Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_lib.h"
5#include "ice_switch.h"
6#include "ice_trace.h"
7
8#define ICE_ETH_DA_OFFSET 0
9#define ICE_ETH_ETHTYPE_OFFSET 12
10#define ICE_ETH_VLAN_TCI_OFFSET 14
11#define ICE_MAX_VLAN_ID 0xFFF
12#define ICE_IPV6_ETHER_ID 0x86DD
13
14/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
15 * struct to configure any switch filter rules.
16 * {DA (6 bytes), SA(6 bytes),
17 * Ether type (2 bytes for header without VLAN tag) OR
18 * VLAN tag (4 bytes for header with VLAN tag) }
19 *
20 * Word on Hardcoded values
21 * byte 0 = 0x2: to identify it as locally administered DA MAC
22 * byte 6 = 0x2: to identify it as locally administered SA MAC
23 * byte 12 = 0x81 & byte 13 = 0x00:
24 * In case of VLAN filter first two bytes defines ether type (0x8100)
25 * and remaining two bytes are placeholder for programming a given VLAN ID
26 * In case of Ether type filter it is treated as header without VLAN tag
27 * and byte 12 and 13 is used to program a given Ether type instead
28 */
29static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
30 0x2, 0, 0, 0, 0, 0,
31 0x81, 0, 0, 0};
32
33enum {
34 ICE_PKT_OUTER_IPV6 = BIT(0),
35 ICE_PKT_TUN_GTPC = BIT(1),
36 ICE_PKT_TUN_GTPU = BIT(2),
37 ICE_PKT_TUN_NVGRE = BIT(3),
38 ICE_PKT_TUN_UDP = BIT(4),
39 ICE_PKT_INNER_IPV6 = BIT(5),
40 ICE_PKT_INNER_TCP = BIT(6),
41 ICE_PKT_INNER_UDP = BIT(7),
42 ICE_PKT_GTP_NOPAY = BIT(8),
43 ICE_PKT_KMALLOC = BIT(9),
44 ICE_PKT_PPPOE = BIT(10),
45 ICE_PKT_L2TPV3 = BIT(11),
46 ICE_PKT_PFCP = BIT(12),
47};
48
49struct ice_dummy_pkt_offsets {
50 enum ice_protocol_type type;
51 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
52};
53
54struct ice_dummy_pkt_profile {
55 const struct ice_dummy_pkt_offsets *offsets;
56 const u8 *pkt;
57 u32 match;
58 u16 pkt_len;
59 u16 offsets_len;
60};
61
62#define ICE_DECLARE_PKT_OFFSETS(type) \
63 static const struct ice_dummy_pkt_offsets \
64 ice_dummy_##type##_packet_offsets[]
65
66#define ICE_DECLARE_PKT_TEMPLATE(type) \
67 static const u8 ice_dummy_##type##_packet[]
68
69#define ICE_PKT_PROFILE(type, m) { \
70 .match = (m), \
71 .pkt = ice_dummy_##type##_packet, \
72 .pkt_len = sizeof(ice_dummy_##type##_packet), \
73 .offsets = ice_dummy_##type##_packet_offsets, \
74 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \
75}
76
77ICE_DECLARE_PKT_OFFSETS(vlan) = {
78 { ICE_VLAN_OFOS, 12 },
79};
80
81ICE_DECLARE_PKT_TEMPLATE(vlan) = {
82 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
83};
84
85ICE_DECLARE_PKT_OFFSETS(qinq) = {
86 { ICE_VLAN_EX, 12 },
87 { ICE_VLAN_IN, 16 },
88};
89
90ICE_DECLARE_PKT_TEMPLATE(qinq) = {
91 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
92 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
93};
94
95ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
96 { ICE_MAC_OFOS, 0 },
97 { ICE_ETYPE_OL, 12 },
98 { ICE_IPV4_OFOS, 14 },
99 { ICE_NVGRE, 34 },
100 { ICE_MAC_IL, 42 },
101 { ICE_ETYPE_IL, 54 },
102 { ICE_IPV4_IL, 56 },
103 { ICE_TCP_IL, 76 },
104 { ICE_PROTOCOL_LAST, 0 },
105};
106
107ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
108 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
109 0x00, 0x00, 0x00, 0x00,
110 0x00, 0x00, 0x00, 0x00,
111
112 0x08, 0x00, /* ICE_ETYPE_OL 12 */
113
114 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
115 0x00, 0x00, 0x00, 0x00,
116 0x00, 0x2F, 0x00, 0x00,
117 0x00, 0x00, 0x00, 0x00,
118 0x00, 0x00, 0x00, 0x00,
119
120 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
121 0x00, 0x00, 0x00, 0x00,
122
123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
124 0x00, 0x00, 0x00, 0x00,
125 0x00, 0x00, 0x00, 0x00,
126
127 0x08, 0x00, /* ICE_ETYPE_IL 54 */
128
129 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
130 0x00, 0x00, 0x00, 0x00,
131 0x00, 0x06, 0x00, 0x00,
132 0x00, 0x00, 0x00, 0x00,
133 0x00, 0x00, 0x00, 0x00,
134
135 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
136 0x00, 0x00, 0x00, 0x00,
137 0x00, 0x00, 0x00, 0x00,
138 0x50, 0x02, 0x20, 0x00,
139 0x00, 0x00, 0x00, 0x00
140};
141
142ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
143 { ICE_MAC_OFOS, 0 },
144 { ICE_ETYPE_OL, 12 },
145 { ICE_IPV4_OFOS, 14 },
146 { ICE_NVGRE, 34 },
147 { ICE_MAC_IL, 42 },
148 { ICE_ETYPE_IL, 54 },
149 { ICE_IPV4_IL, 56 },
150 { ICE_UDP_ILOS, 76 },
151 { ICE_PROTOCOL_LAST, 0 },
152};
153
154ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
155 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
156 0x00, 0x00, 0x00, 0x00,
157 0x00, 0x00, 0x00, 0x00,
158
159 0x08, 0x00, /* ICE_ETYPE_OL 12 */
160
161 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
162 0x00, 0x00, 0x00, 0x00,
163 0x00, 0x2F, 0x00, 0x00,
164 0x00, 0x00, 0x00, 0x00,
165 0x00, 0x00, 0x00, 0x00,
166
167 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
168 0x00, 0x00, 0x00, 0x00,
169
170 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
171 0x00, 0x00, 0x00, 0x00,
172 0x00, 0x00, 0x00, 0x00,
173
174 0x08, 0x00, /* ICE_ETYPE_IL 54 */
175
176 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
177 0x00, 0x00, 0x00, 0x00,
178 0x00, 0x11, 0x00, 0x00,
179 0x00, 0x00, 0x00, 0x00,
180 0x00, 0x00, 0x00, 0x00,
181
182 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
183 0x00, 0x08, 0x00, 0x00,
184};
185
186ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
187 { ICE_MAC_OFOS, 0 },
188 { ICE_ETYPE_OL, 12 },
189 { ICE_IPV4_OFOS, 14 },
190 { ICE_UDP_OF, 34 },
191 { ICE_VXLAN, 42 },
192 { ICE_GENEVE, 42 },
193 { ICE_VXLAN_GPE, 42 },
194 { ICE_MAC_IL, 50 },
195 { ICE_ETYPE_IL, 62 },
196 { ICE_IPV4_IL, 64 },
197 { ICE_TCP_IL, 84 },
198 { ICE_PROTOCOL_LAST, 0 },
199};
200
201ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
202 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
203 0x00, 0x00, 0x00, 0x00,
204 0x00, 0x00, 0x00, 0x00,
205
206 0x08, 0x00, /* ICE_ETYPE_OL 12 */
207
208 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
209 0x00, 0x01, 0x00, 0x00,
210 0x40, 0x11, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00,
212 0x00, 0x00, 0x00, 0x00,
213
214 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
215 0x00, 0x46, 0x00, 0x00,
216
217 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
218 0x00, 0x00, 0x00, 0x00,
219
220 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
221 0x00, 0x00, 0x00, 0x00,
222 0x00, 0x00, 0x00, 0x00,
223
224 0x08, 0x00, /* ICE_ETYPE_IL 62 */
225
226 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
227 0x00, 0x01, 0x00, 0x00,
228 0x40, 0x06, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00,
230 0x00, 0x00, 0x00, 0x00,
231
232 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
233 0x00, 0x00, 0x00, 0x00,
234 0x00, 0x00, 0x00, 0x00,
235 0x50, 0x02, 0x20, 0x00,
236 0x00, 0x00, 0x00, 0x00
237};
238
239ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
240 { ICE_MAC_OFOS, 0 },
241 { ICE_ETYPE_OL, 12 },
242 { ICE_IPV4_OFOS, 14 },
243 { ICE_UDP_OF, 34 },
244 { ICE_VXLAN, 42 },
245 { ICE_GENEVE, 42 },
246 { ICE_VXLAN_GPE, 42 },
247 { ICE_MAC_IL, 50 },
248 { ICE_ETYPE_IL, 62 },
249 { ICE_IPV4_IL, 64 },
250 { ICE_UDP_ILOS, 84 },
251 { ICE_PROTOCOL_LAST, 0 },
252};
253
254ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
255 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
256 0x00, 0x00, 0x00, 0x00,
257 0x00, 0x00, 0x00, 0x00,
258
259 0x08, 0x00, /* ICE_ETYPE_OL 12 */
260
261 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
262 0x00, 0x01, 0x00, 0x00,
263 0x00, 0x11, 0x00, 0x00,
264 0x00, 0x00, 0x00, 0x00,
265 0x00, 0x00, 0x00, 0x00,
266
267 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
268 0x00, 0x3a, 0x00, 0x00,
269
270 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
271 0x00, 0x00, 0x00, 0x00,
272
273 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
274 0x00, 0x00, 0x00, 0x00,
275 0x00, 0x00, 0x00, 0x00,
276
277 0x08, 0x00, /* ICE_ETYPE_IL 62 */
278
279 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
280 0x00, 0x01, 0x00, 0x00,
281 0x00, 0x11, 0x00, 0x00,
282 0x00, 0x00, 0x00, 0x00,
283 0x00, 0x00, 0x00, 0x00,
284
285 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
286 0x00, 0x08, 0x00, 0x00,
287};
288
289ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
290 { ICE_MAC_OFOS, 0 },
291 { ICE_ETYPE_OL, 12 },
292 { ICE_IPV4_OFOS, 14 },
293 { ICE_NVGRE, 34 },
294 { ICE_MAC_IL, 42 },
295 { ICE_ETYPE_IL, 54 },
296 { ICE_IPV6_IL, 56 },
297 { ICE_TCP_IL, 96 },
298 { ICE_PROTOCOL_LAST, 0 },
299};
300
301ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
302 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
303 0x00, 0x00, 0x00, 0x00,
304 0x00, 0x00, 0x00, 0x00,
305
306 0x08, 0x00, /* ICE_ETYPE_OL 12 */
307
308 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
309 0x00, 0x00, 0x00, 0x00,
310 0x00, 0x2F, 0x00, 0x00,
311 0x00, 0x00, 0x00, 0x00,
312 0x00, 0x00, 0x00, 0x00,
313
314 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
315 0x00, 0x00, 0x00, 0x00,
316
317 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
318 0x00, 0x00, 0x00, 0x00,
319 0x00, 0x00, 0x00, 0x00,
320
321 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
322
323 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
324 0x00, 0x08, 0x06, 0x40,
325 0x00, 0x00, 0x00, 0x00,
326 0x00, 0x00, 0x00, 0x00,
327 0x00, 0x00, 0x00, 0x00,
328 0x00, 0x00, 0x00, 0x00,
329 0x00, 0x00, 0x00, 0x00,
330 0x00, 0x00, 0x00, 0x00,
331 0x00, 0x00, 0x00, 0x00,
332 0x00, 0x00, 0x00, 0x00,
333
334 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
335 0x00, 0x00, 0x00, 0x00,
336 0x00, 0x00, 0x00, 0x00,
337 0x50, 0x02, 0x20, 0x00,
338 0x00, 0x00, 0x00, 0x00
339};
340
341ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
342 { ICE_MAC_OFOS, 0 },
343 { ICE_ETYPE_OL, 12 },
344 { ICE_IPV4_OFOS, 14 },
345 { ICE_NVGRE, 34 },
346 { ICE_MAC_IL, 42 },
347 { ICE_ETYPE_IL, 54 },
348 { ICE_IPV6_IL, 56 },
349 { ICE_UDP_ILOS, 96 },
350 { ICE_PROTOCOL_LAST, 0 },
351};
352
353ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
354 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
355 0x00, 0x00, 0x00, 0x00,
356 0x00, 0x00, 0x00, 0x00,
357
358 0x08, 0x00, /* ICE_ETYPE_OL 12 */
359
360 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
361 0x00, 0x00, 0x00, 0x00,
362 0x00, 0x2F, 0x00, 0x00,
363 0x00, 0x00, 0x00, 0x00,
364 0x00, 0x00, 0x00, 0x00,
365
366 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
367 0x00, 0x00, 0x00, 0x00,
368
369 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
370 0x00, 0x00, 0x00, 0x00,
371 0x00, 0x00, 0x00, 0x00,
372
373 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
374
375 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
376 0x00, 0x08, 0x11, 0x40,
377 0x00, 0x00, 0x00, 0x00,
378 0x00, 0x00, 0x00, 0x00,
379 0x00, 0x00, 0x00, 0x00,
380 0x00, 0x00, 0x00, 0x00,
381 0x00, 0x00, 0x00, 0x00,
382 0x00, 0x00, 0x00, 0x00,
383 0x00, 0x00, 0x00, 0x00,
384 0x00, 0x00, 0x00, 0x00,
385
386 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
387 0x00, 0x08, 0x00, 0x00,
388};
389
390ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
391 { ICE_MAC_OFOS, 0 },
392 { ICE_ETYPE_OL, 12 },
393 { ICE_IPV4_OFOS, 14 },
394 { ICE_UDP_OF, 34 },
395 { ICE_VXLAN, 42 },
396 { ICE_GENEVE, 42 },
397 { ICE_VXLAN_GPE, 42 },
398 { ICE_MAC_IL, 50 },
399 { ICE_ETYPE_IL, 62 },
400 { ICE_IPV6_IL, 64 },
401 { ICE_TCP_IL, 104 },
402 { ICE_PROTOCOL_LAST, 0 },
403};
404
405ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
406 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
407 0x00, 0x00, 0x00, 0x00,
408 0x00, 0x00, 0x00, 0x00,
409
410 0x08, 0x00, /* ICE_ETYPE_OL 12 */
411
412 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
413 0x00, 0x01, 0x00, 0x00,
414 0x40, 0x11, 0x00, 0x00,
415 0x00, 0x00, 0x00, 0x00,
416 0x00, 0x00, 0x00, 0x00,
417
418 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
419 0x00, 0x5a, 0x00, 0x00,
420
421 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
422 0x00, 0x00, 0x00, 0x00,
423
424 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
425 0x00, 0x00, 0x00, 0x00,
426 0x00, 0x00, 0x00, 0x00,
427
428 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
429
430 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
431 0x00, 0x08, 0x06, 0x40,
432 0x00, 0x00, 0x00, 0x00,
433 0x00, 0x00, 0x00, 0x00,
434 0x00, 0x00, 0x00, 0x00,
435 0x00, 0x00, 0x00, 0x00,
436 0x00, 0x00, 0x00, 0x00,
437 0x00, 0x00, 0x00, 0x00,
438 0x00, 0x00, 0x00, 0x00,
439 0x00, 0x00, 0x00, 0x00,
440
441 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
442 0x00, 0x00, 0x00, 0x00,
443 0x00, 0x00, 0x00, 0x00,
444 0x50, 0x02, 0x20, 0x00,
445 0x00, 0x00, 0x00, 0x00
446};
447
448ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
449 { ICE_MAC_OFOS, 0 },
450 { ICE_ETYPE_OL, 12 },
451 { ICE_IPV4_OFOS, 14 },
452 { ICE_UDP_OF, 34 },
453 { ICE_VXLAN, 42 },
454 { ICE_GENEVE, 42 },
455 { ICE_VXLAN_GPE, 42 },
456 { ICE_MAC_IL, 50 },
457 { ICE_ETYPE_IL, 62 },
458 { ICE_IPV6_IL, 64 },
459 { ICE_UDP_ILOS, 104 },
460 { ICE_PROTOCOL_LAST, 0 },
461};
462
463ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
464 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
465 0x00, 0x00, 0x00, 0x00,
466 0x00, 0x00, 0x00, 0x00,
467
468 0x08, 0x00, /* ICE_ETYPE_OL 12 */
469
470 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
471 0x00, 0x01, 0x00, 0x00,
472 0x00, 0x11, 0x00, 0x00,
473 0x00, 0x00, 0x00, 0x00,
474 0x00, 0x00, 0x00, 0x00,
475
476 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
477 0x00, 0x4e, 0x00, 0x00,
478
479 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
480 0x00, 0x00, 0x00, 0x00,
481
482 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
483 0x00, 0x00, 0x00, 0x00,
484 0x00, 0x00, 0x00, 0x00,
485
486 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
487
488 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
489 0x00, 0x08, 0x11, 0x40,
490 0x00, 0x00, 0x00, 0x00,
491 0x00, 0x00, 0x00, 0x00,
492 0x00, 0x00, 0x00, 0x00,
493 0x00, 0x00, 0x00, 0x00,
494 0x00, 0x00, 0x00, 0x00,
495 0x00, 0x00, 0x00, 0x00,
496 0x00, 0x00, 0x00, 0x00,
497 0x00, 0x00, 0x00, 0x00,
498
499 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
500 0x00, 0x08, 0x00, 0x00,
501};
502
503/* offset info for MAC + IPv4 + UDP dummy packet */
504ICE_DECLARE_PKT_OFFSETS(udp) = {
505 { ICE_MAC_OFOS, 0 },
506 { ICE_ETYPE_OL, 12 },
507 { ICE_IPV4_OFOS, 14 },
508 { ICE_UDP_ILOS, 34 },
509 { ICE_PROTOCOL_LAST, 0 },
510};
511
512/* Dummy packet for MAC + IPv4 + UDP */
513ICE_DECLARE_PKT_TEMPLATE(udp) = {
514 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
515 0x00, 0x00, 0x00, 0x00,
516 0x00, 0x00, 0x00, 0x00,
517
518 0x08, 0x00, /* ICE_ETYPE_OL 12 */
519
520 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
521 0x00, 0x01, 0x00, 0x00,
522 0x00, 0x11, 0x00, 0x00,
523 0x00, 0x00, 0x00, 0x00,
524 0x00, 0x00, 0x00, 0x00,
525
526 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
527 0x00, 0x08, 0x00, 0x00,
528
529 0x00, 0x00, /* 2 bytes for 4 byte alignment */
530};
531
532/* offset info for MAC + IPv4 + TCP dummy packet */
533ICE_DECLARE_PKT_OFFSETS(tcp) = {
534 { ICE_MAC_OFOS, 0 },
535 { ICE_ETYPE_OL, 12 },
536 { ICE_IPV4_OFOS, 14 },
537 { ICE_TCP_IL, 34 },
538 { ICE_PROTOCOL_LAST, 0 },
539};
540
541/* Dummy packet for MAC + IPv4 + TCP */
542ICE_DECLARE_PKT_TEMPLATE(tcp) = {
543 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
544 0x00, 0x00, 0x00, 0x00,
545 0x00, 0x00, 0x00, 0x00,
546
547 0x08, 0x00, /* ICE_ETYPE_OL 12 */
548
549 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
550 0x00, 0x01, 0x00, 0x00,
551 0x00, 0x06, 0x00, 0x00,
552 0x00, 0x00, 0x00, 0x00,
553 0x00, 0x00, 0x00, 0x00,
554
555 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
556 0x00, 0x00, 0x00, 0x00,
557 0x00, 0x00, 0x00, 0x00,
558 0x50, 0x00, 0x00, 0x00,
559 0x00, 0x00, 0x00, 0x00,
560
561 0x00, 0x00, /* 2 bytes for 4 byte alignment */
562};
563
564ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
565 { ICE_MAC_OFOS, 0 },
566 { ICE_ETYPE_OL, 12 },
567 { ICE_IPV6_OFOS, 14 },
568 { ICE_TCP_IL, 54 },
569 { ICE_PROTOCOL_LAST, 0 },
570};
571
572ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
573 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
574 0x00, 0x00, 0x00, 0x00,
575 0x00, 0x00, 0x00, 0x00,
576
577 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
578
579 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
580 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
581 0x00, 0x00, 0x00, 0x00,
582 0x00, 0x00, 0x00, 0x00,
583 0x00, 0x00, 0x00, 0x00,
584 0x00, 0x00, 0x00, 0x00,
585 0x00, 0x00, 0x00, 0x00,
586 0x00, 0x00, 0x00, 0x00,
587 0x00, 0x00, 0x00, 0x00,
588 0x00, 0x00, 0x00, 0x00,
589
590 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
591 0x00, 0x00, 0x00, 0x00,
592 0x00, 0x00, 0x00, 0x00,
593 0x50, 0x00, 0x00, 0x00,
594 0x00, 0x00, 0x00, 0x00,
595
596 0x00, 0x00, /* 2 bytes for 4 byte alignment */
597};
598
599/* IPv6 + UDP */
600ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
601 { ICE_MAC_OFOS, 0 },
602 { ICE_ETYPE_OL, 12 },
603 { ICE_IPV6_OFOS, 14 },
604 { ICE_UDP_ILOS, 54 },
605 { ICE_PROTOCOL_LAST, 0 },
606};
607
608/* IPv6 + UDP dummy packet */
609ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
610 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
611 0x00, 0x00, 0x00, 0x00,
612 0x00, 0x00, 0x00, 0x00,
613
614 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
615
616 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
617 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
618 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00,
620 0x00, 0x00, 0x00, 0x00,
621 0x00, 0x00, 0x00, 0x00,
622 0x00, 0x00, 0x00, 0x00,
623 0x00, 0x00, 0x00, 0x00,
624 0x00, 0x00, 0x00, 0x00,
625 0x00, 0x00, 0x00, 0x00,
626
627 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
628 0x00, 0x10, 0x00, 0x00,
629
630 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
631 0x00, 0x00, 0x00, 0x00,
632
633 0x00, 0x00, /* 2 bytes for 4 byte alignment */
634};
635
636/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
637ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
638 { ICE_MAC_OFOS, 0 },
639 { ICE_IPV4_OFOS, 14 },
640 { ICE_UDP_OF, 34 },
641 { ICE_GTP, 42 },
642 { ICE_IPV4_IL, 62 },
643 { ICE_TCP_IL, 82 },
644 { ICE_PROTOCOL_LAST, 0 },
645};
646
647ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
648 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
649 0x00, 0x00, 0x00, 0x00,
650 0x00, 0x00, 0x00, 0x00,
651 0x08, 0x00,
652
653 0x45, 0x00, 0x00, 0x58, /* IP 14 */
654 0x00, 0x00, 0x00, 0x00,
655 0x00, 0x11, 0x00, 0x00,
656 0x00, 0x00, 0x00, 0x00,
657 0x00, 0x00, 0x00, 0x00,
658
659 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
660 0x00, 0x44, 0x00, 0x00,
661
662 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
663 0x00, 0x00, 0x00, 0x00,
664 0x00, 0x00, 0x00, 0x85,
665
666 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
667 0x00, 0x00, 0x00, 0x00,
668
669 0x45, 0x00, 0x00, 0x28, /* IP 62 */
670 0x00, 0x00, 0x00, 0x00,
671 0x00, 0x06, 0x00, 0x00,
672 0x00, 0x00, 0x00, 0x00,
673 0x00, 0x00, 0x00, 0x00,
674
675 0x00, 0x00, 0x00, 0x00, /* TCP 82 */
676 0x00, 0x00, 0x00, 0x00,
677 0x00, 0x00, 0x00, 0x00,
678 0x50, 0x00, 0x00, 0x00,
679 0x00, 0x00, 0x00, 0x00,
680
681 0x00, 0x00, /* 2 bytes for 4 byte alignment */
682};
683
684/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
685ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
686 { ICE_MAC_OFOS, 0 },
687 { ICE_IPV4_OFOS, 14 },
688 { ICE_UDP_OF, 34 },
689 { ICE_GTP, 42 },
690 { ICE_IPV4_IL, 62 },
691 { ICE_UDP_ILOS, 82 },
692 { ICE_PROTOCOL_LAST, 0 },
693};
694
695ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
696 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
697 0x00, 0x00, 0x00, 0x00,
698 0x00, 0x00, 0x00, 0x00,
699 0x08, 0x00,
700
701 0x45, 0x00, 0x00, 0x4c, /* IP 14 */
702 0x00, 0x00, 0x00, 0x00,
703 0x00, 0x11, 0x00, 0x00,
704 0x00, 0x00, 0x00, 0x00,
705 0x00, 0x00, 0x00, 0x00,
706
707 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
708 0x00, 0x38, 0x00, 0x00,
709
710 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
711 0x00, 0x00, 0x00, 0x00,
712 0x00, 0x00, 0x00, 0x85,
713
714 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
715 0x00, 0x00, 0x00, 0x00,
716
717 0x45, 0x00, 0x00, 0x1c, /* IP 62 */
718 0x00, 0x00, 0x00, 0x00,
719 0x00, 0x11, 0x00, 0x00,
720 0x00, 0x00, 0x00, 0x00,
721 0x00, 0x00, 0x00, 0x00,
722
723 0x00, 0x00, 0x00, 0x00, /* UDP 82 */
724 0x00, 0x08, 0x00, 0x00,
725
726 0x00, 0x00, /* 2 bytes for 4 byte alignment */
727};
728
729/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
730ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
731 { ICE_MAC_OFOS, 0 },
732 { ICE_IPV4_OFOS, 14 },
733 { ICE_UDP_OF, 34 },
734 { ICE_GTP, 42 },
735 { ICE_IPV6_IL, 62 },
736 { ICE_TCP_IL, 102 },
737 { ICE_PROTOCOL_LAST, 0 },
738};
739
740ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
741 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
742 0x00, 0x00, 0x00, 0x00,
743 0x00, 0x00, 0x00, 0x00,
744 0x08, 0x00,
745
746 0x45, 0x00, 0x00, 0x6c, /* IP 14 */
747 0x00, 0x00, 0x00, 0x00,
748 0x00, 0x11, 0x00, 0x00,
749 0x00, 0x00, 0x00, 0x00,
750 0x00, 0x00, 0x00, 0x00,
751
752 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
753 0x00, 0x58, 0x00, 0x00,
754
755 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
756 0x00, 0x00, 0x00, 0x00,
757 0x00, 0x00, 0x00, 0x85,
758
759 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
760 0x00, 0x00, 0x00, 0x00,
761
762 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
763 0x00, 0x14, 0x06, 0x00,
764 0x00, 0x00, 0x00, 0x00,
765 0x00, 0x00, 0x00, 0x00,
766 0x00, 0x00, 0x00, 0x00,
767 0x00, 0x00, 0x00, 0x00,
768 0x00, 0x00, 0x00, 0x00,
769 0x00, 0x00, 0x00, 0x00,
770 0x00, 0x00, 0x00, 0x00,
771 0x00, 0x00, 0x00, 0x00,
772
773 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
774 0x00, 0x00, 0x00, 0x00,
775 0x00, 0x00, 0x00, 0x00,
776 0x50, 0x00, 0x00, 0x00,
777 0x00, 0x00, 0x00, 0x00,
778
779 0x00, 0x00, /* 2 bytes for 4 byte alignment */
780};
781
782ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
783 { ICE_MAC_OFOS, 0 },
784 { ICE_IPV4_OFOS, 14 },
785 { ICE_UDP_OF, 34 },
786 { ICE_GTP, 42 },
787 { ICE_IPV6_IL, 62 },
788 { ICE_UDP_ILOS, 102 },
789 { ICE_PROTOCOL_LAST, 0 },
790};
791
792ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
793 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
794 0x00, 0x00, 0x00, 0x00,
795 0x00, 0x00, 0x00, 0x00,
796 0x08, 0x00,
797
798 0x45, 0x00, 0x00, 0x60, /* IP 14 */
799 0x00, 0x00, 0x00, 0x00,
800 0x00, 0x11, 0x00, 0x00,
801 0x00, 0x00, 0x00, 0x00,
802 0x00, 0x00, 0x00, 0x00,
803
804 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
805 0x00, 0x4c, 0x00, 0x00,
806
807 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
808 0x00, 0x00, 0x00, 0x00,
809 0x00, 0x00, 0x00, 0x85,
810
811 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
812 0x00, 0x00, 0x00, 0x00,
813
814 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
815 0x00, 0x08, 0x11, 0x00,
816 0x00, 0x00, 0x00, 0x00,
817 0x00, 0x00, 0x00, 0x00,
818 0x00, 0x00, 0x00, 0x00,
819 0x00, 0x00, 0x00, 0x00,
820 0x00, 0x00, 0x00, 0x00,
821 0x00, 0x00, 0x00, 0x00,
822 0x00, 0x00, 0x00, 0x00,
823 0x00, 0x00, 0x00, 0x00,
824
825 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
826 0x00, 0x08, 0x00, 0x00,
827
828 0x00, 0x00, /* 2 bytes for 4 byte alignment */
829};
830
831ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
832 { ICE_MAC_OFOS, 0 },
833 { ICE_IPV6_OFOS, 14 },
834 { ICE_UDP_OF, 54 },
835 { ICE_GTP, 62 },
836 { ICE_IPV4_IL, 82 },
837 { ICE_TCP_IL, 102 },
838 { ICE_PROTOCOL_LAST, 0 },
839};
840
841ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
842 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
843 0x00, 0x00, 0x00, 0x00,
844 0x00, 0x00, 0x00, 0x00,
845 0x86, 0xdd,
846
847 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
848 0x00, 0x44, 0x11, 0x00,
849 0x00, 0x00, 0x00, 0x00,
850 0x00, 0x00, 0x00, 0x00,
851 0x00, 0x00, 0x00, 0x00,
852 0x00, 0x00, 0x00, 0x00,
853 0x00, 0x00, 0x00, 0x00,
854 0x00, 0x00, 0x00, 0x00,
855 0x00, 0x00, 0x00, 0x00,
856 0x00, 0x00, 0x00, 0x00,
857
858 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
859 0x00, 0x44, 0x00, 0x00,
860
861 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
862 0x00, 0x00, 0x00, 0x00,
863 0x00, 0x00, 0x00, 0x85,
864
865 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
866 0x00, 0x00, 0x00, 0x00,
867
868 0x45, 0x00, 0x00, 0x28, /* IP 82 */
869 0x00, 0x00, 0x00, 0x00,
870 0x00, 0x06, 0x00, 0x00,
871 0x00, 0x00, 0x00, 0x00,
872 0x00, 0x00, 0x00, 0x00,
873
874 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
875 0x00, 0x00, 0x00, 0x00,
876 0x00, 0x00, 0x00, 0x00,
877 0x50, 0x00, 0x00, 0x00,
878 0x00, 0x00, 0x00, 0x00,
879
880 0x00, 0x00, /* 2 bytes for 4 byte alignment */
881};
882
883ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
884 { ICE_MAC_OFOS, 0 },
885 { ICE_IPV6_OFOS, 14 },
886 { ICE_UDP_OF, 54 },
887 { ICE_GTP, 62 },
888 { ICE_IPV4_IL, 82 },
889 { ICE_UDP_ILOS, 102 },
890 { ICE_PROTOCOL_LAST, 0 },
891};
892
893ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
894 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
895 0x00, 0x00, 0x00, 0x00,
896 0x00, 0x00, 0x00, 0x00,
897 0x86, 0xdd,
898
899 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
900 0x00, 0x38, 0x11, 0x00,
901 0x00, 0x00, 0x00, 0x00,
902 0x00, 0x00, 0x00, 0x00,
903 0x00, 0x00, 0x00, 0x00,
904 0x00, 0x00, 0x00, 0x00,
905 0x00, 0x00, 0x00, 0x00,
906 0x00, 0x00, 0x00, 0x00,
907 0x00, 0x00, 0x00, 0x00,
908 0x00, 0x00, 0x00, 0x00,
909
910 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
911 0x00, 0x38, 0x00, 0x00,
912
913 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
914 0x00, 0x00, 0x00, 0x00,
915 0x00, 0x00, 0x00, 0x85,
916
917 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
918 0x00, 0x00, 0x00, 0x00,
919
920 0x45, 0x00, 0x00, 0x1c, /* IP 82 */
921 0x00, 0x00, 0x00, 0x00,
922 0x00, 0x11, 0x00, 0x00,
923 0x00, 0x00, 0x00, 0x00,
924 0x00, 0x00, 0x00, 0x00,
925
926 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
927 0x00, 0x08, 0x00, 0x00,
928
929 0x00, 0x00, /* 2 bytes for 4 byte alignment */
930};
931
932ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
933 { ICE_MAC_OFOS, 0 },
934 { ICE_IPV6_OFOS, 14 },
935 { ICE_UDP_OF, 54 },
936 { ICE_GTP, 62 },
937 { ICE_IPV6_IL, 82 },
938 { ICE_TCP_IL, 122 },
939 { ICE_PROTOCOL_LAST, 0 },
940};
941
942ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
943 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
944 0x00, 0x00, 0x00, 0x00,
945 0x00, 0x00, 0x00, 0x00,
946 0x86, 0xdd,
947
948 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
949 0x00, 0x58, 0x11, 0x00,
950 0x00, 0x00, 0x00, 0x00,
951 0x00, 0x00, 0x00, 0x00,
952 0x00, 0x00, 0x00, 0x00,
953 0x00, 0x00, 0x00, 0x00,
954 0x00, 0x00, 0x00, 0x00,
955 0x00, 0x00, 0x00, 0x00,
956 0x00, 0x00, 0x00, 0x00,
957 0x00, 0x00, 0x00, 0x00,
958
959 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
960 0x00, 0x58, 0x00, 0x00,
961
962 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
963 0x00, 0x00, 0x00, 0x00,
964 0x00, 0x00, 0x00, 0x85,
965
966 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
967 0x00, 0x00, 0x00, 0x00,
968
969 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
970 0x00, 0x14, 0x06, 0x00,
971 0x00, 0x00, 0x00, 0x00,
972 0x00, 0x00, 0x00, 0x00,
973 0x00, 0x00, 0x00, 0x00,
974 0x00, 0x00, 0x00, 0x00,
975 0x00, 0x00, 0x00, 0x00,
976 0x00, 0x00, 0x00, 0x00,
977 0x00, 0x00, 0x00, 0x00,
978 0x00, 0x00, 0x00, 0x00,
979
980 0x00, 0x00, 0x00, 0x00, /* TCP 122 */
981 0x00, 0x00, 0x00, 0x00,
982 0x00, 0x00, 0x00, 0x00,
983 0x50, 0x00, 0x00, 0x00,
984 0x00, 0x00, 0x00, 0x00,
985
986 0x00, 0x00, /* 2 bytes for 4 byte alignment */
987};
988
989ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
990 { ICE_MAC_OFOS, 0 },
991 { ICE_IPV6_OFOS, 14 },
992 { ICE_UDP_OF, 54 },
993 { ICE_GTP, 62 },
994 { ICE_IPV6_IL, 82 },
995 { ICE_UDP_ILOS, 122 },
996 { ICE_PROTOCOL_LAST, 0 },
997};
998
999ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
1000 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
1001 0x00, 0x00, 0x00, 0x00,
1002 0x00, 0x00, 0x00, 0x00,
1003 0x86, 0xdd,
1004
1005 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1006 0x00, 0x4c, 0x11, 0x00,
1007 0x00, 0x00, 0x00, 0x00,
1008 0x00, 0x00, 0x00, 0x00,
1009 0x00, 0x00, 0x00, 0x00,
1010 0x00, 0x00, 0x00, 0x00,
1011 0x00, 0x00, 0x00, 0x00,
1012 0x00, 0x00, 0x00, 0x00,
1013 0x00, 0x00, 0x00, 0x00,
1014 0x00, 0x00, 0x00, 0x00,
1015
1016 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1017 0x00, 0x4c, 0x00, 0x00,
1018
1019 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1020 0x00, 0x00, 0x00, 0x00,
1021 0x00, 0x00, 0x00, 0x85,
1022
1023 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1024 0x00, 0x00, 0x00, 0x00,
1025
1026 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1027 0x00, 0x08, 0x11, 0x00,
1028 0x00, 0x00, 0x00, 0x00,
1029 0x00, 0x00, 0x00, 0x00,
1030 0x00, 0x00, 0x00, 0x00,
1031 0x00, 0x00, 0x00, 0x00,
1032 0x00, 0x00, 0x00, 0x00,
1033 0x00, 0x00, 0x00, 0x00,
1034 0x00, 0x00, 0x00, 0x00,
1035 0x00, 0x00, 0x00, 0x00,
1036
1037 0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1038 0x00, 0x08, 0x00, 0x00,
1039
1040 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1041};
1042
1043ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1044 { ICE_MAC_OFOS, 0 },
1045 { ICE_IPV4_OFOS, 14 },
1046 { ICE_UDP_OF, 34 },
1047 { ICE_GTP_NO_PAY, 42 },
1048 { ICE_PROTOCOL_LAST, 0 },
1049};
1050
1051ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1052 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1053 0x00, 0x00, 0x00, 0x00,
1054 0x00, 0x00, 0x00, 0x00,
1055 0x08, 0x00,
1056
1057 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1058 0x00, 0x00, 0x40, 0x00,
1059 0x40, 0x11, 0x00, 0x00,
1060 0x00, 0x00, 0x00, 0x00,
1061 0x00, 0x00, 0x00, 0x00,
1062
1063 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1064 0x00, 0x00, 0x00, 0x00,
1065
1066 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1067 0x00, 0x00, 0x00, 0x00,
1068 0x00, 0x00, 0x00, 0x85,
1069
1070 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1071 0x00, 0x00, 0x00, 0x00,
1072
1073 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1074 0x00, 0x00, 0x40, 0x00,
1075 0x40, 0x00, 0x00, 0x00,
1076 0x00, 0x00, 0x00, 0x00,
1077 0x00, 0x00, 0x00, 0x00,
1078 0x00, 0x00,
1079};
1080
1081ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1082 { ICE_MAC_OFOS, 0 },
1083 { ICE_IPV6_OFOS, 14 },
1084 { ICE_UDP_OF, 54 },
1085 { ICE_GTP_NO_PAY, 62 },
1086 { ICE_PROTOCOL_LAST, 0 },
1087};
1088
1089ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1090 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1091 0x00, 0x00, 0x00, 0x00,
1092 0x00, 0x00, 0x00, 0x00,
1093 0x86, 0xdd,
1094
1095 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1096 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1097 0x00, 0x00, 0x00, 0x00,
1098 0x00, 0x00, 0x00, 0x00,
1099 0x00, 0x00, 0x00, 0x00,
1100 0x00, 0x00, 0x00, 0x00,
1101 0x00, 0x00, 0x00, 0x00,
1102 0x00, 0x00, 0x00, 0x00,
1103 0x00, 0x00, 0x00, 0x00,
1104 0x00, 0x00, 0x00, 0x00,
1105
1106 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1107 0x00, 0x00, 0x00, 0x00,
1108
1109 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1110 0x00, 0x00, 0x00, 0x00,
1111
1112 0x00, 0x00,
1113};
1114
1115ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv4) = {
1116 { ICE_MAC_OFOS, 0 },
1117 { ICE_ETYPE_OL, 12 },
1118 { ICE_IPV4_OFOS, 14 },
1119 { ICE_UDP_ILOS, 34 },
1120 { ICE_PFCP, 42 },
1121 { ICE_PROTOCOL_LAST, 0 },
1122};
1123
1124ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv4) = {
1125 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1126 0x00, 0x00, 0x00, 0x00,
1127 0x00, 0x00, 0x00, 0x00,
1128
1129 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1130
1131 0x45, 0x00, 0x00, 0x2c, /* ICE_IPV4_OFOS 14 */
1132 0x00, 0x01, 0x00, 0x00,
1133 0x00, 0x11, 0x00, 0x00,
1134 0x00, 0x00, 0x00, 0x00,
1135 0x00, 0x00, 0x00, 0x00,
1136
1137 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 34 */
1138 0x00, 0x18, 0x00, 0x00,
1139
1140 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 42 */
1141 0x00, 0x00, 0x00, 0x00,
1142 0x00, 0x00, 0x00, 0x00,
1143 0x00, 0x00, 0x00, 0x00,
1144
1145 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1146};
1147
1148ICE_DECLARE_PKT_OFFSETS(pfcp_session_ipv6) = {
1149 { ICE_MAC_OFOS, 0 },
1150 { ICE_ETYPE_OL, 12 },
1151 { ICE_IPV6_OFOS, 14 },
1152 { ICE_UDP_ILOS, 54 },
1153 { ICE_PFCP, 62 },
1154 { ICE_PROTOCOL_LAST, 0 },
1155};
1156
1157ICE_DECLARE_PKT_TEMPLATE(pfcp_session_ipv6) = {
1158 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1159 0x00, 0x00, 0x00, 0x00,
1160 0x00, 0x00, 0x00, 0x00,
1161
1162 0x86, 0xdd, /* ICE_ETYPE_OL 12 */
1163
1164 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1165 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
1166 0x00, 0x00, 0x00, 0x00,
1167 0x00, 0x00, 0x00, 0x00,
1168 0x00, 0x00, 0x00, 0x00,
1169 0x00, 0x00, 0x00, 0x00,
1170 0x00, 0x00, 0x00, 0x00,
1171 0x00, 0x00, 0x00, 0x00,
1172 0x00, 0x00, 0x00, 0x00,
1173 0x00, 0x00, 0x00, 0x00,
1174
1175 0x00, 0x00, 0x22, 0x65, /* ICE_UDP_ILOS 54 */
1176 0x00, 0x18, 0x00, 0x00,
1177
1178 0x21, 0x01, 0x00, 0x0c, /* ICE_PFCP 62 */
1179 0x00, 0x00, 0x00, 0x00,
1180 0x00, 0x00, 0x00, 0x00,
1181 0x00, 0x00, 0x00, 0x00,
1182
1183 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1184};
1185
1186ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1187 { ICE_MAC_OFOS, 0 },
1188 { ICE_ETYPE_OL, 12 },
1189 { ICE_PPPOE, 14 },
1190 { ICE_IPV4_OFOS, 22 },
1191 { ICE_TCP_IL, 42 },
1192 { ICE_PROTOCOL_LAST, 0 },
1193};
1194
1195ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1196 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1197 0x00, 0x00, 0x00, 0x00,
1198 0x00, 0x00, 0x00, 0x00,
1199
1200 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1201
1202 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1203 0x00, 0x16,
1204
1205 0x00, 0x21, /* PPP Link Layer 20 */
1206
1207 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1208 0x00, 0x01, 0x00, 0x00,
1209 0x00, 0x06, 0x00, 0x00,
1210 0x00, 0x00, 0x00, 0x00,
1211 0x00, 0x00, 0x00, 0x00,
1212
1213 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1214 0x00, 0x00, 0x00, 0x00,
1215 0x00, 0x00, 0x00, 0x00,
1216 0x50, 0x00, 0x00, 0x00,
1217 0x00, 0x00, 0x00, 0x00,
1218
1219 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1220};
1221
1222ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1223 { ICE_MAC_OFOS, 0 },
1224 { ICE_ETYPE_OL, 12 },
1225 { ICE_PPPOE, 14 },
1226 { ICE_IPV4_OFOS, 22 },
1227 { ICE_UDP_ILOS, 42 },
1228 { ICE_PROTOCOL_LAST, 0 },
1229};
1230
1231ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1232 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1233 0x00, 0x00, 0x00, 0x00,
1234 0x00, 0x00, 0x00, 0x00,
1235
1236 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1237
1238 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1239 0x00, 0x16,
1240
1241 0x00, 0x21, /* PPP Link Layer 20 */
1242
1243 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1244 0x00, 0x01, 0x00, 0x00,
1245 0x00, 0x11, 0x00, 0x00,
1246 0x00, 0x00, 0x00, 0x00,
1247 0x00, 0x00, 0x00, 0x00,
1248
1249 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1250 0x00, 0x08, 0x00, 0x00,
1251
1252 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1253};
1254
1255ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1256 { ICE_MAC_OFOS, 0 },
1257 { ICE_ETYPE_OL, 12 },
1258 { ICE_PPPOE, 14 },
1259 { ICE_IPV6_OFOS, 22 },
1260 { ICE_TCP_IL, 62 },
1261 { ICE_PROTOCOL_LAST, 0 },
1262};
1263
1264ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1265 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1266 0x00, 0x00, 0x00, 0x00,
1267 0x00, 0x00, 0x00, 0x00,
1268
1269 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1270
1271 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1272 0x00, 0x2a,
1273
1274 0x00, 0x57, /* PPP Link Layer 20 */
1275
1276 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1277 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1278 0x00, 0x00, 0x00, 0x00,
1279 0x00, 0x00, 0x00, 0x00,
1280 0x00, 0x00, 0x00, 0x00,
1281 0x00, 0x00, 0x00, 0x00,
1282 0x00, 0x00, 0x00, 0x00,
1283 0x00, 0x00, 0x00, 0x00,
1284 0x00, 0x00, 0x00, 0x00,
1285 0x00, 0x00, 0x00, 0x00,
1286
1287 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1288 0x00, 0x00, 0x00, 0x00,
1289 0x00, 0x00, 0x00, 0x00,
1290 0x50, 0x00, 0x00, 0x00,
1291 0x00, 0x00, 0x00, 0x00,
1292
1293 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1294};
1295
1296ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1297 { ICE_MAC_OFOS, 0 },
1298 { ICE_ETYPE_OL, 12 },
1299 { ICE_PPPOE, 14 },
1300 { ICE_IPV6_OFOS, 22 },
1301 { ICE_UDP_ILOS, 62 },
1302 { ICE_PROTOCOL_LAST, 0 },
1303};
1304
1305ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1306 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1307 0x00, 0x00, 0x00, 0x00,
1308 0x00, 0x00, 0x00, 0x00,
1309
1310 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1311
1312 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1313 0x00, 0x2a,
1314
1315 0x00, 0x57, /* PPP Link Layer 20 */
1316
1317 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1318 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1319 0x00, 0x00, 0x00, 0x00,
1320 0x00, 0x00, 0x00, 0x00,
1321 0x00, 0x00, 0x00, 0x00,
1322 0x00, 0x00, 0x00, 0x00,
1323 0x00, 0x00, 0x00, 0x00,
1324 0x00, 0x00, 0x00, 0x00,
1325 0x00, 0x00, 0x00, 0x00,
1326 0x00, 0x00, 0x00, 0x00,
1327
1328 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1329 0x00, 0x08, 0x00, 0x00,
1330
1331 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1332};
1333
1334ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1335 { ICE_MAC_OFOS, 0 },
1336 { ICE_ETYPE_OL, 12 },
1337 { ICE_IPV4_OFOS, 14 },
1338 { ICE_L2TPV3, 34 },
1339 { ICE_PROTOCOL_LAST, 0 },
1340};
1341
1342ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1343 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1344 0x00, 0x00, 0x00, 0x00,
1345 0x00, 0x00, 0x00, 0x00,
1346
1347 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1348
1349 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1350 0x00, 0x00, 0x40, 0x00,
1351 0x40, 0x73, 0x00, 0x00,
1352 0x00, 0x00, 0x00, 0x00,
1353 0x00, 0x00, 0x00, 0x00,
1354
1355 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1356 0x00, 0x00, 0x00, 0x00,
1357 0x00, 0x00, 0x00, 0x00,
1358 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1359};
1360
1361ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1362 { ICE_MAC_OFOS, 0 },
1363 { ICE_ETYPE_OL, 12 },
1364 { ICE_IPV6_OFOS, 14 },
1365 { ICE_L2TPV3, 54 },
1366 { ICE_PROTOCOL_LAST, 0 },
1367};
1368
1369ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1370 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1371 0x00, 0x00, 0x00, 0x00,
1372 0x00, 0x00, 0x00, 0x00,
1373
1374 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
1375
1376 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1377 0x00, 0x0c, 0x73, 0x40,
1378 0x00, 0x00, 0x00, 0x00,
1379 0x00, 0x00, 0x00, 0x00,
1380 0x00, 0x00, 0x00, 0x00,
1381 0x00, 0x00, 0x00, 0x00,
1382 0x00, 0x00, 0x00, 0x00,
1383 0x00, 0x00, 0x00, 0x00,
1384 0x00, 0x00, 0x00, 0x00,
1385 0x00, 0x00, 0x00, 0x00,
1386
1387 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1388 0x00, 0x00, 0x00, 0x00,
1389 0x00, 0x00, 0x00, 0x00,
1390 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1391};
1392
1393static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1394 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1395 ICE_PKT_GTP_NOPAY),
1396 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1397 ICE_PKT_OUTER_IPV6 |
1398 ICE_PKT_INNER_IPV6 |
1399 ICE_PKT_INNER_UDP),
1400 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1401 ICE_PKT_OUTER_IPV6 |
1402 ICE_PKT_INNER_IPV6),
1403 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1404 ICE_PKT_OUTER_IPV6 |
1405 ICE_PKT_INNER_UDP),
1406 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1407 ICE_PKT_OUTER_IPV6),
1408 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1409 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1410 ICE_PKT_INNER_IPV6 |
1411 ICE_PKT_INNER_UDP),
1412 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1413 ICE_PKT_INNER_IPV6),
1414 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1415 ICE_PKT_INNER_UDP),
1416 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1417 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1418 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1419 ICE_PKT_PROFILE(pfcp_session_ipv6, ICE_PKT_PFCP | ICE_PKT_OUTER_IPV6),
1420 ICE_PKT_PROFILE(pfcp_session_ipv4, ICE_PKT_PFCP),
1421 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1422 ICE_PKT_INNER_UDP),
1423 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1424 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1425 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1426 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1427 ICE_PKT_INNER_TCP),
1428 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1429 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1430 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1431 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1432 ICE_PKT_INNER_IPV6 |
1433 ICE_PKT_INNER_TCP),
1434 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1435 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1436 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1437 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1438 ICE_PKT_INNER_IPV6),
1439 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1440 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1441 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1442 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1443 ICE_PKT_PROFILE(tcp, 0),
1444};
1445
1446/* this is a recipe to profile association bitmap */
1447static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1448 ICE_MAX_NUM_PROFILES);
1449
1450/* this is a profile to recipe association bitmap */
1451static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1452 ICE_MAX_NUM_RECIPES);
1453
1454/**
1455 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1456 * @hw: pointer to the HW struct
1457 *
1458 * Allocate memory for the entire recipe table and initialize the structures/
1459 * entries corresponding to basic recipes.
1460 */
1461int ice_init_def_sw_recp(struct ice_hw *hw)
1462{
1463 struct ice_sw_recipe *recps;
1464 u8 i;
1465
1466 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1467 sizeof(*recps), GFP_KERNEL);
1468 if (!recps)
1469 return -ENOMEM;
1470
1471 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1472 recps[i].root_rid = i;
1473 INIT_LIST_HEAD(&recps[i].filt_rules);
1474 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1475 mutex_init(&recps[i].filt_rule_lock);
1476 }
1477
1478 hw->switch_info->recp_list = recps;
1479
1480 return 0;
1481}
1482
1483/**
1484 * ice_aq_get_sw_cfg - get switch configuration
1485 * @hw: pointer to the hardware structure
1486 * @buf: pointer to the result buffer
1487 * @buf_size: length of the buffer available for response
1488 * @req_desc: pointer to requested descriptor
1489 * @num_elems: pointer to number of elements
1490 * @cd: pointer to command details structure or NULL
1491 *
1492 * Get switch configuration (0x0200) to be placed in buf.
1493 * This admin command returns information such as initial VSI/port number
1494 * and switch ID it belongs to.
1495 *
1496 * NOTE: *req_desc is both an input/output parameter.
1497 * The caller of this function first calls this function with *request_desc set
1498 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1499 * configuration information has been returned; if non-zero (meaning not all
1500 * the information was returned), the caller should call this function again
1501 * with *req_desc set to the previous value returned by f/w to get the
1502 * next block of switch configuration information.
1503 *
1504 * *num_elems is output only parameter. This reflects the number of elements
1505 * in response buffer. The caller of this function to use *num_elems while
1506 * parsing the response buffer.
