Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/net/intel/libie/rx.h>
5
6#include "iavf.h"
7#include "iavf_prototype.h"
8/* All iavf tracepoints are defined by the include below, which must
9 * be included exactly once across the whole kernel with
10 * CREATE_TRACE_POINTS defined
11 */
12#define CREATE_TRACE_POINTS
13#include "iavf_trace.h"
14
15static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17static int iavf_close(struct net_device *netdev);
18static void iavf_init_get_resources(struct iavf_adapter *adapter);
19static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21char iavf_driver_name[] = "iavf";
22static const char iavf_driver_string[] =
23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25static const char iavf_copyright[] =
26 "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28/* iavf_pci_tbl - PCI Device ID Table
29 *
30 * Wildcard entries (PCI_ANY_ID) should come last
31 * Last entry must be all 0s
32 *
33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34 * Class, Class Mask, private data (not used) }
35 */
36static const struct pci_device_id iavf_pci_tbl[] = {
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 /* required last entry */
42 {0, }
43};
44
45MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47MODULE_ALIAS("i40evf");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_IMPORT_NS("LIBETH");
50MODULE_IMPORT_NS("LIBIE");
51MODULE_LICENSE("GPL v2");
52
53static const struct net_device_ops iavf_netdev_ops;
54
55int iavf_status_to_errno(enum iavf_status status)
56{
57 switch (status) {
58 case IAVF_SUCCESS:
59 return 0;
60 case IAVF_ERR_PARAM:
61 case IAVF_ERR_MAC_TYPE:
62 case IAVF_ERR_INVALID_MAC_ADDR:
63 case IAVF_ERR_INVALID_LINK_SETTINGS:
64 case IAVF_ERR_INVALID_PD_ID:
65 case IAVF_ERR_INVALID_QP_ID:
66 case IAVF_ERR_INVALID_CQ_ID:
67 case IAVF_ERR_INVALID_CEQ_ID:
68 case IAVF_ERR_INVALID_AEQ_ID:
69 case IAVF_ERR_INVALID_SIZE:
70 case IAVF_ERR_INVALID_ARP_INDEX:
71 case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 case IAVF_ERR_INVALID_FRAG_COUNT:
74 case IAVF_ERR_INVALID_ALIGNMENT:
75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 case IAVF_ERR_INVALID_VF_ID:
78 case IAVF_ERR_INVALID_HMCFN_ID:
79 case IAVF_ERR_INVALID_PBLE_INDEX:
80 case IAVF_ERR_INVALID_SD_INDEX:
81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 case IAVF_ERR_INVALID_SD_TYPE:
83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 return -EINVAL;
87 case IAVF_ERR_NVM:
88 case IAVF_ERR_NVM_CHECKSUM:
89 case IAVF_ERR_PHY:
90 case IAVF_ERR_CONFIG:
91 case IAVF_ERR_UNKNOWN_PHY:
92 case IAVF_ERR_LINK_SETUP:
93 case IAVF_ERR_ADAPTER_STOPPED:
94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 case IAVF_ERR_RESET_FAILED:
97 case IAVF_ERR_BAD_PTR:
98 case IAVF_ERR_SWFW_SYNC:
99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 case IAVF_ERR_QUEUE_EMPTY:
101 case IAVF_ERR_FLUSHED_QUEUE:
102 case IAVF_ERR_OPCODE_MISMATCH:
103 case IAVF_ERR_CQP_COMPL_ERROR:
104 case IAVF_ERR_BACKING_PAGE_ERROR:
105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 case IAVF_ERR_MEMCPY_FAILED:
107 case IAVF_ERR_SRQ_ENABLED:
108 case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 case IAVF_ERR_ADMIN_QUEUE_FULL:
110 case IAVF_ERR_BAD_RDMA_CQE:
111 case IAVF_ERR_NVM_BLANK_MODE:
112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 case IAVF_ERR_DIAG_TEST_FAILED:
114 case IAVF_ERR_FIRMWARE_API_VERSION:
115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 return -EIO;
117 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 return -ENODEV;
119 case IAVF_ERR_NO_AVAILABLE_VSI:
120 case IAVF_ERR_RING_FULL:
121 return -ENOSPC;
122 case IAVF_ERR_NO_MEMORY:
123 return -ENOMEM;
124 case IAVF_ERR_TIMEOUT:
125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 return -ETIMEDOUT;
127 case IAVF_ERR_NOT_IMPLEMENTED:
128 case IAVF_NOT_SUPPORTED:
129 return -EOPNOTSUPP;
130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 return -EALREADY;
132 case IAVF_ERR_NOT_READY:
133 return -EBUSY;
134 case IAVF_ERR_BUF_TOO_SHORT:
135 return -EMSGSIZE;
136 }
137
138 return -EIO;
139}
140
141int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142{
143 switch (v_status) {
144 case VIRTCHNL_STATUS_SUCCESS:
145 return 0;
146 case VIRTCHNL_STATUS_ERR_PARAM:
147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 return -EINVAL;
149 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 return -ENOMEM;
151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 return -EIO;
155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 return -EOPNOTSUPP;
157 }
158
159 return -EIO;
160}
161
162/**
163 * iavf_pdev_to_adapter - go from pci_dev to adapter
164 * @pdev: pci_dev pointer
165 */
166static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167{
168 return netdev_priv(pci_get_drvdata(pdev));
169}
170
171/**
172 * iavf_is_reset_in_progress - Check if a reset is in progress
173 * @adapter: board private structure
174 */
175static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176{
177 if (adapter->state == __IAVF_RESETTING ||
178 adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 IAVF_FLAG_RESET_NEEDED))
180 return true;
181
182 return false;
183}
184
185/**
186 * iavf_wait_for_reset - Wait for reset to finish.
187 * @adapter: board private structure
188 *
189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190 */
191int iavf_wait_for_reset(struct iavf_adapter *adapter)
192{
193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 !iavf_is_reset_in_progress(adapter),
195 msecs_to_jiffies(5000));
196
197 /* If ret < 0 then it means wait was interrupted.
198 * If ret == 0 then it means we got a timeout while waiting
199 * for reset to finish.
200 * If ret > 0 it means reset has finished.
201 */
202 if (ret > 0)
203 return 0;
204 else if (ret < 0)
205 return -EINTR;
206 else
207 return -EBUSY;
208}
209
210/**
211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212 * @hw: pointer to the HW structure
213 * @mem: ptr to mem struct to fill out
214 * @size: size of memory requested
215 * @alignment: what to align the allocation to
216 **/
217enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 struct iavf_dma_mem *mem,
219 u64 size, u32 alignment)
220{
221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223 if (!mem)
224 return IAVF_ERR_PARAM;
225
226 mem->size = ALIGN(size, alignment);
227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 if (mem->va)
230 return 0;
231 else
232 return IAVF_ERR_NO_MEMORY;
233}
234
235/**
236 * iavf_free_dma_mem - wrapper for DMA memory freeing
237 * @hw: pointer to the HW structure
238 * @mem: ptr to mem struct to free
239 **/
240enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241{
242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244 if (!mem || !mem->va)
245 return IAVF_ERR_PARAM;
246 dma_free_coherent(&adapter->pdev->dev, mem->size,
247 mem->va, (dma_addr_t)mem->pa);
248 return 0;
249}
250
251/**
252 * iavf_allocate_virt_mem - virt memory alloc wrapper
253 * @hw: pointer to the HW structure
254 * @mem: ptr to mem struct to fill out
255 * @size: size of memory requested
256 **/
257enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 struct iavf_virt_mem *mem, u32 size)
259{
260 if (!mem)
261 return IAVF_ERR_PARAM;
262
263 mem->size = size;
264 mem->va = kzalloc(size, GFP_KERNEL);
265
266 if (mem->va)
267 return 0;
268 else
269 return IAVF_ERR_NO_MEMORY;
270}
271
272/**
273 * iavf_free_virt_mem - virt memory free wrapper
274 * @hw: pointer to the HW structure
275 * @mem: ptr to mem struct to free
276 **/
277void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278{
279 kfree(mem->va);
280}
281
282/**
283 * iavf_schedule_reset - Set the flags and schedule a reset event
284 * @adapter: board private structure
285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286 **/
287void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288{
289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 !(adapter->flags &
291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 adapter->flags |= flags;
293 queue_work(adapter->wq, &adapter->reset_task);
294 }
295}
296
297/**
298 * iavf_schedule_aq_request - Set the flags and schedule aq request
299 * @adapter: board private structure
300 * @flags: requested aq flags
301 **/
302void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303{
304 adapter->aq_required |= flags;
305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306}
307
308/**
309 * iavf_tx_timeout - Respond to a Tx Hang
310 * @netdev: network interface device structure
311 * @txqueue: queue number that is timing out
312 **/
313static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314{
315 struct iavf_adapter *adapter = netdev_priv(netdev);
316
317 adapter->tx_timeout_count++;
318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319}
320
321/**
322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323 * @adapter: board private structure
324 **/
325static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326{
327 struct iavf_hw *hw = &adapter->hw;
328
329 if (!adapter->msix_entries)
330 return;
331
332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334 iavf_flush(hw);
335
336 synchronize_irq(adapter->msix_entries[0].vector);
337}
338
339/**
340 * iavf_misc_irq_enable - Enable default interrupt generation settings
341 * @adapter: board private structure
342 **/
343static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344{
345 struct iavf_hw *hw = &adapter->hw;
346
347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351 iavf_flush(hw);
352}
353
354/**
355 * iavf_irq_disable - Mask off interrupt generation on the NIC
356 * @adapter: board private structure
357 **/
358static void iavf_irq_disable(struct iavf_adapter *adapter)
359{
360 int i;
361 struct iavf_hw *hw = &adapter->hw;
362
363 if (!adapter->msix_entries)
364 return;
365
366 for (i = 1; i < adapter->num_msix_vectors; i++) {
367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 synchronize_irq(adapter->msix_entries[i].vector);
369 }
370 iavf_flush(hw);
371}
372
373/**
374 * iavf_irq_enable_queues - Enable interrupt for all queues
375 * @adapter: board private structure
376 **/
377static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378{
379 struct iavf_hw *hw = &adapter->hw;
380 int i;
381
382 for (i = 1; i < adapter->num_msix_vectors; i++) {
383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 }
387}
388
389/**
390 * iavf_irq_enable - Enable default interrupt generation settings
391 * @adapter: board private structure
392 * @flush: boolean value whether to run rd32()
393 **/
394void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395{
396 struct iavf_hw *hw = &adapter->hw;
397
398 iavf_misc_irq_enable(adapter);
399 iavf_irq_enable_queues(adapter);
400
401 if (flush)
402 iavf_flush(hw);
403}
404
405/**
406 * iavf_msix_aq - Interrupt handler for vector 0
407 * @irq: interrupt number
408 * @data: pointer to netdev
409 **/
410static irqreturn_t iavf_msix_aq(int irq, void *data)
411{
412 struct net_device *netdev = data;
413 struct iavf_adapter *adapter = netdev_priv(netdev);
414 struct iavf_hw *hw = &adapter->hw;
415
416 /* handle non-queue interrupts, these reads clear the registers */
417 rd32(hw, IAVF_VFINT_ICR01);
418 rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420 if (adapter->state != __IAVF_REMOVE)
421 /* schedule work on the private workqueue */
422 queue_work(adapter->wq, &adapter->adminq_task);
423
424 return IRQ_HANDLED;
425}
426
427/**
428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429 * @irq: interrupt number
430 * @data: pointer to a q_vector
431 **/
432static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433{
434 struct iavf_q_vector *q_vector = data;
435
436 if (!q_vector->tx.ring && !q_vector->rx.ring)
437 return IRQ_HANDLED;
438
439 napi_schedule_irqoff(&q_vector->napi);
440
441 return IRQ_HANDLED;
442}
443
444/**
445 * iavf_map_vector_to_rxq - associate irqs with rx queues
446 * @adapter: board private structure
447 * @v_idx: interrupt number
448 * @r_idx: queue number
449 **/
450static void
451iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452{
453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 struct iavf_hw *hw = &adapter->hw;
456
457 rx_ring->q_vector = q_vector;
458 rx_ring->next = q_vector->rx.ring;
459 rx_ring->vsi = &adapter->vsi;
460 q_vector->rx.ring = rx_ring;
461 q_vector->rx.count++;
462 q_vector->rx.next_update = jiffies + 1;
463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 q_vector->ring_mask |= BIT(r_idx);
465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 q_vector->rx.current_itr >> 1);
467 q_vector->rx.current_itr = q_vector->rx.target_itr;
468}
469
470/**
471 * iavf_map_vector_to_txq - associate irqs with tx queues
472 * @adapter: board private structure
473 * @v_idx: interrupt number
474 * @t_idx: queue number
475 **/
476static void
477iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478{
479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 struct iavf_hw *hw = &adapter->hw;
482
483 tx_ring->q_vector = q_vector;
484 tx_ring->next = q_vector->tx.ring;
485 tx_ring->vsi = &adapter->vsi;
486 q_vector->tx.ring = tx_ring;
487 q_vector->tx.count++;
488 q_vector->tx.next_update = jiffies + 1;
489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 q_vector->num_ringpairs++;
491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 q_vector->tx.target_itr >> 1);
493 q_vector->tx.current_itr = q_vector->tx.target_itr;
494}
495
496/**
497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498 * @adapter: board private structure to initialize
499 *
500 * This function maps descriptor rings to the queue-specific vectors
501 * we were allotted through the MSI-X enabling code. Ideally, we'd have
502 * one vector per ring/queue, but on a constrained vector budget, we
503 * group the rings as "efficiently" as possible. You would add new
504 * mapping configurations in here.
505 **/
506static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507{
508 int rings_remaining = adapter->num_active_queues;
509 int ridx = 0, vidx = 0;
510 int q_vectors;
511
512 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514 for (; ridx < rings_remaining; ridx++) {
515 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518 /* In the case where we have more queues than vectors, continue
519 * round-robin on vectors until all queues are mapped.
520 */
521 if (++vidx >= q_vectors)
522 vidx = 0;
523 }
524
525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526}
527
528/**
529 * iavf_irq_affinity_notify - Callback for affinity changes
530 * @notify: context as to what irq was changed
531 * @mask: the new affinity mask
532 *
533 * This is a callback function used by the irq_set_affinity_notifier function
534 * so that we may register to receive changes to the irq affinity masks.
535 **/
536static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 const cpumask_t *mask)
538{
539 struct iavf_q_vector *q_vector =
540 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542 cpumask_copy(&q_vector->affinity_mask, mask);
543}
544
545/**
546 * iavf_irq_affinity_release - Callback for affinity notifier release
547 * @ref: internal core kernel usage
548 *
549 * This is a callback function used by the irq_set_affinity_notifier function
550 * to inform the current notification subscriber that they will no longer
551 * receive notifications.
552 **/
553static void iavf_irq_affinity_release(struct kref *ref) {}
554
555/**
556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557 * @adapter: board private structure
558 * @basename: device basename
559 *
560 * Allocates MSI-X vectors for tx and rx handling, and requests
561 * interrupts from the kernel.
562 **/
563static int
564iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565{
566 unsigned int vector, q_vectors;
567 unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 int irq_num, err;
569 int cpu;
570
571 iavf_irq_disable(adapter);
572 /* Decrement for Other and TCP Timer vectors */
573 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575 for (vector = 0; vector < q_vectors; vector++) {
576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580 if (q_vector->tx.ring && q_vector->rx.ring) {
581 snprintf(q_vector->name, sizeof(q_vector->name),
582 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 tx_int_idx++;
584 } else if (q_vector->rx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 } else if (q_vector->tx.ring) {
588 snprintf(q_vector->name, sizeof(q_vector->name),
589 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 } else {
591 /* skip this unused q_vector */
592 continue;
593 }
594 err = request_irq(irq_num,
595 iavf_msix_clean_rings,
596 0,
597 q_vector->name,
598 q_vector);
599 if (err) {
600 dev_info(&adapter->pdev->dev,
601 "Request_irq failed, error: %d\n", err);
602 goto free_queue_irqs;
603 }
604 /* register for affinity change notifications */
605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 q_vector->affinity_notify.release =
607 iavf_irq_affinity_release;
608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 /* Spread the IRQ affinity hints across online CPUs. Note that
610 * get_cpu_mask returns a mask with a permanent lifetime so
611 * it's safe to use as a hint for irq_update_affinity_hint.
612 */
613 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 }
616
617 return 0;
618
619free_queue_irqs:
620 while (vector) {
621 vector--;
622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 irq_set_affinity_notifier(irq_num, NULL);
624 irq_update_affinity_hint(irq_num, NULL);
625 free_irq(irq_num, &adapter->q_vectors[vector]);
626 }
627 return err;
628}
629
630/**
631 * iavf_request_misc_irq - Initialize MSI-X interrupts
632 * @adapter: board private structure
633 *
634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635 * vector is only for the admin queue, and stays active even when the netdev
636 * is closed.
637 **/
638static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639{
640 struct net_device *netdev = adapter->netdev;
641 int err;
642
643 snprintf(adapter->misc_vector_name,
644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 dev_name(&adapter->pdev->dev));
646 err = request_irq(adapter->msix_entries[0].vector,
647 &iavf_msix_aq, 0,
648 adapter->misc_vector_name, netdev);
649 if (err) {
650 dev_err(&adapter->pdev->dev,
651 "request_irq for %s failed: %d\n",
652 adapter->misc_vector_name, err);
653 free_irq(adapter->msix_entries[0].vector, netdev);
654 }
655 return err;
656}
657
658/**
659 * iavf_free_traffic_irqs - Free MSI-X interrupts
660 * @adapter: board private structure
661 *
662 * Frees all MSI-X vectors other than 0.
663 **/
664static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665{
666 int vector, irq_num, q_vectors;
667
668 if (!adapter->msix_entries)
669 return;
670
671 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673 for (vector = 0; vector < q_vectors; vector++) {
674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 irq_set_affinity_notifier(irq_num, NULL);
676 irq_update_affinity_hint(irq_num, NULL);
677 free_irq(irq_num, &adapter->q_vectors[vector]);
678 }
679}
680
681/**
682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683 * @adapter: board private structure
684 *
685 * Frees MSI-X vector 0.
686 **/
687static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688{
689 struct net_device *netdev = adapter->netdev;
690
691 if (!adapter->msix_entries)
692 return;
693
694 free_irq(adapter->msix_entries[0].vector, netdev);
695}
696
697/**
698 * iavf_configure_tx - Configure Transmit Unit after Reset
699 * @adapter: board private structure
700 *
701 * Configure the Tx unit of the MAC after a reset.
702 **/
703static void iavf_configure_tx(struct iavf_adapter *adapter)
704{
705 struct iavf_hw *hw = &adapter->hw;
706 int i;
707
708 for (i = 0; i < adapter->num_active_queues; i++)
709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710}
711
712/**
713 * iavf_configure_rx - Configure Receive Unit after Reset
714 * @adapter: board private structure
715 *
716 * Configure the Rx unit of the MAC after a reset.
717 **/
718static void iavf_configure_rx(struct iavf_adapter *adapter)
719{
720 struct iavf_hw *hw = &adapter->hw;
721
722 for (u32 i = 0; i < adapter->num_active_queues; i++)
723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724}
725
726/**
727 * iavf_find_vlan - Search filter list for specific vlan filter
728 * @adapter: board private structure
729 * @vlan: vlan tag
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734static struct
735iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 struct iavf_vlan vlan)
737{
738 struct iavf_vlan_filter *f;
739
740 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 if (f->vlan.vid == vlan.vid &&
742 f->vlan.tpid == vlan.tpid)
743 return f;
744 }
745
746 return NULL;
747}
748
749/**
750 * iavf_add_vlan - Add a vlan filter to the list
751 * @adapter: board private structure
752 * @vlan: VLAN tag
753 *
754 * Returns ptr to the filter object or NULL when no memory available.
755 **/
756static struct
757iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759{
760 struct iavf_vlan_filter *f = NULL;
761
762 spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764 f = iavf_find_vlan(adapter, vlan);
765 if (!f) {
766 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 if (!f)
768 goto clearout;
769
770 f->vlan = vlan;
771
772 list_add_tail(&f->list, &adapter->vlan_filter_list);
773 f->state = IAVF_VLAN_ADD;
774 adapter->num_vlan_filters++;
775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 } else if (f->state == IAVF_VLAN_REMOVE) {
777 /* IAVF_VLAN_REMOVE means that VLAN wasn't yet removed.
778 * We can safely only change the state here.
779 */
780 f->state = IAVF_VLAN_ACTIVE;
781 }
782
783clearout:
784 spin_unlock_bh(&adapter->mac_vlan_list_lock);
785 return f;
786}
787
788/**
789 * iavf_del_vlan - Remove a vlan filter from the list
790 * @adapter: board private structure
791 * @vlan: VLAN tag
792 **/
793static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
794{
795 struct iavf_vlan_filter *f;
796
797 spin_lock_bh(&adapter->mac_vlan_list_lock);
798
799 f = iavf_find_vlan(adapter, vlan);
800 if (f) {
801 /* IAVF_ADD_VLAN means that VLAN wasn't even added yet.
802 * Remove it from the list.
803 */
804 if (f->state == IAVF_VLAN_ADD) {
805 list_del(&f->list);
806 kfree(f);
807 adapter->num_vlan_filters--;
808 } else {
809 f->state = IAVF_VLAN_REMOVE;
810 iavf_schedule_aq_request(adapter,
811 IAVF_FLAG_AQ_DEL_VLAN_FILTER);
812 }
813 }
814
815 spin_unlock_bh(&adapter->mac_vlan_list_lock);
816}
817
818/**
819 * iavf_restore_filters
820 * @adapter: board private structure
821 *
822 * Restore existing non MAC filters when VF netdev comes back up
823 **/
824static void iavf_restore_filters(struct iavf_adapter *adapter)
825{
826 struct iavf_vlan_filter *f;
827
828 /* re-add all VLAN filters */
829 spin_lock_bh(&adapter->mac_vlan_list_lock);
830
831 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
832 if (f->state == IAVF_VLAN_INACTIVE)
833 f->state = IAVF_VLAN_ADD;
834 }
835
836 spin_unlock_bh(&adapter->mac_vlan_list_lock);
837 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
838}
839
840/**
841 * iavf_get_num_vlans_added - get number of VLANs added
842 * @adapter: board private structure
843 */
844u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
845{
846 return adapter->num_vlan_filters;
847}
848
849/**
850 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
851 * @adapter: board private structure
852 *
853 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
854 * do not impose a limit as that maintains current behavior and for
855 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
856 **/
857static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
858{
859 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
860 * never been a limit on the VF driver side
861 */
862 if (VLAN_ALLOWED(adapter))
863 return VLAN_N_VID;
864 else if (VLAN_V2_ALLOWED(adapter))
865 return adapter->vlan_v2_caps.filtering.max_filters;
866
867 return 0;
868}
869
870/**
871 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
872 * @adapter: board private structure
873 **/
874static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
875{
876 if (iavf_get_num_vlans_added(adapter) <
877 iavf_get_max_vlans_allowed(adapter))
878 return false;
879
880 return true;
881}
882
883/**
884 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
885 * @netdev: network device struct
886 * @proto: unused protocol data
887 * @vid: VLAN tag
888 **/
889static int iavf_vlan_rx_add_vid(struct net_device *netdev,
890 __always_unused __be16 proto, u16 vid)
891{
892 struct iavf_adapter *adapter = netdev_priv(netdev);
893
894 /* Do not track VLAN 0 filter, always added by the PF on VF init */
895 if (!vid)
896 return 0;
897
898 if (!VLAN_FILTERING_ALLOWED(adapter))
899 return -EIO;
900
901 if (iavf_max_vlans_added(adapter)) {
902 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
903 iavf_get_max_vlans_allowed(adapter));
904 return -EIO;
905 }
906
907 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
908 return -ENOMEM;
909
910 return 0;
911}
912
913/**
914 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
915 * @netdev: network device struct
916 * @proto: unused protocol data
917 * @vid: VLAN tag
918 **/
919static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
920 __always_unused __be16 proto, u16 vid)
921{
922 struct iavf_adapter *adapter = netdev_priv(netdev);
923
924 /* We do not track VLAN 0 filter */
925 if (!vid)
926 return 0;
927
928 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 return 0;
930}
931
932/**
933 * iavf_find_filter - Search filter list for specific mac filter
934 * @adapter: board private structure
935 * @macaddr: the MAC address
936 *
937 * Returns ptr to the filter object or NULL. Must be called while holding the
938 * mac_vlan_list_lock.
939 **/
940static struct
941iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 const u8 *macaddr)
943{
944 struct iavf_mac_filter *f;
945
946 if (!macaddr)
947 return NULL;
948
949 list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 if (ether_addr_equal(macaddr, f->macaddr))
951 return f;
952 }
953 return NULL;
954}
955
956/**
957 * iavf_add_filter - Add a mac filter to the filter list
958 * @adapter: board private structure
959 * @macaddr: the MAC address
960 *
961 * Returns ptr to the filter object or NULL when no memory available.
962 **/
963struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 const u8 *macaddr)
965{
966 struct iavf_mac_filter *f;
967
968 if (!macaddr)
969 return NULL;
970
971 f = iavf_find_filter(adapter, macaddr);
972 if (!f) {
973 f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 if (!f)
975 return f;
976
977 ether_addr_copy(f->macaddr, macaddr);
978
979 list_add_tail(&f->list, &adapter->mac_filter_list);
980 f->add = true;
981 f->add_handled = false;
982 f->is_new_mac = true;
983 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
984 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
985 } else {
986 f->remove = false;
987 }
988
989 return f;
990}
991
992/**
993 * iavf_replace_primary_mac - Replace current primary address
994 * @adapter: board private structure
995 * @new_mac: new MAC address to be applied
996 *
997 * Replace current dev_addr and send request to PF for removal of previous
998 * primary MAC address filter and addition of new primary MAC filter.
999 * Return 0 for success, -ENOMEM for failure.
1000 *
1001 * Do not call this with mac_vlan_list_lock!
1002 **/
1003static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004 const u8 *new_mac)
1005{
1006 struct iavf_hw *hw = &adapter->hw;
1007 struct iavf_mac_filter *new_f;
1008 struct iavf_mac_filter *old_f;
1009
1010 spin_lock_bh(&adapter->mac_vlan_list_lock);
1011
1012 new_f = iavf_add_filter(adapter, new_mac);
1013 if (!new_f) {
1014 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1015 return -ENOMEM;
1016 }
1017
1018 old_f = iavf_find_filter(adapter, hw->mac.addr);
1019 if (old_f) {
1020 old_f->is_primary = false;
1021 old_f->remove = true;
1022 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 }
1024 /* Always send the request to add if changing primary MAC,
1025 * even if filter is already present on the list
1026 */
1027 new_f->is_primary = true;
1028 new_f->add = true;
1029 ether_addr_copy(hw->mac.addr, new_mac);
1030
1031 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032
1033 /* schedule the watchdog task to immediately process the request */
1034 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1035 return 0;
1036}
1037
1038/**
1039 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1040 * @netdev: network interface device structure
1041 * @macaddr: MAC address to set
1042 *
1043 * Returns true on success, false on failure
1044 */
1045static bool iavf_is_mac_set_handled(struct net_device *netdev,
1046 const u8 *macaddr)
1047{
1048 struct iavf_adapter *adapter = netdev_priv(netdev);
1049 struct iavf_mac_filter *f;
1050 bool ret = false;
1051
1052 spin_lock_bh(&adapter->mac_vlan_list_lock);
1053
1054 f = iavf_find_filter(adapter, macaddr);
1055
1056 if (!f || (!f->add && f->add_handled))
1057 ret = true;
1058
1059 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1060
1061 return ret;
1062}
1063
1064/**
1065 * iavf_set_mac - NDO callback to set port MAC address
1066 * @netdev: network interface device structure
1067 * @p: pointer to an address structure
1068 *
1069 * Returns 0 on success, negative on failure
1070 */
1071static int iavf_set_mac(struct net_device *netdev, void *p)
1072{
1073 struct iavf_adapter *adapter = netdev_priv(netdev);
1074 struct sockaddr *addr = p;
1075 int ret;
1076
1077 if (!is_valid_ether_addr(addr->sa_data))
1078 return -EADDRNOTAVAIL;
1079
1080 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1081
1082 if (ret)
1083 return ret;
1084
1085 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1086 iavf_is_mac_set_handled(netdev, addr->sa_data),
1087 msecs_to_jiffies(2500));
1088
1089 /* If ret < 0 then it means wait was interrupted.
1090 * If ret == 0 then it means we got a timeout.
1091 * else it means we got response for set MAC from PF,
1092 * check if netdev MAC was updated to requested MAC,
1093 * if yes then set MAC succeeded otherwise it failed return -EACCES
1094 */
1095 if (ret < 0)
1096 return ret;
1097
1098 if (!ret)
1099 return -EAGAIN;
1100
1101 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1102 return -EACCES;
1103
1104 return 0;
1105}
1106
1107/**
1108 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1109 * @netdev: the netdevice
1110 * @addr: address to add
1111 *
1112 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1113 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1114 */
1115static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1116{
1117 struct iavf_adapter *adapter = netdev_priv(netdev);
1118
1119 if (iavf_add_filter(adapter, addr))
1120 return 0;
1121 else
1122 return -ENOMEM;
1123}
1124
1125/**
1126 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1127 * @netdev: the netdevice
1128 * @addr: address to add
1129 *
1130 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1131 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1132 */
1133static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1134{
1135 struct iavf_adapter *adapter = netdev_priv(netdev);
1136 struct iavf_mac_filter *f;
1137
1138 /* Under some circumstances, we might receive a request to delete
1139 * our own device address from our uc list. Because we store the
1140 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1141 * such requests and not delete our device address from this list.
1142 */
1143 if (ether_addr_equal(addr, netdev->dev_addr))
1144 return 0;
1145
1146 f = iavf_find_filter(adapter, addr);
1147 if (f) {
1148 f->remove = true;
1149 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1150 }
1151 return 0;
1152}
1153
1154/**
1155 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1156 * @adapter: device specific adapter
1157 */
1158bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1159{
1160 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1161 (IFF_PROMISC | IFF_ALLMULTI);
1162}
1163
1164/**
1165 * iavf_set_rx_mode - NDO callback to set the netdev filters
1166 * @netdev: network interface device structure
1167 **/
1168static void iavf_set_rx_mode(struct net_device *netdev)
1169{
1170 struct iavf_adapter *adapter = netdev_priv(netdev);
1171
1172 spin_lock_bh(&adapter->mac_vlan_list_lock);
1173 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1174 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1176
1177 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1178 if (iavf_promiscuous_mode_changed(adapter))
1179 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1180 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1181}
1182
1183/**
1184 * iavf_napi_enable_all - enable NAPI on all queue vectors
1185 * @adapter: board private structure
1186 **/
1187static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1188{
1189 int q_idx;
1190 struct iavf_q_vector *q_vector;
1191 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1192
1193 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1194 struct napi_struct *napi;
1195
1196 q_vector = &adapter->q_vectors[q_idx];
1197 napi = &q_vector->napi;
1198 napi_enable(napi);
1199 }
1200}
1201
1202/**
1203 * iavf_napi_disable_all - disable NAPI on all queue vectors
1204 * @adapter: board private structure
1205 **/
1206static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1207{
1208 int q_idx;
1209 struct iavf_q_vector *q_vector;
1210 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1211
1212 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1213 q_vector = &adapter->q_vectors[q_idx];
1214 napi_disable(&q_vector->napi);
1215 }
1216}
1217
1218/**
1219 * iavf_configure - set up transmit and receive data structures
1220 * @adapter: board private structure
1221 **/
1222static void iavf_configure(struct iavf_adapter *adapter)
1223{
1224 struct net_device *netdev = adapter->netdev;
1225 int i;
1226
1227 iavf_set_rx_mode(netdev);
1228
1229 iavf_configure_tx(adapter);
1230 iavf_configure_rx(adapter);
1231 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1232
1233 for (i = 0; i < adapter->num_active_queues; i++) {
1234 struct iavf_ring *ring = &adapter->rx_rings[i];
1235
1236 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1237 }
1238}
1239
1240/**
1241 * iavf_up_complete - Finish the last steps of bringing up a connection
1242 * @adapter: board private structure
1243 *
1244 * Expects to be called while holding crit_lock.
1245 **/
1246static void iavf_up_complete(struct iavf_adapter *adapter)
1247{
1248 iavf_change_state(adapter, __IAVF_RUNNING);
1249 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1250
1251 iavf_napi_enable_all(adapter);
1252
1253 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1254}
1255
1256/**
1257 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1258 * yet and mark other to be removed.
1259 * @adapter: board private structure
1260 **/
1261static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1262{
1263 struct iavf_vlan_filter *vlf, *vlftmp;
1264 struct iavf_mac_filter *f, *ftmp;
1265
1266 spin_lock_bh(&adapter->mac_vlan_list_lock);
1267 /* clear the sync flag on all filters */
1268 __dev_uc_unsync(adapter->netdev, NULL);
1269 __dev_mc_unsync(adapter->netdev, NULL);
1270
1271 /* remove all MAC filters */
1272 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1273 list) {
1274 if (f->add) {
1275 list_del(&f->list);
1276 kfree(f);
1277 } else {
1278 f->remove = true;
1279 }
1280 }
1281
1282 /* disable all VLAN filters */
1283 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1284 list)
1285 vlf->state = IAVF_VLAN_DISABLE;
1286
1287 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1288}
1289
1290/**
1291 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1292 * mark other to be removed.
1293 * @adapter: board private structure
1294 **/
1295static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1296{
1297 struct iavf_cloud_filter *cf, *cftmp;
1298
1299 /* remove all cloud filters */
1300 spin_lock_bh(&adapter->cloud_filter_list_lock);
1301 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1302 list) {
1303 if (cf->add) {
1304 list_del(&cf->list);
1305 kfree(cf);
1306 adapter->num_cloud_filters--;
1307 } else {
1308 cf->del = true;
1309 }
1310 }
1311 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1312}
1313
1314/**
1315 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1316 * other to be removed.
1317 * @adapter: board private structure
1318 **/
1319static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1320{
1321 struct iavf_fdir_fltr *fdir;
1322
1323 /* remove all Flow Director filters */
1324 spin_lock_bh(&adapter->fdir_fltr_lock);
1325 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1326 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1327 /* Cancel a request, keep filter as inactive */
1328 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1329 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1330 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1331 /* Disable filters which are active or have a pending
1332 * request to PF to be added
1333 */
1334 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1335 }
1336 }
1337 spin_unlock_bh(&adapter->fdir_fltr_lock);
1338}
1339
1340/**
1341 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1342 * other to be removed.
1343 * @adapter: board private structure
1344 **/
1345static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1346{
1347 struct iavf_adv_rss *rss, *rsstmp;
1348
1349 /* remove all advance RSS configuration */
1350 spin_lock_bh(&adapter->adv_rss_lock);
1351 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1352 list) {
1353 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1354 list_del(&rss->list);
1355 kfree(rss);
1356 } else {
1357 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1358 }
1359 }
1360 spin_unlock_bh(&adapter->adv_rss_lock);
1361}
1362
1363/**
1364 * iavf_down - Shutdown the connection processing
1365 * @adapter: board private structure
1366 *
1367 * Expects to be called while holding crit_lock.
1368 **/
1369void iavf_down(struct iavf_adapter *adapter)
1370{
1371 struct net_device *netdev = adapter->netdev;
1372
1373 if (adapter->state <= __IAVF_DOWN_PENDING)
1374 return;
1375
1376 netif_carrier_off(netdev);
1377 netif_tx_disable(netdev);
1378 adapter->link_up = false;
1379 iavf_napi_disable_all(adapter);
1380 iavf_irq_disable(adapter);
1381
1382 iavf_clear_mac_vlan_filters(adapter);
1383 iavf_clear_cloud_filters(adapter);
1384 iavf_clear_fdir_filters(adapter);
1385 iavf_clear_adv_rss_conf(adapter);
1386
1387 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1388 return;
1389
1390 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1391 /* cancel any current operation */
1392 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1393 /* Schedule operations to close down the HW. Don't wait
1394 * here for this to complete. The watchdog is still running
1395 * and it will take care of this.
1396 */
1397 if (!list_empty(&adapter->mac_filter_list))
1398 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1399 if (!list_empty(&adapter->vlan_filter_list))
1400 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1401 if (!list_empty(&adapter->cloud_filter_list))
1402 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1403 if (!list_empty(&adapter->fdir_list_head))
1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1405 if (!list_empty(&adapter->adv_rss_list_head))
1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1407 }
1408
1409 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1410}
1411
1412/**
1413 * iavf_acquire_msix_vectors - Setup the MSIX capability
1414 * @adapter: board private structure
1415 * @vectors: number of vectors to request
1416 *
1417 * Work with the OS to set up the MSIX vectors needed.
