Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_base.h"
6#include "ice_flow.h"
7#include "ice_lib.h"
8#include "ice_fltr.h"
9#include "ice_dcb_lib.h"
10#include "ice_type.h"
11#include "ice_vsi_vlan_ops.h"
12
13/**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18{
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_SF:
25 return "ICE_VSI_SF";
26 case ICE_VSI_CTRL:
27 return "ICE_VSI_CTRL";
28 case ICE_VSI_CHNL:
29 return "ICE_VSI_CHNL";
30 case ICE_VSI_LB:
31 return "ICE_VSI_LB";
32 default:
33 return "unknown";
34 }
35}
36
37/**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48{
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64}
65
66/**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74{
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131}
132
133/**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
137static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138{
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SF:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158}
159
160/**
161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
162 * @vsi: the VSI being configured
163 *
164 * Return 0 on success and a negative value on error
165 */
166static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
167{
168 enum ice_vsi_type vsi_type = vsi->type;
169 struct ice_pf *pf = vsi->back;
170 struct ice_vf *vf = vsi->vf;
171
172 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
173 return;
174
175 switch (vsi_type) {
176 case ICE_VSI_PF:
177 if (vsi->req_txq) {
178 vsi->alloc_txq = vsi->req_txq;
179 vsi->num_txq = vsi->req_txq;
180 } else {
181 vsi->alloc_txq = min3(pf->num_lan_msix,
182 ice_get_avail_txq_count(pf),
183 (u16)num_online_cpus());
184 }
185
186 pf->num_lan_tx = vsi->alloc_txq;
187
188 /* only 1 Rx queue unless RSS is enabled */
189 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
190 vsi->alloc_rxq = 1;
191 } else {
192 if (vsi->req_rxq) {
193 vsi->alloc_rxq = vsi->req_rxq;
194 vsi->num_rxq = vsi->req_rxq;
195 } else {
196 vsi->alloc_rxq = min3(pf->num_lan_msix,
197 ice_get_avail_rxq_count(pf),
198 (u16)num_online_cpus());
199 }
200 }
201
202 pf->num_lan_rx = vsi->alloc_rxq;
203
204 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
205 max_t(int, vsi->alloc_rxq,
206 vsi->alloc_txq));
207 break;
208 case ICE_VSI_SF:
209 vsi->alloc_txq = 1;
210 vsi->alloc_rxq = 1;
211 vsi->num_q_vectors = 1;
212 vsi->irq_dyn_alloc = true;
213 break;
214 case ICE_VSI_VF:
215 if (vf->num_req_qs)
216 vf->num_vf_qs = vf->num_req_qs;
217 vsi->alloc_txq = vf->num_vf_qs;
218 vsi->alloc_rxq = vf->num_vf_qs;
219 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
220 * data queue interrupts). Since vsi->num_q_vectors is number
221 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
222 * original vector count
223 */
224 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
225 break;
226 case ICE_VSI_CTRL:
227 vsi->alloc_txq = 1;
228 vsi->alloc_rxq = 1;
229 vsi->num_q_vectors = 1;
230 break;
231 case ICE_VSI_CHNL:
232 vsi->alloc_txq = 0;
233 vsi->alloc_rxq = 0;
234 break;
235 case ICE_VSI_LB:
236 vsi->alloc_txq = 1;
237 vsi->alloc_rxq = 1;
238 break;
239 default:
240 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
241 break;
242 }
243
244 ice_vsi_set_num_desc(vsi);
245}
246
247/**
248 * ice_get_free_slot - get the next non-NULL location index in array
249 * @array: array to search
250 * @size: size of the array
251 * @curr: last known occupied index to be used as a search hint
252 *
253 * void * is being used to keep the functionality generic. This lets us use this
254 * function on any array of pointers.
255 */
256static int ice_get_free_slot(void *array, int size, int curr)
257{
258 int **tmp_array = (int **)array;
259 int next;
260
261 if (curr < (size - 1) && !tmp_array[curr + 1]) {
262 next = curr + 1;
263 } else {
264 int i = 0;
265
266 while ((i < size) && (tmp_array[i]))
267 i++;
268 if (i == size)
269 next = ICE_NO_VSI;
270 else
271 next = i;
272 }
273 return next;
274}
275
276/**
277 * ice_vsi_delete_from_hw - delete a VSI from the switch
278 * @vsi: pointer to VSI being removed
279 */
280static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
281{
282 struct ice_pf *pf = vsi->back;
283 struct ice_vsi_ctx *ctxt;
284 int status;
285
286 ice_fltr_remove_all(vsi);
287 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
288 if (!ctxt)
289 return;
290
291 if (vsi->type == ICE_VSI_VF)
292 ctxt->vf_num = vsi->vf->vf_id;
293 ctxt->vsi_num = vsi->vsi_num;
294
295 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
296
297 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
298 if (status)
299 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
300 vsi->vsi_num, status);
301
302 kfree(ctxt);
303}
304
305/**
306 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
307 * @vsi: pointer to VSI being cleared
308 */
309static void ice_vsi_free_arrays(struct ice_vsi *vsi)
310{
311 struct ice_pf *pf = vsi->back;
312 struct device *dev;
313
314 dev = ice_pf_to_dev(pf);
315
316 /* free the ring and vector containers */
317 devm_kfree(dev, vsi->q_vectors);
318 vsi->q_vectors = NULL;
319 devm_kfree(dev, vsi->tx_rings);
320 vsi->tx_rings = NULL;
321 devm_kfree(dev, vsi->rx_rings);
322 vsi->rx_rings = NULL;
323 devm_kfree(dev, vsi->txq_map);
324 vsi->txq_map = NULL;
325 devm_kfree(dev, vsi->rxq_map);
326 vsi->rxq_map = NULL;
327}
328
329/**
330 * ice_vsi_free_stats - Free the ring statistics structures
331 * @vsi: VSI pointer
332 */
333static void ice_vsi_free_stats(struct ice_vsi *vsi)
334{
335 struct ice_vsi_stats *vsi_stat;
336 struct ice_pf *pf = vsi->back;
337 int i;
338
339 if (vsi->type == ICE_VSI_CHNL)
340 return;
341 if (!pf->vsi_stats)
342 return;
343
344 vsi_stat = pf->vsi_stats[vsi->idx];
345 if (!vsi_stat)
346 return;
347
348 ice_for_each_alloc_txq(vsi, i) {
349 if (vsi_stat->tx_ring_stats[i]) {
350 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
351 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
352 }
353 }
354
355 ice_for_each_alloc_rxq(vsi, i) {
356 if (vsi_stat->rx_ring_stats[i]) {
357 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
358 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
359 }
360 }
361
362 kfree(vsi_stat->tx_ring_stats);
363 kfree(vsi_stat->rx_ring_stats);
364 kfree(vsi_stat);
365 pf->vsi_stats[vsi->idx] = NULL;
366}
367
368/**
369 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
370 * @vsi: VSI which is having stats allocated
371 */
372static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
373{
374 struct ice_ring_stats **tx_ring_stats;
375 struct ice_ring_stats **rx_ring_stats;
376 struct ice_vsi_stats *vsi_stats;
377 struct ice_pf *pf = vsi->back;
378 u16 i;
379
380 vsi_stats = pf->vsi_stats[vsi->idx];
381 tx_ring_stats = vsi_stats->tx_ring_stats;
382 rx_ring_stats = vsi_stats->rx_ring_stats;
383
384 /* Allocate Tx ring stats */
385 ice_for_each_alloc_txq(vsi, i) {
386 struct ice_ring_stats *ring_stats;
387 struct ice_tx_ring *ring;
388
389 ring = vsi->tx_rings[i];
390 ring_stats = tx_ring_stats[i];
391
392 if (!ring_stats) {
393 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
394 if (!ring_stats)
395 goto err_out;
396
397 WRITE_ONCE(tx_ring_stats[i], ring_stats);
398 }
399
400 ring->ring_stats = ring_stats;
401 }
402
403 /* Allocate Rx ring stats */
404 ice_for_each_alloc_rxq(vsi, i) {
405 struct ice_ring_stats *ring_stats;
406 struct ice_rx_ring *ring;
407
408 ring = vsi->rx_rings[i];
409 ring_stats = rx_ring_stats[i];
410
411 if (!ring_stats) {
412 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
413 if (!ring_stats)
414 goto err_out;
415
416 WRITE_ONCE(rx_ring_stats[i], ring_stats);
417 }
418
419 ring->ring_stats = ring_stats;
420 }
421
422 return 0;
423
424err_out:
425 ice_vsi_free_stats(vsi);
426 return -ENOMEM;
427}
428
429/**
430 * ice_vsi_free - clean up and deallocate the provided VSI
431 * @vsi: pointer to VSI being cleared
432 *
433 * This deallocates the VSI's queue resources, removes it from the PF's
434 * VSI array if necessary, and deallocates the VSI
435 */
436void ice_vsi_free(struct ice_vsi *vsi)
437{
438 struct ice_pf *pf = NULL;
439 struct device *dev;
440
441 if (!vsi || !vsi->back)
442 return;
443
444 pf = vsi->back;
445 dev = ice_pf_to_dev(pf);
446
447 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
448 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
449 return;
450 }
451
452 mutex_lock(&pf->sw_mutex);
453 /* updates the PF for this cleared VSI */
454
455 pf->vsi[vsi->idx] = NULL;
456 pf->next_vsi = vsi->idx;
457
458 ice_vsi_free_stats(vsi);
459 ice_vsi_free_arrays(vsi);
460 mutex_destroy(&vsi->xdp_state_lock);
461 mutex_unlock(&pf->sw_mutex);
462 devm_kfree(dev, vsi);
463}
464
465void ice_vsi_delete(struct ice_vsi *vsi)
466{
467 ice_vsi_delete_from_hw(vsi);
468 ice_vsi_free(vsi);
469}
470
471/**
472 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
473 * @irq: interrupt number
474 * @data: pointer to a q_vector
475 */
476static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
477{
478 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
479
480 if (!q_vector->tx.tx_ring)
481 return IRQ_HANDLED;
482
483#define FDIR_RX_DESC_CLEAN_BUDGET 64
484 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
485 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
486
487 return IRQ_HANDLED;
488}
489
490/**
491 * ice_msix_clean_rings - MSIX mode Interrupt Handler
492 * @irq: interrupt number
493 * @data: pointer to a q_vector
494 */
495static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
496{
497 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
498
499 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
500 return IRQ_HANDLED;
501
502 q_vector->total_events++;
503
504 napi_schedule(&q_vector->napi);
505
506 return IRQ_HANDLED;
507}
508
509/**
510 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
511 * @vsi: VSI pointer
512 */
513static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
514{
515 struct ice_vsi_stats *vsi_stat;
516 struct ice_pf *pf = vsi->back;
517
518 if (vsi->type == ICE_VSI_CHNL)
519 return 0;
520 if (!pf->vsi_stats)
521 return -ENOENT;
522
523 if (pf->vsi_stats[vsi->idx])
524 /* realloc will happen in rebuild path */
525 return 0;
526
527 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
528 if (!vsi_stat)
529 return -ENOMEM;
530
531 vsi_stat->tx_ring_stats =
532 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
533 GFP_KERNEL);
534 if (!vsi_stat->tx_ring_stats)
535 goto err_alloc_tx;
536
537 vsi_stat->rx_ring_stats =
538 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
539 GFP_KERNEL);
540 if (!vsi_stat->rx_ring_stats)
541 goto err_alloc_rx;
542
543 pf->vsi_stats[vsi->idx] = vsi_stat;
544
545 return 0;
546
547err_alloc_rx:
548 kfree(vsi_stat->rx_ring_stats);
549err_alloc_tx:
550 kfree(vsi_stat->tx_ring_stats);
551 kfree(vsi_stat);
552 pf->vsi_stats[vsi->idx] = NULL;
553 return -ENOMEM;
554}
555
556/**
557 * ice_vsi_alloc_def - set default values for already allocated VSI
558 * @vsi: ptr to VSI
559 * @ch: ptr to channel
560 */
561static int
562ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
563{
564 if (vsi->type != ICE_VSI_CHNL) {
565 ice_vsi_set_num_qs(vsi);
566 if (ice_vsi_alloc_arrays(vsi))
567 return -ENOMEM;
568 }
569
570 switch (vsi->type) {
571 case ICE_VSI_PF:
572 case ICE_VSI_SF:
573 /* Setup default MSIX irq handler for VSI */
574 vsi->irq_handler = ice_msix_clean_rings;
575 break;
576 case ICE_VSI_CTRL:
577 /* Setup ctrl VSI MSIX irq handler */
578 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
579 break;
580 case ICE_VSI_CHNL:
581 if (!ch)
582 return -EINVAL;
583
584 vsi->num_rxq = ch->num_rxq;
585 vsi->num_txq = ch->num_txq;
586 vsi->next_base_q = ch->base_q;
587 break;
588 case ICE_VSI_VF:
589 case ICE_VSI_LB:
590 break;
591 default:
592 ice_vsi_free_arrays(vsi);
593 return -EINVAL;
594 }
595
596 return 0;
597}
598
599/**
600 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
601 * @pf: board private structure
602 *
603 * Reserves a VSI index from the PF and allocates an empty VSI structure
604 * without a type. The VSI structure must later be initialized by calling
605 * ice_vsi_cfg().
606 *
607 * returns a pointer to a VSI on success, NULL on failure.
608 */
609struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
610{
611 struct device *dev = ice_pf_to_dev(pf);
612 struct ice_vsi *vsi = NULL;
613
614 /* Need to protect the allocation of the VSIs at the PF level */
615 mutex_lock(&pf->sw_mutex);
616
617 /* If we have already allocated our maximum number of VSIs,
618 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
619 * is available to be populated
620 */
621 if (pf->next_vsi == ICE_NO_VSI) {
622 dev_dbg(dev, "out of VSI slots!\n");
623 goto unlock_pf;
624 }
625
626 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
627 if (!vsi)
628 goto unlock_pf;
629
630 vsi->back = pf;
631 set_bit(ICE_VSI_DOWN, vsi->state);
632
633 /* fill slot and make note of the index */
634 vsi->idx = pf->next_vsi;
635 pf->vsi[pf->next_vsi] = vsi;
636
637 /* prepare pf->next_vsi for next use */
638 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
639 pf->next_vsi);
640
641 mutex_init(&vsi->xdp_state_lock);
642
643unlock_pf:
644 mutex_unlock(&pf->sw_mutex);
645 return vsi;
646}
647
648/**
649 * ice_alloc_fd_res - Allocate FD resource for a VSI
650 * @vsi: pointer to the ice_vsi
651 *
652 * This allocates the FD resources
653 *
654 * Returns 0 on success, -EPERM on no-op or -EIO on failure
655 */
656static int ice_alloc_fd_res(struct ice_vsi *vsi)
657{
658 struct ice_pf *pf = vsi->back;
659 u32 g_val, b_val;
660
661 /* Flow Director filters are only allocated/assigned to the PF VSI or
662 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
663 * add/delete filters so resources are not allocated to it
664 */
665 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
666 return -EPERM;
667
668 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
669 vsi->type == ICE_VSI_CHNL))
670 return -EPERM;
671
672 /* FD filters from guaranteed pool per VSI */
673 g_val = pf->hw.func_caps.fd_fltr_guar;
674 if (!g_val)
675 return -EPERM;
676
677 /* FD filters from best effort pool */
678 b_val = pf->hw.func_caps.fd_fltr_best_effort;
679 if (!b_val)
680 return -EPERM;
681
682 /* PF main VSI gets only 64 FD resources from guaranteed pool
683 * when ADQ is configured.
684 */
685#define ICE_PF_VSI_GFLTR 64
686
687 /* determine FD filter resources per VSI from shared(best effort) and
688 * dedicated pool
689 */
690 if (vsi->type == ICE_VSI_PF) {
691 vsi->num_gfltr = g_val;
692 /* if MQPRIO is configured, main VSI doesn't get all FD
693 * resources from guaranteed pool. PF VSI gets 64 FD resources
694 */
695 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
696 if (g_val < ICE_PF_VSI_GFLTR)
697 return -EPERM;
698 /* allow bare minimum entries for PF VSI */
699 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
700 }
701
702 /* each VSI gets same "best_effort" quota */
703 vsi->num_bfltr = b_val;
704 } else if (vsi->type == ICE_VSI_VF) {
705 vsi->num_gfltr = 0;
706
707 /* each VSI gets same "best_effort" quota */
708 vsi->num_bfltr = b_val;
709 } else {
710 struct ice_vsi *main_vsi;
711 int numtc;
712
713 main_vsi = ice_get_main_vsi(pf);
714 if (!main_vsi)
715 return -EPERM;
716
717 if (!main_vsi->all_numtc)
718 return -EINVAL;
719
720 /* figure out ADQ numtc */
721 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
722
723 /* only one TC but still asking resources for channels,
724 * invalid config
725 */
726 if (numtc < ICE_CHNL_START_TC)
727 return -EPERM;
728
729 g_val -= ICE_PF_VSI_GFLTR;
730 /* channel VSIs gets equal share from guaranteed pool */
731 vsi->num_gfltr = g_val / numtc;
732
733 /* each VSI gets same "best_effort" quota */
734 vsi->num_bfltr = b_val;
735 }
736
737 return 0;
738}
739
740/**
741 * ice_vsi_get_qs - Assign queues from PF to VSI
742 * @vsi: the VSI to assign queues to
743 *
744 * Returns 0 on success and a negative value on error
745 */
746static int ice_vsi_get_qs(struct ice_vsi *vsi)
747{
748 struct ice_pf *pf = vsi->back;
749 struct ice_qs_cfg tx_qs_cfg = {
750 .qs_mutex = &pf->avail_q_mutex,
751 .pf_map = pf->avail_txqs,
752 .pf_map_size = pf->max_pf_txqs,
753 .q_count = vsi->alloc_txq,
754 .scatter_count = ICE_MAX_SCATTER_TXQS,
755 .vsi_map = vsi->txq_map,
756 .vsi_map_offset = 0,
757 .mapping_mode = ICE_VSI_MAP_CONTIG
758 };
759 struct ice_qs_cfg rx_qs_cfg = {
760 .qs_mutex = &pf->avail_q_mutex,
761 .pf_map = pf->avail_rxqs,
762 .pf_map_size = pf->max_pf_rxqs,
763 .q_count = vsi->alloc_rxq,
764 .scatter_count = ICE_MAX_SCATTER_RXQS,
765 .vsi_map = vsi->rxq_map,
766 .vsi_map_offset = 0,
767 .mapping_mode = ICE_VSI_MAP_CONTIG
768 };
769 int ret;
770
771 if (vsi->type == ICE_VSI_CHNL)
772 return 0;
773
774 ret = __ice_vsi_get_qs(&tx_qs_cfg);
775 if (ret)
776 return ret;
777 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
778
779 ret = __ice_vsi_get_qs(&rx_qs_cfg);
780 if (ret)
781 return ret;
782 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
783
784 return 0;
785}
786
787/**
788 * ice_vsi_put_qs - Release queues from VSI to PF
789 * @vsi: the VSI that is going to release queues
790 */
791static void ice_vsi_put_qs(struct ice_vsi *vsi)
792{
793 struct ice_pf *pf = vsi->back;
794 int i;
795
796 mutex_lock(&pf->avail_q_mutex);
797
798 ice_for_each_alloc_txq(vsi, i) {
799 clear_bit(vsi->txq_map[i], pf->avail_txqs);
800 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
801 }
802
803 ice_for_each_alloc_rxq(vsi, i) {
804 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
805 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
806 }
807
808 mutex_unlock(&pf->avail_q_mutex);
809}
810
811/**
812 * ice_is_safe_mode
813 * @pf: pointer to the PF struct
814 *
815 * returns true if driver is in safe mode, false otherwise
816 */
817bool ice_is_safe_mode(struct ice_pf *pf)
818{
819 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
820}
821
822/**
823 * ice_is_rdma_ena
824 * @pf: pointer to the PF struct
825 *
826 * returns true if RDMA is currently supported, false otherwise
827 */
828bool ice_is_rdma_ena(struct ice_pf *pf)
829{
830 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
831}
832
833/**
834 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
835 * @vsi: the VSI being cleaned up
836 *
837 * This function deletes RSS input set for all flows that were configured
838 * for this VSI
839 */
840static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
841{
842 struct ice_pf *pf = vsi->back;
843 int status;
844
845 if (ice_is_safe_mode(pf))
846 return;
847
848 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
849 if (status)
850 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
851 vsi->vsi_num, status);
852}
853
854/**
855 * ice_rss_clean - Delete RSS related VSI structures and configuration
856 * @vsi: the VSI being removed
857 */
858static void ice_rss_clean(struct ice_vsi *vsi)
859{
860 struct ice_pf *pf = vsi->back;
861 struct device *dev;
862
863 dev = ice_pf_to_dev(pf);
864
865 devm_kfree(dev, vsi->rss_hkey_user);
866 devm_kfree(dev, vsi->rss_lut_user);
867
868 ice_vsi_clean_rss_flow_fld(vsi);
869 /* remove RSS replay list */
870 if (!ice_is_safe_mode(pf))
871 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
872}
873
874/**
875 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
876 * @vsi: the VSI being configured
877 */
878static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
879{
880 struct ice_hw_common_caps *cap;
881 struct ice_pf *pf = vsi->back;
882 u16 max_rss_size;
883
884 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
885 vsi->rss_size = 1;
886 return;
887 }
888
889 cap = &pf->hw.func_caps.common_cap;
890 max_rss_size = BIT(cap->rss_table_entry_width);
891 switch (vsi->type) {
892 case ICE_VSI_CHNL:
893 case ICE_VSI_PF:
894 /* PF VSI will inherit RSS instance of PF */
895 vsi->rss_table_size = (u16)cap->rss_table_size;
896 if (vsi->type == ICE_VSI_CHNL)
897 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
898 else
899 vsi->rss_size = min_t(u16, num_online_cpus(),
900 max_rss_size);
901 vsi->rss_lut_type = ICE_LUT_PF;
902 break;
903 case ICE_VSI_SF:
904 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
905 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
906 vsi->rss_lut_type = ICE_LUT_VSI;
907 break;
908 case ICE_VSI_VF:
909 /* VF VSI will get a small RSS table.
910 * For VSI_LUT, LUT size should be set to 64 bytes.
911 */
912 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
913 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
914 vsi->rss_lut_type = ICE_LUT_VSI;
915 break;
916 case ICE_VSI_LB:
917 break;
918 default:
919 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
920 ice_vsi_type_str(vsi->type));
921 break;
922 }
923}
924
925/**
926 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
927 * @hw: HW structure used to determine the VLAN mode of the device
928 * @ctxt: the VSI context being set
929 *
930 * This initializes a default VSI context for all sections except the Queues.
931 */
932static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
933{
934 u32 table = 0;
935
936 memset(&ctxt->info, 0, sizeof(ctxt->info));
937 /* VSI's should be allocated from shared pool */
938 ctxt->alloc_from_pool = true;
939 /* Src pruning enabled by default */
940 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
941 /* Traffic from VSI can be sent to LAN */
942 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
943 /* allow all untagged/tagged packets by default on Tx */
944 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
945 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
946 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
947 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
948 *
949 * DVM - leave inner VLAN in packet by default
950 */
951 if (ice_is_dvm_ena(hw)) {
952 ctxt->info.inner_vlan_flags |=
953 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
954 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
955 ctxt->info.outer_vlan_flags =
956 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
957 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
958 ctxt->info.outer_vlan_flags |=
959 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
960 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
961 ctxt->info.outer_vlan_flags |=
962 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
963 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
964 }
965 /* Have 1:1 UP mapping for both ingress/egress tables */
966 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
967 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
968 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
969 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
970 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
971 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
972 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
973 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
974 ctxt->info.ingress_table = cpu_to_le32(table);
975 ctxt->info.egress_table = cpu_to_le32(table);
976 /* Have 1:1 UP mapping for outer to inner UP table */
977 ctxt->info.outer_up_table = cpu_to_le32(table);
978 /* No Outer tag support outer_tag_flags remains to zero */
979}
980
981/**
982 * ice_vsi_setup_q_map - Setup a VSI queue map
983 * @vsi: the VSI being configured
984 * @ctxt: VSI context structure
985 */
986static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
987{
988 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
989 u16 num_txq_per_tc, num_rxq_per_tc;
990 u16 qcount_tx = vsi->alloc_txq;
991 u16 qcount_rx = vsi->alloc_rxq;
992 u8 netdev_tc = 0;
993 int i;
994
995 if (!vsi->tc_cfg.numtc) {
996 /* at least TC0 should be enabled by default */
997 vsi->tc_cfg.numtc = 1;
998 vsi->tc_cfg.ena_tc = 1;
999 }
1000
1001 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1002 if (!num_rxq_per_tc)
1003 num_rxq_per_tc = 1;
1004 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1005 if (!num_txq_per_tc)
1006 num_txq_per_tc = 1;
1007
1008 /* find the (rounded up) power-of-2 of qcount */
1009 pow = (u16)order_base_2(num_rxq_per_tc);
1010
1011 /* TC mapping is a function of the number of Rx queues assigned to the
1012 * VSI for each traffic class and the offset of these queues.
1013 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1014 * queues allocated to TC0. No:of queues is a power-of-2.
1015 *
1016 * If TC is not enabled, the queue offset is set to 0, and allocate one
1017 * queue, this way, traffic for the given TC will be sent to the default
1018 * queue.
1019 *
1020 * Setup number and offset of Rx queues for all TCs for the VSI
1021 */
1022 ice_for_each_traffic_class(i) {
1023 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1024 /* TC is not enabled */
1025 vsi->tc_cfg.tc_info[i].qoffset = 0;
1026 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1027 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1028 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1029 ctxt->info.tc_mapping[i] = 0;
1030 continue;
1031 }
1032
1033 /* TC is enabled */
1034 vsi->tc_cfg.tc_info[i].qoffset = offset;
1035 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1036 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1037 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1038
1039 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1040 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1041 offset += num_rxq_per_tc;
1042 tx_count += num_txq_per_tc;
1043 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1044 }
1045
1046 /* if offset is non-zero, means it is calculated correctly based on
1047 * enabled TCs for a given VSI otherwise qcount_rx will always
1048 * be correct and non-zero because it is based off - VSI's
1049 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1050 * at least 1)
1051 */
1052 if (offset)
1053 rx_count = offset;
1054 else
1055 rx_count = num_rxq_per_tc;
1056
1057 if (rx_count > vsi->alloc_rxq) {
1058 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1059 rx_count, vsi->alloc_rxq);
1060 return -EINVAL;
1061 }
1062
1063 if (tx_count > vsi->alloc_txq) {
1064 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1065 tx_count, vsi->alloc_txq);
1066 return -EINVAL;
1067 }
1068
1069 vsi->num_txq = tx_count;
1070 vsi->num_rxq = rx_count;
1071
1072 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1073 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1074 /* since there is a chance that num_rxq could have been changed
1075 * in the above for loop, make num_txq equal to num_rxq.
1076 */
1077 vsi->num_txq = vsi->num_rxq;
1078 }
1079
1080 /* Rx queue mapping */
1081 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1082 /* q_mapping buffer holds the info for the first queue allocated for
1083 * this VSI in the PF space and also the number of queues associated
1084 * with this VSI.
