Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_base.h"
6#include "ice_flow.h"
7#include "ice_lib.h"
8#include "ice_fltr.h"
9#include "ice_dcb_lib.h"
10#include "ice_type.h"
11#include "ice_vsi_vlan_ops.h"
12
13/**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18{
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_SF:
25 return "ICE_VSI_SF";
26 case ICE_VSI_CTRL:
27 return "ICE_VSI_CTRL";
28 case ICE_VSI_CHNL:
29 return "ICE_VSI_CHNL";
30 case ICE_VSI_LB:
31 return "ICE_VSI_LB";
32 default:
33 return "unknown";
34 }
35}
36
37/**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48{
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64}
65
66/**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74{
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131}
132
133/**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
137static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138{
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SF:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158}
159
160/**
161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
162 * @vsi: the VSI being configured
163 *
164 * Return 0 on success and a negative value on error
165 */
166static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
167{
168 enum ice_vsi_type vsi_type = vsi->type;
169 struct ice_pf *pf = vsi->back;
170 struct ice_vf *vf = vsi->vf;
171
172 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
173 return;
174
175 switch (vsi_type) {
176 case ICE_VSI_PF:
177 if (vsi->req_txq) {
178 vsi->alloc_txq = vsi->req_txq;
179 vsi->num_txq = vsi->req_txq;
180 } else {
181 vsi->alloc_txq = min3(pf->num_lan_msix,
182 ice_get_avail_txq_count(pf),
183 (u16)num_online_cpus());
184 }
185
186 pf->num_lan_tx = vsi->alloc_txq;
187
188 /* only 1 Rx queue unless RSS is enabled */
189 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
190 vsi->alloc_rxq = 1;
191 } else {
192 if (vsi->req_rxq) {
193 vsi->alloc_rxq = vsi->req_rxq;
194 vsi->num_rxq = vsi->req_rxq;
195 } else {
196 vsi->alloc_rxq = min3(pf->num_lan_msix,
197 ice_get_avail_rxq_count(pf),
198 (u16)num_online_cpus());
199 }
200 }
201
202 pf->num_lan_rx = vsi->alloc_rxq;
203
204 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
205 max_t(int, vsi->alloc_rxq,
206 vsi->alloc_txq));
207 break;
208 case ICE_VSI_SF:
209 vsi->alloc_txq = 1;
210 vsi->alloc_rxq = 1;
211 vsi->num_q_vectors = 1;
212 vsi->irq_dyn_alloc = true;
213 break;
214 case ICE_VSI_VF:
215 if (vf->num_req_qs)
216 vf->num_vf_qs = vf->num_req_qs;
217 vsi->alloc_txq = vf->num_vf_qs;
218 vsi->alloc_rxq = vf->num_vf_qs;
219 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
220 * data queue interrupts). Since vsi->num_q_vectors is number
221 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
222 * original vector count
223 */
224 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
225 break;
226 case ICE_VSI_CTRL:
227 vsi->alloc_txq = 1;
228 vsi->alloc_rxq = 1;
229 vsi->num_q_vectors = 1;
230 break;
231 case ICE_VSI_CHNL:
232 vsi->alloc_txq = 0;
233 vsi->alloc_rxq = 0;
234 break;
235 case ICE_VSI_LB:
236 vsi->alloc_txq = 1;
237 vsi->alloc_rxq = 1;
238 break;
239 default:
240 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
241 break;
242 }
243
244 ice_vsi_set_num_desc(vsi);
245}
246
247/**
248 * ice_get_free_slot - get the next non-NULL location index in array
249 * @array: array to search
250 * @size: size of the array
251 * @curr: last known occupied index to be used as a search hint
252 *
253 * void * is being used to keep the functionality generic. This lets us use this
254 * function on any array of pointers.
255 */
256static int ice_get_free_slot(void *array, int size, int curr)
257{
258 int **tmp_array = (int **)array;
259 int next;
260
261 if (curr < (size - 1) && !tmp_array[curr + 1]) {
262 next = curr + 1;
263 } else {
264 int i = 0;
265
266 while ((i < size) && (tmp_array[i]))
267 i++;
268 if (i == size)
269 next = ICE_NO_VSI;
270 else
271 next = i;
272 }
273 return next;
274}
275
276/**
277 * ice_vsi_delete_from_hw - delete a VSI from the switch
278 * @vsi: pointer to VSI being removed
279 */
280static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
281{
282 struct ice_pf *pf = vsi->back;
283 struct ice_vsi_ctx *ctxt;
284 int status;
285
286 ice_fltr_remove_all(vsi);
287 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
288 if (!ctxt)
289 return;
290
291 if (vsi->type == ICE_VSI_VF)
292 ctxt->vf_num = vsi->vf->vf_id;
293 ctxt->vsi_num = vsi->vsi_num;
294
295 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
296
297 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
298 if (status)
299 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
300 vsi->vsi_num, status);
301
302 kfree(ctxt);
303}
304
305/**
306 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
307 * @vsi: pointer to VSI being cleared
308 */
309static void ice_vsi_free_arrays(struct ice_vsi *vsi)
310{
311 struct ice_pf *pf = vsi->back;
312 struct device *dev;
313
314 dev = ice_pf_to_dev(pf);
315
316 /* free the ring and vector containers */
317 devm_kfree(dev, vsi->q_vectors);
318 vsi->q_vectors = NULL;
319 devm_kfree(dev, vsi->tx_rings);
320 vsi->tx_rings = NULL;
321 devm_kfree(dev, vsi->rx_rings);
322 vsi->rx_rings = NULL;
323 devm_kfree(dev, vsi->txq_map);
324 vsi->txq_map = NULL;
325 devm_kfree(dev, vsi->rxq_map);
326 vsi->rxq_map = NULL;
327}
328
329/**
330 * ice_vsi_free_stats - Free the ring statistics structures
331 * @vsi: VSI pointer
332 */
333static void ice_vsi_free_stats(struct ice_vsi *vsi)
334{
335 struct ice_vsi_stats *vsi_stat;
336 struct ice_pf *pf = vsi->back;
337 int i;
338
339 if (vsi->type == ICE_VSI_CHNL)
340 return;
341 if (!pf->vsi_stats)
342 return;
343
344 vsi_stat = pf->vsi_stats[vsi->idx];
345 if (!vsi_stat)
346 return;
347
348 ice_for_each_alloc_txq(vsi, i) {
349 if (vsi_stat->tx_ring_stats[i]) {
350 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
351 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
352 }
353 }
354
355 ice_for_each_alloc_rxq(vsi, i) {
356 if (vsi_stat->rx_ring_stats[i]) {
357 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
358 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
359 }
360 }
361
362 kfree(vsi_stat->tx_ring_stats);
363 kfree(vsi_stat->rx_ring_stats);
364 kfree(vsi_stat);
365 pf->vsi_stats[vsi->idx] = NULL;
366}
367
368/**
369 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
370 * @vsi: VSI which is having stats allocated
371 */
372static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
373{
374 struct ice_ring_stats **tx_ring_stats;
375 struct ice_ring_stats **rx_ring_stats;
376 struct ice_vsi_stats *vsi_stats;
377 struct ice_pf *pf = vsi->back;
378 u16 i;
379
380 vsi_stats = pf->vsi_stats[vsi->idx];
381 tx_ring_stats = vsi_stats->tx_ring_stats;
382 rx_ring_stats = vsi_stats->rx_ring_stats;
383
384 /* Allocate Tx ring stats */
385 ice_for_each_alloc_txq(vsi, i) {
386 struct ice_ring_stats *ring_stats;
387 struct ice_tx_ring *ring;
388
389 ring = vsi->tx_rings[i];
390 ring_stats = tx_ring_stats[i];
391
392 if (!ring_stats) {
393 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
394 if (!ring_stats)
395 goto err_out;
396
397 WRITE_ONCE(tx_ring_stats[i], ring_stats);
398 }
399
400 ring->ring_stats = ring_stats;
401 }
402
403 /* Allocate Rx ring stats */
404 ice_for_each_alloc_rxq(vsi, i) {
405 struct ice_ring_stats *ring_stats;
406 struct ice_rx_ring *ring;
407
408 ring = vsi->rx_rings[i];
409 ring_stats = rx_ring_stats[i];
410
411 if (!ring_stats) {
412 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
413 if (!ring_stats)
414 goto err_out;
415
416 WRITE_ONCE(rx_ring_stats[i], ring_stats);
417 }
418
419 ring->ring_stats = ring_stats;
420 }
421
422 return 0;
423
424err_out:
425 ice_vsi_free_stats(vsi);
426 return -ENOMEM;
427}
428
429/**
430 * ice_vsi_free - clean up and deallocate the provided VSI
431 * @vsi: pointer to VSI being cleared
432 *
433 * This deallocates the VSI's queue resources, removes it from the PF's
434 * VSI array if necessary, and deallocates the VSI
435 */
436void ice_vsi_free(struct ice_vsi *vsi)
437{
438 struct ice_pf *pf = NULL;
439 struct device *dev;
440
441 if (!vsi || !vsi->back)
442 return;
443
444 pf = vsi->back;
445 dev = ice_pf_to_dev(pf);
446
447 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
448 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
449 return;
450 }
451
452 mutex_lock(&pf->sw_mutex);
453 /* updates the PF for this cleared VSI */
454
455 pf->vsi[vsi->idx] = NULL;
456 pf->next_vsi = vsi->idx;
457
458 ice_vsi_free_stats(vsi);
459 ice_vsi_free_arrays(vsi);
460 mutex_destroy(&vsi->xdp_state_lock);
461 mutex_unlock(&pf->sw_mutex);
462 devm_kfree(dev, vsi);
463}
464
465void ice_vsi_delete(struct ice_vsi *vsi)
466{
467 ice_vsi_delete_from_hw(vsi);
468 ice_vsi_free(vsi);
469}
470
471/**
472 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
473 * @irq: interrupt number
474 * @data: pointer to a q_vector
475 */
476static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
477{
478 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
479
480 if (!q_vector->tx.tx_ring)
481 return IRQ_HANDLED;
482
483#define FDIR_RX_DESC_CLEAN_BUDGET 64
484 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
485 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
486
487 return IRQ_HANDLED;
488}
489
490/**
491 * ice_msix_clean_rings - MSIX mode Interrupt Handler
492 * @irq: interrupt number
493 * @data: pointer to a q_vector
494 */
495static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
496{
497 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
498
499 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
500 return IRQ_HANDLED;
501
502 q_vector->total_events++;
503
504 napi_schedule(&q_vector->napi);
505
506 return IRQ_HANDLED;
507}
508
509/**
510 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
511 * @vsi: VSI pointer
512 */
513static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
514{
515 struct ice_vsi_stats *vsi_stat;
516 struct ice_pf *pf = vsi->back;
517
518 if (vsi->type == ICE_VSI_CHNL)
519 return 0;
520 if (!pf->vsi_stats)
521 return -ENOENT;
522
523 if (pf->vsi_stats[vsi->idx])
524 /* realloc will happen in rebuild path */
525 return 0;
526
527 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
528 if (!vsi_stat)
529 return -ENOMEM;
530
531 vsi_stat->tx_ring_stats =
532 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
533 GFP_KERNEL);
534 if (!vsi_stat->tx_ring_stats)
535 goto err_alloc_tx;
536
537 vsi_stat->rx_ring_stats =
538 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
539 GFP_KERNEL);
540 if (!vsi_stat->rx_ring_stats)
541 goto err_alloc_rx;
542
543 pf->vsi_stats[vsi->idx] = vsi_stat;
544
545 return 0;
546
547err_alloc_rx:
548 kfree(vsi_stat->rx_ring_stats);
549err_alloc_tx:
550 kfree(vsi_stat->tx_ring_stats);
551 kfree(vsi_stat);
552 pf->vsi_stats[vsi->idx] = NULL;
553 return -ENOMEM;
554}
555
556/**
557 * ice_vsi_alloc_def - set default values for already allocated VSI
558 * @vsi: ptr to VSI
559 * @ch: ptr to channel
560 */
561static int
562ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
563{
564 if (vsi->type != ICE_VSI_CHNL) {
565 ice_vsi_set_num_qs(vsi);
566 if (ice_vsi_alloc_arrays(vsi))
567 return -ENOMEM;
568 }
569
570 switch (vsi->type) {
571 case ICE_VSI_PF:
572 case ICE_VSI_SF:
573 /* Setup default MSIX irq handler for VSI */
574 vsi->irq_handler = ice_msix_clean_rings;
575 break;
576 case ICE_VSI_CTRL:
577 /* Setup ctrl VSI MSIX irq handler */
578 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
579 break;
580 case ICE_VSI_CHNL:
581 if (!ch)
582 return -EINVAL;
583
584 vsi->num_rxq = ch->num_rxq;
585 vsi->num_txq = ch->num_txq;
586 vsi->next_base_q = ch->base_q;
587 break;
588 case ICE_VSI_VF:
589 case ICE_VSI_LB:
590 break;
591 default:
592 ice_vsi_free_arrays(vsi);
593 return -EINVAL;
594 }
595
596 return 0;
597}
598
599/**
600 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
601 * @pf: board private structure
602 *
603 * Reserves a VSI index from the PF and allocates an empty VSI structure
604 * without a type. The VSI structure must later be initialized by calling
605 * ice_vsi_cfg().
606 *
607 * returns a pointer to a VSI on success, NULL on failure.
608 */
609struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
610{
611 struct device *dev = ice_pf_to_dev(pf);
612 struct ice_vsi *vsi = NULL;
613
614 /* Need to protect the allocation of the VSIs at the PF level */
615 mutex_lock(&pf->sw_mutex);
616
617 /* If we have already allocated our maximum number of VSIs,
618 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
619 * is available to be populated
620 */
621 if (pf->next_vsi == ICE_NO_VSI) {
622 dev_dbg(dev, "out of VSI slots!\n");
623 goto unlock_pf;
624 }
625
626 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
627 if (!vsi)
628 goto unlock_pf;
629
630 vsi->back = pf;
631 set_bit(ICE_VSI_DOWN, vsi->state);
632
633 /* fill slot and make note of the index */
634 vsi->idx = pf->next_vsi;
635 pf->vsi[pf->next_vsi] = vsi;
636
637 /* prepare pf->next_vsi for next use */
638 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
639 pf->next_vsi);
640
641 mutex_init(&vsi->xdp_state_lock);
642
643unlock_pf:
644 mutex_unlock(&pf->sw_mutex);
645 return vsi;
646}
647
648/**
649 * ice_alloc_fd_res - Allocate FD resource for a VSI
650 * @vsi: pointer to the ice_vsi
651 *
652 * This allocates the FD resources
653 *
654 * Returns 0 on success, -EPERM on no-op or -EIO on failure
655 */
656static int ice_alloc_fd_res(struct ice_vsi *vsi)
657{
658 struct ice_pf *pf = vsi->back;
659 u32 g_val, b_val;
660
661 /* Flow Director filters are only allocated/assigned to the PF VSI or
662 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
663 * add/delete filters so resources are not allocated to it
664 */
665 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
666 return -EPERM;
667
668 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
669 vsi->type == ICE_VSI_CHNL))
670 return -EPERM;
671
672 /* FD filters from guaranteed pool per VSI */
673 g_val = pf->hw.func_caps.fd_fltr_guar;
674 if (!g_val)
675 return -EPERM;
676
677 /* FD filters from best effort pool */
678 b_val = pf->hw.func_caps.fd_fltr_best_effort;
679 if (!b_val)
680 return -EPERM;
681
682 /* PF main VSI gets only 64 FD resources from guaranteed pool
683 * when ADQ is configured.
684 */
685#define ICE_PF_VSI_GFLTR 64
686
687 /* determine FD filter resources per VSI from shared(best effort) and
688 * dedicated pool
689 */
690 if (vsi->type == ICE_VSI_PF) {
691 vsi->num_gfltr = g_val;
692 /* if MQPRIO is configured, main VSI doesn't get all FD
693 * resources from guaranteed pool. PF VSI gets 64 FD resources
694 */
695 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
696 if (g_val < ICE_PF_VSI_GFLTR)
697 return -EPERM;
698 /* allow bare minimum entries for PF VSI */
699 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
700 }
701
702 /* each VSI gets same "best_effort" quota */
703 vsi->num_bfltr = b_val;
704 } else if (vsi->type == ICE_VSI_VF) {
705 vsi->num_gfltr = 0;
706
707 /* each VSI gets same "best_effort" quota */
708 vsi->num_bfltr = b_val;
709 } else {
710 struct ice_vsi *main_vsi;
711 int numtc;
712
713 main_vsi = ice_get_main_vsi(pf);
714 if (!main_vsi)
715 return -EPERM;
716
717 if (!main_vsi->all_numtc)
718 return -EINVAL;
719
720 /* figure out ADQ numtc */
721 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
722
723 /* only one TC but still asking resources for channels,
724 * invalid config
725 */
726 if (numtc < ICE_CHNL_START_TC)
727 return -EPERM;
728
729 g_val -= ICE_PF_VSI_GFLTR;
730 /* channel VSIs gets equal share from guaranteed pool */
731 vsi->num_gfltr = g_val / numtc;
732
733 /* each VSI gets same "best_effort" quota */
734 vsi->num_bfltr = b_val;
735 }
736
737 return 0;
738}
739
740/**
741 * ice_vsi_get_qs - Assign queues from PF to VSI
742 * @vsi: the VSI to assign queues to
743 *
744 * Returns 0 on success and a negative value on error
745 */
746static int ice_vsi_get_qs(struct ice_vsi *vsi)
747{
748 struct ice_pf *pf = vsi->back;
749 struct ice_qs_cfg tx_qs_cfg = {
750 .qs_mutex = &pf->avail_q_mutex,
751 .pf_map = pf->avail_txqs,
752 .pf_map_size = pf->max_pf_txqs,
753 .q_count = vsi->alloc_txq,
754 .scatter_count = ICE_MAX_SCATTER_TXQS,
755 .vsi_map = vsi->txq_map,
756 .vsi_map_offset = 0,
757 .mapping_mode = ICE_VSI_MAP_CONTIG
758 };
759 struct ice_qs_cfg rx_qs_cfg = {
760 .qs_mutex = &pf->avail_q_mutex,
761 .pf_map = pf->avail_rxqs,
762 .pf_map_size = pf->max_pf_rxqs,
763 .q_count = vsi->alloc_rxq,
764 .scatter_count = ICE_MAX_SCATTER_RXQS,
765 .vsi_map = vsi->rxq_map,
766 .vsi_map_offset = 0,
767 .mapping_mode = ICE_VSI_MAP_CONTIG
768 };
769 int ret;
770
771 if (vsi->type == ICE_VSI_CHNL)
772 return 0;
773
774 ret = __ice_vsi_get_qs(&tx_qs_cfg);
775 if (ret)
776 return ret;
777 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
778
779 ret = __ice_vsi_get_qs(&rx_qs_cfg);
780 if (ret)
781 return ret;
782 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
783
784 return 0;
785}
786
787/**
788 * ice_vsi_put_qs - Release queues from VSI to PF
789 * @vsi: the VSI that is going to release queues
790 */
791static void ice_vsi_put_qs(struct ice_vsi *vsi)
792{
793 struct ice_pf *pf = vsi->back;
794 int i;
795
796 mutex_lock(&pf->avail_q_mutex);
797
798 ice_for_each_alloc_txq(vsi, i) {
799 clear_bit(vsi->txq_map[i], pf->avail_txqs);
800 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
801 }
802
803 ice_for_each_alloc_rxq(vsi, i) {
804 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
805 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
806 }
807
808 mutex_unlock(&pf->avail_q_mutex);
809}
810
811/**
812 * ice_is_safe_mode
813 * @pf: pointer to the PF struct
814 *
815 * returns true if driver is in safe mode, false otherwise
816 */
817bool ice_is_safe_mode(struct ice_pf *pf)
818{
819 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
820}
821
822/**
823 * ice_is_rdma_ena
824 * @pf: pointer to the PF struct
825 *
826 * returns true if RDMA is currently supported, false otherwise
827 */
828bool ice_is_rdma_ena(struct ice_pf *pf)
829{
830 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
831}
832
833/**
834 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
835 * @vsi: the VSI being cleaned up
836 *
837 * This function deletes RSS input set for all flows that were configured
838 * for this VSI
839 */
840static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
841{
842 struct ice_pf *pf = vsi->back;
843 int status;
844
845 if (ice_is_safe_mode(pf))
846 return;
847
848 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
849 if (status)
850 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
851 vsi->vsi_num, status);
852}
853
854/**
855 * ice_rss_clean - Delete RSS related VSI structures and configuration
856 * @vsi: the VSI being removed
857 */
858static void ice_rss_clean(struct ice_vsi *vsi)
859{
860 struct ice_pf *pf = vsi->back;
861 struct device *dev;
862
863 dev = ice_pf_to_dev(pf);
864
865 devm_kfree(dev, vsi->rss_hkey_user);
866 devm_kfree(dev, vsi->rss_lut_user);
867
868 ice_vsi_clean_rss_flow_fld(vsi);
869 /* remove RSS replay list */
870 if (!ice_is_safe_mode(pf))
871 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
872}
873
874/**
875 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
876 * @vsi: the VSI being configured
877 */
878static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
879{
880 struct ice_hw_common_caps *cap;
881 struct ice_pf *pf = vsi->back;
882 u16 max_rss_size;
883
884 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
885 vsi->rss_size = 1;
886 return;
887 }
888
889 cap = &pf->hw.func_caps.common_cap;
890 max_rss_size = BIT(cap->rss_table_entry_width);
891 switch (vsi->type) {
892 case ICE_VSI_CHNL:
893 case ICE_VSI_PF:
894 /* PF VSI will inherit RSS instance of PF */
895 vsi->rss_table_size = (u16)cap->rss_table_size;
896 if (vsi->type == ICE_VSI_CHNL)
897 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
898 else
899 vsi->rss_size = min_t(u16, num_online_cpus(),
900 max_rss_size);
901 vsi->rss_lut_type = ICE_LUT_PF;
902 break;
903 case ICE_VSI_SF:
904 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
905 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
906 vsi->rss_lut_type = ICE_LUT_VSI;
907 break;
908 case ICE_VSI_VF:
909 /* VF VSI will get a small RSS table.
910 * For VSI_LUT, LUT size should be set to 64 bytes.
911 */
912 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
913 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
914 vsi->rss_lut_type = ICE_LUT_VSI;
915 break;
916 case ICE_VSI_LB:
917 break;
918 default:
919 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
920 ice_vsi_type_str(vsi->type));
921 break;
922 }
923}
924
925/**
926 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
927 * @hw: HW structure used to determine the VLAN mode of the device
928 * @ctxt: the VSI context being set
929 *
930 * This initializes a default VSI context for all sections except the Queues.
931 */
932static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
933{
934 u32 table = 0;
935
936 memset(&ctxt->info, 0, sizeof(ctxt->info));
937 /* VSI's should be allocated from shared pool */
938 ctxt->alloc_from_pool = true;
939 /* Src pruning enabled by default */
940 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
941 /* Traffic from VSI can be sent to LAN */
942 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
943 /* allow all untagged/tagged packets by default on Tx */
944 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
945 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
946 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
947 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
948 *
949 * DVM - leave inner VLAN in packet by default
950 */
951 if (ice_is_dvm_ena(hw)) {
952 ctxt->info.inner_vlan_flags |=
953 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
954 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
955 ctxt->info.outer_vlan_flags =
956 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
957 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
958 ctxt->info.outer_vlan_flags |=
959 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
960 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
961 ctxt->info.outer_vlan_flags |=
962 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
963 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
964 }
965 /* Have 1:1 UP mapping for both ingress/egress tables */
966 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
967 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
968 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
969 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
970 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
971 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
972 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
973 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
974 ctxt->info.ingress_table = cpu_to_le32(table);
975 ctxt->info.egress_table = cpu_to_le32(table);
976 /* Have 1:1 UP mapping for outer to inner UP table */
977 ctxt->info.outer_up_table = cpu_to_le32(table);
978 /* No Outer tag support outer_tag_flags remains to zero */
979}
980
981/**
982 * ice_vsi_setup_q_map - Setup a VSI queue map
983 * @vsi: the VSI being configured
984 * @ctxt: VSI context structure
985 */
986static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
987{
988 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
989 u16 num_txq_per_tc, num_rxq_per_tc;
990 u16 qcount_tx = vsi->alloc_txq;
991 u16 qcount_rx = vsi->alloc_rxq;
992 u8 netdev_tc = 0;
993 int i;
994
995 if (!vsi->tc_cfg.numtc) {
996 /* at least TC0 should be enabled by default */
997 vsi->tc_cfg.numtc = 1;
998 vsi->tc_cfg.ena_tc = 1;
999 }
1000
1001 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1002 if (!num_rxq_per_tc)
1003 num_rxq_per_tc = 1;
1004 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1005 if (!num_txq_per_tc)
1006 num_txq_per_tc = 1;
1007
1008 /* find the (rounded up) power-of-2 of qcount */
1009 pow = (u16)order_base_2(num_rxq_per_tc);
1010
1011 /* TC mapping is a function of the number of Rx queues assigned to the
1012 * VSI for each traffic class and the offset of these queues.
1013 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1014 * queues allocated to TC0. No:of queues is a power-of-2.
1015 *
1016 * If TC is not enabled, the queue offset is set to 0, and allocate one
1017 * queue, this way, traffic for the given TC will be sent to the default
1018 * queue.
1019 *
1020 * Setup number and offset of Rx queues for all TCs for the VSI
1021 */
1022 ice_for_each_traffic_class(i) {
1023 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1024 /* TC is not enabled */
1025 vsi->tc_cfg.tc_info[i].qoffset = 0;
1026 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1027 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1028 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1029 ctxt->info.tc_mapping[i] = 0;
1030 continue;
1031 }
1032
1033 /* TC is enabled */
1034 vsi->tc_cfg.tc_info[i].qoffset = offset;
1035 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1036 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1037 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1038
1039 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1040 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1041 offset += num_rxq_per_tc;
1042 tx_count += num_txq_per_tc;
1043 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1044 }
1045
1046 /* if offset is non-zero, means it is calculated correctly based on
1047 * enabled TCs for a given VSI otherwise qcount_rx will always
1048 * be correct and non-zero because it is based off - VSI's
1049 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1050 * at least 1)
1051 */
1052 if (offset)
1053 rx_count = offset;
1054 else
1055 rx_count = num_rxq_per_tc;
1056
1057 if (rx_count > vsi->alloc_rxq) {
1058 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1059 rx_count, vsi->alloc_rxq);
1060 return -EINVAL;
1061 }
1062
1063 if (tx_count > vsi->alloc_txq) {
1064 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1065 tx_count, vsi->alloc_txq);
1066 return -EINVAL;
1067 }
1068
1069 vsi->num_txq = tx_count;
1070 vsi->num_rxq = rx_count;
1071
1072 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1073 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1074 /* since there is a chance that num_rxq could have been changed
1075 * in the above for loop, make num_txq equal to num_rxq.