1418 *
1419 * Returns 0 on success, negative on failure
1420 **/
1421static int
1422iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1423{
1424 int err, vector_threshold;
1425
1426 /* We'll want at least 3 (vector_threshold):
1427 * 0) Other (Admin Queue and link, mostly)
1428 * 1) TxQ[0] Cleanup
1429 * 2) RxQ[0] Cleanup
1430 */
1431 vector_threshold = MIN_MSIX_COUNT;
1432
1433 /* The more we get, the more we will assign to Tx/Rx Cleanup
1434 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1435 * Right now, we simply care about how many we'll get; we'll
1436 * set them up later while requesting irq's.
1437 */
1438 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1439 vector_threshold, vectors);
1440 if (err < 0) {
1441 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1442 kfree(adapter->msix_entries);
1443 adapter->msix_entries = NULL;
1444 return err;
1445 }
1446
1447 /* Adjust for only the vectors we'll use, which is minimum
1448 * of max_msix_q_vectors + NONQ_VECS, or the number of
1449 * vectors we were allocated.
1450 */
1451 adapter->num_msix_vectors = err;
1452 return 0;
1453}
1454
1455/**
1456 * iavf_free_queues - Free memory for all rings
1457 * @adapter: board private structure to initialize
1458 *
1459 * Free all of the memory associated with queue pairs.
1460 **/
1461static void iavf_free_queues(struct iavf_adapter *adapter)
1462{
1463 if (!adapter->vsi_res)
1464 return;
1465 adapter->num_active_queues = 0;
1466 kfree(adapter->tx_rings);
1467 adapter->tx_rings = NULL;
1468 kfree(adapter->rx_rings);
1469 adapter->rx_rings = NULL;
1470}
1471
1472/**
1473 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1474 * @adapter: board private structure
1475 *
1476 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1477 * stripped in certain descriptor fields. Instead of checking the offload
1478 * capability bits in the hot path, cache the location the ring specific
1479 * flags.
1480 */
1481void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1482{
1483 int i;
1484
1485 for (i = 0; i < adapter->num_active_queues; i++) {
1486 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1487 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1488
1489 /* prevent multiple L2TAG bits being set after VFR */
1490 tx_ring->flags &=
1491 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1492 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1493 rx_ring->flags &=
1494 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1495 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1496
1497 if (VLAN_ALLOWED(adapter)) {
1498 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1500 } else if (VLAN_V2_ALLOWED(adapter)) {
1501 struct virtchnl_vlan_supported_caps *stripping_support;
1502 struct virtchnl_vlan_supported_caps *insertion_support;
1503
1504 stripping_support =
1505 &adapter->vlan_v2_caps.offloads.stripping_support;
1506 insertion_support =
1507 &adapter->vlan_v2_caps.offloads.insertion_support;
1508
1509 if (stripping_support->outer) {
1510 if (stripping_support->outer &
1511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1512 rx_ring->flags |=
1513 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1514 else if (stripping_support->outer &
1515 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1516 rx_ring->flags |=
1517 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1518 } else if (stripping_support->inner) {
1519 if (stripping_support->inner &
1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1521 rx_ring->flags |=
1522 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1523 else if (stripping_support->inner &
1524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1525 rx_ring->flags |=
1526 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1527 }
1528
1529 if (insertion_support->outer) {
1530 if (insertion_support->outer &
1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1532 tx_ring->flags |=
1533 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1534 else if (insertion_support->outer &
1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1536 tx_ring->flags |=
1537 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1538 } else if (insertion_support->inner) {
1539 if (insertion_support->inner &
1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1541 tx_ring->flags |=
1542 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1543 else if (insertion_support->inner &
1544 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1545 tx_ring->flags |=
1546 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1547 }
1548 }
1549 }
1550}
1551
1552/**
1553 * iavf_alloc_queues - Allocate memory for all rings
1554 * @adapter: board private structure to initialize
1555 *
1556 * We allocate one ring per queue at run-time since we don't know the
1557 * number of queues at compile-time. The polling_netdev array is
1558 * intended for Multiqueue, but should work fine with a single queue.
1559 **/
1560static int iavf_alloc_queues(struct iavf_adapter *adapter)
1561{
1562 int i, num_active_queues;
1563
1564 /* If we're in reset reallocating queues we don't actually know yet for
1565 * certain the PF gave us the number of queues we asked for but we'll
1566 * assume it did. Once basic reset is finished we'll confirm once we
1567 * start negotiating config with PF.
1568 */
1569 if (adapter->num_req_queues)
1570 num_active_queues = adapter->num_req_queues;
1571 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1572 adapter->num_tc)
1573 num_active_queues = adapter->ch_config.total_qps;
1574 else
1575 num_active_queues = min_t(int,
1576 adapter->vsi_res->num_queue_pairs,
1577 (int)(num_online_cpus()));
1578
1579
1580 adapter->tx_rings = kcalloc(num_active_queues,
1581 sizeof(struct iavf_ring), GFP_KERNEL);
1582 if (!adapter->tx_rings)
1583 goto err_out;
1584 adapter->rx_rings = kcalloc(num_active_queues,
1585 sizeof(struct iavf_ring), GFP_KERNEL);
1586 if (!adapter->rx_rings)
1587 goto err_out;
1588
1589 for (i = 0; i < num_active_queues; i++) {
1590 struct iavf_ring *tx_ring;
1591 struct iavf_ring *rx_ring;
1592
1593 tx_ring = &adapter->tx_rings[i];
1594
1595 tx_ring->queue_index = i;
1596 tx_ring->netdev = adapter->netdev;
1597 tx_ring->dev = &adapter->pdev->dev;
1598 tx_ring->count = adapter->tx_desc_count;
1599 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1600 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1601 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1602
1603 rx_ring = &adapter->rx_rings[i];
1604 rx_ring->queue_index = i;
1605 rx_ring->netdev = adapter->netdev;
1606 rx_ring->count = adapter->rx_desc_count;
1607 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1608 }
1609
1610 adapter->num_active_queues = num_active_queues;
1611
1612 iavf_set_queue_vlan_tag_loc(adapter);
1613
1614 return 0;
1615
1616err_out:
1617 iavf_free_queues(adapter);
1618 return -ENOMEM;
1619}
1620
1621/**
1622 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1623 * @adapter: board private structure to initialize
1624 *
1625 * Attempt to configure the interrupts using the best available
1626 * capabilities of the hardware and the kernel.
1627 **/
1628static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1629{
1630 int vector, v_budget;
1631 int pairs = 0;
1632 int err = 0;
1633
1634 if (!adapter->vsi_res) {
1635 err = -EIO;
1636 goto out;
1637 }
1638 pairs = adapter->num_active_queues;
1639
1640 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1641 * us much good if we have more vectors than CPUs. However, we already
1642 * limit the total number of queues by the number of CPUs so we do not
1643 * need any further limiting here.
1644 */
1645 v_budget = min_t(int, pairs + NONQ_VECS,
1646 (int)adapter->vf_res->max_vectors);
1647
1648 adapter->msix_entries = kcalloc(v_budget,
1649 sizeof(struct msix_entry), GFP_KERNEL);
1650 if (!adapter->msix_entries) {
1651 err = -ENOMEM;
1652 goto out;
1653 }
1654
1655 for (vector = 0; vector < v_budget; vector++)
1656 adapter->msix_entries[vector].entry = vector;
1657
1658 err = iavf_acquire_msix_vectors(adapter, v_budget);
1659 if (!err)
1660 iavf_schedule_finish_config(adapter);
1661
1662out:
1663 return err;
1664}
1665
1666/**
1667 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1668 * @adapter: board private structure
1669 *
1670 * Return 0 on success, negative on failure
1671 **/
1672static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1673{
1674 struct iavf_aqc_get_set_rss_key_data *rss_key =
1675 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1676 struct iavf_hw *hw = &adapter->hw;
1677 enum iavf_status status;
1678
1679 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1680 /* bail because we already have a command pending */
1681 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1682 adapter->current_op);
1683 return -EBUSY;
1684 }
1685
1686 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1687 if (status) {
1688 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1689 iavf_stat_str(hw, status),
1690 iavf_aq_str(hw, hw->aq.asq_last_status));
1691 return iavf_status_to_errno(status);
1692
1693 }
1694
1695 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1696 adapter->rss_lut, adapter->rss_lut_size);
1697 if (status) {
1698 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1699 iavf_stat_str(hw, status),
1700 iavf_aq_str(hw, hw->aq.asq_last_status));
1701 return iavf_status_to_errno(status);
1702 }
1703
1704 return 0;
1705
1706}
1707
1708/**
1709 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1710 * @adapter: board private structure
1711 *
1712 * Returns 0 on success, negative on failure
1713 **/
1714static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1715{
1716 struct iavf_hw *hw = &adapter->hw;
1717 u32 *dw;
1718 u16 i;
1719
1720 dw = (u32 *)adapter->rss_key;
1721 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1722 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1723
1724 dw = (u32 *)adapter->rss_lut;
1725 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1726 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1727
1728 iavf_flush(hw);
1729
1730 return 0;
1731}
1732
1733/**
1734 * iavf_config_rss - Configure RSS keys and lut
1735 * @adapter: board private structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
1739int iavf_config_rss(struct iavf_adapter *adapter)
1740{
1741
1742 if (RSS_PF(adapter)) {
1743 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1744 IAVF_FLAG_AQ_SET_RSS_KEY;
1745 return 0;
1746 } else if (RSS_AQ(adapter)) {
1747 return iavf_config_rss_aq(adapter);
1748 } else {
1749 return iavf_config_rss_reg(adapter);
1750 }
1751}
1752
1753/**
1754 * iavf_fill_rss_lut - Fill the lut with default values
1755 * @adapter: board private structure
1756 **/
1757static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1758{
1759 u16 i;
1760
1761 for (i = 0; i < adapter->rss_lut_size; i++)
1762 adapter->rss_lut[i] = i % adapter->num_active_queues;
1763}
1764
1765/**
1766 * iavf_init_rss - Prepare for RSS
1767 * @adapter: board private structure
1768 *
1769 * Return 0 on success, negative on failure
1770 **/
1771static int iavf_init_rss(struct iavf_adapter *adapter)
1772{
1773 struct iavf_hw *hw = &adapter->hw;
1774
1775 if (!RSS_PF(adapter)) {
1776 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1777 if (adapter->vf_res->vf_cap_flags &
1778 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1779 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1780 else
1781 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1782
1783 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1784 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1785 }
1786
1787 iavf_fill_rss_lut(adapter);
1788 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1789
1790 return iavf_config_rss(adapter);
1791}
1792
1793/**
1794 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1795 * @adapter: board private structure to initialize
1796 *
1797 * We allocate one q_vector per queue interrupt. If allocation fails we
1798 * return -ENOMEM.
1799 **/
1800static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1801{
1802 int q_idx = 0, num_q_vectors;
1803 struct iavf_q_vector *q_vector;
1804
1805 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1806 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1807 GFP_KERNEL);
1808 if (!adapter->q_vectors)
1809 return -ENOMEM;
1810
1811 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1812 q_vector = &adapter->q_vectors[q_idx];
1813 q_vector->adapter = adapter;
1814 q_vector->vsi = &adapter->vsi;
1815 q_vector->v_idx = q_idx;
1816 q_vector->reg_idx = q_idx;
1817 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1818 netif_napi_add(adapter->netdev, &q_vector->napi,
1819 iavf_napi_poll);
1820 }
1821
1822 return 0;
1823}
1824
1825/**
1826 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1827 * @adapter: board private structure to initialize
1828 *
1829 * This function frees the memory allocated to the q_vectors. In addition if
1830 * NAPI is enabled it will delete any references to the NAPI struct prior
1831 * to freeing the q_vector.
1832 **/
1833static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1834{
1835 int q_idx, num_q_vectors;
1836
1837 if (!adapter->q_vectors)
1838 return;
1839
1840 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1841
1842 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1843 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1844
1845 netif_napi_del(&q_vector->napi);
1846 }
1847 kfree(adapter->q_vectors);
1848 adapter->q_vectors = NULL;
1849}
1850
1851/**
1852 * iavf_reset_interrupt_capability - Reset MSIX setup
1853 * @adapter: board private structure
1854 *
1855 **/
1856static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1857{
1858 if (!adapter->msix_entries)
1859 return;
1860
1861 pci_disable_msix(adapter->pdev);
1862 kfree(adapter->msix_entries);
1863 adapter->msix_entries = NULL;
1864}
1865
1866/**
1867 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1868 * @adapter: board private structure to initialize
1869 *
1870 **/
1871static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1872{
1873 int err;
1874
1875 err = iavf_alloc_queues(adapter);
1876 if (err) {
1877 dev_err(&adapter->pdev->dev,
1878 "Unable to allocate memory for queues\n");
1879 goto err_alloc_queues;
1880 }
1881
1882 err = iavf_set_interrupt_capability(adapter);
1883 if (err) {
1884 dev_err(&adapter->pdev->dev,
1885 "Unable to setup interrupt capabilities\n");
1886 goto err_set_interrupt;
1887 }
1888
1889 err = iavf_alloc_q_vectors(adapter);
1890 if (err) {
1891 dev_err(&adapter->pdev->dev,
1892 "Unable to allocate memory for queue vectors\n");
1893 goto err_alloc_q_vectors;
1894 }
1895
1896 /* If we've made it so far while ADq flag being ON, then we haven't
1897 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1898 * resources have been allocated in the reset path.
1899 * Now we can truly claim that ADq is enabled.
1900 */
1901 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1902 adapter->num_tc)
1903 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1904 adapter->num_tc);
1905
1906 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1907 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1908 adapter->num_active_queues);
1909
1910 return 0;
1911err_alloc_q_vectors:
1912 iavf_reset_interrupt_capability(adapter);
1913err_set_interrupt:
1914 iavf_free_queues(adapter);
1915err_alloc_queues:
1916 return err;
1917}
1918
1919/**
1920 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1921 * @adapter: board private structure
1922 **/
1923static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1924{
1925 iavf_free_q_vectors(adapter);
1926 iavf_reset_interrupt_capability(adapter);
1927 iavf_free_queues(adapter);
1928}
1929
1930/**
1931 * iavf_free_rss - Free memory used by RSS structs
1932 * @adapter: board private structure
1933 **/
1934static void iavf_free_rss(struct iavf_adapter *adapter)
1935{
1936 kfree(adapter->rss_key);
1937 adapter->rss_key = NULL;
1938
1939 kfree(adapter->rss_lut);
1940 adapter->rss_lut = NULL;
1941}
1942
1943/**
1944 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1945 * @adapter: board private structure
1946 * @running: true if adapter->state == __IAVF_RUNNING
1947 *
1948 * Returns 0 on success, negative on failure
1949 **/
1950static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1951{
1952 struct net_device *netdev = adapter->netdev;
1953 int err;
1954
1955 if (running)
1956 iavf_free_traffic_irqs(adapter);
1957 iavf_free_misc_irq(adapter);
1958 iavf_free_interrupt_scheme(adapter);
1959
1960 err = iavf_init_interrupt_scheme(adapter);
1961 if (err)
1962 goto err;
1963
1964 netif_tx_stop_all_queues(netdev);
1965
1966 err = iavf_request_misc_irq(adapter);
1967 if (err)
1968 goto err;
1969
1970 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1971
1972 iavf_map_rings_to_vectors(adapter);
1973err:
1974 return err;
1975}
1976
1977/**
1978 * iavf_finish_config - do all netdev work that needs RTNL
1979 * @work: our work_struct
1980 *
1981 * Do work that needs both RTNL and crit_lock.
1982 **/
1983static void iavf_finish_config(struct work_struct *work)
1984{
1985 struct iavf_adapter *adapter;
1986 int pairs, err;
1987
1988 adapter = container_of(work, struct iavf_adapter, finish_config);
1989
1990 /* Always take RTNL first to prevent circular lock dependency;
1991 * The dev->lock is needed to update the queue number
1992 */
1993 rtnl_lock();
1994 mutex_lock(&adapter->netdev->lock);
1995 mutex_lock(&adapter->crit_lock);
1996
1997 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1998 adapter->netdev->reg_state == NETREG_REGISTERED &&
1999 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2000 netdev_update_features(adapter->netdev);
2001 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2002 }
2003
2004 switch (adapter->state) {
2005 case __IAVF_DOWN:
2006 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2007 err = register_netdevice(adapter->netdev);
2008 if (err) {
2009 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2010 err);
2011
2012 /* go back and try again.*/
2013 iavf_free_rss(adapter);
2014 iavf_free_misc_irq(adapter);
2015 iavf_reset_interrupt_capability(adapter);
2016 iavf_change_state(adapter,
2017 __IAVF_INIT_CONFIG_ADAPTER);
2018 goto out;
2019 }
2020 }
2021
2022 /* Set the real number of queues when reset occurs while
2023 * state == __IAVF_DOWN
2024 */
2025 fallthrough;
2026 case __IAVF_RUNNING:
2027 pairs = adapter->num_active_queues;
2028 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2029 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2030 break;
2031
2032 default:
2033 break;
2034 }
2035
2036out:
2037 mutex_unlock(&adapter->crit_lock);
2038 mutex_unlock(&adapter->netdev->lock);
2039 rtnl_unlock();
2040}
2041
2042/**
2043 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2044 * @adapter: board private structure
2045 **/
2046void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2047{
2048 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2049 queue_work(adapter->wq, &adapter->finish_config);
2050}
2051
2052/**
2053 * iavf_process_aq_command - process aq_required flags
2054 * and sends aq command
2055 * @adapter: pointer to iavf adapter structure
2056 *
2057 * Returns 0 on success
2058 * Returns error code if no command was sent
2059 * or error code if the command failed.
2060 **/
2061static int iavf_process_aq_command(struct iavf_adapter *adapter)
2062{
2063 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2064 return iavf_send_vf_config_msg(adapter);
2065 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2066 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2067 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2068 iavf_disable_queues(adapter);
2069 return 0;
2070 }
2071
2072 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2073 iavf_map_queues(adapter);
2074 return 0;
2075 }
2076
2077 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2078 iavf_add_ether_addrs(adapter);
2079 return 0;
2080 }
2081
2082 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2083 iavf_add_vlans(adapter);
2084 return 0;
2085 }
2086
2087 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2088 iavf_del_ether_addrs(adapter);
2089 return 0;
2090 }
2091
2092 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2093 iavf_del_vlans(adapter);
2094 return 0;
2095 }
2096
2097 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2098 iavf_enable_vlan_stripping(adapter);
2099 return 0;
2100 }
2101
2102 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2103 iavf_disable_vlan_stripping(adapter);
2104 return 0;
2105 }
2106
2107 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2108 iavf_cfg_queues_bw(adapter);
2109 return 0;
2110 }
2111
2112 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2113 iavf_get_qos_caps(adapter);
2114 return 0;
2115 }
2116
2117 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2118 iavf_cfg_queues_quanta_size(adapter);
2119 return 0;
2120 }
2121
2122 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2123 iavf_configure_queues(adapter);
2124 return 0;
2125 }
2126
2127 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2128 iavf_enable_queues(adapter);
2129 return 0;
2130 }
2131
2132 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2133 /* This message goes straight to the firmware, not the
2134 * PF, so we don't have to set current_op as we will
2135 * not get a response through the ARQ.
2136 */
2137 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2138 return 0;
2139 }
2140 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2141 iavf_get_hena(adapter);
2142 return 0;
2143 }
2144 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2145 iavf_set_hena(adapter);
2146 return 0;
2147 }
2148 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2149 iavf_set_rss_key(adapter);
2150 return 0;
2151 }
2152 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2153 iavf_set_rss_lut(adapter);
2154 return 0;
2155 }
2156 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2157 iavf_set_rss_hfunc(adapter);
2158 return 0;
2159 }
2160
2161 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2162 iavf_set_promiscuous(adapter);
2163 return 0;
2164 }
2165
2166 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2167 iavf_enable_channels(adapter);
2168 return 0;
2169 }
2170
2171 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2172 iavf_disable_channels(adapter);
2173 return 0;
2174 }
2175 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2176 iavf_add_cloud_filter(adapter);
2177 return 0;
2178 }
2179 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2180 iavf_del_cloud_filter(adapter);
2181 return 0;
2182 }
2183 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2184 iavf_add_fdir_filter(adapter);
2185 return IAVF_SUCCESS;
2186 }
2187 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2188 iavf_del_fdir_filter(adapter);
2189 return IAVF_SUCCESS;
2190 }
2191 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2192 iavf_add_adv_rss_cfg(adapter);
2193 return 0;
2194 }
2195 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2196 iavf_del_adv_rss_cfg(adapter);
2197 return 0;
2198 }
2199 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2200 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2201 return 0;
2202 }
2203 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2204 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2205 return 0;
2206 }
2207 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2208 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2209 return 0;
2210 }
2211 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2212 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2213 return 0;
2214 }
2215 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2216 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2217 return 0;
2218 }
2219 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2220 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2221 return 0;
2222 }
2223 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2224 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2225 return 0;
2226 }
2227 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2228 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2229 return 0;
2230 }
2231
2232 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2233 iavf_request_stats(adapter);
2234 return 0;
2235 }
2236
2237 return -EAGAIN;
2238}
2239
2240/**
2241 * iavf_set_vlan_offload_features - set VLAN offload configuration
2242 * @adapter: board private structure
2243 * @prev_features: previous features used for comparison
2244 * @features: updated features used for configuration
2245 *
2246 * Set the aq_required bit(s) based on the requested features passed in to
2247 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2248 * the watchdog if any changes are requested to expedite the request via
2249 * virtchnl.
2250 **/
2251static void
2252iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2253 netdev_features_t prev_features,
2254 netdev_features_t features)
2255{
2256 bool enable_stripping = true, enable_insertion = true;
2257 u16 vlan_ethertype = 0;
2258 u64 aq_required = 0;
2259
2260 /* keep cases separate because one ethertype for offloads can be
2261 * disabled at the same time as another is disabled, so check for an
2262 * enabled ethertype first, then check for disabled. Default to
2263 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2264 * stripping.
2265 */
2266 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2267 vlan_ethertype = ETH_P_8021AD;
2268 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2269 vlan_ethertype = ETH_P_8021Q;
2270 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2271 vlan_ethertype = ETH_P_8021AD;
2272 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2273 vlan_ethertype = ETH_P_8021Q;
2274 else
2275 vlan_ethertype = ETH_P_8021Q;
2276
2277 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2278 enable_stripping = false;
2279 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2280 enable_insertion = false;
2281
2282 if (VLAN_ALLOWED(adapter)) {
2283 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2284 * stripping via virtchnl. VLAN insertion can be toggled on the
2285 * netdev, but it doesn't require a virtchnl message
2286 */
2287 if (enable_stripping)
2288 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2289 else
2290 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2291
2292 } else if (VLAN_V2_ALLOWED(adapter)) {
2293 switch (vlan_ethertype) {
2294 case ETH_P_8021Q:
2295 if (enable_stripping)
2296 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2297 else
2298 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2299
2300 if (enable_insertion)
2301 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2302 else
2303 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2304 break;
2305 case ETH_P_8021AD:
2306 if (enable_stripping)
2307 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2308 else
2309 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2310
2311 if (enable_insertion)
2312 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2313 else
2314 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2315 break;
2316 }
2317 }
2318
2319 if (aq_required)
2320 iavf_schedule_aq_request(adapter, aq_required);
2321}
2322
2323/**
2324 * iavf_startup - first step of driver startup
2325 * @adapter: board private structure
2326 *
2327 * Function process __IAVF_STARTUP driver state.
2328 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2329 * when fails the state is changed to __IAVF_INIT_FAILED
2330 **/
2331static void iavf_startup(struct iavf_adapter *adapter)
2332{
2333 struct pci_dev *pdev = adapter->pdev;
2334 struct iavf_hw *hw = &adapter->hw;
2335 enum iavf_status status;
2336 int ret;
2337
2338 WARN_ON(adapter->state != __IAVF_STARTUP);
2339
2340 /* driver loaded, probe complete */
2341 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2342 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2343
2344 ret = iavf_check_reset_complete(hw);
2345 if (ret) {
2346 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2347 ret);
2348 goto err;
2349 }
2350 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2351 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2352 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2353 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2354
2355 status = iavf_init_adminq(hw);
2356 if (status) {
2357 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2358 status);
2359 goto err;
2360 }
2361 ret = iavf_send_api_ver(adapter);
2362 if (ret) {
2363 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2364 iavf_shutdown_adminq(hw);
2365 goto err;
2366 }
2367 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2368 return;
2369err:
2370 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2371}
2372
2373/**
2374 * iavf_init_version_check - second step of driver startup
2375 * @adapter: board private structure
2376 *
2377 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2378 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2379 * when fails the state is changed to __IAVF_INIT_FAILED
2380 **/
2381static void iavf_init_version_check(struct iavf_adapter *adapter)
2382{
2383 struct pci_dev *pdev = adapter->pdev;
2384 struct iavf_hw *hw = &adapter->hw;
2385 int err = -EAGAIN;
2386
2387 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2388
2389 if (!iavf_asq_done(hw)) {
2390 dev_err(&pdev->dev, "Admin queue command never completed\n");
2391 iavf_shutdown_adminq(hw);
2392 iavf_change_state(adapter, __IAVF_STARTUP);
2393 goto err;
2394 }
2395
2396 /* aq msg sent, awaiting reply */
2397 err = iavf_verify_api_ver(adapter);
2398 if (err) {
2399 if (err == -EALREADY)
2400 err = iavf_send_api_ver(adapter);
2401 else
2402 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2403 adapter->pf_version.major,
2404 adapter->pf_version.minor,
2405 VIRTCHNL_VERSION_MAJOR,
2406 VIRTCHNL_VERSION_MINOR);
2407 goto err;
2408 }
2409 err = iavf_send_vf_config_msg(adapter);
2410 if (err) {
2411 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2412 err);
2413 goto err;
2414 }
2415 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2416 return;
2417err:
2418 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2419}
2420
2421/**
2422 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2423 * @adapter: board private structure
2424 */
2425int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2426{
2427 int i, num_req_queues = adapter->num_req_queues;
2428 struct iavf_vsi *vsi = &adapter->vsi;
2429
2430 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2431 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2432 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2433 }
2434 if (!adapter->vsi_res) {
2435 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2436 return -ENODEV;
2437 }
2438
2439 if (num_req_queues &&
2440 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2441 /* Problem. The PF gave us fewer queues than what we had
2442 * negotiated in our request. Need a reset to see if we can't
2443 * get back to a working state.
2444 */
2445 dev_err(&adapter->pdev->dev,
2446 "Requested %d queues, but PF only gave us %d.\n",
2447 num_req_queues,
2448 adapter->vsi_res->num_queue_pairs);
2449 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2450 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2451 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2452
2453 return -EAGAIN;
2454 }
2455 adapter->num_req_queues = 0;
2456 adapter->vsi.id = adapter->vsi_res->vsi_id;
2457
2458 adapter->vsi.back = adapter;
2459 adapter->vsi.base_vector = 1;
2460 vsi->netdev = adapter->netdev;
2461 vsi->qs_handle = adapter->vsi_res->qset_handle;
2462 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2463 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2464 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2465 } else {
2466 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2467 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2468 }
2469
2470 return 0;
2471}
2472
2473/**
2474 * iavf_init_get_resources - third step of driver startup
2475 * @adapter: board private structure
2476 *
2477 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2478 * finishes driver initialization procedure.
2479 * When success the state is changed to __IAVF_DOWN
2480 * when fails the state is changed to __IAVF_INIT_FAILED
2481 **/
2482static void iavf_init_get_resources(struct iavf_adapter *adapter)
2483{
2484 struct pci_dev *pdev = adapter->pdev;
2485 struct iavf_hw *hw = &adapter->hw;
2486 int err;
2487
2488 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2489 /* aq msg sent, awaiting reply */
2490 if (!adapter->vf_res) {
2491 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2492 GFP_KERNEL);
2493 if (!adapter->vf_res) {
2494 err = -ENOMEM;
2495 goto err;
2496 }
2497 }
2498 err = iavf_get_vf_config(adapter);
2499 if (err == -EALREADY) {
2500 err = iavf_send_vf_config_msg(adapter);
2501 goto err;
2502 } else if (err == -EINVAL) {
2503 /* We only get -EINVAL if the device is in a very bad
2504 * state or if we've been disabled for previous bad
2505 * behavior. Either way, we're done now.
2506 */
2507 iavf_shutdown_adminq(hw);
2508 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2509 return;
2510 }
2511 if (err) {
2512 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2513 goto err_alloc;
2514 }
2515
2516 err = iavf_parse_vf_resource_msg(adapter);
2517 if (err) {
2518 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2519 err);
2520 goto err_alloc;
2521 }
2522 /* Some features require additional messages to negotiate extended
2523 * capabilities. These are processed in sequence by the
2524 * __IAVF_INIT_EXTENDED_CAPS driver state.
2525 */
2526 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2527
2528 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2529 return;
2530
2531err_alloc:
2532 kfree(adapter->vf_res);
2533 adapter->vf_res = NULL;
2534err:
2535 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2536}
2537
2538/**
2539 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2540 * @adapter: board private structure
2541 *
2542 * Function processes send of the extended VLAN V2 capability message to the
2543 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2544 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2545 */
2546static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2547{
2548 int ret;
2549
2550 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2551
2552 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2553 if (ret && ret == -EOPNOTSUPP) {
2554 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2555 * we did not send the capability exchange message and do not
2556 * expect a response.
2557 */
2558 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2559 }
2560
2561 /* We sent the message, so move on to the next step */
2562 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2563}
2564
2565/**
2566 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2567 * @adapter: board private structure
2568 *
2569 * Function processes receipt of the extended VLAN V2 capability message from
2570 * the PF.
2571 **/
2572static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2573{
2574 int ret;
2575
2576 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2577
2578 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2579
2580 ret = iavf_get_vf_vlan_v2_caps(adapter);
2581 if (ret)
2582 goto err;
2583
2584 /* We've processed receipt of the VLAN V2 caps message */
2585 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2586 return;
2587err:
2588 /* We didn't receive a reply. Make sure we try sending again when
2589 * __IAVF_INIT_FAILED attempts to recover.
2590 */
2591 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2592 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2593}
2594
2595/**
2596 * iavf_init_process_extended_caps - Part of driver startup
2597 * @adapter: board private structure
2598 *
2599 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2600 * handles negotiating capabilities for features which require an additional
2601 * message.
2602 *
2603 * Once all extended capabilities exchanges are finished, the driver will
2604 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2605 */
2606static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2607{
2608 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2609
2610 /* Process capability exchange for VLAN V2 */
2611 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2612 iavf_init_send_offload_vlan_v2_caps(adapter);
2613 return;
2614 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2615 iavf_init_recv_offload_vlan_v2_caps(adapter);
2616 return;
2617 }
2618
2619 /* When we reach here, no further extended capabilities exchanges are
2620 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2621 */
2622 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2623}
2624
2625/**
2626 * iavf_init_config_adapter - last part of driver startup
2627 * @adapter: board private structure
2628 *
2629 * After all the supported capabilities are negotiated, then the
2630 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2631 */
2632static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2633{
2634 struct net_device *netdev = adapter->netdev;
2635 struct pci_dev *pdev = adapter->pdev;
2636 int err;
2637
2638 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2639
2640 if (iavf_process_config(adapter))
2641 goto err;
2642
2643 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2644
2645 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2646
2647 netdev->netdev_ops = &iavf_netdev_ops;
2648 iavf_set_ethtool_ops(netdev);
2649 netdev->watchdog_timeo = 5 * HZ;
2650
2651 netdev->min_mtu = ETH_MIN_MTU;
2652 netdev->max_mtu = LIBIE_MAX_MTU;
2653
2654 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2655 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2656 adapter->hw.mac.addr);
2657 eth_hw_addr_random(netdev);
2658 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2659 } else {
2660 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2661 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2662 }
2663
2664 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2665 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2666 err = iavf_init_interrupt_scheme(adapter);
2667 if (err)
2668 goto err_sw_init;
2669 iavf_map_rings_to_vectors(adapter);
2670 if (adapter->vf_res->vf_cap_flags &
2671 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2672 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2673
2674 err = iavf_request_misc_irq(adapter);
2675 if (err)
2676 goto err_sw_init;
2677
2678 netif_carrier_off(netdev);
2679 adapter->link_up = false;
2680 netif_tx_stop_all_queues(netdev);
2681
2682 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2683 if (netdev->features & NETIF_F_GRO)
2684 dev_info(&pdev->dev, "GRO is enabled\n");
2685
2686 iavf_change_state(adapter, __IAVF_DOWN);
2687 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2688
2689 iavf_misc_irq_enable(adapter);
2690 wake_up(&adapter->down_waitqueue);
2691
2692 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2693 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2694 if (!adapter->rss_key || !adapter->rss_lut) {
2695 err = -ENOMEM;
2696 goto err_mem;
2697 }
2698 if (RSS_AQ(adapter))
2699 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2700 else
2701 iavf_init_rss(adapter);
2702
2703 if (VLAN_V2_ALLOWED(adapter))
2704 /* request initial VLAN offload settings */
2705 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2706
2707 if (QOS_ALLOWED(adapter))
2708 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2709
2710 iavf_schedule_finish_config(adapter);
2711 return;
2712
2713err_mem:
2714 iavf_free_rss(adapter);
2715 iavf_free_misc_irq(adapter);
2716err_sw_init:
2717 iavf_reset_interrupt_capability(adapter);
2718err:
2719 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2720}
2721
2722/**
2723 * iavf_watchdog_task - Periodic call-back task
2724 * @work: pointer to work_struct
2725 **/
2726static void iavf_watchdog_task(struct work_struct *work)
2727{
2728 struct iavf_adapter *adapter = container_of(work,
2729 struct iavf_adapter,
2730 watchdog_task.work);
2731 struct iavf_hw *hw = &adapter->hw;
2732 u32 reg_val;
2733
2734 if (!mutex_trylock(&adapter->crit_lock)) {
2735 if (adapter->state == __IAVF_REMOVE)
2736 return;
2737
2738 goto restart_watchdog;
2739 }
2740
2741 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2742 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2743
2744 switch (adapter->state) {
2745 case __IAVF_STARTUP:
2746 iavf_startup(adapter);
2747 mutex_unlock(&adapter->crit_lock);
2748 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2749 msecs_to_jiffies(30));
2750 return;
2751 case __IAVF_INIT_VERSION_CHECK:
2752 iavf_init_version_check(adapter);
2753 mutex_unlock(&adapter->crit_lock);
2754 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2755 msecs_to_jiffies(30));
2756 return;
2757 case __IAVF_INIT_GET_RESOURCES:
2758 iavf_init_get_resources(adapter);
2759 mutex_unlock(&adapter->crit_lock);
2760 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2761 msecs_to_jiffies(1));
2762 return;
2763 case __IAVF_INIT_EXTENDED_CAPS:
2764 iavf_init_process_extended_caps(adapter);
2765 mutex_unlock(&adapter->crit_lock);
2766 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2767 msecs_to_jiffies(1));
2768 return;
2769 case __IAVF_INIT_CONFIG_ADAPTER:
2770 iavf_init_config_adapter(adapter);
2771 mutex_unlock(&adapter->crit_lock);
2772 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2773 msecs_to_jiffies(1));
2774 return;
2775 case __IAVF_INIT_FAILED:
2776 if (test_bit(__IAVF_IN_REMOVE_TASK,
2777 &adapter->crit_section)) {
2778 /* Do not update the state and do not reschedule
2779 * watchdog task, iavf_remove should handle this state
2780 * as it can loop forever
2781 */
2782 mutex_unlock(&adapter->crit_lock);
2783 return;
2784 }
2785 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2786 dev_err(&adapter->pdev->dev,
2787 "Failed to communicate with PF; waiting before retry\n");
2788 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2789 iavf_shutdown_adminq(hw);
2790 mutex_unlock(&adapter->crit_lock);
2791 queue_delayed_work(adapter->wq,
2792 &adapter->watchdog_task, (5 * HZ));
2793 return;
2794 }
2795 /* Try again from failed step*/
2796 iavf_change_state(adapter, adapter->last_state);
2797 mutex_unlock(&adapter->crit_lock);
2798 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2799 return;
2800 case __IAVF_COMM_FAILED:
2801 if (test_bit(__IAVF_IN_REMOVE_TASK,
2802 &adapter->crit_section)) {
2803 /* Set state to __IAVF_INIT_FAILED and perform remove
2804 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2805 * doesn't bring the state back to __IAVF_COMM_FAILED.