1507 */
1508static int
1509ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1510 u16 buf_size, u16 *req_desc, u16 *num_elems,
1511 struct ice_sq_cd *cd)
1512{
1513 struct ice_aqc_get_sw_cfg *cmd;
1514 struct ice_aq_desc desc;
1515 int status;
1516
1517 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1518 cmd = &desc.params.get_sw_conf;
1519 cmd->element = cpu_to_le16(*req_desc);
1520
1521 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1522 if (!status) {
1523 *req_desc = le16_to_cpu(cmd->element);
1524 *num_elems = le16_to_cpu(cmd->num_elems);
1525 }
1526
1527 return status;
1528}
1529
1530/**
1531 * ice_aq_add_vsi
1532 * @hw: pointer to the HW struct
1533 * @vsi_ctx: pointer to a VSI context struct
1534 * @cd: pointer to command details structure or NULL
1535 *
1536 * Add a VSI context to the hardware (0x0210)
1537 */
1538static int
1539ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1540 struct ice_sq_cd *cd)
1541{
1542 struct ice_aqc_add_update_free_vsi_resp *res;
1543 struct ice_aqc_add_get_update_free_vsi *cmd;
1544 struct ice_aq_desc desc;
1545 int status;
1546
1547 cmd = &desc.params.vsi_cmd;
1548 res = &desc.params.add_update_free_vsi_res;
1549
1550 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1551
1552 if (!vsi_ctx->alloc_from_pool)
1553 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1554 ICE_AQ_VSI_IS_VALID);
1555 cmd->vf_id = vsi_ctx->vf_num;
1556
1557 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1558
1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 sizeof(vsi_ctx->info), cd);
1563
1564 if (!status) {
1565 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1566 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1567 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1568 }
1569
1570 return status;
1571}
1572
1573/**
1574 * ice_aq_free_vsi
1575 * @hw: pointer to the HW struct
1576 * @vsi_ctx: pointer to a VSI context struct
1577 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1578 * @cd: pointer to command details structure or NULL
1579 *
1580 * Free VSI context info from hardware (0x0213)
1581 */
1582static int
1583ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1584 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1585{
1586 struct ice_aqc_add_update_free_vsi_resp *resp;
1587 struct ice_aqc_add_get_update_free_vsi *cmd;
1588 struct ice_aq_desc desc;
1589 int status;
1590
1591 cmd = &desc.params.vsi_cmd;
1592 resp = &desc.params.add_update_free_vsi_res;
1593
1594 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1595
1596 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1597 if (keep_vsi_alloc)
1598 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1599
1600 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1601 if (!status) {
1602 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1603 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1604 }
1605
1606 return status;
1607}
1608
1609/**
1610 * ice_aq_update_vsi
1611 * @hw: pointer to the HW struct
1612 * @vsi_ctx: pointer to a VSI context struct
1613 * @cd: pointer to command details structure or NULL
1614 *
1615 * Update VSI context in the hardware (0x0211)
1616 */
1617static int
1618ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1619 struct ice_sq_cd *cd)
1620{
1621 struct ice_aqc_add_update_free_vsi_resp *resp;
1622 struct ice_aqc_add_get_update_free_vsi *cmd;
1623 struct ice_aq_desc desc;
1624 int status;
1625
1626 cmd = &desc.params.vsi_cmd;
1627 resp = &desc.params.add_update_free_vsi_res;
1628
1629 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1630
1631 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1632
1633 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1634
1635 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1636 sizeof(vsi_ctx->info), cd);
1637
1638 if (!status) {
1639 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1640 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1641 }
1642
1643 return status;
1644}
1645
1646/**
1647 * ice_is_vsi_valid - check whether the VSI is valid or not
1648 * @hw: pointer to the HW struct
1649 * @vsi_handle: VSI handle
1650 *
1651 * check whether the VSI is valid or not
1652 */
1653bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1654{
1655 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1656}
1657
1658/**
1659 * ice_get_hw_vsi_num - return the HW VSI number
1660 * @hw: pointer to the HW struct
1661 * @vsi_handle: VSI handle
1662 *
1663 * return the HW VSI number
1664 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1665 */
1666u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1667{
1668 return hw->vsi_ctx[vsi_handle]->vsi_num;
1669}
1670
1671/**
1672 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1673 * @hw: pointer to the HW struct
1674 * @vsi_handle: VSI handle
1675 *
1676 * return the VSI context entry for a given VSI handle
1677 */
1678struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1679{
1680 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1681}
1682
1683/**
1684 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1685 * @hw: pointer to the HW struct
1686 * @vsi_handle: VSI handle
1687 * @vsi: VSI context pointer
1688 *
1689 * save the VSI context entry for a given VSI handle
1690 */
1691static void
1692ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1693{
1694 hw->vsi_ctx[vsi_handle] = vsi;
1695}
1696
1697/**
1698 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1699 * @hw: pointer to the HW struct
1700 * @vsi_handle: VSI handle
1701 */
1702static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1703{
1704 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1705 u8 i;
1706
1707 if (!vsi)
1708 return;
1709 ice_for_each_traffic_class(i) {
1710 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1711 vsi->lan_q_ctx[i] = NULL;
1712 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1713 vsi->rdma_q_ctx[i] = NULL;
1714 }
1715}
1716
1717/**
1718 * ice_clear_vsi_ctx - clear the VSI context entry
1719 * @hw: pointer to the HW struct
1720 * @vsi_handle: VSI handle
1721 *
1722 * clear the VSI context entry
1723 */
1724static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1725{
1726 struct ice_vsi_ctx *vsi;
1727
1728 vsi = ice_get_vsi_ctx(hw, vsi_handle);
1729 if (vsi) {
1730 ice_clear_vsi_q_ctx(hw, vsi_handle);
1731 devm_kfree(ice_hw_to_dev(hw), vsi);
1732 hw->vsi_ctx[vsi_handle] = NULL;
1733 }
1734}
1735
1736/**
1737 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1738 * @hw: pointer to the HW struct
1739 */
1740void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1741{
1742 u16 i;
1743
1744 for (i = 0; i < ICE_MAX_VSI; i++)
1745 ice_clear_vsi_ctx(hw, i);
1746}
1747
1748/**
1749 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1750 * @hw: pointer to the HW struct
1751 * @vsi_handle: unique VSI handle provided by drivers
1752 * @vsi_ctx: pointer to a VSI context struct
1753 * @cd: pointer to command details structure or NULL
1754 *
1755 * Add a VSI context to the hardware also add it into the VSI handle list.
1756 * If this function gets called after reset for existing VSIs then update
1757 * with the new HW VSI number in the corresponding VSI handle list entry.
1758 */
1759int
1760ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1761 struct ice_sq_cd *cd)
1762{
1763 struct ice_vsi_ctx *tmp_vsi_ctx;
1764 int status;
1765
1766 if (vsi_handle >= ICE_MAX_VSI)
1767 return -EINVAL;
1768 status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1769 if (status)
1770 return status;
1771 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1772 if (!tmp_vsi_ctx) {
1773 /* Create a new VSI context */
1774 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1775 sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1776 if (!tmp_vsi_ctx) {
1777 ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1778 return -ENOMEM;
1779 }
1780 *tmp_vsi_ctx = *vsi_ctx;
1781 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1782 } else {
1783 /* update with new HW VSI num */
1784 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1785 }
1786
1787 return 0;
1788}
1789
1790/**
1791 * ice_free_vsi- free VSI context from hardware and VSI handle list
1792 * @hw: pointer to the HW struct
1793 * @vsi_handle: unique VSI handle
1794 * @vsi_ctx: pointer to a VSI context struct
1795 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1796 * @cd: pointer to command details structure or NULL
1797 *
1798 * Free VSI context info from hardware as well as from VSI handle list
1799 */
1800int
1801ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1802 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1803{
1804 int status;
1805
1806 if (!ice_is_vsi_valid(hw, vsi_handle))
1807 return -EINVAL;
1808 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1809 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1810 if (!status)
1811 ice_clear_vsi_ctx(hw, vsi_handle);
1812 return status;
1813}
1814
1815/**
1816 * ice_update_vsi
1817 * @hw: pointer to the HW struct
1818 * @vsi_handle: unique VSI handle
1819 * @vsi_ctx: pointer to a VSI context struct
1820 * @cd: pointer to command details structure or NULL
1821 *
1822 * Update VSI context in the hardware
1823 */
1824int
1825ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1826 struct ice_sq_cd *cd)
1827{
1828 if (!ice_is_vsi_valid(hw, vsi_handle))
1829 return -EINVAL;
1830 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1831 return ice_aq_update_vsi(hw, vsi_ctx, cd);
1832}
1833
1834/**
1835 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1836 * @hw: pointer to HW struct
1837 * @vsi_handle: VSI SW index
1838 * @enable: boolean for enable/disable
1839 */
1840int
1841ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1842{
1843 struct ice_vsi_ctx *ctx, *cached_ctx;
1844 int status;
1845
1846 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1847 if (!cached_ctx)
1848 return -ENOENT;
1849
1850 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1851 if (!ctx)
1852 return -ENOMEM;
1853
1854 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1855 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1856 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1857
1858 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1859
1860 if (enable)
1861 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1862 else
1863 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1864
1865 status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1866 if (!status) {
1867 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1868 cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1869 }
1870
1871 kfree(ctx);
1872 return status;
1873}
1874
1875/**
1876 * ice_aq_alloc_free_vsi_list
1877 * @hw: pointer to the HW struct
1878 * @vsi_list_id: VSI list ID returned or used for lookup
1879 * @lkup_type: switch rule filter lookup type
1880 * @opc: switch rules population command type - pass in the command opcode
1881 *
1882 * allocates or free a VSI list resource
1883 */
1884static int
1885ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1886 enum ice_sw_lkup_type lkup_type,
1887 enum ice_adminq_opc opc)
1888{
1889 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1890 u16 buf_len = __struct_size(sw_buf);
1891 struct ice_aqc_res_elem *vsi_ele;
1892 int status;
1893
1894 sw_buf->num_elems = cpu_to_le16(1);
1895
1896 if (lkup_type == ICE_SW_LKUP_MAC ||
1897 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1898 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1899 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1900 lkup_type == ICE_SW_LKUP_PROMISC ||
1901 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1902 lkup_type == ICE_SW_LKUP_DFLT ||
1903 lkup_type == ICE_SW_LKUP_LAST) {
1904 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1905 } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1906 if (opc == ice_aqc_opc_alloc_res)
1907 sw_buf->res_type =
1908 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1909 ICE_AQC_RES_TYPE_FLAG_SHARED);
1910 else
1911 sw_buf->res_type =
1912 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1913 } else {
1914 return -EINVAL;
1915 }
1916
1917 if (opc == ice_aqc_opc_free_res)
1918 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1919
1920 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1921 if (status)
1922 return status;
1923
1924 if (opc == ice_aqc_opc_alloc_res) {
1925 vsi_ele = &sw_buf->elem[0];
1926 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1927 }
1928
1929 return 0;
1930}
1931
1932/**
1933 * ice_aq_sw_rules - add/update/remove switch rules
1934 * @hw: pointer to the HW struct
1935 * @rule_list: pointer to switch rule population list
1936 * @rule_list_sz: total size of the rule list in bytes
1937 * @num_rules: number of switch rules in the rule_list
1938 * @opc: switch rules population command type - pass in the command opcode
1939 * @cd: pointer to command details structure or NULL
1940 *
1941 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1942 */
1943int
1944ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1945 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1946{
1947 struct ice_aq_desc desc;
1948 int status;
1949
1950 if (opc != ice_aqc_opc_add_sw_rules &&
1951 opc != ice_aqc_opc_update_sw_rules &&
1952 opc != ice_aqc_opc_remove_sw_rules)
1953 return -EINVAL;
1954
1955 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1956
1957 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1958 desc.params.sw_rules.num_rules_fltr_entry_index =
1959 cpu_to_le16(num_rules);
1960 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1961 if (opc != ice_aqc_opc_add_sw_rules &&
1962 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1963 status = -ENOENT;
1964
1965 if (!status) {
1966 if (opc == ice_aqc_opc_add_sw_rules)
1967 hw->switch_info->rule_cnt += num_rules;
1968 else if (opc == ice_aqc_opc_remove_sw_rules)
1969 hw->switch_info->rule_cnt -= num_rules;
1970 }
1971
1972 trace_ice_aq_sw_rules(hw->switch_info);
1973
1974 return status;
1975}
1976
1977/**
1978 * ice_aq_add_recipe - add switch recipe
1979 * @hw: pointer to the HW struct
1980 * @s_recipe_list: pointer to switch rule population list
1981 * @num_recipes: number of switch recipes in the list
1982 * @cd: pointer to command details structure or NULL
1983 *
1984 * Add(0x0290)
1985 */
1986int
1987ice_aq_add_recipe(struct ice_hw *hw,
1988 struct ice_aqc_recipe_data_elem *s_recipe_list,
1989 u16 num_recipes, struct ice_sq_cd *cd)
1990{
1991 struct ice_aqc_add_get_recipe *cmd;
1992 struct ice_aq_desc desc;
1993 u16 buf_size;
1994
1995 cmd = &desc.params.add_get_recipe;
1996 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1997
1998 cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1999 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2000
2001 buf_size = num_recipes * sizeof(*s_recipe_list);
2002
2003 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2004}
2005
2006/**
2007 * ice_aq_get_recipe - get switch recipe
2008 * @hw: pointer to the HW struct
2009 * @s_recipe_list: pointer to switch rule population list
2010 * @num_recipes: pointer to the number of recipes (input and output)
2011 * @recipe_root: root recipe number of recipe(s) to retrieve
2012 * @cd: pointer to command details structure or NULL
2013 *
2014 * Get(0x0292)
2015 *
2016 * On input, *num_recipes should equal the number of entries in s_recipe_list.
2017 * On output, *num_recipes will equal the number of entries returned in
2018 * s_recipe_list.
2019 *
2020 * The caller must supply enough space in s_recipe_list to hold all possible
2021 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
2022 */
2023int
2024ice_aq_get_recipe(struct ice_hw *hw,
2025 struct ice_aqc_recipe_data_elem *s_recipe_list,
2026 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
2027{
2028 struct ice_aqc_add_get_recipe *cmd;
2029 struct ice_aq_desc desc;
2030 u16 buf_size;
2031 int status;
2032
2033 if (*num_recipes != ICE_MAX_NUM_RECIPES)
2034 return -EINVAL;
2035
2036 cmd = &desc.params.add_get_recipe;
2037 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
2038
2039 cmd->return_index = cpu_to_le16(recipe_root);
2040 cmd->num_sub_recipes = 0;
2041
2042 buf_size = *num_recipes * sizeof(*s_recipe_list);
2043
2044 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
2045 *num_recipes = le16_to_cpu(cmd->num_sub_recipes);
2046
2047 return status;
2048}
2049
2050/**
2051 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
2052 * @hw: pointer to the HW struct
2053 * @params: parameters used to update the default recipe
2054 *
2055 * This function only supports updating default recipes and it only supports
2056 * updating a single recipe based on the lkup_idx at a time.
2057 *
2058 * This is done as a read-modify-write operation. First, get the current recipe
2059 * contents based on the recipe's ID. Then modify the field vector index and
2060 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
2061 * the pre-existing recipe with the modifications.
2062 */
2063int
2064ice_update_recipe_lkup_idx(struct ice_hw *hw,
2065 struct ice_update_recipe_lkup_idx_params *params)
2066{
2067 struct ice_aqc_recipe_data_elem *rcp_list;
2068 u16 num_recps = ICE_MAX_NUM_RECIPES;
2069 int status;
2070
2071 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
2072 if (!rcp_list)
2073 return -ENOMEM;
2074
2075 /* read current recipe list from firmware */
2076 rcp_list->recipe_indx = params->rid;
2077 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
2078 if (status) {
2079 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
2080 params->rid, status);
2081 goto error_out;
2082 }
2083
2084 /* only modify existing recipe's lkup_idx and mask if valid, while
2085 * leaving all other fields the same, then update the recipe firmware
2086 */
2087 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2088 if (params->mask_valid)
2089 rcp_list->content.mask[params->lkup_idx] =
2090 cpu_to_le16(params->mask);
2091
2092 if (params->ignore_valid)
2093 rcp_list->content.lkup_indx[params->lkup_idx] |=
2094 ICE_AQ_RECIPE_LKUP_IGNORE;
2095
2096 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2097 if (status)
2098 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2099 params->rid, params->lkup_idx, params->fv_idx,
2100 params->mask, params->mask_valid ? "true" : "false",
2101 status);
2102
2103error_out:
2104 kfree(rcp_list);
2105 return status;
2106}
2107
2108/**
2109 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2110 * @hw: pointer to the HW struct
2111 * @profile_id: package profile ID to associate the recipe with
2112 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2113 * @cd: pointer to command details structure or NULL
2114 * Recipe to profile association (0x0291)
2115 */
2116int
2117ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 r_assoc,
2118 struct ice_sq_cd *cd)
2119{
2120 struct ice_aqc_recipe_to_profile *cmd;
2121 struct ice_aq_desc desc;
2122
2123 cmd = &desc.params.recipe_to_profile;
2124 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2125 cmd->profile_id = cpu_to_le16(profile_id);
2126 /* Set the recipe ID bit in the bitmask to let the device know which
2127 * profile we are associating the recipe to
2128 */
2129 cmd->recipe_assoc = cpu_to_le64(r_assoc);
2130
2131 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2132}
2133
2134/**
2135 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2136 * @hw: pointer to the HW struct
2137 * @profile_id: package profile ID to associate the recipe with
2138 * @r_assoc: Recipe bitmap filled in and need to be returned as response
2139 * @cd: pointer to command details structure or NULL
2140 * Associate profile ID with given recipe (0x0293)
2141 */
2142int
2143ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u64 *r_assoc,
2144 struct ice_sq_cd *cd)
2145{
2146 struct ice_aqc_recipe_to_profile *cmd;
2147 struct ice_aq_desc desc;
2148 int status;
2149
2150 cmd = &desc.params.recipe_to_profile;
2151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2152 cmd->profile_id = cpu_to_le16(profile_id);
2153
2154 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2155 if (!status)
2156 *r_assoc = le64_to_cpu(cmd->recipe_assoc);
2157
2158 return status;
2159}
2160
2161/**
2162 * ice_init_chk_recipe_reuse_support - check if recipe reuse is supported
2163 * @hw: pointer to the hardware structure
2164 */
2165void ice_init_chk_recipe_reuse_support(struct ice_hw *hw)
2166{
2167 struct ice_nvm_info *nvm = &hw->flash.nvm;
2168
2169 hw->recp_reuse = (nvm->major == 0x4 && nvm->minor >= 0x30) ||
2170 nvm->major > 0x4;
2171}
2172
2173/**
2174 * ice_alloc_recipe - add recipe resource
2175 * @hw: pointer to the hardware structure
2176 * @rid: recipe ID returned as response to AQ call
2177 */
2178int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2179{
2180 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2181 u16 buf_len = __struct_size(sw_buf);
2182 u16 res_type;
2183 int status;
2184
2185 sw_buf->num_elems = cpu_to_le16(1);
2186 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE);
2187 if (hw->recp_reuse)
2188 res_type |= ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED;
2189 else
2190 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
2191 sw_buf->res_type = cpu_to_le16(res_type);
2192 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2193 ice_aqc_opc_alloc_res);
2194 if (!status) {
2195 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2196 hw->switch_info->recp_cnt++;
2197 }
2198
2199 return status;
2200}
2201
2202/**
2203 * ice_free_recipe_res - free recipe resource
2204 * @hw: pointer to the hardware structure
2205 * @rid: recipe ID to free
2206 *
2207 * Return: 0 on success, and others on error
2208 */
2209static int ice_free_recipe_res(struct ice_hw *hw, u16 rid)
2210{
2211 int status;
2212
2213 status = ice_free_hw_res(hw, ICE_AQC_RES_TYPE_RECIPE, 1, &rid);
2214 if (!status)
2215 hw->switch_info->recp_cnt--;
2216
2217 return status;
2218}
2219
2220/**
2221 * ice_release_recipe_res - disassociate and free recipe resource
2222 * @hw: pointer to the hardware structure
2223 * @recp: the recipe struct resource to unassociate and free
2224 *
2225 * Return: 0 on success, and others on error
2226 */
2227static int ice_release_recipe_res(struct ice_hw *hw,
2228 struct ice_sw_recipe *recp)
2229{
2230 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2231 struct ice_switch_info *sw = hw->switch_info;
2232 u64 recp_assoc;
2233 u32 rid, prof;
2234 int status;
2235
2236 for_each_set_bit(rid, recp->r_bitmap, ICE_MAX_NUM_RECIPES) {
2237 for_each_set_bit(prof, recipe_to_profile[rid],
2238 ICE_MAX_NUM_PROFILES) {
2239 status = ice_aq_get_recipe_to_profile(hw, prof,
2240 &recp_assoc,
2241 NULL);
2242 if (status)
2243 return status;
2244
2245 bitmap_from_arr64(r_bitmap, &recp_assoc,
2246 ICE_MAX_NUM_RECIPES);
2247 bitmap_andnot(r_bitmap, r_bitmap, recp->r_bitmap,
2248 ICE_MAX_NUM_RECIPES);
2249 bitmap_to_arr64(&recp_assoc, r_bitmap,
2250 ICE_MAX_NUM_RECIPES);
2251 ice_aq_map_recipe_to_profile(hw, prof,
2252 recp_assoc, NULL);
2253
2254 clear_bit(rid, profile_to_recipe[prof]);
2255 clear_bit(prof, recipe_to_profile[rid]);
2256 }
2257
2258 status = ice_free_recipe_res(hw, rid);
2259 if (status)
2260 return status;
2261
2262 sw->recp_list[rid].recp_created = false;
2263 sw->recp_list[rid].adv_rule = false;
2264 memset(&sw->recp_list[rid].lkup_exts, 0,
2265 sizeof(sw->recp_list[rid].lkup_exts));
2266 clear_bit(rid, recp->r_bitmap);
2267 }
2268
2269 return 0;
2270}
2271
2272/**
2273 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2274 * @hw: pointer to hardware structure
2275 *
2276 * This function is used to populate recipe_to_profile matrix where index to
2277 * this array is the recipe ID and the element is the mapping of which profiles
2278 * is this recipe mapped to.
2279 */
2280static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2281{
2282 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2283 u64 recp_assoc;
2284 u16 i;
2285
2286 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2287 u16 j;
2288
2289 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2290 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2291 if (ice_aq_get_recipe_to_profile(hw, i, &recp_assoc, NULL))
2292 continue;
2293 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
2294 bitmap_copy(profile_to_recipe[i], r_bitmap,
2295 ICE_MAX_NUM_RECIPES);
2296 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2297 set_bit(i, recipe_to_profile[j]);
2298 }
2299}
2300
2301/**
2302 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2303 * @hw: pointer to hardware structure
2304 * @recps: struct that we need to populate
2305 * @rid: recipe ID that we are populating
2306 * @refresh_required: true if we should get recipe to profile mapping from FW
2307 * @is_add: flag of adding recipe
2308 *
2309 * This function is used to populate all the necessary entries into our
2310 * bookkeeping so that we have a current list of all the recipes that are
2311 * programmed in the firmware.
2312 */
2313static int
2314ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2315 bool *refresh_required, bool is_add)
2316{
2317 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2318 struct ice_aqc_recipe_data_elem *tmp;
2319 u16 num_recps = ICE_MAX_NUM_RECIPES;
2320 struct ice_prot_lkup_ext *lkup_exts;
2321 u8 fv_word_idx = 0;
2322 u16 sub_recps;
2323 int status;
2324
2325 bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2326
2327 /* we need a buffer big enough to accommodate all the recipes */
2328 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2329 if (!tmp)
2330 return -ENOMEM;
2331
2332 tmp[0].recipe_indx = rid;
2333 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2334 /* non-zero status meaning recipe doesn't exist */
2335 if (status)
2336 goto err_unroll;
2337
2338 /* Get recipe to profile map so that we can get the fv from lkups that
2339 * we read for a recipe from FW. Since we want to minimize the number of
2340 * times we make this FW call, just make one call and cache the copy
2341 * until a new recipe is added. This operation is only required the
2342 * first time to get the changes from FW. Then to search existing
2343 * entries we don't need to update the cache again until another recipe
2344 * gets added.
2345 */
2346 if (*refresh_required) {
2347 ice_get_recp_to_prof_map(hw);
2348 *refresh_required = false;
2349 }
2350
2351 /* Start populating all the entries for recps[rid] based on lkups from
2352 * firmware. Note that we are only creating the root recipe in our
2353 * database.
2354 */
2355 lkup_exts = &recps[rid].lkup_exts;
2356
2357 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2358 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2359 u8 i, prof, idx, prot = 0;
2360 bool is_root;
2361 u16 off = 0;
2362
2363 idx = root_bufs.recipe_indx;
2364 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2365
2366 /* Mark all result indices in this chain */
2367 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2368 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2369 result_bm);
2370
2371 /* get the first profile that is associated with rid */
2372 prof = find_first_bit(recipe_to_profile[idx],
2373 ICE_MAX_NUM_PROFILES);
2374 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2375 u8 lkup_indx = root_bufs.content.lkup_indx[i];
2376 u16 lkup_mask = le16_to_cpu(root_bufs.content.mask[i]);
2377
2378 /* If the recipe is a chained recipe then all its
2379 * child recipe's result will have a result index.
2380 * To fill fv_words we should not use those result
2381 * index, we only need the protocol ids and offsets.
2382 * We will skip all the fv_idx which stores result
2383 * index in them. We also need to skip any fv_idx which
2384 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2385 * valid offset value.
2386 */
2387 if (!lkup_indx ||
2388 (lkup_indx & ICE_AQ_RECIPE_LKUP_IGNORE) ||
2389 test_bit(lkup_indx,
2390 hw->switch_info->prof_res_bm[prof]))
2391 continue;
2392
2393 ice_find_prot_off(hw, ICE_BLK_SW, prof, lkup_indx,
2394 &prot, &off);
2395 lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2396 lkup_exts->fv_words[fv_word_idx].off = off;
2397 lkup_exts->field_mask[fv_word_idx] = lkup_mask;
2398 fv_word_idx++;
2399 }
2400
2401 /* Propagate some data to the recipe database */
2402 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2403 recps[idx].need_pass_l2 = !!(root_bufs.content.act_ctrl &
2404 ICE_AQ_RECIPE_ACT_NEED_PASS_L2);
2405 recps[idx].allow_pass_l2 = !!(root_bufs.content.act_ctrl &
2406 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2);
2407 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2408 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2409 set_bit(root_bufs.content.result_indx &
2410 ~ICE_AQ_RECIPE_RESULT_EN, recps[idx].res_idxs);
2411 }
2412
2413 if (!is_root) {
2414 if (hw->recp_reuse && is_add)
2415 recps[idx].recp_created = true;
2416
2417 continue;
2418 }
2419
2420 /* Only do the following for root recipes entries */
2421 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2422 sizeof(recps[idx].r_bitmap));
2423 recps[idx].root_rid = root_bufs.content.rid &
2424 ~ICE_AQ_RECIPE_ID_IS_ROOT;
2425 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2426 }
2427
2428 /* Complete initialization of the root recipe entry */
2429 lkup_exts->n_val_words = fv_word_idx;
2430
2431 /* Copy result indexes */
2432 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2433 if (is_add)
2434 recps[rid].recp_created = true;
2435
2436err_unroll:
2437 kfree(tmp);
2438 return status;
2439}
2440
2441/* ice_init_port_info - Initialize port_info with switch configuration data
2442 * @pi: pointer to port_info
2443 * @vsi_port_num: VSI number or port number
2444 * @type: Type of switch element (port or VSI)
2445 * @swid: switch ID of the switch the element is attached to
2446 * @pf_vf_num: PF or VF number
2447 * @is_vf: true if the element is a VF, false otherwise
2448 */
2449static void
2450ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2451 u16 swid, u16 pf_vf_num, bool is_vf)
2452{
2453 switch (type) {
2454 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2455 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2456 pi->sw_id = swid;
2457 pi->pf_vf_num = pf_vf_num;
2458 pi->is_vf = is_vf;
2459 break;
2460 default:
2461 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2462 break;
2463 }
2464}
2465
2466/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2467 * @hw: pointer to the hardware structure
2468 */
2469int ice_get_initial_sw_cfg(struct ice_hw *hw)
2470{
2471 struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2472 u16 req_desc = 0;
2473 u16 num_elems;
2474 int status;
2475 u16 i;
2476
2477 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2478 if (!rbuf)
2479 return -ENOMEM;
2480
2481 /* Multiple calls to ice_aq_get_sw_cfg may be required
2482 * to get all the switch configuration information. The need
2483 * for additional calls is indicated by ice_aq_get_sw_cfg
2484 * writing a non-zero value in req_desc
2485 */
2486 do {
2487 struct ice_aqc_get_sw_cfg_resp_elem *ele;
2488
2489 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2490 &req_desc, &num_elems, NULL);
2491
2492 if (status)
2493 break;
2494
2495 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2496 u16 pf_vf_num, swid, vsi_port_num;
2497 bool is_vf = false;
2498 u8 res_type;
2499
2500 vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2501 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2502
2503 pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2504 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2505
2506 swid = le16_to_cpu(ele->swid);
2507
2508 if (le16_to_cpu(ele->pf_vf_num) &
2509 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2510 is_vf = true;
2511
2512 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2513 ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2514
2515 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2516 /* FW VSI is not needed. Just continue. */
2517 continue;
2518 }
2519
2520 ice_init_port_info(hw->port_info, vsi_port_num,
2521 res_type, swid, pf_vf_num, is_vf);
2522 }
2523 } while (req_desc && !status);
2524
2525 kfree(rbuf);
2526 return status;
2527}
2528
2529/**
2530 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2531 * @hw: pointer to the hardware structure
2532 * @fi: filter info structure to fill/update
2533 *
2534 * This helper function populates the lb_en and lan_en elements of the provided
2535 * ice_fltr_info struct using the switch's type and characteristics of the
2536 * switch rule being configured.
2537 */
2538static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2539{
2540 fi->lb_en = false;
2541 fi->lan_en = false;
2542 if ((fi->flag & ICE_FLTR_TX) &&
2543 (fi->fltr_act == ICE_FWD_TO_VSI ||
2544 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2545 fi->fltr_act == ICE_FWD_TO_Q ||
2546 fi->fltr_act == ICE_FWD_TO_QGRP)) {
2547 /* Setting LB for prune actions will result in replicated
2548 * packets to the internal switch that will be dropped.
2549 */
2550 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2551 fi->lb_en = true;
2552
2553 /* Set lan_en to TRUE if
2554 * 1. The switch is a VEB AND
2555 * 2
2556 * 2.1 The lookup is a directional lookup like ethertype,
2557 * promiscuous, ethertype-MAC, promiscuous-VLAN
2558 * and default-port OR
2559 * 2.2 The lookup is VLAN, OR
2560 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2561 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2562 *
2563 * OR
2564 *
2565 * The switch is a VEPA.
2566 *
2567 * In all other cases, the LAN enable has to be set to false.
2568 */
2569 if (hw->evb_veb) {
2570 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2571 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2572 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2573 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2574 fi->lkup_type == ICE_SW_LKUP_DFLT ||
2575 fi->lkup_type == ICE_SW_LKUP_VLAN ||
2576 (fi->lkup_type == ICE_SW_LKUP_MAC &&
2577 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2578 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2579 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2580 fi->lan_en = true;
2581 } else {
2582 fi->lan_en = true;
2583 }
2584 }
2585
2586 if (fi->flag & ICE_FLTR_TX_ONLY)
2587 fi->lan_en = false;
2588}
2589
2590/**
2591 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2592 * @eth_hdr: pointer to buffer to populate
2593 */
2594void ice_fill_eth_hdr(u8 *eth_hdr)
2595{
2596 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2597}
2598
2599/**
2600 * ice_fill_sw_rule - Helper function to fill switch rule structure
2601 * @hw: pointer to the hardware structure
2602 * @f_info: entry containing packet forwarding information
2603 * @s_rule: switch rule structure to be filled in based on mac_entry
2604 * @opc: switch rules population command type - pass in the command opcode
2605 */
2606static void
2607ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2608 struct ice_sw_rule_lkup_rx_tx *s_rule,
2609 enum ice_adminq_opc opc)
2610{
2611 u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2612 u16 vlan_tpid = ETH_P_8021Q;
2613 void *daddr = NULL;
2614 u16 eth_hdr_sz;
2615 u8 *eth_hdr;
2616 u32 act = 0;
2617 __be16 *off;
2618 u8 q_rgn;
2619
2620 if (opc == ice_aqc_opc_remove_sw_rules) {
2621 s_rule->act = 0;
2622 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2623 s_rule->hdr_len = 0;
2624 return;
2625 }
2626
2627 eth_hdr_sz = sizeof(dummy_eth_header);
2628 eth_hdr = s_rule->hdr_data;
2629
2630 /* initialize the ether header with a dummy header */
2631 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2632 ice_fill_sw_info(hw, f_info);
2633
2634 switch (f_info->fltr_act) {
2635 case ICE_FWD_TO_VSI:
2636 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2637 f_info->fwd_id.hw_vsi_id);
2638 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2639 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2640 ICE_SINGLE_ACT_VALID_BIT;
2641 break;
2642 case ICE_FWD_TO_VSI_LIST:
2643 act |= ICE_SINGLE_ACT_VSI_LIST;
2644 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2645 f_info->fwd_id.vsi_list_id);
2646 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2647 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2648 ICE_SINGLE_ACT_VALID_BIT;
2649 break;
2650 case ICE_FWD_TO_Q:
2651 act |= ICE_SINGLE_ACT_TO_Q;
2652 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2653 f_info->fwd_id.q_id);
2654 break;
2655 case ICE_DROP_PACKET:
2656 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2657 ICE_SINGLE_ACT_VALID_BIT;
2658 break;
2659 case ICE_FWD_TO_QGRP:
2660 q_rgn = f_info->qgrp_size > 0 ?
2661 (u8)ilog2(f_info->qgrp_size) : 0;
2662 act |= ICE_SINGLE_ACT_TO_Q;
2663 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2664 f_info->fwd_id.q_id);
2665 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2666 break;
2667 default:
2668 return;
2669 }
2670
2671 if (f_info->lb_en)
2672 act |= ICE_SINGLE_ACT_LB_ENABLE;
2673 if (f_info->lan_en)
2674 act |= ICE_SINGLE_ACT_LAN_ENABLE;
2675
2676 switch (f_info->lkup_type) {
2677 case ICE_SW_LKUP_MAC:
2678 daddr = f_info->l_data.mac.mac_addr;
2679 break;
2680 case ICE_SW_LKUP_VLAN:
2681 vlan_id = f_info->l_data.vlan.vlan_id;
2682 if (f_info->l_data.vlan.tpid_valid)
2683 vlan_tpid = f_info->l_data.vlan.tpid;
2684 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2685 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2686 act |= ICE_SINGLE_ACT_PRUNE;
2687 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2688 }
2689 break;
2690 case ICE_SW_LKUP_ETHERTYPE_MAC:
2691 daddr = f_info->l_data.ethertype_mac.mac_addr;
2692 fallthrough;
2693 case ICE_SW_LKUP_ETHERTYPE:
2694 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2695 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2696 break;
2697 case ICE_SW_LKUP_MAC_VLAN:
2698 daddr = f_info->l_data.mac_vlan.mac_addr;
2699 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2700 break;
2701 case ICE_SW_LKUP_PROMISC_VLAN:
2702 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2703 fallthrough;
2704 case ICE_SW_LKUP_PROMISC:
2705 daddr = f_info->l_data.mac_vlan.mac_addr;
2706 break;
2707 default:
2708 break;
2709 }
2710
2711 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2712 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2713 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2714
2715 /* Recipe set depending on lookup type */
2716 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2717 s_rule->src = cpu_to_le16(f_info->src);
2718 s_rule->act = cpu_to_le32(act);
2719
2720 if (daddr)
2721 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2722
2723 if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2724 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2725 *off = cpu_to_be16(vlan_id);
2726 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2727 *off = cpu_to_be16(vlan_tpid);
2728 }
2729
2730 /* Create the switch rule with the final dummy Ethernet header */
2731 if (opc != ice_aqc_opc_update_sw_rules)
2732 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2733}
2734
2735/**
2736 * ice_add_marker_act
2737 * @hw: pointer to the hardware structure
2738 * @m_ent: the management entry for which sw marker needs to be added
2739 * @sw_marker: sw marker to tag the Rx descriptor with
2740 * @l_id: large action resource ID
2741 *
2742 * Create a large action to hold software marker and update the switch rule
2743 * entry pointed by m_ent with newly created large action
2744 */
2745static int
2746ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2747 u16 sw_marker, u16 l_id)
2748{
2749 struct ice_sw_rule_lkup_rx_tx *rx_tx;
2750 struct ice_sw_rule_lg_act *lg_act;
2751 /* For software marker we need 3 large actions
2752 * 1. FWD action: FWD TO VSI or VSI LIST
2753 * 2. GENERIC VALUE action to hold the profile ID
2754 * 3. GENERIC VALUE action to hold the software marker ID
2755 */
2756 const u16 num_lg_acts = 3;
2757 u16 lg_act_size;
2758 u16 rules_size;
2759 int status;
2760 u32 act;
2761 u16 id;
2762
2763 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2764 return -EINVAL;
2765
2766 /* Create two back-to-back switch rules and submit them to the HW using
2767 * one memory buffer:
2768 * 1. Large Action
2769 * 2. Look up Tx Rx
2770 */
2771 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2772 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2773 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2774 if (!lg_act)
2775 return -ENOMEM;
2776
2777 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2778
2779 /* Fill in the first switch rule i.e. large action */
2780 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2781 lg_act->index = cpu_to_le16(l_id);
2782 lg_act->size = cpu_to_le16(num_lg_acts);
2783
2784 /* First action VSI forwarding or VSI list forwarding depending on how
2785 * many VSIs
2786 */
2787 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2788 m_ent->fltr_info.fwd_id.hw_vsi_id;
2789
2790 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2791 act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2792 if (m_ent->vsi_count > 1)
2793 act |= ICE_LG_ACT_VSI_LIST;
2794 lg_act->act[0] = cpu_to_le32(act);
2795
2796 /* Second action descriptor type */
2797 act = ICE_LG_ACT_GENERIC;
2798
2799 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2800 lg_act->act[1] = cpu_to_le32(act);
2801
2802 act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2803 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2804
2805 /* Third action Marker value */
2806 act |= ICE_LG_ACT_GENERIC;
2807 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2808
2809 lg_act->act[2] = cpu_to_le32(act);
2810
2811 /* call the fill switch rule to fill the lookup Tx Rx structure */
2812 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2813 ice_aqc_opc_update_sw_rules);
2814
2815 /* Update the action to point to the large action ID */
2816 act = ICE_SINGLE_ACT_PTR;
2817 act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2818 rx_tx->act = cpu_to_le32(act);
2819
2820 /* Use the filter rule ID of the previously created rule with single
2821 * act. Once the update happens, hardware will treat this as large
2822 * action
2823 */
2824 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2825
2826 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2827 ice_aqc_opc_update_sw_rules, NULL);
2828 if (!status) {
2829 m_ent->lg_act_idx = l_id;
2830 m_ent->sw_marker_id = sw_marker;
2831 }
2832
2833 devm_kfree(ice_hw_to_dev(hw), lg_act);
2834 return status;
2835}
2836
2837/**
2838 * ice_create_vsi_list_map
2839 * @hw: pointer to the hardware structure
2840 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2841 * @num_vsi: number of VSI handles in the array
2842 * @vsi_list_id: VSI list ID generated as part of allocate resource
2843 *
2844 * Helper function to create a new entry of VSI list ID to VSI mapping
2845 * using the given VSI list ID
2846 */
2847static struct ice_vsi_list_map_info *
2848ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2849 u16 vsi_list_id)
2850{
2851 struct ice_switch_info *sw = hw->switch_info;
2852 struct ice_vsi_list_map_info *v_map;
2853 int i;
2854
2855 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2856 if (!v_map)
2857 return NULL;
2858
2859 v_map->vsi_list_id = vsi_list_id;
2860 v_map->ref_cnt = 1;
2861 for (i = 0; i < num_vsi; i++)
2862 set_bit(vsi_handle_arr[i], v_map->vsi_map);
2863
2864 list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2865 return v_map;
2866}
2867
2868/**
2869 * ice_update_vsi_list_rule
2870 * @hw: pointer to the hardware structure
2871 * @vsi_handle_arr: array of VSI handles to form a VSI list
2872 * @num_vsi: number of VSI handles in the array
2873 * @vsi_list_id: VSI list ID generated as part of allocate resource
2874 * @remove: Boolean value to indicate if this is a remove action
2875 * @opc: switch rules population command type - pass in the command opcode
2876 * @lkup_type: lookup type of the filter
2877 *
2878 * Call AQ command to add a new switch rule or update existing switch rule
2879 * using the given VSI list ID
2880 */
2881static int
2882ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2883 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2884 enum ice_sw_lkup_type lkup_type)
2885{
2886 struct ice_sw_rule_vsi_list *s_rule;
2887 u16 s_rule_size;
2888 u16 rule_type;
2889 int status;
2890 int i;
2891
2892 if (!num_vsi)
2893 return -EINVAL;
2894
2895 if (lkup_type == ICE_SW_LKUP_MAC ||
2896 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2897 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2898 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2899 lkup_type == ICE_SW_LKUP_PROMISC ||
2900 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2901 lkup_type == ICE_SW_LKUP_DFLT ||
2902 lkup_type == ICE_SW_LKUP_LAST)
2903 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2904 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2905 else if (lkup_type == ICE_SW_LKUP_VLAN)
2906 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2907 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2908 else
2909 return -EINVAL;
2910
2911 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2912 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2913 if (!s_rule)
2914 return -ENOMEM;
2915 for (i = 0; i < num_vsi; i++) {
2916 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2917 status = -EINVAL;
2918 goto exit;
2919 }
2920 /* AQ call requires hw_vsi_id(s) */
2921 s_rule->vsi[i] =
2922 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2923 }
2924
2925 s_rule->hdr.type = cpu_to_le16(rule_type);
2926 s_rule->number_vsi = cpu_to_le16(num_vsi);
2927 s_rule->index = cpu_to_le16(vsi_list_id);
2928
2929 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2930
2931exit:
2932 devm_kfree(ice_hw_to_dev(hw), s_rule);
2933 return status;
2934}
2935
2936/**
2937 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2938 * @hw: pointer to the HW struct
2939 * @vsi_handle_arr: array of VSI handles to form a VSI list
2940 * @num_vsi: number of VSI handles in the array
2941 * @vsi_list_id: stores the ID of the VSI list to be created
2942 * @lkup_type: switch rule filter's lookup type
2943 */
2944static int
2945ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2946 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2947{
2948 int status;
2949
2950 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2951 ice_aqc_opc_alloc_res);
2952 if (status)
2953 return status;
2954
2955 /* Update the newly created VSI list to include the specified VSIs */
2956 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2957 *vsi_list_id, false,
2958 ice_aqc_opc_add_sw_rules, lkup_type);
2959}
2960
2961/**
2962 * ice_create_pkt_fwd_rule
2963 * @hw: pointer to the hardware structure
2964 * @f_entry: entry containing packet forwarding information
2965 *
2966 * Create switch rule with given filter information and add an entry
2967 * to the corresponding filter management list to track this switch rule
2968 * and VSI mapping
2969 */
2970static int
2971ice_create_pkt_fwd_rule(struct ice_hw *hw,
2972 struct ice_fltr_list_entry *f_entry)
2973{
2974 struct ice_fltr_mgmt_list_entry *fm_entry;
2975 struct ice_sw_rule_lkup_rx_tx *s_rule;
2976 enum ice_sw_lkup_type l_type;
2977 struct ice_sw_recipe *recp;
2978 int status;
2979
2980 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2981 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2982 GFP_KERNEL);
2983 if (!s_rule)
2984 return -ENOMEM;
2985 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2986 GFP_KERNEL);
2987 if (!fm_entry) {
2988 status = -ENOMEM;
2989 goto ice_create_pkt_fwd_rule_exit;
2990 }
2991
2992 fm_entry->fltr_info = f_entry->fltr_info;
2993
2994 /* Initialize all the fields for the management entry */
2995 fm_entry->vsi_count = 1;
2996 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2997 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2998 fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2999
3000 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
3001 ice_aqc_opc_add_sw_rules);
3002
3003 status = ice_aq_sw_rules(hw, s_rule,
3004 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3005 ice_aqc_opc_add_sw_rules, NULL);
3006 if (status) {
3007 devm_kfree(ice_hw_to_dev(hw), fm_entry);
3008 goto ice_create_pkt_fwd_rule_exit;
3009 }
3010
3011 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3012 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
3013
3014 /* The book keeping entries will get removed when base driver
3015 * calls remove filter AQ command
3016 */
3017 l_type = fm_entry->fltr_info.lkup_type;
3018 recp = &hw->switch_info->recp_list[l_type];
3019 list_add(&fm_entry->list_entry, &recp->filt_rules);
3020
3021ice_create_pkt_fwd_rule_exit:
3022 devm_kfree(ice_hw_to_dev(hw), s_rule);
3023 return status;
3024}
3025
3026/**
3027 * ice_update_pkt_fwd_rule
3028 * @hw: pointer to the hardware structure
3029 * @f_info: filter information for switch rule
3030 *
3031 * Call AQ command to update a previously created switch rule with a
3032 * VSI list ID
3033 */
3034static int
3035ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
3036{
3037 struct ice_sw_rule_lkup_rx_tx *s_rule;
3038 int status;
3039
3040 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3041 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
3042 GFP_KERNEL);
3043 if (!s_rule)
3044 return -ENOMEM;
3045
3046 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
3047
3048 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
3049
3050 /* Update switch rule with new rule set to forward VSI list */
3051 status = ice_aq_sw_rules(hw, s_rule,
3052 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
3053 ice_aqc_opc_update_sw_rules, NULL);
3054
3055 devm_kfree(ice_hw_to_dev(hw), s_rule);
3056 return status;
3057}
3058
3059/**
3060 * ice_update_sw_rule_bridge_mode
3061 * @hw: pointer to the HW struct
3062 *
3063 * Updates unicast switch filter rules based on VEB/VEPA mode
3064 */
3065int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
3066{
3067 struct ice_switch_info *sw = hw->switch_info;
3068 struct ice_fltr_mgmt_list_entry *fm_entry;
3069 struct list_head *rule_head;
3070 struct mutex *rule_lock; /* Lock to protect filter rule list */
3071 int status = 0;
3072
3073 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3074 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3075
3076 mutex_lock(rule_lock);
3077 list_for_each_entry(fm_entry, rule_head, list_entry) {
3078 struct ice_fltr_info *fi = &fm_entry->fltr_info;
3079 u8 *addr = fi->l_data.mac.mac_addr;
3080
3081 /* Update unicast Tx rules to reflect the selected
3082 * VEB/VEPA mode
3083 */
3084 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
3085 (fi->fltr_act == ICE_FWD_TO_VSI ||
3086 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
3087 fi->fltr_act == ICE_FWD_TO_Q ||
3088 fi->fltr_act == ICE_FWD_TO_QGRP)) {
3089 status = ice_update_pkt_fwd_rule(hw, fi);
3090 if (status)
3091 break;
3092 }
3093 }
3094
3095 mutex_unlock(rule_lock);
3096
3097 return status;
3098}
3099
3100/**
3101 * ice_add_update_vsi_list
3102 * @hw: pointer to the hardware structure
3103 * @m_entry: pointer to current filter management list entry
3104 * @cur_fltr: filter information from the book keeping entry
3105 * @new_fltr: filter information with the new VSI to be added
3106 *
3107 * Call AQ command to add or update previously created VSI list with new VSI.
3108 *
3109 * Helper function to do book keeping associated with adding filter information
3110 * The algorithm to do the book keeping is described below :
3111 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
3112 * if only one VSI has been added till now
3113 * Allocate a new VSI list and add two VSIs
3114 * to this list using switch rule command
3115 * Update the previously created switch rule with the
3116 * newly created VSI list ID
3117 * if a VSI list was previously created
3118 * Add the new VSI to the previously created VSI list set
3119 * using the update switch rule command
3120 */
3121static int
3122ice_add_update_vsi_list(struct ice_hw *hw,
3123 struct ice_fltr_mgmt_list_entry *m_entry,
3124 struct ice_fltr_info *cur_fltr,
3125 struct ice_fltr_info *new_fltr)
3126{
3127 u16 vsi_list_id = 0;
3128 int status = 0;
3129
3130 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
3131 cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
3132 return -EOPNOTSUPP;
3133
3134 if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
3135 new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
3136 (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
3137 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
3138 return -EOPNOTSUPP;
3139
3140 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
3141 /* Only one entry existed in the mapping and it was not already
3142 * a part of a VSI list. So, create a VSI list with the old and
3143 * new VSIs.
3144 */
3145 struct ice_fltr_info tmp_fltr;
3146 u16 vsi_handle_arr[2];
3147
3148 /* A rule already exists with the new VSI being added */
3149 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3150 return -EEXIST;
3151
3152 vsi_handle_arr[0] = cur_fltr->vsi_handle;
3153 vsi_handle_arr[1] = new_fltr->vsi_handle;
3154 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3155 &vsi_list_id,
3156 new_fltr->lkup_type);
3157 if (status)
3158 return status;
3159
3160 tmp_fltr = *new_fltr;
3161 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3162 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3163 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3164 /* Update the previous switch rule of "MAC forward to VSI" to
3165 * "MAC fwd to VSI list"
3166 */
3167 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3168 if (status)
3169 return status;
3170
3171 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3172 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3173 m_entry->vsi_list_info =
3174 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3175 vsi_list_id);
3176
3177 if (!m_entry->vsi_list_info)
3178 return -ENOMEM;
3179
3180 /* If this entry was large action then the large action needs
3181 * to be updated to point to FWD to VSI list
3182 */
3183 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3184 status =
3185 ice_add_marker_act(hw, m_entry,
3186 m_entry->sw_marker_id,
3187 m_entry->lg_act_idx);
3188 } else {
3189 u16 vsi_handle = new_fltr->vsi_handle;
3190 enum ice_adminq_opc opcode;
3191
3192 if (!m_entry->vsi_list_info)
3193 return -EIO;
3194
3195 /* A rule already exists with the new VSI being added */
3196 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3197 return -EEXIST;
3198
3199 /* Update the previously created VSI list set with
3200 * the new VSI ID passed in
3201 */
3202 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3203 opcode = ice_aqc_opc_update_sw_rules;
3204
3205 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3206 vsi_list_id, false, opcode,
3207 new_fltr->lkup_type);
3208 /* update VSI list mapping info with new VSI ID */
3209 if (!status)
3210 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3211 }
3212 if (!status)
3213 m_entry->vsi_count++;
3214 return status;
3215}
3216
3217/**
3218 * ice_find_rule_entry - Search a rule entry
3219 * @hw: pointer to the hardware structure
3220 * @recp_id: lookup type for which the specified rule needs to be searched
3221 * @f_info: rule information
3222 *
3223 * Helper function to search for a given rule entry
3224 * Returns pointer to entry storing the rule if found
3225 */
3226static struct ice_fltr_mgmt_list_entry *
3227ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3228{
3229 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3230 struct ice_switch_info *sw = hw->switch_info;
3231 struct list_head *list_head;
3232
3233 list_head = &sw->recp_list[recp_id].filt_rules;
3234 list_for_each_entry(list_itr, list_head, list_entry) {
3235 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3236 sizeof(f_info->l_data)) &&
3237 f_info->flag == list_itr->fltr_info.flag) {
3238 ret = list_itr;
3239 break;
3240 }
3241 }
3242 return ret;
3243}
3244
3245/**
3246 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3247 * @hw: pointer to the hardware structure
3248 * @recp_id: lookup type for which VSI lists needs to be searched
3249 * @vsi_handle: VSI handle to be found in VSI list
3250 * @vsi_list_id: VSI list ID found containing vsi_handle
3251 *
3252 * Helper function to search a VSI list with single entry containing given VSI
3253 * handle element. This can be extended further to search VSI list with more
3254 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3255 */
3256struct ice_vsi_list_map_info *
3257ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3258 u16 *vsi_list_id)
3259{
3260 struct ice_vsi_list_map_info *map_info = NULL;
3261 struct ice_switch_info *sw = hw->switch_info;
3262 struct ice_fltr_mgmt_list_entry *list_itr;
3263 struct list_head *list_head;
3264
3265 list_head = &sw->recp_list[recp_id].filt_rules;
3266 list_for_each_entry(list_itr, list_head, list_entry) {
3267 if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3268 map_info = list_itr->vsi_list_info;
3269 if (test_bit(vsi_handle, map_info->vsi_map)) {
3270 *vsi_list_id = map_info->vsi_list_id;
3271 return map_info;
3272 }
3273 }
3274 }
3275 return NULL;
3276}
3277
3278/**
3279 * ice_add_rule_internal - add rule for a given lookup type
3280 * @hw: pointer to the hardware structure
3281 * @recp_id: lookup type (recipe ID) for which rule has to be added
3282 * @f_entry: structure containing MAC forwarding information
3283 *
3284 * Adds or updates the rule lists for a given recipe
3285 */
3286static int
3287ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3288 struct ice_fltr_list_entry *f_entry)
3289{
3290 struct ice_switch_info *sw = hw->switch_info;
3291 struct ice_fltr_info *new_fltr, *cur_fltr;
3292 struct ice_fltr_mgmt_list_entry *m_entry;
3293 struct mutex *rule_lock; /* Lock to protect filter rule list */
3294 int status = 0;
3295
3296 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3297 return -EINVAL;
3298 f_entry->fltr_info.fwd_id.hw_vsi_id =
3299 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3300
3301 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3302
3303 mutex_lock(rule_lock);
3304 new_fltr = &f_entry->fltr_info;
3305 if (new_fltr->flag & ICE_FLTR_RX)
3306 new_fltr->src = hw->port_info->lport;
3307 else if (new_fltr->flag & ICE_FLTR_TX)
3308 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3309
3310 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3311 if (!m_entry) {
3312 mutex_unlock(rule_lock);
3313 return ice_create_pkt_fwd_rule(hw, f_entry);
3314 }
3315
3316 cur_fltr = &m_entry->fltr_info;
3317 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3318 mutex_unlock(rule_lock);
3319
3320 return status;
3321}
3322
3323/**
3324 * ice_remove_vsi_list_rule
3325 * @hw: pointer to the hardware structure
3326 * @vsi_list_id: VSI list ID generated as part of allocate resource
3327 * @lkup_type: switch rule filter lookup type
3328 *
3329 * The VSI list should be emptied before this function is called to remove the
3330 * VSI list.
