Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP OF helpers
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/cpu.h>
14#include <linux/errno.h>
15#include <linux/device.h>
16#include <linux/of.h>
17#include <linux/pm_domain.h>
18#include <linux/slab.h>
19#include <linux/export.h>
20#include <linux/energy_model.h>
21
22#include "opp.h"
23
24/* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25static LIST_HEAD(lazy_opp_tables);
26
27/*
28 * Returns opp descriptor node for a device node, caller must
29 * do of_node_put().
30 */
31static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 int index)
33{
34 /* "operating-points-v2" can be an array for power domain providers */
35 return of_parse_phandle(np, "operating-points-v2", index);
36}
37
38/* Returns opp descriptor node for a device, caller must do of_node_put() */
39struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40{
41 return _opp_of_get_opp_desc_node(dev->of_node, 0);
42}
43EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44
45struct opp_table *_managed_opp(struct device *dev, int index)
46{
47 struct opp_table *opp_table, *managed_table = NULL;
48 struct device_node *np;
49
50 np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 if (!np)
52 return NULL;
53
54 list_for_each_entry(opp_table, &opp_tables, node) {
55 if (opp_table->np == np) {
56 /*
57 * Multiple devices can point to the same OPP table and
58 * so will have same node-pointer, np.
59 *
60 * But the OPPs will be considered as shared only if the
61 * OPP table contains a "opp-shared" property.
62 */
63 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 _get_opp_table_kref(opp_table);
65 managed_table = opp_table;
66 }
67
68 break;
69 }
70 }
71
72 of_node_put(np);
73
74 return managed_table;
75}
76
77/* The caller must call dev_pm_opp_put() after the OPP is used */
78static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 struct device_node *opp_np)
80{
81 struct dev_pm_opp *opp;
82
83 mutex_lock(&opp_table->lock);
84
85 list_for_each_entry(opp, &opp_table->opp_list, node) {
86 if (opp->np == opp_np) {
87 dev_pm_opp_get(opp);
88 mutex_unlock(&opp_table->lock);
89 return opp;
90 }
91 }
92
93 mutex_unlock(&opp_table->lock);
94
95 return NULL;
96}
97
98static struct device_node *of_parse_required_opp(struct device_node *np,
99 int index)
100{
101 return of_parse_phandle(np, "required-opps", index);
102}
103
104/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106{
107 struct opp_table *opp_table;
108 struct device_node *opp_table_np;
109
110 opp_table_np = of_get_parent(opp_np);
111 if (!opp_table_np)
112 goto err;
113
114 /* It is safe to put the node now as all we need now is its address */
115 of_node_put(opp_table_np);
116
117 mutex_lock(&opp_table_lock);
118 list_for_each_entry(opp_table, &opp_tables, node) {
119 if (opp_table_np == opp_table->np) {
120 _get_opp_table_kref(opp_table);
121 mutex_unlock(&opp_table_lock);
122 return opp_table;
123 }
124 }
125 mutex_unlock(&opp_table_lock);
126
127err:
128 return ERR_PTR(-ENODEV);
129}
130
131/* Free resources previously acquired by _opp_table_alloc_required_tables() */
132static void _opp_table_free_required_tables(struct opp_table *opp_table)
133{
134 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135 int i;
136
137 if (!required_opp_tables)
138 return;
139
140 for (i = 0; i < opp_table->required_opp_count; i++) {
141 if (IS_ERR_OR_NULL(required_opp_tables[i]))
142 continue;
143
144 dev_pm_opp_put_opp_table(required_opp_tables[i]);
145 }
146
147 kfree(required_opp_tables);
148
149 opp_table->required_opp_count = 0;
150 opp_table->required_opp_tables = NULL;
151
152 mutex_lock(&opp_table_lock);
153 list_del(&opp_table->lazy);
154 mutex_unlock(&opp_table_lock);
155}
156
157/*
158 * Populate all devices and opp tables which are part of "required-opps" list.
159 * Checking only the first OPP node should be enough.
160 */
161static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162 struct device *dev,
163 struct device_node *opp_np)
164{
165 struct opp_table **required_opp_tables;
166 struct device_node *required_np, *np;
167 bool lazy = false;
168 int count, i, size;
169
170 /* Traversing the first OPP node is all we need */
171 np = of_get_next_available_child(opp_np, NULL);
172 if (!np) {
173 dev_warn(dev, "Empty OPP table\n");
174
175 return;
176 }
177
178 count = of_count_phandle_with_args(np, "required-opps", NULL);
179 if (count <= 0)
180 goto put_np;
181
182 size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183 required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184 if (!required_opp_tables)
185 goto put_np;
186
187 opp_table->required_opp_tables = required_opp_tables;
188 opp_table->required_devs = (void *)(required_opp_tables + count);
189 opp_table->required_opp_count = count;
190
191 for (i = 0; i < count; i++) {
192 required_np = of_parse_required_opp(np, i);
193 if (!required_np)
194 goto free_required_tables;
195
196 required_opp_tables[i] = _find_table_of_opp_np(required_np);
197 of_node_put(required_np);
198
199 if (IS_ERR(required_opp_tables[i]))
200 lazy = true;
201 }
202
203 /* Let's do the linking later on */
204 if (lazy) {
205 /*
206 * The OPP table is not held while allocating the table, take it
207 * now to avoid corruption to the lazy_opp_tables list.
208 */
209 mutex_lock(&opp_table_lock);
210 list_add(&opp_table->lazy, &lazy_opp_tables);
211 mutex_unlock(&opp_table_lock);
212 }
213
214 goto put_np;
215
216free_required_tables:
217 _opp_table_free_required_tables(opp_table);
218put_np:
219 of_node_put(np);
220}
221
222void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223 int index)
224{
225 struct device_node *np, *opp_np;
226 u32 val;
227
228 /*
229 * Only required for backward compatibility with v1 bindings, but isn't
230 * harmful for other cases. And so we do it unconditionally.
231 */
232 np = of_node_get(dev->of_node);
233 if (!np)
234 return;
235
236 if (!of_property_read_u32(np, "clock-latency", &val))
237 opp_table->clock_latency_ns_max = val;
238 of_property_read_u32(np, "voltage-tolerance",
239 &opp_table->voltage_tolerance_v1);
240
241 if (of_property_present(np, "#power-domain-cells"))
242 opp_table->is_genpd = true;
243
244 /* Get OPP table node */
245 opp_np = _opp_of_get_opp_desc_node(np, index);
246 of_node_put(np);
247
248 if (!opp_np)
249 return;
250
251 if (of_property_read_bool(opp_np, "opp-shared"))
252 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253 else
254 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
255
256 opp_table->np = opp_np;
257
258 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
259}
260
261void _of_clear_opp_table(struct opp_table *opp_table)
262{
263 _opp_table_free_required_tables(opp_table);
264 of_node_put(opp_table->np);
265}
266
267/*
268 * Release all resources previously acquired with a call to
269 * _of_opp_alloc_required_opps().
270 */
271static void _of_opp_free_required_opps(struct opp_table *opp_table,
272 struct dev_pm_opp *opp)
273{
274 struct dev_pm_opp **required_opps = opp->required_opps;
275 int i;
276
277 if (!required_opps)
278 return;
279
280 for (i = 0; i < opp_table->required_opp_count; i++) {
281 if (!required_opps[i])
282 continue;
283
284 /* Put the reference back */
285 dev_pm_opp_put(required_opps[i]);
286 }
287
288 opp->required_opps = NULL;
289 kfree(required_opps);
290}
291
292void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
293{
294 _of_opp_free_required_opps(opp_table, opp);
295 of_node_put(opp->np);
296}
297
298static int _link_required_opps(struct dev_pm_opp *opp,
299 struct opp_table *required_table, int index)
300{
301 struct device_node *np;
302
303 np = of_parse_required_opp(opp->np, index);
304 if (unlikely(!np))
305 return -ENODEV;
306
307 opp->required_opps[index] = _find_opp_of_np(required_table, np);
308 of_node_put(np);
309
310 if (!opp->required_opps[index]) {
311 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312 __func__, opp->np, index);
313 return -ENODEV;
314 }
315
316 return 0;
317}
318
319/* Populate all required OPPs which are part of "required-opps" list */
320static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
321 struct dev_pm_opp *opp)
322{
323 struct opp_table *required_table;
324 int i, ret, count = opp_table->required_opp_count;
325
326 if (!count)
327 return 0;
328
329 opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
330 if (!opp->required_opps)
331 return -ENOMEM;
332
333 for (i = 0; i < count; i++) {
334 required_table = opp_table->required_opp_tables[i];
335
336 /* Required table not added yet, we will link later */
337 if (IS_ERR_OR_NULL(required_table))
338 continue;
339
340 ret = _link_required_opps(opp, required_table, i);
341 if (ret)
342 goto free_required_opps;
343 }
344
345 return 0;
346
347free_required_opps:
348 _of_opp_free_required_opps(opp_table, opp);
349
350 return ret;
351}
352
353/* Link required OPPs for an individual OPP */
354static int lazy_link_required_opps(struct opp_table *opp_table,
355 struct opp_table *new_table, int index)
356{
357 struct dev_pm_opp *opp;
358 int ret;
359
360 list_for_each_entry(opp, &opp_table->opp_list, node) {
361 ret = _link_required_opps(opp, new_table, index);
362 if (ret)
363 return ret;
364 }
365
366 return 0;
367}
368
369/* Link required OPPs for all OPPs of the newly added OPP table */
370static void lazy_link_required_opp_table(struct opp_table *new_table)
371{
372 struct opp_table *opp_table, *temp, **required_opp_tables;
373 struct device_node *required_np, *opp_np, *required_table_np;
374 struct dev_pm_opp *opp;
375 int i, ret;
376
377 mutex_lock(&opp_table_lock);
378
379 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
380 bool lazy = false;
381
382 /* opp_np can't be invalid here */
383 opp_np = of_get_next_available_child(opp_table->np, NULL);
384
385 for (i = 0; i < opp_table->required_opp_count; i++) {
386 required_opp_tables = opp_table->required_opp_tables;
387
388 /* Required opp-table is already parsed */
389 if (!IS_ERR(required_opp_tables[i]))
390 continue;
391
392 /* required_np can't be invalid here */
393 required_np = of_parse_required_opp(opp_np, i);
394 required_table_np = of_get_parent(required_np);
395
396 of_node_put(required_table_np);
397 of_node_put(required_np);
398
399 /*
400 * Newly added table isn't the required opp-table for
401 * opp_table.
