Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP OF helpers
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/cpu.h>
  14#include <linux/errno.h>
  15#include <linux/device.h>
  16#include <linux/of.h>
  17#include <linux/pm_domain.h>
  18#include <linux/slab.h>
  19#include <linux/export.h>
  20#include <linux/energy_model.h>
  21
  22#include "opp.h"
  23
  24/* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
  25static LIST_HEAD(lazy_opp_tables);
  26
  27/*
  28 * Returns opp descriptor node for a device node, caller must
  29 * do of_node_put().
  30 */
  31static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
  32						     int index)
  33{
  34	/* "operating-points-v2" can be an array for power domain providers */
  35	return of_parse_phandle(np, "operating-points-v2", index);
  36}
  37
  38/* Returns opp descriptor node for a device, caller must do of_node_put() */
  39struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
  40{
  41	return _opp_of_get_opp_desc_node(dev->of_node, 0);
  42}
  43EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
  44
  45struct opp_table *_managed_opp(struct device *dev, int index)
  46{
  47	struct opp_table *opp_table, *managed_table = NULL;
  48	struct device_node *np;
  49
  50	np = _opp_of_get_opp_desc_node(dev->of_node, index);
  51	if (!np)
  52		return NULL;
  53
  54	list_for_each_entry(opp_table, &opp_tables, node) {
  55		if (opp_table->np == np) {
  56			/*
  57			 * Multiple devices can point to the same OPP table and
  58			 * so will have same node-pointer, np.
  59			 *
  60			 * But the OPPs will be considered as shared only if the
  61			 * OPP table contains a "opp-shared" property.
  62			 */
  63			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
  64				_get_opp_table_kref(opp_table);
  65				managed_table = opp_table;
  66			}
  67
  68			break;
  69		}
  70	}
  71
  72	of_node_put(np);
  73
  74	return managed_table;
  75}
  76
  77/* The caller must call dev_pm_opp_put() after the OPP is used */
  78static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
  79					  struct device_node *opp_np)
  80{
  81	struct dev_pm_opp *opp;
  82
  83	mutex_lock(&opp_table->lock);
  84
  85	list_for_each_entry(opp, &opp_table->opp_list, node) {
  86		if (opp->np == opp_np) {
  87			dev_pm_opp_get(opp);
  88			mutex_unlock(&opp_table->lock);
  89			return opp;
  90		}
  91	}
  92
  93	mutex_unlock(&opp_table->lock);
  94
  95	return NULL;
  96}
  97
  98static struct device_node *of_parse_required_opp(struct device_node *np,
  99						 int index)
 100{
 101	return of_parse_phandle(np, "required-opps", index);
 102}
 103
 104/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
 105static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
 106{
 107	struct opp_table *opp_table;
 108	struct device_node *opp_table_np;
 109
 110	opp_table_np = of_get_parent(opp_np);
 111	if (!opp_table_np)
 112		goto err;
 113
 114	/* It is safe to put the node now as all we need now is its address */
 115	of_node_put(opp_table_np);
 116
 117	mutex_lock(&opp_table_lock);
 118	list_for_each_entry(opp_table, &opp_tables, node) {
 119		if (opp_table_np == opp_table->np) {
 120			_get_opp_table_kref(opp_table);
 121			mutex_unlock(&opp_table_lock);
 122			return opp_table;
 123		}
 124	}
 125	mutex_unlock(&opp_table_lock);
 126
 127err:
 128	return ERR_PTR(-ENODEV);
 129}
 130
 131/* Free resources previously acquired by _opp_table_alloc_required_tables() */
 132static void _opp_table_free_required_tables(struct opp_table *opp_table)
 133{
 134	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 135	int i;
 136
 137	if (!required_opp_tables)
 138		return;
 139
 140	for (i = 0; i < opp_table->required_opp_count; i++) {
 141		if (IS_ERR_OR_NULL(required_opp_tables[i]))
 142			continue;
 143
 144		dev_pm_opp_put_opp_table(required_opp_tables[i]);
 145	}
 146
 147	kfree(required_opp_tables);
 148
 149	opp_table->required_opp_count = 0;
 150	opp_table->required_opp_tables = NULL;
 151
 152	mutex_lock(&opp_table_lock);
 153	list_del(&opp_table->lazy);
 154	mutex_unlock(&opp_table_lock);
 155}
 156
 157/*
 158 * Populate all devices and opp tables which are part of "required-opps" list.
 159 * Checking only the first OPP node should be enough.
 160 */
 161static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
 162					     struct device *dev,
 163					     struct device_node *opp_np)
 164{
 165	struct opp_table **required_opp_tables;
 166	struct device_node *required_np, *np;
 167	bool lazy = false;
 168	int count, i, size;
 169
 170	/* Traversing the first OPP node is all we need */
 171	np = of_get_next_available_child(opp_np, NULL);
 172	if (!np) {
 173		dev_warn(dev, "Empty OPP table\n");
 174
 175		return;
 176	}
 177
 178	count = of_count_phandle_with_args(np, "required-opps", NULL);
 179	if (count <= 0)
 180		goto put_np;
 181
 182	size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
 183	required_opp_tables = kcalloc(count, size, GFP_KERNEL);
 184	if (!required_opp_tables)
 185		goto put_np;
 186
 187	opp_table->required_opp_tables = required_opp_tables;
 188	opp_table->required_devs = (void *)(required_opp_tables + count);
 189	opp_table->required_opp_count = count;
 190
 191	for (i = 0; i < count; i++) {
 192		required_np = of_parse_required_opp(np, i);
 193		if (!required_np)
 194			goto free_required_tables;
 195
 196		required_opp_tables[i] = _find_table_of_opp_np(required_np);
 197		of_node_put(required_np);
 198
 199		if (IS_ERR(required_opp_tables[i]))
 200			lazy = true;
 201	}
 202
 203	/* Let's do the linking later on */
 204	if (lazy) {
 205		/*
 206		 * The OPP table is not held while allocating the table, take it
 207		 * now to avoid corruption to the lazy_opp_tables list.
 208		 */
 209		mutex_lock(&opp_table_lock);
 210		list_add(&opp_table->lazy, &lazy_opp_tables);
 211		mutex_unlock(&opp_table_lock);
 212	}
 213
 214	goto put_np;
 215
 216free_required_tables:
 217	_opp_table_free_required_tables(opp_table);
 218put_np:
 219	of_node_put(np);
 220}
 221
 222void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
 223			int index)
 224{
 225	struct device_node *np, *opp_np;
 226	u32 val;
 227
 228	/*
 229	 * Only required for backward compatibility with v1 bindings, but isn't
 230	 * harmful for other cases. And so we do it unconditionally.
 231	 */
 232	np = of_node_get(dev->of_node);
 233	if (!np)
 234		return;
 235
 236	if (!of_property_read_u32(np, "clock-latency", &val))
 237		opp_table->clock_latency_ns_max = val;
 238	of_property_read_u32(np, "voltage-tolerance",
 239			     &opp_table->voltage_tolerance_v1);
 240
 241	if (of_property_present(np, "#power-domain-cells"))
 242		opp_table->is_genpd = true;
 243
 244	/* Get OPP table node */
 245	opp_np = _opp_of_get_opp_desc_node(np, index);
 246	of_node_put(np);
 247
 248	if (!opp_np)
 249		return;
 250
 251	if (of_property_read_bool(opp_np, "opp-shared"))
 252		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
 253	else
 254		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
 255
 256	opp_table->np = opp_np;
 257
 258	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
 
 259}
 260
 261void _of_clear_opp_table(struct opp_table *opp_table)
 262{
 263	_opp_table_free_required_tables(opp_table);
 264	of_node_put(opp_table->np);
 265}
 266
 267/*
 268 * Release all resources previously acquired with a call to
 269 * _of_opp_alloc_required_opps().
 270 */
 271static void _of_opp_free_required_opps(struct opp_table *opp_table,
 272				       struct dev_pm_opp *opp)
 273{
 274	struct dev_pm_opp **required_opps = opp->required_opps;
 275	int i;
 276
 277	if (!required_opps)
 278		return;
 279
 280	for (i = 0; i < opp_table->required_opp_count; i++) {
 281		if (!required_opps[i])
 282			continue;
 283
 284		/* Put the reference back */
 285		dev_pm_opp_put(required_opps[i]);
 286	}
 287
 288	opp->required_opps = NULL;
 289	kfree(required_opps);
 290}
 291
 292void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
 293{
 294	_of_opp_free_required_opps(opp_table, opp);
 295	of_node_put(opp->np);
 296}
 297
 298static int _link_required_opps(struct dev_pm_opp *opp,
 299			       struct opp_table *required_table, int index)
 300{
 301	struct device_node *np;
 302
 303	np = of_parse_required_opp(opp->np, index);
 304	if (unlikely(!np))
 305		return -ENODEV;
 306
 307	opp->required_opps[index] = _find_opp_of_np(required_table, np);
 308	of_node_put(np);
 309
 310	if (!opp->required_opps[index]) {
 311		pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
 312		       __func__, opp->np, index);
 313		return -ENODEV;
 314	}
 315
 316	return 0;
 317}
 318
 319/* Populate all required OPPs which are part of "required-opps" list */
 320static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
 321				       struct dev_pm_opp *opp)
 322{
 
 323	struct opp_table *required_table;
 
 324	int i, ret, count = opp_table->required_opp_count;
 325
 326	if (!count)
 327		return 0;
 328
 329	opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
 330	if (!opp->required_opps)
 331		return -ENOMEM;
 332
 
 
 333	for (i = 0; i < count; i++) {
 334		required_table = opp_table->required_opp_tables[i];
 335
 336		/* Required table not added yet, we will link later */
 337		if (IS_ERR_OR_NULL(required_table))
 338			continue;
 339
 340		ret = _link_required_opps(opp, required_table, i);
 341		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 342			goto free_required_opps;
 
 343	}
 344
 345	return 0;
 346
 347free_required_opps:
 348	_of_opp_free_required_opps(opp_table, opp);
 349
 350	return ret;
 351}
 352
 353/* Link required OPPs for an individual OPP */
 354static int lazy_link_required_opps(struct opp_table *opp_table,
 355				   struct opp_table *new_table, int index)
 356{
 
 357	struct dev_pm_opp *opp;
 358	int ret;
 359
 360	list_for_each_entry(opp, &opp_table->opp_list, node) {
 361		ret = _link_required_opps(opp, new_table, index);
 362		if (ret)
 363			return ret;
 
 
 
 
 
 
 
 
 