3331 */
3332static int
3333ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3334 enum ice_sw_lkup_type lkup_type)
3335{
3336 struct ice_sw_rule_vsi_list *s_rule;
3337 u16 s_rule_size;
3338 int status;
3339
3340 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3341 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3342 if (!s_rule)
3343 return -ENOMEM;
3344
3345 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3346 s_rule->index = cpu_to_le16(vsi_list_id);
3347
3348 /* Free the vsi_list resource that we allocated. It is assumed that the
3349 * list is empty at this point.
3350 */
3351 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3352 ice_aqc_opc_free_res);
3353
3354 devm_kfree(ice_hw_to_dev(hw), s_rule);
3355 return status;
3356}
3357
3358/**
3359 * ice_rem_update_vsi_list
3360 * @hw: pointer to the hardware structure
3361 * @vsi_handle: VSI handle of the VSI to remove
3362 * @fm_list: filter management entry for which the VSI list management needs to
3363 * be done
3364 */
3365static int
3366ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3367 struct ice_fltr_mgmt_list_entry *fm_list)
3368{
3369 enum ice_sw_lkup_type lkup_type;
3370 u16 vsi_list_id;
3371 int status = 0;
3372
3373 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3374 fm_list->vsi_count == 0)
3375 return -EINVAL;
3376
3377 /* A rule with the VSI being removed does not exist */
3378 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3379 return -ENOENT;
3380
3381 lkup_type = fm_list->fltr_info.lkup_type;
3382 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3383 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3384 ice_aqc_opc_update_sw_rules,
3385 lkup_type);
3386 if (status)
3387 return status;
3388
3389 fm_list->vsi_count--;
3390 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3391
3392 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3393 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3394 struct ice_vsi_list_map_info *vsi_list_info =
3395 fm_list->vsi_list_info;
3396 u16 rem_vsi_handle;
3397
3398 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3399 ICE_MAX_VSI);
3400 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3401 return -EIO;
3402
3403 /* Make sure VSI list is empty before removing it below */
3404 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3405 vsi_list_id, true,
3406 ice_aqc_opc_update_sw_rules,
3407 lkup_type);
3408 if (status)
3409 return status;
3410
3411 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3412 tmp_fltr_info.fwd_id.hw_vsi_id =
3413 ice_get_hw_vsi_num(hw, rem_vsi_handle);
3414 tmp_fltr_info.vsi_handle = rem_vsi_handle;
3415 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3416 if (status) {
3417 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3418 tmp_fltr_info.fwd_id.hw_vsi_id, status);
3419 return status;
3420 }
3421
3422 fm_list->fltr_info = tmp_fltr_info;
3423 }
3424
3425 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3426 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3427 struct ice_vsi_list_map_info *vsi_list_info =
3428 fm_list->vsi_list_info;
3429
3430 /* Remove the VSI list since it is no longer used */
3431 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3432 if (status) {
3433 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3434 vsi_list_id, status);
3435 return status;
3436 }
3437
3438 list_del(&vsi_list_info->list_entry);
3439 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3440 fm_list->vsi_list_info = NULL;
3441 }
3442
3443 return status;
3444}
3445
3446/**
3447 * ice_remove_rule_internal - Remove a filter rule of a given type
3448 * @hw: pointer to the hardware structure
3449 * @recp_id: recipe ID for which the rule needs to removed
3450 * @f_entry: rule entry containing filter information
3451 */
3452static int
3453ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3454 struct ice_fltr_list_entry *f_entry)
3455{
3456 struct ice_switch_info *sw = hw->switch_info;
3457 struct ice_fltr_mgmt_list_entry *list_elem;
3458 struct mutex *rule_lock; /* Lock to protect filter rule list */
3459 bool remove_rule = false;
3460 u16 vsi_handle;
3461 int status = 0;
3462
3463 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3464 return -EINVAL;
3465 f_entry->fltr_info.fwd_id.hw_vsi_id =
3466 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3467
3468 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3469 mutex_lock(rule_lock);
3470 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3471 if (!list_elem) {
3472 status = -ENOENT;
3473 goto exit;
3474 }
3475
3476 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3477 remove_rule = true;
3478 } else if (!list_elem->vsi_list_info) {
3479 status = -ENOENT;
3480 goto exit;
3481 } else if (list_elem->vsi_list_info->ref_cnt > 1) {
3482 /* a ref_cnt > 1 indicates that the vsi_list is being
3483 * shared by multiple rules. Decrement the ref_cnt and
3484 * remove this rule, but do not modify the list, as it
3485 * is in-use by other rules.
3486 */
3487 list_elem->vsi_list_info->ref_cnt--;
3488 remove_rule = true;
3489 } else {
3490 /* a ref_cnt of 1 indicates the vsi_list is only used
3491 * by one rule. However, the original removal request is only
3492 * for a single VSI. Update the vsi_list first, and only
3493 * remove the rule if there are no further VSIs in this list.
3494 */
3495 vsi_handle = f_entry->fltr_info.vsi_handle;
3496 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3497 if (status)
3498 goto exit;
3499 /* if VSI count goes to zero after updating the VSI list */
3500 if (list_elem->vsi_count == 0)
3501 remove_rule = true;
3502 }
3503
3504 if (remove_rule) {
3505 /* Remove the lookup rule */
3506 struct ice_sw_rule_lkup_rx_tx *s_rule;
3507
3508 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3509 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3510 GFP_KERNEL);
3511 if (!s_rule) {
3512 status = -ENOMEM;
3513 goto exit;
3514 }
3515
3516 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3517 ice_aqc_opc_remove_sw_rules);
3518
3519 status = ice_aq_sw_rules(hw, s_rule,
3520 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3521 1, ice_aqc_opc_remove_sw_rules, NULL);
3522
3523 /* Remove a book keeping from the list */
3524 devm_kfree(ice_hw_to_dev(hw), s_rule);
3525
3526 if (status)
3527 goto exit;
3528
3529 list_del(&list_elem->list_entry);
3530 devm_kfree(ice_hw_to_dev(hw), list_elem);
3531 }
3532exit:
3533 mutex_unlock(rule_lock);
3534 return status;
3535}
3536
3537/**
3538 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3539 * @hw: pointer to the hardware structure
3540 * @vlan_id: VLAN ID
3541 * @vsi_handle: check MAC filter for this VSI
3542 */
3543bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3544{
3545 struct ice_fltr_mgmt_list_entry *entry;
3546 struct list_head *rule_head;
3547 struct ice_switch_info *sw;
3548 struct mutex *rule_lock; /* Lock to protect filter rule list */
3549 u16 hw_vsi_id;
3550
3551 if (vlan_id > ICE_MAX_VLAN_ID)
3552 return false;
3553
3554 if (!ice_is_vsi_valid(hw, vsi_handle))
3555 return false;
3556
3557 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3558 sw = hw->switch_info;
3559 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3560 if (!rule_head)
3561 return false;
3562
3563 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3564 mutex_lock(rule_lock);
3565 list_for_each_entry(entry, rule_head, list_entry) {
3566 struct ice_fltr_info *f_info = &entry->fltr_info;
3567 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3568 struct ice_vsi_list_map_info *map_info;
3569
3570 if (entry_vlan_id > ICE_MAX_VLAN_ID)
3571 continue;
3572
3573 if (f_info->flag != ICE_FLTR_TX ||
3574 f_info->src_id != ICE_SRC_ID_VSI ||
3575 f_info->lkup_type != ICE_SW_LKUP_VLAN)
3576 continue;
3577
3578 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3579 if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3580 f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3581 continue;
3582
3583 if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3584 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3585 continue;
3586 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3587 /* If filter_action is FWD_TO_VSI_LIST, make sure
3588 * that VSI being checked is part of VSI list
3589 */
3590 if (entry->vsi_count == 1 &&
3591 entry->vsi_list_info) {
3592 map_info = entry->vsi_list_info;
3593 if (!test_bit(vsi_handle, map_info->vsi_map))
3594 continue;
3595 }
3596 }
3597
3598 if (vlan_id == entry_vlan_id) {
3599 mutex_unlock(rule_lock);
3600 return true;
3601 }
3602 }
3603 mutex_unlock(rule_lock);
3604
3605 return false;
3606}
3607
3608/**
3609 * ice_add_mac - Add a MAC address based filter rule
3610 * @hw: pointer to the hardware structure
3611 * @m_list: list of MAC addresses and forwarding information
3612 */
3613int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3614{
3615 struct ice_fltr_list_entry *m_list_itr;
3616 int status = 0;
3617
3618 if (!m_list || !hw)
3619 return -EINVAL;
3620
3621 list_for_each_entry(m_list_itr, m_list, list_entry) {
3622 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3623 u16 vsi_handle;
3624 u16 hw_vsi_id;
3625
3626 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3627 vsi_handle = m_list_itr->fltr_info.vsi_handle;
3628 if (!ice_is_vsi_valid(hw, vsi_handle))
3629 return -EINVAL;
3630 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3631 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3632 /* update the src in case it is VSI num */
3633 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3634 return -EINVAL;
3635 m_list_itr->fltr_info.src = hw_vsi_id;
3636 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3637 is_zero_ether_addr(add))
3638 return -EINVAL;
3639
3640 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3641 m_list_itr);
3642 if (m_list_itr->status)
3643 return m_list_itr->status;
3644 }
3645
3646 return status;
3647}
3648
3649/**
3650 * ice_add_vlan_internal - Add one VLAN based filter rule
3651 * @hw: pointer to the hardware structure
3652 * @f_entry: filter entry containing one VLAN information
3653 */
3654static int
3655ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3656{
3657 struct ice_switch_info *sw = hw->switch_info;
3658 struct ice_fltr_mgmt_list_entry *v_list_itr;
3659 struct ice_fltr_info *new_fltr, *cur_fltr;
3660 enum ice_sw_lkup_type lkup_type;
3661 u16 vsi_list_id = 0, vsi_handle;
3662 struct mutex *rule_lock; /* Lock to protect filter rule list */
3663 int status = 0;
3664
3665 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3666 return -EINVAL;
3667
3668 f_entry->fltr_info.fwd_id.hw_vsi_id =
3669 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3670 new_fltr = &f_entry->fltr_info;
3671
3672 /* VLAN ID should only be 12 bits */
3673 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3674 return -EINVAL;
3675
3676 if (new_fltr->src_id != ICE_SRC_ID_VSI)
3677 return -EINVAL;
3678
3679 new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3680 lkup_type = new_fltr->lkup_type;
3681 vsi_handle = new_fltr->vsi_handle;
3682 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3683 mutex_lock(rule_lock);
3684 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3685 if (!v_list_itr) {
3686 struct ice_vsi_list_map_info *map_info = NULL;
3687
3688 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3689 /* All VLAN pruning rules use a VSI list. Check if
3690 * there is already a VSI list containing VSI that we
3691 * want to add. If found, use the same vsi_list_id for
3692 * this new VLAN rule or else create a new list.
3693 */
3694 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3695 vsi_handle,
3696 &vsi_list_id);
3697 if (!map_info) {
3698 status = ice_create_vsi_list_rule(hw,
3699 &vsi_handle,
3700 1,
3701 &vsi_list_id,
3702 lkup_type);
3703 if (status)
3704 goto exit;
3705 }
3706 /* Convert the action to forwarding to a VSI list. */
3707 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3708 new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3709 }
3710
3711 status = ice_create_pkt_fwd_rule(hw, f_entry);
3712 if (!status) {
3713 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3714 new_fltr);
3715 if (!v_list_itr) {
3716 status = -ENOENT;
3717 goto exit;
3718 }
3719 /* reuse VSI list for new rule and increment ref_cnt */
3720 if (map_info) {
3721 v_list_itr->vsi_list_info = map_info;
3722 map_info->ref_cnt++;
3723 } else {
3724 v_list_itr->vsi_list_info =
3725 ice_create_vsi_list_map(hw, &vsi_handle,
3726 1, vsi_list_id);
3727 }
3728 }
3729 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3730 /* Update existing VSI list to add new VSI ID only if it used
3731 * by one VLAN rule.
3732 */
3733 cur_fltr = &v_list_itr->fltr_info;
3734 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3735 new_fltr);
3736 } else {
3737 /* If VLAN rule exists and VSI list being used by this rule is
3738 * referenced by more than 1 VLAN rule. Then create a new VSI
3739 * list appending previous VSI with new VSI and update existing
3740 * VLAN rule to point to new VSI list ID
3741 */
3742 struct ice_fltr_info tmp_fltr;
3743 u16 vsi_handle_arr[2];
3744 u16 cur_handle;
3745
3746 /* Current implementation only supports reusing VSI list with
3747 * one VSI count. We should never hit below condition
3748 */
3749 if (v_list_itr->vsi_count > 1 &&
3750 v_list_itr->vsi_list_info->ref_cnt > 1) {
3751 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3752 status = -EIO;
3753 goto exit;
3754 }
3755
3756 cur_handle =
3757 find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3758 ICE_MAX_VSI);
3759
3760 /* A rule already exists with the new VSI being added */
3761 if (cur_handle == vsi_handle) {
3762 status = -EEXIST;
3763 goto exit;
3764 }
3765
3766 vsi_handle_arr[0] = cur_handle;
3767 vsi_handle_arr[1] = vsi_handle;
3768 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3769 &vsi_list_id, lkup_type);
3770 if (status)
3771 goto exit;
3772
3773 tmp_fltr = v_list_itr->fltr_info;
3774 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3775 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3776 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3777 /* Update the previous switch rule to a new VSI list which
3778 * includes current VSI that is requested
3779 */
3780 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3781 if (status)
3782 goto exit;
3783
3784 /* before overriding VSI list map info. decrement ref_cnt of
3785 * previous VSI list
3786 */
3787 v_list_itr->vsi_list_info->ref_cnt--;
3788
3789 /* now update to newly created list */
3790 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3791 v_list_itr->vsi_list_info =
3792 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3793 vsi_list_id);
3794 v_list_itr->vsi_count++;
3795 }
3796
3797exit:
3798 mutex_unlock(rule_lock);
3799 return status;
3800}
3801
3802/**
3803 * ice_add_vlan - Add VLAN based filter rule
3804 * @hw: pointer to the hardware structure
3805 * @v_list: list of VLAN entries and forwarding information
3806 */
3807int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3808{
3809 struct ice_fltr_list_entry *v_list_itr;
3810
3811 if (!v_list || !hw)
3812 return -EINVAL;
3813
3814 list_for_each_entry(v_list_itr, v_list, list_entry) {
3815 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3816 return -EINVAL;
3817 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3818 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3819 if (v_list_itr->status)
3820 return v_list_itr->status;
3821 }
3822 return 0;
3823}
3824
3825/**
3826 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3827 * @hw: pointer to the hardware structure
3828 * @em_list: list of ether type MAC filter, MAC is optional
3829 *
3830 * This function requires the caller to populate the entries in
3831 * the filter list with the necessary fields (including flags to
3832 * indicate Tx or Rx rules).
3833 */
3834int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3835{
3836 struct ice_fltr_list_entry *em_list_itr;
3837
3838 if (!em_list || !hw)
3839 return -EINVAL;
3840
3841 list_for_each_entry(em_list_itr, em_list, list_entry) {
3842 enum ice_sw_lkup_type l_type =
3843 em_list_itr->fltr_info.lkup_type;
3844
3845 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3846 l_type != ICE_SW_LKUP_ETHERTYPE)
3847 return -EINVAL;
3848
3849 em_list_itr->status = ice_add_rule_internal(hw, l_type,
3850 em_list_itr);
3851 if (em_list_itr->status)
3852 return em_list_itr->status;
3853 }
3854 return 0;
3855}
3856
3857/**
3858 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3859 * @hw: pointer to the hardware structure
3860 * @em_list: list of ethertype or ethertype MAC entries
3861 */
3862int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3863{
3864 struct ice_fltr_list_entry *em_list_itr, *tmp;
3865
3866 if (!em_list || !hw)
3867 return -EINVAL;
3868
3869 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3870 enum ice_sw_lkup_type l_type =
3871 em_list_itr->fltr_info.lkup_type;
3872
3873 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3874 l_type != ICE_SW_LKUP_ETHERTYPE)
3875 return -EINVAL;
3876
3877 em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3878 em_list_itr);
3879 if (em_list_itr->status)
3880 return em_list_itr->status;
3881 }
3882 return 0;
3883}
3884
3885/**
3886 * ice_rem_sw_rule_info
3887 * @hw: pointer to the hardware structure
3888 * @rule_head: pointer to the switch list structure that we want to delete
3889 */
3890static void
3891ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3892{
3893 if (!list_empty(rule_head)) {
3894 struct ice_fltr_mgmt_list_entry *entry;
3895 struct ice_fltr_mgmt_list_entry *tmp;
3896
3897 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3898 list_del(&entry->list_entry);
3899 devm_kfree(ice_hw_to_dev(hw), entry);
3900 }
3901 }
3902}
3903
3904/**
3905 * ice_rem_adv_rule_info
3906 * @hw: pointer to the hardware structure
3907 * @rule_head: pointer to the switch list structure that we want to delete
3908 */
3909static void
3910ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3911{
3912 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3913 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3914
3915 if (list_empty(rule_head))
3916 return;
3917
3918 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3919 list_del(&lst_itr->list_entry);
3920 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3921 devm_kfree(ice_hw_to_dev(hw), lst_itr);
3922 }
3923}
3924
3925/**
3926 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3927 * @pi: pointer to the port_info structure
3928 * @vsi_handle: VSI handle to set as default
3929 * @set: true to add the above mentioned switch rule, false to remove it
3930 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3931 *
3932 * add filter rule to set/unset given VSI as default VSI for the switch
3933 * (represented by swid)
3934 */
3935int
3936ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3937 u8 direction)
3938{
3939 struct ice_fltr_list_entry f_list_entry;
3940 struct ice_fltr_info f_info;
3941 struct ice_hw *hw = pi->hw;
3942 u16 hw_vsi_id;
3943 int status;
3944
3945 if (!ice_is_vsi_valid(hw, vsi_handle))
3946 return -EINVAL;
3947
3948 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3949
3950 memset(&f_info, 0, sizeof(f_info));
3951
3952 f_info.lkup_type = ICE_SW_LKUP_DFLT;
3953 f_info.flag = direction;
3954 f_info.fltr_act = ICE_FWD_TO_VSI;
3955 f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3956 f_info.vsi_handle = vsi_handle;
3957
3958 if (f_info.flag & ICE_FLTR_RX) {
3959 f_info.src = hw->port_info->lport;
3960 f_info.src_id = ICE_SRC_ID_LPORT;
3961 } else if (f_info.flag & ICE_FLTR_TX) {
3962 f_info.src_id = ICE_SRC_ID_VSI;
3963 f_info.src = hw_vsi_id;
3964 f_info.flag |= ICE_FLTR_TX_ONLY;
3965 }
3966 f_list_entry.fltr_info = f_info;
3967
3968 if (set)
3969 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3970 &f_list_entry);
3971 else
3972 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3973 &f_list_entry);
3974
3975 return status;
3976}
3977
3978/**
3979 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3980 * @fm_entry: filter entry to inspect
3981 * @vsi_handle: VSI handle to compare with filter info
3982 */
3983static bool
3984ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3985{
3986 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3987 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3988 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3989 fm_entry->vsi_list_info &&
3990 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3991}
3992
3993/**
3994 * ice_check_if_dflt_vsi - check if VSI is default VSI
3995 * @pi: pointer to the port_info structure
3996 * @vsi_handle: vsi handle to check for in filter list
3997 * @rule_exists: indicates if there are any VSI's in the rule list
3998 *
3999 * checks if the VSI is in a default VSI list, and also indicates
4000 * if the default VSI list is empty
4001 */
4002bool
4003ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
4004 bool *rule_exists)
4005{
4006 struct ice_fltr_mgmt_list_entry *fm_entry;
4007 struct ice_sw_recipe *recp_list;
4008 struct list_head *rule_head;
4009 struct mutex *rule_lock; /* Lock to protect filter rule list */
4010 bool ret = false;
4011
4012 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
4013 rule_lock = &recp_list->filt_rule_lock;
4014 rule_head = &recp_list->filt_rules;
4015
4016 mutex_lock(rule_lock);
4017
4018 if (rule_exists && !list_empty(rule_head))
4019 *rule_exists = true;
4020
4021 list_for_each_entry(fm_entry, rule_head, list_entry) {
4022 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
4023 ret = true;
4024 break;
4025 }
4026 }
4027
4028 mutex_unlock(rule_lock);
4029
4030 return ret;
4031}
4032
4033/**
4034 * ice_remove_mac - remove a MAC address based filter rule
4035 * @hw: pointer to the hardware structure
4036 * @m_list: list of MAC addresses and forwarding information
4037 *
4038 * This function removes either a MAC filter rule or a specific VSI from a
4039 * VSI list for a multicast MAC address.
4040 *
4041 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4042 * be aware that this call will only work if all the entries passed into m_list
4043 * were added previously. It will not attempt to do a partial remove of entries
4044 * that were found.
4045 */
4046int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4047{
4048 struct ice_fltr_list_entry *list_itr, *tmp;
4049
4050 if (!m_list)
4051 return -EINVAL;
4052
4053 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4054 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4055 u16 vsi_handle;
4056
4057 if (l_type != ICE_SW_LKUP_MAC)
4058 return -EINVAL;
4059
4060 vsi_handle = list_itr->fltr_info.vsi_handle;
4061 if (!ice_is_vsi_valid(hw, vsi_handle))
4062 return -EINVAL;
4063
4064 list_itr->fltr_info.fwd_id.hw_vsi_id =
4065 ice_get_hw_vsi_num(hw, vsi_handle);
4066
4067 list_itr->status = ice_remove_rule_internal(hw,
4068 ICE_SW_LKUP_MAC,
4069 list_itr);
4070 if (list_itr->status)
4071 return list_itr->status;
4072 }
4073 return 0;
4074}
4075
4076/**
4077 * ice_remove_vlan - Remove VLAN based filter rule
4078 * @hw: pointer to the hardware structure
4079 * @v_list: list of VLAN entries and forwarding information
4080 */
4081int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4082{
4083 struct ice_fltr_list_entry *v_list_itr, *tmp;
4084
4085 if (!v_list || !hw)
4086 return -EINVAL;
4087
4088 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4089 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4090
4091 if (l_type != ICE_SW_LKUP_VLAN)
4092 return -EINVAL;
4093 v_list_itr->status = ice_remove_rule_internal(hw,
4094 ICE_SW_LKUP_VLAN,
4095 v_list_itr);
4096 if (v_list_itr->status)
4097 return v_list_itr->status;
4098 }
4099 return 0;
4100}
4101
4102/**
4103 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4104 * @hw: pointer to the hardware structure
4105 * @vsi_handle: VSI handle to remove filters from
4106 * @vsi_list_head: pointer to the list to add entry to
4107 * @fi: pointer to fltr_info of filter entry to copy & add
4108 *
4109 * Helper function, used when creating a list of filters to remove from
4110 * a specific VSI. The entry added to vsi_list_head is a COPY of the
4111 * original filter entry, with the exception of fltr_info.fltr_act and
4112 * fltr_info.fwd_id fields. These are set such that later logic can
4113 * extract which VSI to remove the fltr from, and pass on that information.
4114 */
4115static int
4116ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4117 struct list_head *vsi_list_head,
4118 struct ice_fltr_info *fi)
4119{
4120 struct ice_fltr_list_entry *tmp;
4121
4122 /* this memory is freed up in the caller function
4123 * once filters for this VSI are removed
4124 */
4125 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4126 if (!tmp)
4127 return -ENOMEM;
4128
4129 tmp->fltr_info = *fi;
4130
4131 /* Overwrite these fields to indicate which VSI to remove filter from,
4132 * so find and remove logic can extract the information from the
4133 * list entries. Note that original entries will still have proper
4134 * values.
4135 */
4136 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4137 tmp->fltr_info.vsi_handle = vsi_handle;
4138 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4139
4140 list_add(&tmp->list_entry, vsi_list_head);
4141
4142 return 0;
4143}
4144
4145/**
4146 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4147 * @hw: pointer to the hardware structure
4148 * @vsi_handle: VSI handle to remove filters from
4149 * @lkup_list_head: pointer to the list that has certain lookup type filters
4150 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4151 *
4152 * Locates all filters in lkup_list_head that are used by the given VSI,
4153 * and adds COPIES of those entries to vsi_list_head (intended to be used
4154 * to remove the listed filters).
4155 * Note that this means all entries in vsi_list_head must be explicitly
4156 * deallocated by the caller when done with list.
4157 */
4158static int
4159ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4160 struct list_head *lkup_list_head,
4161 struct list_head *vsi_list_head)
4162{
4163 struct ice_fltr_mgmt_list_entry *fm_entry;
4164 int status = 0;
4165
4166 /* check to make sure VSI ID is valid and within boundary */
4167 if (!ice_is_vsi_valid(hw, vsi_handle))
4168 return -EINVAL;
4169
4170 list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4171 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4172 continue;
4173
4174 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4175 vsi_list_head,
4176 &fm_entry->fltr_info);
4177 if (status)
4178 return status;
4179 }
4180 return status;
4181}
4182
4183/**
4184 * ice_determine_promisc_mask
4185 * @fi: filter info to parse
4186 *
4187 * Helper function to determine which ICE_PROMISC_ mask corresponds
4188 * to given filter into.
4189 */
4190static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4191{
4192 u16 vid = fi->l_data.mac_vlan.vlan_id;
4193 u8 *macaddr = fi->l_data.mac.mac_addr;
4194 bool is_tx_fltr = false;
4195 u8 promisc_mask = 0;
4196
4197 if (fi->flag == ICE_FLTR_TX)
4198 is_tx_fltr = true;
4199
4200 if (is_broadcast_ether_addr(macaddr))
4201 promisc_mask |= is_tx_fltr ?
4202 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4203 else if (is_multicast_ether_addr(macaddr))
4204 promisc_mask |= is_tx_fltr ?
4205 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4206 else if (is_unicast_ether_addr(macaddr))
4207 promisc_mask |= is_tx_fltr ?
4208 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4209 if (vid)
4210 promisc_mask |= is_tx_fltr ?
4211 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4212
4213 return promisc_mask;
4214}
4215
4216/**
4217 * ice_remove_promisc - Remove promisc based filter rules
4218 * @hw: pointer to the hardware structure
4219 * @recp_id: recipe ID for which the rule needs to removed
4220 * @v_list: list of promisc entries
4221 */
4222static int
4223ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4224{
4225 struct ice_fltr_list_entry *v_list_itr, *tmp;
4226
4227 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4228 v_list_itr->status =
4229 ice_remove_rule_internal(hw, recp_id, v_list_itr);
4230 if (v_list_itr->status)
4231 return v_list_itr->status;
4232 }
4233 return 0;
4234}
4235
4236/**
4237 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4238 * @hw: pointer to the hardware structure
4239 * @vsi_handle: VSI handle to clear mode
4240 * @promisc_mask: mask of promiscuous config bits to clear
4241 * @vid: VLAN ID to clear VLAN promiscuous
4242 */
4243int
4244ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4245 u16 vid)
4246{
4247 struct ice_switch_info *sw = hw->switch_info;
4248 struct ice_fltr_list_entry *fm_entry, *tmp;
4249 struct list_head remove_list_head;
4250 struct ice_fltr_mgmt_list_entry *itr;
4251 struct list_head *rule_head;
4252 struct mutex *rule_lock; /* Lock to protect filter rule list */
4253 int status = 0;
4254 u8 recipe_id;
4255
4256 if (!ice_is_vsi_valid(hw, vsi_handle))
4257 return -EINVAL;
4258
4259 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4260 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4261 else
4262 recipe_id = ICE_SW_LKUP_PROMISC;
4263
4264 rule_head = &sw->recp_list[recipe_id].filt_rules;
4265 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4266
4267 INIT_LIST_HEAD(&remove_list_head);
4268
4269 mutex_lock(rule_lock);
4270 list_for_each_entry(itr, rule_head, list_entry) {
4271 struct ice_fltr_info *fltr_info;
4272 u8 fltr_promisc_mask = 0;
4273
4274 if (!ice_vsi_uses_fltr(itr, vsi_handle))
4275 continue;
4276 fltr_info = &itr->fltr_info;
4277
4278 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4279 vid != fltr_info->l_data.mac_vlan.vlan_id)
4280 continue;
4281
4282 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4283
4284 /* Skip if filter is not completely specified by given mask */
4285 if (fltr_promisc_mask & ~promisc_mask)
4286 continue;
4287
4288 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4289 &remove_list_head,
4290 fltr_info);
4291 if (status) {
4292 mutex_unlock(rule_lock);
4293 goto free_fltr_list;
4294 }
4295 }
4296 mutex_unlock(rule_lock);
4297
4298 status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4299
4300free_fltr_list:
4301 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4302 list_del(&fm_entry->list_entry);
4303 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4304 }
4305
4306 return status;
4307}
4308
4309/**
4310 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4311 * @hw: pointer to the hardware structure
4312 * @vsi_handle: VSI handle to configure
4313 * @promisc_mask: mask of promiscuous config bits
4314 * @vid: VLAN ID to set VLAN promiscuous
4315 */
4316int
4317ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4318{
4319 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4320 struct ice_fltr_list_entry f_list_entry;
4321 struct ice_fltr_info new_fltr;
4322 bool is_tx_fltr;
4323 int status = 0;
4324 u16 hw_vsi_id;
4325 int pkt_type;
4326 u8 recipe_id;
4327
4328 if (!ice_is_vsi_valid(hw, vsi_handle))
4329 return -EINVAL;
4330 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4331
4332 memset(&new_fltr, 0, sizeof(new_fltr));
4333
4334 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4335 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4336 new_fltr.l_data.mac_vlan.vlan_id = vid;
4337 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4338 } else {
4339 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4340 recipe_id = ICE_SW_LKUP_PROMISC;
4341 }
4342
4343 /* Separate filters must be set for each direction/packet type
4344 * combination, so we will loop over the mask value, store the
4345 * individual type, and clear it out in the input mask as it
4346 * is found.
4347 */
4348 while (promisc_mask) {
4349 u8 *mac_addr;
4350
4351 pkt_type = 0;
4352 is_tx_fltr = false;
4353
4354 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4355 promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4356 pkt_type = UCAST_FLTR;
4357 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4358 promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4359 pkt_type = UCAST_FLTR;
4360 is_tx_fltr = true;
4361 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4362 promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4363 pkt_type = MCAST_FLTR;
4364 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4365 promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4366 pkt_type = MCAST_FLTR;
4367 is_tx_fltr = true;
4368 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4369 promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4370 pkt_type = BCAST_FLTR;
4371 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4372 promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4373 pkt_type = BCAST_FLTR;
4374 is_tx_fltr = true;
4375 }
4376
4377 /* Check for VLAN promiscuous flag */
4378 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4379 promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4380 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4381 promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4382 is_tx_fltr = true;
4383 }
4384
4385 /* Set filter DA based on packet type */
4386 mac_addr = new_fltr.l_data.mac.mac_addr;
4387 if (pkt_type == BCAST_FLTR) {
4388 eth_broadcast_addr(mac_addr);
4389 } else if (pkt_type == MCAST_FLTR ||
4390 pkt_type == UCAST_FLTR) {
4391 /* Use the dummy ether header DA */
4392 ether_addr_copy(mac_addr, dummy_eth_header);
4393 if (pkt_type == MCAST_FLTR)
4394 mac_addr[0] |= 0x1; /* Set multicast bit */
4395 }
4396
4397 /* Need to reset this to zero for all iterations */
4398 new_fltr.flag = 0;
4399 if (is_tx_fltr) {
4400 new_fltr.flag |= ICE_FLTR_TX;
4401 new_fltr.src = hw_vsi_id;
4402 } else {
4403 new_fltr.flag |= ICE_FLTR_RX;
4404 new_fltr.src = hw->port_info->lport;
4405 }
4406
4407 new_fltr.fltr_act = ICE_FWD_TO_VSI;
4408 new_fltr.vsi_handle = vsi_handle;
4409 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4410 f_list_entry.fltr_info = new_fltr;
4411
4412 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4413 if (status)
4414 goto set_promisc_exit;
4415 }
4416
4417set_promisc_exit:
4418 return status;
4419}
4420
4421/**
4422 * ice_set_vlan_vsi_promisc
4423 * @hw: pointer to the hardware structure
4424 * @vsi_handle: VSI handle to configure
4425 * @promisc_mask: mask of promiscuous config bits
4426 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4427 *
4428 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4429 */
4430int
4431ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4432 bool rm_vlan_promisc)
4433{
4434 struct ice_switch_info *sw = hw->switch_info;
4435 struct ice_fltr_list_entry *list_itr, *tmp;
4436 struct list_head vsi_list_head;
4437 struct list_head *vlan_head;
4438 struct mutex *vlan_lock; /* Lock to protect filter rule list */
4439 u16 vlan_id;
4440 int status;
4441
4442 INIT_LIST_HEAD(&vsi_list_head);
4443 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4444 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4445 mutex_lock(vlan_lock);
4446 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4447 &vsi_list_head);
4448 mutex_unlock(vlan_lock);
4449 if (status)
4450 goto free_fltr_list;
4451
4452 list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4453 /* Avoid enabling or disabling VLAN zero twice when in double
4454 * VLAN mode
4455 */
4456 if (ice_is_dvm_ena(hw) &&
4457 list_itr->fltr_info.l_data.vlan.tpid == 0)
4458 continue;
4459
4460 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4461 if (rm_vlan_promisc)
4462 status = ice_clear_vsi_promisc(hw, vsi_handle,
4463 promisc_mask, vlan_id);
4464 else
4465 status = ice_set_vsi_promisc(hw, vsi_handle,
4466 promisc_mask, vlan_id);
4467 if (status && status != -EEXIST)
4468 break;
4469 }
4470
4471free_fltr_list:
4472 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4473 list_del(&list_itr->list_entry);
4474 devm_kfree(ice_hw_to_dev(hw), list_itr);
4475 }
4476 return status;
4477}
4478
4479/**
4480 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4481 * @hw: pointer to the hardware structure
4482 * @vsi_handle: VSI handle to remove filters from
4483 * @lkup: switch rule filter lookup type
4484 */
4485static void
4486ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4487 enum ice_sw_lkup_type lkup)
4488{
4489 struct ice_switch_info *sw = hw->switch_info;
4490 struct ice_fltr_list_entry *fm_entry;
4491 struct list_head remove_list_head;
4492 struct list_head *rule_head;
4493 struct ice_fltr_list_entry *tmp;
4494 struct mutex *rule_lock; /* Lock to protect filter rule list */
4495 int status;
4496
4497 INIT_LIST_HEAD(&remove_list_head);
4498 rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4499 rule_head = &sw->recp_list[lkup].filt_rules;
4500 mutex_lock(rule_lock);
4501 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4502 &remove_list_head);
4503 mutex_unlock(rule_lock);
4504 if (status)
4505 goto free_fltr_list;
4506
4507 switch (lkup) {
4508 case ICE_SW_LKUP_MAC:
4509 ice_remove_mac(hw, &remove_list_head);
4510 break;
4511 case ICE_SW_LKUP_VLAN:
4512 ice_remove_vlan(hw, &remove_list_head);
4513 break;
4514 case ICE_SW_LKUP_PROMISC:
4515 case ICE_SW_LKUP_PROMISC_VLAN:
4516 ice_remove_promisc(hw, lkup, &remove_list_head);
4517 break;
4518 case ICE_SW_LKUP_MAC_VLAN:
4519 case ICE_SW_LKUP_ETHERTYPE:
4520 case ICE_SW_LKUP_ETHERTYPE_MAC:
4521 case ICE_SW_LKUP_DFLT:
4522 case ICE_SW_LKUP_LAST:
4523 default:
4524 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4525 break;
4526 }
4527
4528free_fltr_list:
4529 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4530 list_del(&fm_entry->list_entry);
4531 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4532 }
4533}
4534
4535/**
4536 * ice_remove_vsi_fltr - Remove all filters for a VSI
4537 * @hw: pointer to the hardware structure
4538 * @vsi_handle: VSI handle to remove filters from
4539 */
4540void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4541{
4542 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4543 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4544 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4545 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4546 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4547 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4548 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4549 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4550}
4551
4552/**
4553 * ice_alloc_res_cntr - allocating resource counter
4554 * @hw: pointer to the hardware structure
4555 * @type: type of resource
4556 * @alloc_shared: if set it is shared else dedicated
4557 * @num_items: number of entries requested for FD resource type
4558 * @counter_id: counter index returned by AQ call
4559 */
4560int
4561ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4562 u16 *counter_id)
4563{
4564 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4565 u16 buf_len = __struct_size(buf);
4566 int status;
4567
4568 buf->num_elems = cpu_to_le16(num_items);
4569 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4570 alloc_shared);
4571
4572 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4573 if (status)
4574 return status;
4575
4576 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4577 return status;
4578}
4579
4580/**
4581 * ice_free_res_cntr - free resource counter
4582 * @hw: pointer to the hardware structure
4583 * @type: type of resource
4584 * @alloc_shared: if set it is shared else dedicated
4585 * @num_items: number of entries to be freed for FD resource type
4586 * @counter_id: counter ID resource which needs to be freed
4587 */
4588int
4589ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4590 u16 counter_id)
4591{
4592 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4593 u16 buf_len = __struct_size(buf);
4594 int status;
4595
4596 buf->num_elems = cpu_to_le16(num_items);
4597 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4598 alloc_shared);
4599 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4600
4601 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4602 if (status)
4603 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4604
4605 return status;
4606}
4607
4608#define ICE_PROTOCOL_ENTRY(id, ...) { \
4609 .prot_type = id, \
4610 .offs = {__VA_ARGS__}, \
4611}
4612
4613/**
4614 * ice_share_res - set a resource as shared or dedicated
4615 * @hw: hw struct of original owner of resource
4616 * @type: resource type
4617 * @shared: is the resource being set to shared
4618 * @res_id: resource id (descriptor)
4619 */
4620int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4621{
4622 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4623 u16 buf_len = __struct_size(buf);
4624 u16 res_type;
4625 int status;
4626
4627 buf->num_elems = cpu_to_le16(1);
4628 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4629 if (shared)
4630 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4631
4632 buf->res_type = cpu_to_le16(res_type);
4633 buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4634 status = ice_aq_alloc_free_res(hw, buf, buf_len,
4635 ice_aqc_opc_share_res);
4636 if (status)
4637 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4638 type, res_id, shared ? "SHARED" : "DEDICATED");
4639
4640 return status;
4641}
4642
4643/* This is mapping table entry that maps every word within a given protocol
4644 * structure to the real byte offset as per the specification of that
4645 * protocol header.
4646 * for example dst address is 3 words in ethertype header and corresponding
4647 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4648 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4649 * matching entry describing its field. This needs to be updated if new
4650 * structure is added to that union.
4651 */
4652static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4653 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4654 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4655 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4656 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4657 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4658 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4659 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4660 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4661 20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4662 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4663 22, 24, 26, 28, 30, 32, 34, 36, 38),
4664 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4665 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4666 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4667 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4668 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4669 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4670 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4671 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4672 ICE_PROTOCOL_ENTRY(ICE_PFCP, 8, 10, 12, 14, 16, 18, 20, 22),
4673 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4674 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4675 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4676 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4677 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4678 ICE_SOURCE_PORT_MDID_OFFSET,
4679 ICE_PTYPE_MDID_OFFSET,
4680 ICE_PACKET_LENGTH_MDID_OFFSET,
4681 ICE_SOURCE_VSI_MDID_OFFSET,
4682 ICE_PKT_VLAN_MDID_OFFSET,
4683 ICE_PKT_TUNNEL_MDID_OFFSET,
4684 ICE_PKT_TCP_MDID_OFFSET,
4685 ICE_PKT_ERROR_MDID_OFFSET),
4686};
4687
4688static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4689 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW },
4690 { ICE_MAC_IL, ICE_MAC_IL_HW },
4691 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW },
4692 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW },
4693 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW },
4694 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW },
4695 { ICE_IPV4_IL, ICE_IPV4_IL_HW },
4696 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW },
4697 { ICE_IPV6_IL, ICE_IPV6_IL_HW },
4698 { ICE_TCP_IL, ICE_TCP_IL_HW },
4699 { ICE_UDP_OF, ICE_UDP_OF_HW },
4700 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW },
4701 { ICE_VXLAN, ICE_UDP_OF_HW },
4702 { ICE_GENEVE, ICE_UDP_OF_HW },
4703 { ICE_NVGRE, ICE_GRE_OF_HW },
4704 { ICE_GTP, ICE_UDP_OF_HW },
4705 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW },
4706 { ICE_PFCP, ICE_UDP_ILOS_HW },
4707 { ICE_PPPOE, ICE_PPPOE_HW },
4708 { ICE_L2TPV3, ICE_L2TPV3_HW },
4709 { ICE_VLAN_EX, ICE_VLAN_OF_HW },
4710 { ICE_VLAN_IN, ICE_VLAN_OL_HW },
4711 { ICE_HW_METADATA, ICE_META_DATA_ID_HW },
4712};
4713
4714/**
4715 * ice_find_recp - find a recipe
4716 * @hw: pointer to the hardware structure
4717 * @lkup_exts: extension sequence to match
4718 * @rinfo: information regarding the rule e.g. priority and action info
4719 * @is_add: flag of adding recipe
4720 *
4721 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4722 */
4723static u16
4724ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4725 const struct ice_adv_rule_info *rinfo, bool is_add)
4726{
4727 bool refresh_required = true;
4728 struct ice_sw_recipe *recp;
4729 u8 i;
4730
4731 /* Walk through existing recipes to find a match */
4732 recp = hw->switch_info->recp_list;
4733 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4734 /* If recipe was not created for this ID, in SW bookkeeping,
4735 * check if FW has an entry for this recipe. If the FW has an
4736 * entry update it in our SW bookkeeping and continue with the
4737 * matching.
4738 */
4739 if (hw->recp_reuse) {
4740 if (ice_get_recp_frm_fw(hw,
4741 hw->switch_info->recp_list, i,
4742 &refresh_required, is_add))
4743 continue;
4744 }
4745
4746 /* if number of words we are looking for match */
4747 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4748 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4749 struct ice_fv_word *be = lkup_exts->fv_words;
4750 u16 *cr = recp[i].lkup_exts.field_mask;
4751 u16 *de = lkup_exts->field_mask;
4752 bool found = true;
4753 u8 pe, qr;
4754
4755 /* ar, cr, and qr are related to the recipe words, while
4756 * be, de, and pe are related to the lookup words
4757 */
4758 for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4759 for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4760 qr++) {
4761 if (ar[qr].off == be[pe].off &&
4762 ar[qr].prot_id == be[pe].prot_id &&
4763 cr[qr] == de[pe])
4764 /* Found the "pe"th word in the
4765 * given recipe
4766 */
4767 break;
4768 }
4769 /* After walking through all the words in the
4770 * "i"th recipe if "p"th word was not found then
4771 * this recipe is not what we are looking for.
4772 * So break out from this loop and try the next
4773 * recipe
4774 */
4775 if (qr >= recp[i].lkup_exts.n_val_words) {
4776 found = false;
4777 break;
4778 }
4779 }
4780 /* If for "i"th recipe the found was never set to false
4781 * then it means we found our match
4782 * Also tun type and *_pass_l2 of recipe needs to be
4783 * checked
4784 */
4785 if (found && recp[i].tun_type == rinfo->tun_type &&
4786 recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4787 recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4788 return i; /* Return the recipe ID */
4789 }
4790 }
4791 return ICE_MAX_NUM_RECIPES;
4792}
4793
4794/**
4795 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4796 *
4797 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4798 * supported protocol array record for outer vlan has to be modified to
4799 * reflect the value proper for DVM.
4800 */
4801void ice_change_proto_id_to_dvm(void)
4802{
4803 u8 i;
4804
4805 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4806 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4807 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4808 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4809}
4810
4811/**
4812 * ice_prot_type_to_id - get protocol ID from protocol type
4813 * @type: protocol type
4814 * @id: pointer to variable that will receive the ID
4815 *
4816 * Returns true if found, false otherwise
4817 */
4818static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4819{
4820 u8 i;
4821
4822 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4823 if (ice_prot_id_tbl[i].type == type) {
4824 *id = ice_prot_id_tbl[i].protocol_id;
4825 return true;
4826 }
4827 return false;
4828}
4829
4830/**
4831 * ice_fill_valid_words - count valid words
4832 * @rule: advanced rule with lookup information
4833 * @lkup_exts: byte offset extractions of the words that are valid
4834 *
4835 * calculate valid words in a lookup rule using mask value
4836 */
4837static u8
4838ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4839 struct ice_prot_lkup_ext *lkup_exts)
4840{
4841 u8 j, word, prot_id, ret_val;
4842
4843 if (!ice_prot_type_to_id(rule->type, &prot_id))
4844 return 0;
4845
4846 word = lkup_exts->n_val_words;
4847
4848 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4849 if (((u16 *)&rule->m_u)[j] &&
4850 rule->type < ARRAY_SIZE(ice_prot_ext)) {
4851 /* No more space to accommodate */
4852 if (word >= ICE_MAX_CHAIN_WORDS)
4853 return 0;
4854 lkup_exts->fv_words[word].off =
4855 ice_prot_ext[rule->type].offs[j];
4856 lkup_exts->fv_words[word].prot_id =
4857 ice_prot_id_tbl[rule->type].protocol_id;
4858 lkup_exts->field_mask[word] =
4859 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4860 word++;
4861 }
4862
4863 ret_val = word - lkup_exts->n_val_words;
4864 lkup_exts->n_val_words = word;
4865
4866 return ret_val;
4867}
4868
4869/**
4870 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4871 * @hw: pointer to the hardware structure
4872 * @rm: recipe management list entry
4873 *
4874 * Helper function to fill in the field vector indices for protocol-offset
4875 * pairs. These indexes are then ultimately programmed into a recipe.
4876 */
4877static int
4878ice_fill_fv_word_index(struct ice_hw *hw, struct ice_sw_recipe *rm)
4879{
4880 struct ice_sw_fv_list_entry *fv;
4881 struct ice_fv_word *fv_ext;
4882 u8 i;
4883
4884 if (list_empty(&rm->fv_list))
4885 return -EINVAL;
4886
4887 fv = list_first_entry(&rm->fv_list, struct ice_sw_fv_list_entry,
4888 list_entry);
4889 fv_ext = fv->fv_ptr->ew;
4890
4891 /* Add switch id as the first word. */
4892 rm->fv_idx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4893 rm->fv_mask[0] = ICE_AQ_SW_ID_LKUP_MASK;
4894 rm->n_ext_words++;
4895
4896 for (i = 1; i < rm->n_ext_words; i++) {
4897 struct ice_fv_word *fv_word = &rm->ext_words[i - 1];
4898 u16 fv_mask = rm->word_masks[i - 1];
4899 bool found = false;
4900 u8 j;
4901
4902 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) {
4903 if (fv_ext[j].prot_id == fv_word->prot_id &&
4904 fv_ext[j].off == fv_word->off) {
4905 found = true;
4906
4907 /* Store index of field vector */
4908 rm->fv_idx[i] = j;
4909 rm->fv_mask[i] = fv_mask;
4910 break;
4911 }
4912 }
4913
4914 /* Protocol/offset could not be found, caller gave an invalid
4915 * pair.
4916 */
4917 if (!found)
4918 return -EINVAL;
4919 }
4920
4921 return 0;
4922}
4923
4924/**
4925 * ice_find_free_recp_res_idx - find free result indexes for recipe
4926 * @hw: pointer to hardware structure
4927 * @profiles: bitmap of profiles that will be associated with the new recipe
4928 * @free_idx: pointer to variable to receive the free index bitmap
4929 *
4930 * The algorithm used here is:
4931 * 1. When creating a new recipe, create a set P which contains all
4932 * Profiles that will be associated with our new recipe
4933 *
4934 * 2. For each Profile p in set P:
4935 * a. Add all recipes associated with Profile p into set R
4936 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4937 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4938 * i. Or just assume they all have the same possible indexes:
4939 * 44, 45, 46, 47
4940 * i.e., PossibleIndexes = 0x0000F00000000000
4941 *
4942 * 3. For each Recipe r in set R:
4943 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4944 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4945 *
4946 * FreeIndexes will contain the bits indicating the indexes free for use,
4947 * then the code needs to update the recipe[r].used_result_idx_bits to
4948 * indicate which indexes were selected for use by this recipe.
4949 */
4950static u16
4951ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4952 unsigned long *free_idx)
4953{
4954 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4955 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4956 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4957 u16 bit;
4958
4959 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4960 bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4961
4962 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4963
4964 /* For each profile we are going to associate the recipe with, add the
4965 * recipes that are associated with that profile. This will give us
4966 * the set of recipes that our recipe may collide with. Also, determine
4967 * what possible result indexes are usable given this set of profiles.
4968 */
4969 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4970 bitmap_or(recipes, recipes, profile_to_recipe[bit],
4971 ICE_MAX_NUM_RECIPES);
4972 bitmap_and(possible_idx, possible_idx,
4973 hw->switch_info->prof_res_bm[bit],
4974 ICE_MAX_FV_WORDS);
4975 }
4976
4977 /* For each recipe that our new recipe may collide with, determine
4978 * which indexes have been used.
4979 */
4980 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4981 bitmap_or(used_idx, used_idx,
4982 hw->switch_info->recp_list[bit].res_idxs,
4983 ICE_MAX_FV_WORDS);
4984
4985 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4986
4987 /* return number of free indexes */
4988 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4989}
4990
4991/**
4992 * ice_calc_recp_cnt - calculate number of recipes based on word count
4993 * @word_cnt: number of lookup words
4994 *
4995 * Word count should include switch ID word and regular lookup words.
4996 * Returns: number of recipes required to fit @word_cnt, including extra recipes
4997 * needed for recipe chaining (if needed).
4998 */
4999static int ice_calc_recp_cnt(u8 word_cnt)
5000{
5001 /* All words fit in a single recipe, no need for chaining. */
5002 if (word_cnt <= ICE_NUM_WORDS_RECIPE)
5003 return 1;
5004
5005 /* Recipe chaining required. Result indexes are fitted right after
5006 * regular lookup words. In some cases a new recipe must be added in
5007 * order to fit result indexes.
5008 *
5009 * While the word count increases, every 5 words an extra recipe needs
5010 * to be added. However, by adding a recipe, one word for its result
5011 * index must also be added, therefore every 4 words recipe count
5012 * increases by 1. This calculation does not apply to word count == 1,
5013 * which is handled above.