402 */
403 if (required_table_np != new_table->np) {
404 lazy = true;
405 continue;
406 }
407
408 required_opp_tables[i] = new_table;
409 _get_opp_table_kref(new_table);
410
411 /* Link OPPs now */
412 ret = lazy_link_required_opps(opp_table, new_table, i);
413 if (ret) {
414 /* The OPPs will be marked unusable */
415 lazy = false;
416 break;
417 }
418 }
419
420 of_node_put(opp_np);
421
422 /* All required opp-tables found, remove from lazy list */
423 if (!lazy) {
424 list_del_init(&opp_table->lazy);
425
426 list_for_each_entry(opp, &opp_table->opp_list, node)
427 _required_opps_available(opp, opp_table->required_opp_count);
428 }
429 }
430
431 mutex_unlock(&opp_table_lock);
432}
433
434static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
435{
436 struct device_node *np, *opp_np;
437 struct property *prop;
438
439 if (!opp_table) {
440 np = of_node_get(dev->of_node);
441 if (!np)
442 return -ENODEV;
443
444 opp_np = _opp_of_get_opp_desc_node(np, 0);
445 of_node_put(np);
446 } else {
447 opp_np = of_node_get(opp_table->np);
448 }
449
450 /* Lets not fail in case we are parsing opp-v1 bindings */
451 if (!opp_np)
452 return 0;
453
454 /* Checking only first OPP is sufficient */
455 np = of_get_next_available_child(opp_np, NULL);
456 of_node_put(opp_np);
457 if (!np) {
458 dev_err(dev, "OPP table empty\n");
459 return -EINVAL;
460 }
461
462 prop = of_find_property(np, "opp-peak-kBps", NULL);
463 of_node_put(np);
464
465 if (!prop || !prop->length)
466 return 0;
467
468 return 1;
469}
470
471int dev_pm_opp_of_find_icc_paths(struct device *dev,
472 struct opp_table *opp_table)
473{
474 struct device_node *np;
475 int ret, i, count, num_paths;
476 struct icc_path **paths;
477
478 ret = _bandwidth_supported(dev, opp_table);
479 if (ret == -EINVAL)
480 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
481 else if (ret <= 0)
482 return ret;
483
484 ret = 0;
485
486 np = of_node_get(dev->of_node);
487 if (!np)
488 return 0;
489
490 count = of_count_phandle_with_args(np, "interconnects",
491 "#interconnect-cells");
492 of_node_put(np);
493 if (count < 0)
494 return 0;
495
496 /* two phandles when #interconnect-cells = <1> */
497 if (count % 2) {
498 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
499 return -EINVAL;
500 }
501
502 num_paths = count / 2;
503 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
504 if (!paths)
505 return -ENOMEM;
506
507 for (i = 0; i < num_paths; i++) {
508 paths[i] = of_icc_get_by_index(dev, i);
509 if (IS_ERR(paths[i])) {
510 ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
511 goto err;
512 }
513 }
514
515 if (opp_table) {
516 opp_table->paths = paths;
517 opp_table->path_count = num_paths;
518 return 0;
519 }
520
521err:
522 while (i--)
523 icc_put(paths[i]);
524
525 kfree(paths);
526
527 return ret;
528}
529EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
530
531static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
532 struct device_node *np)
533{
534 unsigned int levels = opp_table->supported_hw_count;
535 int count, versions, ret, i, j;
536 u32 val;
537
538 if (!opp_table->supported_hw) {
539 /*
540 * In the case that no supported_hw has been set by the
541 * platform but there is an opp-supported-hw value set for
542 * an OPP then the OPP should not be enabled as there is
543 * no way to see if the hardware supports it.
544 */
545 if (of_property_present(np, "opp-supported-hw"))
546 return false;
547 else
548 return true;
549 }
550
551 count = of_property_count_u32_elems(np, "opp-supported-hw");
552 if (count <= 0 || count % levels) {
553 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
554 __func__, count);
555 return false;
556 }
557
558 versions = count / levels;
559
560 /* All levels in at least one of the versions should match */
561 for (i = 0; i < versions; i++) {
562 bool supported = true;
563
564 for (j = 0; j < levels; j++) {
565 ret = of_property_read_u32_index(np, "opp-supported-hw",
566 i * levels + j, &val);
567 if (ret) {
568 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
569 __func__, i * levels + j, ret);
570 return false;
571 }
572
573 /* Check if the level is supported */
574 if (!(val & opp_table->supported_hw[j])) {
575 supported = false;
576 break;
577 }
578 }
579
580 if (supported)
581 return true;
582 }
583
584 return false;
585}
586
587static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
588 struct opp_table *opp_table,
589 const char *prop_type, bool *triplet)
590{
591 struct property *prop = NULL;
592 char name[NAME_MAX];
593 int count, ret;
594 u32 *out;
595
596 /* Search for "opp-<prop_type>-<name>" */
597 if (opp_table->prop_name) {
598 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
599 opp_table->prop_name);
600 prop = of_find_property(opp->np, name, NULL);
601 }
602
603 if (!prop) {
604 /* Search for "opp-<prop_type>" */
605 snprintf(name, sizeof(name), "opp-%s", prop_type);
606 prop = of_find_property(opp->np, name, NULL);
607 if (!prop)
608 return NULL;
609 }
610
611 count = of_property_count_u32_elems(opp->np, name);
612 if (count < 0) {
613 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
614 count);
615 return ERR_PTR(count);
616 }
617
618 /*
619 * Initialize regulator_count, if regulator information isn't provided
620 * by the platform. Now that one of the properties is available, fix the
621 * regulator_count to 1.
622 */
623 if (unlikely(opp_table->regulator_count == -1))
624 opp_table->regulator_count = 1;
625
626 if (count != opp_table->regulator_count &&
627 (!triplet || count != opp_table->regulator_count * 3)) {
628 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
629 __func__, prop_type, count, opp_table->regulator_count);
630 return ERR_PTR(-EINVAL);
631 }
632
633 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
634 if (!out)
635 return ERR_PTR(-EINVAL);
636
637 ret = of_property_read_u32_array(opp->np, name, out, count);
638 if (ret) {
639 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
640 kfree(out);
641 return ERR_PTR(-EINVAL);
642 }
643
644 if (triplet)
645 *triplet = count != opp_table->regulator_count;
646
647 return out;
648}
649
650static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
651 struct opp_table *opp_table, bool *triplet)
652{
653 u32 *microvolt;
654
655 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
656 if (IS_ERR(microvolt))
657 return microvolt;
658
659 if (!microvolt) {
660 /*
661 * Missing property isn't a problem, but an invalid
662 * entry is. This property isn't optional if regulator
663 * information is provided. Check only for the first OPP, as
664 * regulator_count may get initialized after that to a valid
665 * value.
666 */
667 if (list_empty(&opp_table->opp_list) &&
668 opp_table->regulator_count > 0) {
669 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
670 __func__);
671 return ERR_PTR(-EINVAL);
672 }
673 }
674
675 return microvolt;
676}
677
678static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
679 struct opp_table *opp_table)
680{
681 u32 *microvolt, *microamp, *microwatt;
682 int ret = 0, i, j;
683 bool triplet;
684
685 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
686 if (IS_ERR(microvolt))
687 return PTR_ERR(microvolt);
688
689 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
690 if (IS_ERR(microamp)) {
691 ret = PTR_ERR(microamp);
692 goto free_microvolt;
693 }
694
695 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
696 if (IS_ERR(microwatt)) {
697 ret = PTR_ERR(microwatt);
698 goto free_microamp;
699 }
700
701 /*
702 * Initialize regulator_count if it is uninitialized and no properties
703 * are found.
704 */
705 if (unlikely(opp_table->regulator_count == -1)) {
706 opp_table->regulator_count = 0;
707 return 0;
708 }
709
710 for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
711 if (microvolt) {
712 opp->supplies[i].u_volt = microvolt[j++];
713
714 if (triplet) {
715 opp->supplies[i].u_volt_min = microvolt[j++];
716 opp->supplies[i].u_volt_max = microvolt[j++];
717 } else {
718 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
719 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
720 }
721 }
722
723 if (microamp)
724 opp->supplies[i].u_amp = microamp[i];
725
726 if (microwatt)
727 opp->supplies[i].u_watt = microwatt[i];
728 }
729
730 kfree(microwatt);
731free_microamp:
732 kfree(microamp);
733free_microvolt:
734 kfree(microvolt);
735
736 return ret;
737}
738
739/**
740 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
741 * entries
742 * @dev: device pointer used to lookup OPP table.
743 *
744 * Free OPPs created using static entries present in DT.
745 */
746void dev_pm_opp_of_remove_table(struct device *dev)
747{
748 dev_pm_opp_remove_table(dev);
749}
750EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
751
752static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
753 struct device_node *np)
754{
755 struct property *prop;
756 int i, count, ret;
757 u64 *rates;
758
759 prop = of_find_property(np, "opp-hz", NULL);
760 if (!prop)
761 return -ENODEV;
762
763 count = prop->length / sizeof(u64);
764 if (opp_table->clk_count != count) {
765 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
766 __func__, count, opp_table->clk_count);
767 return -EINVAL;
768 }
769
770 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
771 if (!rates)
772 return -ENOMEM;
773
774 ret = of_property_read_u64_array(np, "opp-hz", rates, count);
775 if (ret) {
776 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
777 } else {
778 /*
779 * Rate is defined as an unsigned long in clk API, and so
780 * casting explicitly to its type. Must be fixed once rate is 64
781 * bit guaranteed in clk API.
