Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP OF helpers
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/cpu.h>
  14#include <linux/errno.h>
  15#include <linux/device.h>
  16#include <linux/of.h>
  17#include <linux/pm_domain.h>
  18#include <linux/slab.h>
  19#include <linux/export.h>
  20#include <linux/energy_model.h>
  21
  22#include "opp.h"
  23
  24/* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
  25static LIST_HEAD(lazy_opp_tables);
  26
  27/*
  28 * Returns opp descriptor node for a device node, caller must
  29 * do of_node_put().
  30 */
  31static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
  32						     int index)
  33{
  34	/* "operating-points-v2" can be an array for power domain providers */
  35	return of_parse_phandle(np, "operating-points-v2", index);
  36}
  37
  38/* Returns opp descriptor node for a device, caller must do of_node_put() */
  39struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
  40{
  41	return _opp_of_get_opp_desc_node(dev->of_node, 0);
  42}
  43EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
  44
  45struct opp_table *_managed_opp(struct device *dev, int index)
  46{
  47	struct opp_table *opp_table, *managed_table = NULL;
  48	struct device_node *np;
  49
  50	np = _opp_of_get_opp_desc_node(dev->of_node, index);
  51	if (!np)
  52		return NULL;
  53
  54	list_for_each_entry(opp_table, &opp_tables, node) {
  55		if (opp_table->np == np) {
  56			/*
  57			 * Multiple devices can point to the same OPP table and
  58			 * so will have same node-pointer, np.
  59			 *
  60			 * But the OPPs will be considered as shared only if the
  61			 * OPP table contains a "opp-shared" property.
  62			 */
  63			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
  64				_get_opp_table_kref(opp_table);
  65				managed_table = opp_table;
  66			}
  67
  68			break;
  69		}
  70	}
  71
  72	of_node_put(np);
  73
  74	return managed_table;
  75}
  76
  77/* The caller must call dev_pm_opp_put() after the OPP is used */
  78static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
  79					  struct device_node *opp_np)
  80{
  81	struct dev_pm_opp *opp;
  82
  83	mutex_lock(&opp_table->lock);
  84
  85	list_for_each_entry(opp, &opp_table->opp_list, node) {
  86		if (opp->np == opp_np) {
  87			dev_pm_opp_get(opp);
  88			mutex_unlock(&opp_table->lock);
  89			return opp;
  90		}
  91	}
  92
  93	mutex_unlock(&opp_table->lock);
  94
  95	return NULL;
  96}
  97
  98static struct device_node *of_parse_required_opp(struct device_node *np,
  99						 int index)
 100{
 101	return of_parse_phandle(np, "required-opps", index);
 102}
 103
 104/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
 105static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
 106{
 107	struct opp_table *opp_table;
 108	struct device_node *opp_table_np;
 109
 110	opp_table_np = of_get_parent(opp_np);
 111	if (!opp_table_np)
 112		goto err;
 113
 114	/* It is safe to put the node now as all we need now is its address */
 115	of_node_put(opp_table_np);
 116
 117	mutex_lock(&opp_table_lock);
 118	list_for_each_entry(opp_table, &opp_tables, node) {
 119		if (opp_table_np == opp_table->np) {
 120			_get_opp_table_kref(opp_table);
 121			mutex_unlock(&opp_table_lock);
 122			return opp_table;
 123		}
 124	}
 125	mutex_unlock(&opp_table_lock);
 126
 127err:
 128	return ERR_PTR(-ENODEV);
 129}
 130
 131/* Free resources previously acquired by _opp_table_alloc_required_tables() */
 132static void _opp_table_free_required_tables(struct opp_table *opp_table)
 133{
 134	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 135	int i;
 136
 137	if (!required_opp_tables)
 138		return;
 139
 140	for (i = 0; i < opp_table->required_opp_count; i++) {
 141		if (IS_ERR_OR_NULL(required_opp_tables[i]))
 142			continue;
 143
 144		dev_pm_opp_put_opp_table(required_opp_tables[i]);
 145	}
 146
 147	kfree(required_opp_tables);
 148
 149	opp_table->required_opp_count = 0;
 150	opp_table->required_opp_tables = NULL;
 151
 152	mutex_lock(&opp_table_lock);
 153	list_del(&opp_table->lazy);
 154	mutex_unlock(&opp_table_lock);
 155}
 156
 157/*
 158 * Populate all devices and opp tables which are part of "required-opps" list.
 159 * Checking only the first OPP node should be enough.
 160 */
 161static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
 162					     struct device *dev,
 163					     struct device_node *opp_np)
 164{
 165	struct opp_table **required_opp_tables;
 166	struct device_node *required_np, *np;
 167	bool lazy = false;
 168	int count, i, size;
 169
 170	/* Traversing the first OPP node is all we need */
 171	np = of_get_next_available_child(opp_np, NULL);
 172	if (!np) {
 173		dev_warn(dev, "Empty OPP table\n");
 174
 175		return;
 176	}
 177
 178	count = of_count_phandle_with_args(np, "required-opps", NULL);
 179	if (count <= 0)
 180		goto put_np;
 181
 182	size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
 183	required_opp_tables = kcalloc(count, size, GFP_KERNEL);
 184	if (!required_opp_tables)
 185		goto put_np;
 186
 187	opp_table->required_opp_tables = required_opp_tables;
 188	opp_table->required_devs = (void *)(required_opp_tables + count);
 189	opp_table->required_opp_count = count;
 190
 191	for (i = 0; i < count; i++) {
 192		required_np = of_parse_required_opp(np, i);
 193		if (!required_np)
 194			goto free_required_tables;
 195
 196		required_opp_tables[i] = _find_table_of_opp_np(required_np);
 197		of_node_put(required_np);
 198
 199		if (IS_ERR(required_opp_tables[i]))
 200			lazy = true;
 201	}
 202
 203	/* Let's do the linking later on */
 204	if (lazy) {
 205		/*
 206		 * The OPP table is not held while allocating the table, take it
 207		 * now to avoid corruption to the lazy_opp_tables list.
 208		 */
 209		mutex_lock(&opp_table_lock);
 210		list_add(&opp_table->lazy, &lazy_opp_tables);
 211		mutex_unlock(&opp_table_lock);
 212	}
 213
 214	goto put_np;
 215
 216free_required_tables:
 217	_opp_table_free_required_tables(opp_table);
 218put_np:
 219	of_node_put(np);
 220}
 221
 222void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
 223			int index)
 224{
 225	struct device_node *np, *opp_np;
 226	u32 val;
 227
 228	/*
 229	 * Only required for backward compatibility with v1 bindings, but isn't
 230	 * harmful for other cases. And so we do it unconditionally.
 231	 */
 232	np = of_node_get(dev->of_node);
 233	if (!np)
 234		return;
 235
 236	if (!of_property_read_u32(np, "clock-latency", &val))
 237		opp_table->clock_latency_ns_max = val;
 238	of_property_read_u32(np, "voltage-tolerance",
 239			     &opp_table->voltage_tolerance_v1);
 240
 241	if (of_property_present(np, "#power-domain-cells"))
 242		opp_table->is_genpd = true;
 243
 244	/* Get OPP table node */
 245	opp_np = _opp_of_get_opp_desc_node(np, index);
 246	of_node_put(np);
 247
 248	if (!opp_np)
 249		return;
 250
 251	if (of_property_read_bool(opp_np, "opp-shared"))
 252		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
 253	else
 254		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
 255
 256	opp_table->np = opp_np;
 257
 258	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
 259}
 260
 261void _of_clear_opp_table(struct opp_table *opp_table)
 262{
 263	_opp_table_free_required_tables(opp_table);
 264	of_node_put(opp_table->np);
 265}
 266
 267/*
 268 * Release all resources previously acquired with a call to
 269 * _of_opp_alloc_required_opps().
 270 */
 271static void _of_opp_free_required_opps(struct opp_table *opp_table,
 272				       struct dev_pm_opp *opp)
 273{
 274	struct dev_pm_opp **required_opps = opp->required_opps;
 275	int i;
 276
 277	if (!required_opps)
 278		return;
 279
 280	for (i = 0; i < opp_table->required_opp_count; i++) {
 281		if (!required_opps[i])
 282			continue;
 283
 284		/* Put the reference back */
 285		dev_pm_opp_put(required_opps[i]);
 286	}
 287
 288	opp->required_opps = NULL;
 289	kfree(required_opps);
 290}
 291
 292void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
 293{
 294	_of_opp_free_required_opps(opp_table, opp);
 295	of_node_put(opp->np);
 296}
 297
 298static int _link_required_opps(struct dev_pm_opp *opp,
 299			       struct opp_table *required_table, int index)
 300{
 301	struct device_node *np;
 302
 303	np = of_parse_required_opp(opp->np, index);
 304	if (unlikely(!np))
 305		return -ENODEV;
 306
 307	opp->required_opps[index] = _find_opp_of_np(required_table, np);
 308	of_node_put(np);
 309
 310	if (!opp->required_opps[index]) {
 311		pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
 312		       __func__, opp->np, index);
 313		return -ENODEV;
 314	}
 315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316	return 0;
 317}
 318
 319/* Populate all required OPPs which are part of "required-opps" list */
 320static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
 321				       struct dev_pm_opp *opp)
 322{
 323	struct opp_table *required_table;
 324	int i, ret, count = opp_table->required_opp_count;
 325
 326	if (!count)
 327		return 0;
 328
 329	opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
 330	if (!opp->required_opps)
 331		return -ENOMEM;
 332
 333	for (i = 0; i < count; i++) {
 334		required_table = opp_table->required_opp_tables[i];
 335
 336		/* Required table not added yet, we will link later */
 337		if (IS_ERR_OR_NULL(required_table))
 338			continue;
 339
 340		ret = _link_required_opps(opp, required_table, i);
 341		if (ret)
 342			goto free_required_opps;
 343	}
 344
 345	return 0;
 346
 347free_required_opps:
 348	_of_opp_free_required_opps(opp_table, opp);
 349
 350	return ret;
 351}
 352
 353/* Link required OPPs for an individual OPP */
 354static int lazy_link_required_opps(struct opp_table *opp_table,
 355				   struct opp_table *new_table, int index)
 356{
 357	struct dev_pm_opp *opp;
 358	int ret;
 359
 360	list_for_each_entry(opp, &opp_table->opp_list, node) {
 361		ret = _link_required_opps(opp, new_table, index);
 362		if (ret)
 363			return ret;
 364	}
 365
 366	return 0;
 367}
 368
 369/* Link required OPPs for all OPPs of the newly added OPP table */
 370static void lazy_link_required_opp_table(struct opp_table *new_table)
 371{
 372	struct opp_table *opp_table, *temp, **required_opp_tables;
 373	struct device_node *required_np, *opp_np, *required_table_np;
 374	struct dev_pm_opp *opp;
 375	int i, ret;
 376
 377	mutex_lock(&opp_table_lock);
 378
 379	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
 380		bool lazy = false;
 381
 382		/* opp_np can't be invalid here */
 383		opp_np = of_get_next_available_child(opp_table->np, NULL);
 384
 385		for (i = 0; i < opp_table->required_opp_count; i++) {
 386			required_opp_tables = opp_table->required_opp_tables;
 387
 388			/* Required opp-table is already parsed */
 389			if (!IS_ERR(required_opp_tables[i]))
 390				continue;
 391
 392			/* required_np can't be invalid here */
 393			required_np = of_parse_required_opp(opp_np, i);
 394			required_table_np = of_get_parent(required_np);
 395
 396			of_node_put(required_table_np);
 397			of_node_put(required_np);
 398
 399			/*
 400			 * Newly added table isn't the required opp-table for
 401			 * opp_table.