1085 */
1086 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1087 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1088
1089 return 0;
1090}
1091
1092/**
1093 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1094 * @ctxt: the VSI context being set
1095 * @vsi: the VSI being configured
1096 */
1097static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1098{
1099 u8 dflt_q_group, dflt_q_prio;
1100 u16 dflt_q, report_q, val;
1101
1102 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1103 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1104 return;
1105
1106 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1107 ctxt->info.valid_sections |= cpu_to_le16(val);
1108 dflt_q = 0;
1109 dflt_q_group = 0;
1110 report_q = 0;
1111 dflt_q_prio = 0;
1112
1113 /* enable flow director filtering/programming */
1114 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1115 ctxt->info.fd_options = cpu_to_le16(val);
1116 /* max of allocated flow director filters */
1117 ctxt->info.max_fd_fltr_dedicated =
1118 cpu_to_le16(vsi->num_gfltr);
1119 /* max of shared flow director filters any VSI may program */
1120 ctxt->info.max_fd_fltr_shared =
1121 cpu_to_le16(vsi->num_bfltr);
1122 /* default queue index within the VSI of the default FD */
1123 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1124 /* target queue or queue group to the FD filter */
1125 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1126 ctxt->info.fd_def_q = cpu_to_le16(val);
1127 /* queue index on which FD filter completion is reported */
1128 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1129 /* priority of the default qindex action */
1130 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1131 ctxt->info.fd_report_opt = cpu_to_le16(val);
1132}
1133
1134/**
1135 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1136 * @ctxt: the VSI context being set
1137 * @vsi: the VSI being configured
1138 */
1139static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1140{
1141 u8 lut_type, hash_type;
1142 struct device *dev;
1143 struct ice_pf *pf;
1144
1145 pf = vsi->back;
1146 dev = ice_pf_to_dev(pf);
1147
1148 switch (vsi->type) {
1149 case ICE_VSI_CHNL:
1150 case ICE_VSI_PF:
1151 /* PF VSI will inherit RSS instance of PF */
1152 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1153 break;
1154 case ICE_VSI_VF:
1155 case ICE_VSI_SF:
1156 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1157 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1158 break;
1159 default:
1160 dev_dbg(dev, "Unsupported VSI type %s\n",
1161 ice_vsi_type_str(vsi->type));
1162 return;
1163 }
1164
1165 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1166 vsi->rss_hfunc = hash_type;
1167
1168 ctxt->info.q_opt_rss =
1169 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1170 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1171}
1172
1173static void
1174ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1175{
1176 struct ice_pf *pf = vsi->back;
1177 u16 qcount, qmap;
1178 u8 offset = 0;
1179 int pow;
1180
1181 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1182
1183 pow = order_base_2(qcount);
1184 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1185 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1186
1187 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1188 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1189 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1190 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1191}
1192
1193/**
1194 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1195 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1196 *
1197 * returns true if Rx VLAN pruning is enabled and false otherwise.
1198 */
1199static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1200{
1201 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1202}
1203
1204/**
1205 * ice_vsi_init - Create and initialize a VSI
1206 * @vsi: the VSI being configured
1207 * @vsi_flags: VSI configuration flags
1208 *
1209 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1210 * reconfigure an existing context.
1211 *
1212 * This initializes a VSI context depending on the VSI type to be added and
1213 * passes it down to the add_vsi aq command to create a new VSI.
1214 */
1215static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1216{
1217 struct ice_pf *pf = vsi->back;
1218 struct ice_hw *hw = &pf->hw;
1219 struct ice_vsi_ctx *ctxt;
1220 struct device *dev;
1221 int ret = 0;
1222
1223 dev = ice_pf_to_dev(pf);
1224 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1225 if (!ctxt)
1226 return -ENOMEM;
1227
1228 switch (vsi->type) {
1229 case ICE_VSI_CTRL:
1230 case ICE_VSI_LB:
1231 case ICE_VSI_PF:
1232 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1233 break;
1234 case ICE_VSI_SF:
1235 case ICE_VSI_CHNL:
1236 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1237 break;
1238 case ICE_VSI_VF:
1239 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1240 /* VF number here is the absolute VF number (0-255) */
1241 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1242 break;
1243 default:
1244 ret = -ENODEV;
1245 goto out;
1246 }
1247
1248 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1249 * prune enabled
1250 */
1251 if (vsi->type == ICE_VSI_CHNL) {
1252 struct ice_vsi *main_vsi;
1253
1254 main_vsi = ice_get_main_vsi(pf);
1255 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1256 ctxt->info.sw_flags2 |=
1257 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1258 else
1259 ctxt->info.sw_flags2 &=
1260 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1261 }
1262
1263 ice_set_dflt_vsi_ctx(hw, ctxt);
1264 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1265 ice_set_fd_vsi_ctx(ctxt, vsi);
1266 /* if the switch is in VEB mode, allow VSI loopback */
1267 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1268 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1269
1270 /* Set LUT type and HASH type if RSS is enabled */
1271 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1272 vsi->type != ICE_VSI_CTRL) {
1273 ice_set_rss_vsi_ctx(ctxt, vsi);
1274 /* if updating VSI context, make sure to set valid_section:
1275 * to indicate which section of VSI context being updated
1276 */
1277 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1278 ctxt->info.valid_sections |=
1279 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1280 }
1281
1282 ctxt->info.sw_id = vsi->port_info->sw_id;
1283 if (vsi->type == ICE_VSI_CHNL) {
1284 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1285 } else {
1286 ret = ice_vsi_setup_q_map(vsi, ctxt);
1287 if (ret)
1288 goto out;
1289
1290 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1291 /* means VSI being updated */
1292 /* must to indicate which section of VSI context are
1293 * being modified
1294 */
1295 ctxt->info.valid_sections |=
1296 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1297 }
1298
1299 /* Allow control frames out of main VSI */
1300 if (vsi->type == ICE_VSI_PF) {
1301 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1302 ctxt->info.valid_sections |=
1303 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1304 }
1305
1306 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1307 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1308 if (ret) {
1309 dev_err(dev, "Add VSI failed, err %d\n", ret);
1310 ret = -EIO;
1311 goto out;
1312 }
1313 } else {
1314 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1315 if (ret) {
1316 dev_err(dev, "Update VSI failed, err %d\n", ret);
1317 ret = -EIO;
1318 goto out;
1319 }
1320 }
1321
1322 /* keep context for update VSI operations */
1323 vsi->info = ctxt->info;
1324
1325 /* record VSI number returned */
1326 vsi->vsi_num = ctxt->vsi_num;
1327
1328out:
1329 kfree(ctxt);
1330 return ret;
1331}
1332
1333/**
1334 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1335 * @vsi: the VSI having rings deallocated
1336 */
1337static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1338{
1339 int i;
1340
1341 /* Avoid stale references by clearing map from vector to ring */
1342 if (vsi->q_vectors) {
1343 ice_for_each_q_vector(vsi, i) {
1344 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1345
1346 if (q_vector) {
1347 q_vector->tx.tx_ring = NULL;
1348 q_vector->rx.rx_ring = NULL;
1349 }
1350 }
1351 }
1352
1353 if (vsi->tx_rings) {
1354 ice_for_each_alloc_txq(vsi, i) {
1355 if (vsi->tx_rings[i]) {
1356 kfree_rcu(vsi->tx_rings[i], rcu);
1357 WRITE_ONCE(vsi->tx_rings[i], NULL);
1358 }
1359 }
1360 }
1361 if (vsi->rx_rings) {
1362 ice_for_each_alloc_rxq(vsi, i) {
1363 if (vsi->rx_rings[i]) {
1364 kfree_rcu(vsi->rx_rings[i], rcu);
1365 WRITE_ONCE(vsi->rx_rings[i], NULL);
1366 }
1367 }
1368 }
1369}
1370
1371/**
1372 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1373 * @vsi: VSI which is having rings allocated
1374 */
1375static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1376{
1377 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1378 struct ice_pf *pf = vsi->back;
1379 struct device *dev;
1380 u16 i;
1381
1382 dev = ice_pf_to_dev(pf);
1383 /* Allocate Tx rings */
1384 ice_for_each_alloc_txq(vsi, i) {
1385 struct ice_tx_ring *ring;
1386
1387 /* allocate with kzalloc(), free with kfree_rcu() */
1388 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1389
1390 if (!ring)
1391 goto err_out;
1392
1393 ring->q_index = i;
1394 ring->reg_idx = vsi->txq_map[i];
1395 ring->vsi = vsi;
1396 ring->tx_tstamps = &pf->ptp.port.tx;
1397 ring->dev = dev;
1398 ring->count = vsi->num_tx_desc;
1399 ring->txq_teid = ICE_INVAL_TEID;
1400 if (dvm_ena)
1401 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1402 else
1403 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1404 WRITE_ONCE(vsi->tx_rings[i], ring);
1405 }
1406
1407 /* Allocate Rx rings */
1408 ice_for_each_alloc_rxq(vsi, i) {
1409 struct ice_rx_ring *ring;
1410
1411 /* allocate with kzalloc(), free with kfree_rcu() */
1412 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1413 if (!ring)
1414 goto err_out;
1415
1416 ring->q_index = i;
1417 ring->reg_idx = vsi->rxq_map[i];
1418 ring->vsi = vsi;
1419 ring->netdev = vsi->netdev;
1420 ring->dev = dev;
1421 ring->count = vsi->num_rx_desc;
1422 ring->cached_phctime = pf->ptp.cached_phc_time;
1423 WRITE_ONCE(vsi->rx_rings[i], ring);
1424 }
1425
1426 return 0;
1427
1428err_out:
1429 ice_vsi_clear_rings(vsi);
1430 return -ENOMEM;
1431}
1432
1433/**
1434 * ice_vsi_manage_rss_lut - disable/enable RSS
1435 * @vsi: the VSI being changed
1436 * @ena: boolean value indicating if this is an enable or disable request
1437 *
1438 * In the event of disable request for RSS, this function will zero out RSS
1439 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1440 * LUT.
1441 */
1442void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1443{
1444 u8 *lut;
1445
1446 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1447 if (!lut)
1448 return;
1449
1450 if (ena) {
1451 if (vsi->rss_lut_user)
1452 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1453 else
1454 ice_fill_rss_lut(lut, vsi->rss_table_size,
1455 vsi->rss_size);
1456 }
1457
1458 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1459 kfree(lut);
1460}
1461
1462/**
1463 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1464 * @vsi: VSI to be configured
1465 * @disable: set to true to have FCS / CRC in the frame data
1466 */
1467void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1468{
1469 int i;
1470
1471 ice_for_each_rxq(vsi, i)
1472 if (disable)
1473 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1474 else
1475 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1476}
1477
1478/**
1479 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1480 * @vsi: VSI to be configured
1481 */
1482int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1483{
1484 struct ice_pf *pf = vsi->back;
1485 struct device *dev;
1486 u8 *lut, *key;
1487 int err;
1488
1489 dev = ice_pf_to_dev(pf);
1490 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1491 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1492 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1493 } else {
1494 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1495
1496 /* If orig_rss_size is valid and it is less than determined
1497 * main VSI's rss_size, update main VSI's rss_size to be
1498 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1499 * RSS table gets programmed to be correct (whatever it was
1500 * to begin with (prior to setup-tc for ADQ config)
1501 */
1502 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1503 vsi->orig_rss_size <= vsi->num_rxq) {
1504 vsi->rss_size = vsi->orig_rss_size;
1505 /* now orig_rss_size is used, reset it to zero */
1506 vsi->orig_rss_size = 0;
1507 }
1508 }
1509
1510 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1511 if (!lut)
1512 return -ENOMEM;
1513
1514 if (vsi->rss_lut_user)
1515 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1516 else
1517 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1518
1519 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1520 if (err) {
1521 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1522 goto ice_vsi_cfg_rss_exit;
1523 }
1524
1525 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1526 if (!key) {
1527 err = -ENOMEM;
1528 goto ice_vsi_cfg_rss_exit;
1529 }
1530
1531 if (vsi->rss_hkey_user)
1532 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1533 else
1534 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1535
1536 err = ice_set_rss_key(vsi, key);
1537 if (err)
1538 dev_err(dev, "set_rss_key failed, error %d\n", err);
1539
1540 kfree(key);
1541ice_vsi_cfg_rss_exit:
1542 kfree(lut);
1543 return err;
1544}
1545
1546/**
1547 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1548 * @vsi: VSI to be configured
1549 *
1550 * This function will only be called during the VF VSI setup. Upon successful
1551 * completion of package download, this function will configure default RSS
1552 * input sets for VF VSI.
1553 */
1554static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1555{
1556 struct ice_pf *pf = vsi->back;
1557 struct device *dev;
1558 int status;
1559
1560 dev = ice_pf_to_dev(pf);
1561 if (ice_is_safe_mode(pf)) {
1562 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1563 vsi->vsi_num);
1564 return;
1565 }
1566
1567 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1568 if (status)
1569 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1570 vsi->vsi_num, status);
1571}
1572
1573static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1574 /* configure RSS for IPv4 with input set IP src/dst */
1575 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1576 /* configure RSS for IPv6 with input set IPv6 src/dst */
1577 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1578 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1579 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1580 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1581 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1582 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1583 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1584 /* configure RSS for sctp4 with input set IP src/dst - only support
1585 * RSS on SCTPv4 on outer headers (non-tunneled)
1586 */
1587 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1588 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1589 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1590 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1591 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1592 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1593 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1594 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1595 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1596 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1597 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1598 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1599 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1600 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1601 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1602 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1603 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1604 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1605 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1606 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1607
1608 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1609 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1610 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1611 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1612 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1613 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1614 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1615 * RSS on SCTPv6 on outer headers (non-tunneled)
1616 */
1617 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1618 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1619 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1620 {ICE_FLOW_SEG_HDR_ESP,
1621 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1622 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1623 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1624 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1625 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1626 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1627 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1628 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1629 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1630 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1631 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1632 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1633 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1634 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1635 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1636 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1637 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1638 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1639 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1640};
1641
1642/**
1643 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1644 * @vsi: VSI to be configured
1645 *
1646 * This function will only be called after successful download package call
1647 * during initialization of PF. Since the downloaded package will erase the
1648 * RSS section, this function will configure RSS input sets for different
1649 * flow types. The last profile added has the highest priority, therefore 2
1650 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1651 * (i.e. IPv4 src/dst TCP src/dst port).
1652 */
1653static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1654{
1655 u16 vsi_num = vsi->vsi_num;
1656 struct ice_pf *pf = vsi->back;
1657 struct ice_hw *hw = &pf->hw;
1658 struct device *dev;
1659 int status;
1660 u32 i;
1661
1662 dev = ice_pf_to_dev(pf);
1663 if (ice_is_safe_mode(pf)) {
1664 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1665 vsi_num);
1666 return;
1667 }
1668 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1669 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1670
1671 status = ice_add_rss_cfg(hw, vsi, cfg);
1672 if (status)
1673 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1674 cfg->addl_hdrs, cfg->hash_flds,
1675 cfg->hdr_type, cfg->symm);
1676 }
1677}
1678
1679/**
1680 * ice_pf_state_is_nominal - checks the PF for nominal state
1681 * @pf: pointer to PF to check
1682 *
1683 * Check the PF's state for a collection of bits that would indicate
1684 * the PF is in a state that would inhibit normal operation for
1685 * driver functionality.
1686 *
1687 * Returns true if PF is in a nominal state, false otherwise
1688 */
1689bool ice_pf_state_is_nominal(struct ice_pf *pf)
1690{
1691 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1692
1693 if (!pf)
1694 return false;
1695
1696 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1697 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1698 return false;
1699
1700 return true;
1701}
1702
1703/**
1704 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1705 * @vsi: the VSI to be updated
1706 */
1707void ice_update_eth_stats(struct ice_vsi *vsi)
1708{
1709 struct ice_eth_stats *prev_es, *cur_es;
1710 struct ice_hw *hw = &vsi->back->hw;
1711 struct ice_pf *pf = vsi->back;
1712 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1713
1714 prev_es = &vsi->eth_stats_prev;
1715 cur_es = &vsi->eth_stats;
1716
1717 if (ice_is_reset_in_progress(pf->state))
1718 vsi->stat_offsets_loaded = false;
1719
1720 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1721 &prev_es->rx_bytes, &cur_es->rx_bytes);
1722
1723 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1724 &prev_es->rx_unicast, &cur_es->rx_unicast);
1725
1726 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1727 &prev_es->rx_multicast, &cur_es->rx_multicast);
1728
1729 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1730 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1731
1732 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1733 &prev_es->rx_discards, &cur_es->rx_discards);
1734
1735 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1736 &prev_es->tx_bytes, &cur_es->tx_bytes);
1737
1738 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1739 &prev_es->tx_unicast, &cur_es->tx_unicast);
1740
1741 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1742 &prev_es->tx_multicast, &cur_es->tx_multicast);
1743
1744 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1745 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1746
1747 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1748 &prev_es->tx_errors, &cur_es->tx_errors);
1749
1750 vsi->stat_offsets_loaded = true;
1751}
1752
1753/**
1754 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1755 * @hw: HW pointer
1756 * @pf_q: index of the Rx queue in the PF's queue space
1757 * @rxdid: flexible descriptor RXDID
1758 * @prio: priority for the RXDID for this queue
1759 * @ena_ts: true to enable timestamp and false to disable timestamp
1760 */
1761void
1762ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1763 bool ena_ts)
1764{
1765 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1766
1767 /* clear any previous values */
1768 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1769 QRXFLXP_CNTXT_RXDID_PRIO_M |
1770 QRXFLXP_CNTXT_TS_M);
1771
1772 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1773 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1774
1775 if (ena_ts)
1776 /* Enable TimeSync on this queue */
1777 regval |= QRXFLXP_CNTXT_TS_M;
1778
1779 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1780}
1781
1782/**
1783 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1784 * @intrl: interrupt rate limit in usecs
1785 * @gran: interrupt rate limit granularity in usecs
1786 *
1787 * This function converts a decimal interrupt rate limit in usecs to the format
1788 * expected by firmware.
1789 */
1790static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1791{
1792 u32 val = intrl / gran;
1793
1794 if (val)
1795 return val | GLINT_RATE_INTRL_ENA_M;
1796 return 0;
1797}
1798
1799/**
1800 * ice_write_intrl - write throttle rate limit to interrupt specific register
1801 * @q_vector: pointer to interrupt specific structure
1802 * @intrl: throttle rate limit in microseconds to write
1803 */
1804void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1805{
1806 struct ice_hw *hw = &q_vector->vsi->back->hw;
1807
1808 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1809 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1810}
1811
1812static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1813{
1814 switch (rc->type) {
1815 case ICE_RX_CONTAINER:
1816 if (rc->rx_ring)
1817 return rc->rx_ring->q_vector;
1818 break;
1819 case ICE_TX_CONTAINER:
1820 if (rc->tx_ring)
1821 return rc->tx_ring->q_vector;
1822 break;
1823 default:
1824 break;
1825 }
1826
1827 return NULL;
1828}
1829
1830/**
1831 * __ice_write_itr - write throttle rate to register
1832 * @q_vector: pointer to interrupt data structure
1833 * @rc: pointer to ring container
1834 * @itr: throttle rate in microseconds to write
1835 */
1836static void __ice_write_itr(struct ice_q_vector *q_vector,
1837 struct ice_ring_container *rc, u16 itr)
1838{
1839 struct ice_hw *hw = &q_vector->vsi->back->hw;
1840
1841 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1842 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1843}
1844
1845/**
1846 * ice_write_itr - write throttle rate to queue specific register
1847 * @rc: pointer to ring container
1848 * @itr: throttle rate in microseconds to write
1849 */
1850void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1851{
1852 struct ice_q_vector *q_vector;
1853
1854 q_vector = ice_pull_qvec_from_rc(rc);
1855 if (!q_vector)
1856 return;
1857
1858 __ice_write_itr(q_vector, rc, itr);
1859}
1860
1861/**
1862 * ice_set_q_vector_intrl - set up interrupt rate limiting
1863 * @q_vector: the vector to be configured
1864 *
1865 * Interrupt rate limiting is local to the vector, not per-queue so we must
1866 * detect if either ring container has dynamic moderation enabled to decide
1867 * what to set the interrupt rate limit to via INTRL settings. In the case that
1868 * dynamic moderation is disabled on both, write the value with the cached
1869 * setting to make sure INTRL register matches the user visible value.
1870 */
1871void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1872{
1873 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1874 /* in the case of dynamic enabled, cap each vector to no more
1875 * than (4 us) 250,000 ints/sec, which allows low latency
1876 * but still less than 500,000 interrupts per second, which
1877 * reduces CPU a bit in the case of the lowest latency
1878 * setting. The 4 here is a value in microseconds.
1879 */
1880 ice_write_intrl(q_vector, 4);
1881 } else {
1882 ice_write_intrl(q_vector, q_vector->intrl);
1883 }
1884}
1885
1886/**
1887 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1888 * @vsi: the VSI being configured
1889 *
1890 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1891 * for the VF VSI.
1892 */
1893void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1894{
1895 struct ice_pf *pf = vsi->back;
1896 struct ice_hw *hw = &pf->hw;
1897 u16 txq = 0, rxq = 0;
1898 int i, q;
1899
1900 ice_for_each_q_vector(vsi, i) {
1901 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1902 u16 reg_idx = q_vector->reg_idx;
1903
1904 ice_cfg_itr(hw, q_vector);
1905
1906 /* Both Transmit Queue Interrupt Cause Control register
1907 * and Receive Queue Interrupt Cause control register
1908 * expects MSIX_INDX field to be the vector index
1909 * within the function space and not the absolute
1910 * vector index across PF or across device.
1911 * For SR-IOV VF VSIs queue vector index always starts
1912 * with 1 since first vector index(0) is used for OICR
1913 * in VF space. Since VMDq and other PF VSIs are within
1914 * the PF function space, use the vector index that is
1915 * tracked for this PF.
1916 */
1917 for (q = 0; q < q_vector->num_ring_tx; q++) {
1918 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1919 q_vector->tx.itr_idx);
1920 txq++;
1921 }
1922
1923 for (q = 0; q < q_vector->num_ring_rx; q++) {
1924 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1925 q_vector->rx.itr_idx);
1926 rxq++;
1927 }
1928 }
1929}
1930
1931/**
1932 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1933 * @vsi: the VSI whose rings are to be enabled
1934 *
1935 * Returns 0 on success and a negative value on error
1936 */
1937int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1938{
1939 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1940}
1941
1942/**
1943 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1944 * @vsi: the VSI whose rings are to be disabled
1945 *
1946 * Returns 0 on success and a negative value on error
1947 */
1948int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1949{
1950 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1951}
1952
1953/**
1954 * ice_vsi_stop_tx_rings - Disable Tx rings
1955 * @vsi: the VSI being configured
1956 * @rst_src: reset source
1957 * @rel_vmvf_num: Relative ID of VF/VM
1958 * @rings: Tx ring array to be stopped
1959 * @count: number of Tx ring array elements
1960 */
1961static int
1962ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1963 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1964{
1965 u16 q_idx;
1966
1967 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1968 return -EINVAL;
1969
1970 for (q_idx = 0; q_idx < count; q_idx++) {
1971 struct ice_txq_meta txq_meta = { };
1972 int status;
1973
1974 if (!rings || !rings[q_idx])
1975 return -EINVAL;
1976
1977 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1978 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1979 rings[q_idx], &txq_meta);
1980
1981 if (status)
1982 return status;
1983 }
1984
1985 return 0;
1986}
1987
1988/**
1989 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1990 * @vsi: the VSI being configured
1991 * @rst_src: reset source
1992 * @rel_vmvf_num: Relative ID of VF/VM
1993 */
1994int
1995ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1996 u16 rel_vmvf_num)
1997{
1998 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
1999}
2000
2001/**
2002 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2003 * @vsi: the VSI being configured
2004 */
2005int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2006{
2007 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2008}
2009
2010/**
2011 * ice_vsi_is_rx_queue_active
2012 * @vsi: the VSI being configured
2013 *
2014 * Return true if at least one queue is active.
2015 */
2016bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2017{
2018 struct ice_pf *pf = vsi->back;
2019 struct ice_hw *hw = &pf->hw;
2020 int i;
2021
2022 ice_for_each_rxq(vsi, i) {
2023 u32 rx_reg;
2024 int pf_q;
2025
2026 pf_q = vsi->rxq_map[i];
2027 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2028 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2029 return true;
2030 }
2031
2032 return false;
2033}
2034
2035static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2036{
2037 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2038 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2039 vsi->tc_cfg.numtc = 1;
2040 return;
2041 }
2042
2043 /* set VSI TC information based on DCB config */
2044 ice_vsi_set_dcb_tc_cfg(vsi);
2045}
2046
2047/**
2048 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2049 * @vsi: the VSI being configured
2050 * @tx: bool to determine Tx or Rx rule
2051 * @create: bool to determine create or remove Rule
2052 */
2053void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2054{
2055 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2056 enum ice_sw_fwd_act_type act);
2057 struct ice_pf *pf = vsi->back;
2058 struct device *dev;
2059 int status;
2060
2061 dev = ice_pf_to_dev(pf);
2062 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2063
2064 if (tx) {
2065 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2066 ICE_DROP_PACKET);
2067 } else {
2068 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2069 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2070 create);
2071 } else {
2072 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2073 ICE_FWD_TO_VSI);
2074 }
2075 }
2076
2077 if (status)
2078 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2079 create ? "adding" : "removing", tx ? "TX" : "RX",
2080 vsi->vsi_num, status);
2081}
2082
2083/**
2084 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2085 * @vsi: pointer to the VSI
2086 *
2087 * This function will allocate new scheduler aggregator now if needed and will
2088 * move specified VSI into it.