782 */
783 for (i = 0; i < count; i++) {
784 new_opp->rates[i] = (unsigned long)rates[i];
785
786 /* This will happen for frequencies > 4.29 GHz */
787 WARN_ON(new_opp->rates[i] != rates[i]);
788 }
789 }
790
791 kfree(rates);
792
793 return ret;
794}
795
796static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
797 struct device_node *np, bool peak)
798{
799 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
800 struct property *prop;
801 int i, count, ret;
802 u32 *bw;
803
804 prop = of_find_property(np, name, NULL);
805 if (!prop)
806 return -ENODEV;
807
808 count = prop->length / sizeof(u32);
809 if (opp_table->path_count != count) {
810 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
811 __func__, name, count, opp_table->path_count);
812 return -EINVAL;
813 }
814
815 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
816 if (!bw)
817 return -ENOMEM;
818
819 ret = of_property_read_u32_array(np, name, bw, count);
820 if (ret) {
821 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
822 goto out;
823 }
824
825 for (i = 0; i < count; i++) {
826 if (peak)
827 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
828 else
829 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
830 }
831
832out:
833 kfree(bw);
834 return ret;
835}
836
837static int _read_opp_key(struct dev_pm_opp *new_opp,
838 struct opp_table *opp_table, struct device_node *np)
839{
840 bool found = false;
841 int ret;
842
843 ret = _read_rate(new_opp, opp_table, np);
844 if (!ret)
845 found = true;
846 else if (ret != -ENODEV)
847 return ret;
848
849 /*
850 * Bandwidth consists of peak and average (optional) values:
851 * opp-peak-kBps = <path1_value path2_value>;
852 * opp-avg-kBps = <path1_value path2_value>;
853 */
854 ret = _read_bw(new_opp, opp_table, np, true);
855 if (!ret) {
856 found = true;
857 ret = _read_bw(new_opp, opp_table, np, false);
858 }
859
860 /* The properties were found but we failed to parse them */
861 if (ret && ret != -ENODEV)
862 return ret;
863
864 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
865 found = true;
866
867 if (found)
868 return 0;
869
870 return ret;
871}
872
873/**
874 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
875 * @opp_table: OPP table
876 * @dev: device for which we do this operation
877 * @np: device node
878 *
879 * This function adds an opp definition to the opp table and returns status. The
880 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
881 * removed by dev_pm_opp_remove.
882 *
883 * Return:
884 * Valid OPP pointer:
885 * On success
886 * NULL:
887 * Duplicate OPPs (both freq and volt are same) and opp->available
888 * OR if the OPP is not supported by hardware.
889 * ERR_PTR(-EEXIST):
890 * Freq are same and volt are different OR
891 * Duplicate OPPs (both freq and volt are same) and !opp->available
892 * ERR_PTR(-ENOMEM):
893 * Memory allocation failure
894 * ERR_PTR(-EINVAL):
895 * Failed parsing the OPP node
896 */
897static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
898 struct device *dev, struct device_node *np)
899{
900 struct dev_pm_opp *new_opp;
901 u32 val;
902 int ret;
903
904 new_opp = _opp_allocate(opp_table);
905 if (!new_opp)
906 return ERR_PTR(-ENOMEM);
907
908 ret = _read_opp_key(new_opp, opp_table, np);
909 if (ret < 0) {
910 dev_err(dev, "%s: opp key field not found\n", __func__);
911 goto free_opp;
912 }
913
914 /* Check if the OPP supports hardware's hierarchy of versions or not */
915 if (!_opp_is_supported(dev, opp_table, np)) {
916 dev_dbg(dev, "OPP not supported by hardware: %s\n",
917 of_node_full_name(np));
918 goto free_opp;
919 }
920
921 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
922
923 new_opp->np = of_node_get(np);
924 new_opp->dynamic = false;
925 new_opp->available = true;
926
927 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
928 if (ret)
929 goto put_node;
930
931 if (!of_property_read_u32(np, "clock-latency-ns", &val))
932 new_opp->clock_latency_ns = val;
933
934 ret = opp_parse_supplies(new_opp, dev, opp_table);
935 if (ret)
936 goto free_required_opps;
937
938 ret = _opp_add(dev, new_opp, opp_table);
939 if (ret) {
940 /* Don't return error for duplicate OPPs */
941 if (ret == -EBUSY)
942 ret = 0;
943 goto free_required_opps;
944 }
945
946 /* OPP to select on device suspend */
947 if (of_property_read_bool(np, "opp-suspend")) {
948 if (opp_table->suspend_opp) {
949 /* Pick the OPP with higher rate/bw/level as suspend OPP */
950 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
951 opp_table->suspend_opp->suspend = false;
952 new_opp->suspend = true;
953 opp_table->suspend_opp = new_opp;
954 }
955 } else {
956 new_opp->suspend = true;
957 opp_table->suspend_opp = new_opp;
958 }
959 }
960
961 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
962 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
963
964 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
965 __func__, new_opp->turbo, new_opp->rates[0],
966 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
967 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
968 new_opp->level);
969
970 /*
971 * Notify the changes in the availability of the operable
972 * frequency/voltage list.
973 */
974 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
975 return new_opp;
976
977free_required_opps:
978 _of_opp_free_required_opps(opp_table, new_opp);
979put_node:
980 of_node_put(np);
981free_opp:
982 _opp_free(new_opp);
983
984 return ret ? ERR_PTR(ret) : NULL;
985}
986
987/* Initializes OPP tables based on new bindings */
988static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
989{
990 struct device_node *np;
991 int ret, count = 0;
992 struct dev_pm_opp *opp;
993
994 /* OPP table is already initialized for the device */
995 mutex_lock(&opp_table->lock);
996 if (opp_table->parsed_static_opps) {
997 opp_table->parsed_static_opps++;
998 mutex_unlock(&opp_table->lock);
999 return 0;
1000 }
1001
1002 opp_table->parsed_static_opps = 1;
1003 mutex_unlock(&opp_table->lock);
1004
1005 /* We have opp-table node now, iterate over it and add OPPs */
1006 for_each_available_child_of_node(opp_table->np, np) {
1007 opp = _opp_add_static_v2(opp_table, dev, np);
1008 if (IS_ERR(opp)) {
1009 ret = PTR_ERR(opp);
1010 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1011 ret);
1012 of_node_put(np);
1013 goto remove_static_opp;
1014 } else if (opp) {
1015 count++;
1016 }
1017 }
1018
1019 /* There should be one or more OPPs defined */
1020 if (!count) {
1021 dev_err(dev, "%s: no supported OPPs", __func__);
1022 ret = -ENOENT;
1023 goto remove_static_opp;
1024 }
1025
1026 lazy_link_required_opp_table(opp_table);
1027
1028 return 0;
1029
1030remove_static_opp:
1031 _opp_remove_all_static(opp_table);
1032
1033 return ret;
1034}
1035
1036/* Initializes OPP tables based on old-deprecated bindings */
1037static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1038{
1039 const struct property *prop;
1040 const __be32 *val;
1041 int nr, ret = 0;
1042
1043 mutex_lock(&opp_table->lock);
1044 if (opp_table->parsed_static_opps) {
1045 opp_table->parsed_static_opps++;
1046 mutex_unlock(&opp_table->lock);
1047 return 0;
1048 }
1049
1050 opp_table->parsed_static_opps = 1;
1051 mutex_unlock(&opp_table->lock);
1052
1053 prop = of_find_property(dev->of_node, "operating-points", NULL);
1054 if (!prop) {
1055 ret = -ENODEV;
1056 goto remove_static_opp;
1057 }
1058 if (!prop->value) {
1059 ret = -ENODATA;
1060 goto remove_static_opp;
1061 }
1062
1063 /*
1064 * Each OPP is a set of tuples consisting of frequency and
1065 * voltage like <freq-kHz vol-uV>.
1066 */
1067 nr = prop->length / sizeof(u32);
1068 if (nr % 2) {
1069 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1070 ret = -EINVAL;
1071 goto remove_static_opp;
1072 }
1073
1074 val = prop->value;
1075 while (nr) {
1076 unsigned long freq = be32_to_cpup(val++) * 1000;
1077 unsigned long volt = be32_to_cpup(val++);
1078 struct dev_pm_opp_data data = {
1079 .freq = freq,
1080 .u_volt = volt,
1081 };
1082
1083 ret = _opp_add_v1(opp_table, dev, &data, false);
1084 if (ret) {
1085 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1086 __func__, data.freq, ret);
1087 goto remove_static_opp;
1088 }
1089 nr -= 2;
1090 }
1091
1092 return 0;
1093
1094remove_static_opp:
1095 _opp_remove_all_static(opp_table);
1096
1097 return ret;
1098}
1099
1100static int _of_add_table_indexed(struct device *dev, int index)
1101{
1102 struct opp_table *opp_table;
1103 int ret, count;
1104
1105 if (index) {
1106 /*
1107 * If only one phandle is present, then the same OPP table
1108 * applies for all index requests.
1109 */
1110 count = of_count_phandle_with_args(dev->of_node,
1111 "operating-points-v2", NULL);
1112 if (count == 1)
1113 index = 0;
1114 }
1115
1116 opp_table = _add_opp_table_indexed(dev, index, true);
1117 if (IS_ERR(opp_table))
1118 return PTR_ERR(opp_table);
1119
1120 /*
1121 * OPPs have two version of bindings now. Also try the old (v1)
1122 * bindings for backward compatibility with older dtbs.
1123 */
1124 if (opp_table->np)
1125 ret = _of_add_opp_table_v2(dev, opp_table);
1126 else
1127 ret = _of_add_opp_table_v1(dev, opp_table);
1128
1129 if (ret)
1130 dev_pm_opp_put_opp_table(opp_table);
1131
1132 return ret;
1133}
1134
1135static void devm_pm_opp_of_table_release(void *data)
1136{
1137 dev_pm_opp_of_remove_table(data);
1138}
1139
1140static int _devm_of_add_table_indexed(struct device *dev, int index)
1141{
1142 int ret;
1143
1144 ret = _of_add_table_indexed(dev, index);
1145 if (ret)
1146 return ret;
1147
1148 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1149}
1150
1151/**
1152 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1153 * @dev: device pointer used to lookup OPP table.
1154 *
1155 * Register the initial OPP table with the OPP library for given device.
1156 *
1157 * The opp_table structure will be freed after the device is destroyed.
1158 *
1159 * Return:
1160 * 0 On success OR
1161 * Duplicate OPPs (both freq and volt are same) and opp->available
1162 * -EEXIST Freq are same and volt are different OR
1163 * Duplicate OPPs (both freq and volt are same) and !opp->available
1164 * -ENOMEM Memory allocation failure
1165 * -ENODEV when 'operating-points' property is not found or is invalid data
1166 * in device node.
1167 * -ENODATA when empty 'operating-points' property is found
1168 * -EINVAL when invalid entries are found in opp-v2 table
1169 */
1170int devm_pm_opp_of_add_table(struct device *dev)
1171{
1172 return _devm_of_add_table_indexed(dev, 0);
1173}
1174EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1175
1176/**
1177 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1178 * @dev: device pointer used to lookup OPP table.
1179 *
1180 * Register the initial OPP table with the OPP library for given device.
1181 *
1182 * Return:
1183 * 0 On success OR
1184 * Duplicate OPPs (both freq and volt are same) and opp->available
1185 * -EEXIST Freq are same and volt are different OR
1186 * Duplicate OPPs (both freq and volt are same) and !opp->available
1187 * -ENOMEM Memory allocation failure
1188 * -ENODEV when 'operating-points' property is not found or is invalid data
1189 * in device node.
