466			drop_delayed_ref(trans, delayed_refs, head, ref);
 467			done = true;
 468		} else {
 469			/*
 470			 * Can't have multiples of the same ref on a tree block.
 471			 */
 472			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 473				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 474		}
 475	}
 476
 477	return done;
 478}
 479
 480void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 481			      struct btrfs_delayed_ref_root *delayed_refs,
 482			      struct btrfs_delayed_ref_head *head)
 483{
 484	struct btrfs_fs_info *fs_info = trans->fs_info;
 485	struct btrfs_delayed_ref_node *ref;
 486	struct rb_node *node;
 487	u64 seq = 0;
 488
 489	lockdep_assert_held(&head->lock);
 490
 491	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 492		return;
 493
 494	/* We don't have too many refs to merge for data. */
 495	if (head->is_data)
 496		return;
 497
 498	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 499again:
 500	for (node = rb_first_cached(&head->ref_tree); node;
 501	     node = rb_next(node)) {
 502		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 503		if (seq && ref->seq >= seq)
 504			continue;
 505		if (merge_ref(trans, delayed_refs, head, ref, seq))
 506			goto again;
 507	}
 508}
 509
 510int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 511{
 512	int ret = 0;
 513	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 514
 515	if (min_seq != 0 && seq >= min_seq) {
 516		btrfs_debug(fs_info,
 517			    "holding back delayed_ref %llu, lowest is %llu",
 518			    seq, min_seq);
 519		ret = 1;
 520	}
 521
 522	return ret;
 523}
 524
 525struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 
 526		struct btrfs_delayed_ref_root *delayed_refs)
 527{
 528	struct btrfs_delayed_ref_head *head;
 
 
 
 
 529
 
 530again:
 531	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 532			     true);
 533	if (!head && delayed_refs->run_delayed_start != 0) {
 534		delayed_refs->run_delayed_start = 0;
 535		head = find_first_ref_head(delayed_refs);
 
 536	}
 537	if (!head)
 538		return NULL;
 539
 540	while (head->processing) {
 541		struct rb_node *node;
 542
 543		node = rb_next(&head->href_node);
 544		if (!node) {
 545			if (delayed_refs->run_delayed_start == 0)
 546				return NULL;
 547			delayed_refs->run_delayed_start = 0;
 548			goto again;
 549		}
 550		head = rb_entry(node, struct btrfs_delayed_ref_head,
 551				href_node);
 552	}
 553
 554	head->processing = 1;
 555	WARN_ON(delayed_refs->num_heads_ready == 0);
 556	delayed_refs->num_heads_ready--;
 557	delayed_refs->run_delayed_start = head->bytenr +
 558		head->num_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 559	return head;
 560}
 561
 562void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 
 
 
 
 
 
 
 
 
 
 
 563			   struct btrfs_delayed_ref_head *head)
 564{
 
 
 565	lockdep_assert_held(&delayed_refs->lock);
 566	lockdep_assert_held(&head->lock);
 567
 568	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 569	RB_CLEAR_NODE(&head->href_node);
 570	atomic_dec(&delayed_refs->num_entries);
 571	delayed_refs->num_heads--;
 572	if (head->processing == 0)
 573		delayed_refs->num_heads_ready--;
 574}
 575
 576/*
 577 * Helper to insert the ref_node to the tail or merge with tail.
 578 *
 579 * Return 0 for insert.
 580 * Return >0 for merge.
 