2806 */
2807 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2808 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2809 mutex_unlock(&adapter->crit_lock);
2810 return;
2811 }
2812 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2813 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2814 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2815 reg_val == VIRTCHNL_VFR_COMPLETED) {
2816 /* A chance for redemption! */
2817 dev_err(&adapter->pdev->dev,
2818 "Hardware came out of reset. Attempting reinit.\n");
2819 /* When init task contacts the PF and
2820 * gets everything set up again, it'll restart the
2821 * watchdog for us. Down, boy. Sit. Stay. Woof.
2822 */
2823 iavf_change_state(adapter, __IAVF_STARTUP);
2824 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2825 }
2826 adapter->aq_required = 0;
2827 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2828 mutex_unlock(&adapter->crit_lock);
2829 queue_delayed_work(adapter->wq,
2830 &adapter->watchdog_task,
2831 msecs_to_jiffies(10));
2832 return;
2833 case __IAVF_RESETTING:
2834 mutex_unlock(&adapter->crit_lock);
2835 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2836 HZ * 2);
2837 return;
2838 case __IAVF_DOWN:
2839 case __IAVF_DOWN_PENDING:
2840 case __IAVF_TESTING:
2841 case __IAVF_RUNNING:
2842 if (adapter->current_op) {
2843 if (!iavf_asq_done(hw)) {
2844 dev_dbg(&adapter->pdev->dev,
2845 "Admin queue timeout\n");
2846 iavf_send_api_ver(adapter);
2847 }
2848 } else {
2849 int ret = iavf_process_aq_command(adapter);
2850
2851 /* An error will be returned if no commands were
2852 * processed; use this opportunity to update stats
2853 * if the error isn't -ENOTSUPP
2854 */
2855 if (ret && ret != -EOPNOTSUPP &&
2856 adapter->state == __IAVF_RUNNING)
2857 iavf_request_stats(adapter);
2858 }
2859 if (adapter->state == __IAVF_RUNNING)
2860 iavf_detect_recover_hung(&adapter->vsi);
2861 break;
2862 case __IAVF_REMOVE:
2863 default:
2864 mutex_unlock(&adapter->crit_lock);
2865 return;
2866 }
2867
2868 /* check for hw reset */
2869 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2870 if (!reg_val) {
2871 adapter->aq_required = 0;
2872 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2873 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2874 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2875 mutex_unlock(&adapter->crit_lock);
2876 queue_delayed_work(adapter->wq,
2877 &adapter->watchdog_task, HZ * 2);
2878 return;
2879 }
2880
2881 mutex_unlock(&adapter->crit_lock);
2882restart_watchdog:
2883 if (adapter->state >= __IAVF_DOWN)
2884 queue_work(adapter->wq, &adapter->adminq_task);
2885 if (adapter->aq_required)
2886 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2887 msecs_to_jiffies(20));
2888 else
2889 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2890 HZ * 2);
2891}
2892
2893/**
2894 * iavf_disable_vf - disable VF
2895 * @adapter: board private structure
2896 *
2897 * Set communication failed flag and free all resources.
2898 * NOTE: This function is expected to be called with crit_lock being held.
2899 **/
2900static void iavf_disable_vf(struct iavf_adapter *adapter)
2901{
2902 struct iavf_mac_filter *f, *ftmp;
2903 struct iavf_vlan_filter *fv, *fvtmp;
2904 struct iavf_cloud_filter *cf, *cftmp;
2905
2906 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2907
2908 /* We don't use netif_running() because it may be true prior to
2909 * ndo_open() returning, so we can't assume it means all our open
2910 * tasks have finished, since we're not holding the rtnl_lock here.
2911 */
2912 if (adapter->state == __IAVF_RUNNING) {
2913 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2914 netif_carrier_off(adapter->netdev);
2915 netif_tx_disable(adapter->netdev);
2916 adapter->link_up = false;
2917 iavf_napi_disable_all(adapter);
2918 iavf_irq_disable(adapter);
2919 iavf_free_traffic_irqs(adapter);
2920 iavf_free_all_tx_resources(adapter);
2921 iavf_free_all_rx_resources(adapter);
2922 }
2923
2924 spin_lock_bh(&adapter->mac_vlan_list_lock);
2925
2926 /* Delete all of the filters */
2927 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2928 list_del(&f->list);
2929 kfree(f);
2930 }
2931
2932 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2933 list_del(&fv->list);
2934 kfree(fv);
2935 }
2936 adapter->num_vlan_filters = 0;
2937
2938 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2939
2940 spin_lock_bh(&adapter->cloud_filter_list_lock);
2941 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2942 list_del(&cf->list);
2943 kfree(cf);
2944 adapter->num_cloud_filters--;
2945 }
2946 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2947
2948 iavf_free_misc_irq(adapter);
2949 iavf_free_interrupt_scheme(adapter);
2950 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2951 iavf_shutdown_adminq(&adapter->hw);
2952 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2953 iavf_change_state(adapter, __IAVF_DOWN);
2954 wake_up(&adapter->down_waitqueue);
2955 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2956}
2957
2958/**
2959 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2960 * @adapter: board private structure
2961 *
2962 * After a reset, the shaper parameters of queues need to be replayed again.
2963 * Since the net_shaper object inside TX rings persists across reset,
2964 * set the update flag for all queues so that the virtchnl message is triggered
2965 * for all queues.
2966 **/
2967static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2968{
2969 int i, num = 0;
2970
2971 for (i = 0; i < adapter->num_active_queues; i++)
2972 if (adapter->tx_rings[i].q_shaper.bw_min ||
2973 adapter->tx_rings[i].q_shaper.bw_max) {
2974 adapter->tx_rings[i].q_shaper_update = true;
2975 num++;
2976 }
2977
2978 if (num)
2979 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
2980}
2981
2982/**
2983 * iavf_reset_task - Call-back task to handle hardware reset
2984 * @work: pointer to work_struct
2985 *
2986 * During reset we need to shut down and reinitialize the admin queue
2987 * before we can use it to communicate with the PF again. We also clear
2988 * and reinit the rings because that context is lost as well.
2989 **/
2990static void iavf_reset_task(struct work_struct *work)
2991{
2992 struct iavf_adapter *adapter = container_of(work,
2993 struct iavf_adapter,
2994 reset_task);
2995 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2996 struct net_device *netdev = adapter->netdev;
2997 struct iavf_hw *hw = &adapter->hw;
2998 struct iavf_mac_filter *f, *ftmp;
2999 struct iavf_cloud_filter *cf;
3000 enum iavf_status status;
3001 u32 reg_val;
3002 int i = 0, err;
3003 bool running;
3004
3005 /* When device is being removed it doesn't make sense to run the reset
3006 * task, just return in such a case.
3007 */
3008 mutex_lock(&netdev->lock);
3009 if (!mutex_trylock(&adapter->crit_lock)) {
3010 if (adapter->state != __IAVF_REMOVE)
3011 queue_work(adapter->wq, &adapter->reset_task);
3012
3013 mutex_unlock(&netdev->lock);
3014 return;
3015 }
3016
3017 iavf_misc_irq_disable(adapter);
3018 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3019 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3020 /* Restart the AQ here. If we have been reset but didn't
3021 * detect it, or if the PF had to reinit, our AQ will be hosed.
3022 */
3023 iavf_shutdown_adminq(hw);
3024 iavf_init_adminq(hw);
3025 iavf_request_reset(adapter);
3026 }
3027 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3028
3029 /* poll until we see the reset actually happen */
3030 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3031 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3032 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3033 if (!reg_val)
3034 break;
3035 usleep_range(5000, 10000);
3036 }
3037 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3038 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3039 goto continue_reset; /* act like the reset happened */
3040 }
3041
3042 /* wait until the reset is complete and the PF is responding to us */
3043 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3044 /* sleep first to make sure a minimum wait time is met */
3045 msleep(IAVF_RESET_WAIT_MS);
3046
3047 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3048 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3049 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3050 break;
3051 }
3052
3053 pci_set_master(adapter->pdev);
3054 pci_restore_msi_state(adapter->pdev);
3055
3056 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3057 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3058 reg_val);
3059 iavf_disable_vf(adapter);
3060 mutex_unlock(&adapter->crit_lock);
3061 mutex_unlock(&netdev->lock);
3062 return; /* Do not attempt to reinit. It's dead, Jim. */
3063 }
3064
3065continue_reset:
3066 /* We don't use netif_running() because it may be true prior to
3067 * ndo_open() returning, so we can't assume it means all our open
3068 * tasks have finished, since we're not holding the rtnl_lock here.
3069 */
3070 running = adapter->state == __IAVF_RUNNING;
3071
3072 if (running) {
3073 netif_carrier_off(netdev);
3074 netif_tx_stop_all_queues(netdev);
3075 adapter->link_up = false;
3076 iavf_napi_disable_all(adapter);
3077 }
3078 iavf_irq_disable(adapter);
3079
3080 iavf_change_state(adapter, __IAVF_RESETTING);
3081 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3082
3083 /* free the Tx/Rx rings and descriptors, might be better to just
3084 * re-use them sometime in the future
3085 */
3086 iavf_free_all_rx_resources(adapter);
3087 iavf_free_all_tx_resources(adapter);
3088
3089 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3090 /* kill and reinit the admin queue */
3091 iavf_shutdown_adminq(hw);
3092 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3093 status = iavf_init_adminq(hw);
3094 if (status) {
3095 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3096 status);
3097 goto reset_err;
3098 }
3099 adapter->aq_required = 0;
3100
3101 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3102 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3103 err = iavf_reinit_interrupt_scheme(adapter, running);
3104 if (err)
3105 goto reset_err;
3106 }
3107
3108 if (RSS_AQ(adapter)) {
3109 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3110 } else {
3111 err = iavf_init_rss(adapter);
3112 if (err)
3113 goto reset_err;
3114 }
3115
3116 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3117 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3118 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3119 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3120 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3121 * been successfully sent and negotiated
3122 */
3123 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3124 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3125
3126 spin_lock_bh(&adapter->mac_vlan_list_lock);
3127
3128 /* Delete filter for the current MAC address, it could have
3129 * been changed by the PF via administratively set MAC.
3130 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3131 */
3132 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3133 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3134 list_del(&f->list);
3135 kfree(f);
3136 }
3137 }
3138 /* re-add all MAC filters */
3139 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3140 f->add = true;
3141 }
3142 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3143
3144 /* check if TCs are running and re-add all cloud filters */
3145 spin_lock_bh(&adapter->cloud_filter_list_lock);
3146 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3147 adapter->num_tc) {
3148 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3149 cf->add = true;
3150 }
3151 }
3152 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3153
3154 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3155 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3156 iavf_misc_irq_enable(adapter);
3157
3158 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3159
3160 /* We were running when the reset started, so we need to restore some
3161 * state here.
3162 */
3163 if (running) {
3164 /* allocate transmit descriptors */
3165 err = iavf_setup_all_tx_resources(adapter);
3166 if (err)
3167 goto reset_err;
3168
3169 /* allocate receive descriptors */
3170 err = iavf_setup_all_rx_resources(adapter);
3171 if (err)
3172 goto reset_err;
3173
3174 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3175 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3176 err = iavf_request_traffic_irqs(adapter, netdev->name);
3177 if (err)
3178 goto reset_err;
3179
3180 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3181 }
3182
3183 iavf_configure(adapter);
3184
3185 /* iavf_up_complete() will switch device back
3186 * to __IAVF_RUNNING
3187 */
3188 iavf_up_complete(adapter);
3189
3190 iavf_irq_enable(adapter, true);
3191
3192 iavf_reconfig_qs_bw(adapter);
3193 } else {
3194 iavf_change_state(adapter, __IAVF_DOWN);
3195 wake_up(&adapter->down_waitqueue);
3196 }
3197
3198 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3199
3200 wake_up(&adapter->reset_waitqueue);
3201 mutex_unlock(&adapter->crit_lock);
3202 mutex_unlock(&netdev->lock);
3203
3204 return;
3205reset_err:
3206 if (running) {
3207 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3208 iavf_free_traffic_irqs(adapter);
3209 }
3210 iavf_disable_vf(adapter);
3211
3212 mutex_unlock(&adapter->crit_lock);
3213 mutex_unlock(&netdev->lock);
3214 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3215}
3216
3217/**
3218 * iavf_adminq_task - worker thread to clean the admin queue
3219 * @work: pointer to work_struct containing our data
3220 **/
3221static void iavf_adminq_task(struct work_struct *work)
3222{
3223 struct iavf_adapter *adapter =
3224 container_of(work, struct iavf_adapter, adminq_task);
3225 struct iavf_hw *hw = &adapter->hw;
3226 struct iavf_arq_event_info event;
3227 enum virtchnl_ops v_op;
3228 enum iavf_status ret, v_ret;
3229 u32 val, oldval;
3230 u16 pending;
3231
3232 if (!mutex_trylock(&adapter->crit_lock)) {
3233 if (adapter->state == __IAVF_REMOVE)
3234 return;
3235
3236 queue_work(adapter->wq, &adapter->adminq_task);
3237 goto out;
3238 }
3239
3240 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3241 goto unlock;
3242
3243 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3244 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3245 if (!event.msg_buf)
3246 goto unlock;
3247
3248 do {
3249 ret = iavf_clean_arq_element(hw, &event, &pending);
3250 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3251 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3252
3253 if (ret || !v_op)
3254 break; /* No event to process or error cleaning ARQ */
3255
3256 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3257 event.msg_len);
3258 if (pending != 0)
3259 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3260 } while (pending);
3261
3262 if (iavf_is_reset_in_progress(adapter))
3263 goto freedom;
3264
3265 /* check for error indications */
3266 val = rd32(hw, IAVF_VF_ARQLEN1);
3267 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3268 goto freedom;
3269 oldval = val;
3270 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3271 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3272 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3273 }
3274 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3275 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3276 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3277 }
3278 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3279 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3280 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3281 }
3282 if (oldval != val)
3283 wr32(hw, IAVF_VF_ARQLEN1, val);
3284
3285 val = rd32(hw, IAVF_VF_ATQLEN1);
3286 oldval = val;
3287 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3288 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3289 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3290 }
3291 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3292 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3293 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3294 }
3295 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3296 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3297 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3298 }
3299 if (oldval != val)
3300 wr32(hw, IAVF_VF_ATQLEN1, val);
3301
3302freedom:
3303 kfree(event.msg_buf);
3304unlock:
3305 mutex_unlock(&adapter->crit_lock);
3306out:
3307 /* re-enable Admin queue interrupt cause */
3308 iavf_misc_irq_enable(adapter);
3309}
3310
3311/**
3312 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3313 * @adapter: board private structure
3314 *
3315 * Free all transmit software resources
3316 **/
3317void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3318{
3319 int i;
3320
3321 if (!adapter->tx_rings)
3322 return;
3323
3324 for (i = 0; i < adapter->num_active_queues; i++)
3325 if (adapter->tx_rings[i].desc)
3326 iavf_free_tx_resources(&adapter->tx_rings[i]);
3327}
3328
3329/**
3330 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3331 * @adapter: board private structure
3332 *
3333 * If this function returns with an error, then it's possible one or
3334 * more of the rings is populated (while the rest are not). It is the
3335 * callers duty to clean those orphaned rings.
3336 *
3337 * Return 0 on success, negative on failure
3338 **/
3339static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3340{
3341 int i, err = 0;
3342
3343 for (i = 0; i < adapter->num_active_queues; i++) {
3344 adapter->tx_rings[i].count = adapter->tx_desc_count;
3345 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3346 if (!err)
3347 continue;
3348 dev_err(&adapter->pdev->dev,
3349 "Allocation for Tx Queue %u failed\n", i);
3350 break;
3351 }
3352
3353 return err;
3354}
3355
3356/**
3357 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3358 * @adapter: board private structure
3359 *
3360 * If this function returns with an error, then it's possible one or
3361 * more of the rings is populated (while the rest are not). It is the
3362 * callers duty to clean those orphaned rings.
3363 *
3364 * Return 0 on success, negative on failure
3365 **/
3366static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3367{
3368 int i, err = 0;
3369
3370 for (i = 0; i < adapter->num_active_queues; i++) {
3371 adapter->rx_rings[i].count = adapter->rx_desc_count;
3372 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3373 if (!err)
3374 continue;
3375 dev_err(&adapter->pdev->dev,
3376 "Allocation for Rx Queue %u failed\n", i);
3377 break;
3378 }
3379 return err;
3380}
3381
3382/**
3383 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3384 * @adapter: board private structure
3385 *
3386 * Free all receive software resources
3387 **/
3388void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3389{
3390 int i;
3391
3392 if (!adapter->rx_rings)
3393 return;
3394
3395 for (i = 0; i < adapter->num_active_queues; i++)
3396 if (adapter->rx_rings[i].desc)
3397 iavf_free_rx_resources(&adapter->rx_rings[i]);
3398}
3399
3400/**
3401 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3402 * @adapter: board private structure
3403 * @max_tx_rate: max Tx bw for a tc
3404 **/
3405static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3406 u64 max_tx_rate)
3407{
3408 int speed = 0, ret = 0;
3409
3410 if (ADV_LINK_SUPPORT(adapter)) {
3411 if (adapter->link_speed_mbps < U32_MAX) {
3412 speed = adapter->link_speed_mbps;
3413 goto validate_bw;
3414 } else {
3415 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3416 return -EINVAL;
3417 }
3418 }
3419
3420 switch (adapter->link_speed) {
3421 case VIRTCHNL_LINK_SPEED_40GB:
3422 speed = SPEED_40000;
3423 break;
3424 case VIRTCHNL_LINK_SPEED_25GB:
3425 speed = SPEED_25000;
3426 break;
3427 case VIRTCHNL_LINK_SPEED_20GB:
3428 speed = SPEED_20000;
3429 break;
3430 case VIRTCHNL_LINK_SPEED_10GB:
3431 speed = SPEED_10000;
3432 break;
3433 case VIRTCHNL_LINK_SPEED_5GB:
3434 speed = SPEED_5000;
3435 break;
3436 case VIRTCHNL_LINK_SPEED_2_5GB:
3437 speed = SPEED_2500;
3438 break;
3439 case VIRTCHNL_LINK_SPEED_1GB:
3440 speed = SPEED_1000;
3441 break;
3442 case VIRTCHNL_LINK_SPEED_100MB:
3443 speed = SPEED_100;
3444 break;
3445 default:
3446 break;
3447 }
3448
3449validate_bw:
3450 if (max_tx_rate > speed) {
3451 dev_err(&adapter->pdev->dev,
3452 "Invalid tx rate specified\n");
3453 ret = -EINVAL;
3454 }
3455
3456 return ret;
3457}
3458
3459/**
3460 * iavf_validate_ch_config - validate queue mapping info
3461 * @adapter: board private structure
3462 * @mqprio_qopt: queue parameters
3463 *
3464 * This function validates if the config provided by the user to
3465 * configure queue channels is valid or not. Returns 0 on a valid
3466 * config.
3467 **/
3468static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3469 struct tc_mqprio_qopt_offload *mqprio_qopt)
3470{
3471 u64 total_max_rate = 0;
3472 u32 tx_rate_rem = 0;
3473 int i, num_qps = 0;
3474 u64 tx_rate = 0;
3475 int ret = 0;
3476
3477 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3478 mqprio_qopt->qopt.num_tc < 1)
3479 return -EINVAL;
3480
3481 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3482 if (!mqprio_qopt->qopt.count[i] ||
3483 mqprio_qopt->qopt.offset[i] != num_qps)
3484 return -EINVAL;
3485 if (mqprio_qopt->min_rate[i]) {
3486 dev_err(&adapter->pdev->dev,
3487 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3488 i);
3489 return -EINVAL;
3490 }
3491
3492 /* convert to Mbps */
3493 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3494 IAVF_MBPS_DIVISOR);
3495
3496 if (mqprio_qopt->max_rate[i] &&
3497 tx_rate < IAVF_MBPS_QUANTA) {
3498 dev_err(&adapter->pdev->dev,
3499 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3500 i, IAVF_MBPS_QUANTA);
3501 return -EINVAL;
3502 }
3503
3504 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3505
3506 if (tx_rate_rem != 0) {
3507 dev_err(&adapter->pdev->dev,
3508 "Invalid max tx rate for TC%d, not divisible by %d\n",
3509 i, IAVF_MBPS_QUANTA);
3510 return -EINVAL;
3511 }
3512
3513 total_max_rate += tx_rate;
3514 num_qps += mqprio_qopt->qopt.count[i];
3515 }
3516 if (num_qps > adapter->num_active_queues) {
3517 dev_err(&adapter->pdev->dev,
3518 "Cannot support requested number of queues\n");
3519 return -EINVAL;
3520 }
3521
3522 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3523 return ret;
3524}
3525
3526/**
3527 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3528 * @adapter: board private structure
3529 **/
3530static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3531{
3532 struct iavf_cloud_filter *cf, *cftmp;
3533
3534 spin_lock_bh(&adapter->cloud_filter_list_lock);
3535 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3536 list) {
3537 list_del(&cf->list);
3538 kfree(cf);
3539 adapter->num_cloud_filters--;
3540 }
3541 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3542}
3543
3544/**
3545 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3546 * TC config already configured on this adapter.
3547 * @adapter: board private structure
3548 * @mqprio_qopt: TC config received from kernel.
3549 *
3550 * This function compares the TC config received from the kernel
3551 * with the config already configured on the adapter.
3552 *
3553 * Return: True if configuration is same, false otherwise.
3554 **/
3555static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3556 struct tc_mqprio_qopt *mqprio_qopt)
3557{
3558 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3559 int i;
3560
3561 if (adapter->num_tc != mqprio_qopt->num_tc)
3562 return false;
3563
3564 for (i = 0; i < adapter->num_tc; i++) {
3565 if (ch[i].count != mqprio_qopt->count[i] ||
3566 ch[i].offset != mqprio_qopt->offset[i])
3567 return false;
3568 }
3569 return true;
3570}
3571
3572/**
3573 * __iavf_setup_tc - configure multiple traffic classes
3574 * @netdev: network interface device structure
3575 * @type_data: tc offload data
3576 *
3577 * This function processes the config information provided by the
3578 * user to configure traffic classes/queue channels and packages the
3579 * information to request the PF to setup traffic classes.
3580 *
3581 * Returns 0 on success.
3582 **/
3583static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3584{
3585 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3586 struct iavf_adapter *adapter = netdev_priv(netdev);
3587 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3588 u8 num_tc = 0, total_qps = 0;
3589 int ret = 0, netdev_tc = 0;
3590 u64 max_tx_rate;
3591 u16 mode;
3592 int i;
3593
3594 num_tc = mqprio_qopt->qopt.num_tc;
3595 mode = mqprio_qopt->mode;
3596
3597 /* delete queue_channel */
3598 if (!mqprio_qopt->qopt.hw) {
3599 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3600 /* reset the tc configuration */
3601 netdev_reset_tc(netdev);
3602 adapter->num_tc = 0;
3603 netif_tx_stop_all_queues(netdev);
3604 netif_tx_disable(netdev);
3605 iavf_del_all_cloud_filters(adapter);
3606 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3607 total_qps = adapter->orig_num_active_queues;
3608 goto exit;
3609 } else {
3610 return -EINVAL;
3611 }
3612 }
3613
3614 /* add queue channel */
3615 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3616 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3617 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3618 return -EOPNOTSUPP;
3619 }
3620 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3621 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3622 return -EINVAL;
3623 }
3624
3625 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3626 if (ret)
3627 return ret;
3628 /* Return if same TC config is requested */
3629 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3630 return 0;
3631 adapter->num_tc = num_tc;
3632
3633 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3634 if (i < num_tc) {
3635 adapter->ch_config.ch_info[i].count =
3636 mqprio_qopt->qopt.count[i];
3637 adapter->ch_config.ch_info[i].offset =
3638 mqprio_qopt->qopt.offset[i];
3639 total_qps += mqprio_qopt->qopt.count[i];
3640 max_tx_rate = mqprio_qopt->max_rate[i];
3641 /* convert to Mbps */
3642 max_tx_rate = div_u64(max_tx_rate,
3643 IAVF_MBPS_DIVISOR);
3644 adapter->ch_config.ch_info[i].max_tx_rate =
3645 max_tx_rate;
3646 } else {
3647 adapter->ch_config.ch_info[i].count = 1;
3648 adapter->ch_config.ch_info[i].offset = 0;
3649 }
3650 }
3651
3652 /* Take snapshot of original config such as "num_active_queues"
3653 * It is used later when delete ADQ flow is exercised, so that
3654 * once delete ADQ flow completes, VF shall go back to its
3655 * original queue configuration
3656 */
3657
3658 adapter->orig_num_active_queues = adapter->num_active_queues;
3659
3660 /* Store queue info based on TC so that VF gets configured
3661 * with correct number of queues when VF completes ADQ config
3662 * flow
3663 */
3664 adapter->ch_config.total_qps = total_qps;
3665
3666 netif_tx_stop_all_queues(netdev);
3667 netif_tx_disable(netdev);
3668 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3669 netdev_reset_tc(netdev);
3670 /* Report the tc mapping up the stack */
3671 netdev_set_num_tc(adapter->netdev, num_tc);
3672 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3673 u16 qcount = mqprio_qopt->qopt.count[i];
3674 u16 qoffset = mqprio_qopt->qopt.offset[i];
3675
3676 if (i < num_tc)
3677 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3678 qoffset);
3679 }
3680 }
3681exit:
3682 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3683 return 0;
3684
3685 mutex_lock(&netdev->lock);
3686 netif_set_real_num_rx_queues(netdev, total_qps);
3687 netif_set_real_num_tx_queues(netdev, total_qps);
3688 mutex_unlock(&netdev->lock);
3689
3690 return ret;
3691}
3692
3693/**
3694 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3695 * @adapter: board private structure
3696 * @f: pointer to struct flow_cls_offload
3697 * @filter: pointer to cloud filter structure
3698 */
3699static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3700 struct flow_cls_offload *f,
3701 struct iavf_cloud_filter *filter)
3702{
3703 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3704 struct flow_dissector *dissector = rule->match.dissector;
3705 u16 n_proto_mask = 0;
3706 u16 n_proto_key = 0;
3707 u8 field_flags = 0;
3708 u16 addr_type = 0;
3709 u16 n_proto = 0;
3710 int i = 0;
3711 struct virtchnl_filter *vf = &filter->f;
3712
3713 if (dissector->used_keys &
3714 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3715 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3716 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3717 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3718 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3719 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3720 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3721 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3722 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3723 dissector->used_keys);
3724 return -EOPNOTSUPP;
3725 }
3726
3727 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3728 struct flow_match_enc_keyid match;
3729
3730 flow_rule_match_enc_keyid(rule, &match);
3731 if (match.mask->keyid != 0)
3732 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3733 }
3734
3735 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3736 struct flow_match_basic match;
3737
3738 flow_rule_match_basic(rule, &match);
3739 n_proto_key = ntohs(match.key->n_proto);
3740 n_proto_mask = ntohs(match.mask->n_proto);
3741
3742 if (n_proto_key == ETH_P_ALL) {
3743 n_proto_key = 0;
3744 n_proto_mask = 0;
3745 }
3746 n_proto = n_proto_key & n_proto_mask;
3747 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3748 return -EINVAL;
3749 if (n_proto == ETH_P_IPV6) {
3750 /* specify flow type as TCP IPv6 */
3751 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3752 }
3753
3754 if (match.key->ip_proto != IPPROTO_TCP) {
3755 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3756 return -EINVAL;
3757 }
3758 }
3759
3760 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3761 struct flow_match_eth_addrs match;
3762
3763 flow_rule_match_eth_addrs(rule, &match);
3764
3765 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3766 if (!is_zero_ether_addr(match.mask->dst)) {
3767 if (is_broadcast_ether_addr(match.mask->dst)) {
3768 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3769 } else {
3770 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3771 match.mask->dst);
3772 return -EINVAL;
3773 }
3774 }
3775
3776 if (!is_zero_ether_addr(match.mask->src)) {
3777 if (is_broadcast_ether_addr(match.mask->src)) {
3778 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3779 } else {
3780 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3781 match.mask->src);
3782 return -EINVAL;
3783 }
3784 }
3785
3786 if (!is_zero_ether_addr(match.key->dst))
3787 if (is_valid_ether_addr(match.key->dst) ||
3788 is_multicast_ether_addr(match.key->dst)) {
3789 /* set the mask if a valid dst_mac address */
3790 for (i = 0; i < ETH_ALEN; i++)
3791 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3792 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3793 match.key->dst);
3794 }
3795
3796 if (!is_zero_ether_addr(match.key->src))
3797 if (is_valid_ether_addr(match.key->src) ||
3798 is_multicast_ether_addr(match.key->src)) {
3799 /* set the mask if a valid dst_mac address */
3800 for (i = 0; i < ETH_ALEN; i++)
3801 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3802 ether_addr_copy(vf->data.tcp_spec.src_mac,
3803 match.key->src);
3804 }
3805 }
3806
3807 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3808 struct flow_match_vlan match;
3809
3810 flow_rule_match_vlan(rule, &match);
3811 if (match.mask->vlan_id) {
3812 if (match.mask->vlan_id == VLAN_VID_MASK) {
3813 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3814 } else {
3815 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3816 match.mask->vlan_id);
3817 return -EINVAL;
3818 }
3819 }
3820 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3821 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3822 }
3823
3824 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3825 struct flow_match_control match;
3826
3827 flow_rule_match_control(rule, &match);
3828 addr_type = match.key->addr_type;
3829
3830 if (flow_rule_has_control_flags(match.mask->flags,
3831 f->common.extack))
3832 return -EOPNOTSUPP;
3833 }
3834
3835 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3836 struct flow_match_ipv4_addrs match;
3837
3838 flow_rule_match_ipv4_addrs(rule, &match);
3839 if (match.mask->dst) {
3840 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3841 field_flags |= IAVF_CLOUD_FIELD_IIP;
3842 } else {
3843 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3844 be32_to_cpu(match.mask->dst));
3845 return -EINVAL;
3846 }
3847 }
3848
3849 if (match.mask->src) {
3850 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3851 field_flags |= IAVF_CLOUD_FIELD_IIP;
3852 } else {
3853 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3854 be32_to_cpu(match.mask->src));
3855 return -EINVAL;
3856 }
3857 }
3858
3859 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3860 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3861 return -EINVAL;
3862 }
3863 if (match.key->dst) {
3864 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3865 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3866 }
3867 if (match.key->src) {
3868 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3869 vf->data.tcp_spec.src_ip[0] = match.key->src;
3870 }
3871 }
3872
3873 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3874 struct flow_match_ipv6_addrs match;
3875
3876 flow_rule_match_ipv6_addrs(rule, &match);
3877
3878 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3879 if (ipv6_addr_any(&match.mask->dst)) {
3880 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3881 IPV6_ADDR_ANY);
3882 return -EINVAL;
3883 }
3884
3885 /* src and dest IPv6 address should not be LOOPBACK
3886 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3887 */
3888 if (ipv6_addr_loopback(&match.key->dst) ||
3889 ipv6_addr_loopback(&match.key->src)) {
3890 dev_err(&adapter->pdev->dev,
3891 "ipv6 addr should not be loopback\n");
3892 return -EINVAL;
3893 }
3894 if (!ipv6_addr_any(&match.mask->dst) ||
3895 !ipv6_addr_any(&match.mask->src))
3896 field_flags |= IAVF_CLOUD_FIELD_IIP;
3897
3898 for (i = 0; i < 4; i++)
3899 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3900 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3901 sizeof(vf->data.tcp_spec.dst_ip));
3902 for (i = 0; i < 4; i++)
3903 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3904 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3905 sizeof(vf->data.tcp_spec.src_ip));
3906 }
3907 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3908 struct flow_match_ports match;
3909
3910 flow_rule_match_ports(rule, &match);
3911 if (match.mask->src) {
3912 if (match.mask->src == cpu_to_be16(0xffff)) {
3913 field_flags |= IAVF_CLOUD_FIELD_IIP;
3914 } else {
3915 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3916 be16_to_cpu(match.mask->src));
3917 return -EINVAL;
3918 }
3919 }
3920
3921 if (match.mask->dst) {
3922 if (match.mask->dst == cpu_to_be16(0xffff)) {
3923 field_flags |= IAVF_CLOUD_FIELD_IIP;
3924 } else {
3925 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3926 be16_to_cpu(match.mask->dst));
3927 return -EINVAL;
3928 }
3929 }
3930 if (match.key->dst) {
3931 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3932 vf->data.tcp_spec.dst_port = match.key->dst;
3933 }
3934
3935 if (match.key->src) {
3936 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3937 vf->data.tcp_spec.src_port = match.key->src;
3938 }
3939 }
3940 vf->field_flags = field_flags;
3941
3942 return 0;
3943}
3944
3945/**
3946 * iavf_handle_tclass - Forward to a traffic class on the device
3947 * @adapter: board private structure
3948 * @tc: traffic class index on the device
3949 * @filter: pointer to cloud filter structure
3950 */
3951static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3952 struct iavf_cloud_filter *filter)
3953{
3954 if (tc == 0)
3955 return 0;
3956 if (tc < adapter->num_tc) {
3957 if (!filter->f.data.tcp_spec.dst_port) {
3958 dev_err(&adapter->pdev->dev,
3959 "Specify destination port to redirect to traffic class other than TC0\n");
3960 return -EINVAL;
3961 }
3962 }
3963 /* redirect to a traffic class on the same device */
3964 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3965 filter->f.action_meta = tc;
3966 return 0;
3967}
3968
3969/**
3970 * iavf_find_cf - Find the cloud filter in the list
3971 * @adapter: Board private structure
3972 * @cookie: filter specific cookie
3973 *
3974 * Returns ptr to the filter object or NULL. Must be called while holding the
3975 * cloud_filter_list_lock.
3976 */
3977static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3978 unsigned long *cookie)
3979{
3980 struct iavf_cloud_filter *filter = NULL;
3981
3982 if (!cookie)
3983 return NULL;
3984
3985 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3986 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3987 return filter;
3988 }
3989 return NULL;
3990}
3991
3992/**
3993 * iavf_configure_clsflower - Add tc flower filters
3994 * @adapter: board private structure
3995 * @cls_flower: Pointer to struct flow_cls_offload
3996 */
3997static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3998 struct flow_cls_offload *cls_flower)
3999{
4000 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4001 struct iavf_cloud_filter *filter = NULL;
4002 int err = -EINVAL, count = 50;
4003
4004 if (tc < 0) {
4005 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4006 return -EINVAL;
4007 }
4008
4009 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4010 if (!filter)
4011 return -ENOMEM;
4012
4013 while (!mutex_trylock(&adapter->crit_lock)) {
4014 if (--count == 0) {
4015 kfree(filter);
4016 return err;
4017 }
4018 udelay(1);
4019 }
4020
4021 filter->cookie = cls_flower->cookie;
4022
4023 /* bail out here if filter already exists */
4024 spin_lock_bh(&adapter->cloud_filter_list_lock);
4025 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4026 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4027 err = -EEXIST;
4028 goto spin_unlock;
4029 }
4030 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4031
4032 /* set the mask to all zeroes to begin with */
4033 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4034 /* start out with flow type and eth type IPv4 to begin with */
4035 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4036 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4037 if (err)
4038 goto err;
4039
4040 err = iavf_handle_tclass(adapter, tc, filter);
4041 if (err)
4042 goto err;
4043
4044 /* add filter to the list */
4045 spin_lock_bh(&adapter->cloud_filter_list_lock);
4046 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4047 adapter->num_cloud_filters++;
4048 filter->add = true;
4049 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4050spin_unlock:
4051 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4052err:
4053 if (err)
4054 kfree(filter);
4055
4056 mutex_unlock(&adapter->crit_lock);
4057 return err;
4058}
4059
4060/**
4061 * iavf_delete_clsflower - Remove tc flower filters
4062 * @adapter: board private structure
4063 * @cls_flower: Pointer to struct flow_cls_offload
4064 */
4065static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4066 struct flow_cls_offload *cls_flower)
4067{
4068 struct iavf_cloud_filter *filter = NULL;
4069 int err = 0;
4070
4071 spin_lock_bh(&adapter->cloud_filter_list_lock);
4072 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4073 if (filter) {
4074 filter->del = true;
4075 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4076 } else {
4077 err = -EINVAL;
4078 }
4079 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4080
4081 return err;
4082}
4083
4084/**
4085 * iavf_setup_tc_cls_flower - flower classifier offloads
4086 * @adapter: pointer to iavf adapter structure
4087 * @cls_flower: pointer to flow_cls_offload struct with flow info
4088 */
4089static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4090 struct flow_cls_offload *cls_flower)
4091{
4092 switch (cls_flower->command) {
4093 case FLOW_CLS_REPLACE:
4094 return iavf_configure_clsflower(adapter, cls_flower);
4095 case FLOW_CLS_DESTROY:
4096 return iavf_delete_clsflower(adapter, cls_flower);
4097 case FLOW_CLS_STATS:
4098 return -EOPNOTSUPP;
4099 default:
4100 return -EOPNOTSUPP;
4101 }
4102}
4103
4104/**
4105 * iavf_add_cls_u32 - Add U32 classifier offloads
4106 * @adapter: pointer to iavf adapter structure
4107 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4108 *
4109 * Return: 0 on success or negative errno on failure.