 364	}
 365
 366	return 0;
 367}
 368
 369/* Link required OPPs for all OPPs of the newly added OPP table */
 370static void lazy_link_required_opp_table(struct opp_table *new_table)
 371{
 372	struct opp_table *opp_table, *temp, **required_opp_tables;
 373	struct device_node *required_np, *opp_np, *required_table_np;
 374	struct dev_pm_opp *opp;
 375	int i, ret;
 376
 377	mutex_lock(&opp_table_lock);
 378
 379	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
 380		bool lazy = false;
 381
 382		/* opp_np can't be invalid here */
 383		opp_np = of_get_next_available_child(opp_table->np, NULL);
 384
 385		for (i = 0; i < opp_table->required_opp_count; i++) {
 386			required_opp_tables = opp_table->required_opp_tables;
 387
 388			/* Required opp-table is already parsed */
 389			if (!IS_ERR(required_opp_tables[i]))
 390				continue;
 391
 392			/* required_np can't be invalid here */
 393			required_np = of_parse_required_opp(opp_np, i);
 394			required_table_np = of_get_parent(required_np);
 395
 396			of_node_put(required_table_np);
 397			of_node_put(required_np);
 398
 399			/*
 400			 * Newly added table isn't the required opp-table for
 401			 * opp_table.
 402			 */
 403			if (required_table_np != new_table->np) {
 404				lazy = true;
 405				continue;
 406			}
 407
 408			required_opp_tables[i] = new_table;
 409			_get_opp_table_kref(new_table);
 410
 411			/* Link OPPs now */
 412			ret = lazy_link_required_opps(opp_table, new_table, i);
 413			if (ret) {
 414				/* The OPPs will be marked unusable */
 415				lazy = false;
 416				break;
 417			}
 418		}
 419
 420		of_node_put(opp_np);
 421
 422		/* All required opp-tables found, remove from lazy list */
 423		if (!lazy) {
 424			list_del_init(&opp_table->lazy);
 425
 426			list_for_each_entry(opp, &opp_table->opp_list, node)
 427				_required_opps_available(opp, opp_table->required_opp_count);
 428		}
 429	}
 430
 431	mutex_unlock(&opp_table_lock);
 432}
 433
 434static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
 435{
 436	struct device_node *np, *opp_np;
 437	struct property *prop;
 438
 439	if (!opp_table) {
 440		np = of_node_get(dev->of_node);
 441		if (!np)
 442			return -ENODEV;
 443
 444		opp_np = _opp_of_get_opp_desc_node(np, 0);
 445		of_node_put(np);
 446	} else {
 447		opp_np = of_node_get(opp_table->np);
 448	}
 449
 450	/* Lets not fail in case we are parsing opp-v1 bindings */
 451	if (!opp_np)
 452		return 0;
 453
 454	/* Checking only first OPP is sufficient */
 455	np = of_get_next_available_child(opp_np, NULL);
 456	of_node_put(opp_np);
 457	if (!np) {
 458		dev_err(dev, "OPP table empty\n");
 459		return -EINVAL;
 460	}
 
 461
 462	prop = of_find_property(np, "opp-peak-kBps", NULL);
 463	of_node_put(np);
 464
 465	if (!prop || !prop->length)
 466		return 0;
 467
 468	return 1;
 469}
 470
 471int dev_pm_opp_of_find_icc_paths(struct device *dev,
 472				 struct opp_table *opp_table)
 473{
 474	struct device_node *np;
 475	int ret, i, count, num_paths;
 476	struct icc_path **paths;
 477
 478	ret = _bandwidth_supported(dev, opp_table);
 479	if (ret == -EINVAL)
 480		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
 481	else if (ret <= 0)
 482		return ret;
 483
 484	ret = 0;
 485
 486	np = of_node_get(dev->of_node);
 487	if (!np)
 488		return 0;
 489
 490	count = of_count_phandle_with_args(np, "interconnects",
 491					   "#interconnect-cells");
 492	of_node_put(np);
 493	if (count < 0)
 494		return 0;
 495
 496	/* two phandles when #interconnect-cells = <1> */
 497	if (count % 2) {
 498		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
 499		return -EINVAL;
 500	}
 501
 502	num_paths = count / 2;
 503	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
 504	if (!paths)
 505		return -ENOMEM;
 506
 507	for (i = 0; i < num_paths; i++) {
 508		paths[i] = of_icc_get_by_index(dev, i);
 509		if (IS_ERR(paths[i])) {
 510			ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
 
 
 
 
 511			goto err;
 512		}
 513	}
 514
 515	if (opp_table) {
 516		opp_table->paths = paths;
 517		opp_table->path_count = num_paths;
 518		return 0;
 519	}
 520
 521err:
 522	while (i--)
 523		icc_put(paths[i]);
 524
 525	kfree(paths);
 526
 527	return ret;
 528}
 529EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
 530
 531static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
 532			      struct device_node *np)
 533{
 534	unsigned int levels = opp_table->supported_hw_count;
 535	int count, versions, ret, i, j;
 536	u32 val;
 537
 538	if (!opp_table->supported_hw) {
 539		/*
 540		 * In the case that no supported_hw has been set by the
 541		 * platform but there is an opp-supported-hw value set for
 542		 * an OPP then the OPP should not be enabled as there is
 543		 * no way to see if the hardware supports it.
 544		 */
 545		if (of_property_present(np, "opp-supported-hw"))
 546			return false;
 547		else
 548			return true;
 549	}
 550
 551	count = of_property_count_u32_elems(np, "opp-supported-hw");
 552	if (count <= 0 || count % levels) {
 553		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
 554			__func__, count);
 555		return false;
 556	}
 557
 558	versions = count / levels;
 559
 560	/* All levels in at least one of the versions should match */
 561	for (i = 0; i < versions; i++) {
 562		bool supported = true;
 563
 564		for (j = 0; j < levels; j++) {
 565			ret = of_property_read_u32_index(np, "opp-supported-hw",
 566							 i * levels + j, &val);
 567			if (ret) {
 568				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
 569					 __func__, i * levels + j, ret);
 570				return false;
 571			}
 572
 573			/* Check if the level is supported */
 574			if (!(val & opp_table->supported_hw[j])) {
 575				supported = false;
 576				break;
 577			}
 578		}
 579
 580		if (supported)
 581			return true;
 582	}
 583
 584	return false;
 585}
 586
 587static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
 588			      struct opp_table *opp_table,
 589			      const char *prop_type, bool *triplet)
 590{
 
 
 591	struct property *prop = NULL;
 592	char name[NAME_MAX];
 593	int count, ret;
 594	u32 *out;
 595
 596	/* Search for "opp-<prop_type>-<name>" */
 597	if (opp_table->prop_name) {
 598		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
 599			 opp_table->prop_name);
 600		prop = of_find_property(opp->np, name, NULL);
 601	}
 602
 603	if (!prop) {
 604		/* Search for "opp-<prop_type>" */
 605		snprintf(name, sizeof(name), "opp-%s", prop_type);
 606		prop = of_find_property(opp->np, name, NULL);
 607		if (!prop)
 608			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609	}
 610
 611	count = of_property_count_u32_elems(opp->np, name);
 612	if (count < 0) {
 613		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
 614			count);
 615		return ERR_PTR(count);
 
 616	}
 617
 618	/*
 619	 * Initialize regulator_count, if regulator information isn't provided
 620	 * by the platform. Now that one of the properties is available, fix the
 621	 * regulator_count to 1.
 622	 */
 623	if (unlikely(opp_table->regulator_count == -1))
 624		opp_table->regulator_count = 1;
 625
 626	if (count != opp_table->regulator_count &&
 627	    (!triplet || count != opp_table->regulator_count * 3)) {
 628		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
 629			__func__, prop_type, count, opp_table->regulator_count);
 630		return ERR_PTR(-EINVAL);
 631	}
 632
 633	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
 634	if (!out)
 635		return ERR_PTR(-EINVAL);
 636
 637	ret = of_property_read_u32_array(opp->np, name, out, count);
 638	if (ret) {
 639		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
 640		kfree(out);
 641		return ERR_PTR(-EINVAL);
 642	}
 643
 644	if (triplet)
 645		*triplet = count != opp_table->regulator_count;
 646
 647	return out;
 648}
 649
 650static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
 651				struct opp_table *opp_table, bool *triplet)
 652{
 653	u32 *microvolt;
 654
 655	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
 656	if (IS_ERR(microvolt))
 657		return microvolt;
 
 
 658
 659	if (!microvolt) {
 660		/*
 661		 * Missing property isn't a problem, but an invalid
 662		 * entry is. This property isn't optional if regulator
 663		 * information is provided. Check only for the first OPP, as
 664		 * regulator_count may get initialized after that to a valid
 665		 * value.
 666		 */
 667		if (list_empty(&opp_table->opp_list) &&
 668		    opp_table->regulator_count > 0) {
 669			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
 670				__func__);
 671			return ERR_PTR(-EINVAL);
 672		}
 673	}
 674
 675	return microvolt;
 676}
 
 
 
 
 677
 678static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
 679			      struct opp_table *opp_table)
 680{
 681	u32 *microvolt, *microamp, *microwatt;
 682	int ret = 0, i, j;
 683	bool triplet;
 684
 685	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
 686	if (IS_ERR(microvolt))
 687		return PTR_ERR(microvolt);
 688
 689	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
 690	if (IS_ERR(microamp)) {
 691		ret = PTR_ERR(microamp);
 692		goto free_microvolt;
 693	}
 694
 695	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
 696	if (IS_ERR(microwatt)) {
 697		ret = PTR_ERR(microwatt);
 698		goto free_microamp;
 
 
 
 
 699	}
 700
 701	/*
 702	 * Initialize regulator_count if it is uninitialized and no properties
 703	 * are found.
 704	 */
 705	if (unlikely(opp_table->regulator_count == -1)) {
 706		opp_table->regulator_count = 0;
 707		return 0;
 708	}
 709
 710	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
 711		if (microvolt) {
 712			opp->supplies[i].u_volt = microvolt[j++];
 713
 714			if (triplet) {
 715				opp->supplies[i].u_volt_min = microvolt[j++];
 716				opp->supplies[i].u_volt_max = microvolt[j++];
 717			} else {
 718				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
 719				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
 720			}
 721		}
 722
 723		if (microamp)
 724			opp->supplies[i].u_amp = microamp[i];
 725
 726		if (microwatt)
 727			opp->supplies[i].u_watt = microwatt[i];
 728	}
 729
 730	kfree(microwatt);
 731free_microamp:
 732	kfree(microamp);
 733free_microvolt:
 734	kfree(microvolt);
 735
 736	return ret;
 737}
 738
 739/**
 740 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
 741 *				  entries
 742 * @dev:	device pointer used to lookup OPP table.
 743 *
 744 * Free OPPs created using static entries present in DT.
 745 */
 746void dev_pm_opp_of_remove_table(struct device *dev)
 747{
 748	dev_pm_opp_remove_table(dev);
 749}
 750EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
 751
 752static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
 753		      struct device_node *np)
 754{
 755	struct property *prop;
 756	int i, count, ret;
 757	u64 *rates;
 758
 759	prop = of_find_property(np, "opp-hz", NULL);
 760	if (!prop)
 761		return -ENODEV;
 762
 763	count = prop->length / sizeof(u64);
 764	if (opp_table->clk_count != count) {
 765		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
 766		       __func__, count, opp_table->clk_count);
 767		return -EINVAL;
 768	}
 769
 770	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
 771	if (!rates)
 772		return -ENOMEM;
 773
 774	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
 775	if (ret) {
 776		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
 777	} else {
 778		/*
 779		 * Rate is defined as an unsigned long in clk API, and so
 780		 * casting explicitly to its type. Must be fixed once rate is 64
 781		 * bit guaranteed in clk API.
 782		 */
 783		for (i = 0; i < count; i++) {
 784			new_opp->rates[i] = (unsigned long)rates[i];
 785
 786			/* This will happen for frequencies > 4.29 GHz */
 787			WARN_ON(new_opp->rates[i] != rates[i]);
 788		}
 789	}
 790
 791	kfree(rates);
 792
 793	return ret;
 794}
 795
 796static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
 797		    struct device_node *np, bool peak)
 798{
 799	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
 800	struct property *prop;
 801	int i, count, ret;
 802	u32 *bw;
 803
 804	prop = of_find_property(np, name, NULL);
 805	if (!prop)
 806		return -ENODEV;
 807
 808	count = prop->length / sizeof(u32);
 809	if (opp_table->path_count != count) {
 810		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
 811				__func__, name, count, opp_table->path_count);
 812		return -EINVAL;
 813	}
 814
 815	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
 816	if (!bw)
 817		return -ENOMEM;
 818
 819	ret = of_property_read_u32_array(np, name, bw, count);
 820	if (ret) {
 821		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
 822		goto out;
 823	}
 824
 825	for (i = 0; i < count; i++) {
 826		if (peak)
 827			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
 828		else
 829			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
 830	}
 831
 832out:
 833	kfree(bw);
 834	return ret;
 835}
 836
 837static int _read_opp_key(struct dev_pm_opp *new_opp,
 838			 struct opp_table *opp_table, struct device_node *np)
 839{
 840	bool found = false;
 