1076 */
1077 vsi->num_txq = vsi->num_rxq;
1078 }
1079
1080 /* Rx queue mapping */
1081 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1082 /* q_mapping buffer holds the info for the first queue allocated for
1083 * this VSI in the PF space and also the number of queues associated
1084 * with this VSI.
1085 */
1086 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1087 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1088
1089 return 0;
1090}
1091
1092/**
1093 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1094 * @ctxt: the VSI context being set
1095 * @vsi: the VSI being configured
1096 */
1097static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1098{
1099 u8 dflt_q_group, dflt_q_prio;
1100 u16 dflt_q, report_q, val;
1101
1102 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1103 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1104 return;
1105
1106 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1107 ctxt->info.valid_sections |= cpu_to_le16(val);
1108 dflt_q = 0;
1109 dflt_q_group = 0;
1110 report_q = 0;
1111 dflt_q_prio = 0;
1112
1113 /* enable flow director filtering/programming */
1114 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1115 ctxt->info.fd_options = cpu_to_le16(val);
1116 /* max of allocated flow director filters */
1117 ctxt->info.max_fd_fltr_dedicated =
1118 cpu_to_le16(vsi->num_gfltr);
1119 /* max of shared flow director filters any VSI may program */
1120 ctxt->info.max_fd_fltr_shared =
1121 cpu_to_le16(vsi->num_bfltr);
1122 /* default queue index within the VSI of the default FD */
1123 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1124 /* target queue or queue group to the FD filter */
1125 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1126 ctxt->info.fd_def_q = cpu_to_le16(val);
1127 /* queue index on which FD filter completion is reported */
1128 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1129 /* priority of the default qindex action */
1130 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1131 ctxt->info.fd_report_opt = cpu_to_le16(val);
1132}
1133
1134/**
1135 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1136 * @ctxt: the VSI context being set
1137 * @vsi: the VSI being configured
1138 */
1139static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1140{
1141 u8 lut_type, hash_type;
1142 struct device *dev;
1143 struct ice_pf *pf;
1144
1145 pf = vsi->back;
1146 dev = ice_pf_to_dev(pf);
1147
1148 switch (vsi->type) {
1149 case ICE_VSI_CHNL:
1150 case ICE_VSI_PF:
1151 /* PF VSI will inherit RSS instance of PF */
1152 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1153 break;
1154 case ICE_VSI_VF:
1155 case ICE_VSI_SF:
1156 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1157 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1158 break;
1159 default:
1160 dev_dbg(dev, "Unsupported VSI type %s\n",
1161 ice_vsi_type_str(vsi->type));
1162 return;
1163 }
1164
1165 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1166 vsi->rss_hfunc = hash_type;
1167
1168 ctxt->info.q_opt_rss =
1169 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1170 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1171}
1172
1173static void
1174ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1175{
1176 struct ice_pf *pf = vsi->back;
1177 u16 qcount, qmap;
1178 u8 offset = 0;
1179 int pow;
1180
1181 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1182
1183 pow = order_base_2(qcount);
1184 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1185 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1186
1187 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1188 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1189 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1190 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1191}
1192
1193/**
1194 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1195 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1196 *
1197 * returns true if Rx VLAN pruning is enabled and false otherwise.
1198 */
1199static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1200{
1201 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1202}
1203
1204/**
1205 * ice_vsi_init - Create and initialize a VSI
1206 * @vsi: the VSI being configured
1207 * @vsi_flags: VSI configuration flags
1208 *
1209 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1210 * reconfigure an existing context.
1211 *
1212 * This initializes a VSI context depending on the VSI type to be added and
1213 * passes it down to the add_vsi aq command to create a new VSI.
1214 */
1215static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1216{
1217 struct ice_pf *pf = vsi->back;
1218 struct ice_hw *hw = &pf->hw;
1219 struct ice_vsi_ctx *ctxt;
1220 struct device *dev;
1221 int ret = 0;
1222
1223 dev = ice_pf_to_dev(pf);
1224 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1225 if (!ctxt)
1226 return -ENOMEM;
1227
1228 switch (vsi->type) {
1229 case ICE_VSI_CTRL:
1230 case ICE_VSI_LB:
1231 case ICE_VSI_PF:
1232 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1233 break;
1234 case ICE_VSI_SF:
1235 case ICE_VSI_CHNL:
1236 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1237 break;
1238 case ICE_VSI_VF:
1239 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1240 /* VF number here is the absolute VF number (0-255) */
1241 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1242 break;
1243 default:
1244 ret = -ENODEV;
1245 goto out;
1246 }
1247
1248 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1249 * prune enabled
1250 */
1251 if (vsi->type == ICE_VSI_CHNL) {
1252 struct ice_vsi *main_vsi;
1253
1254 main_vsi = ice_get_main_vsi(pf);
1255 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1256 ctxt->info.sw_flags2 |=
1257 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1258 else
1259 ctxt->info.sw_flags2 &=
1260 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1261 }
1262
1263 ice_set_dflt_vsi_ctx(hw, ctxt);
1264 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1265 ice_set_fd_vsi_ctx(ctxt, vsi);
1266 /* if the switch is in VEB mode, allow VSI loopback */
1267 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1268 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1269
1270 /* Set LUT type and HASH type if RSS is enabled */
1271 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1272 vsi->type != ICE_VSI_CTRL) {
1273 ice_set_rss_vsi_ctx(ctxt, vsi);
1274 /* if updating VSI context, make sure to set valid_section:
1275 * to indicate which section of VSI context being updated
1276 */
1277 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1278 ctxt->info.valid_sections |=
1279 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1280 }
1281
1282 ctxt->info.sw_id = vsi->port_info->sw_id;
1283 if (vsi->type == ICE_VSI_CHNL) {
1284 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1285 } else {
1286 ret = ice_vsi_setup_q_map(vsi, ctxt);
1287 if (ret)
1288 goto out;
1289
1290 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1291 /* means VSI being updated */
1292 /* must to indicate which section of VSI context are
1293 * being modified
1294 */
1295 ctxt->info.valid_sections |=
1296 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1297 }
1298
1299 /* Allow control frames out of main VSI */
1300 if (vsi->type == ICE_VSI_PF) {
1301 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1302 ctxt->info.valid_sections |=
1303 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1304 }
1305
1306 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1307 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1308 if (ret) {
1309 dev_err(dev, "Add VSI failed, err %d\n", ret);
1310 ret = -EIO;
1311 goto out;
1312 }
1313 } else {
1314 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1315 if (ret) {
1316 dev_err(dev, "Update VSI failed, err %d\n", ret);
1317 ret = -EIO;
1318 goto out;
1319 }
1320 }
1321
1322 /* keep context for update VSI operations */
1323 vsi->info = ctxt->info;
1324
1325 /* record VSI number returned */
1326 vsi->vsi_num = ctxt->vsi_num;
1327
1328out:
1329 kfree(ctxt);
1330 return ret;
1331}
1332
1333/**
1334 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1335 * @vsi: the VSI having rings deallocated
1336 */
1337static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1338{
1339 int i;
1340
1341 /* Avoid stale references by clearing map from vector to ring */
1342 if (vsi->q_vectors) {
1343 ice_for_each_q_vector(vsi, i) {
1344 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1345
1346 if (q_vector) {
1347 q_vector->tx.tx_ring = NULL;
1348 q_vector->rx.rx_ring = NULL;
1349 }
1350 }
1351 }
1352
1353 if (vsi->tx_rings) {
1354 ice_for_each_alloc_txq(vsi, i) {
1355 if (vsi->tx_rings[i]) {
1356 kfree_rcu(vsi->tx_rings[i], rcu);
1357 WRITE_ONCE(vsi->tx_rings[i], NULL);
1358 }
1359 }
1360 }
1361 if (vsi->rx_rings) {
1362 ice_for_each_alloc_rxq(vsi, i) {
1363 if (vsi->rx_rings[i]) {
1364 kfree_rcu(vsi->rx_rings[i], rcu);
1365 WRITE_ONCE(vsi->rx_rings[i], NULL);
1366 }
1367 }
1368 }
1369}
1370
1371/**
1372 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1373 * @vsi: VSI which is having rings allocated
1374 */
1375static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1376{
1377 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1378 struct ice_pf *pf = vsi->back;
1379 struct device *dev;
1380 u16 i;
1381
1382 dev = ice_pf_to_dev(pf);
1383 /* Allocate Tx rings */
1384 ice_for_each_alloc_txq(vsi, i) {
1385 struct ice_tx_ring *ring;
1386
1387 /* allocate with kzalloc(), free with kfree_rcu() */
1388 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1389
1390 if (!ring)
1391 goto err_out;
1392
1393 ring->q_index = i;
1394 ring->reg_idx = vsi->txq_map[i];
1395 ring->vsi = vsi;
1396 ring->tx_tstamps = &pf->ptp.port.tx;
1397 ring->dev = dev;
1398 ring->count = vsi->num_tx_desc;
1399 ring->txq_teid = ICE_INVAL_TEID;
1400 if (dvm_ena)
1401 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1402 else
1403 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1404 WRITE_ONCE(vsi->tx_rings[i], ring);
1405 }
1406
1407 /* Allocate Rx rings */
1408 ice_for_each_alloc_rxq(vsi, i) {
1409 struct ice_rx_ring *ring;
1410
1411 /* allocate with kzalloc(), free with kfree_rcu() */
1412 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1413 if (!ring)
1414 goto err_out;
1415
1416 ring->q_index = i;
1417 ring->reg_idx = vsi->rxq_map[i];
1418 ring->vsi = vsi;
1419 ring->netdev = vsi->netdev;
1420 ring->dev = dev;
1421 ring->count = vsi->num_rx_desc;
1422 ring->cached_phctime = pf->ptp.cached_phc_time;
1423 WRITE_ONCE(vsi->rx_rings[i], ring);
1424 }
1425
1426 return 0;
1427
1428err_out:
1429 ice_vsi_clear_rings(vsi);
1430 return -ENOMEM;
1431}
1432
1433/**
1434 * ice_vsi_manage_rss_lut - disable/enable RSS
1435 * @vsi: the VSI being changed
1436 * @ena: boolean value indicating if this is an enable or disable request
1437 *
1438 * In the event of disable request for RSS, this function will zero out RSS
1439 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1440 * LUT.
1441 */
1442void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1443{
1444 u8 *lut;
1445
1446 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1447 if (!lut)
1448 return;
1449
1450 if (ena) {
1451 if (vsi->rss_lut_user)
1452 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1453 else
1454 ice_fill_rss_lut(lut, vsi->rss_table_size,
1455 vsi->rss_size);
1456 }
1457
1458 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1459 kfree(lut);
1460}
1461
1462/**
1463 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1464 * @vsi: VSI to be configured
1465 * @disable: set to true to have FCS / CRC in the frame data
1466 */
1467void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1468{
1469 int i;
1470
1471 ice_for_each_rxq(vsi, i)
1472 if (disable)
1473 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1474 else
1475 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1476}
1477
1478/**
1479 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1480 * @vsi: VSI to be configured
1481 */
1482int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1483{
1484 struct ice_pf *pf = vsi->back;
1485 struct device *dev;
1486 u8 *lut, *key;
1487 int err;
1488
1489 dev = ice_pf_to_dev(pf);
1490 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1491 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1492 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1493 } else {
1494 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1495
1496 /* If orig_rss_size is valid and it is less than determined
1497 * main VSI's rss_size, update main VSI's rss_size to be
1498 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1499 * RSS table gets programmed to be correct (whatever it was
1500 * to begin with (prior to setup-tc for ADQ config)
1501 */
1502 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1503 vsi->orig_rss_size <= vsi->num_rxq) {
1504 vsi->rss_size = vsi->orig_rss_size;
1505 /* now orig_rss_size is used, reset it to zero */
1506 vsi->orig_rss_size = 0;
1507 }
1508 }
1509
1510 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1511 if (!lut)
1512 return -ENOMEM;
1513
1514 if (vsi->rss_lut_user)
1515 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1516 else
1517 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1518
1519 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1520 if (err) {
1521 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1522 goto ice_vsi_cfg_rss_exit;
1523 }
1524
1525 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1526 if (!key) {
1527 err = -ENOMEM;
1528 goto ice_vsi_cfg_rss_exit;
1529 }
1530
1531 if (vsi->rss_hkey_user)
1532 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1533 else
1534 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1535
1536 err = ice_set_rss_key(vsi, key);
1537 if (err)
1538 dev_err(dev, "set_rss_key failed, error %d\n", err);
1539
1540 kfree(key);
1541ice_vsi_cfg_rss_exit:
1542 kfree(lut);
1543 return err;
1544}
1545
1546/**
1547 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1548 * @vsi: VSI to be configured
1549 *
1550 * This function will only be called during the VF VSI setup. Upon successful
1551 * completion of package download, this function will configure default RSS
1552 * input sets for VF VSI.
1553 */
1554static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1555{
1556 struct ice_pf *pf = vsi->back;
1557 struct device *dev;
1558 int status;
1559
1560 dev = ice_pf_to_dev(pf);
1561 if (ice_is_safe_mode(pf)) {
1562 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1563 vsi->vsi_num);
1564 return;
1565 }
1566
1567 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1568 if (status)
1569 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1570 vsi->vsi_num, status);
1571}
1572
1573static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1574 /* configure RSS for IPv4 with input set IP src/dst */
1575 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1576 /* configure RSS for IPv6 with input set IPv6 src/dst */
1577 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1578 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1579 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1580 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1581 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1582 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1583 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1584 /* configure RSS for sctp4 with input set IP src/dst - only support
1585 * RSS on SCTPv4 on outer headers (non-tunneled)
1586 */
1587 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1588 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1589 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1590 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1591 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1592 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1593 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1594 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1595 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1596 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1597 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1598 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1599 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1600 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1601 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1602 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1603 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1604 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1605 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1606 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1607
1608 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1609 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1610 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1611 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1612 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1613 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1614 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1615 * RSS on SCTPv6 on outer headers (non-tunneled)
1616 */
1617 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1618 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1619 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1620 {ICE_FLOW_SEG_HDR_ESP,
1621 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1622 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1623 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1624 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1625 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1626 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1627 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1628 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1629 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1630 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1631 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1632 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1633 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1634 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1635 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1636 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1637 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1638 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1639 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1640};
1641
1642/**
1643 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1644 * @vsi: VSI to be configured
1645 *
1646 * This function will only be called after successful download package call
1647 * during initialization of PF. Since the downloaded package will erase the
1648 * RSS section, this function will configure RSS input sets for different
1649 * flow types. The last profile added has the highest priority, therefore 2
1650 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1651 * (i.e. IPv4 src/dst TCP src/dst port).
1652 */
1653static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1654{
1655 u16 vsi_num = vsi->vsi_num;
1656 struct ice_pf *pf = vsi->back;
1657 struct ice_hw *hw = &pf->hw;
1658 struct device *dev;
1659 int status;
1660 u32 i;
1661
1662 dev = ice_pf_to_dev(pf);
1663 if (ice_is_safe_mode(pf)) {
1664 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1665 vsi_num);
1666 return;
1667 }
1668 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1669 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1670
1671 status = ice_add_rss_cfg(hw, vsi, cfg);
1672 if (status)
1673 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1674 cfg->addl_hdrs, cfg->hash_flds,
1675 cfg->hdr_type, cfg->symm);
1676 }
1677}
1678
1679/**
1680 * ice_pf_state_is_nominal - checks the PF for nominal state
1681 * @pf: pointer to PF to check
1682 *
1683 * Check the PF's state for a collection of bits that would indicate
1684 * the PF is in a state that would inhibit normal operation for
1685 * driver functionality.
1686 *
1687 * Returns true if PF is in a nominal state, false otherwise
1688 */
1689bool ice_pf_state_is_nominal(struct ice_pf *pf)
1690{
1691 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1692
1693 if (!pf)
1694 return false;
1695
1696 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1697 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1698 return false;
1699
1700 return true;
1701}
1702
1703/**
1704 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1705 * @vsi: the VSI to be updated
1706 */
1707void ice_update_eth_stats(struct ice_vsi *vsi)
1708{
1709 struct ice_eth_stats *prev_es, *cur_es;
1710 struct ice_hw *hw = &vsi->back->hw;
1711 struct ice_pf *pf = vsi->back;
1712 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1713
1714 prev_es = &vsi->eth_stats_prev;
1715 cur_es = &vsi->eth_stats;
1716
1717 if (ice_is_reset_in_progress(pf->state))
1718 vsi->stat_offsets_loaded = false;
1719
1720 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1721 &prev_es->rx_bytes, &cur_es->rx_bytes);
1722
1723 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1724 &prev_es->rx_unicast, &cur_es->rx_unicast);
1725
1726 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1727 &prev_es->rx_multicast, &cur_es->rx_multicast);
1728
1729 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1730 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1731
1732 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1733 &prev_es->rx_discards, &cur_es->rx_discards);
1734
1735 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1736 &prev_es->tx_bytes, &cur_es->tx_bytes);
1737
1738 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1739 &prev_es->tx_unicast, &cur_es->tx_unicast);
1740
1741 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1742 &prev_es->tx_multicast, &cur_es->tx_multicast);
1743
1744 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1745 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1746
1747 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1748 &prev_es->tx_errors, &cur_es->tx_errors);
1749
1750 vsi->stat_offsets_loaded = true;
1751}
1752
1753/**
1754 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1755 * @hw: HW pointer
1756 * @pf_q: index of the Rx queue in the PF's queue space
1757 * @rxdid: flexible descriptor RXDID
1758 * @prio: priority for the RXDID for this queue
1759 * @ena_ts: true to enable timestamp and false to disable timestamp
1760 */
1761void
1762ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1763 bool ena_ts)
1764{
1765 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1766
1767 /* clear any previous values */
1768 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1769 QRXFLXP_CNTXT_RXDID_PRIO_M |
1770 QRXFLXP_CNTXT_TS_M);
1771
1772 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1773 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1774
1775 if (ena_ts)
1776 /* Enable TimeSync on this queue */
1777 regval |= QRXFLXP_CNTXT_TS_M;
1778
1779 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1780}
1781
1782/**
1783 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1784 * @intrl: interrupt rate limit in usecs
1785 * @gran: interrupt rate limit granularity in usecs
1786 *
1787 * This function converts a decimal interrupt rate limit in usecs to the format
1788 * expected by firmware.
1789 */
1790static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1791{
1792 u32 val = intrl / gran;
1793
1794 if (val)
1795 return val | GLINT_RATE_INTRL_ENA_M;
1796 return 0;
1797}
1798
1799/**
1800 * ice_write_intrl - write throttle rate limit to interrupt specific register
1801 * @q_vector: pointer to interrupt specific structure
1802 * @intrl: throttle rate limit in microseconds to write
1803 */
1804void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1805{
1806 struct ice_hw *hw = &q_vector->vsi->back->hw;
1807
1808 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1809 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1810}
1811
1812static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1813{
1814 switch (rc->type) {
1815 case ICE_RX_CONTAINER:
1816 if (rc->rx_ring)
1817 return rc->rx_ring->q_vector;
1818 break;
1819 case ICE_TX_CONTAINER:
1820 if (rc->tx_ring)
1821 return rc->tx_ring->q_vector;
1822 break;
1823 default:
1824 break;
1825 }
1826
1827 return NULL;
1828}
1829
1830/**
1831 * __ice_write_itr - write throttle rate to register
1832 * @q_vector: pointer to interrupt data structure
1833 * @rc: pointer to ring container
1834 * @itr: throttle rate in microseconds to write
1835 */
1836static void __ice_write_itr(struct ice_q_vector *q_vector,
1837 struct ice_ring_container *rc, u16 itr)
1838{
1839 struct ice_hw *hw = &q_vector->vsi->back->hw;
1840
1841 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1842 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1843}
1844
1845/**
1846 * ice_write_itr - write throttle rate to queue specific register
1847 * @rc: pointer to ring container
1848 * @itr: throttle rate in microseconds to write
1849 */
1850void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1851{
1852 struct ice_q_vector *q_vector;
1853
1854 q_vector = ice_pull_qvec_from_rc(rc);
1855 if (!q_vector)
1856 return;
1857
1858 __ice_write_itr(q_vector, rc, itr);
1859}
1860
1861/**
1862 * ice_set_q_vector_intrl - set up interrupt rate limiting
1863 * @q_vector: the vector to be configured
1864 *
1865 * Interrupt rate limiting is local to the vector, not per-queue so we must
1866 * detect if either ring container has dynamic moderation enabled to decide
1867 * what to set the interrupt rate limit to via INTRL settings. In the case that
1868 * dynamic moderation is disabled on both, write the value with the cached
1869 * setting to make sure INTRL register matches the user visible value.
1870 */
1871void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1872{
1873 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1874 /* in the case of dynamic enabled, cap each vector to no more
1875 * than (4 us) 250,000 ints/sec, which allows low latency
1876 * but still less than 500,000 interrupts per second, which
1877 * reduces CPU a bit in the case of the lowest latency
1878 * setting. The 4 here is a value in microseconds.
1879 */
1880 ice_write_intrl(q_vector, 4);
1881 } else {
1882 ice_write_intrl(q_vector, q_vector->intrl);
1883 }
1884}
1885
1886/**
1887 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1888 * @vsi: the VSI being configured
1889 *
1890 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1891 * for the VF VSI.
1892 */
1893void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1894{
1895 struct ice_pf *pf = vsi->back;
1896 struct ice_hw *hw = &pf->hw;
1897 u16 txq = 0, rxq = 0;
1898 int i, q;
1899
1900 ice_for_each_q_vector(vsi, i) {
1901 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1902 u16 reg_idx = q_vector->reg_idx;
1903
1904 ice_cfg_itr(hw, q_vector);
1905
1906 /* Both Transmit Queue Interrupt Cause Control register
1907 * and Receive Queue Interrupt Cause control register
1908 * expects MSIX_INDX field to be the vector index
1909 * within the function space and not the absolute
1910 * vector index across PF or across device.
1911 * For SR-IOV VF VSIs queue vector index always starts
1912 * with 1 since first vector index(0) is used for OICR
1913 * in VF space. Since VMDq and other PF VSIs are within
1914 * the PF function space, use the vector index that is
1915 * tracked for this PF.
1916 */
1917 for (q = 0; q < q_vector->num_ring_tx; q++) {
1918 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1919 q_vector->tx.itr_idx);
1920 txq++;
1921 }
1922
1923 for (q = 0; q < q_vector->num_ring_rx; q++) {
1924 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1925 q_vector->rx.itr_idx);
1926 rxq++;
1927 }
1928 }
1929}
1930
1931/**
1932 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1933 * @vsi: the VSI whose rings are to be enabled
1934 *
1935 * Returns 0 on success and a negative value on error
1936 */
1937int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1938{
1939 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1940}
1941
1942/**
1943 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1944 * @vsi: the VSI whose rings are to be disabled
1945 *
1946 * Returns 0 on success and a negative value on error
1947 */
1948int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1949{
1950 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1951}
1952
1953/**
1954 * ice_vsi_stop_tx_rings - Disable Tx rings
1955 * @vsi: the VSI being configured
1956 * @rst_src: reset source
1957 * @rel_vmvf_num: Relative ID of VF/VM
1958 * @rings: Tx ring array to be stopped
1959 * @count: number of Tx ring array elements
1960 */
1961static int
1962ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1963 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1964{
1965 u16 q_idx;
1966
1967 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1968 return -EINVAL;
1969
1970 for (q_idx = 0; q_idx < count; q_idx++) {
1971 struct ice_txq_meta txq_meta = { };
1972 int status;
1973
1974 if (!rings || !rings[q_idx])
1975 return -EINVAL;
1976
1977 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1978 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1979 rings[q_idx], &txq_meta);
1980
1981 if (status)
1982 return status;
1983 }
1984
1985 return 0;
1986}
1987
1988/**
1989 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1990 * @vsi: the VSI being configured
1991 * @rst_src: reset source
1992 * @rel_vmvf_num: Relative ID of VF/VM
1993 */
1994int
1995ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1996 u16 rel_vmvf_num)
1997{
1998 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
1999}
2000
2001/**
2002 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2003 * @vsi: the VSI being configured
2004 */
2005int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2006{
2007 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2008}
2009
2010/**
2011 * ice_vsi_is_rx_queue_active
2012 * @vsi: the VSI being configured
2013 *
2014 * Return true if at least one queue is active.
2015 */
2016bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2017{
2018 struct ice_pf *pf = vsi->back;
2019 struct ice_hw *hw = &pf->hw;
2020 int i;
2021
2022 ice_for_each_rxq(vsi, i) {
2023 u32 rx_reg;
2024 int pf_q;
2025
2026 pf_q = vsi->rxq_map[i];
2027 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2028 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2029 return true;
2030 }
2031
2032 return false;
2033}
2034
2035static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2036{
2037 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2038 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2039 vsi->tc_cfg.numtc = 1;
2040 return;
2041 }
2042
2043 /* set VSI TC information based on DCB config */
2044 ice_vsi_set_dcb_tc_cfg(vsi);
2045}
2046
2047/**
2048 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2049 * @vsi: the VSI being configured
2050 * @tx: bool to determine Tx or Rx rule
2051 * @create: bool to determine create or remove Rule
2052 */
2053void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2054{
2055 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2056 enum ice_sw_fwd_act_type act);
2057 struct ice_pf *pf = vsi->back;
2058 struct device *dev;
2059 int status;
2060
2061 dev = ice_pf_to_dev(pf);
2062 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2063
2064 if (tx) {
2065 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2066 ICE_DROP_PACKET);
2067 } else {
2068 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2069 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2070 create);
2071 } else {
2072 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2073 ICE_FWD_TO_VSI);
2074 }
2075 }
2076
2077 if (status)
2078 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2079 create ? "adding" : "removing", tx ? "TX" : "RX",
2080 vsi->vsi_num, status);
2081}
2082
2083/**
2084 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2085 * @vsi: pointer to the VSI
2086 *
2087 * This function will allocate new scheduler aggregator now if needed and will
2088 * move specified VSI into it.