1190 * -ENODATA when empty 'operating-points' property is found
1191 * -EINVAL when invalid entries are found in opp-v2 table
1192 */
1193int dev_pm_opp_of_add_table(struct device *dev)
1194{
1195 return _of_add_table_indexed(dev, 0);
1196}
1197EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1198
1199/**
1200 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1201 * @dev: device pointer used to lookup OPP table.
1202 * @index: Index number.
1203 *
1204 * Register the initial OPP table with the OPP library for given device only
1205 * using the "operating-points-v2" property.
1206 *
1207 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1208 */
1209int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1210{
1211 return _of_add_table_indexed(dev, index);
1212}
1213EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1214
1215/**
1216 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1217 * @dev: device pointer used to lookup OPP table.
1218 * @index: Index number.
1219 *
1220 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1221 */
1222int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1223{
1224 return _devm_of_add_table_indexed(dev, index);
1225}
1226EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1227
1228/* CPU device specific helpers */
1229
1230/**
1231 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1232 * @cpumask: cpumask for which OPP table needs to be removed
1233 *
1234 * This removes the OPP tables for CPUs present in the @cpumask.
1235 * This should be used only to remove static entries created from DT.
1236 */
1237void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1238{
1239 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1242
1243/**
1244 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1245 * @cpumask: cpumask for which OPP table needs to be added.
1246 *
1247 * This adds the OPP tables for CPUs present in the @cpumask.
1248 */
1249int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1250{
1251 struct device *cpu_dev;
1252 int cpu, ret;
1253
1254 if (WARN_ON(cpumask_empty(cpumask)))
1255 return -ENODEV;
1256
1257 for_each_cpu(cpu, cpumask) {
1258 cpu_dev = get_cpu_device(cpu);
1259 if (!cpu_dev) {
1260 pr_err("%s: failed to get cpu%d device\n", __func__,
1261 cpu);
1262 ret = -ENODEV;
1263 goto remove_table;
1264 }
1265
1266 ret = dev_pm_opp_of_add_table(cpu_dev);
1267 if (ret) {
1268 /*
1269 * OPP may get registered dynamically, don't print error
1270 * message here.
1271 */
1272 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1273 __func__, cpu, ret);
1274
1275 goto remove_table;
1276 }
1277 }
1278
1279 return 0;
1280
1281remove_table:
1282 /* Free all other OPPs */
1283 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1284
1285 return ret;
1286}
1287EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1288
1289/*
1290 * Works only for OPP v2 bindings.
1291 *
1292 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1293 */
1294/**
1295 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1296 * @cpu_dev using operating-points-v2
1297 * bindings.
1298 *
1299 * @cpu_dev: CPU device for which we do this operation
1300 * @cpumask: cpumask to update with information of sharing CPUs
1301 *
1302 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1303 *
1304 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1305 */
1306int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1307 struct cpumask *cpumask)
1308{
1309 struct device_node *np, *tmp_np, *cpu_np;
1310 int cpu, ret = 0;
1311
1312 /* Get OPP descriptor node */
1313 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1314 if (!np) {
1315 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1316 return -ENOENT;
1317 }
1318
1319 cpumask_set_cpu(cpu_dev->id, cpumask);
1320
1321 /* OPPs are shared ? */
1322 if (!of_property_read_bool(np, "opp-shared"))
1323 goto put_cpu_node;
1324
1325 for_each_possible_cpu(cpu) {
1326 if (cpu == cpu_dev->id)
1327 continue;
1328
1329 cpu_np = of_cpu_device_node_get(cpu);
1330 if (!cpu_np) {
1331 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1332 __func__, cpu);
1333 ret = -ENOENT;
1334 goto put_cpu_node;
1335 }
1336
1337 /* Get OPP descriptor node */
1338 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1339 of_node_put(cpu_np);
1340 if (!tmp_np) {
1341 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1342 ret = -ENOENT;
1343 goto put_cpu_node;
1344 }
1345
1346 /* CPUs are sharing opp node */
1347 if (np == tmp_np)
1348 cpumask_set_cpu(cpu, cpumask);
1349
1350 of_node_put(tmp_np);
1351 }
1352
1353put_cpu_node:
1354 of_node_put(np);
1355 return ret;
1356}
1357EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1358
1359/**
1360 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1361 * @np: Node that contains the "required-opps" property.
1362 * @index: Index of the phandle to parse.
1363 *
1364 * Returns the performance state of the OPP pointed out by the "required-opps"
1365 * property at @index in @np.
1366 *
1367 * Return: Zero or positive performance state on success, otherwise negative
1368 * value on errors.
1369 */
1370int of_get_required_opp_performance_state(struct device_node *np, int index)
1371{
1372 struct dev_pm_opp *opp;
1373 struct device_node *required_np;
1374 struct opp_table *opp_table;
1375 int pstate = -EINVAL;
1376
1377 required_np = of_parse_required_opp(np, index);
1378 if (!required_np)
1379 return -ENODEV;
1380
1381 opp_table = _find_table_of_opp_np(required_np);
1382 if (IS_ERR(opp_table)) {
1383 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1384 __func__, np, PTR_ERR(opp_table));
1385 goto put_required_np;
1386 }
1387
1388 /* The OPP tables must belong to a genpd */
1389 if (unlikely(!opp_table->is_genpd)) {
1390 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1391 goto put_required_np;
1392 }
1393
1394 opp = _find_opp_of_np(opp_table, required_np);
1395 if (opp) {
1396 if (opp->level == OPP_LEVEL_UNSET) {
1397 pr_err("%s: OPP levels aren't available for %pOF\n",
1398 __func__, np);
1399 } else {
1400 pstate = opp->level;
1401 }
1402 dev_pm_opp_put(opp);
1403
1404 }
1405
1406 dev_pm_opp_put_opp_table(opp_table);
1407
1408put_required_np:
1409 of_node_put(required_np);
1410
1411 return pstate;
1412}
1413EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1414
1415/**
1416 * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1417 * @dev: The device to investigate.
1418 *
1419 * Returns true if the device's node has a "operating-points-v2" property and if
1420 * the corresponding node for the opp-table describes opp nodes that uses the
1421 * "required-opps" property.
1422 *
1423 * Return: True if a required-opps is present, else false.
1424 */
1425bool dev_pm_opp_of_has_required_opp(struct device *dev)
1426{
1427 struct device_node *opp_np, *np;
1428 int count;
1429
1430 opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1431 if (!opp_np)
1432 return false;
1433
1434 np = of_get_next_available_child(opp_np, NULL);
1435 of_node_put(opp_np);
1436 if (!np) {
1437 dev_warn(dev, "Empty OPP table\n");
1438 return false;
1439 }
1440
1441 count = of_count_phandle_with_args(np, "required-opps", NULL);
1442 of_node_put(np);
1443
1444 return count > 0;
1445}
1446
1447/**
1448 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1449 * @opp: opp for which DT node has to be returned for
1450 *
1451 * Return: DT node corresponding to the opp, else 0 on success.
1452 *
1453 * The caller needs to put the node with of_node_put() after using it.
1454 */
1455struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1456{
1457 if (IS_ERR_OR_NULL(opp)) {
1458 pr_err("%s: Invalid parameters\n", __func__);
1459 return NULL;
1460 }
1461
1462 return of_node_get(opp->np);
1463}
1464EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1465
1466/*
1467 * Callback function provided to the Energy Model framework upon registration.
1468 * It provides the power used by @dev at @kHz if it is the frequency of an
1469 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1470 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1471 * frequency and @uW to the associated power.
1472 *
1473 * Returns 0 on success or a proper -EINVAL value in case of error.
1474 */
1475static int __maybe_unused
1476_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1477{
1478 struct dev_pm_opp *opp;
1479 unsigned long opp_freq, opp_power;
1480
1481 /* Find the right frequency and related OPP */
1482 opp_freq = *kHz * 1000;
1483 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1484 if (IS_ERR(opp))
1485 return -EINVAL;
1486
1487 opp_power = dev_pm_opp_get_power(opp);
1488 dev_pm_opp_put(opp);
1489 if (!opp_power)
1490 return -EINVAL;
1491
1492 *kHz = opp_freq / 1000;
1493 *uW = opp_power;
1494
1495 return 0;
1496}
1497
1498/**
1499 * dev_pm_opp_calc_power() - Calculate power value for device with EM
1500 * @dev : Device for which an Energy Model has to be registered
1501 * @uW : New power value that is calculated
1502 * @kHz : Frequency for which the new power is calculated
1503 *
1504 * This computes the power estimated by @dev at @kHz if it is the frequency
1505 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1506 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1507 * frequency and @uW to the associated power. The power is estimated as
1508 * P = C * V^2 * f with C being the device's capacitance and V and f
1509 * respectively the voltage and frequency of the OPP.
1510 * It is also used as a callback function provided to the Energy Model
1511 * framework upon registration.
1512 *
1513 * Returns -EINVAL if the power calculation failed because of missing
1514 * parameters, 0 otherwise.
1515 */
1516int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1517 unsigned long *kHz)
1518{
1519 struct dev_pm_opp *opp;
1520 struct device_node *np;
1521 unsigned long mV, Hz;
1522 u32 cap;
1523 u64 tmp;
1524 int ret;
1525
1526 np = of_node_get(dev->of_node);
1527 if (!np)
1528 return -EINVAL;
1529
1530 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1531 of_node_put(np);
1532 if (ret)
1533 return -EINVAL;
1534
1535 Hz = *kHz * 1000;
1536 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1537 if (IS_ERR(opp))
1538 return -EINVAL;
1539
1540 mV = dev_pm_opp_get_voltage(opp) / 1000;
1541 dev_pm_opp_put(opp);
1542 if (!mV)
1543 return -EINVAL;
1544
1545 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1546 /* Provide power in micro-Watts */
1547 do_div(tmp, 1000000);
1548
1549 *uW = (unsigned long)tmp;
1550 *kHz = Hz / 1000;
1551
1552 return 0;
1553}
1554EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1555
1556static bool _of_has_opp_microwatt_property(struct device *dev)
1557{
1558 unsigned long power, freq = 0;
1559 struct dev_pm_opp *opp;
1560
1561 /* Check if at least one OPP has needed property */
1562 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1563 if (IS_ERR(opp))
1564 return false;
1565
1566 power = dev_pm_opp_get_power(opp);
1567 dev_pm_opp_put(opp);
1568 if (!power)
1569 return false;
1570
1571 return true;
1572}
1573
1574/**
1575 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1576 * @dev : Device for which an Energy Model has to be registered
1577 * @cpus : CPUs for which an Energy Model has to be registered. For
1578 * other type of devices it should be set to NULL.
