Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/net/intel/libie/rx.h>
5
6#include "iavf.h"
7#include "iavf_prototype.h"
8/* All iavf tracepoints are defined by the include below, which must
9 * be included exactly once across the whole kernel with
10 * CREATE_TRACE_POINTS defined
11 */
12#define CREATE_TRACE_POINTS
13#include "iavf_trace.h"
14
15static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17static int iavf_close(struct net_device *netdev);
18static void iavf_init_get_resources(struct iavf_adapter *adapter);
19static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21char iavf_driver_name[] = "iavf";
22static const char iavf_driver_string[] =
23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25static const char iavf_copyright[] =
26 "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28/* iavf_pci_tbl - PCI Device ID Table
29 *
30 * Wildcard entries (PCI_ANY_ID) should come last
31 * Last entry must be all 0s
32 *
33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34 * Class, Class Mask, private data (not used) }
35 */
36static const struct pci_device_id iavf_pci_tbl[] = {
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 /* required last entry */
42 {0, }
43};
44
45MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47MODULE_ALIAS("i40evf");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_IMPORT_NS("LIBETH");
50MODULE_IMPORT_NS("LIBIE");
51MODULE_LICENSE("GPL v2");
52
53static const struct net_device_ops iavf_netdev_ops;
54
55int iavf_status_to_errno(enum iavf_status status)
56{
57 switch (status) {
58 case IAVF_SUCCESS:
59 return 0;
60 case IAVF_ERR_PARAM:
61 case IAVF_ERR_MAC_TYPE:
62 case IAVF_ERR_INVALID_MAC_ADDR:
63 case IAVF_ERR_INVALID_LINK_SETTINGS:
64 case IAVF_ERR_INVALID_PD_ID:
65 case IAVF_ERR_INVALID_QP_ID:
66 case IAVF_ERR_INVALID_CQ_ID:
67 case IAVF_ERR_INVALID_CEQ_ID:
68 case IAVF_ERR_INVALID_AEQ_ID:
69 case IAVF_ERR_INVALID_SIZE:
70 case IAVF_ERR_INVALID_ARP_INDEX:
71 case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 case IAVF_ERR_INVALID_FRAG_COUNT:
74 case IAVF_ERR_INVALID_ALIGNMENT:
75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 case IAVF_ERR_INVALID_VF_ID:
78 case IAVF_ERR_INVALID_HMCFN_ID:
79 case IAVF_ERR_INVALID_PBLE_INDEX:
80 case IAVF_ERR_INVALID_SD_INDEX:
81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 case IAVF_ERR_INVALID_SD_TYPE:
83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 return -EINVAL;
87 case IAVF_ERR_NVM:
88 case IAVF_ERR_NVM_CHECKSUM:
89 case IAVF_ERR_PHY:
90 case IAVF_ERR_CONFIG:
91 case IAVF_ERR_UNKNOWN_PHY:
92 case IAVF_ERR_LINK_SETUP:
93 case IAVF_ERR_ADAPTER_STOPPED:
94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 case IAVF_ERR_RESET_FAILED:
97 case IAVF_ERR_BAD_PTR:
98 case IAVF_ERR_SWFW_SYNC:
99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 case IAVF_ERR_QUEUE_EMPTY:
101 case IAVF_ERR_FLUSHED_QUEUE:
102 case IAVF_ERR_OPCODE_MISMATCH:
103 case IAVF_ERR_CQP_COMPL_ERROR:
104 case IAVF_ERR_BACKING_PAGE_ERROR:
105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 case IAVF_ERR_MEMCPY_FAILED:
107 case IAVF_ERR_SRQ_ENABLED:
108 case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 case IAVF_ERR_ADMIN_QUEUE_FULL:
110 case IAVF_ERR_BAD_RDMA_CQE:
111 case IAVF_ERR_NVM_BLANK_MODE:
112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 case IAVF_ERR_DIAG_TEST_FAILED:
114 case IAVF_ERR_FIRMWARE_API_VERSION:
115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 return -EIO;
117 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 return -ENODEV;
119 case IAVF_ERR_NO_AVAILABLE_VSI:
120 case IAVF_ERR_RING_FULL:
121 return -ENOSPC;
122 case IAVF_ERR_NO_MEMORY:
123 return -ENOMEM;
124 case IAVF_ERR_TIMEOUT:
125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 return -ETIMEDOUT;
127 case IAVF_ERR_NOT_IMPLEMENTED:
128 case IAVF_NOT_SUPPORTED:
129 return -EOPNOTSUPP;
130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 return -EALREADY;
132 case IAVF_ERR_NOT_READY:
133 return -EBUSY;
134 case IAVF_ERR_BUF_TOO_SHORT:
135 return -EMSGSIZE;
136 }
137
138 return -EIO;
139}
140
141int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142{
143 switch (v_status) {
144 case VIRTCHNL_STATUS_SUCCESS:
145 return 0;
146 case VIRTCHNL_STATUS_ERR_PARAM:
147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 return -EINVAL;
149 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 return -ENOMEM;
151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 return -EIO;
155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 return -EOPNOTSUPP;
157 }
158
159 return -EIO;
160}
161
162/**
163 * iavf_pdev_to_adapter - go from pci_dev to adapter
164 * @pdev: pci_dev pointer
165 */
166static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167{
168 return netdev_priv(pci_get_drvdata(pdev));
169}
170
171/**
172 * iavf_is_reset_in_progress - Check if a reset is in progress
173 * @adapter: board private structure
174 */
175static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176{
177 if (adapter->state == __IAVF_RESETTING ||
178 adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 IAVF_FLAG_RESET_NEEDED))
180 return true;
181
182 return false;
183}
184
185/**
186 * iavf_wait_for_reset - Wait for reset to finish.
187 * @adapter: board private structure
188 *
189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190 */
191int iavf_wait_for_reset(struct iavf_adapter *adapter)
192{
193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 !iavf_is_reset_in_progress(adapter),
195 msecs_to_jiffies(5000));
196
197 /* If ret < 0 then it means wait was interrupted.
198 * If ret == 0 then it means we got a timeout while waiting
199 * for reset to finish.
200 * If ret > 0 it means reset has finished.
201 */
202 if (ret > 0)
203 return 0;
204 else if (ret < 0)
205 return -EINTR;
206 else
207 return -EBUSY;
208}
209
210/**
211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212 * @hw: pointer to the HW structure
213 * @mem: ptr to mem struct to fill out
214 * @size: size of memory requested
215 * @alignment: what to align the allocation to
216 **/
217enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 struct iavf_dma_mem *mem,
219 u64 size, u32 alignment)
220{
221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223 if (!mem)
224 return IAVF_ERR_PARAM;
225
226 mem->size = ALIGN(size, alignment);
227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 if (mem->va)
230 return 0;
231 else
232 return IAVF_ERR_NO_MEMORY;
233}
234
235/**
236 * iavf_free_dma_mem - wrapper for DMA memory freeing
237 * @hw: pointer to the HW structure
238 * @mem: ptr to mem struct to free
239 **/
240enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241{
242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244 if (!mem || !mem->va)
245 return IAVF_ERR_PARAM;
246 dma_free_coherent(&adapter->pdev->dev, mem->size,
247 mem->va, (dma_addr_t)mem->pa);
248 return 0;
249}
250
251/**
252 * iavf_allocate_virt_mem - virt memory alloc wrapper
253 * @hw: pointer to the HW structure
254 * @mem: ptr to mem struct to fill out
255 * @size: size of memory requested
256 **/
257enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 struct iavf_virt_mem *mem, u32 size)
259{
260 if (!mem)
261 return IAVF_ERR_PARAM;
262
263 mem->size = size;
264 mem->va = kzalloc(size, GFP_KERNEL);
265
266 if (mem->va)
267 return 0;
268 else
269 return IAVF_ERR_NO_MEMORY;
270}
271
272/**
273 * iavf_free_virt_mem - virt memory free wrapper
274 * @hw: pointer to the HW structure
275 * @mem: ptr to mem struct to free
276 **/
277void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278{
279 kfree(mem->va);
280}
281
282/**
283 * iavf_schedule_reset - Set the flags and schedule a reset event
284 * @adapter: board private structure
285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286 **/
287void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288{
289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 !(adapter->flags &
291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 adapter->flags |= flags;
293 queue_work(adapter->wq, &adapter->reset_task);
294 }
295}
296
297/**
298 * iavf_schedule_aq_request - Set the flags and schedule aq request
299 * @adapter: board private structure
300 * @flags: requested aq flags
301 **/
302void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303{
304 adapter->aq_required |= flags;
305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306}
307
308/**
309 * iavf_tx_timeout - Respond to a Tx Hang
310 * @netdev: network interface device structure
311 * @txqueue: queue number that is timing out
312 **/
313static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314{
315 struct iavf_adapter *adapter = netdev_priv(netdev);
316
317 adapter->tx_timeout_count++;
318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319}
320
321/**
322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323 * @adapter: board private structure
324 **/
325static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326{
327 struct iavf_hw *hw = &adapter->hw;
328
329 if (!adapter->msix_entries)
330 return;
331
332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334 iavf_flush(hw);
335
336 synchronize_irq(adapter->msix_entries[0].vector);
337}
338
339/**
340 * iavf_misc_irq_enable - Enable default interrupt generation settings
341 * @adapter: board private structure
342 **/
343static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344{
345 struct iavf_hw *hw = &adapter->hw;
346
347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351 iavf_flush(hw);
352}
353
354/**
355 * iavf_irq_disable - Mask off interrupt generation on the NIC
356 * @adapter: board private structure
357 **/
358static void iavf_irq_disable(struct iavf_adapter *adapter)
359{
360 int i;
361 struct iavf_hw *hw = &adapter->hw;
362
363 if (!adapter->msix_entries)
364 return;
365
366 for (i = 1; i < adapter->num_msix_vectors; i++) {
367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 synchronize_irq(adapter->msix_entries[i].vector);
369 }
370 iavf_flush(hw);
371}
372
373/**
374 * iavf_irq_enable_queues - Enable interrupt for all queues
375 * @adapter: board private structure
376 **/
377static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378{
379 struct iavf_hw *hw = &adapter->hw;
380 int i;
381
382 for (i = 1; i < adapter->num_msix_vectors; i++) {
383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 }
387}
388
389/**
390 * iavf_irq_enable - Enable default interrupt generation settings
391 * @adapter: board private structure
392 * @flush: boolean value whether to run rd32()
393 **/
394void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395{
396 struct iavf_hw *hw = &adapter->hw;
397
398 iavf_misc_irq_enable(adapter);
399 iavf_irq_enable_queues(adapter);
400
401 if (flush)
402 iavf_flush(hw);
403}
404
405/**
406 * iavf_msix_aq - Interrupt handler for vector 0
407 * @irq: interrupt number
408 * @data: pointer to netdev
409 **/
410static irqreturn_t iavf_msix_aq(int irq, void *data)
411{
412 struct net_device *netdev = data;
413 struct iavf_adapter *adapter = netdev_priv(netdev);
414 struct iavf_hw *hw = &adapter->hw;
415
416 /* handle non-queue interrupts, these reads clear the registers */
417 rd32(hw, IAVF_VFINT_ICR01);
418 rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420 if (adapter->state != __IAVF_REMOVE)
421 /* schedule work on the private workqueue */
422 queue_work(adapter->wq, &adapter->adminq_task);
423
424 return IRQ_HANDLED;
425}
426
427/**
428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429 * @irq: interrupt number
430 * @data: pointer to a q_vector
431 **/
432static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433{
434 struct iavf_q_vector *q_vector = data;
435
436 if (!q_vector->tx.ring && !q_vector->rx.ring)
437 return IRQ_HANDLED;
438
439 napi_schedule_irqoff(&q_vector->napi);
440
441 return IRQ_HANDLED;
442}
443
444/**
445 * iavf_map_vector_to_rxq - associate irqs with rx queues
446 * @adapter: board private structure
447 * @v_idx: interrupt number
448 * @r_idx: queue number
449 **/
450static void
451iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452{
453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 struct iavf_hw *hw = &adapter->hw;
456
457 rx_ring->q_vector = q_vector;
458 rx_ring->next = q_vector->rx.ring;
459 rx_ring->vsi = &adapter->vsi;
460 q_vector->rx.ring = rx_ring;
461 q_vector->rx.count++;
462 q_vector->rx.next_update = jiffies + 1;
463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 q_vector->ring_mask |= BIT(r_idx);
465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 q_vector->rx.current_itr >> 1);
467 q_vector->rx.current_itr = q_vector->rx.target_itr;
468}
469
470/**
471 * iavf_map_vector_to_txq - associate irqs with tx queues
472 * @adapter: board private structure
473 * @v_idx: interrupt number
474 * @t_idx: queue number
475 **/
476static void
477iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478{
479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 struct iavf_hw *hw = &adapter->hw;
482
483 tx_ring->q_vector = q_vector;
484 tx_ring->next = q_vector->tx.ring;
485 tx_ring->vsi = &adapter->vsi;
486 q_vector->tx.ring = tx_ring;
487 q_vector->tx.count++;
488 q_vector->tx.next_update = jiffies + 1;
489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 q_vector->num_ringpairs++;
491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 q_vector->tx.target_itr >> 1);
493 q_vector->tx.current_itr = q_vector->tx.target_itr;
494}
495
496/**
497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498 * @adapter: board private structure to initialize
499 *
500 * This function maps descriptor rings to the queue-specific vectors
501 * we were allotted through the MSI-X enabling code. Ideally, we'd have
502 * one vector per ring/queue, but on a constrained vector budget, we
503 * group the rings as "efficiently" as possible. You would add new
504 * mapping configurations in here.
505 **/
506static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507{
508 int rings_remaining = adapter->num_active_queues;
509 int ridx = 0, vidx = 0;
510 int q_vectors;
511
512 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514 for (; ridx < rings_remaining; ridx++) {
515 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518 /* In the case where we have more queues than vectors, continue
519 * round-robin on vectors until all queues are mapped.
520 */
521 if (++vidx >= q_vectors)
522 vidx = 0;
523 }
524
525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526}
527
528/**
529 * iavf_irq_affinity_notify - Callback for affinity changes
530 * @notify: context as to what irq was changed
531 * @mask: the new affinity mask
532 *
533 * This is a callback function used by the irq_set_affinity_notifier function
534 * so that we may register to receive changes to the irq affinity masks.
535 **/
536static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 const cpumask_t *mask)
538{
539 struct iavf_q_vector *q_vector =
540 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542 cpumask_copy(&q_vector->affinity_mask, mask);
543}
544
545/**
546 * iavf_irq_affinity_release - Callback for affinity notifier release
547 * @ref: internal core kernel usage
548 *
549 * This is a callback function used by the irq_set_affinity_notifier function
550 * to inform the current notification subscriber that they will no longer
551 * receive notifications.
552 **/
553static void iavf_irq_affinity_release(struct kref *ref) {}
554
555/**
556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557 * @adapter: board private structure
558 * @basename: device basename
559 *
560 * Allocates MSI-X vectors for tx and rx handling, and requests
561 * interrupts from the kernel.
562 **/
563static int
564iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565{
566 unsigned int vector, q_vectors;
567 unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 int irq_num, err;
569 int cpu;
570
571 iavf_irq_disable(adapter);
572 /* Decrement for Other and TCP Timer vectors */
573 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575 for (vector = 0; vector < q_vectors; vector++) {
576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580 if (q_vector->tx.ring && q_vector->rx.ring) {
581 snprintf(q_vector->name, sizeof(q_vector->name),
582 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 tx_int_idx++;
584 } else if (q_vector->rx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 } else if (q_vector->tx.ring) {
588 snprintf(q_vector->name, sizeof(q_vector->name),
589 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 } else {
591 /* skip this unused q_vector */
592 continue;
593 }
594 err = request_irq(irq_num,
595 iavf_msix_clean_rings,
596 0,
597 q_vector->name,
598 q_vector);
599 if (err) {
600 dev_info(&adapter->pdev->dev,
601 "Request_irq failed, error: %d\n", err);
602 goto free_queue_irqs;
603 }
604 /* register for affinity change notifications */
605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 q_vector->affinity_notify.release =
607 iavf_irq_affinity_release;
608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 /* Spread the IRQ affinity hints across online CPUs. Note that
610 * get_cpu_mask returns a mask with a permanent lifetime so
611 * it's safe to use as a hint for irq_update_affinity_hint.
612 */
613 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 }
616
617 return 0;
618
619free_queue_irqs:
620 while (vector) {
621 vector--;
622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 irq_set_affinity_notifier(irq_num, NULL);
624 irq_update_affinity_hint(irq_num, NULL);
625 free_irq(irq_num, &adapter->q_vectors[vector]);
626 }
627 return err;
628}
629
630/**
631 * iavf_request_misc_irq - Initialize MSI-X interrupts
632 * @adapter: board private structure
633 *
634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635 * vector is only for the admin queue, and stays active even when the netdev
636 * is closed.
637 **/
638static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639{
640 struct net_device *netdev = adapter->netdev;
641 int err;
642
643 snprintf(adapter->misc_vector_name,
644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 dev_name(&adapter->pdev->dev));
646 err = request_irq(adapter->msix_entries[0].vector,
647 &iavf_msix_aq, 0,
648 adapter->misc_vector_name, netdev);
649 if (err) {
650 dev_err(&adapter->pdev->dev,
651 "request_irq for %s failed: %d\n",
652 adapter->misc_vector_name, err);
653 free_irq(adapter->msix_entries[0].vector, netdev);
654 }
655 return err;
656}
657
658/**
659 * iavf_free_traffic_irqs - Free MSI-X interrupts
660 * @adapter: board private structure
661 *
662 * Frees all MSI-X vectors other than 0.
663 **/
664static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665{
666 int vector, irq_num, q_vectors;
667
668 if (!adapter->msix_entries)
669 return;
670
671 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673 for (vector = 0; vector < q_vectors; vector++) {
674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 irq_set_affinity_notifier(irq_num, NULL);
676 irq_update_affinity_hint(irq_num, NULL);
677 free_irq(irq_num, &adapter->q_vectors[vector]);
678 }
679}
680
681/**
682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683 * @adapter: board private structure
684 *
685 * Frees MSI-X vector 0.
686 **/
687static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688{
689 struct net_device *netdev = adapter->netdev;
690
691 if (!adapter->msix_entries)
692 return;
693
694 free_irq(adapter->msix_entries[0].vector, netdev);
695}
696
697/**
698 * iavf_configure_tx - Configure Transmit Unit after Reset
699 * @adapter: board private structure
700 *
701 * Configure the Tx unit of the MAC after a reset.
702 **/
703static void iavf_configure_tx(struct iavf_adapter *adapter)
704{
705 struct iavf_hw *hw = &adapter->hw;
706 int i;
707
708 for (i = 0; i < adapter->num_active_queues; i++)
709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710}
711
712/**
713 * iavf_configure_rx - Configure Receive Unit after Reset
714 * @adapter: board private structure
715 *
716 * Configure the Rx unit of the MAC after a reset.
717 **/
718static void iavf_configure_rx(struct iavf_adapter *adapter)
719{
720 struct iavf_hw *hw = &adapter->hw;
721
722 for (u32 i = 0; i < adapter->num_active_queues; i++)
723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724}
725
726/**
727 * iavf_find_vlan - Search filter list for specific vlan filter
728 * @adapter: board private structure
729 * @vlan: vlan tag
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734static struct
735iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 struct iavf_vlan vlan)
737{
738 struct iavf_vlan_filter *f;
739
740 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 if (f->vlan.vid == vlan.vid &&
742 f->vlan.tpid == vlan.tpid)
743 return f;
744 }
745
746 return NULL;
747}
748
749/**
750 * iavf_add_vlan - Add a vlan filter to the list
751 * @adapter: board private structure
752 * @vlan: VLAN tag
753 *
754 * Returns ptr to the filter object or NULL when no memory available.
755 **/
756static struct
757iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759{
760 struct iavf_vlan_filter *f = NULL;
761
762 spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764 f = iavf_find_vlan(adapter, vlan);
765 if (!f) {
766 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 if (!f)
768 goto clearout;
769
770 f->vlan = vlan;
771
772 list_add_tail(&f->list, &adapter->vlan_filter_list);
773 f->state = IAVF_VLAN_ADD;
774 adapter->num_vlan_filters++;
775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 } else if (f->state == IAVF_VLAN_REMOVE) {
777 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
778 * We can safely only change the state here.
779 */
780 f->state = IAVF_VLAN_ACTIVE;
781 }
782
783clearout:
784 spin_unlock_bh(&adapter->mac_vlan_list_lock);
785 return f;
786}
787
788/**
789 * iavf_del_vlan - Remove a vlan filter from the list
790 * @adapter: board private structure
791 * @vlan: VLAN tag
792 **/
793static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
794{
795 struct iavf_vlan_filter *f;
796
797 spin_lock_bh(&adapter->mac_vlan_list_lock);
798
799 f = iavf_find_vlan(adapter, vlan);
800 if (f) {
801 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
802 * Remove it from the list.
803 */
804 if (f->state == IAVF_VLAN_ADD) {
805 list_del(&f->list);
806 kfree(f);
807 adapter->num_vlan_filters--;
808 } else {
809 f->state = IAVF_VLAN_REMOVE;
810 iavf_schedule_aq_request(adapter,
811 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
812 }
813 }
814
815 spin_unlock_bh(&adapter->mac_vlan_list_lock);
816}
817
818/**
819 * iavf_restore_filters
820 * @adapter: board private structure
821 *
822 * Restore existing non MAC filters when VF netdev comes back up
823 **/
824static void iavf_restore_filters(struct iavf_adapter *adapter)
825{
826 struct iavf_vlan_filter *f;
827
828 /* re-add all VLAN filters */
829 spin_lock_bh(&adapter->mac_vlan_list_lock);
830
831 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
832 if (f->state == IAVF_VLAN_INACTIVE)
833 f->state = IAVF_VLAN_ADD;
834 }
835
836 spin_unlock_bh(&adapter->mac_vlan_list_lock);
837 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
838}
839
840/**
841 * iavf_get_num_vlans_added - get number of VLANs added
842 * @adapter: board private structure
843 */
844u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
845{
846 return adapter->num_vlan_filters;
847}
848
849/**
850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
851 * @adapter: board private structure
852 *
853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
854 * do not impose a limit as that maintains current behavior and for
855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
856 **/
857static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
858{
859 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
860 * never been a limit on the VF driver side
861 */
862 if (VLAN_ALLOWED(adapter))
863 return VLAN_N_VID;
864 else if (VLAN_V2_ALLOWED(adapter))
865 return adapter->vlan_v2_caps.filtering.max_filters;
866
867 return 0;
868}
869
870/**
871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
872 * @adapter: board private structure
873 **/
874static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
875{
876 if (iavf_get_num_vlans_added(adapter) <
877 iavf_get_max_vlans_allowed(adapter))
878 return false;
879
880 return true;
881}
882
883/**
884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
885 * @netdev: network device struct
886 * @proto: unused protocol data
887 * @vid: VLAN tag
888 **/
889static int iavf_vlan_rx_add_vid(struct net_device *netdev,
890 __always_unused __be16 proto, u16 vid)
891{
892 struct iavf_adapter *adapter = netdev_priv(netdev);
893
894 /* Do not track VLAN 0 filter, always added by the PF on VF init */
895 if (!vid)
896 return 0;
897
898 if (!VLAN_FILTERING_ALLOWED(adapter))
899 return -EIO;
900
901 if (iavf_max_vlans_added(adapter)) {
902 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
903 iavf_get_max_vlans_allowed(adapter));
904 return -EIO;
905 }
906
907 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
908 return -ENOMEM;
909
910 return 0;
911}
912
913/**
914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
915 * @netdev: network device struct
916 * @proto: unused protocol data
917 * @vid: VLAN tag
918 **/
919static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
920 __always_unused __be16 proto, u16 vid)
921{
922 struct iavf_adapter *adapter = netdev_priv(netdev);
923
924 /* We do not track VLAN 0 filter */
925 if (!vid)
926 return 0;
927
928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 return 0;
930}
931
932/**
933 * iavf_find_filter - Search filter list for specific mac filter
934 * @adapter: board private structure
935 * @macaddr: the MAC address
936 *
937 * Returns ptr to the filter object or NULL. Must be called while holding the
938 * mac_vlan_list_lock.
939 **/
940static struct
941iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 const u8 *macaddr)
943{
944 struct iavf_mac_filter *f;
945
946 if (!macaddr)
947 return NULL;
948
949 list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 if (ether_addr_equal(macaddr, f->macaddr))
951 return f;
952 }
953 return NULL;
954}
955
956/**
957 * iavf_add_filter - Add a mac filter to the filter list
958 * @adapter: board private structure
959 * @macaddr: the MAC address
960 *
961 * Returns ptr to the filter object or NULL when no memory available.
962 **/
963struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 const u8 *macaddr)
965{
966 struct iavf_mac_filter *f;
967
968 if (!macaddr)
969 return NULL;
970
971 f = iavf_find_filter(adapter, macaddr);
972 if (!f) {
973 f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 if (!f)
975 return f;
976
977 ether_addr_copy(f->macaddr, macaddr);
978
979 list_add_tail(&f->list, &adapter->mac_filter_list);
980 f->add = true;
981 f->add_handled = false;
982 f->is_new_mac = true;
983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 } else {
986 f->remove = false;
987 }
988
989 return f;
990}
991
992/**
993 * iavf_replace_primary_mac - Replace current primary address
994 * @adapter: board private structure
995 * @new_mac: new MAC address to be applied
996 *
997 * Replace current dev_addr and send request to PF for removal of previous
998 * primary MAC address filter and addition of new primary MAC filter.
999 * Return 0 for success, -ENOMEM for failure.
1000 *
1001 * Do not call this with mac_vlan_list_lock!
1002 **/
1003static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 const u8 *new_mac)
1005{
1006 struct iavf_hw *hw = &adapter->hw;
1007 struct iavf_mac_filter *new_f;
1008 struct iavf_mac_filter *old_f;
1009
1010 spin_lock_bh(&adapter->mac_vlan_list_lock);
1011
1012 new_f = iavf_add_filter(adapter, new_mac);
1013 if (!new_f) {
1014 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 return -ENOMEM;
1016 }
1017
1018 old_f = iavf_find_filter(adapter, hw->mac.addr);
1019 if (old_f) {
1020 old_f->is_primary = false;
1021 old_f->remove = true;
1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 }
1024 /* Always send the request to add if changing primary MAC,
1025 * even if filter is already present on the list
1026 */
1027 new_f->is_primary = true;
1028 new_f->add = true;
1029 ether_addr_copy(hw->mac.addr, new_mac);
1030
1031 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032
1033 /* schedule the watchdog task to immediately process the request */
1034 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035 return 0;
1036}
1037
1038/**
1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040 * @netdev: network interface device structure
1041 * @macaddr: MAC address to set
1042 *
1043 * Returns true on success, false on failure
1044 */
1045static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046 const u8 *macaddr)
1047{
1048 struct iavf_adapter *adapter = netdev_priv(netdev);
1049 struct iavf_mac_filter *f;
1050 bool ret = false;
1051
1052 spin_lock_bh(&adapter->mac_vlan_list_lock);
1053
1054 f = iavf_find_filter(adapter, macaddr);
1055
1056 if (!f || (!f->add && f->add_handled))
1057 ret = true;
1058
1059 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060
1061 return ret;
1062}
1063
1064/**
1065 * iavf_set_mac - NDO callback to set port MAC address
1066 * @netdev: network interface device structure
1067 * @p: pointer to an address structure
1068 *
1069 * Returns 0 on success, negative on failure
1070 */
1071static int iavf_set_mac(struct net_device *netdev, void *p)
1072{
1073 struct iavf_adapter *adapter = netdev_priv(netdev);
1074 struct sockaddr *addr = p;
1075 int ret;
1076
1077 if (!is_valid_ether_addr(addr->sa_data))
1078 return -EADDRNOTAVAIL;
1079
1080 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081
1082 if (ret)
1083 return ret;
1084
1085 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086 iavf_is_mac_set_handled(netdev, addr->sa_data),
1087 msecs_to_jiffies(2500));
1088
1089 /* If ret < 0 then it means wait was interrupted.
1090 * If ret == 0 then it means we got a timeout.
1091 * else it means we got response for set MAC from PF,
1092 * check if netdev MAC was updated to requested MAC,
1093 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094 */
1095 if (ret < 0)
1096 return ret;
1097
1098 if (!ret)
1099 return -EAGAIN;
1100
1101 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102 return -EACCES;
1103
1104 return 0;
1105}
1106
1107/**
1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109 * @netdev: the netdevice
1110 * @addr: address to add
1111 *
1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114 */
1115static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116{
1117 struct iavf_adapter *adapter = netdev_priv(netdev);
1118
1119 if (iavf_add_filter(adapter, addr))
1120 return 0;
1121 else
1122 return -ENOMEM;
1123}
1124
1125/**
1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127 * @netdev: the netdevice
1128 * @addr: address to add
1129 *
1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132 */
1133static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134{
1135 struct iavf_adapter *adapter = netdev_priv(netdev);
1136 struct iavf_mac_filter *f;
1137
1138 /* Under some circumstances, we might receive a request to delete
1139 * our own device address from our uc list. Because we store the
1140 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141 * such requests and not delete our device address from this list.
1142 */
1143 if (ether_addr_equal(addr, netdev->dev_addr))
1144 return 0;
1145
1146 f = iavf_find_filter(adapter, addr);
1147 if (f) {
1148 f->remove = true;
1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150 }
1151 return 0;
1152}
1153
1154/**
1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156 * @adapter: device specific adapter
1157 */
1158bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159{
1160 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161 (IFF_PROMISC | IFF_ALLMULTI);
1162}
1163
1164/**
1165 * iavf_set_rx_mode - NDO callback to set the netdev filters
1166 * @netdev: network interface device structure
1167 **/
1168static void iavf_set_rx_mode(struct net_device *netdev)
1169{
1170 struct iavf_adapter *adapter = netdev_priv(netdev);
1171
1172 spin_lock_bh(&adapter->mac_vlan_list_lock);
1173 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176
1177 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178 if (iavf_promiscuous_mode_changed(adapter))
1179 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181}
1182
1183/**
1184 * iavf_napi_enable_all - enable NAPI on all queue vectors
1185 * @adapter: board private structure
1186 **/
1187static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188{
1189 int q_idx;
1190 struct iavf_q_vector *q_vector;
1191 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192
1193 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194 struct napi_struct *napi;
1195
1196 q_vector = &adapter->q_vectors[q_idx];
1197 napi = &q_vector->napi;
1198 napi_enable(napi);
1199 }
1200}
1201
1202/**
1203 * iavf_napi_disable_all - disable NAPI on all queue vectors
1204 * @adapter: board private structure
1205 **/
1206static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207{
1208 int q_idx;
1209 struct iavf_q_vector *q_vector;
1210 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211
1212 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213 q_vector = &adapter->q_vectors[q_idx];
1214 napi_disable(&q_vector->napi);
1215 }
1216}
1217
1218/**
1219 * iavf_configure - set up transmit and receive data structures
1220 * @adapter: board private structure
1221 **/
1222static void iavf_configure(struct iavf_adapter *adapter)
1223{
1224 struct net_device *netdev = adapter->netdev;
1225 int i;
1226
1227 iavf_set_rx_mode(netdev);
1228
1229 iavf_configure_tx(adapter);
1230 iavf_configure_rx(adapter);
1231 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232
1233 for (i = 0; i < adapter->num_active_queues; i++) {
1234 struct iavf_ring *ring = &adapter->rx_rings[i];
1235
1236 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237 }
1238}
1239
1240/**
1241 * iavf_up_complete - Finish the last steps of bringing up a connection
1242 * @adapter: board private structure
1243 *
1244 * Expects to be called while holding crit_lock.
1245 **/
1246static void iavf_up_complete(struct iavf_adapter *adapter)
1247{
1248 iavf_change_state(adapter, __IAVF_RUNNING);
1249 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250
1251 iavf_napi_enable_all(adapter);
1252
1253 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254}
1255
1256/**
1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258 * yet and mark other to be removed.
1259 * @adapter: board private structure
1260 **/
1261static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262{
1263 struct iavf_vlan_filter *vlf, *vlftmp;
1264 struct iavf_mac_filter *f, *ftmp;
1265
1266 spin_lock_bh(&adapter->mac_vlan_list_lock);
1267 /* clear the sync flag on all filters */
1268 __dev_uc_unsync(adapter->netdev, NULL);
1269 __dev_mc_unsync(adapter->netdev, NULL);
1270
1271 /* remove all MAC filters */
1272 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273 list) {
1274 if (f->add) {
1275 list_del(&f->list);
1276 kfree(f);
1277 } else {
1278 f->remove = true;
1279 }
1280 }
1281
1282 /* disable all VLAN filters */
1283 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284 list)
1285 vlf->state = IAVF_VLAN_DISABLE;
1286
1287 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288}
1289
1290/**
1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292 * mark other to be removed.
1293 * @adapter: board private structure
1294 **/
1295static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296{
1297 struct iavf_cloud_filter *cf, *cftmp;
1298
1299 /* remove all cloud filters */
1300 spin_lock_bh(&adapter->cloud_filter_list_lock);
1301 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302 list) {
1303 if (cf->add) {
1304 list_del(&cf->list);
1305 kfree(cf);
1306 adapter->num_cloud_filters--;
1307 } else {
1308 cf->del = true;
1309 }
1310 }
1311 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312}
1313
1314/**
1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316 * other to be removed.
1317 * @adapter: board private structure
1318 **/
1319static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320{
1321 struct iavf_fdir_fltr *fdir;
1322
1323 /* remove all Flow Director filters */
1324 spin_lock_bh(&adapter->fdir_fltr_lock);
1325 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327 /* Cancel a request, keep filter as inactive */
1328 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331 /* Disable filters which are active or have a pending
1332 * request to PF to be added
1333 */
1334 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335 }
1336 }
1337 spin_unlock_bh(&adapter->fdir_fltr_lock);
1338}
1339
1340/**
1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342 * other to be removed.
1343 * @adapter: board private structure
1344 **/
1345static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346{
1347 struct iavf_adv_rss *rss, *rsstmp;
1348
1349 /* remove all advance RSS configuration */
1350 spin_lock_bh(&adapter->adv_rss_lock);
1351 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352 list) {
1353 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354 list_del(&rss->list);
1355 kfree(rss);
1356 } else {
1357 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358 }
1359 }
1360 spin_unlock_bh(&adapter->adv_rss_lock);
1361}
1362
1363/**
1364 * iavf_down - Shutdown the connection processing
1365 * @adapter: board private structure
1366 *
1367 * Expects to be called while holding crit_lock.
1368 **/
1369void iavf_down(struct iavf_adapter *adapter)
1370{
1371 struct net_device *netdev = adapter->netdev;
1372
1373 if (adapter->state <= __IAVF_DOWN_PENDING)
1374 return;
1375
1376 netif_carrier_off(netdev);
1377 netif_tx_disable(netdev);
1378 adapter->link_up = false;
1379 iavf_napi_disable_all(adapter);
1380 iavf_irq_disable(adapter);
1381
1382 iavf_clear_mac_vlan_filters(adapter);
1383 iavf_clear_cloud_filters(adapter);
1384 iavf_clear_fdir_filters(adapter);
1385 iavf_clear_adv_rss_conf(adapter);
1386
1387 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388 return;
1389
1390 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391 /* cancel any current operation */
1392 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393 /* Schedule operations to close down the HW. Don't wait
1394 * here for this to complete. The watchdog is still running
1395 * and it will take care of this.
1396 */
1397 if (!list_empty(&adapter->mac_filter_list))
1398 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399 if (!list_empty(&adapter->vlan_filter_list))
1400 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401 if (!list_empty(&adapter->cloud_filter_list))
1402 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403 if (!list_empty(&adapter->fdir_list_head))
1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405 if (!list_empty(&adapter->adv_rss_list_head))
1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407 }
1408
1409 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410}
1411
1412/**
1413 * iavf_acquire_msix_vectors - Setup the MSIX capability
1414 * @adapter: board private structure
1415 * @vectors: number of vectors to request
1416 *
1417 * Work with the OS to set up the MSIX vectors needed.
1418 *
1419 * Returns 0 on success, negative on failure
1420 **/
1421static int
1422iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423{
1424 int err, vector_threshold;
1425
1426 /* We'll want at least 3 (vector_threshold):
1427 * 0) Other (Admin Queue and link, mostly)
1428 * 1) TxQ[0] Cleanup
1429 * 2) RxQ[0] Cleanup
1430 */
1431 vector_threshold = MIN_MSIX_COUNT;
1432
1433 /* The more we get, the more we will assign to Tx/Rx Cleanup
1434 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435 * Right now, we simply care about how many we'll get; we'll
1436 * set them up later while requesting irq's.
1437 */
1438 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439 vector_threshold, vectors);
1440 if (err < 0) {
1441 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442 kfree(adapter->msix_entries);
1443 adapter->msix_entries = NULL;
1444 return err;
1445 }
1446
1447 /* Adjust for only the vectors we'll use, which is minimum
1448 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449 * vectors we were allocated.
1450 */
1451 adapter->num_msix_vectors = err;
1452 return 0;
1453}
1454
1455/**
1456 * iavf_free_queues - Free memory for all rings
1457 * @adapter: board private structure to initialize
1458 *
1459 * Free all of the memory associated with queue pairs.
1460 **/
1461static void iavf_free_queues(struct iavf_adapter *adapter)
1462{
1463 if (!adapter->vsi_res)
1464 return;
1465 adapter->num_active_queues = 0;
1466 kfree(adapter->tx_rings);
1467 adapter->tx_rings = NULL;
1468 kfree(adapter->rx_rings);
1469 adapter->rx_rings = NULL;
1470}
1471
1472/**
1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474 * @adapter: board private structure
1475 *
1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477 * stripped in certain descriptor fields. Instead of checking the offload
1478 * capability bits in the hot path, cache the location the ring specific
1479 * flags.