2089 */
2090static void ice_set_agg_vsi(struct ice_vsi *vsi)
2091{
2092 struct device *dev = ice_pf_to_dev(vsi->back);
2093 struct ice_agg_node *agg_node_iter = NULL;
2094 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2095 struct ice_agg_node *agg_node = NULL;
2096 int node_offset, max_agg_nodes = 0;
2097 struct ice_port_info *port_info;
2098 struct ice_pf *pf = vsi->back;
2099 u32 agg_node_id_start = 0;
2100 int status;
2101
2102 /* create (as needed) scheduler aggregator node and move VSI into
2103 * corresponding aggregator node
2104 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2105 * - VF aggregator nodes will contain VF VSI
2106 */
2107 port_info = pf->hw.port_info;
2108 if (!port_info)
2109 return;
2110
2111 switch (vsi->type) {
2112 case ICE_VSI_CTRL:
2113 case ICE_VSI_CHNL:
2114 case ICE_VSI_LB:
2115 case ICE_VSI_PF:
2116 case ICE_VSI_SF:
2117 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2118 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2119 agg_node_iter = &pf->pf_agg_node[0];
2120 break;
2121 case ICE_VSI_VF:
2122 /* user can create 'n' VFs on a given PF, but since max children
2123 * per aggregator node can be only 64. Following code handles
2124 * aggregator(s) for VF VSIs, either selects a agg_node which
2125 * was already created provided num_vsis < 64, otherwise
2126 * select next available node, which will be created
2127 */
2128 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2129 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2130 agg_node_iter = &pf->vf_agg_node[0];
2131 break;
2132 default:
2133 /* other VSI type, handle later if needed */
2134 dev_dbg(dev, "unexpected VSI type %s\n",
2135 ice_vsi_type_str(vsi->type));
2136 return;
2137 }
2138
2139 /* find the appropriate aggregator node */
2140 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2141 /* see if we can find space in previously created
2142 * node if num_vsis < 64, otherwise skip
2143 */
2144 if (agg_node_iter->num_vsis &&
2145 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2146 agg_node_iter++;
2147 continue;
2148 }
2149
2150 if (agg_node_iter->valid &&
2151 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2152 agg_id = agg_node_iter->agg_id;
2153 agg_node = agg_node_iter;
2154 break;
2155 }
2156
2157 /* find unclaimed agg_id */
2158 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2159 agg_id = node_offset + agg_node_id_start;
2160 agg_node = agg_node_iter;
2161 break;
2162 }
2163 /* move to next agg_node */
2164 agg_node_iter++;
2165 }
2166
2167 if (!agg_node)
2168 return;
2169
2170 /* if selected aggregator node was not created, create it */
2171 if (!agg_node->valid) {
2172 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2173 (u8)vsi->tc_cfg.ena_tc);
2174 if (status) {
2175 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2176 agg_id);
2177 return;
2178 }
2179 /* aggregator node is created, store the needed info */
2180 agg_node->valid = true;
2181 agg_node->agg_id = agg_id;
2182 }
2183
2184 /* move VSI to corresponding aggregator node */
2185 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2186 (u8)vsi->tc_cfg.ena_tc);
2187 if (status) {
2188 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2189 vsi->idx, agg_id);
2190 return;
2191 }
2192
2193 /* keep active children count for aggregator node */
2194 agg_node->num_vsis++;
2195
2196 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2197 * to aggregator node
2198 */
2199 vsi->agg_node = agg_node;
2200 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2201 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2202 vsi->agg_node->num_vsis);
2203}
2204
2205static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2206{
2207 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2208 struct device *dev = ice_pf_to_dev(pf);
2209 int ret, i;
2210
2211 /* configure VSI nodes based on number of queues and TC's */
2212 ice_for_each_traffic_class(i) {
2213 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2214 continue;
2215
2216 if (vsi->type == ICE_VSI_CHNL) {
2217 if (!vsi->alloc_txq && vsi->num_txq)
2218 max_txqs[i] = vsi->num_txq;
2219 else
2220 max_txqs[i] = pf->num_lan_tx;
2221 } else {
2222 max_txqs[i] = vsi->alloc_txq;
2223 }
2224
2225 if (vsi->type == ICE_VSI_PF)
2226 max_txqs[i] += vsi->num_xdp_txq;
2227 }
2228
2229 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2230 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2231 max_txqs);
2232 if (ret) {
2233 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2234 vsi->vsi_num, ret);
2235 return ret;
2236 }
2237
2238 return 0;
2239}
2240
2241/**
2242 * ice_vsi_cfg_def - configure default VSI based on the type
2243 * @vsi: pointer to VSI
2244 */
2245static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2246{
2247 struct device *dev = ice_pf_to_dev(vsi->back);
2248 struct ice_pf *pf = vsi->back;
2249 int ret;
2250
2251 vsi->vsw = pf->first_sw;
2252
2253 ret = ice_vsi_alloc_def(vsi, vsi->ch);
2254 if (ret)
2255 return ret;
2256
2257 /* allocate memory for Tx/Rx ring stat pointers */
2258 ret = ice_vsi_alloc_stat_arrays(vsi);
2259 if (ret)
2260 goto unroll_vsi_alloc;
2261
2262 ice_alloc_fd_res(vsi);
2263
2264 ret = ice_vsi_get_qs(vsi);
2265 if (ret) {
2266 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2267 vsi->idx);
2268 goto unroll_vsi_alloc_stat;
2269 }
2270
2271 /* set RSS capabilities */
2272 ice_vsi_set_rss_params(vsi);
2273
2274 /* set TC configuration */
2275 ice_vsi_set_tc_cfg(vsi);
2276
2277 /* create the VSI */
2278 ret = ice_vsi_init(vsi, vsi->flags);
2279 if (ret)
2280 goto unroll_get_qs;
2281
2282 ice_vsi_init_vlan_ops(vsi);
2283
2284 switch (vsi->type) {
2285 case ICE_VSI_CTRL:
2286 case ICE_VSI_SF:
2287 case ICE_VSI_PF:
2288 ret = ice_vsi_alloc_q_vectors(vsi);
2289 if (ret)
2290 goto unroll_vsi_init;
2291
2292 ret = ice_vsi_alloc_rings(vsi);
2293 if (ret)
2294 goto unroll_vector_base;
2295
2296 ret = ice_vsi_alloc_ring_stats(vsi);
2297 if (ret)
2298 goto unroll_vector_base;
2299
2300 if (ice_is_xdp_ena_vsi(vsi)) {
2301 ret = ice_vsi_determine_xdp_res(vsi);
2302 if (ret)
2303 goto unroll_vector_base;
2304 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2305 ICE_XDP_CFG_PART);
2306 if (ret)
2307 goto unroll_vector_base;
2308 }
2309
2310 ice_vsi_map_rings_to_vectors(vsi);
2311
2312 vsi->stat_offsets_loaded = false;
2313
2314 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2315 if (vsi->type != ICE_VSI_CTRL)
2316 /* Do not exit if configuring RSS had an issue, at
2317 * least receive traffic on first queue. Hence no
2318 * need to capture return value
2319 */
2320 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2321 ice_vsi_cfg_rss_lut_key(vsi);
2322 ice_vsi_set_rss_flow_fld(vsi);
2323 }
2324 ice_init_arfs(vsi);
2325 break;
2326 case ICE_VSI_CHNL:
2327 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2328 ice_vsi_cfg_rss_lut_key(vsi);
2329 ice_vsi_set_rss_flow_fld(vsi);
2330 }
2331 break;
2332 case ICE_VSI_VF:
2333 /* VF driver will take care of creating netdev for this type and
2334 * map queues to vectors through Virtchnl, PF driver only
2335 * creates a VSI and corresponding structures for bookkeeping
2336 * purpose
2337 */
2338 ret = ice_vsi_alloc_q_vectors(vsi);
2339 if (ret)
2340 goto unroll_vsi_init;
2341
2342 ret = ice_vsi_alloc_rings(vsi);
2343 if (ret)
2344 goto unroll_alloc_q_vector;
2345
2346 ret = ice_vsi_alloc_ring_stats(vsi);
2347 if (ret)
2348 goto unroll_vector_base;
2349
2350 vsi->stat_offsets_loaded = false;
2351
2352 /* Do not exit if configuring RSS had an issue, at least
2353 * receive traffic on first queue. Hence no need to capture
2354 * return value
2355 */
2356 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2357 ice_vsi_cfg_rss_lut_key(vsi);
2358 ice_vsi_set_vf_rss_flow_fld(vsi);
2359 }
2360 break;
2361 case ICE_VSI_LB:
2362 ret = ice_vsi_alloc_rings(vsi);
2363 if (ret)
2364 goto unroll_vsi_init;
2365
2366 ret = ice_vsi_alloc_ring_stats(vsi);
2367 if (ret)
2368 goto unroll_vector_base;
2369
2370 break;
2371 default:
2372 /* clean up the resources and exit */
2373 ret = -EINVAL;
2374 goto unroll_vsi_init;
2375 }
2376
2377 return 0;
2378
2379unroll_vector_base:
2380 /* reclaim SW interrupts back to the common pool */
2381unroll_alloc_q_vector:
2382 ice_vsi_free_q_vectors(vsi);
2383unroll_vsi_init:
2384 ice_vsi_delete_from_hw(vsi);
2385unroll_get_qs:
2386 ice_vsi_put_qs(vsi);
2387unroll_vsi_alloc_stat:
2388 ice_vsi_free_stats(vsi);
2389unroll_vsi_alloc:
2390 ice_vsi_free_arrays(vsi);
2391 return ret;
2392}
2393
2394/**
2395 * ice_vsi_cfg - configure a previously allocated VSI
2396 * @vsi: pointer to VSI
2397 */
2398int ice_vsi_cfg(struct ice_vsi *vsi)
2399{
2400 struct ice_pf *pf = vsi->back;
2401 int ret;
2402
2403 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2404 return -EINVAL;
2405
2406 ret = ice_vsi_cfg_def(vsi);
2407 if (ret)
2408 return ret;
2409
2410 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2411 if (ret)
2412 ice_vsi_decfg(vsi);
2413
2414 if (vsi->type == ICE_VSI_CTRL) {
2415 if (vsi->vf) {
2416 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2417 vsi->vf->ctrl_vsi_idx = vsi->idx;
2418 } else {
2419 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2420 pf->ctrl_vsi_idx = vsi->idx;
2421 }
2422 }
2423
2424 return ret;
2425}
2426
2427/**
2428 * ice_vsi_decfg - remove all VSI configuration
2429 * @vsi: pointer to VSI
2430 */
2431void ice_vsi_decfg(struct ice_vsi *vsi)
2432{
2433 struct ice_pf *pf = vsi->back;
2434 int err;
2435
2436 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2437 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2438 if (err)
2439 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2440 vsi->vsi_num, err);
2441
2442 if (vsi->xdp_rings)
2443 /* return value check can be skipped here, it always returns
2444 * 0 if reset is in progress
2445 */
2446 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2447
2448 ice_vsi_clear_rings(vsi);
2449 ice_vsi_free_q_vectors(vsi);
2450 ice_vsi_put_qs(vsi);
2451 ice_vsi_free_arrays(vsi);
2452
2453 /* SR-IOV determines needed MSIX resources all at once instead of per
2454 * VSI since when VFs are spawned we know how many VFs there are and how
2455 * many interrupts each VF needs. SR-IOV MSIX resources are also
2456 * cleared in the same manner.
2457 */
2458
2459 if (vsi->type == ICE_VSI_VF &&
2460 vsi->agg_node && vsi->agg_node->valid)
2461 vsi->agg_node->num_vsis--;
2462}
2463
2464/**
2465 * ice_vsi_setup - Set up a VSI by a given type
2466 * @pf: board private structure
2467 * @params: parameters to use when creating the VSI
2468 *
2469 * This allocates the sw VSI structure and its queue resources.
2470 *
2471 * Returns pointer to the successfully allocated and configured VSI sw struct on
2472 * success, NULL on failure.
2473 */
2474struct ice_vsi *
2475ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2476{
2477 struct device *dev = ice_pf_to_dev(pf);
2478 struct ice_vsi *vsi;
2479 int ret;
2480
2481 /* ice_vsi_setup can only initialize a new VSI, and we must have
2482 * a port_info structure for it.
2483 */
2484 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2485 WARN_ON(!params->port_info))
2486 return NULL;
2487
2488 vsi = ice_vsi_alloc(pf);
2489 if (!vsi) {
2490 dev_err(dev, "could not allocate VSI\n");
2491 return NULL;
2492 }
2493
2494 vsi->params = *params;
2495 ret = ice_vsi_cfg(vsi);
2496 if (ret)
2497 goto err_vsi_cfg;
2498
2499 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2500 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2501 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2502 * The rule is added once for PF VSI in order to create appropriate
2503 * recipe, since VSI/VSI list is ignored with drop action...
2504 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2505 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2506 * settings in the HW.
2507 */
2508 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2509 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2510 ICE_DROP_PACKET);
2511 ice_cfg_sw_lldp(vsi, true, true);
2512 }
2513
2514 if (!vsi->agg_node)
2515 ice_set_agg_vsi(vsi);
2516
2517 return vsi;
2518
2519err_vsi_cfg:
2520 ice_vsi_free(vsi);
2521
2522 return NULL;
2523}
2524
2525/**
2526 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2527 * @vsi: the VSI being cleaned up
2528 */
2529static void ice_vsi_release_msix(struct ice_vsi *vsi)
2530{
2531 struct ice_pf *pf = vsi->back;
2532 struct ice_hw *hw = &pf->hw;
2533 u32 txq = 0;
2534 u32 rxq = 0;
2535 int i, q;
2536
2537 ice_for_each_q_vector(vsi, i) {
2538 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2539
2540 ice_write_intrl(q_vector, 0);
2541 for (q = 0; q < q_vector->num_ring_tx; q++) {
2542 ice_write_itr(&q_vector->tx, 0);
2543 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2544 if (vsi->xdp_rings) {
2545 u32 xdp_txq = txq + vsi->num_xdp_txq;
2546
2547 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2548 }
2549 txq++;
2550 }
2551
2552 for (q = 0; q < q_vector->num_ring_rx; q++) {
2553 ice_write_itr(&q_vector->rx, 0);
2554 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2555 rxq++;
2556 }
2557 }
2558
2559 ice_flush(hw);
2560}
2561
2562/**
2563 * ice_vsi_free_irq - Free the IRQ association with the OS
2564 * @vsi: the VSI being configured
2565 */
2566void ice_vsi_free_irq(struct ice_vsi *vsi)
2567{
2568 struct ice_pf *pf = vsi->back;
2569 int i;
2570
2571 if (!vsi->q_vectors || !vsi->irqs_ready)
2572 return;
2573
2574 ice_vsi_release_msix(vsi);
2575 if (vsi->type == ICE_VSI_VF)
2576 return;
2577
2578 vsi->irqs_ready = false;
2579 ice_free_cpu_rx_rmap(vsi);
2580
2581 ice_for_each_q_vector(vsi, i) {
2582 int irq_num;
2583
2584 irq_num = vsi->q_vectors[i]->irq.virq;
2585
2586 /* free only the irqs that were actually requested */
2587 if (!vsi->q_vectors[i] ||
2588 !(vsi->q_vectors[i]->num_ring_tx ||
2589 vsi->q_vectors[i]->num_ring_rx))
2590 continue;
2591
2592 /* clear the affinity notifier in the IRQ descriptor */
2593 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2594 irq_set_affinity_notifier(irq_num, NULL);
2595
2596 /* clear the affinity_hint in the IRQ descriptor */
2597 irq_update_affinity_hint(irq_num, NULL);
2598 synchronize_irq(irq_num);
2599 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2600 }
2601}
2602
2603/**
2604 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2605 * @vsi: the VSI having resources freed
2606 */
2607void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2608{
2609 int i;
2610
2611 if (!vsi->tx_rings)
2612 return;
2613
2614 ice_for_each_txq(vsi, i)
2615 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2616 ice_free_tx_ring(vsi->tx_rings[i]);
2617}
2618
2619/**
2620 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2621 * @vsi: the VSI having resources freed
2622 */
2623void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2624{
2625 int i;
2626
2627 if (!vsi->rx_rings)
2628 return;
2629
2630 ice_for_each_rxq(vsi, i)
2631 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2632 ice_free_rx_ring(vsi->rx_rings[i]);
2633}
2634
2635/**
2636 * ice_vsi_close - Shut down a VSI
2637 * @vsi: the VSI being shut down
2638 */
2639void ice_vsi_close(struct ice_vsi *vsi)
2640{
2641 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2642 ice_down(vsi);
2643
2644 ice_vsi_clear_napi_queues(vsi);
2645 ice_vsi_free_irq(vsi);
2646 ice_vsi_free_tx_rings(vsi);
2647 ice_vsi_free_rx_rings(vsi);
2648}
2649
2650/**
2651 * ice_ena_vsi - resume a VSI
2652 * @vsi: the VSI being resume
2653 * @locked: is the rtnl_lock already held
2654 */
2655int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2656{
2657 int err = 0;
2658
2659 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2660 return 0;
2661
2662 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2663
2664 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2665 vsi->type == ICE_VSI_SF)) {
2666 if (netif_running(vsi->netdev)) {
2667 if (!locked)
2668 rtnl_lock();
2669
2670 err = ice_open_internal(vsi->netdev);
2671
2672 if (!locked)
2673 rtnl_unlock();
2674 }
2675 } else if (vsi->type == ICE_VSI_CTRL) {
2676 err = ice_vsi_open_ctrl(vsi);
2677 }
2678
2679 return err;
2680}
2681
2682/**
2683 * ice_dis_vsi - pause a VSI
2684 * @vsi: the VSI being paused
2685 * @locked: is the rtnl_lock already held
2686 */
2687void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2688{
2689 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2690
2691 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2692
2693 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2694 vsi->type == ICE_VSI_SF)) {
2695 if (netif_running(vsi->netdev)) {
2696 if (!locked)
2697 rtnl_lock();
2698 already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2699 if (!already_down)
2700 ice_vsi_close(vsi);
2701
2702 if (!locked)
2703 rtnl_unlock();
2704 } else if (!already_down) {
2705 ice_vsi_close(vsi);
2706 }
2707 } else if (vsi->type == ICE_VSI_CTRL && !already_down) {
2708 ice_vsi_close(vsi);
2709 }
2710}
2711
2712/**
2713 * ice_vsi_set_napi_queues - associate netdev queues with napi
2714 * @vsi: VSI pointer
2715 *
2716 * Associate queue[s] with napi for all vectors.
2717 * The caller must hold rtnl_lock.
2718 */
2719void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2720{
2721 struct net_device *netdev = vsi->netdev;
2722 int q_idx, v_idx;
2723
2724 if (!netdev)
2725 return;
2726
2727 ice_for_each_rxq(vsi, q_idx)
2728 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX,
2729 &vsi->rx_rings[q_idx]->q_vector->napi);
2730
2731 ice_for_each_txq(vsi, q_idx)
2732 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX,
2733 &vsi->tx_rings[q_idx]->q_vector->napi);
2734 /* Also set the interrupt number for the NAPI */
2735 ice_for_each_q_vector(vsi, v_idx) {
2736 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2737
2738 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2739 }
2740}
2741
2742/**
2743 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi
2744 * @vsi: VSI pointer
2745 *
2746 * Clear the association between all VSI queues queue[s] and napi.
2747 * The caller must hold rtnl_lock.
2748 */
2749void ice_vsi_clear_napi_queues(struct ice_vsi *vsi)
2750{
2751 struct net_device *netdev = vsi->netdev;
2752 int q_idx;
2753
2754 if (!netdev)
2755 return;
2756
2757 ice_for_each_txq(vsi, q_idx)
2758 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL);
2759
2760 ice_for_each_rxq(vsi, q_idx)
2761 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL);
2762}
2763
2764/**
2765 * ice_napi_add - register NAPI handler for the VSI
2766 * @vsi: VSI for which NAPI handler is to be registered
2767 *
2768 * This function is only called in the driver's load path. Registering the NAPI
2769 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2770 * reset/rebuild, etc.)
2771 */
2772void ice_napi_add(struct ice_vsi *vsi)
2773{
2774 int v_idx;
2775
2776 if (!vsi->netdev)
2777 return;
2778
2779 ice_for_each_q_vector(vsi, v_idx)
2780 netif_napi_add_config(vsi->netdev,
2781 &vsi->q_vectors[v_idx]->napi,
2782 ice_napi_poll,
2783 v_idx);
2784}
2785
2786/**
2787 * ice_vsi_release - Delete a VSI and free its resources
2788 * @vsi: the VSI being removed
2789 *
2790 * Returns 0 on success or < 0 on error
2791 */
2792int ice_vsi_release(struct ice_vsi *vsi)
2793{
2794 struct ice_pf *pf;
2795
2796 if (!vsi->back)
2797 return -ENODEV;
2798 pf = vsi->back;
2799
2800 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2801 ice_rss_clean(vsi);
2802
2803 ice_vsi_close(vsi);
2804
2805 /* The Rx rule will only exist to remove if the LLDP FW
2806 * engine is currently stopped
2807 */
2808 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2809 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2810 ice_cfg_sw_lldp(vsi, false, false);
2811
2812 ice_vsi_decfg(vsi);
2813
2814 /* retain SW VSI data structure since it is needed to unregister and
2815 * free VSI netdev when PF is not in reset recovery pending state,\
2816 * for ex: during rmmod.
2817 */
2818 if (!ice_is_reset_in_progress(pf->state))
2819 ice_vsi_delete(vsi);
2820
2821 return 0;
2822}
2823
2824/**
2825 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2826 * @vsi: VSI connected with q_vectors
2827 * @coalesce: array of struct with stored coalesce
2828 *
2829 * Returns array size.
2830 */
2831static int
2832ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2833 struct ice_coalesce_stored *coalesce)
2834{
2835 int i;
2836
2837 ice_for_each_q_vector(vsi, i) {
2838 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2839
2840 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2841 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2842 coalesce[i].intrl = q_vector->intrl;
2843
2844 if (i < vsi->num_txq)
2845 coalesce[i].tx_valid = true;
2846 if (i < vsi->num_rxq)
2847 coalesce[i].rx_valid = true;
2848 }
2849
2850 return vsi->num_q_vectors;
2851}
2852
2853/**
2854 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2855 * @vsi: VSI connected with q_vectors
2856 * @coalesce: pointer to array of struct with stored coalesce
2857 * @size: size of coalesce array
2858 *
2859 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2860 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2861 * to default value.
2862 */
2863static void
2864ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2865 struct ice_coalesce_stored *coalesce, int size)
2866{
2867 struct ice_ring_container *rc;
2868 int i;
2869
2870 if ((size && !coalesce) || !vsi)
2871 return;
2872
2873 /* There are a couple of cases that have to be handled here:
2874 * 1. The case where the number of queue vectors stays the same, but
2875 * the number of Tx or Rx rings changes (the first for loop)
2876 * 2. The case where the number of queue vectors increased (the
2877 * second for loop)
2878 */
2879 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2880 /* There are 2 cases to handle here and they are the same for
2881 * both Tx and Rx:
2882 * if the entry was valid previously (coalesce[i].[tr]x_valid
2883 * and the loop variable is less than the number of rings
2884 * allocated, then write the previous values
2885 *
2886 * if the entry was not valid previously, but the number of
2887 * rings is less than are allocated (this means the number of
2888 * rings increased from previously), then write out the
2889 * values in the first element
2890 *
2891 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2892 * as there is no harm because the dynamic algorithm
2893 * will just overwrite.
2894 */
2895 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2896 rc = &vsi->q_vectors[i]->rx;
2897 rc->itr_settings = coalesce[i].itr_rx;
2898 ice_write_itr(rc, rc->itr_setting);
2899 } else if (i < vsi->alloc_rxq) {
2900 rc = &vsi->q_vectors[i]->rx;
2901 rc->itr_settings = coalesce[0].itr_rx;
2902 ice_write_itr(rc, rc->itr_setting);
2903 }
2904
2905 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2906 rc = &vsi->q_vectors[i]->tx;
2907 rc->itr_settings = coalesce[i].itr_tx;
2908 ice_write_itr(rc, rc->itr_setting);
2909 } else if (i < vsi->alloc_txq) {
2910 rc = &vsi->q_vectors[i]->tx;
2911 rc->itr_settings = coalesce[0].itr_tx;
2912 ice_write_itr(rc, rc->itr_setting);
2913 }
2914
2915 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2916 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2917 }
2918
2919 /* the number of queue vectors increased so write whatever is in
2920 * the first element
2921 */
2922 for (; i < vsi->num_q_vectors; i++) {
2923 /* transmit */
2924 rc = &vsi->q_vectors[i]->tx;
2925 rc->itr_settings = coalesce[0].itr_tx;
2926 ice_write_itr(rc, rc->itr_setting);
2927
2928 /* receive */
2929 rc = &vsi->q_vectors[i]->rx;
2930 rc->itr_settings = coalesce[0].itr_rx;
2931 ice_write_itr(rc, rc->itr_setting);
2932
2933 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
2934 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2935 }
2936}
2937
2938/**
2939 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
2940 * @vsi: VSI pointer
2941 */
2942static int
2943ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
2944{
2945 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
2946 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
2947 struct ice_ring_stats **tx_ring_stats;
2948 struct ice_ring_stats **rx_ring_stats;
2949 struct ice_vsi_stats *vsi_stat;
2950 struct ice_pf *pf = vsi->back;
2951 u16 prev_txq = vsi->alloc_txq;
2952 u16 prev_rxq = vsi->alloc_rxq;
2953 int i;
2954
2955 vsi_stat = pf->vsi_stats[vsi->idx];
2956
2957 if (req_txq < prev_txq) {
2958 for (i = req_txq; i < prev_txq; i++) {
2959 if (vsi_stat->tx_ring_stats[i]) {
2960 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
2961 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
2962 }
2963 }
2964 }
2965
2966 tx_ring_stats = vsi_stat->tx_ring_stats;
2967 vsi_stat->tx_ring_stats =
2968 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
2969 sizeof(*vsi_stat->tx_ring_stats),
2970 GFP_KERNEL | __GFP_ZERO);
2971 if (!vsi_stat->tx_ring_stats) {
2972 vsi_stat->tx_ring_stats = tx_ring_stats;
2973 return -ENOMEM;
2974 }
2975
2976 if (req_rxq < prev_rxq) {
2977 for (i = req_rxq; i < prev_rxq; i++) {
2978 if (vsi_stat->rx_ring_stats[i]) {
2979 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
2980 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
2981 }
2982 }
2983 }
2984
2985 rx_ring_stats = vsi_stat->rx_ring_stats;
2986 vsi_stat->rx_ring_stats =
2987 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
2988 sizeof(*vsi_stat->rx_ring_stats),
2989 GFP_KERNEL | __GFP_ZERO);
2990 if (!vsi_stat->rx_ring_stats) {
2991 vsi_stat->rx_ring_stats = rx_ring_stats;
2992 return -ENOMEM;
2993 }
2994
2995 return 0;
2996}
2997
2998/**
2999 * ice_vsi_rebuild - Rebuild VSI after reset
3000 * @vsi: VSI to be rebuild
3001 * @vsi_flags: flags used for VSI rebuild flow
3002 *
3003 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3004 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3005 *
3006 * Returns 0 on success and negative value on failure
3007 */
3008int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3009{
3010 struct ice_coalesce_stored *coalesce;
3011 int prev_num_q_vectors;
3012 struct ice_pf *pf;
3013 int ret;
3014
3015 if (!vsi)
3016 return -EINVAL;
3017
3018 vsi->flags = vsi_flags;
3019 pf = vsi->back;
3020 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3021 return -EINVAL;
3022
3023 mutex_lock(&vsi->xdp_state_lock);
3024
3025 ret = ice_vsi_realloc_stat_arrays(vsi);
3026 if (ret)
3027 goto unlock;
3028
3029 ice_vsi_decfg(vsi);
3030 ret = ice_vsi_cfg_def(vsi);
3031 if (ret)
3032 goto unlock;
3033
3034 coalesce = kcalloc(vsi->num_q_vectors,
3035 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3036 if (!coalesce) {
3037 ret = -ENOMEM;
3038 goto decfg;
3039 }
3040
3041 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3042
3043 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3044 if (ret) {
3045 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3046 ret = -EIO;
3047 goto free_coalesce;
3048 }
3049
3050 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3051 goto free_coalesce;
3052 }
3053
3054 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3055 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3056
3057free_coalesce:
3058 kfree(coalesce);
3059decfg:
3060 if (ret)
3061 ice_vsi_decfg(vsi);
3062unlock:
3063 mutex_unlock(&vsi->xdp_state_lock);
3064 return ret;
3065}
3066
3067/**
3068 * ice_is_reset_in_progress - check for a reset in progress
3069 * @state: PF state field
3070 */
3071bool ice_is_reset_in_progress(unsigned long *state)
3072{
3073 return test_bit(ICE_RESET_OICR_RECV, state) ||
3074 test_bit(ICE_PFR_REQ, state) ||
3075 test_bit(ICE_CORER_REQ, state) ||
3076 test_bit(ICE_GLOBR_REQ, state);
3077}
3078
3079/**
3080 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3081 * @pf: pointer to the PF structure
3082 * @timeout: length of time to wait, in jiffies
3083 *
3084 * Wait (sleep) for a short time until the driver finishes cleaning up from
3085 * a device reset. The caller must be able to sleep. Use this to delay
3086 * operations that could fail while the driver is cleaning up after a device
3087 * reset.