4110 */
4111static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4112 struct tc_cls_u32_offload *cls_u32)
4113{
4114 struct netlink_ext_ack *extack = cls_u32->common.extack;
4115 struct virtchnl_fdir_rule *rule_cfg;
4116 struct virtchnl_filter_action *vact;
4117 struct virtchnl_proto_hdrs *hdrs;
4118 struct ethhdr *spec_h, *mask_h;
4119 const struct tc_action *act;
4120 struct iavf_fdir_fltr *fltr;
4121 struct tcf_exts *exts;
4122 unsigned int q_index;
4123 int i, status = 0;
4124 int off_base = 0;
4125
4126 if (cls_u32->knode.link_handle) {
4127 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4128 return -EOPNOTSUPP;
4129 }
4130
4131 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4132 if (!fltr)
4133 return -ENOMEM;
4134
4135 rule_cfg = &fltr->vc_add_msg.rule_cfg;
4136 hdrs = &rule_cfg->proto_hdrs;
4137 hdrs->count = 0;
4138
4139 /* The parser lib at the PF expects the packet starting with MAC hdr */
4140 switch (ntohs(cls_u32->common.protocol)) {
4141 case ETH_P_802_3:
4142 break;
4143 case ETH_P_IP:
4144 spec_h = (struct ethhdr *)hdrs->raw.spec;
4145 mask_h = (struct ethhdr *)hdrs->raw.mask;
4146 spec_h->h_proto = htons(ETH_P_IP);
4147 mask_h->h_proto = htons(0xFFFF);
4148 off_base += ETH_HLEN;
4149 break;
4150 default:
4151 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4152 status = -EOPNOTSUPP;
4153 goto free_alloc;
4154 }
4155
4156 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4157 __be32 val, mask;
4158 int off;
4159
4160 off = off_base + cls_u32->knode.sel->keys[i].off;
4161 val = cls_u32->knode.sel->keys[i].val;
4162 mask = cls_u32->knode.sel->keys[i].mask;
4163
4164 if (off >= sizeof(hdrs->raw.spec)) {
4165 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4166 status = -EINVAL;
4167 goto free_alloc;
4168 }
4169
4170 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4171 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4172 hdrs->raw.pkt_len = off + sizeof(val);
4173 }
4174
4175 /* Only one action is allowed */
4176 rule_cfg->action_set.count = 1;
4177 vact = &rule_cfg->action_set.actions[0];
4178 exts = cls_u32->knode.exts;
4179
4180 tcf_exts_for_each_action(i, act, exts) {
4181 /* FDIR queue */
4182 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4183 q_index = tcf_skbedit_rx_queue_mapping(act);
4184 if (q_index >= adapter->num_active_queues) {
4185 status = -EINVAL;
4186 goto free_alloc;
4187 }
4188
4189 vact->type = VIRTCHNL_ACTION_QUEUE;
4190 vact->act_conf.queue.index = q_index;
4191 break;
4192 }
4193
4194 /* Drop */
4195 if (is_tcf_gact_shot(act)) {
4196 vact->type = VIRTCHNL_ACTION_DROP;
4197 break;
4198 }
4199
4200 /* Unsupported action */
4201 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4202 status = -EOPNOTSUPP;
4203 goto free_alloc;
4204 }
4205
4206 fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4207 fltr->cls_u32_handle = cls_u32->knode.handle;
4208 return iavf_fdir_add_fltr(adapter, fltr);
4209
4210free_alloc:
4211 kfree(fltr);
4212 return status;
4213}
4214
4215/**
4216 * iavf_del_cls_u32 - Delete U32 classifier offloads
4217 * @adapter: pointer to iavf adapter structure
4218 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4219 *
4220 * Return: 0 on success or negative errno on failure.
4221 */
4222static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4223 struct tc_cls_u32_offload *cls_u32)
4224{
4225 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4226}
4227
4228/**
4229 * iavf_setup_tc_cls_u32 - U32 filter offloads
4230 * @adapter: pointer to iavf adapter structure
4231 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4232 *
4233 * Return: 0 on success or negative errno on failure.
4234 */
4235static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4236 struct tc_cls_u32_offload *cls_u32)
4237{
4238 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4239 return -EOPNOTSUPP;
4240
4241 switch (cls_u32->command) {
4242 case TC_CLSU32_NEW_KNODE:
4243 case TC_CLSU32_REPLACE_KNODE:
4244 return iavf_add_cls_u32(adapter, cls_u32);
4245 case TC_CLSU32_DELETE_KNODE:
4246 return iavf_del_cls_u32(adapter, cls_u32);
4247 default:
4248 return -EOPNOTSUPP;
4249 }
4250}
4251
4252/**
4253 * iavf_setup_tc_block_cb - block callback for tc
4254 * @type: type of offload
4255 * @type_data: offload data
4256 * @cb_priv:
4257 *
4258 * This function is the block callback for traffic classes
4259 **/
4260static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4261 void *cb_priv)
4262{
4263 struct iavf_adapter *adapter = cb_priv;
4264
4265 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4266 return -EOPNOTSUPP;
4267
4268 switch (type) {
4269 case TC_SETUP_CLSFLOWER:
4270 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4271 case TC_SETUP_CLSU32:
4272 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4273 default:
4274 return -EOPNOTSUPP;
4275 }
4276}
4277
4278static LIST_HEAD(iavf_block_cb_list);
4279
4280/**
4281 * iavf_setup_tc - configure multiple traffic classes
4282 * @netdev: network interface device structure
4283 * @type: type of offload
4284 * @type_data: tc offload data
4285 *
4286 * This function is the callback to ndo_setup_tc in the
4287 * netdev_ops.
4288 *
4289 * Returns 0 on success
4290 **/
4291static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4292 void *type_data)
4293{
4294 struct iavf_adapter *adapter = netdev_priv(netdev);
4295
4296 switch (type) {
4297 case TC_SETUP_QDISC_MQPRIO:
4298 return __iavf_setup_tc(netdev, type_data);
4299 case TC_SETUP_BLOCK:
4300 return flow_block_cb_setup_simple(type_data,
4301 &iavf_block_cb_list,
4302 iavf_setup_tc_block_cb,
4303 adapter, adapter, true);
4304 default:
4305 return -EOPNOTSUPP;
4306 }
4307}
4308
4309/**
4310 * iavf_restore_fdir_filters
4311 * @adapter: board private structure
4312 *
4313 * Restore existing FDIR filters when VF netdev comes back up.
4314 **/
4315static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4316{
4317 struct iavf_fdir_fltr *f;
4318
4319 spin_lock_bh(&adapter->fdir_fltr_lock);
4320 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4321 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4322 /* Cancel a request, keep filter as active */
4323 f->state = IAVF_FDIR_FLTR_ACTIVE;
4324 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4325 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4326 /* Add filters which are inactive or have a pending
4327 * request to PF to be deleted
4328 */
4329 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4330 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4331 }
4332 }
4333 spin_unlock_bh(&adapter->fdir_fltr_lock);
4334}
4335
4336/**
4337 * iavf_open - Called when a network interface is made active
4338 * @netdev: network interface device structure
4339 *
4340 * Returns 0 on success, negative value on failure
4341 *
4342 * The open entry point is called when a network interface is made
4343 * active by the system (IFF_UP). At this point all resources needed
4344 * for transmit and receive operations are allocated, the interrupt
4345 * handler is registered with the OS, the watchdog is started,
4346 * and the stack is notified that the interface is ready.
4347 **/
4348static int iavf_open(struct net_device *netdev)
4349{
4350 struct iavf_adapter *adapter = netdev_priv(netdev);
4351 int err;
4352
4353 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4354 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4355 return -EIO;
4356 }
4357
4358 while (!mutex_trylock(&adapter->crit_lock)) {
4359 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4360 * is already taken and iavf_open is called from an upper
4361 * device's notifier reacting on NETDEV_REGISTER event.
4362 * We have to leave here to avoid dead lock.
4363 */
4364 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4365 return -EBUSY;
4366
4367 usleep_range(500, 1000);
4368 }
4369
4370 if (adapter->state != __IAVF_DOWN) {
4371 err = -EBUSY;
4372 goto err_unlock;
4373 }
4374
4375 if (adapter->state == __IAVF_RUNNING &&
4376 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4377 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4378 err = 0;
4379 goto err_unlock;
4380 }
4381
4382 /* allocate transmit descriptors */
4383 err = iavf_setup_all_tx_resources(adapter);
4384 if (err)
4385 goto err_setup_tx;
4386
4387 /* allocate receive descriptors */
4388 err = iavf_setup_all_rx_resources(adapter);
4389 if (err)
4390 goto err_setup_rx;
4391
4392 /* clear any pending interrupts, may auto mask */
4393 err = iavf_request_traffic_irqs(adapter, netdev->name);
4394 if (err)
4395 goto err_req_irq;
4396
4397 spin_lock_bh(&adapter->mac_vlan_list_lock);
4398
4399 iavf_add_filter(adapter, adapter->hw.mac.addr);
4400
4401 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4402
4403 /* Restore filters that were removed with IFF_DOWN */
4404 iavf_restore_filters(adapter);
4405 iavf_restore_fdir_filters(adapter);
4406
4407 iavf_configure(adapter);
4408
4409 iavf_up_complete(adapter);
4410
4411 iavf_irq_enable(adapter, true);
4412
4413 mutex_unlock(&adapter->crit_lock);
4414
4415 return 0;
4416
4417err_req_irq:
4418 iavf_down(adapter);
4419 iavf_free_traffic_irqs(adapter);
4420err_setup_rx:
4421 iavf_free_all_rx_resources(adapter);
4422err_setup_tx:
4423 iavf_free_all_tx_resources(adapter);
4424err_unlock:
4425 mutex_unlock(&adapter->crit_lock);
4426
4427 return err;
4428}
4429
4430/**
4431 * iavf_close - Disables a network interface
4432 * @netdev: network interface device structure
4433 *
4434 * Returns 0, this is not allowed to fail
4435 *
4436 * The close entry point is called when an interface is de-activated
4437 * by the OS. The hardware is still under the drivers control, but
4438 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4439 * are freed, along with all transmit and receive resources.
4440 **/
4441static int iavf_close(struct net_device *netdev)
4442{
4443 struct iavf_adapter *adapter = netdev_priv(netdev);
4444 u64 aq_to_restore;
4445 int status;
4446
4447 mutex_lock(&adapter->crit_lock);
4448
4449 if (adapter->state <= __IAVF_DOWN_PENDING) {
4450 mutex_unlock(&adapter->crit_lock);
4451 return 0;
4452 }
4453
4454 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4455 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4456 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4457 * deadlock with adminq_task() until iavf_close timeouts. We must send
4458 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4459 * disable queues possible for vf. Give only necessary flags to
4460 * iavf_down and save other to set them right before iavf_close()
4461 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4462 * iavf will be in DOWN state.
4463 */
4464 aq_to_restore = adapter->aq_required;
4465 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4466
4467 /* Remove flags which we do not want to send after close or we want to
4468 * send before disable queues.
4469 */
4470 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4471 IAVF_FLAG_AQ_ENABLE_QUEUES |
4472 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4473 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4474 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4475 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4476 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4477 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4478
4479 iavf_down(adapter);
4480 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4481 iavf_free_traffic_irqs(adapter);
4482
4483 mutex_unlock(&adapter->crit_lock);
4484
4485 /* We explicitly don't free resources here because the hardware is
4486 * still active and can DMA into memory. Resources are cleared in
4487 * iavf_virtchnl_completion() after we get confirmation from the PF
4488 * driver that the rings have been stopped.
4489 *
4490 * Also, we wait for state to transition to __IAVF_DOWN before
4491 * returning. State change occurs in iavf_virtchnl_completion() after
4492 * VF resources are released (which occurs after PF driver processes and
4493 * responds to admin queue commands).
4494 */
4495
4496 status = wait_event_timeout(adapter->down_waitqueue,
4497 adapter->state == __IAVF_DOWN,
4498 msecs_to_jiffies(500));
4499 if (!status)
4500 netdev_warn(netdev, "Device resources not yet released\n");
4501
4502 mutex_lock(&adapter->crit_lock);
4503 adapter->aq_required |= aq_to_restore;
4504 mutex_unlock(&adapter->crit_lock);
4505 return 0;
4506}
4507
4508/**
4509 * iavf_change_mtu - Change the Maximum Transfer Unit
4510 * @netdev: network interface device structure
4511 * @new_mtu: new value for maximum frame size
4512 *
4513 * Returns 0 on success, negative on failure
4514 **/
4515static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4516{
4517 struct iavf_adapter *adapter = netdev_priv(netdev);
4518 int ret = 0;
4519
4520 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4521 netdev->mtu, new_mtu);
4522 WRITE_ONCE(netdev->mtu, new_mtu);
4523
4524 if (netif_running(netdev)) {
4525 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4526 ret = iavf_wait_for_reset(adapter);
4527 if (ret < 0)
4528 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4529 else if (ret)
4530 netdev_warn(netdev, "MTU change timed out waiting for reset");
4531 }
4532
4533 return ret;
4534}
4535
4536/**
4537 * iavf_disable_fdir - disable Flow Director and clear existing filters
4538 * @adapter: board private structure
4539 **/
4540static void iavf_disable_fdir(struct iavf_adapter *adapter)
4541{
4542 struct iavf_fdir_fltr *fdir, *fdirtmp;
4543 bool del_filters = false;
4544
4545 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4546
4547 /* remove all Flow Director filters */
4548 spin_lock_bh(&adapter->fdir_fltr_lock);
4549 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4550 list) {
4551 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4552 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4553 /* Delete filters not registered in PF */
4554 list_del(&fdir->list);
4555 iavf_dec_fdir_active_fltr(adapter, fdir);
4556 kfree(fdir);
4557 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4558 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4559 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4560 /* Filters registered in PF, schedule their deletion */
4561 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4562 del_filters = true;
4563 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4564 /* Request to delete filter already sent to PF, change
4565 * state to DEL_PENDING to delete filter after PF's
4566 * response, not set as INACTIVE
4567 */
4568 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4569 }
4570 }
4571 spin_unlock_bh(&adapter->fdir_fltr_lock);
4572
4573 if (del_filters) {
4574 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4575 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4576 }
4577}
4578
4579#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4580 NETIF_F_HW_VLAN_CTAG_TX | \
4581 NETIF_F_HW_VLAN_STAG_RX | \
4582 NETIF_F_HW_VLAN_STAG_TX)
4583
4584/**
4585 * iavf_set_features - set the netdev feature flags
4586 * @netdev: ptr to the netdev being adjusted
4587 * @features: the feature set that the stack is suggesting
4588 * Note: expects to be called while under rtnl_lock()
4589 **/
4590static int iavf_set_features(struct net_device *netdev,
4591 netdev_features_t features)
4592{
4593 struct iavf_adapter *adapter = netdev_priv(netdev);
4594
4595 /* trigger update on any VLAN feature change */
4596 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4597 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4598 iavf_set_vlan_offload_features(adapter, netdev->features,
4599 features);
4600 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4601 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4602 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4603
4604 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4605 if (features & NETIF_F_NTUPLE)
4606 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4607 else
4608 iavf_disable_fdir(adapter);
4609 }
4610
4611 return 0;
4612}
4613
4614/**
4615 * iavf_features_check - Validate encapsulated packet conforms to limits
4616 * @skb: skb buff
4617 * @dev: This physical port's netdev
4618 * @features: Offload features that the stack believes apply
4619 **/
4620static netdev_features_t iavf_features_check(struct sk_buff *skb,
4621 struct net_device *dev,
4622 netdev_features_t features)
4623{
4624 size_t len;
4625
4626 /* No point in doing any of this if neither checksum nor GSO are
4627 * being requested for this frame. We can rule out both by just
4628 * checking for CHECKSUM_PARTIAL
4629 */
4630 if (skb->ip_summed != CHECKSUM_PARTIAL)
4631 return features;
4632
4633 /* We cannot support GSO if the MSS is going to be less than
4634 * 64 bytes. If it is then we need to drop support for GSO.
4635 */
4636 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4637 features &= ~NETIF_F_GSO_MASK;
4638
4639 /* MACLEN can support at most 63 words */
4640 len = skb_network_offset(skb);
4641 if (len & ~(63 * 2))
4642 goto out_err;
4643
4644 /* IPLEN and EIPLEN can support at most 127 dwords */
4645 len = skb_network_header_len(skb);
4646 if (len & ~(127 * 4))
4647 goto out_err;
4648
4649 if (skb->encapsulation) {
4650 /* L4TUNLEN can support 127 words */
4651 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4652 if (len & ~(127 * 2))
4653 goto out_err;
4654
4655 /* IPLEN can support at most 127 dwords */
4656 len = skb_inner_transport_header(skb) -
4657 skb_inner_network_header(skb);
4658 if (len & ~(127 * 4))
4659 goto out_err;
4660 }
4661
4662 /* No need to validate L4LEN as TCP is the only protocol with a
4663 * flexible value and we support all possible values supported
4664 * by TCP, which is at most 15 dwords
4665 */
4666
4667 return features;
4668out_err:
4669 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4670}
4671
4672/**
4673 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4674 * @adapter: board private structure
4675 *
4676 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4677 * were negotiated determine the VLAN features that can be toggled on and off.
4678 **/
4679static netdev_features_t
4680iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4681{
4682 netdev_features_t hw_features = 0;
4683
4684 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4685 return hw_features;
4686
4687 /* Enable VLAN features if supported */
4688 if (VLAN_ALLOWED(adapter)) {
4689 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4690 NETIF_F_HW_VLAN_CTAG_RX);
4691 } else if (VLAN_V2_ALLOWED(adapter)) {
4692 struct virtchnl_vlan_caps *vlan_v2_caps =
4693 &adapter->vlan_v2_caps;
4694 struct virtchnl_vlan_supported_caps *stripping_support =
4695 &vlan_v2_caps->offloads.stripping_support;
4696 struct virtchnl_vlan_supported_caps *insertion_support =
4697 &vlan_v2_caps->offloads.insertion_support;
4698
4699 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4700 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4701 if (stripping_support->outer &
4702 VIRTCHNL_VLAN_ETHERTYPE_8100)
4703 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4704 if (stripping_support->outer &
4705 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4706 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4707 } else if (stripping_support->inner !=
4708 VIRTCHNL_VLAN_UNSUPPORTED &&
4709 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4710 if (stripping_support->inner &
4711 VIRTCHNL_VLAN_ETHERTYPE_8100)
4712 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4713 }
4714
4715 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4716 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4717 if (insertion_support->outer &
4718 VIRTCHNL_VLAN_ETHERTYPE_8100)
4719 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4720 if (insertion_support->outer &
4721 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4722 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4723 } else if (insertion_support->inner &&
4724 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4725 if (insertion_support->inner &
4726 VIRTCHNL_VLAN_ETHERTYPE_8100)
4727 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4728 }
4729 }
4730
4731 if (CRC_OFFLOAD_ALLOWED(adapter))
4732 hw_features |= NETIF_F_RXFCS;
4733
4734 return hw_features;
4735}
4736
4737/**
4738 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4739 * @adapter: board private structure
4740 *
4741 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4742 * were negotiated determine the VLAN features that are enabled by default.
4743 **/
4744static netdev_features_t
4745iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4746{
4747 netdev_features_t features = 0;
4748
4749 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4750 return features;
4751
4752 if (VLAN_ALLOWED(adapter)) {
4753 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4754 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4755 } else if (VLAN_V2_ALLOWED(adapter)) {
4756 struct virtchnl_vlan_caps *vlan_v2_caps =
4757 &adapter->vlan_v2_caps;
4758 struct virtchnl_vlan_supported_caps *filtering_support =
4759 &vlan_v2_caps->filtering.filtering_support;
4760 struct virtchnl_vlan_supported_caps *stripping_support =
4761 &vlan_v2_caps->offloads.stripping_support;
4762 struct virtchnl_vlan_supported_caps *insertion_support =
4763 &vlan_v2_caps->offloads.insertion_support;
4764 u32 ethertype_init;
4765
4766 /* give priority to outer stripping and don't support both outer
4767 * and inner stripping
4768 */
4769 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4770 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4771 if (stripping_support->outer &
4772 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4773 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4774 features |= NETIF_F_HW_VLAN_CTAG_RX;
4775 else if (stripping_support->outer &
4776 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4777 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4778 features |= NETIF_F_HW_VLAN_STAG_RX;
4779 } else if (stripping_support->inner !=
4780 VIRTCHNL_VLAN_UNSUPPORTED) {
4781 if (stripping_support->inner &
4782 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4783 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4784 features |= NETIF_F_HW_VLAN_CTAG_RX;
4785 }
4786
4787 /* give priority to outer insertion and don't support both outer
4788 * and inner insertion
4789 */
4790 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4791 if (insertion_support->outer &
4792 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4793 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4794 features |= NETIF_F_HW_VLAN_CTAG_TX;
4795 else if (insertion_support->outer &
4796 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4797 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4798 features |= NETIF_F_HW_VLAN_STAG_TX;
4799 } else if (insertion_support->inner !=
4800 VIRTCHNL_VLAN_UNSUPPORTED) {
4801 if (insertion_support->inner &
4802 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4803 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4804 features |= NETIF_F_HW_VLAN_CTAG_TX;
4805 }
4806
4807 /* give priority to outer filtering and don't bother if both
4808 * outer and inner filtering are enabled
4809 */
4810 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4811 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4812 if (filtering_support->outer &
4813 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4814 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4815 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4816 if (filtering_support->outer &
4817 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4818 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4819 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4820 } else if (filtering_support->inner !=
4821 VIRTCHNL_VLAN_UNSUPPORTED) {
4822 if (filtering_support->inner &
4823 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4824 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4825 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4826 if (filtering_support->inner &
4827 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4828 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4829 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4830 }
4831 }
4832
4833 return features;
4834}
4835
4836#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4837 (!(((requested) & (feature_bit)) && \
4838 !((allowed) & (feature_bit))))
4839
4840/**
4841 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4842 * @adapter: board private structure
4843 * @requested_features: stack requested NETDEV features
4844 **/
4845static netdev_features_t
4846iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4847 netdev_features_t requested_features)
4848{
4849 netdev_features_t allowed_features;
4850
4851 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4852 iavf_get_netdev_vlan_features(adapter);
4853
4854 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4855 allowed_features,
4856 NETIF_F_HW_VLAN_CTAG_TX))
4857 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4858
4859 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4860 allowed_features,
4861 NETIF_F_HW_VLAN_CTAG_RX))
4862 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4863
4864 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4865 allowed_features,
4866 NETIF_F_HW_VLAN_STAG_TX))
4867 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4868 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4869 allowed_features,
4870 NETIF_F_HW_VLAN_STAG_RX))
4871 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4872
4873 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4874 allowed_features,
4875 NETIF_F_HW_VLAN_CTAG_FILTER))
4876 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4877
4878 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4879 allowed_features,
4880 NETIF_F_HW_VLAN_STAG_FILTER))
4881 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4882
4883 if ((requested_features &
4884 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4885 (requested_features &
4886 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4887 adapter->vlan_v2_caps.offloads.ethertype_match ==
4888 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4889 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4890 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4891 NETIF_F_HW_VLAN_STAG_TX);
4892 }
4893
4894 return requested_features;
4895}
4896
4897/**
4898 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4899 * @adapter: board private structure
4900 * @requested_features: stack requested NETDEV features
4901 *
4902 * Returns fixed-up features bits
4903 **/
4904static netdev_features_t
4905iavf_fix_strip_features(struct iavf_adapter *adapter,
4906 netdev_features_t requested_features)
4907{
4908 struct net_device *netdev = adapter->netdev;
4909 bool crc_offload_req, is_vlan_strip;
4910 netdev_features_t vlan_strip;
4911 int num_non_zero_vlan;
4912
4913 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4914 (requested_features & NETIF_F_RXFCS);
4915 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4916 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4917 is_vlan_strip = requested_features & vlan_strip;
4918
4919 if (!crc_offload_req)
4920 return requested_features;
4921
4922 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4923 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4924 requested_features &= ~vlan_strip;
4925 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4926 return requested_features;
4927 }
4928
4929 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4930 requested_features &= ~vlan_strip;
4931 if (!(netdev->features & vlan_strip))
4932 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4933
4934 return requested_features;
4935 }
4936
4937 if (num_non_zero_vlan && is_vlan_strip &&
4938 !(netdev->features & NETIF_F_RXFCS)) {
4939 requested_features &= ~NETIF_F_RXFCS;
4940 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4941 }
4942
4943 return requested_features;
4944}
4945
4946/**
4947 * iavf_fix_features - fix up the netdev feature bits
4948 * @netdev: our net device
4949 * @features: desired feature bits
4950 *
4951 * Returns fixed-up features bits
4952 **/
4953static netdev_features_t iavf_fix_features(struct net_device *netdev,
4954 netdev_features_t features)
4955{
4956 struct iavf_adapter *adapter = netdev_priv(netdev);
4957
4958 features = iavf_fix_netdev_vlan_features(adapter, features);
4959
4960 if (!FDIR_FLTR_SUPPORT(adapter))
4961 features &= ~NETIF_F_NTUPLE;
4962
4963 return iavf_fix_strip_features(adapter, features);
4964}
4965
4966static int
4967iavf_verify_shaper(struct net_shaper_binding *binding,
4968 const struct net_shaper *shaper,
4969 struct netlink_ext_ack *extack)
4970{
4971 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4972 u64 vf_max;
4973
4974 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
4975 vf_max = adapter->qos_caps->cap[0].shaper.peak;
4976 if (vf_max && shaper->bw_max > vf_max) {
4977 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
4978 shaper->bw_max, shaper->handle.id,
4979 vf_max);
4980 return -EINVAL;
4981 }
4982 }
4983 return 0;
4984}
4985
4986static int
4987iavf_shaper_set(struct net_shaper_binding *binding,
4988 const struct net_shaper *shaper,
4989 struct netlink_ext_ack *extack)
4990{
4991 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4992 const struct net_shaper_handle *handle = &shaper->handle;
4993 struct iavf_ring *tx_ring;
4994 int ret = 0;
4995
4996 mutex_lock(&adapter->crit_lock);
4997 if (handle->id >= adapter->num_active_queues)
4998 goto unlock;
4999
5000 ret = iavf_verify_shaper(binding, shaper, extack);
5001 if (ret)
5002 goto unlock;
5003
5004 tx_ring = &adapter->tx_rings[handle->id];
5005
5006 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
5007 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
5008 tx_ring->q_shaper_update = true;
5009
5010 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5011
5012unlock:
5013 mutex_unlock(&adapter->crit_lock);
5014 return ret;
5015}
5016
5017static int iavf_shaper_del(struct net_shaper_binding *binding,
5018 const struct net_shaper_handle *handle,
5019 struct netlink_ext_ack *extack)
5020{
5021 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5022 struct iavf_ring *tx_ring;
5023
5024 mutex_lock(&adapter->crit_lock);
5025 if (handle->id >= adapter->num_active_queues)
5026 goto unlock;
5027
5028 tx_ring = &adapter->tx_rings[handle->id];
5029 tx_ring->q_shaper.bw_min = 0;
5030 tx_ring->q_shaper.bw_max = 0;
5031 tx_ring->q_shaper_update = true;
5032
5033 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5034
5035unlock:
5036 mutex_unlock(&adapter->crit_lock);
5037 return 0;
5038}
5039
5040static void iavf_shaper_cap(struct net_shaper_binding *binding,
5041 enum net_shaper_scope scope,
5042 unsigned long *flags)
5043{
5044 if (scope != NET_SHAPER_SCOPE_QUEUE)
5045 return;
5046
5047 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5048 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5049 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5050}
5051
5052static const struct net_shaper_ops iavf_shaper_ops = {
5053 .set = iavf_shaper_set,
5054 .delete = iavf_shaper_del,
5055 .capabilities = iavf_shaper_cap,
5056};
5057
5058static const struct net_device_ops iavf_netdev_ops = {
5059 .ndo_open = iavf_open,
5060 .ndo_stop = iavf_close,
5061 .ndo_start_xmit = iavf_xmit_frame,
5062 .ndo_set_rx_mode = iavf_set_rx_mode,
5063 .ndo_validate_addr = eth_validate_addr,
5064 .ndo_set_mac_address = iavf_set_mac,
5065 .ndo_change_mtu = iavf_change_mtu,
5066 .ndo_tx_timeout = iavf_tx_timeout,
5067 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
5068 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
5069 .ndo_features_check = iavf_features_check,
5070 .ndo_fix_features = iavf_fix_features,
5071 .ndo_set_features = iavf_set_features,
5072 .ndo_setup_tc = iavf_setup_tc,
5073 .net_shaper_ops = &iavf_shaper_ops,
5074};
5075
5076/**
5077 * iavf_check_reset_complete - check that VF reset is complete
5078 * @hw: pointer to hw struct
5079 *
5080 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5081 **/
5082static int iavf_check_reset_complete(struct iavf_hw *hw)
5083{
5084 u32 rstat;
5085 int i;
5086
5087 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5088 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5089 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5090 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5091 (rstat == VIRTCHNL_VFR_COMPLETED))
5092 return 0;
5093 msleep(IAVF_RESET_WAIT_MS);
5094 }
5095 return -EBUSY;
5096}
5097
5098/**
5099 * iavf_process_config - Process the config information we got from the PF
5100 * @adapter: board private structure
5101 *
5102 * Verify that we have a valid config struct, and set up our netdev features
5103 * and our VSI struct.
5104 **/
5105int iavf_process_config(struct iavf_adapter *adapter)
5106{
5107 struct virtchnl_vf_resource *vfres = adapter->vf_res;
5108 netdev_features_t hw_vlan_features, vlan_features;
5109 struct net_device *netdev = adapter->netdev;
5110 netdev_features_t hw_enc_features;
5111 netdev_features_t hw_features;
5112
5113 hw_enc_features = NETIF_F_SG |
5114 NETIF_F_IP_CSUM |
5115 NETIF_F_IPV6_CSUM |
5116 NETIF_F_HIGHDMA |
5117 NETIF_F_SOFT_FEATURES |
5118 NETIF_F_TSO |
5119 NETIF_F_TSO_ECN |
5120 NETIF_F_TSO6 |
5121 NETIF_F_SCTP_CRC |
5122 NETIF_F_RXHASH |
5123 NETIF_F_RXCSUM |
5124 0;
5125
5126 /* advertise to stack only if offloads for encapsulated packets is
5127 * supported
5128 */
5129 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5130 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
5131 NETIF_F_GSO_GRE |
5132 NETIF_F_GSO_GRE_CSUM |
5133 NETIF_F_GSO_IPXIP4 |
5134 NETIF_F_GSO_IPXIP6 |
5135 NETIF_F_GSO_UDP_TUNNEL_CSUM |
5136 NETIF_F_GSO_PARTIAL |
5137 0;
5138
5139 if (!(vfres->vf_cap_flags &
5140 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5141 netdev->gso_partial_features |=
5142 NETIF_F_GSO_UDP_TUNNEL_CSUM;
5143
5144 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5145 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5146 netdev->hw_enc_features |= hw_enc_features;
5147 }
5148 /* record features VLANs can make use of */
5149 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5150
5151 /* Write features and hw_features separately to avoid polluting
5152 * with, or dropping, features that are set when we registered.
5153 */
5154 hw_features = hw_enc_features;
5155
5156 /* get HW VLAN features that can be toggled */
5157 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5158
5159 /* Enable HW TC offload if ADQ or tc U32 is supported */
5160 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5161 TC_U32_SUPPORT(adapter))
5162 hw_features |= NETIF_F_HW_TC;
5163
5164 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5165 hw_features |= NETIF_F_GSO_UDP_L4;
5166
5167 netdev->hw_features |= hw_features | hw_vlan_features;
5168 vlan_features = iavf_get_netdev_vlan_features(adapter);
5169
5170 netdev->features |= hw_features | vlan_features;
5171
5172 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5173 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5174
5175 if (FDIR_FLTR_SUPPORT(adapter)) {
5176 netdev->hw_features |= NETIF_F_NTUPLE;
5177 netdev->features |= NETIF_F_NTUPLE;
5178 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5179 }
5180
5181 netdev->priv_flags |= IFF_UNICAST_FLT;
5182
5183 /* Do not turn on offloads when they are requested to be turned off.
5184 * TSO needs minimum 576 bytes to work correctly.
5185 */
5186 if (netdev->wanted_features) {
5187 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5188 netdev->mtu < 576)
5189 netdev->features &= ~NETIF_F_TSO;
5190 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5191 netdev->mtu < 576)
5192 netdev->features &= ~NETIF_F_TSO6;
5193 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5194 netdev->features &= ~NETIF_F_TSO_ECN;
5195 if (!(netdev->wanted_features & NETIF_F_GRO))
5196 netdev->features &= ~NETIF_F_GRO;
5197 if (!(netdev->wanted_features & NETIF_F_GSO))
5198 netdev->features &= ~NETIF_F_GSO;
5199 }
5200
5201 return 0;
5202}
5203
5204/**
5205 * iavf_probe - Device Initialization Routine
5206 * @pdev: PCI device information struct
5207 * @ent: entry in iavf_pci_tbl
5208 *
5209 * Returns 0 on success, negative on failure
5210 *
5211 * iavf_probe initializes an adapter identified by a pci_dev structure.
5212 * The OS initialization, configuring of the adapter private structure,
5213 * and a hardware reset occur.
5214 **/
5215static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5216{
5217 struct net_device *netdev;
5218 struct iavf_adapter *adapter = NULL;
5219 struct iavf_hw *hw = NULL;
5220 int err, len;
5221
5222 err = pci_enable_device(pdev);
5223 if (err)
5224 return err;
5225
5226 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5227 if (err) {
5228 dev_err(&pdev->dev,
5229 "DMA configuration failed: 0x%x\n", err);
5230 goto err_dma;
5231 }
5232
5233 err = pci_request_regions(pdev, iavf_driver_name);
5234 if (err) {
5235 dev_err(&pdev->dev,
5236 "pci_request_regions failed 0x%x\n", err);
5237 goto err_pci_reg;
5238 }
5239
5240 pci_set_master(pdev);
5241
5242 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5243 IAVF_MAX_REQ_QUEUES);
5244 if (!netdev) {
5245 err = -ENOMEM;
5246 goto err_alloc_etherdev;
5247 }
5248
5249 SET_NETDEV_DEV(netdev, &pdev->dev);
5250
5251 pci_set_drvdata(pdev, netdev);
5252 adapter = netdev_priv(netdev);
5253
5254 adapter->netdev = netdev;
5255 adapter->pdev = pdev;
5256
5257 hw = &adapter->hw;
5258 hw->back = adapter;
5259
5260 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5261 iavf_driver_name);
5262 if (!adapter->wq) {
5263 err = -ENOMEM;
5264 goto err_alloc_wq;
5265 }
5266
5267 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5268 iavf_change_state(adapter, __IAVF_STARTUP);
5269
5270 /* Call save state here because it relies on the adapter struct. */
5271 pci_save_state(pdev);
5272
5273 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5274 pci_resource_len(pdev, 0));
5275 if (!hw->hw_addr) {
5276 err = -EIO;
5277 goto err_ioremap;
5278 }
5279 hw->vendor_id = pdev->vendor;
5280 hw->device_id = pdev->device;
5281 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5282 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5283 hw->subsystem_device_id = pdev->subsystem_device;
5284 hw->bus.device = PCI_SLOT(pdev->devfn);
5285 hw->bus.func = PCI_FUNC(pdev->devfn);
5286 hw->bus.bus_id = pdev->bus->number;
5287
5288 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5289 adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5290 if (!adapter->qos_caps) {
5291 err = -ENOMEM;
5292 goto err_alloc_qos_cap;
5293 }
5294
5295 /* set up the locks for the AQ, do this only once in probe
5296 * and destroy them only once in remove
5297 */
5298 mutex_init(&adapter->crit_lock);
5299 mutex_init(&hw->aq.asq_mutex);
5300 mutex_init(&hw->aq.arq_mutex);
5301
5302 spin_lock_init(&adapter->mac_vlan_list_lock);
5303 spin_lock_init(&adapter->cloud_filter_list_lock);
5304 spin_lock_init(&adapter->fdir_fltr_lock);
5305 spin_lock_init(&adapter->adv_rss_lock);
5306 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5307
5308 INIT_LIST_HEAD(&adapter->mac_filter_list);
5309 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5310 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5311 INIT_LIST_HEAD(&adapter->fdir_list_head);
5312 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5313
5314 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5315 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5316 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5317 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5318
5319 /* Setup the wait queue for indicating transition to down status */
5320 init_waitqueue_head(&adapter->down_waitqueue);
5321
5322 /* Setup the wait queue for indicating transition to running state */
5323 init_waitqueue_head(&adapter->reset_waitqueue);
5324
5325 /* Setup the wait queue for indicating virtchannel events */
5326 init_waitqueue_head(&adapter->vc_waitqueue);
5327
5328 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5329 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5330 /* Initialization goes on in the work. Do not add more of it below. */
5331 return 0;
5332
5333err_alloc_qos_cap:
5334 iounmap(hw->hw_addr);
5335err_ioremap:
5336 destroy_workqueue(adapter->wq);
5337err_alloc_wq:
5338 free_netdev(netdev);
5339err_alloc_etherdev:
5340 pci_release_regions(pdev);
5341err_pci_reg:
5342err_dma:
5343 pci_disable_device(pdev);
5344 return err;
5345}
5346
5347/**
5348 * iavf_suspend - Power management suspend routine
5349 * @dev_d: device info pointer
5350 *
5351 * Called when the system (VM) is entering sleep/suspend.