5014 */
5015 return (word_cnt + 2) / (ICE_NUM_WORDS_RECIPE - 1);
5016}
5017
5018static void fill_recipe_template(struct ice_aqc_recipe_data_elem *recp, u16 rid,
5019 const struct ice_sw_recipe *rm)
5020{
5021 int i;
5022
5023 recp->recipe_indx = rid;
5024 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_PRUNE_INDX_M;
5025
5026 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
5027 recp->content.lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5028 recp->content.mask[i] = cpu_to_le16(0);
5029 }
5030
5031 set_bit(rid, (unsigned long *)recp->recipe_bitmap);
5032 recp->content.act_ctrl_fwd_priority = rm->priority;
5033
5034 if (rm->need_pass_l2)
5035 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5036
5037 if (rm->allow_pass_l2)
5038 recp->content.act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5039}
5040
5041static void bookkeep_recipe(struct ice_sw_recipe *recipe,
5042 struct ice_aqc_recipe_data_elem *r,
5043 const struct ice_sw_recipe *rm)
5044{
5045 memcpy(recipe->r_bitmap, r->recipe_bitmap, sizeof(recipe->r_bitmap));
5046
5047 recipe->priority = r->content.act_ctrl_fwd_priority;
5048 recipe->tun_type = rm->tun_type;
5049 recipe->need_pass_l2 = rm->need_pass_l2;
5050 recipe->allow_pass_l2 = rm->allow_pass_l2;
5051 recipe->recp_created = true;
5052}
5053
5054/* For memcpy in ice_add_sw_recipe. */
5055static_assert(sizeof_field(struct ice_aqc_recipe_data_elem, recipe_bitmap) ==
5056 sizeof_field(struct ice_sw_recipe, r_bitmap));
5057
5058/**
5059 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5060 * @hw: pointer to hardware structure
5061 * @rm: recipe management list entry
5062 * @profiles: bitmap of profiles that will be associated.
5063 */
5064static int
5065ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5066 unsigned long *profiles)
5067{
5068 struct ice_aqc_recipe_data_elem *buf __free(kfree) = NULL;
5069 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5070 struct ice_aqc_recipe_data_elem *root;
5071 struct ice_sw_recipe *recipe;
5072 u16 free_res_idx, rid;
5073 int lookup = 0;
5074 int recp_cnt;
5075 int status;
5076 int word;
5077 int i;
5078
5079 recp_cnt = ice_calc_recp_cnt(rm->n_ext_words);
5080
5081 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5082 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5083
5084 /* Check number of free result indices */
5085 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5086
5087 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5088 free_res_idx, recp_cnt);
5089
5090 /* Last recipe doesn't need result index */
5091 if (recp_cnt - 1 > free_res_idx)
5092 return -ENOSPC;
5093
5094 if (recp_cnt > ICE_MAX_CHAIN_RECIPE_RES)
5095 return -E2BIG;
5096
5097 buf = kcalloc(recp_cnt, sizeof(*buf), GFP_KERNEL);
5098 if (!buf)
5099 return -ENOMEM;
5100
5101 /* Setup the non-root subrecipes. These do not contain lookups for other
5102 * subrecipes results. Set associated recipe only to own recipe index.
5103 * Each non-root subrecipe needs a free result index from FV.
5104 *
5105 * Note: only done if there is more than one recipe.
5106 */
5107 for (i = 0; i < recp_cnt - 1; i++) {
5108 struct ice_aqc_recipe_content *content;
5109 u8 result_idx;
5110
5111 status = ice_alloc_recipe(hw, &rid);
5112 if (status)
5113 return status;
5114
5115 fill_recipe_template(&buf[i], rid, rm);
5116
5117 result_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5118 /* Check if there really is a valid result index that can be
5119 * used.
5120 */
5121 if (result_idx >= ICE_MAX_FV_WORDS) {
5122 ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5123 return -ENOSPC;
5124 }
5125 clear_bit(result_idx, result_idx_bm);
5126
5127 content = &buf[i].content;
5128 content->result_indx = ICE_AQ_RECIPE_RESULT_EN |
5129 FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5130 result_idx);
5131
5132 /* Set recipe association to be used for root recipe */
5133 set_bit(rid, rm->r_bitmap);
5134
5135 word = 0;
5136 while (lookup < rm->n_ext_words &&
5137 word < ICE_NUM_WORDS_RECIPE) {
5138 content->lkup_indx[word] = rm->fv_idx[lookup];
5139 content->mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5140
5141 lookup++;
5142 word++;
5143 }
5144
5145 recipe = &hw->switch_info->recp_list[rid];
5146 set_bit(result_idx, recipe->res_idxs);
5147 bookkeep_recipe(recipe, &buf[i], rm);
5148 }
5149
5150 /* Setup the root recipe */
5151 status = ice_alloc_recipe(hw, &rid);
5152 if (status)
5153 return status;
5154
5155 recipe = &hw->switch_info->recp_list[rid];
5156 root = &buf[recp_cnt - 1];
5157 fill_recipe_template(root, rid, rm);
5158
5159 /* Set recipe association, use previously set bitmap and own rid */
5160 set_bit(rid, rm->r_bitmap);
5161 memcpy(root->recipe_bitmap, rm->r_bitmap, sizeof(root->recipe_bitmap));
5162
5163 /* For non-root recipes rid should be 0, for root it should be correct
5164 * rid value ored with 0x80 (is root bit).
5165 */
5166 root->content.rid = rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5167
5168 /* Fill remaining lookups in root recipe */
5169 word = 0;
5170 while (lookup < rm->n_ext_words &&
5171 word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5172 root->content.lkup_indx[word] = rm->fv_idx[lookup];
5173 root->content.mask[word] = cpu_to_le16(rm->fv_mask[lookup]);
5174
5175 lookup++;
5176 word++;
5177 }
5178
5179 /* Fill result indexes as lookups */
5180 i = 0;
5181 while (i < recp_cnt - 1 &&
5182 word < ICE_NUM_WORDS_RECIPE /* should always be true */) {
5183 root->content.lkup_indx[word] = buf[i].content.result_indx &
5184 ~ICE_AQ_RECIPE_RESULT_EN;
5185 root->content.mask[word] = cpu_to_le16(0xffff);
5186 /* For bookkeeping, it is needed to mark FV index as used for
5187 * intermediate result.
5188 */
5189 set_bit(root->content.lkup_indx[word], recipe->res_idxs);
5190
5191 i++;
5192 word++;
5193 }
5194
5195 rm->root_rid = rid;
5196 bookkeep_recipe(&hw->switch_info->recp_list[rid], root, rm);
5197
5198 /* Program the recipe */
5199 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5200 if (status)
5201 return status;
5202
5203 status = ice_aq_add_recipe(hw, buf, recp_cnt, NULL);
5204 ice_release_change_lock(hw);
5205 if (status)
5206 return status;
5207
5208 return 0;
5209}
5210
5211/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5212 * @hw: pointer to hardware structure
5213 * @rinfo: other information regarding the rule e.g. priority and action info
5214 * @bm: pointer to memory for returning the bitmap of field vectors
5215 */
5216static void
5217ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5218 unsigned long *bm)
5219{
5220 enum ice_prof_type prof_type;
5221
5222 bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5223
5224 switch (rinfo->tun_type) {
5225 case ICE_NON_TUN:
5226 prof_type = ICE_PROF_NON_TUN;
5227 break;
5228 case ICE_ALL_TUNNELS:
5229 prof_type = ICE_PROF_TUN_ALL;
5230 break;
5231 case ICE_SW_TUN_GENEVE:
5232 case ICE_SW_TUN_VXLAN:
5233 prof_type = ICE_PROF_TUN_UDP;
5234 break;
5235 case ICE_SW_TUN_NVGRE:
5236 prof_type = ICE_PROF_TUN_GRE;
5237 break;
5238 case ICE_SW_TUN_GTPU:
5239 prof_type = ICE_PROF_TUN_GTPU;
5240 break;
5241 case ICE_SW_TUN_GTPC:
5242 prof_type = ICE_PROF_TUN_GTPC;
5243 break;
5244 case ICE_SW_TUN_PFCP:
5245 prof_type = ICE_PROF_TUN_PFCP;
5246 break;
5247 case ICE_SW_TUN_AND_NON_TUN:
5248 default:
5249 prof_type = ICE_PROF_ALL;
5250 break;
5251 }
5252
5253 ice_get_sw_fv_bitmap(hw, prof_type, bm);
5254}
5255
5256/**
5257 * ice_subscribe_recipe - subscribe to an existing recipe
5258 * @hw: pointer to the hardware structure
5259 * @rid: recipe ID to subscribe to
5260 *
5261 * Return: 0 on success, and others on error
5262 */
5263static int ice_subscribe_recipe(struct ice_hw *hw, u16 rid)
5264{
5265 DEFINE_RAW_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
5266 u16 buf_len = __struct_size(sw_buf);
5267 u16 res_type;
5268 int status;
5269
5270 /* Prepare buffer to allocate resource */
5271 sw_buf->num_elems = cpu_to_le16(1);
5272 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, ICE_AQC_RES_TYPE_RECIPE) |
5273 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_SHARED |
5274 ICE_AQC_RES_TYPE_FLAG_SUBSCRIBE_CTL;
5275 sw_buf->res_type = cpu_to_le16(res_type);
5276
5277 sw_buf->elem[0].e.sw_resp = cpu_to_le16(rid);
5278
5279 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
5280 ice_aqc_opc_alloc_res);
5281
5282 return status;
5283}
5284
5285/**
5286 * ice_subscribable_recp_shared - share an existing subscribable recipe
5287 * @hw: pointer to the hardware structure
5288 * @rid: recipe ID to subscribe to
5289 */
5290static void ice_subscribable_recp_shared(struct ice_hw *hw, u16 rid)
5291{
5292 struct ice_sw_recipe *recps = hw->switch_info->recp_list;
5293 u16 sub_rid;
5294
5295 for_each_set_bit(sub_rid, recps[rid].r_bitmap, ICE_MAX_NUM_RECIPES)
5296 ice_subscribe_recipe(hw, sub_rid);
5297}
5298
5299/**
5300 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5301 * @hw: pointer to hardware structure
5302 * @lkups: lookup elements or match criteria for the advanced recipe, one
5303 * structure per protocol header
5304 * @lkups_cnt: number of protocols
5305 * @rinfo: other information regarding the rule e.g. priority and action info
5306 * @rid: return the recipe ID of the recipe created
5307 */
5308static int
5309ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5310 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5311{
5312 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5313 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5314 struct ice_prot_lkup_ext *lkup_exts;
5315 struct ice_sw_fv_list_entry *fvit;
5316 struct ice_sw_fv_list_entry *tmp;
5317 struct ice_sw_recipe *rm;
5318 int status = 0;
5319 u16 rid_tmp;
5320 u8 i;
5321
5322 if (!lkups_cnt)
5323 return -EINVAL;
5324
5325 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5326 if (!lkup_exts)
5327 return -ENOMEM;
5328
5329 /* Determine the number of words to be matched and if it exceeds a
5330 * recipe's restrictions
5331 */
5332 for (i = 0; i < lkups_cnt; i++) {
5333 u16 count;
5334
5335 if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5336 status = -EIO;
5337 goto err_free_lkup_exts;
5338 }
5339
5340 count = ice_fill_valid_words(&lkups[i], lkup_exts);
5341 if (!count) {
5342 status = -EIO;
5343 goto err_free_lkup_exts;
5344 }
5345 }
5346
5347 rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5348 if (!rm) {
5349 status = -ENOMEM;
5350 goto err_free_lkup_exts;
5351 }
5352
5353 /* Get field vectors that contain fields extracted from all the protocol
5354 * headers being programmed.
5355 */
5356 INIT_LIST_HEAD(&rm->fv_list);
5357
5358 /* Get bitmap of field vectors (profiles) that are compatible with the
5359 * rule request; only these will be searched in the subsequent call to
5360 * ice_get_sw_fv_list.
5361 */
5362 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5363
5364 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5365 if (status)
5366 goto err_unroll;
5367
5368 /* Copy FV words and masks from lkup_exts to recipe struct. */
5369 rm->n_ext_words = lkup_exts->n_val_words;
5370 memcpy(rm->ext_words, lkup_exts->fv_words, sizeof(rm->ext_words));
5371 memcpy(rm->word_masks, lkup_exts->field_mask, sizeof(rm->word_masks));
5372
5373 /* set the recipe priority if specified */
5374 rm->priority = (u8)rinfo->priority;
5375
5376 rm->need_pass_l2 = rinfo->need_pass_l2;
5377 rm->allow_pass_l2 = rinfo->allow_pass_l2;
5378
5379 /* Find offsets from the field vector. Pick the first one for all the
5380 * recipes.
5381 */
5382 status = ice_fill_fv_word_index(hw, rm);
5383 if (status)
5384 goto err_unroll;
5385
5386 /* get bitmap of all profiles the recipe will be associated with */
5387 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5388 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5389 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5390 set_bit((u16)fvit->profile_id, profiles);
5391 }
5392
5393 /* Look for a recipe which matches our requested fv / mask list */
5394 *rid = ice_find_recp(hw, lkup_exts, rinfo, true);
5395 if (*rid < ICE_MAX_NUM_RECIPES) {
5396 /* Success if found a recipe that match the existing criteria */
5397 if (hw->recp_reuse)
5398 ice_subscribable_recp_shared(hw, *rid);
5399
5400 goto err_unroll;
5401 }
5402
5403 rm->tun_type = rinfo->tun_type;
5404 /* Recipe we need does not exist, add a recipe */
5405 status = ice_add_sw_recipe(hw, rm, profiles);
5406 if (status)
5407 goto err_unroll;
5408
5409 /* Associate all the recipes created with all the profiles in the
5410 * common field vector.
5411 */
5412 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5413 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5414 u64 recp_assoc;
5415 u16 j;
5416
5417 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5418 &recp_assoc, NULL);
5419 if (status)
5420 goto err_free_recipe;
5421
5422 bitmap_from_arr64(r_bitmap, &recp_assoc, ICE_MAX_NUM_RECIPES);
5423 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5424 ICE_MAX_NUM_RECIPES);
5425 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5426 if (status)
5427 goto err_free_recipe;
5428
5429 bitmap_to_arr64(&recp_assoc, r_bitmap, ICE_MAX_NUM_RECIPES);
5430 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5431 recp_assoc, NULL);
5432 ice_release_change_lock(hw);
5433
5434 if (status)
5435 goto err_free_recipe;
5436
5437 /* Update profile to recipe bitmap array */
5438 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5439 ICE_MAX_NUM_RECIPES);
5440
5441 /* Update recipe to profile bitmap array */
5442 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5443 set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5444 }
5445
5446 *rid = rm->root_rid;
5447 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5448 sizeof(*lkup_exts));
5449 goto err_unroll;
5450
5451err_free_recipe:
5452 if (hw->recp_reuse) {
5453 for_each_set_bit(rid_tmp, rm->r_bitmap, ICE_MAX_NUM_RECIPES) {
5454 if (!ice_free_recipe_res(hw, rid_tmp))
5455 clear_bit(rid_tmp, rm->r_bitmap);
5456 }
5457 }
5458
5459err_unroll:
5460 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5461 list_del(&fvit->list_entry);
5462 devm_kfree(ice_hw_to_dev(hw), fvit);
5463 }
5464
5465 kfree(rm);
5466
5467err_free_lkup_exts:
5468 kfree(lkup_exts);
5469
5470 return status;
5471}
5472
5473/**
5474 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5475 *
5476 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5477 * @num_vlan: number of VLAN tags
5478 */
5479static struct ice_dummy_pkt_profile *
5480ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5481 u32 num_vlan)
5482{
5483 struct ice_dummy_pkt_profile *profile;
5484 struct ice_dummy_pkt_offsets *offsets;
5485 u32 buf_len, off, etype_off, i;
5486 u8 *pkt;
5487
5488 if (num_vlan < 1 || num_vlan > 2)
5489 return ERR_PTR(-EINVAL);
5490
5491 off = num_vlan * VLAN_HLEN;
5492
5493 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5494 dummy_pkt->offsets_len;
5495 offsets = kzalloc(buf_len, GFP_KERNEL);
5496 if (!offsets)
5497 return ERR_PTR(-ENOMEM);
5498
5499 offsets[0] = dummy_pkt->offsets[0];
5500 if (num_vlan == 2) {
5501 offsets[1] = ice_dummy_qinq_packet_offsets[0];
5502 offsets[2] = ice_dummy_qinq_packet_offsets[1];
5503 } else if (num_vlan == 1) {
5504 offsets[1] = ice_dummy_vlan_packet_offsets[0];
5505 }
5506
5507 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5508 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5509 offsets[i + num_vlan].offset =
5510 dummy_pkt->offsets[i].offset + off;
5511 }
5512 offsets[i + num_vlan] = dummy_pkt->offsets[i];
5513
5514 etype_off = dummy_pkt->offsets[1].offset;
5515
5516 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5517 dummy_pkt->pkt_len;
5518 pkt = kzalloc(buf_len, GFP_KERNEL);
5519 if (!pkt) {
5520 kfree(offsets);
5521 return ERR_PTR(-ENOMEM);
5522 }
5523
5524 memcpy(pkt, dummy_pkt->pkt, etype_off);
5525 memcpy(pkt + etype_off,
5526 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5527 off);
5528 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5529 dummy_pkt->pkt_len - etype_off);
5530
5531 profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5532 if (!profile) {
5533 kfree(offsets);
5534 kfree(pkt);
5535 return ERR_PTR(-ENOMEM);
5536 }
5537
5538 profile->offsets = offsets;
5539 profile->pkt = pkt;
5540 profile->pkt_len = buf_len;
5541 profile->match |= ICE_PKT_KMALLOC;
5542
5543 return profile;
5544}
5545
5546/**
5547 * ice_find_dummy_packet - find dummy packet
5548 *
5549 * @lkups: lookup elements or match criteria for the advanced recipe, one
5550 * structure per protocol header
5551 * @lkups_cnt: number of protocols
5552 * @tun_type: tunnel type
5553 *
5554 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5555 */
5556static const struct ice_dummy_pkt_profile *
5557ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5558 enum ice_sw_tunnel_type tun_type)
5559{
5560 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5561 u32 match = 0, vlan_count = 0;
5562 u16 i;
5563
5564 switch (tun_type) {
5565 case ICE_SW_TUN_GTPC:
5566 match |= ICE_PKT_TUN_GTPC;
5567 break;
5568 case ICE_SW_TUN_GTPU:
5569 match |= ICE_PKT_TUN_GTPU;
5570 break;
5571 case ICE_SW_TUN_NVGRE:
5572 match |= ICE_PKT_TUN_NVGRE;
5573 break;
5574 case ICE_SW_TUN_GENEVE:
5575 case ICE_SW_TUN_VXLAN:
5576 match |= ICE_PKT_TUN_UDP;
5577 break;
5578 case ICE_SW_TUN_PFCP:
5579 match |= ICE_PKT_PFCP;
5580 break;
5581 default:
5582 break;
5583 }
5584
5585 for (i = 0; i < lkups_cnt; i++) {
5586 if (lkups[i].type == ICE_UDP_ILOS)
5587 match |= ICE_PKT_INNER_UDP;
5588 else if (lkups[i].type == ICE_TCP_IL)
5589 match |= ICE_PKT_INNER_TCP;
5590 else if (lkups[i].type == ICE_IPV6_OFOS)
5591 match |= ICE_PKT_OUTER_IPV6;
5592 else if (lkups[i].type == ICE_VLAN_OFOS ||
5593 lkups[i].type == ICE_VLAN_EX)
5594 vlan_count++;
5595 else if (lkups[i].type == ICE_VLAN_IN)
5596 vlan_count++;
5597 else if (lkups[i].type == ICE_ETYPE_OL &&
5598 lkups[i].h_u.ethertype.ethtype_id ==
5599 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5600 lkups[i].m_u.ethertype.ethtype_id ==
5601 cpu_to_be16(0xFFFF))
5602 match |= ICE_PKT_OUTER_IPV6;
5603 else if (lkups[i].type == ICE_ETYPE_IL &&
5604 lkups[i].h_u.ethertype.ethtype_id ==
5605 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5606 lkups[i].m_u.ethertype.ethtype_id ==
5607 cpu_to_be16(0xFFFF))
5608 match |= ICE_PKT_INNER_IPV6;
5609 else if (lkups[i].type == ICE_IPV6_IL)
5610 match |= ICE_PKT_INNER_IPV6;
5611 else if (lkups[i].type == ICE_GTP_NO_PAY)
5612 match |= ICE_PKT_GTP_NOPAY;
5613 else if (lkups[i].type == ICE_PPPOE) {
5614 match |= ICE_PKT_PPPOE;
5615 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5616 htons(PPP_IPV6))
5617 match |= ICE_PKT_OUTER_IPV6;
5618 } else if (lkups[i].type == ICE_L2TPV3)
5619 match |= ICE_PKT_L2TPV3;
5620 }
5621
5622 while (ret->match && (match & ret->match) != ret->match)
5623 ret++;
5624
5625 if (vlan_count != 0)
5626 ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5627
5628 return ret;
5629}
5630
5631/**
5632 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5633 *
5634 * @lkups: lookup elements or match criteria for the advanced recipe, one
5635 * structure per protocol header
5636 * @lkups_cnt: number of protocols
5637 * @s_rule: stores rule information from the match criteria
5638 * @profile: dummy packet profile (the template, its size and header offsets)
5639 */
5640static int
5641ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5642 struct ice_sw_rule_lkup_rx_tx *s_rule,
5643 const struct ice_dummy_pkt_profile *profile)
5644{
5645 u8 *pkt;
5646 u16 i;
5647
5648 /* Start with a packet with a pre-defined/dummy content. Then, fill
5649 * in the header values to be looked up or matched.
5650 */
5651 pkt = s_rule->hdr_data;
5652
5653 memcpy(pkt, profile->pkt, profile->pkt_len);
5654
5655 for (i = 0; i < lkups_cnt; i++) {
5656 const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5657 enum ice_protocol_type type;
5658 u16 offset = 0, len = 0, j;
5659 bool found = false;
5660
5661 /* find the start of this layer; it should be found since this
5662 * was already checked when search for the dummy packet
5663 */
5664 type = lkups[i].type;
5665 /* metadata isn't present in the packet */
5666 if (type == ICE_HW_METADATA)
5667 continue;
5668
5669 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5670 if (type == offsets[j].type) {
5671 offset = offsets[j].offset;
5672 found = true;
5673 break;
5674 }
5675 }
5676 /* this should never happen in a correct calling sequence */
5677 if (!found)
5678 return -EINVAL;
5679
5680 switch (lkups[i].type) {
5681 case ICE_MAC_OFOS:
5682 case ICE_MAC_IL:
5683 len = sizeof(struct ice_ether_hdr);
5684 break;
5685 case ICE_ETYPE_OL:
5686 case ICE_ETYPE_IL:
5687 len = sizeof(struct ice_ethtype_hdr);
5688 break;
5689 case ICE_VLAN_OFOS:
5690 case ICE_VLAN_EX:
5691 case ICE_VLAN_IN:
5692 len = sizeof(struct ice_vlan_hdr);
5693 break;
5694 case ICE_IPV4_OFOS:
5695 case ICE_IPV4_IL:
5696 len = sizeof(struct ice_ipv4_hdr);
5697 break;
5698 case ICE_IPV6_OFOS:
5699 case ICE_IPV6_IL:
5700 len = sizeof(struct ice_ipv6_hdr);
5701 break;
5702 case ICE_TCP_IL:
5703 case ICE_UDP_OF:
5704 case ICE_UDP_ILOS:
5705 len = sizeof(struct ice_l4_hdr);
5706 break;
5707 case ICE_SCTP_IL:
5708 len = sizeof(struct ice_sctp_hdr);
5709 break;
5710 case ICE_NVGRE:
5711 len = sizeof(struct ice_nvgre_hdr);
5712 break;
5713 case ICE_VXLAN:
5714 case ICE_GENEVE:
5715 len = sizeof(struct ice_udp_tnl_hdr);
5716 break;
5717 case ICE_GTP_NO_PAY:
5718 case ICE_GTP:
5719 len = sizeof(struct ice_udp_gtp_hdr);
5720 break;
5721 case ICE_PFCP:
5722 len = sizeof(struct ice_pfcp_hdr);
5723 break;
5724 case ICE_PPPOE:
5725 len = sizeof(struct ice_pppoe_hdr);
5726 break;
5727 case ICE_L2TPV3:
5728 len = sizeof(struct ice_l2tpv3_sess_hdr);
5729 break;
5730 default:
5731 return -EINVAL;
5732 }
5733
5734 /* the length should be a word multiple */
5735 if (len % ICE_BYTES_PER_WORD)
5736 return -EIO;
5737
5738 /* We have the offset to the header start, the length, the
5739 * caller's header values and mask. Use this information to
5740 * copy the data into the dummy packet appropriately based on
5741 * the mask. Note that we need to only write the bits as
5742 * indicated by the mask to make sure we don't improperly write
5743 * over any significant packet data.
5744 */
5745 for (j = 0; j < len / sizeof(u16); j++) {
5746 u16 *ptr = (u16 *)(pkt + offset);
5747 u16 mask = lkups[i].m_raw[j];
5748
5749 if (!mask)
5750 continue;
5751
5752 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5753 }
5754 }
5755
5756 s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5757
5758 return 0;
5759}
5760
5761/**
5762 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5763 * @hw: pointer to the hardware structure
5764 * @tun_type: tunnel type
5765 * @pkt: dummy packet to fill in
5766 * @offsets: offset info for the dummy packet
5767 */
5768static int
5769ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5770 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5771{
5772 u16 open_port, i;
5773
5774 switch (tun_type) {
5775 case ICE_SW_TUN_VXLAN:
5776 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5777 return -EIO;
5778 break;
5779 case ICE_SW_TUN_GENEVE:
5780 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5781 return -EIO;
5782 break;
5783 default:
5784 /* Nothing needs to be done for this tunnel type */
5785 return 0;
5786 }
5787
5788 /* Find the outer UDP protocol header and insert the port number */
5789 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5790 if (offsets[i].type == ICE_UDP_OF) {
5791 struct ice_l4_hdr *hdr;
5792 u16 offset;
5793
5794 offset = offsets[i].offset;
5795 hdr = (struct ice_l4_hdr *)&pkt[offset];
5796 hdr->dst_port = cpu_to_be16(open_port);
5797
5798 return 0;
5799 }
5800 }
5801
5802 return -EIO;
5803}
5804
5805/**
5806 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5807 * @hw: pointer to hw structure
5808 * @vlan_type: VLAN tag type
5809 * @pkt: dummy packet to fill in
5810 * @offsets: offset info for the dummy packet
5811 */
5812static int
5813ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5814 const struct ice_dummy_pkt_offsets *offsets)
5815{
5816 u16 i;
5817
5818 /* Check if there is something to do */
5819 if (!vlan_type || !ice_is_dvm_ena(hw))
5820 return 0;
5821
5822 /* Find VLAN header and insert VLAN TPID */
5823 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5824 if (offsets[i].type == ICE_VLAN_OFOS ||
5825 offsets[i].type == ICE_VLAN_EX) {
5826 struct ice_vlan_hdr *hdr;
5827 u16 offset;
5828
5829 offset = offsets[i].offset;
5830 hdr = (struct ice_vlan_hdr *)&pkt[offset];
5831 hdr->type = cpu_to_be16(vlan_type);
5832
5833 return 0;
5834 }
5835 }
5836
5837 return -EIO;
5838}
5839
5840static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5841 const struct ice_adv_rule_info *second)
5842{
5843 return first->sw_act.flag == second->sw_act.flag &&
5844 first->tun_type == second->tun_type &&
5845 first->vlan_type == second->vlan_type &&
5846 first->src_vsi == second->src_vsi &&
5847 first->need_pass_l2 == second->need_pass_l2 &&
5848 first->allow_pass_l2 == second->allow_pass_l2;
5849}
5850
5851/**
5852 * ice_find_adv_rule_entry - Search a rule entry
5853 * @hw: pointer to the hardware structure
5854 * @lkups: lookup elements or match criteria for the advanced recipe, one
5855 * structure per protocol header
5856 * @lkups_cnt: number of protocols
5857 * @recp_id: recipe ID for which we are finding the rule
5858 * @rinfo: other information regarding the rule e.g. priority and action info
5859 *
5860 * Helper function to search for a given advance rule entry
5861 * Returns pointer to entry storing the rule if found
5862 */
5863static struct ice_adv_fltr_mgmt_list_entry *
5864ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5865 u16 lkups_cnt, u16 recp_id,
5866 struct ice_adv_rule_info *rinfo)
5867{
5868 struct ice_adv_fltr_mgmt_list_entry *list_itr;
5869 struct ice_switch_info *sw = hw->switch_info;
5870 int i;
5871
5872 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5873 list_entry) {
5874 bool lkups_matched = true;
5875
5876 if (lkups_cnt != list_itr->lkups_cnt)
5877 continue;
5878 for (i = 0; i < list_itr->lkups_cnt; i++)
5879 if (memcmp(&list_itr->lkups[i], &lkups[i],
5880 sizeof(*lkups))) {
5881 lkups_matched = false;
5882 break;
5883 }
5884 if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5885 lkups_matched)
5886 return list_itr;
5887 }
5888 return NULL;
5889}
5890
5891/**
5892 * ice_adv_add_update_vsi_list
5893 * @hw: pointer to the hardware structure
5894 * @m_entry: pointer to current adv filter management list entry
5895 * @cur_fltr: filter information from the book keeping entry
5896 * @new_fltr: filter information with the new VSI to be added
5897 *
5898 * Call AQ command to add or update previously created VSI list with new VSI.
5899 *
5900 * Helper function to do book keeping associated with adding filter information
5901 * The algorithm to do the booking keeping is described below :
5902 * When a VSI needs to subscribe to a given advanced filter
5903 * if only one VSI has been added till now
5904 * Allocate a new VSI list and add two VSIs
5905 * to this list using switch rule command
5906 * Update the previously created switch rule with the
5907 * newly created VSI list ID
5908 * if a VSI list was previously created
5909 * Add the new VSI to the previously created VSI list set
5910 * using the update switch rule command
5911 */
5912static int
5913ice_adv_add_update_vsi_list(struct ice_hw *hw,
5914 struct ice_adv_fltr_mgmt_list_entry *m_entry,
5915 struct ice_adv_rule_info *cur_fltr,
5916 struct ice_adv_rule_info *new_fltr)
5917{
5918 u16 vsi_list_id = 0;
5919 int status;
5920
5921 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5922 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5923 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5924 return -EOPNOTSUPP;
5925
5926 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5927 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5928 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5929 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5930 return -EOPNOTSUPP;
5931
5932 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5933 /* Only one entry existed in the mapping and it was not already
5934 * a part of a VSI list. So, create a VSI list with the old and
5935 * new VSIs.
5936 */
5937 struct ice_fltr_info tmp_fltr;
5938 u16 vsi_handle_arr[2];
5939
5940 /* A rule already exists with the new VSI being added */
5941 if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5942 new_fltr->sw_act.fwd_id.hw_vsi_id)
5943 return -EEXIST;
5944
5945 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5946 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5947 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5948 &vsi_list_id,
5949 ICE_SW_LKUP_LAST);
5950 if (status)
5951 return status;
5952
5953 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5954 tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5955 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5956 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5957 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5958 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5959
5960 /* Update the previous switch rule of "forward to VSI" to
5961 * "fwd to VSI list"
5962 */
5963 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5964 if (status)
5965 return status;
5966
5967 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5968 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5969 m_entry->vsi_list_info =
5970 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5971 vsi_list_id);
5972 } else {
5973 u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5974
5975 if (!m_entry->vsi_list_info)
5976 return -EIO;
5977
5978 /* A rule already exists with the new VSI being added */
5979 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5980 return 0;
5981
5982 /* Update the previously created VSI list set with
5983 * the new VSI ID passed in
5984 */
5985 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5986
5987 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5988 vsi_list_id, false,
5989 ice_aqc_opc_update_sw_rules,
5990 ICE_SW_LKUP_LAST);
5991 /* update VSI list mapping info with new VSI ID */
5992 if (!status)
5993 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5994 }
5995 if (!status)
5996 m_entry->vsi_count++;
5997 return status;
5998}
5999
6000void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
6001{
6002 lkup->type = ICE_HW_METADATA;
6003 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
6004 cpu_to_be16(ICE_PKT_TUNNEL_MASK);
6005}
6006
6007void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
6008{
6009 lkup->type = ICE_HW_METADATA;
6010 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6011 cpu_to_be16(ICE_PKT_FROM_NETWORK);
6012}
6013
6014void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
6015{
6016 lkup->type = ICE_HW_METADATA;
6017 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
6018 cpu_to_be16(ICE_PKT_VLAN_MASK);
6019}
6020
6021void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
6022{
6023 lkup->type = ICE_HW_METADATA;
6024 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
6025}
6026
6027/**
6028 * ice_add_adv_rule - helper function to create an advanced switch rule
6029 * @hw: pointer to the hardware structure
6030 * @lkups: information on the words that needs to be looked up. All words
6031 * together makes one recipe
6032 * @lkups_cnt: num of entries in the lkups array
6033 * @rinfo: other information related to the rule that needs to be programmed
6034 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6035 * ignored is case of error.
6036 *
6037 * This function can program only 1 rule at a time. The lkups is used to
6038 * describe the all the words that forms the "lookup" portion of the recipe.
6039 * These words can span multiple protocols. Callers to this function need to
6040 * pass in a list of protocol headers with lookup information along and mask
6041 * that determines which words are valid from the given protocol header.
6042 * rinfo describes other information related to this rule such as forwarding
6043 * IDs, priority of this rule, etc.
6044 */
6045int
6046ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6047 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6048 struct ice_rule_query_data *added_entry)
6049{
6050 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6051 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6052 const struct ice_dummy_pkt_profile *profile;
6053 u16 rid = 0, i, rule_buf_sz, vsi_handle;
6054 struct list_head *rule_head;
6055 struct ice_switch_info *sw;
6056 u16 word_cnt;
6057 u32 act = 0;
6058 int status;
6059 u8 q_rgn;
6060
6061 /* Initialize profile to result index bitmap */
6062 if (!hw->switch_info->prof_res_bm_init) {
6063 hw->switch_info->prof_res_bm_init = 1;
6064 ice_init_prof_result_bm(hw);
6065 }
6066
6067 if (!lkups_cnt)
6068 return -EINVAL;
6069
6070 /* get # of words we need to match */
6071 word_cnt = 0;
6072 for (i = 0; i < lkups_cnt; i++) {
6073 u16 j;
6074
6075 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6076 if (lkups[i].m_raw[j])
6077 word_cnt++;
6078 }
6079
6080 if (!word_cnt)
6081 return -EINVAL;
6082
6083 if (word_cnt > ICE_MAX_CHAIN_WORDS)
6084 return -ENOSPC;
6085
6086 /* locate a dummy packet */
6087 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6088 if (IS_ERR(profile))
6089 return PTR_ERR(profile);
6090
6091 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6092 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6093 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6094 rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6095 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6096 rinfo->sw_act.fltr_act == ICE_NOP)) {
6097 status = -EIO;
6098 goto free_pkt_profile;
6099 }
6100
6101 vsi_handle = rinfo->sw_act.vsi_handle;
6102 if (!ice_is_vsi_valid(hw, vsi_handle)) {
6103 status = -EINVAL;
6104 goto free_pkt_profile;
6105 }
6106
6107 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6108 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6109 rinfo->sw_act.fltr_act == ICE_NOP) {
6110 rinfo->sw_act.fwd_id.hw_vsi_id =
6111 ice_get_hw_vsi_num(hw, vsi_handle);
6112 }
6113
6114 if (rinfo->src_vsi)
6115 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6116 else
6117 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6118
6119 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6120 if (status)
6121 goto free_pkt_profile;
6122 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6123 if (m_entry) {
6124 /* we have to add VSI to VSI_LIST and increment vsi_count.
6125 * Also Update VSI list so that we can change forwarding rule
6126 * if the rule already exists, we will check if it exists with
6127 * same vsi_id, if not then add it to the VSI list if it already
6128 * exists if not then create a VSI list and add the existing VSI
6129 * ID and the new VSI ID to the list
6130 * We will add that VSI to the list
6131 */
6132 status = ice_adv_add_update_vsi_list(hw, m_entry,
6133 &m_entry->rule_info,
6134 rinfo);
6135 if (added_entry) {
6136 added_entry->rid = rid;
6137 added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6138 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6139 }
6140 goto free_pkt_profile;
6141 }
6142 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6143 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6144 if (!s_rule) {
6145 status = -ENOMEM;
6146 goto free_pkt_profile;
6147 }
6148
6149 if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6150 if (!rinfo->flags_info.act_valid) {
6151 act |= ICE_SINGLE_ACT_LAN_ENABLE;
6152 act |= ICE_SINGLE_ACT_LB_ENABLE;
6153 } else {
6154 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6155 ICE_SINGLE_ACT_LB_ENABLE);
6156 }
6157 }
6158
6159 switch (rinfo->sw_act.fltr_act) {
6160 case ICE_FWD_TO_VSI:
6161 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6162 rinfo->sw_act.fwd_id.hw_vsi_id);
6163 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6164 break;
6165 case ICE_FWD_TO_Q:
6166 act |= ICE_SINGLE_ACT_TO_Q;
6167 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6168 rinfo->sw_act.fwd_id.q_id);
6169 break;
6170 case ICE_FWD_TO_QGRP:
6171 q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6172 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6173 act |= ICE_SINGLE_ACT_TO_Q;
6174 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6175 rinfo->sw_act.fwd_id.q_id);
6176 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6177 break;
6178 case ICE_DROP_PACKET:
6179 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6180 ICE_SINGLE_ACT_VALID_BIT;
6181 break;
6182 case ICE_MIRROR_PACKET:
6183 act |= ICE_SINGLE_ACT_OTHER_ACTS;
6184 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6185 rinfo->sw_act.fwd_id.hw_vsi_id);
6186 break;
6187 case ICE_NOP:
6188 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6189 rinfo->sw_act.fwd_id.hw_vsi_id);
6190 act &= ~ICE_SINGLE_ACT_VALID_BIT;
6191 break;
6192 default:
6193 status = -EIO;
6194 goto err_ice_add_adv_rule;
6195 }
6196
6197 /* If there is no matching criteria for direction there
6198 * is only one difference between Rx and Tx:
6199 * - get switch id base on VSI number from source field (Tx)
6200 * - get switch id base on port number (Rx)
6201 *
6202 * If matching on direction metadata is chose rule direction is
6203 * extracted from type value set here.
6204 */
6205 if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6206 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6207 s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6208 } else {
6209 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6210 s_rule->src = cpu_to_le16(hw->port_info->lport);
6211 }
6212
6213 s_rule->recipe_id = cpu_to_le16(rid);
6214 s_rule->act = cpu_to_le32(act);
6215
6216 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6217 if (status)
6218 goto err_ice_add_adv_rule;
6219
6220 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6221 profile->offsets);
6222 if (status)
6223 goto err_ice_add_adv_rule;
6224
6225 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6226 s_rule->hdr_data,
6227 profile->offsets);
6228 if (status)
6229 goto err_ice_add_adv_rule;
6230
6231 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6232 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6233 NULL);
6234 if (status)
6235 goto err_ice_add_adv_rule;
6236 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6237 sizeof(struct ice_adv_fltr_mgmt_list_entry),
6238 GFP_KERNEL);
6239 if (!adv_fltr) {
6240 status = -ENOMEM;
6241 goto err_ice_add_adv_rule;
6242 }
6243
6244 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6245 lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6246 if (!adv_fltr->lkups) {
6247 status = -ENOMEM;
6248 goto err_ice_add_adv_rule;
6249 }
6250
6251 adv_fltr->lkups_cnt = lkups_cnt;
6252 adv_fltr->rule_info = *rinfo;
6253 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6254 sw = hw->switch_info;
6255 sw->recp_list[rid].adv_rule = true;
6256 rule_head = &sw->recp_list[rid].filt_rules;
6257
6258 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6259 adv_fltr->vsi_count = 1;
6260
6261 /* Add rule entry to book keeping list */
6262 list_add(&adv_fltr->list_entry, rule_head);
6263 if (added_entry) {
6264 added_entry->rid = rid;
6265 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6266 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6267 }
6268err_ice_add_adv_rule:
6269 if (status && adv_fltr) {
6270 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6271 devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6272 }
6273
6274 kfree(s_rule);
6275
6276free_pkt_profile:
6277 if (profile->match & ICE_PKT_KMALLOC) {
6278 kfree(profile->offsets);
6279 kfree(profile->pkt);
6280 kfree(profile);
6281 }
6282
6283 return status;
6284}
6285
6286/**
6287 * ice_replay_vsi_fltr - Replay filters for requested VSI
6288 * @hw: pointer to the hardware structure
6289 * @vsi_handle: driver VSI handle
6290 * @recp_id: Recipe ID for which rules need to be replayed
6291 * @list_head: list for which filters need to be replayed
6292 *
6293 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6294 * It is required to pass valid VSI handle.
6295 */
6296static int
6297ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6298 struct list_head *list_head)
6299{
6300 struct ice_fltr_mgmt_list_entry *itr;
6301 int status = 0;
6302 u16 hw_vsi_id;
6303
6304 if (list_empty(list_head))
6305 return status;
6306 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6307
6308 list_for_each_entry(itr, list_head, list_entry) {
6309 struct ice_fltr_list_entry f_entry;
6310
6311 f_entry.fltr_info = itr->fltr_info;
6312 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6313 itr->fltr_info.vsi_handle == vsi_handle) {
6314 /* update the src in case it is VSI num */
6315 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6316 f_entry.fltr_info.src = hw_vsi_id;
6317 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6318 if (status)
6319 goto end;
6320 continue;
6321 }
6322 if (!itr->vsi_list_info ||
6323 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6324 continue;
6325 f_entry.fltr_info.vsi_handle = vsi_handle;
6326 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6327 /* update the src in case it is VSI num */
6328 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6329 f_entry.fltr_info.src = hw_vsi_id;
6330 if (recp_id == ICE_SW_LKUP_VLAN)
6331 status = ice_add_vlan_internal(hw, &f_entry);
6332 else
6333 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6334 if (status)
6335 goto end;
6336 }
6337end:
6338 return status;
6339}
6340
6341/**
6342 * ice_adv_rem_update_vsi_list
6343 * @hw: pointer to the hardware structure
6344 * @vsi_handle: VSI handle of the VSI to remove
6345 * @fm_list: filter management entry for which the VSI list management needs to
6346 * be done
6347 */
6348static int
6349ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6350 struct ice_adv_fltr_mgmt_list_entry *fm_list)
6351{
6352 struct ice_vsi_list_map_info *vsi_list_info;
6353 enum ice_sw_lkup_type lkup_type;
6354 u16 vsi_list_id;
6355 int status;
6356
6357 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6358 fm_list->vsi_count == 0)
6359 return -EINVAL;
6360
6361 /* A rule with the VSI being removed does not exist */
6362 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6363 return -ENOENT;
6364
6365 lkup_type = ICE_SW_LKUP_LAST;
6366 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6367 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6368 ice_aqc_opc_update_sw_rules,
6369 lkup_type);
6370 if (status)
6371 return status;
6372
6373 fm_list->vsi_count--;
6374 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6375 vsi_list_info = fm_list->vsi_list_info;
6376 if (fm_list->vsi_count == 1) {
6377 struct ice_fltr_info tmp_fltr;
6378 u16 rem_vsi_handle;
6379
6380 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6381 ICE_MAX_VSI);
6382 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6383 return -EIO;
6384
6385 /* Make sure VSI list is empty before removing it below */
6386 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6387 vsi_list_id, true,
6388 ice_aqc_opc_update_sw_rules,
6389 lkup_type);
6390 if (status)
6391 return status;
6392
6393 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6394 tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6395 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6396 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6397 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6398 tmp_fltr.fwd_id.hw_vsi_id =
6399 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6400 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6401 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6402 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6403
6404 /* Update the previous switch rule of "MAC forward to VSI" to
6405 * "MAC fwd to VSI list"
6406 */
6407 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6408 if (status) {
6409 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6410 tmp_fltr.fwd_id.hw_vsi_id, status);
6411 return status;
6412 }
6413 fm_list->vsi_list_info->ref_cnt--;
6414
6415 /* Remove the VSI list since it is no longer used */
6416 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6417 if (status) {
6418 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6419 vsi_list_id, status);
6420 return status;
6421 }
6422
6423 list_del(&vsi_list_info->list_entry);
6424 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6425 fm_list->vsi_list_info = NULL;
6426 }
6427
6428 return status;
6429}
6430
6431/**
6432 * ice_rem_adv_rule - removes existing advanced switch rule
6433 * @hw: pointer to the hardware structure
6434 * @lkups: information on the words that needs to be looked up. All words
6435 * together makes one recipe
6436 * @lkups_cnt: num of entries in the lkups array
6437 * @rinfo: Its the pointer to the rule information for the rule
6438 *
6439 * This function can be used to remove 1 rule at a time. The lkups is
6440 * used to describe all the words that forms the "lookup" portion of the
6441 * rule. These words can span multiple protocols. Callers to this function
6442 * need to pass in a list of protocol headers with lookup information along
6443 * and mask that determines which words are valid from the given protocol
6444 * header. rinfo describes other information related to this rule such as
6445 * forwarding IDs, priority of this rule, etc.
6446 */
6447static int
6448ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6449 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6450{
6451 struct ice_adv_fltr_mgmt_list_entry *list_elem;
6452 struct ice_prot_lkup_ext lkup_exts;
6453 bool remove_rule = false;
6454 struct mutex *rule_lock; /* Lock to protect filter rule list */
6455 u16 i, rid, vsi_handle;
6456 int status = 0;
6457
6458 memset(&lkup_exts, 0, sizeof(lkup_exts));
6459 for (i = 0; i < lkups_cnt; i++) {
6460 u16 count;
6461
6462 if (lkups[i].type >= ICE_PROTOCOL_LAST)
6463 return -EIO;
6464
6465 count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6466 if (!count)
6467 return -EIO;
6468 }
6469
6470 rid = ice_find_recp(hw, &lkup_exts, rinfo, false);
6471 /* If did not find a recipe that match the existing criteria */
6472 if (rid == ICE_MAX_NUM_RECIPES)
6473 return -EINVAL;
6474
6475 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6476 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6477 /* the rule is already removed */
6478 if (!list_elem)
6479 return 0;
6480 mutex_lock(rule_lock);
6481 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6482 remove_rule = true;
6483 } else if (list_elem->vsi_count > 1) {
6484 remove_rule = false;
6485 vsi_handle = rinfo->sw_act.vsi_handle;
6486 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6487 } else {
6488 vsi_handle = rinfo->sw_act.vsi_handle;
6489 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6490 if (status) {
6491 mutex_unlock(rule_lock);
6492 return status;
6493 }
6494 if (list_elem->vsi_count == 0)
6495 remove_rule = true;
6496 }
6497 mutex_unlock(rule_lock);
6498 if (remove_rule) {
6499 struct ice_sw_rule_lkup_rx_tx *s_rule;
6500 u16 rule_buf_sz;
6501
6502 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6503 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6504 if (!s_rule)
6505 return -ENOMEM;
6506 s_rule->act = 0;
6507 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6508 s_rule->hdr_len = 0;
6509 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6510 rule_buf_sz, 1,
6511 ice_aqc_opc_remove_sw_rules, NULL);
6512 if (!status || status == -ENOENT) {
6513 struct ice_switch_info *sw = hw->switch_info;
6514 struct ice_sw_recipe *r_list = sw->recp_list;
6515
6516 mutex_lock(rule_lock);
6517 list_del(&list_elem->list_entry);
6518 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6519 devm_kfree(ice_hw_to_dev(hw), list_elem);
6520 mutex_unlock(rule_lock);
6521 if (list_empty(&r_list[rid].filt_rules)) {
6522 r_list[rid].adv_rule = false;
6523
6524 /* All rules for this recipe are now removed */
6525 if (hw->recp_reuse)
6526 ice_release_recipe_res(hw,
6527 &r_list[rid]);
6528 }
6529 }
6530 kfree(s_rule);
6531 }
6532 return status;
6533}
6534
6535/**
6536 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6537 * @hw: pointer to the hardware structure
6538 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6539 *
6540 * This function is used to remove 1 rule at a time. The removal is based on
6541 * the remove_entry parameter. This function will remove rule for a given
6542 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6543 */
6544int
6545ice_rem_adv_rule_by_id(struct ice_hw *hw,
6546 struct ice_rule_query_data *remove_entry)
6547{
6548 struct ice_adv_fltr_mgmt_list_entry *list_itr;
6549 struct list_head *list_head;
6550 struct ice_adv_rule_info rinfo;
6551 struct ice_switch_info *sw;
6552
6553 sw = hw->switch_info;
6554 if (!sw->recp_list[remove_entry->rid].recp_created)
6555 return -EINVAL;
6556 list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6557 list_for_each_entry(list_itr, list_head, list_entry) {
6558 if (list_itr->rule_info.fltr_rule_id ==
6559 remove_entry->rule_id) {
6560 rinfo = list_itr->rule_info;
6561 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6562 return ice_rem_adv_rule(hw, list_itr->lkups,
6563 list_itr->lkups_cnt, &rinfo);
6564 }
6565 }
6566 /* either list is empty or unable to find rule */
6567 return -ENOENT;
6568}
6569
6570/**
6571 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6572 * @hw: pointer to the hardware structure
6573 * @vsi_handle: driver VSI handle
6574 * @list_head: list for which filters need to be replayed
6575 *
6576 * Replay the advanced rule for the given VSI.
6577 */
6578static int
6579ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6580 struct list_head *list_head)
6581{
6582 struct ice_rule_query_data added_entry = { 0 };
6583 struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6584 int status = 0;
6585
6586 if (list_empty(list_head))
6587 return status;
6588 list_for_each_entry(adv_fltr, list_head, list_entry) {
6589 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6590 u16 lk_cnt = adv_fltr->lkups_cnt;
6591
6592 if (vsi_handle != rinfo->sw_act.vsi_handle)
6593 continue;
6594 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6595 &added_entry);
6596 if (status)
6597 break;
6598 }
6599 return status;
6600}
6601
6602/**
6603 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6604 * @hw: pointer to the hardware structure
6605 * @vsi_handle: driver VSI handle
6606 *
6607 * Replays filters for requested VSI via vsi_handle.
6608 */
6609int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6610{
6611 struct ice_switch_info *sw = hw->switch_info;
6612 int status;
6613 u8 i;
6614
6615 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6616 struct list_head *head;
6617
6618 head = &sw->recp_list[i].filt_replay_rules;
6619 if (!sw->recp_list[i].adv_rule)
6620 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6621 else
6622 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6623 if (status)
6624 return status;
6625 }
6626 return status;
6627}
6628
6629/**
6630 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6631 * @hw: pointer to the HW struct
6632 *
6633 * Deletes the filter replay rules.
6634 */
6635void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6636{
6637 struct ice_switch_info *sw = hw->switch_info;
6638 u8 i;
6639
6640 if (!sw)
6641 return;
6642
6643 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6644 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6645 struct list_head *l_head;
6646
6647 l_head = &sw->recp_list[i].filt_replay_rules;
6648 if (!sw->recp_list[i].adv_rule)
6649 ice_rem_sw_rule_info(hw, l_head);
6650 else
6651 ice_rem_adv_rule_info(hw, l_head);
6652 }
6653 }
6654}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_lib.h"
5#include "ice_switch.h"
6
7#define ICE_ETH_DA_OFFSET 0
8#define ICE_ETH_ETHTYPE_OFFSET 12
9#define ICE_ETH_VLAN_TCI_OFFSET 14
10#define ICE_MAX_VLAN_ID 0xFFF
11#define ICE_IPV6_ETHER_ID 0x86DD
12
13/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
14 * struct to configure any switch filter rules.