2089 */
2090static void ice_set_agg_vsi(struct ice_vsi *vsi)
2091{
2092 struct device *dev = ice_pf_to_dev(vsi->back);
2093 struct ice_agg_node *agg_node_iter = NULL;
2094 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2095 struct ice_agg_node *agg_node = NULL;
2096 int node_offset, max_agg_nodes = 0;
2097 struct ice_port_info *port_info;
2098 struct ice_pf *pf = vsi->back;
2099 u32 agg_node_id_start = 0;
2100 int status;
2101
2102 /* create (as needed) scheduler aggregator node and move VSI into
2103 * corresponding aggregator node
2104 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2105 * - VF aggregator nodes will contain VF VSI
2106 */
2107 port_info = pf->hw.port_info;
2108 if (!port_info)
2109 return;
2110
2111 switch (vsi->type) {
2112 case ICE_VSI_CTRL:
2113 case ICE_VSI_CHNL:
2114 case ICE_VSI_LB:
2115 case ICE_VSI_PF:
2116 case ICE_VSI_SF:
2117 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2118 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2119 agg_node_iter = &pf->pf_agg_node[0];
2120 break;
2121 case ICE_VSI_VF:
2122 /* user can create 'n' VFs on a given PF, but since max children
2123 * per aggregator node can be only 64. Following code handles
2124 * aggregator(s) for VF VSIs, either selects a agg_node which
2125 * was already created provided num_vsis < 64, otherwise
2126 * select next available node, which will be created
2127 */
2128 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2129 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2130 agg_node_iter = &pf->vf_agg_node[0];
2131 break;
2132 default:
2133 /* other VSI type, handle later if needed */
2134 dev_dbg(dev, "unexpected VSI type %s\n",
2135 ice_vsi_type_str(vsi->type));
2136 return;
2137 }
2138
2139 /* find the appropriate aggregator node */
2140 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2141 /* see if we can find space in previously created
2142 * node if num_vsis < 64, otherwise skip
2143 */
2144 if (agg_node_iter->num_vsis &&
2145 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2146 agg_node_iter++;
2147 continue;
2148 }
2149
2150 if (agg_node_iter->valid &&
2151 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2152 agg_id = agg_node_iter->agg_id;
2153 agg_node = agg_node_iter;
2154 break;
2155 }
2156
2157 /* find unclaimed agg_id */
2158 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2159 agg_id = node_offset + agg_node_id_start;
2160 agg_node = agg_node_iter;
2161 break;
2162 }
2163 /* move to next agg_node */
2164 agg_node_iter++;
2165 }
2166
2167 if (!agg_node)
2168 return;
2169
2170 /* if selected aggregator node was not created, create it */
2171 if (!agg_node->valid) {
2172 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2173 (u8)vsi->tc_cfg.ena_tc);
2174 if (status) {
2175 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2176 agg_id);
2177 return;
2178 }
2179 /* aggregator node is created, store the needed info */
2180 agg_node->valid = true;
2181 agg_node->agg_id = agg_id;
2182 }
2183
2184 /* move VSI to corresponding aggregator node */
2185 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2186 (u8)vsi->tc_cfg.ena_tc);
2187 if (status) {
2188 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2189 vsi->idx, agg_id);
2190 return;
2191 }
2192
2193 /* keep active children count for aggregator node */
2194 agg_node->num_vsis++;
2195
2196 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2197 * to aggregator node
2198 */
2199 vsi->agg_node = agg_node;
2200 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2201 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2202 vsi->agg_node->num_vsis);
2203}
2204
2205static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2206{
2207 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2208 struct device *dev = ice_pf_to_dev(pf);
2209 int ret, i;
2210
2211 /* configure VSI nodes based on number of queues and TC's */
2212 ice_for_each_traffic_class(i) {
2213 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2214 continue;
2215
2216 if (vsi->type == ICE_VSI_CHNL) {
2217 if (!vsi->alloc_txq && vsi->num_txq)
2218 max_txqs[i] = vsi->num_txq;
2219 else
2220 max_txqs[i] = pf->num_lan_tx;
2221 } else {
2222 max_txqs[i] = vsi->alloc_txq;
2223 }
2224
2225 if (vsi->type == ICE_VSI_PF)
2226 max_txqs[i] += vsi->num_xdp_txq;
2227 }
2228
2229 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2230 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2231 max_txqs);
2232 if (ret) {
2233 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2234 vsi->vsi_num, ret);
2235 return ret;
2236 }
2237
2238 return 0;
2239}
2240
2241/**
2242 * ice_vsi_cfg_def - configure default VSI based on the type
2243 * @vsi: pointer to VSI
2244 */
2245static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2246{
2247 struct device *dev = ice_pf_to_dev(vsi->back);
2248 struct ice_pf *pf = vsi->back;
2249 int ret;
2250
2251 vsi->vsw = pf->first_sw;
2252
2253 ret = ice_vsi_alloc_def(vsi, vsi->ch);
2254 if (ret)
2255 return ret;
2256
2257 /* allocate memory for Tx/Rx ring stat pointers */
2258 ret = ice_vsi_alloc_stat_arrays(vsi);
2259 if (ret)
2260 goto unroll_vsi_alloc;
2261
2262 ice_alloc_fd_res(vsi);
2263
2264 ret = ice_vsi_get_qs(vsi);
2265 if (ret) {
2266 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2267 vsi->idx);
2268 goto unroll_vsi_alloc_stat;
2269 }
2270
2271 /* set RSS capabilities */
2272 ice_vsi_set_rss_params(vsi);
2273
2274 /* set TC configuration */
2275 ice_vsi_set_tc_cfg(vsi);
2276
2277 /* create the VSI */
2278 ret = ice_vsi_init(vsi, vsi->flags);
2279 if (ret)
2280 goto unroll_get_qs;
2281
2282 ice_vsi_init_vlan_ops(vsi);
2283
2284 switch (vsi->type) {
2285 case ICE_VSI_CTRL:
2286 case ICE_VSI_SF:
2287 case ICE_VSI_PF:
2288 ret = ice_vsi_alloc_q_vectors(vsi);
2289 if (ret)
2290 goto unroll_vsi_init;
2291
2292 ret = ice_vsi_alloc_rings(vsi);
2293 if (ret)
2294 goto unroll_vector_base;
2295
2296 ret = ice_vsi_alloc_ring_stats(vsi);
2297 if (ret)
2298 goto unroll_vector_base;
2299
2300 if (ice_is_xdp_ena_vsi(vsi)) {
2301 ret = ice_vsi_determine_xdp_res(vsi);
2302 if (ret)
2303 goto unroll_vector_base;
2304 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2305 ICE_XDP_CFG_PART);
2306 if (ret)
2307 goto unroll_vector_base;
2308 }
2309
2310 ice_vsi_map_rings_to_vectors(vsi);
2311
2312 vsi->stat_offsets_loaded = false;
2313
2314 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2315 if (vsi->type != ICE_VSI_CTRL)
2316 /* Do not exit if configuring RSS had an issue, at
2317 * least receive traffic on first queue. Hence no
2318 * need to capture return value
2319 */
2320 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2321 ice_vsi_cfg_rss_lut_key(vsi);
2322 ice_vsi_set_rss_flow_fld(vsi);
2323 }
2324 ice_init_arfs(vsi);
2325 break;
2326 case ICE_VSI_CHNL:
2327 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2328 ice_vsi_cfg_rss_lut_key(vsi);
2329 ice_vsi_set_rss_flow_fld(vsi);
2330 }
2331 break;
2332 case ICE_VSI_VF:
2333 /* VF driver will take care of creating netdev for this type and
2334 * map queues to vectors through Virtchnl, PF driver only
2335 * creates a VSI and corresponding structures for bookkeeping
2336 * purpose
2337 */
2338 ret = ice_vsi_alloc_q_vectors(vsi);
2339 if (ret)
2340 goto unroll_vsi_init;
2341
2342 ret = ice_vsi_alloc_rings(vsi);
2343 if (ret)
2344 goto unroll_alloc_q_vector;
2345
2346 ret = ice_vsi_alloc_ring_stats(vsi);
2347 if (ret)
2348 goto unroll_vector_base;
2349
2350 vsi->stat_offsets_loaded = false;
2351
2352 /* Do not exit if configuring RSS had an issue, at least
2353 * receive traffic on first queue. Hence no need to capture
2354 * return value
2355 */
2356 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2357 ice_vsi_cfg_rss_lut_key(vsi);
2358 ice_vsi_set_vf_rss_flow_fld(vsi);
2359 }
2360 break;
2361 case ICE_VSI_LB:
2362 ret = ice_vsi_alloc_rings(vsi);
2363 if (ret)
2364 goto unroll_vsi_init;
2365
2366 ret = ice_vsi_alloc_ring_stats(vsi);
2367 if (ret)
2368 goto unroll_vector_base;
2369
2370 break;
2371 default:
2372 /* clean up the resources and exit */
2373 ret = -EINVAL;
2374 goto unroll_vsi_init;
2375 }
2376
2377 return 0;
2378
2379unroll_vector_base:
2380 /* reclaim SW interrupts back to the common pool */
2381unroll_alloc_q_vector:
2382 ice_vsi_free_q_vectors(vsi);
2383unroll_vsi_init:
2384 ice_vsi_delete_from_hw(vsi);
2385unroll_get_qs:
2386 ice_vsi_put_qs(vsi);
2387unroll_vsi_alloc_stat:
2388 ice_vsi_free_stats(vsi);
2389unroll_vsi_alloc:
2390 ice_vsi_free_arrays(vsi);
2391 return ret;
2392}
2393
2394/**
2395 * ice_vsi_cfg - configure a previously allocated VSI
2396 * @vsi: pointer to VSI
2397 */
2398int ice_vsi_cfg(struct ice_vsi *vsi)
2399{
2400 struct ice_pf *pf = vsi->back;
2401 int ret;
2402
2403 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2404 return -EINVAL;
2405
2406 ret = ice_vsi_cfg_def(vsi);
2407 if (ret)
2408 return ret;
2409
2410 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2411 if (ret)
2412 ice_vsi_decfg(vsi);
2413
2414 if (vsi->type == ICE_VSI_CTRL) {
2415 if (vsi->vf) {
2416 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2417 vsi->vf->ctrl_vsi_idx = vsi->idx;
2418 } else {
2419 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2420 pf->ctrl_vsi_idx = vsi->idx;
2421 }
2422 }
2423
2424 return ret;
2425}
2426
2427/**
2428 * ice_vsi_decfg - remove all VSI configuration
2429 * @vsi: pointer to VSI
2430 */
2431void ice_vsi_decfg(struct ice_vsi *vsi)
2432{
2433 struct ice_pf *pf = vsi->back;
2434 int err;
2435
2436 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2437 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2438 if (err)
2439 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2440 vsi->vsi_num, err);
2441
2442 if (vsi->xdp_rings)
2443 /* return value check can be skipped here, it always returns
2444 * 0 if reset is in progress
2445 */
2446 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2447
2448 ice_vsi_clear_rings(vsi);
2449 ice_vsi_free_q_vectors(vsi);
2450 ice_vsi_put_qs(vsi);
2451 ice_vsi_free_arrays(vsi);
2452
2453 /* SR-IOV determines needed MSIX resources all at once instead of per
2454 * VSI since when VFs are spawned we know how many VFs there are and how
2455 * many interrupts each VF needs. SR-IOV MSIX resources are also
2456 * cleared in the same manner.
2457 */
2458
2459 if (vsi->type == ICE_VSI_VF &&
2460 vsi->agg_node && vsi->agg_node->valid)
2461 vsi->agg_node->num_vsis--;
2462}
2463
2464/**
2465 * ice_vsi_setup - Set up a VSI by a given type
2466 * @pf: board private structure
2467 * @params: parameters to use when creating the VSI
2468 *
2469 * This allocates the sw VSI structure and its queue resources.
2470 *
2471 * Returns pointer to the successfully allocated and configured VSI sw struct on
2472 * success, NULL on failure.
2473 */
2474struct ice_vsi *
2475ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2476{
2477 struct device *dev = ice_pf_to_dev(pf);
2478 struct ice_vsi *vsi;
2479 int ret;
2480
2481 /* ice_vsi_setup can only initialize a new VSI, and we must have
2482 * a port_info structure for it.
2483 */
2484 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2485 WARN_ON(!params->port_info))
2486 return NULL;
2487
2488 vsi = ice_vsi_alloc(pf);
2489 if (!vsi) {
2490 dev_err(dev, "could not allocate VSI\n");
2491 return NULL;
2492 }
2493
2494 vsi->params = *params;
2495 ret = ice_vsi_cfg(vsi);
2496 if (ret)
2497 goto err_vsi_cfg;
2498
2499 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2500 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2501 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2502 * The rule is added once for PF VSI in order to create appropriate
2503 * recipe, since VSI/VSI list is ignored with drop action...
2504 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2505 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2506 * settings in the HW.
2507 */
2508 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2509 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2510 ICE_DROP_PACKET);
2511 ice_cfg_sw_lldp(vsi, true, true);
2512 }
2513
2514 if (!vsi->agg_node)
2515 ice_set_agg_vsi(vsi);
2516
2517 return vsi;
2518
2519err_vsi_cfg:
2520 ice_vsi_free(vsi);
2521
2522 return NULL;
2523}
2524
2525/**
2526 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2527 * @vsi: the VSI being cleaned up
2528 */
2529static void ice_vsi_release_msix(struct ice_vsi *vsi)
2530{
2531 struct ice_pf *pf = vsi->back;
2532 struct ice_hw *hw = &pf->hw;
2533 u32 txq = 0;
2534 u32 rxq = 0;
2535 int i, q;
2536
2537 ice_for_each_q_vector(vsi, i) {
2538 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2539
2540 ice_write_intrl(q_vector, 0);
2541 for (q = 0; q < q_vector->num_ring_tx; q++) {
2542 ice_write_itr(&q_vector->tx, 0);
2543 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2544 if (vsi->xdp_rings) {
2545 u32 xdp_txq = txq + vsi->num_xdp_txq;
2546
2547 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2548 }
2549 txq++;
2550 }
2551
2552 for (q = 0; q < q_vector->num_ring_rx; q++) {
2553 ice_write_itr(&q_vector->rx, 0);
2554 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2555 rxq++;
2556 }
2557 }
2558
2559 ice_flush(hw);
2560}
2561
2562/**
2563 * ice_vsi_free_irq - Free the IRQ association with the OS
2564 * @vsi: the VSI being configured
2565 */
2566void ice_vsi_free_irq(struct ice_vsi *vsi)
2567{
2568 struct ice_pf *pf = vsi->back;
2569 int i;
2570
2571 if (!vsi->q_vectors || !vsi->irqs_ready)
2572 return;
2573
2574 ice_vsi_release_msix(vsi);
2575 if (vsi->type == ICE_VSI_VF)
2576 return;
2577
2578 vsi->irqs_ready = false;
2579 ice_free_cpu_rx_rmap(vsi);
2580
2581 ice_for_each_q_vector(vsi, i) {
2582 int irq_num;
2583
2584 irq_num = vsi->q_vectors[i]->irq.virq;
2585
2586 /* free only the irqs that were actually requested */
2587 if (!vsi->q_vectors[i] ||
2588 !(vsi->q_vectors[i]->num_ring_tx ||
2589 vsi->q_vectors[i]->num_ring_rx))
2590 continue;
2591
2592 /* clear the affinity notifier in the IRQ descriptor */
2593 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2594 irq_set_affinity_notifier(irq_num, NULL);
2595
2596 /* clear the affinity_hint in the IRQ descriptor */
2597 irq_update_affinity_hint(irq_num, NULL);
2598 synchronize_irq(irq_num);
2599 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2600 }
2601}
2602
2603/**
2604 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2605 * @vsi: the VSI having resources freed
2606 */
2607void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2608{
2609 int i;
2610
2611 if (!vsi->tx_rings)
2612 return;
2613
2614 ice_for_each_txq(vsi, i)
2615 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2616 ice_free_tx_ring(vsi->tx_rings[i]);
2617}
2618
2619/**
2620 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2621 * @vsi: the VSI having resources freed
2622 */
2623void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2624{
2625 int i;
2626
2627 if (!vsi->rx_rings)
2628 return;
2629
2630 ice_for_each_rxq(vsi, i)
2631 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2632 ice_free_rx_ring(vsi->rx_rings[i]);
2633}
2634
2635/**
2636 * ice_vsi_close - Shut down a VSI
2637 * @vsi: the VSI being shut down
2638 */
2639void ice_vsi_close(struct ice_vsi *vsi)
2640{
2641 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2642 ice_down(vsi);
2643
2644 ice_vsi_clear_napi_queues(vsi);
2645 ice_vsi_free_irq(vsi);
2646 ice_vsi_free_tx_rings(vsi);
2647 ice_vsi_free_rx_rings(vsi);
2648}
2649
2650/**
2651 * ice_ena_vsi - resume a VSI
2652 * @vsi: the VSI being resume
2653 * @locked: is the rtnl_lock already held
2654 */
2655int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2656{
2657 int err = 0;
2658
2659 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2660 return 0;
2661
2662 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2663
2664 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2665 vsi->type == ICE_VSI_SF)) {
2666 if (netif_running(vsi->netdev)) {
2667 if (!locked)
2668 rtnl_lock();
2669
2670 err = ice_open_internal(vsi->netdev);
2671
2672 if (!locked)
2673 rtnl_unlock();
2674 }
2675 } else if (vsi->type == ICE_VSI_CTRL) {
2676 err = ice_vsi_open_ctrl(vsi);
2677 }
2678
2679 return err;
2680}
2681
2682/**
2683 * ice_dis_vsi - pause a VSI
2684 * @vsi: the VSI being paused
2685 * @locked: is the rtnl_lock already held
2686 */
2687void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2688{
2689 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2690
2691 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2692
2693 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2694 vsi->type == ICE_VSI_SF)) {
2695 if (netif_running(vsi->netdev)) {
2696 if (!locked)
2697 rtnl_lock();
2698 already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2699 if (!already_down)
2700 ice_vsi_close(vsi);
2701
2702 if (!locked)
2703 rtnl_unlock();
2704 } else if (!already_down) {
2705 ice_vsi_close(vsi);
2706 }
2707 } else if (vsi->type == ICE_VSI_CTRL && !already_down) {
2708 ice_vsi_close(vsi);
2709 }
2710}
2711
2712/**
2713 * ice_vsi_set_napi_queues - associate netdev queues with napi
2714 * @vsi: VSI pointer
2715 *
2716 * Associate queue[s] with napi for all vectors.
2717 * The caller must hold rtnl_lock.
2718 */
2719void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2720{
2721 struct net_device *netdev = vsi->netdev;
2722 int q_idx, v_idx;
2723
2724 if (!netdev)
2725 return;
2726
2727 ice_for_each_rxq(vsi, q_idx)
2728 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX,
2729 &vsi->rx_rings[q_idx]->q_vector->napi);
2730
2731 ice_for_each_txq(vsi, q_idx)
2732 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX,
2733 &vsi->tx_rings[q_idx]->q_vector->napi);
2734 /* Also set the interrupt number for the NAPI */
2735 ice_for_each_q_vector(vsi, v_idx) {
2736 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2737
2738 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2739 }
2740}
2741
2742/**
2743 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi
2744 * @vsi: VSI pointer
2745 *
2746 * Clear the association between all VSI queues queue[s] and napi.
2747 * The caller must hold rtnl_lock.
2748 */
2749void ice_vsi_clear_napi_queues(struct ice_vsi *vsi)
2750{
2751 struct net_device *netdev = vsi->netdev;
2752 int q_idx;
2753
2754 if (!netdev)
2755 return;
2756
2757 ice_for_each_txq(vsi, q_idx)
2758 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL);
2759
2760 ice_for_each_rxq(vsi, q_idx)
2761 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL);
2762}
2763
2764/**
2765 * ice_napi_add - register NAPI handler for the VSI
2766 * @vsi: VSI for which NAPI handler is to be registered
2767 *
2768 * This function is only called in the driver's load path. Registering the NAPI
2769 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2770 * reset/rebuild, etc.)
2771 */
2772void ice_napi_add(struct ice_vsi *vsi)
2773{
2774 int v_idx;
2775
2776 if (!vsi->netdev)
2777 return;
2778
2779 ice_for_each_q_vector(vsi, v_idx)
2780 netif_napi_add_config(vsi->netdev,
2781 &vsi->q_vectors[v_idx]->napi,
2782 ice_napi_poll,
2783 v_idx);
2784}
2785
2786/**
2787 * ice_vsi_release - Delete a VSI and free its resources
2788 * @vsi: the VSI being removed
2789 *
2790 * Returns 0 on success or < 0 on error
2791 */
2792int ice_vsi_release(struct ice_vsi *vsi)
2793{
2794 struct ice_pf *pf;
2795
2796 if (!vsi->back)
2797 return -ENODEV;
2798 pf = vsi->back;
2799
2800 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2801 ice_rss_clean(vsi);
2802
2803 ice_vsi_close(vsi);
2804
2805 /* The Rx rule will only exist to remove if the LLDP FW
2806 * engine is currently stopped
2807 */
2808 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2809 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2810 ice_cfg_sw_lldp(vsi, false, false);
2811
2812 ice_vsi_decfg(vsi);
2813
2814 /* retain SW VSI data structure since it is needed to unregister and
2815 * free VSI netdev when PF is not in reset recovery pending state,\
2816 * for ex: during rmmod.
2817 */
2818 if (!ice_is_reset_in_progress(pf->state))
2819 ice_vsi_delete(vsi);
2820
2821 return 0;
2822}
2823
2824/**
2825 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2826 * @vsi: VSI connected with q_vectors
2827 * @coalesce: array of struct with stored coalesce
2828 *
2829 * Returns array size.
2830 */
2831static int
2832ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2833 struct ice_coalesce_stored *coalesce)
2834{
2835 int i;
2836
2837 ice_for_each_q_vector(vsi, i) {
2838 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2839
2840 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2841 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2842 coalesce[i].intrl = q_vector->intrl;
2843
2844 if (i < vsi->num_txq)
2845 coalesce[i].tx_valid = true;
2846 if (i < vsi->num_rxq)
2847 coalesce[i].rx_valid = true;
2848 }
2849
2850 return vsi->num_q_vectors;
2851}
2852
2853/**
2854 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2855 * @vsi: VSI connected with q_vectors
2856 * @coalesce: pointer to array of struct with stored coalesce
2857 * @size: size of coalesce array
2858 *
2859 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2860 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2861 * to default value.
2862 */
2863static void
2864ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2865 struct ice_coalesce_stored *coalesce, int size)
2866{
2867 struct ice_ring_container *rc;
2868 int i;
2869
2870 if ((size && !coalesce) || !vsi)
2871 return;
2872
2873 /* There are a couple of cases that have to be handled here:
2874 * 1. The case where the number of queue vectors stays the same, but
2875 * the number of Tx or Rx rings changes (the first for loop)
2876 * 2. The case where the number of queue vectors increased (the
2877 * second for loop)
2878 */
2879 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2880 /* There are 2 cases to handle here and they are the same for
2881 * both Tx and Rx:
2882 * if the entry was valid previously (coalesce[i].[tr]x_valid
2883 * and the loop variable is less than the number of rings
2884 * allocated, then write the previous values
2885 *
2886 * if the entry was not valid previously, but the number of
2887 * rings is less than are allocated (this means the number of
2888 * rings increased from previously), then write out the
2889 * values in the first element
2890 *
2891 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2892 * as there is no harm because the dynamic algorithm
2893 * will just overwrite.
2894 */
2895 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2896 rc = &vsi->q_vectors[i]->rx;
2897 rc->itr_settings = coalesce[i].itr_rx;
2898 ice_write_itr(rc, rc->itr_setting);
2899 } else if (i < vsi->alloc_rxq) {
2900 rc = &vsi->q_vectors[i]->rx;
2901 rc->itr_settings = coalesce[0].itr_rx;
2902 ice_write_itr(rc, rc->itr_setting);
2903 }
2904
2905 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2906 rc = &vsi->q_vectors[i]->tx;
2907 rc->itr_settings = coalesce[i].itr_tx;
2908 ice_write_itr(rc, rc->itr_setting);
2909 } else if (i < vsi->alloc_txq) {
2910 rc = &vsi->q_vectors[i]->tx;
2911 rc->itr_settings = coalesce[0].itr_tx;
2912 ice_write_itr(rc, rc->itr_setting);
2913 }
2914
2915 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2916 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2917 }
2918
2919 /* the number of queue vectors increased so write whatever is in
2920 * the first element
2921 */
2922 for (; i < vsi->num_q_vectors; i++) {
2923 /* transmit */
2924 rc = &vsi->q_vectors[i]->tx;
2925 rc->itr_settings = coalesce[0].itr_tx;
2926 ice_write_itr(rc, rc->itr_setting);
2927
2928 /* receive */
2929 rc = &vsi->q_vectors[i]->rx;
2930 rc->itr_settings = coalesce[0].itr_rx;
2931 ice_write_itr(rc, rc->itr_setting);
2932
2933 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
2934 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2935 }
2936}
2937
2938/**
2939 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
2940 * @vsi: VSI pointer
2941 */
2942static int
2943ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
2944{
2945 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
2946 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
2947 struct ice_ring_stats **tx_ring_stats;
2948 struct ice_ring_stats **rx_ring_stats;
2949 struct ice_vsi_stats *vsi_stat;
2950 struct ice_pf *pf = vsi->back;
2951 u16 prev_txq = vsi->alloc_txq;
2952 u16 prev_rxq = vsi->alloc_rxq;
2953 int i;
2954
2955 vsi_stat = pf->vsi_stats[vsi->idx];
2956
2957 if (req_txq < prev_txq) {
2958 for (i = req_txq; i < prev_txq; i++) {
2959 if (vsi_stat->tx_ring_stats[i]) {
2960 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
2961 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
2962 }
2963 }
2964 }
2965
2966 tx_ring_stats = vsi_stat->tx_ring_stats;
2967 vsi_stat->tx_ring_stats =
2968 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
2969 sizeof(*vsi_stat->tx_ring_stats),
2970 GFP_KERNEL | __GFP_ZERO);
2971 if (!vsi_stat->tx_ring_stats) {
2972 vsi_stat->tx_ring_stats = tx_ring_stats;
2973 return -ENOMEM;
2974 }
2975
2976 if (req_rxq < prev_rxq) {
2977 for (i = req_rxq; i < prev_rxq; i++) {
2978 if (vsi_stat->rx_ring_stats[i]) {
2979 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
2980 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
2981 }
2982 }
2983 }
2984
2985 rx_ring_stats = vsi_stat->rx_ring_stats;
2986 vsi_stat->rx_ring_stats =
2987 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
2988 sizeof(*vsi_stat->rx_ring_stats),
2989 GFP_KERNEL | __GFP_ZERO);
2990 if (!vsi_stat->rx_ring_stats) {
2991 vsi_stat->rx_ring_stats = rx_ring_stats;
2992 return -ENOMEM;
2993 }
2994
2995 return 0;
2996}
2997
2998/**
2999 * ice_vsi_rebuild - Rebuild VSI after reset
3000 * @vsi: VSI to be rebuild
3001 * @vsi_flags: flags used for VSI rebuild flow
3002 *
3003 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3004 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3005 *
3006 * Returns 0 on success and negative value on failure
3007 */
3008int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3009{
3010 struct ice_coalesce_stored *coalesce;
3011 int prev_num_q_vectors;
3012 struct ice_pf *pf;
3013 int ret;
3014
3015 if (!vsi)
3016 return -EINVAL;
3017
3018 vsi->flags = vsi_flags;
3019 pf = vsi->back;
3020 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3021 return -EINVAL;
3022
3023 mutex_lock(&vsi->xdp_state_lock);
3024
3025 ret = ice_vsi_realloc_stat_arrays(vsi);
3026 if (ret)
3027 goto unlock;
3028
3029 ice_vsi_decfg(vsi);
3030 ret = ice_vsi_cfg_def(vsi);
3031 if (ret)
3032 goto unlock;
3033
3034 coalesce = kcalloc(vsi->num_q_vectors,
3035 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3036 if (!coalesce) {
3037 ret = -ENOMEM;
3038 goto decfg;
3039 }
3040
3041 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3042
3043 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3044 if (ret) {
3045 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3046 ret = -EIO;
3047 goto free_coalesce;
3048 }
3049
3050 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3051 goto free_coalesce;
3052 }
3053
3054 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3055 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3056
3057free_coalesce:
3058 kfree(coalesce);
3059decfg:
3060 if (ret)
3061 ice_vsi_decfg(vsi);
3062unlock:
3063 mutex_unlock(&vsi->xdp_state_lock);
3064 return ret;
3065}
3066
3067/**
3068 * ice_is_reset_in_progress - check for a reset in progress
3069 * @state: PF state field
3070 */
3071bool ice_is_reset_in_progress(unsigned long *state)
3072{
3073 return test_bit(ICE_RESET_OICR_RECV, state) ||
3074 test_bit(ICE_PFR_REQ, state) ||
3075 test_bit(ICE_CORER_REQ, state) ||
3076 test_bit(ICE_GLOBR_REQ, state);
3077}
3078
3079/**
3080 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3081 * @pf: pointer to the PF structure
3082 * @timeout: length of time to wait, in jiffies
3083 *
3084 * Wait (sleep) for a short time until the driver finishes cleaning up from
3085 * a device reset. The caller must be able to sleep. Use this to delay
3086 * operations that could fail while the driver is cleaning up after a device
3087 * reset.
3088 *
3089 * Returns 0 on success, -EBUSY if the reset is not finished within the
3090 * timeout, and -ERESTARTSYS if the thread was interrupted.