1579 *
1580 * This checks whether the "dynamic-power-coefficient" devicetree property has
1581 * been specified, and tries to register an Energy Model with it if it has.
1582 * Having this property means the voltages are known for OPPs and the EM
1583 * might be calculated.
1584 */
1585int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1586{
1587 struct em_data_callback em_cb;
1588 struct device_node *np;
1589 int ret, nr_opp;
1590 u32 cap;
1591
1592 if (IS_ERR_OR_NULL(dev)) {
1593 ret = -EINVAL;
1594 goto failed;
1595 }
1596
1597 nr_opp = dev_pm_opp_get_opp_count(dev);
1598 if (nr_opp <= 0) {
1599 ret = -EINVAL;
1600 goto failed;
1601 }
1602
1603 /* First, try to find more precised Energy Model in DT */
1604 if (_of_has_opp_microwatt_property(dev)) {
1605 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1606 goto register_em;
1607 }
1608
1609 np = of_node_get(dev->of_node);
1610 if (!np) {
1611 ret = -EINVAL;
1612 goto failed;
1613 }
1614
1615 /*
1616 * Register an EM only if the 'dynamic-power-coefficient' property is
1617 * set in devicetree. It is assumed the voltage values are known if that
1618 * property is set since it is useless otherwise. If voltages are not
1619 * known, just let the EM registration fail with an error to alert the
1620 * user about the inconsistent configuration.
1621 */
1622 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1623 of_node_put(np);
1624 if (ret || !cap) {
1625 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1626 ret = -EINVAL;
1627 goto failed;
1628 }
1629
1630 EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1631
1632register_em:
1633 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1634 if (ret)
1635 goto failed;
1636
1637 return 0;
1638
1639failed:
1640 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1641 return ret;
1642}
1643EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP OF helpers
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/cpu.h>
14#include <linux/errno.h>
15#include <linux/device.h>
16#include <linux/of_device.h>
17#include <linux/pm_domain.h>
18#include <linux/slab.h>
19#include <linux/export.h>
20#include <linux/energy_model.h>
21
22#include "opp.h"
23
24/*
25 * Returns opp descriptor node for a device node, caller must
26 * do of_node_put().
27 */
28static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29 int index)
30{
31 /* "operating-points-v2" can be an array for power domain providers */
32 return of_parse_phandle(np, "operating-points-v2", index);
33}
34
35/* Returns opp descriptor node for a device, caller must do of_node_put() */
36struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37{
38 return _opp_of_get_opp_desc_node(dev->of_node, 0);
39}
40EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41
42struct opp_table *_managed_opp(struct device *dev, int index)
43{
44 struct opp_table *opp_table, *managed_table = NULL;
45 struct device_node *np;
46
47 np = _opp_of_get_opp_desc_node(dev->of_node, index);
48 if (!np)
49 return NULL;
50
51 list_for_each_entry(opp_table, &opp_tables, node) {
52 if (opp_table->np == np) {
53 /*
54 * Multiple devices can point to the same OPP table and
55 * so will have same node-pointer, np.
56 *
57 * But the OPPs will be considered as shared only if the
58 * OPP table contains a "opp-shared" property.
59 */
60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61 _get_opp_table_kref(opp_table);
62 managed_table = opp_table;
63 }
64
65 break;
66 }
67 }
68
69 of_node_put(np);
70
71 return managed_table;
72}
73
74/* The caller must call dev_pm_opp_put() after the OPP is used */
75static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76 struct device_node *opp_np)
77{
78 struct dev_pm_opp *opp;
79
80 mutex_lock(&opp_table->lock);
81
82 list_for_each_entry(opp, &opp_table->opp_list, node) {
83 if (opp->np == opp_np) {
84 dev_pm_opp_get(opp);
85 mutex_unlock(&opp_table->lock);
86 return opp;
87 }
88 }
89
90 mutex_unlock(&opp_table->lock);
91
92 return NULL;
93}
94
95static struct device_node *of_parse_required_opp(struct device_node *np,
96 int index)
97{
98 return of_parse_phandle(np, "required-opps", index);
99}
100
101/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
102static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103{
104 struct opp_table *opp_table;
105 struct device_node *opp_table_np;
106
107 opp_table_np = of_get_parent(opp_np);
108 if (!opp_table_np)
109 goto err;
110
111 /* It is safe to put the node now as all we need now is its address */
112 of_node_put(opp_table_np);
113
114 mutex_lock(&opp_table_lock);
115 list_for_each_entry(opp_table, &opp_tables, node) {
116 if (opp_table_np == opp_table->np) {
117 _get_opp_table_kref(opp_table);
118 mutex_unlock(&opp_table_lock);
119 return opp_table;
120 }
121 }
122 mutex_unlock(&opp_table_lock);
123
124err:
125 return ERR_PTR(-ENODEV);
126}
127
128/* Free resources previously acquired by _opp_table_alloc_required_tables() */
129static void _opp_table_free_required_tables(struct opp_table *opp_table)
130{
131 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132 int i;
133
134 if (!required_opp_tables)
135 return;
136
137 for (i = 0; i < opp_table->required_opp_count; i++) {
138 if (IS_ERR_OR_NULL(required_opp_tables[i]))
139 continue;
140
141 dev_pm_opp_put_opp_table(required_opp_tables[i]);
142 }
143
144 kfree(required_opp_tables);
145
146 opp_table->required_opp_count = 0;
147 opp_table->required_opp_tables = NULL;
148 list_del(&opp_table->lazy);
149}
150
151/*
152 * Populate all devices and opp tables which are part of "required-opps" list.
153 * Checking only the first OPP node should be enough.
154 */
155static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156 struct device *dev,
157 struct device_node *opp_np)
158{
159 struct opp_table **required_opp_tables;
160 struct device_node *required_np, *np;
161 bool lazy = false;
162 int count, i;
163
164 /* Traversing the first OPP node is all we need */
165 np = of_get_next_available_child(opp_np, NULL);
166 if (!np) {
167 dev_warn(dev, "Empty OPP table\n");
168
169 return;
170 }
171
172 count = of_count_phandle_with_args(np, "required-opps", NULL);
173 if (!count)
174 goto put_np;
175
176 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177 GFP_KERNEL);
178 if (!required_opp_tables)
179 goto put_np;
180
181 opp_table->required_opp_tables = required_opp_tables;
182 opp_table->required_opp_count = count;
183
184 for (i = 0; i < count; i++) {
185 required_np = of_parse_required_opp(np, i);
186 if (!required_np)
187 goto free_required_tables;
188
189 required_opp_tables[i] = _find_table_of_opp_np(required_np);
190 of_node_put(required_np);
191
192 if (IS_ERR(required_opp_tables[i]))
193 lazy = true;
194 }
195
196 /* Let's do the linking later on */
197 if (lazy)
198 list_add(&opp_table->lazy, &lazy_opp_tables);
199
200 goto put_np;
201
202free_required_tables:
203 _opp_table_free_required_tables(opp_table);
204put_np:
205 of_node_put(np);
206}
207
208void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
209 int index)
210{
211 struct device_node *np, *opp_np;
212 u32 val;
213
214 /*
215 * Only required for backward compatibility with v1 bindings, but isn't
216 * harmful for other cases. And so we do it unconditionally.
217 */
218 np = of_node_get(dev->of_node);
219 if (!np)
220 return;
221
222 if (!of_property_read_u32(np, "clock-latency", &val))
223 opp_table->clock_latency_ns_max = val;
224 of_property_read_u32(np, "voltage-tolerance",
225 &opp_table->voltage_tolerance_v1);
226
227 if (of_find_property(np, "#power-domain-cells", NULL))
228 opp_table->is_genpd = true;
229
230 /* Get OPP table node */
231 opp_np = _opp_of_get_opp_desc_node(np, index);
232 of_node_put(np);
233
234 if (!opp_np)
235 return;
236
237 if (of_property_read_bool(opp_np, "opp-shared"))
238 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
239 else
240 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
241
242 opp_table->np = opp_np;
243
244 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
245 of_node_put(opp_np);
246}
247
248void _of_clear_opp_table(struct opp_table *opp_table)
249{
250 _opp_table_free_required_tables(opp_table);
251}
252
253/*
254 * Release all resources previously acquired with a call to
255 * _of_opp_alloc_required_opps().
256 */
257void _of_opp_free_required_opps(struct opp_table *opp_table,
258 struct dev_pm_opp *opp)
259{
260 struct dev_pm_opp **required_opps = opp->required_opps;
261 int i;
262
263 if (!required_opps)
264 return;
265
266 for (i = 0; i < opp_table->required_opp_count; i++) {
267 if (!required_opps[i])
268 continue;
269
270 /* Put the reference back */
271 dev_pm_opp_put(required_opps[i]);
272 }
273
274 opp->required_opps = NULL;
275 kfree(required_opps);
276}
277
278/* Populate all required OPPs which are part of "required-opps" list */
279static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
280 struct dev_pm_opp *opp)
281{
282 struct dev_pm_opp **required_opps;
283 struct opp_table *required_table;
284 struct device_node *np;
285 int i, ret, count = opp_table->required_opp_count;
286
287 if (!count)
288 return 0;
289
290 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
291 if (!required_opps)
292 return -ENOMEM;
293
294 opp->required_opps = required_opps;
295
296 for (i = 0; i < count; i++) {
297 required_table = opp_table->required_opp_tables[i];
298
299 /* Required table not added yet, we will link later */
300 if (IS_ERR_OR_NULL(required_table))
301 continue;
302
303 np = of_parse_required_opp(opp->np, i);
304 if (unlikely(!np)) {
305 ret = -ENODEV;
306 goto free_required_opps;
307 }
308
309 required_opps[i] = _find_opp_of_np(required_table, np);
310 of_node_put(np);
311
312 if (!required_opps[i]) {
313 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
314 __func__, opp->np, i);
315 ret = -ENODEV;
316 goto free_required_opps;
317 }
318 }
319
320 return 0;
321
322free_required_opps:
323 _of_opp_free_required_opps(opp_table, opp);
324
325 return ret;
326}
327
328/* Link required OPPs for an individual OPP */
329static int lazy_link_required_opps(struct opp_table *opp_table,
330 struct opp_table *new_table, int index)
331{
332 struct device_node *required_np;
333 struct dev_pm_opp *opp;
334
335 list_for_each_entry(opp, &opp_table->opp_list, node) {
336 required_np = of_parse_required_opp(opp->np, index);
337 if (unlikely(!required_np))
338 return -ENODEV;
339
340 opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
341 of_node_put(required_np);
342
343 if (!opp->required_opps[index]) {
344 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
345 __func__, opp->np, index);
346 return -ENODEV;
347 }
348 }
349
350 return 0;
351}
352
353/* Link required OPPs for all OPPs of the newly added OPP table */
354static void lazy_link_required_opp_table(struct opp_table *new_table)
355{
356 struct opp_table *opp_table, *temp, **required_opp_tables;
357 struct device_node *required_np, *opp_np, *required_table_np;
358 struct dev_pm_opp *opp;
359 int i, ret;
360
361 mutex_lock(&opp_table_lock);
362
363 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
364 bool lazy = false;
365
366 /* opp_np can't be invalid here */
367 opp_np = of_get_next_available_child(opp_table->np, NULL);
368
369 for (i = 0; i < opp_table->required_opp_count; i++) {
370 required_opp_tables = opp_table->required_opp_tables;
371
372 /* Required opp-table is already parsed */
373 if (!IS_ERR(required_opp_tables[i]))
374 continue;
375
376 /* required_np can't be invalid here */
377 required_np = of_parse_required_opp(opp_np, i);
378 required_table_np = of_get_parent(required_np);
379
380 of_node_put(required_table_np);
381 of_node_put(required_np);
382
383 /*
384 * Newly added table isn't the required opp-table for
385 * opp_table.