1480 */
1481void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482{
1483 int i;
1484
1485 for (i = 0; i < adapter->num_active_queues; i++) {
1486 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488
1489 /* prevent multiple L2TAG bits being set after VFR */
1490 tx_ring->flags &=
1491 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493 rx_ring->flags &=
1494 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496
1497 if (VLAN_ALLOWED(adapter)) {
1498 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 } else if (VLAN_V2_ALLOWED(adapter)) {
1501 struct virtchnl_vlan_supported_caps *stripping_support;
1502 struct virtchnl_vlan_supported_caps *insertion_support;
1503
1504 stripping_support =
1505 &adapter->vlan_v2_caps.offloads.stripping_support;
1506 insertion_support =
1507 &adapter->vlan_v2_caps.offloads.insertion_support;
1508
1509 if (stripping_support->outer) {
1510 if (stripping_support->outer &
1511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512 rx_ring->flags |=
1513 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 else if (stripping_support->outer &
1515 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516 rx_ring->flags |=
1517 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518 } else if (stripping_support->inner) {
1519 if (stripping_support->inner &
1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521 rx_ring->flags |=
1522 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523 else if (stripping_support->inner &
1524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525 rx_ring->flags |=
1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527 }
1528
1529 if (insertion_support->outer) {
1530 if (insertion_support->outer &
1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532 tx_ring->flags |=
1533 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 else if (insertion_support->outer &
1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536 tx_ring->flags |=
1537 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538 } else if (insertion_support->inner) {
1539 if (insertion_support->inner &
1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541 tx_ring->flags |=
1542 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543 else if (insertion_support->inner &
1544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545 tx_ring->flags |=
1546 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547 }
1548 }
1549 }
1550}
1551
1552/**
1553 * iavf_alloc_queues - Allocate memory for all rings
1554 * @adapter: board private structure to initialize
1555 *
1556 * We allocate one ring per queue at run-time since we don't know the
1557 * number of queues at compile-time. The polling_netdev array is
1558 * intended for Multiqueue, but should work fine with a single queue.
1559 **/
1560static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561{
1562 int i, num_active_queues;
1563
1564 /* If we're in reset reallocating queues we don't actually know yet for
1565 * certain the PF gave us the number of queues we asked for but we'll
1566 * assume it did. Once basic reset is finished we'll confirm once we
1567 * start negotiating config with PF.
1568 */
1569 if (adapter->num_req_queues)
1570 num_active_queues = adapter->num_req_queues;
1571 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572 adapter->num_tc)
1573 num_active_queues = adapter->ch_config.total_qps;
1574 else
1575 num_active_queues = min_t(int,
1576 adapter->vsi_res->num_queue_pairs,
1577 (int)(num_online_cpus()));
1578
1579
1580 adapter->tx_rings = kcalloc(num_active_queues,
1581 sizeof(struct iavf_ring), GFP_KERNEL);
1582 if (!adapter->tx_rings)
1583 goto err_out;
1584 adapter->rx_rings = kcalloc(num_active_queues,
1585 sizeof(struct iavf_ring), GFP_KERNEL);
1586 if (!adapter->rx_rings)
1587 goto err_out;
1588
1589 for (i = 0; i < num_active_queues; i++) {
1590 struct iavf_ring *tx_ring;
1591 struct iavf_ring *rx_ring;
1592
1593 tx_ring = &adapter->tx_rings[i];
1594
1595 tx_ring->queue_index = i;
1596 tx_ring->netdev = adapter->netdev;
1597 tx_ring->dev = &adapter->pdev->dev;
1598 tx_ring->count = adapter->tx_desc_count;
1599 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602
1603 rx_ring = &adapter->rx_rings[i];
1604 rx_ring->queue_index = i;
1605 rx_ring->netdev = adapter->netdev;
1606 rx_ring->count = adapter->rx_desc_count;
1607 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608 }
1609
1610 adapter->num_active_queues = num_active_queues;
1611
1612 iavf_set_queue_vlan_tag_loc(adapter);
1613
1614 return 0;
1615
1616err_out:
1617 iavf_free_queues(adapter);
1618 return -ENOMEM;
1619}
1620
1621/**
1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623 * @adapter: board private structure to initialize
1624 *
1625 * Attempt to configure the interrupts using the best available
1626 * capabilities of the hardware and the kernel.
1627 **/
1628static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629{
1630 int vector, v_budget;
1631 int pairs = 0;
1632 int err = 0;
1633
1634 if (!adapter->vsi_res) {
1635 err = -EIO;
1636 goto out;
1637 }
1638 pairs = adapter->num_active_queues;
1639
1640 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641 * us much good if we have more vectors than CPUs. However, we already
1642 * limit the total number of queues by the number of CPUs so we do not
1643 * need any further limiting here.
1644 */
1645 v_budget = min_t(int, pairs + NONQ_VECS,
1646 (int)adapter->vf_res->max_vectors);
1647
1648 adapter->msix_entries = kcalloc(v_budget,
1649 sizeof(struct msix_entry), GFP_KERNEL);
1650 if (!adapter->msix_entries) {
1651 err = -ENOMEM;
1652 goto out;
1653 }
1654
1655 for (vector = 0; vector < v_budget; vector++)
1656 adapter->msix_entries[vector].entry = vector;
1657
1658 err = iavf_acquire_msix_vectors(adapter, v_budget);
1659 if (!err)
1660 iavf_schedule_finish_config(adapter);
1661
1662out:
1663 return err;
1664}
1665
1666/**
1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668 * @adapter: board private structure
1669 *
1670 * Return 0 on success, negative on failure
1671 **/
1672static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673{
1674 struct iavf_aqc_get_set_rss_key_data *rss_key =
1675 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676 struct iavf_hw *hw = &adapter->hw;
1677 enum iavf_status status;
1678
1679 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680 /* bail because we already have a command pending */
1681 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682 adapter->current_op);
1683 return -EBUSY;
1684 }
1685
1686 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687 if (status) {
1688 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689 iavf_stat_str(hw, status),
1690 iavf_aq_str(hw, hw->aq.asq_last_status));
1691 return iavf_status_to_errno(status);
1692
1693 }
1694
1695 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696 adapter->rss_lut, adapter->rss_lut_size);
1697 if (status) {
1698 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699 iavf_stat_str(hw, status),
1700 iavf_aq_str(hw, hw->aq.asq_last_status));
1701 return iavf_status_to_errno(status);
1702 }
1703
1704 return 0;
1705
1706}
1707
1708/**
1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710 * @adapter: board private structure
1711 *
1712 * Returns 0 on success, negative on failure
1713 **/
1714static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715{
1716 struct iavf_hw *hw = &adapter->hw;
1717 u32 *dw;
1718 u16 i;
1719
1720 dw = (u32 *)adapter->rss_key;
1721 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723
1724 dw = (u32 *)adapter->rss_lut;
1725 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727
1728 iavf_flush(hw);
1729
1730 return 0;
1731}
1732
1733/**
1734 * iavf_config_rss - Configure RSS keys and lut
1735 * @adapter: board private structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
1739int iavf_config_rss(struct iavf_adapter *adapter)
1740{
1741
1742 if (RSS_PF(adapter)) {
1743 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744 IAVF_FLAG_AQ_SET_RSS_KEY;
1745 return 0;
1746 } else if (RSS_AQ(adapter)) {
1747 return iavf_config_rss_aq(adapter);
1748 } else {
1749 return iavf_config_rss_reg(adapter);
1750 }
1751}
1752
1753/**
1754 * iavf_fill_rss_lut - Fill the lut with default values
1755 * @adapter: board private structure
1756 **/
1757static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758{
1759 u16 i;
1760
1761 for (i = 0; i < adapter->rss_lut_size; i++)
1762 adapter->rss_lut[i] = i % adapter->num_active_queues;
1763}
1764
1765/**
1766 * iavf_init_rss - Prepare for RSS
1767 * @adapter: board private structure
1768 *
1769 * Return 0 on success, negative on failure
1770 **/
1771static int iavf_init_rss(struct iavf_adapter *adapter)
1772{
1773 struct iavf_hw *hw = &adapter->hw;
1774
1775 if (!RSS_PF(adapter)) {
1776 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777 if (adapter->vf_res->vf_cap_flags &
1778 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780 else
1781 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782
1783 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785 }
1786
1787 iavf_fill_rss_lut(adapter);
1788 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789
1790 return iavf_config_rss(adapter);
1791}
1792
1793/**
1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795 * @adapter: board private structure to initialize
1796 *
1797 * We allocate one q_vector per queue interrupt. If allocation fails we
1798 * return -ENOMEM.
1799 **/
1800static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801{
1802 int q_idx = 0, num_q_vectors;
1803 struct iavf_q_vector *q_vector;
1804
1805 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807 GFP_KERNEL);
1808 if (!adapter->q_vectors)
1809 return -ENOMEM;
1810
1811 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812 q_vector = &adapter->q_vectors[q_idx];
1813 q_vector->adapter = adapter;
1814 q_vector->vsi = &adapter->vsi;
1815 q_vector->v_idx = q_idx;
1816 q_vector->reg_idx = q_idx;
1817 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818 netif_napi_add(adapter->netdev, &q_vector->napi,
1819 iavf_napi_poll);
1820 }
1821
1822 return 0;
1823}
1824
1825/**
1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827 * @adapter: board private structure to initialize
1828 *
1829 * This function frees the memory allocated to the q_vectors. In addition if
1830 * NAPI is enabled it will delete any references to the NAPI struct prior
1831 * to freeing the q_vector.
1832 **/
1833static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834{
1835 int q_idx, num_q_vectors;
1836
1837 if (!adapter->q_vectors)
1838 return;
1839
1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841
1842 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844
1845 netif_napi_del(&q_vector->napi);
1846 }
1847 kfree(adapter->q_vectors);
1848 adapter->q_vectors = NULL;
1849}
1850
1851/**
1852 * iavf_reset_interrupt_capability - Reset MSIX setup
1853 * @adapter: board private structure
1854 *
1855 **/
1856static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857{
1858 if (!adapter->msix_entries)
1859 return;
1860
1861 pci_disable_msix(adapter->pdev);
1862 kfree(adapter->msix_entries);
1863 adapter->msix_entries = NULL;
1864}
1865
1866/**
1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868 * @adapter: board private structure to initialize
1869 *
1870 **/
1871static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872{
1873 int err;
1874
1875 err = iavf_alloc_queues(adapter);
1876 if (err) {
1877 dev_err(&adapter->pdev->dev,
1878 "Unable to allocate memory for queues\n");
1879 goto err_alloc_queues;
1880 }
1881
1882 err = iavf_set_interrupt_capability(adapter);
1883 if (err) {
1884 dev_err(&adapter->pdev->dev,
1885 "Unable to setup interrupt capabilities\n");
1886 goto err_set_interrupt;
1887 }
1888
1889 err = iavf_alloc_q_vectors(adapter);
1890 if (err) {
1891 dev_err(&adapter->pdev->dev,
1892 "Unable to allocate memory for queue vectors\n");
1893 goto err_alloc_q_vectors;
1894 }
1895
1896 /* If we've made it so far while ADq flag being ON, then we haven't
1897 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898 * resources have been allocated in the reset path.
1899 * Now we can truly claim that ADq is enabled.
1900 */
1901 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902 adapter->num_tc)
1903 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904 adapter->num_tc);
1905
1906 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908 adapter->num_active_queues);
1909
1910 return 0;
1911err_alloc_q_vectors:
1912 iavf_reset_interrupt_capability(adapter);
1913err_set_interrupt:
1914 iavf_free_queues(adapter);
1915err_alloc_queues:
1916 return err;
1917}
1918
1919/**
1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921 * @adapter: board private structure
1922 **/
1923static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924{
1925 iavf_free_q_vectors(adapter);
1926 iavf_reset_interrupt_capability(adapter);
1927 iavf_free_queues(adapter);
1928}
1929
1930/**
1931 * iavf_free_rss - Free memory used by RSS structs
1932 * @adapter: board private structure
1933 **/
1934static void iavf_free_rss(struct iavf_adapter *adapter)
1935{
1936 kfree(adapter->rss_key);
1937 adapter->rss_key = NULL;
1938
1939 kfree(adapter->rss_lut);
1940 adapter->rss_lut = NULL;
1941}
1942
1943/**
1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945 * @adapter: board private structure
1946 * @running: true if adapter->state == __IAVF_RUNNING
1947 *
1948 * Returns 0 on success, negative on failure
1949 **/
1950static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951{
1952 struct net_device *netdev = adapter->netdev;
1953 int err;
1954
1955 if (running)
1956 iavf_free_traffic_irqs(adapter);
1957 iavf_free_misc_irq(adapter);
1958 iavf_free_interrupt_scheme(adapter);
1959
1960 err = iavf_init_interrupt_scheme(adapter);
1961 if (err)
1962 goto err;
1963
1964 netif_tx_stop_all_queues(netdev);
1965
1966 err = iavf_request_misc_irq(adapter);
1967 if (err)
1968 goto err;
1969
1970 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971
1972 iavf_map_rings_to_vectors(adapter);
1973err:
1974 return err;
1975}
1976
1977/**
1978 * iavf_finish_config - do all netdev work that needs RTNL
1979 * @work: our work_struct
1980 *
1981 * Do work that needs both RTNL and crit_lock.
1982 **/
1983static void iavf_finish_config(struct work_struct *work)
1984{
1985 struct iavf_adapter *adapter;
1986 int pairs, err;
1987
1988 adapter = container_of(work, struct iavf_adapter, finish_config);
1989
1990 /* Always take RTNL first to prevent circular lock dependency;
1991 * The dev->lock is needed to update the queue number
1992 */
1993 rtnl_lock();
1994 mutex_lock(&adapter->netdev->lock);
1995 mutex_lock(&adapter->crit_lock);
1996
1997 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1998 adapter->netdev->reg_state == NETREG_REGISTERED &&
1999 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2000 netdev_update_features(adapter->netdev);
2001 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2002 }
2003
2004 switch (adapter->state) {
2005 case __IAVF_DOWN:
2006 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2007 err = register_netdevice(adapter->netdev);
2008 if (err) {
2009 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2010 err);
2011
2012 /* go back and try again.*/
2013 iavf_free_rss(adapter);
2014 iavf_free_misc_irq(adapter);
2015 iavf_reset_interrupt_capability(adapter);
2016 iavf_change_state(adapter,
2017 __IAVF_INIT_CONFIG_ADAPTER);
2018 goto out;
2019 }
2020 }
2021
2022 /* Set the real number of queues when reset occurs while
2023 * state == __IAVF_DOWN
2024 */
2025 fallthrough;
2026 case __IAVF_RUNNING:
2027 pairs = adapter->num_active_queues;
2028 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2029 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2030 break;
2031
2032 default:
2033 break;
2034 }
2035
2036out:
2037 mutex_unlock(&adapter->crit_lock);
2038 mutex_unlock(&adapter->netdev->lock);
2039 rtnl_unlock();
2040}
2041
2042/**
2043 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2044 * @adapter: board private structure
2045 **/
2046void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2047{
2048 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2049 queue_work(adapter->wq, &adapter->finish_config);
2050}
2051
2052/**
2053 * iavf_process_aq_command - process aq_required flags
2054 * and sends aq command
2055 * @adapter: pointer to iavf adapter structure
2056 *
2057 * Returns 0 on success
2058 * Returns error code if no command was sent
2059 * or error code if the command failed.
2060 **/
2061static int iavf_process_aq_command(struct iavf_adapter *adapter)
2062{
2063 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2064 return iavf_send_vf_config_msg(adapter);
2065 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2066 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2067 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2068 iavf_disable_queues(adapter);
2069 return 0;
2070 }
2071
2072 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2073 iavf_map_queues(adapter);
2074 return 0;
2075 }
2076
2077 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2078 iavf_add_ether_addrs(adapter);
2079 return 0;
2080 }
2081
2082 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2083 iavf_add_vlans(adapter);
2084 return 0;
2085 }
2086
2087 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2088 iavf_del_ether_addrs(adapter);
2089 return 0;
2090 }
2091
2092 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2093 iavf_del_vlans(adapter);
2094 return 0;
2095 }
2096
2097 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2098 iavf_enable_vlan_stripping(adapter);
2099 return 0;
2100 }
2101
2102 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2103 iavf_disable_vlan_stripping(adapter);
2104 return 0;
2105 }
2106
2107 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2108 iavf_cfg_queues_bw(adapter);
2109 return 0;
2110 }
2111
2112 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2113 iavf_get_qos_caps(adapter);
2114 return 0;
2115 }
2116
2117 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2118 iavf_cfg_queues_quanta_size(adapter);
2119 return 0;
2120 }
2121
2122 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2123 iavf_configure_queues(adapter);
2124 return 0;
2125 }
2126
2127 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2128 iavf_enable_queues(adapter);
2129 return 0;
2130 }
2131
2132 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2133 /* This message goes straight to the firmware, not the
2134 * PF, so we don't have to set current_op as we will
2135 * not get a response through the ARQ.
2136 */
2137 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2138 return 0;
2139 }
2140 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2141 iavf_get_hena(adapter);
2142 return 0;
2143 }
2144 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2145 iavf_set_hena(adapter);
2146 return 0;
2147 }
2148 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2149 iavf_set_rss_key(adapter);
2150 return 0;
2151 }
2152 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2153 iavf_set_rss_lut(adapter);
2154 return 0;
2155 }
2156 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2157 iavf_set_rss_hfunc(adapter);
2158 return 0;
2159 }
2160
2161 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2162 iavf_set_promiscuous(adapter);
2163 return 0;
2164 }
2165
2166 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2167 iavf_enable_channels(adapter);
2168 return 0;
2169 }
2170
2171 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2172 iavf_disable_channels(adapter);
2173 return 0;
2174 }
2175 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2176 iavf_add_cloud_filter(adapter);
2177 return 0;
2178 }
2179 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2180 iavf_del_cloud_filter(adapter);
2181 return 0;
2182 }
2183 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2184 iavf_add_fdir_filter(adapter);
2185 return IAVF_SUCCESS;
2186 }
2187 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2188 iavf_del_fdir_filter(adapter);
2189 return IAVF_SUCCESS;
2190 }
2191 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2192 iavf_add_adv_rss_cfg(adapter);
2193 return 0;
2194 }
2195 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2196 iavf_del_adv_rss_cfg(adapter);
2197 return 0;
2198 }
2199 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2200 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2201 return 0;
2202 }
2203 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2204 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2205 return 0;
2206 }
2207 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2208 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2209 return 0;
2210 }
2211 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2212 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2213 return 0;
2214 }
2215 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2216 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2217 return 0;
2218 }
2219 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2220 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2221 return 0;
2222 }
2223 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2224 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2225 return 0;
2226 }
2227 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2228 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2229 return 0;
2230 }
2231
2232 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2233 iavf_request_stats(adapter);
2234 return 0;
2235 }
2236
2237 return -EAGAIN;
2238}
2239
2240/**
2241 * iavf_set_vlan_offload_features - set VLAN offload configuration
2242 * @adapter: board private structure
2243 * @prev_features: previous features used for comparison
2244 * @features: updated features used for configuration
2245 *
2246 * Set the aq_required bit(s) based on the requested features passed in to
2247 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2248 * the watchdog if any changes are requested to expedite the request via
2249 * virtchnl.
2250 **/
2251static void
2252iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2253 netdev_features_t prev_features,
2254 netdev_features_t features)
2255{
2256 bool enable_stripping = true, enable_insertion = true;
2257 u16 vlan_ethertype = 0;
2258 u64 aq_required = 0;
2259
2260 /* keep cases separate because one ethertype for offloads can be
2261 * disabled at the same time as another is disabled, so check for an
2262 * enabled ethertype first, then check for disabled. Default to
2263 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2264 * stripping.
2265 */
2266 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2267 vlan_ethertype = ETH_P_8021AD;
2268 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2269 vlan_ethertype = ETH_P_8021Q;
2270 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2271 vlan_ethertype = ETH_P_8021AD;
2272 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2273 vlan_ethertype = ETH_P_8021Q;
2274 else
2275 vlan_ethertype = ETH_P_8021Q;
2276
2277 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2278 enable_stripping = false;
2279 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2280 enable_insertion = false;
2281
2282 if (VLAN_ALLOWED(adapter)) {
2283 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2284 * stripping via virtchnl. VLAN insertion can be toggled on the
2285 * netdev, but it doesn't require a virtchnl message
2286 */
2287 if (enable_stripping)
2288 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2289 else
2290 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2291
2292 } else if (VLAN_V2_ALLOWED(adapter)) {
2293 switch (vlan_ethertype) {
2294 case ETH_P_8021Q:
2295 if (enable_stripping)
2296 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2297 else
2298 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2299
2300 if (enable_insertion)
2301 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2302 else
2303 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2304 break;
2305 case ETH_P_8021AD:
2306 if (enable_stripping)
2307 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2308 else
2309 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2310
2311 if (enable_insertion)
2312 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2313 else
2314 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2315 break;
2316 }
2317 }
2318
2319 if (aq_required)
2320 iavf_schedule_aq_request(adapter, aq_required);
2321}
2322
2323/**
2324 * iavf_startup - first step of driver startup
2325 * @adapter: board private structure
2326 *
2327 * Function process __IAVF_STARTUP driver state.
2328 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2329 * when fails the state is changed to __IAVF_INIT_FAILED
2330 **/
2331static void iavf_startup(struct iavf_adapter *adapter)
2332{
2333 struct pci_dev *pdev = adapter->pdev;
2334 struct iavf_hw *hw = &adapter->hw;
2335 enum iavf_status status;
2336 int ret;
2337
2338 WARN_ON(adapter->state != __IAVF_STARTUP);
2339
2340 /* driver loaded, probe complete */
2341 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2342 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2343
2344 ret = iavf_check_reset_complete(hw);
2345 if (ret) {
2346 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2347 ret);
2348 goto err;
2349 }
2350 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2351 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2352 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2353 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2354
2355 status = iavf_init_adminq(hw);
2356 if (status) {
2357 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2358 status);
2359 goto err;
2360 }
2361 ret = iavf_send_api_ver(adapter);
2362 if (ret) {
2363 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2364 iavf_shutdown_adminq(hw);
2365 goto err;
2366 }
2367 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2368 return;
2369err:
2370 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2371}
2372
2373/**
2374 * iavf_init_version_check - second step of driver startup
2375 * @adapter: board private structure
2376 *
2377 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2378 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2379 * when fails the state is changed to __IAVF_INIT_FAILED
2380 **/
2381static void iavf_init_version_check(struct iavf_adapter *adapter)
2382{
2383 struct pci_dev *pdev = adapter->pdev;
2384 struct iavf_hw *hw = &adapter->hw;
2385 int err = -EAGAIN;
2386
2387 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2388
2389 if (!iavf_asq_done(hw)) {
2390 dev_err(&pdev->dev, "Admin queue command never completed\n");
2391 iavf_shutdown_adminq(hw);
2392 iavf_change_state(adapter, __IAVF_STARTUP);
2393 goto err;
2394 }
2395
2396 /* aq msg sent, awaiting reply */
2397 err = iavf_verify_api_ver(adapter);
2398 if (err) {
2399 if (err == -EALREADY)
2400 err = iavf_send_api_ver(adapter);
2401 else
2402 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2403 adapter->pf_version.major,
2404 adapter->pf_version.minor,
2405 VIRTCHNL_VERSION_MAJOR,
2406 VIRTCHNL_VERSION_MINOR);
2407 goto err;
2408 }
2409 err = iavf_send_vf_config_msg(adapter);
2410 if (err) {
2411 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2412 err);
2413 goto err;
2414 }
2415 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2416 return;
2417err:
2418 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2419}
2420
2421/**
2422 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2423 * @adapter: board private structure
2424 */
2425int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2426{
2427 int i, num_req_queues = adapter->num_req_queues;
2428 struct iavf_vsi *vsi = &adapter->vsi;
2429
2430 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2431 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2432 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2433 }
2434 if (!adapter->vsi_res) {
2435 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2436 return -ENODEV;
2437 }
2438
2439 if (num_req_queues &&
2440 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2441 /* Problem. The PF gave us fewer queues than what we had
2442 * negotiated in our request. Need a reset to see if we can't
2443 * get back to a working state.
2444 */
2445 dev_err(&adapter->pdev->dev,
2446 "Requested %d queues, but PF only gave us %d.\n",
2447 num_req_queues,
2448 adapter->vsi_res->num_queue_pairs);
2449 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2450 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2451 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2452
2453 return -EAGAIN;
2454 }
2455 adapter->num_req_queues = 0;
2456 adapter->vsi.id = adapter->vsi_res->vsi_id;
2457
2458 adapter->vsi.back = adapter;
2459 adapter->vsi.base_vector = 1;
2460 vsi->netdev = adapter->netdev;
2461 vsi->qs_handle = adapter->vsi_res->qset_handle;
2462 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2463 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2464 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2465 } else {
2466 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2467 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2468 }
2469
2470 return 0;
2471}
2472
2473/**
2474 * iavf_init_get_resources - third step of driver startup
2475 * @adapter: board private structure
2476 *
2477 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2478 * finishes driver initialization procedure.
2479 * When success the state is changed to __IAVF_DOWN
2480 * when fails the state is changed to __IAVF_INIT_FAILED
2481 **/
2482static void iavf_init_get_resources(struct iavf_adapter *adapter)
2483{
2484 struct pci_dev *pdev = adapter->pdev;
2485 struct iavf_hw *hw = &adapter->hw;
2486 int err;
2487
2488 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2489 /* aq msg sent, awaiting reply */
2490 if (!adapter->vf_res) {
2491 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2492 GFP_KERNEL);
2493 if (!adapter->vf_res) {
2494 err = -ENOMEM;
2495 goto err;
2496 }
2497 }
2498 err = iavf_get_vf_config(adapter);
2499 if (err == -EALREADY) {
2500 err = iavf_send_vf_config_msg(adapter);
2501 goto err;
2502 } else if (err == -EINVAL) {
2503 /* We only get -EINVAL if the device is in a very bad
2504 * state or if we've been disabled for previous bad
2505 * behavior. Either way, we're done now.
2506 */
2507 iavf_shutdown_adminq(hw);
2508 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2509 return;
2510 }
2511 if (err) {
2512 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2513 goto err_alloc;
2514 }
2515
2516 err = iavf_parse_vf_resource_msg(adapter);
2517 if (err) {
2518 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2519 err);
2520 goto err_alloc;
2521 }
2522 /* Some features require additional messages to negotiate extended
2523 * capabilities. These are processed in sequence by the
2524 * __IAVF_INIT_EXTENDED_CAPS driver state.
2525 */
2526 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2527
2528 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2529 return;
2530
2531err_alloc:
2532 kfree(adapter->vf_res);
2533 adapter->vf_res = NULL;
2534err:
2535 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2536}
2537
2538/**
2539 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2540 * @adapter: board private structure
2541 *
2542 * Function processes send of the extended VLAN V2 capability message to the
2543 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2544 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2545 */
2546static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2547{
2548 int ret;
2549
2550 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2551
2552 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2553 if (ret && ret == -EOPNOTSUPP) {
2554 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2555 * we did not send the capability exchange message and do not
2556 * expect a response.
2557 */
2558 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2559 }
2560
2561 /* We sent the message, so move on to the next step */
2562 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2563}
2564
2565/**
2566 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2567 * @adapter: board private structure
2568 *
2569 * Function processes receipt of the extended VLAN V2 capability message from
2570 * the PF.
2571 **/
2572static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2573{
2574 int ret;
2575
2576 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2577
2578 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2579
2580 ret = iavf_get_vf_vlan_v2_caps(adapter);
2581 if (ret)
2582 goto err;
2583
2584 /* We've processed receipt of the VLAN V2 caps message */
2585 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2586 return;
2587err:
2588 /* We didn't receive a reply. Make sure we try sending again when
2589 * __IAVF_INIT_FAILED attempts to recover.
2590 */
2591 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2592 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2593}
2594
2595/**
2596 * iavf_init_process_extended_caps - Part of driver startup
2597 * @adapter: board private structure
2598 *
2599 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2600 * handles negotiating capabilities for features which require an additional
2601 * message.
2602 *
2603 * Once all extended capabilities exchanges are finished, the driver will
2604 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2605 */
2606static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2607{
2608 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2609
2610 /* Process capability exchange for VLAN V2 */
2611 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2612 iavf_init_send_offload_vlan_v2_caps(adapter);
2613 return;
2614 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2615 iavf_init_recv_offload_vlan_v2_caps(adapter);
2616 return;
2617 }
2618
2619 /* When we reach here, no further extended capabilities exchanges are
2620 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2621 */
2622 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2623}
2624
2625/**
2626 * iavf_init_config_adapter - last part of driver startup
2627 * @adapter: board private structure
2628 *
2629 * After all the supported capabilities are negotiated, then the
2630 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2631 */
2632static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2633{
2634 struct net_device *netdev = adapter->netdev;
2635 struct pci_dev *pdev = adapter->pdev;
2636 int err;
2637
2638 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2639
2640 if (iavf_process_config(adapter))
2641 goto err;
2642
2643 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2644
2645 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2646
2647 netdev->netdev_ops = &iavf_netdev_ops;
2648 iavf_set_ethtool_ops(netdev);
2649 netdev->watchdog_timeo = 5 * HZ;
2650
2651 netdev->min_mtu = ETH_MIN_MTU;
2652 netdev->max_mtu = LIBIE_MAX_MTU;
2653
2654 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2655 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2656 adapter->hw.mac.addr);
2657 eth_hw_addr_random(netdev);
2658 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2659 } else {
2660 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2661 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2662 }
2663
2664 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2665 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2666 err = iavf_init_interrupt_scheme(adapter);
2667 if (err)
2668 goto err_sw_init;
2669 iavf_map_rings_to_vectors(adapter);
2670 if (adapter->vf_res->vf_cap_flags &
2671 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2672 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2673
2674 err = iavf_request_misc_irq(adapter);
2675 if (err)
2676 goto err_sw_init;
2677
2678 netif_carrier_off(netdev);
2679 adapter->link_up = false;
2680 netif_tx_stop_all_queues(netdev);
2681
2682 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2683 if (netdev->features & NETIF_F_GRO)
2684 dev_info(&pdev->dev, "GRO is enabled\n");
2685
2686 iavf_change_state(adapter, __IAVF_DOWN);
2687 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2688
2689 iavf_misc_irq_enable(adapter);
2690 wake_up(&adapter->down_waitqueue);
2691
2692 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2693 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2694 if (!adapter->rss_key || !adapter->rss_lut) {
2695 err = -ENOMEM;
2696 goto err_mem;
2697 }
2698 if (RSS_AQ(adapter))
2699 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2700 else
2701 iavf_init_rss(adapter);
2702
2703 if (VLAN_V2_ALLOWED(adapter))
2704 /* request initial VLAN offload settings */
2705 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2706
2707 if (QOS_ALLOWED(adapter))
2708 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2709
2710 iavf_schedule_finish_config(adapter);
2711 return;
2712
2713err_mem:
2714 iavf_free_rss(adapter);
2715 iavf_free_misc_irq(adapter);
2716err_sw_init:
2717 iavf_reset_interrupt_capability(adapter);
2718err:
2719 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2720}
2721
2722/**
2723 * iavf_watchdog_task - Periodic call-back task
2724 * @work: pointer to work_struct
2725 **/
2726static void iavf_watchdog_task(struct work_struct *work)
2727{
2728 struct iavf_adapter *adapter = container_of(work,
2729 struct iavf_adapter,
2730 watchdog_task.work);
2731 struct iavf_hw *hw = &adapter->hw;
2732 u32 reg_val;
2733
2734 if (!mutex_trylock(&adapter->crit_lock)) {
2735 if (adapter->state == __IAVF_REMOVE)
2736 return;
2737
2738 goto restart_watchdog;
2739 }
2740
2741 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2742 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2743
2744 switch (adapter->state) {
2745 case __IAVF_STARTUP:
2746 iavf_startup(adapter);
2747 mutex_unlock(&adapter->crit_lock);
2748 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2749 msecs_to_jiffies(30));
2750 return;
2751 case __IAVF_INIT_VERSION_CHECK:
2752 iavf_init_version_check(adapter);
2753 mutex_unlock(&adapter->crit_lock);
2754 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2755 msecs_to_jiffies(30));
2756 return;
2757 case __IAVF_INIT_GET_RESOURCES:
2758 iavf_init_get_resources(adapter);
2759 mutex_unlock(&adapter->crit_lock);
2760 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2761 msecs_to_jiffies(1));
2762 return;
2763 case __IAVF_INIT_EXTENDED_CAPS:
2764 iavf_init_process_extended_caps(adapter);
2765 mutex_unlock(&adapter->crit_lock);
2766 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2767 msecs_to_jiffies(1));
2768 return;
2769 case __IAVF_INIT_CONFIG_ADAPTER:
2770 iavf_init_config_adapter(adapter);
2771 mutex_unlock(&adapter->crit_lock);
2772 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2773 msecs_to_jiffies(1));
2774 return;
2775 case __IAVF_INIT_FAILED:
2776 if (test_bit(__IAVF_IN_REMOVE_TASK,
2777 &adapter->crit_section)) {
2778 /* Do not update the state and do not reschedule
2779 * watchdog task, iavf_remove should handle this state
2780 * as it can loop forever
2781 */
2782 mutex_unlock(&adapter->crit_lock);
2783 return;
2784 }
2785 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2786 dev_err(&adapter->pdev->dev,
2787 "Failed to communicate with PF; waiting before retry\n");
2788 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2789 iavf_shutdown_adminq(hw);
2790 mutex_unlock(&adapter->crit_lock);
2791 queue_delayed_work(adapter->wq,
2792 &adapter->watchdog_task, (5 * HZ));
2793 return;
2794 }
2795 /* Try again from failed step*/
2796 iavf_change_state(adapter, adapter->last_state);
2797 mutex_unlock(&adapter->crit_lock);
2798 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2799 return;
2800 case __IAVF_COMM_FAILED:
2801 if (test_bit(__IAVF_IN_REMOVE_TASK,
2802 &adapter->crit_section)) {
2803 /* Set state to __IAVF_INIT_FAILED and perform remove
2804 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2805 * doesn't bring the state back to __IAVF_COMM_FAILED.
2806 */
2807 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2808 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2809 mutex_unlock(&adapter->crit_lock);
2810 return;
2811 }
2812 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2813 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2814 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2815 reg_val == VIRTCHNL_VFR_COMPLETED) {
2816 /* A chance for redemption! */
2817 dev_err(&adapter->pdev->dev,
2818 "Hardware came out of reset. Attempting reinit.\n");
2819 /* When init task contacts the PF and
2820 * gets everything set up again, it'll restart the
2821 * watchdog for us. Down, boy. Sit. Stay. Woof.
2822 */
2823 iavf_change_state(adapter, __IAVF_STARTUP);
2824 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2825 }
2826 adapter->aq_required = 0;
2827 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2828 mutex_unlock(&adapter->crit_lock);
2829 queue_delayed_work(adapter->wq,
2830 &adapter->watchdog_task,
2831 msecs_to_jiffies(10));
2832 return;
2833 case __IAVF_RESETTING:
2834 mutex_unlock(&adapter->crit_lock);
2835 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2836 HZ * 2);
2837 return;
2838 case __IAVF_DOWN:
2839 case __IAVF_DOWN_PENDING:
2840 case __IAVF_TESTING:
2841 case __IAVF_RUNNING:
2842 if (adapter->current_op) {
2843 if (!iavf_asq_done(hw)) {
2844 dev_dbg(&adapter->pdev->dev,
2845 "Admin queue timeout\n");
2846 iavf_send_api_ver(adapter);
2847 }
2848 } else {
2849 int ret = iavf_process_aq_command(adapter);
2850
2851 /* An error will be returned if no commands were
2852 * processed; use this opportunity to update stats
2853 * if the error isn't -ENOTSUPP
2854 */
2855 if (ret && ret != -EOPNOTSUPP &&
2856 adapter->state == __IAVF_RUNNING)
2857 iavf_request_stats(adapter);
2858 }
2859 if (adapter->state == __IAVF_RUNNING)
2860 iavf_detect_recover_hung(&adapter->vsi);
2861 break;
2862 case __IAVF_REMOVE:
2863 default:
2864 mutex_unlock(&adapter->crit_lock);
2865 return;
2866 }
2867
2868 /* check for hw reset */
2869 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2870 if (!reg_val) {
2871 adapter->aq_required = 0;
2872 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2873 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2874 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2875 mutex_unlock(&adapter->crit_lock);
2876 queue_delayed_work(adapter->wq,
2877 &adapter->watchdog_task, HZ * 2);
2878 return;
2879 }
2880
2881 mutex_unlock(&adapter->crit_lock);
2882restart_watchdog:
2883 if (adapter->state >= __IAVF_DOWN)
2884 queue_work(adapter->wq, &adapter->adminq_task);
2885 if (adapter->aq_required)
2886 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2887 msecs_to_jiffies(20));
2888 else
2889 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2890 HZ * 2);
2891}
2892
2893/**
2894 * iavf_disable_vf - disable VF
2895 * @adapter: board private structure
2896 *
2897 * Set communication failed flag and free all resources.
2898 * NOTE: This function is expected to be called with crit_lock being held.
2899 **/
2900static void iavf_disable_vf(struct iavf_adapter *adapter)
2901{
2902 struct iavf_mac_filter *f, *ftmp;
2903 struct iavf_vlan_filter *fv, *fvtmp;
2904 struct iavf_cloud_filter *cf, *cftmp;
2905
2906 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2907
2908 /* We don't use netif_running() because it may be true prior to
2909 * ndo_open() returning, so we can't assume it means all our open
2910 * tasks have finished, since we're not holding the rtnl_lock here.