3091 */
3092int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3093{
3094 long ret;
3095
3096 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3097 !ice_is_reset_in_progress(pf->state),
3098 timeout);
3099 if (ret < 0)
3100 return ret;
3101 else if (!ret)
3102 return -EBUSY;
3103 else
3104 return 0;
3105}
3106
3107/**
3108 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3109 * @vsi: VSI being configured
3110 * @ctx: the context buffer returned from AQ VSI update command
3111 */
3112static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3113{
3114 vsi->info.mapping_flags = ctx->info.mapping_flags;
3115 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3116 sizeof(vsi->info.q_mapping));
3117 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3118 sizeof(vsi->info.tc_mapping));
3119}
3120
3121/**
3122 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3123 * @vsi: the VSI being configured
3124 * @ena_tc: TC map to be enabled
3125 */
3126void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3127{
3128 struct net_device *netdev = vsi->netdev;
3129 struct ice_pf *pf = vsi->back;
3130 int numtc = vsi->tc_cfg.numtc;
3131 struct ice_dcbx_cfg *dcbcfg;
3132 u8 netdev_tc;
3133 int i;
3134
3135 if (!netdev)
3136 return;
3137
3138 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3139 if (vsi->type == ICE_VSI_CHNL)
3140 return;
3141
3142 if (!ena_tc) {
3143 netdev_reset_tc(netdev);
3144 return;
3145 }
3146
3147 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3148 numtc = vsi->all_numtc;
3149
3150 if (netdev_set_num_tc(netdev, numtc))
3151 return;
3152
3153 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3154
3155 ice_for_each_traffic_class(i)
3156 if (vsi->tc_cfg.ena_tc & BIT(i))
3157 netdev_set_tc_queue(netdev,
3158 vsi->tc_cfg.tc_info[i].netdev_tc,
3159 vsi->tc_cfg.tc_info[i].qcount_tx,
3160 vsi->tc_cfg.tc_info[i].qoffset);
3161 /* setup TC queue map for CHNL TCs */
3162 ice_for_each_chnl_tc(i) {
3163 if (!(vsi->all_enatc & BIT(i)))
3164 break;
3165 if (!vsi->mqprio_qopt.qopt.count[i])
3166 break;
3167 netdev_set_tc_queue(netdev, i,
3168 vsi->mqprio_qopt.qopt.count[i],
3169 vsi->mqprio_qopt.qopt.offset[i]);
3170 }
3171
3172 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3173 return;
3174
3175 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3176 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3177
3178 /* Get the mapped netdev TC# for the UP */
3179 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3180 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3181 }
3182}
3183
3184/**
3185 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3186 * @vsi: the VSI being configured,
3187 * @ctxt: VSI context structure
3188 * @ena_tc: number of traffic classes to enable
3189 *
3190 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3191 */
3192static int
3193ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3194 u8 ena_tc)
3195{
3196 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3197 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3198 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3199 u16 new_txq, new_rxq;
3200 u8 netdev_tc = 0;
3201 int i;
3202
3203 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3204
3205 pow = order_base_2(tc0_qcount);
3206 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3207 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3208
3209 ice_for_each_traffic_class(i) {
3210 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3211 /* TC is not enabled */
3212 vsi->tc_cfg.tc_info[i].qoffset = 0;
3213 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3214 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3215 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3216 ctxt->info.tc_mapping[i] = 0;
3217 continue;
3218 }
3219
3220 offset = vsi->mqprio_qopt.qopt.offset[i];
3221 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3222 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3223 vsi->tc_cfg.tc_info[i].qoffset = offset;
3224 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3225 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3226 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3227 }
3228
3229 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3230 ice_for_each_chnl_tc(i) {
3231 if (!(vsi->all_enatc & BIT(i)))
3232 continue;
3233 offset = vsi->mqprio_qopt.qopt.offset[i];
3234 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3235 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3236 }
3237 }
3238
3239 new_txq = offset + qcount_tx;
3240 if (new_txq > vsi->alloc_txq) {
3241 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3242 new_txq, vsi->alloc_txq);
3243 return -EINVAL;
3244 }
3245
3246 new_rxq = offset + qcount_rx;
3247 if (new_rxq > vsi->alloc_rxq) {
3248 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3249 new_rxq, vsi->alloc_rxq);
3250 return -EINVAL;
3251 }
3252
3253 /* Set actual Tx/Rx queue pairs */
3254 vsi->num_txq = new_txq;
3255 vsi->num_rxq = new_rxq;
3256
3257 /* Setup queue TC[0].qmap for given VSI context */
3258 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3259 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3260 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3261
3262 /* Find queue count available for channel VSIs and starting offset
3263 * for channel VSIs
3264 */
3265 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3266 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3267 vsi->next_base_q = tc0_qcount;
3268 }
3269 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3270 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3271 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3272 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3273
3274 return 0;
3275}
3276
3277/**
3278 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3279 * @vsi: VSI to be configured
3280 * @ena_tc: TC bitmap
3281 *
3282 * VSI queues expected to be quiesced before calling this function
3283 */
3284int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3285{
3286 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3287 struct ice_pf *pf = vsi->back;
3288 struct ice_tc_cfg old_tc_cfg;
3289 struct ice_vsi_ctx *ctx;
3290 struct device *dev;
3291 int i, ret = 0;
3292 u8 num_tc = 0;
3293
3294 dev = ice_pf_to_dev(pf);
3295 if (vsi->tc_cfg.ena_tc == ena_tc &&
3296 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3297 return 0;
3298
3299 ice_for_each_traffic_class(i) {
3300 /* build bitmap of enabled TCs */
3301 if (ena_tc & BIT(i))
3302 num_tc++;
3303 /* populate max_txqs per TC */
3304 max_txqs[i] = vsi->alloc_txq;
3305 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3306 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3307 */
3308 if (vsi->type == ICE_VSI_CHNL &&
3309 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3310 max_txqs[i] = vsi->num_txq;
3311 }
3312
3313 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3314 vsi->tc_cfg.ena_tc = ena_tc;
3315 vsi->tc_cfg.numtc = num_tc;
3316
3317 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3318 if (!ctx)
3319 return -ENOMEM;
3320
3321 ctx->vf_num = 0;
3322 ctx->info = vsi->info;
3323
3324 if (vsi->type == ICE_VSI_PF &&
3325 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3326 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3327 else
3328 ret = ice_vsi_setup_q_map(vsi, ctx);
3329
3330 if (ret) {
3331 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3332 goto out;
3333 }
3334
3335 /* must to indicate which section of VSI context are being modified */
3336 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3337 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3338 if (ret) {
3339 dev_info(dev, "Failed VSI Update\n");
3340 goto out;
3341 }
3342
3343 if (vsi->type == ICE_VSI_PF &&
3344 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3345 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3346 else
3347 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3348 vsi->tc_cfg.ena_tc, max_txqs);
3349
3350 if (ret) {
3351 dev_err(dev, "VSI %d failed TC config, error %d\n",
3352 vsi->vsi_num, ret);
3353 goto out;
3354 }
3355 ice_vsi_update_q_map(vsi, ctx);
3356 vsi->info.valid_sections = 0;
3357
3358 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3359out:
3360 kfree(ctx);
3361 return ret;
3362}
3363
3364/**
3365 * ice_update_ring_stats - Update ring statistics
3366 * @stats: stats to be updated
3367 * @pkts: number of processed packets
3368 * @bytes: number of processed bytes
3369 *
3370 * This function assumes that caller has acquired a u64_stats_sync lock.
3371 */
3372static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3373{
3374 stats->bytes += bytes;
3375 stats->pkts += pkts;
3376}
3377
3378/**
3379 * ice_update_tx_ring_stats - Update Tx ring specific counters
3380 * @tx_ring: ring to update
3381 * @pkts: number of processed packets
3382 * @bytes: number of processed bytes
3383 */
3384void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3385{
3386 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3387 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3388 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3389}
3390
3391/**
3392 * ice_update_rx_ring_stats - Update Rx ring specific counters
3393 * @rx_ring: ring to update
3394 * @pkts: number of processed packets
3395 * @bytes: number of processed bytes
3396 */
3397void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3398{
3399 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3400 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3401 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3402}
3403
3404/**
3405 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3406 * @pi: port info of the switch with default VSI
3407 *
3408 * Return true if the there is a single VSI in default forwarding VSI list
3409 */
3410bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3411{
3412 bool exists = false;
3413
3414 ice_check_if_dflt_vsi(pi, 0, &exists);
3415 return exists;
3416}
3417
3418/**
3419 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3420 * @vsi: VSI to compare against default forwarding VSI
3421 *
3422 * If this VSI passed in is the default forwarding VSI then return true, else
3423 * return false
3424 */
3425bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3426{
3427 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3428}
3429
3430/**
3431 * ice_set_dflt_vsi - set the default forwarding VSI
3432 * @vsi: VSI getting set as the default forwarding VSI on the switch
3433 *
3434 * If the VSI passed in is already the default VSI and it's enabled just return
3435 * success.
3436 *
3437 * Otherwise try to set the VSI passed in as the switch's default VSI and
3438 * return the result.
3439 */
3440int ice_set_dflt_vsi(struct ice_vsi *vsi)
3441{
3442 struct device *dev;
3443 int status;
3444
3445 if (!vsi)
3446 return -EINVAL;
3447
3448 dev = ice_pf_to_dev(vsi->back);
3449
3450 if (ice_lag_is_switchdev_running(vsi->back)) {
3451 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3452 vsi->vsi_num);
3453 return 0;
3454 }
3455
3456 /* the VSI passed in is already the default VSI */
3457 if (ice_is_vsi_dflt_vsi(vsi)) {
3458 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3459 vsi->vsi_num);
3460 return 0;
3461 }
3462
3463 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3464 if (status) {
3465 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3466 vsi->vsi_num, status);
3467 return status;
3468 }
3469
3470 return 0;
3471}
3472
3473/**
3474 * ice_clear_dflt_vsi - clear the default forwarding VSI
3475 * @vsi: VSI to remove from filter list
3476 *
3477 * If the switch has no default VSI or it's not enabled then return error.
3478 *
3479 * Otherwise try to clear the default VSI and return the result.
3480 */
3481int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3482{
3483 struct device *dev;
3484 int status;
3485
3486 if (!vsi)
3487 return -EINVAL;
3488
3489 dev = ice_pf_to_dev(vsi->back);
3490
3491 /* there is no default VSI configured */
3492 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3493 return -ENODEV;
3494
3495 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3496 ICE_FLTR_RX);
3497 if (status) {
3498 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3499 vsi->vsi_num, status);
3500 return -EIO;
3501 }
3502
3503 return 0;
3504}
3505
3506/**
3507 * ice_get_link_speed_mbps - get link speed in Mbps
3508 * @vsi: the VSI whose link speed is being queried
3509 *
3510 * Return current VSI link speed and 0 if the speed is unknown.
3511 */
3512int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3513{
3514 unsigned int link_speed;
3515
3516 link_speed = vsi->port_info->phy.link_info.link_speed;
3517
3518 return (int)ice_get_link_speed(fls(link_speed) - 1);
3519}
3520
3521/**
3522 * ice_get_link_speed_kbps - get link speed in Kbps
3523 * @vsi: the VSI whose link speed is being queried
3524 *
3525 * Return current VSI link speed and 0 if the speed is unknown.
3526 */
3527int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3528{
3529 int speed_mbps;
3530
3531 speed_mbps = ice_get_link_speed_mbps(vsi);
3532
3533 return speed_mbps * 1000;
3534}
3535
3536/**
3537 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3538 * @vsi: VSI to be configured
3539 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3540 *
3541 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3542 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3543 * on TC 0.
3544 */
3545int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3546{
3547 struct ice_pf *pf = vsi->back;
3548 struct device *dev;
3549 int status;
3550 int speed;
3551
3552 dev = ice_pf_to_dev(pf);
3553 if (!vsi->port_info) {
3554 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3555 vsi->idx, vsi->type);
3556 return -EINVAL;
3557 }
3558
3559 speed = ice_get_link_speed_kbps(vsi);
3560 if (min_tx_rate > (u64)speed) {
3561 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3562 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3563 speed);
3564 return -EINVAL;
3565 }
3566
3567 /* Configure min BW for VSI limit */
3568 if (min_tx_rate) {
3569 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3570 ICE_MIN_BW, min_tx_rate);
3571 if (status) {
3572 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3573 min_tx_rate, ice_vsi_type_str(vsi->type),
3574 vsi->idx);
3575 return status;
3576 }
3577
3578 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3579 min_tx_rate, ice_vsi_type_str(vsi->type));
3580 } else {
3581 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3582 vsi->idx, 0,
3583 ICE_MIN_BW);
3584 if (status) {
3585 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3586 ice_vsi_type_str(vsi->type), vsi->idx);
3587 return status;
3588 }
3589
3590 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3591 ice_vsi_type_str(vsi->type), vsi->idx);
3592 }
3593
3594 return 0;
3595}
3596
3597/**
3598 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3599 * @vsi: VSI to be configured
3600 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3601 *
3602 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3603 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3604 * on TC 0.
3605 */
3606int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3607{
3608 struct ice_pf *pf = vsi->back;
3609 struct device *dev;
3610 int status;
3611 int speed;
3612
3613 dev = ice_pf_to_dev(pf);
3614 if (!vsi->port_info) {
3615 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3616 vsi->idx, vsi->type);
3617 return -EINVAL;
3618 }
3619
3620 speed = ice_get_link_speed_kbps(vsi);
3621 if (max_tx_rate > (u64)speed) {
3622 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3623 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3624 speed);
3625 return -EINVAL;
3626 }
3627
3628 /* Configure max BW for VSI limit */
3629 if (max_tx_rate) {
3630 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3631 ICE_MAX_BW, max_tx_rate);
3632 if (status) {
3633 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3634 max_tx_rate, ice_vsi_type_str(vsi->type),
3635 vsi->idx);
3636 return status;
3637 }
3638
3639 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3640 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3641 } else {
3642 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3643 vsi->idx, 0,
3644 ICE_MAX_BW);
3645 if (status) {
3646 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3647 ice_vsi_type_str(vsi->type), vsi->idx);
3648 return status;
3649 }
3650
3651 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3652 ice_vsi_type_str(vsi->type), vsi->idx);
3653 }
3654
3655 return 0;
3656}
3657
3658/**
3659 * ice_set_link - turn on/off physical link
3660 * @vsi: VSI to modify physical link on
3661 * @ena: turn on/off physical link
3662 */
3663int ice_set_link(struct ice_vsi *vsi, bool ena)
3664{
3665 struct device *dev = ice_pf_to_dev(vsi->back);
3666 struct ice_port_info *pi = vsi->port_info;
3667 struct ice_hw *hw = pi->hw;
3668 int status;
3669
3670 if (vsi->type != ICE_VSI_PF)
3671 return -EINVAL;
3672
3673 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3674
3675 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3676 * this is not a fatal error, so print a warning message and return
3677 * a success code. Return an error if FW returns an error code other
3678 * than ICE_AQ_RC_EMODE
3679 */
3680 if (status == -EIO) {
3681 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3682 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3683 (ena ? "ON" : "OFF"), status,
3684 ice_aq_str(hw->adminq.sq_last_status));
3685 } else if (status) {
3686 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3687 (ena ? "ON" : "OFF"), status,
3688 ice_aq_str(hw->adminq.sq_last_status));
3689 return status;
3690 }
3691
3692 return 0;
3693}
3694
3695/**
3696 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3697 * @vsi: VSI used to add VLAN filters
3698 *
3699 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3700 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3701 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3702 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3703 *
3704 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3705 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3706 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3707 *
3708 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3709 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3710 * part of filtering.
3711 */
3712int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3713{
3714 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3715 struct ice_vlan vlan;
3716 int err;
3717
3718 vlan = ICE_VLAN(0, 0, 0);
3719 err = vlan_ops->add_vlan(vsi, &vlan);
3720 if (err && err != -EEXIST)
3721 return err;
3722
3723 /* in SVM both VLAN 0 filters are identical */
3724 if (!ice_is_dvm_ena(&vsi->back->hw))
3725 return 0;
3726
3727 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3728 err = vlan_ops->add_vlan(vsi, &vlan);
3729 if (err && err != -EEXIST)
3730 return err;
3731
3732 return 0;
3733}
3734
3735/**
3736 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3737 * @vsi: VSI used to add VLAN filters
3738 *
3739 * Delete the VLAN 0 filters in the same manner that they were added in
3740 * ice_vsi_add_vlan_zero.
3741 */
3742int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3743{
3744 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3745 struct ice_vlan vlan;
3746 int err;
3747
3748 vlan = ICE_VLAN(0, 0, 0);
3749 err = vlan_ops->del_vlan(vsi, &vlan);
3750 if (err && err != -EEXIST)
3751 return err;
3752
3753 /* in SVM both VLAN 0 filters are identical */
3754 if (!ice_is_dvm_ena(&vsi->back->hw))
3755 return 0;
3756
3757 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3758 err = vlan_ops->del_vlan(vsi, &vlan);
3759 if (err && err != -EEXIST)
3760 return err;
3761
3762 /* when deleting the last VLAN filter, make sure to disable the VLAN
3763 * promisc mode so the filter isn't left by accident
3764 */
3765 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3766 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3767}
3768
3769/**
3770 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3771 * @vsi: VSI used to get the VLAN mode
3772 *
3773 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3774 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3775 */
3776static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3777{
3778#define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3779#define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3780 /* no VLAN 0 filter is created when a port VLAN is active */
3781 if (vsi->type == ICE_VSI_VF) {
3782 if (WARN_ON(!vsi->vf))
3783 return 0;
3784
3785 if (ice_vf_is_port_vlan_ena(vsi->vf))
3786 return 0;
3787 }
3788
3789 if (ice_is_dvm_ena(&vsi->back->hw))
3790 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3791 else
3792 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3793}
3794
3795/**
3796 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3797 * @vsi: VSI used to determine if any non-zero VLANs have been added
3798 */
3799bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3800{
3801 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3802}
3803
3804/**
3805 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3806 * @vsi: VSI used to get the number of non-zero VLANs added
3807 */
3808u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3809{
3810 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3811}
3812
3813/**
3814 * ice_is_feature_supported
3815 * @pf: pointer to the struct ice_pf instance
3816 * @f: feature enum to be checked
3817 *
3818 * returns true if feature is supported, false otherwise
3819 */
3820bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3821{
3822 if (f < 0 || f >= ICE_F_MAX)
3823 return false;
3824
3825 return test_bit(f, pf->features);
3826}
3827
3828/**
3829 * ice_set_feature_support
3830 * @pf: pointer to the struct ice_pf instance
3831 * @f: feature enum to set
3832 */
3833void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3834{
3835 if (f < 0 || f >= ICE_F_MAX)
3836 return;
3837
3838 set_bit(f, pf->features);
3839}
3840
3841/**
3842 * ice_clear_feature_support
3843 * @pf: pointer to the struct ice_pf instance
3844 * @f: feature enum to clear
3845 */
3846void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3847{
3848 if (f < 0 || f >= ICE_F_MAX)
3849 return;
3850
3851 clear_bit(f, pf->features);
3852}
3853
3854/**
3855 * ice_init_feature_support
3856 * @pf: pointer to the struct ice_pf instance
3857 *
3858 * called during init to setup supported feature
3859 */
3860void ice_init_feature_support(struct ice_pf *pf)
3861{
3862 switch (pf->hw.device_id) {
3863 case ICE_DEV_ID_E810C_BACKPLANE:
3864 case ICE_DEV_ID_E810C_QSFP:
3865 case ICE_DEV_ID_E810C_SFP:
3866 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3867 case ICE_DEV_ID_E810_XXV_QSFP:
3868 case ICE_DEV_ID_E810_XXV_SFP:
3869 ice_set_feature_support(pf, ICE_F_DSCP);
3870 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3871 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3872 /* If we don't own the timer - don't enable other caps */
3873 if (!ice_pf_src_tmr_owned(pf))
3874 break;
3875 if (ice_is_cgu_in_netlist(&pf->hw))
3876 ice_set_feature_support(pf, ICE_F_CGU);
3877 if (ice_is_clock_mux_in_netlist(&pf->hw))
3878 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3879 if (ice_gnss_is_gps_present(&pf->hw))
3880 ice_set_feature_support(pf, ICE_F_GNSS);
3881 break;
3882 default:
3883 break;
3884 }
3885
3886 if (pf->hw.mac_type == ICE_MAC_E830)
3887 ice_set_feature_support(pf, ICE_F_MBX_LIMIT);
3888}
3889
3890/**
3891 * ice_vsi_update_security - update security block in VSI
3892 * @vsi: pointer to VSI structure
3893 * @fill: function pointer to fill ctx
3894 */
3895int
3896ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3897{
3898 struct ice_vsi_ctx ctx = { 0 };
3899
3900 ctx.info = vsi->info;
3901 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3902 fill(&ctx);
3903
3904 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3905 return -ENODEV;
3906
3907 vsi->info = ctx.info;
3908 return 0;
3909}
3910
3911/**
3912 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3913 * @ctx: pointer to VSI ctx structure
3914 */
3915void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3916{
3917 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3918 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3919 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3920}
3921
3922/**
3923 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
3924 * @ctx: pointer to VSI ctx structure
3925 */
3926void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
3927{
3928 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
3929 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3930 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3931}
3932
3933/**
3934 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
3935 * @ctx: pointer to VSI ctx structure
3936 */
3937void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
3938{
3939 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3940}
3941
3942/**
3943 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
3944 * @ctx: pointer to VSI ctx structure
3945 */
3946void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
3947{
3948 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3949}
3950
3951/**
3952 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
3953 * @vsi: pointer to VSI structure
3954 * @set: set or unset the bit
3955 */
3956int
3957ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
3958{
3959 struct ice_vsi_ctx ctx = {
3960 .info = vsi->info,
3961 };
3962
3963 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
3964 if (set)
3965 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3966 else
3967 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3968
3969 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3970 return -ENODEV;
3971
3972 vsi->info = ctx.info;
3973 return 0;
3974}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_base.h"
6#include "ice_flow.h"
7#include "ice_lib.h"
8#include "ice_fltr.h"
9#include "ice_dcb_lib.h"
10#include "ice_devlink.h"
11#include "ice_vsi_vlan_ops.h"
12
13/**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18{
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_CTRL:
25 return "ICE_VSI_CTRL";
26 case ICE_VSI_CHNL:
27 return "ICE_VSI_CHNL";
28 case ICE_VSI_LB:
29 return "ICE_VSI_LB";
30 case ICE_VSI_SWITCHDEV_CTRL:
31 return "ICE_VSI_SWITCHDEV_CTRL";
32 default:
33 return "unknown";
34 }
35}
36
37/**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48{
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64}
65
66/**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74{
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 if (!vsi->af_xdp_zc_qps)
122 goto err_zc_qps;
123
124 return 0;
125
126err_zc_qps:
127 devm_kfree(dev, vsi->q_vectors);
128err_vectors:
129 devm_kfree(dev, vsi->rxq_map);
130err_rxq_map:
131 devm_kfree(dev, vsi->txq_map);
132err_txq_map:
133 devm_kfree(dev, vsi->rx_rings);
134err_rings:
135 devm_kfree(dev, vsi->tx_rings);
136 return -ENOMEM;
137}
138
139/**
140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141 * @vsi: the VSI being configured
142 */
143static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144{
145 switch (vsi->type) {
146 case ICE_VSI_PF:
147 case ICE_VSI_SWITCHDEV_CTRL:
148 case ICE_VSI_CTRL:
149 case ICE_VSI_LB:
150 /* a user could change the values of num_[tr]x_desc using
151 * ethtool -G so we should keep those values instead of
152 * overwriting them with the defaults.
153 */
154 if (!vsi->num_rx_desc)
155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 if (!vsi->num_tx_desc)
157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 break;
159 default:
160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 vsi->type);
162 break;
163 }
164}
165
166/**
167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168 * @vsi: the VSI being configured
169 * @vf: the VF associated with this VSI, if any
170 *
171 * Return 0 on success and a negative value on error
172 */
173static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
174{
175 enum ice_vsi_type vsi_type = vsi->type;
176 struct ice_pf *pf = vsi->back;
177
178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 return;
180
181 switch (vsi_type) {
182 case ICE_VSI_PF:
183 if (vsi->req_txq) {
184 vsi->alloc_txq = vsi->req_txq;
185 vsi->num_txq = vsi->req_txq;
186 } else {
187 vsi->alloc_txq = min3(pf->num_lan_msix,
188 ice_get_avail_txq_count(pf),
189 (u16)num_online_cpus());
190 }
191
192 pf->num_lan_tx = vsi->alloc_txq;
193
194 /* only 1 Rx queue unless RSS is enabled */
195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 vsi->alloc_rxq = 1;
197 } else {
198 if (vsi->req_rxq) {
199 vsi->alloc_rxq = vsi->req_rxq;
200 vsi->num_rxq = vsi->req_rxq;
201 } else {
202 vsi->alloc_rxq = min3(pf->num_lan_msix,
203 ice_get_avail_rxq_count(pf),
204 (u16)num_online_cpus());
205 }
206 }
207
208 pf->num_lan_rx = vsi->alloc_rxq;
209
210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 max_t(int, vsi->alloc_rxq,
212 vsi->alloc_txq));
213 break;
214 case ICE_VSI_SWITCHDEV_CTRL:
215 /* The number of queues for ctrl VSI is equal to number of VFs.
216 * Each ring is associated to the corresponding VF_PR netdev.
217 */
218 vsi->alloc_txq = ice_get_num_vfs(pf);
219 vsi->alloc_rxq = vsi->alloc_txq;
220 vsi->num_q_vectors = 1;
221 break;
222 case ICE_VSI_VF:
223 if (vf->num_req_qs)
224 vf->num_vf_qs = vf->num_req_qs;
225 vsi->alloc_txq = vf->num_vf_qs;
226 vsi->alloc_rxq = vf->num_vf_qs;
227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 * data queue interrupts). Since vsi->num_q_vectors is number
229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 * original vector count
231 */
232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 break;
234 case ICE_VSI_CTRL:
235 vsi->alloc_txq = 1;
236 vsi->alloc_rxq = 1;
237 vsi->num_q_vectors = 1;
238 break;
239 case ICE_VSI_CHNL:
240 vsi->alloc_txq = 0;
241 vsi->alloc_rxq = 0;
242 break;
243 case ICE_VSI_LB:
244 vsi->alloc_txq = 1;
245 vsi->alloc_rxq = 1;
246 break;
247 default:
248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 break;
250 }
251
252 ice_vsi_set_num_desc(vsi);
253}
254
255/**
256 * ice_get_free_slot - get the next non-NULL location index in array
257 * @array: array to search
258 * @size: size of the array
259 * @curr: last known occupied index to be used as a search hint
260 *
261 * void * is being used to keep the functionality generic. This lets us use this
262 * function on any array of pointers.
263 */
264static int ice_get_free_slot(void *array, int size, int curr)
265{
266 int **tmp_array = (int **)array;
267 int next;
268
269 if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 next = curr + 1;
271 } else {
272 int i = 0;
273
274 while ((i < size) && (tmp_array[i]))
275 i++;
276 if (i == size)
277 next = ICE_NO_VSI;
278 else
279 next = i;
280 }
281 return next;
282}
283
284/**
285 * ice_vsi_delete - delete a VSI from the switch
286 * @vsi: pointer to VSI being removed
287 */
288void ice_vsi_delete(struct ice_vsi *vsi)
289{
290 struct ice_pf *pf = vsi->back;
291 struct ice_vsi_ctx *ctxt;
292 int status;
293
294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
295 if (!ctxt)
296 return;
297
298 if (vsi->type == ICE_VSI_VF)
299 ctxt->vf_num = vsi->vf->vf_id;
300 ctxt->vsi_num = vsi->vsi_num;
301
302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
303
304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
305 if (status)
306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
307 vsi->vsi_num, status);
308
309 kfree(ctxt);
310}
311
312/**
313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
314 * @vsi: pointer to VSI being cleared
315 */
316static void ice_vsi_free_arrays(struct ice_vsi *vsi)
317{
318 struct ice_pf *pf = vsi->back;
319 struct device *dev;
320
321 dev = ice_pf_to_dev(pf);
322
323 if (vsi->af_xdp_zc_qps) {
324 bitmap_free(vsi->af_xdp_zc_qps);
325 vsi->af_xdp_zc_qps = NULL;
326 }
327 /* free the ring and vector containers */
328 if (vsi->q_vectors) {
329 devm_kfree(dev, vsi->q_vectors);
330 vsi->q_vectors = NULL;
331 }
332 if (vsi->tx_rings) {
333 devm_kfree(dev, vsi->tx_rings);
334 vsi->tx_rings = NULL;
335 }
336 if (vsi->rx_rings) {
337 devm_kfree(dev, vsi->rx_rings);
338 vsi->rx_rings = NULL;
339 }
340 if (vsi->txq_map) {
341 devm_kfree(dev, vsi->txq_map);
342 vsi->txq_map = NULL;
343 }
344 if (vsi->rxq_map) {
345 devm_kfree(dev, vsi->rxq_map);
346 vsi->rxq_map = NULL;
347 }
348}
349
350/**
351 * ice_vsi_clear - clean up and deallocate the provided VSI
352 * @vsi: pointer to VSI being cleared
353 *
354 * This deallocates the VSI's queue resources, removes it from the PF's
355 * VSI array if necessary, and deallocates the VSI
356 *
357 * Returns 0 on success, negative on failure
358 */
359int ice_vsi_clear(struct ice_vsi *vsi)
360{
361 struct ice_pf *pf = NULL;
362 struct device *dev;
363
364 if (!vsi)
365 return 0;
366
367 if (!vsi->back)
368 return -EINVAL;
369
370 pf = vsi->back;
371 dev = ice_pf_to_dev(pf);
372
373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
375 return -EINVAL;
376 }
377
378 mutex_lock(&pf->sw_mutex);
379 /* updates the PF for this cleared VSI */
380
381 pf->vsi[vsi->idx] = NULL;
382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
383 pf->next_vsi = vsi->idx;
384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
385 pf->next_vsi = vsi->idx;
386
387 ice_vsi_free_arrays(vsi);
388 mutex_unlock(&pf->sw_mutex);
389 devm_kfree(dev, vsi);
390
391 return 0;
392}
393
394/**
395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
396 * @irq: interrupt number
397 * @data: pointer to a q_vector
398 */
399static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
400{
401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
402
403 if (!q_vector->tx.tx_ring)
404 return IRQ_HANDLED;
405
406#define FDIR_RX_DESC_CLEAN_BUDGET 64
407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
409
410 return IRQ_HANDLED;
411}
412
413/**
414 * ice_msix_clean_rings - MSIX mode Interrupt Handler
415 * @irq: interrupt number
416 * @data: pointer to a q_vector
417 */
418static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
419{
420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
421
422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
423 return IRQ_HANDLED;
424
425 q_vector->total_events++;
426
427 napi_schedule(&q_vector->napi);
428
429 return IRQ_HANDLED;
430}
431
432static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
433{
434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
435 struct ice_pf *pf = q_vector->vsi->back;
436 struct ice_vf *vf;
437 unsigned int bkt;
438
439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
440 return IRQ_HANDLED;
441
442 rcu_read_lock();
443 ice_for_each_vf_rcu(pf, bkt, vf)
444 napi_schedule(&vf->repr->q_vector->napi);
445 rcu_read_unlock();
446
447 return IRQ_HANDLED;
448}
449
450/**
451 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
452 * @vsi: VSI pointer
453 */
454static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
455{
456 struct ice_vsi_stats *vsi_stat;
457 struct ice_pf *pf = vsi->back;
458
459 if (vsi->type == ICE_VSI_CHNL)
460 return 0;
461 if (!pf->vsi_stats)
462 return -ENOENT;
463
464 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
465 if (!vsi_stat)
466 return -ENOMEM;
467
468 vsi_stat->tx_ring_stats =
469 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
470 GFP_KERNEL);
471 if (!vsi_stat->tx_ring_stats)
472 goto err_alloc_tx;
473
474 vsi_stat->rx_ring_stats =
475 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
476 GFP_KERNEL);
477 if (!vsi_stat->rx_ring_stats)
478 goto err_alloc_rx;
479
480 pf->vsi_stats[vsi->idx] = vsi_stat;
481
482 return 0;
483
484err_alloc_rx:
485 kfree(vsi_stat->rx_ring_stats);
486err_alloc_tx:
487 kfree(vsi_stat->tx_ring_stats);
488 kfree(vsi_stat);
489 pf->vsi_stats[vsi->idx] = NULL;
490 return -ENOMEM;
491}
492
493/**
494 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
495 * @pf: board private structure
496 * @vsi_type: type of VSI
497 * @ch: ptr to channel
498 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
499 *
500 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
501 * it may be NULL in the case there is no association with a VF. For
502 * ICE_VSI_VF the VF pointer *must not* be NULL.