386 */
387 if (required_table_np != new_table->np) {
388 lazy = true;
389 continue;
390 }
391
392 required_opp_tables[i] = new_table;
393 _get_opp_table_kref(new_table);
394
395 /* Link OPPs now */
396 ret = lazy_link_required_opps(opp_table, new_table, i);
397 if (ret) {
398 /* The OPPs will be marked unusable */
399 lazy = false;
400 break;
401 }
402 }
403
404 of_node_put(opp_np);
405
406 /* All required opp-tables found, remove from lazy list */
407 if (!lazy) {
408 list_del_init(&opp_table->lazy);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node)
411 _required_opps_available(opp, opp_table->required_opp_count);
412 }
413 }
414
415 mutex_unlock(&opp_table_lock);
416}
417
418static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
419{
420 struct device_node *np, *opp_np;
421 struct property *prop;
422
423 if (!opp_table) {
424 np = of_node_get(dev->of_node);
425 if (!np)
426 return -ENODEV;
427
428 opp_np = _opp_of_get_opp_desc_node(np, 0);
429 of_node_put(np);
430 } else {
431 opp_np = of_node_get(opp_table->np);
432 }
433
434 /* Lets not fail in case we are parsing opp-v1 bindings */
435 if (!opp_np)
436 return 0;
437
438 /* Checking only first OPP is sufficient */
439 np = of_get_next_available_child(opp_np, NULL);
440 if (!np) {
441 dev_err(dev, "OPP table empty\n");
442 return -EINVAL;
443 }
444 of_node_put(opp_np);
445
446 prop = of_find_property(np, "opp-peak-kBps", NULL);
447 of_node_put(np);
448
449 if (!prop || !prop->length)
450 return 0;
451
452 return 1;
453}
454
455int dev_pm_opp_of_find_icc_paths(struct device *dev,
456 struct opp_table *opp_table)
457{
458 struct device_node *np;
459 int ret, i, count, num_paths;
460 struct icc_path **paths;
461
462 ret = _bandwidth_supported(dev, opp_table);
463 if (ret == -EINVAL)
464 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
465 else if (ret <= 0)
466 return ret;
467
468 ret = 0;
469
470 np = of_node_get(dev->of_node);
471 if (!np)
472 return 0;
473
474 count = of_count_phandle_with_args(np, "interconnects",
475 "#interconnect-cells");
476 of_node_put(np);
477 if (count < 0)
478 return 0;
479
480 /* two phandles when #interconnect-cells = <1> */
481 if (count % 2) {
482 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
483 return -EINVAL;
484 }
485
486 num_paths = count / 2;
487 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
488 if (!paths)
489 return -ENOMEM;
490
491 for (i = 0; i < num_paths; i++) {
492 paths[i] = of_icc_get_by_index(dev, i);
493 if (IS_ERR(paths[i])) {
494 ret = PTR_ERR(paths[i]);
495 if (ret != -EPROBE_DEFER) {
496 dev_err(dev, "%s: Unable to get path%d: %d\n",
497 __func__, i, ret);
498 }
499 goto err;
500 }
501 }
502
503 if (opp_table) {
504 opp_table->paths = paths;
505 opp_table->path_count = num_paths;
506 return 0;
507 }
508
509err:
510 while (i--)
511 icc_put(paths[i]);
512
513 kfree(paths);
514
515 return ret;
516}
517EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
518
519static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
520 struct device_node *np)
521{
522 unsigned int levels = opp_table->supported_hw_count;
523 int count, versions, ret, i, j;
524 u32 val;
525
526 if (!opp_table->supported_hw) {
527 /*
528 * In the case that no supported_hw has been set by the
529 * platform but there is an opp-supported-hw value set for
530 * an OPP then the OPP should not be enabled as there is
531 * no way to see if the hardware supports it.
532 */
533 if (of_find_property(np, "opp-supported-hw", NULL))
534 return false;
535 else
536 return true;
537 }
538
539 count = of_property_count_u32_elems(np, "opp-supported-hw");
540 if (count <= 0 || count % levels) {
541 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
542 __func__, count);
543 return false;
544 }
545
546 versions = count / levels;
547
548 /* All levels in at least one of the versions should match */
549 for (i = 0; i < versions; i++) {
550 bool supported = true;
551
552 for (j = 0; j < levels; j++) {
553 ret = of_property_read_u32_index(np, "opp-supported-hw",
554 i * levels + j, &val);
555 if (ret) {
556 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
557 __func__, i * levels + j, ret);
558 return false;
559 }
560
561 /* Check if the level is supported */
562 if (!(val & opp_table->supported_hw[j])) {
563 supported = false;
564 break;
565 }
566 }
567
568 if (supported)
569 return true;
570 }
571
572 return false;
573}
574
575static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
576 struct opp_table *opp_table)
577{
578 u32 *microvolt, *microamp = NULL;
579 int supplies = opp_table->regulator_count, vcount, icount, ret, i, j;
580 struct property *prop = NULL;
581 char name[NAME_MAX];
582
583 /* Search for "opp-microvolt-<name>" */
584 if (opp_table->prop_name) {
585 snprintf(name, sizeof(name), "opp-microvolt-%s",
586 opp_table->prop_name);
587 prop = of_find_property(opp->np, name, NULL);
588 }
589
590 if (!prop) {
591 /* Search for "opp-microvolt" */
592 sprintf(name, "opp-microvolt");
593 prop = of_find_property(opp->np, name, NULL);
594
595 /* Missing property isn't a problem, but an invalid entry is */
596 if (!prop) {
597 if (unlikely(supplies == -1)) {
598 /* Initialize regulator_count */
599 opp_table->regulator_count = 0;
600 return 0;
601 }
602
603 if (!supplies)
604 return 0;
605
606 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
607 __func__);
608 return -EINVAL;
609 }
610 }
611
612 if (unlikely(supplies == -1)) {
613 /* Initialize regulator_count */
614 supplies = opp_table->regulator_count = 1;
615 } else if (unlikely(!supplies)) {
616 dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
617 return -EINVAL;
618 }
619
620 vcount = of_property_count_u32_elems(opp->np, name);
621 if (vcount < 0) {
622 dev_err(dev, "%s: Invalid %s property (%d)\n",
623 __func__, name, vcount);
624 return vcount;
625 }
626
627 /* There can be one or three elements per supply */
628 if (vcount != supplies && vcount != supplies * 3) {
629 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
630 __func__, name, vcount, supplies);
631 return -EINVAL;
632 }
633
634 microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
635 if (!microvolt)
636 return -ENOMEM;
637
638 ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
639 if (ret) {
640 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
641 ret = -EINVAL;
642 goto free_microvolt;
643 }
644
645 /* Search for "opp-microamp-<name>" */
646 prop = NULL;
647 if (opp_table->prop_name) {
648 snprintf(name, sizeof(name), "opp-microamp-%s",
649 opp_table->prop_name);
650 prop = of_find_property(opp->np, name, NULL);
651 }
652
653 if (!prop) {
654 /* Search for "opp-microamp" */
655 sprintf(name, "opp-microamp");
656 prop = of_find_property(opp->np, name, NULL);
657 }
658
659 if (prop) {
660 icount = of_property_count_u32_elems(opp->np, name);
661 if (icount < 0) {
662 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
663 name, icount);
664 ret = icount;
665 goto free_microvolt;
666 }
667
668 if (icount != supplies) {
669 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
670 __func__, name, icount, supplies);
671 ret = -EINVAL;
672 goto free_microvolt;
673 }
674
675 microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
676 if (!microamp) {
677 ret = -EINVAL;
678 goto free_microvolt;
679 }
680
681 ret = of_property_read_u32_array(opp->np, name, microamp,
682 icount);
683 if (ret) {
684 dev_err(dev, "%s: error parsing %s: %d\n", __func__,
685 name, ret);
686 ret = -EINVAL;
687 goto free_microamp;
688 }
689 }
690
691 for (i = 0, j = 0; i < supplies; i++) {
692 opp->supplies[i].u_volt = microvolt[j++];
693
694 if (vcount == supplies) {
695 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
696 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
697 } else {
698 opp->supplies[i].u_volt_min = microvolt[j++];
699 opp->supplies[i].u_volt_max = microvolt[j++];
700 }
701
702 if (microamp)
703 opp->supplies[i].u_amp = microamp[i];
704 }
705
706free_microamp:
707 kfree(microamp);
708free_microvolt:
709 kfree(microvolt);
710
711 return ret;
712}
713
714/**
715 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
716 * entries
717 * @dev: device pointer used to lookup OPP table.
718 *
719 * Free OPPs created using static entries present in DT.