2911 */
2912 if (adapter->state == __IAVF_RUNNING) {
2913 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2914 netif_carrier_off(adapter->netdev);
2915 netif_tx_disable(adapter->netdev);
2916 adapter->link_up = false;
2917 iavf_napi_disable_all(adapter);
2918 iavf_irq_disable(adapter);
2919 iavf_free_traffic_irqs(adapter);
2920 iavf_free_all_tx_resources(adapter);
2921 iavf_free_all_rx_resources(adapter);
2922 }
2923
2924 spin_lock_bh(&adapter->mac_vlan_list_lock);
2925
2926 /* Delete all of the filters */
2927 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2928 list_del(&f->list);
2929 kfree(f);
2930 }
2931
2932 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2933 list_del(&fv->list);
2934 kfree(fv);
2935 }
2936 adapter->num_vlan_filters = 0;
2937
2938 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2939
2940 spin_lock_bh(&adapter->cloud_filter_list_lock);
2941 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2942 list_del(&cf->list);
2943 kfree(cf);
2944 adapter->num_cloud_filters--;
2945 }
2946 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2947
2948 iavf_free_misc_irq(adapter);
2949 iavf_free_interrupt_scheme(adapter);
2950 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2951 iavf_shutdown_adminq(&adapter->hw);
2952 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2953 iavf_change_state(adapter, __IAVF_DOWN);
2954 wake_up(&adapter->down_waitqueue);
2955 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2956}
2957
2958/**
2959 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2960 * @adapter: board private structure
2961 *
2962 * After a reset, the shaper parameters of queues need to be replayed again.
2963 * Since the net_shaper object inside TX rings persists across reset,
2964 * set the update flag for all queues so that the virtchnl message is triggered
2965 * for all queues.
2966 **/
2967static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2968{
2969 int i, num = 0;
2970
2971 for (i = 0; i < adapter->num_active_queues; i++)
2972 if (adapter->tx_rings[i].q_shaper.bw_min ||
2973 adapter->tx_rings[i].q_shaper.bw_max) {
2974 adapter->tx_rings[i].q_shaper_update = true;
2975 num++;
2976 }
2977
2978 if (num)
2979 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
2980}
2981
2982/**
2983 * iavf_reset_task - Call-back task to handle hardware reset
2984 * @work: pointer to work_struct
2985 *
2986 * During reset we need to shut down and reinitialize the admin queue
2987 * before we can use it to communicate with the PF again. We also clear
2988 * and reinit the rings because that context is lost as well.
2989 **/
2990static void iavf_reset_task(struct work_struct *work)
2991{
2992 struct iavf_adapter *adapter = container_of(work,
2993 struct iavf_adapter,
2994 reset_task);
2995 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2996 struct net_device *netdev = adapter->netdev;
2997 struct iavf_hw *hw = &adapter->hw;
2998 struct iavf_mac_filter *f, *ftmp;
2999 struct iavf_cloud_filter *cf;
3000 enum iavf_status status;
3001 u32 reg_val;
3002 int i = 0, err;
3003 bool running;
3004
3005 /* When device is being removed it doesn't make sense to run the reset
3006 * task, just return in such a case.
3007 */
3008 mutex_lock(&netdev->lock);
3009 if (!mutex_trylock(&adapter->crit_lock)) {
3010 if (adapter->state != __IAVF_REMOVE)
3011 queue_work(adapter->wq, &adapter->reset_task);
3012
3013 mutex_unlock(&netdev->lock);
3014 return;
3015 }
3016
3017 iavf_misc_irq_disable(adapter);
3018 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3019 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3020 /* Restart the AQ here. If we have been reset but didn't
3021 * detect it, or if the PF had to reinit, our AQ will be hosed.
3022 */
3023 iavf_shutdown_adminq(hw);
3024 iavf_init_adminq(hw);
3025 iavf_request_reset(adapter);
3026 }
3027 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3028
3029 /* poll until we see the reset actually happen */
3030 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3031 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3032 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3033 if (!reg_val)
3034 break;
3035 usleep_range(5000, 10000);
3036 }
3037 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3038 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3039 goto continue_reset; /* act like the reset happened */
3040 }
3041
3042 /* wait until the reset is complete and the PF is responding to us */
3043 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3044 /* sleep first to make sure a minimum wait time is met */
3045 msleep(IAVF_RESET_WAIT_MS);
3046
3047 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3048 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3049 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3050 break;
3051 }
3052
3053 pci_set_master(adapter->pdev);
3054 pci_restore_msi_state(adapter->pdev);
3055
3056 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3057 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3058 reg_val);
3059 iavf_disable_vf(adapter);
3060 mutex_unlock(&adapter->crit_lock);
3061 mutex_unlock(&netdev->lock);
3062 return; /* Do not attempt to reinit. It's dead, Jim. */
3063 }
3064
3065continue_reset:
3066 /* We don't use netif_running() because it may be true prior to
3067 * ndo_open() returning, so we can't assume it means all our open
3068 * tasks have finished, since we're not holding the rtnl_lock here.
3069 */
3070 running = adapter->state == __IAVF_RUNNING;
3071
3072 if (running) {
3073 netif_carrier_off(netdev);
3074 netif_tx_stop_all_queues(netdev);
3075 adapter->link_up = false;
3076 iavf_napi_disable_all(adapter);
3077 }
3078 iavf_irq_disable(adapter);
3079
3080 iavf_change_state(adapter, __IAVF_RESETTING);
3081 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3082
3083 /* free the Tx/Rx rings and descriptors, might be better to just
3084 * re-use them sometime in the future
3085 */
3086 iavf_free_all_rx_resources(adapter);
3087 iavf_free_all_tx_resources(adapter);
3088
3089 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3090 /* kill and reinit the admin queue */
3091 iavf_shutdown_adminq(hw);
3092 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3093 status = iavf_init_adminq(hw);
3094 if (status) {
3095 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3096 status);
3097 goto reset_err;
3098 }
3099 adapter->aq_required = 0;
3100
3101 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3102 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3103 err = iavf_reinit_interrupt_scheme(adapter, running);
3104 if (err)
3105 goto reset_err;
3106 }
3107
3108 if (RSS_AQ(adapter)) {
3109 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3110 } else {
3111 err = iavf_init_rss(adapter);
3112 if (err)
3113 goto reset_err;
3114 }
3115
3116 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3117 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3118 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3119 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3120 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3121 * been successfully sent and negotiated
3122 */
3123 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3124 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3125
3126 spin_lock_bh(&adapter->mac_vlan_list_lock);
3127
3128 /* Delete filter for the current MAC address, it could have
3129 * been changed by the PF via administratively set MAC.
3130 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3131 */
3132 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3133 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3134 list_del(&f->list);
3135 kfree(f);
3136 }
3137 }
3138 /* re-add all MAC filters */
3139 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3140 f->add = true;
3141 }
3142 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3143
3144 /* check if TCs are running and re-add all cloud filters */
3145 spin_lock_bh(&adapter->cloud_filter_list_lock);
3146 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3147 adapter->num_tc) {
3148 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3149 cf->add = true;
3150 }
3151 }
3152 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3153
3154 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3155 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3156 iavf_misc_irq_enable(adapter);
3157
3158 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3159
3160 /* We were running when the reset started, so we need to restore some
3161 * state here.
3162 */
3163 if (running) {
3164 /* allocate transmit descriptors */
3165 err = iavf_setup_all_tx_resources(adapter);
3166 if (err)
3167 goto reset_err;
3168
3169 /* allocate receive descriptors */
3170 err = iavf_setup_all_rx_resources(adapter);
3171 if (err)
3172 goto reset_err;
3173
3174 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3175 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3176 err = iavf_request_traffic_irqs(adapter, netdev->name);
3177 if (err)
3178 goto reset_err;
3179
3180 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3181 }
3182
3183 iavf_configure(adapter);
3184
3185 /* iavf_up_complete() will switch device back
3186 * to __IAVF_RUNNING
3187 */
3188 iavf_up_complete(adapter);
3189
3190 iavf_irq_enable(adapter, true);
3191
3192 iavf_reconfig_qs_bw(adapter);
3193 } else {
3194 iavf_change_state(adapter, __IAVF_DOWN);
3195 wake_up(&adapter->down_waitqueue);
3196 }
3197
3198 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3199
3200 wake_up(&adapter->reset_waitqueue);
3201 mutex_unlock(&adapter->crit_lock);
3202 mutex_unlock(&netdev->lock);
3203
3204 return;
3205reset_err:
3206 if (running) {
3207 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3208 iavf_free_traffic_irqs(adapter);
3209 }
3210 iavf_disable_vf(adapter);
3211
3212 mutex_unlock(&adapter->crit_lock);
3213 mutex_unlock(&netdev->lock);
3214 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3215}
3216
3217/**
3218 * iavf_adminq_task - worker thread to clean the admin queue
3219 * @work: pointer to work_struct containing our data
3220 **/
3221static void iavf_adminq_task(struct work_struct *work)
3222{
3223 struct iavf_adapter *adapter =
3224 container_of(work, struct iavf_adapter, adminq_task);
3225 struct iavf_hw *hw = &adapter->hw;
3226 struct iavf_arq_event_info event;
3227 enum virtchnl_ops v_op;
3228 enum iavf_status ret, v_ret;
3229 u32 val, oldval;
3230 u16 pending;
3231
3232 if (!mutex_trylock(&adapter->crit_lock)) {
3233 if (adapter->state == __IAVF_REMOVE)
3234 return;
3235
3236 queue_work(adapter->wq, &adapter->adminq_task);
3237 goto out;
3238 }
3239
3240 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3241 goto unlock;
3242
3243 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3244 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3245 if (!event.msg_buf)
3246 goto unlock;
3247
3248 do {
3249 ret = iavf_clean_arq_element(hw, &event, &pending);
3250 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3251 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3252
3253 if (ret || !v_op)
3254 break; /* No event to process or error cleaning ARQ */
3255
3256 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3257 event.msg_len);
3258 if (pending != 0)
3259 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3260 } while (pending);
3261
3262 if (iavf_is_reset_in_progress(adapter))
3263 goto freedom;
3264
3265 /* check for error indications */
3266 val = rd32(hw, IAVF_VF_ARQLEN1);
3267 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3268 goto freedom;
3269 oldval = val;
3270 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3271 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3272 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3273 }
3274 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3275 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3276 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3277 }
3278 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3279 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3280 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3281 }
3282 if (oldval != val)
3283 wr32(hw, IAVF_VF_ARQLEN1, val);
3284
3285 val = rd32(hw, IAVF_VF_ATQLEN1);
3286 oldval = val;
3287 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3288 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3289 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3290 }
3291 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3292 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3293 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3294 }
3295 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3296 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3297 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3298 }
3299 if (oldval != val)
3300 wr32(hw, IAVF_VF_ATQLEN1, val);
3301
3302freedom:
3303 kfree(event.msg_buf);
3304unlock:
3305 mutex_unlock(&adapter->crit_lock);
3306out:
3307 /* re-enable Admin queue interrupt cause */
3308 iavf_misc_irq_enable(adapter);
3309}
3310
3311/**
3312 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3313 * @adapter: board private structure
3314 *
3315 * Free all transmit software resources
3316 **/
3317void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3318{
3319 int i;
3320
3321 if (!adapter->tx_rings)
3322 return;
3323
3324 for (i = 0; i < adapter->num_active_queues; i++)
3325 if (adapter->tx_rings[i].desc)
3326 iavf_free_tx_resources(&adapter->tx_rings[i]);
3327}
3328
3329/**
3330 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3331 * @adapter: board private structure
3332 *
3333 * If this function returns with an error, then it's possible one or
3334 * more of the rings is populated (while the rest are not). It is the
3335 * callers duty to clean those orphaned rings.
3336 *
3337 * Return 0 on success, negative on failure
3338 **/
3339static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3340{
3341 int i, err = 0;
3342
3343 for (i = 0; i < adapter->num_active_queues; i++) {
3344 adapter->tx_rings[i].count = adapter->tx_desc_count;
3345 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3346 if (!err)
3347 continue;
3348 dev_err(&adapter->pdev->dev,
3349 "Allocation for Tx Queue %u failed\n", i);
3350 break;
3351 }
3352
3353 return err;
3354}
3355
3356/**
3357 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3358 * @adapter: board private structure
3359 *
3360 * If this function returns with an error, then it's possible one or
3361 * more of the rings is populated (while the rest are not). It is the
3362 * callers duty to clean those orphaned rings.
3363 *
3364 * Return 0 on success, negative on failure
3365 **/
3366static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3367{
3368 int i, err = 0;
3369
3370 for (i = 0; i < adapter->num_active_queues; i++) {
3371 adapter->rx_rings[i].count = adapter->rx_desc_count;
3372 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3373 if (!err)
3374 continue;
3375 dev_err(&adapter->pdev->dev,
3376 "Allocation for Rx Queue %u failed\n", i);
3377 break;
3378 }
3379 return err;
3380}
3381
3382/**
3383 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3384 * @adapter: board private structure
3385 *
3386 * Free all receive software resources
3387 **/
3388void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3389{
3390 int i;
3391
3392 if (!adapter->rx_rings)
3393 return;
3394
3395 for (i = 0; i < adapter->num_active_queues; i++)
3396 if (adapter->rx_rings[i].desc)
3397 iavf_free_rx_resources(&adapter->rx_rings[i]);
3398}
3399
3400/**
3401 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3402 * @adapter: board private structure
3403 * @max_tx_rate: max Tx bw for a tc
3404 **/
3405static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3406 u64 max_tx_rate)
3407{
3408 int speed = 0, ret = 0;
3409
3410 if (ADV_LINK_SUPPORT(adapter)) {
3411 if (adapter->link_speed_mbps < U32_MAX) {
3412 speed = adapter->link_speed_mbps;
3413 goto validate_bw;
3414 } else {
3415 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3416 return -EINVAL;
3417 }
3418 }
3419
3420 switch (adapter->link_speed) {
3421 case VIRTCHNL_LINK_SPEED_40GB:
3422 speed = SPEED_40000;
3423 break;
3424 case VIRTCHNL_LINK_SPEED_25GB:
3425 speed = SPEED_25000;
3426 break;
3427 case VIRTCHNL_LINK_SPEED_20GB:
3428 speed = SPEED_20000;
3429 break;
3430 case VIRTCHNL_LINK_SPEED_10GB:
3431 speed = SPEED_10000;
3432 break;
3433 case VIRTCHNL_LINK_SPEED_5GB:
3434 speed = SPEED_5000;
3435 break;
3436 case VIRTCHNL_LINK_SPEED_2_5GB:
3437 speed = SPEED_2500;
3438 break;
3439 case VIRTCHNL_LINK_SPEED_1GB:
3440 speed = SPEED_1000;
3441 break;
3442 case VIRTCHNL_LINK_SPEED_100MB:
3443 speed = SPEED_100;
3444 break;
3445 default:
3446 break;
3447 }
3448
3449validate_bw:
3450 if (max_tx_rate > speed) {
3451 dev_err(&adapter->pdev->dev,
3452 "Invalid tx rate specified\n");
3453 ret = -EINVAL;
3454 }
3455
3456 return ret;
3457}
3458
3459/**
3460 * iavf_validate_ch_config - validate queue mapping info
3461 * @adapter: board private structure
3462 * @mqprio_qopt: queue parameters
3463 *
3464 * This function validates if the config provided by the user to
3465 * configure queue channels is valid or not. Returns 0 on a valid
3466 * config.
3467 **/
3468static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3469 struct tc_mqprio_qopt_offload *mqprio_qopt)
3470{
3471 u64 total_max_rate = 0;
3472 u32 tx_rate_rem = 0;
3473 int i, num_qps = 0;
3474 u64 tx_rate = 0;
3475 int ret = 0;
3476
3477 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3478 mqprio_qopt->qopt.num_tc < 1)
3479 return -EINVAL;
3480
3481 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3482 if (!mqprio_qopt->qopt.count[i] ||
3483 mqprio_qopt->qopt.offset[i] != num_qps)
3484 return -EINVAL;
3485 if (mqprio_qopt->min_rate[i]) {
3486 dev_err(&adapter->pdev->dev,
3487 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3488 i);
3489 return -EINVAL;
3490 }
3491
3492 /* convert to Mbps */
3493 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3494 IAVF_MBPS_DIVISOR);
3495
3496 if (mqprio_qopt->max_rate[i] &&
3497 tx_rate < IAVF_MBPS_QUANTA) {
3498 dev_err(&adapter->pdev->dev,
3499 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3500 i, IAVF_MBPS_QUANTA);
3501 return -EINVAL;
3502 }
3503
3504 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3505
3506 if (tx_rate_rem != 0) {
3507 dev_err(&adapter->pdev->dev,
3508 "Invalid max tx rate for TC%d, not divisible by %d\n",
3509 i, IAVF_MBPS_QUANTA);
3510 return -EINVAL;
3511 }
3512
3513 total_max_rate += tx_rate;
3514 num_qps += mqprio_qopt->qopt.count[i];
3515 }
3516 if (num_qps > adapter->num_active_queues) {
3517 dev_err(&adapter->pdev->dev,
3518 "Cannot support requested number of queues\n");
3519 return -EINVAL;
3520 }
3521
3522 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3523 return ret;
3524}
3525
3526/**
3527 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3528 * @adapter: board private structure
3529 **/
3530static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3531{
3532 struct iavf_cloud_filter *cf, *cftmp;
3533
3534 spin_lock_bh(&adapter->cloud_filter_list_lock);
3535 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3536 list) {
3537 list_del(&cf->list);
3538 kfree(cf);
3539 adapter->num_cloud_filters--;
3540 }
3541 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3542}
3543
3544/**
3545 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3546 * TC config already configured on this adapter.
3547 * @adapter: board private structure
3548 * @mqprio_qopt: TC config received from kernel.
3549 *
3550 * This function compares the TC config received from the kernel
3551 * with the config already configured on the adapter.
3552 *
3553 * Return: True if configuration is same, false otherwise.
3554 **/
3555static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3556 struct tc_mqprio_qopt *mqprio_qopt)
3557{
3558 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3559 int i;
3560
3561 if (adapter->num_tc != mqprio_qopt->num_tc)
3562 return false;
3563
3564 for (i = 0; i < adapter->num_tc; i++) {
3565 if (ch[i].count != mqprio_qopt->count[i] ||
3566 ch[i].offset != mqprio_qopt->offset[i])
3567 return false;
3568 }
3569 return true;
3570}
3571
3572/**
3573 * __iavf_setup_tc - configure multiple traffic classes
3574 * @netdev: network interface device structure
3575 * @type_data: tc offload data
3576 *
3577 * This function processes the config information provided by the
3578 * user to configure traffic classes/queue channels and packages the
3579 * information to request the PF to setup traffic classes.
3580 *
3581 * Returns 0 on success.
3582 **/
3583static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3584{
3585 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3586 struct iavf_adapter *adapter = netdev_priv(netdev);
3587 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3588 u8 num_tc = 0, total_qps = 0;
3589 int ret = 0, netdev_tc = 0;
3590 u64 max_tx_rate;
3591 u16 mode;
3592 int i;
3593
3594 num_tc = mqprio_qopt->qopt.num_tc;
3595 mode = mqprio_qopt->mode;
3596
3597 /* delete queue_channel */
3598 if (!mqprio_qopt->qopt.hw) {
3599 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3600 /* reset the tc configuration */
3601 netdev_reset_tc(netdev);
3602 adapter->num_tc = 0;
3603 netif_tx_stop_all_queues(netdev);
3604 netif_tx_disable(netdev);
3605 iavf_del_all_cloud_filters(adapter);
3606 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3607 total_qps = adapter->orig_num_active_queues;
3608 goto exit;
3609 } else {
3610 return -EINVAL;
3611 }
3612 }
3613
3614 /* add queue channel */
3615 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3616 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3617 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3618 return -EOPNOTSUPP;
3619 }
3620 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3621 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3622 return -EINVAL;
3623 }
3624
3625 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3626 if (ret)
3627 return ret;
3628 /* Return if same TC config is requested */
3629 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3630 return 0;
3631 adapter->num_tc = num_tc;
3632
3633 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634 if (i < num_tc) {
3635 adapter->ch_config.ch_info[i].count =
3636 mqprio_qopt->qopt.count[i];
3637 adapter->ch_config.ch_info[i].offset =
3638 mqprio_qopt->qopt.offset[i];
3639 total_qps += mqprio_qopt->qopt.count[i];
3640 max_tx_rate = mqprio_qopt->max_rate[i];
3641 /* convert to Mbps */
3642 max_tx_rate = div_u64(max_tx_rate,
3643 IAVF_MBPS_DIVISOR);
3644 adapter->ch_config.ch_info[i].max_tx_rate =
3645 max_tx_rate;
3646 } else {
3647 adapter->ch_config.ch_info[i].count = 1;
3648 adapter->ch_config.ch_info[i].offset = 0;
3649 }
3650 }
3651
3652 /* Take snapshot of original config such as "num_active_queues"
3653 * It is used later when delete ADQ flow is exercised, so that
3654 * once delete ADQ flow completes, VF shall go back to its
3655 * original queue configuration
3656 */
3657
3658 adapter->orig_num_active_queues = adapter->num_active_queues;
3659
3660 /* Store queue info based on TC so that VF gets configured
3661 * with correct number of queues when VF completes ADQ config
3662 * flow
3663 */
3664 adapter->ch_config.total_qps = total_qps;
3665
3666 netif_tx_stop_all_queues(netdev);
3667 netif_tx_disable(netdev);
3668 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3669 netdev_reset_tc(netdev);
3670 /* Report the tc mapping up the stack */
3671 netdev_set_num_tc(adapter->netdev, num_tc);
3672 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3673 u16 qcount = mqprio_qopt->qopt.count[i];
3674 u16 qoffset = mqprio_qopt->qopt.offset[i];
3675
3676 if (i < num_tc)
3677 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3678 qoffset);
3679 }
3680 }
3681exit:
3682 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3683 return 0;
3684
3685 mutex_lock(&netdev->lock);
3686 netif_set_real_num_rx_queues(netdev, total_qps);
3687 netif_set_real_num_tx_queues(netdev, total_qps);
3688 mutex_unlock(&netdev->lock);
3689
3690 return ret;
3691}
3692
3693/**
3694 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3695 * @adapter: board private structure
3696 * @f: pointer to struct flow_cls_offload
3697 * @filter: pointer to cloud filter structure
3698 */
3699static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3700 struct flow_cls_offload *f,
3701 struct iavf_cloud_filter *filter)
3702{
3703 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3704 struct flow_dissector *dissector = rule->match.dissector;
3705 u16 n_proto_mask = 0;
3706 u16 n_proto_key = 0;
3707 u8 field_flags = 0;
3708 u16 addr_type = 0;
3709 u16 n_proto = 0;
3710 int i = 0;
3711 struct virtchnl_filter *vf = &filter->f;
3712
3713 if (dissector->used_keys &
3714 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3715 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3716 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3717 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3718 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3719 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3720 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3721 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3722 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3723 dissector->used_keys);
3724 return -EOPNOTSUPP;
3725 }
3726
3727 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3728 struct flow_match_enc_keyid match;
3729
3730 flow_rule_match_enc_keyid(rule, &match);
3731 if (match.mask->keyid != 0)
3732 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3733 }
3734
3735 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3736 struct flow_match_basic match;
3737
3738 flow_rule_match_basic(rule, &match);
3739 n_proto_key = ntohs(match.key->n_proto);
3740 n_proto_mask = ntohs(match.mask->n_proto);
3741
3742 if (n_proto_key == ETH_P_ALL) {
3743 n_proto_key = 0;
3744 n_proto_mask = 0;
3745 }
3746 n_proto = n_proto_key & n_proto_mask;
3747 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3748 return -EINVAL;
3749 if (n_proto == ETH_P_IPV6) {
3750 /* specify flow type as TCP IPv6 */
3751 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3752 }
3753
3754 if (match.key->ip_proto != IPPROTO_TCP) {
3755 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3756 return -EINVAL;
3757 }
3758 }
3759
3760 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3761 struct flow_match_eth_addrs match;
3762
3763 flow_rule_match_eth_addrs(rule, &match);
3764
3765 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3766 if (!is_zero_ether_addr(match.mask->dst)) {
3767 if (is_broadcast_ether_addr(match.mask->dst)) {
3768 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3769 } else {
3770 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3771 match.mask->dst);
3772 return -EINVAL;
3773 }
3774 }
3775
3776 if (!is_zero_ether_addr(match.mask->src)) {
3777 if (is_broadcast_ether_addr(match.mask->src)) {
3778 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3779 } else {
3780 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3781 match.mask->src);
3782 return -EINVAL;
3783 }
3784 }
3785
3786 if (!is_zero_ether_addr(match.key->dst))
3787 if (is_valid_ether_addr(match.key->dst) ||
3788 is_multicast_ether_addr(match.key->dst)) {
3789 /* set the mask if a valid dst_mac address */
3790 for (i = 0; i < ETH_ALEN; i++)
3791 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3792 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3793 match.key->dst);
3794 }
3795
3796 if (!is_zero_ether_addr(match.key->src))
3797 if (is_valid_ether_addr(match.key->src) ||
3798 is_multicast_ether_addr(match.key->src)) {
3799 /* set the mask if a valid dst_mac address */
3800 for (i = 0; i < ETH_ALEN; i++)
3801 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3802 ether_addr_copy(vf->data.tcp_spec.src_mac,
3803 match.key->src);
3804 }
3805 }
3806
3807 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3808 struct flow_match_vlan match;
3809
3810 flow_rule_match_vlan(rule, &match);
3811 if (match.mask->vlan_id) {
3812 if (match.mask->vlan_id == VLAN_VID_MASK) {
3813 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3814 } else {
3815 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3816 match.mask->vlan_id);
3817 return -EINVAL;
3818 }
3819 }
3820 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3821 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3822 }
3823
3824 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3825 struct flow_match_control match;
3826
3827 flow_rule_match_control(rule, &match);
3828 addr_type = match.key->addr_type;
3829
3830 if (flow_rule_has_control_flags(match.mask->flags,
3831 f->common.extack))
3832 return -EOPNOTSUPP;
3833 }
3834
3835 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3836 struct flow_match_ipv4_addrs match;
3837
3838 flow_rule_match_ipv4_addrs(rule, &match);
3839 if (match.mask->dst) {
3840 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3841 field_flags |= IAVF_CLOUD_FIELD_IIP;
3842 } else {
3843 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3844 be32_to_cpu(match.mask->dst));
3845 return -EINVAL;
3846 }
3847 }
3848
3849 if (match.mask->src) {
3850 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3851 field_flags |= IAVF_CLOUD_FIELD_IIP;
3852 } else {
3853 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3854 be32_to_cpu(match.mask->src));
3855 return -EINVAL;
3856 }
3857 }
3858
3859 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3860 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3861 return -EINVAL;
3862 }
3863 if (match.key->dst) {
3864 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3865 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3866 }
3867 if (match.key->src) {
3868 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3869 vf->data.tcp_spec.src_ip[0] = match.key->src;
3870 }
3871 }
3872
3873 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3874 struct flow_match_ipv6_addrs match;
3875
3876 flow_rule_match_ipv6_addrs(rule, &match);
3877
3878 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3879 if (ipv6_addr_any(&match.mask->dst)) {
3880 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3881 IPV6_ADDR_ANY);
3882 return -EINVAL;
3883 }
3884
3885 /* src and dest IPv6 address should not be LOOPBACK
3886 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3887 */
3888 if (ipv6_addr_loopback(&match.key->dst) ||
3889 ipv6_addr_loopback(&match.key->src)) {
3890 dev_err(&adapter->pdev->dev,
3891 "ipv6 addr should not be loopback\n");
3892 return -EINVAL;
3893 }
3894 if (!ipv6_addr_any(&match.mask->dst) ||
3895 !ipv6_addr_any(&match.mask->src))
3896 field_flags |= IAVF_CLOUD_FIELD_IIP;
3897
3898 for (i = 0; i < 4; i++)
3899 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3900 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3901 sizeof(vf->data.tcp_spec.dst_ip));
3902 for (i = 0; i < 4; i++)
3903 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3904 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3905 sizeof(vf->data.tcp_spec.src_ip));
3906 }
3907 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3908 struct flow_match_ports match;
3909
3910 flow_rule_match_ports(rule, &match);
3911 if (match.mask->src) {
3912 if (match.mask->src == cpu_to_be16(0xffff)) {
3913 field_flags |= IAVF_CLOUD_FIELD_IIP;
3914 } else {
3915 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3916 be16_to_cpu(match.mask->src));
3917 return -EINVAL;
3918 }
3919 }
3920
3921 if (match.mask->dst) {
3922 if (match.mask->dst == cpu_to_be16(0xffff)) {
3923 field_flags |= IAVF_CLOUD_FIELD_IIP;
3924 } else {
3925 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3926 be16_to_cpu(match.mask->dst));
3927 return -EINVAL;
3928 }
3929 }
3930 if (match.key->dst) {
3931 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3932 vf->data.tcp_spec.dst_port = match.key->dst;
3933 }
3934
3935 if (match.key->src) {
3936 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3937 vf->data.tcp_spec.src_port = match.key->src;
3938 }
3939 }
3940 vf->field_flags = field_flags;
3941
3942 return 0;
3943}
3944
3945/**
3946 * iavf_handle_tclass - Forward to a traffic class on the device
3947 * @adapter: board private structure
3948 * @tc: traffic class index on the device
3949 * @filter: pointer to cloud filter structure
3950 */
3951static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3952 struct iavf_cloud_filter *filter)
3953{
3954 if (tc == 0)
3955 return 0;
3956 if (tc < adapter->num_tc) {
3957 if (!filter->f.data.tcp_spec.dst_port) {
3958 dev_err(&adapter->pdev->dev,
3959 "Specify destination port to redirect to traffic class other than TC0\n");
3960 return -EINVAL;
3961 }
3962 }
3963 /* redirect to a traffic class on the same device */
3964 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3965 filter->f.action_meta = tc;
3966 return 0;
3967}
3968
3969/**
3970 * iavf_find_cf - Find the cloud filter in the list
3971 * @adapter: Board private structure
3972 * @cookie: filter specific cookie
3973 *
3974 * Returns ptr to the filter object or NULL. Must be called while holding the
3975 * cloud_filter_list_lock.
3976 */
3977static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3978 unsigned long *cookie)
3979{
3980 struct iavf_cloud_filter *filter = NULL;
3981
3982 if (!cookie)
3983 return NULL;
3984
3985 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3986 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3987 return filter;
3988 }
3989 return NULL;
3990}
3991
3992/**
3993 * iavf_configure_clsflower - Add tc flower filters
3994 * @adapter: board private structure
3995 * @cls_flower: Pointer to struct flow_cls_offload
3996 */
3997static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3998 struct flow_cls_offload *cls_flower)
3999{
4000 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4001 struct iavf_cloud_filter *filter = NULL;
4002 int err = -EINVAL, count = 50;
4003
4004 if (tc < 0) {
4005 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4006 return -EINVAL;
4007 }
4008
4009 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4010 if (!filter)
4011 return -ENOMEM;
4012
4013 while (!mutex_trylock(&adapter->crit_lock)) {
4014 if (--count == 0) {
4015 kfree(filter);
4016 return err;
4017 }
4018 udelay(1);
4019 }
4020
4021 filter->cookie = cls_flower->cookie;
4022
4023 /* bail out here if filter already exists */
4024 spin_lock_bh(&adapter->cloud_filter_list_lock);
4025 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4026 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4027 err = -EEXIST;
4028 goto spin_unlock;
4029 }
4030 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4031
4032 /* set the mask to all zeroes to begin with */
4033 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4034 /* start out with flow type and eth type IPv4 to begin with */
4035 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4036 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4037 if (err)
4038 goto err;
4039
4040 err = iavf_handle_tclass(adapter, tc, filter);
4041 if (err)
4042 goto err;
4043
4044 /* add filter to the list */
4045 spin_lock_bh(&adapter->cloud_filter_list_lock);
4046 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4047 adapter->num_cloud_filters++;
4048 filter->add = true;
4049 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4050spin_unlock:
4051 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4052err:
4053 if (err)
4054 kfree(filter);
4055
4056 mutex_unlock(&adapter->crit_lock);
4057 return err;
4058}
4059
4060/**
4061 * iavf_delete_clsflower - Remove tc flower filters
4062 * @adapter: board private structure
4063 * @cls_flower: Pointer to struct flow_cls_offload
4064 */
4065static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4066 struct flow_cls_offload *cls_flower)
4067{
4068 struct iavf_cloud_filter *filter = NULL;
4069 int err = 0;
4070
4071 spin_lock_bh(&adapter->cloud_filter_list_lock);
4072 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4073 if (filter) {
4074 filter->del = true;
4075 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4076 } else {
4077 err = -EINVAL;
4078 }
4079 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4080
4081 return err;
4082}
4083
4084/**
4085 * iavf_setup_tc_cls_flower - flower classifier offloads
4086 * @adapter: pointer to iavf adapter structure
4087 * @cls_flower: pointer to flow_cls_offload struct with flow info
4088 */
4089static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4090 struct flow_cls_offload *cls_flower)
4091{
4092 switch (cls_flower->command) {
4093 case FLOW_CLS_REPLACE:
4094 return iavf_configure_clsflower(adapter, cls_flower);
4095 case FLOW_CLS_DESTROY:
4096 return iavf_delete_clsflower(adapter, cls_flower);
4097 case FLOW_CLS_STATS:
4098 return -EOPNOTSUPP;
4099 default:
4100 return -EOPNOTSUPP;
4101 }
4102}
4103
4104/**
4105 * iavf_add_cls_u32 - Add U32 classifier offloads
4106 * @adapter: pointer to iavf adapter structure
4107 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4108 *
4109 * Return: 0 on success or negative errno on failure.
4110 */
4111static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4112 struct tc_cls_u32_offload *cls_u32)
4113{
4114 struct netlink_ext_ack *extack = cls_u32->common.extack;
4115 struct virtchnl_fdir_rule *rule_cfg;
4116 struct virtchnl_filter_action *vact;
4117 struct virtchnl_proto_hdrs *hdrs;
4118 struct ethhdr *spec_h, *mask_h;
4119 const struct tc_action *act;
4120 struct iavf_fdir_fltr *fltr;
4121 struct tcf_exts *exts;
4122 unsigned int q_index;
4123 int i, status = 0;
4124 int off_base = 0;
4125
4126 if (cls_u32->knode.link_handle) {
4127 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4128 return -EOPNOTSUPP;
4129 }
4130
4131 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4132 if (!fltr)
4133 return -ENOMEM;
4134
4135 rule_cfg = &fltr->vc_add_msg.rule_cfg;
4136 hdrs = &rule_cfg->proto_hdrs;
4137 hdrs->count = 0;
4138
4139 /* The parser lib at the PF expects the packet starting with MAC hdr */
4140 switch (ntohs(cls_u32->common.protocol)) {
4141 case ETH_P_802_3:
4142 break;
4143 case ETH_P_IP:
4144 spec_h = (struct ethhdr *)hdrs->raw.spec;
4145 mask_h = (struct ethhdr *)hdrs->raw.mask;
4146 spec_h->h_proto = htons(ETH_P_IP);
4147 mask_h->h_proto = htons(0xFFFF);
4148 off_base += ETH_HLEN;
4149 break;
4150 default:
4151 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4152 status = -EOPNOTSUPP;
4153 goto free_alloc;
4154 }
4155
4156 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4157 __be32 val, mask;
4158 int off;
4159
4160 off = off_base + cls_u32->knode.sel->keys[i].off;
4161 val = cls_u32->knode.sel->keys[i].val;
4162 mask = cls_u32->knode.sel->keys[i].mask;
4163
4164 if (off >= sizeof(hdrs->raw.spec)) {
4165 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4166 status = -EINVAL;
4167 goto free_alloc;
4168 }
4169
4170 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4171 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4172 hdrs->raw.pkt_len = off + sizeof(val);
4173 }
4174
4175 /* Only one action is allowed */
4176 rule_cfg->action_set.count = 1;
4177 vact = &rule_cfg->action_set.actions[0];
4178 exts = cls_u32->knode.exts;
4179
4180 tcf_exts_for_each_action(i, act, exts) {
4181 /* FDIR queue */
4182 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4183 q_index = tcf_skbedit_rx_queue_mapping(act);
4184 if (q_index >= adapter->num_active_queues) {
4185 status = -EINVAL;
4186 goto free_alloc;
4187 }
4188
4189 vact->type = VIRTCHNL_ACTION_QUEUE;
4190 vact->act_conf.queue.index = q_index;
4191 break;
4192 }
4193
4194 /* Drop */
4195 if (is_tcf_gact_shot(act)) {
4196 vact->type = VIRTCHNL_ACTION_DROP;
4197 break;
4198 }
4199
4200 /* Unsupported action */
4201 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4202 status = -EOPNOTSUPP;
4203 goto free_alloc;
4204 }
4205
4206 fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4207 fltr->cls_u32_handle = cls_u32->knode.handle;
4208 return iavf_fdir_add_fltr(adapter, fltr);
4209
4210free_alloc:
4211 kfree(fltr);
4212 return status;
4213}
4214
4215/**
4216 * iavf_del_cls_u32 - Delete U32 classifier offloads
4217 * @adapter: pointer to iavf adapter structure
4218 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4219 *
4220 * Return: 0 on success or negative errno on failure.
4221 */
4222static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4223 struct tc_cls_u32_offload *cls_u32)
4224{
4225 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4226}
4227
4228/**
4229 * iavf_setup_tc_cls_u32 - U32 filter offloads
4230 * @adapter: pointer to iavf adapter structure
4231 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4232 *
4233 * Return: 0 on success or negative errno on failure.