3088 *
3089 * Returns 0 on success, -EBUSY if the reset is not finished within the
3090 * timeout, and -ERESTARTSYS if the thread was interrupted.
3091 */
3092int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3093{
3094 long ret;
3095
3096 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3097 !ice_is_reset_in_progress(pf->state),
3098 timeout);
3099 if (ret < 0)
3100 return ret;
3101 else if (!ret)
3102 return -EBUSY;
3103 else
3104 return 0;
3105}
3106
3107/**
3108 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3109 * @vsi: VSI being configured
3110 * @ctx: the context buffer returned from AQ VSI update command
3111 */
3112static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3113{
3114 vsi->info.mapping_flags = ctx->info.mapping_flags;
3115 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3116 sizeof(vsi->info.q_mapping));
3117 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3118 sizeof(vsi->info.tc_mapping));
3119}
3120
3121/**
3122 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3123 * @vsi: the VSI being configured
3124 * @ena_tc: TC map to be enabled
3125 */
3126void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3127{
3128 struct net_device *netdev = vsi->netdev;
3129 struct ice_pf *pf = vsi->back;
3130 int numtc = vsi->tc_cfg.numtc;
3131 struct ice_dcbx_cfg *dcbcfg;
3132 u8 netdev_tc;
3133 int i;
3134
3135 if (!netdev)
3136 return;
3137
3138 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3139 if (vsi->type == ICE_VSI_CHNL)
3140 return;
3141
3142 if (!ena_tc) {
3143 netdev_reset_tc(netdev);
3144 return;
3145 }
3146
3147 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3148 numtc = vsi->all_numtc;
3149
3150 if (netdev_set_num_tc(netdev, numtc))
3151 return;
3152
3153 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3154
3155 ice_for_each_traffic_class(i)
3156 if (vsi->tc_cfg.ena_tc & BIT(i))
3157 netdev_set_tc_queue(netdev,
3158 vsi->tc_cfg.tc_info[i].netdev_tc,
3159 vsi->tc_cfg.tc_info[i].qcount_tx,
3160 vsi->tc_cfg.tc_info[i].qoffset);
3161 /* setup TC queue map for CHNL TCs */
3162 ice_for_each_chnl_tc(i) {
3163 if (!(vsi->all_enatc & BIT(i)))
3164 break;
3165 if (!vsi->mqprio_qopt.qopt.count[i])
3166 break;
3167 netdev_set_tc_queue(netdev, i,
3168 vsi->mqprio_qopt.qopt.count[i],
3169 vsi->mqprio_qopt.qopt.offset[i]);
3170 }
3171
3172 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3173 return;
3174
3175 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3176 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3177
3178 /* Get the mapped netdev TC# for the UP */
3179 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3180 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3181 }
3182}
3183
3184/**
3185 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3186 * @vsi: the VSI being configured,
3187 * @ctxt: VSI context structure
3188 * @ena_tc: number of traffic classes to enable
3189 *
3190 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3191 */
3192static int
3193ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3194 u8 ena_tc)
3195{
3196 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3197 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3198 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3199 u16 new_txq, new_rxq;
3200 u8 netdev_tc = 0;
3201 int i;
3202
3203 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3204
3205 pow = order_base_2(tc0_qcount);
3206 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3207 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3208
3209 ice_for_each_traffic_class(i) {
3210 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3211 /* TC is not enabled */
3212 vsi->tc_cfg.tc_info[i].qoffset = 0;
3213 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3214 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3215 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3216 ctxt->info.tc_mapping[i] = 0;
3217 continue;
3218 }
3219
3220 offset = vsi->mqprio_qopt.qopt.offset[i];
3221 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3222 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3223 vsi->tc_cfg.tc_info[i].qoffset = offset;
3224 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3225 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3226 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3227 }
3228
3229 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3230 ice_for_each_chnl_tc(i) {
3231 if (!(vsi->all_enatc & BIT(i)))
3232 continue;
3233 offset = vsi->mqprio_qopt.qopt.offset[i];
3234 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3235 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3236 }
3237 }
3238
3239 new_txq = offset + qcount_tx;
3240 if (new_txq > vsi->alloc_txq) {
3241 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3242 new_txq, vsi->alloc_txq);
3243 return -EINVAL;
3244 }
3245
3246 new_rxq = offset + qcount_rx;
3247 if (new_rxq > vsi->alloc_rxq) {
3248 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3249 new_rxq, vsi->alloc_rxq);
3250 return -EINVAL;
3251 }
3252
3253 /* Set actual Tx/Rx queue pairs */
3254 vsi->num_txq = new_txq;
3255 vsi->num_rxq = new_rxq;
3256
3257 /* Setup queue TC[0].qmap for given VSI context */
3258 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3259 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3260 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3261
3262 /* Find queue count available for channel VSIs and starting offset
3263 * for channel VSIs
3264 */
3265 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3266 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3267 vsi->next_base_q = tc0_qcount;
3268 }
3269 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3270 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3271 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3272 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3273
3274 return 0;
3275}
3276
3277/**
3278 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3279 * @vsi: VSI to be configured
3280 * @ena_tc: TC bitmap
3281 *
3282 * VSI queues expected to be quiesced before calling this function
3283 */
3284int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3285{
3286 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3287 struct ice_pf *pf = vsi->back;
3288 struct ice_tc_cfg old_tc_cfg;
3289 struct ice_vsi_ctx *ctx;
3290 struct device *dev;
3291 int i, ret = 0;
3292 u8 num_tc = 0;
3293
3294 dev = ice_pf_to_dev(pf);
3295 if (vsi->tc_cfg.ena_tc == ena_tc &&
3296 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3297 return 0;
3298
3299 ice_for_each_traffic_class(i) {
3300 /* build bitmap of enabled TCs */
3301 if (ena_tc & BIT(i))
3302 num_tc++;
3303 /* populate max_txqs per TC */
3304 max_txqs[i] = vsi->alloc_txq;
3305 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3306 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3307 */
3308 if (vsi->type == ICE_VSI_CHNL &&
3309 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3310 max_txqs[i] = vsi->num_txq;
3311 }
3312
3313 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3314 vsi->tc_cfg.ena_tc = ena_tc;
3315 vsi->tc_cfg.numtc = num_tc;
3316
3317 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3318 if (!ctx)
3319 return -ENOMEM;
3320
3321 ctx->vf_num = 0;
3322 ctx->info = vsi->info;
3323
3324 if (vsi->type == ICE_VSI_PF &&
3325 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3326 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3327 else
3328 ret = ice_vsi_setup_q_map(vsi, ctx);
3329
3330 if (ret) {
3331 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3332 goto out;
3333 }
3334
3335 /* must to indicate which section of VSI context are being modified */
3336 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3337 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3338 if (ret) {
3339 dev_info(dev, "Failed VSI Update\n");
3340 goto out;
3341 }
3342
3343 if (vsi->type == ICE_VSI_PF &&
3344 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3345 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3346 else
3347 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3348 vsi->tc_cfg.ena_tc, max_txqs);
3349
3350 if (ret) {
3351 dev_err(dev, "VSI %d failed TC config, error %d\n",
3352 vsi->vsi_num, ret);
3353 goto out;
3354 }
3355 ice_vsi_update_q_map(vsi, ctx);
3356 vsi->info.valid_sections = 0;
3357
3358 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3359out:
3360 kfree(ctx);
3361 return ret;
3362}
3363
3364/**
3365 * ice_update_ring_stats - Update ring statistics
3366 * @stats: stats to be updated
3367 * @pkts: number of processed packets
3368 * @bytes: number of processed bytes
3369 *
3370 * This function assumes that caller has acquired a u64_stats_sync lock.
3371 */
3372static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3373{
3374 stats->bytes += bytes;
3375 stats->pkts += pkts;
3376}
3377
3378/**
3379 * ice_update_tx_ring_stats - Update Tx ring specific counters
3380 * @tx_ring: ring to update
3381 * @pkts: number of processed packets
3382 * @bytes: number of processed bytes
3383 */
3384void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3385{
3386 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3387 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3388 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3389}
3390
3391/**
3392 * ice_update_rx_ring_stats - Update Rx ring specific counters
3393 * @rx_ring: ring to update
3394 * @pkts: number of processed packets
3395 * @bytes: number of processed bytes
3396 */
3397void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3398{
3399 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3400 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3401 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3402}
3403
3404/**
3405 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3406 * @pi: port info of the switch with default VSI
3407 *
3408 * Return true if the there is a single VSI in default forwarding VSI list
3409 */
3410bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3411{
3412 bool exists = false;
3413
3414 ice_check_if_dflt_vsi(pi, 0, &exists);
3415 return exists;
3416}
3417
3418/**
3419 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3420 * @vsi: VSI to compare against default forwarding VSI
3421 *
3422 * If this VSI passed in is the default forwarding VSI then return true, else
3423 * return false
3424 */
3425bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3426{
3427 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3428}
3429
3430/**
3431 * ice_set_dflt_vsi - set the default forwarding VSI
3432 * @vsi: VSI getting set as the default forwarding VSI on the switch
3433 *
3434 * If the VSI passed in is already the default VSI and it's enabled just return
3435 * success.
3436 *
3437 * Otherwise try to set the VSI passed in as the switch's default VSI and
3438 * return the result.
3439 */
3440int ice_set_dflt_vsi(struct ice_vsi *vsi)
3441{
3442 struct device *dev;
3443 int status;
3444
3445 if (!vsi)
3446 return -EINVAL;
3447
3448 dev = ice_pf_to_dev(vsi->back);
3449
3450 if (ice_lag_is_switchdev_running(vsi->back)) {
3451 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3452 vsi->vsi_num);
3453 return 0;
3454 }
3455
3456 /* the VSI passed in is already the default VSI */
3457 if (ice_is_vsi_dflt_vsi(vsi)) {
3458 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3459 vsi->vsi_num);
3460 return 0;
3461 }
3462
3463 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3464 if (status) {
3465 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3466 vsi->vsi_num, status);
3467 return status;
3468 }
3469
3470 return 0;
3471}
3472
3473/**
3474 * ice_clear_dflt_vsi - clear the default forwarding VSI
3475 * @vsi: VSI to remove from filter list
3476 *
3477 * If the switch has no default VSI or it's not enabled then return error.
3478 *
3479 * Otherwise try to clear the default VSI and return the result.
3480 */
3481int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3482{
3483 struct device *dev;
3484 int status;
3485
3486 if (!vsi)
3487 return -EINVAL;
3488
3489 dev = ice_pf_to_dev(vsi->back);
3490
3491 /* there is no default VSI configured */
3492 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3493 return -ENODEV;
3494
3495 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3496 ICE_FLTR_RX);
3497 if (status) {
3498 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3499 vsi->vsi_num, status);
3500 return -EIO;
3501 }
3502
3503 return 0;
3504}
3505
3506/**
3507 * ice_get_link_speed_mbps - get link speed in Mbps
3508 * @vsi: the VSI whose link speed is being queried
3509 *
3510 * Return current VSI link speed and 0 if the speed is unknown.
3511 */
3512int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3513{
3514 unsigned int link_speed;
3515
3516 link_speed = vsi->port_info->phy.link_info.link_speed;
3517
3518 return (int)ice_get_link_speed(fls(link_speed) - 1);
3519}
3520
3521/**
3522 * ice_get_link_speed_kbps - get link speed in Kbps
3523 * @vsi: the VSI whose link speed is being queried
3524 *
3525 * Return current VSI link speed and 0 if the speed is unknown.
3526 */
3527int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3528{
3529 int speed_mbps;
3530
3531 speed_mbps = ice_get_link_speed_mbps(vsi);
3532
3533 return speed_mbps * 1000;
3534}
3535
3536/**
3537 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3538 * @vsi: VSI to be configured
3539 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3540 *
3541 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3542 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3543 * on TC 0.
3544 */
3545int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3546{
3547 struct ice_pf *pf = vsi->back;
3548 struct device *dev;
3549 int status;
3550 int speed;
3551
3552 dev = ice_pf_to_dev(pf);
3553 if (!vsi->port_info) {
3554 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3555 vsi->idx, vsi->type);
3556 return -EINVAL;
3557 }
3558
3559 speed = ice_get_link_speed_kbps(vsi);
3560 if (min_tx_rate > (u64)speed) {
3561 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3562 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3563 speed);
3564 return -EINVAL;
3565 }
3566
3567 /* Configure min BW for VSI limit */
3568 if (min_tx_rate) {
3569 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3570 ICE_MIN_BW, min_tx_rate);
3571 if (status) {
3572 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3573 min_tx_rate, ice_vsi_type_str(vsi->type),
3574 vsi->idx);
3575 return status;
3576 }
3577
3578 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3579 min_tx_rate, ice_vsi_type_str(vsi->type));
3580 } else {
3581 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3582 vsi->idx, 0,
3583 ICE_MIN_BW);
3584 if (status) {
3585 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3586 ice_vsi_type_str(vsi->type), vsi->idx);
3587 return status;
3588 }
3589
3590 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3591 ice_vsi_type_str(vsi->type), vsi->idx);
3592 }
3593
3594 return 0;
3595}
3596
3597/**
3598 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3599 * @vsi: VSI to be configured
3600 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3601 *
3602 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3603 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3604 * on TC 0.
3605 */
3606int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3607{
3608 struct ice_pf *pf = vsi->back;
3609 struct device *dev;
3610 int status;
3611 int speed;
3612
3613 dev = ice_pf_to_dev(pf);
3614 if (!vsi->port_info) {
3615 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3616 vsi->idx, vsi->type);
3617 return -EINVAL;
3618 }
3619
3620 speed = ice_get_link_speed_kbps(vsi);
3621 if (max_tx_rate > (u64)speed) {
3622 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3623 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3624 speed);
3625 return -EINVAL;
3626 }
3627
3628 /* Configure max BW for VSI limit */
3629 if (max_tx_rate) {
3630 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3631 ICE_MAX_BW, max_tx_rate);
3632 if (status) {
3633 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3634 max_tx_rate, ice_vsi_type_str(vsi->type),
3635 vsi->idx);
3636 return status;
3637 }
3638
3639 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3640 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3641 } else {
3642 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3643 vsi->idx, 0,
3644 ICE_MAX_BW);
3645 if (status) {
3646 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3647 ice_vsi_type_str(vsi->type), vsi->idx);
3648 return status;
3649 }
3650
3651 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3652 ice_vsi_type_str(vsi->type), vsi->idx);
3653 }
3654
3655 return 0;
3656}
3657
3658/**
3659 * ice_set_link - turn on/off physical link
3660 * @vsi: VSI to modify physical link on
3661 * @ena: turn on/off physical link
3662 */
3663int ice_set_link(struct ice_vsi *vsi, bool ena)
3664{
3665 struct device *dev = ice_pf_to_dev(vsi->back);
3666 struct ice_port_info *pi = vsi->port_info;
3667 struct ice_hw *hw = pi->hw;
3668 int status;
3669
3670 if (vsi->type != ICE_VSI_PF)
3671 return -EINVAL;
3672
3673 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3674
3675 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3676 * this is not a fatal error, so print a warning message and return
3677 * a success code. Return an error if FW returns an error code other
3678 * than ICE_AQ_RC_EMODE
3679 */
3680 if (status == -EIO) {
3681 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3682 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3683 (ena ? "ON" : "OFF"), status,
3684 ice_aq_str(hw->adminq.sq_last_status));
3685 } else if (status) {
3686 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3687 (ena ? "ON" : "OFF"), status,
3688 ice_aq_str(hw->adminq.sq_last_status));
3689 return status;
3690 }
3691
3692 return 0;
3693}
3694
3695/**
3696 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3697 * @vsi: VSI used to add VLAN filters
3698 *
3699 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3700 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3701 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3702 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3703 *
3704 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3705 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3706 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3707 *
3708 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3709 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3710 * part of filtering.
3711 */
3712int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3713{
3714 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3715 struct ice_vlan vlan;
3716 int err;
3717
3718 vlan = ICE_VLAN(0, 0, 0);
3719 err = vlan_ops->add_vlan(vsi, &vlan);
3720 if (err && err != -EEXIST)
3721 return err;
3722
3723 /* in SVM both VLAN 0 filters are identical */
3724 if (!ice_is_dvm_ena(&vsi->back->hw))
3725 return 0;
3726
3727 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3728 err = vlan_ops->add_vlan(vsi, &vlan);
3729 if (err && err != -EEXIST)
3730 return err;
3731
3732 return 0;
3733}
3734
3735/**
3736 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3737 * @vsi: VSI used to add VLAN filters
3738 *
3739 * Delete the VLAN 0 filters in the same manner that they were added in
3740 * ice_vsi_add_vlan_zero.
3741 */
3742int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3743{
3744 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3745 struct ice_vlan vlan;
3746 int err;
3747
3748 vlan = ICE_VLAN(0, 0, 0);
3749 err = vlan_ops->del_vlan(vsi, &vlan);
3750 if (err && err != -EEXIST)
3751 return err;
3752
3753 /* in SVM both VLAN 0 filters are identical */
3754 if (!ice_is_dvm_ena(&vsi->back->hw))
3755 return 0;
3756
3757 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3758 err = vlan_ops->del_vlan(vsi, &vlan);
3759 if (err && err != -EEXIST)
3760 return err;
3761
3762 /* when deleting the last VLAN filter, make sure to disable the VLAN
3763 * promisc mode so the filter isn't left by accident
3764 */
3765 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3766 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3767}
3768
3769/**
3770 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3771 * @vsi: VSI used to get the VLAN mode
3772 *
3773 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3774 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3775 */
3776static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3777{
3778#define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3779#define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3780 /* no VLAN 0 filter is created when a port VLAN is active */
3781 if (vsi->type == ICE_VSI_VF) {
3782 if (WARN_ON(!vsi->vf))
3783 return 0;
3784
3785 if (ice_vf_is_port_vlan_ena(vsi->vf))
3786 return 0;
3787 }
3788
3789 if (ice_is_dvm_ena(&vsi->back->hw))
3790 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3791 else
3792 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3793}
3794
3795/**
3796 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3797 * @vsi: VSI used to determine if any non-zero VLANs have been added
3798 */
3799bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3800{
3801 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3802}
3803
3804/**
3805 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3806 * @vsi: VSI used to get the number of non-zero VLANs added
3807 */
3808u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3809{
3810 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3811}
3812
3813/**
3814 * ice_is_feature_supported
3815 * @pf: pointer to the struct ice_pf instance
3816 * @f: feature enum to be checked
3817 *
3818 * returns true if feature is supported, false otherwise
3819 */
3820bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3821{
3822 if (f < 0 || f >= ICE_F_MAX)
3823 return false;
3824
3825 return test_bit(f, pf->features);
3826}
3827
3828/**
3829 * ice_set_feature_support
3830 * @pf: pointer to the struct ice_pf instance
3831 * @f: feature enum to set
3832 */
3833void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3834{
3835 if (f < 0 || f >= ICE_F_MAX)
3836 return;
3837
3838 set_bit(f, pf->features);
3839}
3840
3841/**
3842 * ice_clear_feature_support
3843 * @pf: pointer to the struct ice_pf instance
3844 * @f: feature enum to clear
3845 */
3846void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3847{
3848 if (f < 0 || f >= ICE_F_MAX)
3849 return;
3850
3851 clear_bit(f, pf->features);
3852}
3853
3854/**
3855 * ice_init_feature_support
3856 * @pf: pointer to the struct ice_pf instance
3857 *
3858 * called during init to setup supported feature
3859 */
3860void ice_init_feature_support(struct ice_pf *pf)
3861{
3862 switch (pf->hw.device_id) {
3863 case ICE_DEV_ID_E810C_BACKPLANE:
3864 case ICE_DEV_ID_E810C_QSFP:
3865 case ICE_DEV_ID_E810C_SFP:
3866 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3867 case ICE_DEV_ID_E810_XXV_QSFP:
3868 case ICE_DEV_ID_E810_XXV_SFP:
3869 ice_set_feature_support(pf, ICE_F_DSCP);
3870 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3871 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3872 /* If we don't own the timer - don't enable other caps */
3873 if (!ice_pf_src_tmr_owned(pf))
3874 break;
3875 if (ice_is_cgu_in_netlist(&pf->hw))
3876 ice_set_feature_support(pf, ICE_F_CGU);
3877 if (ice_is_clock_mux_in_netlist(&pf->hw))
3878 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3879 if (ice_gnss_is_gps_present(&pf->hw))
3880 ice_set_feature_support(pf, ICE_F_GNSS);
3881 break;
3882 default:
3883 break;
3884 }
3885
3886 if (pf->hw.mac_type == ICE_MAC_E830)
3887 ice_set_feature_support(pf, ICE_F_MBX_LIMIT);
3888}
3889
3890/**
3891 * ice_vsi_update_security - update security block in VSI
3892 * @vsi: pointer to VSI structure
3893 * @fill: function pointer to fill ctx
3894 */
3895int
3896ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3897{
3898 struct ice_vsi_ctx ctx = { 0 };
3899
3900 ctx.info = vsi->info;
3901 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3902 fill(&ctx);
3903
3904 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3905 return -ENODEV;
3906
3907 vsi->info = ctx.info;
3908 return 0;
3909}
3910
3911/**
3912 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3913 * @ctx: pointer to VSI ctx structure
3914 */
3915void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3916{
3917 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3918 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3919 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3920}
3921
3922/**
3923 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
3924 * @ctx: pointer to VSI ctx structure
3925 */
3926void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
3927{
3928 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
3929 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3930 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3931}
3932
3933/**
3934 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
3935 * @ctx: pointer to VSI ctx structure
3936 */
3937void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
3938{
3939 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3940}
3941
3942/**
3943 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
3944 * @ctx: pointer to VSI ctx structure
3945 */
3946void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
3947{
3948 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3949}
3950
3951/**
3952 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
3953 * @vsi: pointer to VSI structure
3954 * @set: set or unset the bit
3955 */
3956int
3957ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
3958{
3959 struct ice_vsi_ctx ctx = {
3960 .info = vsi->info,
3961 };
3962
3963 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
3964 if (set)
3965 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3966 else
3967 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3968
3969 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3970 return -ENODEV;
3971
3972 vsi->info = ctx.info;
3973 return 0;
3974}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_base.h"
6#include "ice_flow.h"
7#include "ice_lib.h"
8#include "ice_fltr.h"
9#include "ice_dcb_lib.h"
10#include "ice_devlink.h"
11#include "ice_vsi_vlan_ops.h"
12
13/**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18{
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_CTRL:
25 return "ICE_VSI_CTRL";
26 case ICE_VSI_CHNL:
27 return "ICE_VSI_CHNL";
28 case ICE_VSI_LB:
29 return "ICE_VSI_LB";
30 case ICE_VSI_SWITCHDEV_CTRL:
31 return "ICE_VSI_SWITCHDEV_CTRL";
32 default:
33 return "unknown";
34 }
35}
36
37/**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48{
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64}
65
66/**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74{
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 if (!vsi->af_xdp_zc_qps)
122 goto err_zc_qps;
123
124 return 0;
125
126err_zc_qps:
127 devm_kfree(dev, vsi->q_vectors);
128err_vectors:
129 devm_kfree(dev, vsi->rxq_map);
130err_rxq_map:
131 devm_kfree(dev, vsi->txq_map);
132err_txq_map:
133 devm_kfree(dev, vsi->rx_rings);
134err_rings:
135 devm_kfree(dev, vsi->tx_rings);
136 return -ENOMEM;
137}
138
139/**
140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141 * @vsi: the VSI being configured
142 */
143static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144{
145 switch (vsi->type) {
146 case ICE_VSI_PF:
147 case ICE_VSI_SWITCHDEV_CTRL:
148 case ICE_VSI_CTRL:
149 case ICE_VSI_LB:
150 /* a user could change the values of num_[tr]x_desc using
151 * ethtool -G so we should keep those values instead of
152 * overwriting them with the defaults.