 581 */
 582static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 583			      struct btrfs_delayed_ref_root *root,
 584			      struct btrfs_delayed_ref_head *href,
 585			      struct btrfs_delayed_ref_node *ref)
 586{
 
 587	struct btrfs_delayed_ref_node *exist;
 588	int mod;
 589	int ret = 0;
 590
 591	spin_lock(&href->lock);
 592	exist = tree_insert(&href->ref_tree, ref);
 593	if (!exist)
 594		goto inserted;
 
 
 
 
 
 595
 596	/* Now we are sure we can merge */
 597	ret = 1;
 598	if (exist->action == ref->action) {
 599		mod = ref->ref_mod;
 600	} else {
 601		/* Need to change action */
 602		if (exist->ref_mod < ref->ref_mod) {
 603			exist->action = ref->action;
 604			mod = -exist->ref_mod;
 605			exist->ref_mod = ref->ref_mod;
 606			if (ref->action == BTRFS_ADD_DELAYED_REF)
 607				list_add_tail(&exist->add_list,
 608					      &href->ref_add_list);
 609			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 610				ASSERT(!list_empty(&exist->add_list));
 611				list_del(&exist->add_list);
 612			} else {
 613				ASSERT(0);
 614			}
 615		} else
 616			mod = -ref->ref_mod;
 617	}
 618	exist->ref_mod += mod;
 619
 620	/* remove existing tail if its ref_mod is zero */
 621	if (exist->ref_mod == 0)
 622		drop_delayed_ref(trans, root, href, exist);
 623	spin_unlock(&href->lock);
 624	return ret;
 625inserted:
 626	if (ref->action == BTRFS_ADD_DELAYED_REF)
 627		list_add_tail(&ref->add_list, &href->ref_add_list);
 628	atomic_inc(&root->num_entries);
 629	spin_unlock(&href->lock);
 630	return ret;
 631}
 632
 633/*
 634 * helper function to update the accounting in the head ref
 635 * existing and update must have the same bytenr
 636 */
 637static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 638			 struct btrfs_delayed_ref_head *existing,
 639			 struct btrfs_delayed_ref_head *update)
 640{
 641	struct btrfs_delayed_ref_root *delayed_refs =
 642		&trans->transaction->delayed_refs;
 643	struct btrfs_fs_info *fs_info = trans->fs_info;
 644	int old_ref_mod;
 645
 646	BUG_ON(existing->is_data != update->is_data);
 647
 648	spin_lock(&existing->lock);
 
 
 
 
 
 
 
 
 
 649	if (update->must_insert_reserved) {
 650		/* if the extent was freed and then
 651		 * reallocated before the delayed ref
 652		 * entries were processed, we can end up
 653		 * with an existing head ref without
 654		 * the must_insert_reserved flag set.
 655		 * Set it again here
 656		 */
 657		existing->must_insert_reserved = update->must_insert_reserved;
 
 658
 659		/*
 660		 * update the num_bytes so we make sure the accounting
 661		 * is done correctly
 662		 */
 663		existing->num_bytes = update->num_bytes;
 664
 665	}
 666
 667	if (update->extent_op) {
 668		if (!existing->extent_op) {
 669			existing->extent_op = update->extent_op;
 670		} else {
 671			if (update->extent_op->update_key) {
 672				memcpy(&existing->extent_op->key,
 673				       &update->extent_op->key,
 674				       sizeof(update->extent_op->key));
 675				existing->extent_op->update_key = true;
 676			}
 677			if (update->extent_op->update_flags) {
 678				existing->extent_op->flags_to_set |=
 679					update->extent_op->flags_to_set;
 680				existing->extent_op->update_flags = true;
 681			}
 682			btrfs_free_delayed_extent_op(update->extent_op);
 683		}
 684	}
 685	/*
 686	 * update the reference mod on the head to reflect this new operation,
 687	 * only need the lock for this case cause we could be processing it
 688	 * currently, for refs we just added we know we're a-ok.
 689	 */
 690	old_ref_mod = existing->total_ref_mod;
 691	existing->ref_mod += update->ref_mod;
 692	existing->total_ref_mod += update->ref_mod;
 693
 694	/*
 695	 * If we are going to from a positive ref mod to a negative or vice
 696	 * versa we need to make sure to adjust pending_csums accordingly.
 