4234 */
4235static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4236 struct tc_cls_u32_offload *cls_u32)
4237{
4238 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4239 return -EOPNOTSUPP;
4240
4241 switch (cls_u32->command) {
4242 case TC_CLSU32_NEW_KNODE:
4243 case TC_CLSU32_REPLACE_KNODE:
4244 return iavf_add_cls_u32(adapter, cls_u32);
4245 case TC_CLSU32_DELETE_KNODE:
4246 return iavf_del_cls_u32(adapter, cls_u32);
4247 default:
4248 return -EOPNOTSUPP;
4249 }
4250}
4251
4252/**
4253 * iavf_setup_tc_block_cb - block callback for tc
4254 * @type: type of offload
4255 * @type_data: offload data
4256 * @cb_priv:
4257 *
4258 * This function is the block callback for traffic classes
4259 **/
4260static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4261 void *cb_priv)
4262{
4263 struct iavf_adapter *adapter = cb_priv;
4264
4265 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4266 return -EOPNOTSUPP;
4267
4268 switch (type) {
4269 case TC_SETUP_CLSFLOWER:
4270 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4271 case TC_SETUP_CLSU32:
4272 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4273 default:
4274 return -EOPNOTSUPP;
4275 }
4276}
4277
4278static LIST_HEAD(iavf_block_cb_list);
4279
4280/**
4281 * iavf_setup_tc - configure multiple traffic classes
4282 * @netdev: network interface device structure
4283 * @type: type of offload
4284 * @type_data: tc offload data
4285 *
4286 * This function is the callback to ndo_setup_tc in the
4287 * netdev_ops.
4288 *
4289 * Returns 0 on success
4290 **/
4291static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4292 void *type_data)
4293{
4294 struct iavf_adapter *adapter = netdev_priv(netdev);
4295
4296 switch (type) {
4297 case TC_SETUP_QDISC_MQPRIO:
4298 return __iavf_setup_tc(netdev, type_data);
4299 case TC_SETUP_BLOCK:
4300 return flow_block_cb_setup_simple(type_data,
4301 &iavf_block_cb_list,
4302 iavf_setup_tc_block_cb,
4303 adapter, adapter, true);
4304 default:
4305 return -EOPNOTSUPP;
4306 }
4307}
4308
4309/**
4310 * iavf_restore_fdir_filters
4311 * @adapter: board private structure
4312 *
4313 * Restore existing FDIR filters when VF netdev comes back up.
4314 **/
4315static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4316{
4317 struct iavf_fdir_fltr *f;
4318
4319 spin_lock_bh(&adapter->fdir_fltr_lock);
4320 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4321 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4322 /* Cancel a request, keep filter as active */
4323 f->state = IAVF_FDIR_FLTR_ACTIVE;
4324 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4325 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4326 /* Add filters which are inactive or have a pending
4327 * request to PF to be deleted
4328 */
4329 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4330 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4331 }
4332 }
4333 spin_unlock_bh(&adapter->fdir_fltr_lock);
4334}
4335
4336/**
4337 * iavf_open - Called when a network interface is made active
4338 * @netdev: network interface device structure
4339 *
4340 * Returns 0 on success, negative value on failure
4341 *
4342 * The open entry point is called when a network interface is made
4343 * active by the system (IFF_UP). At this point all resources needed
4344 * for transmit and receive operations are allocated, the interrupt
4345 * handler is registered with the OS, the watchdog is started,
4346 * and the stack is notified that the interface is ready.
4347 **/
4348static int iavf_open(struct net_device *netdev)
4349{
4350 struct iavf_adapter *adapter = netdev_priv(netdev);
4351 int err;
4352
4353 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4354 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4355 return -EIO;
4356 }
4357
4358 while (!mutex_trylock(&adapter->crit_lock)) {
4359 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4360 * is already taken and iavf_open is called from an upper
4361 * device's notifier reacting on NETDEV_REGISTER event.
4362 * We have to leave here to avoid dead lock.
4363 */
4364 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4365 return -EBUSY;
4366
4367 usleep_range(500, 1000);
4368 }
4369
4370 if (adapter->state != __IAVF_DOWN) {
4371 err = -EBUSY;
4372 goto err_unlock;
4373 }
4374
4375 if (adapter->state == __IAVF_RUNNING &&
4376 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4377 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4378 err = 0;
4379 goto err_unlock;
4380 }
4381
4382 /* allocate transmit descriptors */
4383 err = iavf_setup_all_tx_resources(adapter);
4384 if (err)
4385 goto err_setup_tx;
4386
4387 /* allocate receive descriptors */
4388 err = iavf_setup_all_rx_resources(adapter);
4389 if (err)
4390 goto err_setup_rx;
4391
4392 /* clear any pending interrupts, may auto mask */
4393 err = iavf_request_traffic_irqs(adapter, netdev->name);
4394 if (err)
4395 goto err_req_irq;
4396
4397 spin_lock_bh(&adapter->mac_vlan_list_lock);
4398
4399 iavf_add_filter(adapter, adapter->hw.mac.addr);
4400
4401 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4402
4403 /* Restore filters that were removed with IFF_DOWN */
4404 iavf_restore_filters(adapter);
4405 iavf_restore_fdir_filters(adapter);
4406
4407 iavf_configure(adapter);
4408
4409 iavf_up_complete(adapter);
4410
4411 iavf_irq_enable(adapter, true);
4412
4413 mutex_unlock(&adapter->crit_lock);
4414
4415 return 0;
4416
4417err_req_irq:
4418 iavf_down(adapter);
4419 iavf_free_traffic_irqs(adapter);
4420err_setup_rx:
4421 iavf_free_all_rx_resources(adapter);
4422err_setup_tx:
4423 iavf_free_all_tx_resources(adapter);
4424err_unlock:
4425 mutex_unlock(&adapter->crit_lock);
4426
4427 return err;
4428}
4429
4430/**
4431 * iavf_close - Disables a network interface
4432 * @netdev: network interface device structure
4433 *
4434 * Returns 0, this is not allowed to fail
4435 *
4436 * The close entry point is called when an interface is de-activated
4437 * by the OS. The hardware is still under the drivers control, but
4438 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4439 * are freed, along with all transmit and receive resources.
4440 **/
4441static int iavf_close(struct net_device *netdev)
4442{
4443 struct iavf_adapter *adapter = netdev_priv(netdev);
4444 u64 aq_to_restore;
4445 int status;
4446
4447 mutex_lock(&adapter->crit_lock);
4448
4449 if (adapter->state <= __IAVF_DOWN_PENDING) {
4450 mutex_unlock(&adapter->crit_lock);
4451 return 0;
4452 }
4453
4454 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4455 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4456 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4457 * deadlock with adminq_task() until iavf_close timeouts. We must send
4458 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4459 * disable queues possible for vf. Give only necessary flags to
4460 * iavf_down and save other to set them right before iavf_close()
4461 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4462 * iavf will be in DOWN state.
4463 */
4464 aq_to_restore = adapter->aq_required;
4465 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4466
4467 /* Remove flags which we do not want to send after close or we want to
4468 * send before disable queues.
4469 */
4470 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4471 IAVF_FLAG_AQ_ENABLE_QUEUES |
4472 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4473 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4474 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4475 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4476 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4477 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4478
4479 iavf_down(adapter);
4480 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4481 iavf_free_traffic_irqs(adapter);
4482
4483 mutex_unlock(&adapter->crit_lock);
4484
4485 /* We explicitly don't free resources here because the hardware is
4486 * still active and can DMA into memory. Resources are cleared in
4487 * iavf_virtchnl_completion() after we get confirmation from the PF
4488 * driver that the rings have been stopped.
4489 *
4490 * Also, we wait for state to transition to __IAVF_DOWN before
4491 * returning. State change occurs in iavf_virtchnl_completion() after
4492 * VF resources are released (which occurs after PF driver processes and
4493 * responds to admin queue commands).
4494 */
4495
4496 status = wait_event_timeout(adapter->down_waitqueue,
4497 adapter->state == __IAVF_DOWN,
4498 msecs_to_jiffies(500));
4499 if (!status)
4500 netdev_warn(netdev, "Device resources not yet released\n");
4501
4502 mutex_lock(&adapter->crit_lock);
4503 adapter->aq_required |= aq_to_restore;
4504 mutex_unlock(&adapter->crit_lock);
4505 return 0;
4506}
4507
4508/**
4509 * iavf_change_mtu - Change the Maximum Transfer Unit
4510 * @netdev: network interface device structure
4511 * @new_mtu: new value for maximum frame size
4512 *
4513 * Returns 0 on success, negative on failure
4514 **/
4515static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4516{
4517 struct iavf_adapter *adapter = netdev_priv(netdev);
4518 int ret = 0;
4519
4520 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4521 netdev->mtu, new_mtu);
4522 WRITE_ONCE(netdev->mtu, new_mtu);
4523
4524 if (netif_running(netdev)) {
4525 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4526 ret = iavf_wait_for_reset(adapter);
4527 if (ret < 0)
4528 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4529 else if (ret)
4530 netdev_warn(netdev, "MTU change timed out waiting for reset");
4531 }
4532
4533 return ret;
4534}
4535
4536/**
4537 * iavf_disable_fdir - disable Flow Director and clear existing filters
4538 * @adapter: board private structure
4539 **/
4540static void iavf_disable_fdir(struct iavf_adapter *adapter)
4541{
4542 struct iavf_fdir_fltr *fdir, *fdirtmp;
4543 bool del_filters = false;
4544
4545 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4546
4547 /* remove all Flow Director filters */
4548 spin_lock_bh(&adapter->fdir_fltr_lock);
4549 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4550 list) {
4551 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4552 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4553 /* Delete filters not registered in PF */
4554 list_del(&fdir->list);
4555 iavf_dec_fdir_active_fltr(adapter, fdir);
4556 kfree(fdir);
4557 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4558 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4559 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4560 /* Filters registered in PF, schedule their deletion */
4561 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4562 del_filters = true;
4563 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4564 /* Request to delete filter already sent to PF, change
4565 * state to DEL_PENDING to delete filter after PF's
4566 * response, not set as INACTIVE
4567 */
4568 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4569 }
4570 }
4571 spin_unlock_bh(&adapter->fdir_fltr_lock);
4572
4573 if (del_filters) {
4574 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4575 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4576 }
4577}
4578
4579#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4580 NETIF_F_HW_VLAN_CTAG_TX | \
4581 NETIF_F_HW_VLAN_STAG_RX | \
4582 NETIF_F_HW_VLAN_STAG_TX)
4583
4584/**
4585 * iavf_set_features - set the netdev feature flags
4586 * @netdev: ptr to the netdev being adjusted
4587 * @features: the feature set that the stack is suggesting
4588 * Note: expects to be called while under rtnl_lock()
4589 **/
4590static int iavf_set_features(struct net_device *netdev,
4591 netdev_features_t features)
4592{
4593 struct iavf_adapter *adapter = netdev_priv(netdev);
4594
4595 /* trigger update on any VLAN feature change */
4596 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4597 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4598 iavf_set_vlan_offload_features(adapter, netdev->features,
4599 features);
4600 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4601 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4602 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4603
4604 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4605 if (features & NETIF_F_NTUPLE)
4606 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4607 else
4608 iavf_disable_fdir(adapter);
4609 }
4610
4611 return 0;
4612}
4613
4614/**
4615 * iavf_features_check - Validate encapsulated packet conforms to limits
4616 * @skb: skb buff
4617 * @dev: This physical port's netdev
4618 * @features: Offload features that the stack believes apply
4619 **/
4620static netdev_features_t iavf_features_check(struct sk_buff *skb,
4621 struct net_device *dev,
4622 netdev_features_t features)
4623{
4624 size_t len;
4625
4626 /* No point in doing any of this if neither checksum nor GSO are
4627 * being requested for this frame. We can rule out both by just
4628 * checking for CHECKSUM_PARTIAL
4629 */
4630 if (skb->ip_summed != CHECKSUM_PARTIAL)
4631 return features;
4632
4633 /* We cannot support GSO if the MSS is going to be less than
4634 * 64 bytes. If it is then we need to drop support for GSO.
4635 */
4636 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4637 features &= ~NETIF_F_GSO_MASK;
4638
4639 /* MACLEN can support at most 63 words */
4640 len = skb_network_offset(skb);
4641 if (len & ~(63 * 2))
4642 goto out_err;
4643
4644 /* IPLEN and EIPLEN can support at most 127 dwords */
4645 len = skb_network_header_len(skb);
4646 if (len & ~(127 * 4))
4647 goto out_err;
4648
4649 if (skb->encapsulation) {
4650 /* L4TUNLEN can support 127 words */
4651 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4652 if (len & ~(127 * 2))
4653 goto out_err;
4654
4655 /* IPLEN can support at most 127 dwords */
4656 len = skb_inner_transport_header(skb) -
4657 skb_inner_network_header(skb);
4658 if (len & ~(127 * 4))
4659 goto out_err;
4660 }
4661
4662 /* No need to validate L4LEN as TCP is the only protocol with a
4663 * flexible value and we support all possible values supported
4664 * by TCP, which is at most 15 dwords
4665 */
4666
4667 return features;
4668out_err:
4669 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4670}
4671
4672/**
4673 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4674 * @adapter: board private structure
4675 *
4676 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4677 * were negotiated determine the VLAN features that can be toggled on and off.
4678 **/
4679static netdev_features_t
4680iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4681{
4682 netdev_features_t hw_features = 0;
4683
4684 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4685 return hw_features;
4686
4687 /* Enable VLAN features if supported */
4688 if (VLAN_ALLOWED(adapter)) {
4689 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4690 NETIF_F_HW_VLAN_CTAG_RX);
4691 } else if (VLAN_V2_ALLOWED(adapter)) {
4692 struct virtchnl_vlan_caps *vlan_v2_caps =
4693 &adapter->vlan_v2_caps;
4694 struct virtchnl_vlan_supported_caps *stripping_support =
4695 &vlan_v2_caps->offloads.stripping_support;
4696 struct virtchnl_vlan_supported_caps *insertion_support =
4697 &vlan_v2_caps->offloads.insertion_support;
4698
4699 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4700 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4701 if (stripping_support->outer &
4702 VIRTCHNL_VLAN_ETHERTYPE_8100)
4703 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4704 if (stripping_support->outer &
4705 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4706 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4707 } else if (stripping_support->inner !=
4708 VIRTCHNL_VLAN_UNSUPPORTED &&
4709 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4710 if (stripping_support->inner &
4711 VIRTCHNL_VLAN_ETHERTYPE_8100)
4712 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4713 }
4714
4715 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4716 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4717 if (insertion_support->outer &
4718 VIRTCHNL_VLAN_ETHERTYPE_8100)
4719 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4720 if (insertion_support->outer &
4721 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4722 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4723 } else if (insertion_support->inner &&
4724 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4725 if (insertion_support->inner &
4726 VIRTCHNL_VLAN_ETHERTYPE_8100)
4727 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4728 }
4729 }
4730
4731 if (CRC_OFFLOAD_ALLOWED(adapter))
4732 hw_features |= NETIF_F_RXFCS;
4733
4734 return hw_features;
4735}
4736
4737/**
4738 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4739 * @adapter: board private structure
4740 *
4741 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4742 * were negotiated determine the VLAN features that are enabled by default.
4743 **/
4744static netdev_features_t
4745iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4746{
4747 netdev_features_t features = 0;
4748
4749 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4750 return features;
4751
4752 if (VLAN_ALLOWED(adapter)) {
4753 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4754 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4755 } else if (VLAN_V2_ALLOWED(adapter)) {
4756 struct virtchnl_vlan_caps *vlan_v2_caps =
4757 &adapter->vlan_v2_caps;
4758 struct virtchnl_vlan_supported_caps *filtering_support =
4759 &vlan_v2_caps->filtering.filtering_support;
4760 struct virtchnl_vlan_supported_caps *stripping_support =
4761 &vlan_v2_caps->offloads.stripping_support;
4762 struct virtchnl_vlan_supported_caps *insertion_support =
4763 &vlan_v2_caps->offloads.insertion_support;
4764 u32 ethertype_init;
4765
4766 /* give priority to outer stripping and don't support both outer
4767 * and inner stripping
4768 */
4769 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4770 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4771 if (stripping_support->outer &
4772 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4773 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4774 features |= NETIF_F_HW_VLAN_CTAG_RX;
4775 else if (stripping_support->outer &
4776 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4777 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4778 features |= NETIF_F_HW_VLAN_STAG_RX;
4779 } else if (stripping_support->inner !=
4780 VIRTCHNL_VLAN_UNSUPPORTED) {
4781 if (stripping_support->inner &
4782 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4783 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4784 features |= NETIF_F_HW_VLAN_CTAG_RX;
4785 }
4786
4787 /* give priority to outer insertion and don't support both outer
4788 * and inner insertion
4789 */
4790 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4791 if (insertion_support->outer &
4792 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4793 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4794 features |= NETIF_F_HW_VLAN_CTAG_TX;
4795 else if (insertion_support->outer &
4796 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4797 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4798 features |= NETIF_F_HW_VLAN_STAG_TX;
4799 } else if (insertion_support->inner !=
4800 VIRTCHNL_VLAN_UNSUPPORTED) {
4801 if (insertion_support->inner &
4802 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4803 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4804 features |= NETIF_F_HW_VLAN_CTAG_TX;
4805 }
4806
4807 /* give priority to outer filtering and don't bother if both
4808 * outer and inner filtering are enabled
4809 */
4810 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4811 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4812 if (filtering_support->outer &
4813 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4814 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4815 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4816 if (filtering_support->outer &
4817 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4818 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4819 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4820 } else if (filtering_support->inner !=
4821 VIRTCHNL_VLAN_UNSUPPORTED) {
4822 if (filtering_support->inner &
4823 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4824 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4825 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4826 if (filtering_support->inner &
4827 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4828 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4829 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4830 }
4831 }
4832
4833 return features;
4834}
4835
4836#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4837 (!(((requested) & (feature_bit)) && \
4838 !((allowed) & (feature_bit))))
4839
4840/**
4841 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4842 * @adapter: board private structure
4843 * @requested_features: stack requested NETDEV features
4844 **/
4845static netdev_features_t
4846iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4847 netdev_features_t requested_features)
4848{
4849 netdev_features_t allowed_features;
4850
4851 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4852 iavf_get_netdev_vlan_features(adapter);
4853
4854 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4855 allowed_features,
4856 NETIF_F_HW_VLAN_CTAG_TX))
4857 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4858
4859 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4860 allowed_features,
4861 NETIF_F_HW_VLAN_CTAG_RX))
4862 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4863
4864 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4865 allowed_features,
4866 NETIF_F_HW_VLAN_STAG_TX))
4867 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4868 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4869 allowed_features,
4870 NETIF_F_HW_VLAN_STAG_RX))
4871 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4872
4873 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4874 allowed_features,
4875 NETIF_F_HW_VLAN_CTAG_FILTER))
4876 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4877
4878 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4879 allowed_features,
4880 NETIF_F_HW_VLAN_STAG_FILTER))
4881 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4882
4883 if ((requested_features &
4884 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4885 (requested_features &
4886 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4887 adapter->vlan_v2_caps.offloads.ethertype_match ==
4888 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4889 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4890 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4891 NETIF_F_HW_VLAN_STAG_TX);
4892 }
4893
4894 return requested_features;
4895}
4896
4897/**
4898 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4899 * @adapter: board private structure
4900 * @requested_features: stack requested NETDEV features
4901 *
4902 * Returns fixed-up features bits
4903 **/
4904static netdev_features_t
4905iavf_fix_strip_features(struct iavf_adapter *adapter,
4906 netdev_features_t requested_features)
4907{
4908 struct net_device *netdev = adapter->netdev;
4909 bool crc_offload_req, is_vlan_strip;
4910 netdev_features_t vlan_strip;
4911 int num_non_zero_vlan;
4912
4913 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4914 (requested_features & NETIF_F_RXFCS);
4915 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4916 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4917 is_vlan_strip = requested_features & vlan_strip;
4918
4919 if (!crc_offload_req)
4920 return requested_features;
4921
4922 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4923 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4924 requested_features &= ~vlan_strip;
4925 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4926 return requested_features;
4927 }
4928
4929 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4930 requested_features &= ~vlan_strip;
4931 if (!(netdev->features & vlan_strip))
4932 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4933
4934 return requested_features;
4935 }
4936
4937 if (num_non_zero_vlan && is_vlan_strip &&
4938 !(netdev->features & NETIF_F_RXFCS)) {
4939 requested_features &= ~NETIF_F_RXFCS;
4940 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4941 }
4942
4943 return requested_features;
4944}
4945
4946/**
4947 * iavf_fix_features - fix up the netdev feature bits
4948 * @netdev: our net device
4949 * @features: desired feature bits
4950 *
4951 * Returns fixed-up features bits
4952 **/
4953static netdev_features_t iavf_fix_features(struct net_device *netdev,
4954 netdev_features_t features)
4955{
4956 struct iavf_adapter *adapter = netdev_priv(netdev);
4957
4958 features = iavf_fix_netdev_vlan_features(adapter, features);
4959
4960 if (!FDIR_FLTR_SUPPORT(adapter))
4961 features &= ~NETIF_F_NTUPLE;
4962
4963 return iavf_fix_strip_features(adapter, features);
4964}
4965
4966static int
4967iavf_verify_shaper(struct net_shaper_binding *binding,
4968 const struct net_shaper *shaper,
4969 struct netlink_ext_ack *extack)
4970{
4971 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4972 u64 vf_max;
4973
4974 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
4975 vf_max = adapter->qos_caps->cap[0].shaper.peak;
4976 if (vf_max && shaper->bw_max > vf_max) {
4977 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
4978 shaper->bw_max, shaper->handle.id,
4979 vf_max);
4980 return -EINVAL;
4981 }
4982 }
4983 return 0;
4984}
4985
4986static int
4987iavf_shaper_set(struct net_shaper_binding *binding,
4988 const struct net_shaper *shaper,
4989 struct netlink_ext_ack *extack)
4990{
4991 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4992 const struct net_shaper_handle *handle = &shaper->handle;
4993 struct iavf_ring *tx_ring;
4994 int ret = 0;
4995
4996 mutex_lock(&adapter->crit_lock);
4997 if (handle->id >= adapter->num_active_queues)
4998 goto unlock;
4999
5000 ret = iavf_verify_shaper(binding, shaper, extack);
5001 if (ret)
5002 goto unlock;
5003
5004 tx_ring = &adapter->tx_rings[handle->id];
5005
5006 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
5007 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
5008 tx_ring->q_shaper_update = true;
5009
5010 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5011
5012unlock:
5013 mutex_unlock(&adapter->crit_lock);
5014 return ret;
5015}
5016
5017static int iavf_shaper_del(struct net_shaper_binding *binding,
5018 const struct net_shaper_handle *handle,
5019 struct netlink_ext_ack *extack)
5020{
5021 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5022 struct iavf_ring *tx_ring;
5023
5024 mutex_lock(&adapter->crit_lock);
5025 if (handle->id >= adapter->num_active_queues)
5026 goto unlock;
5027
5028 tx_ring = &adapter->tx_rings[handle->id];
5029 tx_ring->q_shaper.bw_min = 0;
5030 tx_ring->q_shaper.bw_max = 0;
5031 tx_ring->q_shaper_update = true;
5032
5033 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5034
5035unlock:
5036 mutex_unlock(&adapter->crit_lock);
5037 return 0;
5038}
5039
5040static void iavf_shaper_cap(struct net_shaper_binding *binding,
5041 enum net_shaper_scope scope,
5042 unsigned long *flags)
5043{
5044 if (scope != NET_SHAPER_SCOPE_QUEUE)
5045 return;
5046
5047 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5048 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5049 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5050}
5051
5052static const struct net_shaper_ops iavf_shaper_ops = {
5053 .set = iavf_shaper_set,
5054 .delete = iavf_shaper_del,
5055 .capabilities = iavf_shaper_cap,
5056};
5057
5058static const struct net_device_ops iavf_netdev_ops = {
5059 .ndo_open = iavf_open,
5060 .ndo_stop = iavf_close,
5061 .ndo_start_xmit = iavf_xmit_frame,
5062 .ndo_set_rx_mode = iavf_set_rx_mode,
5063 .ndo_validate_addr = eth_validate_addr,
5064 .ndo_set_mac_address = iavf_set_mac,
5065 .ndo_change_mtu = iavf_change_mtu,
5066 .ndo_tx_timeout = iavf_tx_timeout,
5067 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
5068 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
5069 .ndo_features_check = iavf_features_check,
5070 .ndo_fix_features = iavf_fix_features,
5071 .ndo_set_features = iavf_set_features,
5072 .ndo_setup_tc = iavf_setup_tc,
5073 .net_shaper_ops = &iavf_shaper_ops,
5074};
5075
5076/**
5077 * iavf_check_reset_complete - check that VF reset is complete
5078 * @hw: pointer to hw struct
5079 *
5080 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5081 **/
5082static int iavf_check_reset_complete(struct iavf_hw *hw)
5083{
5084 u32 rstat;
5085 int i;
5086
5087 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5088 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5089 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5090 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5091 (rstat == VIRTCHNL_VFR_COMPLETED))
5092 return 0;
5093 msleep(IAVF_RESET_WAIT_MS);
5094 }
5095 return -EBUSY;
5096}
5097
5098/**
5099 * iavf_process_config - Process the config information we got from the PF
5100 * @adapter: board private structure
5101 *
5102 * Verify that we have a valid config struct, and set up our netdev features
5103 * and our VSI struct.
5104 **/
5105int iavf_process_config(struct iavf_adapter *adapter)
5106{
5107 struct virtchnl_vf_resource *vfres = adapter->vf_res;
5108 netdev_features_t hw_vlan_features, vlan_features;
5109 struct net_device *netdev = adapter->netdev;
5110 netdev_features_t hw_enc_features;
5111 netdev_features_t hw_features;
5112
5113 hw_enc_features = NETIF_F_SG |
5114 NETIF_F_IP_CSUM |
5115 NETIF_F_IPV6_CSUM |
5116 NETIF_F_HIGHDMA |
5117 NETIF_F_SOFT_FEATURES |
5118 NETIF_F_TSO |
5119 NETIF_F_TSO_ECN |
5120 NETIF_F_TSO6 |
5121 NETIF_F_SCTP_CRC |
5122 NETIF_F_RXHASH |
5123 NETIF_F_RXCSUM |
5124 0;
5125
5126 /* advertise to stack only if offloads for encapsulated packets is
5127 * supported
5128 */
5129 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5130 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
5131 NETIF_F_GSO_GRE |
5132 NETIF_F_GSO_GRE_CSUM |
5133 NETIF_F_GSO_IPXIP4 |
5134 NETIF_F_GSO_IPXIP6 |
5135 NETIF_F_GSO_UDP_TUNNEL_CSUM |
5136 NETIF_F_GSO_PARTIAL |
5137 0;
5138
5139 if (!(vfres->vf_cap_flags &
5140 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5141 netdev->gso_partial_features |=
5142 NETIF_F_GSO_UDP_TUNNEL_CSUM;
5143
5144 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5145 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5146 netdev->hw_enc_features |= hw_enc_features;
5147 }
5148 /* record features VLANs can make use of */
5149 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5150
5151 /* Write features and hw_features separately to avoid polluting
5152 * with, or dropping, features that are set when we registered.
5153 */
5154 hw_features = hw_enc_features;
5155
5156 /* get HW VLAN features that can be toggled */
5157 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5158
5159 /* Enable HW TC offload if ADQ or tc U32 is supported */
5160 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5161 TC_U32_SUPPORT(adapter))
5162 hw_features |= NETIF_F_HW_TC;
5163
5164 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5165 hw_features |= NETIF_F_GSO_UDP_L4;
5166
5167 netdev->hw_features |= hw_features | hw_vlan_features;
5168 vlan_features = iavf_get_netdev_vlan_features(adapter);
5169
5170 netdev->features |= hw_features | vlan_features;
5171
5172 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5173 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5174
5175 if (FDIR_FLTR_SUPPORT(adapter)) {
5176 netdev->hw_features |= NETIF_F_NTUPLE;
5177 netdev->features |= NETIF_F_NTUPLE;
5178 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5179 }
5180
5181 netdev->priv_flags |= IFF_UNICAST_FLT;
5182
5183 /* Do not turn on offloads when they are requested to be turned off.
5184 * TSO needs minimum 576 bytes to work correctly.
5185 */
5186 if (netdev->wanted_features) {
5187 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5188 netdev->mtu < 576)
5189 netdev->features &= ~NETIF_F_TSO;
5190 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5191 netdev->mtu < 576)
5192 netdev->features &= ~NETIF_F_TSO6;
5193 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5194 netdev->features &= ~NETIF_F_TSO_ECN;
5195 if (!(netdev->wanted_features & NETIF_F_GRO))
5196 netdev->features &= ~NETIF_F_GRO;
5197 if (!(netdev->wanted_features & NETIF_F_GSO))
5198 netdev->features &= ~NETIF_F_GSO;
5199 }
5200
5201 return 0;
5202}
5203
5204/**
5205 * iavf_probe - Device Initialization Routine
5206 * @pdev: PCI device information struct
5207 * @ent: entry in iavf_pci_tbl
5208 *
5209 * Returns 0 on success, negative on failure
5210 *
5211 * iavf_probe initializes an adapter identified by a pci_dev structure.
5212 * The OS initialization, configuring of the adapter private structure,
5213 * and a hardware reset occur.
5214 **/
5215static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5216{
5217 struct net_device *netdev;
5218 struct iavf_adapter *adapter = NULL;
5219 struct iavf_hw *hw = NULL;
5220 int err, len;
5221
5222 err = pci_enable_device(pdev);
5223 if (err)
5224 return err;
5225
5226 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5227 if (err) {
5228 dev_err(&pdev->dev,
5229 "DMA configuration failed: 0x%x\n", err);
5230 goto err_dma;
5231 }
5232
5233 err = pci_request_regions(pdev, iavf_driver_name);
5234 if (err) {
5235 dev_err(&pdev->dev,
5236 "pci_request_regions failed 0x%x\n", err);
5237 goto err_pci_reg;
5238 }
5239
5240 pci_set_master(pdev);
5241
5242 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5243 IAVF_MAX_REQ_QUEUES);
5244 if (!netdev) {
5245 err = -ENOMEM;
5246 goto err_alloc_etherdev;
5247 }
5248
5249 SET_NETDEV_DEV(netdev, &pdev->dev);
5250
5251 pci_set_drvdata(pdev, netdev);
5252 adapter = netdev_priv(netdev);
5253
5254 adapter->netdev = netdev;
5255 adapter->pdev = pdev;
5256
5257 hw = &adapter->hw;
5258 hw->back = adapter;
5259
5260 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5261 iavf_driver_name);
5262 if (!adapter->wq) {
5263 err = -ENOMEM;
5264 goto err_alloc_wq;
5265 }
5266
5267 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5268 iavf_change_state(adapter, __IAVF_STARTUP);
5269
5270 /* Call save state here because it relies on the adapter struct. */
5271 pci_save_state(pdev);
5272
5273 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5274 pci_resource_len(pdev, 0));
5275 if (!hw->hw_addr) {
5276 err = -EIO;
5277 goto err_ioremap;
5278 }
5279 hw->vendor_id = pdev->vendor;
5280 hw->device_id = pdev->device;
5281 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5282 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5283 hw->subsystem_device_id = pdev->subsystem_device;
5284 hw->bus.device = PCI_SLOT(pdev->devfn);
5285 hw->bus.func = PCI_FUNC(pdev->devfn);
5286 hw->bus.bus_id = pdev->bus->number;
5287
5288 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5289 adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5290 if (!adapter->qos_caps) {
5291 err = -ENOMEM;
5292 goto err_alloc_qos_cap;
5293 }
5294
5295 /* set up the locks for the AQ, do this only once in probe
5296 * and destroy them only once in remove
5297 */
5298 mutex_init(&adapter->crit_lock);
5299 mutex_init(&hw->aq.asq_mutex);
5300 mutex_init(&hw->aq.arq_mutex);
5301
5302 spin_lock_init(&adapter->mac_vlan_list_lock);
5303 spin_lock_init(&adapter->cloud_filter_list_lock);
5304 spin_lock_init(&adapter->fdir_fltr_lock);
5305 spin_lock_init(&adapter->adv_rss_lock);
5306 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5307
5308 INIT_LIST_HEAD(&adapter->mac_filter_list);
5309 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5310 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5311 INIT_LIST_HEAD(&adapter->fdir_list_head);
5312 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5313
5314 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5315 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5316 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5317 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5318
5319 /* Setup the wait queue for indicating transition to down status */
5320 init_waitqueue_head(&adapter->down_waitqueue);
5321
5322 /* Setup the wait queue for indicating transition to running state */
5323 init_waitqueue_head(&adapter->reset_waitqueue);
5324
5325 /* Setup the wait queue for indicating virtchannel events */
5326 init_waitqueue_head(&adapter->vc_waitqueue);
5327
5328 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5329 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5330 /* Initialization goes on in the work. Do not add more of it below. */
5331 return 0;
5332
5333err_alloc_qos_cap:
5334 iounmap(hw->hw_addr);
5335err_ioremap:
5336 destroy_workqueue(adapter->wq);
5337err_alloc_wq:
5338 free_netdev(netdev);
5339err_alloc_etherdev:
5340 pci_release_regions(pdev);
5341err_pci_reg:
5342err_dma:
5343 pci_disable_device(pdev);
5344 return err;
5345}
5346
5347/**
5348 * iavf_suspend - Power management suspend routine
5349 * @dev_d: device info pointer
5350 *
5351 * Called when the system (VM) is entering sleep/suspend.
5352 **/
5353static int iavf_suspend(struct device *dev_d)
5354{
5355 struct net_device *netdev = dev_get_drvdata(dev_d);
5356 struct iavf_adapter *adapter = netdev_priv(netdev);
5357
5358 netif_device_detach(netdev);
5359
5360 mutex_lock(&adapter->crit_lock);
5361
5362 if (netif_running(netdev)) {
5363 rtnl_lock();
5364 iavf_down(adapter);
5365 rtnl_unlock();
5366 }
5367 iavf_free_misc_irq(adapter);
5368 iavf_reset_interrupt_capability(adapter);
5369
5370 mutex_unlock(&adapter->crit_lock);
5371
5372 return 0;
5373}
5374
5375/**
5376 * iavf_resume - Power management resume routine
5377 * @dev_d: device info pointer
5378 *
5379 * Called when the system (VM) is resumed from sleep/suspend.
5380 **/
5381static int iavf_resume(struct device *dev_d)
5382{
5383 struct pci_dev *pdev = to_pci_dev(dev_d);
5384 struct iavf_adapter *adapter;
5385 u32 err;
5386
5387 adapter = iavf_pdev_to_adapter(pdev);
5388
5389 pci_set_master(pdev);
5390
5391 rtnl_lock();
5392 err = iavf_set_interrupt_capability(adapter);
5393 if (err) {
5394 rtnl_unlock();
5395 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5396 return err;
5397 }
5398 err = iavf_request_misc_irq(adapter);
5399 rtnl_unlock();
5400 if (err) {
5401 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5402 return err;
5403 }
5404
5405 queue_work(adapter->wq, &adapter->reset_task);
5406
5407 netif_device_attach(adapter->netdev);
5408
5409 return err;
5410}
5411
5412/**
5413 * iavf_remove - Device Removal Routine
5414 * @pdev: PCI device information struct
5415 *
5416 * iavf_remove is called by the PCI subsystem to alert the driver
5417 * that it should release a PCI device. The could be caused by a
5418 * Hot-Plug event, or because the driver is going to be removed from
5419 * memory.
5420 **/
5421static void iavf_remove(struct pci_dev *pdev)
5422{
5423 struct iavf_fdir_fltr *fdir, *fdirtmp;
5424 struct iavf_vlan_filter *vlf, *vlftmp;
5425 struct iavf_cloud_filter *cf, *cftmp;
5426 struct iavf_adv_rss *rss, *rsstmp;
5427 struct iavf_mac_filter *f, *ftmp;
5428 struct iavf_adapter *adapter;
5429 struct net_device *netdev;
5430 struct iavf_hw *hw;
5431
5432 /* Don't proceed with remove if netdev is already freed */
5433 netdev = pci_get_drvdata(pdev);
5434 if (!netdev)
5435 return;
5436
5437 adapter = iavf_pdev_to_adapter(pdev);
5438 hw = &adapter->hw;
5439
5440 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5441 return;
5442
5443 /* Wait until port initialization is complete.
5444 * There are flows where register/unregister netdev may race.
5445 */
5446 while (1) {
5447 mutex_lock(&adapter->crit_lock);
5448 if (adapter->state == __IAVF_RUNNING ||
5449 adapter->state == __IAVF_DOWN ||
5450 adapter->state == __IAVF_INIT_FAILED) {
5451 mutex_unlock(&adapter->crit_lock);
5452 break;
5453 }
5454 /* Simply return if we already went through iavf_shutdown */
5455 if (adapter->state == __IAVF_REMOVE) {
5456 mutex_unlock(&adapter->crit_lock);
5457 return;
5458 }
5459
5460 mutex_unlock(&adapter->crit_lock);
5461 usleep_range(500, 1000);
5462 }
5463 cancel_delayed_work_sync(&adapter->watchdog_task);
5464 cancel_work_sync(&adapter->finish_config);
5465
5466 if (netdev->reg_state == NETREG_REGISTERED)
5467 unregister_netdev(netdev);
5468
5469 mutex_lock(&adapter->crit_lock);
5470 dev_info(&adapter->pdev->dev, "Removing device\n");
5471 iavf_change_state(adapter, __IAVF_REMOVE);
5472
5473 iavf_request_reset(adapter);
5474 msleep(50);
5475 /* If the FW isn't responding, kick it once, but only once. */
5476 if (!iavf_asq_done(hw)) {
5477 iavf_request_reset(adapter);
5478 msleep(50);
5479 }
5480
5481 iavf_misc_irq_disable(adapter);
5482 /* Shut down all the garbage mashers on the detention level */
5483 cancel_work_sync(&adapter->reset_task);
5484 cancel_delayed_work_sync(&adapter->watchdog_task);
5485 cancel_work_sync(&adapter->adminq_task);
5486
5487 adapter->aq_required = 0;
5488 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5489
5490 iavf_free_all_tx_resources(adapter);
5491 iavf_free_all_rx_resources(adapter);
5492 iavf_free_misc_irq(adapter);
5493 iavf_free_interrupt_scheme(adapter);
5494
5495 iavf_free_rss(adapter);
5496
5497 if (hw->aq.asq.count)
5498 iavf_shutdown_adminq(hw);
5499
5500 /* destroy the locks only once, here */
5501 mutex_destroy(&hw->aq.arq_mutex);
5502 mutex_destroy(&hw->aq.asq_mutex);
5503 mutex_unlock(&adapter->crit_lock);
5504 mutex_destroy(&adapter->crit_lock);
5505
5506 iounmap(hw->hw_addr);
5507 pci_release_regions(pdev);
5508 kfree(adapter->vf_res);
5509 spin_lock_bh(&adapter->mac_vlan_list_lock);
5510 /* If we got removed before an up/down sequence, we've got a filter
5511 * hanging out there that we need to get rid of.