503 *
504 * returns a pointer to a VSI on success, NULL on failure.
505 */
506static struct ice_vsi *
507ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
508 struct ice_channel *ch, struct ice_vf *vf)
509{
510 struct device *dev = ice_pf_to_dev(pf);
511 struct ice_vsi *vsi = NULL;
512
513 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
514 return NULL;
515
516 /* Need to protect the allocation of the VSIs at the PF level */
517 mutex_lock(&pf->sw_mutex);
518
519 /* If we have already allocated our maximum number of VSIs,
520 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
521 * is available to be populated
522 */
523 if (pf->next_vsi == ICE_NO_VSI) {
524 dev_dbg(dev, "out of VSI slots!\n");
525 goto unlock_pf;
526 }
527
528 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
529 if (!vsi)
530 goto unlock_pf;
531
532 vsi->type = vsi_type;
533 vsi->back = pf;
534 set_bit(ICE_VSI_DOWN, vsi->state);
535
536 if (vsi_type == ICE_VSI_VF)
537 ice_vsi_set_num_qs(vsi, vf);
538 else if (vsi_type != ICE_VSI_CHNL)
539 ice_vsi_set_num_qs(vsi, NULL);
540
541 switch (vsi->type) {
542 case ICE_VSI_SWITCHDEV_CTRL:
543 if (ice_vsi_alloc_arrays(vsi))
544 goto err_rings;
545
546 /* Setup eswitch MSIX irq handler for VSI */
547 vsi->irq_handler = ice_eswitch_msix_clean_rings;
548 break;
549 case ICE_VSI_PF:
550 if (ice_vsi_alloc_arrays(vsi))
551 goto err_rings;
552
553 /* Setup default MSIX irq handler for VSI */
554 vsi->irq_handler = ice_msix_clean_rings;
555 break;
556 case ICE_VSI_CTRL:
557 if (ice_vsi_alloc_arrays(vsi))
558 goto err_rings;
559
560 /* Setup ctrl VSI MSIX irq handler */
561 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
562
563 /* For the PF control VSI this is NULL, for the VF control VSI
564 * this will be the first VF to allocate it.
565 */
566 vsi->vf = vf;
567 break;
568 case ICE_VSI_VF:
569 if (ice_vsi_alloc_arrays(vsi))
570 goto err_rings;
571 vsi->vf = vf;
572 break;
573 case ICE_VSI_CHNL:
574 if (!ch)
575 goto err_rings;
576 vsi->num_rxq = ch->num_rxq;
577 vsi->num_txq = ch->num_txq;
578 vsi->next_base_q = ch->base_q;
579 break;
580 case ICE_VSI_LB:
581 if (ice_vsi_alloc_arrays(vsi))
582 goto err_rings;
583 break;
584 default:
585 dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
586 goto unlock_pf;
587 }
588
589 if (vsi->type == ICE_VSI_CTRL && !vf) {
590 /* Use the last VSI slot as the index for PF control VSI */
591 vsi->idx = pf->num_alloc_vsi - 1;
592 pf->ctrl_vsi_idx = vsi->idx;
593 pf->vsi[vsi->idx] = vsi;
594 } else {
595 /* fill slot and make note of the index */
596 vsi->idx = pf->next_vsi;
597 pf->vsi[pf->next_vsi] = vsi;
598
599 /* prepare pf->next_vsi for next use */
600 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
601 pf->next_vsi);
602 }
603
604 if (vsi->type == ICE_VSI_CTRL && vf)
605 vf->ctrl_vsi_idx = vsi->idx;
606
607 /* allocate memory for Tx/Rx ring stat pointers */
608 if (ice_vsi_alloc_stat_arrays(vsi))
609 goto err_rings;
610
611 goto unlock_pf;
612
613err_rings:
614 devm_kfree(dev, vsi);
615 vsi = NULL;
616unlock_pf:
617 mutex_unlock(&pf->sw_mutex);
618 return vsi;
619}
620
621/**
622 * ice_alloc_fd_res - Allocate FD resource for a VSI
623 * @vsi: pointer to the ice_vsi
624 *
625 * This allocates the FD resources
626 *
627 * Returns 0 on success, -EPERM on no-op or -EIO on failure
628 */
629static int ice_alloc_fd_res(struct ice_vsi *vsi)
630{
631 struct ice_pf *pf = vsi->back;
632 u32 g_val, b_val;
633
634 /* Flow Director filters are only allocated/assigned to the PF VSI or
635 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
636 * add/delete filters so resources are not allocated to it
637 */
638 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
639 return -EPERM;
640
641 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
642 vsi->type == ICE_VSI_CHNL))
643 return -EPERM;
644
645 /* FD filters from guaranteed pool per VSI */
646 g_val = pf->hw.func_caps.fd_fltr_guar;
647 if (!g_val)
648 return -EPERM;
649
650 /* FD filters from best effort pool */
651 b_val = pf->hw.func_caps.fd_fltr_best_effort;
652 if (!b_val)
653 return -EPERM;
654
655 /* PF main VSI gets only 64 FD resources from guaranteed pool
656 * when ADQ is configured.
657 */
658#define ICE_PF_VSI_GFLTR 64
659
660 /* determine FD filter resources per VSI from shared(best effort) and
661 * dedicated pool
662 */
663 if (vsi->type == ICE_VSI_PF) {
664 vsi->num_gfltr = g_val;
665 /* if MQPRIO is configured, main VSI doesn't get all FD
666 * resources from guaranteed pool. PF VSI gets 64 FD resources
667 */
668 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
669 if (g_val < ICE_PF_VSI_GFLTR)
670 return -EPERM;
671 /* allow bare minimum entries for PF VSI */
672 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
673 }
674
675 /* each VSI gets same "best_effort" quota */
676 vsi->num_bfltr = b_val;
677 } else if (vsi->type == ICE_VSI_VF) {
678 vsi->num_gfltr = 0;
679
680 /* each VSI gets same "best_effort" quota */
681 vsi->num_bfltr = b_val;
682 } else {
683 struct ice_vsi *main_vsi;
684 int numtc;
685
686 main_vsi = ice_get_main_vsi(pf);
687 if (!main_vsi)
688 return -EPERM;
689
690 if (!main_vsi->all_numtc)
691 return -EINVAL;
692
693 /* figure out ADQ numtc */
694 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
695
696 /* only one TC but still asking resources for channels,
697 * invalid config
698 */
699 if (numtc < ICE_CHNL_START_TC)
700 return -EPERM;
701
702 g_val -= ICE_PF_VSI_GFLTR;
703 /* channel VSIs gets equal share from guaranteed pool */
704 vsi->num_gfltr = g_val / numtc;
705
706 /* each VSI gets same "best_effort" quota */
707 vsi->num_bfltr = b_val;
708 }
709
710 return 0;
711}
712
713/**
714 * ice_vsi_get_qs - Assign queues from PF to VSI
715 * @vsi: the VSI to assign queues to
716 *
717 * Returns 0 on success and a negative value on error
718 */
719static int ice_vsi_get_qs(struct ice_vsi *vsi)
720{
721 struct ice_pf *pf = vsi->back;
722 struct ice_qs_cfg tx_qs_cfg = {
723 .qs_mutex = &pf->avail_q_mutex,
724 .pf_map = pf->avail_txqs,
725 .pf_map_size = pf->max_pf_txqs,
726 .q_count = vsi->alloc_txq,
727 .scatter_count = ICE_MAX_SCATTER_TXQS,
728 .vsi_map = vsi->txq_map,
729 .vsi_map_offset = 0,
730 .mapping_mode = ICE_VSI_MAP_CONTIG
731 };
732 struct ice_qs_cfg rx_qs_cfg = {
733 .qs_mutex = &pf->avail_q_mutex,
734 .pf_map = pf->avail_rxqs,
735 .pf_map_size = pf->max_pf_rxqs,
736 .q_count = vsi->alloc_rxq,
737 .scatter_count = ICE_MAX_SCATTER_RXQS,
738 .vsi_map = vsi->rxq_map,
739 .vsi_map_offset = 0,
740 .mapping_mode = ICE_VSI_MAP_CONTIG
741 };
742 int ret;
743
744 if (vsi->type == ICE_VSI_CHNL)
745 return 0;
746
747 ret = __ice_vsi_get_qs(&tx_qs_cfg);
748 if (ret)
749 return ret;
750 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
751
752 ret = __ice_vsi_get_qs(&rx_qs_cfg);
753 if (ret)
754 return ret;
755 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
756
757 return 0;
758}
759
760/**
761 * ice_vsi_put_qs - Release queues from VSI to PF
762 * @vsi: the VSI that is going to release queues
763 */
764static void ice_vsi_put_qs(struct ice_vsi *vsi)
765{
766 struct ice_pf *pf = vsi->back;
767 int i;
768
769 mutex_lock(&pf->avail_q_mutex);
770
771 ice_for_each_alloc_txq(vsi, i) {
772 clear_bit(vsi->txq_map[i], pf->avail_txqs);
773 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
774 }
775
776 ice_for_each_alloc_rxq(vsi, i) {
777 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
778 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
779 }
780
781 mutex_unlock(&pf->avail_q_mutex);
782}
783
784/**
785 * ice_is_safe_mode
786 * @pf: pointer to the PF struct
787 *
788 * returns true if driver is in safe mode, false otherwise
789 */
790bool ice_is_safe_mode(struct ice_pf *pf)
791{
792 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
793}
794
795/**
796 * ice_is_rdma_ena
797 * @pf: pointer to the PF struct
798 *
799 * returns true if RDMA is currently supported, false otherwise
800 */
801bool ice_is_rdma_ena(struct ice_pf *pf)
802{
803 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
804}
805
806/**
807 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
808 * @vsi: the VSI being cleaned up
809 *
810 * This function deletes RSS input set for all flows that were configured
811 * for this VSI
812 */
813static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
814{
815 struct ice_pf *pf = vsi->back;
816 int status;
817
818 if (ice_is_safe_mode(pf))
819 return;
820
821 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
822 if (status)
823 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
824 vsi->vsi_num, status);
825}
826
827/**
828 * ice_rss_clean - Delete RSS related VSI structures and configuration
829 * @vsi: the VSI being removed
830 */
831static void ice_rss_clean(struct ice_vsi *vsi)
832{
833 struct ice_pf *pf = vsi->back;
834 struct device *dev;
835
836 dev = ice_pf_to_dev(pf);
837
838 if (vsi->rss_hkey_user)
839 devm_kfree(dev, vsi->rss_hkey_user);
840 if (vsi->rss_lut_user)
841 devm_kfree(dev, vsi->rss_lut_user);
842
843 ice_vsi_clean_rss_flow_fld(vsi);
844 /* remove RSS replay list */
845 if (!ice_is_safe_mode(pf))
846 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
847}
848
849/**
850 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
851 * @vsi: the VSI being configured
852 */
853static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
854{
855 struct ice_hw_common_caps *cap;
856 struct ice_pf *pf = vsi->back;
857
858 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
859 vsi->rss_size = 1;
860 return;
861 }
862
863 cap = &pf->hw.func_caps.common_cap;
864 switch (vsi->type) {
865 case ICE_VSI_CHNL:
866 case ICE_VSI_PF:
867 /* PF VSI will inherit RSS instance of PF */
868 vsi->rss_table_size = (u16)cap->rss_table_size;
869 if (vsi->type == ICE_VSI_CHNL)
870 vsi->rss_size = min_t(u16, vsi->num_rxq,
871 BIT(cap->rss_table_entry_width));
872 else
873 vsi->rss_size = min_t(u16, num_online_cpus(),
874 BIT(cap->rss_table_entry_width));
875 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
876 break;
877 case ICE_VSI_SWITCHDEV_CTRL:
878 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
879 vsi->rss_size = min_t(u16, num_online_cpus(),
880 BIT(cap->rss_table_entry_width));
881 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
882 break;
883 case ICE_VSI_VF:
884 /* VF VSI will get a small RSS table.
885 * For VSI_LUT, LUT size should be set to 64 bytes.
886 */
887 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
888 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
889 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
890 break;
891 case ICE_VSI_LB:
892 break;
893 default:
894 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
895 ice_vsi_type_str(vsi->type));
896 break;
897 }
898}
899
900/**
901 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
902 * @hw: HW structure used to determine the VLAN mode of the device
903 * @ctxt: the VSI context being set
904 *
905 * This initializes a default VSI context for all sections except the Queues.
906 */
907static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
908{
909 u32 table = 0;
910
911 memset(&ctxt->info, 0, sizeof(ctxt->info));
912 /* VSI's should be allocated from shared pool */
913 ctxt->alloc_from_pool = true;
914 /* Src pruning enabled by default */
915 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
916 /* Traffic from VSI can be sent to LAN */
917 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
918 /* allow all untagged/tagged packets by default on Tx */
919 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
920 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
921 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
922 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
923 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
924 *
925 * DVM - leave inner VLAN in packet by default
926 */
927 if (ice_is_dvm_ena(hw)) {
928 ctxt->info.inner_vlan_flags |=
929 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
930 ctxt->info.outer_vlan_flags =
931 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
932 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
933 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
934 ctxt->info.outer_vlan_flags |=
935 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
936 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
937 ICE_AQ_VSI_OUTER_TAG_TYPE_M;
938 ctxt->info.outer_vlan_flags |=
939 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
940 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
941 }
942 /* Have 1:1 UP mapping for both ingress/egress tables */
943 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
944 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
945 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
946 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
947 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
948 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
949 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
950 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
951 ctxt->info.ingress_table = cpu_to_le32(table);
952 ctxt->info.egress_table = cpu_to_le32(table);
953 /* Have 1:1 UP mapping for outer to inner UP table */
954 ctxt->info.outer_up_table = cpu_to_le32(table);
955 /* No Outer tag support outer_tag_flags remains to zero */
956}
957
958/**
959 * ice_vsi_setup_q_map - Setup a VSI queue map
960 * @vsi: the VSI being configured
961 * @ctxt: VSI context structure
962 */
963static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
964{
965 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
966 u16 num_txq_per_tc, num_rxq_per_tc;
967 u16 qcount_tx = vsi->alloc_txq;
968 u16 qcount_rx = vsi->alloc_rxq;
969 u8 netdev_tc = 0;
970 int i;
971
972 if (!vsi->tc_cfg.numtc) {
973 /* at least TC0 should be enabled by default */
974 vsi->tc_cfg.numtc = 1;
975 vsi->tc_cfg.ena_tc = 1;
976 }
977
978 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
979 if (!num_rxq_per_tc)
980 num_rxq_per_tc = 1;
981 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
982 if (!num_txq_per_tc)
983 num_txq_per_tc = 1;
984
985 /* find the (rounded up) power-of-2 of qcount */
986 pow = (u16)order_base_2(num_rxq_per_tc);
987
988 /* TC mapping is a function of the number of Rx queues assigned to the
989 * VSI for each traffic class and the offset of these queues.
990 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
991 * queues allocated to TC0. No:of queues is a power-of-2.
992 *
993 * If TC is not enabled, the queue offset is set to 0, and allocate one
994 * queue, this way, traffic for the given TC will be sent to the default
995 * queue.
996 *
997 * Setup number and offset of Rx queues for all TCs for the VSI
998 */
999 ice_for_each_traffic_class(i) {
1000 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1001 /* TC is not enabled */
1002 vsi->tc_cfg.tc_info[i].qoffset = 0;
1003 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1004 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1005 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1006 ctxt->info.tc_mapping[i] = 0;
1007 continue;
1008 }
1009
1010 /* TC is enabled */
1011 vsi->tc_cfg.tc_info[i].qoffset = offset;
1012 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1013 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1014 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1015
1016 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1017 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1018 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1019 ICE_AQ_VSI_TC_Q_NUM_M);
1020 offset += num_rxq_per_tc;
1021 tx_count += num_txq_per_tc;
1022 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1023 }
1024
1025 /* if offset is non-zero, means it is calculated correctly based on
1026 * enabled TCs for a given VSI otherwise qcount_rx will always
1027 * be correct and non-zero because it is based off - VSI's
1028 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1029 * at least 1)
1030 */
1031 if (offset)
1032 rx_count = offset;
1033 else
1034 rx_count = num_rxq_per_tc;
1035
1036 if (rx_count > vsi->alloc_rxq) {
1037 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1038 rx_count, vsi->alloc_rxq);
1039 return -EINVAL;
1040 }
1041
1042 if (tx_count > vsi->alloc_txq) {
1043 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1044 tx_count, vsi->alloc_txq);
1045 return -EINVAL;
1046 }
1047
1048 vsi->num_txq = tx_count;
1049 vsi->num_rxq = rx_count;
1050
1051 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1052 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1053 /* since there is a chance that num_rxq could have been changed
1054 * in the above for loop, make num_txq equal to num_rxq.
1055 */
1056 vsi->num_txq = vsi->num_rxq;
1057 }
1058
1059 /* Rx queue mapping */
1060 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1061 /* q_mapping buffer holds the info for the first queue allocated for
1062 * this VSI in the PF space and also the number of queues associated
1063 * with this VSI.
1064 */
1065 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1066 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1067
1068 return 0;
1069}
1070
1071/**
1072 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1073 * @ctxt: the VSI context being set
1074 * @vsi: the VSI being configured
1075 */
1076static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1077{
1078 u8 dflt_q_group, dflt_q_prio;
1079 u16 dflt_q, report_q, val;
1080
1081 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1082 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1083 return;
1084
1085 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1086 ctxt->info.valid_sections |= cpu_to_le16(val);
1087 dflt_q = 0;
1088 dflt_q_group = 0;
1089 report_q = 0;
1090 dflt_q_prio = 0;
1091
1092 /* enable flow director filtering/programming */
1093 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1094 ctxt->info.fd_options = cpu_to_le16(val);
1095 /* max of allocated flow director filters */
1096 ctxt->info.max_fd_fltr_dedicated =
1097 cpu_to_le16(vsi->num_gfltr);
1098 /* max of shared flow director filters any VSI may program */
1099 ctxt->info.max_fd_fltr_shared =
1100 cpu_to_le16(vsi->num_bfltr);
1101 /* default queue index within the VSI of the default FD */
1102 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1103 ICE_AQ_VSI_FD_DEF_Q_M);
1104 /* target queue or queue group to the FD filter */
1105 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1106 ICE_AQ_VSI_FD_DEF_GRP_M);
1107 ctxt->info.fd_def_q = cpu_to_le16(val);
1108 /* queue index on which FD filter completion is reported */
1109 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1110 ICE_AQ_VSI_FD_REPORT_Q_M);
1111 /* priority of the default qindex action */
1112 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1113 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1114 ctxt->info.fd_report_opt = cpu_to_le16(val);
1115}
1116
1117/**
1118 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1119 * @ctxt: the VSI context being set
1120 * @vsi: the VSI being configured
1121 */
1122static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1123{
1124 u8 lut_type, hash_type;
1125 struct device *dev;
1126 struct ice_pf *pf;
1127
1128 pf = vsi->back;
1129 dev = ice_pf_to_dev(pf);
1130
1131 switch (vsi->type) {
1132 case ICE_VSI_CHNL:
1133 case ICE_VSI_PF:
1134 /* PF VSI will inherit RSS instance of PF */
1135 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1136 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1137 break;
1138 case ICE_VSI_VF:
1139 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1140 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1141 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1142 break;
1143 default:
1144 dev_dbg(dev, "Unsupported VSI type %s\n",
1145 ice_vsi_type_str(vsi->type));
1146 return;
1147 }
1148
1149 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1150 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1151 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1152 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1153}
1154
1155static void
1156ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1157{
1158 struct ice_pf *pf = vsi->back;
1159 u16 qcount, qmap;
1160 u8 offset = 0;
1161 int pow;
1162
1163 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1164
1165 pow = order_base_2(qcount);
1166 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1167 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1168 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1169 ICE_AQ_VSI_TC_Q_NUM_M);
1170
1171 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1172 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1173 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1174 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1175}
1176
1177/**
1178 * ice_vsi_init - Create and initialize a VSI
1179 * @vsi: the VSI being configured
1180 * @init_vsi: is this call creating a VSI
1181 *
1182 * This initializes a VSI context depending on the VSI type to be added and
1183 * passes it down to the add_vsi aq command to create a new VSI.
1184 */
1185static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1186{
1187 struct ice_pf *pf = vsi->back;
1188 struct ice_hw *hw = &pf->hw;
1189 struct ice_vsi_ctx *ctxt;
1190 struct device *dev;
1191 int ret = 0;
1192
1193 dev = ice_pf_to_dev(pf);
1194 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1195 if (!ctxt)
1196 return -ENOMEM;
1197
1198 switch (vsi->type) {
1199 case ICE_VSI_CTRL:
1200 case ICE_VSI_LB:
1201 case ICE_VSI_PF:
1202 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1203 break;
1204 case ICE_VSI_SWITCHDEV_CTRL:
1205 case ICE_VSI_CHNL:
1206 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1207 break;
1208 case ICE_VSI_VF:
1209 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1210 /* VF number here is the absolute VF number (0-255) */
1211 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1212 break;
1213 default:
1214 ret = -ENODEV;
1215 goto out;
1216 }
1217
1218 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1219 * prune enabled
1220 */
1221 if (vsi->type == ICE_VSI_CHNL) {
1222 struct ice_vsi *main_vsi;
1223
1224 main_vsi = ice_get_main_vsi(pf);
1225 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1226 ctxt->info.sw_flags2 |=
1227 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1228 else
1229 ctxt->info.sw_flags2 &=
1230 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1231 }
1232
1233 ice_set_dflt_vsi_ctx(hw, ctxt);
1234 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1235 ice_set_fd_vsi_ctx(ctxt, vsi);
1236 /* if the switch is in VEB mode, allow VSI loopback */
1237 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1238 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1239
1240 /* Set LUT type and HASH type if RSS is enabled */
1241 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1242 vsi->type != ICE_VSI_CTRL) {
1243 ice_set_rss_vsi_ctx(ctxt, vsi);
1244 /* if updating VSI context, make sure to set valid_section:
1245 * to indicate which section of VSI context being updated
1246 */
1247 if (!init_vsi)
1248 ctxt->info.valid_sections |=
1249 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1250 }
1251
1252 ctxt->info.sw_id = vsi->port_info->sw_id;
1253 if (vsi->type == ICE_VSI_CHNL) {
1254 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1255 } else {
1256 ret = ice_vsi_setup_q_map(vsi, ctxt);
1257 if (ret)
1258 goto out;
1259
1260 if (!init_vsi) /* means VSI being updated */
1261 /* must to indicate which section of VSI context are
1262 * being modified
1263 */
1264 ctxt->info.valid_sections |=
1265 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1266 }
1267
1268 /* Allow control frames out of main VSI */
1269 if (vsi->type == ICE_VSI_PF) {
1270 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1271 ctxt->info.valid_sections |=
1272 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1273 }
1274
1275 if (init_vsi) {
1276 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1277 if (ret) {
1278 dev_err(dev, "Add VSI failed, err %d\n", ret);
1279 ret = -EIO;
1280 goto out;
1281 }
1282 } else {
1283 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1284 if (ret) {
1285 dev_err(dev, "Update VSI failed, err %d\n", ret);
1286 ret = -EIO;
1287 goto out;
1288 }
1289 }
1290
1291 /* keep context for update VSI operations */
1292 vsi->info = ctxt->info;
1293
1294 /* record VSI number returned */
1295 vsi->vsi_num = ctxt->vsi_num;
1296
1297out:
1298 kfree(ctxt);
1299 return ret;
1300}
1301
1302/**
1303 * ice_free_res - free a block of resources
1304 * @res: pointer to the resource
1305 * @index: starting index previously returned by ice_get_res
1306 * @id: identifier to track owner
1307 *
1308 * Returns number of resources freed
1309 */
1310int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1311{
1312 int count = 0;
1313 int i;
1314
1315 if (!res || index >= res->end)
1316 return -EINVAL;
1317
1318 id |= ICE_RES_VALID_BIT;
1319 for (i = index; i < res->end && res->list[i] == id; i++) {
1320 res->list[i] = 0;
1321 count++;
1322 }
1323
1324 return count;
1325}
1326
1327/**
1328 * ice_search_res - Search the tracker for a block of resources
1329 * @res: pointer to the resource
1330 * @needed: size of the block needed
1331 * @id: identifier to track owner
1332 *
1333 * Returns the base item index of the block, or -ENOMEM for error
1334 */
1335static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1336{
1337 u16 start = 0, end = 0;
1338
1339 if (needed > res->end)
1340 return -ENOMEM;
1341
1342 id |= ICE_RES_VALID_BIT;
1343
1344 do {
1345 /* skip already allocated entries */
1346 if (res->list[end++] & ICE_RES_VALID_BIT) {
1347 start = end;
1348 if ((start + needed) > res->end)
1349 break;
1350 }
1351
1352 if (end == (start + needed)) {
1353 int i = start;
1354
1355 /* there was enough, so assign it to the requestor */
1356 while (i != end)
1357 res->list[i++] = id;
1358
1359 return start;
1360 }
1361 } while (end < res->end);
1362
1363 return -ENOMEM;
1364}
1365
1366/**
1367 * ice_get_free_res_count - Get free count from a resource tracker
1368 * @res: Resource tracker instance
1369 */
1370static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1371{
1372 u16 i, count = 0;
1373
1374 for (i = 0; i < res->end; i++)
1375 if (!(res->list[i] & ICE_RES_VALID_BIT))
1376 count++;
1377
1378 return count;
1379}
1380
1381/**
1382 * ice_get_res - get a block of resources
1383 * @pf: board private structure
1384 * @res: pointer to the resource
1385 * @needed: size of the block needed
1386 * @id: identifier to track owner
1387 *
1388 * Returns the base item index of the block, or negative for error
1389 */
1390int
1391ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1392{
1393 if (!res || !pf)
1394 return -EINVAL;
1395
1396 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1397 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1398 needed, res->num_entries, id);
1399 return -EINVAL;
1400 }
1401
1402 return ice_search_res(res, needed, id);
1403}
1404
1405/**
1406 * ice_get_vf_ctrl_res - Get VF control VSI resource
1407 * @pf: pointer to the PF structure
1408 * @vsi: the VSI to allocate a resource for
1409 *
1410 * Look up whether another VF has already allocated the control VSI resource.
1411 * If so, re-use this resource so that we share it among all VFs.
1412 *
1413 * Otherwise, allocate the resource and return it.
1414 */
1415static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1416{
1417 struct ice_vf *vf;
1418 unsigned int bkt;
1419 int base;
1420
1421 rcu_read_lock();
1422 ice_for_each_vf_rcu(pf, bkt, vf) {
1423 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1424 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1425 rcu_read_unlock();
1426 return base;
1427 }
1428 }
1429 rcu_read_unlock();
1430
1431 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1432 ICE_RES_VF_CTRL_VEC_ID);
1433}
1434
1435/**
1436 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1437 * @vsi: ptr to the VSI
1438 *
1439 * This should only be called after ice_vsi_alloc() which allocates the
1440 * corresponding SW VSI structure and initializes num_queue_pairs for the
1441 * newly allocated VSI.