15 * {DA (6 bytes), SA(6 bytes),
16 * Ether type (2 bytes for header without VLAN tag) OR
17 * VLAN tag (4 bytes for header with VLAN tag) }
18 *
19 * Word on Hardcoded values
20 * byte 0 = 0x2: to identify it as locally administered DA MAC
21 * byte 6 = 0x2: to identify it as locally administered SA MAC
22 * byte 12 = 0x81 & byte 13 = 0x00:
23 * In case of VLAN filter first two bytes defines ether type (0x8100)
24 * and remaining two bytes are placeholder for programming a given VLAN ID
25 * In case of Ether type filter it is treated as header without VLAN tag
26 * and byte 12 and 13 is used to program a given Ether type instead
27 */
28static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
29 0x2, 0, 0, 0, 0, 0,
30 0x81, 0, 0, 0};
31
32enum {
33 ICE_PKT_OUTER_IPV6 = BIT(0),
34 ICE_PKT_TUN_GTPC = BIT(1),
35 ICE_PKT_TUN_GTPU = BIT(2),
36 ICE_PKT_TUN_NVGRE = BIT(3),
37 ICE_PKT_TUN_UDP = BIT(4),
38 ICE_PKT_INNER_IPV6 = BIT(5),
39 ICE_PKT_INNER_TCP = BIT(6),
40 ICE_PKT_INNER_UDP = BIT(7),
41 ICE_PKT_GTP_NOPAY = BIT(8),
42 ICE_PKT_KMALLOC = BIT(9),
43 ICE_PKT_PPPOE = BIT(10),
44 ICE_PKT_L2TPV3 = BIT(11),
45};
46
47struct ice_dummy_pkt_offsets {
48 enum ice_protocol_type type;
49 u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
50};
51
52struct ice_dummy_pkt_profile {
53 const struct ice_dummy_pkt_offsets *offsets;
54 const u8 *pkt;
55 u32 match;
56 u16 pkt_len;
57 u16 offsets_len;
58};
59
60#define ICE_DECLARE_PKT_OFFSETS(type) \
61 static const struct ice_dummy_pkt_offsets \
62 ice_dummy_##type##_packet_offsets[]
63
64#define ICE_DECLARE_PKT_TEMPLATE(type) \
65 static const u8 ice_dummy_##type##_packet[]
66
67#define ICE_PKT_PROFILE(type, m) { \
68 .match = (m), \
69 .pkt = ice_dummy_##type##_packet, \
70 .pkt_len = sizeof(ice_dummy_##type##_packet), \
71 .offsets = ice_dummy_##type##_packet_offsets, \
72 .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \
73}
74
75ICE_DECLARE_PKT_OFFSETS(vlan) = {
76 { ICE_VLAN_OFOS, 12 },
77};
78
79ICE_DECLARE_PKT_TEMPLATE(vlan) = {
80 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
81};
82
83ICE_DECLARE_PKT_OFFSETS(qinq) = {
84 { ICE_VLAN_EX, 12 },
85 { ICE_VLAN_IN, 16 },
86};
87
88ICE_DECLARE_PKT_TEMPLATE(qinq) = {
89 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
90 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
91};
92
93ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
94 { ICE_MAC_OFOS, 0 },
95 { ICE_ETYPE_OL, 12 },
96 { ICE_IPV4_OFOS, 14 },
97 { ICE_NVGRE, 34 },
98 { ICE_MAC_IL, 42 },
99 { ICE_ETYPE_IL, 54 },
100 { ICE_IPV4_IL, 56 },
101 { ICE_TCP_IL, 76 },
102 { ICE_PROTOCOL_LAST, 0 },
103};
104
105ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
106 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
107 0x00, 0x00, 0x00, 0x00,
108 0x00, 0x00, 0x00, 0x00,
109
110 0x08, 0x00, /* ICE_ETYPE_OL 12 */
111
112 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
113 0x00, 0x00, 0x00, 0x00,
114 0x00, 0x2F, 0x00, 0x00,
115 0x00, 0x00, 0x00, 0x00,
116 0x00, 0x00, 0x00, 0x00,
117
118 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
119 0x00, 0x00, 0x00, 0x00,
120
121 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
122 0x00, 0x00, 0x00, 0x00,
123 0x00, 0x00, 0x00, 0x00,
124
125 0x08, 0x00, /* ICE_ETYPE_IL 54 */
126
127 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
128 0x00, 0x00, 0x00, 0x00,
129 0x00, 0x06, 0x00, 0x00,
130 0x00, 0x00, 0x00, 0x00,
131 0x00, 0x00, 0x00, 0x00,
132
133 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
134 0x00, 0x00, 0x00, 0x00,
135 0x00, 0x00, 0x00, 0x00,
136 0x50, 0x02, 0x20, 0x00,
137 0x00, 0x00, 0x00, 0x00
138};
139
140ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
141 { ICE_MAC_OFOS, 0 },
142 { ICE_ETYPE_OL, 12 },
143 { ICE_IPV4_OFOS, 14 },
144 { ICE_NVGRE, 34 },
145 { ICE_MAC_IL, 42 },
146 { ICE_ETYPE_IL, 54 },
147 { ICE_IPV4_IL, 56 },
148 { ICE_UDP_ILOS, 76 },
149 { ICE_PROTOCOL_LAST, 0 },
150};
151
152ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
153 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
154 0x00, 0x00, 0x00, 0x00,
155 0x00, 0x00, 0x00, 0x00,
156
157 0x08, 0x00, /* ICE_ETYPE_OL 12 */
158
159 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
160 0x00, 0x00, 0x00, 0x00,
161 0x00, 0x2F, 0x00, 0x00,
162 0x00, 0x00, 0x00, 0x00,
163 0x00, 0x00, 0x00, 0x00,
164
165 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
166 0x00, 0x00, 0x00, 0x00,
167
168 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
169 0x00, 0x00, 0x00, 0x00,
170 0x00, 0x00, 0x00, 0x00,
171
172 0x08, 0x00, /* ICE_ETYPE_IL 54 */
173
174 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
175 0x00, 0x00, 0x00, 0x00,
176 0x00, 0x11, 0x00, 0x00,
177 0x00, 0x00, 0x00, 0x00,
178 0x00, 0x00, 0x00, 0x00,
179
180 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
181 0x00, 0x08, 0x00, 0x00,
182};
183
184ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
185 { ICE_MAC_OFOS, 0 },
186 { ICE_ETYPE_OL, 12 },
187 { ICE_IPV4_OFOS, 14 },
188 { ICE_UDP_OF, 34 },
189 { ICE_VXLAN, 42 },
190 { ICE_GENEVE, 42 },
191 { ICE_VXLAN_GPE, 42 },
192 { ICE_MAC_IL, 50 },
193 { ICE_ETYPE_IL, 62 },
194 { ICE_IPV4_IL, 64 },
195 { ICE_TCP_IL, 84 },
196 { ICE_PROTOCOL_LAST, 0 },
197};
198
199ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
200 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
201 0x00, 0x00, 0x00, 0x00,
202 0x00, 0x00, 0x00, 0x00,
203
204 0x08, 0x00, /* ICE_ETYPE_OL 12 */
205
206 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
207 0x00, 0x01, 0x00, 0x00,
208 0x40, 0x11, 0x00, 0x00,
209 0x00, 0x00, 0x00, 0x00,
210 0x00, 0x00, 0x00, 0x00,
211
212 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
213 0x00, 0x46, 0x00, 0x00,
214
215 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
216 0x00, 0x00, 0x00, 0x00,
217
218 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
219 0x00, 0x00, 0x00, 0x00,
220 0x00, 0x00, 0x00, 0x00,
221
222 0x08, 0x00, /* ICE_ETYPE_IL 62 */
223
224 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
225 0x00, 0x01, 0x00, 0x00,
226 0x40, 0x06, 0x00, 0x00,
227 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00,
229
230 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
231 0x00, 0x00, 0x00, 0x00,
232 0x00, 0x00, 0x00, 0x00,
233 0x50, 0x02, 0x20, 0x00,
234 0x00, 0x00, 0x00, 0x00
235};
236
237ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
238 { ICE_MAC_OFOS, 0 },
239 { ICE_ETYPE_OL, 12 },
240 { ICE_IPV4_OFOS, 14 },
241 { ICE_UDP_OF, 34 },
242 { ICE_VXLAN, 42 },
243 { ICE_GENEVE, 42 },
244 { ICE_VXLAN_GPE, 42 },
245 { ICE_MAC_IL, 50 },
246 { ICE_ETYPE_IL, 62 },
247 { ICE_IPV4_IL, 64 },
248 { ICE_UDP_ILOS, 84 },
249 { ICE_PROTOCOL_LAST, 0 },
250};
251
252ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
253 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
254 0x00, 0x00, 0x00, 0x00,
255 0x00, 0x00, 0x00, 0x00,
256
257 0x08, 0x00, /* ICE_ETYPE_OL 12 */
258
259 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
260 0x00, 0x01, 0x00, 0x00,
261 0x00, 0x11, 0x00, 0x00,
262 0x00, 0x00, 0x00, 0x00,
263 0x00, 0x00, 0x00, 0x00,
264
265 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
266 0x00, 0x3a, 0x00, 0x00,
267
268 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
269 0x00, 0x00, 0x00, 0x00,
270
271 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
272 0x00, 0x00, 0x00, 0x00,
273 0x00, 0x00, 0x00, 0x00,
274
275 0x08, 0x00, /* ICE_ETYPE_IL 62 */
276
277 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
278 0x00, 0x01, 0x00, 0x00,
279 0x00, 0x11, 0x00, 0x00,
280 0x00, 0x00, 0x00, 0x00,
281 0x00, 0x00, 0x00, 0x00,
282
283 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
284 0x00, 0x08, 0x00, 0x00,
285};
286
287ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
288 { ICE_MAC_OFOS, 0 },
289 { ICE_ETYPE_OL, 12 },
290 { ICE_IPV4_OFOS, 14 },
291 { ICE_NVGRE, 34 },
292 { ICE_MAC_IL, 42 },
293 { ICE_ETYPE_IL, 54 },
294 { ICE_IPV6_IL, 56 },
295 { ICE_TCP_IL, 96 },
296 { ICE_PROTOCOL_LAST, 0 },
297};
298
299ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
300 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
301 0x00, 0x00, 0x00, 0x00,
302 0x00, 0x00, 0x00, 0x00,
303
304 0x08, 0x00, /* ICE_ETYPE_OL 12 */
305
306 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
307 0x00, 0x00, 0x00, 0x00,
308 0x00, 0x2F, 0x00, 0x00,
309 0x00, 0x00, 0x00, 0x00,
310 0x00, 0x00, 0x00, 0x00,
311
312 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
313 0x00, 0x00, 0x00, 0x00,
314
315 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
316 0x00, 0x00, 0x00, 0x00,
317 0x00, 0x00, 0x00, 0x00,
318
319 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
320
321 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
322 0x00, 0x08, 0x06, 0x40,
323 0x00, 0x00, 0x00, 0x00,
324 0x00, 0x00, 0x00, 0x00,
325 0x00, 0x00, 0x00, 0x00,
326 0x00, 0x00, 0x00, 0x00,
327 0x00, 0x00, 0x00, 0x00,
328 0x00, 0x00, 0x00, 0x00,
329 0x00, 0x00, 0x00, 0x00,
330 0x00, 0x00, 0x00, 0x00,
331
332 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
333 0x00, 0x00, 0x00, 0x00,
334 0x00, 0x00, 0x00, 0x00,
335 0x50, 0x02, 0x20, 0x00,
336 0x00, 0x00, 0x00, 0x00
337};
338
339ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
340 { ICE_MAC_OFOS, 0 },
341 { ICE_ETYPE_OL, 12 },
342 { ICE_IPV4_OFOS, 14 },
343 { ICE_NVGRE, 34 },
344 { ICE_MAC_IL, 42 },
345 { ICE_ETYPE_IL, 54 },
346 { ICE_IPV6_IL, 56 },
347 { ICE_UDP_ILOS, 96 },
348 { ICE_PROTOCOL_LAST, 0 },
349};
350
351ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
352 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
353 0x00, 0x00, 0x00, 0x00,
354 0x00, 0x00, 0x00, 0x00,
355
356 0x08, 0x00, /* ICE_ETYPE_OL 12 */
357
358 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
359 0x00, 0x00, 0x00, 0x00,
360 0x00, 0x2F, 0x00, 0x00,
361 0x00, 0x00, 0x00, 0x00,
362 0x00, 0x00, 0x00, 0x00,
363
364 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
365 0x00, 0x00, 0x00, 0x00,
366
367 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
368 0x00, 0x00, 0x00, 0x00,
369 0x00, 0x00, 0x00, 0x00,
370
371 0x86, 0xdd, /* ICE_ETYPE_IL 54 */
372
373 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
374 0x00, 0x08, 0x11, 0x40,
375 0x00, 0x00, 0x00, 0x00,
376 0x00, 0x00, 0x00, 0x00,
377 0x00, 0x00, 0x00, 0x00,
378 0x00, 0x00, 0x00, 0x00,
379 0x00, 0x00, 0x00, 0x00,
380 0x00, 0x00, 0x00, 0x00,
381 0x00, 0x00, 0x00, 0x00,
382 0x00, 0x00, 0x00, 0x00,
383
384 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
385 0x00, 0x08, 0x00, 0x00,
386};
387
388ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
389 { ICE_MAC_OFOS, 0 },
390 { ICE_ETYPE_OL, 12 },
391 { ICE_IPV4_OFOS, 14 },
392 { ICE_UDP_OF, 34 },
393 { ICE_VXLAN, 42 },
394 { ICE_GENEVE, 42 },
395 { ICE_VXLAN_GPE, 42 },
396 { ICE_MAC_IL, 50 },
397 { ICE_ETYPE_IL, 62 },
398 { ICE_IPV6_IL, 64 },
399 { ICE_TCP_IL, 104 },
400 { ICE_PROTOCOL_LAST, 0 },
401};
402
403ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
404 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
405 0x00, 0x00, 0x00, 0x00,
406 0x00, 0x00, 0x00, 0x00,
407
408 0x08, 0x00, /* ICE_ETYPE_OL 12 */
409
410 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
411 0x00, 0x01, 0x00, 0x00,
412 0x40, 0x11, 0x00, 0x00,
413 0x00, 0x00, 0x00, 0x00,
414 0x00, 0x00, 0x00, 0x00,
415
416 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
417 0x00, 0x5a, 0x00, 0x00,
418
419 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
420 0x00, 0x00, 0x00, 0x00,
421
422 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
423 0x00, 0x00, 0x00, 0x00,
424 0x00, 0x00, 0x00, 0x00,
425
426 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
427
428 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
429 0x00, 0x08, 0x06, 0x40,
430 0x00, 0x00, 0x00, 0x00,
431 0x00, 0x00, 0x00, 0x00,
432 0x00, 0x00, 0x00, 0x00,
433 0x00, 0x00, 0x00, 0x00,
434 0x00, 0x00, 0x00, 0x00,
435 0x00, 0x00, 0x00, 0x00,
436 0x00, 0x00, 0x00, 0x00,
437 0x00, 0x00, 0x00, 0x00,
438
439 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
440 0x00, 0x00, 0x00, 0x00,
441 0x00, 0x00, 0x00, 0x00,
442 0x50, 0x02, 0x20, 0x00,
443 0x00, 0x00, 0x00, 0x00
444};
445
446ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
447 { ICE_MAC_OFOS, 0 },
448 { ICE_ETYPE_OL, 12 },
449 { ICE_IPV4_OFOS, 14 },
450 { ICE_UDP_OF, 34 },
451 { ICE_VXLAN, 42 },
452 { ICE_GENEVE, 42 },
453 { ICE_VXLAN_GPE, 42 },
454 { ICE_MAC_IL, 50 },
455 { ICE_ETYPE_IL, 62 },
456 { ICE_IPV6_IL, 64 },
457 { ICE_UDP_ILOS, 104 },
458 { ICE_PROTOCOL_LAST, 0 },
459};
460
461ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
462 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
463 0x00, 0x00, 0x00, 0x00,
464 0x00, 0x00, 0x00, 0x00,
465
466 0x08, 0x00, /* ICE_ETYPE_OL 12 */
467
468 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
469 0x00, 0x01, 0x00, 0x00,
470 0x00, 0x11, 0x00, 0x00,
471 0x00, 0x00, 0x00, 0x00,
472 0x00, 0x00, 0x00, 0x00,
473
474 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
475 0x00, 0x4e, 0x00, 0x00,
476
477 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
478 0x00, 0x00, 0x00, 0x00,
479
480 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
481 0x00, 0x00, 0x00, 0x00,
482 0x00, 0x00, 0x00, 0x00,
483
484 0x86, 0xdd, /* ICE_ETYPE_IL 62 */
485
486 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
487 0x00, 0x08, 0x11, 0x40,
488 0x00, 0x00, 0x00, 0x00,
489 0x00, 0x00, 0x00, 0x00,
490 0x00, 0x00, 0x00, 0x00,
491 0x00, 0x00, 0x00, 0x00,
492 0x00, 0x00, 0x00, 0x00,
493 0x00, 0x00, 0x00, 0x00,
494 0x00, 0x00, 0x00, 0x00,
495 0x00, 0x00, 0x00, 0x00,
496
497 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
498 0x00, 0x08, 0x00, 0x00,
499};
500
501/* offset info for MAC + IPv4 + UDP dummy packet */
502ICE_DECLARE_PKT_OFFSETS(udp) = {
503 { ICE_MAC_OFOS, 0 },
504 { ICE_ETYPE_OL, 12 },
505 { ICE_IPV4_OFOS, 14 },
506 { ICE_UDP_ILOS, 34 },
507 { ICE_PROTOCOL_LAST, 0 },
508};
509
510/* Dummy packet for MAC + IPv4 + UDP */
511ICE_DECLARE_PKT_TEMPLATE(udp) = {
512 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
513 0x00, 0x00, 0x00, 0x00,
514 0x00, 0x00, 0x00, 0x00,
515
516 0x08, 0x00, /* ICE_ETYPE_OL 12 */
517
518 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
519 0x00, 0x01, 0x00, 0x00,
520 0x00, 0x11, 0x00, 0x00,
521 0x00, 0x00, 0x00, 0x00,
522 0x00, 0x00, 0x00, 0x00,
523
524 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
525 0x00, 0x08, 0x00, 0x00,
526
527 0x00, 0x00, /* 2 bytes for 4 byte alignment */
528};
529
530/* offset info for MAC + IPv4 + TCP dummy packet */
531ICE_DECLARE_PKT_OFFSETS(tcp) = {
532 { ICE_MAC_OFOS, 0 },
533 { ICE_ETYPE_OL, 12 },
534 { ICE_IPV4_OFOS, 14 },
535 { ICE_TCP_IL, 34 },
536 { ICE_PROTOCOL_LAST, 0 },
537};
538
539/* Dummy packet for MAC + IPv4 + TCP */
540ICE_DECLARE_PKT_TEMPLATE(tcp) = {
541 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
542 0x00, 0x00, 0x00, 0x00,
543 0x00, 0x00, 0x00, 0x00,
544
545 0x08, 0x00, /* ICE_ETYPE_OL 12 */
546
547 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
548 0x00, 0x01, 0x00, 0x00,
549 0x00, 0x06, 0x00, 0x00,
550 0x00, 0x00, 0x00, 0x00,
551 0x00, 0x00, 0x00, 0x00,
552
553 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
554 0x00, 0x00, 0x00, 0x00,
555 0x00, 0x00, 0x00, 0x00,
556 0x50, 0x00, 0x00, 0x00,
557 0x00, 0x00, 0x00, 0x00,
558
559 0x00, 0x00, /* 2 bytes for 4 byte alignment */
560};
561
562ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
563 { ICE_MAC_OFOS, 0 },
564 { ICE_ETYPE_OL, 12 },
565 { ICE_IPV6_OFOS, 14 },
566 { ICE_TCP_IL, 54 },
567 { ICE_PROTOCOL_LAST, 0 },
568};
569
570ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
571 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
572 0x00, 0x00, 0x00, 0x00,
573 0x00, 0x00, 0x00, 0x00,
574
575 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
576
577 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
578 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
579 0x00, 0x00, 0x00, 0x00,
580 0x00, 0x00, 0x00, 0x00,
581 0x00, 0x00, 0x00, 0x00,
582 0x00, 0x00, 0x00, 0x00,
583 0x00, 0x00, 0x00, 0x00,
584 0x00, 0x00, 0x00, 0x00,
585 0x00, 0x00, 0x00, 0x00,
586 0x00, 0x00, 0x00, 0x00,
587
588 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
589 0x00, 0x00, 0x00, 0x00,
590 0x00, 0x00, 0x00, 0x00,
591 0x50, 0x00, 0x00, 0x00,
592 0x00, 0x00, 0x00, 0x00,
593
594 0x00, 0x00, /* 2 bytes for 4 byte alignment */
595};
596
597/* IPv6 + UDP */
598ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
599 { ICE_MAC_OFOS, 0 },
600 { ICE_ETYPE_OL, 12 },
601 { ICE_IPV6_OFOS, 14 },
602 { ICE_UDP_ILOS, 54 },
603 { ICE_PROTOCOL_LAST, 0 },
604};
605
606/* IPv6 + UDP dummy packet */
607ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
608 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
609 0x00, 0x00, 0x00, 0x00,
610 0x00, 0x00, 0x00, 0x00,
611
612 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
613
614 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
615 0x00, 0x10, 0x11, 0x00, /* Next header UDP */
616 0x00, 0x00, 0x00, 0x00,
617 0x00, 0x00, 0x00, 0x00,
618 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00,
620 0x00, 0x00, 0x00, 0x00,
621 0x00, 0x00, 0x00, 0x00,
622 0x00, 0x00, 0x00, 0x00,
623 0x00, 0x00, 0x00, 0x00,
624
625 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
626 0x00, 0x10, 0x00, 0x00,
627
628 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
629 0x00, 0x00, 0x00, 0x00,
630
631 0x00, 0x00, /* 2 bytes for 4 byte alignment */
632};
633
634/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
635ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
636 { ICE_MAC_OFOS, 0 },
637 { ICE_IPV4_OFOS, 14 },
638 { ICE_UDP_OF, 34 },
639 { ICE_GTP, 42 },
640 { ICE_IPV4_IL, 62 },
641 { ICE_TCP_IL, 82 },
642 { ICE_PROTOCOL_LAST, 0 },
643};
644
645ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
646 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
647 0x00, 0x00, 0x00, 0x00,
648 0x00, 0x00, 0x00, 0x00,
649 0x08, 0x00,
650
651 0x45, 0x00, 0x00, 0x58, /* IP 14 */
652 0x00, 0x00, 0x00, 0x00,
653 0x00, 0x11, 0x00, 0x00,
654 0x00, 0x00, 0x00, 0x00,
655 0x00, 0x00, 0x00, 0x00,
656
657 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
658 0x00, 0x44, 0x00, 0x00,
659
660 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
661 0x00, 0x00, 0x00, 0x00,
662 0x00, 0x00, 0x00, 0x85,
663
664 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
665 0x00, 0x00, 0x00, 0x00,
666
667 0x45, 0x00, 0x00, 0x28, /* IP 62 */
668 0x00, 0x00, 0x00, 0x00,
669 0x00, 0x06, 0x00, 0x00,
670 0x00, 0x00, 0x00, 0x00,
671 0x00, 0x00, 0x00, 0x00,
672
673 0x00, 0x00, 0x00, 0x00, /* TCP 82 */
674 0x00, 0x00, 0x00, 0x00,
675 0x00, 0x00, 0x00, 0x00,
676 0x50, 0x00, 0x00, 0x00,
677 0x00, 0x00, 0x00, 0x00,
678
679 0x00, 0x00, /* 2 bytes for 4 byte alignment */
680};
681
682/* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
683ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
684 { ICE_MAC_OFOS, 0 },
685 { ICE_IPV4_OFOS, 14 },
686 { ICE_UDP_OF, 34 },
687 { ICE_GTP, 42 },
688 { ICE_IPV4_IL, 62 },
689 { ICE_UDP_ILOS, 82 },
690 { ICE_PROTOCOL_LAST, 0 },
691};
692
693ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
694 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
695 0x00, 0x00, 0x00, 0x00,
696 0x00, 0x00, 0x00, 0x00,
697 0x08, 0x00,
698
699 0x45, 0x00, 0x00, 0x4c, /* IP 14 */
700 0x00, 0x00, 0x00, 0x00,
701 0x00, 0x11, 0x00, 0x00,
702 0x00, 0x00, 0x00, 0x00,
703 0x00, 0x00, 0x00, 0x00,
704
705 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
706 0x00, 0x38, 0x00, 0x00,
707
708 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
709 0x00, 0x00, 0x00, 0x00,
710 0x00, 0x00, 0x00, 0x85,
711
712 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
713 0x00, 0x00, 0x00, 0x00,
714
715 0x45, 0x00, 0x00, 0x1c, /* IP 62 */
716 0x00, 0x00, 0x00, 0x00,
717 0x00, 0x11, 0x00, 0x00,
718 0x00, 0x00, 0x00, 0x00,
719 0x00, 0x00, 0x00, 0x00,
720
721 0x00, 0x00, 0x00, 0x00, /* UDP 82 */
722 0x00, 0x08, 0x00, 0x00,
723
724 0x00, 0x00, /* 2 bytes for 4 byte alignment */
725};
726
727/* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
728ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
729 { ICE_MAC_OFOS, 0 },
730 { ICE_IPV4_OFOS, 14 },
731 { ICE_UDP_OF, 34 },
732 { ICE_GTP, 42 },
733 { ICE_IPV6_IL, 62 },
734 { ICE_TCP_IL, 102 },
735 { ICE_PROTOCOL_LAST, 0 },
736};
737
738ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
739 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
740 0x00, 0x00, 0x00, 0x00,
741 0x00, 0x00, 0x00, 0x00,
742 0x08, 0x00,
743
744 0x45, 0x00, 0x00, 0x6c, /* IP 14 */
745 0x00, 0x00, 0x00, 0x00,
746 0x00, 0x11, 0x00, 0x00,
747 0x00, 0x00, 0x00, 0x00,
748 0x00, 0x00, 0x00, 0x00,
749
750 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
751 0x00, 0x58, 0x00, 0x00,
752
753 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
754 0x00, 0x00, 0x00, 0x00,
755 0x00, 0x00, 0x00, 0x85,
756
757 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
758 0x00, 0x00, 0x00, 0x00,
759
760 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
761 0x00, 0x14, 0x06, 0x00,
762 0x00, 0x00, 0x00, 0x00,
763 0x00, 0x00, 0x00, 0x00,
764 0x00, 0x00, 0x00, 0x00,
765 0x00, 0x00, 0x00, 0x00,
766 0x00, 0x00, 0x00, 0x00,
767 0x00, 0x00, 0x00, 0x00,
768 0x00, 0x00, 0x00, 0x00,
769 0x00, 0x00, 0x00, 0x00,
770
771 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
772 0x00, 0x00, 0x00, 0x00,
773 0x00, 0x00, 0x00, 0x00,
774 0x50, 0x00, 0x00, 0x00,
775 0x00, 0x00, 0x00, 0x00,
776
777 0x00, 0x00, /* 2 bytes for 4 byte alignment */
778};
779
780ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
781 { ICE_MAC_OFOS, 0 },
782 { ICE_IPV4_OFOS, 14 },
783 { ICE_UDP_OF, 34 },
784 { ICE_GTP, 42 },
785 { ICE_IPV6_IL, 62 },
786 { ICE_UDP_ILOS, 102 },
787 { ICE_PROTOCOL_LAST, 0 },
788};
789
790ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
791 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
792 0x00, 0x00, 0x00, 0x00,
793 0x00, 0x00, 0x00, 0x00,
794 0x08, 0x00,
795
796 0x45, 0x00, 0x00, 0x60, /* IP 14 */
797 0x00, 0x00, 0x00, 0x00,
798 0x00, 0x11, 0x00, 0x00,
799 0x00, 0x00, 0x00, 0x00,
800 0x00, 0x00, 0x00, 0x00,
801
802 0x00, 0x00, 0x08, 0x68, /* UDP 34 */
803 0x00, 0x4c, 0x00, 0x00,
804
805 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
806 0x00, 0x00, 0x00, 0x00,
807 0x00, 0x00, 0x00, 0x85,
808
809 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
810 0x00, 0x00, 0x00, 0x00,
811
812 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
813 0x00, 0x08, 0x11, 0x00,
814 0x00, 0x00, 0x00, 0x00,
815 0x00, 0x00, 0x00, 0x00,
816 0x00, 0x00, 0x00, 0x00,
817 0x00, 0x00, 0x00, 0x00,
818 0x00, 0x00, 0x00, 0x00,
819 0x00, 0x00, 0x00, 0x00,
820 0x00, 0x00, 0x00, 0x00,
821 0x00, 0x00, 0x00, 0x00,
822
823 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
824 0x00, 0x08, 0x00, 0x00,
825
826 0x00, 0x00, /* 2 bytes for 4 byte alignment */
827};
828
829ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
830 { ICE_MAC_OFOS, 0 },
831 { ICE_IPV6_OFOS, 14 },
832 { ICE_UDP_OF, 54 },
833 { ICE_GTP, 62 },
834 { ICE_IPV4_IL, 82 },
835 { ICE_TCP_IL, 102 },
836 { ICE_PROTOCOL_LAST, 0 },
837};
838
839ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
840 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
841 0x00, 0x00, 0x00, 0x00,
842 0x00, 0x00, 0x00, 0x00,
843 0x86, 0xdd,
844
845 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
846 0x00, 0x44, 0x11, 0x00,
847 0x00, 0x00, 0x00, 0x00,
848 0x00, 0x00, 0x00, 0x00,
849 0x00, 0x00, 0x00, 0x00,
850 0x00, 0x00, 0x00, 0x00,
851 0x00, 0x00, 0x00, 0x00,
852 0x00, 0x00, 0x00, 0x00,
853 0x00, 0x00, 0x00, 0x00,
854 0x00, 0x00, 0x00, 0x00,
855
856 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
857 0x00, 0x44, 0x00, 0x00,
858
859 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
860 0x00, 0x00, 0x00, 0x00,
861 0x00, 0x00, 0x00, 0x85,
862
863 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
864 0x00, 0x00, 0x00, 0x00,
865
866 0x45, 0x00, 0x00, 0x28, /* IP 82 */
867 0x00, 0x00, 0x00, 0x00,
868 0x00, 0x06, 0x00, 0x00,
869 0x00, 0x00, 0x00, 0x00,
870 0x00, 0x00, 0x00, 0x00,
871
872 0x00, 0x00, 0x00, 0x00, /* TCP 102 */
873 0x00, 0x00, 0x00, 0x00,
874 0x00, 0x00, 0x00, 0x00,
875 0x50, 0x00, 0x00, 0x00,
876 0x00, 0x00, 0x00, 0x00,
877
878 0x00, 0x00, /* 2 bytes for 4 byte alignment */
879};
880
881ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
882 { ICE_MAC_OFOS, 0 },
883 { ICE_IPV6_OFOS, 14 },
884 { ICE_UDP_OF, 54 },
885 { ICE_GTP, 62 },
886 { ICE_IPV4_IL, 82 },
887 { ICE_UDP_ILOS, 102 },
888 { ICE_PROTOCOL_LAST, 0 },
889};
890
891ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
892 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
893 0x00, 0x00, 0x00, 0x00,
894 0x00, 0x00, 0x00, 0x00,
895 0x86, 0xdd,
896
897 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
898 0x00, 0x38, 0x11, 0x00,
899 0x00, 0x00, 0x00, 0x00,
900 0x00, 0x00, 0x00, 0x00,
901 0x00, 0x00, 0x00, 0x00,
902 0x00, 0x00, 0x00, 0x00,
903 0x00, 0x00, 0x00, 0x00,
904 0x00, 0x00, 0x00, 0x00,
905 0x00, 0x00, 0x00, 0x00,
906 0x00, 0x00, 0x00, 0x00,
907
908 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
909 0x00, 0x38, 0x00, 0x00,
910
911 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
912 0x00, 0x00, 0x00, 0x00,
913 0x00, 0x00, 0x00, 0x85,
914
915 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
916 0x00, 0x00, 0x00, 0x00,
917
918 0x45, 0x00, 0x00, 0x1c, /* IP 82 */
919 0x00, 0x00, 0x00, 0x00,
920 0x00, 0x11, 0x00, 0x00,
921 0x00, 0x00, 0x00, 0x00,
922 0x00, 0x00, 0x00, 0x00,
923
924 0x00, 0x00, 0x00, 0x00, /* UDP 102 */
925 0x00, 0x08, 0x00, 0x00,
926
927 0x00, 0x00, /* 2 bytes for 4 byte alignment */
928};
929
930ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
931 { ICE_MAC_OFOS, 0 },
932 { ICE_IPV6_OFOS, 14 },
933 { ICE_UDP_OF, 54 },
934 { ICE_GTP, 62 },
935 { ICE_IPV6_IL, 82 },
936 { ICE_TCP_IL, 122 },
937 { ICE_PROTOCOL_LAST, 0 },
938};
939
940ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
941 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
942 0x00, 0x00, 0x00, 0x00,
943 0x00, 0x00, 0x00, 0x00,
944 0x86, 0xdd,
945
946 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
947 0x00, 0x58, 0x11, 0x00,
948 0x00, 0x00, 0x00, 0x00,
949 0x00, 0x00, 0x00, 0x00,
950 0x00, 0x00, 0x00, 0x00,
951 0x00, 0x00, 0x00, 0x00,
952 0x00, 0x00, 0x00, 0x00,
953 0x00, 0x00, 0x00, 0x00,
954 0x00, 0x00, 0x00, 0x00,
955 0x00, 0x00, 0x00, 0x00,
956
957 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
958 0x00, 0x58, 0x00, 0x00,
959
960 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
961 0x00, 0x00, 0x00, 0x00,
962 0x00, 0x00, 0x00, 0x85,
963
964 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
965 0x00, 0x00, 0x00, 0x00,
966
967 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
968 0x00, 0x14, 0x06, 0x00,
969 0x00, 0x00, 0x00, 0x00,
970 0x00, 0x00, 0x00, 0x00,
971 0x00, 0x00, 0x00, 0x00,
972 0x00, 0x00, 0x00, 0x00,
973 0x00, 0x00, 0x00, 0x00,
974 0x00, 0x00, 0x00, 0x00,
975 0x00, 0x00, 0x00, 0x00,
976 0x00, 0x00, 0x00, 0x00,
977
978 0x00, 0x00, 0x00, 0x00, /* TCP 122 */
979 0x00, 0x00, 0x00, 0x00,
980 0x00, 0x00, 0x00, 0x00,
981 0x50, 0x00, 0x00, 0x00,
982 0x00, 0x00, 0x00, 0x00,
983
984 0x00, 0x00, /* 2 bytes for 4 byte alignment */
985};
986
987ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
988 { ICE_MAC_OFOS, 0 },
989 { ICE_IPV6_OFOS, 14 },
990 { ICE_UDP_OF, 54 },
991 { ICE_GTP, 62 },
992 { ICE_IPV6_IL, 82 },
993 { ICE_UDP_ILOS, 122 },
994 { ICE_PROTOCOL_LAST, 0 },
995};
996
997ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
998 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
999 0x00, 0x00, 0x00, 0x00,
1000 0x00, 0x00, 0x00, 0x00,
1001 0x86, 0xdd,
1002
1003 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004 0x00, 0x4c, 0x11, 0x00,
1005 0x00, 0x00, 0x00, 0x00,
1006 0x00, 0x00, 0x00, 0x00,
1007 0x00, 0x00, 0x00, 0x00,
1008 0x00, 0x00, 0x00, 0x00,
1009 0x00, 0x00, 0x00, 0x00,
1010 0x00, 0x00, 0x00, 0x00,
1011 0x00, 0x00, 0x00, 0x00,
1012 0x00, 0x00, 0x00, 0x00,
1013
1014 0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015 0x00, 0x4c, 0x00, 0x00,
1016
1017 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018 0x00, 0x00, 0x00, 0x00,
1019 0x00, 0x00, 0x00, 0x85,
1020
1021 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022 0x00, 0x00, 0x00, 0x00,
1023
1024 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025 0x00, 0x08, 0x11, 0x00,
1026 0x00, 0x00, 0x00, 0x00,
1027 0x00, 0x00, 0x00, 0x00,
1028 0x00, 0x00, 0x00, 0x00,
1029 0x00, 0x00, 0x00, 0x00,
1030 0x00, 0x00, 0x00, 0x00,
1031 0x00, 0x00, 0x00, 0x00,
1032 0x00, 0x00, 0x00, 0x00,
1033 0x00, 0x00, 0x00, 0x00,
1034
1035 0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036 0x00, 0x08, 0x00, 0x00,
1037
1038 0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039};
1040
1041ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042 { ICE_MAC_OFOS, 0 },
1043 { ICE_IPV4_OFOS, 14 },
1044 { ICE_UDP_OF, 34 },
1045 { ICE_GTP_NO_PAY, 42 },
1046 { ICE_PROTOCOL_LAST, 0 },
1047};
1048
1049ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051 0x00, 0x00, 0x00, 0x00,
1052 0x00, 0x00, 0x00, 0x00,
1053 0x08, 0x00,
1054
1055 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056 0x00, 0x00, 0x40, 0x00,
1057 0x40, 0x11, 0x00, 0x00,
1058 0x00, 0x00, 0x00, 0x00,
1059 0x00, 0x00, 0x00, 0x00,
1060
1061 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062 0x00, 0x00, 0x00, 0x00,
1063
1064 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065 0x00, 0x00, 0x00, 0x00,
1066 0x00, 0x00, 0x00, 0x85,
1067
1068 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069 0x00, 0x00, 0x00, 0x00,
1070
1071 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072 0x00, 0x00, 0x40, 0x00,
1073 0x40, 0x00, 0x00, 0x00,
1074 0x00, 0x00, 0x00, 0x00,
1075 0x00, 0x00, 0x00, 0x00,
1076 0x00, 0x00,
1077};
1078
1079ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080 { ICE_MAC_OFOS, 0 },
1081 { ICE_IPV6_OFOS, 14 },
1082 { ICE_UDP_OF, 54 },
1083 { ICE_GTP_NO_PAY, 62 },
1084 { ICE_PROTOCOL_LAST, 0 },
1085};
1086
1087ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089 0x00, 0x00, 0x00, 0x00,
1090 0x00, 0x00, 0x00, 0x00,
1091 0x86, 0xdd,
1092
1093 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095 0x00, 0x00, 0x00, 0x00,
1096 0x00, 0x00, 0x00, 0x00,
1097 0x00, 0x00, 0x00, 0x00,
1098 0x00, 0x00, 0x00, 0x00,
1099 0x00, 0x00, 0x00, 0x00,
1100 0x00, 0x00, 0x00, 0x00,
1101 0x00, 0x00, 0x00, 0x00,
1102 0x00, 0x00, 0x00, 0x00,
1103
1104 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105 0x00, 0x00, 0x00, 0x00,
1106
1107 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108 0x00, 0x00, 0x00, 0x00,
1109
1110 0x00, 0x00,
1111};
1112
1113ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114 { ICE_MAC_OFOS, 0 },
1115 { ICE_ETYPE_OL, 12 },
1116 { ICE_PPPOE, 14 },
1117 { ICE_IPV4_OFOS, 22 },
1118 { ICE_TCP_IL, 42 },
1119 { ICE_PROTOCOL_LAST, 0 },
1120};
1121
1122ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124 0x00, 0x00, 0x00, 0x00,
1125 0x00, 0x00, 0x00, 0x00,
1126
1127 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1128
1129 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130 0x00, 0x16,
1131
1132 0x00, 0x21, /* PPP Link Layer 20 */
1133
1134 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135 0x00, 0x01, 0x00, 0x00,
1136 0x00, 0x06, 0x00, 0x00,
1137 0x00, 0x00, 0x00, 0x00,
1138 0x00, 0x00, 0x00, 0x00,
1139
1140 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141 0x00, 0x00, 0x00, 0x00,
1142 0x00, 0x00, 0x00, 0x00,
1143 0x50, 0x00, 0x00, 0x00,
1144 0x00, 0x00, 0x00, 0x00,
1145
1146 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1147};
1148
1149ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150 { ICE_MAC_OFOS, 0 },
1151 { ICE_ETYPE_OL, 12 },
1152 { ICE_PPPOE, 14 },
1153 { ICE_IPV4_OFOS, 22 },
1154 { ICE_UDP_ILOS, 42 },
1155 { ICE_PROTOCOL_LAST, 0 },
1156};
1157
1158ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160 0x00, 0x00, 0x00, 0x00,
1161 0x00, 0x00, 0x00, 0x00,
1162
1163 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1164
1165 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166 0x00, 0x16,
1167
1168 0x00, 0x21, /* PPP Link Layer 20 */
1169
1170 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171 0x00, 0x01, 0x00, 0x00,
1172 0x00, 0x11, 0x00, 0x00,
1173 0x00, 0x00, 0x00, 0x00,
1174 0x00, 0x00, 0x00, 0x00,
1175
1176 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177 0x00, 0x08, 0x00, 0x00,
1178
1179 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1180};
1181
1182ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183 { ICE_MAC_OFOS, 0 },
1184 { ICE_ETYPE_OL, 12 },
1185 { ICE_PPPOE, 14 },
1186 { ICE_IPV6_OFOS, 22 },
1187 { ICE_TCP_IL, 62 },
1188 { ICE_PROTOCOL_LAST, 0 },
1189};
1190
1191ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193 0x00, 0x00, 0x00, 0x00,
1194 0x00, 0x00, 0x00, 0x00,
1195
1196 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1197
1198 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199 0x00, 0x2a,
1200
1201 0x00, 0x57, /* PPP Link Layer 20 */
1202
1203 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205 0x00, 0x00, 0x00, 0x00,
1206 0x00, 0x00, 0x00, 0x00,
1207 0x00, 0x00, 0x00, 0x00,
1208 0x00, 0x00, 0x00, 0x00,
1209 0x00, 0x00, 0x00, 0x00,
1210 0x00, 0x00, 0x00, 0x00,
1211 0x00, 0x00, 0x00, 0x00,
1212 0x00, 0x00, 0x00, 0x00,
1213
1214 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215 0x00, 0x00, 0x00, 0x00,
1216 0x00, 0x00, 0x00, 0x00,
1217 0x50, 0x00, 0x00, 0x00,
1218 0x00, 0x00, 0x00, 0x00,
1219
1220 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1221};
1222
1223ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224 { ICE_MAC_OFOS, 0 },
1225 { ICE_ETYPE_OL, 12 },
1226 { ICE_PPPOE, 14 },
1227 { ICE_IPV6_OFOS, 22 },
1228 { ICE_UDP_ILOS, 62 },
1229 { ICE_PROTOCOL_LAST, 0 },
1230};
1231
1232ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234 0x00, 0x00, 0x00, 0x00,
1235 0x00, 0x00, 0x00, 0x00,
1236
1237 0x88, 0x64, /* ICE_ETYPE_OL 12 */
1238
1239 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240 0x00, 0x2a,
1241
1242 0x00, 0x57, /* PPP Link Layer 20 */
1243
1244 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246 0x00, 0x00, 0x00, 0x00,
1247 0x00, 0x00, 0x00, 0x00,
1248 0x00, 0x00, 0x00, 0x00,
1249 0x00, 0x00, 0x00, 0x00,
1250 0x00, 0x00, 0x00, 0x00,
1251 0x00, 0x00, 0x00, 0x00,
1252 0x00, 0x00, 0x00, 0x00,
1253 0x00, 0x00, 0x00, 0x00,
1254
1255 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256 0x00, 0x08, 0x00, 0x00,
1257
1258 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1259};
1260
1261ICE_DECLARE_PKT_OFFSETS(ipv4_l2tpv3) = {
1262 { ICE_MAC_OFOS, 0 },
1263 { ICE_ETYPE_OL, 12 },
1264 { ICE_IPV4_OFOS, 14 },
1265 { ICE_L2TPV3, 34 },
1266 { ICE_PROTOCOL_LAST, 0 },
1267};
1268
1269ICE_DECLARE_PKT_TEMPLATE(ipv4_l2tpv3) = {
1270 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1271 0x00, 0x00, 0x00, 0x00,
1272 0x00, 0x00, 0x00, 0x00,
1273
1274 0x08, 0x00, /* ICE_ETYPE_OL 12 */
1275
1276 0x45, 0x00, 0x00, 0x20, /* ICE_IPV4_IL 14 */
1277 0x00, 0x00, 0x40, 0x00,
1278 0x40, 0x73, 0x00, 0x00,
1279 0x00, 0x00, 0x00, 0x00,
1280 0x00, 0x00, 0x00, 0x00,
1281
1282 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 34 */
1283 0x00, 0x00, 0x00, 0x00,
1284 0x00, 0x00, 0x00, 0x00,
1285 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1286};
1287
1288ICE_DECLARE_PKT_OFFSETS(ipv6_l2tpv3) = {
1289 { ICE_MAC_OFOS, 0 },
1290 { ICE_ETYPE_OL, 12 },
1291 { ICE_IPV6_OFOS, 14 },
1292 { ICE_L2TPV3, 54 },
1293 { ICE_PROTOCOL_LAST, 0 },
1294};
1295
1296ICE_DECLARE_PKT_TEMPLATE(ipv6_l2tpv3) = {
1297 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1298 0x00, 0x00, 0x00, 0x00,
1299 0x00, 0x00, 0x00, 0x00,
1300
1301 0x86, 0xDD, /* ICE_ETYPE_OL 12 */
1302
1303 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 14 */
1304 0x00, 0x0c, 0x73, 0x40,
1305 0x00, 0x00, 0x00, 0x00,
1306 0x00, 0x00, 0x00, 0x00,
1307 0x00, 0x00, 0x00, 0x00,
1308 0x00, 0x00, 0x00, 0x00,
1309 0x00, 0x00, 0x00, 0x00,
1310 0x00, 0x00, 0x00, 0x00,
1311 0x00, 0x00, 0x00, 0x00,
1312 0x00, 0x00, 0x00, 0x00,
1313
1314 0x00, 0x00, 0x00, 0x00, /* ICE_L2TPV3 54 */
1315 0x00, 0x00, 0x00, 0x00,
1316 0x00, 0x00, 0x00, 0x00,
1317 0x00, 0x00, /* 2 bytes for 4 bytes alignment */
1318};
1319
1320static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1321 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1322 ICE_PKT_GTP_NOPAY),
1323 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1324 ICE_PKT_OUTER_IPV6 |
1325 ICE_PKT_INNER_IPV6 |
1326 ICE_PKT_INNER_UDP),
1327 ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1328 ICE_PKT_OUTER_IPV6 |
1329 ICE_PKT_INNER_IPV6),
1330 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1331 ICE_PKT_OUTER_IPV6 |
1332 ICE_PKT_INNER_UDP),
1333 ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1334 ICE_PKT_OUTER_IPV6),
1335 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1336 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1337 ICE_PKT_INNER_IPV6 |
1338 ICE_PKT_INNER_UDP),
1339 ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1340 ICE_PKT_INNER_IPV6),
1341 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1342 ICE_PKT_INNER_UDP),
1343 ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1344 ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1345 ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1346 ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1347 ICE_PKT_INNER_UDP),
1348 ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1349 ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1350 ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1351 ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1352 ICE_PKT_INNER_TCP),
1353 ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1354 ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1355 ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1356 ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1357 ICE_PKT_INNER_IPV6 |
1358 ICE_PKT_INNER_TCP),
1359 ICE_PKT_PROFILE(ipv6_l2tpv3, ICE_PKT_L2TPV3 | ICE_PKT_OUTER_IPV6),
1360 ICE_PKT_PROFILE(ipv4_l2tpv3, ICE_PKT_L2TPV3),
1361 ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1362 ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1363 ICE_PKT_INNER_IPV6),
1364 ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1365 ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1366 ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1367 ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1368 ICE_PKT_PROFILE(tcp, 0),
1369};
1370
1371/* this is a recipe to profile association bitmap */
1372static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1373 ICE_MAX_NUM_PROFILES);
1374
1375/* this is a profile to recipe association bitmap */
1376static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1377 ICE_MAX_NUM_RECIPES);
1378
1379/**
1380 * ice_init_def_sw_recp - initialize the recipe book keeping tables
1381 * @hw: pointer to the HW struct
1382 *
1383 * Allocate memory for the entire recipe table and initialize the structures/
1384 * entries corresponding to basic recipes.
1385 */
1386int ice_init_def_sw_recp(struct ice_hw *hw)
1387{
1388 struct ice_sw_recipe *recps;
1389 u8 i;
1390
1391 recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1392 sizeof(*recps), GFP_KERNEL);
1393 if (!recps)
1394 return -ENOMEM;
1395
1396 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1397 recps[i].root_rid = i;
1398 INIT_LIST_HEAD(&recps[i].filt_rules);
1399 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1400 INIT_LIST_HEAD(&recps[i].rg_list);
1401 mutex_init(&recps[i].filt_rule_lock);
1402 }
1403
1404 hw->switch_info->recp_list = recps;
1405
1406 return 0;
1407}
1408
1409/**
1410 * ice_aq_get_sw_cfg - get switch configuration
1411 * @hw: pointer to the hardware structure
1412 * @buf: pointer to the result buffer
1413 * @buf_size: length of the buffer available for response
1414 * @req_desc: pointer to requested descriptor
1415 * @num_elems: pointer to number of elements
1416 * @cd: pointer to command details structure or NULL
1417 *
1418 * Get switch configuration (0x0200) to be placed in buf.
1419 * This admin command returns information such as initial VSI/port number
1420 * and switch ID it belongs to.
1421 *
1422 * NOTE: *req_desc is both an input/output parameter.
1423 * The caller of this function first calls this function with *request_desc set
1424 * to 0. If the response from f/w has *req_desc set to 0, all the switch
1425 * configuration information has been returned; if non-zero (meaning not all
1426 * the information was returned), the caller should call this function again
1427 * with *req_desc set to the previous value returned by f/w to get the
1428 * next block of switch configuration information.
1429 *
1430 * *num_elems is output only parameter. This reflects the number of elements
1431 * in response buffer. The caller of this function to use *num_elems while
1432 * parsing the response buffer.
1433 */
1434static int
1435ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1436 u16 buf_size, u16 *req_desc, u16 *num_elems,
1437 struct ice_sq_cd *cd)
1438{
1439 struct ice_aqc_get_sw_cfg *cmd;
1440 struct ice_aq_desc desc;
1441 int status;
1442
1443 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1444 cmd = &desc.params.get_sw_conf;
1445 cmd->element = cpu_to_le16(*req_desc);
1446
1447 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1448 if (!status) {
1449 *req_desc = le16_to_cpu(cmd->element);
1450 *num_elems = le16_to_cpu(cmd->num_elems);
1451 }
1452
1453 return status;
1454}
1455
1456/**
1457 * ice_aq_add_vsi
1458 * @hw: pointer to the HW struct
1459 * @vsi_ctx: pointer to a VSI context struct
1460 * @cd: pointer to command details structure or NULL
1461 *
1462 * Add a VSI context to the hardware (0x0210)
1463 */
1464static int
1465ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1466 struct ice_sq_cd *cd)
1467{
1468 struct ice_aqc_add_update_free_vsi_resp *res;
1469 struct ice_aqc_add_get_update_free_vsi *cmd;
1470 struct ice_aq_desc desc;
1471 int status;
1472
1473 cmd = &desc.params.vsi_cmd;
1474 res = &desc.params.add_update_free_vsi_res;
1475
1476 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1477
1478 if (!vsi_ctx->alloc_from_pool)
1479 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1480 ICE_AQ_VSI_IS_VALID);
1481 cmd->vf_id = vsi_ctx->vf_num;
1482
1483 cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1484
1485 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1486
1487 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1488 sizeof(vsi_ctx->info), cd);
1489
1490 if (!status) {
1491 vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1492 vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1493 vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1494 }
1495
1496 return status;
1497}
1498
1499/**
1500 * ice_aq_free_vsi
1501 * @hw: pointer to the HW struct
1502 * @vsi_ctx: pointer to a VSI context struct
1503 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1504 * @cd: pointer to command details structure or NULL
1505 *
1506 * Free VSI context info from hardware (0x0213)
1507 */
1508static int
1509ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1510 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1511{
1512 struct ice_aqc_add_update_free_vsi_resp *resp;
1513 struct ice_aqc_add_get_update_free_vsi *cmd;
1514 struct ice_aq_desc desc;
1515 int status;
1516
1517 cmd = &desc.params.vsi_cmd;
1518 resp = &desc.params.add_update_free_vsi_res;
1519
1520 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1521
1522 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1523 if (keep_vsi_alloc)
1524 cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1525
1526 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1527 if (!status) {
1528 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1529 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1530 }
1531
1532 return status;
1533}
1534
1535/**
1536 * ice_aq_update_vsi
1537 * @hw: pointer to the HW struct
1538 * @vsi_ctx: pointer to a VSI context struct
1539 * @cd: pointer to command details structure or NULL
1540 *
1541 * Update VSI context in the hardware (0x0211)
1542 */
1543static int
1544ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1545 struct ice_sq_cd *cd)
1546{
1547 struct ice_aqc_add_update_free_vsi_resp *resp;
1548 struct ice_aqc_add_get_update_free_vsi *cmd;
1549 struct ice_aq_desc desc;
1550 int status;
1551
1552 cmd = &desc.params.vsi_cmd;
1553 resp = &desc.params.add_update_free_vsi_res;
1554
1555 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1556
1557 cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1558
1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560
1561 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1562 sizeof(vsi_ctx->info), cd);
1563
1564 if (!status) {
1565 vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1566 vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1567 }
1568
1569 return status;
1570}
1571
1572/**
1573 * ice_is_vsi_valid - check whether the VSI is valid or not
1574 * @hw: pointer to the HW struct
1575 * @vsi_handle: VSI handle
1576 *
1577 * check whether the VSI is valid or not
1578 */
1579bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1580{
1581 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1582}
1583
1584/**
1585 * ice_get_hw_vsi_num - return the HW VSI number
1586 * @hw: pointer to the HW struct
1587 * @vsi_handle: VSI handle
1588 *
1589 * return the HW VSI number
1590 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1591 */
1592u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1593{
1594 return hw->vsi_ctx[vsi_handle]->vsi_num;
1595}
1596
1597/**
1598 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1599 * @hw: pointer to the HW struct
1600 * @vsi_handle: VSI handle
1601 *
1602 * return the VSI context entry for a given VSI handle
1603 */
1604struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1605{
1606 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1607}
1608
1609/**
1610 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1611 * @hw: pointer to the HW struct
1612 * @vsi_handle: VSI handle
1613 * @vsi: VSI context pointer
1614 *
1615 * save the VSI context entry for a given VSI handle
1616 */
1617static void
1618ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1619{
1620 hw->vsi_ctx[vsi_handle] = vsi;
1621}
1622
1623/**
1624 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1625 * @hw: pointer to the HW struct
1626 * @vsi_handle: VSI handle
1627 */
1628static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1629{
1630 struct ice_vsi_ctx *vsi = ice_get_vsi_ctx(hw, vsi_handle);
1631 u8 i;
1632
1633 if (!vsi)
1634 return;
1635 ice_for_each_traffic_class(i) {
1636 devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1637 vsi->lan_q_ctx[i] = NULL;
1638 devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1639 vsi->rdma_q_ctx[i] = NULL;
1640 }
1641}
1642
1643/**
1644 * ice_clear_vsi_ctx - clear the VSI context entry
1645 * @hw: pointer to the HW struct
1646 * @vsi_handle: VSI handle
1647 *
1648 * clear the VSI context entry
1649 */
1650static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1651{
1652 struct ice_vsi_ctx *vsi;
1653
1654 vsi = ice_get_vsi_ctx(hw, vsi_handle);
1655 if (vsi) {
1656 ice_clear_vsi_q_ctx(hw, vsi_handle);
1657 devm_kfree(ice_hw_to_dev(hw), vsi);
1658 hw->vsi_ctx[vsi_handle] = NULL;
1659 }
1660}
1661
1662/**
1663 * ice_clear_all_vsi_ctx - clear all the VSI context entries
1664 * @hw: pointer to the HW struct
1665 */
1666void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1667{
1668 u16 i;
1669
1670 for (i = 0; i < ICE_MAX_VSI; i++)
1671 ice_clear_vsi_ctx(hw, i);
1672}
1673
1674/**
1675 * ice_add_vsi - add VSI context to the hardware and VSI handle list
1676 * @hw: pointer to the HW struct
1677 * @vsi_handle: unique VSI handle provided by drivers
1678 * @vsi_ctx: pointer to a VSI context struct
1679 * @cd: pointer to command details structure or NULL
1680 *
1681 * Add a VSI context to the hardware also add it into the VSI handle list.