5512 */
5513 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5514 list_del(&f->list);
5515 kfree(f);
5516 }
5517 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5518 list) {
5519 list_del(&vlf->list);
5520 kfree(vlf);
5521 }
5522
5523 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5524
5525 spin_lock_bh(&adapter->cloud_filter_list_lock);
5526 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5527 list_del(&cf->list);
5528 kfree(cf);
5529 }
5530 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5531
5532 spin_lock_bh(&adapter->fdir_fltr_lock);
5533 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5534 list_del(&fdir->list);
5535 kfree(fdir);
5536 }
5537 spin_unlock_bh(&adapter->fdir_fltr_lock);
5538
5539 spin_lock_bh(&adapter->adv_rss_lock);
5540 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5541 list) {
5542 list_del(&rss->list);
5543 kfree(rss);
5544 }
5545 spin_unlock_bh(&adapter->adv_rss_lock);
5546
5547 destroy_workqueue(adapter->wq);
5548
5549 pci_set_drvdata(pdev, NULL);
5550
5551 free_netdev(netdev);
5552
5553 pci_disable_device(pdev);
5554}
5555
5556/**
5557 * iavf_shutdown - Shutdown the device in preparation for a reboot
5558 * @pdev: pci device structure
5559 **/
5560static void iavf_shutdown(struct pci_dev *pdev)
5561{
5562 iavf_remove(pdev);
5563
5564 if (system_state == SYSTEM_POWER_OFF)
5565 pci_set_power_state(pdev, PCI_D3hot);
5566}
5567
5568static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5569
5570static struct pci_driver iavf_driver = {
5571 .name = iavf_driver_name,
5572 .id_table = iavf_pci_tbl,
5573 .probe = iavf_probe,
5574 .remove = iavf_remove,
5575 .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5576 .shutdown = iavf_shutdown,
5577};
5578
5579/**
5580 * iavf_init_module - Driver Registration Routine
5581 *
5582 * iavf_init_module is the first routine called when the driver is
5583 * loaded. All it does is register with the PCI subsystem.
5584 **/
5585static int __init iavf_init_module(void)
5586{
5587 pr_info("iavf: %s\n", iavf_driver_string);
5588
5589 pr_info("%s\n", iavf_copyright);
5590
5591 return pci_register_driver(&iavf_driver);
5592}
5593
5594module_init(iavf_init_module);
5595
5596/**
5597 * iavf_exit_module - Driver Exit Cleanup Routine
5598 *
5599 * iavf_exit_module is called just before the driver is removed
5600 * from memory.
5601 **/
5602static void __exit iavf_exit_module(void)
5603{
5604 pci_unregister_driver(&iavf_driver);
5605}
5606
5607module_exit(iavf_exit_module);
5608
5609/* iavf_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6/* All iavf tracepoints are defined by the include below, which must
7 * be included exactly once across the whole kernel with
8 * CREATE_TRACE_POINTS defined
9 */
10#define CREATE_TRACE_POINTS
11#include "iavf_trace.h"
12
13static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
14static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
15static int iavf_close(struct net_device *netdev);
16static void iavf_init_get_resources(struct iavf_adapter *adapter);
17static int iavf_check_reset_complete(struct iavf_hw *hw);
18
19char iavf_driver_name[] = "iavf";
20static const char iavf_driver_string[] =
21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
22
23static const char iavf_copyright[] =
24 "Copyright (c) 2013 - 2018 Intel Corporation.";
25
26/* iavf_pci_tbl - PCI Device ID Table
27 *
28 * Wildcard entries (PCI_ANY_ID) should come last
29 * Last entry must be all 0s
30 *
31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
32 * Class, Class Mask, private data (not used) }
33 */
34static const struct pci_device_id iavf_pci_tbl[] = {
35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
39 /* required last entry */
40 {0, }
41};
42
43MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
44
45MODULE_ALIAS("i40evf");
46MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
47MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
48MODULE_LICENSE("GPL v2");
49
50static const struct net_device_ops iavf_netdev_ops;
51
52int iavf_status_to_errno(enum iavf_status status)
53{
54 switch (status) {
55 case IAVF_SUCCESS:
56 return 0;
57 case IAVF_ERR_PARAM:
58 case IAVF_ERR_MAC_TYPE:
59 case IAVF_ERR_INVALID_MAC_ADDR:
60 case IAVF_ERR_INVALID_LINK_SETTINGS:
61 case IAVF_ERR_INVALID_PD_ID:
62 case IAVF_ERR_INVALID_QP_ID:
63 case IAVF_ERR_INVALID_CQ_ID:
64 case IAVF_ERR_INVALID_CEQ_ID:
65 case IAVF_ERR_INVALID_AEQ_ID:
66 case IAVF_ERR_INVALID_SIZE:
67 case IAVF_ERR_INVALID_ARP_INDEX:
68 case IAVF_ERR_INVALID_FPM_FUNC_ID:
69 case IAVF_ERR_QP_INVALID_MSG_SIZE:
70 case IAVF_ERR_INVALID_FRAG_COUNT:
71 case IAVF_ERR_INVALID_ALIGNMENT:
72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
73 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
74 case IAVF_ERR_INVALID_VF_ID:
75 case IAVF_ERR_INVALID_HMCFN_ID:
76 case IAVF_ERR_INVALID_PBLE_INDEX:
77 case IAVF_ERR_INVALID_SD_INDEX:
78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
79 case IAVF_ERR_INVALID_SD_TYPE:
80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
83 return -EINVAL;
84 case IAVF_ERR_NVM:
85 case IAVF_ERR_NVM_CHECKSUM:
86 case IAVF_ERR_PHY:
87 case IAVF_ERR_CONFIG:
88 case IAVF_ERR_UNKNOWN_PHY:
89 case IAVF_ERR_LINK_SETUP:
90 case IAVF_ERR_ADAPTER_STOPPED:
91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
92 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
93 case IAVF_ERR_RESET_FAILED:
94 case IAVF_ERR_BAD_PTR:
95 case IAVF_ERR_SWFW_SYNC:
96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
97 case IAVF_ERR_QUEUE_EMPTY:
98 case IAVF_ERR_FLUSHED_QUEUE:
99 case IAVF_ERR_OPCODE_MISMATCH:
100 case IAVF_ERR_CQP_COMPL_ERROR:
101 case IAVF_ERR_BACKING_PAGE_ERROR:
102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
103 case IAVF_ERR_MEMCPY_FAILED:
104 case IAVF_ERR_SRQ_ENABLED:
105 case IAVF_ERR_ADMIN_QUEUE_ERROR:
106 case IAVF_ERR_ADMIN_QUEUE_FULL:
107 case IAVF_ERR_BAD_RDMA_CQE:
108 case IAVF_ERR_NVM_BLANK_MODE:
109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
110 case IAVF_ERR_DIAG_TEST_FAILED:
111 case IAVF_ERR_FIRMWARE_API_VERSION:
112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
113 return -EIO;
114 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
115 return -ENODEV;
116 case IAVF_ERR_NO_AVAILABLE_VSI:
117 case IAVF_ERR_RING_FULL:
118 return -ENOSPC;
119 case IAVF_ERR_NO_MEMORY:
120 return -ENOMEM;
121 case IAVF_ERR_TIMEOUT:
122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
123 return -ETIMEDOUT;
124 case IAVF_ERR_NOT_IMPLEMENTED:
125 case IAVF_NOT_SUPPORTED:
126 return -EOPNOTSUPP;
127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
128 return -EALREADY;
129 case IAVF_ERR_NOT_READY:
130 return -EBUSY;
131 case IAVF_ERR_BUF_TOO_SHORT:
132 return -EMSGSIZE;
133 }
134
135 return -EIO;
136}
137
138int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
139{
140 switch (v_status) {
141 case VIRTCHNL_STATUS_SUCCESS:
142 return 0;
143 case VIRTCHNL_STATUS_ERR_PARAM:
144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
145 return -EINVAL;
146 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
147 return -ENOMEM;
148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
151 return -EIO;
152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
153 return -EOPNOTSUPP;
154 }
155
156 return -EIO;
157}
158
159/**
160 * iavf_pdev_to_adapter - go from pci_dev to adapter
161 * @pdev: pci_dev pointer
162 */
163static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
164{
165 return netdev_priv(pci_get_drvdata(pdev));
166}
167
168/**
169 * iavf_is_reset_in_progress - Check if a reset is in progress
170 * @adapter: board private structure
171 */
172static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
173{
174 if (adapter->state == __IAVF_RESETTING ||
175 adapter->flags & (IAVF_FLAG_RESET_PENDING |
176 IAVF_FLAG_RESET_NEEDED))
177 return true;
178
179 return false;
180}
181
182/**
183 * iavf_wait_for_reset - Wait for reset to finish.
184 * @adapter: board private structure
185 *
186 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
187 */
188int iavf_wait_for_reset(struct iavf_adapter *adapter)
189{
190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
191 !iavf_is_reset_in_progress(adapter),
192 msecs_to_jiffies(5000));
193
194 /* If ret < 0 then it means wait was interrupted.
195 * If ret == 0 then it means we got a timeout while waiting
196 * for reset to finish.
197 * If ret > 0 it means reset has finished.
198 */
199 if (ret > 0)
200 return 0;
201 else if (ret < 0)
202 return -EINTR;
203 else
204 return -EBUSY;
205}
206
207/**
208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
209 * @hw: pointer to the HW structure
210 * @mem: ptr to mem struct to fill out
211 * @size: size of memory requested
212 * @alignment: what to align the allocation to
213 **/
214enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
215 struct iavf_dma_mem *mem,
216 u64 size, u32 alignment)
217{
218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
219
220 if (!mem)
221 return IAVF_ERR_PARAM;
222
223 mem->size = ALIGN(size, alignment);
224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
225 (dma_addr_t *)&mem->pa, GFP_KERNEL);
226 if (mem->va)
227 return 0;
228 else
229 return IAVF_ERR_NO_MEMORY;
230}
231
232/**
233 * iavf_free_dma_mem - wrapper for DMA memory freeing
234 * @hw: pointer to the HW structure
235 * @mem: ptr to mem struct to free
236 **/
237enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
238{
239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
240
241 if (!mem || !mem->va)
242 return IAVF_ERR_PARAM;
243 dma_free_coherent(&adapter->pdev->dev, mem->size,
244 mem->va, (dma_addr_t)mem->pa);
245 return 0;
246}
247
248/**
249 * iavf_allocate_virt_mem - virt memory alloc wrapper
250 * @hw: pointer to the HW structure
251 * @mem: ptr to mem struct to fill out
252 * @size: size of memory requested
253 **/
254enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
255 struct iavf_virt_mem *mem, u32 size)
256{
257 if (!mem)
258 return IAVF_ERR_PARAM;
259
260 mem->size = size;
261 mem->va = kzalloc(size, GFP_KERNEL);
262
263 if (mem->va)
264 return 0;
265 else
266 return IAVF_ERR_NO_MEMORY;
267}
268
269/**
270 * iavf_free_virt_mem - virt memory free wrapper
271 * @hw: pointer to the HW structure
272 * @mem: ptr to mem struct to free
273 **/
274void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
275{
276 kfree(mem->va);
277}
278
279/**
280 * iavf_schedule_reset - Set the flags and schedule a reset event
281 * @adapter: board private structure
282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
283 **/
284void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
285{
286 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
287 !(adapter->flags &
288 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
289 adapter->flags |= flags;
290 queue_work(adapter->wq, &adapter->reset_task);
291 }
292}
293
294/**
295 * iavf_schedule_aq_request - Set the flags and schedule aq request
296 * @adapter: board private structure
297 * @flags: requested aq flags
298 **/
299void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
300{
301 adapter->aq_required |= flags;
302 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
303}
304
305/**
306 * iavf_tx_timeout - Respond to a Tx Hang
307 * @netdev: network interface device structure
308 * @txqueue: queue number that is timing out
309 **/
310static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
311{
312 struct iavf_adapter *adapter = netdev_priv(netdev);
313
314 adapter->tx_timeout_count++;
315 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
316}
317
318/**
319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
320 * @adapter: board private structure
321 **/
322static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
323{
324 struct iavf_hw *hw = &adapter->hw;
325
326 if (!adapter->msix_entries)
327 return;
328
329 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
330
331 iavf_flush(hw);
332
333 synchronize_irq(adapter->msix_entries[0].vector);
334}
335
336/**
337 * iavf_misc_irq_enable - Enable default interrupt generation settings
338 * @adapter: board private structure
339 **/
340static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
341{
342 struct iavf_hw *hw = &adapter->hw;
343
344 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
345 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
346 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
347
348 iavf_flush(hw);
349}
350
351/**
352 * iavf_irq_disable - Mask off interrupt generation on the NIC
353 * @adapter: board private structure
354 **/
355static void iavf_irq_disable(struct iavf_adapter *adapter)
356{
357 int i;
358 struct iavf_hw *hw = &adapter->hw;
359
360 if (!adapter->msix_entries)
361 return;
362
363 for (i = 1; i < adapter->num_msix_vectors; i++) {
364 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
365 synchronize_irq(adapter->msix_entries[i].vector);
366 }
367 iavf_flush(hw);
368}
369
370/**
371 * iavf_irq_enable_queues - Enable interrupt for all queues
372 * @adapter: board private structure
373 **/
374static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
375{
376 struct iavf_hw *hw = &adapter->hw;
377 int i;
378
379 for (i = 1; i < adapter->num_msix_vectors; i++) {
380 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
381 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
382 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
383 }
384}
385
386/**
387 * iavf_irq_enable - Enable default interrupt generation settings
388 * @adapter: board private structure
389 * @flush: boolean value whether to run rd32()
390 **/
391void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
392{
393 struct iavf_hw *hw = &adapter->hw;
394
395 iavf_misc_irq_enable(adapter);
396 iavf_irq_enable_queues(adapter);
397
398 if (flush)
399 iavf_flush(hw);
400}
401
402/**
403 * iavf_msix_aq - Interrupt handler for vector 0
404 * @irq: interrupt number
405 * @data: pointer to netdev
406 **/
407static irqreturn_t iavf_msix_aq(int irq, void *data)
408{
409 struct net_device *netdev = data;
410 struct iavf_adapter *adapter = netdev_priv(netdev);
411 struct iavf_hw *hw = &adapter->hw;
412
413 /* handle non-queue interrupts, these reads clear the registers */
414 rd32(hw, IAVF_VFINT_ICR01);
415 rd32(hw, IAVF_VFINT_ICR0_ENA1);
416
417 if (adapter->state != __IAVF_REMOVE)
418 /* schedule work on the private workqueue */
419 queue_work(adapter->wq, &adapter->adminq_task);
420
421 return IRQ_HANDLED;
422}
423
424/**
425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
426 * @irq: interrupt number
427 * @data: pointer to a q_vector
428 **/
429static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
430{
431 struct iavf_q_vector *q_vector = data;
432
433 if (!q_vector->tx.ring && !q_vector->rx.ring)
434 return IRQ_HANDLED;
435
436 napi_schedule_irqoff(&q_vector->napi);
437
438 return IRQ_HANDLED;
439}
440
441/**
442 * iavf_map_vector_to_rxq - associate irqs with rx queues
443 * @adapter: board private structure
444 * @v_idx: interrupt number
445 * @r_idx: queue number
446 **/
447static void
448iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
449{
450 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
451 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
452 struct iavf_hw *hw = &adapter->hw;
453
454 rx_ring->q_vector = q_vector;
455 rx_ring->next = q_vector->rx.ring;
456 rx_ring->vsi = &adapter->vsi;
457 q_vector->rx.ring = rx_ring;
458 q_vector->rx.count++;
459 q_vector->rx.next_update = jiffies + 1;
460 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
461 q_vector->ring_mask |= BIT(r_idx);
462 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
463 q_vector->rx.current_itr >> 1);
464 q_vector->rx.current_itr = q_vector->rx.target_itr;
465}
466
467/**
468 * iavf_map_vector_to_txq - associate irqs with tx queues
469 * @adapter: board private structure
470 * @v_idx: interrupt number
471 * @t_idx: queue number
472 **/
473static void
474iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
475{
476 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
477 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
478 struct iavf_hw *hw = &adapter->hw;
479
480 tx_ring->q_vector = q_vector;
481 tx_ring->next = q_vector->tx.ring;
482 tx_ring->vsi = &adapter->vsi;
483 q_vector->tx.ring = tx_ring;
484 q_vector->tx.count++;
485 q_vector->tx.next_update = jiffies + 1;
486 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
487 q_vector->num_ringpairs++;
488 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
489 q_vector->tx.target_itr >> 1);
490 q_vector->tx.current_itr = q_vector->tx.target_itr;
491}
492
493/**
494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
495 * @adapter: board private structure to initialize
496 *
497 * This function maps descriptor rings to the queue-specific vectors
498 * we were allotted through the MSI-X enabling code. Ideally, we'd have
499 * one vector per ring/queue, but on a constrained vector budget, we
500 * group the rings as "efficiently" as possible. You would add new
501 * mapping configurations in here.
502 **/
503static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
504{
505 int rings_remaining = adapter->num_active_queues;
506 int ridx = 0, vidx = 0;
507 int q_vectors;
508
509 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
510
511 for (; ridx < rings_remaining; ridx++) {
512 iavf_map_vector_to_rxq(adapter, vidx, ridx);
513 iavf_map_vector_to_txq(adapter, vidx, ridx);
514
515 /* In the case where we have more queues than vectors, continue
516 * round-robin on vectors until all queues are mapped.
517 */
518 if (++vidx >= q_vectors)
519 vidx = 0;
520 }
521
522 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
523}
524
525/**
526 * iavf_irq_affinity_notify - Callback for affinity changes
527 * @notify: context as to what irq was changed
528 * @mask: the new affinity mask
529 *
530 * This is a callback function used by the irq_set_affinity_notifier function
531 * so that we may register to receive changes to the irq affinity masks.
532 **/
533static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
534 const cpumask_t *mask)
535{
536 struct iavf_q_vector *q_vector =
537 container_of(notify, struct iavf_q_vector, affinity_notify);
538
539 cpumask_copy(&q_vector->affinity_mask, mask);
540}
541
542/**
543 * iavf_irq_affinity_release - Callback for affinity notifier release
544 * @ref: internal core kernel usage
545 *
546 * This is a callback function used by the irq_set_affinity_notifier function
547 * to inform the current notification subscriber that they will no longer
548 * receive notifications.
549 **/
550static void iavf_irq_affinity_release(struct kref *ref) {}
551
552/**
553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
554 * @adapter: board private structure
555 * @basename: device basename
556 *
557 * Allocates MSI-X vectors for tx and rx handling, and requests
558 * interrupts from the kernel.
559 **/
560static int
561iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
562{
563 unsigned int vector, q_vectors;
564 unsigned int rx_int_idx = 0, tx_int_idx = 0;
565 int irq_num, err;
566 int cpu;
567
568 iavf_irq_disable(adapter);
569 /* Decrement for Other and TCP Timer vectors */
570 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
571
572 for (vector = 0; vector < q_vectors; vector++) {
573 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
574
575 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
576
577 if (q_vector->tx.ring && q_vector->rx.ring) {
578 snprintf(q_vector->name, sizeof(q_vector->name),
579 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
580 tx_int_idx++;
581 } else if (q_vector->rx.ring) {
582 snprintf(q_vector->name, sizeof(q_vector->name),
583 "iavf-%s-rx-%u", basename, rx_int_idx++);
584 } else if (q_vector->tx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-tx-%u", basename, tx_int_idx++);
587 } else {
588 /* skip this unused q_vector */
589 continue;
590 }
591 err = request_irq(irq_num,
592 iavf_msix_clean_rings,
593 0,
594 q_vector->name,
595 q_vector);
596 if (err) {
597 dev_info(&adapter->pdev->dev,
598 "Request_irq failed, error: %d\n", err);
599 goto free_queue_irqs;
600 }
601 /* register for affinity change notifications */
602 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
603 q_vector->affinity_notify.release =
604 iavf_irq_affinity_release;
605 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
606 /* Spread the IRQ affinity hints across online CPUs. Note that
607 * get_cpu_mask returns a mask with a permanent lifetime so
608 * it's safe to use as a hint for irq_update_affinity_hint.
609 */
610 cpu = cpumask_local_spread(q_vector->v_idx, -1);
611 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
612 }
613
614 return 0;
615
616free_queue_irqs:
617 while (vector) {
618 vector--;
619 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
620 irq_set_affinity_notifier(irq_num, NULL);
621 irq_update_affinity_hint(irq_num, NULL);
622 free_irq(irq_num, &adapter->q_vectors[vector]);
623 }
624 return err;
625}
626
627/**
628 * iavf_request_misc_irq - Initialize MSI-X interrupts
629 * @adapter: board private structure
630 *
631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
632 * vector is only for the admin queue, and stays active even when the netdev
633 * is closed.
634 **/
635static int iavf_request_misc_irq(struct iavf_adapter *adapter)
636{
637 struct net_device *netdev = adapter->netdev;
638 int err;
639
640 snprintf(adapter->misc_vector_name,
641 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
642 dev_name(&adapter->pdev->dev));
643 err = request_irq(adapter->msix_entries[0].vector,
644 &iavf_msix_aq, 0,
645 adapter->misc_vector_name, netdev);
646 if (err) {
647 dev_err(&adapter->pdev->dev,
648 "request_irq for %s failed: %d\n",
649 adapter->misc_vector_name, err);
650 free_irq(adapter->msix_entries[0].vector, netdev);
651 }
652 return err;
653}
654
655/**
656 * iavf_free_traffic_irqs - Free MSI-X interrupts
657 * @adapter: board private structure
658 *
659 * Frees all MSI-X vectors other than 0.
660 **/
661static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
662{
663 int vector, irq_num, q_vectors;
664
665 if (!adapter->msix_entries)
666 return;
667
668 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
669
670 for (vector = 0; vector < q_vectors; vector++) {
671 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
672 irq_set_affinity_notifier(irq_num, NULL);
673 irq_update_affinity_hint(irq_num, NULL);
674 free_irq(irq_num, &adapter->q_vectors[vector]);
675 }
676}
677
678/**
679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
680 * @adapter: board private structure
681 *
682 * Frees MSI-X vector 0.
683 **/
684static void iavf_free_misc_irq(struct iavf_adapter *adapter)
685{
686 struct net_device *netdev = adapter->netdev;
687
688 if (!adapter->msix_entries)
689 return;
690
691 free_irq(adapter->msix_entries[0].vector, netdev);
692}
693
694/**
695 * iavf_configure_tx - Configure Transmit Unit after Reset
696 * @adapter: board private structure
697 *
698 * Configure the Tx unit of the MAC after a reset.
699 **/
700static void iavf_configure_tx(struct iavf_adapter *adapter)
701{
702 struct iavf_hw *hw = &adapter->hw;
703 int i;
704
705 for (i = 0; i < adapter->num_active_queues; i++)
706 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
707}
708
709/**
710 * iavf_configure_rx - Configure Receive Unit after Reset
711 * @adapter: board private structure
712 *
713 * Configure the Rx unit of the MAC after a reset.
714 **/
715static void iavf_configure_rx(struct iavf_adapter *adapter)
716{
717 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
718 struct iavf_hw *hw = &adapter->hw;
719 int i;
720
721 /* Legacy Rx will always default to a 2048 buffer size. */
722#if (PAGE_SIZE < 8192)
723 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
724 struct net_device *netdev = adapter->netdev;
725
726 /* For jumbo frames on systems with 4K pages we have to use
727 * an order 1 page, so we might as well increase the size
728 * of our Rx buffer to make better use of the available space
729 */
730 rx_buf_len = IAVF_RXBUFFER_3072;
731
732 /* We use a 1536 buffer size for configurations with
733 * standard Ethernet mtu. On x86 this gives us enough room
734 * for shared info and 192 bytes of padding.
735 */
736 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
737 (netdev->mtu <= ETH_DATA_LEN))
738 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
739 }
740#endif
741
742 for (i = 0; i < adapter->num_active_queues; i++) {
743 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
744 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
745
746 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
747 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
748 else
749 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
750 }
751}
752
753/**
754 * iavf_find_vlan - Search filter list for specific vlan filter
755 * @adapter: board private structure
756 * @vlan: vlan tag
757 *
758 * Returns ptr to the filter object or NULL. Must be called while holding the
759 * mac_vlan_list_lock.
760 **/
761static struct
762iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
763 struct iavf_vlan vlan)
764{
765 struct iavf_vlan_filter *f;
766
767 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
768 if (f->vlan.vid == vlan.vid &&
769 f->vlan.tpid == vlan.tpid)
770 return f;
771 }
772
773 return NULL;
774}
775
776/**
777 * iavf_add_vlan - Add a vlan filter to the list
778 * @adapter: board private structure
779 * @vlan: VLAN tag
780 *
781 * Returns ptr to the filter object or NULL when no memory available.
782 **/
783static struct
784iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
785 struct iavf_vlan vlan)
786{
787 struct iavf_vlan_filter *f = NULL;
788
789 spin_lock_bh(&adapter->mac_vlan_list_lock);
790
791 f = iavf_find_vlan(adapter, vlan);
792 if (!f) {
793 f = kzalloc(sizeof(*f), GFP_ATOMIC);
794 if (!f)
795 goto clearout;
796
797 f->vlan = vlan;
798
799 list_add_tail(&f->list, &adapter->vlan_filter_list);
800 f->state = IAVF_VLAN_ADD;
801 adapter->num_vlan_filters++;
802 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
803 }
804
805clearout:
806 spin_unlock_bh(&adapter->mac_vlan_list_lock);
807 return f;
808}
809
810/**
811 * iavf_del_vlan - Remove a vlan filter from the list
812 * @adapter: board private structure
813 * @vlan: VLAN tag
814 **/
815static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
816{
817 struct iavf_vlan_filter *f;
818
819 spin_lock_bh(&adapter->mac_vlan_list_lock);
820
821 f = iavf_find_vlan(adapter, vlan);
822 if (f) {
823 f->state = IAVF_VLAN_REMOVE;
824 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
825 }
826
827 spin_unlock_bh(&adapter->mac_vlan_list_lock);
828}
829
830/**
831 * iavf_restore_filters
832 * @adapter: board private structure
833 *
834 * Restore existing non MAC filters when VF netdev comes back up
835 **/
836static void iavf_restore_filters(struct iavf_adapter *adapter)
837{
838 struct iavf_vlan_filter *f;
839
840 /* re-add all VLAN filters */
841 spin_lock_bh(&adapter->mac_vlan_list_lock);
842
843 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
844 if (f->state == IAVF_VLAN_INACTIVE)
845 f->state = IAVF_VLAN_ADD;
846 }
847
848 spin_unlock_bh(&adapter->mac_vlan_list_lock);
849 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
850}
851
852/**
853 * iavf_get_num_vlans_added - get number of VLANs added
854 * @adapter: board private structure
855 */
856u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
857{
858 return adapter->num_vlan_filters;
859}
860
861/**
862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
863 * @adapter: board private structure
864 *
865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
866 * do not impose a limit as that maintains current behavior and for
867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
868 **/
869static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
870{
871 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
872 * never been a limit on the VF driver side
873 */
874 if (VLAN_ALLOWED(adapter))
875 return VLAN_N_VID;
876 else if (VLAN_V2_ALLOWED(adapter))
877 return adapter->vlan_v2_caps.filtering.max_filters;
878
879 return 0;
880}
881
882/**
883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
884 * @adapter: board private structure
885 **/
886static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
887{
888 if (iavf_get_num_vlans_added(adapter) <
889 iavf_get_max_vlans_allowed(adapter))
890 return false;
891
892 return true;
893}
894
895/**
896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
897 * @netdev: network device struct
898 * @proto: unused protocol data
899 * @vid: VLAN tag
900 **/
901static int iavf_vlan_rx_add_vid(struct net_device *netdev,
902 __always_unused __be16 proto, u16 vid)
903{
904 struct iavf_adapter *adapter = netdev_priv(netdev);
905
906 /* Do not track VLAN 0 filter, always added by the PF on VF init */
907 if (!vid)
908 return 0;
909
910 if (!VLAN_FILTERING_ALLOWED(adapter))
911 return -EIO;
912
913 if (iavf_max_vlans_added(adapter)) {
914 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
915 iavf_get_max_vlans_allowed(adapter));
916 return -EIO;
917 }
918
919 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
920 return -ENOMEM;
921
922 return 0;
923}
924
925/**
926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
927 * @netdev: network device struct
928 * @proto: unused protocol data
929 * @vid: VLAN tag
930 **/
931static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
932 __always_unused __be16 proto, u16 vid)
933{
934 struct iavf_adapter *adapter = netdev_priv(netdev);
935
936 /* We do not track VLAN 0 filter */
937 if (!vid)
938 return 0;
939
940 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
941 return 0;
942}
943
944/**
945 * iavf_find_filter - Search filter list for specific mac filter
946 * @adapter: board private structure
947 * @macaddr: the MAC address
948 *
949 * Returns ptr to the filter object or NULL. Must be called while holding the
950 * mac_vlan_list_lock.
951 **/
952static struct
953iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
954 const u8 *macaddr)
955{
956 struct iavf_mac_filter *f;
957
958 if (!macaddr)
959 return NULL;
960
961 list_for_each_entry(f, &adapter->mac_filter_list, list) {
962 if (ether_addr_equal(macaddr, f->macaddr))
963 return f;
964 }
965 return NULL;
966}
967
968/**
969 * iavf_add_filter - Add a mac filter to the filter list
970 * @adapter: board private structure
971 * @macaddr: the MAC address
972 *
973 * Returns ptr to the filter object or NULL when no memory available.
974 **/
975struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
976 const u8 *macaddr)
977{
978 struct iavf_mac_filter *f;
979
980 if (!macaddr)
981 return NULL;
982
983 f = iavf_find_filter(adapter, macaddr);
984 if (!f) {
985 f = kzalloc(sizeof(*f), GFP_ATOMIC);
986 if (!f)
987 return f;
988
989 ether_addr_copy(f->macaddr, macaddr);
990
991 list_add_tail(&f->list, &adapter->mac_filter_list);
992 f->add = true;
993 f->add_handled = false;
994 f->is_new_mac = true;
995 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
996 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
997 } else {
998 f->remove = false;
999 }
1000
1001 return f;
1002}
1003
1004/**
1005 * iavf_replace_primary_mac - Replace current primary address
1006 * @adapter: board private structure
1007 * @new_mac: new MAC address to be applied
1008 *
1009 * Replace current dev_addr and send request to PF for removal of previous
1010 * primary MAC address filter and addition of new primary MAC filter.
1011 * Return 0 for success, -ENOMEM for failure.
1012 *
1013 * Do not call this with mac_vlan_list_lock!
1014 **/
1015static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1016 const u8 *new_mac)
1017{
1018 struct iavf_hw *hw = &adapter->hw;
1019 struct iavf_mac_filter *new_f;
1020 struct iavf_mac_filter *old_f;
1021
1022 spin_lock_bh(&adapter->mac_vlan_list_lock);
1023
1024 new_f = iavf_add_filter(adapter, new_mac);
1025 if (!new_f) {
1026 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1027 return -ENOMEM;
1028 }
1029
1030 old_f = iavf_find_filter(adapter, hw->mac.addr);
1031 if (old_f) {
1032 old_f->is_primary = false;
1033 old_f->remove = true;
1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1035 }
1036 /* Always send the request to add if changing primary MAC,
1037 * even if filter is already present on the list
1038 */
1039 new_f->is_primary = true;
1040 new_f->add = true;
1041 ether_addr_copy(hw->mac.addr, new_mac);
1042
1043 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1044
1045 /* schedule the watchdog task to immediately process the request */
1046 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1047 return 0;
1048}
1049
1050/**
1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1052 * @netdev: network interface device structure
1053 * @macaddr: MAC address to set
1054 *
1055 * Returns true on success, false on failure
1056 */
1057static bool iavf_is_mac_set_handled(struct net_device *netdev,
1058 const u8 *macaddr)
1059{
1060 struct iavf_adapter *adapter = netdev_priv(netdev);
1061 struct iavf_mac_filter *f;
1062 bool ret = false;
1063
1064 spin_lock_bh(&adapter->mac_vlan_list_lock);
1065
1066 f = iavf_find_filter(adapter, macaddr);
1067
1068 if (!f || (!f->add && f->add_handled))
1069 ret = true;
1070
1071 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1072
1073 return ret;
1074}
1075
1076/**
1077 * iavf_set_mac - NDO callback to set port MAC address
1078 * @netdev: network interface device structure
1079 * @p: pointer to an address structure
1080 *
1081 * Returns 0 on success, negative on failure
1082 */
1083static int iavf_set_mac(struct net_device *netdev, void *p)
1084{
1085 struct iavf_adapter *adapter = netdev_priv(netdev);
1086 struct sockaddr *addr = p;
1087 int ret;
1088
1089 if (!is_valid_ether_addr(addr->sa_data))
1090 return -EADDRNOTAVAIL;
1091
1092 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1093
1094 if (ret)
1095 return ret;
1096
1097 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1098 iavf_is_mac_set_handled(netdev, addr->sa_data),
1099 msecs_to_jiffies(2500));
1100
1101 /* If ret < 0 then it means wait was interrupted.
1102 * If ret == 0 then it means we got a timeout.
1103 * else it means we got response for set MAC from PF,
1104 * check if netdev MAC was updated to requested MAC,
1105 * if yes then set MAC succeeded otherwise it failed return -EACCES
1106 */
1107 if (ret < 0)
1108 return ret;
1109
1110 if (!ret)
1111 return -EAGAIN;
1112
1113 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1114 return -EACCES;
1115
1116 return 0;
1117}
1118
1119/**
1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1121 * @netdev: the netdevice
1122 * @addr: address to add
1123 *
1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1126 */
1127static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1128{
1129 struct iavf_adapter *adapter = netdev_priv(netdev);
1130
1131 if (iavf_add_filter(adapter, addr))
1132 return 0;
1133 else
1134 return -ENOMEM;
1135}
1136
1137/**
1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1139 * @netdev: the netdevice
1140 * @addr: address to add
1141 *
1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1144 */
1145static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1146{
1147 struct iavf_adapter *adapter = netdev_priv(netdev);
1148 struct iavf_mac_filter *f;
1149
1150 /* Under some circumstances, we might receive a request to delete
1151 * our own device address from our uc list. Because we store the
1152 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1153 * such requests and not delete our device address from this list.
1154 */
1155 if (ether_addr_equal(addr, netdev->dev_addr))
1156 return 0;
1157
1158 f = iavf_find_filter(adapter, addr);
1159 if (f) {
1160 f->remove = true;
1161 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1162 }
1163 return 0;
1164}
1165
1166/**
1167 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1168 * @adapter: device specific adapter
1169 */
1170bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1171{
1172 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1173 (IFF_PROMISC | IFF_ALLMULTI);
1174}
1175
1176/**
1177 * iavf_set_rx_mode - NDO callback to set the netdev filters
1178 * @netdev: network interface device structure
1179 **/
1180static void iavf_set_rx_mode(struct net_device *netdev)
1181{
1182 struct iavf_adapter *adapter = netdev_priv(netdev);
1183
1184 spin_lock_bh(&adapter->mac_vlan_list_lock);
1185 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1186 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1187 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1188
1189 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1190 if (iavf_promiscuous_mode_changed(adapter))
1191 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1192 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1193}
1194
1195/**
1196 * iavf_napi_enable_all - enable NAPI on all queue vectors
1197 * @adapter: board private structure
1198 **/
1199static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1200{
1201 int q_idx;
1202 struct iavf_q_vector *q_vector;
1203 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1204
1205 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1206 struct napi_struct *napi;
1207
1208 q_vector = &adapter->q_vectors[q_idx];
1209 napi = &q_vector->napi;
1210 napi_enable(napi);
1211 }
1212}
1213
1214/**
1215 * iavf_napi_disable_all - disable NAPI on all queue vectors
1216 * @adapter: board private structure
1217 **/
1218static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1219{
1220 int q_idx;
1221 struct iavf_q_vector *q_vector;
1222 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1223
1224 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1225 q_vector = &adapter->q_vectors[q_idx];
1226 napi_disable(&q_vector->napi);
1227 }
1228}
1229
1230/**
1231 * iavf_configure - set up transmit and receive data structures
1232 * @adapter: board private structure
1233 **/
1234static void iavf_configure(struct iavf_adapter *adapter)
1235{
1236 struct net_device *netdev = adapter->netdev;
1237 int i;
1238
1239 iavf_set_rx_mode(netdev);
1240
1241 iavf_configure_tx(adapter);
1242 iavf_configure_rx(adapter);
1243 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1244
1245 for (i = 0; i < adapter->num_active_queues; i++) {
1246 struct iavf_ring *ring = &adapter->rx_rings[i];
1247
1248 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1249 }
1250}
1251
1252/**
1253 * iavf_up_complete - Finish the last steps of bringing up a connection
1254 * @adapter: board private structure
1255 *
1256 * Expects to be called while holding crit_lock.
1257 **/
1258static void iavf_up_complete(struct iavf_adapter *adapter)
1259{
1260 iavf_change_state(adapter, __IAVF_RUNNING);
1261 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1262
1263 iavf_napi_enable_all(adapter);
1264
1265 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1266}
1267
1268/**
1269 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1270 * yet and mark other to be removed.