 
 697	 */
 698	if (existing->is_data) {
 699		u64 csum_leaves =
 700			btrfs_csum_bytes_to_leaves(fs_info,
 701						   existing->num_bytes);
 702
 703		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 704			delayed_refs->pending_csums -= existing->num_bytes;
 705			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 706		}
 707		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 708			delayed_refs->pending_csums += existing->num_bytes;
 709			trans->delayed_ref_updates += csum_leaves;
 710		}
 711	}
 712
 713	spin_unlock(&existing->lock);
 714}
 715
 716static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 
 717				  struct btrfs_qgroup_extent_record *qrecord,
 718				  u64 bytenr, u64 num_bytes, u64 ref_root,
 719				  u64 reserved, int action, bool is_data,
 720				  bool is_system)
 721{
 722	int count_mod = 1;
 723	int must_insert_reserved = 0;
 724
 725	/* If reserved is provided, it must be a data extent. */
 726	BUG_ON(!is_data && reserved);
 727
 728	/*
 729	 * The head node stores the sum of all the mods, so dropping a ref
 730	 * should drop the sum in the head node by one.
 731	 */
 732	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 733		count_mod = 0;
 734	else if (action == BTRFS_DROP_DELAYED_REF)
 
 
 
 
 
 735		count_mod = -1;
 736
 737	/*
 738	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 739	 * accounting when the extent is finally added, or if a later
 740	 * modification deletes the delayed ref without ever inserting the
 741	 * extent into the extent allocation tree.  ref->must_insert_reserved
 742	 * is the flag used to record that accounting mods are required.
 743	 *
 744	 * Once we record must_insert_reserved, switch the action to
 745	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 746	 */
 747	if (action == BTRFS_ADD_DELAYED_EXTENT)
 748		must_insert_reserved = 1;
 749	else
 750		must_insert_reserved = 0;
 
 
 751
 752	refcount_set(&head_ref->refs, 1);
 753	head_ref->bytenr = bytenr;
 754	head_ref->num_bytes = num_bytes;
 755	head_ref->ref_mod = count_mod;
 
 756	head_ref->must_insert_reserved = must_insert_reserved;
 757	head_ref->is_data = is_data;
 758	head_ref->is_system = is_system;
 
 759	head_ref->ref_tree = RB_ROOT_CACHED;
 760	INIT_LIST_HEAD(&head_ref->ref_add_list);
 761	RB_CLEAR_NODE(&head_ref->href_node);
 762	head_ref->processing = 0;
 763	head_ref->total_ref_mod = count_mod;
 764	spin_lock_init(&head_ref->lock);
 765	mutex_init(&head_ref->mutex);
 766
 
 
 
 
 
 
 767	if (qrecord) {
 768		if (ref_root && reserved) {
 769			qrecord->data_rsv = reserved;
 770			qrecord->data_rsv_refroot = ref_root;
 771		}
 772		qrecord->bytenr = bytenr;
 773		qrecord->num_bytes = num_bytes;
 774		qrecord->old_roots = NULL;
 775	}
 776}
 777
 778/*
 779 * helper function to actually insert a head node into the rbtree.
 780 * this does all the dirty work in terms of maintaining the correct
 781 * overall modification count.
 
 
 782 */
 783static noinline struct btrfs_delayed_ref_head *
 784add_delayed_ref_head(struct btrfs_trans_handle *trans,
 785		     struct btrfs_delayed_ref_head *head_ref,
 786		     struct btrfs_qgroup_extent_record *qrecord,
 787		     int action, int *qrecord_inserted_ret)
 788{
 
 789	struct btrfs_delayed_ref_head *existing;
 790	struct btrfs_delayed_ref_root *delayed_refs;
 791	int qrecord_inserted = 0;
 
 792
 793	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 794
 795	/* Record qgroup extent info if provided */
 796	if (qrecord) {
 797		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 798					delayed_refs, qrecord))
 
 
 
 
 
 
 
 
 799			kfree(qrecord);
 800		else
 801			qrecord_inserted = 1;
 