 841	int ret;
 842
 843	ret = _read_rate(new_opp, opp_table, np);
 844	if (!ret)
 
 
 
 
 
 
 845		found = true;
 846	else if (ret != -ENODEV)
 847		return ret;
 848
 849	/*
 850	 * Bandwidth consists of peak and average (optional) values:
 851	 * opp-peak-kBps = <path1_value path2_value>;
 852	 * opp-avg-kBps = <path1_value path2_value>;
 853	 */
 854	ret = _read_bw(new_opp, opp_table, np, true);
 855	if (!ret) {
 856		found = true;
 857		ret = _read_bw(new_opp, opp_table, np, false);
 858	}
 859
 860	/* The properties were found but we failed to parse them */
 861	if (ret && ret != -ENODEV)
 862		return ret;
 863
 864	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
 865		found = true;
 866
 867	if (found)
 868		return 0;
 869
 870	return ret;
 871}
 872
 873/**
 874 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
 875 * @opp_table:	OPP table
 876 * @dev:	device for which we do this operation
 877 * @np:		device node
 878 *
 879 * This function adds an opp definition to the opp table and returns status. The
 880 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
 881 * removed by dev_pm_opp_remove.
 882 *
 883 * Return:
 884 * Valid OPP pointer:
 885 *		On success
 886 * NULL:
 887 *		Duplicate OPPs (both freq and volt are same) and opp->available
 888 *		OR if the OPP is not supported by hardware.
 889 * ERR_PTR(-EEXIST):
 890 *		Freq are same and volt are different OR
 891 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 892 * ERR_PTR(-ENOMEM):
 893 *		Memory allocation failure
 894 * ERR_PTR(-EINVAL):
 895 *		Failed parsing the OPP node
 896 */
 897static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
 898		struct device *dev, struct device_node *np)
 899{
 900	struct dev_pm_opp *new_opp;
 901	u32 val;
 902	int ret;
 
 903
 904	new_opp = _opp_allocate(opp_table);
 905	if (!new_opp)
 906		return ERR_PTR(-ENOMEM);
 907
 908	ret = _read_opp_key(new_opp, opp_table, np);
 909	if (ret < 0) {
 910		dev_err(dev, "%s: opp key field not found\n", __func__);
 911		goto free_opp;
 912	}
 913
 914	/* Check if the OPP supports hardware's hierarchy of versions or not */
 915	if (!_opp_is_supported(dev, opp_table, np)) {
 916		dev_dbg(dev, "OPP not supported by hardware: %s\n",
 917			of_node_full_name(np));
 918		goto free_opp;
 919	}
 920
 921	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
 922
 923	new_opp->np = of_node_get(np);
 924	new_opp->dynamic = false;
 925	new_opp->available = true;
 926
 927	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
 928	if (ret)
 929		goto put_node;
 930
 931	if (!of_property_read_u32(np, "clock-latency-ns", &val))
 932		new_opp->clock_latency_ns = val;
 933
 934	ret = opp_parse_supplies(new_opp, dev, opp_table);
 935	if (ret)
 936		goto free_required_opps;
 937
 938	ret = _opp_add(dev, new_opp, opp_table);
 
 
 
 939	if (ret) {
 940		/* Don't return error for duplicate OPPs */
 941		if (ret == -EBUSY)
 942			ret = 0;
 943		goto free_required_opps;
 944	}
 945
 946	/* OPP to select on device suspend */
 947	if (of_property_read_bool(np, "opp-suspend")) {
 948		if (opp_table->suspend_opp) {
 949			/* Pick the OPP with higher rate/bw/level as suspend OPP */
 950			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
 951				opp_table->suspend_opp->suspend = false;
 952				new_opp->suspend = true;
 953				opp_table->suspend_opp = new_opp;
 954			}
 955		} else {
 956			new_opp->suspend = true;
 957			opp_table->suspend_opp = new_opp;
 958		}
 959	}
 960
 961	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
 962		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
 963
 964	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
 965		 __func__, new_opp->turbo, new_opp->rates[0],
 966		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
 967		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
 968		 new_opp->level);
 969
 970	/*
 971	 * Notify the changes in the availability of the operable
 972	 * frequency/voltage list.
 973	 */
 974	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
 975	return new_opp;
 976
 977free_required_opps:
 978	_of_opp_free_required_opps(opp_table, new_opp);
 979put_node:
 980	of_node_put(np);
 981free_opp:
 982	_opp_free(new_opp);
 983
 984	return ret ? ERR_PTR(ret) : NULL;
 985}
 986
 987/* Initializes OPP tables based on new bindings */
 988static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
 989{
 990	struct device_node *np;
 991	int ret, count = 0;
 992	struct dev_pm_opp *opp;
 993
 994	/* OPP table is already initialized for the device */
 995	mutex_lock(&opp_table->lock);
 996	if (opp_table->parsed_static_opps) {
 997		opp_table->parsed_static_opps++;
 998		mutex_unlock(&opp_table->lock);
 999		return 0;
1000	}
1001
1002	opp_table->parsed_static_opps = 1;
1003	mutex_unlock(&opp_table->lock);
1004
1005	/* We have opp-table node now, iterate over it and add OPPs */
1006	for_each_available_child_of_node(opp_table->np, np) {
1007		opp = _opp_add_static_v2(opp_table, dev, np);
1008		if (IS_ERR(opp)) {
1009			ret = PTR_ERR(opp);
1010			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1011				ret);
1012			of_node_put(np);
1013			goto remove_static_opp;
1014		} else if (opp) {
1015			count++;
1016		}
1017	}
1018
1019	/* There should be one or more OPPs defined */
1020	if (!count) {
1021		dev_err(dev, "%s: no supported OPPs", __func__);
1022		ret = -ENOENT;
1023		goto remove_static_opp;
1024	}
1025
 
 
 
 
 
 
 
 
1026	lazy_link_required_opp_table(opp_table);
1027
1028	return 0;
1029
1030remove_static_opp:
1031	_opp_remove_all_static(opp_table);
1032
1033	return ret;
1034}
1035
1036/* Initializes OPP tables based on old-deprecated bindings */
1037static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1038{
1039	const struct property *prop;
1040	const __be32 *val;
1041	int nr, ret = 0;
1042
1043	mutex_lock(&opp_table->lock);
1044	if (opp_table->parsed_static_opps) {
1045		opp_table->parsed_static_opps++;
1046		mutex_unlock(&opp_table->lock);
1047		return 0;
1048	}
1049
1050	opp_table->parsed_static_opps = 1;
1051	mutex_unlock(&opp_table->lock);
1052
1053	prop = of_find_property(dev->of_node, "operating-points", NULL);
1054	if (!prop) {
1055		ret = -ENODEV;
1056		goto remove_static_opp;
1057	}
1058	if (!prop->value) {
1059		ret = -ENODATA;
1060		goto remove_static_opp;
1061	}
1062
1063	/*
1064	 * Each OPP is a set of tuples consisting of frequency and
1065	 * voltage like <freq-kHz vol-uV>.
1066	 */
1067	nr = prop->length / sizeof(u32);
1068	if (nr % 2) {
1069		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1070		ret = -EINVAL;
1071		goto remove_static_opp;
1072	}
1073
1074	val = prop->value;
1075	while (nr) {
1076		unsigned long freq = be32_to_cpup(val++) * 1000;
1077		unsigned long volt = be32_to_cpup(val++);
1078		struct dev_pm_opp_data data = {
1079			.freq = freq,
1080			.u_volt = volt,
1081		};
1082
1083		ret = _opp_add_v1(opp_table, dev, &data, false);
1084		if (ret) {
1085			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1086				__func__, data.freq, ret);
1087			goto remove_static_opp;
1088		}
1089		nr -= 2;
1090	}
1091
1092	return 0;
1093
1094remove_static_opp:
1095	_opp_remove_all_static(opp_table);
1096
1097	return ret;
1098}
1099
1100static int _of_add_table_indexed(struct device *dev, int index)
1101{
1102	struct opp_table *opp_table;
1103	int ret, count;
1104
1105	if (index) {
1106		/*
1107		 * If only one phandle is present, then the same OPP table
1108		 * applies for all index requests.
1109		 */
1110		count = of_count_phandle_with_args(dev->of_node,
1111						   "operating-points-v2", NULL);
1112		if (count == 1)
1113			index = 0;
1114	}
1115
1116	opp_table = _add_opp_table_indexed(dev, index, true);
1117	if (IS_ERR(opp_table))
1118		return PTR_ERR(opp_table);
1119
1120	/*
1121	 * OPPs have two version of bindings now. Also try the old (v1)
1122	 * bindings for backward compatibility with older dtbs.
1123	 */
1124	if (opp_table->np)
1125		ret = _of_add_opp_table_v2(dev, opp_table);
1126	else
1127		ret = _of_add_opp_table_v1(dev, opp_table);
1128
1129	if (ret)
1130		dev_pm_opp_put_opp_table(opp_table);
1131
1132	return ret;
1133}
1134
1135static void devm_pm_opp_of_table_release(void *data)
1136{
1137	dev_pm_opp_of_remove_table(data);
1138}
1139
1140static int _devm_of_add_table_indexed(struct device *dev, int index)
1141{
1142	int ret;
1143
1144	ret = _of_add_table_indexed(dev, index);
1145	if (ret)
1146		return ret;
1147
1148	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1149}
1150
1151/**
1152 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1153 * @dev:	device pointer used to lookup OPP table.
1154 *
1155 * Register the initial OPP table with the OPP library for given device.
1156 *
1157 * The opp_table structure will be freed after the device is destroyed.
1158 *
1159 * Return:
1160 * 0		On success OR
1161 *		Duplicate OPPs (both freq and volt are same) and opp->available
1162 * -EEXIST	Freq are same and volt are different OR
1163 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1164 * -ENOMEM	Memory allocation failure
1165 * -ENODEV	when 'operating-points' property is not found or is invalid data
1166 *		in device node.
1167 * -ENODATA	when empty 'operating-points' property is found
1168 * -EINVAL	when invalid entries are found in opp-v2 table
1169 */
1170int devm_pm_opp_of_add_table(struct device *dev)
1171{
1172	return _devm_of_add_table_indexed(dev, 0);
 