153 */
154 if (!vsi->num_rx_desc)
155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 if (!vsi->num_tx_desc)
157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 break;
159 default:
160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 vsi->type);
162 break;
163 }
164}
165
166/**
167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168 * @vsi: the VSI being configured
169 *
170 * Return 0 on success and a negative value on error
171 */
172static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173{
174 enum ice_vsi_type vsi_type = vsi->type;
175 struct ice_pf *pf = vsi->back;
176 struct ice_vf *vf = vsi->vf;
177
178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 return;
180
181 switch (vsi_type) {
182 case ICE_VSI_PF:
183 if (vsi->req_txq) {
184 vsi->alloc_txq = vsi->req_txq;
185 vsi->num_txq = vsi->req_txq;
186 } else {
187 vsi->alloc_txq = min3(pf->num_lan_msix,
188 ice_get_avail_txq_count(pf),
189 (u16)num_online_cpus());
190 }
191
192 pf->num_lan_tx = vsi->alloc_txq;
193
194 /* only 1 Rx queue unless RSS is enabled */
195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 vsi->alloc_rxq = 1;
197 } else {
198 if (vsi->req_rxq) {
199 vsi->alloc_rxq = vsi->req_rxq;
200 vsi->num_rxq = vsi->req_rxq;
201 } else {
202 vsi->alloc_rxq = min3(pf->num_lan_msix,
203 ice_get_avail_rxq_count(pf),
204 (u16)num_online_cpus());
205 }
206 }
207
208 pf->num_lan_rx = vsi->alloc_rxq;
209
210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 max_t(int, vsi->alloc_rxq,
212 vsi->alloc_txq));
213 break;
214 case ICE_VSI_SWITCHDEV_CTRL:
215 /* The number of queues for ctrl VSI is equal to number of PRs
216 * Each ring is associated to the corresponding VF_PR netdev.
217 * Tx and Rx rings are always equal
218 */
219 if (vsi->req_txq && vsi->req_rxq) {
220 vsi->alloc_txq = vsi->req_txq;
221 vsi->alloc_rxq = vsi->req_rxq;
222 } else {
223 vsi->alloc_txq = 1;
224 vsi->alloc_rxq = 1;
225 }
226
227 vsi->num_q_vectors = 1;
228 break;
229 case ICE_VSI_VF:
230 if (vf->num_req_qs)
231 vf->num_vf_qs = vf->num_req_qs;
232 vsi->alloc_txq = vf->num_vf_qs;
233 vsi->alloc_rxq = vf->num_vf_qs;
234 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
235 * data queue interrupts). Since vsi->num_q_vectors is number
236 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
237 * original vector count
238 */
239 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
240 break;
241 case ICE_VSI_CTRL:
242 vsi->alloc_txq = 1;
243 vsi->alloc_rxq = 1;
244 vsi->num_q_vectors = 1;
245 break;
246 case ICE_VSI_CHNL:
247 vsi->alloc_txq = 0;
248 vsi->alloc_rxq = 0;
249 break;
250 case ICE_VSI_LB:
251 vsi->alloc_txq = 1;
252 vsi->alloc_rxq = 1;
253 break;
254 default:
255 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
256 break;
257 }
258
259 ice_vsi_set_num_desc(vsi);
260}
261
262/**
263 * ice_get_free_slot - get the next non-NULL location index in array
264 * @array: array to search
265 * @size: size of the array
266 * @curr: last known occupied index to be used as a search hint
267 *
268 * void * is being used to keep the functionality generic. This lets us use this
269 * function on any array of pointers.
270 */
271static int ice_get_free_slot(void *array, int size, int curr)
272{
273 int **tmp_array = (int **)array;
274 int next;
275
276 if (curr < (size - 1) && !tmp_array[curr + 1]) {
277 next = curr + 1;
278 } else {
279 int i = 0;
280
281 while ((i < size) && (tmp_array[i]))
282 i++;
283 if (i == size)
284 next = ICE_NO_VSI;
285 else
286 next = i;
287 }
288 return next;
289}
290
291/**
292 * ice_vsi_delete_from_hw - delete a VSI from the switch
293 * @vsi: pointer to VSI being removed
294 */
295static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
296{
297 struct ice_pf *pf = vsi->back;
298 struct ice_vsi_ctx *ctxt;
299 int status;
300
301 ice_fltr_remove_all(vsi);
302 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
303 if (!ctxt)
304 return;
305
306 if (vsi->type == ICE_VSI_VF)
307 ctxt->vf_num = vsi->vf->vf_id;
308 ctxt->vsi_num = vsi->vsi_num;
309
310 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
311
312 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
313 if (status)
314 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
315 vsi->vsi_num, status);
316
317 kfree(ctxt);
318}
319
320/**
321 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
322 * @vsi: pointer to VSI being cleared
323 */
324static void ice_vsi_free_arrays(struct ice_vsi *vsi)
325{
326 struct ice_pf *pf = vsi->back;
327 struct device *dev;
328
329 dev = ice_pf_to_dev(pf);
330
331 bitmap_free(vsi->af_xdp_zc_qps);
332 vsi->af_xdp_zc_qps = NULL;
333 /* free the ring and vector containers */
334 devm_kfree(dev, vsi->q_vectors);
335 vsi->q_vectors = NULL;
336 devm_kfree(dev, vsi->tx_rings);
337 vsi->tx_rings = NULL;
338 devm_kfree(dev, vsi->rx_rings);
339 vsi->rx_rings = NULL;
340 devm_kfree(dev, vsi->txq_map);
341 vsi->txq_map = NULL;
342 devm_kfree(dev, vsi->rxq_map);
343 vsi->rxq_map = NULL;
344}
345
346/**
347 * ice_vsi_free_stats - Free the ring statistics structures
348 * @vsi: VSI pointer
349 */
350static void ice_vsi_free_stats(struct ice_vsi *vsi)
351{
352 struct ice_vsi_stats *vsi_stat;
353 struct ice_pf *pf = vsi->back;
354 int i;
355
356 if (vsi->type == ICE_VSI_CHNL)
357 return;
358 if (!pf->vsi_stats)
359 return;
360
361 vsi_stat = pf->vsi_stats[vsi->idx];
362 if (!vsi_stat)
363 return;
364
365 ice_for_each_alloc_txq(vsi, i) {
366 if (vsi_stat->tx_ring_stats[i]) {
367 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
368 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
369 }
370 }
371
372 ice_for_each_alloc_rxq(vsi, i) {
373 if (vsi_stat->rx_ring_stats[i]) {
374 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
375 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
376 }
377 }
378
379 kfree(vsi_stat->tx_ring_stats);
380 kfree(vsi_stat->rx_ring_stats);
381 kfree(vsi_stat);
382 pf->vsi_stats[vsi->idx] = NULL;
383}
384
385/**
386 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
387 * @vsi: VSI which is having stats allocated
388 */
389static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
390{
391 struct ice_ring_stats **tx_ring_stats;
392 struct ice_ring_stats **rx_ring_stats;
393 struct ice_vsi_stats *vsi_stats;
394 struct ice_pf *pf = vsi->back;
395 u16 i;
396
397 vsi_stats = pf->vsi_stats[vsi->idx];
398 tx_ring_stats = vsi_stats->tx_ring_stats;
399 rx_ring_stats = vsi_stats->rx_ring_stats;
400
401 /* Allocate Tx ring stats */
402 ice_for_each_alloc_txq(vsi, i) {
403 struct ice_ring_stats *ring_stats;
404 struct ice_tx_ring *ring;
405
406 ring = vsi->tx_rings[i];
407 ring_stats = tx_ring_stats[i];
408
409 if (!ring_stats) {
410 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
411 if (!ring_stats)
412 goto err_out;
413
414 WRITE_ONCE(tx_ring_stats[i], ring_stats);
415 }
416
417 ring->ring_stats = ring_stats;
418 }
419
420 /* Allocate Rx ring stats */
421 ice_for_each_alloc_rxq(vsi, i) {
422 struct ice_ring_stats *ring_stats;
423 struct ice_rx_ring *ring;
424
425 ring = vsi->rx_rings[i];
426 ring_stats = rx_ring_stats[i];
427
428 if (!ring_stats) {
429 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
430 if (!ring_stats)
431 goto err_out;
432
433 WRITE_ONCE(rx_ring_stats[i], ring_stats);
434 }
435
436 ring->ring_stats = ring_stats;
437 }
438
439 return 0;
440
441err_out:
442 ice_vsi_free_stats(vsi);
443 return -ENOMEM;
444}
445
446/**
447 * ice_vsi_free - clean up and deallocate the provided VSI
448 * @vsi: pointer to VSI being cleared
449 *
450 * This deallocates the VSI's queue resources, removes it from the PF's
451 * VSI array if necessary, and deallocates the VSI
452 */
453static void ice_vsi_free(struct ice_vsi *vsi)
454{
455 struct ice_pf *pf = NULL;
456 struct device *dev;
457
458 if (!vsi || !vsi->back)
459 return;
460
461 pf = vsi->back;
462 dev = ice_pf_to_dev(pf);
463
464 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
465 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
466 return;
467 }
468
469 mutex_lock(&pf->sw_mutex);
470 /* updates the PF for this cleared VSI */
471
472 pf->vsi[vsi->idx] = NULL;
473 pf->next_vsi = vsi->idx;
474
475 ice_vsi_free_stats(vsi);
476 ice_vsi_free_arrays(vsi);
477 mutex_unlock(&pf->sw_mutex);
478 devm_kfree(dev, vsi);
479}
480
481void ice_vsi_delete(struct ice_vsi *vsi)
482{
483 ice_vsi_delete_from_hw(vsi);
484 ice_vsi_free(vsi);
485}
486
487/**
488 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
489 * @irq: interrupt number
490 * @data: pointer to a q_vector
491 */
492static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
493{
494 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
495
496 if (!q_vector->tx.tx_ring)
497 return IRQ_HANDLED;
498
499#define FDIR_RX_DESC_CLEAN_BUDGET 64
500 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
501 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
502
503 return IRQ_HANDLED;
504}
505
506/**
507 * ice_msix_clean_rings - MSIX mode Interrupt Handler
508 * @irq: interrupt number
509 * @data: pointer to a q_vector
510 */
511static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
512{
513 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
514
515 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
516 return IRQ_HANDLED;
517
518 q_vector->total_events++;
519
520 napi_schedule(&q_vector->napi);
521
522 return IRQ_HANDLED;
523}
524
525static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
526{
527 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
528 struct ice_pf *pf = q_vector->vsi->back;
529 struct ice_repr *repr;
530 unsigned long id;
531
532 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
533 return IRQ_HANDLED;
534
535 xa_for_each(&pf->eswitch.reprs, id, repr)
536 napi_schedule(&repr->q_vector->napi);
537
538 return IRQ_HANDLED;
539}
540
541/**
542 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
543 * @vsi: VSI pointer
544 */
545static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
546{
547 struct ice_vsi_stats *vsi_stat;
548 struct ice_pf *pf = vsi->back;
549
550 if (vsi->type == ICE_VSI_CHNL)
551 return 0;
552 if (!pf->vsi_stats)
553 return -ENOENT;
554
555 if (pf->vsi_stats[vsi->idx])
556 /* realloc will happen in rebuild path */
557 return 0;
558
559 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
560 if (!vsi_stat)
561 return -ENOMEM;
562
563 vsi_stat->tx_ring_stats =
564 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
565 GFP_KERNEL);
566 if (!vsi_stat->tx_ring_stats)
567 goto err_alloc_tx;
568
569 vsi_stat->rx_ring_stats =
570 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
571 GFP_KERNEL);
572 if (!vsi_stat->rx_ring_stats)
573 goto err_alloc_rx;
574
575 pf->vsi_stats[vsi->idx] = vsi_stat;
576
577 return 0;
578
579err_alloc_rx:
580 kfree(vsi_stat->rx_ring_stats);
581err_alloc_tx:
582 kfree(vsi_stat->tx_ring_stats);
583 kfree(vsi_stat);
584 pf->vsi_stats[vsi->idx] = NULL;
585 return -ENOMEM;
586}
587
588/**
589 * ice_vsi_alloc_def - set default values for already allocated VSI
590 * @vsi: ptr to VSI
591 * @ch: ptr to channel
592 */
593static int
594ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
595{
596 if (vsi->type != ICE_VSI_CHNL) {
597 ice_vsi_set_num_qs(vsi);
598 if (ice_vsi_alloc_arrays(vsi))
599 return -ENOMEM;
600 }
601
602 switch (vsi->type) {
603 case ICE_VSI_SWITCHDEV_CTRL:
604 /* Setup eswitch MSIX irq handler for VSI */
605 vsi->irq_handler = ice_eswitch_msix_clean_rings;
606 break;
607 case ICE_VSI_PF:
608 /* Setup default MSIX irq handler for VSI */
609 vsi->irq_handler = ice_msix_clean_rings;
610 break;
611 case ICE_VSI_CTRL:
612 /* Setup ctrl VSI MSIX irq handler */
613 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
614 break;
615 case ICE_VSI_CHNL:
616 if (!ch)
617 return -EINVAL;
618
619 vsi->num_rxq = ch->num_rxq;
620 vsi->num_txq = ch->num_txq;
621 vsi->next_base_q = ch->base_q;
622 break;
623 case ICE_VSI_VF:
624 case ICE_VSI_LB:
625 break;
626 default:
627 ice_vsi_free_arrays(vsi);
628 return -EINVAL;
629 }
630
631 return 0;
632}
633
634/**
635 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
636 * @pf: board private structure
637 *
638 * Reserves a VSI index from the PF and allocates an empty VSI structure
639 * without a type. The VSI structure must later be initialized by calling
640 * ice_vsi_cfg().
641 *
642 * returns a pointer to a VSI on success, NULL on failure.
643 */
644static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
645{
646 struct device *dev = ice_pf_to_dev(pf);
647 struct ice_vsi *vsi = NULL;
648
649 /* Need to protect the allocation of the VSIs at the PF level */
650 mutex_lock(&pf->sw_mutex);
651
652 /* If we have already allocated our maximum number of VSIs,
653 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
654 * is available to be populated
655 */
656 if (pf->next_vsi == ICE_NO_VSI) {
657 dev_dbg(dev, "out of VSI slots!\n");
658 goto unlock_pf;
659 }
660
661 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
662 if (!vsi)
663 goto unlock_pf;
664
665 vsi->back = pf;
666 set_bit(ICE_VSI_DOWN, vsi->state);
667
668 /* fill slot and make note of the index */
669 vsi->idx = pf->next_vsi;
670 pf->vsi[pf->next_vsi] = vsi;
671
672 /* prepare pf->next_vsi for next use */
673 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
674 pf->next_vsi);
675
676unlock_pf:
677 mutex_unlock(&pf->sw_mutex);
678 return vsi;
679}
680
681/**
682 * ice_alloc_fd_res - Allocate FD resource for a VSI
683 * @vsi: pointer to the ice_vsi
684 *
685 * This allocates the FD resources
686 *
687 * Returns 0 on success, -EPERM on no-op or -EIO on failure
688 */
689static int ice_alloc_fd_res(struct ice_vsi *vsi)
690{
691 struct ice_pf *pf = vsi->back;
692 u32 g_val, b_val;
693
694 /* Flow Director filters are only allocated/assigned to the PF VSI or
695 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
696 * add/delete filters so resources are not allocated to it
697 */
698 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
699 return -EPERM;
700
701 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
702 vsi->type == ICE_VSI_CHNL))
703 return -EPERM;
704
705 /* FD filters from guaranteed pool per VSI */
706 g_val = pf->hw.func_caps.fd_fltr_guar;
707 if (!g_val)
708 return -EPERM;
709
710 /* FD filters from best effort pool */
711 b_val = pf->hw.func_caps.fd_fltr_best_effort;
712 if (!b_val)
713 return -EPERM;
714
715 /* PF main VSI gets only 64 FD resources from guaranteed pool
716 * when ADQ is configured.
717 */
718#define ICE_PF_VSI_GFLTR 64
719
720 /* determine FD filter resources per VSI from shared(best effort) and
721 * dedicated pool
722 */
723 if (vsi->type == ICE_VSI_PF) {
724 vsi->num_gfltr = g_val;
725 /* if MQPRIO is configured, main VSI doesn't get all FD
726 * resources from guaranteed pool. PF VSI gets 64 FD resources
727 */
728 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
729 if (g_val < ICE_PF_VSI_GFLTR)
730 return -EPERM;
731 /* allow bare minimum entries for PF VSI */
732 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
733 }
734
735 /* each VSI gets same "best_effort" quota */
736 vsi->num_bfltr = b_val;
737 } else if (vsi->type == ICE_VSI_VF) {
738 vsi->num_gfltr = 0;
739
740 /* each VSI gets same "best_effort" quota */
741 vsi->num_bfltr = b_val;
742 } else {
743 struct ice_vsi *main_vsi;
744 int numtc;
745
746 main_vsi = ice_get_main_vsi(pf);
747 if (!main_vsi)
748 return -EPERM;
749
750 if (!main_vsi->all_numtc)
751 return -EINVAL;
752
753 /* figure out ADQ numtc */
754 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
755
756 /* only one TC but still asking resources for channels,
757 * invalid config
758 */
759 if (numtc < ICE_CHNL_START_TC)
760 return -EPERM;
761
762 g_val -= ICE_PF_VSI_GFLTR;
763 /* channel VSIs gets equal share from guaranteed pool */
764 vsi->num_gfltr = g_val / numtc;
765
766 /* each VSI gets same "best_effort" quota */
767 vsi->num_bfltr = b_val;
768 }
769
770 return 0;
771}
772
773/**
774 * ice_vsi_get_qs - Assign queues from PF to VSI
775 * @vsi: the VSI to assign queues to
776 *
777 * Returns 0 on success and a negative value on error
778 */
779static int ice_vsi_get_qs(struct ice_vsi *vsi)
780{
781 struct ice_pf *pf = vsi->back;
782 struct ice_qs_cfg tx_qs_cfg = {
783 .qs_mutex = &pf->avail_q_mutex,
784 .pf_map = pf->avail_txqs,
785 .pf_map_size = pf->max_pf_txqs,
786 .q_count = vsi->alloc_txq,
787 .scatter_count = ICE_MAX_SCATTER_TXQS,
788 .vsi_map = vsi->txq_map,
789 .vsi_map_offset = 0,
790 .mapping_mode = ICE_VSI_MAP_CONTIG
791 };
792 struct ice_qs_cfg rx_qs_cfg = {
793 .qs_mutex = &pf->avail_q_mutex,
794 .pf_map = pf->avail_rxqs,
795 .pf_map_size = pf->max_pf_rxqs,
796 .q_count = vsi->alloc_rxq,
797 .scatter_count = ICE_MAX_SCATTER_RXQS,
798 .vsi_map = vsi->rxq_map,
799 .vsi_map_offset = 0,
800 .mapping_mode = ICE_VSI_MAP_CONTIG
801 };
802 int ret;
803
804 if (vsi->type == ICE_VSI_CHNL)
805 return 0;
806
807 ret = __ice_vsi_get_qs(&tx_qs_cfg);
808 if (ret)
809 return ret;
810 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
811
812 ret = __ice_vsi_get_qs(&rx_qs_cfg);
813 if (ret)
814 return ret;
815 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
816
817 return 0;
818}
819
820/**
821 * ice_vsi_put_qs - Release queues from VSI to PF
822 * @vsi: the VSI that is going to release queues
823 */
824static void ice_vsi_put_qs(struct ice_vsi *vsi)
825{
826 struct ice_pf *pf = vsi->back;
827 int i;
828
829 mutex_lock(&pf->avail_q_mutex);
830
831 ice_for_each_alloc_txq(vsi, i) {
832 clear_bit(vsi->txq_map[i], pf->avail_txqs);
833 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
834 }
835
836 ice_for_each_alloc_rxq(vsi, i) {
837 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
838 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
839 }
840
841 mutex_unlock(&pf->avail_q_mutex);
842}
843
844/**
845 * ice_is_safe_mode
846 * @pf: pointer to the PF struct
847 *
848 * returns true if driver is in safe mode, false otherwise
849 */
850bool ice_is_safe_mode(struct ice_pf *pf)
851{
852 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
853}
854
855/**
856 * ice_is_rdma_ena
857 * @pf: pointer to the PF struct
858 *
859 * returns true if RDMA is currently supported, false otherwise
860 */
861bool ice_is_rdma_ena(struct ice_pf *pf)
862{
863 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
864}
865
866/**
867 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
868 * @vsi: the VSI being cleaned up
869 *
870 * This function deletes RSS input set for all flows that were configured
871 * for this VSI
872 */
873static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
874{
875 struct ice_pf *pf = vsi->back;
876 int status;
877
878 if (ice_is_safe_mode(pf))
879 return;
880
881 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
882 if (status)
883 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
884 vsi->vsi_num, status);
885}
886
887/**
888 * ice_rss_clean - Delete RSS related VSI structures and configuration
889 * @vsi: the VSI being removed
890 */
891static void ice_rss_clean(struct ice_vsi *vsi)
892{
893 struct ice_pf *pf = vsi->back;
894 struct device *dev;
895
896 dev = ice_pf_to_dev(pf);
897
898 devm_kfree(dev, vsi->rss_hkey_user);
899 devm_kfree(dev, vsi->rss_lut_user);
900
901 ice_vsi_clean_rss_flow_fld(vsi);
902 /* remove RSS replay list */
903 if (!ice_is_safe_mode(pf))
904 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
905}
906
907/**
908 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
909 * @vsi: the VSI being configured
910 */
911static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
912{
913 struct ice_hw_common_caps *cap;
914 struct ice_pf *pf = vsi->back;
915 u16 max_rss_size;
916
917 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
918 vsi->rss_size = 1;
919 return;
920 }
921
922 cap = &pf->hw.func_caps.common_cap;
923 max_rss_size = BIT(cap->rss_table_entry_width);
924 switch (vsi->type) {
925 case ICE_VSI_CHNL:
926 case ICE_VSI_PF:
927 /* PF VSI will inherit RSS instance of PF */
928 vsi->rss_table_size = (u16)cap->rss_table_size;
929 if (vsi->type == ICE_VSI_CHNL)
930 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
931 else
932 vsi->rss_size = min_t(u16, num_online_cpus(),
933 max_rss_size);
934 vsi->rss_lut_type = ICE_LUT_PF;
935 break;
936 case ICE_VSI_SWITCHDEV_CTRL:
937 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
938 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
939 vsi->rss_lut_type = ICE_LUT_VSI;
940 break;
941 case ICE_VSI_VF:
942 /* VF VSI will get a small RSS table.
943 * For VSI_LUT, LUT size should be set to 64 bytes.
944 */
945 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
946 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
947 vsi->rss_lut_type = ICE_LUT_VSI;
948 break;
949 case ICE_VSI_LB:
950 break;
951 default:
952 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
953 ice_vsi_type_str(vsi->type));
954 break;
955 }
956}
957
958/**
959 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
960 * @hw: HW structure used to determine the VLAN mode of the device
961 * @ctxt: the VSI context being set
962 *
963 * This initializes a default VSI context for all sections except the Queues.
964 */
965static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
966{
967 u32 table = 0;
968
969 memset(&ctxt->info, 0, sizeof(ctxt->info));
970 /* VSI's should be allocated from shared pool */
971 ctxt->alloc_from_pool = true;
972 /* Src pruning enabled by default */
973 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
974 /* Traffic from VSI can be sent to LAN */
975 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
976 /* allow all untagged/tagged packets by default on Tx */
977 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
978 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
979 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
980 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
981 *
982 * DVM - leave inner VLAN in packet by default
983 */
984 if (ice_is_dvm_ena(hw)) {
985 ctxt->info.inner_vlan_flags |=
986 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
987 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
988 ctxt->info.outer_vlan_flags =
989 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
990 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
991 ctxt->info.outer_vlan_flags |=
992 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
993 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
994 ctxt->info.outer_vlan_flags |=
995 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
996 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
997 }
998 /* Have 1:1 UP mapping for both ingress/egress tables */
999 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1000 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1001 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1002 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1003 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1004 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1005 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1006 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1007 ctxt->info.ingress_table = cpu_to_le32(table);
1008 ctxt->info.egress_table = cpu_to_le32(table);
1009 /* Have 1:1 UP mapping for outer to inner UP table */
1010 ctxt->info.outer_up_table = cpu_to_le32(table);
1011 /* No Outer tag support outer_tag_flags remains to zero */
1012}
1013
1014/**
1015 * ice_vsi_setup_q_map - Setup a VSI queue map
1016 * @vsi: the VSI being configured
1017 * @ctxt: VSI context structure
1018 */
1019static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1020{
1021 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1022 u16 num_txq_per_tc, num_rxq_per_tc;
1023 u16 qcount_tx = vsi->alloc_txq;
1024 u16 qcount_rx = vsi->alloc_rxq;
1025 u8 netdev_tc = 0;
1026 int i;
1027
1028 if (!vsi->tc_cfg.numtc) {
1029 /* at least TC0 should be enabled by default */
1030 vsi->tc_cfg.numtc = 1;
1031 vsi->tc_cfg.ena_tc = 1;
1032 }
1033
1034 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1035 if (!num_rxq_per_tc)
1036 num_rxq_per_tc = 1;
1037 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1038 if (!num_txq_per_tc)
1039 num_txq_per_tc = 1;
1040
1041 /* find the (rounded up) power-of-2 of qcount */
1042 pow = (u16)order_base_2(num_rxq_per_tc);
1043
1044 /* TC mapping is a function of the number of Rx queues assigned to the
1045 * VSI for each traffic class and the offset of these queues.
1046 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1047 * queues allocated to TC0. No:of queues is a power-of-2.
1048 *
1049 * If TC is not enabled, the queue offset is set to 0, and allocate one
1050 * queue, this way, traffic for the given TC will be sent to the default
1051 * queue.
1052 *
1053 * Setup number and offset of Rx queues for all TCs for the VSI
1054 */
1055 ice_for_each_traffic_class(i) {
1056 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1057 /* TC is not enabled */
1058 vsi->tc_cfg.tc_info[i].qoffset = 0;
1059 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1060 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1061 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1062 ctxt->info.tc_mapping[i] = 0;
1063 continue;
1064 }
1065
1066 /* TC is enabled */
1067 vsi->tc_cfg.tc_info[i].qoffset = offset;
1068 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1069 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1070 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1071
1072 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1073 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1074 offset += num_rxq_per_tc;
1075 tx_count += num_txq_per_tc;
1076 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1077 }
1078
1079 /* if offset is non-zero, means it is calculated correctly based on
1080 * enabled TCs for a given VSI otherwise qcount_rx will always
1081 * be correct and non-zero because it is based off - VSI's
1082 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1083 * at least 1)
1084 */
1085 if (offset)
1086 rx_count = offset;
1087 else
1088 rx_count = num_rxq_per_tc;
1089
1090 if (rx_count > vsi->alloc_rxq) {
1091 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1092 rx_count, vsi->alloc_rxq);
1093 return -EINVAL;
1094 }
1095
1096 if (tx_count > vsi->alloc_txq) {
1097 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1098 tx_count, vsi->alloc_txq);
1099 return -EINVAL;
1100 }
1101
1102 vsi->num_txq = tx_count;
1103 vsi->num_rxq = rx_count;
1104
1105 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1106 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1107 /* since there is a chance that num_rxq could have been changed
1108 * in the above for loop, make num_txq equal to num_rxq.