1271 * @adapter: board private structure
1272 **/
1273static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1274{
1275 struct iavf_vlan_filter *vlf, *vlftmp;
1276 struct iavf_mac_filter *f, *ftmp;
1277
1278 spin_lock_bh(&adapter->mac_vlan_list_lock);
1279 /* clear the sync flag on all filters */
1280 __dev_uc_unsync(adapter->netdev, NULL);
1281 __dev_mc_unsync(adapter->netdev, NULL);
1282
1283 /* remove all MAC filters */
1284 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1285 list) {
1286 if (f->add) {
1287 list_del(&f->list);
1288 kfree(f);
1289 } else {
1290 f->remove = true;
1291 }
1292 }
1293
1294 /* disable all VLAN filters */
1295 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1296 list)
1297 vlf->state = IAVF_VLAN_DISABLE;
1298
1299 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1300}
1301
1302/**
1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1304 * mark other to be removed.
1305 * @adapter: board private structure
1306 **/
1307static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1308{
1309 struct iavf_cloud_filter *cf, *cftmp;
1310
1311 /* remove all cloud filters */
1312 spin_lock_bh(&adapter->cloud_filter_list_lock);
1313 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1314 list) {
1315 if (cf->add) {
1316 list_del(&cf->list);
1317 kfree(cf);
1318 adapter->num_cloud_filters--;
1319 } else {
1320 cf->del = true;
1321 }
1322 }
1323 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1324}
1325
1326/**
1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1328 * other to be removed.
1329 * @adapter: board private structure
1330 **/
1331static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1332{
1333 struct iavf_fdir_fltr *fdir;
1334
1335 /* remove all Flow Director filters */
1336 spin_lock_bh(&adapter->fdir_fltr_lock);
1337 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1338 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339 /* Cancel a request, keep filter as inactive */
1340 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1341 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1342 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1343 /* Disable filters which are active or have a pending
1344 * request to PF to be added
1345 */
1346 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1347 }
1348 }
1349 spin_unlock_bh(&adapter->fdir_fltr_lock);
1350}
1351
1352/**
1353 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1354 * other to be removed.
1355 * @adapter: board private structure
1356 **/
1357static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1358{
1359 struct iavf_adv_rss *rss, *rsstmp;
1360
1361 /* remove all advance RSS configuration */
1362 spin_lock_bh(&adapter->adv_rss_lock);
1363 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1364 list) {
1365 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1366 list_del(&rss->list);
1367 kfree(rss);
1368 } else {
1369 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1370 }
1371 }
1372 spin_unlock_bh(&adapter->adv_rss_lock);
1373}
1374
1375/**
1376 * iavf_down - Shutdown the connection processing
1377 * @adapter: board private structure
1378 *
1379 * Expects to be called while holding crit_lock.
1380 **/
1381void iavf_down(struct iavf_adapter *adapter)
1382{
1383 struct net_device *netdev = adapter->netdev;
1384
1385 if (adapter->state <= __IAVF_DOWN_PENDING)
1386 return;
1387
1388 netif_carrier_off(netdev);
1389 netif_tx_disable(netdev);
1390 adapter->link_up = false;
1391 iavf_napi_disable_all(adapter);
1392 iavf_irq_disable(adapter);
1393
1394 iavf_clear_mac_vlan_filters(adapter);
1395 iavf_clear_cloud_filters(adapter);
1396 iavf_clear_fdir_filters(adapter);
1397 iavf_clear_adv_rss_conf(adapter);
1398
1399 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1400 return;
1401
1402 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1403 /* cancel any current operation */
1404 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1405 /* Schedule operations to close down the HW. Don't wait
1406 * here for this to complete. The watchdog is still running
1407 * and it will take care of this.
1408 */
1409 if (!list_empty(&adapter->mac_filter_list))
1410 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1411 if (!list_empty(&adapter->vlan_filter_list))
1412 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1413 if (!list_empty(&adapter->cloud_filter_list))
1414 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1415 if (!list_empty(&adapter->fdir_list_head))
1416 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1417 if (!list_empty(&adapter->adv_rss_list_head))
1418 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1419 }
1420
1421 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1422}
1423
1424/**
1425 * iavf_acquire_msix_vectors - Setup the MSIX capability
1426 * @adapter: board private structure
1427 * @vectors: number of vectors to request
1428 *
1429 * Work with the OS to set up the MSIX vectors needed.
1430 *
1431 * Returns 0 on success, negative on failure
1432 **/
1433static int
1434iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1435{
1436 int err, vector_threshold;
1437
1438 /* We'll want at least 3 (vector_threshold):
1439 * 0) Other (Admin Queue and link, mostly)
1440 * 1) TxQ[0] Cleanup
1441 * 2) RxQ[0] Cleanup
1442 */
1443 vector_threshold = MIN_MSIX_COUNT;
1444
1445 /* The more we get, the more we will assign to Tx/Rx Cleanup
1446 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1447 * Right now, we simply care about how many we'll get; we'll
1448 * set them up later while requesting irq's.
1449 */
1450 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1451 vector_threshold, vectors);
1452 if (err < 0) {
1453 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1454 kfree(adapter->msix_entries);
1455 adapter->msix_entries = NULL;
1456 return err;
1457 }
1458
1459 /* Adjust for only the vectors we'll use, which is minimum
1460 * of max_msix_q_vectors + NONQ_VECS, or the number of
1461 * vectors we were allocated.
1462 */
1463 adapter->num_msix_vectors = err;
1464 return 0;
1465}
1466
1467/**
1468 * iavf_free_queues - Free memory for all rings
1469 * @adapter: board private structure to initialize
1470 *
1471 * Free all of the memory associated with queue pairs.
1472 **/
1473static void iavf_free_queues(struct iavf_adapter *adapter)
1474{
1475 if (!adapter->vsi_res)
1476 return;
1477 adapter->num_active_queues = 0;
1478 kfree(adapter->tx_rings);
1479 adapter->tx_rings = NULL;
1480 kfree(adapter->rx_rings);
1481 adapter->rx_rings = NULL;
1482}
1483
1484/**
1485 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1486 * @adapter: board private structure
1487 *
1488 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1489 * stripped in certain descriptor fields. Instead of checking the offload
1490 * capability bits in the hot path, cache the location the ring specific
1491 * flags.
1492 */
1493void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1494{
1495 int i;
1496
1497 for (i = 0; i < adapter->num_active_queues; i++) {
1498 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1499 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1500
1501 /* prevent multiple L2TAG bits being set after VFR */
1502 tx_ring->flags &=
1503 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1504 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1505 rx_ring->flags &=
1506 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1507 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1508
1509 if (VLAN_ALLOWED(adapter)) {
1510 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1511 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1512 } else if (VLAN_V2_ALLOWED(adapter)) {
1513 struct virtchnl_vlan_supported_caps *stripping_support;
1514 struct virtchnl_vlan_supported_caps *insertion_support;
1515
1516 stripping_support =
1517 &adapter->vlan_v2_caps.offloads.stripping_support;
1518 insertion_support =
1519 &adapter->vlan_v2_caps.offloads.insertion_support;
1520
1521 if (stripping_support->outer) {
1522 if (stripping_support->outer &
1523 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1524 rx_ring->flags |=
1525 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1526 else if (stripping_support->outer &
1527 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1528 rx_ring->flags |=
1529 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1530 } else if (stripping_support->inner) {
1531 if (stripping_support->inner &
1532 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1533 rx_ring->flags |=
1534 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1535 else if (stripping_support->inner &
1536 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1537 rx_ring->flags |=
1538 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1539 }
1540
1541 if (insertion_support->outer) {
1542 if (insertion_support->outer &
1543 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1544 tx_ring->flags |=
1545 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1546 else if (insertion_support->outer &
1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1548 tx_ring->flags |=
1549 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1550 } else if (insertion_support->inner) {
1551 if (insertion_support->inner &
1552 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1553 tx_ring->flags |=
1554 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1555 else if (insertion_support->inner &
1556 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1557 tx_ring->flags |=
1558 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1559 }
1560 }
1561 }
1562}
1563
1564/**
1565 * iavf_alloc_queues - Allocate memory for all rings
1566 * @adapter: board private structure to initialize
1567 *
1568 * We allocate one ring per queue at run-time since we don't know the
1569 * number of queues at compile-time. The polling_netdev array is
1570 * intended for Multiqueue, but should work fine with a single queue.
1571 **/
1572static int iavf_alloc_queues(struct iavf_adapter *adapter)
1573{
1574 int i, num_active_queues;
1575
1576 /* If we're in reset reallocating queues we don't actually know yet for
1577 * certain the PF gave us the number of queues we asked for but we'll
1578 * assume it did. Once basic reset is finished we'll confirm once we
1579 * start negotiating config with PF.
1580 */
1581 if (adapter->num_req_queues)
1582 num_active_queues = adapter->num_req_queues;
1583 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1584 adapter->num_tc)
1585 num_active_queues = adapter->ch_config.total_qps;
1586 else
1587 num_active_queues = min_t(int,
1588 adapter->vsi_res->num_queue_pairs,
1589 (int)(num_online_cpus()));
1590
1591
1592 adapter->tx_rings = kcalloc(num_active_queues,
1593 sizeof(struct iavf_ring), GFP_KERNEL);
1594 if (!adapter->tx_rings)
1595 goto err_out;
1596 adapter->rx_rings = kcalloc(num_active_queues,
1597 sizeof(struct iavf_ring), GFP_KERNEL);
1598 if (!adapter->rx_rings)
1599 goto err_out;
1600
1601 for (i = 0; i < num_active_queues; i++) {
1602 struct iavf_ring *tx_ring;
1603 struct iavf_ring *rx_ring;
1604
1605 tx_ring = &adapter->tx_rings[i];
1606
1607 tx_ring->queue_index = i;
1608 tx_ring->netdev = adapter->netdev;
1609 tx_ring->dev = &adapter->pdev->dev;
1610 tx_ring->count = adapter->tx_desc_count;
1611 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1612 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1613 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1614
1615 rx_ring = &adapter->rx_rings[i];
1616 rx_ring->queue_index = i;
1617 rx_ring->netdev = adapter->netdev;
1618 rx_ring->dev = &adapter->pdev->dev;
1619 rx_ring->count = adapter->rx_desc_count;
1620 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1621 }
1622
1623 adapter->num_active_queues = num_active_queues;
1624
1625 iavf_set_queue_vlan_tag_loc(adapter);
1626
1627 return 0;
1628
1629err_out:
1630 iavf_free_queues(adapter);
1631 return -ENOMEM;
1632}
1633
1634/**
1635 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1636 * @adapter: board private structure to initialize
1637 *
1638 * Attempt to configure the interrupts using the best available
1639 * capabilities of the hardware and the kernel.
1640 **/
1641static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1642{
1643 int vector, v_budget;
1644 int pairs = 0;
1645 int err = 0;
1646
1647 if (!adapter->vsi_res) {
1648 err = -EIO;
1649 goto out;
1650 }
1651 pairs = adapter->num_active_queues;
1652
1653 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1654 * us much good if we have more vectors than CPUs. However, we already
1655 * limit the total number of queues by the number of CPUs so we do not
1656 * need any further limiting here.
1657 */
1658 v_budget = min_t(int, pairs + NONQ_VECS,
1659 (int)adapter->vf_res->max_vectors);
1660
1661 adapter->msix_entries = kcalloc(v_budget,
1662 sizeof(struct msix_entry), GFP_KERNEL);
1663 if (!adapter->msix_entries) {
1664 err = -ENOMEM;
1665 goto out;
1666 }
1667
1668 for (vector = 0; vector < v_budget; vector++)
1669 adapter->msix_entries[vector].entry = vector;
1670
1671 err = iavf_acquire_msix_vectors(adapter, v_budget);
1672 if (!err)
1673 iavf_schedule_finish_config(adapter);
1674
1675out:
1676 return err;
1677}
1678
1679/**
1680 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1681 * @adapter: board private structure
1682 *
1683 * Return 0 on success, negative on failure
1684 **/
1685static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1686{
1687 struct iavf_aqc_get_set_rss_key_data *rss_key =
1688 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1689 struct iavf_hw *hw = &adapter->hw;
1690 enum iavf_status status;
1691
1692 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1693 /* bail because we already have a command pending */
1694 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1695 adapter->current_op);
1696 return -EBUSY;
1697 }
1698
1699 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1700 if (status) {
1701 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1702 iavf_stat_str(hw, status),
1703 iavf_aq_str(hw, hw->aq.asq_last_status));
1704 return iavf_status_to_errno(status);
1705
1706 }
1707
1708 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1709 adapter->rss_lut, adapter->rss_lut_size);
1710 if (status) {
1711 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1712 iavf_stat_str(hw, status),
1713 iavf_aq_str(hw, hw->aq.asq_last_status));
1714 return iavf_status_to_errno(status);
1715 }
1716
1717 return 0;
1718
1719}
1720
1721/**
1722 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1723 * @adapter: board private structure
1724 *
1725 * Returns 0 on success, negative on failure
1726 **/
1727static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1728{
1729 struct iavf_hw *hw = &adapter->hw;
1730 u32 *dw;
1731 u16 i;
1732
1733 dw = (u32 *)adapter->rss_key;
1734 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1735 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1736
1737 dw = (u32 *)adapter->rss_lut;
1738 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1739 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1740
1741 iavf_flush(hw);
1742
1743 return 0;
1744}
1745
1746/**
1747 * iavf_config_rss - Configure RSS keys and lut
1748 * @adapter: board private structure
1749 *
1750 * Returns 0 on success, negative on failure
1751 **/
1752int iavf_config_rss(struct iavf_adapter *adapter)
1753{
1754
1755 if (RSS_PF(adapter)) {
1756 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1757 IAVF_FLAG_AQ_SET_RSS_KEY;
1758 return 0;
1759 } else if (RSS_AQ(adapter)) {
1760 return iavf_config_rss_aq(adapter);
1761 } else {
1762 return iavf_config_rss_reg(adapter);
1763 }
1764}
1765
1766/**
1767 * iavf_fill_rss_lut - Fill the lut with default values
1768 * @adapter: board private structure
1769 **/
1770static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1771{
1772 u16 i;
1773
1774 for (i = 0; i < adapter->rss_lut_size; i++)
1775 adapter->rss_lut[i] = i % adapter->num_active_queues;
1776}
1777
1778/**
1779 * iavf_init_rss - Prepare for RSS
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784static int iavf_init_rss(struct iavf_adapter *adapter)
1785{
1786 struct iavf_hw *hw = &adapter->hw;
1787
1788 if (!RSS_PF(adapter)) {
1789 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1790 if (adapter->vf_res->vf_cap_flags &
1791 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1792 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1793 else
1794 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1795
1796 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1797 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1798 }
1799
1800 iavf_fill_rss_lut(adapter);
1801 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1802
1803 return iavf_config_rss(adapter);
1804}
1805
1806/**
1807 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1808 * @adapter: board private structure to initialize
1809 *
1810 * We allocate one q_vector per queue interrupt. If allocation fails we
1811 * return -ENOMEM.
1812 **/
1813static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1814{
1815 int q_idx = 0, num_q_vectors;
1816 struct iavf_q_vector *q_vector;
1817
1818 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1819 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1820 GFP_KERNEL);
1821 if (!adapter->q_vectors)
1822 return -ENOMEM;
1823
1824 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1825 q_vector = &adapter->q_vectors[q_idx];
1826 q_vector->adapter = adapter;
1827 q_vector->vsi = &adapter->vsi;
1828 q_vector->v_idx = q_idx;
1829 q_vector->reg_idx = q_idx;
1830 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1831 netif_napi_add(adapter->netdev, &q_vector->napi,
1832 iavf_napi_poll);
1833 }
1834
1835 return 0;
1836}
1837
1838/**
1839 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1840 * @adapter: board private structure to initialize
1841 *
1842 * This function frees the memory allocated to the q_vectors. In addition if
1843 * NAPI is enabled it will delete any references to the NAPI struct prior
1844 * to freeing the q_vector.
1845 **/
1846static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1847{
1848 int q_idx, num_q_vectors;
1849
1850 if (!adapter->q_vectors)
1851 return;
1852
1853 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1854
1855 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1856 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1857
1858 netif_napi_del(&q_vector->napi);
1859 }
1860 kfree(adapter->q_vectors);
1861 adapter->q_vectors = NULL;
1862}
1863
1864/**
1865 * iavf_reset_interrupt_capability - Reset MSIX setup
1866 * @adapter: board private structure
1867 *
1868 **/
1869static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1870{
1871 if (!adapter->msix_entries)
1872 return;
1873
1874 pci_disable_msix(adapter->pdev);
1875 kfree(adapter->msix_entries);
1876 adapter->msix_entries = NULL;
1877}
1878
1879/**
1880 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1881 * @adapter: board private structure to initialize
1882 *
1883 **/
1884static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1885{
1886 int err;
1887
1888 err = iavf_alloc_queues(adapter);
1889 if (err) {
1890 dev_err(&adapter->pdev->dev,
1891 "Unable to allocate memory for queues\n");
1892 goto err_alloc_queues;
1893 }
1894
1895 err = iavf_set_interrupt_capability(adapter);
1896 if (err) {
1897 dev_err(&adapter->pdev->dev,
1898 "Unable to setup interrupt capabilities\n");
1899 goto err_set_interrupt;
1900 }
1901
1902 err = iavf_alloc_q_vectors(adapter);
1903 if (err) {
1904 dev_err(&adapter->pdev->dev,
1905 "Unable to allocate memory for queue vectors\n");
1906 goto err_alloc_q_vectors;
1907 }
1908
1909 /* If we've made it so far while ADq flag being ON, then we haven't
1910 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911 * resources have been allocated in the reset path.
1912 * Now we can truly claim that ADq is enabled.
1913 */
1914 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915 adapter->num_tc)
1916 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917 adapter->num_tc);
1918
1919 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921 adapter->num_active_queues);
1922
1923 return 0;
1924err_alloc_q_vectors:
1925 iavf_reset_interrupt_capability(adapter);
1926err_set_interrupt:
1927 iavf_free_queues(adapter);
1928err_alloc_queues:
1929 return err;
1930}
1931
1932/**
1933 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1934 * @adapter: board private structure
1935 **/
1936static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1937{
1938 iavf_free_q_vectors(adapter);
1939 iavf_reset_interrupt_capability(adapter);
1940 iavf_free_queues(adapter);
1941}
1942
1943/**
1944 * iavf_free_rss - Free memory used by RSS structs
1945 * @adapter: board private structure
1946 **/
1947static void iavf_free_rss(struct iavf_adapter *adapter)
1948{
1949 kfree(adapter->rss_key);
1950 adapter->rss_key = NULL;
1951
1952 kfree(adapter->rss_lut);
1953 adapter->rss_lut = NULL;
1954}
1955
1956/**
1957 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1958 * @adapter: board private structure
1959 * @running: true if adapter->state == __IAVF_RUNNING
1960 *
1961 * Returns 0 on success, negative on failure
1962 **/
1963static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1964{
1965 struct net_device *netdev = adapter->netdev;
1966 int err;
1967
1968 if (running)
1969 iavf_free_traffic_irqs(adapter);
1970 iavf_free_misc_irq(adapter);
1971 iavf_free_interrupt_scheme(adapter);
1972
1973 err = iavf_init_interrupt_scheme(adapter);
1974 if (err)
1975 goto err;
1976
1977 netif_tx_stop_all_queues(netdev);
1978
1979 err = iavf_request_misc_irq(adapter);
1980 if (err)
1981 goto err;
1982
1983 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1984
1985 iavf_map_rings_to_vectors(adapter);
1986err:
1987 return err;
1988}
1989
1990/**
1991 * iavf_finish_config - do all netdev work that needs RTNL
1992 * @work: our work_struct
1993 *
1994 * Do work that needs both RTNL and crit_lock.
1995 **/
1996static void iavf_finish_config(struct work_struct *work)
1997{
1998 struct iavf_adapter *adapter;
1999 int pairs, err;
2000
2001 adapter = container_of(work, struct iavf_adapter, finish_config);
2002
2003 /* Always take RTNL first to prevent circular lock dependency */
2004 rtnl_lock();
2005 mutex_lock(&adapter->crit_lock);
2006
2007 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2008 adapter->netdev->reg_state == NETREG_REGISTERED &&
2009 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2010 netdev_update_features(adapter->netdev);
2011 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2012 }
2013
2014 switch (adapter->state) {
2015 case __IAVF_DOWN:
2016 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2017 err = register_netdevice(adapter->netdev);
2018 if (err) {
2019 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2020 err);
2021
2022 /* go back and try again.*/
2023 iavf_free_rss(adapter);
2024 iavf_free_misc_irq(adapter);
2025 iavf_reset_interrupt_capability(adapter);
2026 iavf_change_state(adapter,
2027 __IAVF_INIT_CONFIG_ADAPTER);
2028 goto out;
2029 }
2030 }
2031
2032 /* Set the real number of queues when reset occurs while
2033 * state == __IAVF_DOWN
2034 */
2035 fallthrough;
2036 case __IAVF_RUNNING:
2037 pairs = adapter->num_active_queues;
2038 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2039 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2040 break;
2041
2042 default:
2043 break;
2044 }
2045
2046out:
2047 mutex_unlock(&adapter->crit_lock);
2048 rtnl_unlock();
2049}
2050
2051/**
2052 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2053 * @adapter: board private structure
2054 **/
2055void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2056{
2057 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2058 queue_work(adapter->wq, &adapter->finish_config);
2059}
2060
2061/**
2062 * iavf_process_aq_command - process aq_required flags
2063 * and sends aq command
2064 * @adapter: pointer to iavf adapter structure
2065 *
2066 * Returns 0 on success
2067 * Returns error code if no command was sent
2068 * or error code if the command failed.
2069 **/
2070static int iavf_process_aq_command(struct iavf_adapter *adapter)
2071{
2072 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2073 return iavf_send_vf_config_msg(adapter);
2074 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2075 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2076 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2077 iavf_disable_queues(adapter);
2078 return 0;
2079 }
2080
2081 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2082 iavf_map_queues(adapter);
2083 return 0;
2084 }
2085
2086 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2087 iavf_add_ether_addrs(adapter);
2088 return 0;
2089 }
2090
2091 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2092 iavf_add_vlans(adapter);
2093 return 0;
2094 }
2095
2096 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2097 iavf_del_ether_addrs(adapter);
2098 return 0;
2099 }
2100
2101 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2102 iavf_del_vlans(adapter);
2103 return 0;
2104 }
2105
2106 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2107 iavf_enable_vlan_stripping(adapter);
2108 return 0;
2109 }
2110
2111 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2112 iavf_disable_vlan_stripping(adapter);
2113 return 0;
2114 }
2115
2116 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2117 iavf_configure_queues(adapter);
2118 return 0;
2119 }
2120
2121 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2122 iavf_enable_queues(adapter);
2123 return 0;
2124 }
2125
2126 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2127 /* This message goes straight to the firmware, not the
2128 * PF, so we don't have to set current_op as we will
2129 * not get a response through the ARQ.
2130 */
2131 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2132 return 0;
2133 }
2134 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2135 iavf_get_hena(adapter);
2136 return 0;
2137 }
2138 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2139 iavf_set_hena(adapter);
2140 return 0;
2141 }
2142 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2143 iavf_set_rss_key(adapter);
2144 return 0;
2145 }
2146 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2147 iavf_set_rss_lut(adapter);
2148 return 0;
2149 }
2150 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2151 iavf_set_rss_hfunc(adapter);
2152 return 0;
2153 }
2154
2155 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2156 iavf_set_promiscuous(adapter);
2157 return 0;
2158 }
2159
2160 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2161 iavf_enable_channels(adapter);
2162 return 0;
2163 }
2164
2165 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2166 iavf_disable_channels(adapter);
2167 return 0;
2168 }
2169 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2170 iavf_add_cloud_filter(adapter);
2171 return 0;
2172 }
2173
2174 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2175 iavf_del_cloud_filter(adapter);
2176 return 0;
2177 }
2178 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2179 iavf_del_cloud_filter(adapter);
2180 return 0;
2181 }
2182 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2183 iavf_add_cloud_filter(adapter);
2184 return 0;
2185 }
2186 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2187 iavf_add_fdir_filter(adapter);
2188 return IAVF_SUCCESS;
2189 }
2190 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2191 iavf_del_fdir_filter(adapter);
2192 return IAVF_SUCCESS;
2193 }
2194 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2195 iavf_add_adv_rss_cfg(adapter);
2196 return 0;
2197 }
2198 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2199 iavf_del_adv_rss_cfg(adapter);
2200 return 0;
2201 }
2202 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2203 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2204 return 0;
2205 }
2206 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2207 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2208 return 0;
2209 }
2210 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2211 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2212 return 0;
2213 }
2214 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2215 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2216 return 0;
2217 }
2218 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2219 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2220 return 0;
2221 }
2222 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2223 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2224 return 0;
2225 }
2226 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2227 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2228 return 0;
2229 }
2230 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2231 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2232 return 0;
2233 }
2234
2235 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2236 iavf_request_stats(adapter);
2237 return 0;
2238 }
2239
2240 return -EAGAIN;
2241}
2242
2243/**
2244 * iavf_set_vlan_offload_features - set VLAN offload configuration
2245 * @adapter: board private structure
2246 * @prev_features: previous features used for comparison
2247 * @features: updated features used for configuration
2248 *
2249 * Set the aq_required bit(s) based on the requested features passed in to
2250 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2251 * the watchdog if any changes are requested to expedite the request via
2252 * virtchnl.
2253 **/
2254static void
2255iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2256 netdev_features_t prev_features,
2257 netdev_features_t features)
2258{
2259 bool enable_stripping = true, enable_insertion = true;
2260 u16 vlan_ethertype = 0;
2261 u64 aq_required = 0;
2262
2263 /* keep cases separate because one ethertype for offloads can be
2264 * disabled at the same time as another is disabled, so check for an
2265 * enabled ethertype first, then check for disabled. Default to
2266 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2267 * stripping.
2268 */
2269 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2270 vlan_ethertype = ETH_P_8021AD;
2271 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2272 vlan_ethertype = ETH_P_8021Q;
2273 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2274 vlan_ethertype = ETH_P_8021AD;
2275 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2276 vlan_ethertype = ETH_P_8021Q;
2277 else
2278 vlan_ethertype = ETH_P_8021Q;
2279
2280 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2281 enable_stripping = false;
2282 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2283 enable_insertion = false;
2284
2285 if (VLAN_ALLOWED(adapter)) {
2286 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2287 * stripping via virtchnl. VLAN insertion can be toggled on the
2288 * netdev, but it doesn't require a virtchnl message
2289 */
2290 if (enable_stripping)
2291 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2292 else
2293 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2294
2295 } else if (VLAN_V2_ALLOWED(adapter)) {
2296 switch (vlan_ethertype) {
2297 case ETH_P_8021Q:
2298 if (enable_stripping)
2299 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2300 else
2301 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2302
2303 if (enable_insertion)
2304 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2305 else
2306 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2307 break;
2308 case ETH_P_8021AD:
2309 if (enable_stripping)
2310 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2311 else
2312 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2313
2314 if (enable_insertion)
2315 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2316 else
2317 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2318 break;
2319 }
2320 }
2321
2322 if (aq_required)
2323 iavf_schedule_aq_request(adapter, aq_required);
2324}
2325
2326/**
2327 * iavf_startup - first step of driver startup
2328 * @adapter: board private structure
2329 *
2330 * Function process __IAVF_STARTUP driver state.
2331 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2332 * when fails the state is changed to __IAVF_INIT_FAILED
2333 **/
2334static void iavf_startup(struct iavf_adapter *adapter)
2335{
2336 struct pci_dev *pdev = adapter->pdev;
2337 struct iavf_hw *hw = &adapter->hw;
2338 enum iavf_status status;
2339 int ret;
2340
2341 WARN_ON(adapter->state != __IAVF_STARTUP);
2342
2343 /* driver loaded, probe complete */
2344 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2345 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2346
2347 ret = iavf_check_reset_complete(hw);
2348 if (ret) {
2349 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2350 ret);
2351 goto err;
2352 }
2353 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2354 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2355 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2356 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2357
2358 status = iavf_init_adminq(hw);
2359 if (status) {
2360 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2361 status);
2362 goto err;
2363 }
2364 ret = iavf_send_api_ver(adapter);
2365 if (ret) {
2366 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2367 iavf_shutdown_adminq(hw);
2368 goto err;
2369 }
2370 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2371 return;
2372err:
2373 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2374}
2375
2376/**
2377 * iavf_init_version_check - second step of driver startup
2378 * @adapter: board private structure
2379 *
2380 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2381 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2382 * when fails the state is changed to __IAVF_INIT_FAILED
2383 **/
2384static void iavf_init_version_check(struct iavf_adapter *adapter)
2385{
2386 struct pci_dev *pdev = adapter->pdev;
2387 struct iavf_hw *hw = &adapter->hw;
2388 int err = -EAGAIN;
2389
2390 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2391
2392 if (!iavf_asq_done(hw)) {
2393 dev_err(&pdev->dev, "Admin queue command never completed\n");
2394 iavf_shutdown_adminq(hw);
2395 iavf_change_state(adapter, __IAVF_STARTUP);
2396 goto err;
2397 }
2398
2399 /* aq msg sent, awaiting reply */
2400 err = iavf_verify_api_ver(adapter);
2401 if (err) {
2402 if (err == -EALREADY)
2403 err = iavf_send_api_ver(adapter);
2404 else
2405 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2406 adapter->pf_version.major,
2407 adapter->pf_version.minor,
2408 VIRTCHNL_VERSION_MAJOR,
2409 VIRTCHNL_VERSION_MINOR);
2410 goto err;
2411 }
2412 err = iavf_send_vf_config_msg(adapter);
2413 if (err) {
2414 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2415 err);
2416 goto err;
2417 }
2418 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2419 return;
2420err:
2421 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2422}
2423
2424/**
2425 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2426 * @adapter: board private structure
2427 */
2428int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2429{
2430 int i, num_req_queues = adapter->num_req_queues;
2431 struct iavf_vsi *vsi = &adapter->vsi;
2432
2433 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2434 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2435 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2436 }
2437 if (!adapter->vsi_res) {
2438 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2439 return -ENODEV;
2440 }
2441
2442 if (num_req_queues &&
2443 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2444 /* Problem. The PF gave us fewer queues than what we had
2445 * negotiated in our request. Need a reset to see if we can't
2446 * get back to a working state.
2447 */
2448 dev_err(&adapter->pdev->dev,
2449 "Requested %d queues, but PF only gave us %d.\n",
2450 num_req_queues,
2451 adapter->vsi_res->num_queue_pairs);
2452 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2453 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2454 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2455
2456 return -EAGAIN;
2457 }
2458 adapter->num_req_queues = 0;
2459 adapter->vsi.id = adapter->vsi_res->vsi_id;
2460
2461 adapter->vsi.back = adapter;
2462 adapter->vsi.base_vector = 1;
2463 vsi->netdev = adapter->netdev;
2464 vsi->qs_handle = adapter->vsi_res->qset_handle;
2465 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2466 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2467 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2468 } else {
2469 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2470 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2471 }
2472
2473 return 0;
2474}
2475
2476/**
2477 * iavf_init_get_resources - third step of driver startup
2478 * @adapter: board private structure
2479 *
2480 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2481 * finishes driver initialization procedure.
2482 * When success the state is changed to __IAVF_DOWN
2483 * when fails the state is changed to __IAVF_INIT_FAILED
2484 **/
2485static void iavf_init_get_resources(struct iavf_adapter *adapter)
2486{
2487 struct pci_dev *pdev = adapter->pdev;
2488 struct iavf_hw *hw = &adapter->hw;
2489 int err;
2490
2491 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2492 /* aq msg sent, awaiting reply */
2493 if (!adapter->vf_res) {
2494 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2495 GFP_KERNEL);
2496 if (!adapter->vf_res) {
2497 err = -ENOMEM;
2498 goto err;
2499 }
2500 }
2501 err = iavf_get_vf_config(adapter);
2502 if (err == -EALREADY) {
2503 err = iavf_send_vf_config_msg(adapter);
2504 goto err;
2505 } else if (err == -EINVAL) {
2506 /* We only get -EINVAL if the device is in a very bad
2507 * state or if we've been disabled for previous bad
2508 * behavior. Either way, we're done now.
2509 */
2510 iavf_shutdown_adminq(hw);
2511 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2512 return;
2513 }
2514 if (err) {
2515 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2516 goto err_alloc;
2517 }
2518
2519 err = iavf_parse_vf_resource_msg(adapter);
2520 if (err) {
2521 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2522 err);
2523 goto err_alloc;
2524 }
2525 /* Some features require additional messages to negotiate extended
2526 * capabilities. These are processed in sequence by the
2527 * __IAVF_INIT_EXTENDED_CAPS driver state.
2528 */
2529 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2530
2531 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2532 return;
2533
2534err_alloc:
2535 kfree(adapter->vf_res);
2536 adapter->vf_res = NULL;
2537err:
2538 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2539}
2540
2541/**
2542 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2543 * @adapter: board private structure
2544 *
2545 * Function processes send of the extended VLAN V2 capability message to the
2546 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2547 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2548 */
2549static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2550{
2551 int ret;
2552
2553 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2554
2555 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2556 if (ret && ret == -EOPNOTSUPP) {
2557 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2558 * we did not send the capability exchange message and do not
2559 * expect a response.
2560 */
2561 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2562 }
2563
2564 /* We sent the message, so move on to the next step */
2565 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2566}
2567
2568/**
2569 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2570 * @adapter: board private structure
2571 *
2572 * Function processes receipt of the extended VLAN V2 capability message from
2573 * the PF.
2574 **/
2575static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2576{
2577 int ret;
2578
2579 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2580
2581 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2582
2583 ret = iavf_get_vf_vlan_v2_caps(adapter);
2584 if (ret)
2585 goto err;
2586
2587 /* We've processed receipt of the VLAN V2 caps message */
2588 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2589 return;
2590err:
2591 /* We didn't receive a reply. Make sure we try sending again when
2592 * __IAVF_INIT_FAILED attempts to recover.
2593 */
2594 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2595 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2596}
2597
2598/**
2599 * iavf_init_process_extended_caps - Part of driver startup
2600 * @adapter: board private structure
2601 *
2602 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2603 * handles negotiating capabilities for features which require an additional
2604 * message.
2605 *
2606 * Once all extended capabilities exchanges are finished, the driver will
2607 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2608 */
2609static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2610{
2611 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2612
2613 /* Process capability exchange for VLAN V2 */
2614 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2615 iavf_init_send_offload_vlan_v2_caps(adapter);
2616 return;
2617 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2618 iavf_init_recv_offload_vlan_v2_caps(adapter);
2619 return;
2620 }
2621
2622 /* When we reach here, no further extended capabilities exchanges are
2623 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2624 */
2625 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2626}
2627
2628/**
2629 * iavf_init_config_adapter - last part of driver startup
2630 * @adapter: board private structure
2631 *
2632 * After all the supported capabilities are negotiated, then the
2633 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2634 */
2635static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2636{
2637 struct net_device *netdev = adapter->netdev;
2638 struct pci_dev *pdev = adapter->pdev;
2639 int err;
2640
2641 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2642
2643 if (iavf_process_config(adapter))
2644 goto err;
2645
2646 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2647
2648 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2649
2650 netdev->netdev_ops = &iavf_netdev_ops;
2651 iavf_set_ethtool_ops(netdev);
2652 netdev->watchdog_timeo = 5 * HZ;
2653
2654 /* MTU range: 68 - 9710 */
2655 netdev->min_mtu = ETH_MIN_MTU;
2656 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2657
2658 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2659 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2660 adapter->hw.mac.addr);
2661 eth_hw_addr_random(netdev);
2662 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2663 } else {
2664 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2665 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2666 }
2667
2668 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2669 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2670 err = iavf_init_interrupt_scheme(adapter);
2671 if (err)
2672 goto err_sw_init;
2673 iavf_map_rings_to_vectors(adapter);
2674 if (adapter->vf_res->vf_cap_flags &
2675 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2676 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2677
2678 err = iavf_request_misc_irq(adapter);
2679 if (err)
2680 goto err_sw_init;
2681
2682 netif_carrier_off(netdev);
2683 adapter->link_up = false;
2684 netif_tx_stop_all_queues(netdev);
2685
2686 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2687 if (netdev->features & NETIF_F_GRO)
2688 dev_info(&pdev->dev, "GRO is enabled\n");
2689
2690 iavf_change_state(adapter, __IAVF_DOWN);
2691 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2692
2693 iavf_misc_irq_enable(adapter);
2694 wake_up(&adapter->down_waitqueue);
2695
2696 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2697 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2698 if (!adapter->rss_key || !adapter->rss_lut) {
2699 err = -ENOMEM;
2700 goto err_mem;
2701 }
2702 if (RSS_AQ(adapter))
2703 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2704 else
2705 iavf_init_rss(adapter);
2706
2707 if (VLAN_V2_ALLOWED(adapter))
2708 /* request initial VLAN offload settings */
2709 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2710
2711 iavf_schedule_finish_config(adapter);
2712 return;
2713
2714err_mem:
2715 iavf_free_rss(adapter);
2716 iavf_free_misc_irq(adapter);
2717err_sw_init:
2718 iavf_reset_interrupt_capability(adapter);
2719err:
2720 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2721}
2722
2723/**
2724 * iavf_watchdog_task - Periodic call-back task
2725 * @work: pointer to work_struct
2726 **/
2727static void iavf_watchdog_task(struct work_struct *work)
2728{
2729 struct iavf_adapter *adapter = container_of(work,
2730 struct iavf_adapter,
2731 watchdog_task.work);
2732 struct iavf_hw *hw = &adapter->hw;
2733 u32 reg_val;
2734
2735 if (!mutex_trylock(&adapter->crit_lock)) {
2736 if (adapter->state == __IAVF_REMOVE)
2737 return;
2738
2739 goto restart_watchdog;
2740 }
2741
2742 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2743 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2744
2745 switch (adapter->state) {
2746 case __IAVF_STARTUP:
2747 iavf_startup(adapter);
2748 mutex_unlock(&adapter->crit_lock);
2749 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2750 msecs_to_jiffies(30));
2751 return;
2752 case __IAVF_INIT_VERSION_CHECK:
2753 iavf_init_version_check(adapter);
2754 mutex_unlock(&adapter->crit_lock);
2755 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2756 msecs_to_jiffies(30));
2757 return;
2758 case __IAVF_INIT_GET_RESOURCES:
2759 iavf_init_get_resources(adapter);
2760 mutex_unlock(&adapter->crit_lock);
2761 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2762 msecs_to_jiffies(1));
2763 return;
2764 case __IAVF_INIT_EXTENDED_CAPS:
2765 iavf_init_process_extended_caps(adapter);
2766 mutex_unlock(&adapter->crit_lock);
2767 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2768 msecs_to_jiffies(1));
2769 return;
2770 case __IAVF_INIT_CONFIG_ADAPTER:
2771 iavf_init_config_adapter(adapter);
2772 mutex_unlock(&adapter->crit_lock);
2773 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2774 msecs_to_jiffies(1));
2775 return;
2776 case __IAVF_INIT_FAILED:
2777 if (test_bit(__IAVF_IN_REMOVE_TASK,
2778 &adapter->crit_section)) {
2779 /* Do not update the state and do not reschedule
2780 * watchdog task, iavf_remove should handle this state
2781 * as it can loop forever
2782 */
2783 mutex_unlock(&adapter->crit_lock);
2784 return;
2785 }
2786 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2787 dev_err(&adapter->pdev->dev,
2788 "Failed to communicate with PF; waiting before retry\n");
2789 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2790 iavf_shutdown_adminq(hw);
2791 mutex_unlock(&adapter->crit_lock);
2792 queue_delayed_work(adapter->wq,
2793 &adapter->watchdog_task, (5 * HZ));
2794 return;
2795 }
2796 /* Try again from failed step*/
2797 iavf_change_state(adapter, adapter->last_state);
2798 mutex_unlock(&adapter->crit_lock);
2799 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2800 return;
2801 case __IAVF_COMM_FAILED:
2802 if (test_bit(__IAVF_IN_REMOVE_TASK,
2803 &adapter->crit_section)) {
2804 /* Set state to __IAVF_INIT_FAILED and perform remove
2805 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2806 * doesn't bring the state back to __IAVF_COMM_FAILED.