 
 
 
 
 
1173}
1174EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1175
1176/**
1177 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1178 * @dev:	device pointer used to lookup OPP table.
1179 *
1180 * Register the initial OPP table with the OPP library for given device.
1181 *
1182 * Return:
1183 * 0		On success OR
1184 *		Duplicate OPPs (both freq and volt are same) and opp->available
1185 * -EEXIST	Freq are same and volt are different OR
1186 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1187 * -ENOMEM	Memory allocation failure
1188 * -ENODEV	when 'operating-points' property is not found or is invalid data
1189 *		in device node.
1190 * -ENODATA	when empty 'operating-points' property is found
1191 * -EINVAL	when invalid entries are found in opp-v2 table
1192 */
1193int dev_pm_opp_of_add_table(struct device *dev)
1194{
1195	return _of_add_table_indexed(dev, 0);
1196}
1197EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1198
1199/**
1200 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1201 * @dev:	device pointer used to lookup OPP table.
1202 * @index:	Index number.
1203 *
1204 * Register the initial OPP table with the OPP library for given device only
1205 * using the "operating-points-v2" property.
1206 *
1207 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1208 */
1209int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1210{
1211	return _of_add_table_indexed(dev, index);
1212}
1213EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1214
1215/**
1216 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
 
1217 * @dev:	device pointer used to lookup OPP table.
1218 * @index:	Index number.
1219 *
1220 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
 
 
 
 
1221 */
1222int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1223{
1224	return _devm_of_add_table_indexed(dev, index);
1225}
1226EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1227
1228/* CPU device specific helpers */
1229
1230/**
1231 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1232 * @cpumask:	cpumask for which OPP table needs to be removed
1233 *
1234 * This removes the OPP tables for CPUs present in the @cpumask.
1235 * This should be used only to remove static entries created from DT.
1236 */
1237void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1238{
1239	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1242
1243/**
1244 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1245 * @cpumask:	cpumask for which OPP table needs to be added.
1246 *
1247 * This adds the OPP tables for CPUs present in the @cpumask.
1248 */
1249int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1250{
1251	struct device *cpu_dev;
1252	int cpu, ret;
1253
1254	if (WARN_ON(cpumask_empty(cpumask)))
1255		return -ENODEV;
1256
1257	for_each_cpu(cpu, cpumask) {
1258		cpu_dev = get_cpu_device(cpu);
1259		if (!cpu_dev) {
1260			pr_err("%s: failed to get cpu%d device\n", __func__,
1261			       cpu);
1262			ret = -ENODEV;
1263			goto remove_table;
1264		}
1265
1266		ret = dev_pm_opp_of_add_table(cpu_dev);
1267		if (ret) {
1268			/*
1269			 * OPP may get registered dynamically, don't print error
1270			 * message here.
1271			 */
1272			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1273				 __func__, cpu, ret);
1274
1275			goto remove_table;
1276		}
1277	}
1278
1279	return 0;
1280
1281remove_table:
1282	/* Free all other OPPs */
1283	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1284
1285	return ret;
1286}
1287EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1288
1289/*
1290 * Works only for OPP v2 bindings.
1291 *
1292 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1293 */
1294/**
1295 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1296 *				      @cpu_dev using operating-points-v2
1297 *				      bindings.
1298 *
1299 * @cpu_dev:	CPU device for which we do this operation
1300 * @cpumask:	cpumask to update with information of sharing CPUs
1301 *
1302 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1303 *
1304 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1305 */
1306int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1307				   struct cpumask *cpumask)
1308{
1309	struct device_node *np, *tmp_np, *cpu_np;
1310	int cpu, ret = 0;
1311
1312	/* Get OPP descriptor node */
1313	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1314	if (!np) {
1315		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1316		return -ENOENT;
1317	}
1318
1319	cpumask_set_cpu(cpu_dev->id, cpumask);
1320
1321	/* OPPs are shared ? */
1322	if (!of_property_read_bool(np, "opp-shared"))
1323		goto put_cpu_node;
1324
1325	for_each_possible_cpu(cpu) {
1326		if (cpu == cpu_dev->id)
1327			continue;
1328
1329		cpu_np = of_cpu_device_node_get(cpu);
1330		if (!cpu_np) {
1331			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1332				__func__, cpu);
1333			ret = -ENOENT;
1334			goto put_cpu_node;
1335		}
1336
1337		/* Get OPP descriptor node */
1338		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1339		of_node_put(cpu_np);
1340		if (!tmp_np) {
1341			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1342			ret = -ENOENT;
1343			goto put_cpu_node;
1344		}
1345
1346		/* CPUs are sharing opp node */
1347		if (np == tmp_np)
1348			cpumask_set_cpu(cpu, cpumask);
1349
1350		of_node_put(tmp_np);
1351	}
1352
1353put_cpu_node:
1354	of_node_put(np);
1355	return ret;
1356}
1357EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1358
1359/**
1360 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1361 * @np: Node that contains the "required-opps" property.
1362 * @index: Index of the phandle to parse.
1363 *
1364 * Returns the performance state of the OPP pointed out by the "required-opps"
1365 * property at @index in @np.
1366 *
1367 * Return: Zero or positive performance state on success, otherwise negative
1368 * value on errors.
1369 */
1370int of_get_required_opp_performance_state(struct device_node *np, int index)
1371{
1372	struct dev_pm_opp *opp;
1373	struct device_node *required_np;
1374	struct opp_table *opp_table;
1375	int pstate = -EINVAL;
1376
1377	required_np = of_parse_required_opp(np, index);
1378	if (!required_np)
1379		return -ENODEV;
1380
1381	opp_table = _find_table_of_opp_np(required_np);
1382	if (IS_ERR(opp_table)) {
1383		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1384		       __func__, np, PTR_ERR(opp_table));
1385		goto put_required_np;
1386	}
1387
1388	/* The OPP tables must belong to a genpd */
1389	if (unlikely(!opp_table->is_genpd)) {
1390		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1391		goto put_required_np;
1392	}
1393
1394	opp = _find_opp_of_np(opp_table, required_np);
1395	if (opp) {
1396		if (opp->level == OPP_LEVEL_UNSET) {
1397			pr_err("%s: OPP levels aren't available for %pOF\n",
1398			       __func__, np);
1399		} else {
1400			pstate = opp->level;
1401		}
1402		dev_pm_opp_put(opp);
1403
1404	}
1405
1406	dev_pm_opp_put_opp_table(opp_table);
1407
1408put_required_np:
1409	of_node_put(required_np);
1410
1411	return pstate;
1412}
1413EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1414
1415/**
1416 * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1417 * @dev: The device to investigate.
1418 *
1419 * Returns true if the device's node has a "operating-points-v2" property and if
1420 * the corresponding node for the opp-table describes opp nodes that uses the
1421 * "required-opps" property.
1422 *
1423 * Return: True if a required-opps is present, else false.
1424 */
1425bool dev_pm_opp_of_has_required_opp(struct device *dev)
1426{
1427	struct device_node *opp_np, *np;
1428	int count;
1429
1430	opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1431	if (!opp_np)
1432		return false;
1433
1434	np = of_get_next_available_child(opp_np, NULL);
1435	of_node_put(opp_np);
1436	if (!np) {
1437		dev_warn(dev, "Empty OPP table\n");
1438		return false;
1439	}
1440
1441	count = of_count_phandle_with_args(np, "required-opps", NULL);
1442	of_node_put(np);
1443
1444	return count > 0;
1445}
1446
1447/**
1448 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1449 * @opp:	opp for which DT node has to be returned for
1450 *
1451 * Return: DT node corresponding to the opp, else 0 on success.
1452 *
1453 * The caller needs to put the node with of_node_put() after using it.
1454 */
1455struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1456{
1457	if (IS_ERR_OR_NULL(opp)) {
1458		pr_err("%s: Invalid parameters\n", __func__);
1459		return NULL;
1460	}
1461
1462	return of_node_get(opp->np);
1463}
1464EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1465
1466/*
1467 * Callback function provided to the Energy Model framework upon registration.
1468 * It provides the power used by @dev at @kHz if it is the frequency of an
1469 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1470 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1471 * frequency and @uW to the associated power.
1472 *
1473 * Returns 0 on success or a proper -EINVAL value in case of error.
1474 */
1475static int __maybe_unused
1476_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1477{
1478	struct dev_pm_opp *opp;
1479	unsigned long opp_freq, opp_power;
1480
1481	/* Find the right frequency and related OPP */
1482	opp_freq = *kHz * 1000;
1483	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1484	if (IS_ERR(opp))
1485		return -EINVAL;
1486
1487	opp_power = dev_pm_opp_get_power(opp);
1488	dev_pm_opp_put(opp);
1489	if (!opp_power)
1490		return -EINVAL;
1491
1492	*kHz = opp_freq / 1000;
1493	*uW = opp_power;
1494
1495	return 0;
1496}
1497
1498/**
1499 * dev_pm_opp_calc_power() - Calculate power value for device with EM
1500 * @dev		: Device for which an Energy Model has to be registered
1501 * @uW		: New power value that is calculated
1502 * @kHz		: Frequency for which the new power is calculated
1503 *
1504 * This computes the power estimated by @dev at @kHz if it is the frequency
1505 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1506 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1507 * frequency and @uW to the associated power. The power is estimated as
1508 * P = C * V^2 * f with C being the device's capacitance and V and f
1509 * respectively the voltage and frequency of the OPP.
1510 * It is also used as a callback function provided to the Energy Model
1511 * framework upon registration.
1512 *
1513 * Returns -EINVAL if the power calculation failed because of missing
1514 * parameters, 0 otherwise.
1515 */
1516int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1517			  unsigned long *kHz)
1518{
1519	struct dev_pm_opp *opp;
1520	struct device_node *np;
1521	unsigned long mV, Hz;
1522	u32 cap;
1523	u64 tmp;
1524	int ret;
1525
1526	np = of_node_get(dev->of_node);
1527	if (!np)
1528		return -EINVAL;
1529
1530	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1531	of_node_put(np);
1532	if (ret)
1533		return -EINVAL;
1534
1535	Hz = *kHz * 1000;
1536	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1537	if (IS_ERR(opp))
1538		return -EINVAL;
1539
1540	mV = dev_pm_opp_get_voltage(opp) / 1000;
1541	dev_pm_opp_put(opp);
1542	if (!mV)
1543		return -EINVAL;
1544
1545	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1546	/* Provide power in micro-Watts */
1547	do_div(tmp, 1000000);
1548
1549	*uW = (unsigned long)tmp;
1550	*kHz = Hz / 1000;
1551
1552	return 0;
1553}
1554EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1555
1556static bool _of_has_opp_microwatt_property(struct device *dev)
1557{
1558	unsigned long power, freq = 0;
1559	struct dev_pm_opp *opp;
1560
1561	/* Check if at least one OPP has needed property */
1562	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1563	if (IS_ERR(opp))
1564		return false;
1565
1566	power = dev_pm_opp_get_power(opp);
1567	dev_pm_opp_put(opp);
1568	if (!power)
1569		return false;
1570
1571	return true;
1572}
1573
1574/**
1575 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1576 * @dev		: Device for which an Energy Model has to be registered
1577 * @cpus	: CPUs for which an Energy Model has to be registered. For
1578 *		other type of devices it should be set to NULL.
1579 *
1580 * This checks whether the "dynamic-power-coefficient" devicetree property has
1581 * been specified, and tries to register an Energy Model with it if it has.
1582 * Having this property means the voltages are known for OPPs and the EM
1583 * might be calculated.
1584 */
1585int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1586{
1587	struct em_data_callback em_cb;
1588	struct device_node *np;
1589	int ret, nr_opp;
1590	u32 cap;
1591
1592	if (IS_ERR_OR_NULL(dev)) {
1593		ret = -EINVAL;
1594		goto failed;
1595	}
1596
1597	nr_opp = dev_pm_opp_get_opp_count(dev);
1598	if (nr_opp <= 0) {
1599		ret = -EINVAL;
1600		goto failed;
1601	}
1602
1603	/* First, try to find more precised Energy Model in DT */
1604	if (_of_has_opp_microwatt_property(dev)) {
1605		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1606		goto register_em;
1607	}
1608
1609	np = of_node_get(dev->of_node);
1610	if (!np) {
1611		ret = -EINVAL;
1612		goto failed;
1613	}
1614
1615	/*
1616	 * Register an EM only if the 'dynamic-power-coefficient' property is
1617	 * set in devicetree. It is assumed the voltage values are known if that
1618	 * property is set since it is useless otherwise. If voltages are not
1619	 * known, just let the EM registration fail with an error to alert the
1620	 * user about the inconsistent configuration.
1621	 */
1622	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1623	of_node_put(np);
1624	if (ret || !cap) {
1625		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1626		ret = -EINVAL;
1627		goto failed;
1628	}
1629
1630	EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1631
1632register_em:
1633	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1634	if (ret)
1635		goto failed;
1636
1637	return 0;
1638
1639failed:
1640	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1641	return ret;
1642}
1643EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP OF helpers
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/cpu.h>
  14#include <linux/errno.h>
  15#include <linux/device.h>
  16#include <linux/of_device.h>
  17#include <linux/pm_domain.h>
  18#include <linux/slab.h>
  19#include <linux/export.h>
  20#include <linux/energy_model.h>
  21
  22#include "opp.h"
  23
 