 402			 */
 403			if (required_table_np != new_table->np) {
 404				lazy = true;
 405				continue;
 406			}
 407
 408			required_opp_tables[i] = new_table;
 409			_get_opp_table_kref(new_table);
 410
 411			/* Link OPPs now */
 412			ret = lazy_link_required_opps(opp_table, new_table, i);
 413			if (ret) {
 414				/* The OPPs will be marked unusable */
 415				lazy = false;
 416				break;
 417			}
 418		}
 419
 420		of_node_put(opp_np);
 421
 422		/* All required opp-tables found, remove from lazy list */
 423		if (!lazy) {
 424			list_del_init(&opp_table->lazy);
 425
 426			list_for_each_entry(opp, &opp_table->opp_list, node)
 427				_required_opps_available(opp, opp_table->required_opp_count);
 428		}
 429	}
 430
 431	mutex_unlock(&opp_table_lock);
 432}
 433
 434static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
 435{
 436	struct device_node *np, *opp_np;
 437	struct property *prop;
 438
 439	if (!opp_table) {
 440		np = of_node_get(dev->of_node);
 441		if (!np)
 442			return -ENODEV;
 443
 444		opp_np = _opp_of_get_opp_desc_node(np, 0);
 445		of_node_put(np);
 446	} else {
 447		opp_np = of_node_get(opp_table->np);
 448	}
 449
 450	/* Lets not fail in case we are parsing opp-v1 bindings */
 451	if (!opp_np)
 452		return 0;
 453
 454	/* Checking only first OPP is sufficient */
 455	np = of_get_next_available_child(opp_np, NULL);
 456	of_node_put(opp_np);
 457	if (!np) {
 458		dev_err(dev, "OPP table empty\n");
 459		return -EINVAL;
 460	}
 461
 462	prop = of_find_property(np, "opp-peak-kBps", NULL);
 463	of_node_put(np);
 464
 465	if (!prop || !prop->length)
 466		return 0;
 467
 468	return 1;
 469}
 470
 471int dev_pm_opp_of_find_icc_paths(struct device *dev,
 472				 struct opp_table *opp_table)
 473{
 474	struct device_node *np;
 475	int ret, i, count, num_paths;
 476	struct icc_path **paths;
 477
 478	ret = _bandwidth_supported(dev, opp_table);
 479	if (ret == -EINVAL)
 480		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
 481	else if (ret <= 0)
 482		return ret;
 483
 484	ret = 0;
 485
 486	np = of_node_get(dev->of_node);
 487	if (!np)
 488		return 0;
 489
 490	count = of_count_phandle_with_args(np, "interconnects",
 491					   "#interconnect-cells");
 492	of_node_put(np);
 493	if (count < 0)
 494		return 0;
 495
 496	/* two phandles when #interconnect-cells = <1> */
 497	if (count % 2) {
 498		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
 499		return -EINVAL;
 500	}
 501
 502	num_paths = count / 2;
 503	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
 504	if (!paths)
 505		return -ENOMEM;
 506
 507	for (i = 0; i < num_paths; i++) {
 508		paths[i] = of_icc_get_by_index(dev, i);
 509		if (IS_ERR(paths[i])) {
 510			ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
 511			goto err;
 512		}
 513	}
 514
 515	if (opp_table) {
 516		opp_table->paths = paths;
 517		opp_table->path_count = num_paths;
 518		return 0;
 519	}
 520
 521err:
 522	while (i--)
 523		icc_put(paths[i]);
 524
 525	kfree(paths);
 526
 527	return ret;
 528}
 529EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
 530
 531static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
 532			      struct device_node *np)
 533{
 534	unsigned int levels = opp_table->supported_hw_count;
 535	int count, versions, ret, i, j;
 536	u32 val;
 537
 538	if (!opp_table->supported_hw) {
 539		/*
 540		 * In the case that no supported_hw has been set by the
 541		 * platform but there is an opp-supported-hw value set for
 542		 * an OPP then the OPP should not be enabled as there is
 543		 * no way to see if the hardware supports it.
 544		 */
 545		if (of_property_present(np, "opp-supported-hw"))
 546			return false;
 547		else
 548			return true;
 549	}
 550
 551	count = of_property_count_u32_elems(np, "opp-supported-hw");
 552	if (count <= 0 || count % levels) {
 553		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
 554			__func__, count);
 555		return false;
 556	}
 557
 558	versions = count / levels;
 559
 560	/* All levels in at least one of the versions should match */
 561	for (i = 0; i < versions; i++) {
 562		bool supported = true;
 563
 564		for (j = 0; j < levels; j++) {
 565			ret = of_property_read_u32_index(np, "opp-supported-hw",
 566							 i * levels + j, &val);
 567			if (ret) {
 568				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
 569					 __func__, i * levels + j, ret);
 570				return false;
 571			}
 572
 573			/* Check if the level is supported */
 574			if (!(val & opp_table->supported_hw[j])) {
 575				supported = false;
 576				break;
 577			}
 578		}
 579
 580		if (supported)
 581			return true;
 582	}
 583
 584	return false;
 585}
 586
 587static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
 588			      struct opp_table *opp_table,
 589			      const char *prop_type, bool *triplet)
 590{
 591	struct property *prop = NULL;
 592	char name[NAME_MAX];
 593	int count, ret;
 594	u32 *out;
 595
 596	/* Search for "opp-<prop_type>-<name>" */
 597	if (opp_table->prop_name) {
 598		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
 599			 opp_table->prop_name);
 600		prop = of_find_property(opp->np, name, NULL);
 601	}
 602
 603	if (!prop) {
 604		/* Search for "opp-<prop_type>" */
 605		snprintf(name, sizeof(name), "opp-%s", prop_type);
 606		prop = of_find_property(opp->np, name, NULL);
 607		if (!prop)
 608			return NULL;
 609	}
 610
 611	count = of_property_count_u32_elems(opp->np, name);
 612	if (count < 0) {
 613		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
 614			count);
 615		return ERR_PTR(count);
 616	}
 617
 618	/*
 619	 * Initialize regulator_count, if regulator information isn't provided
 620	 * by the platform. Now that one of the properties is available, fix the
 621	 * regulator_count to 1.
 622	 */
 623	if (unlikely(opp_table->regulator_count == -1))
 624		opp_table->regulator_count = 1;
 625
 626	if (count != opp_table->regulator_count &&
 627	    (!triplet || count != opp_table->regulator_count * 3)) {
 628		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
 629			__func__, prop_type, count, opp_table->regulator_count);
 630		return ERR_PTR(-EINVAL);
 631	}
 632
 633	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
 634	if (!out)
 635		return ERR_PTR(-EINVAL);
 636
 637	ret = of_property_read_u32_array(opp->np, name, out, count);
 638	if (ret) {
 639		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
 640		kfree(out);
 641		return ERR_PTR(-EINVAL);
 642	}
 643
 644	if (triplet)
 645		*triplet = count != opp_table->regulator_count;
 646
 647	return out;
 648}
 649
 650static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
 651				struct opp_table *opp_table, bool *triplet)
 652{
 653	u32 *microvolt;
 654
 655	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
 656	if (IS_ERR(microvolt))
 657		return microvolt;
 658
 659	if (!microvolt) {
 660		/*
 661		 * Missing property isn't a problem, but an invalid
 662		 * entry is. This property isn't optional if regulator
 663		 * information is provided. Check only for the first OPP, as
 664		 * regulator_count may get initialized after that to a valid
 665		 * value.
 666		 */
 667		if (list_empty(&opp_table->opp_list) &&
 668		    opp_table->regulator_count > 0) {
 669			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
 670				__func__);
 671			return ERR_PTR(-EINVAL);
 672		}
 673	}
 674
 675	return microvolt;
 676}
 677
 678static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
 679			      struct opp_table *opp_table)
 680{
 681	u32 *microvolt, *microamp, *microwatt;
 682	int ret = 0, i, j;
 683	bool triplet;
 684
 685	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
 686	if (IS_ERR(microvolt))
 687		return PTR_ERR(microvolt);
 688
 689	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
 690	if (IS_ERR(microamp)) {
 691		ret = PTR_ERR(microamp);
 692		goto free_microvolt;
 693	}
 694
 695	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
 696	if (IS_ERR(microwatt)) {
 697		ret = PTR_ERR(microwatt);
 698		goto free_microamp;
 699	}
 700
 701	/*
 702	 * Initialize regulator_count if it is uninitialized and no properties
 703	 * are found.
 704	 */
 705	if (unlikely(opp_table->regulator_count == -1)) {
 706		opp_table->regulator_count = 0;
 707		return 0;
 708	}
 709
 710	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
 711		if (microvolt) {
 712			opp->supplies[i].u_volt = microvolt[j++];
 713
 714			if (triplet) {
 715				opp->supplies[i].u_volt_min = microvolt[j++];
 716				opp->supplies[i].u_volt_max = microvolt[j++];
 717			} else {
 718				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
 719				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
 720			}
 721		}
 722
 723		if (microamp)
 724			opp->supplies[i].u_amp = microamp[i];
 725
 726		if (microwatt)
 727			opp->supplies[i].u_watt = microwatt[i];
 728	}
 729
 730	kfree(microwatt);
 731free_microamp:
 732	kfree(microamp);
 733free_microvolt:
 734	kfree(microvolt);
 735
 736	return ret;
 737}
 738
 739/**
 740 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
 741 *				  entries
 742 * @dev:	device pointer used to lookup OPP table.
 743 *
 744 * Free OPPs created using static entries present in DT.
 745 */
 746void dev_pm_opp_of_remove_table(struct device *dev)
 747{
 748	dev_pm_opp_remove_table(dev);
 749}
 750EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
 751
 752static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
 753		      struct device_node *np)
 754{
 755	struct property *prop;
 756	int i, count, ret;
 757	u64 *rates;
 758
 759	prop = of_find_property(np, "opp-hz", NULL);
 760	if (!prop)
 761		return -ENODEV;
 762
 763	count = prop->length / sizeof(u64);
 764	if (opp_table->clk_count != count) {
 765		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
 766		       __func__, count, opp_table->clk_count);
 767		return -EINVAL;
 768	}
 769
 770	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
 771	if (!rates)
 772		return -ENOMEM;
 773
 774	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
 775	if (ret) {
 776		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
 777	} else {
 778		/*
 779		 * Rate is defined as an unsigned long in clk API, and so
 780		 * casting explicitly to its type. Must be fixed once rate is 64
 781		 * bit guaranteed in clk API.