1109 */
1110 vsi->num_txq = vsi->num_rxq;
1111 }
1112
1113 /* Rx queue mapping */
1114 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1115 /* q_mapping buffer holds the info for the first queue allocated for
1116 * this VSI in the PF space and also the number of queues associated
1117 * with this VSI.
1118 */
1119 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1120 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1121
1122 return 0;
1123}
1124
1125/**
1126 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1127 * @ctxt: the VSI context being set
1128 * @vsi: the VSI being configured
1129 */
1130static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1131{
1132 u8 dflt_q_group, dflt_q_prio;
1133 u16 dflt_q, report_q, val;
1134
1135 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1136 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1137 return;
1138
1139 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1140 ctxt->info.valid_sections |= cpu_to_le16(val);
1141 dflt_q = 0;
1142 dflt_q_group = 0;
1143 report_q = 0;
1144 dflt_q_prio = 0;
1145
1146 /* enable flow director filtering/programming */
1147 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1148 ctxt->info.fd_options = cpu_to_le16(val);
1149 /* max of allocated flow director filters */
1150 ctxt->info.max_fd_fltr_dedicated =
1151 cpu_to_le16(vsi->num_gfltr);
1152 /* max of shared flow director filters any VSI may program */
1153 ctxt->info.max_fd_fltr_shared =
1154 cpu_to_le16(vsi->num_bfltr);
1155 /* default queue index within the VSI of the default FD */
1156 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1157 /* target queue or queue group to the FD filter */
1158 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1159 ctxt->info.fd_def_q = cpu_to_le16(val);
1160 /* queue index on which FD filter completion is reported */
1161 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1162 /* priority of the default qindex action */
1163 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1164 ctxt->info.fd_report_opt = cpu_to_le16(val);
1165}
1166
1167/**
1168 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1169 * @ctxt: the VSI context being set
1170 * @vsi: the VSI being configured
1171 */
1172static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1173{
1174 u8 lut_type, hash_type;
1175 struct device *dev;
1176 struct ice_pf *pf;
1177
1178 pf = vsi->back;
1179 dev = ice_pf_to_dev(pf);
1180
1181 switch (vsi->type) {
1182 case ICE_VSI_CHNL:
1183 case ICE_VSI_PF:
1184 /* PF VSI will inherit RSS instance of PF */
1185 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1186 break;
1187 case ICE_VSI_VF:
1188 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1189 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1190 break;
1191 default:
1192 dev_dbg(dev, "Unsupported VSI type %s\n",
1193 ice_vsi_type_str(vsi->type));
1194 return;
1195 }
1196
1197 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1198 vsi->rss_hfunc = hash_type;
1199
1200 ctxt->info.q_opt_rss =
1201 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1202 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1203}
1204
1205static void
1206ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1207{
1208 struct ice_pf *pf = vsi->back;
1209 u16 qcount, qmap;
1210 u8 offset = 0;
1211 int pow;
1212
1213 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1214
1215 pow = order_base_2(qcount);
1216 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1217 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1218
1219 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1220 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1221 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1222 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1223}
1224
1225/**
1226 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1227 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1228 *
1229 * returns true if Rx VLAN pruning is enabled and false otherwise.
1230 */
1231static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1232{
1233 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1234}
1235
1236/**
1237 * ice_vsi_init - Create and initialize a VSI
1238 * @vsi: the VSI being configured
1239 * @vsi_flags: VSI configuration flags
1240 *
1241 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1242 * reconfigure an existing context.
1243 *
1244 * This initializes a VSI context depending on the VSI type to be added and
1245 * passes it down to the add_vsi aq command to create a new VSI.
1246 */
1247static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1248{
1249 struct ice_pf *pf = vsi->back;
1250 struct ice_hw *hw = &pf->hw;
1251 struct ice_vsi_ctx *ctxt;
1252 struct device *dev;
1253 int ret = 0;
1254
1255 dev = ice_pf_to_dev(pf);
1256 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1257 if (!ctxt)
1258 return -ENOMEM;
1259
1260 switch (vsi->type) {
1261 case ICE_VSI_CTRL:
1262 case ICE_VSI_LB:
1263 case ICE_VSI_PF:
1264 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1265 break;
1266 case ICE_VSI_SWITCHDEV_CTRL:
1267 case ICE_VSI_CHNL:
1268 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1269 break;
1270 case ICE_VSI_VF:
1271 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1272 /* VF number here is the absolute VF number (0-255) */
1273 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1274 break;
1275 default:
1276 ret = -ENODEV;
1277 goto out;
1278 }
1279
1280 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1281 * prune enabled
1282 */
1283 if (vsi->type == ICE_VSI_CHNL) {
1284 struct ice_vsi *main_vsi;
1285
1286 main_vsi = ice_get_main_vsi(pf);
1287 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1288 ctxt->info.sw_flags2 |=
1289 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1290 else
1291 ctxt->info.sw_flags2 &=
1292 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1293 }
1294
1295 ice_set_dflt_vsi_ctx(hw, ctxt);
1296 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1297 ice_set_fd_vsi_ctx(ctxt, vsi);
1298 /* if the switch is in VEB mode, allow VSI loopback */
1299 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1300 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1301
1302 /* Set LUT type and HASH type if RSS is enabled */
1303 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1304 vsi->type != ICE_VSI_CTRL) {
1305 ice_set_rss_vsi_ctx(ctxt, vsi);
1306 /* if updating VSI context, make sure to set valid_section:
1307 * to indicate which section of VSI context being updated
1308 */
1309 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1310 ctxt->info.valid_sections |=
1311 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1312 }
1313
1314 ctxt->info.sw_id = vsi->port_info->sw_id;
1315 if (vsi->type == ICE_VSI_CHNL) {
1316 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1317 } else {
1318 ret = ice_vsi_setup_q_map(vsi, ctxt);
1319 if (ret)
1320 goto out;
1321
1322 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1323 /* means VSI being updated */
1324 /* must to indicate which section of VSI context are
1325 * being modified
1326 */
1327 ctxt->info.valid_sections |=
1328 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1329 }
1330
1331 /* Allow control frames out of main VSI */
1332 if (vsi->type == ICE_VSI_PF) {
1333 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1334 ctxt->info.valid_sections |=
1335 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1336 }
1337
1338 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1339 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1340 if (ret) {
1341 dev_err(dev, "Add VSI failed, err %d\n", ret);
1342 ret = -EIO;
1343 goto out;
1344 }
1345 } else {
1346 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1347 if (ret) {
1348 dev_err(dev, "Update VSI failed, err %d\n", ret);
1349 ret = -EIO;
1350 goto out;
1351 }
1352 }
1353
1354 /* keep context for update VSI operations */
1355 vsi->info = ctxt->info;
1356
1357 /* record VSI number returned */
1358 vsi->vsi_num = ctxt->vsi_num;
1359
1360out:
1361 kfree(ctxt);
1362 return ret;
1363}
1364
1365/**
1366 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1367 * @vsi: the VSI having rings deallocated
1368 */
1369static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1370{
1371 int i;
1372
1373 /* Avoid stale references by clearing map from vector to ring */
1374 if (vsi->q_vectors) {
1375 ice_for_each_q_vector(vsi, i) {
1376 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1377
1378 if (q_vector) {
1379 q_vector->tx.tx_ring = NULL;
1380 q_vector->rx.rx_ring = NULL;
1381 }
1382 }
1383 }
1384
1385 if (vsi->tx_rings) {
1386 ice_for_each_alloc_txq(vsi, i) {
1387 if (vsi->tx_rings[i]) {
1388 kfree_rcu(vsi->tx_rings[i], rcu);
1389 WRITE_ONCE(vsi->tx_rings[i], NULL);
1390 }
1391 }
1392 }
1393 if (vsi->rx_rings) {
1394 ice_for_each_alloc_rxq(vsi, i) {
1395 if (vsi->rx_rings[i]) {
1396 kfree_rcu(vsi->rx_rings[i], rcu);
1397 WRITE_ONCE(vsi->rx_rings[i], NULL);
1398 }
1399 }
1400 }
1401}
1402
1403/**
1404 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1405 * @vsi: VSI which is having rings allocated
1406 */
1407static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1408{
1409 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1410 struct ice_pf *pf = vsi->back;
1411 struct device *dev;
1412 u16 i;
1413
1414 dev = ice_pf_to_dev(pf);
1415 /* Allocate Tx rings */
1416 ice_for_each_alloc_txq(vsi, i) {
1417 struct ice_tx_ring *ring;
1418
1419 /* allocate with kzalloc(), free with kfree_rcu() */
1420 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1421
1422 if (!ring)
1423 goto err_out;
1424
1425 ring->q_index = i;
1426 ring->reg_idx = vsi->txq_map[i];
1427 ring->vsi = vsi;
1428 ring->tx_tstamps = &pf->ptp.port.tx;
1429 ring->dev = dev;
1430 ring->count = vsi->num_tx_desc;
1431 ring->txq_teid = ICE_INVAL_TEID;
1432 if (dvm_ena)
1433 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1434 else
1435 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1436 WRITE_ONCE(vsi->tx_rings[i], ring);
1437 }
1438
1439 /* Allocate Rx rings */
1440 ice_for_each_alloc_rxq(vsi, i) {
1441 struct ice_rx_ring *ring;
1442
1443 /* allocate with kzalloc(), free with kfree_rcu() */
1444 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1445 if (!ring)
1446 goto err_out;
1447
1448 ring->q_index = i;
1449 ring->reg_idx = vsi->rxq_map[i];
1450 ring->vsi = vsi;
1451 ring->netdev = vsi->netdev;
1452 ring->dev = dev;
1453 ring->count = vsi->num_rx_desc;
1454 ring->cached_phctime = pf->ptp.cached_phc_time;
1455 WRITE_ONCE(vsi->rx_rings[i], ring);
1456 }
1457
1458 return 0;
1459
1460err_out:
1461 ice_vsi_clear_rings(vsi);
1462 return -ENOMEM;
1463}
1464
1465/**
1466 * ice_vsi_manage_rss_lut - disable/enable RSS
1467 * @vsi: the VSI being changed
1468 * @ena: boolean value indicating if this is an enable or disable request
1469 *
1470 * In the event of disable request for RSS, this function will zero out RSS
1471 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1472 * LUT.
1473 */
1474void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1475{
1476 u8 *lut;
1477
1478 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1479 if (!lut)
1480 return;
1481
1482 if (ena) {
1483 if (vsi->rss_lut_user)
1484 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1485 else
1486 ice_fill_rss_lut(lut, vsi->rss_table_size,
1487 vsi->rss_size);
1488 }
1489
1490 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1491 kfree(lut);
1492}
1493
1494/**
1495 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1496 * @vsi: VSI to be configured
1497 * @disable: set to true to have FCS / CRC in the frame data
1498 */
1499void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1500{
1501 int i;
1502
1503 ice_for_each_rxq(vsi, i)
1504 if (disable)
1505 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1506 else
1507 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1508}
1509
1510/**
1511 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1512 * @vsi: VSI to be configured
1513 */
1514int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1515{
1516 struct ice_pf *pf = vsi->back;
1517 struct device *dev;
1518 u8 *lut, *key;
1519 int err;
1520
1521 dev = ice_pf_to_dev(pf);
1522 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1523 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1524 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1525 } else {
1526 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1527
1528 /* If orig_rss_size is valid and it is less than determined
1529 * main VSI's rss_size, update main VSI's rss_size to be
1530 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1531 * RSS table gets programmed to be correct (whatever it was
1532 * to begin with (prior to setup-tc for ADQ config)
1533 */
1534 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1535 vsi->orig_rss_size <= vsi->num_rxq) {
1536 vsi->rss_size = vsi->orig_rss_size;
1537 /* now orig_rss_size is used, reset it to zero */
1538 vsi->orig_rss_size = 0;
1539 }
1540 }
1541
1542 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1543 if (!lut)
1544 return -ENOMEM;
1545
1546 if (vsi->rss_lut_user)
1547 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1548 else
1549 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1550
1551 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1552 if (err) {
1553 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1554 goto ice_vsi_cfg_rss_exit;
1555 }
1556
1557 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1558 if (!key) {
1559 err = -ENOMEM;
1560 goto ice_vsi_cfg_rss_exit;
1561 }
1562
1563 if (vsi->rss_hkey_user)
1564 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1565 else
1566 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1567
1568 err = ice_set_rss_key(vsi, key);
1569 if (err)
1570 dev_err(dev, "set_rss_key failed, error %d\n", err);
1571
1572 kfree(key);
1573ice_vsi_cfg_rss_exit:
1574 kfree(lut);
1575 return err;
1576}
1577
1578/**
1579 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1580 * @vsi: VSI to be configured
1581 *
1582 * This function will only be called during the VF VSI setup. Upon successful
1583 * completion of package download, this function will configure default RSS
1584 * input sets for VF VSI.
1585 */
1586static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1587{
1588 struct ice_pf *pf = vsi->back;
1589 struct device *dev;
1590 int status;
1591
1592 dev = ice_pf_to_dev(pf);
1593 if (ice_is_safe_mode(pf)) {
1594 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1595 vsi->vsi_num);
1596 return;
1597 }
1598
1599 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1600 if (status)
1601 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1602 vsi->vsi_num, status);
1603}
1604
1605static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1606 /* configure RSS for IPv4 with input set IP src/dst */
1607 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1608 /* configure RSS for IPv6 with input set IPv6 src/dst */
1609 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1610 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1611 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1612 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1613 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1614 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1615 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1616 /* configure RSS for sctp4 with input set IP src/dst - only support
1617 * RSS on SCTPv4 on outer headers (non-tunneled)
1618 */
1619 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1620 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1621 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1622 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1623 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1624 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1625 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1626 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1627 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1628 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1629 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1630 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1631 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1632 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1633 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1634 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1635 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1636 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1637 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1638 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1639
1640 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1641 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1642 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1643 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1644 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1645 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1646 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1647 * RSS on SCTPv6 on outer headers (non-tunneled)
1648 */
1649 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1650 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1651 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1652 {ICE_FLOW_SEG_HDR_ESP,
1653 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1654 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1655 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1656 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1657 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1658 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1659 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1660 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1661 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1662 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1663 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1664 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1665 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1666 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1667 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1668 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1669 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1670 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1671 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1672};
1673
1674/**
1675 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1676 * @vsi: VSI to be configured
1677 *
1678 * This function will only be called after successful download package call
1679 * during initialization of PF. Since the downloaded package will erase the
1680 * RSS section, this function will configure RSS input sets for different
1681 * flow types. The last profile added has the highest priority, therefore 2
1682 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1683 * (i.e. IPv4 src/dst TCP src/dst port).
1684 */
1685static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1686{
1687 u16 vsi_num = vsi->vsi_num;
1688 struct ice_pf *pf = vsi->back;
1689 struct ice_hw *hw = &pf->hw;
1690 struct device *dev;
1691 int status;
1692 u32 i;
1693
1694 dev = ice_pf_to_dev(pf);
1695 if (ice_is_safe_mode(pf)) {
1696 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1697 vsi_num);
1698 return;
1699 }
1700 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1701 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1702
1703 status = ice_add_rss_cfg(hw, vsi, cfg);
1704 if (status)
1705 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1706 cfg->addl_hdrs, cfg->hash_flds,
1707 cfg->hdr_type, cfg->symm);
1708 }
1709}
1710
1711/**
1712 * ice_pf_state_is_nominal - checks the PF for nominal state
1713 * @pf: pointer to PF to check
1714 *
1715 * Check the PF's state for a collection of bits that would indicate
1716 * the PF is in a state that would inhibit normal operation for
1717 * driver functionality.
1718 *
1719 * Returns true if PF is in a nominal state, false otherwise
1720 */
1721bool ice_pf_state_is_nominal(struct ice_pf *pf)
1722{
1723 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1724
1725 if (!pf)
1726 return false;
1727
1728 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1729 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1730 return false;
1731
1732 return true;
1733}
1734
1735/**
1736 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1737 * @vsi: the VSI to be updated
1738 */
1739void ice_update_eth_stats(struct ice_vsi *vsi)
1740{
1741 struct ice_eth_stats *prev_es, *cur_es;
1742 struct ice_hw *hw = &vsi->back->hw;
1743 struct ice_pf *pf = vsi->back;
1744 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1745
1746 prev_es = &vsi->eth_stats_prev;
1747 cur_es = &vsi->eth_stats;
1748
1749 if (ice_is_reset_in_progress(pf->state))
1750 vsi->stat_offsets_loaded = false;
1751
1752 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1753 &prev_es->rx_bytes, &cur_es->rx_bytes);
1754
1755 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1756 &prev_es->rx_unicast, &cur_es->rx_unicast);
1757
1758 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1759 &prev_es->rx_multicast, &cur_es->rx_multicast);
1760
1761 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1762 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1763
1764 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1765 &prev_es->rx_discards, &cur_es->rx_discards);
1766
1767 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1768 &prev_es->tx_bytes, &cur_es->tx_bytes);
1769
1770 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1771 &prev_es->tx_unicast, &cur_es->tx_unicast);
1772
1773 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1774 &prev_es->tx_multicast, &cur_es->tx_multicast);
1775
1776 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1777 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1778
1779 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1780 &prev_es->tx_errors, &cur_es->tx_errors);
1781
1782 vsi->stat_offsets_loaded = true;
1783}
1784
1785/**
1786 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1787 * @hw: HW pointer
1788 * @pf_q: index of the Rx queue in the PF's queue space
1789 * @rxdid: flexible descriptor RXDID
1790 * @prio: priority for the RXDID for this queue
1791 * @ena_ts: true to enable timestamp and false to disable timestamp
1792 */
1793void
1794ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1795 bool ena_ts)
1796{
1797 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1798
1799 /* clear any previous values */
1800 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1801 QRXFLXP_CNTXT_RXDID_PRIO_M |
1802 QRXFLXP_CNTXT_TS_M);
1803
1804 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1805 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1806
1807 if (ena_ts)
1808 /* Enable TimeSync on this queue */
1809 regval |= QRXFLXP_CNTXT_TS_M;
1810
1811 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1812}
1813
1814/**
1815 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1816 * @intrl: interrupt rate limit in usecs
1817 * @gran: interrupt rate limit granularity in usecs
1818 *
1819 * This function converts a decimal interrupt rate limit in usecs to the format
1820 * expected by firmware.
1821 */
1822static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1823{
1824 u32 val = intrl / gran;
1825
1826 if (val)
1827 return val | GLINT_RATE_INTRL_ENA_M;
1828 return 0;
1829}
1830
1831/**
1832 * ice_write_intrl - write throttle rate limit to interrupt specific register
1833 * @q_vector: pointer to interrupt specific structure
1834 * @intrl: throttle rate limit in microseconds to write
1835 */
1836void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1837{
1838 struct ice_hw *hw = &q_vector->vsi->back->hw;
1839
1840 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1841 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1842}
1843
1844static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1845{
1846 switch (rc->type) {
1847 case ICE_RX_CONTAINER:
1848 if (rc->rx_ring)
1849 return rc->rx_ring->q_vector;
1850 break;
1851 case ICE_TX_CONTAINER:
1852 if (rc->tx_ring)
1853 return rc->tx_ring->q_vector;
1854 break;
1855 default:
1856 break;
1857 }
1858
1859 return NULL;
1860}
1861
1862/**
1863 * __ice_write_itr - write throttle rate to register
1864 * @q_vector: pointer to interrupt data structure
1865 * @rc: pointer to ring container
1866 * @itr: throttle rate in microseconds to write
1867 */
1868static void __ice_write_itr(struct ice_q_vector *q_vector,
1869 struct ice_ring_container *rc, u16 itr)
1870{
1871 struct ice_hw *hw = &q_vector->vsi->back->hw;
1872
1873 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1874 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1875}
1876
1877/**
1878 * ice_write_itr - write throttle rate to queue specific register
1879 * @rc: pointer to ring container
1880 * @itr: throttle rate in microseconds to write
1881 */
1882void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1883{
1884 struct ice_q_vector *q_vector;
1885
1886 q_vector = ice_pull_qvec_from_rc(rc);
1887 if (!q_vector)
1888 return;
1889
1890 __ice_write_itr(q_vector, rc, itr);
1891}
1892
1893/**
1894 * ice_set_q_vector_intrl - set up interrupt rate limiting
1895 * @q_vector: the vector to be configured
1896 *
1897 * Interrupt rate limiting is local to the vector, not per-queue so we must
1898 * detect if either ring container has dynamic moderation enabled to decide
1899 * what to set the interrupt rate limit to via INTRL settings. In the case that
1900 * dynamic moderation is disabled on both, write the value with the cached
1901 * setting to make sure INTRL register matches the user visible value.
1902 */
1903void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1904{
1905 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1906 /* in the case of dynamic enabled, cap each vector to no more
1907 * than (4 us) 250,000 ints/sec, which allows low latency
1908 * but still less than 500,000 interrupts per second, which
1909 * reduces CPU a bit in the case of the lowest latency
1910 * setting. The 4 here is a value in microseconds.
1911 */
1912 ice_write_intrl(q_vector, 4);
1913 } else {
1914 ice_write_intrl(q_vector, q_vector->intrl);
1915 }
1916}
1917
1918/**
1919 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1920 * @vsi: the VSI being configured
1921 *
1922 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1923 * for the VF VSI.
1924 */
1925void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1926{
1927 struct ice_pf *pf = vsi->back;
1928 struct ice_hw *hw = &pf->hw;
1929 u16 txq = 0, rxq = 0;
1930 int i, q;
1931
1932 ice_for_each_q_vector(vsi, i) {
1933 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1934 u16 reg_idx = q_vector->reg_idx;
1935
1936 ice_cfg_itr(hw, q_vector);
1937
1938 /* Both Transmit Queue Interrupt Cause Control register
1939 * and Receive Queue Interrupt Cause control register
1940 * expects MSIX_INDX field to be the vector index
1941 * within the function space and not the absolute
1942 * vector index across PF or across device.
1943 * For SR-IOV VF VSIs queue vector index always starts
1944 * with 1 since first vector index(0) is used for OICR
1945 * in VF space. Since VMDq and other PF VSIs are within
1946 * the PF function space, use the vector index that is
1947 * tracked for this PF.
1948 */
1949 for (q = 0; q < q_vector->num_ring_tx; q++) {
1950 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1951 q_vector->tx.itr_idx);
1952 txq++;
1953 }
1954
1955 for (q = 0; q < q_vector->num_ring_rx; q++) {
1956 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1957 q_vector->rx.itr_idx);
1958 rxq++;
1959 }
1960 }
1961}
1962
1963/**
1964 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1965 * @vsi: the VSI whose rings are to be enabled
1966 *
1967 * Returns 0 on success and a negative value on error
1968 */
1969int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1970{
1971 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1972}
1973
1974/**
1975 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1976 * @vsi: the VSI whose rings are to be disabled
1977 *
1978 * Returns 0 on success and a negative value on error
1979 */
1980int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1981{
1982 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1983}
1984
1985/**
1986 * ice_vsi_stop_tx_rings - Disable Tx rings
1987 * @vsi: the VSI being configured
1988 * @rst_src: reset source
1989 * @rel_vmvf_num: Relative ID of VF/VM
1990 * @rings: Tx ring array to be stopped
1991 * @count: number of Tx ring array elements
1992 */
1993static int
1994ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1995 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1996{
1997 u16 q_idx;
1998
1999 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2000 return -EINVAL;
2001
2002 for (q_idx = 0; q_idx < count; q_idx++) {
2003 struct ice_txq_meta txq_meta = { };
2004 int status;
2005
2006 if (!rings || !rings[q_idx])
2007 return -EINVAL;
2008
2009 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2010 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2011 rings[q_idx], &txq_meta);
2012
2013 if (status)
2014 return status;
2015 }
2016
2017 return 0;
2018}
2019
2020/**
2021 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2022 * @vsi: the VSI being configured
2023 * @rst_src: reset source
2024 * @rel_vmvf_num: Relative ID of VF/VM
2025 */
2026int
2027ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2028 u16 rel_vmvf_num)
2029{
2030 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2031}
2032
2033/**
2034 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2035 * @vsi: the VSI being configured
2036 */
2037int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2038{
2039 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2040}
2041
2042/**
2043 * ice_vsi_is_rx_queue_active
2044 * @vsi: the VSI being configured
2045 *
2046 * Return true if at least one queue is active.
2047 */
2048bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2049{
2050 struct ice_pf *pf = vsi->back;
2051 struct ice_hw *hw = &pf->hw;
2052 int i;
2053
2054 ice_for_each_rxq(vsi, i) {
2055 u32 rx_reg;
2056 int pf_q;
2057
2058 pf_q = vsi->rxq_map[i];
2059 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2060 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2061 return true;
2062 }
2063
2064 return false;
2065}
2066
2067static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2068{
2069 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2070 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2071 vsi->tc_cfg.numtc = 1;
2072 return;
2073 }
2074
2075 /* set VSI TC information based on DCB config */
2076 ice_vsi_set_dcb_tc_cfg(vsi);
2077}
2078
2079/**
2080 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2081 * @vsi: the VSI being configured
2082 * @tx: bool to determine Tx or Rx rule
2083 * @create: bool to determine create or remove Rule
2084 */
2085void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2086{
2087 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2088 enum ice_sw_fwd_act_type act);
2089 struct ice_pf *pf = vsi->back;
2090 struct device *dev;
2091 int status;
2092
2093 dev = ice_pf_to_dev(pf);
2094 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2095
2096 if (tx) {
2097 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2098 ICE_DROP_PACKET);
2099 } else {
2100 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2101 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2102 create);
2103 } else {
2104 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2105 ICE_FWD_TO_VSI);
2106 }
2107 }
2108
2109 if (status)
2110 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2111 create ? "adding" : "removing", tx ? "TX" : "RX",
2112 vsi->vsi_num, status);
2113}
2114
2115/**
2116 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2117 * @vsi: pointer to the VSI
2118 *
2119 * This function will allocate new scheduler aggregator now if needed and will
2120 * move specified VSI into it.