1442 *
1443 * Returns 0 on success or negative on failure
1444 */
1445static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1446{
1447 struct ice_pf *pf = vsi->back;
1448 struct device *dev;
1449 u16 num_q_vectors;
1450 int base;
1451
1452 dev = ice_pf_to_dev(pf);
1453 /* SRIOV doesn't grab irq_tracker entries for each VSI */
1454 if (vsi->type == ICE_VSI_VF)
1455 return 0;
1456 if (vsi->type == ICE_VSI_CHNL)
1457 return 0;
1458
1459 if (vsi->base_vector) {
1460 dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1461 vsi->vsi_num, vsi->base_vector);
1462 return -EEXIST;
1463 }
1464
1465 num_q_vectors = vsi->num_q_vectors;
1466 /* reserve slots from OS requested IRQs */
1467 if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1468 base = ice_get_vf_ctrl_res(pf, vsi);
1469 } else {
1470 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1471 vsi->idx);
1472 }
1473
1474 if (base < 0) {
1475 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1476 ice_get_free_res_count(pf->irq_tracker),
1477 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1478 return -ENOENT;
1479 }
1480 vsi->base_vector = (u16)base;
1481 pf->num_avail_sw_msix -= num_q_vectors;
1482
1483 return 0;
1484}
1485
1486/**
1487 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1488 * @vsi: the VSI having rings deallocated
1489 */
1490static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1491{
1492 int i;
1493
1494 /* Avoid stale references by clearing map from vector to ring */
1495 if (vsi->q_vectors) {
1496 ice_for_each_q_vector(vsi, i) {
1497 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1498
1499 if (q_vector) {
1500 q_vector->tx.tx_ring = NULL;
1501 q_vector->rx.rx_ring = NULL;
1502 }
1503 }
1504 }
1505
1506 if (vsi->tx_rings) {
1507 ice_for_each_alloc_txq(vsi, i) {
1508 if (vsi->tx_rings[i]) {
1509 kfree_rcu(vsi->tx_rings[i], rcu);
1510 WRITE_ONCE(vsi->tx_rings[i], NULL);
1511 }
1512 }
1513 }
1514 if (vsi->rx_rings) {
1515 ice_for_each_alloc_rxq(vsi, i) {
1516 if (vsi->rx_rings[i]) {
1517 kfree_rcu(vsi->rx_rings[i], rcu);
1518 WRITE_ONCE(vsi->rx_rings[i], NULL);
1519 }
1520 }
1521 }
1522}
1523
1524/**
1525 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1526 * @vsi: VSI which is having rings allocated
1527 */
1528static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1529{
1530 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1531 struct ice_pf *pf = vsi->back;
1532 struct device *dev;
1533 u16 i;
1534
1535 dev = ice_pf_to_dev(pf);
1536 /* Allocate Tx rings */
1537 ice_for_each_alloc_txq(vsi, i) {
1538 struct ice_tx_ring *ring;
1539
1540 /* allocate with kzalloc(), free with kfree_rcu() */
1541 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1542
1543 if (!ring)
1544 goto err_out;
1545
1546 ring->q_index = i;
1547 ring->reg_idx = vsi->txq_map[i];
1548 ring->vsi = vsi;
1549 ring->tx_tstamps = &pf->ptp.port.tx;
1550 ring->dev = dev;
1551 ring->count = vsi->num_tx_desc;
1552 ring->txq_teid = ICE_INVAL_TEID;
1553 if (dvm_ena)
1554 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1555 else
1556 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1557 WRITE_ONCE(vsi->tx_rings[i], ring);
1558 }
1559
1560 /* Allocate Rx rings */
1561 ice_for_each_alloc_rxq(vsi, i) {
1562 struct ice_rx_ring *ring;
1563
1564 /* allocate with kzalloc(), free with kfree_rcu() */
1565 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1566 if (!ring)
1567 goto err_out;
1568
1569 ring->q_index = i;
1570 ring->reg_idx = vsi->rxq_map[i];
1571 ring->vsi = vsi;
1572 ring->netdev = vsi->netdev;
1573 ring->dev = dev;
1574 ring->count = vsi->num_rx_desc;
1575 ring->cached_phctime = pf->ptp.cached_phc_time;
1576 WRITE_ONCE(vsi->rx_rings[i], ring);
1577 }
1578
1579 return 0;
1580
1581err_out:
1582 ice_vsi_clear_rings(vsi);
1583 return -ENOMEM;
1584}
1585
1586/**
1587 * ice_vsi_free_stats - Free the ring statistics structures
1588 * @vsi: VSI pointer
1589 */
1590static void ice_vsi_free_stats(struct ice_vsi *vsi)
1591{
1592 struct ice_vsi_stats *vsi_stat;
1593 struct ice_pf *pf = vsi->back;
1594 int i;
1595
1596 if (vsi->type == ICE_VSI_CHNL)
1597 return;
1598 if (!pf->vsi_stats)
1599 return;
1600
1601 vsi_stat = pf->vsi_stats[vsi->idx];
1602 if (!vsi_stat)
1603 return;
1604
1605 ice_for_each_alloc_txq(vsi, i) {
1606 if (vsi_stat->tx_ring_stats[i]) {
1607 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
1608 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
1609 }
1610 }
1611
1612 ice_for_each_alloc_rxq(vsi, i) {
1613 if (vsi_stat->rx_ring_stats[i]) {
1614 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
1615 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
1616 }
1617 }
1618
1619 kfree(vsi_stat->tx_ring_stats);
1620 kfree(vsi_stat->rx_ring_stats);
1621 kfree(vsi_stat);
1622 pf->vsi_stats[vsi->idx] = NULL;
1623}
1624
1625/**
1626 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
1627 * @vsi: VSI which is having stats allocated
1628 */
1629static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
1630{
1631 struct ice_ring_stats **tx_ring_stats;
1632 struct ice_ring_stats **rx_ring_stats;
1633 struct ice_vsi_stats *vsi_stats;
1634 struct ice_pf *pf = vsi->back;
1635 u16 i;
1636
1637 vsi_stats = pf->vsi_stats[vsi->idx];
1638 tx_ring_stats = vsi_stats->tx_ring_stats;
1639 rx_ring_stats = vsi_stats->rx_ring_stats;
1640
1641 /* Allocate Tx ring stats */
1642 ice_for_each_alloc_txq(vsi, i) {
1643 struct ice_ring_stats *ring_stats;
1644 struct ice_tx_ring *ring;
1645
1646 ring = vsi->tx_rings[i];
1647 ring_stats = tx_ring_stats[i];
1648
1649 if (!ring_stats) {
1650 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
1651 if (!ring_stats)
1652 goto err_out;
1653
1654 WRITE_ONCE(tx_ring_stats[i], ring_stats);
1655 }
1656
1657 ring->ring_stats = ring_stats;
1658 }
1659
1660 /* Allocate Rx ring stats */
1661 ice_for_each_alloc_rxq(vsi, i) {
1662 struct ice_ring_stats *ring_stats;
1663 struct ice_rx_ring *ring;
1664
1665 ring = vsi->rx_rings[i];
1666 ring_stats = rx_ring_stats[i];
1667
1668 if (!ring_stats) {
1669 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
1670 if (!ring_stats)
1671 goto err_out;
1672
1673 WRITE_ONCE(rx_ring_stats[i], ring_stats);
1674 }
1675
1676 ring->ring_stats = ring_stats;
1677 }
1678
1679 return 0;
1680
1681err_out:
1682 ice_vsi_free_stats(vsi);
1683 return -ENOMEM;
1684}
1685
1686/**
1687 * ice_vsi_manage_rss_lut - disable/enable RSS
1688 * @vsi: the VSI being changed
1689 * @ena: boolean value indicating if this is an enable or disable request
1690 *
1691 * In the event of disable request for RSS, this function will zero out RSS
1692 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1693 * LUT.
1694 */
1695void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1696{
1697 u8 *lut;
1698
1699 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1700 if (!lut)
1701 return;
1702
1703 if (ena) {
1704 if (vsi->rss_lut_user)
1705 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1706 else
1707 ice_fill_rss_lut(lut, vsi->rss_table_size,
1708 vsi->rss_size);
1709 }
1710
1711 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1712 kfree(lut);
1713}
1714
1715/**
1716 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1717 * @vsi: VSI to be configured
1718 * @disable: set to true to have FCS / CRC in the frame data
1719 */
1720void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1721{
1722 int i;
1723
1724 ice_for_each_rxq(vsi, i)
1725 if (disable)
1726 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1727 else
1728 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1729}
1730
1731/**
1732 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1733 * @vsi: VSI to be configured
1734 */
1735int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1736{
1737 struct ice_pf *pf = vsi->back;
1738 struct device *dev;
1739 u8 *lut, *key;
1740 int err;
1741
1742 dev = ice_pf_to_dev(pf);
1743 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1744 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1745 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1746 } else {
1747 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1748
1749 /* If orig_rss_size is valid and it is less than determined
1750 * main VSI's rss_size, update main VSI's rss_size to be
1751 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1752 * RSS table gets programmed to be correct (whatever it was
1753 * to begin with (prior to setup-tc for ADQ config)
1754 */
1755 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1756 vsi->orig_rss_size <= vsi->num_rxq) {
1757 vsi->rss_size = vsi->orig_rss_size;
1758 /* now orig_rss_size is used, reset it to zero */
1759 vsi->orig_rss_size = 0;
1760 }
1761 }
1762
1763 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1764 if (!lut)
1765 return -ENOMEM;
1766
1767 if (vsi->rss_lut_user)
1768 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1769 else
1770 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1771
1772 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1773 if (err) {
1774 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1775 goto ice_vsi_cfg_rss_exit;
1776 }
1777
1778 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1779 if (!key) {
1780 err = -ENOMEM;
1781 goto ice_vsi_cfg_rss_exit;
1782 }
1783
1784 if (vsi->rss_hkey_user)
1785 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1786 else
1787 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1788
1789 err = ice_set_rss_key(vsi, key);
1790 if (err)
1791 dev_err(dev, "set_rss_key failed, error %d\n", err);
1792
1793 kfree(key);
1794ice_vsi_cfg_rss_exit:
1795 kfree(lut);
1796 return err;
1797}
1798
1799/**
1800 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1801 * @vsi: VSI to be configured
1802 *
1803 * This function will only be called during the VF VSI setup. Upon successful
1804 * completion of package download, this function will configure default RSS
1805 * input sets for VF VSI.
1806 */
1807static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1808{
1809 struct ice_pf *pf = vsi->back;
1810 struct device *dev;
1811 int status;
1812
1813 dev = ice_pf_to_dev(pf);
1814 if (ice_is_safe_mode(pf)) {
1815 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1816 vsi->vsi_num);
1817 return;
1818 }
1819
1820 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1821 if (status)
1822 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1823 vsi->vsi_num, status);
1824}
1825
1826/**
1827 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1828 * @vsi: VSI to be configured
1829 *
1830 * This function will only be called after successful download package call
1831 * during initialization of PF. Since the downloaded package will erase the
1832 * RSS section, this function will configure RSS input sets for different
1833 * flow types. The last profile added has the highest priority, therefore 2
1834 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1835 * (i.e. IPv4 src/dst TCP src/dst port).
1836 */
1837static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1838{
1839 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1840 struct ice_pf *pf = vsi->back;
1841 struct ice_hw *hw = &pf->hw;
1842 struct device *dev;
1843 int status;
1844
1845 dev = ice_pf_to_dev(pf);
1846 if (ice_is_safe_mode(pf)) {
1847 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1848 vsi_num);
1849 return;
1850 }
1851 /* configure RSS for IPv4 with input set IP src/dst */
1852 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1853 ICE_FLOW_SEG_HDR_IPV4);
1854 if (status)
1855 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1856 vsi_num, status);
1857
1858 /* configure RSS for IPv6 with input set IPv6 src/dst */
1859 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1860 ICE_FLOW_SEG_HDR_IPV6);
1861 if (status)
1862 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1863 vsi_num, status);
1864
1865 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1866 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1867 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1868 if (status)
1869 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1870 vsi_num, status);
1871
1872 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1873 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1874 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1875 if (status)
1876 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1877 vsi_num, status);
1878
1879 /* configure RSS for sctp4 with input set IP src/dst */
1880 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1881 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1882 if (status)
1883 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1884 vsi_num, status);
1885
1886 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1887 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1888 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1889 if (status)
1890 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1891 vsi_num, status);
1892
1893 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1894 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1895 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1896 if (status)
1897 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1898 vsi_num, status);
1899
1900 /* configure RSS for sctp6 with input set IPv6 src/dst */
1901 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1902 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1903 if (status)
1904 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1905 vsi_num, status);
1906
1907 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1908 ICE_FLOW_SEG_HDR_ESP);
1909 if (status)
1910 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1911 vsi_num, status);
1912}
1913
1914/**
1915 * ice_pf_state_is_nominal - checks the PF for nominal state
1916 * @pf: pointer to PF to check
1917 *
1918 * Check the PF's state for a collection of bits that would indicate
1919 * the PF is in a state that would inhibit normal operation for
1920 * driver functionality.
1921 *
1922 * Returns true if PF is in a nominal state, false otherwise
1923 */
1924bool ice_pf_state_is_nominal(struct ice_pf *pf)
1925{
1926 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1927
1928 if (!pf)
1929 return false;
1930
1931 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1932 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1933 return false;
1934
1935 return true;
1936}
1937
1938/**
1939 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1940 * @vsi: the VSI to be updated
1941 */
1942void ice_update_eth_stats(struct ice_vsi *vsi)
1943{
1944 struct ice_eth_stats *prev_es, *cur_es;
1945 struct ice_hw *hw = &vsi->back->hw;
1946 struct ice_pf *pf = vsi->back;
1947 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1948
1949 prev_es = &vsi->eth_stats_prev;
1950 cur_es = &vsi->eth_stats;
1951
1952 if (ice_is_reset_in_progress(pf->state))
1953 vsi->stat_offsets_loaded = false;
1954
1955 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1956 &prev_es->rx_bytes, &cur_es->rx_bytes);
1957
1958 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1959 &prev_es->rx_unicast, &cur_es->rx_unicast);
1960
1961 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1962 &prev_es->rx_multicast, &cur_es->rx_multicast);
1963
1964 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1965 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1966
1967 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1968 &prev_es->rx_discards, &cur_es->rx_discards);
1969
1970 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1971 &prev_es->tx_bytes, &cur_es->tx_bytes);
1972
1973 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1974 &prev_es->tx_unicast, &cur_es->tx_unicast);
1975
1976 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1977 &prev_es->tx_multicast, &cur_es->tx_multicast);
1978
1979 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1980 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1981
1982 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1983 &prev_es->tx_errors, &cur_es->tx_errors);
1984
1985 vsi->stat_offsets_loaded = true;
1986}
1987
1988/**
1989 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1990 * @vsi: VSI
1991 */
1992void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1993{
1994 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1995 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1996 vsi->rx_buf_len = ICE_RXBUF_2048;
1997#if (PAGE_SIZE < 8192)
1998 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1999 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
2000 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
2001 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
2002#endif
2003 } else {
2004 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
2005#if (PAGE_SIZE < 8192)
2006 vsi->rx_buf_len = ICE_RXBUF_3072;
2007#else
2008 vsi->rx_buf_len = ICE_RXBUF_2048;
2009#endif
2010 }
2011}
2012
2013/**
2014 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
2015 * @hw: HW pointer
2016 * @pf_q: index of the Rx queue in the PF's queue space
2017 * @rxdid: flexible descriptor RXDID
2018 * @prio: priority for the RXDID for this queue
2019 * @ena_ts: true to enable timestamp and false to disable timestamp
2020 */
2021void
2022ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
2023 bool ena_ts)
2024{
2025 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
2026
2027 /* clear any previous values */
2028 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
2029 QRXFLXP_CNTXT_RXDID_PRIO_M |
2030 QRXFLXP_CNTXT_TS_M);
2031
2032 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
2033 QRXFLXP_CNTXT_RXDID_IDX_M;
2034
2035 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
2036 QRXFLXP_CNTXT_RXDID_PRIO_M;
2037
2038 if (ena_ts)
2039 /* Enable TimeSync on this queue */
2040 regval |= QRXFLXP_CNTXT_TS_M;
2041
2042 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
2043}
2044
2045int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
2046{
2047 if (q_idx >= vsi->num_rxq)
2048 return -EINVAL;
2049
2050 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
2051}
2052
2053int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
2054{
2055 struct ice_aqc_add_tx_qgrp *qg_buf;
2056 int err;
2057
2058 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
2059 return -EINVAL;
2060
2061 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
2062 if (!qg_buf)
2063 return -ENOMEM;
2064
2065 qg_buf->num_txqs = 1;
2066
2067 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
2068 kfree(qg_buf);
2069 return err;
2070}
2071
2072/**
2073 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
2074 * @vsi: the VSI being configured
2075 *
2076 * Return 0 on success and a negative value on error
2077 * Configure the Rx VSI for operation.
2078 */
2079int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
2080{
2081 u16 i;
2082
2083 if (vsi->type == ICE_VSI_VF)
2084 goto setup_rings;
2085
2086 ice_vsi_cfg_frame_size(vsi);
2087setup_rings:
2088 /* set up individual rings */
2089 ice_for_each_rxq(vsi, i) {
2090 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
2091
2092 if (err)
2093 return err;
2094 }
2095
2096 return 0;
2097}
2098
2099/**
2100 * ice_vsi_cfg_txqs - Configure the VSI for Tx
2101 * @vsi: the VSI being configured
2102 * @rings: Tx ring array to be configured
2103 * @count: number of Tx ring array elements
2104 *
2105 * Return 0 on success and a negative value on error
2106 * Configure the Tx VSI for operation.
2107 */
2108static int
2109ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
2110{
2111 struct ice_aqc_add_tx_qgrp *qg_buf;
2112 u16 q_idx = 0;
2113 int err = 0;
2114
2115 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
2116 if (!qg_buf)
2117 return -ENOMEM;
2118
2119 qg_buf->num_txqs = 1;
2120
2121 for (q_idx = 0; q_idx < count; q_idx++) {
2122 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
2123 if (err)
2124 goto err_cfg_txqs;
2125 }
2126
2127err_cfg_txqs:
2128 kfree(qg_buf);
2129 return err;
2130}
2131
2132/**
2133 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
2134 * @vsi: the VSI being configured
2135 *
2136 * Return 0 on success and a negative value on error
2137 * Configure the Tx VSI for operation.
2138 */
2139int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
2140{
2141 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
2142}
2143
2144/**
2145 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
2146 * @vsi: the VSI being configured
2147 *
2148 * Return 0 on success and a negative value on error
2149 * Configure the Tx queues dedicated for XDP in given VSI for operation.
2150 */
2151int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
2152{
2153 int ret;
2154 int i;
2155
2156 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
2157 if (ret)
2158 return ret;
2159
2160 ice_for_each_rxq(vsi, i)
2161 ice_tx_xsk_pool(vsi, i);
2162
2163 return ret;
2164}
2165
2166/**
2167 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
2168 * @intrl: interrupt rate limit in usecs
2169 * @gran: interrupt rate limit granularity in usecs
2170 *
2171 * This function converts a decimal interrupt rate limit in usecs to the format
2172 * expected by firmware.
2173 */
2174static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
2175{
2176 u32 val = intrl / gran;
2177
2178 if (val)
2179 return val | GLINT_RATE_INTRL_ENA_M;
2180 return 0;
2181}
2182
2183/**
2184 * ice_write_intrl - write throttle rate limit to interrupt specific register
2185 * @q_vector: pointer to interrupt specific structure
2186 * @intrl: throttle rate limit in microseconds to write
2187 */
2188void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
2189{
2190 struct ice_hw *hw = &q_vector->vsi->back->hw;
2191
2192 wr32(hw, GLINT_RATE(q_vector->reg_idx),
2193 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2194}
2195
2196static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2197{
2198 switch (rc->type) {
2199 case ICE_RX_CONTAINER:
2200 if (rc->rx_ring)
2201 return rc->rx_ring->q_vector;
2202 break;
2203 case ICE_TX_CONTAINER:
2204 if (rc->tx_ring)
2205 return rc->tx_ring->q_vector;
2206 break;
2207 default:
2208 break;
2209 }
2210
2211 return NULL;
2212}
2213
2214/**
2215 * __ice_write_itr - write throttle rate to register
2216 * @q_vector: pointer to interrupt data structure
2217 * @rc: pointer to ring container
2218 * @itr: throttle rate in microseconds to write
2219 */
2220static void __ice_write_itr(struct ice_q_vector *q_vector,
2221 struct ice_ring_container *rc, u16 itr)
2222{
2223 struct ice_hw *hw = &q_vector->vsi->back->hw;
2224
2225 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2226 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2227}
2228
2229/**
2230 * ice_write_itr - write throttle rate to queue specific register
2231 * @rc: pointer to ring container
2232 * @itr: throttle rate in microseconds to write
2233 */
2234void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2235{
2236 struct ice_q_vector *q_vector;
2237
2238 q_vector = ice_pull_qvec_from_rc(rc);
2239 if (!q_vector)
2240 return;
2241
2242 __ice_write_itr(q_vector, rc, itr);
2243}
2244
2245/**
2246 * ice_set_q_vector_intrl - set up interrupt rate limiting
2247 * @q_vector: the vector to be configured
2248 *
2249 * Interrupt rate limiting is local to the vector, not per-queue so we must
2250 * detect if either ring container has dynamic moderation enabled to decide
2251 * what to set the interrupt rate limit to via INTRL settings. In the case that
2252 * dynamic moderation is disabled on both, write the value with the cached
2253 * setting to make sure INTRL register matches the user visible value.
2254 */
2255void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2256{
2257 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2258 /* in the case of dynamic enabled, cap each vector to no more
2259 * than (4 us) 250,000 ints/sec, which allows low latency
2260 * but still less than 500,000 interrupts per second, which
2261 * reduces CPU a bit in the case of the lowest latency
2262 * setting. The 4 here is a value in microseconds.
2263 */
2264 ice_write_intrl(q_vector, 4);
2265 } else {
2266 ice_write_intrl(q_vector, q_vector->intrl);
2267 }
2268}
2269
2270/**
2271 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2272 * @vsi: the VSI being configured
2273 *
2274 * This configures MSIX mode interrupts for the PF VSI, and should not be used
2275 * for the VF VSI.
2276 */
2277void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2278{
2279 struct ice_pf *pf = vsi->back;
2280 struct ice_hw *hw = &pf->hw;
2281 u16 txq = 0, rxq = 0;
2282 int i, q;
2283
2284 ice_for_each_q_vector(vsi, i) {
2285 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2286 u16 reg_idx = q_vector->reg_idx;
2287
2288 ice_cfg_itr(hw, q_vector);
2289
2290 /* Both Transmit Queue Interrupt Cause Control register
2291 * and Receive Queue Interrupt Cause control register
2292 * expects MSIX_INDX field to be the vector index
2293 * within the function space and not the absolute
2294 * vector index across PF or across device.
2295 * For SR-IOV VF VSIs queue vector index always starts
2296 * with 1 since first vector index(0) is used for OICR
2297 * in VF space. Since VMDq and other PF VSIs are within
2298 * the PF function space, use the vector index that is
2299 * tracked for this PF.
2300 */
2301 for (q = 0; q < q_vector->num_ring_tx; q++) {
2302 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2303 q_vector->tx.itr_idx);
2304 txq++;
2305 }
2306
2307 for (q = 0; q < q_vector->num_ring_rx; q++) {
2308 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2309 q_vector->rx.itr_idx);
2310 rxq++;
2311 }
2312 }
2313}
2314
2315/**
2316 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2317 * @vsi: the VSI whose rings are to be enabled
2318 *
2319 * Returns 0 on success and a negative value on error
2320 */
2321int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2322{
2323 return ice_vsi_ctrl_all_rx_rings(vsi, true);
2324}
2325
2326/**
2327 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2328 * @vsi: the VSI whose rings are to be disabled
2329 *
2330 * Returns 0 on success and a negative value on error
2331 */
2332int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2333{
2334 return ice_vsi_ctrl_all_rx_rings(vsi, false);
2335}
2336
2337/**
2338 * ice_vsi_stop_tx_rings - Disable Tx rings
2339 * @vsi: the VSI being configured
2340 * @rst_src: reset source
2341 * @rel_vmvf_num: Relative ID of VF/VM
2342 * @rings: Tx ring array to be stopped
2343 * @count: number of Tx ring array elements
2344 */
2345static int
2346ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2347 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2348{
2349 u16 q_idx;
2350
2351 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2352 return -EINVAL;
2353
2354 for (q_idx = 0; q_idx < count; q_idx++) {
2355 struct ice_txq_meta txq_meta = { };
2356 int status;
2357
2358 if (!rings || !rings[q_idx])
2359 return -EINVAL;
2360
2361 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2362 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2363 rings[q_idx], &txq_meta);
2364
2365 if (status)
2366 return status;
2367 }
2368
2369 return 0;
2370}
2371
2372/**
2373 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2374 * @vsi: the VSI being configured
2375 * @rst_src: reset source
2376 * @rel_vmvf_num: Relative ID of VF/VM
2377 */
2378int
2379ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2380 u16 rel_vmvf_num)
2381{
2382 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2383}
2384
2385/**
2386 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2387 * @vsi: the VSI being configured
2388 */
2389int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2390{
2391 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2392}
2393
2394/**
2395 * ice_vsi_is_rx_queue_active
2396 * @vsi: the VSI being configured
2397 *
2398 * Return true if at least one queue is active.
2399 */
2400bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2401{
2402 struct ice_pf *pf = vsi->back;
2403 struct ice_hw *hw = &pf->hw;
2404 int i;
2405
2406 ice_for_each_rxq(vsi, i) {
2407 u32 rx_reg;
2408 int pf_q;
2409
2410 pf_q = vsi->rxq_map[i];
2411 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2412 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2413 return true;
2414 }
2415
2416 return false;
2417}
2418
2419/**
2420 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2421 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2422 *
2423 * returns true if Rx VLAN pruning is enabled and false otherwise.
2424 */
2425bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2426{
2427 if (!vsi)
2428 return false;
2429
2430 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2431}
2432
2433static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2434{
2435 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2436 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2437 vsi->tc_cfg.numtc = 1;
2438 return;
2439 }
2440
2441 /* set VSI TC information based on DCB config */
2442 ice_vsi_set_dcb_tc_cfg(vsi);
2443}
2444
2445/**
2446 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2447 * @vsi: VSI to set the q_vectors register index on
2448 */
2449static int
2450ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2451{
2452 u16 i;
2453
2454 if (!vsi || !vsi->q_vectors)
2455 return -EINVAL;
2456
2457 ice_for_each_q_vector(vsi, i) {
2458 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2459
2460 if (!q_vector) {
2461 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2462 i, vsi->vsi_num);
2463 goto clear_reg_idx;
2464 }
2465
2466 if (vsi->type == ICE_VSI_VF) {
2467 struct ice_vf *vf = vsi->vf;
2468
2469 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2470 } else {
2471 q_vector->reg_idx =
2472 q_vector->v_idx + vsi->base_vector;
2473 }
2474 }
2475
2476 return 0;
2477
2478clear_reg_idx:
2479 ice_for_each_q_vector(vsi, i) {
2480 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2481
2482 if (q_vector)
2483 q_vector->reg_idx = 0;
2484 }
2485
2486 return -EINVAL;
2487}
2488
2489/**
2490 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2491 * @vsi: the VSI being configured
2492 * @tx: bool to determine Tx or Rx rule
2493 * @create: bool to determine create or remove Rule
2494 */
2495void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2496{
2497 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2498 enum ice_sw_fwd_act_type act);
2499 struct ice_pf *pf = vsi->back;
2500 struct device *dev;
2501 int status;
2502
2503 dev = ice_pf_to_dev(pf);
2504 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2505
2506 if (tx) {
2507 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2508 ICE_DROP_PACKET);
2509 } else {
2510 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2511 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2512 create);
2513 } else {
2514 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2515 ICE_FWD_TO_VSI);
2516 }
2517 }
2518
2519 if (status)
2520 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2521 create ? "adding" : "removing", tx ? "TX" : "RX",
2522 vsi->vsi_num, status);
2523}
2524
2525/**
2526 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2527 * @vsi: pointer to the VSI
2528 *
2529 * This function will allocate new scheduler aggregator now if needed and will
2530 * move specified VSI into it.