1682 * If this function gets called after reset for existing VSIs then update
1683 * with the new HW VSI number in the corresponding VSI handle list entry.
1684 */
1685int
1686ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1687 struct ice_sq_cd *cd)
1688{
1689 struct ice_vsi_ctx *tmp_vsi_ctx;
1690 int status;
1691
1692 if (vsi_handle >= ICE_MAX_VSI)
1693 return -EINVAL;
1694 status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1695 if (status)
1696 return status;
1697 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1698 if (!tmp_vsi_ctx) {
1699 /* Create a new VSI context */
1700 tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1701 sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1702 if (!tmp_vsi_ctx) {
1703 ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1704 return -ENOMEM;
1705 }
1706 *tmp_vsi_ctx = *vsi_ctx;
1707 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1708 } else {
1709 /* update with new HW VSI num */
1710 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1711 }
1712
1713 return 0;
1714}
1715
1716/**
1717 * ice_free_vsi- free VSI context from hardware and VSI handle list
1718 * @hw: pointer to the HW struct
1719 * @vsi_handle: unique VSI handle
1720 * @vsi_ctx: pointer to a VSI context struct
1721 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1722 * @cd: pointer to command details structure or NULL
1723 *
1724 * Free VSI context info from hardware as well as from VSI handle list
1725 */
1726int
1727ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1728 bool keep_vsi_alloc, struct ice_sq_cd *cd)
1729{
1730 int status;
1731
1732 if (!ice_is_vsi_valid(hw, vsi_handle))
1733 return -EINVAL;
1734 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1735 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1736 if (!status)
1737 ice_clear_vsi_ctx(hw, vsi_handle);
1738 return status;
1739}
1740
1741/**
1742 * ice_update_vsi
1743 * @hw: pointer to the HW struct
1744 * @vsi_handle: unique VSI handle
1745 * @vsi_ctx: pointer to a VSI context struct
1746 * @cd: pointer to command details structure or NULL
1747 *
1748 * Update VSI context in the hardware
1749 */
1750int
1751ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1752 struct ice_sq_cd *cd)
1753{
1754 if (!ice_is_vsi_valid(hw, vsi_handle))
1755 return -EINVAL;
1756 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1757 return ice_aq_update_vsi(hw, vsi_ctx, cd);
1758}
1759
1760/**
1761 * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1762 * @hw: pointer to HW struct
1763 * @vsi_handle: VSI SW index
1764 * @enable: boolean for enable/disable
1765 */
1766int
1767ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1768{
1769 struct ice_vsi_ctx *ctx, *cached_ctx;
1770 int status;
1771
1772 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1773 if (!cached_ctx)
1774 return -ENOENT;
1775
1776 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1777 if (!ctx)
1778 return -ENOMEM;
1779
1780 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
1781 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
1782 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
1783
1784 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1785
1786 if (enable)
1787 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1788 else
1789 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1790
1791 status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
1792 if (!status) {
1793 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
1794 cached_ctx->info.valid_sections |= ctx->info.valid_sections;
1795 }
1796
1797 kfree(ctx);
1798 return status;
1799}
1800
1801/**
1802 * ice_aq_alloc_free_vsi_list
1803 * @hw: pointer to the HW struct
1804 * @vsi_list_id: VSI list ID returned or used for lookup
1805 * @lkup_type: switch rule filter lookup type
1806 * @opc: switch rules population command type - pass in the command opcode
1807 *
1808 * allocates or free a VSI list resource
1809 */
1810static int
1811ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1812 enum ice_sw_lkup_type lkup_type,
1813 enum ice_adminq_opc opc)
1814{
1815 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
1816 u16 buf_len = __struct_size(sw_buf);
1817 struct ice_aqc_res_elem *vsi_ele;
1818 int status;
1819
1820 sw_buf->num_elems = cpu_to_le16(1);
1821
1822 if (lkup_type == ICE_SW_LKUP_MAC ||
1823 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1824 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1825 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1826 lkup_type == ICE_SW_LKUP_PROMISC ||
1827 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1828 lkup_type == ICE_SW_LKUP_DFLT) {
1829 sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1830 } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1831 if (opc == ice_aqc_opc_alloc_res)
1832 sw_buf->res_type =
1833 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE |
1834 ICE_AQC_RES_TYPE_FLAG_SHARED);
1835 else
1836 sw_buf->res_type =
1837 cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1838 } else {
1839 return -EINVAL;
1840 }
1841
1842 if (opc == ice_aqc_opc_free_res)
1843 sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1844
1845 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len, opc);
1846 if (status)
1847 return status;
1848
1849 if (opc == ice_aqc_opc_alloc_res) {
1850 vsi_ele = &sw_buf->elem[0];
1851 *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1852 }
1853
1854 return 0;
1855}
1856
1857/**
1858 * ice_aq_sw_rules - add/update/remove switch rules
1859 * @hw: pointer to the HW struct
1860 * @rule_list: pointer to switch rule population list
1861 * @rule_list_sz: total size of the rule list in bytes
1862 * @num_rules: number of switch rules in the rule_list
1863 * @opc: switch rules population command type - pass in the command opcode
1864 * @cd: pointer to command details structure or NULL
1865 *
1866 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1867 */
1868int
1869ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1870 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1871{
1872 struct ice_aq_desc desc;
1873 int status;
1874
1875 if (opc != ice_aqc_opc_add_sw_rules &&
1876 opc != ice_aqc_opc_update_sw_rules &&
1877 opc != ice_aqc_opc_remove_sw_rules)
1878 return -EINVAL;
1879
1880 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1881
1882 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1883 desc.params.sw_rules.num_rules_fltr_entry_index =
1884 cpu_to_le16(num_rules);
1885 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1886 if (opc != ice_aqc_opc_add_sw_rules &&
1887 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1888 status = -ENOENT;
1889
1890 return status;
1891}
1892
1893/**
1894 * ice_aq_add_recipe - add switch recipe
1895 * @hw: pointer to the HW struct
1896 * @s_recipe_list: pointer to switch rule population list
1897 * @num_recipes: number of switch recipes in the list
1898 * @cd: pointer to command details structure or NULL
1899 *
1900 * Add(0x0290)
1901 */
1902int
1903ice_aq_add_recipe(struct ice_hw *hw,
1904 struct ice_aqc_recipe_data_elem *s_recipe_list,
1905 u16 num_recipes, struct ice_sq_cd *cd)
1906{
1907 struct ice_aqc_add_get_recipe *cmd;
1908 struct ice_aq_desc desc;
1909 u16 buf_size;
1910
1911 cmd = &desc.params.add_get_recipe;
1912 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1913
1914 cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1915 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1916
1917 buf_size = num_recipes * sizeof(*s_recipe_list);
1918
1919 return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1920}
1921
1922/**
1923 * ice_aq_get_recipe - get switch recipe
1924 * @hw: pointer to the HW struct
1925 * @s_recipe_list: pointer to switch rule population list
1926 * @num_recipes: pointer to the number of recipes (input and output)
1927 * @recipe_root: root recipe number of recipe(s) to retrieve
1928 * @cd: pointer to command details structure or NULL
1929 *
1930 * Get(0x0292)
1931 *
1932 * On input, *num_recipes should equal the number of entries in s_recipe_list.
1933 * On output, *num_recipes will equal the number of entries returned in
1934 * s_recipe_list.
1935 *
1936 * The caller must supply enough space in s_recipe_list to hold all possible
1937 * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1938 */
1939int
1940ice_aq_get_recipe(struct ice_hw *hw,
1941 struct ice_aqc_recipe_data_elem *s_recipe_list,
1942 u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1943{
1944 struct ice_aqc_add_get_recipe *cmd;
1945 struct ice_aq_desc desc;
1946 u16 buf_size;
1947 int status;
1948
1949 if (*num_recipes != ICE_MAX_NUM_RECIPES)
1950 return -EINVAL;
1951
1952 cmd = &desc.params.add_get_recipe;
1953 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1954
1955 cmd->return_index = cpu_to_le16(recipe_root);
1956 cmd->num_sub_recipes = 0;
1957
1958 buf_size = *num_recipes * sizeof(*s_recipe_list);
1959
1960 status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1961 *num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1962
1963 return status;
1964}
1965
1966/**
1967 * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1968 * @hw: pointer to the HW struct
1969 * @params: parameters used to update the default recipe
1970 *
1971 * This function only supports updating default recipes and it only supports
1972 * updating a single recipe based on the lkup_idx at a time.
1973 *
1974 * This is done as a read-modify-write operation. First, get the current recipe
1975 * contents based on the recipe's ID. Then modify the field vector index and
1976 * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1977 * the pre-existing recipe with the modifications.
1978 */
1979int
1980ice_update_recipe_lkup_idx(struct ice_hw *hw,
1981 struct ice_update_recipe_lkup_idx_params *params)
1982{
1983 struct ice_aqc_recipe_data_elem *rcp_list;
1984 u16 num_recps = ICE_MAX_NUM_RECIPES;
1985 int status;
1986
1987 rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1988 if (!rcp_list)
1989 return -ENOMEM;
1990
1991 /* read current recipe list from firmware */
1992 rcp_list->recipe_indx = params->rid;
1993 status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1994 if (status) {
1995 ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1996 params->rid, status);
1997 goto error_out;
1998 }
1999
2000 /* only modify existing recipe's lkup_idx and mask if valid, while
2001 * leaving all other fields the same, then update the recipe firmware
2002 */
2003 rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
2004 if (params->mask_valid)
2005 rcp_list->content.mask[params->lkup_idx] =
2006 cpu_to_le16(params->mask);
2007
2008 if (params->ignore_valid)
2009 rcp_list->content.lkup_indx[params->lkup_idx] |=
2010 ICE_AQ_RECIPE_LKUP_IGNORE;
2011
2012 status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
2013 if (status)
2014 ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
2015 params->rid, params->lkup_idx, params->fv_idx,
2016 params->mask, params->mask_valid ? "true" : "false",
2017 status);
2018
2019error_out:
2020 kfree(rcp_list);
2021 return status;
2022}
2023
2024/**
2025 * ice_aq_map_recipe_to_profile - Map recipe to packet profile
2026 * @hw: pointer to the HW struct
2027 * @profile_id: package profile ID to associate the recipe with
2028 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2029 * @cd: pointer to command details structure or NULL
2030 * Recipe to profile association (0x0291)
2031 */
2032int
2033ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2034 struct ice_sq_cd *cd)
2035{
2036 struct ice_aqc_recipe_to_profile *cmd;
2037 struct ice_aq_desc desc;
2038
2039 cmd = &desc.params.recipe_to_profile;
2040 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
2041 cmd->profile_id = cpu_to_le16(profile_id);
2042 /* Set the recipe ID bit in the bitmask to let the device know which
2043 * profile we are associating the recipe to
2044 */
2045 memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
2046
2047 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2048}
2049
2050/**
2051 * ice_aq_get_recipe_to_profile - Map recipe to packet profile
2052 * @hw: pointer to the HW struct
2053 * @profile_id: package profile ID to associate the recipe with
2054 * @r_bitmap: Recipe bitmap filled in and need to be returned as response
2055 * @cd: pointer to command details structure or NULL
2056 * Associate profile ID with given recipe (0x0293)
2057 */
2058int
2059ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
2060 struct ice_sq_cd *cd)
2061{
2062 struct ice_aqc_recipe_to_profile *cmd;
2063 struct ice_aq_desc desc;
2064 int status;
2065
2066 cmd = &desc.params.recipe_to_profile;
2067 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2068 cmd->profile_id = cpu_to_le16(profile_id);
2069
2070 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2071 if (!status)
2072 memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2073
2074 return status;
2075}
2076
2077/**
2078 * ice_alloc_recipe - add recipe resource
2079 * @hw: pointer to the hardware structure
2080 * @rid: recipe ID returned as response to AQ call
2081 */
2082int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2083{
2084 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, sw_buf, elem, 1);
2085 u16 buf_len = __struct_size(sw_buf);
2086 int status;
2087
2088 sw_buf->num_elems = cpu_to_le16(1);
2089 sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2090 ICE_AQC_RES_TYPE_S) |
2091 ICE_AQC_RES_TYPE_FLAG_SHARED);
2092 status = ice_aq_alloc_free_res(hw, sw_buf, buf_len,
2093 ice_aqc_opc_alloc_res);
2094 if (!status)
2095 *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2096
2097 return status;
2098}
2099
2100/**
2101 * ice_get_recp_to_prof_map - updates recipe to profile mapping
2102 * @hw: pointer to hardware structure
2103 *
2104 * This function is used to populate recipe_to_profile matrix where index to
2105 * this array is the recipe ID and the element is the mapping of which profiles
2106 * is this recipe mapped to.
2107 */
2108static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2109{
2110 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2111 u16 i;
2112
2113 for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2114 u16 j;
2115
2116 bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2117 bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2118 if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2119 continue;
2120 bitmap_copy(profile_to_recipe[i], r_bitmap,
2121 ICE_MAX_NUM_RECIPES);
2122 for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2123 set_bit(i, recipe_to_profile[j]);
2124 }
2125}
2126
2127/**
2128 * ice_collect_result_idx - copy result index values
2129 * @buf: buffer that contains the result index
2130 * @recp: the recipe struct to copy data into
2131 */
2132static void
2133ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2134 struct ice_sw_recipe *recp)
2135{
2136 if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2137 set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2138 recp->res_idxs);
2139}
2140
2141/**
2142 * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2143 * @hw: pointer to hardware structure
2144 * @recps: struct that we need to populate
2145 * @rid: recipe ID that we are populating
2146 * @refresh_required: true if we should get recipe to profile mapping from FW
2147 *
2148 * This function is used to populate all the necessary entries into our
2149 * bookkeeping so that we have a current list of all the recipes that are
2150 * programmed in the firmware.
2151 */
2152static int
2153ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2154 bool *refresh_required)
2155{
2156 DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2157 struct ice_aqc_recipe_data_elem *tmp;
2158 u16 num_recps = ICE_MAX_NUM_RECIPES;
2159 struct ice_prot_lkup_ext *lkup_exts;
2160 u8 fv_word_idx = 0;
2161 u16 sub_recps;
2162 int status;
2163
2164 bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2165
2166 /* we need a buffer big enough to accommodate all the recipes */
2167 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2168 if (!tmp)
2169 return -ENOMEM;
2170
2171 tmp[0].recipe_indx = rid;
2172 status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2173 /* non-zero status meaning recipe doesn't exist */
2174 if (status)
2175 goto err_unroll;
2176
2177 /* Get recipe to profile map so that we can get the fv from lkups that
2178 * we read for a recipe from FW. Since we want to minimize the number of
2179 * times we make this FW call, just make one call and cache the copy
2180 * until a new recipe is added. This operation is only required the
2181 * first time to get the changes from FW. Then to search existing
2182 * entries we don't need to update the cache again until another recipe
2183 * gets added.
2184 */
2185 if (*refresh_required) {
2186 ice_get_recp_to_prof_map(hw);
2187 *refresh_required = false;
2188 }
2189
2190 /* Start populating all the entries for recps[rid] based on lkups from
2191 * firmware. Note that we are only creating the root recipe in our
2192 * database.
2193 */
2194 lkup_exts = &recps[rid].lkup_exts;
2195
2196 for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2197 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2198 struct ice_recp_grp_entry *rg_entry;
2199 u8 i, prof, idx, prot = 0;
2200 bool is_root;
2201 u16 off = 0;
2202
2203 rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2204 GFP_KERNEL);
2205 if (!rg_entry) {
2206 status = -ENOMEM;
2207 goto err_unroll;
2208 }
2209
2210 idx = root_bufs.recipe_indx;
2211 is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2212
2213 /* Mark all result indices in this chain */
2214 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2215 set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2216 result_bm);
2217
2218 /* get the first profile that is associated with rid */
2219 prof = find_first_bit(recipe_to_profile[idx],
2220 ICE_MAX_NUM_PROFILES);
2221 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2222 u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2223
2224 rg_entry->fv_idx[i] = lkup_indx;
2225 rg_entry->fv_mask[i] =
2226 le16_to_cpu(root_bufs.content.mask[i + 1]);
2227
2228 /* If the recipe is a chained recipe then all its
2229 * child recipe's result will have a result index.
2230 * To fill fv_words we should not use those result
2231 * index, we only need the protocol ids and offsets.
2232 * We will skip all the fv_idx which stores result
2233 * index in them. We also need to skip any fv_idx which
2234 * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2235 * valid offset value.
2236 */
2237 if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2238 rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2239 rg_entry->fv_idx[i] == 0)
2240 continue;
2241
2242 ice_find_prot_off(hw, ICE_BLK_SW, prof,
2243 rg_entry->fv_idx[i], &prot, &off);
2244 lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2245 lkup_exts->fv_words[fv_word_idx].off = off;
2246 lkup_exts->field_mask[fv_word_idx] =
2247 rg_entry->fv_mask[i];
2248 fv_word_idx++;
2249 }
2250 /* populate rg_list with the data from the child entry of this
2251 * recipe
2252 */
2253 list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2254
2255 /* Propagate some data to the recipe database */
2256 recps[idx].is_root = !!is_root;
2257 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2258 recps[idx].need_pass_l2 = root_bufs.content.act_ctrl &
2259 ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
2260 recps[idx].allow_pass_l2 = root_bufs.content.act_ctrl &
2261 ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
2262 bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2263 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2264 recps[idx].chain_idx = root_bufs.content.result_indx &
2265 ~ICE_AQ_RECIPE_RESULT_EN;
2266 set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2267 } else {
2268 recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2269 }
2270
2271 if (!is_root)
2272 continue;
2273
2274 /* Only do the following for root recipes entries */
2275 memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2276 sizeof(recps[idx].r_bitmap));
2277 recps[idx].root_rid = root_bufs.content.rid &
2278 ~ICE_AQ_RECIPE_ID_IS_ROOT;
2279 recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2280 }
2281
2282 /* Complete initialization of the root recipe entry */
2283 lkup_exts->n_val_words = fv_word_idx;
2284 recps[rid].big_recp = (num_recps > 1);
2285 recps[rid].n_grp_count = (u8)num_recps;
2286 recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2287 recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2288 GFP_KERNEL);
2289 if (!recps[rid].root_buf) {
2290 status = -ENOMEM;
2291 goto err_unroll;
2292 }
2293
2294 /* Copy result indexes */
2295 bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2296 recps[rid].recp_created = true;
2297
2298err_unroll:
2299 kfree(tmp);
2300 return status;
2301}
2302
2303/* ice_init_port_info - Initialize port_info with switch configuration data
2304 * @pi: pointer to port_info
2305 * @vsi_port_num: VSI number or port number
2306 * @type: Type of switch element (port or VSI)
2307 * @swid: switch ID of the switch the element is attached to
2308 * @pf_vf_num: PF or VF number
2309 * @is_vf: true if the element is a VF, false otherwise
2310 */
2311static void
2312ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2313 u16 swid, u16 pf_vf_num, bool is_vf)
2314{
2315 switch (type) {
2316 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2317 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2318 pi->sw_id = swid;
2319 pi->pf_vf_num = pf_vf_num;
2320 pi->is_vf = is_vf;
2321 break;
2322 default:
2323 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2324 break;
2325 }
2326}
2327
2328/* ice_get_initial_sw_cfg - Get initial port and default VSI data
2329 * @hw: pointer to the hardware structure
2330 */
2331int ice_get_initial_sw_cfg(struct ice_hw *hw)
2332{
2333 struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2334 u16 req_desc = 0;
2335 u16 num_elems;
2336 int status;
2337 u16 i;
2338
2339 rbuf = kzalloc(ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL);
2340 if (!rbuf)
2341 return -ENOMEM;
2342
2343 /* Multiple calls to ice_aq_get_sw_cfg may be required
2344 * to get all the switch configuration information. The need
2345 * for additional calls is indicated by ice_aq_get_sw_cfg
2346 * writing a non-zero value in req_desc
2347 */
2348 do {
2349 struct ice_aqc_get_sw_cfg_resp_elem *ele;
2350
2351 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2352 &req_desc, &num_elems, NULL);
2353
2354 if (status)
2355 break;
2356
2357 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2358 u16 pf_vf_num, swid, vsi_port_num;
2359 bool is_vf = false;
2360 u8 res_type;
2361
2362 vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2363 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2364
2365 pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2366 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2367
2368 swid = le16_to_cpu(ele->swid);
2369
2370 if (le16_to_cpu(ele->pf_vf_num) &
2371 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2372 is_vf = true;
2373
2374 res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2375 ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2376
2377 if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2378 /* FW VSI is not needed. Just continue. */
2379 continue;
2380 }
2381
2382 ice_init_port_info(hw->port_info, vsi_port_num,
2383 res_type, swid, pf_vf_num, is_vf);
2384 }
2385 } while (req_desc && !status);
2386
2387 kfree(rbuf);
2388 return status;
2389}
2390
2391/**
2392 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2393 * @hw: pointer to the hardware structure
2394 * @fi: filter info structure to fill/update
2395 *
2396 * This helper function populates the lb_en and lan_en elements of the provided
2397 * ice_fltr_info struct using the switch's type and characteristics of the
2398 * switch rule being configured.
2399 */
2400static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2401{
2402 fi->lb_en = false;
2403 fi->lan_en = false;
2404 if ((fi->flag & ICE_FLTR_TX) &&
2405 (fi->fltr_act == ICE_FWD_TO_VSI ||
2406 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2407 fi->fltr_act == ICE_FWD_TO_Q ||
2408 fi->fltr_act == ICE_FWD_TO_QGRP)) {
2409 /* Setting LB for prune actions will result in replicated
2410 * packets to the internal switch that will be dropped.
2411 */
2412 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2413 fi->lb_en = true;
2414
2415 /* Set lan_en to TRUE if
2416 * 1. The switch is a VEB AND
2417 * 2
2418 * 2.1 The lookup is a directional lookup like ethertype,
2419 * promiscuous, ethertype-MAC, promiscuous-VLAN
2420 * and default-port OR
2421 * 2.2 The lookup is VLAN, OR
2422 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2423 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2424 *
2425 * OR
2426 *
2427 * The switch is a VEPA.
2428 *
2429 * In all other cases, the LAN enable has to be set to false.
2430 */
2431 if (hw->evb_veb) {
2432 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2433 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2434 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2435 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2436 fi->lkup_type == ICE_SW_LKUP_DFLT ||
2437 fi->lkup_type == ICE_SW_LKUP_VLAN ||
2438 (fi->lkup_type == ICE_SW_LKUP_MAC &&
2439 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2440 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2441 !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2442 fi->lan_en = true;
2443 } else {
2444 fi->lan_en = true;
2445 }
2446 }
2447}
2448
2449/**
2450 * ice_fill_eth_hdr - helper to copy dummy_eth_hdr into supplied buffer
2451 * @eth_hdr: pointer to buffer to populate
2452 */
2453void ice_fill_eth_hdr(u8 *eth_hdr)
2454{
2455 memcpy(eth_hdr, dummy_eth_header, DUMMY_ETH_HDR_LEN);
2456}
2457
2458/**
2459 * ice_fill_sw_rule - Helper function to fill switch rule structure
2460 * @hw: pointer to the hardware structure
2461 * @f_info: entry containing packet forwarding information
2462 * @s_rule: switch rule structure to be filled in based on mac_entry
2463 * @opc: switch rules population command type - pass in the command opcode
2464 */
2465static void
2466ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2467 struct ice_sw_rule_lkup_rx_tx *s_rule,
2468 enum ice_adminq_opc opc)
2469{
2470 u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2471 u16 vlan_tpid = ETH_P_8021Q;
2472 void *daddr = NULL;
2473 u16 eth_hdr_sz;
2474 u8 *eth_hdr;
2475 u32 act = 0;
2476 __be16 *off;
2477 u8 q_rgn;
2478
2479 if (opc == ice_aqc_opc_remove_sw_rules) {
2480 s_rule->act = 0;
2481 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2482 s_rule->hdr_len = 0;
2483 return;
2484 }
2485
2486 eth_hdr_sz = sizeof(dummy_eth_header);
2487 eth_hdr = s_rule->hdr_data;
2488
2489 /* initialize the ether header with a dummy header */
2490 memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2491 ice_fill_sw_info(hw, f_info);
2492
2493 switch (f_info->fltr_act) {
2494 case ICE_FWD_TO_VSI:
2495 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
2496 f_info->fwd_id.hw_vsi_id);
2497 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2498 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2499 ICE_SINGLE_ACT_VALID_BIT;
2500 break;
2501 case ICE_FWD_TO_VSI_LIST:
2502 act |= ICE_SINGLE_ACT_VSI_LIST;
2503 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_LIST_ID_M,
2504 f_info->fwd_id.vsi_list_id);
2505 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2506 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2507 ICE_SINGLE_ACT_VALID_BIT;
2508 break;
2509 case ICE_FWD_TO_Q:
2510 act |= ICE_SINGLE_ACT_TO_Q;
2511 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2512 f_info->fwd_id.q_id);
2513 break;
2514 case ICE_DROP_PACKET:
2515 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2516 ICE_SINGLE_ACT_VALID_BIT;
2517 break;
2518 case ICE_FWD_TO_QGRP:
2519 q_rgn = f_info->qgrp_size > 0 ?
2520 (u8)ilog2(f_info->qgrp_size) : 0;
2521 act |= ICE_SINGLE_ACT_TO_Q;
2522 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
2523 f_info->fwd_id.q_id);
2524 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
2525 break;
2526 default:
2527 return;
2528 }
2529
2530 if (f_info->lb_en)
2531 act |= ICE_SINGLE_ACT_LB_ENABLE;
2532 if (f_info->lan_en)
2533 act |= ICE_SINGLE_ACT_LAN_ENABLE;
2534
2535 switch (f_info->lkup_type) {
2536 case ICE_SW_LKUP_MAC:
2537 daddr = f_info->l_data.mac.mac_addr;
2538 break;
2539 case ICE_SW_LKUP_VLAN:
2540 vlan_id = f_info->l_data.vlan.vlan_id;
2541 if (f_info->l_data.vlan.tpid_valid)
2542 vlan_tpid = f_info->l_data.vlan.tpid;
2543 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2544 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2545 act |= ICE_SINGLE_ACT_PRUNE;
2546 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2547 }
2548 break;
2549 case ICE_SW_LKUP_ETHERTYPE_MAC:
2550 daddr = f_info->l_data.ethertype_mac.mac_addr;
2551 fallthrough;
2552 case ICE_SW_LKUP_ETHERTYPE:
2553 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2554 *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2555 break;
2556 case ICE_SW_LKUP_MAC_VLAN:
2557 daddr = f_info->l_data.mac_vlan.mac_addr;
2558 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2559 break;
2560 case ICE_SW_LKUP_PROMISC_VLAN:
2561 vlan_id = f_info->l_data.mac_vlan.vlan_id;
2562 fallthrough;
2563 case ICE_SW_LKUP_PROMISC:
2564 daddr = f_info->l_data.mac_vlan.mac_addr;
2565 break;
2566 default:
2567 break;
2568 }
2569
2570 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2571 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2572 cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2573
2574 /* Recipe set depending on lookup type */
2575 s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2576 s_rule->src = cpu_to_le16(f_info->src);
2577 s_rule->act = cpu_to_le32(act);
2578
2579 if (daddr)
2580 ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2581
2582 if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2583 off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2584 *off = cpu_to_be16(vlan_id);
2585 off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2586 *off = cpu_to_be16(vlan_tpid);
2587 }
2588
2589 /* Create the switch rule with the final dummy Ethernet header */
2590 if (opc != ice_aqc_opc_update_sw_rules)
2591 s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2592}
2593
2594/**
2595 * ice_add_marker_act
2596 * @hw: pointer to the hardware structure
2597 * @m_ent: the management entry for which sw marker needs to be added
2598 * @sw_marker: sw marker to tag the Rx descriptor with
2599 * @l_id: large action resource ID
2600 *
2601 * Create a large action to hold software marker and update the switch rule
2602 * entry pointed by m_ent with newly created large action
2603 */
2604static int
2605ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2606 u16 sw_marker, u16 l_id)
2607{
2608 struct ice_sw_rule_lkup_rx_tx *rx_tx;
2609 struct ice_sw_rule_lg_act *lg_act;
2610 /* For software marker we need 3 large actions
2611 * 1. FWD action: FWD TO VSI or VSI LIST
2612 * 2. GENERIC VALUE action to hold the profile ID
2613 * 3. GENERIC VALUE action to hold the software marker ID
2614 */
2615 const u16 num_lg_acts = 3;
2616 u16 lg_act_size;
2617 u16 rules_size;
2618 int status;
2619 u32 act;
2620 u16 id;
2621
2622 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2623 return -EINVAL;
2624
2625 /* Create two back-to-back switch rules and submit them to the HW using
2626 * one memory buffer:
2627 * 1. Large Action
2628 * 2. Look up Tx Rx
2629 */
2630 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2631 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2632 lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2633 if (!lg_act)
2634 return -ENOMEM;
2635
2636 rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2637
2638 /* Fill in the first switch rule i.e. large action */
2639 lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2640 lg_act->index = cpu_to_le16(l_id);
2641 lg_act->size = cpu_to_le16(num_lg_acts);
2642
2643 /* First action VSI forwarding or VSI list forwarding depending on how
2644 * many VSIs
2645 */
2646 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2647 m_ent->fltr_info.fwd_id.hw_vsi_id;
2648
2649 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2650 act |= FIELD_PREP(ICE_LG_ACT_VSI_LIST_ID_M, id);
2651 if (m_ent->vsi_count > 1)
2652 act |= ICE_LG_ACT_VSI_LIST;
2653 lg_act->act[0] = cpu_to_le32(act);
2654
2655 /* Second action descriptor type */
2656 act = ICE_LG_ACT_GENERIC;
2657
2658 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, 1);
2659 lg_act->act[1] = cpu_to_le32(act);
2660
2661 act = FIELD_PREP(ICE_LG_ACT_GENERIC_OFFSET_M,
2662 ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX);
2663
2664 /* Third action Marker value */
2665 act |= ICE_LG_ACT_GENERIC;
2666 act |= FIELD_PREP(ICE_LG_ACT_GENERIC_VALUE_M, sw_marker);
2667
2668 lg_act->act[2] = cpu_to_le32(act);
2669
2670 /* call the fill switch rule to fill the lookup Tx Rx structure */
2671 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2672 ice_aqc_opc_update_sw_rules);
2673
2674 /* Update the action to point to the large action ID */
2675 act = ICE_SINGLE_ACT_PTR;
2676 act |= FIELD_PREP(ICE_SINGLE_ACT_PTR_VAL_M, l_id);
2677 rx_tx->act = cpu_to_le32(act);
2678
2679 /* Use the filter rule ID of the previously created rule with single
2680 * act. Once the update happens, hardware will treat this as large
2681 * action
2682 */
2683 rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2684
2685 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2686 ice_aqc_opc_update_sw_rules, NULL);
2687 if (!status) {
2688 m_ent->lg_act_idx = l_id;
2689 m_ent->sw_marker_id = sw_marker;
2690 }
2691
2692 devm_kfree(ice_hw_to_dev(hw), lg_act);
2693 return status;
2694}
2695
2696/**
2697 * ice_create_vsi_list_map
2698 * @hw: pointer to the hardware structure
2699 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2700 * @num_vsi: number of VSI handles in the array
2701 * @vsi_list_id: VSI list ID generated as part of allocate resource
2702 *
2703 * Helper function to create a new entry of VSI list ID to VSI mapping
2704 * using the given VSI list ID
2705 */
2706static struct ice_vsi_list_map_info *
2707ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2708 u16 vsi_list_id)
2709{
2710 struct ice_switch_info *sw = hw->switch_info;
2711 struct ice_vsi_list_map_info *v_map;
2712 int i;
2713
2714 v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2715 if (!v_map)
2716 return NULL;
2717
2718 v_map->vsi_list_id = vsi_list_id;
2719 v_map->ref_cnt = 1;
2720 for (i = 0; i < num_vsi; i++)
2721 set_bit(vsi_handle_arr[i], v_map->vsi_map);
2722
2723 list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2724 return v_map;
2725}
2726
2727/**
2728 * ice_update_vsi_list_rule
2729 * @hw: pointer to the hardware structure
2730 * @vsi_handle_arr: array of VSI handles to form a VSI list
2731 * @num_vsi: number of VSI handles in the array
2732 * @vsi_list_id: VSI list ID generated as part of allocate resource
2733 * @remove: Boolean value to indicate if this is a remove action
2734 * @opc: switch rules population command type - pass in the command opcode
2735 * @lkup_type: lookup type of the filter
2736 *
2737 * Call AQ command to add a new switch rule or update existing switch rule
2738 * using the given VSI list ID
2739 */
2740static int
2741ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2742 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2743 enum ice_sw_lkup_type lkup_type)
2744{
2745 struct ice_sw_rule_vsi_list *s_rule;
2746 u16 s_rule_size;
2747 u16 rule_type;
2748 int status;
2749 int i;
2750
2751 if (!num_vsi)
2752 return -EINVAL;
2753
2754 if (lkup_type == ICE_SW_LKUP_MAC ||
2755 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2756 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2757 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2758 lkup_type == ICE_SW_LKUP_PROMISC ||
2759 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2760 lkup_type == ICE_SW_LKUP_DFLT)
2761 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2762 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2763 else if (lkup_type == ICE_SW_LKUP_VLAN)
2764 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2765 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2766 else
2767 return -EINVAL;
2768
2769 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2770 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2771 if (!s_rule)
2772 return -ENOMEM;
2773 for (i = 0; i < num_vsi; i++) {
2774 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2775 status = -EINVAL;
2776 goto exit;
2777 }
2778 /* AQ call requires hw_vsi_id(s) */
2779 s_rule->vsi[i] =
2780 cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2781 }
2782
2783 s_rule->hdr.type = cpu_to_le16(rule_type);
2784 s_rule->number_vsi = cpu_to_le16(num_vsi);
2785 s_rule->index = cpu_to_le16(vsi_list_id);
2786
2787 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2788
2789exit:
2790 devm_kfree(ice_hw_to_dev(hw), s_rule);
2791 return status;
2792}
2793
2794/**
2795 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2796 * @hw: pointer to the HW struct
2797 * @vsi_handle_arr: array of VSI handles to form a VSI list
2798 * @num_vsi: number of VSI handles in the array
2799 * @vsi_list_id: stores the ID of the VSI list to be created
2800 * @lkup_type: switch rule filter's lookup type
2801 */
2802static int
2803ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2804 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2805{
2806 int status;
2807
2808 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2809 ice_aqc_opc_alloc_res);
2810 if (status)
2811 return status;
2812
2813 /* Update the newly created VSI list to include the specified VSIs */
2814 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2815 *vsi_list_id, false,
2816 ice_aqc_opc_add_sw_rules, lkup_type);
2817}
2818
2819/**
2820 * ice_create_pkt_fwd_rule
2821 * @hw: pointer to the hardware structure
2822 * @f_entry: entry containing packet forwarding information
2823 *
2824 * Create switch rule with given filter information and add an entry
2825 * to the corresponding filter management list to track this switch rule
2826 * and VSI mapping
2827 */
2828static int
2829ice_create_pkt_fwd_rule(struct ice_hw *hw,
2830 struct ice_fltr_list_entry *f_entry)
2831{
2832 struct ice_fltr_mgmt_list_entry *fm_entry;
2833 struct ice_sw_rule_lkup_rx_tx *s_rule;
2834 enum ice_sw_lkup_type l_type;
2835 struct ice_sw_recipe *recp;
2836 int status;
2837
2838 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2839 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2840 GFP_KERNEL);
2841 if (!s_rule)
2842 return -ENOMEM;
2843 fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2844 GFP_KERNEL);
2845 if (!fm_entry) {
2846 status = -ENOMEM;
2847 goto ice_create_pkt_fwd_rule_exit;
2848 }
2849
2850 fm_entry->fltr_info = f_entry->fltr_info;
2851
2852 /* Initialize all the fields for the management entry */
2853 fm_entry->vsi_count = 1;
2854 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2855 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2856 fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2857
2858 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2859 ice_aqc_opc_add_sw_rules);
2860
2861 status = ice_aq_sw_rules(hw, s_rule,
2862 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2863 ice_aqc_opc_add_sw_rules, NULL);
2864 if (status) {
2865 devm_kfree(ice_hw_to_dev(hw), fm_entry);
2866 goto ice_create_pkt_fwd_rule_exit;
2867 }
2868
2869 f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2870 fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2871
2872 /* The book keeping entries will get removed when base driver
2873 * calls remove filter AQ command
2874 */
2875 l_type = fm_entry->fltr_info.lkup_type;
2876 recp = &hw->switch_info->recp_list[l_type];
2877 list_add(&fm_entry->list_entry, &recp->filt_rules);
2878
2879ice_create_pkt_fwd_rule_exit:
2880 devm_kfree(ice_hw_to_dev(hw), s_rule);
2881 return status;
2882}
2883
2884/**
2885 * ice_update_pkt_fwd_rule
2886 * @hw: pointer to the hardware structure
2887 * @f_info: filter information for switch rule
2888 *
2889 * Call AQ command to update a previously created switch rule with a
2890 * VSI list ID
2891 */
2892static int
2893ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2894{
2895 struct ice_sw_rule_lkup_rx_tx *s_rule;
2896 int status;
2897
2898 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2899 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2900 GFP_KERNEL);
2901 if (!s_rule)
2902 return -ENOMEM;
2903
2904 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2905
2906 s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2907
2908 /* Update switch rule with new rule set to forward VSI list */
2909 status = ice_aq_sw_rules(hw, s_rule,
2910 ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2911 ice_aqc_opc_update_sw_rules, NULL);
2912
2913 devm_kfree(ice_hw_to_dev(hw), s_rule);
2914 return status;
2915}
2916
2917/**
2918 * ice_update_sw_rule_bridge_mode
2919 * @hw: pointer to the HW struct
2920 *
2921 * Updates unicast switch filter rules based on VEB/VEPA mode
2922 */
2923int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2924{
2925 struct ice_switch_info *sw = hw->switch_info;
2926 struct ice_fltr_mgmt_list_entry *fm_entry;
2927 struct list_head *rule_head;
2928 struct mutex *rule_lock; /* Lock to protect filter rule list */
2929 int status = 0;
2930
2931 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2932 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2933
2934 mutex_lock(rule_lock);
2935 list_for_each_entry(fm_entry, rule_head, list_entry) {
2936 struct ice_fltr_info *fi = &fm_entry->fltr_info;
2937 u8 *addr = fi->l_data.mac.mac_addr;
2938
2939 /* Update unicast Tx rules to reflect the selected
2940 * VEB/VEPA mode
2941 */
2942 if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2943 (fi->fltr_act == ICE_FWD_TO_VSI ||
2944 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2945 fi->fltr_act == ICE_FWD_TO_Q ||
2946 fi->fltr_act == ICE_FWD_TO_QGRP)) {
2947 status = ice_update_pkt_fwd_rule(hw, fi);
2948 if (status)
2949 break;
2950 }
2951 }
2952
2953 mutex_unlock(rule_lock);
2954
2955 return status;
2956}
2957
2958/**
2959 * ice_add_update_vsi_list
2960 * @hw: pointer to the hardware structure
2961 * @m_entry: pointer to current filter management list entry
2962 * @cur_fltr: filter information from the book keeping entry
2963 * @new_fltr: filter information with the new VSI to be added
2964 *
2965 * Call AQ command to add or update previously created VSI list with new VSI.
2966 *
2967 * Helper function to do book keeping associated with adding filter information
2968 * The algorithm to do the book keeping is described below :
2969 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2970 * if only one VSI has been added till now
2971 * Allocate a new VSI list and add two VSIs
2972 * to this list using switch rule command
2973 * Update the previously created switch rule with the
2974 * newly created VSI list ID
2975 * if a VSI list was previously created
2976 * Add the new VSI to the previously created VSI list set
2977 * using the update switch rule command
2978 */
2979static int
2980ice_add_update_vsi_list(struct ice_hw *hw,
2981 struct ice_fltr_mgmt_list_entry *m_entry,
2982 struct ice_fltr_info *cur_fltr,
2983 struct ice_fltr_info *new_fltr)
2984{
2985 u16 vsi_list_id = 0;
2986 int status = 0;
2987
2988 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2989 cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2990 return -EOPNOTSUPP;
2991
2992 if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2993 new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2994 (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2995 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2996 return -EOPNOTSUPP;
2997
2998 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2999 /* Only one entry existed in the mapping and it was not already
3000 * a part of a VSI list. So, create a VSI list with the old and
3001 * new VSIs.
3002 */
3003 struct ice_fltr_info tmp_fltr;
3004 u16 vsi_handle_arr[2];
3005
3006 /* A rule already exists with the new VSI being added */
3007 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
3008 return -EEXIST;
3009
3010 vsi_handle_arr[0] = cur_fltr->vsi_handle;
3011 vsi_handle_arr[1] = new_fltr->vsi_handle;
3012 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3013 &vsi_list_id,
3014 new_fltr->lkup_type);
3015 if (status)
3016 return status;
3017
3018 tmp_fltr = *new_fltr;
3019 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
3020 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3021 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3022 /* Update the previous switch rule of "MAC forward to VSI" to
3023 * "MAC fwd to VSI list"
3024 */
3025 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3026 if (status)
3027 return status;
3028
3029 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
3030 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3031 m_entry->vsi_list_info =
3032 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3033 vsi_list_id);
3034
3035 if (!m_entry->vsi_list_info)
3036 return -ENOMEM;
3037
3038 /* If this entry was large action then the large action needs
3039 * to be updated to point to FWD to VSI list
3040 */
3041 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
3042 status =
3043 ice_add_marker_act(hw, m_entry,
3044 m_entry->sw_marker_id,
3045 m_entry->lg_act_idx);
3046 } else {
3047 u16 vsi_handle = new_fltr->vsi_handle;
3048 enum ice_adminq_opc opcode;
3049
3050 if (!m_entry->vsi_list_info)
3051 return -EIO;
3052
3053 /* A rule already exists with the new VSI being added */
3054 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
3055 return 0;
3056
3057 /* Update the previously created VSI list set with
3058 * the new VSI ID passed in
3059 */
3060 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
3061 opcode = ice_aqc_opc_update_sw_rules;
3062
3063 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
3064 vsi_list_id, false, opcode,
3065 new_fltr->lkup_type);
3066 /* update VSI list mapping info with new VSI ID */
3067 if (!status)
3068 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3069 }
3070 if (!status)
3071 m_entry->vsi_count++;
3072 return status;
3073}
3074
3075/**
3076 * ice_find_rule_entry - Search a rule entry
3077 * @hw: pointer to the hardware structure
3078 * @recp_id: lookup type for which the specified rule needs to be searched
3079 * @f_info: rule information
3080 *
3081 * Helper function to search for a given rule entry
3082 * Returns pointer to entry storing the rule if found
3083 */
3084static struct ice_fltr_mgmt_list_entry *
3085ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3086{
3087 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3088 struct ice_switch_info *sw = hw->switch_info;
3089 struct list_head *list_head;
3090
3091 list_head = &sw->recp_list[recp_id].filt_rules;
3092 list_for_each_entry(list_itr, list_head, list_entry) {
3093 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3094 sizeof(f_info->l_data)) &&
3095 f_info->flag == list_itr->fltr_info.flag) {
3096 ret = list_itr;
3097 break;
3098 }
3099 }
3100 return ret;
3101}
3102
3103/**
3104 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3105 * @hw: pointer to the hardware structure
3106 * @recp_id: lookup type for which VSI lists needs to be searched
3107 * @vsi_handle: VSI handle to be found in VSI list
3108 * @vsi_list_id: VSI list ID found containing vsi_handle
3109 *
3110 * Helper function to search a VSI list with single entry containing given VSI
3111 * handle element. This can be extended further to search VSI list with more
3112 * than 1 vsi_count. Returns pointer to VSI list entry if found.
3113 */
3114struct ice_vsi_list_map_info *
3115ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3116 u16 *vsi_list_id)
3117{
3118 struct ice_vsi_list_map_info *map_info = NULL;
3119 struct ice_switch_info *sw = hw->switch_info;
3120 struct ice_fltr_mgmt_list_entry *list_itr;
3121 struct list_head *list_head;
3122
3123 list_head = &sw->recp_list[recp_id].filt_rules;
3124 list_for_each_entry(list_itr, list_head, list_entry) {
3125 if (list_itr->vsi_list_info) {
3126 map_info = list_itr->vsi_list_info;
3127 if (test_bit(vsi_handle, map_info->vsi_map)) {
3128 *vsi_list_id = map_info->vsi_list_id;
3129 return map_info;
3130 }
3131 }
3132 }
3133 return NULL;
3134}
3135
3136/**
3137 * ice_add_rule_internal - add rule for a given lookup type
3138 * @hw: pointer to the hardware structure
3139 * @recp_id: lookup type (recipe ID) for which rule has to be added
3140 * @f_entry: structure containing MAC forwarding information
3141 *
3142 * Adds or updates the rule lists for a given recipe
3143 */
3144static int
3145ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3146 struct ice_fltr_list_entry *f_entry)
3147{
3148 struct ice_switch_info *sw = hw->switch_info;
3149 struct ice_fltr_info *new_fltr, *cur_fltr;
3150 struct ice_fltr_mgmt_list_entry *m_entry;
3151 struct mutex *rule_lock; /* Lock to protect filter rule list */
3152 int status = 0;
3153
3154 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3155 return -EINVAL;
3156 f_entry->fltr_info.fwd_id.hw_vsi_id =
3157 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3158
3159 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3160
3161 mutex_lock(rule_lock);
3162 new_fltr = &f_entry->fltr_info;
3163 if (new_fltr->flag & ICE_FLTR_RX)
3164 new_fltr->src = hw->port_info->lport;
3165 else if (new_fltr->flag & ICE_FLTR_TX)
3166 new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3167
3168 m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3169 if (!m_entry) {
3170 mutex_unlock(rule_lock);
3171 return ice_create_pkt_fwd_rule(hw, f_entry);
3172 }
3173
3174 cur_fltr = &m_entry->fltr_info;
3175 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3176 mutex_unlock(rule_lock);
3177
3178 return status;
3179}
3180
3181/**
3182 * ice_remove_vsi_list_rule
3183 * @hw: pointer to the hardware structure
3184 * @vsi_list_id: VSI list ID generated as part of allocate resource
3185 * @lkup_type: switch rule filter lookup type
3186 *
3187 * The VSI list should be emptied before this function is called to remove the
3188 * VSI list.
3189 */
3190static int
3191ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3192 enum ice_sw_lkup_type lkup_type)
3193{
3194 struct ice_sw_rule_vsi_list *s_rule;
3195 u16 s_rule_size;
3196 int status;
3197
3198 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3199 s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3200 if (!s_rule)
3201 return -ENOMEM;
3202
3203 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3204 s_rule->index = cpu_to_le16(vsi_list_id);
3205
3206 /* Free the vsi_list resource that we allocated. It is assumed that the
3207 * list is empty at this point.
3208 */
3209 status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3210 ice_aqc_opc_free_res);
3211
3212 devm_kfree(ice_hw_to_dev(hw), s_rule);
3213 return status;
3214}
3215
3216/**
3217 * ice_rem_update_vsi_list
3218 * @hw: pointer to the hardware structure
3219 * @vsi_handle: VSI handle of the VSI to remove
3220 * @fm_list: filter management entry for which the VSI list management needs to
3221 * be done
3222 */
3223static int
3224ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3225 struct ice_fltr_mgmt_list_entry *fm_list)
3226{
3227 enum ice_sw_lkup_type lkup_type;
3228 u16 vsi_list_id;
3229 int status = 0;
3230
3231 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3232 fm_list->vsi_count == 0)
3233 return -EINVAL;
3234
3235 /* A rule with the VSI being removed does not exist */
3236 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3237 return -ENOENT;
3238
3239 lkup_type = fm_list->fltr_info.lkup_type;
3240 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3241 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3242 ice_aqc_opc_update_sw_rules,
3243 lkup_type);
3244 if (status)
3245 return status;
3246
3247 fm_list->vsi_count--;
3248 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3249
3250 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3251 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3252 struct ice_vsi_list_map_info *vsi_list_info =
3253 fm_list->vsi_list_info;
3254 u16 rem_vsi_handle;
3255
3256 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3257 ICE_MAX_VSI);
3258 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3259 return -EIO;
3260
3261 /* Make sure VSI list is empty before removing it below */
3262 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3263 vsi_list_id, true,
3264 ice_aqc_opc_update_sw_rules,
3265 lkup_type);
3266 if (status)
3267 return status;
3268
3269 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3270 tmp_fltr_info.fwd_id.hw_vsi_id =
3271 ice_get_hw_vsi_num(hw, rem_vsi_handle);
3272 tmp_fltr_info.vsi_handle = rem_vsi_handle;
3273 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3274 if (status) {
3275 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3276 tmp_fltr_info.fwd_id.hw_vsi_id, status);
3277 return status;
3278 }
3279
3280 fm_list->fltr_info = tmp_fltr_info;
3281 }
3282
3283 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3284 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3285 struct ice_vsi_list_map_info *vsi_list_info =
3286 fm_list->vsi_list_info;
3287
3288 /* Remove the VSI list since it is no longer used */
3289 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3290 if (status) {
3291 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3292 vsi_list_id, status);
3293 return status;
3294 }
3295
3296 list_del(&vsi_list_info->list_entry);
3297 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3298 fm_list->vsi_list_info = NULL;
3299 }
3300
3301 return status;
3302}
3303
3304/**
3305 * ice_remove_rule_internal - Remove a filter rule of a given type
3306 * @hw: pointer to the hardware structure
3307 * @recp_id: recipe ID for which the rule needs to removed
3308 * @f_entry: rule entry containing filter information
3309 */
3310static int
3311ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3312 struct ice_fltr_list_entry *f_entry)
3313{
3314 struct ice_switch_info *sw = hw->switch_info;
3315 struct ice_fltr_mgmt_list_entry *list_elem;
3316 struct mutex *rule_lock; /* Lock to protect filter rule list */
3317 bool remove_rule = false;
3318 u16 vsi_handle;
3319 int status = 0;
3320
3321 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3322 return -EINVAL;
3323 f_entry->fltr_info.fwd_id.hw_vsi_id =
3324 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3325
3326 rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3327 mutex_lock(rule_lock);
3328 list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3329 if (!list_elem) {
3330 status = -ENOENT;
3331 goto exit;
3332 }
3333
3334 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3335 remove_rule = true;
3336 } else if (!list_elem->vsi_list_info) {
3337 status = -ENOENT;
3338 goto exit;
3339 } else if (list_elem->vsi_list_info->ref_cnt > 1) {
3340 /* a ref_cnt > 1 indicates that the vsi_list is being
3341 * shared by multiple rules. Decrement the ref_cnt and
3342 * remove this rule, but do not modify the list, as it
3343 * is in-use by other rules.