2121 */
2122static void ice_set_agg_vsi(struct ice_vsi *vsi)
2123{
2124 struct device *dev = ice_pf_to_dev(vsi->back);
2125 struct ice_agg_node *agg_node_iter = NULL;
2126 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2127 struct ice_agg_node *agg_node = NULL;
2128 int node_offset, max_agg_nodes = 0;
2129 struct ice_port_info *port_info;
2130 struct ice_pf *pf = vsi->back;
2131 u32 agg_node_id_start = 0;
2132 int status;
2133
2134 /* create (as needed) scheduler aggregator node and move VSI into
2135 * corresponding aggregator node
2136 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2137 * - VF aggregator nodes will contain VF VSI
2138 */
2139 port_info = pf->hw.port_info;
2140 if (!port_info)
2141 return;
2142
2143 switch (vsi->type) {
2144 case ICE_VSI_CTRL:
2145 case ICE_VSI_CHNL:
2146 case ICE_VSI_LB:
2147 case ICE_VSI_PF:
2148 case ICE_VSI_SWITCHDEV_CTRL:
2149 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2150 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2151 agg_node_iter = &pf->pf_agg_node[0];
2152 break;
2153 case ICE_VSI_VF:
2154 /* user can create 'n' VFs on a given PF, but since max children
2155 * per aggregator node can be only 64. Following code handles
2156 * aggregator(s) for VF VSIs, either selects a agg_node which
2157 * was already created provided num_vsis < 64, otherwise
2158 * select next available node, which will be created
2159 */
2160 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2161 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2162 agg_node_iter = &pf->vf_agg_node[0];
2163 break;
2164 default:
2165 /* other VSI type, handle later if needed */
2166 dev_dbg(dev, "unexpected VSI type %s\n",
2167 ice_vsi_type_str(vsi->type));
2168 return;
2169 }
2170
2171 /* find the appropriate aggregator node */
2172 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2173 /* see if we can find space in previously created
2174 * node if num_vsis < 64, otherwise skip
2175 */
2176 if (agg_node_iter->num_vsis &&
2177 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2178 agg_node_iter++;
2179 continue;
2180 }
2181
2182 if (agg_node_iter->valid &&
2183 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2184 agg_id = agg_node_iter->agg_id;
2185 agg_node = agg_node_iter;
2186 break;
2187 }
2188
2189 /* find unclaimed agg_id */
2190 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2191 agg_id = node_offset + agg_node_id_start;
2192 agg_node = agg_node_iter;
2193 break;
2194 }
2195 /* move to next agg_node */
2196 agg_node_iter++;
2197 }
2198
2199 if (!agg_node)
2200 return;
2201
2202 /* if selected aggregator node was not created, create it */
2203 if (!agg_node->valid) {
2204 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2205 (u8)vsi->tc_cfg.ena_tc);
2206 if (status) {
2207 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2208 agg_id);
2209 return;
2210 }
2211 /* aggregator node is created, store the needed info */
2212 agg_node->valid = true;
2213 agg_node->agg_id = agg_id;
2214 }
2215
2216 /* move VSI to corresponding aggregator node */
2217 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2218 (u8)vsi->tc_cfg.ena_tc);
2219 if (status) {
2220 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2221 vsi->idx, agg_id);
2222 return;
2223 }
2224
2225 /* keep active children count for aggregator node */
2226 agg_node->num_vsis++;
2227
2228 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2229 * to aggregator node
2230 */
2231 vsi->agg_node = agg_node;
2232 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2233 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2234 vsi->agg_node->num_vsis);
2235}
2236
2237static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2238{
2239 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2240 struct device *dev = ice_pf_to_dev(pf);
2241 int ret, i;
2242
2243 /* configure VSI nodes based on number of queues and TC's */
2244 ice_for_each_traffic_class(i) {
2245 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2246 continue;
2247
2248 if (vsi->type == ICE_VSI_CHNL) {
2249 if (!vsi->alloc_txq && vsi->num_txq)
2250 max_txqs[i] = vsi->num_txq;
2251 else
2252 max_txqs[i] = pf->num_lan_tx;
2253 } else {
2254 max_txqs[i] = vsi->alloc_txq;
2255 }
2256
2257 if (vsi->type == ICE_VSI_PF)
2258 max_txqs[i] += vsi->num_xdp_txq;
2259 }
2260
2261 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2262 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2263 max_txqs);
2264 if (ret) {
2265 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2266 vsi->vsi_num, ret);
2267 return ret;
2268 }
2269
2270 return 0;
2271}
2272
2273/**
2274 * ice_vsi_cfg_def - configure default VSI based on the type
2275 * @vsi: pointer to VSI
2276 * @params: the parameters to configure this VSI with
2277 */
2278static int
2279ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2280{
2281 struct device *dev = ice_pf_to_dev(vsi->back);
2282 struct ice_pf *pf = vsi->back;
2283 int ret;
2284
2285 vsi->vsw = pf->first_sw;
2286
2287 ret = ice_vsi_alloc_def(vsi, params->ch);
2288 if (ret)
2289 return ret;
2290
2291 /* allocate memory for Tx/Rx ring stat pointers */
2292 ret = ice_vsi_alloc_stat_arrays(vsi);
2293 if (ret)
2294 goto unroll_vsi_alloc;
2295
2296 ice_alloc_fd_res(vsi);
2297
2298 ret = ice_vsi_get_qs(vsi);
2299 if (ret) {
2300 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2301 vsi->idx);
2302 goto unroll_vsi_alloc_stat;
2303 }
2304
2305 /* set RSS capabilities */
2306 ice_vsi_set_rss_params(vsi);
2307
2308 /* set TC configuration */
2309 ice_vsi_set_tc_cfg(vsi);
2310
2311 /* create the VSI */
2312 ret = ice_vsi_init(vsi, params->flags);
2313 if (ret)
2314 goto unroll_get_qs;
2315
2316 ice_vsi_init_vlan_ops(vsi);
2317
2318 switch (vsi->type) {
2319 case ICE_VSI_CTRL:
2320 case ICE_VSI_SWITCHDEV_CTRL:
2321 case ICE_VSI_PF:
2322 ret = ice_vsi_alloc_q_vectors(vsi);
2323 if (ret)
2324 goto unroll_vsi_init;
2325
2326 ret = ice_vsi_alloc_rings(vsi);
2327 if (ret)
2328 goto unroll_vector_base;
2329
2330 ret = ice_vsi_alloc_ring_stats(vsi);
2331 if (ret)
2332 goto unroll_vector_base;
2333
2334 ice_vsi_map_rings_to_vectors(vsi);
2335
2336 /* Associate q_vector rings to napi */
2337 ice_vsi_set_napi_queues(vsi);
2338
2339 vsi->stat_offsets_loaded = false;
2340
2341 if (ice_is_xdp_ena_vsi(vsi)) {
2342 ret = ice_vsi_determine_xdp_res(vsi);
2343 if (ret)
2344 goto unroll_vector_base;
2345 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2346 if (ret)
2347 goto unroll_vector_base;
2348 }
2349
2350 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2351 if (vsi->type != ICE_VSI_CTRL)
2352 /* Do not exit if configuring RSS had an issue, at
2353 * least receive traffic on first queue. Hence no
2354 * need to capture return value
2355 */
2356 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2357 ice_vsi_cfg_rss_lut_key(vsi);
2358 ice_vsi_set_rss_flow_fld(vsi);
2359 }
2360 ice_init_arfs(vsi);
2361 break;
2362 case ICE_VSI_CHNL:
2363 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2364 ice_vsi_cfg_rss_lut_key(vsi);
2365 ice_vsi_set_rss_flow_fld(vsi);
2366 }
2367 break;
2368 case ICE_VSI_VF:
2369 /* VF driver will take care of creating netdev for this type and
2370 * map queues to vectors through Virtchnl, PF driver only
2371 * creates a VSI and corresponding structures for bookkeeping
2372 * purpose
2373 */
2374 ret = ice_vsi_alloc_q_vectors(vsi);
2375 if (ret)
2376 goto unroll_vsi_init;
2377
2378 ret = ice_vsi_alloc_rings(vsi);
2379 if (ret)
2380 goto unroll_alloc_q_vector;
2381
2382 ret = ice_vsi_alloc_ring_stats(vsi);
2383 if (ret)
2384 goto unroll_vector_base;
2385
2386 vsi->stat_offsets_loaded = false;
2387
2388 /* Do not exit if configuring RSS had an issue, at least
2389 * receive traffic on first queue. Hence no need to capture
2390 * return value
2391 */
2392 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2393 ice_vsi_cfg_rss_lut_key(vsi);
2394 ice_vsi_set_vf_rss_flow_fld(vsi);
2395 }
2396 break;
2397 case ICE_VSI_LB:
2398 ret = ice_vsi_alloc_rings(vsi);
2399 if (ret)
2400 goto unroll_vsi_init;
2401
2402 ret = ice_vsi_alloc_ring_stats(vsi);
2403 if (ret)
2404 goto unroll_vector_base;
2405
2406 break;
2407 default:
2408 /* clean up the resources and exit */
2409 ret = -EINVAL;
2410 goto unroll_vsi_init;
2411 }
2412
2413 return 0;
2414
2415unroll_vector_base:
2416 /* reclaim SW interrupts back to the common pool */
2417unroll_alloc_q_vector:
2418 ice_vsi_free_q_vectors(vsi);
2419unroll_vsi_init:
2420 ice_vsi_delete_from_hw(vsi);
2421unroll_get_qs:
2422 ice_vsi_put_qs(vsi);
2423unroll_vsi_alloc_stat:
2424 ice_vsi_free_stats(vsi);
2425unroll_vsi_alloc:
2426 ice_vsi_free_arrays(vsi);
2427 return ret;
2428}
2429
2430/**
2431 * ice_vsi_cfg - configure a previously allocated VSI
2432 * @vsi: pointer to VSI
2433 * @params: parameters used to configure this VSI
2434 */
2435int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2436{
2437 struct ice_pf *pf = vsi->back;
2438 int ret;
2439
2440 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2441 return -EINVAL;
2442
2443 vsi->type = params->type;
2444 vsi->port_info = params->pi;
2445
2446 /* For VSIs which don't have a connected VF, this will be NULL */
2447 vsi->vf = params->vf;
2448
2449 ret = ice_vsi_cfg_def(vsi, params);
2450 if (ret)
2451 return ret;
2452
2453 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2454 if (ret)
2455 ice_vsi_decfg(vsi);
2456
2457 if (vsi->type == ICE_VSI_CTRL) {
2458 if (vsi->vf) {
2459 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2460 vsi->vf->ctrl_vsi_idx = vsi->idx;
2461 } else {
2462 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2463 pf->ctrl_vsi_idx = vsi->idx;
2464 }
2465 }
2466
2467 return ret;
2468}
2469
2470/**
2471 * ice_vsi_decfg - remove all VSI configuration
2472 * @vsi: pointer to VSI
2473 */
2474void ice_vsi_decfg(struct ice_vsi *vsi)
2475{
2476 struct ice_pf *pf = vsi->back;
2477 int err;
2478
2479 /* The Rx rule will only exist to remove if the LLDP FW
2480 * engine is currently stopped
2481 */
2482 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2483 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2484 ice_cfg_sw_lldp(vsi, false, false);
2485
2486 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2487 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2488 if (err)
2489 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2490 vsi->vsi_num, err);
2491
2492 if (ice_is_xdp_ena_vsi(vsi))
2493 /* return value check can be skipped here, it always returns
2494 * 0 if reset is in progress
2495 */
2496 ice_destroy_xdp_rings(vsi);
2497
2498 ice_vsi_clear_rings(vsi);
2499 ice_vsi_free_q_vectors(vsi);
2500 ice_vsi_put_qs(vsi);
2501 ice_vsi_free_arrays(vsi);
2502
2503 /* SR-IOV determines needed MSIX resources all at once instead of per
2504 * VSI since when VFs are spawned we know how many VFs there are and how
2505 * many interrupts each VF needs. SR-IOV MSIX resources are also
2506 * cleared in the same manner.
2507 */
2508
2509 if (vsi->type == ICE_VSI_VF &&
2510 vsi->agg_node && vsi->agg_node->valid)
2511 vsi->agg_node->num_vsis--;
2512}
2513
2514/**
2515 * ice_vsi_setup - Set up a VSI by a given type
2516 * @pf: board private structure
2517 * @params: parameters to use when creating the VSI
2518 *
2519 * This allocates the sw VSI structure and its queue resources.
2520 *
2521 * Returns pointer to the successfully allocated and configured VSI sw struct on
2522 * success, NULL on failure.
2523 */
2524struct ice_vsi *
2525ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2526{
2527 struct device *dev = ice_pf_to_dev(pf);
2528 struct ice_vsi *vsi;
2529 int ret;
2530
2531 /* ice_vsi_setup can only initialize a new VSI, and we must have
2532 * a port_info structure for it.
2533 */
2534 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2535 WARN_ON(!params->pi))
2536 return NULL;
2537
2538 vsi = ice_vsi_alloc(pf);
2539 if (!vsi) {
2540 dev_err(dev, "could not allocate VSI\n");
2541 return NULL;
2542 }
2543
2544 ret = ice_vsi_cfg(vsi, params);
2545 if (ret)
2546 goto err_vsi_cfg;
2547
2548 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2549 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2550 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2551 * The rule is added once for PF VSI in order to create appropriate
2552 * recipe, since VSI/VSI list is ignored with drop action...
2553 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2554 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2555 * settings in the HW.
2556 */
2557 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2558 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2559 ICE_DROP_PACKET);
2560 ice_cfg_sw_lldp(vsi, true, true);
2561 }
2562
2563 if (!vsi->agg_node)
2564 ice_set_agg_vsi(vsi);
2565
2566 return vsi;
2567
2568err_vsi_cfg:
2569 ice_vsi_free(vsi);
2570
2571 return NULL;
2572}
2573
2574/**
2575 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2576 * @vsi: the VSI being cleaned up
2577 */
2578static void ice_vsi_release_msix(struct ice_vsi *vsi)
2579{
2580 struct ice_pf *pf = vsi->back;
2581 struct ice_hw *hw = &pf->hw;
2582 u32 txq = 0;
2583 u32 rxq = 0;
2584 int i, q;
2585
2586 ice_for_each_q_vector(vsi, i) {
2587 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2588
2589 ice_write_intrl(q_vector, 0);
2590 for (q = 0; q < q_vector->num_ring_tx; q++) {
2591 ice_write_itr(&q_vector->tx, 0);
2592 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2593 if (ice_is_xdp_ena_vsi(vsi)) {
2594 u32 xdp_txq = txq + vsi->num_xdp_txq;
2595
2596 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2597 }
2598 txq++;
2599 }
2600
2601 for (q = 0; q < q_vector->num_ring_rx; q++) {
2602 ice_write_itr(&q_vector->rx, 0);
2603 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2604 rxq++;
2605 }
2606 }
2607
2608 ice_flush(hw);
2609}
2610
2611/**
2612 * ice_vsi_free_irq - Free the IRQ association with the OS
2613 * @vsi: the VSI being configured
2614 */
2615void ice_vsi_free_irq(struct ice_vsi *vsi)
2616{
2617 struct ice_pf *pf = vsi->back;
2618 int i;
2619
2620 if (!vsi->q_vectors || !vsi->irqs_ready)
2621 return;
2622
2623 ice_vsi_release_msix(vsi);
2624 if (vsi->type == ICE_VSI_VF)
2625 return;
2626
2627 vsi->irqs_ready = false;
2628 ice_free_cpu_rx_rmap(vsi);
2629
2630 ice_for_each_q_vector(vsi, i) {
2631 int irq_num;
2632
2633 irq_num = vsi->q_vectors[i]->irq.virq;
2634
2635 /* free only the irqs that were actually requested */
2636 if (!vsi->q_vectors[i] ||
2637 !(vsi->q_vectors[i]->num_ring_tx ||
2638 vsi->q_vectors[i]->num_ring_rx))
2639 continue;
2640
2641 /* clear the affinity notifier in the IRQ descriptor */
2642 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2643 irq_set_affinity_notifier(irq_num, NULL);
2644
2645 /* clear the affinity_mask in the IRQ descriptor */
2646 irq_set_affinity_hint(irq_num, NULL);
2647 synchronize_irq(irq_num);
2648 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2649 }
2650}
2651
2652/**
2653 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2654 * @vsi: the VSI having resources freed
2655 */
2656void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2657{
2658 int i;
2659
2660 if (!vsi->tx_rings)
2661 return;
2662
2663 ice_for_each_txq(vsi, i)
2664 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2665 ice_free_tx_ring(vsi->tx_rings[i]);
2666}
2667
2668/**
2669 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2670 * @vsi: the VSI having resources freed
2671 */
2672void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2673{
2674 int i;
2675
2676 if (!vsi->rx_rings)
2677 return;
2678
2679 ice_for_each_rxq(vsi, i)
2680 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2681 ice_free_rx_ring(vsi->rx_rings[i]);
2682}
2683
2684/**
2685 * ice_vsi_close - Shut down a VSI
2686 * @vsi: the VSI being shut down
2687 */
2688void ice_vsi_close(struct ice_vsi *vsi)
2689{
2690 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2691 ice_down(vsi);
2692
2693 ice_vsi_free_irq(vsi);
2694 ice_vsi_free_tx_rings(vsi);
2695 ice_vsi_free_rx_rings(vsi);
2696}
2697
2698/**
2699 * ice_ena_vsi - resume a VSI
2700 * @vsi: the VSI being resume
2701 * @locked: is the rtnl_lock already held
2702 */
2703int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2704{
2705 int err = 0;
2706
2707 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2708 return 0;
2709
2710 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2711
2712 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2713 if (netif_running(vsi->netdev)) {
2714 if (!locked)
2715 rtnl_lock();
2716
2717 err = ice_open_internal(vsi->netdev);
2718
2719 if (!locked)
2720 rtnl_unlock();
2721 }
2722 } else if (vsi->type == ICE_VSI_CTRL) {
2723 err = ice_vsi_open_ctrl(vsi);
2724 }
2725
2726 return err;
2727}
2728
2729/**
2730 * ice_dis_vsi - pause a VSI
2731 * @vsi: the VSI being paused
2732 * @locked: is the rtnl_lock already held
2733 */
2734void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2735{
2736 if (test_bit(ICE_VSI_DOWN, vsi->state))
2737 return;
2738
2739 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2740
2741 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2742 if (netif_running(vsi->netdev)) {
2743 if (!locked)
2744 rtnl_lock();
2745
2746 ice_vsi_close(vsi);
2747
2748 if (!locked)
2749 rtnl_unlock();
2750 } else {
2751 ice_vsi_close(vsi);
2752 }
2753 } else if (vsi->type == ICE_VSI_CTRL ||
2754 vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2755 ice_vsi_close(vsi);
2756 }
2757}
2758
2759/**
2760 * __ice_queue_set_napi - Set the napi instance for the queue
2761 * @dev: device to which NAPI and queue belong
2762 * @queue_index: Index of queue
2763 * @type: queue type as RX or TX
2764 * @napi: NAPI context
2765 * @locked: is the rtnl_lock already held
2766 *
2767 * Set the napi instance for the queue. Caller indicates the lock status.
2768 */
2769static void
2770__ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2771 enum netdev_queue_type type, struct napi_struct *napi,
2772 bool locked)
2773{
2774 if (!locked)
2775 rtnl_lock();
2776 netif_queue_set_napi(dev, queue_index, type, napi);
2777 if (!locked)
2778 rtnl_unlock();
2779}
2780
2781/**
2782 * ice_queue_set_napi - Set the napi instance for the queue
2783 * @vsi: VSI being configured
2784 * @queue_index: Index of queue
2785 * @type: queue type as RX or TX
2786 * @napi: NAPI context
2787 *
2788 * Set the napi instance for the queue. The rtnl lock state is derived from the
2789 * execution path.
2790 */
2791void
2792ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index,
2793 enum netdev_queue_type type, struct napi_struct *napi)
2794{
2795 struct ice_pf *pf = vsi->back;
2796
2797 if (!vsi->netdev)
2798 return;
2799
2800 if (current_work() == &pf->serv_task ||
2801 test_bit(ICE_PREPARED_FOR_RESET, pf->state) ||
2802 test_bit(ICE_DOWN, pf->state) ||
2803 test_bit(ICE_SUSPENDED, pf->state))
2804 __ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2805 false);
2806 else
2807 __ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2808 true);
2809}
2810
2811/**
2812 * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2813 * @q_vector: q_vector pointer
2814 * @locked: is the rtnl_lock already held
2815 *
2816 * Associate the q_vector napi with all the queue[s] on the vector.
2817 * Caller indicates the lock status.
2818 */
2819void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
2820{
2821 struct ice_rx_ring *rx_ring;
2822 struct ice_tx_ring *tx_ring;
2823
2824 ice_for_each_rx_ring(rx_ring, q_vector->rx)
2825 __ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
2826 NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
2827 locked);
2828
2829 ice_for_each_tx_ring(tx_ring, q_vector->tx)
2830 __ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
2831 NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
2832 locked);
2833 /* Also set the interrupt number for the NAPI */
2834 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2835}
2836
2837/**
2838 * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2839 * @q_vector: q_vector pointer
2840 *
2841 * Associate the q_vector napi with all the queue[s] on the vector
2842 */
2843void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector)
2844{
2845 struct ice_rx_ring *rx_ring;
2846 struct ice_tx_ring *tx_ring;
2847
2848 ice_for_each_rx_ring(rx_ring, q_vector->rx)
2849 ice_queue_set_napi(q_vector->vsi, rx_ring->q_index,
2850 NETDEV_QUEUE_TYPE_RX, &q_vector->napi);
2851
2852 ice_for_each_tx_ring(tx_ring, q_vector->tx)
2853 ice_queue_set_napi(q_vector->vsi, tx_ring->q_index,
2854 NETDEV_QUEUE_TYPE_TX, &q_vector->napi);
2855 /* Also set the interrupt number for the NAPI */
2856 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2857}
2858
2859/**
2860 * ice_vsi_set_napi_queues
2861 * @vsi: VSI pointer
2862 *
2863 * Associate queue[s] with napi for all vectors
2864 */
2865void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2866{
2867 int i;
2868
2869 if (!vsi->netdev)
2870 return;
2871
2872 ice_for_each_q_vector(vsi, i)
2873 ice_q_vector_set_napi_queues(vsi->q_vectors[i]);
2874}
2875
2876/**
2877 * ice_vsi_release - Delete a VSI and free its resources
2878 * @vsi: the VSI being removed
2879 *
2880 * Returns 0 on success or < 0 on error
2881 */
2882int ice_vsi_release(struct ice_vsi *vsi)
2883{
2884 struct ice_pf *pf;
2885
2886 if (!vsi->back)
2887 return -ENODEV;
2888 pf = vsi->back;
2889
2890 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2891 ice_rss_clean(vsi);
2892
2893 ice_vsi_close(vsi);
2894 ice_vsi_decfg(vsi);
2895
2896 /* retain SW VSI data structure since it is needed to unregister and
2897 * free VSI netdev when PF is not in reset recovery pending state,\
2898 * for ex: during rmmod.
2899 */
2900 if (!ice_is_reset_in_progress(pf->state))
2901 ice_vsi_delete(vsi);
2902
2903 return 0;
2904}
2905
2906/**
2907 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2908 * @vsi: VSI connected with q_vectors
2909 * @coalesce: array of struct with stored coalesce
2910 *
2911 * Returns array size.
2912 */
2913static int
2914ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2915 struct ice_coalesce_stored *coalesce)
2916{
2917 int i;
2918
2919 ice_for_each_q_vector(vsi, i) {
2920 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2921
2922 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2923 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2924 coalesce[i].intrl = q_vector->intrl;
2925
2926 if (i < vsi->num_txq)
2927 coalesce[i].tx_valid = true;
2928 if (i < vsi->num_rxq)
2929 coalesce[i].rx_valid = true;
2930 }
2931
2932 return vsi->num_q_vectors;
2933}
2934
2935/**
2936 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2937 * @vsi: VSI connected with q_vectors
2938 * @coalesce: pointer to array of struct with stored coalesce
2939 * @size: size of coalesce array
2940 *
2941 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2942 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2943 * to default value.
2944 */
2945static void
2946ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2947 struct ice_coalesce_stored *coalesce, int size)
2948{
2949 struct ice_ring_container *rc;
2950 int i;
2951
2952 if ((size && !coalesce) || !vsi)
2953 return;
2954
2955 /* There are a couple of cases that have to be handled here:
2956 * 1. The case where the number of queue vectors stays the same, but
2957 * the number of Tx or Rx rings changes (the first for loop)
2958 * 2. The case where the number of queue vectors increased (the
2959 * second for loop)
2960 */
2961 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2962 /* There are 2 cases to handle here and they are the same for
2963 * both Tx and Rx:
2964 * if the entry was valid previously (coalesce[i].[tr]x_valid
2965 * and the loop variable is less than the number of rings
2966 * allocated, then write the previous values
2967 *
2968 * if the entry was not valid previously, but the number of
2969 * rings is less than are allocated (this means the number of
2970 * rings increased from previously), then write out the
2971 * values in the first element
2972 *
2973 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2974 * as there is no harm because the dynamic algorithm
2975 * will just overwrite.