 
 
  24/*
  25 * Returns opp descriptor node for a device node, caller must
  26 * do of_node_put().
  27 */
  28static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
  29						     int index)
  30{
  31	/* "operating-points-v2" can be an array for power domain providers */
  32	return of_parse_phandle(np, "operating-points-v2", index);
  33}
  34
  35/* Returns opp descriptor node for a device, caller must do of_node_put() */
  36struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
  37{
  38	return _opp_of_get_opp_desc_node(dev->of_node, 0);
  39}
  40EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
  41
  42struct opp_table *_managed_opp(struct device *dev, int index)
  43{
  44	struct opp_table *opp_table, *managed_table = NULL;
  45	struct device_node *np;
  46
  47	np = _opp_of_get_opp_desc_node(dev->of_node, index);
  48	if (!np)
  49		return NULL;
  50
  51	list_for_each_entry(opp_table, &opp_tables, node) {
  52		if (opp_table->np == np) {
  53			/*
  54			 * Multiple devices can point to the same OPP table and
  55			 * so will have same node-pointer, np.
  56			 *
  57			 * But the OPPs will be considered as shared only if the
  58			 * OPP table contains a "opp-shared" property.
  59			 */
  60			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
  61				_get_opp_table_kref(opp_table);
  62				managed_table = opp_table;
  63			}
  64
  65			break;
  66		}
  67	}
  68
  69	of_node_put(np);
  70
  71	return managed_table;
  72}
  73
  74/* The caller must call dev_pm_opp_put() after the OPP is used */
  75static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
  76					  struct device_node *opp_np)
  77{
  78	struct dev_pm_opp *opp;
  79
  80	mutex_lock(&opp_table->lock);
  81
  82	list_for_each_entry(opp, &opp_table->opp_list, node) {
  83		if (opp->np == opp_np) {
  84			dev_pm_opp_get(opp);
  85			mutex_unlock(&opp_table->lock);
  86			return opp;
  87		}
  88	}
  89
  90	mutex_unlock(&opp_table->lock);
  91
  92	return NULL;
  93}
  94
  95static struct device_node *of_parse_required_opp(struct device_node *np,
  96						 int index)
  97{
  98	return of_parse_phandle(np, "required-opps", index);
  99}
 100
 101/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
 102static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
 103{
 104	struct opp_table *opp_table;
 105	struct device_node *opp_table_np;
 106
 107	opp_table_np = of_get_parent(opp_np);
 108	if (!opp_table_np)
 109		goto err;
 110
 111	/* It is safe to put the node now as all we need now is its address */
 112	of_node_put(opp_table_np);
 113
 114	mutex_lock(&opp_table_lock);
 115	list_for_each_entry(opp_table, &opp_tables, node) {
 116		if (opp_table_np == opp_table->np) {
 117			_get_opp_table_kref(opp_table);
 118			mutex_unlock(&opp_table_lock);
 119			return opp_table;
 120		}
 121	}
 122	mutex_unlock(&opp_table_lock);
 123
 124err:
 125	return ERR_PTR(-ENODEV);
 126}
 127
 128/* Free resources previously acquired by _opp_table_alloc_required_tables() */
 129static void _opp_table_free_required_tables(struct opp_table *opp_table)
 130{
 131	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 132	int i;
 133
 134	if (!required_opp_tables)
 135		return;
 136
 137	for (i = 0; i < opp_table->required_opp_count; i++) {
 138		if (IS_ERR_OR_NULL(required_opp_tables[i]))
 139			continue;
 140
 141		dev_pm_opp_put_opp_table(required_opp_tables[i]);
 142	}
 143
 144	kfree(required_opp_tables);
 145
 146	opp_table->required_opp_count = 0;
 147	opp_table->required_opp_tables = NULL;
 
 
 148	list_del(&opp_table->lazy);
 
 149}
 150
 151/*
 152 * Populate all devices and opp tables which are part of "required-opps" list.
 153 * Checking only the first OPP node should be enough.
 154 */
 155static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
 156					     struct device *dev,
 157					     struct device_node *opp_np)
 158{
 159	struct opp_table **required_opp_tables;
 160	struct device_node *required_np, *np;
 161	bool lazy = false;
 162	int count, i;
 163
 164	/* Traversing the first OPP node is all we need */
 165	np = of_get_next_available_child(opp_np, NULL);
 166	if (!np) {
 167		dev_warn(dev, "Empty OPP table\n");
 168
 169		return;
 170	}
 171
 172	count = of_count_phandle_with_args(np, "required-opps", NULL);
 173	if (!count)
 174		goto put_np;
 175
 176	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
 177				      GFP_KERNEL);
 178	if (!required_opp_tables)
 179		goto put_np;
 180
 181	opp_table->required_opp_tables = required_opp_tables;
 
 182	opp_table->required_opp_count = count;
 183
 184	for (i = 0; i < count; i++) {
 185		required_np = of_parse_required_opp(np, i);
 186		if (!required_np)
 187			goto free_required_tables;
 188
 189		required_opp_tables[i] = _find_table_of_opp_np(required_np);
 190		of_node_put(required_np);
 191
 192		if (IS_ERR(required_opp_tables[i]))
 193			lazy = true;
 194	}
 195
 196	/* Let's do the linking later on */
 197	if (lazy)
 
 
 
 
 
 198		list_add(&opp_table->lazy, &lazy_opp_tables);
 
 
 199
 200	goto put_np;
 201
 202free_required_tables:
 203	_opp_table_free_required_tables(opp_table);
 204put_np:
 205	of_node_put(np);
 206}
 207
 208void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
 209			int index)
 210{
 211	struct device_node *np, *opp_np;
 212	u32 val;
 213
 214	/*
 215	 * Only required for backward compatibility with v1 bindings, but isn't
 216	 * harmful for other cases. And so we do it unconditionally.
 217	 */
 218	np = of_node_get(dev->of_node);
 219	if (!np)
 220		return;
 221
 222	if (!of_property_read_u32(np, "clock-latency", &val))
 223		opp_table->clock_latency_ns_max = val;
 224	of_property_read_u32(np, "voltage-tolerance",
 225			     &opp_table->voltage_tolerance_v1);
 226
 227	if (of_find_property(np, "#power-domain-cells", NULL))
 228		opp_table->is_genpd = true;
 229
 230	/* Get OPP table node */
 231	opp_np = _opp_of_get_opp_desc_node(np, index);
 232	of_node_put(np);
 233
 234	if (!opp_np)
 235		return;
 236
 237	if (of_property_read_bool(opp_np, "opp-shared"))
 238		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
 239	else
 240		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
 241
 242	opp_table->np = opp_np;
 243
 244	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
 245	of_node_put(opp_np);
 246}
 247
 248void _of_clear_opp_table(struct opp_table *opp_table)
 249{
 250	_opp_table_free_required_tables(opp_table);
 
 251}
 252
 253/*
 254 * Release all resources previously acquired with a call to
 255 * _of_opp_alloc_required_opps().
 256 */
 257void _of_opp_free_required_opps(struct opp_table *opp_table,
 258				struct dev_pm_opp *opp)
 259{
 260	struct dev_pm_opp **required_opps = opp->required_opps;
 261	int i;
 262
 263	if (!required_opps)
 264		return;
 265
 266	for (i = 0; i < opp_table->required_opp_count; i++) {
 267		if (!required_opps[i])
 268			continue;
 269
 270		/* Put the reference back */
 271		dev_pm_opp_put(required_opps[i]);
 272	}
 273
 274	opp->required_opps = NULL;
 275	kfree(required_opps);
 276}
 277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278/* Populate all required OPPs which are part of "required-opps" list */
 279static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
 280				       struct dev_pm_opp *opp)
 281{
 282	struct dev_pm_opp **required_opps;
 283	struct opp_table *required_table;
 284	struct device_node *np;
 285	int i, ret, count = opp_table->required_opp_count;
 286
 287	if (!count)
 288		return 0;
 289
 290	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
 291	if (!required_opps)
 292		return -ENOMEM;
 293
 294	opp->required_opps = required_opps;
 295
 296	for (i = 0; i < count; i++) {
 297		required_table = opp_table->required_opp_tables[i];
 298
 299		/* Required table not added yet, we will link later */
 300		if (IS_ERR_OR_NULL(required_table))
 301			continue;
 302
 303		np = of_parse_required_opp(opp->np, i);
 304		if (unlikely(!np)) {
 305			ret = -ENODEV;
 306			goto free_required_opps;
 307		}
 308
 309		required_opps[i] = _find_opp_of_np(required_table, np);
 310		of_node_put(np);
 311
 312		if (!required_opps[i]) {
 313			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
 314			       __func__, opp->np, i);
 315			ret = -ENODEV;
 316			goto free_required_opps;
 317		}
 318	}
 319
 320	return 0;
 321
 322free_required_opps:
 323	_of_opp_free_required_opps(opp_table, opp);
 324
 325	return ret;
 326}
 327
 328/* Link required OPPs for an individual OPP */
 329static int lazy_link_required_opps(struct opp_table *opp_table,
 330				   struct opp_table *new_table, int index)
 331{
 332	struct device_node *required_np;
 333	struct dev_pm_opp *opp;
 