2807 */
2808 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2809 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2810 mutex_unlock(&adapter->crit_lock);
2811 return;
2812 }
2813 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2814 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2815 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2816 reg_val == VIRTCHNL_VFR_COMPLETED) {
2817 /* A chance for redemption! */
2818 dev_err(&adapter->pdev->dev,
2819 "Hardware came out of reset. Attempting reinit.\n");
2820 /* When init task contacts the PF and
2821 * gets everything set up again, it'll restart the
2822 * watchdog for us. Down, boy. Sit. Stay. Woof.
2823 */
2824 iavf_change_state(adapter, __IAVF_STARTUP);
2825 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2826 }
2827 adapter->aq_required = 0;
2828 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2829 mutex_unlock(&adapter->crit_lock);
2830 queue_delayed_work(adapter->wq,
2831 &adapter->watchdog_task,
2832 msecs_to_jiffies(10));
2833 return;
2834 case __IAVF_RESETTING:
2835 mutex_unlock(&adapter->crit_lock);
2836 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2837 HZ * 2);
2838 return;
2839 case __IAVF_DOWN:
2840 case __IAVF_DOWN_PENDING:
2841 case __IAVF_TESTING:
2842 case __IAVF_RUNNING:
2843 if (adapter->current_op) {
2844 if (!iavf_asq_done(hw)) {
2845 dev_dbg(&adapter->pdev->dev,
2846 "Admin queue timeout\n");
2847 iavf_send_api_ver(adapter);
2848 }
2849 } else {
2850 int ret = iavf_process_aq_command(adapter);
2851
2852 /* An error will be returned if no commands were
2853 * processed; use this opportunity to update stats
2854 * if the error isn't -ENOTSUPP
2855 */
2856 if (ret && ret != -EOPNOTSUPP &&
2857 adapter->state == __IAVF_RUNNING)
2858 iavf_request_stats(adapter);
2859 }
2860 if (adapter->state == __IAVF_RUNNING)
2861 iavf_detect_recover_hung(&adapter->vsi);
2862 break;
2863 case __IAVF_REMOVE:
2864 default:
2865 mutex_unlock(&adapter->crit_lock);
2866 return;
2867 }
2868
2869 /* check for hw reset */
2870 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2871 if (!reg_val) {
2872 adapter->aq_required = 0;
2873 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2874 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2875 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2876 mutex_unlock(&adapter->crit_lock);
2877 queue_delayed_work(adapter->wq,
2878 &adapter->watchdog_task, HZ * 2);
2879 return;
2880 }
2881
2882 mutex_unlock(&adapter->crit_lock);
2883restart_watchdog:
2884 if (adapter->state >= __IAVF_DOWN)
2885 queue_work(adapter->wq, &adapter->adminq_task);
2886 if (adapter->aq_required)
2887 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2888 msecs_to_jiffies(20));
2889 else
2890 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2891 HZ * 2);
2892}
2893
2894/**
2895 * iavf_disable_vf - disable VF
2896 * @adapter: board private structure
2897 *
2898 * Set communication failed flag and free all resources.
2899 * NOTE: This function is expected to be called with crit_lock being held.
2900 **/
2901static void iavf_disable_vf(struct iavf_adapter *adapter)
2902{
2903 struct iavf_mac_filter *f, *ftmp;
2904 struct iavf_vlan_filter *fv, *fvtmp;
2905 struct iavf_cloud_filter *cf, *cftmp;
2906
2907 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2908
2909 /* We don't use netif_running() because it may be true prior to
2910 * ndo_open() returning, so we can't assume it means all our open
2911 * tasks have finished, since we're not holding the rtnl_lock here.
2912 */
2913 if (adapter->state == __IAVF_RUNNING) {
2914 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2915 netif_carrier_off(adapter->netdev);
2916 netif_tx_disable(adapter->netdev);
2917 adapter->link_up = false;
2918 iavf_napi_disable_all(adapter);
2919 iavf_irq_disable(adapter);
2920 iavf_free_traffic_irqs(adapter);
2921 iavf_free_all_tx_resources(adapter);
2922 iavf_free_all_rx_resources(adapter);
2923 }
2924
2925 spin_lock_bh(&adapter->mac_vlan_list_lock);
2926
2927 /* Delete all of the filters */
2928 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2929 list_del(&f->list);
2930 kfree(f);
2931 }
2932
2933 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2934 list_del(&fv->list);
2935 kfree(fv);
2936 }
2937 adapter->num_vlan_filters = 0;
2938
2939 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2940
2941 spin_lock_bh(&adapter->cloud_filter_list_lock);
2942 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2943 list_del(&cf->list);
2944 kfree(cf);
2945 adapter->num_cloud_filters--;
2946 }
2947 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2948
2949 iavf_free_misc_irq(adapter);
2950 iavf_free_interrupt_scheme(adapter);
2951 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2952 iavf_shutdown_adminq(&adapter->hw);
2953 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2954 iavf_change_state(adapter, __IAVF_DOWN);
2955 wake_up(&adapter->down_waitqueue);
2956 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2957}
2958
2959/**
2960 * iavf_reset_task - Call-back task to handle hardware reset
2961 * @work: pointer to work_struct
2962 *
2963 * During reset we need to shut down and reinitialize the admin queue
2964 * before we can use it to communicate with the PF again. We also clear
2965 * and reinit the rings because that context is lost as well.
2966 **/
2967static void iavf_reset_task(struct work_struct *work)
2968{
2969 struct iavf_adapter *adapter = container_of(work,
2970 struct iavf_adapter,
2971 reset_task);
2972 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2973 struct net_device *netdev = adapter->netdev;
2974 struct iavf_hw *hw = &adapter->hw;
2975 struct iavf_mac_filter *f, *ftmp;
2976 struct iavf_cloud_filter *cf;
2977 enum iavf_status status;
2978 u32 reg_val;
2979 int i = 0, err;
2980 bool running;
2981
2982 /* When device is being removed it doesn't make sense to run the reset
2983 * task, just return in such a case.
2984 */
2985 if (!mutex_trylock(&adapter->crit_lock)) {
2986 if (adapter->state != __IAVF_REMOVE)
2987 queue_work(adapter->wq, &adapter->reset_task);
2988
2989 return;
2990 }
2991
2992 iavf_misc_irq_disable(adapter);
2993 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2994 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2995 /* Restart the AQ here. If we have been reset but didn't
2996 * detect it, or if the PF had to reinit, our AQ will be hosed.
2997 */
2998 iavf_shutdown_adminq(hw);
2999 iavf_init_adminq(hw);
3000 iavf_request_reset(adapter);
3001 }
3002 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3003
3004 /* poll until we see the reset actually happen */
3005 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3006 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3007 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3008 if (!reg_val)
3009 break;
3010 usleep_range(5000, 10000);
3011 }
3012 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3013 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3014 goto continue_reset; /* act like the reset happened */
3015 }
3016
3017 /* wait until the reset is complete and the PF is responding to us */
3018 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3019 /* sleep first to make sure a minimum wait time is met */
3020 msleep(IAVF_RESET_WAIT_MS);
3021
3022 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3023 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3024 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3025 break;
3026 }
3027
3028 pci_set_master(adapter->pdev);
3029 pci_restore_msi_state(adapter->pdev);
3030
3031 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3032 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3033 reg_val);
3034 iavf_disable_vf(adapter);
3035 mutex_unlock(&adapter->crit_lock);
3036 return; /* Do not attempt to reinit. It's dead, Jim. */
3037 }
3038
3039continue_reset:
3040 /* We don't use netif_running() because it may be true prior to
3041 * ndo_open() returning, so we can't assume it means all our open
3042 * tasks have finished, since we're not holding the rtnl_lock here.
3043 */
3044 running = adapter->state == __IAVF_RUNNING;
3045
3046 if (running) {
3047 netif_carrier_off(netdev);
3048 netif_tx_stop_all_queues(netdev);
3049 adapter->link_up = false;
3050 iavf_napi_disable_all(adapter);
3051 }
3052 iavf_irq_disable(adapter);
3053
3054 iavf_change_state(adapter, __IAVF_RESETTING);
3055 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3056
3057 /* free the Tx/Rx rings and descriptors, might be better to just
3058 * re-use them sometime in the future
3059 */
3060 iavf_free_all_rx_resources(adapter);
3061 iavf_free_all_tx_resources(adapter);
3062
3063 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3064 /* kill and reinit the admin queue */
3065 iavf_shutdown_adminq(hw);
3066 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3067 status = iavf_init_adminq(hw);
3068 if (status) {
3069 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3070 status);
3071 goto reset_err;
3072 }
3073 adapter->aq_required = 0;
3074
3075 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3076 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3077 err = iavf_reinit_interrupt_scheme(adapter, running);
3078 if (err)
3079 goto reset_err;
3080 }
3081
3082 if (RSS_AQ(adapter)) {
3083 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3084 } else {
3085 err = iavf_init_rss(adapter);
3086 if (err)
3087 goto reset_err;
3088 }
3089
3090 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3091 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3092 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3093 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3094 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3095 * been successfully sent and negotiated
3096 */
3097 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3098 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3099
3100 spin_lock_bh(&adapter->mac_vlan_list_lock);
3101
3102 /* Delete filter for the current MAC address, it could have
3103 * been changed by the PF via administratively set MAC.
3104 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3105 */
3106 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3107 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3108 list_del(&f->list);
3109 kfree(f);
3110 }
3111 }
3112 /* re-add all MAC filters */
3113 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3114 f->add = true;
3115 }
3116 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3117
3118 /* check if TCs are running and re-add all cloud filters */
3119 spin_lock_bh(&adapter->cloud_filter_list_lock);
3120 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3121 adapter->num_tc) {
3122 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3123 cf->add = true;
3124 }
3125 }
3126 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3127
3128 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3129 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3130 iavf_misc_irq_enable(adapter);
3131
3132 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3133
3134 /* We were running when the reset started, so we need to restore some
3135 * state here.
3136 */
3137 if (running) {
3138 /* allocate transmit descriptors */
3139 err = iavf_setup_all_tx_resources(adapter);
3140 if (err)
3141 goto reset_err;
3142
3143 /* allocate receive descriptors */
3144 err = iavf_setup_all_rx_resources(adapter);
3145 if (err)
3146 goto reset_err;
3147
3148 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3149 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3150 err = iavf_request_traffic_irqs(adapter, netdev->name);
3151 if (err)
3152 goto reset_err;
3153
3154 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3155 }
3156
3157 iavf_configure(adapter);
3158
3159 /* iavf_up_complete() will switch device back
3160 * to __IAVF_RUNNING
3161 */
3162 iavf_up_complete(adapter);
3163
3164 iavf_irq_enable(adapter, true);
3165 } else {
3166 iavf_change_state(adapter, __IAVF_DOWN);
3167 wake_up(&adapter->down_waitqueue);
3168 }
3169
3170 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3171
3172 wake_up(&adapter->reset_waitqueue);
3173 mutex_unlock(&adapter->crit_lock);
3174
3175 return;
3176reset_err:
3177 if (running) {
3178 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3179 iavf_free_traffic_irqs(adapter);
3180 }
3181 iavf_disable_vf(adapter);
3182
3183 mutex_unlock(&adapter->crit_lock);
3184 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3185}
3186
3187/**
3188 * iavf_adminq_task - worker thread to clean the admin queue
3189 * @work: pointer to work_struct containing our data
3190 **/
3191static void iavf_adminq_task(struct work_struct *work)
3192{
3193 struct iavf_adapter *adapter =
3194 container_of(work, struct iavf_adapter, adminq_task);
3195 struct iavf_hw *hw = &adapter->hw;
3196 struct iavf_arq_event_info event;
3197 enum virtchnl_ops v_op;
3198 enum iavf_status ret, v_ret;
3199 u32 val, oldval;
3200 u16 pending;
3201
3202 if (!mutex_trylock(&adapter->crit_lock)) {
3203 if (adapter->state == __IAVF_REMOVE)
3204 return;
3205
3206 queue_work(adapter->wq, &adapter->adminq_task);
3207 goto out;
3208 }
3209
3210 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3211 goto unlock;
3212
3213 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3214 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3215 if (!event.msg_buf)
3216 goto unlock;
3217
3218 do {
3219 ret = iavf_clean_arq_element(hw, &event, &pending);
3220 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3221 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3222
3223 if (ret || !v_op)
3224 break; /* No event to process or error cleaning ARQ */
3225
3226 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3227 event.msg_len);
3228 if (pending != 0)
3229 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3230 } while (pending);
3231
3232 if (iavf_is_reset_in_progress(adapter))
3233 goto freedom;
3234
3235 /* check for error indications */
3236 val = rd32(hw, IAVF_VF_ARQLEN1);
3237 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3238 goto freedom;
3239 oldval = val;
3240 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3241 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3242 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3243 }
3244 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3245 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3246 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3247 }
3248 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3249 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3250 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3251 }
3252 if (oldval != val)
3253 wr32(hw, IAVF_VF_ARQLEN1, val);
3254
3255 val = rd32(hw, IAVF_VF_ATQLEN1);
3256 oldval = val;
3257 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3258 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3259 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3260 }
3261 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3262 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3263 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3264 }
3265 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3266 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3267 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3268 }
3269 if (oldval != val)
3270 wr32(hw, IAVF_VF_ATQLEN1, val);
3271
3272freedom:
3273 kfree(event.msg_buf);
3274unlock:
3275 mutex_unlock(&adapter->crit_lock);
3276out:
3277 /* re-enable Admin queue interrupt cause */
3278 iavf_misc_irq_enable(adapter);
3279}
3280
3281/**
3282 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3283 * @adapter: board private structure
3284 *
3285 * Free all transmit software resources
3286 **/
3287void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3288{
3289 int i;
3290
3291 if (!adapter->tx_rings)
3292 return;
3293
3294 for (i = 0; i < adapter->num_active_queues; i++)
3295 if (adapter->tx_rings[i].desc)
3296 iavf_free_tx_resources(&adapter->tx_rings[i]);
3297}
3298
3299/**
3300 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3301 * @adapter: board private structure
3302 *
3303 * If this function returns with an error, then it's possible one or
3304 * more of the rings is populated (while the rest are not). It is the
3305 * callers duty to clean those orphaned rings.
3306 *
3307 * Return 0 on success, negative on failure
3308 **/
3309static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3310{
3311 int i, err = 0;
3312
3313 for (i = 0; i < adapter->num_active_queues; i++) {
3314 adapter->tx_rings[i].count = adapter->tx_desc_count;
3315 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3316 if (!err)
3317 continue;
3318 dev_err(&adapter->pdev->dev,
3319 "Allocation for Tx Queue %u failed\n", i);
3320 break;
3321 }
3322
3323 return err;
3324}
3325
3326/**
3327 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3328 * @adapter: board private structure
3329 *
3330 * If this function returns with an error, then it's possible one or
3331 * more of the rings is populated (while the rest are not). It is the
3332 * callers duty to clean those orphaned rings.
3333 *
3334 * Return 0 on success, negative on failure
3335 **/
3336static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3337{
3338 int i, err = 0;
3339
3340 for (i = 0; i < adapter->num_active_queues; i++) {
3341 adapter->rx_rings[i].count = adapter->rx_desc_count;
3342 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3343 if (!err)
3344 continue;
3345 dev_err(&adapter->pdev->dev,
3346 "Allocation for Rx Queue %u failed\n", i);
3347 break;
3348 }
3349 return err;
3350}
3351
3352/**
3353 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3354 * @adapter: board private structure
3355 *
3356 * Free all receive software resources
3357 **/
3358void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3359{
3360 int i;
3361
3362 if (!adapter->rx_rings)
3363 return;
3364
3365 for (i = 0; i < adapter->num_active_queues; i++)
3366 if (adapter->rx_rings[i].desc)
3367 iavf_free_rx_resources(&adapter->rx_rings[i]);
3368}
3369
3370/**
3371 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3372 * @adapter: board private structure
3373 * @max_tx_rate: max Tx bw for a tc
3374 **/
3375static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3376 u64 max_tx_rate)
3377{
3378 int speed = 0, ret = 0;
3379
3380 if (ADV_LINK_SUPPORT(adapter)) {
3381 if (adapter->link_speed_mbps < U32_MAX) {
3382 speed = adapter->link_speed_mbps;
3383 goto validate_bw;
3384 } else {
3385 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3386 return -EINVAL;
3387 }
3388 }
3389
3390 switch (adapter->link_speed) {
3391 case VIRTCHNL_LINK_SPEED_40GB:
3392 speed = SPEED_40000;
3393 break;
3394 case VIRTCHNL_LINK_SPEED_25GB:
3395 speed = SPEED_25000;
3396 break;
3397 case VIRTCHNL_LINK_SPEED_20GB:
3398 speed = SPEED_20000;
3399 break;
3400 case VIRTCHNL_LINK_SPEED_10GB:
3401 speed = SPEED_10000;
3402 break;
3403 case VIRTCHNL_LINK_SPEED_5GB:
3404 speed = SPEED_5000;
3405 break;
3406 case VIRTCHNL_LINK_SPEED_2_5GB:
3407 speed = SPEED_2500;
3408 break;
3409 case VIRTCHNL_LINK_SPEED_1GB:
3410 speed = SPEED_1000;
3411 break;
3412 case VIRTCHNL_LINK_SPEED_100MB:
3413 speed = SPEED_100;
3414 break;
3415 default:
3416 break;
3417 }
3418
3419validate_bw:
3420 if (max_tx_rate > speed) {
3421 dev_err(&adapter->pdev->dev,
3422 "Invalid tx rate specified\n");
3423 ret = -EINVAL;
3424 }
3425
3426 return ret;
3427}
3428
3429/**
3430 * iavf_validate_ch_config - validate queue mapping info
3431 * @adapter: board private structure
3432 * @mqprio_qopt: queue parameters
3433 *
3434 * This function validates if the config provided by the user to
3435 * configure queue channels is valid or not. Returns 0 on a valid
3436 * config.
3437 **/
3438static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3439 struct tc_mqprio_qopt_offload *mqprio_qopt)
3440{
3441 u64 total_max_rate = 0;
3442 u32 tx_rate_rem = 0;
3443 int i, num_qps = 0;
3444 u64 tx_rate = 0;
3445 int ret = 0;
3446
3447 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3448 mqprio_qopt->qopt.num_tc < 1)
3449 return -EINVAL;
3450
3451 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3452 if (!mqprio_qopt->qopt.count[i] ||
3453 mqprio_qopt->qopt.offset[i] != num_qps)
3454 return -EINVAL;
3455 if (mqprio_qopt->min_rate[i]) {
3456 dev_err(&adapter->pdev->dev,
3457 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3458 i);
3459 return -EINVAL;
3460 }
3461
3462 /* convert to Mbps */
3463 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3464 IAVF_MBPS_DIVISOR);
3465
3466 if (mqprio_qopt->max_rate[i] &&
3467 tx_rate < IAVF_MBPS_QUANTA) {
3468 dev_err(&adapter->pdev->dev,
3469 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3470 i, IAVF_MBPS_QUANTA);
3471 return -EINVAL;
3472 }
3473
3474 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3475
3476 if (tx_rate_rem != 0) {
3477 dev_err(&adapter->pdev->dev,
3478 "Invalid max tx rate for TC%d, not divisible by %d\n",
3479 i, IAVF_MBPS_QUANTA);
3480 return -EINVAL;
3481 }
3482
3483 total_max_rate += tx_rate;
3484 num_qps += mqprio_qopt->qopt.count[i];
3485 }
3486 if (num_qps > adapter->num_active_queues) {
3487 dev_err(&adapter->pdev->dev,
3488 "Cannot support requested number of queues\n");
3489 return -EINVAL;
3490 }
3491
3492 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3493 return ret;
3494}
3495
3496/**
3497 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3498 * @adapter: board private structure
3499 **/
3500static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3501{
3502 struct iavf_cloud_filter *cf, *cftmp;
3503
3504 spin_lock_bh(&adapter->cloud_filter_list_lock);
3505 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3506 list) {
3507 list_del(&cf->list);
3508 kfree(cf);
3509 adapter->num_cloud_filters--;
3510 }
3511 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3512}
3513
3514/**
3515 * __iavf_setup_tc - configure multiple traffic classes
3516 * @netdev: network interface device structure
3517 * @type_data: tc offload data
3518 *
3519 * This function processes the config information provided by the
3520 * user to configure traffic classes/queue channels and packages the
3521 * information to request the PF to setup traffic classes.
3522 *
3523 * Returns 0 on success.
3524 **/
3525static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3526{
3527 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3528 struct iavf_adapter *adapter = netdev_priv(netdev);
3529 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3530 u8 num_tc = 0, total_qps = 0;
3531 int ret = 0, netdev_tc = 0;
3532 u64 max_tx_rate;
3533 u16 mode;
3534 int i;
3535
3536 num_tc = mqprio_qopt->qopt.num_tc;
3537 mode = mqprio_qopt->mode;
3538
3539 /* delete queue_channel */
3540 if (!mqprio_qopt->qopt.hw) {
3541 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3542 /* reset the tc configuration */
3543 netdev_reset_tc(netdev);
3544 adapter->num_tc = 0;
3545 netif_tx_stop_all_queues(netdev);
3546 netif_tx_disable(netdev);
3547 iavf_del_all_cloud_filters(adapter);
3548 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3549 total_qps = adapter->orig_num_active_queues;
3550 goto exit;
3551 } else {
3552 return -EINVAL;
3553 }
3554 }
3555
3556 /* add queue channel */
3557 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3558 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3559 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3560 return -EOPNOTSUPP;
3561 }
3562 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3563 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3564 return -EINVAL;
3565 }
3566
3567 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3568 if (ret)
3569 return ret;
3570 /* Return if same TC config is requested */
3571 if (adapter->num_tc == num_tc)
3572 return 0;
3573 adapter->num_tc = num_tc;
3574
3575 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3576 if (i < num_tc) {
3577 adapter->ch_config.ch_info[i].count =
3578 mqprio_qopt->qopt.count[i];
3579 adapter->ch_config.ch_info[i].offset =
3580 mqprio_qopt->qopt.offset[i];
3581 total_qps += mqprio_qopt->qopt.count[i];
3582 max_tx_rate = mqprio_qopt->max_rate[i];
3583 /* convert to Mbps */
3584 max_tx_rate = div_u64(max_tx_rate,
3585 IAVF_MBPS_DIVISOR);
3586 adapter->ch_config.ch_info[i].max_tx_rate =
3587 max_tx_rate;
3588 } else {
3589 adapter->ch_config.ch_info[i].count = 1;
3590 adapter->ch_config.ch_info[i].offset = 0;
3591 }
3592 }
3593
3594 /* Take snapshot of original config such as "num_active_queues"
3595 * It is used later when delete ADQ flow is exercised, so that
3596 * once delete ADQ flow completes, VF shall go back to its
3597 * original queue configuration
3598 */
3599
3600 adapter->orig_num_active_queues = adapter->num_active_queues;
3601
3602 /* Store queue info based on TC so that VF gets configured
3603 * with correct number of queues when VF completes ADQ config
3604 * flow
3605 */
3606 adapter->ch_config.total_qps = total_qps;
3607
3608 netif_tx_stop_all_queues(netdev);
3609 netif_tx_disable(netdev);
3610 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3611 netdev_reset_tc(netdev);
3612 /* Report the tc mapping up the stack */
3613 netdev_set_num_tc(adapter->netdev, num_tc);
3614 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3615 u16 qcount = mqprio_qopt->qopt.count[i];
3616 u16 qoffset = mqprio_qopt->qopt.offset[i];
3617
3618 if (i < num_tc)
3619 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3620 qoffset);
3621 }
3622 }
3623exit:
3624 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3625 return 0;
3626
3627 netif_set_real_num_rx_queues(netdev, total_qps);
3628 netif_set_real_num_tx_queues(netdev, total_qps);
3629
3630 return ret;
3631}
3632
3633/**
3634 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3635 * @adapter: board private structure
3636 * @f: pointer to struct flow_cls_offload
3637 * @filter: pointer to cloud filter structure
3638 */
3639static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3640 struct flow_cls_offload *f,
3641 struct iavf_cloud_filter *filter)
3642{
3643 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3644 struct flow_dissector *dissector = rule->match.dissector;
3645 u16 n_proto_mask = 0;
3646 u16 n_proto_key = 0;
3647 u8 field_flags = 0;
3648 u16 addr_type = 0;
3649 u16 n_proto = 0;
3650 int i = 0;
3651 struct virtchnl_filter *vf = &filter->f;
3652
3653 if (dissector->used_keys &
3654 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3655 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3656 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3657 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3658 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3659 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3660 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3661 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3662 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3663 dissector->used_keys);
3664 return -EOPNOTSUPP;
3665 }
3666
3667 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3668 struct flow_match_enc_keyid match;
3669
3670 flow_rule_match_enc_keyid(rule, &match);
3671 if (match.mask->keyid != 0)
3672 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3673 }
3674
3675 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3676 struct flow_match_basic match;
3677
3678 flow_rule_match_basic(rule, &match);
3679 n_proto_key = ntohs(match.key->n_proto);
3680 n_proto_mask = ntohs(match.mask->n_proto);
3681
3682 if (n_proto_key == ETH_P_ALL) {
3683 n_proto_key = 0;
3684 n_proto_mask = 0;
3685 }
3686 n_proto = n_proto_key & n_proto_mask;
3687 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3688 return -EINVAL;
3689 if (n_proto == ETH_P_IPV6) {
3690 /* specify flow type as TCP IPv6 */
3691 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3692 }
3693
3694 if (match.key->ip_proto != IPPROTO_TCP) {
3695 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3696 return -EINVAL;
3697 }
3698 }
3699
3700 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3701 struct flow_match_eth_addrs match;
3702
3703 flow_rule_match_eth_addrs(rule, &match);
3704
3705 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3706 if (!is_zero_ether_addr(match.mask->dst)) {
3707 if (is_broadcast_ether_addr(match.mask->dst)) {
3708 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3709 } else {
3710 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3711 match.mask->dst);
3712 return -EINVAL;
3713 }
3714 }
3715
3716 if (!is_zero_ether_addr(match.mask->src)) {
3717 if (is_broadcast_ether_addr(match.mask->src)) {
3718 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3719 } else {
3720 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3721 match.mask->src);
3722 return -EINVAL;
3723 }
3724 }
3725
3726 if (!is_zero_ether_addr(match.key->dst))
3727 if (is_valid_ether_addr(match.key->dst) ||
3728 is_multicast_ether_addr(match.key->dst)) {
3729 /* set the mask if a valid dst_mac address */
3730 for (i = 0; i < ETH_ALEN; i++)
3731 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3732 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3733 match.key->dst);
3734 }
3735
3736 if (!is_zero_ether_addr(match.key->src))
3737 if (is_valid_ether_addr(match.key->src) ||
3738 is_multicast_ether_addr(match.key->src)) {
3739 /* set the mask if a valid dst_mac address */
3740 for (i = 0; i < ETH_ALEN; i++)
3741 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3742 ether_addr_copy(vf->data.tcp_spec.src_mac,
3743 match.key->src);
3744 }
3745 }
3746
3747 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3748 struct flow_match_vlan match;
3749
3750 flow_rule_match_vlan(rule, &match);
3751 if (match.mask->vlan_id) {
3752 if (match.mask->vlan_id == VLAN_VID_MASK) {
3753 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3754 } else {
3755 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3756 match.mask->vlan_id);
3757 return -EINVAL;
3758 }
3759 }
3760 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3761 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3762 }
3763
3764 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3765 struct flow_match_control match;
3766
3767 flow_rule_match_control(rule, &match);
3768 addr_type = match.key->addr_type;
3769 }
3770
3771 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3772 struct flow_match_ipv4_addrs match;
3773
3774 flow_rule_match_ipv4_addrs(rule, &match);
3775 if (match.mask->dst) {
3776 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3777 field_flags |= IAVF_CLOUD_FIELD_IIP;
3778 } else {
3779 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3780 be32_to_cpu(match.mask->dst));
3781 return -EINVAL;
3782 }
3783 }
3784
3785 if (match.mask->src) {
3786 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3787 field_flags |= IAVF_CLOUD_FIELD_IIP;
3788 } else {
3789 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3790 be32_to_cpu(match.mask->src));
3791 return -EINVAL;
3792 }
3793 }
3794
3795 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3796 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3797 return -EINVAL;
3798 }
3799 if (match.key->dst) {
3800 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3801 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3802 }
3803 if (match.key->src) {
3804 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3805 vf->data.tcp_spec.src_ip[0] = match.key->src;
3806 }
3807 }
3808
3809 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3810 struct flow_match_ipv6_addrs match;
3811
3812 flow_rule_match_ipv6_addrs(rule, &match);
3813
3814 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3815 if (ipv6_addr_any(&match.mask->dst)) {
3816 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3817 IPV6_ADDR_ANY);
3818 return -EINVAL;
3819 }
3820
3821 /* src and dest IPv6 address should not be LOOPBACK
3822 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3823 */
3824 if (ipv6_addr_loopback(&match.key->dst) ||
3825 ipv6_addr_loopback(&match.key->src)) {
3826 dev_err(&adapter->pdev->dev,
3827 "ipv6 addr should not be loopback\n");
3828 return -EINVAL;
3829 }
3830 if (!ipv6_addr_any(&match.mask->dst) ||
3831 !ipv6_addr_any(&match.mask->src))
3832 field_flags |= IAVF_CLOUD_FIELD_IIP;
3833
3834 for (i = 0; i < 4; i++)
3835 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3836 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3837 sizeof(vf->data.tcp_spec.dst_ip));
3838 for (i = 0; i < 4; i++)
3839 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3840 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3841 sizeof(vf->data.tcp_spec.src_ip));
3842 }
3843 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3844 struct flow_match_ports match;
3845
3846 flow_rule_match_ports(rule, &match);
3847 if (match.mask->src) {
3848 if (match.mask->src == cpu_to_be16(0xffff)) {
3849 field_flags |= IAVF_CLOUD_FIELD_IIP;
3850 } else {
3851 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3852 be16_to_cpu(match.mask->src));
3853 return -EINVAL;
3854 }
3855 }
3856
3857 if (match.mask->dst) {
3858 if (match.mask->dst == cpu_to_be16(0xffff)) {
3859 field_flags |= IAVF_CLOUD_FIELD_IIP;
3860 } else {
3861 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3862 be16_to_cpu(match.mask->dst));
3863 return -EINVAL;
3864 }
3865 }
3866 if (match.key->dst) {
3867 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3868 vf->data.tcp_spec.dst_port = match.key->dst;
3869 }
3870
3871 if (match.key->src) {
3872 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3873 vf->data.tcp_spec.src_port = match.key->src;
3874 }
3875 }
3876 vf->field_flags = field_flags;
3877
3878 return 0;
3879}
3880
3881/**
3882 * iavf_handle_tclass - Forward to a traffic class on the device
3883 * @adapter: board private structure
3884 * @tc: traffic class index on the device
3885 * @filter: pointer to cloud filter structure
3886 */
3887static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3888 struct iavf_cloud_filter *filter)
3889{
3890 if (tc == 0)
3891 return 0;
3892 if (tc < adapter->num_tc) {
3893 if (!filter->f.data.tcp_spec.dst_port) {
3894 dev_err(&adapter->pdev->dev,
3895 "Specify destination port to redirect to traffic class other than TC0\n");
3896 return -EINVAL;
3897 }
3898 }
3899 /* redirect to a traffic class on the same device */
3900 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3901 filter->f.action_meta = tc;
3902 return 0;
3903}
3904
3905/**
3906 * iavf_find_cf - Find the cloud filter in the list
3907 * @adapter: Board private structure
3908 * @cookie: filter specific cookie
3909 *
3910 * Returns ptr to the filter object or NULL. Must be called while holding the
3911 * cloud_filter_list_lock.
3912 */
3913static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3914 unsigned long *cookie)
3915{
3916 struct iavf_cloud_filter *filter = NULL;
3917
3918 if (!cookie)
3919 return NULL;
3920
3921 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3922 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3923 return filter;
3924 }
3925 return NULL;
3926}
3927
3928/**
3929 * iavf_configure_clsflower - Add tc flower filters
3930 * @adapter: board private structure
3931 * @cls_flower: Pointer to struct flow_cls_offload
3932 */
3933static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3934 struct flow_cls_offload *cls_flower)
3935{
3936 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3937 struct iavf_cloud_filter *filter = NULL;
3938 int err = -EINVAL, count = 50;
3939
3940 if (tc < 0) {
3941 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3942 return -EINVAL;
3943 }
3944
3945 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3946 if (!filter)
3947 return -ENOMEM;
3948
3949 while (!mutex_trylock(&adapter->crit_lock)) {
3950 if (--count == 0) {
3951 kfree(filter);
3952 return err;
3953 }
3954 udelay(1);
3955 }
3956
3957 filter->cookie = cls_flower->cookie;
3958
3959 /* bail out here if filter already exists */
3960 spin_lock_bh(&adapter->cloud_filter_list_lock);
3961 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3962 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3963 err = -EEXIST;
3964 goto spin_unlock;
3965 }
3966 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3967
3968 /* set the mask to all zeroes to begin with */
3969 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3970 /* start out with flow type and eth type IPv4 to begin with */
3971 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3972 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3973 if (err)
3974 goto err;
3975
3976 err = iavf_handle_tclass(adapter, tc, filter);
3977 if (err)
3978 goto err;
3979
3980 /* add filter to the list */
3981 spin_lock_bh(&adapter->cloud_filter_list_lock);
3982 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3983 adapter->num_cloud_filters++;
3984 filter->add = true;
3985 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3986spin_unlock:
3987 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3988err:
3989 if (err)
3990 kfree(filter);
3991
3992 mutex_unlock(&adapter->crit_lock);
3993 return err;
3994}
3995
3996/**
3997 * iavf_delete_clsflower - Remove tc flower filters
3998 * @adapter: board private structure
3999 * @cls_flower: Pointer to struct flow_cls_offload
4000 */
4001static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4002 struct flow_cls_offload *cls_flower)
4003{
4004 struct iavf_cloud_filter *filter = NULL;
4005 int err = 0;
4006
4007 spin_lock_bh(&adapter->cloud_filter_list_lock);
4008 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4009 if (filter) {
4010 filter->del = true;
4011 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4012 } else {
4013 err = -EINVAL;
4014 }
4015 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4016
4017 return err;
4018}
4019
4020/**
4021 * iavf_setup_tc_cls_flower - flower classifier offloads
4022 * @adapter: board private structure
4023 * @cls_flower: pointer to flow_cls_offload struct with flow info
4024 */
4025static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4026 struct flow_cls_offload *cls_flower)
4027{
4028 switch (cls_flower->command) {
4029 case FLOW_CLS_REPLACE:
4030 return iavf_configure_clsflower(adapter, cls_flower);
4031 case FLOW_CLS_DESTROY:
4032 return iavf_delete_clsflower(adapter, cls_flower);
4033 case FLOW_CLS_STATS:
4034 return -EOPNOTSUPP;
4035 default:
4036 return -EOPNOTSUPP;
4037 }
4038}
4039
4040/**
4041 * iavf_setup_tc_block_cb - block callback for tc
4042 * @type: type of offload
4043 * @type_data: offload data
4044 * @cb_priv:
4045 *
4046 * This function is the block callback for traffic classes
4047 **/
4048static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4049 void *cb_priv)
4050{
4051 struct iavf_adapter *adapter = cb_priv;
4052
4053 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4054 return -EOPNOTSUPP;
4055
4056 switch (type) {
4057 case TC_SETUP_CLSFLOWER:
4058 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4059 default:
4060 return -EOPNOTSUPP;
4061 }
4062}
4063
4064static LIST_HEAD(iavf_block_cb_list);
4065
4066/**
4067 * iavf_setup_tc - configure multiple traffic classes
4068 * @netdev: network interface device structure
4069 * @type: type of offload
4070 * @type_data: tc offload data
4071 *
4072 * This function is the callback to ndo_setup_tc in the
4073 * netdev_ops.