 782		 */
 783		for (i = 0; i < count; i++) {
 784			new_opp->rates[i] = (unsigned long)rates[i];
 785
 786			/* This will happen for frequencies > 4.29 GHz */
 787			WARN_ON(new_opp->rates[i] != rates[i]);
 788		}
 789	}
 790
 791	kfree(rates);
 792
 793	return ret;
 794}
 795
 796static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
 797		    struct device_node *np, bool peak)
 798{
 799	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
 800	struct property *prop;
 801	int i, count, ret;
 802	u32 *bw;
 803
 804	prop = of_find_property(np, name, NULL);
 805	if (!prop)
 806		return -ENODEV;
 807
 808	count = prop->length / sizeof(u32);
 809	if (opp_table->path_count != count) {
 810		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
 811				__func__, name, count, opp_table->path_count);
 812		return -EINVAL;
 813	}
 814
 815	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
 816	if (!bw)
 817		return -ENOMEM;
 818
 819	ret = of_property_read_u32_array(np, name, bw, count);
 820	if (ret) {
 821		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
 822		goto out;
 823	}
 824
 825	for (i = 0; i < count; i++) {
 826		if (peak)
 827			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
 828		else
 829			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
 830	}
 831
 832out:
 833	kfree(bw);
 834	return ret;
 835}
 836
 837static int _read_opp_key(struct dev_pm_opp *new_opp,
 838			 struct opp_table *opp_table, struct device_node *np)
 839{
 840	bool found = false;
 841	int ret;
 842
 843	ret = _read_rate(new_opp, opp_table, np);
 844	if (!ret)
 845		found = true;
 846	else if (ret != -ENODEV)
 847		return ret;
 848
 849	/*
 850	 * Bandwidth consists of peak and average (optional) values:
 851	 * opp-peak-kBps = <path1_value path2_value>;
 852	 * opp-avg-kBps = <path1_value path2_value>;
 853	 */
 854	ret = _read_bw(new_opp, opp_table, np, true);
 855	if (!ret) {
 856		found = true;
 857		ret = _read_bw(new_opp, opp_table, np, false);
 858	}
 859
 860	/* The properties were found but we failed to parse them */
 861	if (ret && ret != -ENODEV)
 862		return ret;
 863
 864	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
 865		found = true;
 866
 867	if (found)
 868		return 0;
 869
 870	return ret;
 871}
 872
 873/**
 874 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
 875 * @opp_table:	OPP table
 876 * @dev:	device for which we do this operation
 877 * @np:		device node
 878 *
 879 * This function adds an opp definition to the opp table and returns status. The
 880 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
 881 * removed by dev_pm_opp_remove.
 882 *
 883 * Return:
 884 * Valid OPP pointer:
 885 *		On success
 886 * NULL:
 887 *		Duplicate OPPs (both freq and volt are same) and opp->available
 888 *		OR if the OPP is not supported by hardware.
 889 * ERR_PTR(-EEXIST):
 890 *		Freq are same and volt are different OR
 891 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 892 * ERR_PTR(-ENOMEM):
 893 *		Memory allocation failure
 894 * ERR_PTR(-EINVAL):
 895 *		Failed parsing the OPP node
 896 */
 897static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
 898		struct device *dev, struct device_node *np)
 899{
 900	struct dev_pm_opp *new_opp;
 901	u32 val;
 902	int ret;
 903
 904	new_opp = _opp_allocate(opp_table);
 905	if (!new_opp)
 906		return ERR_PTR(-ENOMEM);
 907
 908	ret = _read_opp_key(new_opp, opp_table, np);
 909	if (ret < 0) {
 910		dev_err(dev, "%s: opp key field not found\n", __func__);
 911		goto free_opp;
 912	}
 913
 914	/* Check if the OPP supports hardware's hierarchy of versions or not */
 915	if (!_opp_is_supported(dev, opp_table, np)) {
 916		dev_dbg(dev, "OPP not supported by hardware: %s\n",
 917			of_node_full_name(np));
 918		goto free_opp;
 919	}
 920
 921	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
 922
 923	new_opp->np = of_node_get(np);
 924	new_opp->dynamic = false;
 925	new_opp->available = true;
 926
 927	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
 928	if (ret)
 929		goto put_node;
 930
 931	if (!of_property_read_u32(np, "clock-latency-ns", &val))
 932		new_opp->clock_latency_ns = val;
 933
 934	ret = opp_parse_supplies(new_opp, dev, opp_table);
 935	if (ret)
 936		goto free_required_opps;
 937
 938	ret = _opp_add(dev, new_opp, opp_table);
 939	if (ret) {
 940		/* Don't return error for duplicate OPPs */
 941		if (ret == -EBUSY)
 942			ret = 0;
 943		goto free_required_opps;
 944	}
 945
 946	/* OPP to select on device suspend */
 947	if (of_property_read_bool(np, "opp-suspend")) {
 948		if (opp_table->suspend_opp) {
 949			/* Pick the OPP with higher rate/bw/level as suspend OPP */
 950			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
 951				opp_table->suspend_opp->suspend = false;
 952				new_opp->suspend = true;
 953				opp_table->suspend_opp = new_opp;
 954			}
 955		} else {
 956			new_opp->suspend = true;
 957			opp_table->suspend_opp = new_opp;
 958		}
 959	}
 960
 961	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
 962		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
 963
 964	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
 965		 __func__, new_opp->turbo, new_opp->rates[0],
 966		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
 967		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
 968		 new_opp->level);
 969
 970	/*
 971	 * Notify the changes in the availability of the operable
 972	 * frequency/voltage list.
 973	 */
 974	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
 975	return new_opp;
 976
 977free_required_opps:
 978	_of_opp_free_required_opps(opp_table, new_opp);
 979put_node:
 980	of_node_put(np);
 981free_opp:
 982	_opp_free(new_opp);
 983
 984	return ret ? ERR_PTR(ret) : NULL;
 985}
 986
 987/* Initializes OPP tables based on new bindings */
 988static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
 989{
 990	struct device_node *np;
 991	int ret, count = 0;
 992	struct dev_pm_opp *opp;
 993
 994	/* OPP table is already initialized for the device */
 995	mutex_lock(&opp_table->lock);
 996	if (opp_table->parsed_static_opps) {
 997		opp_table->parsed_static_opps++;
 998		mutex_unlock(&opp_table->lock);
 999		return 0;
1000	}
1001
1002	opp_table->parsed_static_opps = 1;
1003	mutex_unlock(&opp_table->lock);
1004
1005	/* We have opp-table node now, iterate over it and add OPPs */
1006	for_each_available_child_of_node(opp_table->np, np) {
1007		opp = _opp_add_static_v2(opp_table, dev, np);
1008		if (IS_ERR(opp)) {
1009			ret = PTR_ERR(opp);
1010			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1011				ret);
1012			of_node_put(np);
1013			goto remove_static_opp;
1014		} else if (opp) {
1015			count++;
1016		}
1017	}
1018
1019	/* There should be one or more OPPs defined */
1020	if (!count) {
1021		dev_err(dev, "%s: no supported OPPs", __func__);
1022		ret = -ENOENT;
1023		goto remove_static_opp;
1024	}
1025
1026	lazy_link_required_opp_table(opp_table);
1027
1028	return 0;
1029
1030remove_static_opp:
1031	_opp_remove_all_static(opp_table);
1032
1033	return ret;
1034}
1035
1036/* Initializes OPP tables based on old-deprecated bindings */
1037static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1038{
1039	const struct property *prop;
1040	const __be32 *val;
1041	int nr, ret = 0;
1042
1043	mutex_lock(&opp_table->lock);
1044	if (opp_table->parsed_static_opps) {
1045		opp_table->parsed_static_opps++;
1046		mutex_unlock(&opp_table->lock);
1047		return 0;
1048	}
1049
1050	opp_table->parsed_static_opps = 1;
1051	mutex_unlock(&opp_table->lock);
1052
1053	prop = of_find_property(dev->of_node, "operating-points", NULL);
1054	if (!prop) {
1055		ret = -ENODEV;
1056		goto remove_static_opp;
1057	}
1058	if (!prop->value) {
1059		ret = -ENODATA;
1060		goto remove_static_opp;
1061	}
1062
1063	/*
1064	 * Each OPP is a set of tuples consisting of frequency and
1065	 * voltage like <freq-kHz vol-uV>.
1066	 */
1067	nr = prop->length / sizeof(u32);
1068	if (nr % 2) {
1069		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1070		ret = -EINVAL;
1071		goto remove_static_opp;
1072	}
1073
1074	val = prop->value;
1075	while (nr) {
1076		unsigned long freq = be32_to_cpup(val++) * 1000;
1077		unsigned long volt = be32_to_cpup(val++);
1078		struct dev_pm_opp_data data = {
1079			.freq = freq,
1080			.u_volt = volt,
1081		};
1082
1083		ret = _opp_add_v1(opp_table, dev, &data, false);
1084		if (ret) {
1085			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1086				__func__, data.freq, ret);
1087			goto remove_static_opp;
1088		}
1089		nr -= 2;
1090	}
1091
1092	return 0;
1093
1094remove_static_opp:
1095	_opp_remove_all_static(opp_table);
1096
1097	return ret;
1098}
1099
1100static int _of_add_table_indexed(struct device *dev, int index)
1101{
1102	struct opp_table *opp_table;
1103	int ret, count;
1104
1105	if (index) {
1106		/*
1107		 * If only one phandle is present, then the same OPP table
1108		 * applies for all index requests.
1109		 */
1110		count = of_count_phandle_with_args(dev->of_node,
1111						   "operating-points-v2", NULL);
1112		if (count == 1)
1113			index = 0;
1114	}
1115
1116	opp_table = _add_opp_table_indexed(dev, index, true);
1117	if (IS_ERR(opp_table))
1118		return PTR_ERR(opp_table);
1119
1120	/*
1121	 * OPPs have two version of bindings now. Also try the old (v1)
1122	 * bindings for backward compatibility with older dtbs.
1123	 */
1124	if (opp_table->np)
1125		ret = _of_add_opp_table_v2(dev, opp_table);
1126	else
1127		ret = _of_add_opp_table_v1(dev, opp_table);
1128
1129	if (ret)
1130		dev_pm_opp_put_opp_table(opp_table);
1131
1132	return ret;
1133}
1134
1135static void devm_pm_opp_of_table_release(void *data)
1136{
1137	dev_pm_opp_of_remove_table(data);
1138}
1139
1140static int _devm_of_add_table_indexed(struct device *dev, int index)
1141{
1142	int ret;
1143
1144	ret = _of_add_table_indexed(dev, index);
1145	if (ret)
1146		return ret;
1147
1148	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1149}
1150
1151/**
1152 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1153 * @dev:	device pointer used to lookup OPP table.
1154 *
1155 * Register the initial OPP table with the OPP library for given device.
1156 *
1157 * The opp_table structure will be freed after the device is destroyed.
1158 *
1159 * Return:
1160 * 0		On success OR
1161 *		Duplicate OPPs (both freq and volt are same) and opp->available
1162 * -EEXIST	Freq are same and volt are different OR
1163 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1164 * -ENOMEM	Memory allocation failure
1165 * -ENODEV	when 'operating-points' property is not found or is invalid data
1166 *		in device node.
1167 * -ENODATA	when empty 'operating-points' property is found
1168 * -EINVAL	when invalid entries are found in opp-v2 table
1169 */
1170int devm_pm_opp_of_add_table(struct device *dev)
1171{
1172	return _devm_of_add_table_indexed(dev, 0);
1173}
1174EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1175
1176/**
1177 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1178 * @dev:	device pointer used to lookup OPP table.
1179 *
1180 * Register the initial OPP table with the OPP library for given device.
1181 *
1182 * Return:
1183 * 0		On success OR
1184 *		Duplicate OPPs (both freq and volt are same) and opp->available
1185 * -EEXIST	Freq are same and volt are different OR
1186 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1187 * -ENOMEM	Memory allocation failure
1188 * -ENODEV	when 'operating-points' property is not found or is invalid data
1189 *		in device node.
1190 * -ENODATA	when empty 'operating-points' property is found
1191 * -EINVAL	when invalid entries are found in opp-v2 table
1192 */
1193int dev_pm_opp_of_add_table(struct device *dev)
1194{
1195	return _of_add_table_indexed(dev, 0);
1196}
1197EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1198
1199/**
1200 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1201 * @dev:	device pointer used to lookup OPP table.
1202 * @index:	Index number.
1203 *
1204 * Register the initial OPP table with the OPP library for given device only
1205 * using the "operating-points-v2" property.
1206 *
1207 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1208 */
1209int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1210{
1211	return _of_add_table_indexed(dev, index);
1212}
1213EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1214
1215/**
1216 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1217 * @dev:	device pointer used to lookup OPP table.
1218 * @index:	Index number.