5352 **/
5353static int iavf_suspend(struct device *dev_d)
5354{
5355 struct net_device *netdev = dev_get_drvdata(dev_d);
5356 struct iavf_adapter *adapter = netdev_priv(netdev);
5357
5358 netif_device_detach(netdev);
5359
5360 mutex_lock(&adapter->crit_lock);
5361
5362 if (netif_running(netdev)) {
5363 rtnl_lock();
5364 iavf_down(adapter);
5365 rtnl_unlock();
5366 }
5367 iavf_free_misc_irq(adapter);
5368 iavf_reset_interrupt_capability(adapter);
5369
5370 mutex_unlock(&adapter->crit_lock);
5371
5372 return 0;
5373}
5374
5375/**
5376 * iavf_resume - Power management resume routine
5377 * @dev_d: device info pointer
5378 *
5379 * Called when the system (VM) is resumed from sleep/suspend.
5380 **/
5381static int iavf_resume(struct device *dev_d)
5382{
5383 struct pci_dev *pdev = to_pci_dev(dev_d);
5384 struct iavf_adapter *adapter;
5385 u32 err;
5386
5387 adapter = iavf_pdev_to_adapter(pdev);
5388
5389 pci_set_master(pdev);
5390
5391 rtnl_lock();
5392 err = iavf_set_interrupt_capability(adapter);
5393 if (err) {
5394 rtnl_unlock();
5395 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5396 return err;
5397 }
5398 err = iavf_request_misc_irq(adapter);
5399 rtnl_unlock();
5400 if (err) {
5401 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5402 return err;
5403 }
5404
5405 queue_work(adapter->wq, &adapter->reset_task);
5406
5407 netif_device_attach(adapter->netdev);
5408
5409 return err;
5410}
5411
5412/**
5413 * iavf_remove - Device Removal Routine
5414 * @pdev: PCI device information struct
5415 *
5416 * iavf_remove is called by the PCI subsystem to alert the driver
5417 * that it should release a PCI device. The could be caused by a
5418 * Hot-Plug event, or because the driver is going to be removed from
5419 * memory.
5420 **/
5421static void iavf_remove(struct pci_dev *pdev)
5422{
5423 struct iavf_fdir_fltr *fdir, *fdirtmp;
5424 struct iavf_vlan_filter *vlf, *vlftmp;
5425 struct iavf_cloud_filter *cf, *cftmp;
5426 struct iavf_adv_rss *rss, *rsstmp;
5427 struct iavf_mac_filter *f, *ftmp;
5428 struct iavf_adapter *adapter;
5429 struct net_device *netdev;
5430 struct iavf_hw *hw;
5431
5432 /* Don't proceed with remove if netdev is already freed */
5433 netdev = pci_get_drvdata(pdev);
5434 if (!netdev)
5435 return;
5436
5437 adapter = iavf_pdev_to_adapter(pdev);
5438 hw = &adapter->hw;
5439
5440 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5441 return;
5442
5443 /* Wait until port initialization is complete.
5444 * There are flows where register/unregister netdev may race.
5445 */
5446 while (1) {
5447 mutex_lock(&adapter->crit_lock);
5448 if (adapter->state == __IAVF_RUNNING ||
5449 adapter->state == __IAVF_DOWN ||
5450 adapter->state == __IAVF_INIT_FAILED) {
5451 mutex_unlock(&adapter->crit_lock);
5452 break;
5453 }
5454 /* Simply return if we already went through iavf_shutdown */
5455 if (adapter->state == __IAVF_REMOVE) {
5456 mutex_unlock(&adapter->crit_lock);
5457 return;
5458 }
5459
5460 mutex_unlock(&adapter->crit_lock);
5461 usleep_range(500, 1000);
5462 }
5463 cancel_delayed_work_sync(&adapter->watchdog_task);
5464 cancel_work_sync(&adapter->finish_config);
5465
5466 if (netdev->reg_state == NETREG_REGISTERED)
5467 unregister_netdev(netdev);
5468
5469 mutex_lock(&adapter->crit_lock);
5470 dev_info(&adapter->pdev->dev, "Removing device\n");
5471 iavf_change_state(adapter, __IAVF_REMOVE);
5472
5473 iavf_request_reset(adapter);
5474 msleep(50);
5475 /* If the FW isn't responding, kick it once, but only once. */
5476 if (!iavf_asq_done(hw)) {
5477 iavf_request_reset(adapter);
5478 msleep(50);
5479 }
5480
5481 iavf_misc_irq_disable(adapter);
5482 /* Shut down all the garbage mashers on the detention level */
5483 cancel_work_sync(&adapter->reset_task);
5484 cancel_delayed_work_sync(&adapter->watchdog_task);
5485 cancel_work_sync(&adapter->adminq_task);
5486
5487 adapter->aq_required = 0;
5488 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5489
5490 iavf_free_all_tx_resources(adapter);
5491 iavf_free_all_rx_resources(adapter);
5492 iavf_free_misc_irq(adapter);
5493 iavf_free_interrupt_scheme(adapter);
5494
5495 iavf_free_rss(adapter);
5496
5497 if (hw->aq.asq.count)
5498 iavf_shutdown_adminq(hw);
5499
5500 /* destroy the locks only once, here */
5501 mutex_destroy(&hw->aq.arq_mutex);
5502 mutex_destroy(&hw->aq.asq_mutex);
5503 mutex_unlock(&adapter->crit_lock);
5504 mutex_destroy(&adapter->crit_lock);
5505
5506 iounmap(hw->hw_addr);
5507 pci_release_regions(pdev);
5508 kfree(adapter->vf_res);
5509 spin_lock_bh(&adapter->mac_vlan_list_lock);
5510 /* If we got removed before an up/down sequence, we've got a filter
5511 * hanging out there that we need to get rid of.
5512 */
5513 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5514 list_del(&f->list);
5515 kfree(f);
5516 }
5517 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5518 list) {
5519 list_del(&vlf->list);
5520 kfree(vlf);
5521 }
5522
5523 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5524
5525 spin_lock_bh(&adapter->cloud_filter_list_lock);
5526 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5527 list_del(&cf->list);
5528 kfree(cf);
5529 }
5530 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5531
5532 spin_lock_bh(&adapter->fdir_fltr_lock);
5533 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5534 list_del(&fdir->list);
5535 kfree(fdir);
5536 }
5537 spin_unlock_bh(&adapter->fdir_fltr_lock);
5538
5539 spin_lock_bh(&adapter->adv_rss_lock);
5540 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5541 list) {
5542 list_del(&rss->list);
5543 kfree(rss);
5544 }
5545 spin_unlock_bh(&adapter->adv_rss_lock);
5546
5547 destroy_workqueue(adapter->wq);
5548
5549 pci_set_drvdata(pdev, NULL);
5550
5551 free_netdev(netdev);
5552
5553 pci_disable_device(pdev);
5554}
5555
5556/**
5557 * iavf_shutdown - Shutdown the device in preparation for a reboot
5558 * @pdev: pci device structure
5559 **/
5560static void iavf_shutdown(struct pci_dev *pdev)
5561{
5562 iavf_remove(pdev);
5563
5564 if (system_state == SYSTEM_POWER_OFF)
5565 pci_set_power_state(pdev, PCI_D3hot);
5566}
5567
5568static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5569
5570static struct pci_driver iavf_driver = {
5571 .name = iavf_driver_name,
5572 .id_table = iavf_pci_tbl,
5573 .probe = iavf_probe,
5574 .remove = iavf_remove,
5575 .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5576 .shutdown = iavf_shutdown,
5577};
5578
5579/**
5580 * iavf_init_module - Driver Registration Routine
5581 *
5582 * iavf_init_module is the first routine called when the driver is
5583 * loaded. All it does is register with the PCI subsystem.
5584 **/
5585static int __init iavf_init_module(void)
5586{
5587 pr_info("iavf: %s\n", iavf_driver_string);
5588
5589 pr_info("%s\n", iavf_copyright);
5590
5591 return pci_register_driver(&iavf_driver);
5592}
5593
5594module_init(iavf_init_module);
5595
5596/**
5597 * iavf_exit_module - Driver Exit Cleanup Routine
5598 *
5599 * iavf_exit_module is called just before the driver is removed
5600 * from memory.
5601 **/
5602static void __exit iavf_exit_module(void)
5603{
5604 pci_unregister_driver(&iavf_driver);
5605}
5606
5607module_exit(iavf_exit_module);
5608
5609/* iavf_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6#include "iavf_client.h"
7/* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11#define CREATE_TRACE_POINTS
12#include "iavf_trace.h"
13
14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16static int iavf_close(struct net_device *netdev);
17static void iavf_init_get_resources(struct iavf_adapter *adapter);
18static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20char iavf_driver_name[] = "iavf";
21static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27/* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42};
43
44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46MODULE_ALIAS("i40evf");
47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_LICENSE("GPL v2");
50
51static const struct net_device_ops iavf_netdev_ops;
52
53int iavf_status_to_errno(enum iavf_status status)
54{
55 switch (status) {
56 case IAVF_SUCCESS:
57 return 0;
58 case IAVF_ERR_PARAM:
59 case IAVF_ERR_MAC_TYPE:
60 case IAVF_ERR_INVALID_MAC_ADDR:
61 case IAVF_ERR_INVALID_LINK_SETTINGS:
62 case IAVF_ERR_INVALID_PD_ID:
63 case IAVF_ERR_INVALID_QP_ID:
64 case IAVF_ERR_INVALID_CQ_ID:
65 case IAVF_ERR_INVALID_CEQ_ID:
66 case IAVF_ERR_INVALID_AEQ_ID:
67 case IAVF_ERR_INVALID_SIZE:
68 case IAVF_ERR_INVALID_ARP_INDEX:
69 case IAVF_ERR_INVALID_FPM_FUNC_ID:
70 case IAVF_ERR_QP_INVALID_MSG_SIZE:
71 case IAVF_ERR_INVALID_FRAG_COUNT:
72 case IAVF_ERR_INVALID_ALIGNMENT:
73 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
74 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
75 case IAVF_ERR_INVALID_VF_ID:
76 case IAVF_ERR_INVALID_HMCFN_ID:
77 case IAVF_ERR_INVALID_PBLE_INDEX:
78 case IAVF_ERR_INVALID_SD_INDEX:
79 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
80 case IAVF_ERR_INVALID_SD_TYPE:
81 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
82 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
83 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
84 return -EINVAL;
85 case IAVF_ERR_NVM:
86 case IAVF_ERR_NVM_CHECKSUM:
87 case IAVF_ERR_PHY:
88 case IAVF_ERR_CONFIG:
89 case IAVF_ERR_UNKNOWN_PHY:
90 case IAVF_ERR_LINK_SETUP:
91 case IAVF_ERR_ADAPTER_STOPPED:
92 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
93 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
94 case IAVF_ERR_RESET_FAILED:
95 case IAVF_ERR_BAD_PTR:
96 case IAVF_ERR_SWFW_SYNC:
97 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
98 case IAVF_ERR_QUEUE_EMPTY:
99 case IAVF_ERR_FLUSHED_QUEUE:
100 case IAVF_ERR_OPCODE_MISMATCH:
101 case IAVF_ERR_CQP_COMPL_ERROR:
102 case IAVF_ERR_BACKING_PAGE_ERROR:
103 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
104 case IAVF_ERR_MEMCPY_FAILED:
105 case IAVF_ERR_SRQ_ENABLED:
106 case IAVF_ERR_ADMIN_QUEUE_ERROR:
107 case IAVF_ERR_ADMIN_QUEUE_FULL:
108 case IAVF_ERR_BAD_IWARP_CQE:
109 case IAVF_ERR_NVM_BLANK_MODE:
110 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
111 case IAVF_ERR_DIAG_TEST_FAILED:
112 case IAVF_ERR_FIRMWARE_API_VERSION:
113 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
114 return -EIO;
115 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
116 return -ENODEV;
117 case IAVF_ERR_NO_AVAILABLE_VSI:
118 case IAVF_ERR_RING_FULL:
119 return -ENOSPC;
120 case IAVF_ERR_NO_MEMORY:
121 return -ENOMEM;
122 case IAVF_ERR_TIMEOUT:
123 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
124 return -ETIMEDOUT;
125 case IAVF_ERR_NOT_IMPLEMENTED:
126 case IAVF_NOT_SUPPORTED:
127 return -EOPNOTSUPP;
128 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
129 return -EALREADY;
130 case IAVF_ERR_NOT_READY:
131 return -EBUSY;
132 case IAVF_ERR_BUF_TOO_SHORT:
133 return -EMSGSIZE;
134 }
135
136 return -EIO;
137}
138
139int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
140{
141 switch (v_status) {
142 case VIRTCHNL_STATUS_SUCCESS:
143 return 0;
144 case VIRTCHNL_STATUS_ERR_PARAM:
145 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
146 return -EINVAL;
147 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
148 return -ENOMEM;
149 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
150 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
151 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
152 return -EIO;
153 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
154 return -EOPNOTSUPP;
155 }
156
157 return -EIO;
158}
159
160/**
161 * iavf_pdev_to_adapter - go from pci_dev to adapter
162 * @pdev: pci_dev pointer
163 */
164static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
165{
166 return netdev_priv(pci_get_drvdata(pdev));
167}
168
169/**
170 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
171 * @hw: pointer to the HW structure
172 * @mem: ptr to mem struct to fill out
173 * @size: size of memory requested
174 * @alignment: what to align the allocation to
175 **/
176enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
177 struct iavf_dma_mem *mem,
178 u64 size, u32 alignment)
179{
180 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
181
182 if (!mem)
183 return IAVF_ERR_PARAM;
184
185 mem->size = ALIGN(size, alignment);
186 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
187 (dma_addr_t *)&mem->pa, GFP_KERNEL);
188 if (mem->va)
189 return 0;
190 else
191 return IAVF_ERR_NO_MEMORY;
192}
193
194/**
195 * iavf_free_dma_mem_d - OS specific memory free for shared code
196 * @hw: pointer to the HW structure
197 * @mem: ptr to mem struct to free
198 **/
199enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
200 struct iavf_dma_mem *mem)
201{
202 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
203
204 if (!mem || !mem->va)
205 return IAVF_ERR_PARAM;
206 dma_free_coherent(&adapter->pdev->dev, mem->size,
207 mem->va, (dma_addr_t)mem->pa);
208 return 0;
209}
210
211/**
212 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
213 * @hw: pointer to the HW structure
214 * @mem: ptr to mem struct to fill out
215 * @size: size of memory requested
216 **/
217enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
218 struct iavf_virt_mem *mem, u32 size)
219{
220 if (!mem)
221 return IAVF_ERR_PARAM;
222
223 mem->size = size;
224 mem->va = kzalloc(size, GFP_KERNEL);
225
226 if (mem->va)
227 return 0;
228 else
229 return IAVF_ERR_NO_MEMORY;
230}
231
232/**
233 * iavf_free_virt_mem_d - OS specific memory free for shared code
234 * @hw: pointer to the HW structure
235 * @mem: ptr to mem struct to free
236 **/
237enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
238 struct iavf_virt_mem *mem)
239{
240 if (!mem)
241 return IAVF_ERR_PARAM;
242
243 /* it's ok to kfree a NULL pointer */
244 kfree(mem->va);
245
246 return 0;
247}
248
249/**
250 * iavf_lock_timeout - try to lock mutex but give up after timeout
251 * @lock: mutex that should be locked
252 * @msecs: timeout in msecs
253 *
254 * Returns 0 on success, negative on failure
255 **/
256int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
257{
258 unsigned int wait, delay = 10;
259
260 for (wait = 0; wait < msecs; wait += delay) {
261 if (mutex_trylock(lock))
262 return 0;
263
264 msleep(delay);
265 }
266
267 return -1;
268}
269
270/**
271 * iavf_schedule_reset - Set the flags and schedule a reset event
272 * @adapter: board private structure
273 **/
274void iavf_schedule_reset(struct iavf_adapter *adapter)
275{
276 if (!(adapter->flags &
277 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
278 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
279 queue_work(adapter->wq, &adapter->reset_task);
280 }
281}
282
283/**
284 * iavf_schedule_request_stats - Set the flags and schedule statistics request
285 * @adapter: board private structure
286 *
287 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
288 * request and refresh ethtool stats
289 **/
290void iavf_schedule_request_stats(struct iavf_adapter *adapter)
291{
292 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
293 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
294}
295
296/**
297 * iavf_tx_timeout - Respond to a Tx Hang
298 * @netdev: network interface device structure
299 * @txqueue: queue number that is timing out
300 **/
301static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
302{
303 struct iavf_adapter *adapter = netdev_priv(netdev);
304
305 adapter->tx_timeout_count++;
306 iavf_schedule_reset(adapter);
307}
308
309/**
310 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
311 * @adapter: board private structure
312 **/
313static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
314{
315 struct iavf_hw *hw = &adapter->hw;
316
317 if (!adapter->msix_entries)
318 return;
319
320 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
321
322 iavf_flush(hw);
323
324 synchronize_irq(adapter->msix_entries[0].vector);
325}
326
327/**
328 * iavf_misc_irq_enable - Enable default interrupt generation settings
329 * @adapter: board private structure
330 **/
331static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
332{
333 struct iavf_hw *hw = &adapter->hw;
334
335 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
336 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
337 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
338
339 iavf_flush(hw);
340}
341
342/**
343 * iavf_irq_disable - Mask off interrupt generation on the NIC
344 * @adapter: board private structure
345 **/
346static void iavf_irq_disable(struct iavf_adapter *adapter)
347{
348 int i;
349 struct iavf_hw *hw = &adapter->hw;
350
351 if (!adapter->msix_entries)
352 return;
353
354 for (i = 1; i < adapter->num_msix_vectors; i++) {
355 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
356 synchronize_irq(adapter->msix_entries[i].vector);
357 }
358 iavf_flush(hw);
359}
360
361/**
362 * iavf_irq_enable_queues - Enable interrupt for specified queues
363 * @adapter: board private structure
364 * @mask: bitmap of queues to enable
365 **/
366void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
367{
368 struct iavf_hw *hw = &adapter->hw;
369 int i;
370
371 for (i = 1; i < adapter->num_msix_vectors; i++) {
372 if (mask & BIT(i - 1)) {
373 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
374 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
375 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
376 }
377 }
378}
379
380/**
381 * iavf_irq_enable - Enable default interrupt generation settings
382 * @adapter: board private structure
383 * @flush: boolean value whether to run rd32()
384 **/
385void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
386{
387 struct iavf_hw *hw = &adapter->hw;
388
389 iavf_misc_irq_enable(adapter);
390 iavf_irq_enable_queues(adapter, ~0);
391
392 if (flush)
393 iavf_flush(hw);
394}
395
396/**
397 * iavf_msix_aq - Interrupt handler for vector 0
398 * @irq: interrupt number
399 * @data: pointer to netdev
400 **/
401static irqreturn_t iavf_msix_aq(int irq, void *data)
402{
403 struct net_device *netdev = data;
404 struct iavf_adapter *adapter = netdev_priv(netdev);
405 struct iavf_hw *hw = &adapter->hw;
406
407 /* handle non-queue interrupts, these reads clear the registers */
408 rd32(hw, IAVF_VFINT_ICR01);
409 rd32(hw, IAVF_VFINT_ICR0_ENA1);
410
411 if (adapter->state != __IAVF_REMOVE)
412 /* schedule work on the private workqueue */
413 queue_work(adapter->wq, &adapter->adminq_task);
414
415 return IRQ_HANDLED;
416}
417
418/**
419 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
420 * @irq: interrupt number
421 * @data: pointer to a q_vector
422 **/
423static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
424{
425 struct iavf_q_vector *q_vector = data;
426
427 if (!q_vector->tx.ring && !q_vector->rx.ring)
428 return IRQ_HANDLED;
429
430 napi_schedule_irqoff(&q_vector->napi);
431
432 return IRQ_HANDLED;
433}
434
435/**
436 * iavf_map_vector_to_rxq - associate irqs with rx queues
437 * @adapter: board private structure
438 * @v_idx: interrupt number
439 * @r_idx: queue number
440 **/
441static void
442iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
443{
444 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
445 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
446 struct iavf_hw *hw = &adapter->hw;
447
448 rx_ring->q_vector = q_vector;
449 rx_ring->next = q_vector->rx.ring;
450 rx_ring->vsi = &adapter->vsi;
451 q_vector->rx.ring = rx_ring;
452 q_vector->rx.count++;
453 q_vector->rx.next_update = jiffies + 1;
454 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
455 q_vector->ring_mask |= BIT(r_idx);
456 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
457 q_vector->rx.current_itr >> 1);
458 q_vector->rx.current_itr = q_vector->rx.target_itr;
459}
460
461/**
462 * iavf_map_vector_to_txq - associate irqs with tx queues
463 * @adapter: board private structure
464 * @v_idx: interrupt number
465 * @t_idx: queue number
466 **/
467static void
468iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
469{
470 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
471 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
472 struct iavf_hw *hw = &adapter->hw;
473
474 tx_ring->q_vector = q_vector;
475 tx_ring->next = q_vector->tx.ring;
476 tx_ring->vsi = &adapter->vsi;
477 q_vector->tx.ring = tx_ring;
478 q_vector->tx.count++;
479 q_vector->tx.next_update = jiffies + 1;
480 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
481 q_vector->num_ringpairs++;
482 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
483 q_vector->tx.target_itr >> 1);
484 q_vector->tx.current_itr = q_vector->tx.target_itr;
485}
486
487/**
488 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
489 * @adapter: board private structure to initialize
490 *
491 * This function maps descriptor rings to the queue-specific vectors
492 * we were allotted through the MSI-X enabling code. Ideally, we'd have
493 * one vector per ring/queue, but on a constrained vector budget, we
494 * group the rings as "efficiently" as possible. You would add new
495 * mapping configurations in here.
496 **/
497static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
498{
499 int rings_remaining = adapter->num_active_queues;
500 int ridx = 0, vidx = 0;
501 int q_vectors;
502
503 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
504
505 for (; ridx < rings_remaining; ridx++) {
506 iavf_map_vector_to_rxq(adapter, vidx, ridx);
507 iavf_map_vector_to_txq(adapter, vidx, ridx);
508
509 /* In the case where we have more queues than vectors, continue
510 * round-robin on vectors until all queues are mapped.
511 */
512 if (++vidx >= q_vectors)
513 vidx = 0;
514 }
515
516 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
517}
518
519/**
520 * iavf_irq_affinity_notify - Callback for affinity changes
521 * @notify: context as to what irq was changed
522 * @mask: the new affinity mask
523 *
524 * This is a callback function used by the irq_set_affinity_notifier function
525 * so that we may register to receive changes to the irq affinity masks.
526 **/
527static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
528 const cpumask_t *mask)
529{
530 struct iavf_q_vector *q_vector =
531 container_of(notify, struct iavf_q_vector, affinity_notify);
532
533 cpumask_copy(&q_vector->affinity_mask, mask);
534}
535
536/**
537 * iavf_irq_affinity_release - Callback for affinity notifier release
538 * @ref: internal core kernel usage
539 *
540 * This is a callback function used by the irq_set_affinity_notifier function
541 * to inform the current notification subscriber that they will no longer
542 * receive notifications.
543 **/
544static void iavf_irq_affinity_release(struct kref *ref) {}
545
546/**
547 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
548 * @adapter: board private structure
549 * @basename: device basename
550 *
551 * Allocates MSI-X vectors for tx and rx handling, and requests
552 * interrupts from the kernel.
553 **/
554static int
555iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
556{
557 unsigned int vector, q_vectors;
558 unsigned int rx_int_idx = 0, tx_int_idx = 0;
559 int irq_num, err;
560 int cpu;
561
562 iavf_irq_disable(adapter);
563 /* Decrement for Other and TCP Timer vectors */
564 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
565
566 for (vector = 0; vector < q_vectors; vector++) {
567 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
568
569 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
570
571 if (q_vector->tx.ring && q_vector->rx.ring) {
572 snprintf(q_vector->name, sizeof(q_vector->name),
573 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
574 tx_int_idx++;
575 } else if (q_vector->rx.ring) {
576 snprintf(q_vector->name, sizeof(q_vector->name),
577 "iavf-%s-rx-%u", basename, rx_int_idx++);
578 } else if (q_vector->tx.ring) {
579 snprintf(q_vector->name, sizeof(q_vector->name),
580 "iavf-%s-tx-%u", basename, tx_int_idx++);
581 } else {
582 /* skip this unused q_vector */
583 continue;
584 }
585 err = request_irq(irq_num,
586 iavf_msix_clean_rings,
587 0,
588 q_vector->name,
589 q_vector);
590 if (err) {
591 dev_info(&adapter->pdev->dev,
592 "Request_irq failed, error: %d\n", err);
593 goto free_queue_irqs;
594 }
595 /* register for affinity change notifications */
596 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
597 q_vector->affinity_notify.release =
598 iavf_irq_affinity_release;
599 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
600 /* Spread the IRQ affinity hints across online CPUs. Note that
601 * get_cpu_mask returns a mask with a permanent lifetime so
602 * it's safe to use as a hint for irq_update_affinity_hint.
603 */
604 cpu = cpumask_local_spread(q_vector->v_idx, -1);
605 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
606 }
607
608 return 0;
609
610free_queue_irqs:
611 while (vector) {
612 vector--;
613 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
614 irq_set_affinity_notifier(irq_num, NULL);
615 irq_update_affinity_hint(irq_num, NULL);
616 free_irq(irq_num, &adapter->q_vectors[vector]);
617 }
618 return err;
619}
620
621/**
622 * iavf_request_misc_irq - Initialize MSI-X interrupts
623 * @adapter: board private structure
624 *
625 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
626 * vector is only for the admin queue, and stays active even when the netdev
627 * is closed.
628 **/
629static int iavf_request_misc_irq(struct iavf_adapter *adapter)
630{
631 struct net_device *netdev = adapter->netdev;
632 int err;
633
634 snprintf(adapter->misc_vector_name,
635 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
636 dev_name(&adapter->pdev->dev));
637 err = request_irq(adapter->msix_entries[0].vector,
638 &iavf_msix_aq, 0,
639 adapter->misc_vector_name, netdev);
640 if (err) {
641 dev_err(&adapter->pdev->dev,
642 "request_irq for %s failed: %d\n",
643 adapter->misc_vector_name, err);
644 free_irq(adapter->msix_entries[0].vector, netdev);
645 }
646 return err;
647}
648
649/**
650 * iavf_free_traffic_irqs - Free MSI-X interrupts
651 * @adapter: board private structure
652 *
653 * Frees all MSI-X vectors other than 0.
654 **/
655static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
656{
657 int vector, irq_num, q_vectors;
658
659 if (!adapter->msix_entries)
660 return;
661
662 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
663
664 for (vector = 0; vector < q_vectors; vector++) {
665 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
666 irq_set_affinity_notifier(irq_num, NULL);
667 irq_update_affinity_hint(irq_num, NULL);
668 free_irq(irq_num, &adapter->q_vectors[vector]);
669 }
670}
671
672/**
673 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
674 * @adapter: board private structure
675 *
676 * Frees MSI-X vector 0.
677 **/
678static void iavf_free_misc_irq(struct iavf_adapter *adapter)
679{
680 struct net_device *netdev = adapter->netdev;
681
682 if (!adapter->msix_entries)
683 return;
684
685 free_irq(adapter->msix_entries[0].vector, netdev);
686}
687
688/**
689 * iavf_configure_tx - Configure Transmit Unit after Reset
690 * @adapter: board private structure
691 *
692 * Configure the Tx unit of the MAC after a reset.
693 **/
694static void iavf_configure_tx(struct iavf_adapter *adapter)
695{
696 struct iavf_hw *hw = &adapter->hw;
697 int i;
698
699 for (i = 0; i < adapter->num_active_queues; i++)
700 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
701}
702
703/**
704 * iavf_configure_rx - Configure Receive Unit after Reset
705 * @adapter: board private structure
706 *
707 * Configure the Rx unit of the MAC after a reset.
708 **/
709static void iavf_configure_rx(struct iavf_adapter *adapter)
710{
711 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
712 struct iavf_hw *hw = &adapter->hw;
713 int i;
714
715 /* Legacy Rx will always default to a 2048 buffer size. */
716#if (PAGE_SIZE < 8192)
717 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
718 struct net_device *netdev = adapter->netdev;
719
720 /* For jumbo frames on systems with 4K pages we have to use
721 * an order 1 page, so we might as well increase the size
722 * of our Rx buffer to make better use of the available space
723 */
724 rx_buf_len = IAVF_RXBUFFER_3072;
725
726 /* We use a 1536 buffer size for configurations with
727 * standard Ethernet mtu. On x86 this gives us enough room
728 * for shared info and 192 bytes of padding.
729 */
730 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
731 (netdev->mtu <= ETH_DATA_LEN))
732 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
733 }
734#endif
735
736 for (i = 0; i < adapter->num_active_queues; i++) {
737 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
738 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
739
740 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
741 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
742 else
743 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
744 }
745}
746
747/**
748 * iavf_find_vlan - Search filter list for specific vlan filter
749 * @adapter: board private structure
750 * @vlan: vlan tag
751 *
752 * Returns ptr to the filter object or NULL. Must be called while holding the
753 * mac_vlan_list_lock.
754 **/
755static struct
756iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
757 struct iavf_vlan vlan)
758{
759 struct iavf_vlan_filter *f;
760
761 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
762 if (f->vlan.vid == vlan.vid &&
763 f->vlan.tpid == vlan.tpid)
764 return f;
765 }
766
767 return NULL;
768}
769
770/**
771 * iavf_add_vlan - Add a vlan filter to the list
772 * @adapter: board private structure
773 * @vlan: VLAN tag
774 *
775 * Returns ptr to the filter object or NULL when no memory available.
776 **/
777static struct
778iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
779 struct iavf_vlan vlan)
780{
781 struct iavf_vlan_filter *f = NULL;
782
783 spin_lock_bh(&adapter->mac_vlan_list_lock);
784
785 f = iavf_find_vlan(adapter, vlan);
786 if (!f) {
787 f = kzalloc(sizeof(*f), GFP_ATOMIC);
788 if (!f)
789 goto clearout;
790
791 f->vlan = vlan;
792
793 list_add_tail(&f->list, &adapter->vlan_filter_list);
794 f->add = true;
795 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
796 }
797
798clearout:
799 spin_unlock_bh(&adapter->mac_vlan_list_lock);
800 return f;
801}
802
803/**
804 * iavf_del_vlan - Remove a vlan filter from the list
805 * @adapter: board private structure
806 * @vlan: VLAN tag
807 **/
808static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
809{
810 struct iavf_vlan_filter *f;
811
812 spin_lock_bh(&adapter->mac_vlan_list_lock);
813
814 f = iavf_find_vlan(adapter, vlan);
815 if (f) {
816 f->remove = true;
817 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
818 }
819
820 spin_unlock_bh(&adapter->mac_vlan_list_lock);
821}
822
823/**
824 * iavf_restore_filters
825 * @adapter: board private structure
826 *
827 * Restore existing non MAC filters when VF netdev comes back up
828 **/
829static void iavf_restore_filters(struct iavf_adapter *adapter)
830{
831 u16 vid;
832
833 /* re-add all VLAN filters */
834 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
835 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
836
837 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
838 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
839}
840
841/**
842 * iavf_get_num_vlans_added - get number of VLANs added
843 * @adapter: board private structure
844 */
845u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
846{
847 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
848 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
849}
850
851/**
852 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
853 * @adapter: board private structure
854 *
855 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
856 * do not impose a limit as that maintains current behavior and for
857 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
858 **/
859static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
860{
861 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
862 * never been a limit on the VF driver side
863 */
864 if (VLAN_ALLOWED(adapter))
865 return VLAN_N_VID;
866 else if (VLAN_V2_ALLOWED(adapter))
867 return adapter->vlan_v2_caps.filtering.max_filters;
868
869 return 0;
870}
871
872/**
873 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
874 * @adapter: board private structure
875 **/
876static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
877{
878 if (iavf_get_num_vlans_added(adapter) <
879 iavf_get_max_vlans_allowed(adapter))
880 return false;
881
882 return true;
883}
884
885/**
886 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
887 * @netdev: network device struct
888 * @proto: unused protocol data
889 * @vid: VLAN tag
890 **/
891static int iavf_vlan_rx_add_vid(struct net_device *netdev,
892 __always_unused __be16 proto, u16 vid)
893{
894 struct iavf_adapter *adapter = netdev_priv(netdev);
895
896 if (!VLAN_FILTERING_ALLOWED(adapter))
897 return -EIO;
898
899 if (iavf_max_vlans_added(adapter)) {
900 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
901 iavf_get_max_vlans_allowed(adapter));
902 return -EIO;
903 }
904
905 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
906 return -ENOMEM;
907
908 return 0;
909}
910
911/**
912 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
913 * @netdev: network device struct
914 * @proto: unused protocol data
915 * @vid: VLAN tag
916 **/
917static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
918 __always_unused __be16 proto, u16 vid)
919{
920 struct iavf_adapter *adapter = netdev_priv(netdev);
921
922 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
923 if (proto == cpu_to_be16(ETH_P_8021Q))
924 clear_bit(vid, adapter->vsi.active_cvlans);
925 else
926 clear_bit(vid, adapter->vsi.active_svlans);
927
928 return 0;
929}
930
931/**
932 * iavf_find_filter - Search filter list for specific mac filter
933 * @adapter: board private structure
934 * @macaddr: the MAC address
935 *
936 * Returns ptr to the filter object or NULL. Must be called while holding the
937 * mac_vlan_list_lock.
938 **/
939static struct
940iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
941 const u8 *macaddr)
942{
943 struct iavf_mac_filter *f;
944
945 if (!macaddr)
946 return NULL;
947
948 list_for_each_entry(f, &adapter->mac_filter_list, list) {
949 if (ether_addr_equal(macaddr, f->macaddr))
950 return f;
951 }
952 return NULL;
953}
954
955/**
956 * iavf_add_filter - Add a mac filter to the filter list
957 * @adapter: board private structure
958 * @macaddr: the MAC address
959 *
960 * Returns ptr to the filter object or NULL when no memory available.
961 **/
962struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
963 const u8 *macaddr)
964{
965 struct iavf_mac_filter *f;
966
967 if (!macaddr)
968 return NULL;
969
970 f = iavf_find_filter(adapter, macaddr);
971 if (!f) {
972 f = kzalloc(sizeof(*f), GFP_ATOMIC);
973 if (!f)
974 return f;
975
976 ether_addr_copy(f->macaddr, macaddr);
977
978 list_add_tail(&f->list, &adapter->mac_filter_list);
979 f->add = true;
980 f->add_handled = false;
981 f->is_new_mac = true;
982 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
983 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
984 } else {
985 f->remove = false;
986 }
987
988 return f;
989}
990
991/**
992 * iavf_replace_primary_mac - Replace current primary address
993 * @adapter: board private structure
994 * @new_mac: new MAC address to be applied
995 *
996 * Replace current dev_addr and send request to PF for removal of previous
997 * primary MAC address filter and addition of new primary MAC filter.