720 */
721void dev_pm_opp_of_remove_table(struct device *dev)
722{
723 dev_pm_opp_remove_table(dev);
724}
725EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
726
727static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *table,
728 struct device_node *np, bool peak)
729{
730 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
731 struct property *prop;
732 int i, count, ret;
733 u32 *bw;
734
735 prop = of_find_property(np, name, NULL);
736 if (!prop)
737 return -ENODEV;
738
739 count = prop->length / sizeof(u32);
740 if (table->path_count != count) {
741 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
742 __func__, name, count, table->path_count);
743 return -EINVAL;
744 }
745
746 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
747 if (!bw)
748 return -ENOMEM;
749
750 ret = of_property_read_u32_array(np, name, bw, count);
751 if (ret) {
752 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
753 goto out;
754 }
755
756 for (i = 0; i < count; i++) {
757 if (peak)
758 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
759 else
760 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
761 }
762
763out:
764 kfree(bw);
765 return ret;
766}
767
768static int _read_opp_key(struct dev_pm_opp *new_opp, struct opp_table *table,
769 struct device_node *np, bool *rate_not_available)
770{
771 bool found = false;
772 u64 rate;
773 int ret;
774
775 ret = of_property_read_u64(np, "opp-hz", &rate);
776 if (!ret) {
777 /*
778 * Rate is defined as an unsigned long in clk API, and so
779 * casting explicitly to its type. Must be fixed once rate is 64
780 * bit guaranteed in clk API.
781 */
782 new_opp->rate = (unsigned long)rate;
783 found = true;
784 }
785 *rate_not_available = !!ret;
786
787 /*
788 * Bandwidth consists of peak and average (optional) values:
789 * opp-peak-kBps = <path1_value path2_value>;
790 * opp-avg-kBps = <path1_value path2_value>;
791 */
792 ret = _read_bw(new_opp, table, np, true);
793 if (!ret) {
794 found = true;
795 ret = _read_bw(new_opp, table, np, false);
796 }
797
798 /* The properties were found but we failed to parse them */
799 if (ret && ret != -ENODEV)
800 return ret;
801
802 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
803 found = true;
804
805 if (found)
806 return 0;
807
808 return ret;
809}
810
811/**
812 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
813 * @opp_table: OPP table
814 * @dev: device for which we do this operation
815 * @np: device node
816 *
817 * This function adds an opp definition to the opp table and returns status. The
818 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
819 * removed by dev_pm_opp_remove.
820 *
821 * Return:
822 * Valid OPP pointer:
823 * On success
824 * NULL:
825 * Duplicate OPPs (both freq and volt are same) and opp->available
826 * OR if the OPP is not supported by hardware.
827 * ERR_PTR(-EEXIST):
828 * Freq are same and volt are different OR
829 * Duplicate OPPs (both freq and volt are same) and !opp->available
830 * ERR_PTR(-ENOMEM):
831 * Memory allocation failure
832 * ERR_PTR(-EINVAL):
833 * Failed parsing the OPP node
834 */
835static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
836 struct device *dev, struct device_node *np)
837{
838 struct dev_pm_opp *new_opp;
839 u32 val;
840 int ret;
841 bool rate_not_available = false;
842
843 new_opp = _opp_allocate(opp_table);
844 if (!new_opp)
845 return ERR_PTR(-ENOMEM);
846
847 ret = _read_opp_key(new_opp, opp_table, np, &rate_not_available);
848 if (ret < 0) {
849 dev_err(dev, "%s: opp key field not found\n", __func__);
850 goto free_opp;
851 }
852
853 /* Check if the OPP supports hardware's hierarchy of versions or not */
854 if (!_opp_is_supported(dev, opp_table, np)) {
855 dev_dbg(dev, "OPP not supported by hardware: %lu\n",
856 new_opp->rate);
857 goto free_opp;
858 }
859
860 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
861
862 new_opp->np = np;
863 new_opp->dynamic = false;
864 new_opp->available = true;
865
866 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
867 if (ret)
868 goto free_opp;
869
870 if (!of_property_read_u32(np, "clock-latency-ns", &val))
871 new_opp->clock_latency_ns = val;
872
873 ret = opp_parse_supplies(new_opp, dev, opp_table);
874 if (ret)
875 goto free_required_opps;
876
877 if (opp_table->is_genpd)
878 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
879
880 ret = _opp_add(dev, new_opp, opp_table, rate_not_available);
881 if (ret) {
882 /* Don't return error for duplicate OPPs */
883 if (ret == -EBUSY)
884 ret = 0;
885 goto free_required_opps;
886 }
887
888 /* OPP to select on device suspend */
889 if (of_property_read_bool(np, "opp-suspend")) {
890 if (opp_table->suspend_opp) {
891 /* Pick the OPP with higher rate as suspend OPP */
892 if (new_opp->rate > opp_table->suspend_opp->rate) {
893 opp_table->suspend_opp->suspend = false;
894 new_opp->suspend = true;
895 opp_table->suspend_opp = new_opp;
896 }
897 } else {
898 new_opp->suspend = true;
899 opp_table->suspend_opp = new_opp;
900 }
901 }
902
903 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
904 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
905
906 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
907 __func__, new_opp->turbo, new_opp->rate,
908 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
909 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
910 new_opp->level);
911
912 /*
913 * Notify the changes in the availability of the operable
914 * frequency/voltage list.
915 */
916 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
917 return new_opp;
918
919free_required_opps:
920 _of_opp_free_required_opps(opp_table, new_opp);
921free_opp:
922 _opp_free(new_opp);
923
924 return ERR_PTR(ret);
925}
926
927/* Initializes OPP tables based on new bindings */
928static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
929{
930 struct device_node *np;
931 int ret, count = 0;
932 struct dev_pm_opp *opp;
933
934 /* OPP table is already initialized for the device */
935 mutex_lock(&opp_table->lock);
936 if (opp_table->parsed_static_opps) {
937 opp_table->parsed_static_opps++;
938 mutex_unlock(&opp_table->lock);
939 return 0;
940 }
941
942 opp_table->parsed_static_opps = 1;
943 mutex_unlock(&opp_table->lock);
944
945 /* We have opp-table node now, iterate over it and add OPPs */
946 for_each_available_child_of_node(opp_table->np, np) {
947 opp = _opp_add_static_v2(opp_table, dev, np);
948 if (IS_ERR(opp)) {
949 ret = PTR_ERR(opp);
950 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
951 ret);
952 of_node_put(np);
953 goto remove_static_opp;
954 } else if (opp) {
955 count++;
956 }
957 }
958
959 /* There should be one or more OPPs defined */
960 if (!count) {
961 dev_err(dev, "%s: no supported OPPs", __func__);
962 ret = -ENOENT;
963 goto remove_static_opp;
964 }
965
966 list_for_each_entry(opp, &opp_table->opp_list, node) {
967 /* Any non-zero performance state would enable the feature */
968 if (opp->pstate) {
969 opp_table->genpd_performance_state = true;
970 break;
971 }
972 }
973
974 lazy_link_required_opp_table(opp_table);
975
976 return 0;
977
978remove_static_opp:
979 _opp_remove_all_static(opp_table);
980
981 return ret;
982}
983
984/* Initializes OPP tables based on old-deprecated bindings */
985static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
986{
987 const struct property *prop;
988 const __be32 *val;
989 int nr, ret = 0;
990
991 mutex_lock(&opp_table->lock);
992 if (opp_table->parsed_static_opps) {
993 opp_table->parsed_static_opps++;
994 mutex_unlock(&opp_table->lock);
995 return 0;
996 }
997
998 opp_table->parsed_static_opps = 1;
999 mutex_unlock(&opp_table->lock);
1000
1001 prop = of_find_property(dev->of_node, "operating-points", NULL);
1002 if (!prop) {
1003 ret = -ENODEV;
1004 goto remove_static_opp;
1005 }
1006 if (!prop->value) {
1007 ret = -ENODATA;
1008 goto remove_static_opp;
1009 }
1010
1011 /*
1012 * Each OPP is a set of tuples consisting of frequency and
1013 * voltage like <freq-kHz vol-uV>.
1014 */
1015 nr = prop->length / sizeof(u32);
1016 if (nr % 2) {
1017 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1018 ret = -EINVAL;
1019 goto remove_static_opp;
1020 }
1021
1022 val = prop->value;
1023 while (nr) {
1024 unsigned long freq = be32_to_cpup(val++) * 1000;
1025 unsigned long volt = be32_to_cpup(val++);
1026
1027 ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1028 if (ret) {
1029 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1030 __func__, freq, ret);
1031 goto remove_static_opp;
1032 }
1033 nr -= 2;
1034 }
1035
1036 return 0;
1037
1038remove_static_opp:
1039 _opp_remove_all_static(opp_table);
1040
1041 return ret;
1042}
1043
1044static int _of_add_table_indexed(struct device *dev, int index, bool getclk)
1045{
1046 struct opp_table *opp_table;
1047 int ret, count;
1048
1049 if (index) {
1050 /*
1051 * If only one phandle is present, then the same OPP table
1052 * applies for all index requests.
1053 */
1054 count = of_count_phandle_with_args(dev->of_node,
1055 "operating-points-v2", NULL);
1056 if (count == 1)
1057 index = 0;
1058 }
1059
1060 opp_table = _add_opp_table_indexed(dev, index, getclk);
1061 if (IS_ERR(opp_table))
1062 return PTR_ERR(opp_table);
1063
1064 /*
1065 * OPPs have two version of bindings now. Also try the old (v1)
1066 * bindings for backward compatibility with older dtbs.
1067 */
1068 if (opp_table->np)
1069 ret = _of_add_opp_table_v2(dev, opp_table);
1070 else
1071 ret = _of_add_opp_table_v1(dev, opp_table);
1072
1073 if (ret)
1074 dev_pm_opp_put_opp_table(opp_table);
1075
1076 return ret;
1077}
1078
1079static void devm_pm_opp_of_table_release(void *data)
1080{
1081 dev_pm_opp_of_remove_table(data);
1082}
1083
1084/**
1085 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1086 * @dev: device pointer used to lookup OPP table.
1087 *
1088 * Register the initial OPP table with the OPP library for given device.
1089 *
1090 * The opp_table structure will be freed after the device is destroyed.
1091 *
1092 * Return:
1093 * 0 On success OR
1094 * Duplicate OPPs (both freq and volt are same) and opp->available
1095 * -EEXIST Freq are same and volt are different OR
1096 * Duplicate OPPs (both freq and volt are same) and !opp->available
1097 * -ENOMEM Memory allocation failure
1098 * -ENODEV when 'operating-points' property is not found or is invalid data
1099 * in device node.