1219 *
1220 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1221 */
1222int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1223{
1224	return _devm_of_add_table_indexed(dev, index);
1225}
1226EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1227
1228/* CPU device specific helpers */
1229
1230/**
1231 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1232 * @cpumask:	cpumask for which OPP table needs to be removed
1233 *
1234 * This removes the OPP tables for CPUs present in the @cpumask.
1235 * This should be used only to remove static entries created from DT.
1236 */
1237void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1238{
1239	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1242
1243/**
1244 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1245 * @cpumask:	cpumask for which OPP table needs to be added.
1246 *
1247 * This adds the OPP tables for CPUs present in the @cpumask.
1248 */
1249int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1250{
1251	struct device *cpu_dev;
1252	int cpu, ret;
1253
1254	if (WARN_ON(cpumask_empty(cpumask)))
1255		return -ENODEV;
1256
1257	for_each_cpu(cpu, cpumask) {
1258		cpu_dev = get_cpu_device(cpu);
1259		if (!cpu_dev) {
1260			pr_err("%s: failed to get cpu%d device\n", __func__,
1261			       cpu);
1262			ret = -ENODEV;
1263			goto remove_table;
1264		}
1265
1266		ret = dev_pm_opp_of_add_table(cpu_dev);
1267		if (ret) {
1268			/*
1269			 * OPP may get registered dynamically, don't print error
1270			 * message here.
1271			 */
1272			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1273				 __func__, cpu, ret);
1274
1275			goto remove_table;
1276		}
1277	}
1278
1279	return 0;
1280
1281remove_table:
1282	/* Free all other OPPs */
1283	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1284
1285	return ret;
1286}
1287EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1288
1289/*
1290 * Works only for OPP v2 bindings.
1291 *
1292 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1293 */
1294/**
1295 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1296 *				      @cpu_dev using operating-points-v2
1297 *				      bindings.
1298 *
1299 * @cpu_dev:	CPU device for which we do this operation
1300 * @cpumask:	cpumask to update with information of sharing CPUs
1301 *
1302 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1303 *
1304 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1305 */
1306int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1307				   struct cpumask *cpumask)
1308{
1309	struct device_node *np, *tmp_np, *cpu_np;
1310	int cpu, ret = 0;
1311
1312	/* Get OPP descriptor node */
1313	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1314	if (!np) {
1315		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1316		return -ENOENT;
1317	}
1318
1319	cpumask_set_cpu(cpu_dev->id, cpumask);
1320
1321	/* OPPs are shared ? */
1322	if (!of_property_read_bool(np, "opp-shared"))
1323		goto put_cpu_node;
1324
1325	for_each_possible_cpu(cpu) {
1326		if (cpu == cpu_dev->id)
1327			continue;
1328
1329		cpu_np = of_cpu_device_node_get(cpu);
1330		if (!cpu_np) {
1331			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1332				__func__, cpu);
1333			ret = -ENOENT;
1334			goto put_cpu_node;
1335		}
1336
1337		/* Get OPP descriptor node */
1338		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1339		of_node_put(cpu_np);
1340		if (!tmp_np) {
1341			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1342			ret = -ENOENT;
1343			goto put_cpu_node;
1344		}
1345
1346		/* CPUs are sharing opp node */
1347		if (np == tmp_np)
1348			cpumask_set_cpu(cpu, cpumask);
1349
1350		of_node_put(tmp_np);
1351	}
1352
1353put_cpu_node:
1354	of_node_put(np);
1355	return ret;
1356}
1357EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1358
1359/**
1360 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1361 * @np: Node that contains the "required-opps" property.
1362 * @index: Index of the phandle to parse.
1363 *
1364 * Returns the performance state of the OPP pointed out by the "required-opps"
1365 * property at @index in @np.
1366 *
1367 * Return: Zero or positive performance state on success, otherwise negative
1368 * value on errors.
1369 */
1370int of_get_required_opp_performance_state(struct device_node *np, int index)
1371{
1372	struct dev_pm_opp *opp;
1373	struct device_node *required_np;
1374	struct opp_table *opp_table;
1375	int pstate = -EINVAL;
1376
1377	required_np = of_parse_required_opp(np, index);
1378	if (!required_np)
1379		return -ENODEV;
1380
1381	opp_table = _find_table_of_opp_np(required_np);
1382	if (IS_ERR(opp_table)) {
1383		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1384		       __func__, np, PTR_ERR(opp_table));
1385		goto put_required_np;
1386	}
1387
1388	/* The OPP tables must belong to a genpd */
1389	if (unlikely(!opp_table->is_genpd)) {
1390		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1391		goto put_required_np;
1392	}
1393
1394	opp = _find_opp_of_np(opp_table, required_np);
1395	if (opp) {
1396		if (opp->level == OPP_LEVEL_UNSET) {
1397			pr_err("%s: OPP levels aren't available for %pOF\n",
1398			       __func__, np);
1399		} else {
1400			pstate = opp->level;
1401		}
1402		dev_pm_opp_put(opp);
1403
1404	}
1405
1406	dev_pm_opp_put_opp_table(opp_table);
1407
1408put_required_np:
1409	of_node_put(required_np);
1410
1411	return pstate;
1412}
1413EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1414
1415/**
1416 * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1417 * @dev: The device to investigate.
1418 *
1419 * Returns true if the device's node has a "operating-points-v2" property and if
1420 * the corresponding node for the opp-table describes opp nodes that uses the
1421 * "required-opps" property.
1422 *
1423 * Return: True if a required-opps is present, else false.
1424 */
1425bool dev_pm_opp_of_has_required_opp(struct device *dev)
1426{
1427	struct device_node *opp_np, *np;
1428	int count;
1429
1430	opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1431	if (!opp_np)
1432		return false;
1433
1434	np = of_get_next_available_child(opp_np, NULL);
1435	of_node_put(opp_np);
1436	if (!np) {
1437		dev_warn(dev, "Empty OPP table\n");
1438		return false;
1439	}
1440
1441	count = of_count_phandle_with_args(np, "required-opps", NULL);
1442	of_node_put(np);
1443
1444	return count > 0;
1445}
1446
1447/**
1448 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1449 * @opp:	opp for which DT node has to be returned for
1450 *
1451 * Return: DT node corresponding to the opp, else 0 on success.
1452 *
1453 * The caller needs to put the node with of_node_put() after using it.
1454 */
1455struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1456{
1457	if (IS_ERR_OR_NULL(opp)) {
1458		pr_err("%s: Invalid parameters\n", __func__);
1459		return NULL;
1460	}
1461
1462	return of_node_get(opp->np);
1463}
1464EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1465
1466/*
1467 * Callback function provided to the Energy Model framework upon registration.
1468 * It provides the power used by @dev at @kHz if it is the frequency of an
1469 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1470 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1471 * frequency and @uW to the associated power.
1472 *
1473 * Returns 0 on success or a proper -EINVAL value in case of error.
1474 */
1475static int __maybe_unused
1476_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1477{
1478	struct dev_pm_opp *opp;
1479	unsigned long opp_freq, opp_power;
1480
1481	/* Find the right frequency and related OPP */
1482	opp_freq = *kHz * 1000;
1483	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1484	if (IS_ERR(opp))
1485		return -EINVAL;
1486
1487	opp_power = dev_pm_opp_get_power(opp);
1488	dev_pm_opp_put(opp);
1489	if (!opp_power)
1490		return -EINVAL;
1491
1492	*kHz = opp_freq / 1000;
1493	*uW = opp_power;
1494
1495	return 0;
1496}
1497
1498/**
1499 * dev_pm_opp_calc_power() - Calculate power value for device with EM
1500 * @dev		: Device for which an Energy Model has to be registered
1501 * @uW		: New power value that is calculated
1502 * @kHz		: Frequency for which the new power is calculated
1503 *
1504 * This computes the power estimated by @dev at @kHz if it is the frequency
1505 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1506 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1507 * frequency and @uW to the associated power. The power is estimated as
1508 * P = C * V^2 * f with C being the device's capacitance and V and f
1509 * respectively the voltage and frequency of the OPP.
1510 * It is also used as a callback function provided to the Energy Model
1511 * framework upon registration.
1512 *
1513 * Returns -EINVAL if the power calculation failed because of missing
1514 * parameters, 0 otherwise.
1515 */
1516int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1517			  unsigned long *kHz)
1518{
1519	struct dev_pm_opp *opp;
1520	struct device_node *np;
1521	unsigned long mV, Hz;
1522	u32 cap;
1523	u64 tmp;
1524	int ret;
1525
1526	np = of_node_get(dev->of_node);
1527	if (!np)
1528		return -EINVAL;
1529
1530	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1531	of_node_put(np);
1532	if (ret)
1533		return -EINVAL;
1534
1535	Hz = *kHz * 1000;
1536	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1537	if (IS_ERR(opp))
1538		return -EINVAL;
1539
1540	mV = dev_pm_opp_get_voltage(opp) / 1000;
1541	dev_pm_opp_put(opp);
1542	if (!mV)
1543		return -EINVAL;
1544
1545	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1546	/* Provide power in micro-Watts */
1547	do_div(tmp, 1000000);
1548
1549	*uW = (unsigned long)tmp;
1550	*kHz = Hz / 1000;
1551
1552	return 0;
1553}
1554EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1555
1556static bool _of_has_opp_microwatt_property(struct device *dev)
1557{
1558	unsigned long power, freq = 0;
1559	struct dev_pm_opp *opp;
1560
1561	/* Check if at least one OPP has needed property */
1562	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1563	if (IS_ERR(opp))
1564		return false;
1565
1566	power = dev_pm_opp_get_power(opp);
1567	dev_pm_opp_put(opp);
1568	if (!power)
1569		return false;
1570
1571	return true;
1572}
1573
1574/**
1575 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1576 * @dev		: Device for which an Energy Model has to be registered
1577 * @cpus	: CPUs for which an Energy Model has to be registered. For
1578 *		other type of devices it should be set to NULL.
1579 *
1580 * This checks whether the "dynamic-power-coefficient" devicetree property has
1581 * been specified, and tries to register an Energy Model with it if it has.
1582 * Having this property means the voltages are known for OPPs and the EM
1583 * might be calculated.
1584 */
1585int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1586{
1587	struct em_data_callback em_cb;
1588	struct device_node *np;
1589	int ret, nr_opp;
1590	u32 cap;
1591
1592	if (IS_ERR_OR_NULL(dev)) {
1593		ret = -EINVAL;
1594		goto failed;
1595	}
1596
1597	nr_opp = dev_pm_opp_get_opp_count(dev);
1598	if (nr_opp <= 0) {
1599		ret = -EINVAL;
1600		goto failed;
1601	}
1602
1603	/* First, try to find more precised Energy Model in DT */
1604	if (_of_has_opp_microwatt_property(dev)) {
1605		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1606		goto register_em;
1607	}
1608
1609	np = of_node_get(dev->of_node);
1610	if (!np) {
1611		ret = -EINVAL;
1612		goto failed;
1613	}
1614
1615	/*
1616	 * Register an EM only if the 'dynamic-power-coefficient' property is
1617	 * set in devicetree. It is assumed the voltage values are known if that
1618	 * property is set since it is useless otherwise. If voltages are not
1619	 * known, just let the EM registration fail with an error to alert the
1620	 * user about the inconsistent configuration.
1621	 */
1622	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1623	of_node_put(np);
1624	if (ret || !cap) {
1625		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1626		ret = -EINVAL;
1627		goto failed;
1628	}
1629
1630	EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1631
1632register_em:
1633	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1634	if (ret)
1635		goto failed;
1636
1637	return 0;
1638
1639failed:
1640	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1641	return ret;
1642}
1643EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP OF helpers
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/cpu.h>
  14#include <linux/errno.h>
  15#include <linux/device.h>
  16#include <linux/of.h>
  17#include <linux/pm_domain.h>
  18#include <linux/slab.h>
  19#include <linux/export.h>
  20#include <linux/energy_model.h>
  21
  22#include "opp.h"
  23
  24/* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
  25static LIST_HEAD(lazy_opp_tables);
  26
  27/*
  28 * Returns opp descriptor node for a device node, caller must
  29 * do of_node_put().