 802	}
 803
 804	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 805
 806	existing = htree_insert(&delayed_refs->href_root,
 807				&head_ref->href_node);
 808	if (existing) {
 809		update_existing_head_ref(trans, existing, head_ref);
 810		/*
 811		 * we've updated the existing ref, free the newly
 812		 * allocated ref
 813		 */
 814		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 815		head_ref = existing;
 816	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817		if (head_ref->is_data && head_ref->ref_mod < 0) {
 818			delayed_refs->pending_csums += head_ref->num_bytes;
 819			trans->delayed_ref_updates +=
 820				btrfs_csum_bytes_to_leaves(trans->fs_info,
 821							   head_ref->num_bytes);
 822		}
 823		delayed_refs->num_heads++;
 824		delayed_refs->num_heads_ready++;
 825		atomic_inc(&delayed_refs->num_entries);
 826		trans->delayed_ref_updates++;
 827	}
 828	if (qrecord_inserted_ret)
 829		*qrecord_inserted_ret = qrecord_inserted;
 830
 831	return head_ref;
 832}
 833
 834/*
 835 * init_delayed_ref_common - Initialize the structure which represents a
 836 *			     modification to a an extent.
 837 *
 838 * @fs_info:    Internal to the mounted filesystem mount structure.
 839 *
 840 * @ref:	The structure which is going to be initialized.
 841 *
 842 * @bytenr:	The logical address of the extent for which a modification is
 843 *		going to be recorded.
 844 *
 845 * @num_bytes:  Size of the extent whose modification is being recorded.
 846 *
 847 * @ref_root:	The id of the root where this modification has originated, this
 848 *		can be either one of the well-known metadata trees or the
 849 *		subvolume id which references this extent.
 850 *
 851 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 852 *		BTRFS_ADD_DELAYED_EXTENT
 853 *
 854 * @ref_type:	Holds the type of the extent which is being recorded, can be
 855 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 856 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 857 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 858 */
 859static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 860				    struct btrfs_delayed_ref_node *ref,
 861				    u64 bytenr, u64 num_bytes, u64 ref_root,
 862				    int action, u8 ref_type)
 863{
 
 864	u64 seq = 0;
 865
 866	if (action == BTRFS_ADD_DELAYED_EXTENT)
 867		action = BTRFS_ADD_DELAYED_REF;
 868
 869	if (is_fstree(ref_root))
 870		seq = atomic64_read(&fs_info->tree_mod_seq);
 871
 872	refcount_set(&ref->refs, 1);
 873	ref->bytenr = bytenr;
 874	ref->num_bytes = num_bytes;
 875	ref->ref_mod = 1;
 876	ref->action = action;
 877	ref->is_head = 0;
 878	ref->in_tree = 1;
 879	ref->seq = seq;
 880	ref->type = ref_type;
 
 
 881	RB_CLEAR_NODE(&ref->ref_node);
 882	INIT_LIST_HEAD(&ref->add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884
 885/*
 886 * add a delayed tree ref.  This does all of the accounting required
 887 * to make sure the delayed ref is eventually processed before this
 888 * transaction commits.
 889 */
 890int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 891			       struct btrfs_ref *generic_ref,
 892			       struct btrfs_delayed_extent_op *extent_op)
 893{
 894	struct btrfs_fs_info *fs_info = trans->fs_info;
 895	struct btrfs_delayed_tree_ref *ref;
 896	struct btrfs_delayed_ref_head *head_ref;
 
 897	struct btrfs_delayed_ref_root *delayed_refs;
 898	struct btrfs_qgroup_extent_record *record = NULL;
 899	int qrecord_inserted;
 900	bool is_system;
 