998 * Return 0 for success, -ENOMEM for failure.
999 *
1000 * Do not call this with mac_vlan_list_lock!
1001 **/
1002int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1003 const u8 *new_mac)
1004{
1005 struct iavf_hw *hw = &adapter->hw;
1006 struct iavf_mac_filter *f;
1007
1008 spin_lock_bh(&adapter->mac_vlan_list_lock);
1009
1010 list_for_each_entry(f, &adapter->mac_filter_list, list) {
1011 f->is_primary = false;
1012 }
1013
1014 f = iavf_find_filter(adapter, hw->mac.addr);
1015 if (f) {
1016 f->remove = true;
1017 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1018 }
1019
1020 f = iavf_add_filter(adapter, new_mac);
1021
1022 if (f) {
1023 /* Always send the request to add if changing primary MAC
1024 * even if filter is already present on the list
1025 */
1026 f->is_primary = true;
1027 f->add = true;
1028 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1029 ether_addr_copy(hw->mac.addr, new_mac);
1030 }
1031
1032 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1033
1034 /* schedule the watchdog task to immediately process the request */
1035 if (f) {
1036 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1037 return 0;
1038 }
1039 return -ENOMEM;
1040}
1041
1042/**
1043 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1044 * @netdev: network interface device structure
1045 * @macaddr: MAC address to set
1046 *
1047 * Returns true on success, false on failure
1048 */
1049static bool iavf_is_mac_set_handled(struct net_device *netdev,
1050 const u8 *macaddr)
1051{
1052 struct iavf_adapter *adapter = netdev_priv(netdev);
1053 struct iavf_mac_filter *f;
1054 bool ret = false;
1055
1056 spin_lock_bh(&adapter->mac_vlan_list_lock);
1057
1058 f = iavf_find_filter(adapter, macaddr);
1059
1060 if (!f || (!f->add && f->add_handled))
1061 ret = true;
1062
1063 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1064
1065 return ret;
1066}
1067
1068/**
1069 * iavf_set_mac - NDO callback to set port MAC address
1070 * @netdev: network interface device structure
1071 * @p: pointer to an address structure
1072 *
1073 * Returns 0 on success, negative on failure
1074 */
1075static int iavf_set_mac(struct net_device *netdev, void *p)
1076{
1077 struct iavf_adapter *adapter = netdev_priv(netdev);
1078 struct sockaddr *addr = p;
1079 int ret;
1080
1081 if (!is_valid_ether_addr(addr->sa_data))
1082 return -EADDRNOTAVAIL;
1083
1084 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1085
1086 if (ret)
1087 return ret;
1088
1089 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1090 iavf_is_mac_set_handled(netdev, addr->sa_data),
1091 msecs_to_jiffies(2500));
1092
1093 /* If ret < 0 then it means wait was interrupted.
1094 * If ret == 0 then it means we got a timeout.
1095 * else it means we got response for set MAC from PF,
1096 * check if netdev MAC was updated to requested MAC,
1097 * if yes then set MAC succeeded otherwise it failed return -EACCES
1098 */
1099 if (ret < 0)
1100 return ret;
1101
1102 if (!ret)
1103 return -EAGAIN;
1104
1105 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1106 return -EACCES;
1107
1108 return 0;
1109}
1110
1111/**
1112 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1113 * @netdev: the netdevice
1114 * @addr: address to add
1115 *
1116 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1117 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1118 */
1119static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1120{
1121 struct iavf_adapter *adapter = netdev_priv(netdev);
1122
1123 if (iavf_add_filter(adapter, addr))
1124 return 0;
1125 else
1126 return -ENOMEM;
1127}
1128
1129/**
1130 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1131 * @netdev: the netdevice
1132 * @addr: address to add
1133 *
1134 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1135 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1136 */
1137static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1138{
1139 struct iavf_adapter *adapter = netdev_priv(netdev);
1140 struct iavf_mac_filter *f;
1141
1142 /* Under some circumstances, we might receive a request to delete
1143 * our own device address from our uc list. Because we store the
1144 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1145 * such requests and not delete our device address from this list.
1146 */
1147 if (ether_addr_equal(addr, netdev->dev_addr))
1148 return 0;
1149
1150 f = iavf_find_filter(adapter, addr);
1151 if (f) {
1152 f->remove = true;
1153 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1154 }
1155 return 0;
1156}
1157
1158/**
1159 * iavf_set_rx_mode - NDO callback to set the netdev filters
1160 * @netdev: network interface device structure
1161 **/
1162static void iavf_set_rx_mode(struct net_device *netdev)
1163{
1164 struct iavf_adapter *adapter = netdev_priv(netdev);
1165
1166 spin_lock_bh(&adapter->mac_vlan_list_lock);
1167 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1168 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1169 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1170
1171 if (netdev->flags & IFF_PROMISC &&
1172 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1173 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1174 else if (!(netdev->flags & IFF_PROMISC) &&
1175 adapter->flags & IAVF_FLAG_PROMISC_ON)
1176 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1177
1178 if (netdev->flags & IFF_ALLMULTI &&
1179 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1180 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1181 else if (!(netdev->flags & IFF_ALLMULTI) &&
1182 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1183 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1184}
1185
1186/**
1187 * iavf_napi_enable_all - enable NAPI on all queue vectors
1188 * @adapter: board private structure
1189 **/
1190static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1191{
1192 int q_idx;
1193 struct iavf_q_vector *q_vector;
1194 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1195
1196 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1197 struct napi_struct *napi;
1198
1199 q_vector = &adapter->q_vectors[q_idx];
1200 napi = &q_vector->napi;
1201 napi_enable(napi);
1202 }
1203}
1204
1205/**
1206 * iavf_napi_disable_all - disable NAPI on all queue vectors
1207 * @adapter: board private structure
1208 **/
1209static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1210{
1211 int q_idx;
1212 struct iavf_q_vector *q_vector;
1213 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1214
1215 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1216 q_vector = &adapter->q_vectors[q_idx];
1217 napi_disable(&q_vector->napi);
1218 }
1219}
1220
1221/**
1222 * iavf_configure - set up transmit and receive data structures
1223 * @adapter: board private structure
1224 **/
1225static void iavf_configure(struct iavf_adapter *adapter)
1226{
1227 struct net_device *netdev = adapter->netdev;
1228 int i;
1229
1230 iavf_set_rx_mode(netdev);
1231
1232 iavf_configure_tx(adapter);
1233 iavf_configure_rx(adapter);
1234 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1235
1236 for (i = 0; i < adapter->num_active_queues; i++) {
1237 struct iavf_ring *ring = &adapter->rx_rings[i];
1238
1239 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1240 }
1241}
1242
1243/**
1244 * iavf_up_complete - Finish the last steps of bringing up a connection
1245 * @adapter: board private structure
1246 *
1247 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1248 **/
1249static void iavf_up_complete(struct iavf_adapter *adapter)
1250{
1251 iavf_change_state(adapter, __IAVF_RUNNING);
1252 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1253
1254 iavf_napi_enable_all(adapter);
1255
1256 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1257 if (CLIENT_ENABLED(adapter))
1258 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1259 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1260}
1261
1262/**
1263 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1264 * yet and mark other to be removed.
1265 * @adapter: board private structure
1266 **/
1267static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1268{
1269 struct iavf_vlan_filter *vlf, *vlftmp;
1270 struct iavf_mac_filter *f, *ftmp;
1271
1272 spin_lock_bh(&adapter->mac_vlan_list_lock);
1273 /* clear the sync flag on all filters */
1274 __dev_uc_unsync(adapter->netdev, NULL);
1275 __dev_mc_unsync(adapter->netdev, NULL);
1276
1277 /* remove all MAC filters */
1278 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1279 list) {
1280 if (f->add) {
1281 list_del(&f->list);
1282 kfree(f);
1283 } else {
1284 f->remove = true;
1285 }
1286 }
1287
1288 /* remove all VLAN filters */
1289 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1290 list) {
1291 if (vlf->add) {
1292 list_del(&vlf->list);
1293 kfree(vlf);
1294 } else {
1295 vlf->remove = true;
1296 }
1297 }
1298 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1299}
1300
1301/**
1302 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1303 * mark other to be removed.
1304 * @adapter: board private structure
1305 **/
1306static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1307{
1308 struct iavf_cloud_filter *cf, *cftmp;
1309
1310 /* remove all cloud filters */
1311 spin_lock_bh(&adapter->cloud_filter_list_lock);
1312 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1313 list) {
1314 if (cf->add) {
1315 list_del(&cf->list);
1316 kfree(cf);
1317 adapter->num_cloud_filters--;
1318 } else {
1319 cf->del = true;
1320 }
1321 }
1322 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1323}
1324
1325/**
1326 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1327 * other to be removed.
1328 * @adapter: board private structure
1329 **/
1330static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1331{
1332 struct iavf_fdir_fltr *fdir, *fdirtmp;
1333
1334 /* remove all Flow Director filters */
1335 spin_lock_bh(&adapter->fdir_fltr_lock);
1336 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
1337 list) {
1338 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339 list_del(&fdir->list);
1340 kfree(fdir);
1341 adapter->fdir_active_fltr--;
1342 } else {
1343 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1344 }
1345 }
1346 spin_unlock_bh(&adapter->fdir_fltr_lock);
1347}
1348
1349/**
1350 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1351 * other to be removed.
1352 * @adapter: board private structure
1353 **/
1354static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1355{
1356 struct iavf_adv_rss *rss, *rsstmp;
1357
1358 /* remove all advance RSS configuration */
1359 spin_lock_bh(&adapter->adv_rss_lock);
1360 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1361 list) {
1362 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1363 list_del(&rss->list);
1364 kfree(rss);
1365 } else {
1366 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1367 }
1368 }
1369 spin_unlock_bh(&adapter->adv_rss_lock);
1370}
1371
1372/**
1373 * iavf_down - Shutdown the connection processing
1374 * @adapter: board private structure
1375 *
1376 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1377 **/
1378void iavf_down(struct iavf_adapter *adapter)
1379{
1380 struct net_device *netdev = adapter->netdev;
1381
1382 if (adapter->state <= __IAVF_DOWN_PENDING)
1383 return;
1384
1385 netif_carrier_off(netdev);
1386 netif_tx_disable(netdev);
1387 adapter->link_up = false;
1388 iavf_napi_disable_all(adapter);
1389 iavf_irq_disable(adapter);
1390
1391 iavf_clear_mac_vlan_filters(adapter);
1392 iavf_clear_cloud_filters(adapter);
1393 iavf_clear_fdir_filters(adapter);
1394 iavf_clear_adv_rss_conf(adapter);
1395
1396 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1397 /* cancel any current operation */
1398 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1399 /* Schedule operations to close down the HW. Don't wait
1400 * here for this to complete. The watchdog is still running
1401 * and it will take care of this.
1402 */
1403 if (!list_empty(&adapter->mac_filter_list))
1404 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1405 if (!list_empty(&adapter->vlan_filter_list))
1406 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1407 if (!list_empty(&adapter->cloud_filter_list))
1408 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1409 if (!list_empty(&adapter->fdir_list_head))
1410 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1411 if (!list_empty(&adapter->adv_rss_list_head))
1412 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1413 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1414 }
1415
1416 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1417}
1418
1419/**
1420 * iavf_acquire_msix_vectors - Setup the MSIX capability
1421 * @adapter: board private structure
1422 * @vectors: number of vectors to request
1423 *
1424 * Work with the OS to set up the MSIX vectors needed.
1425 *
1426 * Returns 0 on success, negative on failure
1427 **/
1428static int
1429iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1430{
1431 int err, vector_threshold;
1432
1433 /* We'll want at least 3 (vector_threshold):
1434 * 0) Other (Admin Queue and link, mostly)
1435 * 1) TxQ[0] Cleanup
1436 * 2) RxQ[0] Cleanup
1437 */
1438 vector_threshold = MIN_MSIX_COUNT;
1439
1440 /* The more we get, the more we will assign to Tx/Rx Cleanup
1441 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1442 * Right now, we simply care about how many we'll get; we'll
1443 * set them up later while requesting irq's.
1444 */
1445 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1446 vector_threshold, vectors);
1447 if (err < 0) {
1448 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1449 kfree(adapter->msix_entries);
1450 adapter->msix_entries = NULL;
1451 return err;
1452 }
1453
1454 /* Adjust for only the vectors we'll use, which is minimum
1455 * of max_msix_q_vectors + NONQ_VECS, or the number of
1456 * vectors we were allocated.
1457 */
1458 adapter->num_msix_vectors = err;
1459 return 0;
1460}
1461
1462/**
1463 * iavf_free_queues - Free memory for all rings
1464 * @adapter: board private structure to initialize
1465 *
1466 * Free all of the memory associated with queue pairs.
1467 **/
1468static void iavf_free_queues(struct iavf_adapter *adapter)
1469{
1470 if (!adapter->vsi_res)
1471 return;
1472 adapter->num_active_queues = 0;
1473 kfree(adapter->tx_rings);
1474 adapter->tx_rings = NULL;
1475 kfree(adapter->rx_rings);
1476 adapter->rx_rings = NULL;
1477}
1478
1479/**
1480 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1481 * @adapter: board private structure
1482 *
1483 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1484 * stripped in certain descriptor fields. Instead of checking the offload
1485 * capability bits in the hot path, cache the location the ring specific
1486 * flags.
1487 */
1488void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1489{
1490 int i;
1491
1492 for (i = 0; i < adapter->num_active_queues; i++) {
1493 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1494 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1495
1496 /* prevent multiple L2TAG bits being set after VFR */
1497 tx_ring->flags &=
1498 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1499 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1500 rx_ring->flags &=
1501 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1502 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1503
1504 if (VLAN_ALLOWED(adapter)) {
1505 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1506 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1507 } else if (VLAN_V2_ALLOWED(adapter)) {
1508 struct virtchnl_vlan_supported_caps *stripping_support;
1509 struct virtchnl_vlan_supported_caps *insertion_support;
1510
1511 stripping_support =
1512 &adapter->vlan_v2_caps.offloads.stripping_support;
1513 insertion_support =
1514 &adapter->vlan_v2_caps.offloads.insertion_support;
1515
1516 if (stripping_support->outer) {
1517 if (stripping_support->outer &
1518 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1519 rx_ring->flags |=
1520 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1521 else if (stripping_support->outer &
1522 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1523 rx_ring->flags |=
1524 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1525 } else if (stripping_support->inner) {
1526 if (stripping_support->inner &
1527 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1528 rx_ring->flags |=
1529 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1530 else if (stripping_support->inner &
1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1532 rx_ring->flags |=
1533 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1534 }
1535
1536 if (insertion_support->outer) {
1537 if (insertion_support->outer &
1538 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1539 tx_ring->flags |=
1540 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1541 else if (insertion_support->outer &
1542 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1543 tx_ring->flags |=
1544 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1545 } else if (insertion_support->inner) {
1546 if (insertion_support->inner &
1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1548 tx_ring->flags |=
1549 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1550 else if (insertion_support->inner &
1551 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1552 tx_ring->flags |=
1553 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1554 }
1555 }
1556 }
1557}
1558
1559/**
1560 * iavf_alloc_queues - Allocate memory for all rings
1561 * @adapter: board private structure to initialize
1562 *
1563 * We allocate one ring per queue at run-time since we don't know the
1564 * number of queues at compile-time. The polling_netdev array is
1565 * intended for Multiqueue, but should work fine with a single queue.
1566 **/
1567static int iavf_alloc_queues(struct iavf_adapter *adapter)
1568{
1569 int i, num_active_queues;
1570
1571 /* If we're in reset reallocating queues we don't actually know yet for
1572 * certain the PF gave us the number of queues we asked for but we'll
1573 * assume it did. Once basic reset is finished we'll confirm once we
1574 * start negotiating config with PF.
1575 */
1576 if (adapter->num_req_queues)
1577 num_active_queues = adapter->num_req_queues;
1578 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1579 adapter->num_tc)
1580 num_active_queues = adapter->ch_config.total_qps;
1581 else
1582 num_active_queues = min_t(int,
1583 adapter->vsi_res->num_queue_pairs,
1584 (int)(num_online_cpus()));
1585
1586
1587 adapter->tx_rings = kcalloc(num_active_queues,
1588 sizeof(struct iavf_ring), GFP_KERNEL);
1589 if (!adapter->tx_rings)
1590 goto err_out;
1591 adapter->rx_rings = kcalloc(num_active_queues,
1592 sizeof(struct iavf_ring), GFP_KERNEL);
1593 if (!adapter->rx_rings)
1594 goto err_out;
1595
1596 for (i = 0; i < num_active_queues; i++) {
1597 struct iavf_ring *tx_ring;
1598 struct iavf_ring *rx_ring;
1599
1600 tx_ring = &adapter->tx_rings[i];
1601
1602 tx_ring->queue_index = i;
1603 tx_ring->netdev = adapter->netdev;
1604 tx_ring->dev = &adapter->pdev->dev;
1605 tx_ring->count = adapter->tx_desc_count;
1606 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1607 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1608 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1609
1610 rx_ring = &adapter->rx_rings[i];
1611 rx_ring->queue_index = i;
1612 rx_ring->netdev = adapter->netdev;
1613 rx_ring->dev = &adapter->pdev->dev;
1614 rx_ring->count = adapter->rx_desc_count;
1615 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1616 }
1617
1618 adapter->num_active_queues = num_active_queues;
1619
1620 iavf_set_queue_vlan_tag_loc(adapter);
1621
1622 return 0;
1623
1624err_out:
1625 iavf_free_queues(adapter);
1626 return -ENOMEM;
1627}
1628
1629/**
1630 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1631 * @adapter: board private structure to initialize
1632 *
1633 * Attempt to configure the interrupts using the best available
1634 * capabilities of the hardware and the kernel.
1635 **/
1636static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1637{
1638 int vector, v_budget;
1639 int pairs = 0;
1640 int err = 0;
1641
1642 if (!adapter->vsi_res) {
1643 err = -EIO;
1644 goto out;
1645 }
1646 pairs = adapter->num_active_queues;
1647
1648 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1649 * us much good if we have more vectors than CPUs. However, we already
1650 * limit the total number of queues by the number of CPUs so we do not
1651 * need any further limiting here.
1652 */
1653 v_budget = min_t(int, pairs + NONQ_VECS,
1654 (int)adapter->vf_res->max_vectors);
1655
1656 adapter->msix_entries = kcalloc(v_budget,
1657 sizeof(struct msix_entry), GFP_KERNEL);
1658 if (!adapter->msix_entries) {
1659 err = -ENOMEM;
1660 goto out;
1661 }
1662
1663 for (vector = 0; vector < v_budget; vector++)
1664 adapter->msix_entries[vector].entry = vector;
1665
1666 err = iavf_acquire_msix_vectors(adapter, v_budget);
1667
1668out:
1669 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1670 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1671 return err;
1672}
1673
1674/**
1675 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1676 * @adapter: board private structure
1677 *
1678 * Return 0 on success, negative on failure
1679 **/
1680static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1681{
1682 struct iavf_aqc_get_set_rss_key_data *rss_key =
1683 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1684 struct iavf_hw *hw = &adapter->hw;
1685 enum iavf_status status;
1686
1687 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1688 /* bail because we already have a command pending */
1689 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1690 adapter->current_op);
1691 return -EBUSY;
1692 }
1693
1694 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1695 if (status) {
1696 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1697 iavf_stat_str(hw, status),
1698 iavf_aq_str(hw, hw->aq.asq_last_status));
1699 return iavf_status_to_errno(status);
1700
1701 }
1702
1703 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1704 adapter->rss_lut, adapter->rss_lut_size);
1705 if (status) {
1706 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1707 iavf_stat_str(hw, status),
1708 iavf_aq_str(hw, hw->aq.asq_last_status));
1709 return iavf_status_to_errno(status);
1710 }
1711
1712 return 0;
1713
1714}
1715
1716/**
1717 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1718 * @adapter: board private structure
1719 *
1720 * Returns 0 on success, negative on failure
1721 **/
1722static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1723{
1724 struct iavf_hw *hw = &adapter->hw;
1725 u32 *dw;
1726 u16 i;
1727
1728 dw = (u32 *)adapter->rss_key;
1729 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1730 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1731
1732 dw = (u32 *)adapter->rss_lut;
1733 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1734 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1735
1736 iavf_flush(hw);
1737
1738 return 0;
1739}
1740
1741/**
1742 * iavf_config_rss - Configure RSS keys and lut
1743 * @adapter: board private structure
1744 *
1745 * Returns 0 on success, negative on failure
1746 **/
1747int iavf_config_rss(struct iavf_adapter *adapter)
1748{
1749
1750 if (RSS_PF(adapter)) {
1751 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1752 IAVF_FLAG_AQ_SET_RSS_KEY;
1753 return 0;
1754 } else if (RSS_AQ(adapter)) {
1755 return iavf_config_rss_aq(adapter);
1756 } else {
1757 return iavf_config_rss_reg(adapter);
1758 }
1759}
1760
1761/**
1762 * iavf_fill_rss_lut - Fill the lut with default values
1763 * @adapter: board private structure
1764 **/
1765static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1766{
1767 u16 i;
1768
1769 for (i = 0; i < adapter->rss_lut_size; i++)
1770 adapter->rss_lut[i] = i % adapter->num_active_queues;
1771}
1772
1773/**
1774 * iavf_init_rss - Prepare for RSS
1775 * @adapter: board private structure
1776 *
1777 * Return 0 on success, negative on failure
1778 **/
1779static int iavf_init_rss(struct iavf_adapter *adapter)
1780{
1781 struct iavf_hw *hw = &adapter->hw;
1782
1783 if (!RSS_PF(adapter)) {
1784 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1785 if (adapter->vf_res->vf_cap_flags &
1786 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1787 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1788 else
1789 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1790
1791 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1792 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1793 }
1794
1795 iavf_fill_rss_lut(adapter);
1796 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1797
1798 return iavf_config_rss(adapter);
1799}
1800
1801/**
1802 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1803 * @adapter: board private structure to initialize
1804 *
1805 * We allocate one q_vector per queue interrupt. If allocation fails we
1806 * return -ENOMEM.
1807 **/
1808static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1809{
1810 int q_idx = 0, num_q_vectors;
1811 struct iavf_q_vector *q_vector;
1812
1813 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1814 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1815 GFP_KERNEL);
1816 if (!adapter->q_vectors)
1817 return -ENOMEM;
1818
1819 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1820 q_vector = &adapter->q_vectors[q_idx];
1821 q_vector->adapter = adapter;
1822 q_vector->vsi = &adapter->vsi;
1823 q_vector->v_idx = q_idx;
1824 q_vector->reg_idx = q_idx;
1825 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1826 netif_napi_add(adapter->netdev, &q_vector->napi,
1827 iavf_napi_poll);
1828 }
1829
1830 return 0;
1831}
1832
1833/**
1834 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1835 * @adapter: board private structure to initialize
1836 *
1837 * This function frees the memory allocated to the q_vectors. In addition if
1838 * NAPI is enabled it will delete any references to the NAPI struct prior
1839 * to freeing the q_vector.
1840 **/
1841static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1842{
1843 int q_idx, num_q_vectors;
1844 int napi_vectors;
1845
1846 if (!adapter->q_vectors)
1847 return;
1848
1849 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1850 napi_vectors = adapter->num_active_queues;
1851
1852 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1853 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1854
1855 if (q_idx < napi_vectors)
1856 netif_napi_del(&q_vector->napi);
1857 }
1858 kfree(adapter->q_vectors);
1859 adapter->q_vectors = NULL;
1860}
1861
1862/**
1863 * iavf_reset_interrupt_capability - Reset MSIX setup
1864 * @adapter: board private structure
1865 *
1866 **/
1867void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1868{
1869 if (!adapter->msix_entries)
1870 return;
1871
1872 pci_disable_msix(adapter->pdev);
1873 kfree(adapter->msix_entries);
1874 adapter->msix_entries = NULL;
1875}
1876
1877/**
1878 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1879 * @adapter: board private structure to initialize
1880 *
1881 **/
1882int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1883{
1884 int err;
1885
1886 err = iavf_alloc_queues(adapter);
1887 if (err) {
1888 dev_err(&adapter->pdev->dev,
1889 "Unable to allocate memory for queues\n");
1890 goto err_alloc_queues;
1891 }
1892
1893 rtnl_lock();
1894 err = iavf_set_interrupt_capability(adapter);
1895 rtnl_unlock();
1896 if (err) {
1897 dev_err(&adapter->pdev->dev,
1898 "Unable to setup interrupt capabilities\n");
1899 goto err_set_interrupt;
1900 }
1901
1902 err = iavf_alloc_q_vectors(adapter);
1903 if (err) {
1904 dev_err(&adapter->pdev->dev,
1905 "Unable to allocate memory for queue vectors\n");
1906 goto err_alloc_q_vectors;
1907 }
1908
1909 /* If we've made it so far while ADq flag being ON, then we haven't
1910 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911 * resources have been allocated in the reset path.
1912 * Now we can truly claim that ADq is enabled.
1913 */
1914 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915 adapter->num_tc)
1916 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917 adapter->num_tc);
1918
1919 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921 adapter->num_active_queues);
1922
1923 return 0;
1924err_alloc_q_vectors:
1925 iavf_reset_interrupt_capability(adapter);
1926err_set_interrupt:
1927 iavf_free_queues(adapter);
1928err_alloc_queues:
1929 return err;
1930}
1931
1932/**
1933 * iavf_free_rss - Free memory used by RSS structs
1934 * @adapter: board private structure
1935 **/
1936static void iavf_free_rss(struct iavf_adapter *adapter)
1937{
1938 kfree(adapter->rss_key);
1939 adapter->rss_key = NULL;
1940
1941 kfree(adapter->rss_lut);
1942 adapter->rss_lut = NULL;
1943}
1944
1945/**
1946 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1947 * @adapter: board private structure
1948 *
1949 * Returns 0 on success, negative on failure
1950 **/
1951static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1952{
1953 struct net_device *netdev = adapter->netdev;
1954 int err;
1955
1956 if (netif_running(netdev))
1957 iavf_free_traffic_irqs(adapter);
1958 iavf_free_misc_irq(adapter);
1959 iavf_reset_interrupt_capability(adapter);
1960 iavf_free_q_vectors(adapter);
1961 iavf_free_queues(adapter);
1962
1963 err = iavf_init_interrupt_scheme(adapter);
1964 if (err)
1965 goto err;
1966
1967 netif_tx_stop_all_queues(netdev);
1968
1969 err = iavf_request_misc_irq(adapter);
1970 if (err)
1971 goto err;
1972
1973 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1974
1975 iavf_map_rings_to_vectors(adapter);
1976err:
1977 return err;
1978}
1979
1980/**
1981 * iavf_process_aq_command - process aq_required flags
1982 * and sends aq command
1983 * @adapter: pointer to iavf adapter structure
1984 *
1985 * Returns 0 on success
1986 * Returns error code if no command was sent
1987 * or error code if the command failed.
1988 **/
1989static int iavf_process_aq_command(struct iavf_adapter *adapter)
1990{
1991 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1992 return iavf_send_vf_config_msg(adapter);
1993 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1994 return iavf_send_vf_offload_vlan_v2_msg(adapter);
1995 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1996 iavf_disable_queues(adapter);
1997 return 0;
1998 }
1999
2000 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2001 iavf_map_queues(adapter);
2002 return 0;
2003 }
2004
2005 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2006 iavf_add_ether_addrs(adapter);
2007 return 0;
2008 }
2009
2010 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2011 iavf_add_vlans(adapter);
2012 return 0;
2013 }
2014
2015 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2016 iavf_del_ether_addrs(adapter);
2017 return 0;
2018 }
2019
2020 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2021 iavf_del_vlans(adapter);
2022 return 0;
2023 }
2024
2025 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2026 iavf_enable_vlan_stripping(adapter);
2027 return 0;
2028 }
2029
2030 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2031 iavf_disable_vlan_stripping(adapter);
2032 return 0;
2033 }
2034
2035 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2036 iavf_configure_queues(adapter);
2037 return 0;
2038 }
2039
2040 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2041 iavf_enable_queues(adapter);
2042 return 0;
2043 }
2044
2045 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2046 /* This message goes straight to the firmware, not the
2047 * PF, so we don't have to set current_op as we will
2048 * not get a response through the ARQ.
2049 */
2050 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2051 return 0;
2052 }
2053 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2054 iavf_get_hena(adapter);
2055 return 0;
2056 }
2057 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2058 iavf_set_hena(adapter);
2059 return 0;
2060 }
2061 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2062 iavf_set_rss_key(adapter);
2063 return 0;
2064 }
2065 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2066 iavf_set_rss_lut(adapter);
2067 return 0;
2068 }
2069
2070 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
2071 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
2072 FLAG_VF_MULTICAST_PROMISC);
2073 return 0;
2074 }
2075
2076 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
2077 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
2078 return 0;
2079 }
2080 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
2081 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
2082 iavf_set_promiscuous(adapter, 0);
2083 return 0;
2084 }
2085
2086 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2087 iavf_enable_channels(adapter);
2088 return 0;
2089 }
2090
2091 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2092 iavf_disable_channels(adapter);
2093 return 0;
2094 }
2095 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2096 iavf_add_cloud_filter(adapter);
2097 return 0;
2098 }
2099
2100 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2101 iavf_del_cloud_filter(adapter);
2102 return 0;
2103 }
2104 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2105 iavf_del_cloud_filter(adapter);
2106 return 0;
2107 }
2108 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2109 iavf_add_cloud_filter(adapter);
2110 return 0;
2111 }
2112 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2113 iavf_add_fdir_filter(adapter);
2114 return IAVF_SUCCESS;
2115 }
2116 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2117 iavf_del_fdir_filter(adapter);
2118 return IAVF_SUCCESS;
2119 }
2120 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2121 iavf_add_adv_rss_cfg(adapter);
2122 return 0;
2123 }
2124 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2125 iavf_del_adv_rss_cfg(adapter);
2126 return 0;
2127 }
2128 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2129 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2130 return 0;
2131 }
2132 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2133 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2134 return 0;
2135 }
2136 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2137 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2138 return 0;
2139 }
2140 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2141 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2142 return 0;
2143 }
2144 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2145 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2146 return 0;
2147 }
2148 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2149 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2150 return 0;
2151 }
2152 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2153 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2154 return 0;
2155 }
2156 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2157 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2158 return 0;
2159 }
2160
2161 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2162 iavf_request_stats(adapter);
2163 return 0;
2164 }
2165
2166 return -EAGAIN;
2167}
2168
2169/**
2170 * iavf_set_vlan_offload_features - set VLAN offload configuration
2171 * @adapter: board private structure
2172 * @prev_features: previous features used for comparison
2173 * @features: updated features used for configuration
2174 *
2175 * Set the aq_required bit(s) based on the requested features passed in to
2176 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2177 * the watchdog if any changes are requested to expedite the request via
2178 * virtchnl.
2179 **/
2180void
2181iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2182 netdev_features_t prev_features,
2183 netdev_features_t features)
2184{
2185 bool enable_stripping = true, enable_insertion = true;
2186 u16 vlan_ethertype = 0;
2187 u64 aq_required = 0;
2188
2189 /* keep cases separate because one ethertype for offloads can be
2190 * disabled at the same time as another is disabled, so check for an
2191 * enabled ethertype first, then check for disabled. Default to
2192 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2193 * stripping.
2194 */
2195 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2196 vlan_ethertype = ETH_P_8021AD;
2197 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2198 vlan_ethertype = ETH_P_8021Q;
2199 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2200 vlan_ethertype = ETH_P_8021AD;
2201 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2202 vlan_ethertype = ETH_P_8021Q;
2203 else
2204 vlan_ethertype = ETH_P_8021Q;
2205
2206 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2207 enable_stripping = false;
2208 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2209 enable_insertion = false;
2210
2211 if (VLAN_ALLOWED(adapter)) {
2212 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2213 * stripping via virtchnl. VLAN insertion can be toggled on the
2214 * netdev, but it doesn't require a virtchnl message
2215 */
2216 if (enable_stripping)
2217 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2218 else
2219 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2220
2221 } else if (VLAN_V2_ALLOWED(adapter)) {
2222 switch (vlan_ethertype) {
2223 case ETH_P_8021Q:
2224 if (enable_stripping)
2225 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2226 else
2227 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2228
2229 if (enable_insertion)
2230 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2231 else
2232 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2233 break;
2234 case ETH_P_8021AD:
2235 if (enable_stripping)
2236 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2237 else
2238 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2239
2240 if (enable_insertion)
2241 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2242 else
2243 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2244 break;
2245 }
2246 }
2247
2248 if (aq_required) {
2249 adapter->aq_required |= aq_required;
2250 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
2251 }
2252}
2253
2254/**
2255 * iavf_startup - first step of driver startup
2256 * @adapter: board private structure
2257 *
2258 * Function process __IAVF_STARTUP driver state.
2259 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2260 * when fails the state is changed to __IAVF_INIT_FAILED
2261 **/
2262static void iavf_startup(struct iavf_adapter *adapter)
2263{
2264 struct pci_dev *pdev = adapter->pdev;
2265 struct iavf_hw *hw = &adapter->hw;
2266 enum iavf_status status;
2267 int ret;
2268
2269 WARN_ON(adapter->state != __IAVF_STARTUP);
2270
2271 /* driver loaded, probe complete */
2272 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2273 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2274 status = iavf_set_mac_type(hw);
2275 if (status) {
2276 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2277 goto err;
2278 }
2279
2280 ret = iavf_check_reset_complete(hw);
2281 if (ret) {
2282 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2283 ret);
2284 goto err;
2285 }
2286 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2287 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2288 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2289 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2290
2291 status = iavf_init_adminq(hw);
2292 if (status) {
2293 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2294 status);
2295 goto err;
2296 }
2297 ret = iavf_send_api_ver(adapter);
2298 if (ret) {
2299 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2300 iavf_shutdown_adminq(hw);
2301 goto err;
2302 }
2303 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2304 return;
2305err:
2306 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2307}
2308
2309/**
2310 * iavf_init_version_check - second step of driver startup
2311 * @adapter: board private structure
2312 *
2313 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2314 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2315 * when fails the state is changed to __IAVF_INIT_FAILED
2316 **/
2317static void iavf_init_version_check(struct iavf_adapter *adapter)
2318{
2319 struct pci_dev *pdev = adapter->pdev;
2320 struct iavf_hw *hw = &adapter->hw;
2321 int err = -EAGAIN;
2322
2323 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2324
2325 if (!iavf_asq_done(hw)) {
2326 dev_err(&pdev->dev, "Admin queue command never completed\n");
2327 iavf_shutdown_adminq(hw);
2328 iavf_change_state(adapter, __IAVF_STARTUP);
2329 goto err;
2330 }
2331
2332 /* aq msg sent, awaiting reply */
2333 err = iavf_verify_api_ver(adapter);
2334 if (err) {
2335 if (err == -EALREADY)
2336 err = iavf_send_api_ver(adapter);
2337 else
2338 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2339 adapter->pf_version.major,
2340 adapter->pf_version.minor,
2341 VIRTCHNL_VERSION_MAJOR,
2342 VIRTCHNL_VERSION_MINOR);
2343 goto err;
2344 }
2345 err = iavf_send_vf_config_msg(adapter);
2346 if (err) {
2347 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2348 err);
2349 goto err;
2350 }
2351 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2352 return;
2353err:
2354 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2355}
2356
2357/**
2358 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2359 * @adapter: board private structure
2360 */
2361int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2362{
2363 int i, num_req_queues = adapter->num_req_queues;
2364 struct iavf_vsi *vsi = &adapter->vsi;
2365
2366 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2367 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2368 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2369 }
2370 if (!adapter->vsi_res) {
2371 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2372 return -ENODEV;
2373 }
2374
2375 if (num_req_queues &&
2376 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2377 /* Problem. The PF gave us fewer queues than what we had
2378 * negotiated in our request. Need a reset to see if we can't
2379 * get back to a working state.