  30 */
  31static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
  32						     int index)
  33{
  34	/* "operating-points-v2" can be an array for power domain providers */
  35	return of_parse_phandle(np, "operating-points-v2", index);
  36}
  37
  38/* Returns opp descriptor node for a device, caller must do of_node_put() */
  39struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
  40{
  41	return _opp_of_get_opp_desc_node(dev->of_node, 0);
  42}
  43EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
  44
  45struct opp_table *_managed_opp(struct device *dev, int index)
  46{
  47	struct opp_table *opp_table, *managed_table = NULL;
  48	struct device_node *np;
  49
  50	np = _opp_of_get_opp_desc_node(dev->of_node, index);
  51	if (!np)
  52		return NULL;
  53
  54	list_for_each_entry(opp_table, &opp_tables, node) {
  55		if (opp_table->np == np) {
  56			/*
  57			 * Multiple devices can point to the same OPP table and
  58			 * so will have same node-pointer, np.
  59			 *
  60			 * But the OPPs will be considered as shared only if the
  61			 * OPP table contains a "opp-shared" property.
  62			 */
  63			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
  64				_get_opp_table_kref(opp_table);
  65				managed_table = opp_table;
  66			}
  67
  68			break;
  69		}
  70	}
  71
  72	of_node_put(np);
  73
  74	return managed_table;
  75}
  76
  77/* The caller must call dev_pm_opp_put() after the OPP is used */
  78static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
  79					  struct device_node *opp_np)
  80{
  81	struct dev_pm_opp *opp;
  82
  83	mutex_lock(&opp_table->lock);
  84
  85	list_for_each_entry(opp, &opp_table->opp_list, node) {
  86		if (opp->np == opp_np) {
  87			dev_pm_opp_get(opp);
  88			mutex_unlock(&opp_table->lock);
  89			return opp;
  90		}
  91	}
  92
  93	mutex_unlock(&opp_table->lock);
  94
  95	return NULL;
  96}
  97
  98static struct device_node *of_parse_required_opp(struct device_node *np,
  99						 int index)
 100{
 101	return of_parse_phandle(np, "required-opps", index);
 102}
 103
 104/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
 105static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
 106{
 107	struct opp_table *opp_table;
 108	struct device_node *opp_table_np;
 109
 110	opp_table_np = of_get_parent(opp_np);
 111	if (!opp_table_np)
 112		goto err;
 113
 114	/* It is safe to put the node now as all we need now is its address */
 115	of_node_put(opp_table_np);
 116
 117	mutex_lock(&opp_table_lock);
 118	list_for_each_entry(opp_table, &opp_tables, node) {
 119		if (opp_table_np == opp_table->np) {
 120			_get_opp_table_kref(opp_table);
 121			mutex_unlock(&opp_table_lock);
 122			return opp_table;
 123		}
 124	}
 125	mutex_unlock(&opp_table_lock);
 126
 127err:
 128	return ERR_PTR(-ENODEV);
 129}
 130
 131/* Free resources previously acquired by _opp_table_alloc_required_tables() */
 132static void _opp_table_free_required_tables(struct opp_table *opp_table)
 133{
 134	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 135	int i;
 136
 137	if (!required_opp_tables)
 138		return;
 139
 140	for (i = 0; i < opp_table->required_opp_count; i++) {
 141		if (IS_ERR_OR_NULL(required_opp_tables[i]))
 142			continue;
 143
 144		dev_pm_opp_put_opp_table(required_opp_tables[i]);
 145	}
 146
 147	kfree(required_opp_tables);
 148
 149	opp_table->required_opp_count = 0;
 150	opp_table->required_opp_tables = NULL;
 151
 152	mutex_lock(&opp_table_lock);
 153	list_del(&opp_table->lazy);
 154	mutex_unlock(&opp_table_lock);
 155}
 156
 157/*
 158 * Populate all devices and opp tables which are part of "required-opps" list.
 159 * Checking only the first OPP node should be enough.
 160 */
 161static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
 162					     struct device *dev,
 163					     struct device_node *opp_np)
 164{
 165	struct opp_table **required_opp_tables;
 166	struct device_node *required_np, *np;
 167	bool lazy = false;
 168	int count, i, size;
 169
 170	/* Traversing the first OPP node is all we need */
 171	np = of_get_next_available_child(opp_np, NULL);
 172	if (!np) {
 173		dev_warn(dev, "Empty OPP table\n");
 174
 175		return;
 176	}
 177
 178	count = of_count_phandle_with_args(np, "required-opps", NULL);
 179	if (count <= 0)
 180		goto put_np;
 181
 182	size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
 183	required_opp_tables = kcalloc(count, size, GFP_KERNEL);
 184	if (!required_opp_tables)
 185		goto put_np;
 186
 187	opp_table->required_opp_tables = required_opp_tables;
 188	opp_table->required_devs = (void *)(required_opp_tables + count);
 189	opp_table->required_opp_count = count;
 190
 191	for (i = 0; i < count; i++) {
 192		required_np = of_parse_required_opp(np, i);
 193		if (!required_np)
 194			goto free_required_tables;
 195
 196		required_opp_tables[i] = _find_table_of_opp_np(required_np);
 197		of_node_put(required_np);
 198
 199		if (IS_ERR(required_opp_tables[i]))
 200			lazy = true;
 201	}
 202
 203	/* Let's do the linking later on */
 204	if (lazy) {
 205		/*
 206		 * The OPP table is not held while allocating the table, take it
 207		 * now to avoid corruption to the lazy_opp_tables list.
 208		 */
 209		mutex_lock(&opp_table_lock);
 210		list_add(&opp_table->lazy, &lazy_opp_tables);
 211		mutex_unlock(&opp_table_lock);
 212	}
 213
 214	goto put_np;
 215
 216free_required_tables:
 217	_opp_table_free_required_tables(opp_table);
 218put_np:
 219	of_node_put(np);
 220}
 221
 222void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
 223			int index)
 224{
 225	struct device_node *np, *opp_np;
 226	u32 val;
 227
 228	/*
 229	 * Only required for backward compatibility with v1 bindings, but isn't
 230	 * harmful for other cases. And so we do it unconditionally.
 231	 */
 232	np = of_node_get(dev->of_node);
 233	if (!np)
 234		return;
 235
 236	if (!of_property_read_u32(np, "clock-latency", &val))
 237		opp_table->clock_latency_ns_max = val;
 238	of_property_read_u32(np, "voltage-tolerance",
 239			     &opp_table->voltage_tolerance_v1);
 240
 241	if (of_property_present(np, "#power-domain-cells"))
 242		opp_table->is_genpd = true;
 243
 244	/* Get OPP table node */
 245	opp_np = _opp_of_get_opp_desc_node(np, index);
 246	of_node_put(np);
 247
 248	if (!opp_np)
 249		return;
 250
 251	if (of_property_read_bool(opp_np, "opp-shared"))
 252		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
 253	else
 254		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
 255
 256	opp_table->np = opp_np;
 257
 258	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
 259}
 260
 261void _of_clear_opp_table(struct opp_table *opp_table)
 262{
 263	_opp_table_free_required_tables(opp_table);
 264	of_node_put(opp_table->np);
 265}
 266
 267/*
 268 * Release all resources previously acquired with a call to
 269 * _of_opp_alloc_required_opps().
 270 */
 271static void _of_opp_free_required_opps(struct opp_table *opp_table,
 272				       struct dev_pm_opp *opp)
 273{
 274	struct dev_pm_opp **required_opps = opp->required_opps;
 275	int i;
 276
 277	if (!required_opps)
 278		return;
 279
 280	for (i = 0; i < opp_table->required_opp_count; i++) {
 281		if (!required_opps[i])
 282			continue;
 283
 284		/* Put the reference back */
 285		dev_pm_opp_put(required_opps[i]);
 286	}
 287
 288	opp->required_opps = NULL;
 289	kfree(required_opps);
 290}
 291
 292void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
 293{
 294	_of_opp_free_required_opps(opp_table, opp);
 295	of_node_put(opp->np);
 296}
 297
 298static int _link_required_opps(struct dev_pm_opp *opp, struct opp_table *opp_table,
 299			       struct opp_table *required_table, int index)
 300{
 301	struct device_node *np;
 302
 303	np = of_parse_required_opp(opp->np, index);
 304	if (unlikely(!np))
 305		return -ENODEV;
 306
 307	opp->required_opps[index] = _find_opp_of_np(required_table, np);
 308	of_node_put(np);
 309
 310	if (!opp->required_opps[index]) {
 311		pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
 312		       __func__, opp->np, index);
 313		return -ENODEV;
 314	}
 315
 316	/*
 317	 * There are two genpd (as required-opp) cases that we need to handle,
 318	 * devices with a single genpd and ones with multiple genpds.
 319	 *
 320	 * The single genpd case requires special handling as we need to use the
 321	 * same `dev` structure (instead of a virtual one provided by genpd
 322	 * core) for setting the performance state.
 323	 *
 324	 * It doesn't make sense for a device's DT entry to have both
 325	 * "opp-level" and single "required-opps" entry pointing to a genpd's
 326	 * OPP, as that would make the OPP core call
 327	 * dev_pm_domain_set_performance_state() for two different values for
 328	 * the same device structure. Lets treat single genpd configuration as a
 329	 * case where the OPP's level is directly available without required-opp
 330	 * link in the DT.
 331	 *
 332	 * Just update the `level` with the right value, which
 333	 * dev_pm_opp_set_opp() will take care of in the normal path itself.
 334	 *
 335	 * There is another case though, where a genpd's OPP table has
 336	 * required-opps set to a parent genpd. The OPP core expects the user to
 337	 * set the respective required `struct device` pointer via
 338	 * dev_pm_opp_set_config().
 339	 */
 340	if (required_table->is_genpd && opp_table->required_opp_count == 1 &&
 341	    !opp_table->required_devs[0]) {
 342		/* Genpd core takes care of propagation to parent genpd */
 343		if (!opp_table->is_genpd) {
 344			if (!WARN_ON(opp->level != OPP_LEVEL_UNSET))
 345				opp->level = opp->required_opps[0]->level;
 346		}
 347	}
 348
 349	return 0;
 350}
 351
 352/* Populate all required OPPs which are part of "required-opps" list */
 353static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
 354				       struct dev_pm_opp *opp)
 355{
 356	struct opp_table *required_table;
 357	int i, ret, count = opp_table->required_opp_count;
 358
 359	if (!count)
 360		return 0;
 361
 362	opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
 363	if (!opp->required_opps)
 364		return -ENOMEM;
 365
 366	for (i = 0; i < count; i++) {
 367		required_table = opp_table->required_opp_tables[i];
 368
 369		/* Required table not added yet, we will link later */
 370		if (IS_ERR_OR_NULL(required_table))
 371			continue;
 372
 373		ret = _link_required_opps(opp, opp_table, required_table, i);
 374		if (ret)
 375			goto free_required_opps;
 376	}
 377
 378	return 0;
 379
 380free_required_opps:
 381	_of_opp_free_required_opps(opp_table, opp);
 382
 383	return ret;
 384}
 385
 386/* Link required OPPs for an individual OPP */
 387static int lazy_link_required_opps(struct opp_table *opp_table,
 388				   struct opp_table *new_table, int index)
 389{
 390	struct dev_pm_opp *opp;
 391	int ret;
 392
 393	list_for_each_entry(opp, &opp_table->opp_list, node) {
 394		ret = _link_required_opps(opp, opp_table, new_table, index);
 395		if (ret)
 396			return ret;
 397	}
 398
 399	return 0;
 400}
 401
 402/* Link required OPPs for all OPPs of the newly added OPP table */
 403static void lazy_link_required_opp_table(struct opp_table *new_table)
 404{
 405	struct opp_table *opp_table, *temp, **required_opp_tables;
 406	struct device_node *required_np, *opp_np, *required_table_np;
 407	struct dev_pm_opp *opp;
 408	int i, ret;
 409
 410	mutex_lock(&opp_table_lock);
 411
 412	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
 413		bool lazy = false;
 414
 415		/* opp_np can't be invalid here */
 416		opp_np = of_get_next_available_child(opp_table->np, NULL);
 417
 418		for (i = 0; i < opp_table->required_opp_count; i++) {
 419			required_opp_tables = opp_table->required_opp_tables;
 420
 421			/* Required opp-table is already parsed */
 422			if (!IS_ERR(required_opp_tables[i]))
 423				continue;
 424
 425			/* required_np can't be invalid here */
 426			required_np = of_parse_required_opp(opp_np, i);
 427			required_table_np = of_get_parent(required_np);
 428
 429			of_node_put(required_table_np);
 430			of_node_put(required_np);
 431
 432			/*
 433			 * Newly added table isn't the required opp-table for
 434			 * opp_table.