2531 */
2532static void ice_set_agg_vsi(struct ice_vsi *vsi)
2533{
2534 struct device *dev = ice_pf_to_dev(vsi->back);
2535 struct ice_agg_node *agg_node_iter = NULL;
2536 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2537 struct ice_agg_node *agg_node = NULL;
2538 int node_offset, max_agg_nodes = 0;
2539 struct ice_port_info *port_info;
2540 struct ice_pf *pf = vsi->back;
2541 u32 agg_node_id_start = 0;
2542 int status;
2543
2544 /* create (as needed) scheduler aggregator node and move VSI into
2545 * corresponding aggregator node
2546 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2547 * - VF aggregator nodes will contain VF VSI
2548 */
2549 port_info = pf->hw.port_info;
2550 if (!port_info)
2551 return;
2552
2553 switch (vsi->type) {
2554 case ICE_VSI_CTRL:
2555 case ICE_VSI_CHNL:
2556 case ICE_VSI_LB:
2557 case ICE_VSI_PF:
2558 case ICE_VSI_SWITCHDEV_CTRL:
2559 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2560 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2561 agg_node_iter = &pf->pf_agg_node[0];
2562 break;
2563 case ICE_VSI_VF:
2564 /* user can create 'n' VFs on a given PF, but since max children
2565 * per aggregator node can be only 64. Following code handles
2566 * aggregator(s) for VF VSIs, either selects a agg_node which
2567 * was already created provided num_vsis < 64, otherwise
2568 * select next available node, which will be created
2569 */
2570 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2571 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2572 agg_node_iter = &pf->vf_agg_node[0];
2573 break;
2574 default:
2575 /* other VSI type, handle later if needed */
2576 dev_dbg(dev, "unexpected VSI type %s\n",
2577 ice_vsi_type_str(vsi->type));
2578 return;
2579 }
2580
2581 /* find the appropriate aggregator node */
2582 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2583 /* see if we can find space in previously created
2584 * node if num_vsis < 64, otherwise skip
2585 */
2586 if (agg_node_iter->num_vsis &&
2587 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2588 agg_node_iter++;
2589 continue;
2590 }
2591
2592 if (agg_node_iter->valid &&
2593 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2594 agg_id = agg_node_iter->agg_id;
2595 agg_node = agg_node_iter;
2596 break;
2597 }
2598
2599 /* find unclaimed agg_id */
2600 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2601 agg_id = node_offset + agg_node_id_start;
2602 agg_node = agg_node_iter;
2603 break;
2604 }
2605 /* move to next agg_node */
2606 agg_node_iter++;
2607 }
2608
2609 if (!agg_node)
2610 return;
2611
2612 /* if selected aggregator node was not created, create it */
2613 if (!agg_node->valid) {
2614 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2615 (u8)vsi->tc_cfg.ena_tc);
2616 if (status) {
2617 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2618 agg_id);
2619 return;
2620 }
2621 /* aggregator node is created, store the needed info */
2622 agg_node->valid = true;
2623 agg_node->agg_id = agg_id;
2624 }
2625
2626 /* move VSI to corresponding aggregator node */
2627 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2628 (u8)vsi->tc_cfg.ena_tc);
2629 if (status) {
2630 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2631 vsi->idx, agg_id);
2632 return;
2633 }
2634
2635 /* keep active children count for aggregator node */
2636 agg_node->num_vsis++;
2637
2638 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2639 * to aggregator node
2640 */
2641 vsi->agg_node = agg_node;
2642 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2643 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2644 vsi->agg_node->num_vsis);
2645}
2646
2647/**
2648 * ice_vsi_setup - Set up a VSI by a given type
2649 * @pf: board private structure
2650 * @pi: pointer to the port_info instance
2651 * @vsi_type: VSI type
2652 * @vf: pointer to VF to which this VSI connects. This field is used primarily
2653 * for the ICE_VSI_VF type. Other VSI types should pass NULL.
2654 * @ch: ptr to channel
2655 *
2656 * This allocates the sw VSI structure and its queue resources.
2657 *
2658 * Returns pointer to the successfully allocated and configured VSI sw struct on
2659 * success, NULL on failure.
2660 */
2661struct ice_vsi *
2662ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2663 enum ice_vsi_type vsi_type, struct ice_vf *vf,
2664 struct ice_channel *ch)
2665{
2666 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2667 struct device *dev = ice_pf_to_dev(pf);
2668 struct ice_vsi *vsi;
2669 int ret, i;
2670
2671 if (vsi_type == ICE_VSI_CHNL)
2672 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2673 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2674 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2675 else
2676 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
2677
2678 if (!vsi) {
2679 dev_err(dev, "could not allocate VSI\n");
2680 return NULL;
2681 }
2682
2683 vsi->port_info = pi;
2684 vsi->vsw = pf->first_sw;
2685 if (vsi->type == ICE_VSI_PF)
2686 vsi->ethtype = ETH_P_PAUSE;
2687
2688 ice_alloc_fd_res(vsi);
2689
2690 if (vsi_type != ICE_VSI_CHNL) {
2691 if (ice_vsi_get_qs(vsi)) {
2692 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2693 vsi->idx);
2694 goto unroll_vsi_alloc;
2695 }
2696 }
2697
2698 /* set RSS capabilities */
2699 ice_vsi_set_rss_params(vsi);
2700
2701 /* set TC configuration */
2702 ice_vsi_set_tc_cfg(vsi);
2703
2704 /* create the VSI */
2705 ret = ice_vsi_init(vsi, true);
2706 if (ret)
2707 goto unroll_get_qs;
2708
2709 ice_vsi_init_vlan_ops(vsi);
2710
2711 switch (vsi->type) {
2712 case ICE_VSI_CTRL:
2713 case ICE_VSI_SWITCHDEV_CTRL:
2714 case ICE_VSI_PF:
2715 ret = ice_vsi_alloc_q_vectors(vsi);
2716 if (ret)
2717 goto unroll_vsi_init;
2718
2719 ret = ice_vsi_setup_vector_base(vsi);
2720 if (ret)
2721 goto unroll_alloc_q_vector;
2722
2723 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2724 if (ret)
2725 goto unroll_vector_base;
2726
2727 ret = ice_vsi_alloc_rings(vsi);
2728 if (ret)
2729 goto unroll_vector_base;
2730
2731 ret = ice_vsi_alloc_ring_stats(vsi);
2732 if (ret)
2733 goto unroll_vector_base;
2734
2735 ice_vsi_map_rings_to_vectors(vsi);
2736
2737 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2738 if (vsi->type != ICE_VSI_CTRL)
2739 /* Do not exit if configuring RSS had an issue, at
2740 * least receive traffic on first queue. Hence no
2741 * need to capture return value
2742 */
2743 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2744 ice_vsi_cfg_rss_lut_key(vsi);
2745 ice_vsi_set_rss_flow_fld(vsi);
2746 }
2747 ice_init_arfs(vsi);
2748 break;
2749 case ICE_VSI_CHNL:
2750 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2751 ice_vsi_cfg_rss_lut_key(vsi);
2752 ice_vsi_set_rss_flow_fld(vsi);
2753 }
2754 break;
2755 case ICE_VSI_VF:
2756 /* VF driver will take care of creating netdev for this type and
2757 * map queues to vectors through Virtchnl, PF driver only
2758 * creates a VSI and corresponding structures for bookkeeping
2759 * purpose
2760 */
2761 ret = ice_vsi_alloc_q_vectors(vsi);
2762 if (ret)
2763 goto unroll_vsi_init;
2764
2765 ret = ice_vsi_alloc_rings(vsi);
2766 if (ret)
2767 goto unroll_alloc_q_vector;
2768
2769 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2770 if (ret)
2771 goto unroll_vector_base;
2772
2773 ret = ice_vsi_alloc_ring_stats(vsi);
2774 if (ret)
2775 goto unroll_vector_base;
2776 /* Do not exit if configuring RSS had an issue, at least
2777 * receive traffic on first queue. Hence no need to capture
2778 * return value
2779 */
2780 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2781 ice_vsi_cfg_rss_lut_key(vsi);
2782 ice_vsi_set_vf_rss_flow_fld(vsi);
2783 }
2784 break;
2785 case ICE_VSI_LB:
2786 ret = ice_vsi_alloc_rings(vsi);
2787 if (ret)
2788 goto unroll_vsi_init;
2789
2790 ret = ice_vsi_alloc_ring_stats(vsi);
2791 if (ret)
2792 goto unroll_vector_base;
2793
2794 break;
2795 default:
2796 /* clean up the resources and exit */
2797 goto unroll_vsi_init;
2798 }
2799
2800 /* configure VSI nodes based on number of queues and TC's */
2801 ice_for_each_traffic_class(i) {
2802 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2803 continue;
2804
2805 if (vsi->type == ICE_VSI_CHNL) {
2806 if (!vsi->alloc_txq && vsi->num_txq)
2807 max_txqs[i] = vsi->num_txq;
2808 else
2809 max_txqs[i] = pf->num_lan_tx;
2810 } else {
2811 max_txqs[i] = vsi->alloc_txq;
2812 }
2813 }
2814
2815 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2816 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2817 max_txqs);
2818 if (ret) {
2819 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2820 vsi->vsi_num, ret);
2821 goto unroll_clear_rings;
2822 }
2823
2824 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2825 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2826 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2827 * The rule is added once for PF VSI in order to create appropriate
2828 * recipe, since VSI/VSI list is ignored with drop action...
2829 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2830 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2831 * settings in the HW.
2832 */
2833 if (!ice_is_safe_mode(pf))
2834 if (vsi->type == ICE_VSI_PF) {
2835 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2836 ICE_DROP_PACKET);
2837 ice_cfg_sw_lldp(vsi, true, true);
2838 }
2839
2840 if (!vsi->agg_node)
2841 ice_set_agg_vsi(vsi);
2842 return vsi;
2843
2844unroll_clear_rings:
2845 ice_vsi_clear_rings(vsi);
2846unroll_vector_base:
2847 /* reclaim SW interrupts back to the common pool */
2848 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2849 pf->num_avail_sw_msix += vsi->num_q_vectors;
2850unroll_alloc_q_vector:
2851 ice_vsi_free_q_vectors(vsi);
2852unroll_vsi_init:
2853 ice_vsi_free_stats(vsi);
2854 ice_vsi_delete(vsi);
2855unroll_get_qs:
2856 ice_vsi_put_qs(vsi);
2857unroll_vsi_alloc:
2858 if (vsi_type == ICE_VSI_VF)
2859 ice_enable_lag(pf->lag);
2860 ice_vsi_clear(vsi);
2861
2862 return NULL;
2863}
2864
2865/**
2866 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2867 * @vsi: the VSI being cleaned up
2868 */
2869static void ice_vsi_release_msix(struct ice_vsi *vsi)
2870{
2871 struct ice_pf *pf = vsi->back;
2872 struct ice_hw *hw = &pf->hw;
2873 u32 txq = 0;
2874 u32 rxq = 0;
2875 int i, q;
2876
2877 ice_for_each_q_vector(vsi, i) {
2878 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2879
2880 ice_write_intrl(q_vector, 0);
2881 for (q = 0; q < q_vector->num_ring_tx; q++) {
2882 ice_write_itr(&q_vector->tx, 0);
2883 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2884 if (ice_is_xdp_ena_vsi(vsi)) {
2885 u32 xdp_txq = txq + vsi->num_xdp_txq;
2886
2887 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2888 }
2889 txq++;
2890 }
2891
2892 for (q = 0; q < q_vector->num_ring_rx; q++) {
2893 ice_write_itr(&q_vector->rx, 0);
2894 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2895 rxq++;
2896 }
2897 }
2898
2899 ice_flush(hw);
2900}
2901
2902/**
2903 * ice_vsi_free_irq - Free the IRQ association with the OS
2904 * @vsi: the VSI being configured
2905 */
2906void ice_vsi_free_irq(struct ice_vsi *vsi)
2907{
2908 struct ice_pf *pf = vsi->back;
2909 int base = vsi->base_vector;
2910 int i;
2911
2912 if (!vsi->q_vectors || !vsi->irqs_ready)
2913 return;
2914
2915 ice_vsi_release_msix(vsi);
2916 if (vsi->type == ICE_VSI_VF)
2917 return;
2918
2919 vsi->irqs_ready = false;
2920 ice_free_cpu_rx_rmap(vsi);
2921
2922 ice_for_each_q_vector(vsi, i) {
2923 u16 vector = i + base;
2924 int irq_num;
2925
2926 irq_num = pf->msix_entries[vector].vector;
2927
2928 /* free only the irqs that were actually requested */
2929 if (!vsi->q_vectors[i] ||
2930 !(vsi->q_vectors[i]->num_ring_tx ||
2931 vsi->q_vectors[i]->num_ring_rx))
2932 continue;
2933
2934 /* clear the affinity notifier in the IRQ descriptor */
2935 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2936 irq_set_affinity_notifier(irq_num, NULL);
2937
2938 /* clear the affinity_mask in the IRQ descriptor */
2939 irq_set_affinity_hint(irq_num, NULL);
2940 synchronize_irq(irq_num);
2941 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2942 }
2943}
2944
2945/**
2946 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2947 * @vsi: the VSI having resources freed
2948 */
2949void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2950{
2951 int i;
2952
2953 if (!vsi->tx_rings)
2954 return;
2955
2956 ice_for_each_txq(vsi, i)
2957 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2958 ice_free_tx_ring(vsi->tx_rings[i]);
2959}
2960
2961/**
2962 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2963 * @vsi: the VSI having resources freed
2964 */
2965void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2966{
2967 int i;
2968
2969 if (!vsi->rx_rings)
2970 return;
2971
2972 ice_for_each_rxq(vsi, i)
2973 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2974 ice_free_rx_ring(vsi->rx_rings[i]);
2975}
2976
2977/**
2978 * ice_vsi_close - Shut down a VSI
2979 * @vsi: the VSI being shut down
2980 */
2981void ice_vsi_close(struct ice_vsi *vsi)
2982{
2983 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2984 ice_down(vsi);
2985
2986 ice_vsi_free_irq(vsi);
2987 ice_vsi_free_tx_rings(vsi);
2988 ice_vsi_free_rx_rings(vsi);
2989}
2990
2991/**
2992 * ice_ena_vsi - resume a VSI
2993 * @vsi: the VSI being resume
2994 * @locked: is the rtnl_lock already held
2995 */
2996int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2997{
2998 int err = 0;
2999
3000 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
3001 return 0;
3002
3003 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
3004
3005 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
3006 if (netif_running(vsi->netdev)) {
3007 if (!locked)
3008 rtnl_lock();
3009
3010 err = ice_open_internal(vsi->netdev);
3011
3012 if (!locked)
3013 rtnl_unlock();
3014 }
3015 } else if (vsi->type == ICE_VSI_CTRL) {
3016 err = ice_vsi_open_ctrl(vsi);
3017 }
3018
3019 return err;
3020}
3021
3022/**
3023 * ice_dis_vsi - pause a VSI
3024 * @vsi: the VSI being paused
3025 * @locked: is the rtnl_lock already held
3026 */
3027void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
3028{
3029 if (test_bit(ICE_VSI_DOWN, vsi->state))
3030 return;
3031
3032 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
3033
3034 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
3035 if (netif_running(vsi->netdev)) {
3036 if (!locked)
3037 rtnl_lock();
3038
3039 ice_vsi_close(vsi);
3040
3041 if (!locked)
3042 rtnl_unlock();
3043 } else {
3044 ice_vsi_close(vsi);
3045 }
3046 } else if (vsi->type == ICE_VSI_CTRL ||
3047 vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
3048 ice_vsi_close(vsi);
3049 }
3050}
3051
3052/**
3053 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
3054 * @vsi: the VSI being un-configured
3055 */
3056void ice_vsi_dis_irq(struct ice_vsi *vsi)
3057{
3058 int base = vsi->base_vector;
3059 struct ice_pf *pf = vsi->back;
3060 struct ice_hw *hw = &pf->hw;
3061 u32 val;
3062 int i;
3063
3064 /* disable interrupt causation from each queue */
3065 if (vsi->tx_rings) {
3066 ice_for_each_txq(vsi, i) {
3067 if (vsi->tx_rings[i]) {
3068 u16 reg;
3069
3070 reg = vsi->tx_rings[i]->reg_idx;
3071 val = rd32(hw, QINT_TQCTL(reg));
3072 val &= ~QINT_TQCTL_CAUSE_ENA_M;
3073 wr32(hw, QINT_TQCTL(reg), val);
3074 }
3075 }
3076 }
3077
3078 if (vsi->rx_rings) {
3079 ice_for_each_rxq(vsi, i) {
3080 if (vsi->rx_rings[i]) {
3081 u16 reg;
3082
3083 reg = vsi->rx_rings[i]->reg_idx;
3084 val = rd32(hw, QINT_RQCTL(reg));
3085 val &= ~QINT_RQCTL_CAUSE_ENA_M;
3086 wr32(hw, QINT_RQCTL(reg), val);
3087 }
3088 }
3089 }
3090
3091 /* disable each interrupt */
3092 ice_for_each_q_vector(vsi, i) {
3093 if (!vsi->q_vectors[i])
3094 continue;
3095 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
3096 }
3097
3098 ice_flush(hw);
3099
3100 /* don't call synchronize_irq() for VF's from the host */
3101 if (vsi->type == ICE_VSI_VF)
3102 return;
3103
3104 ice_for_each_q_vector(vsi, i)
3105 synchronize_irq(pf->msix_entries[i + base].vector);
3106}
3107
3108/**
3109 * ice_napi_del - Remove NAPI handler for the VSI
3110 * @vsi: VSI for which NAPI handler is to be removed
3111 */
3112void ice_napi_del(struct ice_vsi *vsi)
3113{
3114 int v_idx;
3115
3116 if (!vsi->netdev)
3117 return;
3118
3119 ice_for_each_q_vector(vsi, v_idx)
3120 netif_napi_del(&vsi->q_vectors[v_idx]->napi);
3121}
3122
3123/**
3124 * ice_free_vf_ctrl_res - Free the VF control VSI resource
3125 * @pf: pointer to PF structure
3126 * @vsi: the VSI to free resources for
3127 *
3128 * Check if the VF control VSI resource is still in use. If no VF is using it
3129 * any more, release the VSI resource. Otherwise, leave it to be cleaned up
3130 * once no other VF uses it.
3131 */
3132static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
3133{
3134 struct ice_vf *vf;
3135 unsigned int bkt;
3136
3137 rcu_read_lock();
3138 ice_for_each_vf_rcu(pf, bkt, vf) {
3139 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
3140 rcu_read_unlock();
3141 return;
3142 }
3143 }
3144 rcu_read_unlock();
3145
3146 /* No other VFs left that have control VSI. It is now safe to reclaim
3147 * SW interrupts back to the common pool.
3148 */
3149 ice_free_res(pf->irq_tracker, vsi->base_vector,
3150 ICE_RES_VF_CTRL_VEC_ID);
3151 pf->num_avail_sw_msix += vsi->num_q_vectors;
3152}
3153
3154/**
3155 * ice_vsi_release - Delete a VSI and free its resources
3156 * @vsi: the VSI being removed
3157 *
3158 * Returns 0 on success or < 0 on error
3159 */
3160int ice_vsi_release(struct ice_vsi *vsi)
3161{
3162 struct ice_pf *pf;
3163 int err;
3164
3165 if (!vsi->back)
3166 return -ENODEV;
3167 pf = vsi->back;
3168
3169 /* do not unregister while driver is in the reset recovery pending
3170 * state. Since reset/rebuild happens through PF service task workqueue,
3171 * it's not a good idea to unregister netdev that is associated to the
3172 * PF that is running the work queue items currently. This is done to
3173 * avoid check_flush_dependency() warning on this wq
3174 */
3175 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
3176 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
3177 unregister_netdev(vsi->netdev);
3178 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3179 }
3180
3181 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3182 ice_rss_clean(vsi);
3183
3184 /* Disable VSI and free resources */
3185 if (vsi->type != ICE_VSI_LB)
3186 ice_vsi_dis_irq(vsi);
3187 ice_vsi_close(vsi);
3188
3189 /* SR-IOV determines needed MSIX resources all at once instead of per
3190 * VSI since when VFs are spawned we know how many VFs there are and how
3191 * many interrupts each VF needs. SR-IOV MSIX resources are also
3192 * cleared in the same manner.
3193 */
3194 if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
3195 ice_free_vf_ctrl_res(pf, vsi);
3196 } else if (vsi->type != ICE_VSI_VF) {
3197 /* reclaim SW interrupts back to the common pool */
3198 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3199 pf->num_avail_sw_msix += vsi->num_q_vectors;
3200 }
3201
3202 if (!ice_is_safe_mode(pf)) {
3203 if (vsi->type == ICE_VSI_PF) {
3204 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
3205 ICE_DROP_PACKET);
3206 ice_cfg_sw_lldp(vsi, true, false);
3207 /* The Rx rule will only exist to remove if the LLDP FW
3208 * engine is currently stopped
3209 */
3210 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3211 ice_cfg_sw_lldp(vsi, false, false);
3212 }
3213 }
3214
3215 if (ice_is_vsi_dflt_vsi(vsi))
3216 ice_clear_dflt_vsi(vsi);
3217 ice_fltr_remove_all(vsi);
3218 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3219 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3220 if (err)
3221 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3222 vsi->vsi_num, err);
3223 ice_vsi_delete(vsi);
3224 ice_vsi_free_q_vectors(vsi);
3225
3226 if (vsi->netdev) {
3227 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3228 unregister_netdev(vsi->netdev);
3229 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3230 }
3231 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3232 free_netdev(vsi->netdev);
3233 vsi->netdev = NULL;
3234 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3235 }
3236 }
3237
3238 if (vsi->type == ICE_VSI_VF &&
3239 vsi->agg_node && vsi->agg_node->valid)
3240 vsi->agg_node->num_vsis--;
3241 ice_vsi_clear_rings(vsi);
3242 ice_vsi_free_stats(vsi);
3243 ice_vsi_put_qs(vsi);
3244
3245 /* retain SW VSI data structure since it is needed to unregister and
3246 * free VSI netdev when PF is not in reset recovery pending state,\
3247 * for ex: during rmmod.
3248 */
3249 if (!ice_is_reset_in_progress(pf->state))
3250 ice_vsi_clear(vsi);
3251
3252 return 0;
3253}
3254
3255/**
3256 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3257 * @vsi: VSI connected with q_vectors
3258 * @coalesce: array of struct with stored coalesce
3259 *
3260 * Returns array size.
3261 */
3262static int
3263ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3264 struct ice_coalesce_stored *coalesce)
3265{
3266 int i;
3267
3268 ice_for_each_q_vector(vsi, i) {
3269 struct ice_q_vector *q_vector = vsi->q_vectors[i];
3270
3271 coalesce[i].itr_tx = q_vector->tx.itr_settings;
3272 coalesce[i].itr_rx = q_vector->rx.itr_settings;
3273 coalesce[i].intrl = q_vector->intrl;
3274
3275 if (i < vsi->num_txq)
3276 coalesce[i].tx_valid = true;
3277 if (i < vsi->num_rxq)
3278 coalesce[i].rx_valid = true;
3279 }
3280
3281 return vsi->num_q_vectors;
3282}
3283
3284/**
3285 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3286 * @vsi: VSI connected with q_vectors
3287 * @coalesce: pointer to array of struct with stored coalesce
3288 * @size: size of coalesce array
3289 *
3290 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3291 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3292 * to default value.
3293 */
3294static void
3295ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3296 struct ice_coalesce_stored *coalesce, int size)
3297{
3298 struct ice_ring_container *rc;
3299 int i;
3300
3301 if ((size && !coalesce) || !vsi)
3302 return;
3303
3304 /* There are a couple of cases that have to be handled here:
3305 * 1. The case where the number of queue vectors stays the same, but
3306 * the number of Tx or Rx rings changes (the first for loop)
3307 * 2. The case where the number of queue vectors increased (the
3308 * second for loop)
3309 */
3310 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3311 /* There are 2 cases to handle here and they are the same for
3312 * both Tx and Rx:
3313 * if the entry was valid previously (coalesce[i].[tr]x_valid
3314 * and the loop variable is less than the number of rings
3315 * allocated, then write the previous values
3316 *
3317 * if the entry was not valid previously, but the number of
3318 * rings is less than are allocated (this means the number of
3319 * rings increased from previously), then write out the
3320 * values in the first element
3321 *
3322 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
3323 * as there is no harm because the dynamic algorithm
3324 * will just overwrite.
3325 */
3326 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3327 rc = &vsi->q_vectors[i]->rx;
3328 rc->itr_settings = coalesce[i].itr_rx;
3329 ice_write_itr(rc, rc->itr_setting);
3330 } else if (i < vsi->alloc_rxq) {
3331 rc = &vsi->q_vectors[i]->rx;
3332 rc->itr_settings = coalesce[0].itr_rx;
3333 ice_write_itr(rc, rc->itr_setting);
3334 }
3335
3336 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3337 rc = &vsi->q_vectors[i]->tx;
3338 rc->itr_settings = coalesce[i].itr_tx;
3339 ice_write_itr(rc, rc->itr_setting);
3340 } else if (i < vsi->alloc_txq) {
3341 rc = &vsi->q_vectors[i]->tx;
3342 rc->itr_settings = coalesce[0].itr_tx;
3343 ice_write_itr(rc, rc->itr_setting);
3344 }
3345
3346 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3347 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3348 }
3349
3350 /* the number of queue vectors increased so write whatever is in
3351 * the first element
3352 */
3353 for (; i < vsi->num_q_vectors; i++) {
3354 /* transmit */
3355 rc = &vsi->q_vectors[i]->tx;
3356 rc->itr_settings = coalesce[0].itr_tx;
3357 ice_write_itr(rc, rc->itr_setting);
3358
3359 /* receive */
3360 rc = &vsi->q_vectors[i]->rx;
3361 rc->itr_settings = coalesce[0].itr_rx;
3362 ice_write_itr(rc, rc->itr_setting);
3363
3364 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3365 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3366 }
3367}
3368
3369/**
3370 * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3371 * @vsi: VSI pointer
3372 * @prev_txq: Number of Tx rings before ring reallocation
3373 * @prev_rxq: Number of Rx rings before ring reallocation
3374 */
3375static int
3376ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3377{
3378 struct ice_vsi_stats *vsi_stat;
3379 struct ice_pf *pf = vsi->back;
3380 int i;
3381
3382 if (!prev_txq || !prev_rxq)
3383 return 0;
3384 if (vsi->type == ICE_VSI_CHNL)
3385 return 0;
3386
3387 vsi_stat = pf->vsi_stats[vsi->idx];
3388
3389 if (vsi->num_txq < prev_txq) {
3390 for (i = vsi->num_txq; i < prev_txq; i++) {
3391 if (vsi_stat->tx_ring_stats[i]) {
3392 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3393 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3394 }
3395 }
3396 }
3397
3398 if (vsi->num_rxq < prev_rxq) {
3399 for (i = vsi->num_rxq; i < prev_rxq; i++) {
3400 if (vsi_stat->rx_ring_stats[i]) {
3401 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3402 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3403 }
3404 }
3405 }
3406
3407 return 0;
3408}
3409
3410/**
3411 * ice_vsi_rebuild - Rebuild VSI after reset
3412 * @vsi: VSI to be rebuild
3413 * @init_vsi: is this an initialization or a reconfigure of the VSI
3414 *
3415 * Returns 0 on success and negative value on failure
3416 */
3417int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3418{
3419 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3420 struct ice_coalesce_stored *coalesce;
3421 int ret, i, prev_txq, prev_rxq;
3422 int prev_num_q_vectors = 0;
3423 enum ice_vsi_type vtype;
3424 struct ice_pf *pf;
3425
3426 if (!vsi)
3427 return -EINVAL;
3428
3429 pf = vsi->back;
3430 vtype = vsi->type;
3431 if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf))
3432 return -EINVAL;
3433
3434 ice_vsi_init_vlan_ops(vsi);
3435
3436 coalesce = kcalloc(vsi->num_q_vectors,
3437 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3438 if (!coalesce)
3439 return -ENOMEM;
3440
3441 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3442
3443 prev_txq = vsi->num_txq;
3444 prev_rxq = vsi->num_rxq;
3445
3446 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3447 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3448 if (ret)
3449 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3450 vsi->vsi_num, ret);
3451 ice_vsi_free_q_vectors(vsi);
3452
3453 /* SR-IOV determines needed MSIX resources all at once instead of per
3454 * VSI since when VFs are spawned we know how many VFs there are and how
3455 * many interrupts each VF needs. SR-IOV MSIX resources are also
3456 * cleared in the same manner.