 901	int action = generic_ref->action;
 902	int level = generic_ref->tree_ref.level;
 903	int ret;
 904	u64 bytenr = generic_ref->bytenr;
 905	u64 num_bytes = generic_ref->len;
 906	u64 parent = generic_ref->parent;
 907	u8 ref_type;
 908
 909	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
 910
 911	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 912	BUG_ON(extent_op && extent_op->is_data);
 913	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 914	if (!ref)
 915		return -ENOMEM;
 916
 917	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 918	if (!head_ref) {
 919		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 920		return -ENOMEM;
 921	}
 922
 923	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 924	    is_fstree(generic_ref->real_root) &&
 925	    is_fstree(generic_ref->tree_ref.root) &&
 926	    !generic_ref->skip_qgroup) {
 927		record = kzalloc(sizeof(*record), GFP_NOFS);
 928		if (!record) {
 929			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 930			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 931			return -ENOMEM;
 
 
 
 932		}
 
 933	}
 934
 935	if (parent)
 936		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 937	else
 938		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 
 
 939
 940	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 941				generic_ref->tree_ref.root, action, ref_type);
 942	ref->root = generic_ref->tree_ref.root;
 943	ref->parent = parent;
 944	ref->level = level;
 945
 946	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 947			      generic_ref->tree_ref.root, 0, action, false,
 948			      is_system);
 949	head_ref->extent_op = extent_op;
 950
 951	delayed_refs = &trans->transaction->delayed_refs;
 952	spin_lock(&delayed_refs->lock);
 953
 954	/*
 955	 * insert both the head node and the new ref without dropping
 956	 * the spin lock
 957	 */
 958	head_ref = add_delayed_ref_head(trans, head_ref, record,
 959					action, &qrecord_inserted);
 
 
 
 
 
 
 
 960
 961	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 962	spin_unlock(&delayed_refs->lock);
 963
 964	/*
 965	 * Need to update the delayed_refs_rsv with any changes we may have
 966	 * made.
 967	 */
 968	btrfs_update_delayed_refs_rsv(trans);
 969
 970	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 971				   action == BTRFS_ADD_DELAYED_EXTENT ?
 972				   BTRFS_ADD_DELAYED_REF : action);
 973	if (ret > 0)
 974		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 
 975
 976	if (qrecord_inserted)
 977		btrfs_qgroup_trace_extent_post(trans, record);
 
 978
 979	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980}
 981
 982/*
 983 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
 984 */
 985int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
 986			       struct btrfs_ref *generic_ref,
 987			       u64 reserved)
 988{
 989	struct btrfs_fs_info *fs_info = trans->fs_info;
 990	struct btrfs_delayed_data_ref *ref;
 
 
 
 
 
 
 
 991	struct btrfs_delayed_ref_head *head_ref;
 
 992	struct btrfs_delayed_ref_root *delayed_refs;
 993	struct btrfs_qgroup_extent_record *record = NULL;
 994	int qrecord_inserted;
 995	int action = generic_ref->action;
 
 
 
 
 996	int ret;
 997	u64 bytenr = generic_ref->bytenr;
 998	u64 num_bytes = generic_ref->len;
 999	u64 parent = generic_ref->parent;
1000	u64 ref_root = generic_ref->data_ref.ref_root;
1001	u64 owner = generic_ref->data_ref.ino;
1002	u64 offset = generic_ref->data_ref.offset;
1003	u8 ref_type;
1004
1005	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1006	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1007	if (!ref)
1008		return -ENOMEM;
1009
1010	if (parent)
1011	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1012	else
1013	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1014	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1015				ref_root, action, ref_type);
1016	ref->root = ref_root;
1017	ref->parent = parent;
1018	ref->objectid = owner;
1019	ref->offset = offset;
1020
1021
1022	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1023	if (!head_ref) {
1024		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1025		return -ENOMEM;
1026	}
1027
1028	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1029	    is_fstree(ref_root) &&
1030	    is_fstree(generic_ref->real_root) &&
1031	    !generic_ref->skip_qgroup) {
1032		record = kzalloc(sizeof(*record), GFP_NOFS);
1033		if (!record) {
1034			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1035			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1036					head_ref);
1037			return -ENOMEM;
1038		}
1039	}
1040
1041	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1042			      reserved, action, true, false);
1043	head_ref->extent_op = NULL;
1044
1045	delayed_refs = &trans->transaction->delayed_refs;
1046	spin_lock(&delayed_refs->lock);
1047
1048	/*
1049	 * insert both the head node and the new ref without dropping
1050	 * the spin lock
1051	 */
1052	head_ref = add_delayed_ref_head(trans, head_ref, record,
1053					action, &qrecord_inserted);
1054
1055	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 
 