 435			 */
 436			if (required_table_np != new_table->np) {
 437				lazy = true;
 438				continue;
 439			}
 440
 441			required_opp_tables[i] = new_table;
 442			_get_opp_table_kref(new_table);
 443
 444			/* Link OPPs now */
 445			ret = lazy_link_required_opps(opp_table, new_table, i);
 446			if (ret) {
 447				/* The OPPs will be marked unusable */
 448				lazy = false;
 449				break;
 450			}
 451		}
 452
 453		of_node_put(opp_np);
 454
 455		/* All required opp-tables found, remove from lazy list */
 456		if (!lazy) {
 457			list_del_init(&opp_table->lazy);
 458
 459			list_for_each_entry(opp, &opp_table->opp_list, node)
 460				_required_opps_available(opp, opp_table->required_opp_count);
 461		}
 462	}
 463
 464	mutex_unlock(&opp_table_lock);
 465}
 466
 467static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
 468{
 469	struct device_node *np, *opp_np;
 470	struct property *prop;
 471
 472	if (!opp_table) {
 473		np = of_node_get(dev->of_node);
 474		if (!np)
 475			return -ENODEV;
 476
 477		opp_np = _opp_of_get_opp_desc_node(np, 0);
 478		of_node_put(np);
 479	} else {
 480		opp_np = of_node_get(opp_table->np);
 481	}
 482
 483	/* Lets not fail in case we are parsing opp-v1 bindings */
 484	if (!opp_np)
 485		return 0;
 486
 487	/* Checking only first OPP is sufficient */
 488	np = of_get_next_available_child(opp_np, NULL);
 489	of_node_put(opp_np);
 490	if (!np) {
 491		dev_err(dev, "OPP table empty\n");
 492		return -EINVAL;
 493	}
 494
 495	prop = of_find_property(np, "opp-peak-kBps", NULL);
 496	of_node_put(np);
 497
 498	if (!prop || !prop->length)
 499		return 0;
 500
 501	return 1;
 502}
 503
 504int dev_pm_opp_of_find_icc_paths(struct device *dev,
 505				 struct opp_table *opp_table)
 506{
 507	struct device_node *np;
 508	int ret, i, count, num_paths;
 509	struct icc_path **paths;
 510
 511	ret = _bandwidth_supported(dev, opp_table);
 512	if (ret == -EINVAL)
 513		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
 514	else if (ret <= 0)
 515		return ret;
 516
 517	ret = 0;
 518
 519	np = of_node_get(dev->of_node);
 520	if (!np)
 521		return 0;
 522
 523	count = of_count_phandle_with_args(np, "interconnects",
 524					   "#interconnect-cells");
 525	of_node_put(np);
 526	if (count < 0)
 527		return 0;
 528
 529	/* two phandles when #interconnect-cells = <1> */
 530	if (count % 2) {
 531		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
 532		return -EINVAL;
 533	}
 534
 535	num_paths = count / 2;
 536	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
 537	if (!paths)
 538		return -ENOMEM;
 539
 540	for (i = 0; i < num_paths; i++) {
 541		paths[i] = of_icc_get_by_index(dev, i);
 542		if (IS_ERR(paths[i])) {
 543			ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
 544			goto err;
 545		}
 546	}
 547
 548	if (opp_table) {
 549		opp_table->paths = paths;
 550		opp_table->path_count = num_paths;
 551		return 0;
 552	}
 553
 554err:
 555	while (i--)
 556		icc_put(paths[i]);
 557
 558	kfree(paths);
 559
 560	return ret;
 561}
 562EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
 563
 564static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
 565			      struct device_node *np)
 566{
 567	unsigned int levels = opp_table->supported_hw_count;
 568	int count, versions, ret, i, j;
 569	u32 val;
 570
 571	if (!opp_table->supported_hw) {
 572		/*
 573		 * In the case that no supported_hw has been set by the
 574		 * platform but there is an opp-supported-hw value set for
 575		 * an OPP then the OPP should not be enabled as there is
 576		 * no way to see if the hardware supports it.
 577		 */
 578		if (of_property_present(np, "opp-supported-hw"))
 579			return false;
 580		else
 581			return true;
 582	}
 583
 584	count = of_property_count_u32_elems(np, "opp-supported-hw");
 585	if (count <= 0 || count % levels) {
 586		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
 587			__func__, count);
 588		return false;
 589	}
 590
 591	versions = count / levels;
 592
 593	/* All levels in at least one of the versions should match */
 594	for (i = 0; i < versions; i++) {
 595		bool supported = true;
 596
 597		for (j = 0; j < levels; j++) {
 598			ret = of_property_read_u32_index(np, "opp-supported-hw",
 599							 i * levels + j, &val);
 600			if (ret) {
 601				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
 602					 __func__, i * levels + j, ret);
 603				return false;
 604			}
 605
 606			/* Check if the level is supported */
 607			if (!(val & opp_table->supported_hw[j])) {
 608				supported = false;
 609				break;
 610			}
 611		}
 612
 613		if (supported)
 614			return true;
 615	}
 616
 617	return false;
 618}
 619
 620static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
 621			      struct opp_table *opp_table,
 622			      const char *prop_type, bool *triplet)
 623{
 624	struct property *prop = NULL;
 625	char name[NAME_MAX];
 626	int count, ret;
 627	u32 *out;
 628
 629	/* Search for "opp-<prop_type>-<name>" */
 630	if (opp_table->prop_name) {
 631		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
 632			 opp_table->prop_name);
 633		prop = of_find_property(opp->np, name, NULL);
 634	}
 635
 636	if (!prop) {
 637		/* Search for "opp-<prop_type>" */
 638		snprintf(name, sizeof(name), "opp-%s", prop_type);
 639		prop = of_find_property(opp->np, name, NULL);
 640		if (!prop)
 641			return NULL;
 642	}
 643
 644	count = of_property_count_u32_elems(opp->np, name);
 645	if (count < 0) {
 646		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
 647			count);
 648		return ERR_PTR(count);
 649	}
 650
 651	/*
 652	 * Initialize regulator_count, if regulator information isn't provided
 653	 * by the platform. Now that one of the properties is available, fix the
 654	 * regulator_count to 1.
 655	 */
 656	if (unlikely(opp_table->regulator_count == -1))
 657		opp_table->regulator_count = 1;
 658
 659	if (count != opp_table->regulator_count &&
 660	    (!triplet || count != opp_table->regulator_count * 3)) {
 661		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
 662			__func__, prop_type, count, opp_table->regulator_count);
 663		return ERR_PTR(-EINVAL);
 664	}
 665
 666	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
 667	if (!out)
 668		return ERR_PTR(-EINVAL);
 669
 670	ret = of_property_read_u32_array(opp->np, name, out, count);
 671	if (ret) {
 672		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
 673		kfree(out);
 674		return ERR_PTR(-EINVAL);
 675	}
 676
 677	if (triplet)
 678		*triplet = count != opp_table->regulator_count;
 679
 680	return out;
 681}
 682
 683static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
 684				struct opp_table *opp_table, bool *triplet)
 685{
 686	u32 *microvolt;
 687
 688	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
 689	if (IS_ERR(microvolt))
 690		return microvolt;
 691
 692	if (!microvolt) {
 693		/*
 694		 * Missing property isn't a problem, but an invalid
 695		 * entry is. This property isn't optional if regulator
 696		 * information is provided. Check only for the first OPP, as
 697		 * regulator_count may get initialized after that to a valid
 698		 * value.
 699		 */
 700		if (list_empty(&opp_table->opp_list) &&
 701		    opp_table->regulator_count > 0) {
 702			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
 703				__func__);
 704			return ERR_PTR(-EINVAL);
 705		}
 706	}
 707
 708	return microvolt;
 709}
 710
 711static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
 712			      struct opp_table *opp_table)
 713{
 714	u32 *microvolt, *microamp, *microwatt;
 715	int ret = 0, i, j;
 716	bool triplet;
 717
 718	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
 719	if (IS_ERR(microvolt))
 720		return PTR_ERR(microvolt);
 721
 722	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
 723	if (IS_ERR(microamp)) {
 724		ret = PTR_ERR(microamp);
 725		goto free_microvolt;
 726	}
 727
 728	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
 729	if (IS_ERR(microwatt)) {
 730		ret = PTR_ERR(microwatt);
 731		goto free_microamp;
 732	}
 733
 734	/*
 735	 * Initialize regulator_count if it is uninitialized and no properties
 736	 * are found.
 737	 */
 738	if (unlikely(opp_table->regulator_count == -1)) {
 739		opp_table->regulator_count = 0;
 740		return 0;
 741	}
 742
 743	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
 744		if (microvolt) {
 745			opp->supplies[i].u_volt = microvolt[j++];
 746
 747			if (triplet) {
 748				opp->supplies[i].u_volt_min = microvolt[j++];
 749				opp->supplies[i].u_volt_max = microvolt[j++];
 750			} else {
 751				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
 752				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
 753			}
 754		}
 755
 756		if (microamp)
 757			opp->supplies[i].u_amp = microamp[i];
 758
 759		if (microwatt)
 760			opp->supplies[i].u_watt = microwatt[i];
 761	}
 762
 763	kfree(microwatt);
 764free_microamp:
 765	kfree(microamp);
 766free_microvolt:
 767	kfree(microvolt);
 768
 769	return ret;
 770}
 771
 772/**
 773 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
 774 *				  entries
 775 * @dev:	device pointer used to lookup OPP table.
 776 *
 777 * Free OPPs created using static entries present in DT.
 778 */
 779void dev_pm_opp_of_remove_table(struct device *dev)
 780{
 781	dev_pm_opp_remove_table(dev);
 782}
 783EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
 784
 785static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
 786		      struct device_node *np)
 787{
 788	struct property *prop;
 789	int i, count, ret;
 790	u64 *rates;
 791
 792	prop = of_find_property(np, "opp-hz", NULL);
 793	if (!prop)
 794		return -ENODEV;
 795
 796	count = prop->length / sizeof(u64);
 797	if (opp_table->clk_count != count) {
 798		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
 799		       __func__, count, opp_table->clk_count);
 800		return -EINVAL;
 801	}
 802
 803	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
 804	if (!rates)
 805		return -ENOMEM;
 806
 807	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
 808	if (ret) {
 809		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
 810	} else {
 811		/*
 812		 * Rate is defined as an unsigned long in clk API, and so
 813		 * casting explicitly to its type. Must be fixed once rate is 64
 814		 * bit guaranteed in clk API.