2976 */
2977 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2978 rc = &vsi->q_vectors[i]->rx;
2979 rc->itr_settings = coalesce[i].itr_rx;
2980 ice_write_itr(rc, rc->itr_setting);
2981 } else if (i < vsi->alloc_rxq) {
2982 rc = &vsi->q_vectors[i]->rx;
2983 rc->itr_settings = coalesce[0].itr_rx;
2984 ice_write_itr(rc, rc->itr_setting);
2985 }
2986
2987 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2988 rc = &vsi->q_vectors[i]->tx;
2989 rc->itr_settings = coalesce[i].itr_tx;
2990 ice_write_itr(rc, rc->itr_setting);
2991 } else if (i < vsi->alloc_txq) {
2992 rc = &vsi->q_vectors[i]->tx;
2993 rc->itr_settings = coalesce[0].itr_tx;
2994 ice_write_itr(rc, rc->itr_setting);
2995 }
2996
2997 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2998 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2999 }
3000
3001 /* the number of queue vectors increased so write whatever is in
3002 * the first element
3003 */
3004 for (; i < vsi->num_q_vectors; i++) {
3005 /* transmit */
3006 rc = &vsi->q_vectors[i]->tx;
3007 rc->itr_settings = coalesce[0].itr_tx;
3008 ice_write_itr(rc, rc->itr_setting);
3009
3010 /* receive */
3011 rc = &vsi->q_vectors[i]->rx;
3012 rc->itr_settings = coalesce[0].itr_rx;
3013 ice_write_itr(rc, rc->itr_setting);
3014
3015 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3016 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3017 }
3018}
3019
3020/**
3021 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3022 * @vsi: VSI pointer
3023 */
3024static int
3025ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3026{
3027 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3028 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3029 struct ice_ring_stats **tx_ring_stats;
3030 struct ice_ring_stats **rx_ring_stats;
3031 struct ice_vsi_stats *vsi_stat;
3032 struct ice_pf *pf = vsi->back;
3033 u16 prev_txq = vsi->alloc_txq;
3034 u16 prev_rxq = vsi->alloc_rxq;
3035 int i;
3036
3037 vsi_stat = pf->vsi_stats[vsi->idx];
3038
3039 if (req_txq < prev_txq) {
3040 for (i = req_txq; i < prev_txq; i++) {
3041 if (vsi_stat->tx_ring_stats[i]) {
3042 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3043 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3044 }
3045 }
3046 }
3047
3048 tx_ring_stats = vsi_stat->tx_ring_stats;
3049 vsi_stat->tx_ring_stats =
3050 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3051 sizeof(*vsi_stat->tx_ring_stats),
3052 GFP_KERNEL | __GFP_ZERO);
3053 if (!vsi_stat->tx_ring_stats) {
3054 vsi_stat->tx_ring_stats = tx_ring_stats;
3055 return -ENOMEM;
3056 }
3057
3058 if (req_rxq < prev_rxq) {
3059 for (i = req_rxq; i < prev_rxq; i++) {
3060 if (vsi_stat->rx_ring_stats[i]) {
3061 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3062 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3063 }
3064 }
3065 }
3066
3067 rx_ring_stats = vsi_stat->rx_ring_stats;
3068 vsi_stat->rx_ring_stats =
3069 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3070 sizeof(*vsi_stat->rx_ring_stats),
3071 GFP_KERNEL | __GFP_ZERO);
3072 if (!vsi_stat->rx_ring_stats) {
3073 vsi_stat->rx_ring_stats = rx_ring_stats;
3074 return -ENOMEM;
3075 }
3076
3077 return 0;
3078}
3079
3080/**
3081 * ice_vsi_rebuild - Rebuild VSI after reset
3082 * @vsi: VSI to be rebuild
3083 * @vsi_flags: flags used for VSI rebuild flow
3084 *
3085 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3086 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3087 *
3088 * Returns 0 on success and negative value on failure
3089 */
3090int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3091{
3092 struct ice_vsi_cfg_params params = {};
3093 struct ice_coalesce_stored *coalesce;
3094 int prev_num_q_vectors;
3095 struct ice_pf *pf;
3096 int ret;
3097
3098 if (!vsi)
3099 return -EINVAL;
3100
3101 params = ice_vsi_to_params(vsi);
3102 params.flags = vsi_flags;
3103
3104 pf = vsi->back;
3105 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3106 return -EINVAL;
3107
3108 ret = ice_vsi_realloc_stat_arrays(vsi);
3109 if (ret)
3110 goto err_vsi_cfg;
3111
3112 ice_vsi_decfg(vsi);
3113 ret = ice_vsi_cfg_def(vsi, ¶ms);
3114 if (ret)
3115 goto err_vsi_cfg;
3116
3117 coalesce = kcalloc(vsi->num_q_vectors,
3118 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3119 if (!coalesce)
3120 return -ENOMEM;
3121
3122 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3123
3124 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3125 if (ret) {
3126 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3127 ret = -EIO;
3128 goto err_vsi_cfg_tc_lan;
3129 }
3130
3131 kfree(coalesce);
3132 return ice_schedule_reset(pf, ICE_RESET_PFR);
3133 }
3134
3135 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3136 kfree(coalesce);
3137
3138 return 0;
3139
3140err_vsi_cfg_tc_lan:
3141 ice_vsi_decfg(vsi);
3142 kfree(coalesce);
3143err_vsi_cfg:
3144 return ret;
3145}
3146
3147/**
3148 * ice_is_reset_in_progress - check for a reset in progress
3149 * @state: PF state field
3150 */
3151bool ice_is_reset_in_progress(unsigned long *state)
3152{
3153 return test_bit(ICE_RESET_OICR_RECV, state) ||
3154 test_bit(ICE_PFR_REQ, state) ||
3155 test_bit(ICE_CORER_REQ, state) ||
3156 test_bit(ICE_GLOBR_REQ, state);
3157}
3158
3159/**
3160 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3161 * @pf: pointer to the PF structure
3162 * @timeout: length of time to wait, in jiffies
3163 *
3164 * Wait (sleep) for a short time until the driver finishes cleaning up from
3165 * a device reset. The caller must be able to sleep. Use this to delay
3166 * operations that could fail while the driver is cleaning up after a device
3167 * reset.
3168 *
3169 * Returns 0 on success, -EBUSY if the reset is not finished within the
3170 * timeout, and -ERESTARTSYS if the thread was interrupted.
3171 */
3172int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3173{
3174 long ret;
3175
3176 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3177 !ice_is_reset_in_progress(pf->state),
3178 timeout);
3179 if (ret < 0)
3180 return ret;
3181 else if (!ret)
3182 return -EBUSY;
3183 else
3184 return 0;
3185}
3186
3187/**
3188 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3189 * @vsi: VSI being configured
3190 * @ctx: the context buffer returned from AQ VSI update command
3191 */
3192static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3193{
3194 vsi->info.mapping_flags = ctx->info.mapping_flags;
3195 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3196 sizeof(vsi->info.q_mapping));
3197 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3198 sizeof(vsi->info.tc_mapping));
3199}
3200
3201/**
3202 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3203 * @vsi: the VSI being configured
3204 * @ena_tc: TC map to be enabled
3205 */
3206void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3207{
3208 struct net_device *netdev = vsi->netdev;
3209 struct ice_pf *pf = vsi->back;
3210 int numtc = vsi->tc_cfg.numtc;
3211 struct ice_dcbx_cfg *dcbcfg;
3212 u8 netdev_tc;
3213 int i;
3214
3215 if (!netdev)
3216 return;
3217
3218 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3219 if (vsi->type == ICE_VSI_CHNL)
3220 return;
3221
3222 if (!ena_tc) {
3223 netdev_reset_tc(netdev);
3224 return;
3225 }
3226
3227 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3228 numtc = vsi->all_numtc;
3229
3230 if (netdev_set_num_tc(netdev, numtc))
3231 return;
3232
3233 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3234
3235 ice_for_each_traffic_class(i)
3236 if (vsi->tc_cfg.ena_tc & BIT(i))
3237 netdev_set_tc_queue(netdev,
3238 vsi->tc_cfg.tc_info[i].netdev_tc,
3239 vsi->tc_cfg.tc_info[i].qcount_tx,
3240 vsi->tc_cfg.tc_info[i].qoffset);
3241 /* setup TC queue map for CHNL TCs */
3242 ice_for_each_chnl_tc(i) {
3243 if (!(vsi->all_enatc & BIT(i)))
3244 break;
3245 if (!vsi->mqprio_qopt.qopt.count[i])
3246 break;
3247 netdev_set_tc_queue(netdev, i,
3248 vsi->mqprio_qopt.qopt.count[i],
3249 vsi->mqprio_qopt.qopt.offset[i]);
3250 }
3251
3252 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3253 return;
3254
3255 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3256 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3257
3258 /* Get the mapped netdev TC# for the UP */
3259 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3260 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3261 }
3262}
3263
3264/**
3265 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3266 * @vsi: the VSI being configured,
3267 * @ctxt: VSI context structure
3268 * @ena_tc: number of traffic classes to enable
3269 *
3270 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3271 */
3272static int
3273ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3274 u8 ena_tc)
3275{
3276 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3277 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3278 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3279 u16 new_txq, new_rxq;
3280 u8 netdev_tc = 0;
3281 int i;
3282
3283 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3284
3285 pow = order_base_2(tc0_qcount);
3286 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3287 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3288
3289 ice_for_each_traffic_class(i) {
3290 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3291 /* TC is not enabled */
3292 vsi->tc_cfg.tc_info[i].qoffset = 0;
3293 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3294 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3295 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3296 ctxt->info.tc_mapping[i] = 0;
3297 continue;
3298 }
3299
3300 offset = vsi->mqprio_qopt.qopt.offset[i];
3301 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3302 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3303 vsi->tc_cfg.tc_info[i].qoffset = offset;
3304 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3305 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3306 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3307 }
3308
3309 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3310 ice_for_each_chnl_tc(i) {
3311 if (!(vsi->all_enatc & BIT(i)))
3312 continue;
3313 offset = vsi->mqprio_qopt.qopt.offset[i];
3314 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3315 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3316 }
3317 }
3318
3319 new_txq = offset + qcount_tx;
3320 if (new_txq > vsi->alloc_txq) {
3321 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3322 new_txq, vsi->alloc_txq);
3323 return -EINVAL;
3324 }
3325
3326 new_rxq = offset + qcount_rx;
3327 if (new_rxq > vsi->alloc_rxq) {
3328 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3329 new_rxq, vsi->alloc_rxq);
3330 return -EINVAL;
3331 }
3332
3333 /* Set actual Tx/Rx queue pairs */
3334 vsi->num_txq = new_txq;
3335 vsi->num_rxq = new_rxq;
3336
3337 /* Setup queue TC[0].qmap for given VSI context */
3338 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3339 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3340 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3341
3342 /* Find queue count available for channel VSIs and starting offset
3343 * for channel VSIs
3344 */
3345 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3346 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3347 vsi->next_base_q = tc0_qcount;
3348 }
3349 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3350 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3351 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3352 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3353
3354 return 0;
3355}
3356
3357/**
3358 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3359 * @vsi: VSI to be configured
3360 * @ena_tc: TC bitmap
3361 *
3362 * VSI queues expected to be quiesced before calling this function
3363 */
3364int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3365{
3366 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3367 struct ice_pf *pf = vsi->back;
3368 struct ice_tc_cfg old_tc_cfg;
3369 struct ice_vsi_ctx *ctx;
3370 struct device *dev;
3371 int i, ret = 0;
3372 u8 num_tc = 0;
3373
3374 dev = ice_pf_to_dev(pf);
3375 if (vsi->tc_cfg.ena_tc == ena_tc &&
3376 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3377 return 0;
3378
3379 ice_for_each_traffic_class(i) {
3380 /* build bitmap of enabled TCs */
3381 if (ena_tc & BIT(i))
3382 num_tc++;
3383 /* populate max_txqs per TC */
3384 max_txqs[i] = vsi->alloc_txq;
3385 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3386 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3387 */
3388 if (vsi->type == ICE_VSI_CHNL &&
3389 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3390 max_txqs[i] = vsi->num_txq;
3391 }
3392
3393 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3394 vsi->tc_cfg.ena_tc = ena_tc;
3395 vsi->tc_cfg.numtc = num_tc;
3396
3397 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3398 if (!ctx)
3399 return -ENOMEM;
3400
3401 ctx->vf_num = 0;
3402 ctx->info = vsi->info;
3403
3404 if (vsi->type == ICE_VSI_PF &&
3405 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3406 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3407 else
3408 ret = ice_vsi_setup_q_map(vsi, ctx);
3409
3410 if (ret) {
3411 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3412 goto out;
3413 }
3414
3415 /* must to indicate which section of VSI context are being modified */
3416 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3417 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3418 if (ret) {
3419 dev_info(dev, "Failed VSI Update\n");
3420 goto out;
3421 }
3422
3423 if (vsi->type == ICE_VSI_PF &&
3424 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3425 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3426 else
3427 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3428 vsi->tc_cfg.ena_tc, max_txqs);
3429
3430 if (ret) {
3431 dev_err(dev, "VSI %d failed TC config, error %d\n",
3432 vsi->vsi_num, ret);
3433 goto out;
3434 }
3435 ice_vsi_update_q_map(vsi, ctx);
3436 vsi->info.valid_sections = 0;
3437
3438 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3439out:
3440 kfree(ctx);
3441 return ret;
3442}
3443
3444/**
3445 * ice_update_ring_stats - Update ring statistics
3446 * @stats: stats to be updated
3447 * @pkts: number of processed packets
3448 * @bytes: number of processed bytes
3449 *
3450 * This function assumes that caller has acquired a u64_stats_sync lock.
3451 */
3452static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3453{
3454 stats->bytes += bytes;
3455 stats->pkts += pkts;
3456}
3457
3458/**
3459 * ice_update_tx_ring_stats - Update Tx ring specific counters
3460 * @tx_ring: ring to update
3461 * @pkts: number of processed packets
3462 * @bytes: number of processed bytes
3463 */
3464void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3465{
3466 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3467 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3468 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3469}
3470
3471/**
3472 * ice_update_rx_ring_stats - Update Rx ring specific counters
3473 * @rx_ring: ring to update
3474 * @pkts: number of processed packets
3475 * @bytes: number of processed bytes
3476 */
3477void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3478{
3479 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3480 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3481 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3482}
3483
3484/**
3485 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3486 * @pi: port info of the switch with default VSI
3487 *
3488 * Return true if the there is a single VSI in default forwarding VSI list
3489 */
3490bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3491{
3492 bool exists = false;
3493
3494 ice_check_if_dflt_vsi(pi, 0, &exists);
3495 return exists;
3496}
3497
3498/**
3499 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3500 * @vsi: VSI to compare against default forwarding VSI
3501 *
3502 * If this VSI passed in is the default forwarding VSI then return true, else
3503 * return false
3504 */
3505bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3506{
3507 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3508}
3509
3510/**
3511 * ice_set_dflt_vsi - set the default forwarding VSI
3512 * @vsi: VSI getting set as the default forwarding VSI on the switch
3513 *
3514 * If the VSI passed in is already the default VSI and it's enabled just return
3515 * success.
3516 *
3517 * Otherwise try to set the VSI passed in as the switch's default VSI and
3518 * return the result.
3519 */
3520int ice_set_dflt_vsi(struct ice_vsi *vsi)
3521{
3522 struct device *dev;
3523 int status;
3524
3525 if (!vsi)
3526 return -EINVAL;
3527
3528 dev = ice_pf_to_dev(vsi->back);
3529
3530 if (ice_lag_is_switchdev_running(vsi->back)) {
3531 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3532 vsi->vsi_num);
3533 return 0;
3534 }
3535
3536 /* the VSI passed in is already the default VSI */
3537 if (ice_is_vsi_dflt_vsi(vsi)) {
3538 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3539 vsi->vsi_num);
3540 return 0;
3541 }
3542
3543 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3544 if (status) {
3545 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3546 vsi->vsi_num, status);
3547 return status;
3548 }
3549
3550 return 0;
3551}
3552
3553/**
3554 * ice_clear_dflt_vsi - clear the default forwarding VSI
3555 * @vsi: VSI to remove from filter list
3556 *
3557 * If the switch has no default VSI or it's not enabled then return error.
3558 *
3559 * Otherwise try to clear the default VSI and return the result.
3560 */
3561int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3562{
3563 struct device *dev;
3564 int status;
3565
3566 if (!vsi)
3567 return -EINVAL;
3568
3569 dev = ice_pf_to_dev(vsi->back);
3570
3571 /* there is no default VSI configured */
3572 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3573 return -ENODEV;
3574
3575 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3576 ICE_FLTR_RX);
3577 if (status) {
3578 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3579 vsi->vsi_num, status);
3580 return -EIO;
3581 }
3582
3583 return 0;
3584}
3585
3586/**
3587 * ice_get_link_speed_mbps - get link speed in Mbps
3588 * @vsi: the VSI whose link speed is being queried
3589 *
3590 * Return current VSI link speed and 0 if the speed is unknown.
3591 */
3592int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3593{
3594 unsigned int link_speed;
3595
3596 link_speed = vsi->port_info->phy.link_info.link_speed;
3597
3598 return (int)ice_get_link_speed(fls(link_speed) - 1);
3599}
3600
3601/**
3602 * ice_get_link_speed_kbps - get link speed in Kbps
3603 * @vsi: the VSI whose link speed is being queried
3604 *
3605 * Return current VSI link speed and 0 if the speed is unknown.
3606 */
3607int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3608{
3609 int speed_mbps;
3610
3611 speed_mbps = ice_get_link_speed_mbps(vsi);
3612
3613 return speed_mbps * 1000;
3614}
3615
3616/**
3617 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3618 * @vsi: VSI to be configured
3619 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3620 *
3621 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3622 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3623 * on TC 0.
3624 */
3625int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3626{
3627 struct ice_pf *pf = vsi->back;
3628 struct device *dev;
3629 int status;
3630 int speed;
3631
3632 dev = ice_pf_to_dev(pf);
3633 if (!vsi->port_info) {
3634 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3635 vsi->idx, vsi->type);
3636 return -EINVAL;
3637 }
3638
3639 speed = ice_get_link_speed_kbps(vsi);
3640 if (min_tx_rate > (u64)speed) {
3641 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3642 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3643 speed);
3644 return -EINVAL;
3645 }
3646
3647 /* Configure min BW for VSI limit */
3648 if (min_tx_rate) {
3649 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3650 ICE_MIN_BW, min_tx_rate);
3651 if (status) {
3652 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3653 min_tx_rate, ice_vsi_type_str(vsi->type),
3654 vsi->idx);
3655 return status;
3656 }
3657
3658 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3659 min_tx_rate, ice_vsi_type_str(vsi->type));
3660 } else {
3661 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3662 vsi->idx, 0,
3663 ICE_MIN_BW);
3664 if (status) {
3665 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3666 ice_vsi_type_str(vsi->type), vsi->idx);
3667 return status;
3668 }
3669
3670 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3671 ice_vsi_type_str(vsi->type), vsi->idx);
3672 }
3673
3674 return 0;
3675}
3676
3677/**
3678 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3679 * @vsi: VSI to be configured
3680 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3681 *
3682 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3683 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3684 * on TC 0.
3685 */
3686int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3687{
3688 struct ice_pf *pf = vsi->back;
3689 struct device *dev;
3690 int status;
3691 int speed;
3692
3693 dev = ice_pf_to_dev(pf);
3694 if (!vsi->port_info) {
3695 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3696 vsi->idx, vsi->type);
3697 return -EINVAL;
3698 }
3699
3700 speed = ice_get_link_speed_kbps(vsi);
3701 if (max_tx_rate > (u64)speed) {
3702 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3703 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3704 speed);
3705 return -EINVAL;
3706 }
3707
3708 /* Configure max BW for VSI limit */
3709 if (max_tx_rate) {
3710 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3711 ICE_MAX_BW, max_tx_rate);
3712 if (status) {
3713 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3714 max_tx_rate, ice_vsi_type_str(vsi->type),
3715 vsi->idx);
3716 return status;
3717 }
3718
3719 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3720 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3721 } else {
3722 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3723 vsi->idx, 0,
3724 ICE_MAX_BW);
3725 if (status) {
3726 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3727 ice_vsi_type_str(vsi->type), vsi->idx);
3728 return status;
3729 }
3730
3731 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3732 ice_vsi_type_str(vsi->type), vsi->idx);
3733 }
3734
3735 return 0;
3736}
3737
3738/**
3739 * ice_set_link - turn on/off physical link
3740 * @vsi: VSI to modify physical link on
3741 * @ena: turn on/off physical link
3742 */
3743int ice_set_link(struct ice_vsi *vsi, bool ena)
3744{
3745 struct device *dev = ice_pf_to_dev(vsi->back);
3746 struct ice_port_info *pi = vsi->port_info;
3747 struct ice_hw *hw = pi->hw;
3748 int status;
3749
3750 if (vsi->type != ICE_VSI_PF)
3751 return -EINVAL;
3752
3753 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3754
3755 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3756 * this is not a fatal error, so print a warning message and return
3757 * a success code. Return an error if FW returns an error code other
3758 * than ICE_AQ_RC_EMODE
3759 */
3760 if (status == -EIO) {
3761 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3762 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3763 (ena ? "ON" : "OFF"), status,
3764 ice_aq_str(hw->adminq.sq_last_status));
3765 } else if (status) {
3766 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3767 (ena ? "ON" : "OFF"), status,
3768 ice_aq_str(hw->adminq.sq_last_status));
3769 return status;
3770 }
3771
3772 return 0;
3773}
3774
3775/**
3776 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3777 * @vsi: VSI used to add VLAN filters
3778 *
3779 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3780 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3781 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3782 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3783 *
3784 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3785 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3786 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3787 *
3788 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3789 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3790 * part of filtering.
3791 */
3792int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3793{
3794 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3795 struct ice_vlan vlan;
3796 int err;
3797
3798 vlan = ICE_VLAN(0, 0, 0);
3799 err = vlan_ops->add_vlan(vsi, &vlan);
3800 if (err && err != -EEXIST)
3801 return err;
3802
3803 /* in SVM both VLAN 0 filters are identical */
3804 if (!ice_is_dvm_ena(&vsi->back->hw))
3805 return 0;
3806
3807 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3808 err = vlan_ops->add_vlan(vsi, &vlan);
3809 if (err && err != -EEXIST)
3810 return err;
3811
3812 return 0;
3813}
3814
3815/**
3816 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3817 * @vsi: VSI used to add VLAN filters
3818 *
3819 * Delete the VLAN 0 filters in the same manner that they were added in
3820 * ice_vsi_add_vlan_zero.
3821 */
3822int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3823{
3824 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3825 struct ice_vlan vlan;
3826 int err;
3827
3828 vlan = ICE_VLAN(0, 0, 0);
3829 err = vlan_ops->del_vlan(vsi, &vlan);
3830 if (err && err != -EEXIST)
3831 return err;
3832
3833 /* in SVM both VLAN 0 filters are identical */
3834 if (!ice_is_dvm_ena(&vsi->back->hw))
3835 return 0;
3836
3837 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3838 err = vlan_ops->del_vlan(vsi, &vlan);
3839 if (err && err != -EEXIST)
3840 return err;
3841
3842 /* when deleting the last VLAN filter, make sure to disable the VLAN
3843 * promisc mode so the filter isn't left by accident
3844 */
3845 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3846 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3847}
3848
3849/**
3850 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3851 * @vsi: VSI used to get the VLAN mode
3852 *
3853 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3854 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3855 */
3856static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3857{
3858#define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3859#define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3860 /* no VLAN 0 filter is created when a port VLAN is active */
3861 if (vsi->type == ICE_VSI_VF) {
3862 if (WARN_ON(!vsi->vf))
3863 return 0;
3864
3865 if (ice_vf_is_port_vlan_ena(vsi->vf))
3866 return 0;
3867 }
3868
3869 if (ice_is_dvm_ena(&vsi->back->hw))
3870 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3871 else
3872 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3873}
3874
3875/**
3876 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3877 * @vsi: VSI used to determine if any non-zero VLANs have been added
3878 */
3879bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3880{
3881 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3882}
3883
3884/**
3885 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3886 * @vsi: VSI used to get the number of non-zero VLANs added
3887 */
3888u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3889{
3890 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3891}
3892
3893/**
3894 * ice_is_feature_supported
3895 * @pf: pointer to the struct ice_pf instance
3896 * @f: feature enum to be checked
3897 *
3898 * returns true if feature is supported, false otherwise
3899 */
3900bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3901{
3902 if (f < 0 || f >= ICE_F_MAX)
3903 return false;
3904
3905 return test_bit(f, pf->features);
3906}
3907
3908/**
3909 * ice_set_feature_support
3910 * @pf: pointer to the struct ice_pf instance
3911 * @f: feature enum to set
3912 */
3913void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3914{
3915 if (f < 0 || f >= ICE_F_MAX)
3916 return;
3917
3918 set_bit(f, pf->features);
3919}
3920
3921/**
3922 * ice_clear_feature_support
3923 * @pf: pointer to the struct ice_pf instance
3924 * @f: feature enum to clear
3925 */
3926void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3927{
3928 if (f < 0 || f >= ICE_F_MAX)
3929 return;
3930
3931 clear_bit(f, pf->features);
3932}
3933
3934/**
3935 * ice_init_feature_support
3936 * @pf: pointer to the struct ice_pf instance
3937 *
3938 * called during init to setup supported feature
3939 */
3940void ice_init_feature_support(struct ice_pf *pf)
3941{
3942 switch (pf->hw.device_id) {
3943 case ICE_DEV_ID_E810C_BACKPLANE:
3944 case ICE_DEV_ID_E810C_QSFP:
3945 case ICE_DEV_ID_E810C_SFP:
3946 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3947 case ICE_DEV_ID_E810_XXV_QSFP:
3948 case ICE_DEV_ID_E810_XXV_SFP:
3949 ice_set_feature_support(pf, ICE_F_DSCP);
3950 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3951 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3952 /* If we don't own the timer - don't enable other caps */
3953 if (!ice_pf_src_tmr_owned(pf))
3954 break;
3955 if (ice_is_cgu_in_netlist(&pf->hw))
3956 ice_set_feature_support(pf, ICE_F_CGU);
3957 if (ice_is_clock_mux_in_netlist(&pf->hw))
3958 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3959 if (ice_gnss_is_gps_present(&pf->hw))
3960 ice_set_feature_support(pf, ICE_F_GNSS);
3961 break;
3962 default:
3963 break;
3964 }
3965}
3966
3967/**
3968 * ice_vsi_update_security - update security block in VSI
3969 * @vsi: pointer to VSI structure
3970 * @fill: function pointer to fill ctx
3971 */
3972int
3973ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3974{
3975 struct ice_vsi_ctx ctx = { 0 };
3976
3977 ctx.info = vsi->info;
3978 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3979 fill(&ctx);
3980
3981 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3982 return -ENODEV;
3983
3984 vsi->info = ctx.info;
3985 return 0;
3986}
3987
3988/**
3989 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3990 * @ctx: pointer to VSI ctx structure
3991 */
3992void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3993{
3994 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3995 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3996 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3997}
3998
3999/**
4000 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4001 * @ctx: pointer to VSI ctx structure
4002 */
4003void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4004{
4005 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4006 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4007 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4008}
4009
4010/**
4011 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4012 * @ctx: pointer to VSI ctx structure
4013 */
4014void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4015{
4016 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4017}
4018
4019/**
4020 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4021 * @ctx: pointer to VSI ctx structure
4022 */
4023void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4024{
4025 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4026}
4027
4028/**
4029 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4030 * @vsi: pointer to VSI structure
4031 * @set: set or unset the bit
4032 */
4033int
4034ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4035{
4036 struct ice_vsi_ctx ctx = {
4037 .info = vsi->info,
4038 };
4039
4040 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4041 if (set)
4042 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4043 else
4044 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4045
4046 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4047 return -ENODEV;
4048
4049 vsi->info = ctx.info;
4050 return 0;
4051}