3457 */
3458 if (vtype != ICE_VSI_VF) {
3459 /* reclaim SW interrupts back to the common pool */
3460 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3461 pf->num_avail_sw_msix += vsi->num_q_vectors;
3462 vsi->base_vector = 0;
3463 }
3464
3465 if (ice_is_xdp_ena_vsi(vsi))
3466 /* return value check can be skipped here, it always returns
3467 * 0 if reset is in progress
3468 */
3469 ice_destroy_xdp_rings(vsi);
3470 ice_vsi_put_qs(vsi);
3471 ice_vsi_clear_rings(vsi);
3472 ice_vsi_free_arrays(vsi);
3473 if (vtype == ICE_VSI_VF)
3474 ice_vsi_set_num_qs(vsi, vsi->vf);
3475 else
3476 ice_vsi_set_num_qs(vsi, NULL);
3477
3478 ret = ice_vsi_alloc_arrays(vsi);
3479 if (ret < 0)
3480 goto err_vsi;
3481
3482 ice_vsi_get_qs(vsi);
3483
3484 ice_alloc_fd_res(vsi);
3485 ice_vsi_set_tc_cfg(vsi);
3486
3487 /* Initialize VSI struct elements and create VSI in FW */
3488 ret = ice_vsi_init(vsi, init_vsi);
3489 if (ret < 0)
3490 goto err_vsi;
3491
3492 switch (vtype) {
3493 case ICE_VSI_CTRL:
3494 case ICE_VSI_SWITCHDEV_CTRL:
3495 case ICE_VSI_PF:
3496 ret = ice_vsi_alloc_q_vectors(vsi);
3497 if (ret)
3498 goto err_rings;
3499
3500 ret = ice_vsi_setup_vector_base(vsi);
3501 if (ret)
3502 goto err_vectors;
3503
3504 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3505 if (ret)
3506 goto err_vectors;
3507
3508 ret = ice_vsi_alloc_rings(vsi);
3509 if (ret)
3510 goto err_vectors;
3511
3512 ret = ice_vsi_alloc_ring_stats(vsi);
3513 if (ret)
3514 goto err_vectors;
3515
3516 ice_vsi_map_rings_to_vectors(vsi);
3517
3518 vsi->stat_offsets_loaded = false;
3519 if (ice_is_xdp_ena_vsi(vsi)) {
3520 ret = ice_vsi_determine_xdp_res(vsi);
3521 if (ret)
3522 goto err_vectors;
3523 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3524 if (ret)
3525 goto err_vectors;
3526 }
3527 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3528 if (vtype != ICE_VSI_CTRL)
3529 /* Do not exit if configuring RSS had an issue, at
3530 * least receive traffic on first queue. Hence no
3531 * need to capture return value
3532 */
3533 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3534 ice_vsi_cfg_rss_lut_key(vsi);
3535
3536 /* disable or enable CRC stripping */
3537 if (vsi->netdev)
3538 ice_vsi_cfg_crc_strip(vsi, !!(vsi->netdev->features &
3539 NETIF_F_RXFCS));
3540
3541 break;
3542 case ICE_VSI_VF:
3543 ret = ice_vsi_alloc_q_vectors(vsi);
3544 if (ret)
3545 goto err_rings;
3546
3547 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3548 if (ret)
3549 goto err_vectors;
3550
3551 ret = ice_vsi_alloc_rings(vsi);
3552 if (ret)
3553 goto err_vectors;
3554
3555 ret = ice_vsi_alloc_ring_stats(vsi);
3556 if (ret)
3557 goto err_vectors;
3558
3559 vsi->stat_offsets_loaded = false;
3560 break;
3561 case ICE_VSI_CHNL:
3562 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3563 ice_vsi_cfg_rss_lut_key(vsi);
3564 ice_vsi_set_rss_flow_fld(vsi);
3565 }
3566 break;
3567 default:
3568 break;
3569 }
3570
3571 /* configure VSI nodes based on number of queues and TC's */
3572 for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3573 /* configure VSI nodes based on number of queues and TC's.
3574 * ADQ creates VSIs for each TC/Channel but doesn't
3575 * allocate queues instead it reconfigures the PF queues
3576 * as per the TC command. So max_txqs should point to the
3577 * PF Tx queues.
3578 */
3579 if (vtype == ICE_VSI_CHNL)
3580 max_txqs[i] = pf->num_lan_tx;
3581 else
3582 max_txqs[i] = vsi->alloc_txq;
3583
3584 if (ice_is_xdp_ena_vsi(vsi))
3585 max_txqs[i] += vsi->num_xdp_txq;
3586 }
3587
3588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3589 /* If MQPRIO is set, means channel code path, hence for main
3590 * VSI's, use TC as 1
3591 */
3592 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3593 else
3594 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3595 vsi->tc_cfg.ena_tc, max_txqs);
3596
3597 if (ret) {
3598 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3599 vsi->vsi_num, ret);
3600 if (init_vsi) {
3601 ret = -EIO;
3602 goto err_vectors;
3603 } else {
3604 return ice_schedule_reset(pf, ICE_RESET_PFR);
3605 }
3606 }
3607
3608 if (ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq))
3609 goto err_vectors;
3610
3611 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3612 kfree(coalesce);
3613
3614 return 0;
3615
3616err_vectors:
3617 ice_vsi_free_q_vectors(vsi);
3618err_rings:
3619 if (vsi->netdev) {
3620 vsi->current_netdev_flags = 0;
3621 unregister_netdev(vsi->netdev);
3622 free_netdev(vsi->netdev);
3623 vsi->netdev = NULL;
3624 }
3625err_vsi:
3626 ice_vsi_clear(vsi);
3627 set_bit(ICE_RESET_FAILED, pf->state);
3628 kfree(coalesce);
3629 return ret;
3630}
3631
3632/**
3633 * ice_is_reset_in_progress - check for a reset in progress
3634 * @state: PF state field
3635 */
3636bool ice_is_reset_in_progress(unsigned long *state)
3637{
3638 return test_bit(ICE_RESET_OICR_RECV, state) ||
3639 test_bit(ICE_PFR_REQ, state) ||
3640 test_bit(ICE_CORER_REQ, state) ||
3641 test_bit(ICE_GLOBR_REQ, state);
3642}
3643
3644/**
3645 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3646 * @pf: pointer to the PF structure
3647 * @timeout: length of time to wait, in jiffies
3648 *
3649 * Wait (sleep) for a short time until the driver finishes cleaning up from
3650 * a device reset. The caller must be able to sleep. Use this to delay
3651 * operations that could fail while the driver is cleaning up after a device
3652 * reset.
3653 *
3654 * Returns 0 on success, -EBUSY if the reset is not finished within the
3655 * timeout, and -ERESTARTSYS if the thread was interrupted.
3656 */
3657int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3658{
3659 long ret;
3660
3661 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3662 !ice_is_reset_in_progress(pf->state),
3663 timeout);
3664 if (ret < 0)
3665 return ret;
3666 else if (!ret)
3667 return -EBUSY;
3668 else
3669 return 0;
3670}
3671
3672/**
3673 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3674 * @vsi: VSI being configured
3675 * @ctx: the context buffer returned from AQ VSI update command
3676 */
3677static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3678{
3679 vsi->info.mapping_flags = ctx->info.mapping_flags;
3680 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3681 sizeof(vsi->info.q_mapping));
3682 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3683 sizeof(vsi->info.tc_mapping));
3684}
3685
3686/**
3687 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3688 * @vsi: the VSI being configured
3689 * @ena_tc: TC map to be enabled
3690 */
3691void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3692{
3693 struct net_device *netdev = vsi->netdev;
3694 struct ice_pf *pf = vsi->back;
3695 int numtc = vsi->tc_cfg.numtc;
3696 struct ice_dcbx_cfg *dcbcfg;
3697 u8 netdev_tc;
3698 int i;
3699
3700 if (!netdev)
3701 return;
3702
3703 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3704 if (vsi->type == ICE_VSI_CHNL)
3705 return;
3706
3707 if (!ena_tc) {
3708 netdev_reset_tc(netdev);
3709 return;
3710 }
3711
3712 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3713 numtc = vsi->all_numtc;
3714
3715 if (netdev_set_num_tc(netdev, numtc))
3716 return;
3717
3718 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3719
3720 ice_for_each_traffic_class(i)
3721 if (vsi->tc_cfg.ena_tc & BIT(i))
3722 netdev_set_tc_queue(netdev,
3723 vsi->tc_cfg.tc_info[i].netdev_tc,
3724 vsi->tc_cfg.tc_info[i].qcount_tx,
3725 vsi->tc_cfg.tc_info[i].qoffset);
3726 /* setup TC queue map for CHNL TCs */
3727 ice_for_each_chnl_tc(i) {
3728 if (!(vsi->all_enatc & BIT(i)))
3729 break;
3730 if (!vsi->mqprio_qopt.qopt.count[i])
3731 break;
3732 netdev_set_tc_queue(netdev, i,
3733 vsi->mqprio_qopt.qopt.count[i],
3734 vsi->mqprio_qopt.qopt.offset[i]);
3735 }
3736
3737 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3738 return;
3739
3740 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3741 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3742
3743 /* Get the mapped netdev TC# for the UP */
3744 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3745 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3746 }
3747}
3748
3749/**
3750 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3751 * @vsi: the VSI being configured,
3752 * @ctxt: VSI context structure
3753 * @ena_tc: number of traffic classes to enable
3754 *
3755 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3756 */
3757static int
3758ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3759 u8 ena_tc)
3760{
3761 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3762 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3763 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3764 u16 new_txq, new_rxq;
3765 u8 netdev_tc = 0;
3766 int i;
3767
3768 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3769
3770 pow = order_base_2(tc0_qcount);
3771 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3772 ICE_AQ_VSI_TC_Q_OFFSET_M) |
3773 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3774
3775 ice_for_each_traffic_class(i) {
3776 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3777 /* TC is not enabled */
3778 vsi->tc_cfg.tc_info[i].qoffset = 0;
3779 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3780 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3781 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3782 ctxt->info.tc_mapping[i] = 0;
3783 continue;
3784 }
3785
3786 offset = vsi->mqprio_qopt.qopt.offset[i];
3787 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3788 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3789 vsi->tc_cfg.tc_info[i].qoffset = offset;
3790 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3791 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3792 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3793 }
3794
3795 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3796 ice_for_each_chnl_tc(i) {
3797 if (!(vsi->all_enatc & BIT(i)))
3798 continue;
3799 offset = vsi->mqprio_qopt.qopt.offset[i];
3800 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3801 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3802 }
3803 }
3804
3805 new_txq = offset + qcount_tx;
3806 if (new_txq > vsi->alloc_txq) {
3807 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3808 new_txq, vsi->alloc_txq);
3809 return -EINVAL;
3810 }
3811
3812 new_rxq = offset + qcount_rx;
3813 if (new_rxq > vsi->alloc_rxq) {
3814 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3815 new_rxq, vsi->alloc_rxq);
3816 return -EINVAL;
3817 }
3818
3819 /* Set actual Tx/Rx queue pairs */
3820 vsi->num_txq = new_txq;
3821 vsi->num_rxq = new_rxq;
3822
3823 /* Setup queue TC[0].qmap for given VSI context */
3824 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3825 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3826 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3827
3828 /* Find queue count available for channel VSIs and starting offset
3829 * for channel VSIs
3830 */
3831 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3832 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3833 vsi->next_base_q = tc0_qcount;
3834 }
3835 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3836 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3837 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3838 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3839
3840 return 0;
3841}
3842
3843/**
3844 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3845 * @vsi: VSI to be configured
3846 * @ena_tc: TC bitmap
3847 *
3848 * VSI queues expected to be quiesced before calling this function
3849 */
3850int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3851{
3852 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3853 struct ice_pf *pf = vsi->back;
3854 struct ice_tc_cfg old_tc_cfg;
3855 struct ice_vsi_ctx *ctx;
3856 struct device *dev;
3857 int i, ret = 0;
3858 u8 num_tc = 0;
3859
3860 dev = ice_pf_to_dev(pf);
3861 if (vsi->tc_cfg.ena_tc == ena_tc &&
3862 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3863 return ret;
3864
3865 ice_for_each_traffic_class(i) {
3866 /* build bitmap of enabled TCs */
3867 if (ena_tc & BIT(i))
3868 num_tc++;
3869 /* populate max_txqs per TC */
3870 max_txqs[i] = vsi->alloc_txq;
3871 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3872 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3873 */
3874 if (vsi->type == ICE_VSI_CHNL &&
3875 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3876 max_txqs[i] = vsi->num_txq;
3877 }
3878
3879 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3880 vsi->tc_cfg.ena_tc = ena_tc;
3881 vsi->tc_cfg.numtc = num_tc;
3882
3883 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3884 if (!ctx)
3885 return -ENOMEM;
3886
3887 ctx->vf_num = 0;
3888 ctx->info = vsi->info;
3889
3890 if (vsi->type == ICE_VSI_PF &&
3891 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3892 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3893 else
3894 ret = ice_vsi_setup_q_map(vsi, ctx);
3895
3896 if (ret) {
3897 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3898 goto out;
3899 }
3900
3901 /* must to indicate which section of VSI context are being modified */
3902 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3903 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3904 if (ret) {
3905 dev_info(dev, "Failed VSI Update\n");
3906 goto out;
3907 }
3908
3909 if (vsi->type == ICE_VSI_PF &&
3910 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3911 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3912 else
3913 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3914 vsi->tc_cfg.ena_tc, max_txqs);
3915
3916 if (ret) {
3917 dev_err(dev, "VSI %d failed TC config, error %d\n",
3918 vsi->vsi_num, ret);
3919 goto out;
3920 }
3921 ice_vsi_update_q_map(vsi, ctx);
3922 vsi->info.valid_sections = 0;
3923
3924 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3925out:
3926 kfree(ctx);
3927 return ret;
3928}
3929
3930/**
3931 * ice_update_ring_stats - Update ring statistics
3932 * @stats: stats to be updated
3933 * @pkts: number of processed packets
3934 * @bytes: number of processed bytes
3935 *
3936 * This function assumes that caller has acquired a u64_stats_sync lock.
3937 */
3938static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3939{
3940 stats->bytes += bytes;
3941 stats->pkts += pkts;
3942}
3943
3944/**
3945 * ice_update_tx_ring_stats - Update Tx ring specific counters
3946 * @tx_ring: ring to update
3947 * @pkts: number of processed packets
3948 * @bytes: number of processed bytes
3949 */
3950void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3951{
3952 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3953 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3954 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3955}
3956
3957/**
3958 * ice_update_rx_ring_stats - Update Rx ring specific counters
3959 * @rx_ring: ring to update
3960 * @pkts: number of processed packets
3961 * @bytes: number of processed bytes
3962 */
3963void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3964{
3965 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3966 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3967 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3968}
3969
3970/**
3971 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3972 * @pi: port info of the switch with default VSI
3973 *
3974 * Return true if the there is a single VSI in default forwarding VSI list
3975 */
3976bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3977{
3978 bool exists = false;
3979
3980 ice_check_if_dflt_vsi(pi, 0, &exists);
3981 return exists;
3982}
3983
3984/**
3985 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3986 * @vsi: VSI to compare against default forwarding VSI
3987 *
3988 * If this VSI passed in is the default forwarding VSI then return true, else
3989 * return false
3990 */
3991bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3992{
3993 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3994}
3995
3996/**
3997 * ice_set_dflt_vsi - set the default forwarding VSI
3998 * @vsi: VSI getting set as the default forwarding VSI on the switch
3999 *
4000 * If the VSI passed in is already the default VSI and it's enabled just return
4001 * success.
4002 *
4003 * Otherwise try to set the VSI passed in as the switch's default VSI and
4004 * return the result.
4005 */
4006int ice_set_dflt_vsi(struct ice_vsi *vsi)
4007{
4008 struct device *dev;
4009 int status;
4010
4011 if (!vsi)
4012 return -EINVAL;
4013
4014 dev = ice_pf_to_dev(vsi->back);
4015
4016 /* the VSI passed in is already the default VSI */
4017 if (ice_is_vsi_dflt_vsi(vsi)) {
4018 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
4019 vsi->vsi_num);
4020 return 0;
4021 }
4022
4023 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
4024 if (status) {
4025 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
4026 vsi->vsi_num, status);
4027 return status;
4028 }
4029
4030 return 0;
4031}
4032
4033/**
4034 * ice_clear_dflt_vsi - clear the default forwarding VSI
4035 * @vsi: VSI to remove from filter list
4036 *
4037 * If the switch has no default VSI or it's not enabled then return error.
4038 *
4039 * Otherwise try to clear the default VSI and return the result.
4040 */
4041int ice_clear_dflt_vsi(struct ice_vsi *vsi)
4042{
4043 struct device *dev;
4044 int status;
4045
4046 if (!vsi)
4047 return -EINVAL;
4048
4049 dev = ice_pf_to_dev(vsi->back);
4050
4051 /* there is no default VSI configured */
4052 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
4053 return -ENODEV;
4054
4055 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
4056 ICE_FLTR_RX);
4057 if (status) {
4058 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
4059 vsi->vsi_num, status);
4060 return -EIO;
4061 }
4062
4063 return 0;
4064}
4065
4066/**
4067 * ice_get_link_speed_mbps - get link speed in Mbps
4068 * @vsi: the VSI whose link speed is being queried
4069 *
4070 * Return current VSI link speed and 0 if the speed is unknown.
4071 */
4072int ice_get_link_speed_mbps(struct ice_vsi *vsi)
4073{
4074 unsigned int link_speed;
4075
4076 link_speed = vsi->port_info->phy.link_info.link_speed;
4077
4078 return (int)ice_get_link_speed(fls(link_speed) - 1);
4079}
4080
4081/**
4082 * ice_get_link_speed_kbps - get link speed in Kbps
4083 * @vsi: the VSI whose link speed is being queried
4084 *
4085 * Return current VSI link speed and 0 if the speed is unknown.
4086 */
4087int ice_get_link_speed_kbps(struct ice_vsi *vsi)
4088{
4089 int speed_mbps;
4090
4091 speed_mbps = ice_get_link_speed_mbps(vsi);
4092
4093 return speed_mbps * 1000;
4094}
4095
4096/**
4097 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
4098 * @vsi: VSI to be configured
4099 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
4100 *
4101 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
4102 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
4103 * on TC 0.
4104 */
4105int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
4106{
4107 struct ice_pf *pf = vsi->back;
4108 struct device *dev;
4109 int status;
4110 int speed;
4111
4112 dev = ice_pf_to_dev(pf);
4113 if (!vsi->port_info) {
4114 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
4115 vsi->idx, vsi->type);
4116 return -EINVAL;
4117 }
4118
4119 speed = ice_get_link_speed_kbps(vsi);
4120 if (min_tx_rate > (u64)speed) {
4121 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
4122 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
4123 speed);
4124 return -EINVAL;
4125 }
4126
4127 /* Configure min BW for VSI limit */
4128 if (min_tx_rate) {
4129 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
4130 ICE_MIN_BW, min_tx_rate);
4131 if (status) {
4132 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
4133 min_tx_rate, ice_vsi_type_str(vsi->type),
4134 vsi->idx);
4135 return status;
4136 }
4137
4138 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
4139 min_tx_rate, ice_vsi_type_str(vsi->type));
4140 } else {
4141 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
4142 vsi->idx, 0,
4143 ICE_MIN_BW);
4144 if (status) {
4145 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
4146 ice_vsi_type_str(vsi->type), vsi->idx);
4147 return status;
4148 }
4149
4150 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
4151 ice_vsi_type_str(vsi->type), vsi->idx);
4152 }
4153
4154 return 0;
4155}
4156
4157/**
4158 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
4159 * @vsi: VSI to be configured
4160 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
4161 *
4162 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
4163 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
4164 * on TC 0.
4165 */
4166int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
4167{
4168 struct ice_pf *pf = vsi->back;
4169 struct device *dev;
4170 int status;
4171 int speed;
4172
4173 dev = ice_pf_to_dev(pf);
4174 if (!vsi->port_info) {
4175 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
4176 vsi->idx, vsi->type);
4177 return -EINVAL;
4178 }
4179
4180 speed = ice_get_link_speed_kbps(vsi);
4181 if (max_tx_rate > (u64)speed) {
4182 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
4183 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
4184 speed);
4185 return -EINVAL;
4186 }
4187
4188 /* Configure max BW for VSI limit */
4189 if (max_tx_rate) {
4190 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
4191 ICE_MAX_BW, max_tx_rate);
4192 if (status) {
4193 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
4194 max_tx_rate, ice_vsi_type_str(vsi->type),
4195 vsi->idx);
4196 return status;
4197 }
4198
4199 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
4200 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
4201 } else {
4202 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
4203 vsi->idx, 0,
4204 ICE_MAX_BW);
4205 if (status) {
4206 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
4207 ice_vsi_type_str(vsi->type), vsi->idx);
4208 return status;
4209 }
4210
4211 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
4212 ice_vsi_type_str(vsi->type), vsi->idx);
4213 }
4214
4215 return 0;
4216}
4217
4218/**
4219 * ice_set_link - turn on/off physical link
4220 * @vsi: VSI to modify physical link on
4221 * @ena: turn on/off physical link
4222 */
4223int ice_set_link(struct ice_vsi *vsi, bool ena)
4224{
4225 struct device *dev = ice_pf_to_dev(vsi->back);
4226 struct ice_port_info *pi = vsi->port_info;
4227 struct ice_hw *hw = pi->hw;
4228 int status;
4229
4230 if (vsi->type != ICE_VSI_PF)
4231 return -EINVAL;
4232
4233 status = ice_aq_set_link_restart_an(pi, ena, NULL);
4234
4235 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
4236 * this is not a fatal error, so print a warning message and return
4237 * a success code. Return an error if FW returns an error code other
4238 * than ICE_AQ_RC_EMODE
4239 */
4240 if (status == -EIO) {
4241 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
4242 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
4243 (ena ? "ON" : "OFF"), status,
4244 ice_aq_str(hw->adminq.sq_last_status));
4245 } else if (status) {
4246 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
4247 (ena ? "ON" : "OFF"), status,
4248 ice_aq_str(hw->adminq.sq_last_status));
4249 return status;
4250 }
4251
4252 return 0;
4253}
4254
4255/**
4256 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
4257 * @vsi: VSI used to add VLAN filters
4258 *
4259 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
4260 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
4261 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
4262 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
4263 *
4264 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
4265 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
4266 * traffic in SVM, since the VLAN TPID isn't part of filtering.
4267 *
4268 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
4269 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4270 * part of filtering.
4271 */
4272int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4273{
4274 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4275 struct ice_vlan vlan;
4276 int err;
4277
4278 vlan = ICE_VLAN(0, 0, 0);
4279 err = vlan_ops->add_vlan(vsi, &vlan);
4280 if (err && err != -EEXIST)
4281 return err;
4282
4283 /* in SVM both VLAN 0 filters are identical */
4284 if (!ice_is_dvm_ena(&vsi->back->hw))
4285 return 0;
4286
4287 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4288 err = vlan_ops->add_vlan(vsi, &vlan);
4289 if (err && err != -EEXIST)
4290 return err;
4291
4292 return 0;
4293}
4294
4295/**
4296 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4297 * @vsi: VSI used to add VLAN filters
4298 *
4299 * Delete the VLAN 0 filters in the same manner that they were added in
4300 * ice_vsi_add_vlan_zero.
4301 */
4302int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4303{
4304 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4305 struct ice_vlan vlan;
4306 int err;
4307
4308 vlan = ICE_VLAN(0, 0, 0);
4309 err = vlan_ops->del_vlan(vsi, &vlan);
4310 if (err && err != -EEXIST)
4311 return err;
4312
4313 /* in SVM both VLAN 0 filters are identical */
4314 if (!ice_is_dvm_ena(&vsi->back->hw))
4315 return 0;
4316
4317 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4318 err = vlan_ops->del_vlan(vsi, &vlan);
4319 if (err && err != -EEXIST)
4320 return err;
4321
4322 /* when deleting the last VLAN filter, make sure to disable the VLAN
4323 * promisc mode so the filter isn't left by accident
4324 */
4325 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
4326 ICE_MCAST_VLAN_PROMISC_BITS, 0);
4327}
4328
4329/**
4330 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4331 * @vsi: VSI used to get the VLAN mode
4332 *
4333 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4334 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4335 */
4336static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4337{
4338#define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
4339#define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
4340 /* no VLAN 0 filter is created when a port VLAN is active */
4341 if (vsi->type == ICE_VSI_VF) {
4342 if (WARN_ON(!vsi->vf))
4343 return 0;
4344
4345 if (ice_vf_is_port_vlan_ena(vsi->vf))
4346 return 0;
4347 }
4348
4349 if (ice_is_dvm_ena(&vsi->back->hw))
4350 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4351 else
4352 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4353}
4354
4355/**
4356 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4357 * @vsi: VSI used to determine if any non-zero VLANs have been added
4358 */
4359bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4360{
4361 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4362}
4363
4364/**
4365 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4366 * @vsi: VSI used to get the number of non-zero VLANs added
4367 */
4368u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4369{
4370 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4371}
4372
4373/**
4374 * ice_is_feature_supported
4375 * @pf: pointer to the struct ice_pf instance
4376 * @f: feature enum to be checked
4377 *
4378 * returns true if feature is supported, false otherwise
4379 */
4380bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4381{
4382 if (f < 0 || f >= ICE_F_MAX)
4383 return false;
4384
4385 return test_bit(f, pf->features);
4386}
4387
4388/**
4389 * ice_set_feature_support
4390 * @pf: pointer to the struct ice_pf instance
4391 * @f: feature enum to set
4392 */
4393static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4394{
4395 if (f < 0 || f >= ICE_F_MAX)
4396 return;
4397
4398 set_bit(f, pf->features);
4399}
4400
4401/**
4402 * ice_clear_feature_support
4403 * @pf: pointer to the struct ice_pf instance
4404 * @f: feature enum to clear
4405 */
4406void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4407{
4408 if (f < 0 || f >= ICE_F_MAX)
4409 return;
4410
4411 clear_bit(f, pf->features);
4412}
4413
4414/**
4415 * ice_init_feature_support
4416 * @pf: pointer to the struct ice_pf instance
4417 *
4418 * called during init to setup supported feature
4419 */
4420void ice_init_feature_support(struct ice_pf *pf)
4421{
4422 switch (pf->hw.device_id) {
4423 case ICE_DEV_ID_E810C_BACKPLANE:
4424 case ICE_DEV_ID_E810C_QSFP:
4425 case ICE_DEV_ID_E810C_SFP:
4426 ice_set_feature_support(pf, ICE_F_DSCP);
4427 ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4428 if (ice_is_e810t(&pf->hw)) {
4429 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4430 if (ice_gnss_is_gps_present(&pf->hw))
4431 ice_set_feature_support(pf, ICE_F_GNSS);
4432 }
4433 break;
4434 default:
4435 break;
4436 }
4437}
4438
4439/**
4440 * ice_vsi_update_security - update security block in VSI
4441 * @vsi: pointer to VSI structure
4442 * @fill: function pointer to fill ctx
4443 */
4444int
4445ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4446{
4447 struct ice_vsi_ctx ctx = { 0 };
4448
4449 ctx.info = vsi->info;
4450 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4451 fill(&ctx);
4452
4453 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4454 return -ENODEV;
4455
4456 vsi->info = ctx.info;
4457 return 0;
4458}
4459
4460/**
4461 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4462 * @ctx: pointer to VSI ctx structure
4463 */
4464void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4465{
4466 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4467 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4468 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4469}
4470
4471/**
4472 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4473 * @ctx: pointer to VSI ctx structure
4474 */
4475void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4476{
4477 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4478 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4479 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4480}
4481
4482/**
4483 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4484 * @ctx: pointer to VSI ctx structure
4485 */
4486void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4487{
4488 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4489}
4490
4491/**
4492 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4493 * @ctx: pointer to VSI ctx structure
4494 */
4495void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4496{
4497 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4498}