 815		 */
 816		for (i = 0; i < count; i++) {
 817			new_opp->rates[i] = (unsigned long)rates[i];
 818
 819			/* This will happen for frequencies > 4.29 GHz */
 820			WARN_ON(new_opp->rates[i] != rates[i]);
 821		}
 822	}
 823
 824	kfree(rates);
 825
 826	return ret;
 827}
 828
 829static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
 830		    struct device_node *np, bool peak)
 831{
 832	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
 833	struct property *prop;
 834	int i, count, ret;
 835	u32 *bw;
 836
 837	prop = of_find_property(np, name, NULL);
 838	if (!prop)
 839		return -ENODEV;
 840
 841	count = prop->length / sizeof(u32);
 842	if (opp_table->path_count != count) {
 843		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
 844				__func__, name, count, opp_table->path_count);
 845		return -EINVAL;
 846	}
 847
 848	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
 849	if (!bw)
 850		return -ENOMEM;
 851
 852	ret = of_property_read_u32_array(np, name, bw, count);
 853	if (ret) {
 854		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
 855		goto out;
 856	}
 857
 858	for (i = 0; i < count; i++) {
 859		if (peak)
 860			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
 861		else
 862			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
 863	}
 864
 865out:
 866	kfree(bw);
 867	return ret;
 868}
 869
 870static int _read_opp_key(struct dev_pm_opp *new_opp,
 871			 struct opp_table *opp_table, struct device_node *np)
 872{
 873	bool found = false;
 874	int ret;
 875
 876	ret = _read_rate(new_opp, opp_table, np);
 877	if (!ret)
 878		found = true;
 879	else if (ret != -ENODEV)
 880		return ret;
 881
 882	/*
 883	 * Bandwidth consists of peak and average (optional) values:
 884	 * opp-peak-kBps = <path1_value path2_value>;
 885	 * opp-avg-kBps = <path1_value path2_value>;
 886	 */
 887	ret = _read_bw(new_opp, opp_table, np, true);
 888	if (!ret) {
 889		found = true;
 890		ret = _read_bw(new_opp, opp_table, np, false);
 891	}
 892
 893	/* The properties were found but we failed to parse them */
 894	if (ret && ret != -ENODEV)
 895		return ret;
 896
 897	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
 898		found = true;
 899
 900	if (found)
 901		return 0;
 902
 903	return ret;
 904}
 905
 906/**
 907 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
 908 * @opp_table:	OPP table
 909 * @dev:	device for which we do this operation
 910 * @np:		device node
 911 *
 912 * This function adds an opp definition to the opp table and returns status. The
 913 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
 914 * removed by dev_pm_opp_remove.
 915 *
 916 * Return:
 917 * Valid OPP pointer:
 918 *		On success
 919 * NULL:
 920 *		Duplicate OPPs (both freq and volt are same) and opp->available
 921 *		OR if the OPP is not supported by hardware.
 922 * ERR_PTR(-EEXIST):
 923 *		Freq are same and volt are different OR
 924 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 925 * ERR_PTR(-ENOMEM):
 926 *		Memory allocation failure
 927 * ERR_PTR(-EINVAL):
 928 *		Failed parsing the OPP node
 929 */
 930static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
 931		struct device *dev, struct device_node *np)
 932{
 933	struct dev_pm_opp *new_opp;
 934	u32 val;
 935	int ret;
 936
 937	new_opp = _opp_allocate(opp_table);
 938	if (!new_opp)
 939		return ERR_PTR(-ENOMEM);
 940
 941	ret = _read_opp_key(new_opp, opp_table, np);
 942	if (ret < 0) {
 943		dev_err(dev, "%s: opp key field not found\n", __func__);
 944		goto free_opp;
 945	}
 946
 947	/* Check if the OPP supports hardware's hierarchy of versions or not */
 948	if (!_opp_is_supported(dev, opp_table, np)) {
 949		dev_dbg(dev, "OPP not supported by hardware: %s\n",
 950			of_node_full_name(np));
 951		goto free_opp;
 952	}
 953
 954	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
 955
 956	new_opp->np = of_node_get(np);
 957	new_opp->dynamic = false;
 958	new_opp->available = true;
 959
 960	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
 961	if (ret)
 962		goto free_opp;
 963
 964	if (!of_property_read_u32(np, "clock-latency-ns", &val))
 965		new_opp->clock_latency_ns = val;
 966
 967	ret = opp_parse_supplies(new_opp, dev, opp_table);
 968	if (ret)
 969		goto free_required_opps;
 970
 971	ret = _opp_add(dev, new_opp, opp_table);
 972	if (ret) {
 973		/* Don't return error for duplicate OPPs */
 974		if (ret == -EBUSY)
 975			ret = 0;
 976		goto free_required_opps;
 977	}
 978
 979	/* OPP to select on device suspend */
 980	if (of_property_read_bool(np, "opp-suspend")) {
 981		if (opp_table->suspend_opp) {
 982			/* Pick the OPP with higher rate/bw/level as suspend OPP */
 983			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
 984				opp_table->suspend_opp->suspend = false;
 985				new_opp->suspend = true;
 986				opp_table->suspend_opp = new_opp;
 987			}
 988		} else {
 989			new_opp->suspend = true;
 990			opp_table->suspend_opp = new_opp;
 991		}
 992	}
 993
 994	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
 995		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
 996
 997	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
 998		 __func__, new_opp->turbo, new_opp->rates[0],
 999		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
1000		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
1001		 new_opp->level);
1002
1003	/*
1004	 * Notify the changes in the availability of the operable
1005	 * frequency/voltage list.
1006	 */
1007	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1008	return new_opp;
1009
1010free_required_opps:
1011	_of_opp_free_required_opps(opp_table, new_opp);
 
 
1012free_opp:
1013	_opp_free(new_opp);
1014
1015	return ret ? ERR_PTR(ret) : NULL;
1016}
1017
1018/* Initializes OPP tables based on new bindings */
1019static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1020{
1021	struct device_node *np;
1022	int ret, count = 0;
1023	struct dev_pm_opp *opp;
1024
1025	/* OPP table is already initialized for the device */
1026	mutex_lock(&opp_table->lock);
1027	if (opp_table->parsed_static_opps) {
1028		opp_table->parsed_static_opps++;
1029		mutex_unlock(&opp_table->lock);
1030		return 0;
1031	}
1032
1033	opp_table->parsed_static_opps = 1;
1034	mutex_unlock(&opp_table->lock);
1035
1036	/* We have opp-table node now, iterate over it and add OPPs */
1037	for_each_available_child_of_node(opp_table->np, np) {
1038		opp = _opp_add_static_v2(opp_table, dev, np);
1039		if (IS_ERR(opp)) {
1040			ret = PTR_ERR(opp);
1041			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1042				ret);
1043			of_node_put(np);
1044			goto remove_static_opp;
1045		} else if (opp) {
1046			count++;
1047		}
1048	}
1049
1050	/* There should be one or more OPPs defined */
1051	if (!count) {
1052		dev_err(dev, "%s: no supported OPPs", __func__);
1053		ret = -ENOENT;
1054		goto remove_static_opp;
1055	}
1056
1057	lazy_link_required_opp_table(opp_table);
1058
1059	return 0;
1060
1061remove_static_opp:
1062	_opp_remove_all_static(opp_table);
1063
1064	return ret;
1065}
1066
1067/* Initializes OPP tables based on old-deprecated bindings */
1068static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1069{
1070	const struct property *prop;
1071	const __be32 *val;
1072	int nr, ret = 0;
1073
1074	mutex_lock(&opp_table->lock);
1075	if (opp_table->parsed_static_opps) {
1076		opp_table->parsed_static_opps++;
1077		mutex_unlock(&opp_table->lock);
1078		return 0;
1079	}
1080
1081	opp_table->parsed_static_opps = 1;
1082	mutex_unlock(&opp_table->lock);
1083
1084	prop = of_find_property(dev->of_node, "operating-points", NULL);
1085	if (!prop) {
1086		ret = -ENODEV;
1087		goto remove_static_opp;
1088	}
1089	if (!prop->value) {
1090		ret = -ENODATA;
1091		goto remove_static_opp;
1092	}
1093
1094	/*
1095	 * Each OPP is a set of tuples consisting of frequency and
1096	 * voltage like <freq-kHz vol-uV>.
1097	 */
1098	nr = prop->length / sizeof(u32);
1099	if (nr % 2) {
1100		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1101		ret = -EINVAL;
1102		goto remove_static_opp;
1103	}
1104
1105	val = prop->value;
1106	while (nr) {
1107		unsigned long freq = be32_to_cpup(val++) * 1000;
1108		unsigned long volt = be32_to_cpup(val++);
1109		struct dev_pm_opp_data data = {
1110			.freq = freq,
1111			.u_volt = volt,
1112		};
1113
1114		ret = _opp_add_v1(opp_table, dev, &data, false);
1115		if (ret) {
1116			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1117				__func__, data.freq, ret);
1118			goto remove_static_opp;
1119		}
1120		nr -= 2;
1121	}
1122
1123	return 0;
1124
1125remove_static_opp:
1126	_opp_remove_all_static(opp_table);
1127
1128	return ret;
1129}
1130
1131static int _of_add_table_indexed(struct device *dev, int index)
1132{
1133	struct opp_table *opp_table;
1134	int ret, count;
1135
1136	if (index) {
1137		/*
1138		 * If only one phandle is present, then the same OPP table
1139		 * applies for all index requests.
1140		 */
1141		count = of_count_phandle_with_args(dev->of_node,
1142						   "operating-points-v2", NULL);
1143		if (count == 1)
1144			index = 0;
1145	}
1146
1147	opp_table = _add_opp_table_indexed(dev, index, true);
1148	if (IS_ERR(opp_table))
1149		return PTR_ERR(opp_table);
1150
1151	/*
1152	 * OPPs have two version of bindings now. Also try the old (v1)
1153	 * bindings for backward compatibility with older dtbs.
1154	 */
1155	if (opp_table->np)
1156		ret = _of_add_opp_table_v2(dev, opp_table);
1157	else
1158		ret = _of_add_opp_table_v1(dev, opp_table);
1159
1160	if (ret)
1161		dev_pm_opp_put_opp_table(opp_table);
1162
1163	return ret;
1164}
1165
1166static void devm_pm_opp_of_table_release(void *data)
1167{
1168	dev_pm_opp_of_remove_table(data);
1169}
1170
1171static int _devm_of_add_table_indexed(struct device *dev, int index)
1172{
1173	int ret;
1174
1175	ret = _of_add_table_indexed(dev, index);
1176	if (ret)
1177		return ret;
1178
1179	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1180}
1181
1182/**
1183 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1184 * @dev:	device pointer used to lookup OPP table.
1185 *
1186 * Register the initial OPP table with the OPP library for given device.
1187 *
1188 * The opp_table structure will be freed after the device is destroyed.
1189 *
1190 * Return:
1191 * 0		On success OR
1192 *		Duplicate OPPs (both freq and volt are same) and opp->available
1193 * -EEXIST	Freq are same and volt are different OR
1194 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1195 * -ENOMEM	Memory allocation failure
1196 * -ENODEV	when 'operating-points' property is not found or is invalid data
1197 *		in device node.
1198 * -ENODATA	when empty 'operating-points' property is found
1199 * -EINVAL	when invalid entries are found in opp-v2 table
1200 */
1201int devm_pm_opp_of_add_table(struct device *dev)
1202{
1203	return _devm_of_add_table_indexed(dev, 0);
1204}
1205EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1206
1207/**
1208 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1209 * @dev:	device pointer used to lookup OPP table.