3344 */
3345 list_elem->vsi_list_info->ref_cnt--;
3346 remove_rule = true;
3347 } else {
3348 /* a ref_cnt of 1 indicates the vsi_list is only used
3349 * by one rule. However, the original removal request is only
3350 * for a single VSI. Update the vsi_list first, and only
3351 * remove the rule if there are no further VSIs in this list.
3352 */
3353 vsi_handle = f_entry->fltr_info.vsi_handle;
3354 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3355 if (status)
3356 goto exit;
3357 /* if VSI count goes to zero after updating the VSI list */
3358 if (list_elem->vsi_count == 0)
3359 remove_rule = true;
3360 }
3361
3362 if (remove_rule) {
3363 /* Remove the lookup rule */
3364 struct ice_sw_rule_lkup_rx_tx *s_rule;
3365
3366 s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3367 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3368 GFP_KERNEL);
3369 if (!s_rule) {
3370 status = -ENOMEM;
3371 goto exit;
3372 }
3373
3374 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3375 ice_aqc_opc_remove_sw_rules);
3376
3377 status = ice_aq_sw_rules(hw, s_rule,
3378 ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3379 1, ice_aqc_opc_remove_sw_rules, NULL);
3380
3381 /* Remove a book keeping from the list */
3382 devm_kfree(ice_hw_to_dev(hw), s_rule);
3383
3384 if (status)
3385 goto exit;
3386
3387 list_del(&list_elem->list_entry);
3388 devm_kfree(ice_hw_to_dev(hw), list_elem);
3389 }
3390exit:
3391 mutex_unlock(rule_lock);
3392 return status;
3393}
3394
3395/**
3396 * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3397 * @hw: pointer to the hardware structure
3398 * @vlan_id: VLAN ID
3399 * @vsi_handle: check MAC filter for this VSI
3400 */
3401bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3402{
3403 struct ice_fltr_mgmt_list_entry *entry;
3404 struct list_head *rule_head;
3405 struct ice_switch_info *sw;
3406 struct mutex *rule_lock; /* Lock to protect filter rule list */
3407 u16 hw_vsi_id;
3408
3409 if (vlan_id > ICE_MAX_VLAN_ID)
3410 return false;
3411
3412 if (!ice_is_vsi_valid(hw, vsi_handle))
3413 return false;
3414
3415 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3416 sw = hw->switch_info;
3417 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3418 if (!rule_head)
3419 return false;
3420
3421 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3422 mutex_lock(rule_lock);
3423 list_for_each_entry(entry, rule_head, list_entry) {
3424 struct ice_fltr_info *f_info = &entry->fltr_info;
3425 u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3426 struct ice_vsi_list_map_info *map_info;
3427
3428 if (entry_vlan_id > ICE_MAX_VLAN_ID)
3429 continue;
3430
3431 if (f_info->flag != ICE_FLTR_TX ||
3432 f_info->src_id != ICE_SRC_ID_VSI ||
3433 f_info->lkup_type != ICE_SW_LKUP_VLAN)
3434 continue;
3435
3436 /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3437 if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3438 f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3439 continue;
3440
3441 if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3442 if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3443 continue;
3444 } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3445 /* If filter_action is FWD_TO_VSI_LIST, make sure
3446 * that VSI being checked is part of VSI list
3447 */
3448 if (entry->vsi_count == 1 &&
3449 entry->vsi_list_info) {
3450 map_info = entry->vsi_list_info;
3451 if (!test_bit(vsi_handle, map_info->vsi_map))
3452 continue;
3453 }
3454 }
3455
3456 if (vlan_id == entry_vlan_id) {
3457 mutex_unlock(rule_lock);
3458 return true;
3459 }
3460 }
3461 mutex_unlock(rule_lock);
3462
3463 return false;
3464}
3465
3466/**
3467 * ice_add_mac - Add a MAC address based filter rule
3468 * @hw: pointer to the hardware structure
3469 * @m_list: list of MAC addresses and forwarding information
3470 */
3471int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3472{
3473 struct ice_fltr_list_entry *m_list_itr;
3474 int status = 0;
3475
3476 if (!m_list || !hw)
3477 return -EINVAL;
3478
3479 list_for_each_entry(m_list_itr, m_list, list_entry) {
3480 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3481 u16 vsi_handle;
3482 u16 hw_vsi_id;
3483
3484 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3485 vsi_handle = m_list_itr->fltr_info.vsi_handle;
3486 if (!ice_is_vsi_valid(hw, vsi_handle))
3487 return -EINVAL;
3488 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3489 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3490 /* update the src in case it is VSI num */
3491 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3492 return -EINVAL;
3493 m_list_itr->fltr_info.src = hw_vsi_id;
3494 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3495 is_zero_ether_addr(add))
3496 return -EINVAL;
3497
3498 m_list_itr->status = ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3499 m_list_itr);
3500 if (m_list_itr->status)
3501 return m_list_itr->status;
3502 }
3503
3504 return status;
3505}
3506
3507/**
3508 * ice_add_vlan_internal - Add one VLAN based filter rule
3509 * @hw: pointer to the hardware structure
3510 * @f_entry: filter entry containing one VLAN information
3511 */
3512static int
3513ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3514{
3515 struct ice_switch_info *sw = hw->switch_info;
3516 struct ice_fltr_mgmt_list_entry *v_list_itr;
3517 struct ice_fltr_info *new_fltr, *cur_fltr;
3518 enum ice_sw_lkup_type lkup_type;
3519 u16 vsi_list_id = 0, vsi_handle;
3520 struct mutex *rule_lock; /* Lock to protect filter rule list */
3521 int status = 0;
3522
3523 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3524 return -EINVAL;
3525
3526 f_entry->fltr_info.fwd_id.hw_vsi_id =
3527 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3528 new_fltr = &f_entry->fltr_info;
3529
3530 /* VLAN ID should only be 12 bits */
3531 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3532 return -EINVAL;
3533
3534 if (new_fltr->src_id != ICE_SRC_ID_VSI)
3535 return -EINVAL;
3536
3537 new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3538 lkup_type = new_fltr->lkup_type;
3539 vsi_handle = new_fltr->vsi_handle;
3540 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3541 mutex_lock(rule_lock);
3542 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3543 if (!v_list_itr) {
3544 struct ice_vsi_list_map_info *map_info = NULL;
3545
3546 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3547 /* All VLAN pruning rules use a VSI list. Check if
3548 * there is already a VSI list containing VSI that we
3549 * want to add. If found, use the same vsi_list_id for
3550 * this new VLAN rule or else create a new list.
3551 */
3552 map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3553 vsi_handle,
3554 &vsi_list_id);
3555 if (!map_info) {
3556 status = ice_create_vsi_list_rule(hw,
3557 &vsi_handle,
3558 1,
3559 &vsi_list_id,
3560 lkup_type);
3561 if (status)
3562 goto exit;
3563 }
3564 /* Convert the action to forwarding to a VSI list. */
3565 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3566 new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3567 }
3568
3569 status = ice_create_pkt_fwd_rule(hw, f_entry);
3570 if (!status) {
3571 v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3572 new_fltr);
3573 if (!v_list_itr) {
3574 status = -ENOENT;
3575 goto exit;
3576 }
3577 /* reuse VSI list for new rule and increment ref_cnt */
3578 if (map_info) {
3579 v_list_itr->vsi_list_info = map_info;
3580 map_info->ref_cnt++;
3581 } else {
3582 v_list_itr->vsi_list_info =
3583 ice_create_vsi_list_map(hw, &vsi_handle,
3584 1, vsi_list_id);
3585 }
3586 }
3587 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3588 /* Update existing VSI list to add new VSI ID only if it used
3589 * by one VLAN rule.
3590 */
3591 cur_fltr = &v_list_itr->fltr_info;
3592 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3593 new_fltr);
3594 } else {
3595 /* If VLAN rule exists and VSI list being used by this rule is
3596 * referenced by more than 1 VLAN rule. Then create a new VSI
3597 * list appending previous VSI with new VSI and update existing
3598 * VLAN rule to point to new VSI list ID
3599 */
3600 struct ice_fltr_info tmp_fltr;
3601 u16 vsi_handle_arr[2];
3602 u16 cur_handle;
3603
3604 /* Current implementation only supports reusing VSI list with
3605 * one VSI count. We should never hit below condition
3606 */
3607 if (v_list_itr->vsi_count > 1 &&
3608 v_list_itr->vsi_list_info->ref_cnt > 1) {
3609 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3610 status = -EIO;
3611 goto exit;
3612 }
3613
3614 cur_handle =
3615 find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3616 ICE_MAX_VSI);
3617
3618 /* A rule already exists with the new VSI being added */
3619 if (cur_handle == vsi_handle) {
3620 status = -EEXIST;
3621 goto exit;
3622 }
3623
3624 vsi_handle_arr[0] = cur_handle;
3625 vsi_handle_arr[1] = vsi_handle;
3626 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3627 &vsi_list_id, lkup_type);
3628 if (status)
3629 goto exit;
3630
3631 tmp_fltr = v_list_itr->fltr_info;
3632 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3633 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3634 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3635 /* Update the previous switch rule to a new VSI list which
3636 * includes current VSI that is requested
3637 */
3638 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3639 if (status)
3640 goto exit;
3641
3642 /* before overriding VSI list map info. decrement ref_cnt of
3643 * previous VSI list
3644 */
3645 v_list_itr->vsi_list_info->ref_cnt--;
3646
3647 /* now update to newly created list */
3648 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3649 v_list_itr->vsi_list_info =
3650 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3651 vsi_list_id);
3652 v_list_itr->vsi_count++;
3653 }
3654
3655exit:
3656 mutex_unlock(rule_lock);
3657 return status;
3658}
3659
3660/**
3661 * ice_add_vlan - Add VLAN based filter rule
3662 * @hw: pointer to the hardware structure
3663 * @v_list: list of VLAN entries and forwarding information
3664 */
3665int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3666{
3667 struct ice_fltr_list_entry *v_list_itr;
3668
3669 if (!v_list || !hw)
3670 return -EINVAL;
3671
3672 list_for_each_entry(v_list_itr, v_list, list_entry) {
3673 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3674 return -EINVAL;
3675 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3676 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3677 if (v_list_itr->status)
3678 return v_list_itr->status;
3679 }
3680 return 0;
3681}
3682
3683/**
3684 * ice_add_eth_mac - Add ethertype and MAC based filter rule
3685 * @hw: pointer to the hardware structure
3686 * @em_list: list of ether type MAC filter, MAC is optional
3687 *
3688 * This function requires the caller to populate the entries in
3689 * the filter list with the necessary fields (including flags to
3690 * indicate Tx or Rx rules).
3691 */
3692int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3693{
3694 struct ice_fltr_list_entry *em_list_itr;
3695
3696 if (!em_list || !hw)
3697 return -EINVAL;
3698
3699 list_for_each_entry(em_list_itr, em_list, list_entry) {
3700 enum ice_sw_lkup_type l_type =
3701 em_list_itr->fltr_info.lkup_type;
3702
3703 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3704 l_type != ICE_SW_LKUP_ETHERTYPE)
3705 return -EINVAL;
3706
3707 em_list_itr->status = ice_add_rule_internal(hw, l_type,
3708 em_list_itr);
3709 if (em_list_itr->status)
3710 return em_list_itr->status;
3711 }
3712 return 0;
3713}
3714
3715/**
3716 * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3717 * @hw: pointer to the hardware structure
3718 * @em_list: list of ethertype or ethertype MAC entries
3719 */
3720int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3721{
3722 struct ice_fltr_list_entry *em_list_itr, *tmp;
3723
3724 if (!em_list || !hw)
3725 return -EINVAL;
3726
3727 list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3728 enum ice_sw_lkup_type l_type =
3729 em_list_itr->fltr_info.lkup_type;
3730
3731 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3732 l_type != ICE_SW_LKUP_ETHERTYPE)
3733 return -EINVAL;
3734
3735 em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3736 em_list_itr);
3737 if (em_list_itr->status)
3738 return em_list_itr->status;
3739 }
3740 return 0;
3741}
3742
3743/**
3744 * ice_rem_sw_rule_info
3745 * @hw: pointer to the hardware structure
3746 * @rule_head: pointer to the switch list structure that we want to delete
3747 */
3748static void
3749ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3750{
3751 if (!list_empty(rule_head)) {
3752 struct ice_fltr_mgmt_list_entry *entry;
3753 struct ice_fltr_mgmt_list_entry *tmp;
3754
3755 list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3756 list_del(&entry->list_entry);
3757 devm_kfree(ice_hw_to_dev(hw), entry);
3758 }
3759 }
3760}
3761
3762/**
3763 * ice_rem_adv_rule_info
3764 * @hw: pointer to the hardware structure
3765 * @rule_head: pointer to the switch list structure that we want to delete
3766 */
3767static void
3768ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3769{
3770 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3771 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3772
3773 if (list_empty(rule_head))
3774 return;
3775
3776 list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3777 list_del(&lst_itr->list_entry);
3778 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3779 devm_kfree(ice_hw_to_dev(hw), lst_itr);
3780 }
3781}
3782
3783/**
3784 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3785 * @pi: pointer to the port_info structure
3786 * @vsi_handle: VSI handle to set as default
3787 * @set: true to add the above mentioned switch rule, false to remove it
3788 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3789 *
3790 * add filter rule to set/unset given VSI as default VSI for the switch
3791 * (represented by swid)
3792 */
3793int
3794ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3795 u8 direction)
3796{
3797 struct ice_fltr_list_entry f_list_entry;
3798 struct ice_fltr_info f_info;
3799 struct ice_hw *hw = pi->hw;
3800 u16 hw_vsi_id;
3801 int status;
3802
3803 if (!ice_is_vsi_valid(hw, vsi_handle))
3804 return -EINVAL;
3805
3806 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3807
3808 memset(&f_info, 0, sizeof(f_info));
3809
3810 f_info.lkup_type = ICE_SW_LKUP_DFLT;
3811 f_info.flag = direction;
3812 f_info.fltr_act = ICE_FWD_TO_VSI;
3813 f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3814 f_info.vsi_handle = vsi_handle;
3815
3816 if (f_info.flag & ICE_FLTR_RX) {
3817 f_info.src = hw->port_info->lport;
3818 f_info.src_id = ICE_SRC_ID_LPORT;
3819 } else if (f_info.flag & ICE_FLTR_TX) {
3820 f_info.src_id = ICE_SRC_ID_VSI;
3821 f_info.src = hw_vsi_id;
3822 }
3823 f_list_entry.fltr_info = f_info;
3824
3825 if (set)
3826 status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3827 &f_list_entry);
3828 else
3829 status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3830 &f_list_entry);
3831
3832 return status;
3833}
3834
3835/**
3836 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3837 * @fm_entry: filter entry to inspect
3838 * @vsi_handle: VSI handle to compare with filter info
3839 */
3840static bool
3841ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3842{
3843 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3844 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3845 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3846 fm_entry->vsi_list_info &&
3847 (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3848}
3849
3850/**
3851 * ice_check_if_dflt_vsi - check if VSI is default VSI
3852 * @pi: pointer to the port_info structure
3853 * @vsi_handle: vsi handle to check for in filter list
3854 * @rule_exists: indicates if there are any VSI's in the rule list
3855 *
3856 * checks if the VSI is in a default VSI list, and also indicates
3857 * if the default VSI list is empty
3858 */
3859bool
3860ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3861 bool *rule_exists)
3862{
3863 struct ice_fltr_mgmt_list_entry *fm_entry;
3864 struct ice_sw_recipe *recp_list;
3865 struct list_head *rule_head;
3866 struct mutex *rule_lock; /* Lock to protect filter rule list */
3867 bool ret = false;
3868
3869 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3870 rule_lock = &recp_list->filt_rule_lock;
3871 rule_head = &recp_list->filt_rules;
3872
3873 mutex_lock(rule_lock);
3874
3875 if (rule_exists && !list_empty(rule_head))
3876 *rule_exists = true;
3877
3878 list_for_each_entry(fm_entry, rule_head, list_entry) {
3879 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3880 ret = true;
3881 break;
3882 }
3883 }
3884
3885 mutex_unlock(rule_lock);
3886
3887 return ret;
3888}
3889
3890/**
3891 * ice_remove_mac - remove a MAC address based filter rule
3892 * @hw: pointer to the hardware structure
3893 * @m_list: list of MAC addresses and forwarding information
3894 *
3895 * This function removes either a MAC filter rule or a specific VSI from a
3896 * VSI list for a multicast MAC address.
3897 *
3898 * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
3899 * be aware that this call will only work if all the entries passed into m_list
3900 * were added previously. It will not attempt to do a partial remove of entries
3901 * that were found.
3902 */
3903int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
3904{
3905 struct ice_fltr_list_entry *list_itr, *tmp;
3906
3907 if (!m_list)
3908 return -EINVAL;
3909
3910 list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
3911 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3912 u16 vsi_handle;
3913
3914 if (l_type != ICE_SW_LKUP_MAC)
3915 return -EINVAL;
3916
3917 vsi_handle = list_itr->fltr_info.vsi_handle;
3918 if (!ice_is_vsi_valid(hw, vsi_handle))
3919 return -EINVAL;
3920
3921 list_itr->fltr_info.fwd_id.hw_vsi_id =
3922 ice_get_hw_vsi_num(hw, vsi_handle);
3923
3924 list_itr->status = ice_remove_rule_internal(hw,
3925 ICE_SW_LKUP_MAC,
3926 list_itr);
3927 if (list_itr->status)
3928 return list_itr->status;
3929 }
3930 return 0;
3931}
3932
3933/**
3934 * ice_remove_vlan - Remove VLAN based filter rule
3935 * @hw: pointer to the hardware structure
3936 * @v_list: list of VLAN entries and forwarding information
3937 */
3938int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
3939{
3940 struct ice_fltr_list_entry *v_list_itr, *tmp;
3941
3942 if (!v_list || !hw)
3943 return -EINVAL;
3944
3945 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
3946 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3947
3948 if (l_type != ICE_SW_LKUP_VLAN)
3949 return -EINVAL;
3950 v_list_itr->status = ice_remove_rule_internal(hw,
3951 ICE_SW_LKUP_VLAN,
3952 v_list_itr);
3953 if (v_list_itr->status)
3954 return v_list_itr->status;
3955 }
3956 return 0;
3957}
3958
3959/**
3960 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3961 * @hw: pointer to the hardware structure
3962 * @vsi_handle: VSI handle to remove filters from
3963 * @vsi_list_head: pointer to the list to add entry to
3964 * @fi: pointer to fltr_info of filter entry to copy & add
3965 *
3966 * Helper function, used when creating a list of filters to remove from
3967 * a specific VSI. The entry added to vsi_list_head is a COPY of the
3968 * original filter entry, with the exception of fltr_info.fltr_act and
3969 * fltr_info.fwd_id fields. These are set such that later logic can
3970 * extract which VSI to remove the fltr from, and pass on that information.
3971 */
3972static int
3973ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3974 struct list_head *vsi_list_head,
3975 struct ice_fltr_info *fi)
3976{
3977 struct ice_fltr_list_entry *tmp;
3978
3979 /* this memory is freed up in the caller function
3980 * once filters for this VSI are removed
3981 */
3982 tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
3983 if (!tmp)
3984 return -ENOMEM;
3985
3986 tmp->fltr_info = *fi;
3987
3988 /* Overwrite these fields to indicate which VSI to remove filter from,
3989 * so find and remove logic can extract the information from the
3990 * list entries. Note that original entries will still have proper
3991 * values.
3992 */
3993 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3994 tmp->fltr_info.vsi_handle = vsi_handle;
3995 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3996
3997 list_add(&tmp->list_entry, vsi_list_head);
3998
3999 return 0;
4000}
4001
4002/**
4003 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4004 * @hw: pointer to the hardware structure
4005 * @vsi_handle: VSI handle to remove filters from
4006 * @lkup_list_head: pointer to the list that has certain lookup type filters
4007 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4008 *
4009 * Locates all filters in lkup_list_head that are used by the given VSI,
4010 * and adds COPIES of those entries to vsi_list_head (intended to be used
4011 * to remove the listed filters).
4012 * Note that this means all entries in vsi_list_head must be explicitly
4013 * deallocated by the caller when done with list.
4014 */
4015static int
4016ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4017 struct list_head *lkup_list_head,
4018 struct list_head *vsi_list_head)
4019{
4020 struct ice_fltr_mgmt_list_entry *fm_entry;
4021 int status = 0;
4022
4023 /* check to make sure VSI ID is valid and within boundary */
4024 if (!ice_is_vsi_valid(hw, vsi_handle))
4025 return -EINVAL;
4026
4027 list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4028 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4029 continue;
4030
4031 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4032 vsi_list_head,
4033 &fm_entry->fltr_info);
4034 if (status)
4035 return status;
4036 }
4037 return status;
4038}
4039
4040/**
4041 * ice_determine_promisc_mask
4042 * @fi: filter info to parse
4043 *
4044 * Helper function to determine which ICE_PROMISC_ mask corresponds
4045 * to given filter into.
4046 */
4047static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4048{
4049 u16 vid = fi->l_data.mac_vlan.vlan_id;
4050 u8 *macaddr = fi->l_data.mac.mac_addr;
4051 bool is_tx_fltr = false;
4052 u8 promisc_mask = 0;
4053
4054 if (fi->flag == ICE_FLTR_TX)
4055 is_tx_fltr = true;
4056
4057 if (is_broadcast_ether_addr(macaddr))
4058 promisc_mask |= is_tx_fltr ?
4059 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4060 else if (is_multicast_ether_addr(macaddr))
4061 promisc_mask |= is_tx_fltr ?
4062 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4063 else if (is_unicast_ether_addr(macaddr))
4064 promisc_mask |= is_tx_fltr ?
4065 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4066 if (vid)
4067 promisc_mask |= is_tx_fltr ?
4068 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4069
4070 return promisc_mask;
4071}
4072
4073/**
4074 * ice_remove_promisc - Remove promisc based filter rules
4075 * @hw: pointer to the hardware structure
4076 * @recp_id: recipe ID for which the rule needs to removed
4077 * @v_list: list of promisc entries
4078 */
4079static int
4080ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4081{
4082 struct ice_fltr_list_entry *v_list_itr, *tmp;
4083
4084 list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4085 v_list_itr->status =
4086 ice_remove_rule_internal(hw, recp_id, v_list_itr);
4087 if (v_list_itr->status)
4088 return v_list_itr->status;
4089 }
4090 return 0;
4091}
4092
4093/**
4094 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4095 * @hw: pointer to the hardware structure
4096 * @vsi_handle: VSI handle to clear mode
4097 * @promisc_mask: mask of promiscuous config bits to clear
4098 * @vid: VLAN ID to clear VLAN promiscuous
4099 */
4100int
4101ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4102 u16 vid)
4103{
4104 struct ice_switch_info *sw = hw->switch_info;
4105 struct ice_fltr_list_entry *fm_entry, *tmp;
4106 struct list_head remove_list_head;
4107 struct ice_fltr_mgmt_list_entry *itr;
4108 struct list_head *rule_head;
4109 struct mutex *rule_lock; /* Lock to protect filter rule list */
4110 int status = 0;
4111 u8 recipe_id;
4112
4113 if (!ice_is_vsi_valid(hw, vsi_handle))
4114 return -EINVAL;
4115
4116 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4117 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4118 else
4119 recipe_id = ICE_SW_LKUP_PROMISC;
4120
4121 rule_head = &sw->recp_list[recipe_id].filt_rules;
4122 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4123
4124 INIT_LIST_HEAD(&remove_list_head);
4125
4126 mutex_lock(rule_lock);
4127 list_for_each_entry(itr, rule_head, list_entry) {
4128 struct ice_fltr_info *fltr_info;
4129 u8 fltr_promisc_mask = 0;
4130
4131 if (!ice_vsi_uses_fltr(itr, vsi_handle))
4132 continue;
4133 fltr_info = &itr->fltr_info;
4134
4135 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4136 vid != fltr_info->l_data.mac_vlan.vlan_id)
4137 continue;
4138
4139 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4140
4141 /* Skip if filter is not completely specified by given mask */
4142 if (fltr_promisc_mask & ~promisc_mask)
4143 continue;
4144
4145 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4146 &remove_list_head,
4147 fltr_info);
4148 if (status) {
4149 mutex_unlock(rule_lock);
4150 goto free_fltr_list;
4151 }
4152 }
4153 mutex_unlock(rule_lock);
4154
4155 status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4156
4157free_fltr_list:
4158 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4159 list_del(&fm_entry->list_entry);
4160 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4161 }
4162
4163 return status;
4164}
4165
4166/**
4167 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4168 * @hw: pointer to the hardware structure
4169 * @vsi_handle: VSI handle to configure
4170 * @promisc_mask: mask of promiscuous config bits
4171 * @vid: VLAN ID to set VLAN promiscuous
4172 */
4173int
4174ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4175{
4176 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4177 struct ice_fltr_list_entry f_list_entry;
4178 struct ice_fltr_info new_fltr;
4179 bool is_tx_fltr;
4180 int status = 0;
4181 u16 hw_vsi_id;
4182 int pkt_type;
4183 u8 recipe_id;
4184
4185 if (!ice_is_vsi_valid(hw, vsi_handle))
4186 return -EINVAL;
4187 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4188
4189 memset(&new_fltr, 0, sizeof(new_fltr));
4190
4191 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4192 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4193 new_fltr.l_data.mac_vlan.vlan_id = vid;
4194 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4195 } else {
4196 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4197 recipe_id = ICE_SW_LKUP_PROMISC;
4198 }
4199
4200 /* Separate filters must be set for each direction/packet type
4201 * combination, so we will loop over the mask value, store the
4202 * individual type, and clear it out in the input mask as it
4203 * is found.
4204 */
4205 while (promisc_mask) {
4206 u8 *mac_addr;
4207
4208 pkt_type = 0;
4209 is_tx_fltr = false;
4210
4211 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4212 promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4213 pkt_type = UCAST_FLTR;
4214 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4215 promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4216 pkt_type = UCAST_FLTR;
4217 is_tx_fltr = true;
4218 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4219 promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4220 pkt_type = MCAST_FLTR;
4221 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4222 promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4223 pkt_type = MCAST_FLTR;
4224 is_tx_fltr = true;
4225 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4226 promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4227 pkt_type = BCAST_FLTR;
4228 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4229 promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4230 pkt_type = BCAST_FLTR;
4231 is_tx_fltr = true;
4232 }
4233
4234 /* Check for VLAN promiscuous flag */
4235 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4236 promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4237 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4238 promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4239 is_tx_fltr = true;
4240 }
4241
4242 /* Set filter DA based on packet type */
4243 mac_addr = new_fltr.l_data.mac.mac_addr;
4244 if (pkt_type == BCAST_FLTR) {
4245 eth_broadcast_addr(mac_addr);
4246 } else if (pkt_type == MCAST_FLTR ||
4247 pkt_type == UCAST_FLTR) {
4248 /* Use the dummy ether header DA */
4249 ether_addr_copy(mac_addr, dummy_eth_header);
4250 if (pkt_type == MCAST_FLTR)
4251 mac_addr[0] |= 0x1; /* Set multicast bit */
4252 }
4253
4254 /* Need to reset this to zero for all iterations */
4255 new_fltr.flag = 0;
4256 if (is_tx_fltr) {
4257 new_fltr.flag |= ICE_FLTR_TX;
4258 new_fltr.src = hw_vsi_id;
4259 } else {
4260 new_fltr.flag |= ICE_FLTR_RX;
4261 new_fltr.src = hw->port_info->lport;
4262 }
4263
4264 new_fltr.fltr_act = ICE_FWD_TO_VSI;
4265 new_fltr.vsi_handle = vsi_handle;
4266 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4267 f_list_entry.fltr_info = new_fltr;
4268
4269 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4270 if (status)
4271 goto set_promisc_exit;
4272 }
4273
4274set_promisc_exit:
4275 return status;
4276}
4277
4278/**
4279 * ice_set_vlan_vsi_promisc
4280 * @hw: pointer to the hardware structure
4281 * @vsi_handle: VSI handle to configure
4282 * @promisc_mask: mask of promiscuous config bits
4283 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4284 *
4285 * Configure VSI with all associated VLANs to given promiscuous mode(s)
4286 */
4287int
4288ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4289 bool rm_vlan_promisc)
4290{
4291 struct ice_switch_info *sw = hw->switch_info;
4292 struct ice_fltr_list_entry *list_itr, *tmp;
4293 struct list_head vsi_list_head;
4294 struct list_head *vlan_head;
4295 struct mutex *vlan_lock; /* Lock to protect filter rule list */
4296 u16 vlan_id;
4297 int status;
4298
4299 INIT_LIST_HEAD(&vsi_list_head);
4300 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4301 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4302 mutex_lock(vlan_lock);
4303 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4304 &vsi_list_head);
4305 mutex_unlock(vlan_lock);
4306 if (status)
4307 goto free_fltr_list;
4308
4309 list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4310 /* Avoid enabling or disabling VLAN zero twice when in double
4311 * VLAN mode
4312 */
4313 if (ice_is_dvm_ena(hw) &&
4314 list_itr->fltr_info.l_data.vlan.tpid == 0)
4315 continue;
4316
4317 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4318 if (rm_vlan_promisc)
4319 status = ice_clear_vsi_promisc(hw, vsi_handle,
4320 promisc_mask, vlan_id);
4321 else
4322 status = ice_set_vsi_promisc(hw, vsi_handle,
4323 promisc_mask, vlan_id);
4324 if (status && status != -EEXIST)
4325 break;
4326 }
4327
4328free_fltr_list:
4329 list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4330 list_del(&list_itr->list_entry);
4331 devm_kfree(ice_hw_to_dev(hw), list_itr);
4332 }
4333 return status;
4334}
4335
4336/**
4337 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4338 * @hw: pointer to the hardware structure
4339 * @vsi_handle: VSI handle to remove filters from
4340 * @lkup: switch rule filter lookup type
4341 */
4342static void
4343ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4344 enum ice_sw_lkup_type lkup)
4345{
4346 struct ice_switch_info *sw = hw->switch_info;
4347 struct ice_fltr_list_entry *fm_entry;
4348 struct list_head remove_list_head;
4349 struct list_head *rule_head;
4350 struct ice_fltr_list_entry *tmp;
4351 struct mutex *rule_lock; /* Lock to protect filter rule list */
4352 int status;
4353
4354 INIT_LIST_HEAD(&remove_list_head);
4355 rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4356 rule_head = &sw->recp_list[lkup].filt_rules;
4357 mutex_lock(rule_lock);
4358 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4359 &remove_list_head);
4360 mutex_unlock(rule_lock);
4361 if (status)
4362 goto free_fltr_list;
4363
4364 switch (lkup) {
4365 case ICE_SW_LKUP_MAC:
4366 ice_remove_mac(hw, &remove_list_head);
4367 break;
4368 case ICE_SW_LKUP_VLAN:
4369 ice_remove_vlan(hw, &remove_list_head);
4370 break;
4371 case ICE_SW_LKUP_PROMISC:
4372 case ICE_SW_LKUP_PROMISC_VLAN:
4373 ice_remove_promisc(hw, lkup, &remove_list_head);
4374 break;
4375 case ICE_SW_LKUP_MAC_VLAN:
4376 case ICE_SW_LKUP_ETHERTYPE:
4377 case ICE_SW_LKUP_ETHERTYPE_MAC:
4378 case ICE_SW_LKUP_DFLT:
4379 case ICE_SW_LKUP_LAST:
4380 default:
4381 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4382 break;
4383 }
4384
4385free_fltr_list:
4386 list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4387 list_del(&fm_entry->list_entry);
4388 devm_kfree(ice_hw_to_dev(hw), fm_entry);
4389 }
4390}
4391
4392/**
4393 * ice_remove_vsi_fltr - Remove all filters for a VSI
4394 * @hw: pointer to the hardware structure
4395 * @vsi_handle: VSI handle to remove filters from
4396 */
4397void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4398{
4399 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4400 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4401 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4402 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4403 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4404 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4405 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4406 ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4407}
4408
4409/**
4410 * ice_alloc_res_cntr - allocating resource counter
4411 * @hw: pointer to the hardware structure
4412 * @type: type of resource
4413 * @alloc_shared: if set it is shared else dedicated
4414 * @num_items: number of entries requested for FD resource type
4415 * @counter_id: counter index returned by AQ call
4416 */
4417int
4418ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4419 u16 *counter_id)
4420{
4421 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4422 u16 buf_len = __struct_size(buf);
4423 int status;
4424
4425 buf->num_elems = cpu_to_le16(num_items);
4426 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4427 alloc_shared);
4428
4429 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
4430 if (status)
4431 return status;
4432
4433 *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4434 return status;
4435}
4436
4437/**
4438 * ice_free_res_cntr - free resource counter
4439 * @hw: pointer to the hardware structure
4440 * @type: type of resource
4441 * @alloc_shared: if set it is shared else dedicated
4442 * @num_items: number of entries to be freed for FD resource type
4443 * @counter_id: counter ID resource which needs to be freed
4444 */
4445int
4446ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4447 u16 counter_id)
4448{
4449 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4450 u16 buf_len = __struct_size(buf);
4451 int status;
4452
4453 buf->num_elems = cpu_to_le16(num_items);
4454 buf->res_type = cpu_to_le16(FIELD_PREP(ICE_AQC_RES_TYPE_M, type) |
4455 alloc_shared);
4456 buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4457
4458 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
4459 if (status)
4460 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4461
4462 return status;
4463}
4464
4465#define ICE_PROTOCOL_ENTRY(id, ...) { \
4466 .prot_type = id, \
4467 .offs = {__VA_ARGS__}, \
4468}
4469
4470/**
4471 * ice_share_res - set a resource as shared or dedicated
4472 * @hw: hw struct of original owner of resource
4473 * @type: resource type
4474 * @shared: is the resource being set to shared
4475 * @res_id: resource id (descriptor)
4476 */
4477int ice_share_res(struct ice_hw *hw, u16 type, u8 shared, u16 res_id)
4478{
4479 DEFINE_FLEX(struct ice_aqc_alloc_free_res_elem, buf, elem, 1);
4480 u16 buf_len = __struct_size(buf);
4481 u16 res_type;
4482 int status;
4483
4484 buf->num_elems = cpu_to_le16(1);
4485 res_type = FIELD_PREP(ICE_AQC_RES_TYPE_M, type);
4486 if (shared)
4487 res_type |= ICE_AQC_RES_TYPE_FLAG_SHARED;
4488
4489 buf->res_type = cpu_to_le16(res_type);
4490 buf->elem[0].e.sw_resp = cpu_to_le16(res_id);
4491 status = ice_aq_alloc_free_res(hw, buf, buf_len,
4492 ice_aqc_opc_share_res);
4493 if (status)
4494 ice_debug(hw, ICE_DBG_SW, "Could not set resource type %u id %u to %s\n",
4495 type, res_id, shared ? "SHARED" : "DEDICATED");
4496
4497 return status;
4498}
4499
4500/* This is mapping table entry that maps every word within a given protocol
4501 * structure to the real byte offset as per the specification of that
4502 * protocol header.
4503 * for example dst address is 3 words in ethertype header and corresponding
4504 * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4505 * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4506 * matching entry describing its field. This needs to be updated if new
4507 * structure is added to that union.
4508 */
4509static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4510 ICE_PROTOCOL_ENTRY(ICE_MAC_OFOS, 0, 2, 4, 6, 8, 10, 12),
4511 ICE_PROTOCOL_ENTRY(ICE_MAC_IL, 0, 2, 4, 6, 8, 10, 12),
4512 ICE_PROTOCOL_ENTRY(ICE_ETYPE_OL, 0),
4513 ICE_PROTOCOL_ENTRY(ICE_ETYPE_IL, 0),
4514 ICE_PROTOCOL_ENTRY(ICE_VLAN_OFOS, 2, 0),
4515 ICE_PROTOCOL_ENTRY(ICE_IPV4_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4516 ICE_PROTOCOL_ENTRY(ICE_IPV4_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18),
4517 ICE_PROTOCOL_ENTRY(ICE_IPV6_OFOS, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
4518 20, 22, 24, 26, 28, 30, 32, 34, 36, 38),
4519 ICE_PROTOCOL_ENTRY(ICE_IPV6_IL, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
4520 22, 24, 26, 28, 30, 32, 34, 36, 38),
4521 ICE_PROTOCOL_ENTRY(ICE_TCP_IL, 0, 2),
4522 ICE_PROTOCOL_ENTRY(ICE_UDP_OF, 0, 2),
4523 ICE_PROTOCOL_ENTRY(ICE_UDP_ILOS, 0, 2),
4524 ICE_PROTOCOL_ENTRY(ICE_VXLAN, 8, 10, 12, 14),
4525 ICE_PROTOCOL_ENTRY(ICE_GENEVE, 8, 10, 12, 14),
4526 ICE_PROTOCOL_ENTRY(ICE_NVGRE, 0, 2, 4, 6),
4527 ICE_PROTOCOL_ENTRY(ICE_GTP, 8, 10, 12, 14, 16, 18, 20, 22),
4528 ICE_PROTOCOL_ENTRY(ICE_GTP_NO_PAY, 8, 10, 12, 14),
4529 ICE_PROTOCOL_ENTRY(ICE_PPPOE, 0, 2, 4, 6),
4530 ICE_PROTOCOL_ENTRY(ICE_L2TPV3, 0, 2, 4, 6, 8, 10),
4531 ICE_PROTOCOL_ENTRY(ICE_VLAN_EX, 2, 0),
4532 ICE_PROTOCOL_ENTRY(ICE_VLAN_IN, 2, 0),
4533 ICE_PROTOCOL_ENTRY(ICE_HW_METADATA,
4534 ICE_SOURCE_PORT_MDID_OFFSET,
4535 ICE_PTYPE_MDID_OFFSET,
4536 ICE_PACKET_LENGTH_MDID_OFFSET,
4537 ICE_SOURCE_VSI_MDID_OFFSET,
4538 ICE_PKT_VLAN_MDID_OFFSET,
4539 ICE_PKT_TUNNEL_MDID_OFFSET,
4540 ICE_PKT_TCP_MDID_OFFSET,
4541 ICE_PKT_ERROR_MDID_OFFSET),
4542};
4543
4544static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4545 { ICE_MAC_OFOS, ICE_MAC_OFOS_HW },
4546 { ICE_MAC_IL, ICE_MAC_IL_HW },
4547 { ICE_ETYPE_OL, ICE_ETYPE_OL_HW },
4548 { ICE_ETYPE_IL, ICE_ETYPE_IL_HW },
4549 { ICE_VLAN_OFOS, ICE_VLAN_OL_HW },
4550 { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW },
4551 { ICE_IPV4_IL, ICE_IPV4_IL_HW },
4552 { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW },
4553 { ICE_IPV6_IL, ICE_IPV6_IL_HW },
4554 { ICE_TCP_IL, ICE_TCP_IL_HW },
4555 { ICE_UDP_OF, ICE_UDP_OF_HW },
4556 { ICE_UDP_ILOS, ICE_UDP_ILOS_HW },
4557 { ICE_VXLAN, ICE_UDP_OF_HW },
4558 { ICE_GENEVE, ICE_UDP_OF_HW },
4559 { ICE_NVGRE, ICE_GRE_OF_HW },
4560 { ICE_GTP, ICE_UDP_OF_HW },
4561 { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW },
4562 { ICE_PPPOE, ICE_PPPOE_HW },
4563 { ICE_L2TPV3, ICE_L2TPV3_HW },
4564 { ICE_VLAN_EX, ICE_VLAN_OF_HW },
4565 { ICE_VLAN_IN, ICE_VLAN_OL_HW },
4566 { ICE_HW_METADATA, ICE_META_DATA_ID_HW },
4567};
4568
4569/**
4570 * ice_find_recp - find a recipe
4571 * @hw: pointer to the hardware structure
4572 * @lkup_exts: extension sequence to match
4573 * @rinfo: information regarding the rule e.g. priority and action info
4574 *
4575 * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4576 */
4577static u16
4578ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4579 const struct ice_adv_rule_info *rinfo)
4580{
4581 bool refresh_required = true;
4582 struct ice_sw_recipe *recp;
4583 u8 i;
4584
4585 /* Walk through existing recipes to find a match */
4586 recp = hw->switch_info->recp_list;
4587 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4588 /* If recipe was not created for this ID, in SW bookkeeping,
4589 * check if FW has an entry for this recipe. If the FW has an
4590 * entry update it in our SW bookkeeping and continue with the
4591 * matching.
4592 */
4593 if (!recp[i].recp_created)
4594 if (ice_get_recp_frm_fw(hw,
4595 hw->switch_info->recp_list, i,
4596 &refresh_required))
4597 continue;
4598
4599 /* Skip inverse action recipes */
4600 if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4601 ICE_AQ_RECIPE_ACT_INV_ACT)
4602 continue;
4603
4604 /* if number of words we are looking for match */
4605 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4606 struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4607 struct ice_fv_word *be = lkup_exts->fv_words;
4608 u16 *cr = recp[i].lkup_exts.field_mask;
4609 u16 *de = lkup_exts->field_mask;
4610 bool found = true;
4611 u8 pe, qr;
4612
4613 /* ar, cr, and qr are related to the recipe words, while
4614 * be, de, and pe are related to the lookup words
4615 */
4616 for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4617 for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4618 qr++) {
4619 if (ar[qr].off == be[pe].off &&
4620 ar[qr].prot_id == be[pe].prot_id &&
4621 cr[qr] == de[pe])
4622 /* Found the "pe"th word in the
4623 * given recipe
4624 */
4625 break;
4626 }
4627 /* After walking through all the words in the
4628 * "i"th recipe if "p"th word was not found then
4629 * this recipe is not what we are looking for.
4630 * So break out from this loop and try the next
4631 * recipe
4632 */
4633 if (qr >= recp[i].lkup_exts.n_val_words) {
4634 found = false;
4635 break;
4636 }
4637 }
4638 /* If for "i"th recipe the found was never set to false
4639 * then it means we found our match
4640 * Also tun type and *_pass_l2 of recipe needs to be
4641 * checked
4642 */
4643 if (found && recp[i].tun_type == rinfo->tun_type &&
4644 recp[i].need_pass_l2 == rinfo->need_pass_l2 &&
4645 recp[i].allow_pass_l2 == rinfo->allow_pass_l2)
4646 return i; /* Return the recipe ID */
4647 }
4648 }
4649 return ICE_MAX_NUM_RECIPES;
4650}
4651
4652/**
4653 * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4654 *
4655 * As protocol id for outer vlan is different in dvm and svm, if dvm is
4656 * supported protocol array record for outer vlan has to be modified to
4657 * reflect the value proper for DVM.
4658 */
4659void ice_change_proto_id_to_dvm(void)
4660{
4661 u8 i;
4662
4663 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4664 if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4665 ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4666 ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4667}
4668
4669/**
4670 * ice_prot_type_to_id - get protocol ID from protocol type
4671 * @type: protocol type
4672 * @id: pointer to variable that will receive the ID
4673 *
4674 * Returns true if found, false otherwise
4675 */
4676static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4677{
4678 u8 i;
4679
4680 for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4681 if (ice_prot_id_tbl[i].type == type) {
4682 *id = ice_prot_id_tbl[i].protocol_id;
4683 return true;
4684 }
4685 return false;
4686}
4687
4688/**
4689 * ice_fill_valid_words - count valid words
4690 * @rule: advanced rule with lookup information
4691 * @lkup_exts: byte offset extractions of the words that are valid
4692 *
4693 * calculate valid words in a lookup rule using mask value
4694 */
4695static u8
4696ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4697 struct ice_prot_lkup_ext *lkup_exts)
4698{
4699 u8 j, word, prot_id, ret_val;
4700
4701 if (!ice_prot_type_to_id(rule->type, &prot_id))
4702 return 0;
4703
4704 word = lkup_exts->n_val_words;
4705
4706 for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4707 if (((u16 *)&rule->m_u)[j] &&
4708 rule->type < ARRAY_SIZE(ice_prot_ext)) {
4709 /* No more space to accommodate */
4710 if (word >= ICE_MAX_CHAIN_WORDS)
4711 return 0;
4712 lkup_exts->fv_words[word].off =
4713 ice_prot_ext[rule->type].offs[j];
4714 lkup_exts->fv_words[word].prot_id =
4715 ice_prot_id_tbl[rule->type].protocol_id;
4716 lkup_exts->field_mask[word] =
4717 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4718 word++;
4719 }
4720
4721 ret_val = word - lkup_exts->n_val_words;
4722 lkup_exts->n_val_words = word;
4723
4724 return ret_val;
4725}
4726
4727/**
4728 * ice_create_first_fit_recp_def - Create a recipe grouping
4729 * @hw: pointer to the hardware structure
4730 * @lkup_exts: an array of protocol header extractions
4731 * @rg_list: pointer to a list that stores new recipe groups
4732 * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4733 *
4734 * Using first fit algorithm, take all the words that are still not done
4735 * and start grouping them in 4-word groups. Each group makes up one
4736 * recipe.
4737 */
4738static int
4739ice_create_first_fit_recp_def(struct ice_hw *hw,
4740 struct ice_prot_lkup_ext *lkup_exts,
4741 struct list_head *rg_list,
4742 u8 *recp_cnt)
4743{
4744 struct ice_pref_recipe_group *grp = NULL;
4745 u8 j;
4746
4747 *recp_cnt = 0;
4748
4749 /* Walk through every word in the rule to check if it is not done. If so
4750 * then this word needs to be part of a new recipe.
4751 */
4752 for (j = 0; j < lkup_exts->n_val_words; j++)
4753 if (!test_bit(j, lkup_exts->done)) {
4754 if (!grp ||
4755 grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4756 struct ice_recp_grp_entry *entry;
4757
4758 entry = devm_kzalloc(ice_hw_to_dev(hw),
4759 sizeof(*entry),
4760 GFP_KERNEL);
4761 if (!entry)
4762 return -ENOMEM;
4763 list_add(&entry->l_entry, rg_list);
4764 grp = &entry->r_group;
4765 (*recp_cnt)++;
4766 }
4767
4768 grp->pairs[grp->n_val_pairs].prot_id =
4769 lkup_exts->fv_words[j].prot_id;
4770 grp->pairs[grp->n_val_pairs].off =
4771 lkup_exts->fv_words[j].off;
4772 grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4773 grp->n_val_pairs++;
4774 }
4775
4776 return 0;
4777}
4778
4779/**
4780 * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4781 * @hw: pointer to the hardware structure
4782 * @fv_list: field vector with the extraction sequence information
4783 * @rg_list: recipe groupings with protocol-offset pairs
4784 *
4785 * Helper function to fill in the field vector indices for protocol-offset
4786 * pairs. These indexes are then ultimately programmed into a recipe.
4787 */
4788static int
4789ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4790 struct list_head *rg_list)
4791{
4792 struct ice_sw_fv_list_entry *fv;
4793 struct ice_recp_grp_entry *rg;
4794 struct ice_fv_word *fv_ext;
4795
4796 if (list_empty(fv_list))
4797 return 0;
4798
4799 fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4800 list_entry);
4801 fv_ext = fv->fv_ptr->ew;
4802
4803 list_for_each_entry(rg, rg_list, l_entry) {
4804 u8 i;
4805
4806 for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4807 struct ice_fv_word *pr;
4808 bool found = false;
4809 u16 mask;
4810 u8 j;
4811
4812 pr = &rg->r_group.pairs[i];
4813 mask = rg->r_group.mask[i];
4814
4815 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4816 if (fv_ext[j].prot_id == pr->prot_id &&
4817 fv_ext[j].off == pr->off) {
4818 found = true;
4819
4820 /* Store index of field vector */
4821 rg->fv_idx[i] = j;
4822 rg->fv_mask[i] = mask;
4823 break;
4824 }
4825
4826 /* Protocol/offset could not be found, caller gave an
4827 * invalid pair
4828 */
4829 if (!found)
4830 return -EINVAL;
4831 }
4832 }
4833
4834 return 0;
4835}
4836
4837/**
4838 * ice_find_free_recp_res_idx - find free result indexes for recipe
4839 * @hw: pointer to hardware structure
4840 * @profiles: bitmap of profiles that will be associated with the new recipe
4841 * @free_idx: pointer to variable to receive the free index bitmap
4842 *
4843 * The algorithm used here is:
4844 * 1. When creating a new recipe, create a set P which contains all
4845 * Profiles that will be associated with our new recipe
4846 *
4847 * 2. For each Profile p in set P:
4848 * a. Add all recipes associated with Profile p into set R
4849 * b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4850 * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4851 * i. Or just assume they all have the same possible indexes:
4852 * 44, 45, 46, 47
4853 * i.e., PossibleIndexes = 0x0000F00000000000
4854 *
4855 * 3. For each Recipe r in set R:
4856 * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4857 * b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4858 *
4859 * FreeIndexes will contain the bits indicating the indexes free for use,
4860 * then the code needs to update the recipe[r].used_result_idx_bits to
4861 * indicate which indexes were selected for use by this recipe.
4862 */
4863static u16
4864ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4865 unsigned long *free_idx)
4866{
4867 DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4868 DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4869 DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4870 u16 bit;
4871
4872 bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4873 bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4874
4875 bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4876
4877 /* For each profile we are going to associate the recipe with, add the
4878 * recipes that are associated with that profile. This will give us
4879 * the set of recipes that our recipe may collide with. Also, determine
4880 * what possible result indexes are usable given this set of profiles.
4881 */
4882 for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4883 bitmap_or(recipes, recipes, profile_to_recipe[bit],
4884 ICE_MAX_NUM_RECIPES);
4885 bitmap_and(possible_idx, possible_idx,
4886 hw->switch_info->prof_res_bm[bit],
4887 ICE_MAX_FV_WORDS);
4888 }
4889
4890 /* For each recipe that our new recipe may collide with, determine
4891 * which indexes have been used.
4892 */
4893 for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
4894 bitmap_or(used_idx, used_idx,
4895 hw->switch_info->recp_list[bit].res_idxs,
4896 ICE_MAX_FV_WORDS);
4897
4898 bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
4899
4900 /* return number of free indexes */
4901 return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
4902}
4903
4904/**
4905 * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4906 * @hw: pointer to hardware structure
4907 * @rm: recipe management list entry
4908 * @profiles: bitmap of profiles that will be associated.
4909 */
4910static int
4911ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4912 unsigned long *profiles)
4913{
4914 DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
4915 struct ice_aqc_recipe_content *content;
4916 struct ice_aqc_recipe_data_elem *tmp;
4917 struct ice_aqc_recipe_data_elem *buf;
4918 struct ice_recp_grp_entry *entry;
4919 u16 free_res_idx;
4920 u16 recipe_count;
4921 u8 chain_idx;
4922 u8 recps = 0;
4923 int status;
4924
4925 /* When more than one recipe are required, another recipe is needed to
4926 * chain them together. Matching a tunnel metadata ID takes up one of
4927 * the match fields in the chaining recipe reducing the number of
4928 * chained recipes by one.
4929 */
4930 /* check number of free result indices */
4931 bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
4932 free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
4933
4934 ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
4935 free_res_idx, rm->n_grp_count);
4936
4937 if (rm->n_grp_count > 1) {
4938 if (rm->n_grp_count > free_res_idx)
4939 return -ENOSPC;
4940
4941 rm->n_grp_count++;
4942 }
4943
4944 if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
4945 return -ENOSPC;
4946
4947 tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
4948 if (!tmp)
4949 return -ENOMEM;
4950
4951 buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
4952 GFP_KERNEL);
4953 if (!buf) {
4954 status = -ENOMEM;
4955 goto err_mem;
4956 }
4957
4958 bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4959 recipe_count = ICE_MAX_NUM_RECIPES;
4960 status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4961 NULL);
4962 if (status || recipe_count == 0)
4963 goto err_unroll;
4964
4965 /* Allocate the recipe resources, and configure them according to the
4966 * match fields from protocol headers and extracted field vectors.
4967 */
4968 chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
4969 list_for_each_entry(entry, &rm->rg_list, l_entry) {
4970 u8 i;
4971
4972 status = ice_alloc_recipe(hw, &entry->rid);
4973 if (status)
4974 goto err_unroll;
4975
4976 content = &buf[recps].content;
4977
4978 /* Clear the result index of the located recipe, as this will be
4979 * updated, if needed, later in the recipe creation process.
4980 */
4981 tmp[0].content.result_indx = 0;
4982
4983 buf[recps] = tmp[0];
4984 buf[recps].recipe_indx = (u8)entry->rid;
4985 /* if the recipe is a non-root recipe RID should be programmed
4986 * as 0 for the rules to be applied correctly.