2380 */
2381 dev_err(&adapter->pdev->dev,
2382 "Requested %d queues, but PF only gave us %d.\n",
2383 num_req_queues,
2384 adapter->vsi_res->num_queue_pairs);
2385 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2386 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2387 iavf_schedule_reset(adapter);
2388
2389 return -EAGAIN;
2390 }
2391 adapter->num_req_queues = 0;
2392 adapter->vsi.id = adapter->vsi_res->vsi_id;
2393
2394 adapter->vsi.back = adapter;
2395 adapter->vsi.base_vector = 1;
2396 vsi->netdev = adapter->netdev;
2397 vsi->qs_handle = adapter->vsi_res->qset_handle;
2398 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2399 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2400 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2401 } else {
2402 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2403 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2404 }
2405
2406 return 0;
2407}
2408
2409/**
2410 * iavf_init_get_resources - third step of driver startup
2411 * @adapter: board private structure
2412 *
2413 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2414 * finishes driver initialization procedure.
2415 * When success the state is changed to __IAVF_DOWN
2416 * when fails the state is changed to __IAVF_INIT_FAILED
2417 **/
2418static void iavf_init_get_resources(struct iavf_adapter *adapter)
2419{
2420 struct pci_dev *pdev = adapter->pdev;
2421 struct iavf_hw *hw = &adapter->hw;
2422 int err;
2423
2424 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2425 /* aq msg sent, awaiting reply */
2426 if (!adapter->vf_res) {
2427 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2428 GFP_KERNEL);
2429 if (!adapter->vf_res) {
2430 err = -ENOMEM;
2431 goto err;
2432 }
2433 }
2434 err = iavf_get_vf_config(adapter);
2435 if (err == -EALREADY) {
2436 err = iavf_send_vf_config_msg(adapter);
2437 goto err;
2438 } else if (err == -EINVAL) {
2439 /* We only get -EINVAL if the device is in a very bad
2440 * state or if we've been disabled for previous bad
2441 * behavior. Either way, we're done now.
2442 */
2443 iavf_shutdown_adminq(hw);
2444 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2445 return;
2446 }
2447 if (err) {
2448 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2449 goto err_alloc;
2450 }
2451
2452 err = iavf_parse_vf_resource_msg(adapter);
2453 if (err) {
2454 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2455 err);
2456 goto err_alloc;
2457 }
2458 /* Some features require additional messages to negotiate extended
2459 * capabilities. These are processed in sequence by the
2460 * __IAVF_INIT_EXTENDED_CAPS driver state.
2461 */
2462 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2463
2464 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2465 return;
2466
2467err_alloc:
2468 kfree(adapter->vf_res);
2469 adapter->vf_res = NULL;
2470err:
2471 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2472}
2473
2474/**
2475 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2476 * @adapter: board private structure
2477 *
2478 * Function processes send of the extended VLAN V2 capability message to the
2479 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2480 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2481 */
2482static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2483{
2484 int ret;
2485
2486 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2487
2488 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2489 if (ret && ret == -EOPNOTSUPP) {
2490 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2491 * we did not send the capability exchange message and do not
2492 * expect a response.
2493 */
2494 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2495 }
2496
2497 /* We sent the message, so move on to the next step */
2498 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2499}
2500
2501/**
2502 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2503 * @adapter: board private structure
2504 *
2505 * Function processes receipt of the extended VLAN V2 capability message from
2506 * the PF.
2507 **/
2508static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2509{
2510 int ret;
2511
2512 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2513
2514 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2515
2516 ret = iavf_get_vf_vlan_v2_caps(adapter);
2517 if (ret)
2518 goto err;
2519
2520 /* We've processed receipt of the VLAN V2 caps message */
2521 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2522 return;
2523err:
2524 /* We didn't receive a reply. Make sure we try sending again when
2525 * __IAVF_INIT_FAILED attempts to recover.
2526 */
2527 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2528 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2529}
2530
2531/**
2532 * iavf_init_process_extended_caps - Part of driver startup
2533 * @adapter: board private structure
2534 *
2535 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2536 * handles negotiating capabilities for features which require an additional
2537 * message.
2538 *
2539 * Once all extended capabilities exchanges are finished, the driver will
2540 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2541 */
2542static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2543{
2544 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2545
2546 /* Process capability exchange for VLAN V2 */
2547 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2548 iavf_init_send_offload_vlan_v2_caps(adapter);
2549 return;
2550 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2551 iavf_init_recv_offload_vlan_v2_caps(adapter);
2552 return;
2553 }
2554
2555 /* When we reach here, no further extended capabilities exchanges are
2556 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2557 */
2558 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2559}
2560
2561/**
2562 * iavf_init_config_adapter - last part of driver startup
2563 * @adapter: board private structure
2564 *
2565 * After all the supported capabilities are negotiated, then the
2566 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2567 */
2568static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2569{
2570 struct net_device *netdev = adapter->netdev;
2571 struct pci_dev *pdev = adapter->pdev;
2572 int err;
2573
2574 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2575
2576 if (iavf_process_config(adapter))
2577 goto err;
2578
2579 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2580
2581 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2582
2583 netdev->netdev_ops = &iavf_netdev_ops;
2584 iavf_set_ethtool_ops(netdev);
2585 netdev->watchdog_timeo = 5 * HZ;
2586
2587 /* MTU range: 68 - 9710 */
2588 netdev->min_mtu = ETH_MIN_MTU;
2589 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2590
2591 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2592 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2593 adapter->hw.mac.addr);
2594 eth_hw_addr_random(netdev);
2595 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2596 } else {
2597 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2598 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2599 }
2600
2601 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2602 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2603 err = iavf_init_interrupt_scheme(adapter);
2604 if (err)
2605 goto err_sw_init;
2606 iavf_map_rings_to_vectors(adapter);
2607 if (adapter->vf_res->vf_cap_flags &
2608 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2609 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2610
2611 err = iavf_request_misc_irq(adapter);
2612 if (err)
2613 goto err_sw_init;
2614
2615 netif_carrier_off(netdev);
2616 adapter->link_up = false;
2617
2618 /* set the semaphore to prevent any callbacks after device registration
2619 * up to time when state of driver will be set to __IAVF_DOWN
2620 */
2621 rtnl_lock();
2622 if (!adapter->netdev_registered) {
2623 err = register_netdevice(netdev);
2624 if (err) {
2625 rtnl_unlock();
2626 goto err_register;
2627 }
2628 }
2629
2630 adapter->netdev_registered = true;
2631
2632 netif_tx_stop_all_queues(netdev);
2633 if (CLIENT_ALLOWED(adapter)) {
2634 err = iavf_lan_add_device(adapter);
2635 if (err)
2636 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2637 err);
2638 }
2639 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2640 if (netdev->features & NETIF_F_GRO)
2641 dev_info(&pdev->dev, "GRO is enabled\n");
2642
2643 iavf_change_state(adapter, __IAVF_DOWN);
2644 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2645 rtnl_unlock();
2646
2647 iavf_misc_irq_enable(adapter);
2648 wake_up(&adapter->down_waitqueue);
2649
2650 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2651 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2652 if (!adapter->rss_key || !adapter->rss_lut) {
2653 err = -ENOMEM;
2654 goto err_mem;
2655 }
2656 if (RSS_AQ(adapter))
2657 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2658 else
2659 iavf_init_rss(adapter);
2660
2661 if (VLAN_V2_ALLOWED(adapter))
2662 /* request initial VLAN offload settings */
2663 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2664
2665 return;
2666err_mem:
2667 iavf_free_rss(adapter);
2668err_register:
2669 iavf_free_misc_irq(adapter);
2670err_sw_init:
2671 iavf_reset_interrupt_capability(adapter);
2672err:
2673 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2674}
2675
2676/**
2677 * iavf_watchdog_task - Periodic call-back task
2678 * @work: pointer to work_struct
2679 **/
2680static void iavf_watchdog_task(struct work_struct *work)
2681{
2682 struct iavf_adapter *adapter = container_of(work,
2683 struct iavf_adapter,
2684 watchdog_task.work);
2685 struct iavf_hw *hw = &adapter->hw;
2686 u32 reg_val;
2687
2688 if (!mutex_trylock(&adapter->crit_lock)) {
2689 if (adapter->state == __IAVF_REMOVE)
2690 return;
2691
2692 goto restart_watchdog;
2693 }
2694
2695 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2696 adapter->netdev_registered &&
2697 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
2698 rtnl_trylock()) {
2699 netdev_update_features(adapter->netdev);
2700 rtnl_unlock();
2701 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2702 }
2703
2704 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2705 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2706
2707 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2708 adapter->aq_required = 0;
2709 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2710 mutex_unlock(&adapter->crit_lock);
2711 queue_work(adapter->wq, &adapter->reset_task);
2712 return;
2713 }
2714
2715 switch (adapter->state) {
2716 case __IAVF_STARTUP:
2717 iavf_startup(adapter);
2718 mutex_unlock(&adapter->crit_lock);
2719 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2720 msecs_to_jiffies(30));
2721 return;
2722 case __IAVF_INIT_VERSION_CHECK:
2723 iavf_init_version_check(adapter);
2724 mutex_unlock(&adapter->crit_lock);
2725 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2726 msecs_to_jiffies(30));
2727 return;
2728 case __IAVF_INIT_GET_RESOURCES:
2729 iavf_init_get_resources(adapter);
2730 mutex_unlock(&adapter->crit_lock);
2731 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2732 msecs_to_jiffies(1));
2733 return;
2734 case __IAVF_INIT_EXTENDED_CAPS:
2735 iavf_init_process_extended_caps(adapter);
2736 mutex_unlock(&adapter->crit_lock);
2737 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2738 msecs_to_jiffies(1));
2739 return;
2740 case __IAVF_INIT_CONFIG_ADAPTER:
2741 iavf_init_config_adapter(adapter);
2742 mutex_unlock(&adapter->crit_lock);
2743 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2744 msecs_to_jiffies(1));
2745 return;
2746 case __IAVF_INIT_FAILED:
2747 if (test_bit(__IAVF_IN_REMOVE_TASK,
2748 &adapter->crit_section)) {
2749 /* Do not update the state and do not reschedule
2750 * watchdog task, iavf_remove should handle this state
2751 * as it can loop forever
2752 */
2753 mutex_unlock(&adapter->crit_lock);
2754 return;
2755 }
2756 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2757 dev_err(&adapter->pdev->dev,
2758 "Failed to communicate with PF; waiting before retry\n");
2759 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2760 iavf_shutdown_adminq(hw);
2761 mutex_unlock(&adapter->crit_lock);
2762 queue_delayed_work(adapter->wq,
2763 &adapter->watchdog_task, (5 * HZ));
2764 return;
2765 }
2766 /* Try again from failed step*/
2767 iavf_change_state(adapter, adapter->last_state);
2768 mutex_unlock(&adapter->crit_lock);
2769 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2770 return;
2771 case __IAVF_COMM_FAILED:
2772 if (test_bit(__IAVF_IN_REMOVE_TASK,
2773 &adapter->crit_section)) {
2774 /* Set state to __IAVF_INIT_FAILED and perform remove
2775 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2776 * doesn't bring the state back to __IAVF_COMM_FAILED.
2777 */
2778 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2779 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2780 mutex_unlock(&adapter->crit_lock);
2781 return;
2782 }
2783 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2784 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2785 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2786 reg_val == VIRTCHNL_VFR_COMPLETED) {
2787 /* A chance for redemption! */
2788 dev_err(&adapter->pdev->dev,
2789 "Hardware came out of reset. Attempting reinit.\n");
2790 /* When init task contacts the PF and
2791 * gets everything set up again, it'll restart the
2792 * watchdog for us. Down, boy. Sit. Stay. Woof.
2793 */
2794 iavf_change_state(adapter, __IAVF_STARTUP);
2795 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2796 }
2797 adapter->aq_required = 0;
2798 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2799 mutex_unlock(&adapter->crit_lock);
2800 queue_delayed_work(adapter->wq,
2801 &adapter->watchdog_task,
2802 msecs_to_jiffies(10));
2803 return;
2804 case __IAVF_RESETTING:
2805 mutex_unlock(&adapter->crit_lock);
2806 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2807 HZ * 2);
2808 return;
2809 case __IAVF_DOWN:
2810 case __IAVF_DOWN_PENDING:
2811 case __IAVF_TESTING:
2812 case __IAVF_RUNNING:
2813 if (adapter->current_op) {
2814 if (!iavf_asq_done(hw)) {
2815 dev_dbg(&adapter->pdev->dev,
2816 "Admin queue timeout\n");
2817 iavf_send_api_ver(adapter);
2818 }
2819 } else {
2820 int ret = iavf_process_aq_command(adapter);
2821
2822 /* An error will be returned if no commands were
2823 * processed; use this opportunity to update stats
2824 * if the error isn't -ENOTSUPP
2825 */
2826 if (ret && ret != -EOPNOTSUPP &&
2827 adapter->state == __IAVF_RUNNING)
2828 iavf_request_stats(adapter);
2829 }
2830 if (adapter->state == __IAVF_RUNNING)
2831 iavf_detect_recover_hung(&adapter->vsi);
2832 break;
2833 case __IAVF_REMOVE:
2834 default:
2835 mutex_unlock(&adapter->crit_lock);
2836 return;
2837 }
2838
2839 /* check for hw reset */
2840 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2841 if (!reg_val) {
2842 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2843 adapter->aq_required = 0;
2844 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2845 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2846 queue_work(adapter->wq, &adapter->reset_task);
2847 mutex_unlock(&adapter->crit_lock);
2848 queue_delayed_work(adapter->wq,
2849 &adapter->watchdog_task, HZ * 2);
2850 return;
2851 }
2852
2853 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2854 mutex_unlock(&adapter->crit_lock);
2855restart_watchdog:
2856 if (adapter->state >= __IAVF_DOWN)
2857 queue_work(adapter->wq, &adapter->adminq_task);
2858 if (adapter->aq_required)
2859 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2860 msecs_to_jiffies(20));
2861 else
2862 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2863 HZ * 2);
2864}
2865
2866/**
2867 * iavf_disable_vf - disable VF
2868 * @adapter: board private structure
2869 *
2870 * Set communication failed flag and free all resources.
2871 * NOTE: This function is expected to be called with crit_lock being held.
2872 **/
2873static void iavf_disable_vf(struct iavf_adapter *adapter)
2874{
2875 struct iavf_mac_filter *f, *ftmp;
2876 struct iavf_vlan_filter *fv, *fvtmp;
2877 struct iavf_cloud_filter *cf, *cftmp;
2878
2879 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2880
2881 /* We don't use netif_running() because it may be true prior to
2882 * ndo_open() returning, so we can't assume it means all our open
2883 * tasks have finished, since we're not holding the rtnl_lock here.
2884 */
2885 if (adapter->state == __IAVF_RUNNING) {
2886 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2887 netif_carrier_off(adapter->netdev);
2888 netif_tx_disable(adapter->netdev);
2889 adapter->link_up = false;
2890 iavf_napi_disable_all(adapter);
2891 iavf_irq_disable(adapter);
2892 iavf_free_traffic_irqs(adapter);
2893 iavf_free_all_tx_resources(adapter);
2894 iavf_free_all_rx_resources(adapter);
2895 }
2896
2897 spin_lock_bh(&adapter->mac_vlan_list_lock);
2898
2899 /* Delete all of the filters */
2900 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2901 list_del(&f->list);
2902 kfree(f);
2903 }
2904
2905 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2906 list_del(&fv->list);
2907 kfree(fv);
2908 }
2909
2910 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2911
2912 spin_lock_bh(&adapter->cloud_filter_list_lock);
2913 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2914 list_del(&cf->list);
2915 kfree(cf);
2916 adapter->num_cloud_filters--;
2917 }
2918 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2919
2920 iavf_free_misc_irq(adapter);
2921 iavf_reset_interrupt_capability(adapter);
2922 iavf_free_q_vectors(adapter);
2923 iavf_free_queues(adapter);
2924 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2925 iavf_shutdown_adminq(&adapter->hw);
2926 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2927 iavf_change_state(adapter, __IAVF_DOWN);
2928 wake_up(&adapter->down_waitqueue);
2929 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2930}
2931
2932/**
2933 * iavf_reset_task - Call-back task to handle hardware reset
2934 * @work: pointer to work_struct
2935 *
2936 * During reset we need to shut down and reinitialize the admin queue
2937 * before we can use it to communicate with the PF again. We also clear
2938 * and reinit the rings because that context is lost as well.
2939 **/
2940static void iavf_reset_task(struct work_struct *work)
2941{
2942 struct iavf_adapter *adapter = container_of(work,
2943 struct iavf_adapter,
2944 reset_task);
2945 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2946 struct net_device *netdev = adapter->netdev;
2947 struct iavf_hw *hw = &adapter->hw;
2948 struct iavf_mac_filter *f, *ftmp;
2949 struct iavf_cloud_filter *cf;
2950 enum iavf_status status;
2951 u32 reg_val;
2952 int i = 0, err;
2953 bool running;
2954
2955 /* Detach interface to avoid subsequent NDO callbacks */
2956 rtnl_lock();
2957 netif_device_detach(netdev);
2958 rtnl_unlock();
2959
2960 /* When device is being removed it doesn't make sense to run the reset
2961 * task, just return in such a case.
2962 */
2963 if (!mutex_trylock(&adapter->crit_lock)) {
2964 if (adapter->state != __IAVF_REMOVE)
2965 queue_work(adapter->wq, &adapter->reset_task);
2966
2967 goto reset_finish;
2968 }
2969
2970 while (!mutex_trylock(&adapter->client_lock))
2971 usleep_range(500, 1000);
2972 if (CLIENT_ENABLED(adapter)) {
2973 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2974 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2975 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2976 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2977 cancel_delayed_work_sync(&adapter->client_task);
2978 iavf_notify_client_close(&adapter->vsi, true);
2979 }
2980 iavf_misc_irq_disable(adapter);
2981 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2982 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2983 /* Restart the AQ here. If we have been reset but didn't
2984 * detect it, or if the PF had to reinit, our AQ will be hosed.
2985 */
2986 iavf_shutdown_adminq(hw);
2987 iavf_init_adminq(hw);
2988 iavf_request_reset(adapter);
2989 }
2990 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2991
2992 /* poll until we see the reset actually happen */
2993 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2994 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2995 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2996 if (!reg_val)
2997 break;
2998 usleep_range(5000, 10000);
2999 }
3000 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3001 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3002 goto continue_reset; /* act like the reset happened */
3003 }
3004
3005 /* wait until the reset is complete and the PF is responding to us */
3006 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3007 /* sleep first to make sure a minimum wait time is met */
3008 msleep(IAVF_RESET_WAIT_MS);
3009
3010 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3011 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3012 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3013 break;
3014 }
3015
3016 pci_set_master(adapter->pdev);
3017 pci_restore_msi_state(adapter->pdev);
3018
3019 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3020 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3021 reg_val);
3022 iavf_disable_vf(adapter);
3023 mutex_unlock(&adapter->client_lock);
3024 mutex_unlock(&adapter->crit_lock);
3025 if (netif_running(netdev)) {
3026 rtnl_lock();
3027 dev_close(netdev);
3028 rtnl_unlock();
3029 }
3030 return; /* Do not attempt to reinit. It's dead, Jim. */
3031 }
3032
3033continue_reset:
3034 /* We don't use netif_running() because it may be true prior to
3035 * ndo_open() returning, so we can't assume it means all our open
3036 * tasks have finished, since we're not holding the rtnl_lock here.
3037 */
3038 running = adapter->state == __IAVF_RUNNING;
3039
3040 if (running) {
3041 netif_carrier_off(netdev);
3042 netif_tx_stop_all_queues(netdev);
3043 adapter->link_up = false;
3044 iavf_napi_disable_all(adapter);
3045 }
3046 iavf_irq_disable(adapter);
3047
3048 iavf_change_state(adapter, __IAVF_RESETTING);
3049 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3050
3051 /* free the Tx/Rx rings and descriptors, might be better to just
3052 * re-use them sometime in the future
3053 */
3054 iavf_free_all_rx_resources(adapter);
3055 iavf_free_all_tx_resources(adapter);
3056
3057 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3058 /* kill and reinit the admin queue */
3059 iavf_shutdown_adminq(hw);
3060 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3061 status = iavf_init_adminq(hw);
3062 if (status) {
3063 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3064 status);
3065 goto reset_err;
3066 }
3067 adapter->aq_required = 0;
3068
3069 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3070 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3071 err = iavf_reinit_interrupt_scheme(adapter);
3072 if (err)
3073 goto reset_err;
3074 }
3075
3076 if (RSS_AQ(adapter)) {
3077 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3078 } else {
3079 err = iavf_init_rss(adapter);
3080 if (err)
3081 goto reset_err;
3082 }
3083
3084 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3085 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3086 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3087 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3088 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3089 * been successfully sent and negotiated
3090 */
3091 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3092 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3093
3094 spin_lock_bh(&adapter->mac_vlan_list_lock);
3095
3096 /* Delete filter for the current MAC address, it could have
3097 * been changed by the PF via administratively set MAC.
3098 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3099 */
3100 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3101 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3102 list_del(&f->list);
3103 kfree(f);
3104 }
3105 }
3106 /* re-add all MAC filters */
3107 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3108 f->add = true;
3109 }
3110 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3111
3112 /* check if TCs are running and re-add all cloud filters */
3113 spin_lock_bh(&adapter->cloud_filter_list_lock);
3114 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3115 adapter->num_tc) {
3116 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3117 cf->add = true;
3118 }
3119 }
3120 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3121
3122 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3123 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3124 iavf_misc_irq_enable(adapter);
3125
3126 bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID);
3127 bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID);
3128
3129 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3130
3131 /* We were running when the reset started, so we need to restore some
3132 * state here.
3133 */
3134 if (running) {
3135 /* allocate transmit descriptors */
3136 err = iavf_setup_all_tx_resources(adapter);
3137 if (err)
3138 goto reset_err;
3139
3140 /* allocate receive descriptors */
3141 err = iavf_setup_all_rx_resources(adapter);
3142 if (err)
3143 goto reset_err;
3144
3145 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3146 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3147 err = iavf_request_traffic_irqs(adapter, netdev->name);
3148 if (err)
3149 goto reset_err;
3150
3151 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3152 }
3153
3154 iavf_configure(adapter);
3155
3156 /* iavf_up_complete() will switch device back
3157 * to __IAVF_RUNNING
3158 */
3159 iavf_up_complete(adapter);
3160
3161 iavf_irq_enable(adapter, true);
3162 } else {
3163 iavf_change_state(adapter, __IAVF_DOWN);
3164 wake_up(&adapter->down_waitqueue);
3165 }
3166
3167 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3168
3169 mutex_unlock(&adapter->client_lock);
3170 mutex_unlock(&adapter->crit_lock);
3171
3172 goto reset_finish;
3173reset_err:
3174 if (running) {
3175 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3176 iavf_free_traffic_irqs(adapter);
3177 }
3178 iavf_disable_vf(adapter);
3179
3180 mutex_unlock(&adapter->client_lock);
3181 mutex_unlock(&adapter->crit_lock);
3182
3183 if (netif_running(netdev)) {
3184 /* Close device to ensure that Tx queues will not be started
3185 * during netif_device_attach() at the end of the reset task.
3186 */
3187 rtnl_lock();
3188 dev_close(netdev);
3189 rtnl_unlock();
3190 }
3191
3192 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3193reset_finish:
3194 rtnl_lock();
3195 netif_device_attach(netdev);
3196 rtnl_unlock();
3197}
3198
3199/**
3200 * iavf_adminq_task - worker thread to clean the admin queue
3201 * @work: pointer to work_struct containing our data
3202 **/
3203static void iavf_adminq_task(struct work_struct *work)
3204{
3205 struct iavf_adapter *adapter =
3206 container_of(work, struct iavf_adapter, adminq_task);
3207 struct iavf_hw *hw = &adapter->hw;
3208 struct iavf_arq_event_info event;
3209 enum virtchnl_ops v_op;
3210 enum iavf_status ret, v_ret;
3211 u32 val, oldval;
3212 u16 pending;
3213
3214 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3215 goto out;
3216
3217 if (!mutex_trylock(&adapter->crit_lock)) {
3218 if (adapter->state == __IAVF_REMOVE)
3219 return;
3220
3221 queue_work(adapter->wq, &adapter->adminq_task);
3222 goto out;
3223 }
3224
3225 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3226 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3227 if (!event.msg_buf)
3228 goto out;
3229
3230 do {
3231 ret = iavf_clean_arq_element(hw, &event, &pending);
3232 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3233 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3234
3235 if (ret || !v_op)
3236 break; /* No event to process or error cleaning ARQ */
3237
3238 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3239 event.msg_len);
3240 if (pending != 0)
3241 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3242 } while (pending);
3243 mutex_unlock(&adapter->crit_lock);
3244
3245 if ((adapter->flags &
3246 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3247 adapter->state == __IAVF_RESETTING)
3248 goto freedom;
3249
3250 /* check for error indications */
3251 val = rd32(hw, hw->aq.arq.len);
3252 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3253 goto freedom;
3254 oldval = val;
3255 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3256 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3257 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3258 }
3259 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3260 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3261 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3262 }
3263 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3264 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3265 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3266 }
3267 if (oldval != val)
3268 wr32(hw, hw->aq.arq.len, val);
3269
3270 val = rd32(hw, hw->aq.asq.len);
3271 oldval = val;
3272 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3273 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3274 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3275 }
3276 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3277 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3278 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3279 }
3280 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3281 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3282 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3283 }
3284 if (oldval != val)
3285 wr32(hw, hw->aq.asq.len, val);
3286
3287freedom:
3288 kfree(event.msg_buf);
3289out:
3290 /* re-enable Admin queue interrupt cause */
3291 iavf_misc_irq_enable(adapter);
3292}
3293
3294/**
3295 * iavf_client_task - worker thread to perform client work
3296 * @work: pointer to work_struct containing our data
3297 *
3298 * This task handles client interactions. Because client calls can be
3299 * reentrant, we can't handle them in the watchdog.
3300 **/
3301static void iavf_client_task(struct work_struct *work)
3302{
3303 struct iavf_adapter *adapter =
3304 container_of(work, struct iavf_adapter, client_task.work);
3305
3306 /* If we can't get the client bit, just give up. We'll be rescheduled
3307 * later.
3308 */
3309
3310 if (!mutex_trylock(&adapter->client_lock))
3311 return;
3312
3313 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3314 iavf_client_subtask(adapter);
3315 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3316 goto out;
3317 }
3318 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3319 iavf_notify_client_l2_params(&adapter->vsi);
3320 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3321 goto out;
3322 }
3323 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3324 iavf_notify_client_close(&adapter->vsi, false);
3325 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3326 goto out;
3327 }
3328 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3329 iavf_notify_client_open(&adapter->vsi);
3330 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3331 }
3332out:
3333 mutex_unlock(&adapter->client_lock);
3334}
3335
3336/**
3337 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3338 * @adapter: board private structure
3339 *
3340 * Free all transmit software resources
3341 **/
3342void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3343{
3344 int i;
3345
3346 if (!adapter->tx_rings)
3347 return;
3348
3349 for (i = 0; i < adapter->num_active_queues; i++)
3350 if (adapter->tx_rings[i].desc)
3351 iavf_free_tx_resources(&adapter->tx_rings[i]);
3352}
3353
3354/**
3355 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3356 * @adapter: board private structure
3357 *
3358 * If this function returns with an error, then it's possible one or
3359 * more of the rings is populated (while the rest are not). It is the
3360 * callers duty to clean those orphaned rings.
3361 *
3362 * Return 0 on success, negative on failure
3363 **/
3364static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3365{
3366 int i, err = 0;
3367
3368 for (i = 0; i < adapter->num_active_queues; i++) {
3369 adapter->tx_rings[i].count = adapter->tx_desc_count;
3370 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3371 if (!err)
3372 continue;
3373 dev_err(&adapter->pdev->dev,
3374 "Allocation for Tx Queue %u failed\n", i);
3375 break;
3376 }
3377
3378 return err;
3379}
3380
3381/**
3382 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3383 * @adapter: board private structure
3384 *
3385 * If this function returns with an error, then it's possible one or
3386 * more of the rings is populated (while the rest are not). It is the
3387 * callers duty to clean those orphaned rings.
3388 *
3389 * Return 0 on success, negative on failure
3390 **/
3391static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3392{
3393 int i, err = 0;
3394
3395 for (i = 0; i < adapter->num_active_queues; i++) {
3396 adapter->rx_rings[i].count = adapter->rx_desc_count;
3397 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3398 if (!err)
3399 continue;
3400 dev_err(&adapter->pdev->dev,
3401 "Allocation for Rx Queue %u failed\n", i);
3402 break;
3403 }
3404 return err;
3405}
3406
3407/**
3408 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3409 * @adapter: board private structure
3410 *
3411 * Free all receive software resources
3412 **/
3413void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3414{
3415 int i;
3416
3417 if (!adapter->rx_rings)
3418 return;
3419
3420 for (i = 0; i < adapter->num_active_queues; i++)
3421 if (adapter->rx_rings[i].desc)
3422 iavf_free_rx_resources(&adapter->rx_rings[i]);
3423}
3424
3425/**
3426 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3427 * @adapter: board private structure
3428 * @max_tx_rate: max Tx bw for a tc
3429 **/
3430static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3431 u64 max_tx_rate)
3432{
3433 int speed = 0, ret = 0;
3434
3435 if (ADV_LINK_SUPPORT(adapter)) {
3436 if (adapter->link_speed_mbps < U32_MAX) {
3437 speed = adapter->link_speed_mbps;
3438 goto validate_bw;
3439 } else {
3440 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3441 return -EINVAL;
3442 }
3443 }
3444
3445 switch (adapter->link_speed) {
3446 case VIRTCHNL_LINK_SPEED_40GB:
3447 speed = SPEED_40000;
3448 break;
3449 case VIRTCHNL_LINK_SPEED_25GB:
3450 speed = SPEED_25000;
3451 break;
3452 case VIRTCHNL_LINK_SPEED_20GB:
3453 speed = SPEED_20000;
3454 break;
3455 case VIRTCHNL_LINK_SPEED_10GB:
3456 speed = SPEED_10000;
3457 break;
3458 case VIRTCHNL_LINK_SPEED_5GB:
3459 speed = SPEED_5000;
3460 break;
3461 case VIRTCHNL_LINK_SPEED_2_5GB:
3462 speed = SPEED_2500;
3463 break;
3464 case VIRTCHNL_LINK_SPEED_1GB:
3465 speed = SPEED_1000;
3466 break;
3467 case VIRTCHNL_LINK_SPEED_100MB:
3468 speed = SPEED_100;
3469 break;
3470 default:
3471 break;
3472 }
3473
3474validate_bw:
3475 if (max_tx_rate > speed) {
3476 dev_err(&adapter->pdev->dev,
3477 "Invalid tx rate specified\n");
3478 ret = -EINVAL;
3479 }
3480
3481 return ret;
3482}
3483
3484/**
3485 * iavf_validate_ch_config - validate queue mapping info
3486 * @adapter: board private structure
3487 * @mqprio_qopt: queue parameters
3488 *
3489 * This function validates if the config provided by the user to
3490 * configure queue channels is valid or not. Returns 0 on a valid
3491 * config.
3492 **/
3493static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3494 struct tc_mqprio_qopt_offload *mqprio_qopt)
3495{
3496 u64 total_max_rate = 0;
3497 u32 tx_rate_rem = 0;
3498 int i, num_qps = 0;
3499 u64 tx_rate = 0;
3500 int ret = 0;
3501
3502 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3503 mqprio_qopt->qopt.num_tc < 1)
3504 return -EINVAL;
3505
3506 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3507 if (!mqprio_qopt->qopt.count[i] ||
3508 mqprio_qopt->qopt.offset[i] != num_qps)
3509 return -EINVAL;
3510 if (mqprio_qopt->min_rate[i]) {
3511 dev_err(&adapter->pdev->dev,
3512 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3513 i);
3514 return -EINVAL;
3515 }
3516
3517 /* convert to Mbps */
3518 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3519 IAVF_MBPS_DIVISOR);
3520
3521 if (mqprio_qopt->max_rate[i] &&
3522 tx_rate < IAVF_MBPS_QUANTA) {
3523 dev_err(&adapter->pdev->dev,
3524 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3525 i, IAVF_MBPS_QUANTA);
3526 return -EINVAL;
3527 }
3528
3529 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3530
3531 if (tx_rate_rem != 0) {
3532 dev_err(&adapter->pdev->dev,
3533 "Invalid max tx rate for TC%d, not divisible by %d\n",
3534 i, IAVF_MBPS_QUANTA);
3535 return -EINVAL;
3536 }
3537
3538 total_max_rate += tx_rate;
3539 num_qps += mqprio_qopt->qopt.count[i];
3540 }
3541 if (num_qps > adapter->num_active_queues) {
3542 dev_err(&adapter->pdev->dev,
3543 "Cannot support requested number of queues\n");
3544 return -EINVAL;
3545 }
3546
3547 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3548 return ret;
3549}
3550
3551/**
3552 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3553 * @adapter: board private structure
3554 **/
3555static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3556{
3557 struct iavf_cloud_filter *cf, *cftmp;
3558
3559 spin_lock_bh(&adapter->cloud_filter_list_lock);
3560 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3561 list) {
3562 list_del(&cf->list);
3563 kfree(cf);
3564 adapter->num_cloud_filters--;
3565 }
3566 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3567}
3568
3569/**
3570 * __iavf_setup_tc - configure multiple traffic classes
3571 * @netdev: network interface device structure
3572 * @type_data: tc offload data
3573 *
3574 * This function processes the config information provided by the
3575 * user to configure traffic classes/queue channels and packages the
3576 * information to request the PF to setup traffic classes.
3577 *
3578 * Returns 0 on success.