 334
 335	list_for_each_entry(opp, &opp_table->opp_list, node) {
 336		required_np = of_parse_required_opp(opp->np, index);
 337		if (unlikely(!required_np))
 338			return -ENODEV;
 339
 340		opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
 341		of_node_put(required_np);
 342
 343		if (!opp->required_opps[index]) {
 344			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
 345			       __func__, opp->np, index);
 346			return -ENODEV;
 347		}
 348	}
 349
 350	return 0;
 351}
 352
 353/* Link required OPPs for all OPPs of the newly added OPP table */
 354static void lazy_link_required_opp_table(struct opp_table *new_table)
 355{
 356	struct opp_table *opp_table, *temp, **required_opp_tables;
 357	struct device_node *required_np, *opp_np, *required_table_np;
 358	struct dev_pm_opp *opp;
 359	int i, ret;
 360
 361	mutex_lock(&opp_table_lock);
 362
 363	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
 364		bool lazy = false;
 365
 366		/* opp_np can't be invalid here */
 367		opp_np = of_get_next_available_child(opp_table->np, NULL);
 368
 369		for (i = 0; i < opp_table->required_opp_count; i++) {
 370			required_opp_tables = opp_table->required_opp_tables;
 371
 372			/* Required opp-table is already parsed */
 373			if (!IS_ERR(required_opp_tables[i]))
 374				continue;
 375
 376			/* required_np can't be invalid here */
 377			required_np = of_parse_required_opp(opp_np, i);
 378			required_table_np = of_get_parent(required_np);
 379
 380			of_node_put(required_table_np);
 381			of_node_put(required_np);
 382
 383			/*
 384			 * Newly added table isn't the required opp-table for
 385			 * opp_table.
 386			 */
 387			if (required_table_np != new_table->np) {
 388				lazy = true;
 389				continue;
 390			}
 391
 392			required_opp_tables[i] = new_table;
 393			_get_opp_table_kref(new_table);
 394
 395			/* Link OPPs now */
 396			ret = lazy_link_required_opps(opp_table, new_table, i);
 397			if (ret) {
 398				/* The OPPs will be marked unusable */
 399				lazy = false;
 400				break;
 401			}
 402		}
 403
 404		of_node_put(opp_np);
 405
 406		/* All required opp-tables found, remove from lazy list */
 407		if (!lazy) {
 408			list_del_init(&opp_table->lazy);
 409
 410			list_for_each_entry(opp, &opp_table->opp_list, node)
 411				_required_opps_available(opp, opp_table->required_opp_count);
 412		}
 413	}
 414
 415	mutex_unlock(&opp_table_lock);
 416}
 417
 418static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
 419{
 420	struct device_node *np, *opp_np;
 421	struct property *prop;
 422
 423	if (!opp_table) {
 424		np = of_node_get(dev->of_node);
 425		if (!np)
 426			return -ENODEV;
 427
 428		opp_np = _opp_of_get_opp_desc_node(np, 0);
 429		of_node_put(np);
 430	} else {
 431		opp_np = of_node_get(opp_table->np);
 432	}
 433
 434	/* Lets not fail in case we are parsing opp-v1 bindings */
 435	if (!opp_np)
 436		return 0;
 437
 438	/* Checking only first OPP is sufficient */
 439	np = of_get_next_available_child(opp_np, NULL);
 
 440	if (!np) {
 441		dev_err(dev, "OPP table empty\n");
 442		return -EINVAL;
 443	}
 444	of_node_put(opp_np);
 445
 446	prop = of_find_property(np, "opp-peak-kBps", NULL);
 447	of_node_put(np);
 448
 449	if (!prop || !prop->length)
 450		return 0;
 451
 452	return 1;
 453}
 454
 455int dev_pm_opp_of_find_icc_paths(struct device *dev,
 456				 struct opp_table *opp_table)
 457{
 458	struct device_node *np;
 459	int ret, i, count, num_paths;
 460	struct icc_path **paths;
 461
 462	ret = _bandwidth_supported(dev, opp_table);
 463	if (ret == -EINVAL)
 464		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
 465	else if (ret <= 0)
 466		return ret;
 467
 468	ret = 0;
 469
 470	np = of_node_get(dev->of_node);
 471	if (!np)
 472		return 0;
 473
 474	count = of_count_phandle_with_args(np, "interconnects",
 475					   "#interconnect-cells");
 476	of_node_put(np);
 477	if (count < 0)
 478		return 0;
 479
 480	/* two phandles when #interconnect-cells = <1> */
 481	if (count % 2) {
 482		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
 483		return -EINVAL;
 484	}
 485
 486	num_paths = count / 2;
 487	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
 488	if (!paths)
 489		return -ENOMEM;
 490
 491	for (i = 0; i < num_paths; i++) {
 492		paths[i] = of_icc_get_by_index(dev, i);
 493		if (IS_ERR(paths[i])) {
 494			ret = PTR_ERR(paths[i]);
 495			if (ret != -EPROBE_DEFER) {
 496				dev_err(dev, "%s: Unable to get path%d: %d\n",
 497					__func__, i, ret);
 498			}
 499			goto err;
 500		}
 501	}
 502
 503	if (opp_table) {
 504		opp_table->paths = paths;
 505		opp_table->path_count = num_paths;
 506		return 0;
 507	}
 508
 509err:
 510	while (i--)
 511		icc_put(paths[i]);
 512
 513	kfree(paths);
 514
 515	return ret;
 516}
 517EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
 518
 519static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
 520			      struct device_node *np)
 521{
 522	unsigned int levels = opp_table->supported_hw_count;
 523	int count, versions, ret, i, j;
 524	u32 val;
 525
 526	if (!opp_table->supported_hw) {
 527		/*
 528		 * In the case that no supported_hw has been set by the
 529		 * platform but there is an opp-supported-hw value set for
 530		 * an OPP then the OPP should not be enabled as there is
 531		 * no way to see if the hardware supports it.
 532		 */
 533		if (of_find_property(np, "opp-supported-hw", NULL))
 534			return false;
 535		else
 536			return true;
 537	}
 538
 539	count = of_property_count_u32_elems(np, "opp-supported-hw");
 540	if (count <= 0 || count % levels) {
 541		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
 542			__func__, count);
 543		return false;
 544	}
 545
 546	versions = count / levels;
 547
 548	/* All levels in at least one of the versions should match */
 549	for (i = 0; i < versions; i++) {
 550		bool supported = true;
 551
 552		for (j = 0; j < levels; j++) {
 553			ret = of_property_read_u32_index(np, "opp-supported-hw",
 554							 i * levels + j, &val);
 555			if (ret) {
 556				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
 557					 __func__, i * levels + j, ret);
 558				return false;
 559			}
 560
 561			/* Check if the level is supported */
 562			if (!(val & opp_table->supported_hw[j])) {
 563				supported = false;
 564				break;
 565			}
 566		}
 567
 568		if (supported)
 569			return true;
 570	}
 571
 572	return false;
 573}
 574
 575static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
 576			      struct opp_table *opp_table)
 
 577{
 578	u32 *microvolt, *microamp = NULL;
 579	int supplies = opp_table->regulator_count, vcount, icount, ret, i, j;
 580	struct property *prop = NULL;
 581	char name[NAME_MAX];
 
 
 582
 583	/* Search for "opp-microvolt-<name>" */
 584	if (opp_table->prop_name) {
 585		snprintf(name, sizeof(name), "opp-microvolt-%s",
 586			 opp_table->prop_name);
 587		prop = of_find_property(opp->np, name, NULL);
 588	}
 589
 590	if (!prop) {
 591		/* Search for "opp-microvolt" */
 592		sprintf(name, "opp-microvolt");
 593		prop = of_find_property(opp->np, name, NULL);
 594
 595		/* Missing property isn't a problem, but an invalid entry is */
 596		if (!prop) {
 597			if (unlikely(supplies == -1)) {
 598				/* Initialize regulator_count */
 599				opp_table->regulator_count = 0;
 600				return 0;
 601			}
 602
 603			if (!supplies)
 604				return 0;
 605
 606			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
 607				__func__);
 608			return -EINVAL;
 609		}
 610	}
 611
 612	if (unlikely(supplies == -1)) {
 613		/* Initialize regulator_count */
 614		supplies = opp_table->regulator_count = 1;
 615	} else if (unlikely(!supplies)) {
 616		dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
 617		return -EINVAL;
 618	}
 619
 620	vcount = of_property_count_u32_elems(opp->np, name);
 621	if (vcount < 0) {
 622		dev_err(dev, "%s: Invalid %s property (%d)\n",
 623			__func__, name, vcount);
 624		return vcount;
 625	}
 
 626
 627	/* There can be one or three elements per supply */
 628	if (vcount != supplies && vcount != supplies * 3) {
 629		dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
 630			__func__, name, vcount, supplies);
 631		return -EINVAL;
 632	}
 633
 634	microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
 635	if (!microvolt)
 636		return -ENOMEM;
 637
 638	ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
 639	if (ret) {
 640		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
 641		ret = -EINVAL;
 642		goto free_microvolt;
 643	}
 644
 645	/* Search for "opp-microamp-<name>" */
 646	prop = NULL;
 647	if (opp_table->prop_name) {
 648		snprintf(name, sizeof(name), "opp-microamp-%s",
 649			 opp_table->prop_name);
 650		prop = of_find_property(opp->np, name, NULL);
 651	}
 
 
 
 652
 653	if (!prop) {
 654		/* Search for "opp-microamp" */
 655		sprintf(name, "opp-microamp");
 656		prop = of_find_property(opp->np, name, NULL);
 657	}
 658
 659	if (prop) {
 660		icount = of_property_count_u32_elems(opp->np, name);
 661		if (icount < 0) {
 662			dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
 663				name, icount);
 664			ret = icount;
 665			goto free_microvolt;
 
 
 
 
 
 
 666		}
 
 667
 668		if (icount != supplies) {
 669			dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
 670				__func__, name, icount, supplies);
 671			ret = -EINVAL;
 672			goto free_microvolt;
 673		}
 674
 675		microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
 676		if (!microamp) {
 677			ret = -EINVAL;
 678			goto free_microvolt;
 679		}
 
 
 
 
 
 
 
 
 
 
 
 680
 681		ret = of_property_read_u32_array(opp->np, name, microamp,
 682						 icount);
 683		if (ret) {
 684			dev_err(dev, "%s: error parsing %s: %d\n", __func__,
 685				name, ret);
 686			ret = -EINVAL;
 687			goto free_microamp;
 688		}
 689	}
 690
 691	for (i = 0, j = 0; i < supplies; i++) {
 692		opp->supplies[i].u_volt = microvolt[j++];
 
 
 
 
 
 
 693
 694		if (vcount == supplies) {
 695			opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
 696			opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
 697		} else {
 698			opp->supplies[i].u_volt_min = microvolt[j++];
 699			opp->supplies[i].u_volt_max = microvolt[j++];
 
 
 
 
 