4987 */
4988 content->rid = 0;
4989 memset(&content->lkup_indx, 0,
4990 sizeof(content->lkup_indx));
4991
4992 /* All recipes use look-up index 0 to match switch ID. */
4993 content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4994 content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
4995 /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4996 * to be 0
4997 */
4998 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
4999 content->lkup_indx[i] = 0x80;
5000 content->mask[i] = 0;
5001 }
5002
5003 for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5004 content->lkup_indx[i + 1] = entry->fv_idx[i];
5005 content->mask[i + 1] = cpu_to_le16(entry->fv_mask[i]);
5006 }
5007
5008 if (rm->n_grp_count > 1) {
5009 /* Checks to see if there really is a valid result index
5010 * that can be used.
5011 */
5012 if (chain_idx >= ICE_MAX_FV_WORDS) {
5013 ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5014 status = -ENOSPC;
5015 goto err_unroll;
5016 }
5017
5018 entry->chain_idx = chain_idx;
5019 content->result_indx =
5020 ICE_AQ_RECIPE_RESULT_EN |
5021 FIELD_PREP(ICE_AQ_RECIPE_RESULT_DATA_M,
5022 chain_idx);
5023 clear_bit(chain_idx, result_idx_bm);
5024 chain_idx = find_first_bit(result_idx_bm,
5025 ICE_MAX_FV_WORDS);
5026 }
5027
5028 /* fill recipe dependencies */
5029 bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5030 ICE_MAX_NUM_RECIPES);
5031 set_bit(buf[recps].recipe_indx,
5032 (unsigned long *)buf[recps].recipe_bitmap);
5033 content->act_ctrl_fwd_priority = rm->priority;
5034
5035 if (rm->need_pass_l2)
5036 content->act_ctrl |= ICE_AQ_RECIPE_ACT_NEED_PASS_L2;
5037
5038 if (rm->allow_pass_l2)
5039 content->act_ctrl |= ICE_AQ_RECIPE_ACT_ALLOW_PASS_L2;
5040 recps++;
5041 }
5042
5043 if (rm->n_grp_count == 1) {
5044 rm->root_rid = buf[0].recipe_indx;
5045 set_bit(buf[0].recipe_indx, rm->r_bitmap);
5046 buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5047 if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5048 memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5049 sizeof(buf[0].recipe_bitmap));
5050 } else {
5051 status = -EINVAL;
5052 goto err_unroll;
5053 }
5054 /* Applicable only for ROOT_RECIPE, set the fwd_priority for
5055 * the recipe which is getting created if specified
5056 * by user. Usually any advanced switch filter, which results
5057 * into new extraction sequence, ended up creating a new recipe
5058 * of type ROOT and usually recipes are associated with profiles
5059 * Switch rule referreing newly created recipe, needs to have
5060 * either/or 'fwd' or 'join' priority, otherwise switch rule
5061 * evaluation will not happen correctly. In other words, if
5062 * switch rule to be evaluated on priority basis, then recipe
5063 * needs to have priority, otherwise it will be evaluated last.
5064 */
5065 buf[0].content.act_ctrl_fwd_priority = rm->priority;
5066 } else {
5067 struct ice_recp_grp_entry *last_chain_entry;
5068 u16 rid, i;
5069
5070 /* Allocate the last recipe that will chain the outcomes of the
5071 * other recipes together
5072 */
5073 status = ice_alloc_recipe(hw, &rid);
5074 if (status)
5075 goto err_unroll;
5076
5077 content = &buf[recps].content;
5078
5079 buf[recps].recipe_indx = (u8)rid;
5080 content->rid = (u8)rid;
5081 content->rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5082 /* the new entry created should also be part of rg_list to
5083 * make sure we have complete recipe
5084 */
5085 last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5086 sizeof(*last_chain_entry),
5087 GFP_KERNEL);
5088 if (!last_chain_entry) {
5089 status = -ENOMEM;
5090 goto err_unroll;
5091 }
5092 last_chain_entry->rid = rid;
5093 memset(&content->lkup_indx, 0, sizeof(content->lkup_indx));
5094 /* All recipes use look-up index 0 to match switch ID. */
5095 content->lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5096 content->mask[0] = cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5097 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5098 content->lkup_indx[i] = ICE_AQ_RECIPE_LKUP_IGNORE;
5099 content->mask[i] = 0;
5100 }
5101
5102 i = 1;
5103 /* update r_bitmap with the recp that is used for chaining */
5104 set_bit(rid, rm->r_bitmap);
5105 /* this is the recipe that chains all the other recipes so it
5106 * should not have a chaining ID to indicate the same
5107 */
5108 last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5109 list_for_each_entry(entry, &rm->rg_list, l_entry) {
5110 last_chain_entry->fv_idx[i] = entry->chain_idx;
5111 content->lkup_indx[i] = entry->chain_idx;
5112 content->mask[i++] = cpu_to_le16(0xFFFF);
5113 set_bit(entry->rid, rm->r_bitmap);
5114 }
5115 list_add(&last_chain_entry->l_entry, &rm->rg_list);
5116 if (sizeof(buf[recps].recipe_bitmap) >=
5117 sizeof(rm->r_bitmap)) {
5118 memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5119 sizeof(buf[recps].recipe_bitmap));
5120 } else {
5121 status = -EINVAL;
5122 goto err_unroll;
5123 }
5124 content->act_ctrl_fwd_priority = rm->priority;
5125
5126 recps++;
5127 rm->root_rid = (u8)rid;
5128 }
5129 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5130 if (status)
5131 goto err_unroll;
5132
5133 status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5134 ice_release_change_lock(hw);
5135 if (status)
5136 goto err_unroll;
5137
5138 /* Every recipe that just got created add it to the recipe
5139 * book keeping list
5140 */
5141 list_for_each_entry(entry, &rm->rg_list, l_entry) {
5142 struct ice_switch_info *sw = hw->switch_info;
5143 bool is_root, idx_found = false;
5144 struct ice_sw_recipe *recp;
5145 u16 idx, buf_idx = 0;
5146
5147 /* find buffer index for copying some data */
5148 for (idx = 0; idx < rm->n_grp_count; idx++)
5149 if (buf[idx].recipe_indx == entry->rid) {
5150 buf_idx = idx;
5151 idx_found = true;
5152 }
5153
5154 if (!idx_found) {
5155 status = -EIO;
5156 goto err_unroll;
5157 }
5158
5159 recp = &sw->recp_list[entry->rid];
5160 is_root = (rm->root_rid == entry->rid);
5161 recp->is_root = is_root;
5162
5163 recp->root_rid = entry->rid;
5164 recp->big_recp = (is_root && rm->n_grp_count > 1);
5165
5166 memcpy(&recp->ext_words, entry->r_group.pairs,
5167 entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5168
5169 memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5170 sizeof(recp->r_bitmap));
5171
5172 /* Copy non-result fv index values and masks to recipe. This
5173 * call will also update the result recipe bitmask.
5174 */
5175 ice_collect_result_idx(&buf[buf_idx], recp);
5176
5177 /* for non-root recipes, also copy to the root, this allows
5178 * easier matching of a complete chained recipe
5179 */
5180 if (!is_root)
5181 ice_collect_result_idx(&buf[buf_idx],
5182 &sw->recp_list[rm->root_rid]);
5183
5184 recp->n_ext_words = entry->r_group.n_val_pairs;
5185 recp->chain_idx = entry->chain_idx;
5186 recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5187 recp->n_grp_count = rm->n_grp_count;
5188 recp->tun_type = rm->tun_type;
5189 recp->need_pass_l2 = rm->need_pass_l2;
5190 recp->allow_pass_l2 = rm->allow_pass_l2;
5191 recp->recp_created = true;
5192 }
5193 rm->root_buf = buf;
5194 kfree(tmp);
5195 return status;
5196
5197err_unroll:
5198err_mem:
5199 kfree(tmp);
5200 devm_kfree(ice_hw_to_dev(hw), buf);
5201 return status;
5202}
5203
5204/**
5205 * ice_create_recipe_group - creates recipe group
5206 * @hw: pointer to hardware structure
5207 * @rm: recipe management list entry
5208 * @lkup_exts: lookup elements
5209 */
5210static int
5211ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5212 struct ice_prot_lkup_ext *lkup_exts)
5213{
5214 u8 recp_count = 0;
5215 int status;
5216
5217 rm->n_grp_count = 0;
5218
5219 /* Create recipes for words that are marked not done by packing them
5220 * as best fit.
5221 */
5222 status = ice_create_first_fit_recp_def(hw, lkup_exts,
5223 &rm->rg_list, &recp_count);
5224 if (!status) {
5225 rm->n_grp_count += recp_count;
5226 rm->n_ext_words = lkup_exts->n_val_words;
5227 memcpy(&rm->ext_words, lkup_exts->fv_words,
5228 sizeof(rm->ext_words));
5229 memcpy(rm->word_masks, lkup_exts->field_mask,
5230 sizeof(rm->word_masks));
5231 }
5232
5233 return status;
5234}
5235
5236/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5237 * @hw: pointer to hardware structure
5238 * @rinfo: other information regarding the rule e.g. priority and action info
5239 * @bm: pointer to memory for returning the bitmap of field vectors
5240 */
5241static void
5242ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5243 unsigned long *bm)
5244{
5245 enum ice_prof_type prof_type;
5246
5247 bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5248
5249 switch (rinfo->tun_type) {
5250 case ICE_NON_TUN:
5251 prof_type = ICE_PROF_NON_TUN;
5252 break;
5253 case ICE_ALL_TUNNELS:
5254 prof_type = ICE_PROF_TUN_ALL;
5255 break;
5256 case ICE_SW_TUN_GENEVE:
5257 case ICE_SW_TUN_VXLAN:
5258 prof_type = ICE_PROF_TUN_UDP;
5259 break;
5260 case ICE_SW_TUN_NVGRE:
5261 prof_type = ICE_PROF_TUN_GRE;
5262 break;
5263 case ICE_SW_TUN_GTPU:
5264 prof_type = ICE_PROF_TUN_GTPU;
5265 break;
5266 case ICE_SW_TUN_GTPC:
5267 prof_type = ICE_PROF_TUN_GTPC;
5268 break;
5269 case ICE_SW_TUN_AND_NON_TUN:
5270 default:
5271 prof_type = ICE_PROF_ALL;
5272 break;
5273 }
5274
5275 ice_get_sw_fv_bitmap(hw, prof_type, bm);
5276}
5277
5278/**
5279 * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5280 * @hw: pointer to hardware structure
5281 * @lkups: lookup elements or match criteria for the advanced recipe, one
5282 * structure per protocol header
5283 * @lkups_cnt: number of protocols
5284 * @rinfo: other information regarding the rule e.g. priority and action info
5285 * @rid: return the recipe ID of the recipe created
5286 */
5287static int
5288ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5289 u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5290{
5291 DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5292 DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5293 struct ice_prot_lkup_ext *lkup_exts;
5294 struct ice_recp_grp_entry *r_entry;
5295 struct ice_sw_fv_list_entry *fvit;
5296 struct ice_recp_grp_entry *r_tmp;
5297 struct ice_sw_fv_list_entry *tmp;
5298 struct ice_sw_recipe *rm;
5299 int status = 0;
5300 u8 i;
5301
5302 if (!lkups_cnt)
5303 return -EINVAL;
5304
5305 lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5306 if (!lkup_exts)
5307 return -ENOMEM;
5308
5309 /* Determine the number of words to be matched and if it exceeds a
5310 * recipe's restrictions
5311 */
5312 for (i = 0; i < lkups_cnt; i++) {
5313 u16 count;
5314
5315 if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5316 status = -EIO;
5317 goto err_free_lkup_exts;
5318 }
5319
5320 count = ice_fill_valid_words(&lkups[i], lkup_exts);
5321 if (!count) {
5322 status = -EIO;
5323 goto err_free_lkup_exts;
5324 }
5325 }
5326
5327 rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5328 if (!rm) {
5329 status = -ENOMEM;
5330 goto err_free_lkup_exts;
5331 }
5332
5333 /* Get field vectors that contain fields extracted from all the protocol
5334 * headers being programmed.
5335 */
5336 INIT_LIST_HEAD(&rm->fv_list);
5337 INIT_LIST_HEAD(&rm->rg_list);
5338
5339 /* Get bitmap of field vectors (profiles) that are compatible with the
5340 * rule request; only these will be searched in the subsequent call to
5341 * ice_get_sw_fv_list.
5342 */
5343 ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5344
5345 status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5346 if (status)
5347 goto err_unroll;
5348
5349 /* Group match words into recipes using preferred recipe grouping
5350 * criteria.
5351 */
5352 status = ice_create_recipe_group(hw, rm, lkup_exts);
5353 if (status)
5354 goto err_unroll;
5355
5356 /* set the recipe priority if specified */
5357 rm->priority = (u8)rinfo->priority;
5358
5359 rm->need_pass_l2 = rinfo->need_pass_l2;
5360 rm->allow_pass_l2 = rinfo->allow_pass_l2;
5361
5362 /* Find offsets from the field vector. Pick the first one for all the
5363 * recipes.
5364 */
5365 status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5366 if (status)
5367 goto err_unroll;
5368
5369 /* get bitmap of all profiles the recipe will be associated with */
5370 bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5371 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5372 ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5373 set_bit((u16)fvit->profile_id, profiles);
5374 }
5375
5376 /* Look for a recipe which matches our requested fv / mask list */
5377 *rid = ice_find_recp(hw, lkup_exts, rinfo);
5378 if (*rid < ICE_MAX_NUM_RECIPES)
5379 /* Success if found a recipe that match the existing criteria */
5380 goto err_unroll;
5381
5382 rm->tun_type = rinfo->tun_type;
5383 /* Recipe we need does not exist, add a recipe */
5384 status = ice_add_sw_recipe(hw, rm, profiles);
5385 if (status)
5386 goto err_unroll;
5387
5388 /* Associate all the recipes created with all the profiles in the
5389 * common field vector.
5390 */
5391 list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5392 DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5393 u16 j;
5394
5395 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5396 (u8 *)r_bitmap, NULL);
5397 if (status)
5398 goto err_unroll;
5399
5400 bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5401 ICE_MAX_NUM_RECIPES);
5402 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5403 if (status)
5404 goto err_unroll;
5405
5406 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5407 (u8 *)r_bitmap,
5408 NULL);
5409 ice_release_change_lock(hw);
5410
5411 if (status)
5412 goto err_unroll;
5413
5414 /* Update profile to recipe bitmap array */
5415 bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5416 ICE_MAX_NUM_RECIPES);
5417
5418 /* Update recipe to profile bitmap array */
5419 for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5420 set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5421 }
5422
5423 *rid = rm->root_rid;
5424 memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5425 sizeof(*lkup_exts));
5426err_unroll:
5427 list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5428 list_del(&r_entry->l_entry);
5429 devm_kfree(ice_hw_to_dev(hw), r_entry);
5430 }
5431
5432 list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5433 list_del(&fvit->list_entry);
5434 devm_kfree(ice_hw_to_dev(hw), fvit);
5435 }
5436
5437 devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5438 kfree(rm);
5439
5440err_free_lkup_exts:
5441 kfree(lkup_exts);
5442
5443 return status;
5444}
5445
5446/**
5447 * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5448 *
5449 * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5450 * @num_vlan: number of VLAN tags
5451 */
5452static struct ice_dummy_pkt_profile *
5453ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5454 u32 num_vlan)
5455{
5456 struct ice_dummy_pkt_profile *profile;
5457 struct ice_dummy_pkt_offsets *offsets;
5458 u32 buf_len, off, etype_off, i;
5459 u8 *pkt;
5460
5461 if (num_vlan < 1 || num_vlan > 2)
5462 return ERR_PTR(-EINVAL);
5463
5464 off = num_vlan * VLAN_HLEN;
5465
5466 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5467 dummy_pkt->offsets_len;
5468 offsets = kzalloc(buf_len, GFP_KERNEL);
5469 if (!offsets)
5470 return ERR_PTR(-ENOMEM);
5471
5472 offsets[0] = dummy_pkt->offsets[0];
5473 if (num_vlan == 2) {
5474 offsets[1] = ice_dummy_qinq_packet_offsets[0];
5475 offsets[2] = ice_dummy_qinq_packet_offsets[1];
5476 } else if (num_vlan == 1) {
5477 offsets[1] = ice_dummy_vlan_packet_offsets[0];
5478 }
5479
5480 for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5481 offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5482 offsets[i + num_vlan].offset =
5483 dummy_pkt->offsets[i].offset + off;
5484 }
5485 offsets[i + num_vlan] = dummy_pkt->offsets[i];
5486
5487 etype_off = dummy_pkt->offsets[1].offset;
5488
5489 buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5490 dummy_pkt->pkt_len;
5491 pkt = kzalloc(buf_len, GFP_KERNEL);
5492 if (!pkt) {
5493 kfree(offsets);
5494 return ERR_PTR(-ENOMEM);
5495 }
5496
5497 memcpy(pkt, dummy_pkt->pkt, etype_off);
5498 memcpy(pkt + etype_off,
5499 num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5500 off);
5501 memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5502 dummy_pkt->pkt_len - etype_off);
5503
5504 profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5505 if (!profile) {
5506 kfree(offsets);
5507 kfree(pkt);
5508 return ERR_PTR(-ENOMEM);
5509 }
5510
5511 profile->offsets = offsets;
5512 profile->pkt = pkt;
5513 profile->pkt_len = buf_len;
5514 profile->match |= ICE_PKT_KMALLOC;
5515
5516 return profile;
5517}
5518
5519/**
5520 * ice_find_dummy_packet - find dummy packet
5521 *
5522 * @lkups: lookup elements or match criteria for the advanced recipe, one
5523 * structure per protocol header
5524 * @lkups_cnt: number of protocols
5525 * @tun_type: tunnel type
5526 *
5527 * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5528 */
5529static const struct ice_dummy_pkt_profile *
5530ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5531 enum ice_sw_tunnel_type tun_type)
5532{
5533 const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5534 u32 match = 0, vlan_count = 0;
5535 u16 i;
5536
5537 switch (tun_type) {
5538 case ICE_SW_TUN_GTPC:
5539 match |= ICE_PKT_TUN_GTPC;
5540 break;
5541 case ICE_SW_TUN_GTPU:
5542 match |= ICE_PKT_TUN_GTPU;
5543 break;
5544 case ICE_SW_TUN_NVGRE:
5545 match |= ICE_PKT_TUN_NVGRE;
5546 break;
5547 case ICE_SW_TUN_GENEVE:
5548 case ICE_SW_TUN_VXLAN:
5549 match |= ICE_PKT_TUN_UDP;
5550 break;
5551 default:
5552 break;
5553 }
5554
5555 for (i = 0; i < lkups_cnt; i++) {
5556 if (lkups[i].type == ICE_UDP_ILOS)
5557 match |= ICE_PKT_INNER_UDP;
5558 else if (lkups[i].type == ICE_TCP_IL)
5559 match |= ICE_PKT_INNER_TCP;
5560 else if (lkups[i].type == ICE_IPV6_OFOS)
5561 match |= ICE_PKT_OUTER_IPV6;
5562 else if (lkups[i].type == ICE_VLAN_OFOS ||
5563 lkups[i].type == ICE_VLAN_EX)
5564 vlan_count++;
5565 else if (lkups[i].type == ICE_VLAN_IN)
5566 vlan_count++;
5567 else if (lkups[i].type == ICE_ETYPE_OL &&
5568 lkups[i].h_u.ethertype.ethtype_id ==
5569 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5570 lkups[i].m_u.ethertype.ethtype_id ==
5571 cpu_to_be16(0xFFFF))
5572 match |= ICE_PKT_OUTER_IPV6;
5573 else if (lkups[i].type == ICE_ETYPE_IL &&
5574 lkups[i].h_u.ethertype.ethtype_id ==
5575 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5576 lkups[i].m_u.ethertype.ethtype_id ==
5577 cpu_to_be16(0xFFFF))
5578 match |= ICE_PKT_INNER_IPV6;
5579 else if (lkups[i].type == ICE_IPV6_IL)
5580 match |= ICE_PKT_INNER_IPV6;
5581 else if (lkups[i].type == ICE_GTP_NO_PAY)
5582 match |= ICE_PKT_GTP_NOPAY;
5583 else if (lkups[i].type == ICE_PPPOE) {
5584 match |= ICE_PKT_PPPOE;
5585 if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5586 htons(PPP_IPV6))
5587 match |= ICE_PKT_OUTER_IPV6;
5588 } else if (lkups[i].type == ICE_L2TPV3)
5589 match |= ICE_PKT_L2TPV3;
5590 }
5591
5592 while (ret->match && (match & ret->match) != ret->match)
5593 ret++;
5594
5595 if (vlan_count != 0)
5596 ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5597
5598 return ret;
5599}
5600
5601/**
5602 * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5603 *
5604 * @lkups: lookup elements or match criteria for the advanced recipe, one
5605 * structure per protocol header
5606 * @lkups_cnt: number of protocols
5607 * @s_rule: stores rule information from the match criteria
5608 * @profile: dummy packet profile (the template, its size and header offsets)
5609 */
5610static int
5611ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5612 struct ice_sw_rule_lkup_rx_tx *s_rule,
5613 const struct ice_dummy_pkt_profile *profile)
5614{
5615 u8 *pkt;
5616 u16 i;
5617
5618 /* Start with a packet with a pre-defined/dummy content. Then, fill
5619 * in the header values to be looked up or matched.
5620 */
5621 pkt = s_rule->hdr_data;
5622
5623 memcpy(pkt, profile->pkt, profile->pkt_len);
5624
5625 for (i = 0; i < lkups_cnt; i++) {
5626 const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5627 enum ice_protocol_type type;
5628 u16 offset = 0, len = 0, j;
5629 bool found = false;
5630
5631 /* find the start of this layer; it should be found since this
5632 * was already checked when search for the dummy packet
5633 */
5634 type = lkups[i].type;
5635 /* metadata isn't present in the packet */
5636 if (type == ICE_HW_METADATA)
5637 continue;
5638
5639 for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5640 if (type == offsets[j].type) {
5641 offset = offsets[j].offset;
5642 found = true;
5643 break;
5644 }
5645 }
5646 /* this should never happen in a correct calling sequence */
5647 if (!found)
5648 return -EINVAL;
5649
5650 switch (lkups[i].type) {
5651 case ICE_MAC_OFOS:
5652 case ICE_MAC_IL:
5653 len = sizeof(struct ice_ether_hdr);
5654 break;
5655 case ICE_ETYPE_OL:
5656 case ICE_ETYPE_IL:
5657 len = sizeof(struct ice_ethtype_hdr);
5658 break;
5659 case ICE_VLAN_OFOS:
5660 case ICE_VLAN_EX:
5661 case ICE_VLAN_IN:
5662 len = sizeof(struct ice_vlan_hdr);
5663 break;
5664 case ICE_IPV4_OFOS:
5665 case ICE_IPV4_IL:
5666 len = sizeof(struct ice_ipv4_hdr);
5667 break;
5668 case ICE_IPV6_OFOS:
5669 case ICE_IPV6_IL:
5670 len = sizeof(struct ice_ipv6_hdr);
5671 break;
5672 case ICE_TCP_IL:
5673 case ICE_UDP_OF:
5674 case ICE_UDP_ILOS:
5675 len = sizeof(struct ice_l4_hdr);
5676 break;
5677 case ICE_SCTP_IL:
5678 len = sizeof(struct ice_sctp_hdr);
5679 break;
5680 case ICE_NVGRE:
5681 len = sizeof(struct ice_nvgre_hdr);
5682 break;
5683 case ICE_VXLAN:
5684 case ICE_GENEVE:
5685 len = sizeof(struct ice_udp_tnl_hdr);
5686 break;
5687 case ICE_GTP_NO_PAY:
5688 case ICE_GTP:
5689 len = sizeof(struct ice_udp_gtp_hdr);
5690 break;
5691 case ICE_PPPOE:
5692 len = sizeof(struct ice_pppoe_hdr);
5693 break;
5694 case ICE_L2TPV3:
5695 len = sizeof(struct ice_l2tpv3_sess_hdr);
5696 break;
5697 default:
5698 return -EINVAL;
5699 }
5700
5701 /* the length should be a word multiple */
5702 if (len % ICE_BYTES_PER_WORD)
5703 return -EIO;
5704
5705 /* We have the offset to the header start, the length, the
5706 * caller's header values and mask. Use this information to
5707 * copy the data into the dummy packet appropriately based on
5708 * the mask. Note that we need to only write the bits as
5709 * indicated by the mask to make sure we don't improperly write
5710 * over any significant packet data.
5711 */
5712 for (j = 0; j < len / sizeof(u16); j++) {
5713 u16 *ptr = (u16 *)(pkt + offset);
5714 u16 mask = lkups[i].m_raw[j];
5715
5716 if (!mask)
5717 continue;
5718
5719 ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5720 }
5721 }
5722
5723 s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5724
5725 return 0;
5726}
5727
5728/**
5729 * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5730 * @hw: pointer to the hardware structure
5731 * @tun_type: tunnel type
5732 * @pkt: dummy packet to fill in
5733 * @offsets: offset info for the dummy packet
5734 */
5735static int
5736ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5737 u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5738{
5739 u16 open_port, i;
5740
5741 switch (tun_type) {
5742 case ICE_SW_TUN_VXLAN:
5743 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5744 return -EIO;
5745 break;
5746 case ICE_SW_TUN_GENEVE:
5747 if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5748 return -EIO;
5749 break;
5750 default:
5751 /* Nothing needs to be done for this tunnel type */
5752 return 0;
5753 }
5754
5755 /* Find the outer UDP protocol header and insert the port number */
5756 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5757 if (offsets[i].type == ICE_UDP_OF) {
5758 struct ice_l4_hdr *hdr;
5759 u16 offset;
5760
5761 offset = offsets[i].offset;
5762 hdr = (struct ice_l4_hdr *)&pkt[offset];
5763 hdr->dst_port = cpu_to_be16(open_port);
5764
5765 return 0;
5766 }
5767 }
5768
5769 return -EIO;
5770}
5771
5772/**
5773 * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5774 * @hw: pointer to hw structure
5775 * @vlan_type: VLAN tag type
5776 * @pkt: dummy packet to fill in
5777 * @offsets: offset info for the dummy packet
5778 */
5779static int
5780ice_fill_adv_packet_vlan(struct ice_hw *hw, u16 vlan_type, u8 *pkt,
5781 const struct ice_dummy_pkt_offsets *offsets)
5782{
5783 u16 i;
5784
5785 /* Check if there is something to do */
5786 if (!vlan_type || !ice_is_dvm_ena(hw))
5787 return 0;
5788
5789 /* Find VLAN header and insert VLAN TPID */
5790 for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5791 if (offsets[i].type == ICE_VLAN_OFOS ||
5792 offsets[i].type == ICE_VLAN_EX) {
5793 struct ice_vlan_hdr *hdr;
5794 u16 offset;
5795
5796 offset = offsets[i].offset;
5797 hdr = (struct ice_vlan_hdr *)&pkt[offset];
5798 hdr->type = cpu_to_be16(vlan_type);
5799
5800 return 0;
5801 }
5802 }
5803
5804 return -EIO;
5805}
5806
5807static bool ice_rules_equal(const struct ice_adv_rule_info *first,
5808 const struct ice_adv_rule_info *second)
5809{
5810 return first->sw_act.flag == second->sw_act.flag &&
5811 first->tun_type == second->tun_type &&
5812 first->vlan_type == second->vlan_type &&
5813 first->src_vsi == second->src_vsi &&
5814 first->need_pass_l2 == second->need_pass_l2 &&
5815 first->allow_pass_l2 == second->allow_pass_l2;
5816}
5817
5818/**
5819 * ice_find_adv_rule_entry - Search a rule entry
5820 * @hw: pointer to the hardware structure
5821 * @lkups: lookup elements or match criteria for the advanced recipe, one
5822 * structure per protocol header
5823 * @lkups_cnt: number of protocols
5824 * @recp_id: recipe ID for which we are finding the rule
5825 * @rinfo: other information regarding the rule e.g. priority and action info
5826 *
5827 * Helper function to search for a given advance rule entry
5828 * Returns pointer to entry storing the rule if found
5829 */
5830static struct ice_adv_fltr_mgmt_list_entry *
5831ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5832 u16 lkups_cnt, u16 recp_id,
5833 struct ice_adv_rule_info *rinfo)
5834{
5835 struct ice_adv_fltr_mgmt_list_entry *list_itr;
5836 struct ice_switch_info *sw = hw->switch_info;
5837 int i;
5838
5839 list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5840 list_entry) {
5841 bool lkups_matched = true;
5842
5843 if (lkups_cnt != list_itr->lkups_cnt)
5844 continue;
5845 for (i = 0; i < list_itr->lkups_cnt; i++)
5846 if (memcmp(&list_itr->lkups[i], &lkups[i],
5847 sizeof(*lkups))) {
5848 lkups_matched = false;
5849 break;
5850 }
5851 if (ice_rules_equal(rinfo, &list_itr->rule_info) &&
5852 lkups_matched)
5853 return list_itr;
5854 }
5855 return NULL;
5856}
5857
5858/**
5859 * ice_adv_add_update_vsi_list
5860 * @hw: pointer to the hardware structure
5861 * @m_entry: pointer to current adv filter management list entry
5862 * @cur_fltr: filter information from the book keeping entry
5863 * @new_fltr: filter information with the new VSI to be added
5864 *
5865 * Call AQ command to add or update previously created VSI list with new VSI.
5866 *
5867 * Helper function to do book keeping associated with adding filter information
5868 * The algorithm to do the booking keeping is described below :
5869 * When a VSI needs to subscribe to a given advanced filter
5870 * if only one VSI has been added till now
5871 * Allocate a new VSI list and add two VSIs
5872 * to this list using switch rule command
5873 * Update the previously created switch rule with the
5874 * newly created VSI list ID
5875 * if a VSI list was previously created
5876 * Add the new VSI to the previously created VSI list set
5877 * using the update switch rule command
5878 */
5879static int
5880ice_adv_add_update_vsi_list(struct ice_hw *hw,
5881 struct ice_adv_fltr_mgmt_list_entry *m_entry,
5882 struct ice_adv_rule_info *cur_fltr,
5883 struct ice_adv_rule_info *new_fltr)
5884{
5885 u16 vsi_list_id = 0;
5886 int status;
5887
5888 if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5889 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
5890 cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5891 return -EOPNOTSUPP;
5892
5893 if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5894 new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5895 (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5896 cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5897 return -EOPNOTSUPP;
5898
5899 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5900 /* Only one entry existed in the mapping and it was not already
5901 * a part of a VSI list. So, create a VSI list with the old and
5902 * new VSIs.
5903 */
5904 struct ice_fltr_info tmp_fltr;
5905 u16 vsi_handle_arr[2];
5906
5907 /* A rule already exists with the new VSI being added */
5908 if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5909 new_fltr->sw_act.fwd_id.hw_vsi_id)
5910 return -EEXIST;
5911
5912 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5913 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5914 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5915 &vsi_list_id,
5916 ICE_SW_LKUP_LAST);
5917 if (status)
5918 return status;
5919
5920 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
5921 tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
5922 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5923 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5924 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5925 tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
5926
5927 /* Update the previous switch rule of "forward to VSI" to
5928 * "fwd to VSI list"
5929 */
5930 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5931 if (status)
5932 return status;
5933
5934 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5935 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5936 m_entry->vsi_list_info =
5937 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5938 vsi_list_id);
5939 } else {
5940 u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5941
5942 if (!m_entry->vsi_list_info)
5943 return -EIO;
5944
5945 /* A rule already exists with the new VSI being added */
5946 if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
5947 return 0;
5948
5949 /* Update the previously created VSI list set with
5950 * the new VSI ID passed in
5951 */
5952 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5953
5954 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5955 vsi_list_id, false,
5956 ice_aqc_opc_update_sw_rules,
5957 ICE_SW_LKUP_LAST);
5958 /* update VSI list mapping info with new VSI ID */
5959 if (!status)
5960 set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
5961 }
5962 if (!status)
5963 m_entry->vsi_count++;
5964 return status;
5965}
5966
5967void ice_rule_add_tunnel_metadata(struct ice_adv_lkup_elem *lkup)
5968{
5969 lkup->type = ICE_HW_METADATA;
5970 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID21] |=
5971 cpu_to_be16(ICE_PKT_TUNNEL_MASK);
5972}
5973
5974void ice_rule_add_direction_metadata(struct ice_adv_lkup_elem *lkup)
5975{
5976 lkup->type = ICE_HW_METADATA;
5977 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5978 cpu_to_be16(ICE_PKT_FROM_NETWORK);
5979}
5980
5981void ice_rule_add_vlan_metadata(struct ice_adv_lkup_elem *lkup)
5982{
5983 lkup->type = ICE_HW_METADATA;
5984 lkup->m_u.metadata.flags[ICE_PKT_FLAGS_MDID20] |=
5985 cpu_to_be16(ICE_PKT_VLAN_MASK);
5986}
5987
5988void ice_rule_add_src_vsi_metadata(struct ice_adv_lkup_elem *lkup)
5989{
5990 lkup->type = ICE_HW_METADATA;
5991 lkup->m_u.metadata.source_vsi = cpu_to_be16(ICE_MDID_SOURCE_VSI_MASK);
5992}
5993
5994/**
5995 * ice_add_adv_rule - helper function to create an advanced switch rule
5996 * @hw: pointer to the hardware structure
5997 * @lkups: information on the words that needs to be looked up. All words
5998 * together makes one recipe
5999 * @lkups_cnt: num of entries in the lkups array
6000 * @rinfo: other information related to the rule that needs to be programmed
6001 * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6002 * ignored is case of error.
6003 *
6004 * This function can program only 1 rule at a time. The lkups is used to
6005 * describe the all the words that forms the "lookup" portion of the recipe.
6006 * These words can span multiple protocols. Callers to this function need to
6007 * pass in a list of protocol headers with lookup information along and mask
6008 * that determines which words are valid from the given protocol header.
6009 * rinfo describes other information related to this rule such as forwarding
6010 * IDs, priority of this rule, etc.
6011 */
6012int
6013ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6014 u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6015 struct ice_rule_query_data *added_entry)
6016{
6017 struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6018 struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6019 const struct ice_dummy_pkt_profile *profile;
6020 u16 rid = 0, i, rule_buf_sz, vsi_handle;
6021 struct list_head *rule_head;
6022 struct ice_switch_info *sw;
6023 u16 word_cnt;
6024 u32 act = 0;
6025 int status;
6026 u8 q_rgn;
6027
6028 /* Initialize profile to result index bitmap */
6029 if (!hw->switch_info->prof_res_bm_init) {
6030 hw->switch_info->prof_res_bm_init = 1;
6031 ice_init_prof_result_bm(hw);
6032 }
6033
6034 if (!lkups_cnt)
6035 return -EINVAL;
6036
6037 /* get # of words we need to match */
6038 word_cnt = 0;
6039 for (i = 0; i < lkups_cnt; i++) {
6040 u16 j;
6041
6042 for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6043 if (lkups[i].m_raw[j])
6044 word_cnt++;
6045 }
6046
6047 if (!word_cnt)
6048 return -EINVAL;
6049
6050 if (word_cnt > ICE_MAX_CHAIN_WORDS)
6051 return -ENOSPC;
6052
6053 /* locate a dummy packet */
6054 profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6055 if (IS_ERR(profile))
6056 return PTR_ERR(profile);
6057
6058 if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6059 rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6060 rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6061 rinfo->sw_act.fltr_act == ICE_DROP_PACKET ||
6062 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6063 rinfo->sw_act.fltr_act == ICE_NOP)) {
6064 status = -EIO;
6065 goto free_pkt_profile;
6066 }
6067
6068 vsi_handle = rinfo->sw_act.vsi_handle;
6069 if (!ice_is_vsi_valid(hw, vsi_handle)) {
6070 status = -EINVAL;
6071 goto free_pkt_profile;
6072 }
6073
6074 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6075 rinfo->sw_act.fltr_act == ICE_MIRROR_PACKET ||
6076 rinfo->sw_act.fltr_act == ICE_NOP) {
6077 rinfo->sw_act.fwd_id.hw_vsi_id =
6078 ice_get_hw_vsi_num(hw, vsi_handle);
6079 }
6080
6081 if (rinfo->src_vsi)
6082 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, rinfo->src_vsi);
6083 else
6084 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6085
6086 status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6087 if (status)
6088 goto free_pkt_profile;
6089 m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6090 if (m_entry) {
6091 /* we have to add VSI to VSI_LIST and increment vsi_count.
6092 * Also Update VSI list so that we can change forwarding rule
6093 * if the rule already exists, we will check if it exists with
6094 * same vsi_id, if not then add it to the VSI list if it already
6095 * exists if not then create a VSI list and add the existing VSI
6096 * ID and the new VSI ID to the list
6097 * We will add that VSI to the list
6098 */
6099 status = ice_adv_add_update_vsi_list(hw, m_entry,
6100 &m_entry->rule_info,
6101 rinfo);
6102 if (added_entry) {
6103 added_entry->rid = rid;
6104 added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6105 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6106 }
6107 goto free_pkt_profile;
6108 }
6109 rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6110 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6111 if (!s_rule) {
6112 status = -ENOMEM;
6113 goto free_pkt_profile;
6114 }
6115
6116 if (rinfo->sw_act.fltr_act != ICE_MIRROR_PACKET) {
6117 if (!rinfo->flags_info.act_valid) {
6118 act |= ICE_SINGLE_ACT_LAN_ENABLE;
6119 act |= ICE_SINGLE_ACT_LB_ENABLE;
6120 } else {
6121 act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6122 ICE_SINGLE_ACT_LB_ENABLE);
6123 }
6124 }
6125
6126 switch (rinfo->sw_act.fltr_act) {
6127 case ICE_FWD_TO_VSI:
6128 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6129 rinfo->sw_act.fwd_id.hw_vsi_id);
6130 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6131 break;
6132 case ICE_FWD_TO_Q:
6133 act |= ICE_SINGLE_ACT_TO_Q;
6134 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6135 rinfo->sw_act.fwd_id.q_id);
6136 break;
6137 case ICE_FWD_TO_QGRP:
6138 q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6139 (u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6140 act |= ICE_SINGLE_ACT_TO_Q;
6141 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_INDEX_M,
6142 rinfo->sw_act.fwd_id.q_id);
6143 act |= FIELD_PREP(ICE_SINGLE_ACT_Q_REGION_M, q_rgn);
6144 break;
6145 case ICE_DROP_PACKET:
6146 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6147 ICE_SINGLE_ACT_VALID_BIT;
6148 break;
6149 case ICE_MIRROR_PACKET:
6150 act |= ICE_SINGLE_ACT_OTHER_ACTS;
6151 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6152 rinfo->sw_act.fwd_id.hw_vsi_id);
6153 break;
6154 case ICE_NOP:
6155 act |= FIELD_PREP(ICE_SINGLE_ACT_VSI_ID_M,
6156 rinfo->sw_act.fwd_id.hw_vsi_id);
6157 act &= ~ICE_SINGLE_ACT_VALID_BIT;
6158 break;
6159 default:
6160 status = -EIO;
6161 goto err_ice_add_adv_rule;
6162 }
6163
6164 /* If there is no matching criteria for direction there
6165 * is only one difference between Rx and Tx:
6166 * - get switch id base on VSI number from source field (Tx)
6167 * - get switch id base on port number (Rx)
6168 *
6169 * If matching on direction metadata is chose rule direction is
6170 * extracted from type value set here.
6171 */
6172 if (rinfo->sw_act.flag & ICE_FLTR_TX) {
6173 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6174 s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6175 } else {
6176 s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6177 s_rule->src = cpu_to_le16(hw->port_info->lport);
6178 }
6179
6180 s_rule->recipe_id = cpu_to_le16(rid);
6181 s_rule->act = cpu_to_le32(act);
6182
6183 status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6184 if (status)
6185 goto err_ice_add_adv_rule;
6186
6187 status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, s_rule->hdr_data,
6188 profile->offsets);
6189 if (status)
6190 goto err_ice_add_adv_rule;
6191
6192 status = ice_fill_adv_packet_vlan(hw, rinfo->vlan_type,
6193 s_rule->hdr_data,
6194 profile->offsets);
6195 if (status)
6196 goto err_ice_add_adv_rule;
6197
6198 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6199 rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6200 NULL);
6201 if (status)
6202 goto err_ice_add_adv_rule;
6203 adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6204 sizeof(struct ice_adv_fltr_mgmt_list_entry),
6205 GFP_KERNEL);
6206 if (!adv_fltr) {
6207 status = -ENOMEM;
6208 goto err_ice_add_adv_rule;
6209 }
6210
6211 adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6212 lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6213 if (!adv_fltr->lkups) {
6214 status = -ENOMEM;
6215 goto err_ice_add_adv_rule;
6216 }
6217
6218 adv_fltr->lkups_cnt = lkups_cnt;
6219 adv_fltr->rule_info = *rinfo;
6220 adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6221 sw = hw->switch_info;
6222 sw->recp_list[rid].adv_rule = true;
6223 rule_head = &sw->recp_list[rid].filt_rules;
6224
6225 if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6226 adv_fltr->vsi_count = 1;
6227
6228 /* Add rule entry to book keeping list */
6229 list_add(&adv_fltr->list_entry, rule_head);
6230 if (added_entry) {
6231 added_entry->rid = rid;
6232 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6233 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6234 }
6235err_ice_add_adv_rule:
6236 if (status && adv_fltr) {
6237 devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6238 devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6239 }
6240
6241 kfree(s_rule);
6242
6243free_pkt_profile:
6244 if (profile->match & ICE_PKT_KMALLOC) {
6245 kfree(profile->offsets);
6246 kfree(profile->pkt);
6247 kfree(profile);
6248 }
6249
6250 return status;
6251}
6252
6253/**
6254 * ice_replay_vsi_fltr - Replay filters for requested VSI
6255 * @hw: pointer to the hardware structure
6256 * @vsi_handle: driver VSI handle
6257 * @recp_id: Recipe ID for which rules need to be replayed
6258 * @list_head: list for which filters need to be replayed
6259 *
6260 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6261 * It is required to pass valid VSI handle.
6262 */
6263static int
6264ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6265 struct list_head *list_head)
6266{
6267 struct ice_fltr_mgmt_list_entry *itr;
6268 int status = 0;
6269 u16 hw_vsi_id;
6270
6271 if (list_empty(list_head))
6272 return status;
6273 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6274
6275 list_for_each_entry(itr, list_head, list_entry) {
6276 struct ice_fltr_list_entry f_entry;
6277
6278 f_entry.fltr_info = itr->fltr_info;
6279 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6280 itr->fltr_info.vsi_handle == vsi_handle) {
6281 /* update the src in case it is VSI num */
6282 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6283 f_entry.fltr_info.src = hw_vsi_id;
6284 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6285 if (status)
6286 goto end;
6287 continue;
6288 }
6289 if (!itr->vsi_list_info ||
6290 !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6291 continue;
6292 /* Clearing it so that the logic can add it back */
6293 clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6294 f_entry.fltr_info.vsi_handle = vsi_handle;
6295 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6296 /* update the src in case it is VSI num */
6297 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6298 f_entry.fltr_info.src = hw_vsi_id;
6299 if (recp_id == ICE_SW_LKUP_VLAN)
6300 status = ice_add_vlan_internal(hw, &f_entry);
6301 else
6302 status = ice_add_rule_internal(hw, recp_id, &f_entry);
6303 if (status)
6304 goto end;
6305 }
6306end:
6307 return status;
6308}
6309
6310/**
6311 * ice_adv_rem_update_vsi_list
6312 * @hw: pointer to the hardware structure
6313 * @vsi_handle: VSI handle of the VSI to remove
6314 * @fm_list: filter management entry for which the VSI list management needs to
6315 * be done
6316 */
6317static int
6318ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6319 struct ice_adv_fltr_mgmt_list_entry *fm_list)
6320{
6321 struct ice_vsi_list_map_info *vsi_list_info;
6322 enum ice_sw_lkup_type lkup_type;
6323 u16 vsi_list_id;
6324 int status;
6325
6326 if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6327 fm_list->vsi_count == 0)
6328 return -EINVAL;
6329
6330 /* A rule with the VSI being removed does not exist */
6331 if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6332 return -ENOENT;
6333
6334 lkup_type = ICE_SW_LKUP_LAST;
6335 vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6336 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6337 ice_aqc_opc_update_sw_rules,
6338 lkup_type);
6339 if (status)
6340 return status;
6341
6342 fm_list->vsi_count--;
6343 clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6344 vsi_list_info = fm_list->vsi_list_info;
6345 if (fm_list->vsi_count == 1) {
6346 struct ice_fltr_info tmp_fltr;
6347 u16 rem_vsi_handle;
6348
6349 rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6350 ICE_MAX_VSI);
6351 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6352 return -EIO;
6353
6354 /* Make sure VSI list is empty before removing it below */
6355 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6356 vsi_list_id, true,
6357 ice_aqc_opc_update_sw_rules,
6358 lkup_type);
6359 if (status)
6360 return status;
6361
6362 memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6363 tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6364 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6365 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6366 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6367 tmp_fltr.fwd_id.hw_vsi_id =
6368 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6369 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6370 ice_get_hw_vsi_num(hw, rem_vsi_handle);
6371 fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6372
6373 /* Update the previous switch rule of "MAC forward to VSI" to
6374 * "MAC fwd to VSI list"
6375 */
6376 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6377 if (status) {
6378 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6379 tmp_fltr.fwd_id.hw_vsi_id, status);
6380 return status;
6381 }
6382 fm_list->vsi_list_info->ref_cnt--;
6383
6384 /* Remove the VSI list since it is no longer used */
6385 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6386 if (status) {
6387 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6388 vsi_list_id, status);
6389 return status;
6390 }
6391
6392 list_del(&vsi_list_info->list_entry);
6393 devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6394 fm_list->vsi_list_info = NULL;
6395 }
6396
6397 return status;
6398}
6399
6400/**
6401 * ice_rem_adv_rule - removes existing advanced switch rule
6402 * @hw: pointer to the hardware structure
6403 * @lkups: information on the words that needs to be looked up. All words
6404 * together makes one recipe
6405 * @lkups_cnt: num of entries in the lkups array
6406 * @rinfo: Its the pointer to the rule information for the rule
6407 *
6408 * This function can be used to remove 1 rule at a time. The lkups is
6409 * used to describe all the words that forms the "lookup" portion of the
6410 * rule. These words can span multiple protocols. Callers to this function
6411 * need to pass in a list of protocol headers with lookup information along
6412 * and mask that determines which words are valid from the given protocol
6413 * header. rinfo describes other information related to this rule such as
6414 * forwarding IDs, priority of this rule, etc.
6415 */
6416static int
6417ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6418 u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6419{
6420 struct ice_adv_fltr_mgmt_list_entry *list_elem;
6421 struct ice_prot_lkup_ext lkup_exts;
6422 bool remove_rule = false;
6423 struct mutex *rule_lock; /* Lock to protect filter rule list */
6424 u16 i, rid, vsi_handle;
6425 int status = 0;
6426
6427 memset(&lkup_exts, 0, sizeof(lkup_exts));
6428 for (i = 0; i < lkups_cnt; i++) {
6429 u16 count;
6430
6431 if (lkups[i].type >= ICE_PROTOCOL_LAST)
6432 return -EIO;
6433
6434 count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6435 if (!count)
6436 return -EIO;
6437 }
6438
6439 rid = ice_find_recp(hw, &lkup_exts, rinfo);
6440 /* If did not find a recipe that match the existing criteria */
6441 if (rid == ICE_MAX_NUM_RECIPES)
6442 return -EINVAL;
6443
6444 rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6445 list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6446 /* the rule is already removed */
6447 if (!list_elem)
6448 return 0;
6449 mutex_lock(rule_lock);
6450 if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6451 remove_rule = true;
6452 } else if (list_elem->vsi_count > 1) {
6453 remove_rule = false;
6454 vsi_handle = rinfo->sw_act.vsi_handle;
6455 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6456 } else {
6457 vsi_handle = rinfo->sw_act.vsi_handle;
6458 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6459 if (status) {
6460 mutex_unlock(rule_lock);
6461 return status;
6462 }
6463 if (list_elem->vsi_count == 0)
6464 remove_rule = true;
6465 }
6466 mutex_unlock(rule_lock);
6467 if (remove_rule) {
6468 struct ice_sw_rule_lkup_rx_tx *s_rule;
6469 u16 rule_buf_sz;
6470
6471 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6472 s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6473 if (!s_rule)
6474 return -ENOMEM;
6475 s_rule->act = 0;
6476 s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6477 s_rule->hdr_len = 0;
6478 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6479 rule_buf_sz, 1,
6480 ice_aqc_opc_remove_sw_rules, NULL);
6481 if (!status || status == -ENOENT) {
6482 struct ice_switch_info *sw = hw->switch_info;
6483
6484 mutex_lock(rule_lock);
6485 list_del(&list_elem->list_entry);
6486 devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6487 devm_kfree(ice_hw_to_dev(hw), list_elem);
6488 mutex_unlock(rule_lock);
6489 if (list_empty(&sw->recp_list[rid].filt_rules))
6490 sw->recp_list[rid].adv_rule = false;
6491 }
6492 kfree(s_rule);
6493 }
6494 return status;
6495}
6496
6497/**
6498 * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6499 * @hw: pointer to the hardware structure
6500 * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6501 *
6502 * This function is used to remove 1 rule at a time. The removal is based on
6503 * the remove_entry parameter. This function will remove rule for a given
6504 * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6505 */
6506int
6507ice_rem_adv_rule_by_id(struct ice_hw *hw,
6508 struct ice_rule_query_data *remove_entry)
6509{
6510 struct ice_adv_fltr_mgmt_list_entry *list_itr;
6511 struct list_head *list_head;
6512 struct ice_adv_rule_info rinfo;
6513 struct ice_switch_info *sw;
6514
6515 sw = hw->switch_info;
6516 if (!sw->recp_list[remove_entry->rid].recp_created)
6517 return -EINVAL;
6518 list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6519 list_for_each_entry(list_itr, list_head, list_entry) {
6520 if (list_itr->rule_info.fltr_rule_id ==
6521 remove_entry->rule_id) {
6522 rinfo = list_itr->rule_info;
6523 rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6524 return ice_rem_adv_rule(hw, list_itr->lkups,
6525 list_itr->lkups_cnt, &rinfo);
6526 }
6527 }
6528 /* either list is empty or unable to find rule */
6529 return -ENOENT;
6530}
6531
6532/**
6533 * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6534 * @hw: pointer to the hardware structure
6535 * @vsi_handle: driver VSI handle
6536 * @list_head: list for which filters need to be replayed
6537 *
6538 * Replay the advanced rule for the given VSI.
6539 */
6540static int
6541ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6542 struct list_head *list_head)
6543{
6544 struct ice_rule_query_data added_entry = { 0 };
6545 struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6546 int status = 0;
6547
6548 if (list_empty(list_head))
6549 return status;
6550 list_for_each_entry(adv_fltr, list_head, list_entry) {
6551 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6552 u16 lk_cnt = adv_fltr->lkups_cnt;
6553
6554 if (vsi_handle != rinfo->sw_act.vsi_handle)
6555 continue;
6556 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6557 &added_entry);
6558 if (status)
6559 break;
6560 }
6561 return status;
6562}
6563
6564/**
6565 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6566 * @hw: pointer to the hardware structure
6567 * @vsi_handle: driver VSI handle
6568 *
6569 * Replays filters for requested VSI via vsi_handle.
6570 */
6571int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6572{
6573 struct ice_switch_info *sw = hw->switch_info;
6574 int status;
6575 u8 i;
6576
6577 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6578 struct list_head *head;
6579
6580 head = &sw->recp_list[i].filt_replay_rules;
6581 if (!sw->recp_list[i].adv_rule)
6582 status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6583 else
6584 status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6585 if (status)
6586 return status;
6587 }
6588 return status;
6589}
6590
6591/**
6592 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6593 * @hw: pointer to the HW struct
6594 *
6595 * Deletes the filter replay rules.
6596 */
6597void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6598{
6599 struct ice_switch_info *sw = hw->switch_info;
6600 u8 i;
6601
6602 if (!sw)
6603 return;
6604
6605 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6606 if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6607 struct list_head *l_head;
6608
6609 l_head = &sw->recp_list[i].filt_replay_rules;
6610 if (!sw->recp_list[i].adv_rule)
6611 ice_rem_sw_rule_info(hw, l_head);
6612 else
6613 ice_rem_adv_rule_info(hw, l_head);
6614 }
6615 }
6616}