 
 
 
 
 
1056	spin_unlock(&delayed_refs->lock);
1057
1058	/*
1059	 * Need to update the delayed_refs_rsv with any changes we may have
1060	 * made.
1061	 */
1062	btrfs_update_delayed_refs_rsv(trans);
1063
1064	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1065				   action == BTRFS_ADD_DELAYED_EXTENT ?
1066				   BTRFS_ADD_DELAYED_REF : action);
1067	if (ret > 0)
1068		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1069
1070
1071	if (qrecord_inserted)
1072		return btrfs_qgroup_trace_extent_post(trans, record);
1073	return 0;
1074}
1075
1076int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1077				u64 bytenr, u64 num_bytes,
1078				struct btrfs_delayed_extent_op *extent_op)
1079{
1080	struct btrfs_delayed_ref_head *head_ref;
1081	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
1082
1083	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1084	if (!head_ref)
1085		return -ENOMEM;
 
 
 
 
 
 
 
1086
1087	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1088			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1089			      false);
1090	head_ref->extent_op = extent_op;
1091
1092	delayed_refs = &trans->transaction->delayed_refs;
1093	spin_lock(&delayed_refs->lock);
1094
1095	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1096			     NULL);
 
1097
1098	spin_unlock(&delayed_refs->lock);
 
 
 
1099
1100	/*
1101	 * Need to update the delayed_refs_rsv with any changes we may have
1102	 * made.
1103	 */
1104	btrfs_update_delayed_refs_rsv(trans);
 
 
 
 
 
 
1105	return 0;
1106}
1107
1108/*
1109 * This does a simple search for the head node for a given extent.  Returns the
1110 * head node if found, or NULL if not.
 
 
 
 
 
 
1111 */
1112struct btrfs_delayed_ref_head *
1113btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114{
1115	lockdep_assert_held(&delayed_refs->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117	return find_ref_head(delayed_refs, bytenr, false);
1118}
1119
1120void __cold btrfs_delayed_ref_exit(void)
1121{
1122	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1123	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1124	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1125	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1126}
1127
1128int __init btrfs_delayed_ref_init(void)
1129{
1130	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1131				"btrfs_delayed_ref_head",
1132				sizeof(struct btrfs_delayed_ref_head), 0,
1133				SLAB_MEM_SPREAD, NULL);
1134	if (!btrfs_delayed_ref_head_cachep)
1135		goto fail;
1136
1137	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1138				"btrfs_delayed_tree_ref",
1139				sizeof(struct btrfs_delayed_tree_ref), 0,
1140				SLAB_MEM_SPREAD, NULL);
1141	if (!btrfs_delayed_tree_ref_cachep)
1142		goto fail;
1143
1144	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1145				"btrfs_delayed_data_ref",
1146				sizeof(struct btrfs_delayed_data_ref), 0,
1147				SLAB_MEM_SPREAD, NULL);
1148	if (!btrfs_delayed_data_ref_cachep)
1149		goto fail;
1150
1151	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1152				"btrfs_delayed_extent_op",
1153				sizeof(struct btrfs_delayed_extent_op), 0,
1154				SLAB_MEM_SPREAD, NULL);
1155	if (!btrfs_delayed_extent_op_cachep)
1156		goto fail;
1157
1158	return 0;
1159fail:
1160	btrfs_delayed_ref_exit();
1161	return -ENOMEM;
1162}