4074 *
4075 * Returns 0 on success
4076 **/
4077static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4078 void *type_data)
4079{
4080 struct iavf_adapter *adapter = netdev_priv(netdev);
4081
4082 switch (type) {
4083 case TC_SETUP_QDISC_MQPRIO:
4084 return __iavf_setup_tc(netdev, type_data);
4085 case TC_SETUP_BLOCK:
4086 return flow_block_cb_setup_simple(type_data,
4087 &iavf_block_cb_list,
4088 iavf_setup_tc_block_cb,
4089 adapter, adapter, true);
4090 default:
4091 return -EOPNOTSUPP;
4092 }
4093}
4094
4095/**
4096 * iavf_restore_fdir_filters
4097 * @adapter: board private structure
4098 *
4099 * Restore existing FDIR filters when VF netdev comes back up.
4100 **/
4101static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4102{
4103 struct iavf_fdir_fltr *f;
4104
4105 spin_lock_bh(&adapter->fdir_fltr_lock);
4106 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4107 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4108 /* Cancel a request, keep filter as active */
4109 f->state = IAVF_FDIR_FLTR_ACTIVE;
4110 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4111 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4112 /* Add filters which are inactive or have a pending
4113 * request to PF to be deleted
4114 */
4115 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4116 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4117 }
4118 }
4119 spin_unlock_bh(&adapter->fdir_fltr_lock);
4120}
4121
4122/**
4123 * iavf_open - Called when a network interface is made active
4124 * @netdev: network interface device structure
4125 *
4126 * Returns 0 on success, negative value on failure
4127 *
4128 * The open entry point is called when a network interface is made
4129 * active by the system (IFF_UP). At this point all resources needed
4130 * for transmit and receive operations are allocated, the interrupt
4131 * handler is registered with the OS, the watchdog is started,
4132 * and the stack is notified that the interface is ready.
4133 **/
4134static int iavf_open(struct net_device *netdev)
4135{
4136 struct iavf_adapter *adapter = netdev_priv(netdev);
4137 int err;
4138
4139 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4140 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4141 return -EIO;
4142 }
4143
4144 while (!mutex_trylock(&adapter->crit_lock)) {
4145 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4146 * is already taken and iavf_open is called from an upper
4147 * device's notifier reacting on NETDEV_REGISTER event.
4148 * We have to leave here to avoid dead lock.
4149 */
4150 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4151 return -EBUSY;
4152
4153 usleep_range(500, 1000);
4154 }
4155
4156 if (adapter->state != __IAVF_DOWN) {
4157 err = -EBUSY;
4158 goto err_unlock;
4159 }
4160
4161 if (adapter->state == __IAVF_RUNNING &&
4162 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4163 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4164 err = 0;
4165 goto err_unlock;
4166 }
4167
4168 /* allocate transmit descriptors */
4169 err = iavf_setup_all_tx_resources(adapter);
4170 if (err)
4171 goto err_setup_tx;
4172
4173 /* allocate receive descriptors */
4174 err = iavf_setup_all_rx_resources(adapter);
4175 if (err)
4176 goto err_setup_rx;
4177
4178 /* clear any pending interrupts, may auto mask */
4179 err = iavf_request_traffic_irqs(adapter, netdev->name);
4180 if (err)
4181 goto err_req_irq;
4182
4183 spin_lock_bh(&adapter->mac_vlan_list_lock);
4184
4185 iavf_add_filter(adapter, adapter->hw.mac.addr);
4186
4187 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4188
4189 /* Restore filters that were removed with IFF_DOWN */
4190 iavf_restore_filters(adapter);
4191 iavf_restore_fdir_filters(adapter);
4192
4193 iavf_configure(adapter);
4194
4195 iavf_up_complete(adapter);
4196
4197 iavf_irq_enable(adapter, true);
4198
4199 mutex_unlock(&adapter->crit_lock);
4200
4201 return 0;
4202
4203err_req_irq:
4204 iavf_down(adapter);
4205 iavf_free_traffic_irqs(adapter);
4206err_setup_rx:
4207 iavf_free_all_rx_resources(adapter);
4208err_setup_tx:
4209 iavf_free_all_tx_resources(adapter);
4210err_unlock:
4211 mutex_unlock(&adapter->crit_lock);
4212
4213 return err;
4214}
4215
4216/**
4217 * iavf_close - Disables a network interface
4218 * @netdev: network interface device structure
4219 *
4220 * Returns 0, this is not allowed to fail
4221 *
4222 * The close entry point is called when an interface is de-activated
4223 * by the OS. The hardware is still under the drivers control, but
4224 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4225 * are freed, along with all transmit and receive resources.
4226 **/
4227static int iavf_close(struct net_device *netdev)
4228{
4229 struct iavf_adapter *adapter = netdev_priv(netdev);
4230 u64 aq_to_restore;
4231 int status;
4232
4233 mutex_lock(&adapter->crit_lock);
4234
4235 if (adapter->state <= __IAVF_DOWN_PENDING) {
4236 mutex_unlock(&adapter->crit_lock);
4237 return 0;
4238 }
4239
4240 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4241 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4242 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4243 * deadlock with adminq_task() until iavf_close timeouts. We must send
4244 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4245 * disable queues possible for vf. Give only necessary flags to
4246 * iavf_down and save other to set them right before iavf_close()
4247 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4248 * iavf will be in DOWN state.
4249 */
4250 aq_to_restore = adapter->aq_required;
4251 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4252
4253 /* Remove flags which we do not want to send after close or we want to
4254 * send before disable queues.
4255 */
4256 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4257 IAVF_FLAG_AQ_ENABLE_QUEUES |
4258 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4259 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4260 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4261 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4262 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4263 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4264
4265 iavf_down(adapter);
4266 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4267 iavf_free_traffic_irqs(adapter);
4268
4269 mutex_unlock(&adapter->crit_lock);
4270
4271 /* We explicitly don't free resources here because the hardware is
4272 * still active and can DMA into memory. Resources are cleared in
4273 * iavf_virtchnl_completion() after we get confirmation from the PF
4274 * driver that the rings have been stopped.
4275 *
4276 * Also, we wait for state to transition to __IAVF_DOWN before
4277 * returning. State change occurs in iavf_virtchnl_completion() after
4278 * VF resources are released (which occurs after PF driver processes and
4279 * responds to admin queue commands).
4280 */
4281
4282 status = wait_event_timeout(adapter->down_waitqueue,
4283 adapter->state == __IAVF_DOWN,
4284 msecs_to_jiffies(500));
4285 if (!status)
4286 netdev_warn(netdev, "Device resources not yet released\n");
4287
4288 mutex_lock(&adapter->crit_lock);
4289 adapter->aq_required |= aq_to_restore;
4290 mutex_unlock(&adapter->crit_lock);
4291 return 0;
4292}
4293
4294/**
4295 * iavf_change_mtu - Change the Maximum Transfer Unit
4296 * @netdev: network interface device structure
4297 * @new_mtu: new value for maximum frame size
4298 *
4299 * Returns 0 on success, negative on failure
4300 **/
4301static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4302{
4303 struct iavf_adapter *adapter = netdev_priv(netdev);
4304 int ret = 0;
4305
4306 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4307 netdev->mtu, new_mtu);
4308 netdev->mtu = new_mtu;
4309
4310 if (netif_running(netdev)) {
4311 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4312 ret = iavf_wait_for_reset(adapter);
4313 if (ret < 0)
4314 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4315 else if (ret)
4316 netdev_warn(netdev, "MTU change timed out waiting for reset");
4317 }
4318
4319 return ret;
4320}
4321
4322/**
4323 * iavf_disable_fdir - disable Flow Director and clear existing filters
4324 * @adapter: board private structure
4325 **/
4326static void iavf_disable_fdir(struct iavf_adapter *adapter)
4327{
4328 struct iavf_fdir_fltr *fdir, *fdirtmp;
4329 bool del_filters = false;
4330
4331 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4332
4333 /* remove all Flow Director filters */
4334 spin_lock_bh(&adapter->fdir_fltr_lock);
4335 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4336 list) {
4337 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4338 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4339 /* Delete filters not registered in PF */
4340 list_del(&fdir->list);
4341 kfree(fdir);
4342 adapter->fdir_active_fltr--;
4343 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4344 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4345 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4346 /* Filters registered in PF, schedule their deletion */
4347 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4348 del_filters = true;
4349 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4350 /* Request to delete filter already sent to PF, change
4351 * state to DEL_PENDING to delete filter after PF's
4352 * response, not set as INACTIVE
4353 */
4354 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4355 }
4356 }
4357 spin_unlock_bh(&adapter->fdir_fltr_lock);
4358
4359 if (del_filters) {
4360 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4361 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4362 }
4363}
4364
4365#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4366 NETIF_F_HW_VLAN_CTAG_TX | \
4367 NETIF_F_HW_VLAN_STAG_RX | \
4368 NETIF_F_HW_VLAN_STAG_TX)
4369
4370/**
4371 * iavf_set_features - set the netdev feature flags
4372 * @netdev: ptr to the netdev being adjusted
4373 * @features: the feature set that the stack is suggesting
4374 * Note: expects to be called while under rtnl_lock()
4375 **/
4376static int iavf_set_features(struct net_device *netdev,
4377 netdev_features_t features)
4378{
4379 struct iavf_adapter *adapter = netdev_priv(netdev);
4380
4381 /* trigger update on any VLAN feature change */
4382 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4383 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4384 iavf_set_vlan_offload_features(adapter, netdev->features,
4385 features);
4386 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4387 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4388 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4389
4390 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4391 if (features & NETIF_F_NTUPLE)
4392 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4393 else
4394 iavf_disable_fdir(adapter);
4395 }
4396
4397 return 0;
4398}
4399
4400/**
4401 * iavf_features_check - Validate encapsulated packet conforms to limits
4402 * @skb: skb buff
4403 * @dev: This physical port's netdev
4404 * @features: Offload features that the stack believes apply
4405 **/
4406static netdev_features_t iavf_features_check(struct sk_buff *skb,
4407 struct net_device *dev,
4408 netdev_features_t features)
4409{
4410 size_t len;
4411
4412 /* No point in doing any of this if neither checksum nor GSO are
4413 * being requested for this frame. We can rule out both by just
4414 * checking for CHECKSUM_PARTIAL
4415 */
4416 if (skb->ip_summed != CHECKSUM_PARTIAL)
4417 return features;
4418
4419 /* We cannot support GSO if the MSS is going to be less than
4420 * 64 bytes. If it is then we need to drop support for GSO.
4421 */
4422 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4423 features &= ~NETIF_F_GSO_MASK;
4424
4425 /* MACLEN can support at most 63 words */
4426 len = skb_network_header(skb) - skb->data;
4427 if (len & ~(63 * 2))
4428 goto out_err;
4429
4430 /* IPLEN and EIPLEN can support at most 127 dwords */
4431 len = skb_transport_header(skb) - skb_network_header(skb);
4432 if (len & ~(127 * 4))
4433 goto out_err;
4434
4435 if (skb->encapsulation) {
4436 /* L4TUNLEN can support 127 words */
4437 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4438 if (len & ~(127 * 2))
4439 goto out_err;
4440
4441 /* IPLEN can support at most 127 dwords */
4442 len = skb_inner_transport_header(skb) -
4443 skb_inner_network_header(skb);
4444 if (len & ~(127 * 4))
4445 goto out_err;
4446 }
4447
4448 /* No need to validate L4LEN as TCP is the only protocol with a
4449 * flexible value and we support all possible values supported
4450 * by TCP, which is at most 15 dwords
4451 */
4452
4453 return features;
4454out_err:
4455 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4456}
4457
4458/**
4459 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4460 * @adapter: board private structure
4461 *
4462 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4463 * were negotiated determine the VLAN features that can be toggled on and off.
4464 **/
4465static netdev_features_t
4466iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4467{
4468 netdev_features_t hw_features = 0;
4469
4470 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4471 return hw_features;
4472
4473 /* Enable VLAN features if supported */
4474 if (VLAN_ALLOWED(adapter)) {
4475 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4476 NETIF_F_HW_VLAN_CTAG_RX);
4477 } else if (VLAN_V2_ALLOWED(adapter)) {
4478 struct virtchnl_vlan_caps *vlan_v2_caps =
4479 &adapter->vlan_v2_caps;
4480 struct virtchnl_vlan_supported_caps *stripping_support =
4481 &vlan_v2_caps->offloads.stripping_support;
4482 struct virtchnl_vlan_supported_caps *insertion_support =
4483 &vlan_v2_caps->offloads.insertion_support;
4484
4485 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4486 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4487 if (stripping_support->outer &
4488 VIRTCHNL_VLAN_ETHERTYPE_8100)
4489 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4490 if (stripping_support->outer &
4491 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4492 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4493 } else if (stripping_support->inner !=
4494 VIRTCHNL_VLAN_UNSUPPORTED &&
4495 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4496 if (stripping_support->inner &
4497 VIRTCHNL_VLAN_ETHERTYPE_8100)
4498 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4499 }
4500
4501 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4502 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4503 if (insertion_support->outer &
4504 VIRTCHNL_VLAN_ETHERTYPE_8100)
4505 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4506 if (insertion_support->outer &
4507 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4508 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4509 } else if (insertion_support->inner &&
4510 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4511 if (insertion_support->inner &
4512 VIRTCHNL_VLAN_ETHERTYPE_8100)
4513 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4514 }
4515 }
4516
4517 if (CRC_OFFLOAD_ALLOWED(adapter))
4518 hw_features |= NETIF_F_RXFCS;
4519
4520 return hw_features;
4521}
4522
4523/**
4524 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4525 * @adapter: board private structure
4526 *
4527 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4528 * were negotiated determine the VLAN features that are enabled by default.
4529 **/
4530static netdev_features_t
4531iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4532{
4533 netdev_features_t features = 0;
4534
4535 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4536 return features;
4537
4538 if (VLAN_ALLOWED(adapter)) {
4539 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4540 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4541 } else if (VLAN_V2_ALLOWED(adapter)) {
4542 struct virtchnl_vlan_caps *vlan_v2_caps =
4543 &adapter->vlan_v2_caps;
4544 struct virtchnl_vlan_supported_caps *filtering_support =
4545 &vlan_v2_caps->filtering.filtering_support;
4546 struct virtchnl_vlan_supported_caps *stripping_support =
4547 &vlan_v2_caps->offloads.stripping_support;
4548 struct virtchnl_vlan_supported_caps *insertion_support =
4549 &vlan_v2_caps->offloads.insertion_support;
4550 u32 ethertype_init;
4551
4552 /* give priority to outer stripping and don't support both outer
4553 * and inner stripping
4554 */
4555 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4556 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4557 if (stripping_support->outer &
4558 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4559 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4560 features |= NETIF_F_HW_VLAN_CTAG_RX;
4561 else if (stripping_support->outer &
4562 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4563 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4564 features |= NETIF_F_HW_VLAN_STAG_RX;
4565 } else if (stripping_support->inner !=
4566 VIRTCHNL_VLAN_UNSUPPORTED) {
4567 if (stripping_support->inner &
4568 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4569 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4570 features |= NETIF_F_HW_VLAN_CTAG_RX;
4571 }
4572
4573 /* give priority to outer insertion and don't support both outer
4574 * and inner insertion
4575 */
4576 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4577 if (insertion_support->outer &
4578 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4579 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4580 features |= NETIF_F_HW_VLAN_CTAG_TX;
4581 else if (insertion_support->outer &
4582 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4583 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4584 features |= NETIF_F_HW_VLAN_STAG_TX;
4585 } else if (insertion_support->inner !=
4586 VIRTCHNL_VLAN_UNSUPPORTED) {
4587 if (insertion_support->inner &
4588 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4589 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4590 features |= NETIF_F_HW_VLAN_CTAG_TX;
4591 }
4592
4593 /* give priority to outer filtering and don't bother if both
4594 * outer and inner filtering are enabled
4595 */
4596 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4597 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4598 if (filtering_support->outer &
4599 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4600 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4601 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4602 if (filtering_support->outer &
4603 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4604 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4605 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4606 } else if (filtering_support->inner !=
4607 VIRTCHNL_VLAN_UNSUPPORTED) {
4608 if (filtering_support->inner &
4609 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4610 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4611 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4612 if (filtering_support->inner &
4613 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4614 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4615 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4616 }
4617 }
4618
4619 return features;
4620}
4621
4622#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4623 (!(((requested) & (feature_bit)) && \
4624 !((allowed) & (feature_bit))))
4625
4626/**
4627 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4628 * @adapter: board private structure
4629 * @requested_features: stack requested NETDEV features
4630 **/
4631static netdev_features_t
4632iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4633 netdev_features_t requested_features)
4634{
4635 netdev_features_t allowed_features;
4636
4637 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4638 iavf_get_netdev_vlan_features(adapter);
4639
4640 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4641 allowed_features,
4642 NETIF_F_HW_VLAN_CTAG_TX))
4643 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4644
4645 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4646 allowed_features,
4647 NETIF_F_HW_VLAN_CTAG_RX))
4648 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4649
4650 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4651 allowed_features,
4652 NETIF_F_HW_VLAN_STAG_TX))
4653 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4654 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4655 allowed_features,
4656 NETIF_F_HW_VLAN_STAG_RX))
4657 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4658
4659 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4660 allowed_features,
4661 NETIF_F_HW_VLAN_CTAG_FILTER))
4662 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4663
4664 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4665 allowed_features,
4666 NETIF_F_HW_VLAN_STAG_FILTER))
4667 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4668
4669 if ((requested_features &
4670 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4671 (requested_features &
4672 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4673 adapter->vlan_v2_caps.offloads.ethertype_match ==
4674 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4675 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4676 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4677 NETIF_F_HW_VLAN_STAG_TX);
4678 }
4679
4680 return requested_features;
4681}
4682
4683/**
4684 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4685 * @adapter: board private structure
4686 * @requested_features: stack requested NETDEV features
4687 *
4688 * Returns fixed-up features bits
4689 **/
4690static netdev_features_t
4691iavf_fix_strip_features(struct iavf_adapter *adapter,
4692 netdev_features_t requested_features)
4693{
4694 struct net_device *netdev = adapter->netdev;
4695 bool crc_offload_req, is_vlan_strip;
4696 netdev_features_t vlan_strip;
4697 int num_non_zero_vlan;
4698
4699 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4700 (requested_features & NETIF_F_RXFCS);
4701 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4702 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4703 is_vlan_strip = requested_features & vlan_strip;
4704
4705 if (!crc_offload_req)
4706 return requested_features;
4707
4708 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4709 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4710 requested_features &= ~vlan_strip;
4711 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4712 return requested_features;
4713 }
4714
4715 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4716 requested_features &= ~vlan_strip;
4717 if (!(netdev->features & vlan_strip))
4718 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4719
4720 return requested_features;
4721 }
4722
4723 if (num_non_zero_vlan && is_vlan_strip &&
4724 !(netdev->features & NETIF_F_RXFCS)) {
4725 requested_features &= ~NETIF_F_RXFCS;
4726 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4727 }
4728
4729 return requested_features;
4730}
4731
4732/**
4733 * iavf_fix_features - fix up the netdev feature bits
4734 * @netdev: our net device
4735 * @features: desired feature bits
4736 *
4737 * Returns fixed-up features bits
4738 **/
4739static netdev_features_t iavf_fix_features(struct net_device *netdev,
4740 netdev_features_t features)
4741{
4742 struct iavf_adapter *adapter = netdev_priv(netdev);
4743
4744 features = iavf_fix_netdev_vlan_features(adapter, features);
4745
4746 if (!FDIR_FLTR_SUPPORT(adapter))
4747 features &= ~NETIF_F_NTUPLE;
4748
4749 return iavf_fix_strip_features(adapter, features);
4750}
4751
4752static const struct net_device_ops iavf_netdev_ops = {
4753 .ndo_open = iavf_open,
4754 .ndo_stop = iavf_close,
4755 .ndo_start_xmit = iavf_xmit_frame,
4756 .ndo_set_rx_mode = iavf_set_rx_mode,
4757 .ndo_validate_addr = eth_validate_addr,
4758 .ndo_set_mac_address = iavf_set_mac,
4759 .ndo_change_mtu = iavf_change_mtu,
4760 .ndo_tx_timeout = iavf_tx_timeout,
4761 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4762 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4763 .ndo_features_check = iavf_features_check,
4764 .ndo_fix_features = iavf_fix_features,
4765 .ndo_set_features = iavf_set_features,
4766 .ndo_setup_tc = iavf_setup_tc,
4767};
4768
4769/**
4770 * iavf_check_reset_complete - check that VF reset is complete
4771 * @hw: pointer to hw struct
4772 *
4773 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4774 **/
4775static int iavf_check_reset_complete(struct iavf_hw *hw)
4776{
4777 u32 rstat;
4778 int i;
4779
4780 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4781 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4782 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4783 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4784 (rstat == VIRTCHNL_VFR_COMPLETED))
4785 return 0;
4786 msleep(IAVF_RESET_WAIT_MS);
4787 }
4788 return -EBUSY;
4789}
4790
4791/**
4792 * iavf_process_config - Process the config information we got from the PF
4793 * @adapter: board private structure
4794 *
4795 * Verify that we have a valid config struct, and set up our netdev features
4796 * and our VSI struct.
4797 **/
4798int iavf_process_config(struct iavf_adapter *adapter)
4799{
4800 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4801 netdev_features_t hw_vlan_features, vlan_features;
4802 struct net_device *netdev = adapter->netdev;
4803 netdev_features_t hw_enc_features;
4804 netdev_features_t hw_features;
4805
4806 hw_enc_features = NETIF_F_SG |
4807 NETIF_F_IP_CSUM |
4808 NETIF_F_IPV6_CSUM |
4809 NETIF_F_HIGHDMA |
4810 NETIF_F_SOFT_FEATURES |
4811 NETIF_F_TSO |
4812 NETIF_F_TSO_ECN |
4813 NETIF_F_TSO6 |
4814 NETIF_F_SCTP_CRC |
4815 NETIF_F_RXHASH |
4816 NETIF_F_RXCSUM |
4817 0;
4818
4819 /* advertise to stack only if offloads for encapsulated packets is
4820 * supported
4821 */
4822 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4823 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4824 NETIF_F_GSO_GRE |
4825 NETIF_F_GSO_GRE_CSUM |
4826 NETIF_F_GSO_IPXIP4 |
4827 NETIF_F_GSO_IPXIP6 |
4828 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4829 NETIF_F_GSO_PARTIAL |
4830 0;
4831
4832 if (!(vfres->vf_cap_flags &
4833 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4834 netdev->gso_partial_features |=
4835 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4836
4837 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4838 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4839 netdev->hw_enc_features |= hw_enc_features;
4840 }
4841 /* record features VLANs can make use of */
4842 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4843
4844 /* Write features and hw_features separately to avoid polluting
4845 * with, or dropping, features that are set when we registered.
4846 */
4847 hw_features = hw_enc_features;
4848
4849 /* get HW VLAN features that can be toggled */
4850 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4851
4852 /* Enable cloud filter if ADQ is supported */
4853 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4854 hw_features |= NETIF_F_HW_TC;
4855 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4856 hw_features |= NETIF_F_GSO_UDP_L4;
4857
4858 netdev->hw_features |= hw_features | hw_vlan_features;
4859 vlan_features = iavf_get_netdev_vlan_features(adapter);
4860
4861 netdev->features |= hw_features | vlan_features;
4862
4863 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4864 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4865
4866 if (FDIR_FLTR_SUPPORT(adapter)) {
4867 netdev->hw_features |= NETIF_F_NTUPLE;
4868 netdev->features |= NETIF_F_NTUPLE;
4869 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4870 }
4871
4872 netdev->priv_flags |= IFF_UNICAST_FLT;
4873
4874 /* Do not turn on offloads when they are requested to be turned off.
4875 * TSO needs minimum 576 bytes to work correctly.
4876 */
4877 if (netdev->wanted_features) {
4878 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4879 netdev->mtu < 576)
4880 netdev->features &= ~NETIF_F_TSO;
4881 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4882 netdev->mtu < 576)
4883 netdev->features &= ~NETIF_F_TSO6;
4884 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4885 netdev->features &= ~NETIF_F_TSO_ECN;
4886 if (!(netdev->wanted_features & NETIF_F_GRO))
4887 netdev->features &= ~NETIF_F_GRO;
4888 if (!(netdev->wanted_features & NETIF_F_GSO))
4889 netdev->features &= ~NETIF_F_GSO;
4890 }
4891
4892 return 0;
4893}
4894
4895/**
4896 * iavf_probe - Device Initialization Routine
4897 * @pdev: PCI device information struct
4898 * @ent: entry in iavf_pci_tbl
4899 *
4900 * Returns 0 on success, negative on failure
4901 *
4902 * iavf_probe initializes an adapter identified by a pci_dev structure.
4903 * The OS initialization, configuring of the adapter private structure,
4904 * and a hardware reset occur.
4905 **/
4906static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4907{
4908 struct net_device *netdev;
4909 struct iavf_adapter *adapter = NULL;
4910 struct iavf_hw *hw = NULL;
4911 int err;
4912
4913 err = pci_enable_device(pdev);
4914 if (err)
4915 return err;
4916
4917 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4918 if (err) {
4919 dev_err(&pdev->dev,
4920 "DMA configuration failed: 0x%x\n", err);
4921 goto err_dma;
4922 }
4923
4924 err = pci_request_regions(pdev, iavf_driver_name);
4925 if (err) {
4926 dev_err(&pdev->dev,
4927 "pci_request_regions failed 0x%x\n", err);
4928 goto err_pci_reg;
4929 }
4930
4931 pci_set_master(pdev);
4932
4933 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4934 IAVF_MAX_REQ_QUEUES);
4935 if (!netdev) {
4936 err = -ENOMEM;
4937 goto err_alloc_etherdev;
4938 }
4939
4940 SET_NETDEV_DEV(netdev, &pdev->dev);
4941
4942 pci_set_drvdata(pdev, netdev);
4943 adapter = netdev_priv(netdev);
4944
4945 adapter->netdev = netdev;
4946 adapter->pdev = pdev;
4947
4948 hw = &adapter->hw;
4949 hw->back = adapter;
4950
4951 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4952 iavf_driver_name);
4953 if (!adapter->wq) {
4954 err = -ENOMEM;
4955 goto err_alloc_wq;
4956 }
4957
4958 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4959 iavf_change_state(adapter, __IAVF_STARTUP);
4960
4961 /* Call save state here because it relies on the adapter struct. */
4962 pci_save_state(pdev);
4963
4964 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4965 pci_resource_len(pdev, 0));
4966 if (!hw->hw_addr) {
4967 err = -EIO;
4968 goto err_ioremap;
4969 }
4970 hw->vendor_id = pdev->vendor;
4971 hw->device_id = pdev->device;
4972 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4973 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4974 hw->subsystem_device_id = pdev->subsystem_device;
4975 hw->bus.device = PCI_SLOT(pdev->devfn);
4976 hw->bus.func = PCI_FUNC(pdev->devfn);
4977 hw->bus.bus_id = pdev->bus->number;
4978
4979 /* set up the locks for the AQ, do this only once in probe
4980 * and destroy them only once in remove
4981 */
4982 mutex_init(&adapter->crit_lock);
4983 mutex_init(&hw->aq.asq_mutex);
4984 mutex_init(&hw->aq.arq_mutex);
4985
4986 spin_lock_init(&adapter->mac_vlan_list_lock);
4987 spin_lock_init(&adapter->cloud_filter_list_lock);
4988 spin_lock_init(&adapter->fdir_fltr_lock);
4989 spin_lock_init(&adapter->adv_rss_lock);
4990 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
4991
4992 INIT_LIST_HEAD(&adapter->mac_filter_list);
4993 INIT_LIST_HEAD(&adapter->vlan_filter_list);
4994 INIT_LIST_HEAD(&adapter->cloud_filter_list);
4995 INIT_LIST_HEAD(&adapter->fdir_list_head);
4996 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4997
4998 INIT_WORK(&adapter->reset_task, iavf_reset_task);
4999 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5000 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5001 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5002
5003 /* Setup the wait queue for indicating transition to down status */
5004 init_waitqueue_head(&adapter->down_waitqueue);
5005
5006 /* Setup the wait queue for indicating transition to running state */
5007 init_waitqueue_head(&adapter->reset_waitqueue);
5008
5009 /* Setup the wait queue for indicating virtchannel events */
5010 init_waitqueue_head(&adapter->vc_waitqueue);
5011
5012 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5013 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5014 /* Initialization goes on in the work. Do not add more of it below. */
5015 return 0;
5016
5017err_ioremap:
5018 destroy_workqueue(adapter->wq);
5019err_alloc_wq:
5020 free_netdev(netdev);
5021err_alloc_etherdev:
5022 pci_release_regions(pdev);
5023err_pci_reg:
5024err_dma:
5025 pci_disable_device(pdev);
5026 return err;
5027}
5028
5029/**
5030 * iavf_suspend - Power management suspend routine
5031 * @dev_d: device info pointer
5032 *
5033 * Called when the system (VM) is entering sleep/suspend.
5034 **/
5035static int __maybe_unused iavf_suspend(struct device *dev_d)
5036{
5037 struct net_device *netdev = dev_get_drvdata(dev_d);
5038 struct iavf_adapter *adapter = netdev_priv(netdev);
5039
5040 netif_device_detach(netdev);
5041
5042 mutex_lock(&adapter->crit_lock);
5043
5044 if (netif_running(netdev)) {
5045 rtnl_lock();
5046 iavf_down(adapter);
5047 rtnl_unlock();
5048 }
5049 iavf_free_misc_irq(adapter);
5050 iavf_reset_interrupt_capability(adapter);
5051
5052 mutex_unlock(&adapter->crit_lock);
5053
5054 return 0;
5055}
5056
5057/**
5058 * iavf_resume - Power management resume routine
5059 * @dev_d: device info pointer
5060 *
5061 * Called when the system (VM) is resumed from sleep/suspend.
5062 **/
5063static int __maybe_unused iavf_resume(struct device *dev_d)
5064{
5065 struct pci_dev *pdev = to_pci_dev(dev_d);
5066 struct iavf_adapter *adapter;
5067 u32 err;
5068
5069 adapter = iavf_pdev_to_adapter(pdev);
5070
5071 pci_set_master(pdev);
5072
5073 rtnl_lock();
5074 err = iavf_set_interrupt_capability(adapter);
5075 if (err) {
5076 rtnl_unlock();
5077 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5078 return err;
5079 }
5080 err = iavf_request_misc_irq(adapter);
5081 rtnl_unlock();
5082 if (err) {
5083 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5084 return err;
5085 }
5086
5087 queue_work(adapter->wq, &adapter->reset_task);
5088
5089 netif_device_attach(adapter->netdev);
5090
5091 return err;
5092}
5093
5094/**
5095 * iavf_remove - Device Removal Routine
5096 * @pdev: PCI device information struct
5097 *
5098 * iavf_remove is called by the PCI subsystem to alert the driver
5099 * that it should release a PCI device. The could be caused by a
5100 * Hot-Plug event, or because the driver is going to be removed from
5101 * memory.
5102 **/
5103static void iavf_remove(struct pci_dev *pdev)
5104{
5105 struct iavf_fdir_fltr *fdir, *fdirtmp;
5106 struct iavf_vlan_filter *vlf, *vlftmp;
5107 struct iavf_cloud_filter *cf, *cftmp;
5108 struct iavf_adv_rss *rss, *rsstmp;
5109 struct iavf_mac_filter *f, *ftmp;
5110 struct iavf_adapter *adapter;
5111 struct net_device *netdev;
5112 struct iavf_hw *hw;
5113
5114 /* Don't proceed with remove if netdev is already freed */
5115 netdev = pci_get_drvdata(pdev);
5116 if (!netdev)
5117 return;
5118
5119 adapter = iavf_pdev_to_adapter(pdev);
5120 hw = &adapter->hw;
5121
5122 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5123 return;
5124
5125 /* Wait until port initialization is complete.
5126 * There are flows where register/unregister netdev may race.
5127 */
5128 while (1) {
5129 mutex_lock(&adapter->crit_lock);
5130 if (adapter->state == __IAVF_RUNNING ||
5131 adapter->state == __IAVF_DOWN ||
5132 adapter->state == __IAVF_INIT_FAILED) {
5133 mutex_unlock(&adapter->crit_lock);
5134 break;
5135 }
5136 /* Simply return if we already went through iavf_shutdown */
5137 if (adapter->state == __IAVF_REMOVE) {
5138 mutex_unlock(&adapter->crit_lock);
5139 return;
5140 }
5141
5142 mutex_unlock(&adapter->crit_lock);
5143 usleep_range(500, 1000);
5144 }
5145 cancel_delayed_work_sync(&adapter->watchdog_task);
5146 cancel_work_sync(&adapter->finish_config);
5147
5148 if (netdev->reg_state == NETREG_REGISTERED)
5149 unregister_netdev(netdev);
5150
5151 mutex_lock(&adapter->crit_lock);
5152 dev_info(&adapter->pdev->dev, "Removing device\n");
5153 iavf_change_state(adapter, __IAVF_REMOVE);
5154
5155 iavf_request_reset(adapter);
5156 msleep(50);
5157 /* If the FW isn't responding, kick it once, but only once. */
5158 if (!iavf_asq_done(hw)) {
5159 iavf_request_reset(adapter);
5160 msleep(50);
5161 }
5162
5163 iavf_misc_irq_disable(adapter);
5164 /* Shut down all the garbage mashers on the detention level */
5165 cancel_work_sync(&adapter->reset_task);
5166 cancel_delayed_work_sync(&adapter->watchdog_task);
5167 cancel_work_sync(&adapter->adminq_task);
5168
5169 adapter->aq_required = 0;
5170 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5171
5172 iavf_free_all_tx_resources(adapter);
5173 iavf_free_all_rx_resources(adapter);
5174 iavf_free_misc_irq(adapter);
5175 iavf_free_interrupt_scheme(adapter);
5176
5177 iavf_free_rss(adapter);
5178
5179 if (hw->aq.asq.count)
5180 iavf_shutdown_adminq(hw);
5181
5182 /* destroy the locks only once, here */
5183 mutex_destroy(&hw->aq.arq_mutex);
5184 mutex_destroy(&hw->aq.asq_mutex);
5185 mutex_unlock(&adapter->crit_lock);
5186 mutex_destroy(&adapter->crit_lock);
5187
5188 iounmap(hw->hw_addr);
5189 pci_release_regions(pdev);
5190 kfree(adapter->vf_res);
5191 spin_lock_bh(&adapter->mac_vlan_list_lock);
5192 /* If we got removed before an up/down sequence, we've got a filter
5193 * hanging out there that we need to get rid of.
5194 */
5195 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5196 list_del(&f->list);
5197 kfree(f);
5198 }
5199 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5200 list) {
5201 list_del(&vlf->list);
5202 kfree(vlf);
5203 }
5204
5205 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5206
5207 spin_lock_bh(&adapter->cloud_filter_list_lock);
5208 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5209 list_del(&cf->list);
5210 kfree(cf);
5211 }
5212 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5213
5214 spin_lock_bh(&adapter->fdir_fltr_lock);
5215 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5216 list_del(&fdir->list);
5217 kfree(fdir);
5218 }
5219 spin_unlock_bh(&adapter->fdir_fltr_lock);
5220
5221 spin_lock_bh(&adapter->adv_rss_lock);
5222 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5223 list) {
5224 list_del(&rss->list);
5225 kfree(rss);
5226 }
5227 spin_unlock_bh(&adapter->adv_rss_lock);
5228
5229 destroy_workqueue(adapter->wq);
5230
5231 pci_set_drvdata(pdev, NULL);
5232
5233 free_netdev(netdev);
5234
5235 pci_disable_device(pdev);
5236}
5237
5238/**
5239 * iavf_shutdown - Shutdown the device in preparation for a reboot
5240 * @pdev: pci device structure
5241 **/
5242static void iavf_shutdown(struct pci_dev *pdev)
5243{
5244 iavf_remove(pdev);
5245
5246 if (system_state == SYSTEM_POWER_OFF)
5247 pci_set_power_state(pdev, PCI_D3hot);
5248}
5249
5250static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5251
5252static struct pci_driver iavf_driver = {
5253 .name = iavf_driver_name,
5254 .id_table = iavf_pci_tbl,
5255 .probe = iavf_probe,
5256 .remove = iavf_remove,
5257 .driver.pm = &iavf_pm_ops,
5258 .shutdown = iavf_shutdown,
5259};
5260
5261/**
5262 * iavf_init_module - Driver Registration Routine
5263 *
5264 * iavf_init_module is the first routine called when the driver is
5265 * loaded. All it does is register with the PCI subsystem.
5266 **/
5267static int __init iavf_init_module(void)
5268{
5269 pr_info("iavf: %s\n", iavf_driver_string);
5270
5271 pr_info("%s\n", iavf_copyright);
5272
5273 return pci_register_driver(&iavf_driver);
5274}
5275
5276module_init(iavf_init_module);
5277
5278/**
5279 * iavf_exit_module - Driver Exit Cleanup Routine
5280 *
5281 * iavf_exit_module is called just before the driver is removed
5282 * from memory.
5283 **/
5284static void __exit iavf_exit_module(void)
5285{
5286 pci_unregister_driver(&iavf_driver);
5287}
5288
5289module_exit(iavf_exit_module);
5290
5291/* iavf_main.c */