 700		}
 701
 702		if (microamp)
 703			opp->supplies[i].u_amp = microamp[i];
 
 
 
 704	}
 705
 
 706free_microamp:
 707	kfree(microamp);
 708free_microvolt:
 709	kfree(microvolt);
 710
 711	return ret;
 712}
 713
 714/**
 715 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
 716 *				  entries
 717 * @dev:	device pointer used to lookup OPP table.
 718 *
 719 * Free OPPs created using static entries present in DT.
 720 */
 721void dev_pm_opp_of_remove_table(struct device *dev)
 722{
 723	dev_pm_opp_remove_table(dev);
 724}
 725EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
 726
 727static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *table,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728		    struct device_node *np, bool peak)
 729{
 730	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
 731	struct property *prop;
 732	int i, count, ret;
 733	u32 *bw;
 734
 735	prop = of_find_property(np, name, NULL);
 736	if (!prop)
 737		return -ENODEV;
 738
 739	count = prop->length / sizeof(u32);
 740	if (table->path_count != count) {
 741		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
 742				__func__, name, count, table->path_count);
 743		return -EINVAL;
 744	}
 745
 746	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
 747	if (!bw)
 748		return -ENOMEM;
 749
 750	ret = of_property_read_u32_array(np, name, bw, count);
 751	if (ret) {
 752		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
 753		goto out;
 754	}
 755
 756	for (i = 0; i < count; i++) {
 757		if (peak)
 758			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
 759		else
 760			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
 761	}
 762
 763out:
 764	kfree(bw);
 765	return ret;
 766}
 767
 768static int _read_opp_key(struct dev_pm_opp *new_opp, struct opp_table *table,
 769			 struct device_node *np, bool *rate_not_available)
 770{
 771	bool found = false;
 772	u64 rate;
 773	int ret;
 774
 775	ret = of_property_read_u64(np, "opp-hz", &rate);
 776	if (!ret) {
 777		/*
 778		 * Rate is defined as an unsigned long in clk API, and so
 779		 * casting explicitly to its type. Must be fixed once rate is 64
 780		 * bit guaranteed in clk API.
 781		 */
 782		new_opp->rate = (unsigned long)rate;
 783		found = true;
 784	}
 785	*rate_not_available = !!ret;
 786
 787	/*
 788	 * Bandwidth consists of peak and average (optional) values:
 789	 * opp-peak-kBps = <path1_value path2_value>;
 790	 * opp-avg-kBps = <path1_value path2_value>;
 791	 */
 792	ret = _read_bw(new_opp, table, np, true);
 793	if (!ret) {
 794		found = true;
 795		ret = _read_bw(new_opp, table, np, false);
 796	}
 797
 798	/* The properties were found but we failed to parse them */
 799	if (ret && ret != -ENODEV)
 800		return ret;
 801
 802	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
 803		found = true;
 804
 805	if (found)
 806		return 0;
 807
 808	return ret;
 809}
 810
 811/**
 812 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
 813 * @opp_table:	OPP table
 814 * @dev:	device for which we do this operation
 815 * @np:		device node
 816 *
 817 * This function adds an opp definition to the opp table and returns status. The
 818 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
 819 * removed by dev_pm_opp_remove.
 820 *
 821 * Return:
 822 * Valid OPP pointer:
 823 *		On success
 824 * NULL:
 825 *		Duplicate OPPs (both freq and volt are same) and opp->available
 826 *		OR if the OPP is not supported by hardware.
 827 * ERR_PTR(-EEXIST):
 828 *		Freq are same and volt are different OR
 829 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 830 * ERR_PTR(-ENOMEM):
 831 *		Memory allocation failure
 832 * ERR_PTR(-EINVAL):
 833 *		Failed parsing the OPP node
 834 */
 835static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
 836		struct device *dev, struct device_node *np)
 837{
 838	struct dev_pm_opp *new_opp;
 839	u32 val;
 840	int ret;
 841	bool rate_not_available = false;
 842
 843	new_opp = _opp_allocate(opp_table);
 844	if (!new_opp)
 845		return ERR_PTR(-ENOMEM);
 846
 847	ret = _read_opp_key(new_opp, opp_table, np, &rate_not_available);
 848	if (ret < 0) {
 849		dev_err(dev, "%s: opp key field not found\n", __func__);
 850		goto free_opp;
 851	}
 852
 853	/* Check if the OPP supports hardware's hierarchy of versions or not */
 854	if (!_opp_is_supported(dev, opp_table, np)) {
 855		dev_dbg(dev, "OPP not supported by hardware: %lu\n",
 856			new_opp->rate);
 857		goto free_opp;
 858	}
 859
 860	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
 861
 862	new_opp->np = np;
 863	new_opp->dynamic = false;
 864	new_opp->available = true;
 865
 866	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
 867	if (ret)
 868		goto free_opp;
 869
 870	if (!of_property_read_u32(np, "clock-latency-ns", &val))
 871		new_opp->clock_latency_ns = val;
 872
 873	ret = opp_parse_supplies(new_opp, dev, opp_table);
 874	if (ret)
 875		goto free_required_opps;
 876
 877	if (opp_table->is_genpd)
 878		new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
 879
 880	ret = _opp_add(dev, new_opp, opp_table, rate_not_available);
 881	if (ret) {
 882		/* Don't return error for duplicate OPPs */
 883		if (ret == -EBUSY)
 884			ret = 0;
 885		goto free_required_opps;
 886	}
 887
 888	/* OPP to select on device suspend */
 889	if (of_property_read_bool(np, "opp-suspend")) {
 890		if (opp_table->suspend_opp) {
 891			/* Pick the OPP with higher rate as suspend OPP */
 892			if (new_opp->rate > opp_table->suspend_opp->rate) {
 893				opp_table->suspend_opp->suspend = false;
 894				new_opp->suspend = true;
 895				opp_table->suspend_opp = new_opp;
 896			}
 897		} else {
 898			new_opp->suspend = true;
 899			opp_table->suspend_opp = new_opp;
 900		}
 901	}
 902
 903	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
 904		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
 905
 906	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
 907		 __func__, new_opp->turbo, new_opp->rate,
 908		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
 909		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
 910		 new_opp->level);
 911
 912	/*
 913	 * Notify the changes in the availability of the operable
 914	 * frequency/voltage list.
 915	 */
 916	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
 917	return new_opp;
 918
 919free_required_opps:
 920	_of_opp_free_required_opps(opp_table, new_opp);
 
 
 921free_opp:
 922	_opp_free(new_opp);
 923
 924	return ERR_PTR(ret);
 925}
 926
 927/* Initializes OPP tables based on new bindings */
 928static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
 929{
 930	struct device_node *np;
 931	int ret, count = 0;
 932	struct dev_pm_opp *opp;
 933
 934	/* OPP table is already initialized for the device */
 935	mutex_lock(&opp_table->lock);
 936	if (opp_table->parsed_static_opps) {
 937		opp_table->parsed_static_opps++;
 938		mutex_unlock(&opp_table->lock);
 939		return 0;
 940	}
 941
 942	opp_table->parsed_static_opps = 1;
 943	mutex_unlock(&opp_table->lock);
 944
 945	/* We have opp-table node now, iterate over it and add OPPs */
 946	for_each_available_child_of_node(opp_table->np, np) {
 947		opp = _opp_add_static_v2(opp_table, dev, np);
 948		if (IS_ERR(opp)) {
 949			ret = PTR_ERR(opp);
 950			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
 951				ret);
 952			of_node_put(np);
 953			goto remove_static_opp;
 954		} else if (opp) {
 955			count++;
 956		}
 957	}
 958
 959	/* There should be one or more OPPs defined */
 960	if (!count) {
 961		dev_err(dev, "%s: no supported OPPs", __func__);
 962		ret = -ENOENT;
 963		goto remove_static_opp;
 964	}
 965
 966	list_for_each_entry(opp, &opp_table->opp_list, node) {
 967		/* Any non-zero performance state would enable the feature */
 968		if (opp->pstate) {
 969			opp_table->genpd_performance_state = true;
 970			break;
 971		}
 972	}
 973
 974	lazy_link_required_opp_table(opp_table);
 975
 976	return 0;
 977
 978remove_static_opp:
 979	_opp_remove_all_static(opp_table);
 980
 981	return ret;
 982}
 983
 984/* Initializes OPP tables based on old-deprecated bindings */
 985static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
 986{
 987	const struct property *prop;
 988	const __be32 *val;
 989	int nr, ret = 0;
 990
 991	mutex_lock(&opp_table->lock);
 992	if (opp_table->parsed_static_opps) {
 993		opp_table->parsed_static_opps++;
 994		mutex_unlock(&opp_table->lock);
 995		return 0;
 996	}
 997
 998	opp_table->parsed_static_opps = 1;
 999	mutex_unlock(&opp_table->lock);
1000
1001	prop = of_find_property(dev->of_node, "operating-points", NULL);
1002	if (!prop) {
1003		ret = -ENODEV;
1004		goto remove_static_opp;
1005	}
1006	if (!prop->value) {
1007		ret = -ENODATA;
1008		goto remove_static_opp;
1009	}
1010
1011	/*
1012	 * Each OPP is a set of tuples consisting of frequency and
1013	 * voltage like <freq-kHz vol-uV>.
1014	 */
1015	nr = prop->length / sizeof(u32);
1016	if (nr % 2) {
1017		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1018		ret = -EINVAL;
1019		goto remove_static_opp;
1020	}
1021
1022	val = prop->value;
1023	while (nr) {
1024		unsigned long freq = be32_to_cpup(val++) * 1000;
1025		unsigned long volt = be32_to_cpup(val++);
 
 
 
 
1026
1027		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1028		if (ret) {
1029			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1030				__func__, freq, ret);
1031			goto remove_static_opp;
1032		}
1033		nr -= 2;
1034	}
1035
1036	return 0;
1037
1038remove_static_opp:
1039	_opp_remove_all_static(opp_table);
1040
1041	return ret;
1042}
1043
1044static int _of_add_table_indexed(struct device *dev, int index, bool getclk)
1045{
1046	struct opp_table *opp_table;
1047	int ret, count;
1048
1049	if (index) {
1050		/*
1051		 * If only one phandle is present, then the same OPP table
1052		 * applies for all index requests.
1053		 */
1054		count = of_count_phandle_with_args(dev->of_node,
1055						   "operating-points-v2", NULL);
1056		if (count == 1)
1057			index = 0;
1058	}
1059
1060	opp_table = _add_opp_table_indexed(dev, index, getclk);
1061	if (IS_ERR(opp_table))
1062		return PTR_ERR(opp_table);
1063
1064	/*
1065	 * OPPs have two version of bindings now. Also try the old (v1)
1066	 * bindings for backward compatibility with older dtbs.
1067	 */
1068	if (opp_table->np)
1069		ret = _of_add_opp_table_v2(dev, opp_table);
1070	else
1071		ret = _of_add_opp_table_v1(dev, opp_table);
1072
1073	if (ret)
1074		dev_pm_opp_put_opp_table(opp_table);
1075
1076	return ret;
1077}
1078
1079static void devm_pm_opp_of_table_release(void *data)
1080{
1081	dev_pm_opp_of_remove_table(data);
1082}
1083
 
 
 
 
 
 
 
 
 
 
 