1210 *
1211 * Register the initial OPP table with the OPP library for given device.
1212 *
1213 * Return:
1214 * 0		On success OR
1215 *		Duplicate OPPs (both freq and volt are same) and opp->available
1216 * -EEXIST	Freq are same and volt are different OR
1217 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1218 * -ENOMEM	Memory allocation failure
1219 * -ENODEV	when 'operating-points' property is not found or is invalid data
1220 *		in device node.
1221 * -ENODATA	when empty 'operating-points' property is found
1222 * -EINVAL	when invalid entries are found in opp-v2 table
1223 */
1224int dev_pm_opp_of_add_table(struct device *dev)
1225{
1226	return _of_add_table_indexed(dev, 0);
1227}
1228EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1229
1230/**
1231 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1232 * @dev:	device pointer used to lookup OPP table.
1233 * @index:	Index number.
1234 *
1235 * Register the initial OPP table with the OPP library for given device only
1236 * using the "operating-points-v2" property.
1237 *
1238 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1239 */
1240int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1241{
1242	return _of_add_table_indexed(dev, index);
1243}
1244EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1245
1246/**
1247 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1248 * @dev:	device pointer used to lookup OPP table.
1249 * @index:	Index number.
1250 *
1251 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1252 */
1253int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1254{
1255	return _devm_of_add_table_indexed(dev, index);
1256}
1257EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1258
1259/* CPU device specific helpers */
1260
1261/**
1262 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1263 * @cpumask:	cpumask for which OPP table needs to be removed
1264 *
1265 * This removes the OPP tables for CPUs present in the @cpumask.
1266 * This should be used only to remove static entries created from DT.
1267 */
1268void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1269{
1270	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1271}
1272EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1273
1274/**
1275 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1276 * @cpumask:	cpumask for which OPP table needs to be added.
1277 *
1278 * This adds the OPP tables for CPUs present in the @cpumask.
1279 */
1280int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1281{
1282	struct device *cpu_dev;
1283	int cpu, ret;
1284
1285	if (WARN_ON(cpumask_empty(cpumask)))
1286		return -ENODEV;
1287
1288	for_each_cpu(cpu, cpumask) {
1289		cpu_dev = get_cpu_device(cpu);
1290		if (!cpu_dev) {
1291			pr_err("%s: failed to get cpu%d device\n", __func__,
1292			       cpu);
1293			ret = -ENODEV;
1294			goto remove_table;
1295		}
1296
1297		ret = dev_pm_opp_of_add_table(cpu_dev);
1298		if (ret) {
1299			/*
1300			 * OPP may get registered dynamically, don't print error
1301			 * message here.
1302			 */
1303			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1304				 __func__, cpu, ret);
1305
1306			goto remove_table;
1307		}
1308	}
1309
1310	return 0;
1311
1312remove_table:
1313	/* Free all other OPPs */
1314	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1315
1316	return ret;
1317}
1318EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1319
1320/*
1321 * Works only for OPP v2 bindings.
1322 *
1323 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1324 */
1325/**
1326 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1327 *				      @cpu_dev using operating-points-v2
1328 *				      bindings.
1329 *
1330 * @cpu_dev:	CPU device for which we do this operation
1331 * @cpumask:	cpumask to update with information of sharing CPUs
1332 *
1333 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1334 *
1335 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1336 */
1337int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1338				   struct cpumask *cpumask)
1339{
1340	struct device_node *np, *tmp_np, *cpu_np;
1341	int cpu, ret = 0;
1342
1343	/* Get OPP descriptor node */
1344	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1345	if (!np) {
1346		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1347		return -ENOENT;
1348	}
1349
1350	cpumask_set_cpu(cpu_dev->id, cpumask);
1351
1352	/* OPPs are shared ? */
1353	if (!of_property_read_bool(np, "opp-shared"))
1354		goto put_cpu_node;
1355
1356	for_each_possible_cpu(cpu) {
1357		if (cpu == cpu_dev->id)
1358			continue;
1359
1360		cpu_np = of_cpu_device_node_get(cpu);
1361		if (!cpu_np) {
1362			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1363				__func__, cpu);
1364			ret = -ENOENT;
1365			goto put_cpu_node;
1366		}
1367
1368		/* Get OPP descriptor node */
1369		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1370		of_node_put(cpu_np);
1371		if (!tmp_np) {
1372			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1373			ret = -ENOENT;
1374			goto put_cpu_node;
1375		}
1376
1377		/* CPUs are sharing opp node */
1378		if (np == tmp_np)
1379			cpumask_set_cpu(cpu, cpumask);
1380
1381		of_node_put(tmp_np);
1382	}
1383
1384put_cpu_node:
1385	of_node_put(np);
1386	return ret;
1387}
1388EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1389
1390/**
1391 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1392 * @np: Node that contains the "required-opps" property.
1393 * @index: Index of the phandle to parse.
1394 *
1395 * Returns the performance state of the OPP pointed out by the "required-opps"
1396 * property at @index in @np.
1397 *
1398 * Return: Zero or positive performance state on success, otherwise negative
1399 * value on errors.
1400 */
1401int of_get_required_opp_performance_state(struct device_node *np, int index)
1402{
1403	struct dev_pm_opp *opp;
1404	struct device_node *required_np;
1405	struct opp_table *opp_table;
1406	int pstate = -EINVAL;
1407
1408	required_np = of_parse_required_opp(np, index);
1409	if (!required_np)
1410		return -ENODEV;
1411
1412	opp_table = _find_table_of_opp_np(required_np);
1413	if (IS_ERR(opp_table)) {
1414		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1415		       __func__, np, PTR_ERR(opp_table));
1416		goto put_required_np;
1417	}
1418
1419	/* The OPP tables must belong to a genpd */
1420	if (unlikely(!opp_table->is_genpd)) {
1421		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1422		goto put_required_np;
1423	}
1424
1425	opp = _find_opp_of_np(opp_table, required_np);
1426	if (opp) {
1427		if (opp->level == OPP_LEVEL_UNSET) {
1428			pr_err("%s: OPP levels aren't available for %pOF\n",
1429			       __func__, np);
1430		} else {
1431			pstate = opp->level;
1432		}
1433		dev_pm_opp_put(opp);
1434
1435	}
1436
1437	dev_pm_opp_put_opp_table(opp_table);
1438
1439put_required_np:
1440	of_node_put(required_np);
1441
1442	return pstate;
1443}
1444EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1445
1446/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1448 * @opp:	opp for which DT node has to be returned for
1449 *
1450 * Return: DT node corresponding to the opp, else 0 on success.
1451 *
1452 * The caller needs to put the node with of_node_put() after using it.
1453 */
1454struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1455{
1456	if (IS_ERR_OR_NULL(opp)) {
1457		pr_err("%s: Invalid parameters\n", __func__);
1458		return NULL;
1459	}
1460
1461	return of_node_get(opp->np);
1462}
1463EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1464
1465/*
1466 * Callback function provided to the Energy Model framework upon registration.
1467 * It provides the power used by @dev at @kHz if it is the frequency of an
1468 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1469 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1470 * frequency and @uW to the associated power.
1471 *
1472 * Returns 0 on success or a proper -EINVAL value in case of error.
1473 */
1474static int __maybe_unused
1475_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1476{
1477	struct dev_pm_opp *opp;
1478	unsigned long opp_freq, opp_power;
1479
1480	/* Find the right frequency and related OPP */
1481	opp_freq = *kHz * 1000;
1482	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1483	if (IS_ERR(opp))
1484		return -EINVAL;
1485
1486	opp_power = dev_pm_opp_get_power(opp);
1487	dev_pm_opp_put(opp);
1488	if (!opp_power)
1489		return -EINVAL;
1490
1491	*kHz = opp_freq / 1000;
1492	*uW = opp_power;
1493
1494	return 0;
1495}
1496
1497/*
1498 * Callback function provided to the Energy Model framework upon registration.
 
 
 
 
1499 * This computes the power estimated by @dev at @kHz if it is the frequency
1500 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1501 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1502 * frequency and @uW to the associated power. The power is estimated as
1503 * P = C * V^2 * f with C being the device's capacitance and V and f
1504 * respectively the voltage and frequency of the OPP.
 
 
1505 *
1506 * Returns -EINVAL if the power calculation failed because of missing
1507 * parameters, 0 otherwise.
1508 */
1509static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1510				     unsigned long *kHz)
1511{
1512	struct dev_pm_opp *opp;
1513	struct device_node *np;
1514	unsigned long mV, Hz;
1515	u32 cap;
1516	u64 tmp;
1517	int ret;
1518
1519	np = of_node_get(dev->of_node);
1520	if (!np)
1521		return -EINVAL;
1522
1523	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1524	of_node_put(np);
1525	if (ret)
1526		return -EINVAL;
1527
1528	Hz = *kHz * 1000;
1529	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1530	if (IS_ERR(opp))
1531		return -EINVAL;
1532
1533	mV = dev_pm_opp_get_voltage(opp) / 1000;
1534	dev_pm_opp_put(opp);
1535	if (!mV)
1536		return -EINVAL;
1537
1538	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1539	/* Provide power in micro-Watts */
1540	do_div(tmp, 1000000);
1541
1542	*uW = (unsigned long)tmp;
1543	*kHz = Hz / 1000;
1544
1545	return 0;
1546}
 
1547
1548static bool _of_has_opp_microwatt_property(struct device *dev)
1549{
1550	unsigned long power, freq = 0;
1551	struct dev_pm_opp *opp;
1552
1553	/* Check if at least one OPP has needed property */
1554	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1555	if (IS_ERR(opp))
1556		return false;
1557
1558	power = dev_pm_opp_get_power(opp);
1559	dev_pm_opp_put(opp);
1560	if (!power)
1561		return false;
1562
1563	return true;
1564}
1565
1566/**
1567 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1568 * @dev		: Device for which an Energy Model has to be registered
1569 * @cpus	: CPUs for which an Energy Model has to be registered. For
1570 *		other type of devices it should be set to NULL.
1571 *
1572 * This checks whether the "dynamic-power-coefficient" devicetree property has
1573 * been specified, and tries to register an Energy Model with it if it has.
1574 * Having this property means the voltages are known for OPPs and the EM
1575 * might be calculated.
1576 */
1577int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1578{
1579	struct em_data_callback em_cb;
1580	struct device_node *np;
1581	int ret, nr_opp;
1582	u32 cap;
1583
1584	if (IS_ERR_OR_NULL(dev)) {
1585		ret = -EINVAL;
1586		goto failed;
1587	}
1588
1589	nr_opp = dev_pm_opp_get_opp_count(dev);
1590	if (nr_opp <= 0) {
1591		ret = -EINVAL;
1592		goto failed;
1593	}
1594
1595	/* First, try to find more precised Energy Model in DT */
1596	if (_of_has_opp_microwatt_property(dev)) {
1597		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1598		goto register_em;
1599	}
1600
1601	np = of_node_get(dev->of_node);
1602	if (!np) {
1603		ret = -EINVAL;
1604		goto failed;
1605	}
1606
1607	/*
1608	 * Register an EM only if the 'dynamic-power-coefficient' property is
1609	 * set in devicetree. It is assumed the voltage values are known if that
1610	 * property is set since it is useless otherwise. If voltages are not
1611	 * known, just let the EM registration fail with an error to alert the
1612	 * user about the inconsistent configuration.
1613	 */
1614	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1615	of_node_put(np);
1616	if (ret || !cap) {
1617		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1618		ret = -EINVAL;
1619		goto failed;
1620	}
1621
1622	EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1623
1624register_em:
1625	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1626	if (ret)
1627		goto failed;
1628
1629	return 0;
1630
1631failed:
1632	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1633	return ret;
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);