1100 * -ENODATA when empty 'operating-points' property is found
1101 * -EINVAL when invalid entries are found in opp-v2 table
1102 */
1103int devm_pm_opp_of_add_table(struct device *dev)
1104{
1105 int ret;
1106
1107 ret = dev_pm_opp_of_add_table(dev);
1108 if (ret)
1109 return ret;
1110
1111 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1112}
1113EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1114
1115/**
1116 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1117 * @dev: device pointer used to lookup OPP table.
1118 *
1119 * Register the initial OPP table with the OPP library for given device.
1120 *
1121 * Return:
1122 * 0 On success OR
1123 * Duplicate OPPs (both freq and volt are same) and opp->available
1124 * -EEXIST Freq are same and volt are different OR
1125 * Duplicate OPPs (both freq and volt are same) and !opp->available
1126 * -ENOMEM Memory allocation failure
1127 * -ENODEV when 'operating-points' property is not found or is invalid data
1128 * in device node.
1129 * -ENODATA when empty 'operating-points' property is found
1130 * -EINVAL when invalid entries are found in opp-v2 table
1131 */
1132int dev_pm_opp_of_add_table(struct device *dev)
1133{
1134 return _of_add_table_indexed(dev, 0, true);
1135}
1136EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1137
1138/**
1139 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1140 * @dev: device pointer used to lookup OPP table.
1141 * @index: Index number.
1142 *
1143 * Register the initial OPP table with the OPP library for given device only
1144 * using the "operating-points-v2" property.
1145 *
1146 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1147 */
1148int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1149{
1150 return _of_add_table_indexed(dev, index, true);
1151}
1152EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1153
1154/**
1155 * dev_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device
1156 * tree without getting clk for device.
1157 * @dev: device pointer used to lookup OPP table.
1158 * @index: Index number.
1159 *
1160 * Register the initial OPP table with the OPP library for given device only
1161 * using the "operating-points-v2" property. Do not try to get the clk for the
1162 * device.
1163 *
1164 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1165 */
1166int dev_pm_opp_of_add_table_noclk(struct device *dev, int index)
1167{
1168 return _of_add_table_indexed(dev, index, false);
1169}
1170EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_noclk);
1171
1172/* CPU device specific helpers */
1173
1174/**
1175 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1176 * @cpumask: cpumask for which OPP table needs to be removed
1177 *
1178 * This removes the OPP tables for CPUs present in the @cpumask.
1179 * This should be used only to remove static entries created from DT.
1180 */
1181void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1182{
1183 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1184}
1185EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1186
1187/**
1188 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1189 * @cpumask: cpumask for which OPP table needs to be added.
1190 *
1191 * This adds the OPP tables for CPUs present in the @cpumask.
1192 */
1193int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1194{
1195 struct device *cpu_dev;
1196 int cpu, ret;
1197
1198 if (WARN_ON(cpumask_empty(cpumask)))
1199 return -ENODEV;
1200
1201 for_each_cpu(cpu, cpumask) {
1202 cpu_dev = get_cpu_device(cpu);
1203 if (!cpu_dev) {
1204 pr_err("%s: failed to get cpu%d device\n", __func__,
1205 cpu);
1206 ret = -ENODEV;
1207 goto remove_table;
1208 }
1209
1210 ret = dev_pm_opp_of_add_table(cpu_dev);
1211 if (ret) {
1212 /*
1213 * OPP may get registered dynamically, don't print error
1214 * message here.
1215 */
1216 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1217 __func__, cpu, ret);
1218
1219 goto remove_table;
1220 }
1221 }
1222
1223 return 0;
1224
1225remove_table:
1226 /* Free all other OPPs */
1227 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1228
1229 return ret;
1230}
1231EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1232
1233/*
1234 * Works only for OPP v2 bindings.
1235 *
1236 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1237 */
1238/**
1239 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1240 * @cpu_dev using operating-points-v2
1241 * bindings.
1242 *
1243 * @cpu_dev: CPU device for which we do this operation
1244 * @cpumask: cpumask to update with information of sharing CPUs
1245 *
1246 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1247 *
1248 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1249 */
1250int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1251 struct cpumask *cpumask)
1252{
1253 struct device_node *np, *tmp_np, *cpu_np;
1254 int cpu, ret = 0;
1255
1256 /* Get OPP descriptor node */
1257 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1258 if (!np) {
1259 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1260 return -ENOENT;
1261 }
1262
1263 cpumask_set_cpu(cpu_dev->id, cpumask);
1264
1265 /* OPPs are shared ? */
1266 if (!of_property_read_bool(np, "opp-shared"))
1267 goto put_cpu_node;
1268
1269 for_each_possible_cpu(cpu) {
1270 if (cpu == cpu_dev->id)
1271 continue;
1272
1273 cpu_np = of_cpu_device_node_get(cpu);
1274 if (!cpu_np) {
1275 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1276 __func__, cpu);
1277 ret = -ENOENT;
1278 goto put_cpu_node;
1279 }
1280
1281 /* Get OPP descriptor node */
1282 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1283 of_node_put(cpu_np);
1284 if (!tmp_np) {
1285 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1286 ret = -ENOENT;
1287 goto put_cpu_node;
1288 }
1289
1290 /* CPUs are sharing opp node */
1291 if (np == tmp_np)
1292 cpumask_set_cpu(cpu, cpumask);
1293
1294 of_node_put(tmp_np);
1295 }
1296
1297put_cpu_node:
1298 of_node_put(np);
1299 return ret;
1300}
1301EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1302
1303/**
1304 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1305 * @np: Node that contains the "required-opps" property.
1306 * @index: Index of the phandle to parse.
1307 *
1308 * Returns the performance state of the OPP pointed out by the "required-opps"
1309 * property at @index in @np.
1310 *
1311 * Return: Zero or positive performance state on success, otherwise negative
1312 * value on errors.
1313 */
1314int of_get_required_opp_performance_state(struct device_node *np, int index)
1315{
1316 struct dev_pm_opp *opp;
1317 struct device_node *required_np;
1318 struct opp_table *opp_table;
1319 int pstate = -EINVAL;
1320
1321 required_np = of_parse_required_opp(np, index);
1322 if (!required_np)
1323 return -ENODEV;
1324
1325 opp_table = _find_table_of_opp_np(required_np);
1326 if (IS_ERR(opp_table)) {
1327 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1328 __func__, np, PTR_ERR(opp_table));
1329 goto put_required_np;
1330 }
1331
1332 opp = _find_opp_of_np(opp_table, required_np);
1333 if (opp) {
1334 pstate = opp->pstate;
1335 dev_pm_opp_put(opp);
1336 }
1337
1338 dev_pm_opp_put_opp_table(opp_table);
1339
1340put_required_np:
1341 of_node_put(required_np);
1342
1343 return pstate;
1344}
1345EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1346
1347/**
1348 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1349 * @opp: opp for which DT node has to be returned for
1350 *
1351 * Return: DT node corresponding to the opp, else 0 on success.
1352 *
1353 * The caller needs to put the node with of_node_put() after using it.
1354 */
1355struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1356{
1357 if (IS_ERR_OR_NULL(opp)) {
1358 pr_err("%s: Invalid parameters\n", __func__);
1359 return NULL;
1360 }
1361
1362 return of_node_get(opp->np);
1363}
1364EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1365
1366/*
1367 * Callback function provided to the Energy Model framework upon registration.
1368 * This computes the power estimated by @dev at @kHz if it is the frequency
1369 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1370 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1371 * frequency and @mW to the associated power. The power is estimated as
1372 * P = C * V^2 * f with C being the device's capacitance and V and f
1373 * respectively the voltage and frequency of the OPP.
1374 *
1375 * Returns -EINVAL if the power calculation failed because of missing
1376 * parameters, 0 otherwise.
1377 */
1378static int __maybe_unused _get_power(unsigned long *mW, unsigned long *kHz,
1379 struct device *dev)
1380{
1381 struct dev_pm_opp *opp;
1382 struct device_node *np;
1383 unsigned long mV, Hz;
1384 u32 cap;
1385 u64 tmp;
1386 int ret;
1387
1388 np = of_node_get(dev->of_node);
1389 if (!np)
1390 return -EINVAL;
1391
1392 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1393 of_node_put(np);
1394 if (ret)
1395 return -EINVAL;
1396
1397 Hz = *kHz * 1000;
1398 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1399 if (IS_ERR(opp))
1400 return -EINVAL;
1401
1402 mV = dev_pm_opp_get_voltage(opp) / 1000;
1403 dev_pm_opp_put(opp);
1404 if (!mV)
1405 return -EINVAL;
1406
1407 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1408 do_div(tmp, 1000000000);
1409
1410 *mW = (unsigned long)tmp;
1411 *kHz = Hz / 1000;
1412
1413 return 0;
1414}
1415
1416/**
1417 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1418 * @dev : Device for which an Energy Model has to be registered
1419 * @cpus : CPUs for which an Energy Model has to be registered. For
1420 * other type of devices it should be set to NULL.
1421 *
1422 * This checks whether the "dynamic-power-coefficient" devicetree property has
1423 * been specified, and tries to register an Energy Model with it if it has.
1424 * Having this property means the voltages are known for OPPs and the EM
1425 * might be calculated.
1426 */
1427int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1428{
1429 struct em_data_callback em_cb = EM_DATA_CB(_get_power);
1430 struct device_node *np;
1431 int ret, nr_opp;
1432 u32 cap;
1433
1434 if (IS_ERR_OR_NULL(dev)) {
1435 ret = -EINVAL;
1436 goto failed;
1437 }
1438
1439 nr_opp = dev_pm_opp_get_opp_count(dev);
1440 if (nr_opp <= 0) {
1441 ret = -EINVAL;
1442 goto failed;
1443 }
1444
1445 np = of_node_get(dev->of_node);
1446 if (!np) {
1447 ret = -EINVAL;
1448 goto failed;
1449 }
1450
1451 /*
1452 * Register an EM only if the 'dynamic-power-coefficient' property is
1453 * set in devicetree. It is assumed the voltage values are known if that
1454 * property is set since it is useless otherwise. If voltages are not
1455 * known, just let the EM registration fail with an error to alert the
1456 * user about the inconsistent configuration.
1457 */
1458 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1459 of_node_put(np);
1460 if (ret || !cap) {
1461 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1462 ret = -EINVAL;
1463 goto failed;
1464 }
1465
1466 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1467 if (ret)
1468 goto failed;
1469
1470 return 0;
1471
1472failed:
1473 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1474 return ret;
1475}
1476EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);