1084/**
1085 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1086 * @dev:	device pointer used to lookup OPP table.
1087 *
1088 * Register the initial OPP table with the OPP library for given device.
1089 *
1090 * The opp_table structure will be freed after the device is destroyed.
1091 *
1092 * Return:
1093 * 0		On success OR
1094 *		Duplicate OPPs (both freq and volt are same) and opp->available
1095 * -EEXIST	Freq are same and volt are different OR
1096 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1097 * -ENOMEM	Memory allocation failure
1098 * -ENODEV	when 'operating-points' property is not found or is invalid data
1099 *		in device node.
1100 * -ENODATA	when empty 'operating-points' property is found
1101 * -EINVAL	when invalid entries are found in opp-v2 table
1102 */
1103int devm_pm_opp_of_add_table(struct device *dev)
1104{
1105	int ret;
1106
1107	ret = dev_pm_opp_of_add_table(dev);
1108	if (ret)
1109		return ret;
1110
1111	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1112}
1113EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1114
1115/**
1116 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1117 * @dev:	device pointer used to lookup OPP table.
1118 *
1119 * Register the initial OPP table with the OPP library for given device.
1120 *
1121 * Return:
1122 * 0		On success OR
1123 *		Duplicate OPPs (both freq and volt are same) and opp->available
1124 * -EEXIST	Freq are same and volt are different OR
1125 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1126 * -ENOMEM	Memory allocation failure
1127 * -ENODEV	when 'operating-points' property is not found or is invalid data
1128 *		in device node.
1129 * -ENODATA	when empty 'operating-points' property is found
1130 * -EINVAL	when invalid entries are found in opp-v2 table
1131 */
1132int dev_pm_opp_of_add_table(struct device *dev)
1133{
1134	return _of_add_table_indexed(dev, 0, true);
1135}
1136EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1137
1138/**
1139 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1140 * @dev:	device pointer used to lookup OPP table.
1141 * @index:	Index number.
1142 *
1143 * Register the initial OPP table with the OPP library for given device only
1144 * using the "operating-points-v2" property.
1145 *
1146 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1147 */
1148int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1149{
1150	return _of_add_table_indexed(dev, index, true);
1151}
1152EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1153
1154/**
1155 * dev_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device
1156 *		tree without getting clk for device.
1157 * @dev:	device pointer used to lookup OPP table.
1158 * @index:	Index number.
1159 *
1160 * Register the initial OPP table with the OPP library for given device only
1161 * using the "operating-points-v2" property. Do not try to get the clk for the
1162 * device.
1163 *
1164 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1165 */
1166int dev_pm_opp_of_add_table_noclk(struct device *dev, int index)
1167{
1168	return _of_add_table_indexed(dev, index, false);
1169}
1170EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_noclk);
1171
1172/* CPU device specific helpers */
1173
1174/**
1175 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1176 * @cpumask:	cpumask for which OPP table needs to be removed
1177 *
1178 * This removes the OPP tables for CPUs present in the @cpumask.
1179 * This should be used only to remove static entries created from DT.
1180 */
1181void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1182{
1183	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1184}
1185EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1186
1187/**
1188 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1189 * @cpumask:	cpumask for which OPP table needs to be added.
1190 *
1191 * This adds the OPP tables for CPUs present in the @cpumask.
1192 */
1193int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1194{
1195	struct device *cpu_dev;
1196	int cpu, ret;
1197
1198	if (WARN_ON(cpumask_empty(cpumask)))
1199		return -ENODEV;
1200
1201	for_each_cpu(cpu, cpumask) {
1202		cpu_dev = get_cpu_device(cpu);
1203		if (!cpu_dev) {
1204			pr_err("%s: failed to get cpu%d device\n", __func__,
1205			       cpu);
1206			ret = -ENODEV;
1207			goto remove_table;
1208		}
1209
1210		ret = dev_pm_opp_of_add_table(cpu_dev);
1211		if (ret) {
1212			/*
1213			 * OPP may get registered dynamically, don't print error
1214			 * message here.
1215			 */
1216			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1217				 __func__, cpu, ret);
1218
1219			goto remove_table;
1220		}
1221	}
1222
1223	return 0;
1224
1225remove_table:
1226	/* Free all other OPPs */
1227	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1228
1229	return ret;
1230}
1231EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1232
1233/*
1234 * Works only for OPP v2 bindings.
1235 *
1236 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1237 */
1238/**
1239 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1240 *				      @cpu_dev using operating-points-v2
1241 *				      bindings.
1242 *
1243 * @cpu_dev:	CPU device for which we do this operation
1244 * @cpumask:	cpumask to update with information of sharing CPUs
1245 *
1246 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1247 *
1248 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1249 */
1250int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1251				   struct cpumask *cpumask)
1252{
1253	struct device_node *np, *tmp_np, *cpu_np;
1254	int cpu, ret = 0;
1255
1256	/* Get OPP descriptor node */
1257	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1258	if (!np) {
1259		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1260		return -ENOENT;
1261	}
1262
1263	cpumask_set_cpu(cpu_dev->id, cpumask);
1264
1265	/* OPPs are shared ? */
1266	if (!of_property_read_bool(np, "opp-shared"))
1267		goto put_cpu_node;
1268
1269	for_each_possible_cpu(cpu) {
1270		if (cpu == cpu_dev->id)
1271			continue;
1272
1273		cpu_np = of_cpu_device_node_get(cpu);
1274		if (!cpu_np) {
1275			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1276				__func__, cpu);
1277			ret = -ENOENT;
1278			goto put_cpu_node;
1279		}
1280
1281		/* Get OPP descriptor node */
1282		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1283		of_node_put(cpu_np);
1284		if (!tmp_np) {
1285			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1286			ret = -ENOENT;
1287			goto put_cpu_node;
1288		}
1289
1290		/* CPUs are sharing opp node */
1291		if (np == tmp_np)
1292			cpumask_set_cpu(cpu, cpumask);
1293
1294		of_node_put(tmp_np);
1295	}
1296
1297put_cpu_node:
1298	of_node_put(np);
1299	return ret;
1300}
1301EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1302
1303/**
1304 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1305 * @np: Node that contains the "required-opps" property.
1306 * @index: Index of the phandle to parse.
1307 *
1308 * Returns the performance state of the OPP pointed out by the "required-opps"
1309 * property at @index in @np.
1310 *
1311 * Return: Zero or positive performance state on success, otherwise negative
1312 * value on errors.
1313 */
1314int of_get_required_opp_performance_state(struct device_node *np, int index)
1315{
1316	struct dev_pm_opp *opp;
1317	struct device_node *required_np;
1318	struct opp_table *opp_table;
1319	int pstate = -EINVAL;
1320
1321	required_np = of_parse_required_opp(np, index);
1322	if (!required_np)
1323		return -ENODEV;
1324
1325	opp_table = _find_table_of_opp_np(required_np);
1326	if (IS_ERR(opp_table)) {
1327		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1328		       __func__, np, PTR_ERR(opp_table));
1329		goto put_required_np;
1330	}
1331
 
 
 
 
 
 
1332	opp = _find_opp_of_np(opp_table, required_np);
1333	if (opp) {
1334		pstate = opp->pstate;
 
 
 
 
 
1335		dev_pm_opp_put(opp);
 
1336	}
1337
1338	dev_pm_opp_put_opp_table(opp_table);
1339
1340put_required_np:
1341	of_node_put(required_np);
1342
1343	return pstate;
1344}
1345EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1346
1347/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1349 * @opp:	opp for which DT node has to be returned for
1350 *
1351 * Return: DT node corresponding to the opp, else 0 on success.
1352 *
1353 * The caller needs to put the node with of_node_put() after using it.
1354 */
1355struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1356{
1357	if (IS_ERR_OR_NULL(opp)) {
1358		pr_err("%s: Invalid parameters\n", __func__);
1359		return NULL;
1360	}
1361
1362	return of_node_get(opp->np);
1363}
1364EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1365
1366/*
1367 * Callback function provided to the Energy Model framework upon registration.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368 * This computes the power estimated by @dev at @kHz if it is the frequency
1369 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1370 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1371 * frequency and @mW to the associated power. The power is estimated as
1372 * P = C * V^2 * f with C being the device's capacitance and V and f
1373 * respectively the voltage and frequency of the OPP.
 
 
1374 *
1375 * Returns -EINVAL if the power calculation failed because of missing
1376 * parameters, 0 otherwise.
1377 */
1378static int __maybe_unused _get_power(unsigned long *mW, unsigned long *kHz,
1379				     struct device *dev)
1380{
1381	struct dev_pm_opp *opp;
1382	struct device_node *np;
1383	unsigned long mV, Hz;
1384	u32 cap;
1385	u64 tmp;
1386	int ret;
1387
1388	np = of_node_get(dev->of_node);
1389	if (!np)
1390		return -EINVAL;
1391
1392	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1393	of_node_put(np);
1394	if (ret)
1395		return -EINVAL;
1396
1397	Hz = *kHz * 1000;
1398	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1399	if (IS_ERR(opp))
1400		return -EINVAL;
1401
1402	mV = dev_pm_opp_get_voltage(opp) / 1000;
1403	dev_pm_opp_put(opp);
1404	if (!mV)
1405		return -EINVAL;
1406
1407	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1408	do_div(tmp, 1000000000);
 
1409
1410	*mW = (unsigned long)tmp;
1411	*kHz = Hz / 1000;
1412
1413	return 0;
1414}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415
1416/**
1417 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1418 * @dev		: Device for which an Energy Model has to be registered
1419 * @cpus	: CPUs for which an Energy Model has to be registered. For
1420 *		other type of devices it should be set to NULL.
1421 *
1422 * This checks whether the "dynamic-power-coefficient" devicetree property has
1423 * been specified, and tries to register an Energy Model with it if it has.
1424 * Having this property means the voltages are known for OPPs and the EM
1425 * might be calculated.
1426 */
1427int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1428{
1429	struct em_data_callback em_cb = EM_DATA_CB(_get_power);
1430	struct device_node *np;
1431	int ret, nr_opp;
1432	u32 cap;
1433
1434	if (IS_ERR_OR_NULL(dev)) {
1435		ret = -EINVAL;
1436		goto failed;
1437	}
1438
1439	nr_opp = dev_pm_opp_get_opp_count(dev);
1440	if (nr_opp <= 0) {
1441		ret = -EINVAL;
1442		goto failed;
1443	}
1444
 
 
 
 
 
 
1445	np = of_node_get(dev->of_node);
1446	if (!np) {
1447		ret = -EINVAL;
1448		goto failed;
1449	}
1450
1451	/*
1452	 * Register an EM only if the 'dynamic-power-coefficient' property is
1453	 * set in devicetree. It is assumed the voltage values are known if that
1454	 * property is set since it is useless otherwise. If voltages are not
1455	 * known, just let the EM registration fail with an error to alert the
1456	 * user about the inconsistent configuration.
1457	 */
1458	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1459	of_node_put(np);
1460	if (ret || !cap) {
1461		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1462		ret = -EINVAL;
1463		goto failed;
1464	}
1465
 
 
 
1466	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1467	if (ret)
1468		goto failed;
1469
1470	return 0;
1471
1472failed:
1473	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1474	return ret;
1475}
1476EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);