3579 **/
3580static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3581{
3582 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3583 struct iavf_adapter *adapter = netdev_priv(netdev);
3584 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3585 u8 num_tc = 0, total_qps = 0;
3586 int ret = 0, netdev_tc = 0;
3587 u64 max_tx_rate;
3588 u16 mode;
3589 int i;
3590
3591 num_tc = mqprio_qopt->qopt.num_tc;
3592 mode = mqprio_qopt->mode;
3593
3594 /* delete queue_channel */
3595 if (!mqprio_qopt->qopt.hw) {
3596 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3597 /* reset the tc configuration */
3598 netdev_reset_tc(netdev);
3599 adapter->num_tc = 0;
3600 netif_tx_stop_all_queues(netdev);
3601 netif_tx_disable(netdev);
3602 iavf_del_all_cloud_filters(adapter);
3603 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3604 total_qps = adapter->orig_num_active_queues;
3605 goto exit;
3606 } else {
3607 return -EINVAL;
3608 }
3609 }
3610
3611 /* add queue channel */
3612 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3613 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3614 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3615 return -EOPNOTSUPP;
3616 }
3617 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3618 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3619 return -EINVAL;
3620 }
3621
3622 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3623 if (ret)
3624 return ret;
3625 /* Return if same TC config is requested */
3626 if (adapter->num_tc == num_tc)
3627 return 0;
3628 adapter->num_tc = num_tc;
3629
3630 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3631 if (i < num_tc) {
3632 adapter->ch_config.ch_info[i].count =
3633 mqprio_qopt->qopt.count[i];
3634 adapter->ch_config.ch_info[i].offset =
3635 mqprio_qopt->qopt.offset[i];
3636 total_qps += mqprio_qopt->qopt.count[i];
3637 max_tx_rate = mqprio_qopt->max_rate[i];
3638 /* convert to Mbps */
3639 max_tx_rate = div_u64(max_tx_rate,
3640 IAVF_MBPS_DIVISOR);
3641 adapter->ch_config.ch_info[i].max_tx_rate =
3642 max_tx_rate;
3643 } else {
3644 adapter->ch_config.ch_info[i].count = 1;
3645 adapter->ch_config.ch_info[i].offset = 0;
3646 }
3647 }
3648
3649 /* Take snapshot of original config such as "num_active_queues"
3650 * It is used later when delete ADQ flow is exercised, so that
3651 * once delete ADQ flow completes, VF shall go back to its
3652 * original queue configuration
3653 */
3654
3655 adapter->orig_num_active_queues = adapter->num_active_queues;
3656
3657 /* Store queue info based on TC so that VF gets configured
3658 * with correct number of queues when VF completes ADQ config
3659 * flow
3660 */
3661 adapter->ch_config.total_qps = total_qps;
3662
3663 netif_tx_stop_all_queues(netdev);
3664 netif_tx_disable(netdev);
3665 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3666 netdev_reset_tc(netdev);
3667 /* Report the tc mapping up the stack */
3668 netdev_set_num_tc(adapter->netdev, num_tc);
3669 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3670 u16 qcount = mqprio_qopt->qopt.count[i];
3671 u16 qoffset = mqprio_qopt->qopt.offset[i];
3672
3673 if (i < num_tc)
3674 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3675 qoffset);
3676 }
3677 }
3678exit:
3679 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3680 return 0;
3681
3682 netif_set_real_num_rx_queues(netdev, total_qps);
3683 netif_set_real_num_tx_queues(netdev, total_qps);
3684
3685 return ret;
3686}
3687
3688/**
3689 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3690 * @adapter: board private structure
3691 * @f: pointer to struct flow_cls_offload
3692 * @filter: pointer to cloud filter structure
3693 */
3694static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3695 struct flow_cls_offload *f,
3696 struct iavf_cloud_filter *filter)
3697{
3698 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3699 struct flow_dissector *dissector = rule->match.dissector;
3700 u16 n_proto_mask = 0;
3701 u16 n_proto_key = 0;
3702 u8 field_flags = 0;
3703 u16 addr_type = 0;
3704 u16 n_proto = 0;
3705 int i = 0;
3706 struct virtchnl_filter *vf = &filter->f;
3707
3708 if (dissector->used_keys &
3709 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3710 BIT(FLOW_DISSECTOR_KEY_BASIC) |
3711 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3712 BIT(FLOW_DISSECTOR_KEY_VLAN) |
3713 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3714 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3715 BIT(FLOW_DISSECTOR_KEY_PORTS) |
3716 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3717 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3718 dissector->used_keys);
3719 return -EOPNOTSUPP;
3720 }
3721
3722 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3723 struct flow_match_enc_keyid match;
3724
3725 flow_rule_match_enc_keyid(rule, &match);
3726 if (match.mask->keyid != 0)
3727 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3728 }
3729
3730 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3731 struct flow_match_basic match;
3732
3733 flow_rule_match_basic(rule, &match);
3734 n_proto_key = ntohs(match.key->n_proto);
3735 n_proto_mask = ntohs(match.mask->n_proto);
3736
3737 if (n_proto_key == ETH_P_ALL) {
3738 n_proto_key = 0;
3739 n_proto_mask = 0;
3740 }
3741 n_proto = n_proto_key & n_proto_mask;
3742 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3743 return -EINVAL;
3744 if (n_proto == ETH_P_IPV6) {
3745 /* specify flow type as TCP IPv6 */
3746 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3747 }
3748
3749 if (match.key->ip_proto != IPPROTO_TCP) {
3750 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3751 return -EINVAL;
3752 }
3753 }
3754
3755 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3756 struct flow_match_eth_addrs match;
3757
3758 flow_rule_match_eth_addrs(rule, &match);
3759
3760 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3761 if (!is_zero_ether_addr(match.mask->dst)) {
3762 if (is_broadcast_ether_addr(match.mask->dst)) {
3763 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3764 } else {
3765 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3766 match.mask->dst);
3767 return -EINVAL;
3768 }
3769 }
3770
3771 if (!is_zero_ether_addr(match.mask->src)) {
3772 if (is_broadcast_ether_addr(match.mask->src)) {
3773 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3774 } else {
3775 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3776 match.mask->src);
3777 return -EINVAL;
3778 }
3779 }
3780
3781 if (!is_zero_ether_addr(match.key->dst))
3782 if (is_valid_ether_addr(match.key->dst) ||
3783 is_multicast_ether_addr(match.key->dst)) {
3784 /* set the mask if a valid dst_mac address */
3785 for (i = 0; i < ETH_ALEN; i++)
3786 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3787 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3788 match.key->dst);
3789 }
3790
3791 if (!is_zero_ether_addr(match.key->src))
3792 if (is_valid_ether_addr(match.key->src) ||
3793 is_multicast_ether_addr(match.key->src)) {
3794 /* set the mask if a valid dst_mac address */
3795 for (i = 0; i < ETH_ALEN; i++)
3796 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3797 ether_addr_copy(vf->data.tcp_spec.src_mac,
3798 match.key->src);
3799 }
3800 }
3801
3802 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3803 struct flow_match_vlan match;
3804
3805 flow_rule_match_vlan(rule, &match);
3806 if (match.mask->vlan_id) {
3807 if (match.mask->vlan_id == VLAN_VID_MASK) {
3808 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3809 } else {
3810 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3811 match.mask->vlan_id);
3812 return -EINVAL;
3813 }
3814 }
3815 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3816 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3817 }
3818
3819 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3820 struct flow_match_control match;
3821
3822 flow_rule_match_control(rule, &match);
3823 addr_type = match.key->addr_type;
3824 }
3825
3826 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3827 struct flow_match_ipv4_addrs match;
3828
3829 flow_rule_match_ipv4_addrs(rule, &match);
3830 if (match.mask->dst) {
3831 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3832 field_flags |= IAVF_CLOUD_FIELD_IIP;
3833 } else {
3834 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3835 be32_to_cpu(match.mask->dst));
3836 return -EINVAL;
3837 }
3838 }
3839
3840 if (match.mask->src) {
3841 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3842 field_flags |= IAVF_CLOUD_FIELD_IIP;
3843 } else {
3844 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3845 be32_to_cpu(match.mask->src));
3846 return -EINVAL;
3847 }
3848 }
3849
3850 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3851 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3852 return -EINVAL;
3853 }
3854 if (match.key->dst) {
3855 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3856 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3857 }
3858 if (match.key->src) {
3859 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3860 vf->data.tcp_spec.src_ip[0] = match.key->src;
3861 }
3862 }
3863
3864 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3865 struct flow_match_ipv6_addrs match;
3866
3867 flow_rule_match_ipv6_addrs(rule, &match);
3868
3869 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3870 if (ipv6_addr_any(&match.mask->dst)) {
3871 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3872 IPV6_ADDR_ANY);
3873 return -EINVAL;
3874 }
3875
3876 /* src and dest IPv6 address should not be LOOPBACK
3877 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3878 */
3879 if (ipv6_addr_loopback(&match.key->dst) ||
3880 ipv6_addr_loopback(&match.key->src)) {
3881 dev_err(&adapter->pdev->dev,
3882 "ipv6 addr should not be loopback\n");
3883 return -EINVAL;
3884 }
3885 if (!ipv6_addr_any(&match.mask->dst) ||
3886 !ipv6_addr_any(&match.mask->src))
3887 field_flags |= IAVF_CLOUD_FIELD_IIP;
3888
3889 for (i = 0; i < 4; i++)
3890 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3891 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3892 sizeof(vf->data.tcp_spec.dst_ip));
3893 for (i = 0; i < 4; i++)
3894 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3895 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3896 sizeof(vf->data.tcp_spec.src_ip));
3897 }
3898 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3899 struct flow_match_ports match;
3900
3901 flow_rule_match_ports(rule, &match);
3902 if (match.mask->src) {
3903 if (match.mask->src == cpu_to_be16(0xffff)) {
3904 field_flags |= IAVF_CLOUD_FIELD_IIP;
3905 } else {
3906 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3907 be16_to_cpu(match.mask->src));
3908 return -EINVAL;
3909 }
3910 }
3911
3912 if (match.mask->dst) {
3913 if (match.mask->dst == cpu_to_be16(0xffff)) {
3914 field_flags |= IAVF_CLOUD_FIELD_IIP;
3915 } else {
3916 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3917 be16_to_cpu(match.mask->dst));
3918 return -EINVAL;
3919 }
3920 }
3921 if (match.key->dst) {
3922 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3923 vf->data.tcp_spec.dst_port = match.key->dst;
3924 }
3925
3926 if (match.key->src) {
3927 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3928 vf->data.tcp_spec.src_port = match.key->src;
3929 }
3930 }
3931 vf->field_flags = field_flags;
3932
3933 return 0;
3934}
3935
3936/**
3937 * iavf_handle_tclass - Forward to a traffic class on the device
3938 * @adapter: board private structure
3939 * @tc: traffic class index on the device
3940 * @filter: pointer to cloud filter structure
3941 */
3942static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3943 struct iavf_cloud_filter *filter)
3944{
3945 if (tc == 0)
3946 return 0;
3947 if (tc < adapter->num_tc) {
3948 if (!filter->f.data.tcp_spec.dst_port) {
3949 dev_err(&adapter->pdev->dev,
3950 "Specify destination port to redirect to traffic class other than TC0\n");
3951 return -EINVAL;
3952 }
3953 }
3954 /* redirect to a traffic class on the same device */
3955 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3956 filter->f.action_meta = tc;
3957 return 0;
3958}
3959
3960/**
3961 * iavf_find_cf - Find the cloud filter in the list
3962 * @adapter: Board private structure
3963 * @cookie: filter specific cookie
3964 *
3965 * Returns ptr to the filter object or NULL. Must be called while holding the
3966 * cloud_filter_list_lock.
3967 */
3968static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3969 unsigned long *cookie)
3970{
3971 struct iavf_cloud_filter *filter = NULL;
3972
3973 if (!cookie)
3974 return NULL;
3975
3976 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3977 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3978 return filter;
3979 }
3980 return NULL;
3981}
3982
3983/**
3984 * iavf_configure_clsflower - Add tc flower filters
3985 * @adapter: board private structure
3986 * @cls_flower: Pointer to struct flow_cls_offload
3987 */
3988static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3989 struct flow_cls_offload *cls_flower)
3990{
3991 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3992 struct iavf_cloud_filter *filter = NULL;
3993 int err = -EINVAL, count = 50;
3994
3995 if (tc < 0) {
3996 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3997 return -EINVAL;
3998 }
3999
4000 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4001 if (!filter)
4002 return -ENOMEM;
4003
4004 while (!mutex_trylock(&adapter->crit_lock)) {
4005 if (--count == 0) {
4006 kfree(filter);
4007 return err;
4008 }
4009 udelay(1);
4010 }
4011
4012 filter->cookie = cls_flower->cookie;
4013
4014 /* bail out here if filter already exists */
4015 spin_lock_bh(&adapter->cloud_filter_list_lock);
4016 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4017 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4018 err = -EEXIST;
4019 goto spin_unlock;
4020 }
4021 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4022
4023 /* set the mask to all zeroes to begin with */
4024 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4025 /* start out with flow type and eth type IPv4 to begin with */
4026 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4027 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4028 if (err)
4029 goto err;
4030
4031 err = iavf_handle_tclass(adapter, tc, filter);
4032 if (err)
4033 goto err;
4034
4035 /* add filter to the list */
4036 spin_lock_bh(&adapter->cloud_filter_list_lock);
4037 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4038 adapter->num_cloud_filters++;
4039 filter->add = true;
4040 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4041spin_unlock:
4042 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4043err:
4044 if (err)
4045 kfree(filter);
4046
4047 mutex_unlock(&adapter->crit_lock);
4048 return err;
4049}
4050
4051/**
4052 * iavf_delete_clsflower - Remove tc flower filters
4053 * @adapter: board private structure
4054 * @cls_flower: Pointer to struct flow_cls_offload
4055 */
4056static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4057 struct flow_cls_offload *cls_flower)
4058{
4059 struct iavf_cloud_filter *filter = NULL;
4060 int err = 0;
4061
4062 spin_lock_bh(&adapter->cloud_filter_list_lock);
4063 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4064 if (filter) {
4065 filter->del = true;
4066 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4067 } else {
4068 err = -EINVAL;
4069 }
4070 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4071
4072 return err;
4073}
4074
4075/**
4076 * iavf_setup_tc_cls_flower - flower classifier offloads
4077 * @adapter: board private structure
4078 * @cls_flower: pointer to flow_cls_offload struct with flow info
4079 */
4080static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4081 struct flow_cls_offload *cls_flower)
4082{
4083 switch (cls_flower->command) {
4084 case FLOW_CLS_REPLACE:
4085 return iavf_configure_clsflower(adapter, cls_flower);
4086 case FLOW_CLS_DESTROY:
4087 return iavf_delete_clsflower(adapter, cls_flower);
4088 case FLOW_CLS_STATS:
4089 return -EOPNOTSUPP;
4090 default:
4091 return -EOPNOTSUPP;
4092 }
4093}
4094
4095/**
4096 * iavf_setup_tc_block_cb - block callback for tc
4097 * @type: type of offload
4098 * @type_data: offload data
4099 * @cb_priv:
4100 *
4101 * This function is the block callback for traffic classes
4102 **/
4103static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4104 void *cb_priv)
4105{
4106 struct iavf_adapter *adapter = cb_priv;
4107
4108 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4109 return -EOPNOTSUPP;
4110
4111 switch (type) {
4112 case TC_SETUP_CLSFLOWER:
4113 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4114 default:
4115 return -EOPNOTSUPP;
4116 }
4117}
4118
4119static LIST_HEAD(iavf_block_cb_list);
4120
4121/**
4122 * iavf_setup_tc - configure multiple traffic classes
4123 * @netdev: network interface device structure
4124 * @type: type of offload
4125 * @type_data: tc offload data
4126 *
4127 * This function is the callback to ndo_setup_tc in the
4128 * netdev_ops.
4129 *
4130 * Returns 0 on success
4131 **/
4132static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4133 void *type_data)
4134{
4135 struct iavf_adapter *adapter = netdev_priv(netdev);
4136
4137 switch (type) {
4138 case TC_SETUP_QDISC_MQPRIO:
4139 return __iavf_setup_tc(netdev, type_data);
4140 case TC_SETUP_BLOCK:
4141 return flow_block_cb_setup_simple(type_data,
4142 &iavf_block_cb_list,
4143 iavf_setup_tc_block_cb,
4144 adapter, adapter, true);
4145 default:
4146 return -EOPNOTSUPP;
4147 }
4148}
4149
4150/**
4151 * iavf_open - Called when a network interface is made active
4152 * @netdev: network interface device structure
4153 *
4154 * Returns 0 on success, negative value on failure
4155 *
4156 * The open entry point is called when a network interface is made
4157 * active by the system (IFF_UP). At this point all resources needed
4158 * for transmit and receive operations are allocated, the interrupt
4159 * handler is registered with the OS, the watchdog is started,
4160 * and the stack is notified that the interface is ready.
4161 **/
4162static int iavf_open(struct net_device *netdev)
4163{
4164 struct iavf_adapter *adapter = netdev_priv(netdev);
4165 int err;
4166
4167 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4168 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4169 return -EIO;
4170 }
4171
4172 while (!mutex_trylock(&adapter->crit_lock)) {
4173 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4174 * is already taken and iavf_open is called from an upper
4175 * device's notifier reacting on NETDEV_REGISTER event.
4176 * We have to leave here to avoid dead lock.
4177 */
4178 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4179 return -EBUSY;
4180
4181 usleep_range(500, 1000);
4182 }
4183
4184 if (adapter->state != __IAVF_DOWN) {
4185 err = -EBUSY;
4186 goto err_unlock;
4187 }
4188
4189 if (adapter->state == __IAVF_RUNNING &&
4190 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4191 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4192 err = 0;
4193 goto err_unlock;
4194 }
4195
4196 /* allocate transmit descriptors */
4197 err = iavf_setup_all_tx_resources(adapter);
4198 if (err)
4199 goto err_setup_tx;
4200
4201 /* allocate receive descriptors */
4202 err = iavf_setup_all_rx_resources(adapter);
4203 if (err)
4204 goto err_setup_rx;
4205
4206 /* clear any pending interrupts, may auto mask */
4207 err = iavf_request_traffic_irqs(adapter, netdev->name);
4208 if (err)
4209 goto err_req_irq;
4210
4211 spin_lock_bh(&adapter->mac_vlan_list_lock);
4212
4213 iavf_add_filter(adapter, adapter->hw.mac.addr);
4214
4215 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4216
4217 /* Restore VLAN filters that were removed with IFF_DOWN */
4218 iavf_restore_filters(adapter);
4219
4220 iavf_configure(adapter);
4221
4222 iavf_up_complete(adapter);
4223
4224 iavf_irq_enable(adapter, true);
4225
4226 mutex_unlock(&adapter->crit_lock);
4227
4228 return 0;
4229
4230err_req_irq:
4231 iavf_down(adapter);
4232 iavf_free_traffic_irqs(adapter);
4233err_setup_rx:
4234 iavf_free_all_rx_resources(adapter);
4235err_setup_tx:
4236 iavf_free_all_tx_resources(adapter);
4237err_unlock:
4238 mutex_unlock(&adapter->crit_lock);
4239
4240 return err;
4241}
4242
4243/**
4244 * iavf_close - Disables a network interface
4245 * @netdev: network interface device structure
4246 *
4247 * Returns 0, this is not allowed to fail
4248 *
4249 * The close entry point is called when an interface is de-activated
4250 * by the OS. The hardware is still under the drivers control, but
4251 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4252 * are freed, along with all transmit and receive resources.
4253 **/
4254static int iavf_close(struct net_device *netdev)
4255{
4256 struct iavf_adapter *adapter = netdev_priv(netdev);
4257 u64 aq_to_restore;
4258 int status;
4259
4260 mutex_lock(&adapter->crit_lock);
4261
4262 if (adapter->state <= __IAVF_DOWN_PENDING) {
4263 mutex_unlock(&adapter->crit_lock);
4264 return 0;
4265 }
4266
4267 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4268 if (CLIENT_ENABLED(adapter))
4269 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4270 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4271 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4272 * deadlock with adminq_task() until iavf_close timeouts. We must send
4273 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4274 * disable queues possible for vf. Give only necessary flags to
4275 * iavf_down and save other to set them right before iavf_close()
4276 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4277 * iavf will be in DOWN state.
4278 */
4279 aq_to_restore = adapter->aq_required;
4280 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4281
4282 /* Remove flags which we do not want to send after close or we want to
4283 * send before disable queues.
4284 */
4285 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4286 IAVF_FLAG_AQ_ENABLE_QUEUES |
4287 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4288 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4289 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4290 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4291 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4292 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4293
4294 iavf_down(adapter);
4295 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4296 iavf_free_traffic_irqs(adapter);
4297
4298 mutex_unlock(&adapter->crit_lock);
4299
4300 /* We explicitly don't free resources here because the hardware is
4301 * still active and can DMA into memory. Resources are cleared in
4302 * iavf_virtchnl_completion() after we get confirmation from the PF
4303 * driver that the rings have been stopped.
4304 *
4305 * Also, we wait for state to transition to __IAVF_DOWN before
4306 * returning. State change occurs in iavf_virtchnl_completion() after
4307 * VF resources are released (which occurs after PF driver processes and
4308 * responds to admin queue commands).
4309 */
4310
4311 status = wait_event_timeout(adapter->down_waitqueue,
4312 adapter->state == __IAVF_DOWN,
4313 msecs_to_jiffies(500));
4314 if (!status)
4315 netdev_warn(netdev, "Device resources not yet released\n");
4316
4317 mutex_lock(&adapter->crit_lock);
4318 adapter->aq_required |= aq_to_restore;
4319 mutex_unlock(&adapter->crit_lock);
4320 return 0;
4321}
4322
4323/**
4324 * iavf_change_mtu - Change the Maximum Transfer Unit
4325 * @netdev: network interface device structure
4326 * @new_mtu: new value for maximum frame size
4327 *
4328 * Returns 0 on success, negative on failure
4329 **/
4330static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4331{
4332 struct iavf_adapter *adapter = netdev_priv(netdev);
4333
4334 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4335 netdev->mtu, new_mtu);
4336 netdev->mtu = new_mtu;
4337 if (CLIENT_ENABLED(adapter)) {
4338 iavf_notify_client_l2_params(&adapter->vsi);
4339 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4340 }
4341
4342 if (netif_running(netdev)) {
4343 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4344 queue_work(adapter->wq, &adapter->reset_task);
4345 }
4346
4347 return 0;
4348}
4349
4350#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4351 NETIF_F_HW_VLAN_CTAG_TX | \
4352 NETIF_F_HW_VLAN_STAG_RX | \
4353 NETIF_F_HW_VLAN_STAG_TX)
4354
4355/**
4356 * iavf_set_features - set the netdev feature flags
4357 * @netdev: ptr to the netdev being adjusted
4358 * @features: the feature set that the stack is suggesting
4359 * Note: expects to be called while under rtnl_lock()
4360 **/
4361static int iavf_set_features(struct net_device *netdev,
4362 netdev_features_t features)
4363{
4364 struct iavf_adapter *adapter = netdev_priv(netdev);
4365
4366 /* trigger update on any VLAN feature change */
4367 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4368 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4369 iavf_set_vlan_offload_features(adapter, netdev->features,
4370 features);
4371
4372 return 0;
4373}
4374
4375/**
4376 * iavf_features_check - Validate encapsulated packet conforms to limits
4377 * @skb: skb buff
4378 * @dev: This physical port's netdev
4379 * @features: Offload features that the stack believes apply
4380 **/
4381static netdev_features_t iavf_features_check(struct sk_buff *skb,
4382 struct net_device *dev,
4383 netdev_features_t features)
4384{
4385 size_t len;
4386
4387 /* No point in doing any of this if neither checksum nor GSO are
4388 * being requested for this frame. We can rule out both by just
4389 * checking for CHECKSUM_PARTIAL
4390 */
4391 if (skb->ip_summed != CHECKSUM_PARTIAL)
4392 return features;
4393
4394 /* We cannot support GSO if the MSS is going to be less than
4395 * 64 bytes. If it is then we need to drop support for GSO.
4396 */
4397 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4398 features &= ~NETIF_F_GSO_MASK;
4399
4400 /* MACLEN can support at most 63 words */
4401 len = skb_network_header(skb) - skb->data;
4402 if (len & ~(63 * 2))
4403 goto out_err;
4404
4405 /* IPLEN and EIPLEN can support at most 127 dwords */
4406 len = skb_transport_header(skb) - skb_network_header(skb);
4407 if (len & ~(127 * 4))
4408 goto out_err;
4409
4410 if (skb->encapsulation) {
4411 /* L4TUNLEN can support 127 words */
4412 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4413 if (len & ~(127 * 2))
4414 goto out_err;
4415
4416 /* IPLEN can support at most 127 dwords */
4417 len = skb_inner_transport_header(skb) -
4418 skb_inner_network_header(skb);
4419 if (len & ~(127 * 4))
4420 goto out_err;
4421 }
4422
4423 /* No need to validate L4LEN as TCP is the only protocol with a
4424 * flexible value and we support all possible values supported
4425 * by TCP, which is at most 15 dwords
4426 */
4427
4428 return features;
4429out_err:
4430 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4431}
4432
4433/**
4434 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4435 * @adapter: board private structure
4436 *
4437 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4438 * were negotiated determine the VLAN features that can be toggled on and off.
4439 **/
4440static netdev_features_t
4441iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4442{
4443 netdev_features_t hw_features = 0;
4444
4445 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4446 return hw_features;
4447
4448 /* Enable VLAN features if supported */
4449 if (VLAN_ALLOWED(adapter)) {
4450 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4451 NETIF_F_HW_VLAN_CTAG_RX);
4452 } else if (VLAN_V2_ALLOWED(adapter)) {
4453 struct virtchnl_vlan_caps *vlan_v2_caps =
4454 &adapter->vlan_v2_caps;
4455 struct virtchnl_vlan_supported_caps *stripping_support =
4456 &vlan_v2_caps->offloads.stripping_support;
4457 struct virtchnl_vlan_supported_caps *insertion_support =
4458 &vlan_v2_caps->offloads.insertion_support;
4459
4460 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4461 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4462 if (stripping_support->outer &
4463 VIRTCHNL_VLAN_ETHERTYPE_8100)
4464 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4465 if (stripping_support->outer &
4466 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4467 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4468 } else if (stripping_support->inner !=
4469 VIRTCHNL_VLAN_UNSUPPORTED &&
4470 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4471 if (stripping_support->inner &
4472 VIRTCHNL_VLAN_ETHERTYPE_8100)
4473 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4474 }
4475
4476 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4477 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4478 if (insertion_support->outer &
4479 VIRTCHNL_VLAN_ETHERTYPE_8100)
4480 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4481 if (insertion_support->outer &
4482 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4483 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4484 } else if (insertion_support->inner &&
4485 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4486 if (insertion_support->inner &
4487 VIRTCHNL_VLAN_ETHERTYPE_8100)
4488 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4489 }
4490 }
4491
4492 return hw_features;
4493}
4494
4495/**
4496 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4497 * @adapter: board private structure
4498 *
4499 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4500 * were negotiated determine the VLAN features that are enabled by default.
4501 **/
4502static netdev_features_t
4503iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4504{
4505 netdev_features_t features = 0;
4506
4507 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4508 return features;
4509
4510 if (VLAN_ALLOWED(adapter)) {
4511 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4512 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4513 } else if (VLAN_V2_ALLOWED(adapter)) {
4514 struct virtchnl_vlan_caps *vlan_v2_caps =
4515 &adapter->vlan_v2_caps;
4516 struct virtchnl_vlan_supported_caps *filtering_support =
4517 &vlan_v2_caps->filtering.filtering_support;
4518 struct virtchnl_vlan_supported_caps *stripping_support =
4519 &vlan_v2_caps->offloads.stripping_support;
4520 struct virtchnl_vlan_supported_caps *insertion_support =
4521 &vlan_v2_caps->offloads.insertion_support;
4522 u32 ethertype_init;
4523
4524 /* give priority to outer stripping and don't support both outer
4525 * and inner stripping
4526 */
4527 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4528 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4529 if (stripping_support->outer &
4530 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4531 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4532 features |= NETIF_F_HW_VLAN_CTAG_RX;
4533 else if (stripping_support->outer &
4534 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4535 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4536 features |= NETIF_F_HW_VLAN_STAG_RX;
4537 } else if (stripping_support->inner !=
4538 VIRTCHNL_VLAN_UNSUPPORTED) {
4539 if (stripping_support->inner &
4540 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4541 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4542 features |= NETIF_F_HW_VLAN_CTAG_RX;
4543 }
4544
4545 /* give priority to outer insertion and don't support both outer
4546 * and inner insertion
4547 */
4548 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4549 if (insertion_support->outer &
4550 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4551 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4552 features |= NETIF_F_HW_VLAN_CTAG_TX;
4553 else if (insertion_support->outer &
4554 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4555 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4556 features |= NETIF_F_HW_VLAN_STAG_TX;
4557 } else if (insertion_support->inner !=
4558 VIRTCHNL_VLAN_UNSUPPORTED) {
4559 if (insertion_support->inner &
4560 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4561 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4562 features |= NETIF_F_HW_VLAN_CTAG_TX;
4563 }
4564
4565 /* give priority to outer filtering and don't bother if both
4566 * outer and inner filtering are enabled
4567 */
4568 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4569 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4570 if (filtering_support->outer &
4571 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4572 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4573 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4574 if (filtering_support->outer &
4575 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4576 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4577 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4578 } else if (filtering_support->inner !=
4579 VIRTCHNL_VLAN_UNSUPPORTED) {
4580 if (filtering_support->inner &
4581 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4582 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4583 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4584 if (filtering_support->inner &
4585 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4586 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4587 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4588 }
4589 }
4590
4591 return features;
4592}
4593
4594#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4595 (!(((requested) & (feature_bit)) && \
4596 !((allowed) & (feature_bit))))
4597
4598/**
4599 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4600 * @adapter: board private structure
4601 * @requested_features: stack requested NETDEV features
4602 **/
4603static netdev_features_t
4604iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4605 netdev_features_t requested_features)
4606{
4607 netdev_features_t allowed_features;
4608
4609 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4610 iavf_get_netdev_vlan_features(adapter);
4611
4612 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4613 allowed_features,
4614 NETIF_F_HW_VLAN_CTAG_TX))
4615 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4616
4617 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4618 allowed_features,
4619 NETIF_F_HW_VLAN_CTAG_RX))
4620 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4621
4622 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4623 allowed_features,
4624 NETIF_F_HW_VLAN_STAG_TX))
4625 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4626 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4627 allowed_features,
4628 NETIF_F_HW_VLAN_STAG_RX))
4629 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4630
4631 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4632 allowed_features,
4633 NETIF_F_HW_VLAN_CTAG_FILTER))
4634 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4635
4636 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4637 allowed_features,
4638 NETIF_F_HW_VLAN_STAG_FILTER))
4639 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4640
4641 if ((requested_features &
4642 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4643 (requested_features &
4644 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4645 adapter->vlan_v2_caps.offloads.ethertype_match ==
4646 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4647 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4648 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4649 NETIF_F_HW_VLAN_STAG_TX);
4650 }
4651
4652 return requested_features;
4653}
4654
4655/**
4656 * iavf_fix_features - fix up the netdev feature bits
4657 * @netdev: our net device
4658 * @features: desired feature bits
4659 *
4660 * Returns fixed-up features bits
4661 **/
4662static netdev_features_t iavf_fix_features(struct net_device *netdev,
4663 netdev_features_t features)
4664{
4665 struct iavf_adapter *adapter = netdev_priv(netdev);
4666
4667 return iavf_fix_netdev_vlan_features(adapter, features);
4668}
4669
4670static const struct net_device_ops iavf_netdev_ops = {
4671 .ndo_open = iavf_open,
4672 .ndo_stop = iavf_close,
4673 .ndo_start_xmit = iavf_xmit_frame,
4674 .ndo_set_rx_mode = iavf_set_rx_mode,
4675 .ndo_validate_addr = eth_validate_addr,
4676 .ndo_set_mac_address = iavf_set_mac,
4677 .ndo_change_mtu = iavf_change_mtu,
4678 .ndo_tx_timeout = iavf_tx_timeout,
4679 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4680 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4681 .ndo_features_check = iavf_features_check,
4682 .ndo_fix_features = iavf_fix_features,
4683 .ndo_set_features = iavf_set_features,
4684 .ndo_setup_tc = iavf_setup_tc,
4685};
4686
4687/**
4688 * iavf_check_reset_complete - check that VF reset is complete
4689 * @hw: pointer to hw struct
4690 *
4691 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4692 **/
4693static int iavf_check_reset_complete(struct iavf_hw *hw)
4694{
4695 u32 rstat;
4696 int i;
4697
4698 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4699 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4700 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4701 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4702 (rstat == VIRTCHNL_VFR_COMPLETED))
4703 return 0;
4704 usleep_range(10, 20);
4705 }
4706 return -EBUSY;
4707}
4708
4709/**
4710 * iavf_process_config - Process the config information we got from the PF
4711 * @adapter: board private structure
4712 *
4713 * Verify that we have a valid config struct, and set up our netdev features
4714 * and our VSI struct.
4715 **/
4716int iavf_process_config(struct iavf_adapter *adapter)
4717{
4718 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4719 netdev_features_t hw_vlan_features, vlan_features;
4720 struct net_device *netdev = adapter->netdev;
4721 netdev_features_t hw_enc_features;
4722 netdev_features_t hw_features;
4723
4724 hw_enc_features = NETIF_F_SG |
4725 NETIF_F_IP_CSUM |
4726 NETIF_F_IPV6_CSUM |
4727 NETIF_F_HIGHDMA |
4728 NETIF_F_SOFT_FEATURES |
4729 NETIF_F_TSO |
4730 NETIF_F_TSO_ECN |
4731 NETIF_F_TSO6 |
4732 NETIF_F_SCTP_CRC |
4733 NETIF_F_RXHASH |
4734 NETIF_F_RXCSUM |
4735 0;
4736
4737 /* advertise to stack only if offloads for encapsulated packets is
4738 * supported
4739 */
4740 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4741 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4742 NETIF_F_GSO_GRE |
4743 NETIF_F_GSO_GRE_CSUM |
4744 NETIF_F_GSO_IPXIP4 |
4745 NETIF_F_GSO_IPXIP6 |
4746 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4747 NETIF_F_GSO_PARTIAL |
4748 0;
4749
4750 if (!(vfres->vf_cap_flags &
4751 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4752 netdev->gso_partial_features |=
4753 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4754
4755 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4756 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4757 netdev->hw_enc_features |= hw_enc_features;
4758 }
4759 /* record features VLANs can make use of */
4760 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4761
4762 /* Write features and hw_features separately to avoid polluting
4763 * with, or dropping, features that are set when we registered.
4764 */
4765 hw_features = hw_enc_features;
4766
4767 /* get HW VLAN features that can be toggled */
4768 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4769
4770 /* Enable cloud filter if ADQ is supported */
4771 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4772 hw_features |= NETIF_F_HW_TC;
4773 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4774 hw_features |= NETIF_F_GSO_UDP_L4;
4775
4776 netdev->hw_features |= hw_features | hw_vlan_features;
4777 vlan_features = iavf_get_netdev_vlan_features(adapter);
4778
4779 netdev->features |= hw_features | vlan_features;
4780
4781 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4782 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4783
4784 netdev->priv_flags |= IFF_UNICAST_FLT;
4785
4786 /* Do not turn on offloads when they are requested to be turned off.
4787 * TSO needs minimum 576 bytes to work correctly.
4788 */
4789 if (netdev->wanted_features) {
4790 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4791 netdev->mtu < 576)
4792 netdev->features &= ~NETIF_F_TSO;
4793 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4794 netdev->mtu < 576)
4795 netdev->features &= ~NETIF_F_TSO6;
4796 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4797 netdev->features &= ~NETIF_F_TSO_ECN;
4798 if (!(netdev->wanted_features & NETIF_F_GRO))
4799 netdev->features &= ~NETIF_F_GRO;
4800 if (!(netdev->wanted_features & NETIF_F_GSO))
4801 netdev->features &= ~NETIF_F_GSO;
4802 }
4803
4804 return 0;
4805}
4806
4807/**
4808 * iavf_shutdown - Shutdown the device in preparation for a reboot
4809 * @pdev: pci device structure
4810 **/
4811static void iavf_shutdown(struct pci_dev *pdev)
4812{
4813 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4814 struct net_device *netdev = adapter->netdev;
4815
4816 netif_device_detach(netdev);
4817
4818 if (netif_running(netdev))
4819 iavf_close(netdev);
4820
4821 if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4822 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__);
4823 /* Prevent the watchdog from running. */
4824 iavf_change_state(adapter, __IAVF_REMOVE);
4825 adapter->aq_required = 0;
4826 mutex_unlock(&adapter->crit_lock);
4827
4828#ifdef CONFIG_PM
4829 pci_save_state(pdev);
4830
4831#endif
4832 pci_disable_device(pdev);
4833}
4834
4835/**
4836 * iavf_probe - Device Initialization Routine
4837 * @pdev: PCI device information struct
4838 * @ent: entry in iavf_pci_tbl
4839 *
4840 * Returns 0 on success, negative on failure
4841 *
4842 * iavf_probe initializes an adapter identified by a pci_dev structure.
4843 * The OS initialization, configuring of the adapter private structure,
4844 * and a hardware reset occur.
4845 **/
4846static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4847{
4848 struct net_device *netdev;
4849 struct iavf_adapter *adapter = NULL;
4850 struct iavf_hw *hw = NULL;
4851 int err;
4852
4853 err = pci_enable_device(pdev);
4854 if (err)
4855 return err;
4856
4857 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4858 if (err) {
4859 dev_err(&pdev->dev,
4860 "DMA configuration failed: 0x%x\n", err);
4861 goto err_dma;
4862 }
4863
4864 err = pci_request_regions(pdev, iavf_driver_name);
4865 if (err) {
4866 dev_err(&pdev->dev,
4867 "pci_request_regions failed 0x%x\n", err);
4868 goto err_pci_reg;
4869 }
4870
4871 pci_enable_pcie_error_reporting(pdev);
4872
4873 pci_set_master(pdev);
4874
4875 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4876 IAVF_MAX_REQ_QUEUES);
4877 if (!netdev) {
4878 err = -ENOMEM;
4879 goto err_alloc_etherdev;
4880 }
4881
4882 SET_NETDEV_DEV(netdev, &pdev->dev);
4883
4884 pci_set_drvdata(pdev, netdev);
4885 adapter = netdev_priv(netdev);
4886
4887 adapter->netdev = netdev;
4888 adapter->pdev = pdev;
4889
4890 hw = &adapter->hw;
4891 hw->back = adapter;
4892
4893 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4894 iavf_driver_name);
4895 if (!adapter->wq) {
4896 err = -ENOMEM;
4897 goto err_alloc_wq;
4898 }
4899
4900 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4901 iavf_change_state(adapter, __IAVF_STARTUP);
4902
4903 /* Call save state here because it relies on the adapter struct. */
4904 pci_save_state(pdev);
4905
4906 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4907 pci_resource_len(pdev, 0));
4908 if (!hw->hw_addr) {
4909 err = -EIO;
4910 goto err_ioremap;
4911 }
4912 hw->vendor_id = pdev->vendor;
4913 hw->device_id = pdev->device;
4914 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4915 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4916 hw->subsystem_device_id = pdev->subsystem_device;
4917 hw->bus.device = PCI_SLOT(pdev->devfn);
4918 hw->bus.func = PCI_FUNC(pdev->devfn);
4919 hw->bus.bus_id = pdev->bus->number;
4920
4921 /* set up the locks for the AQ, do this only once in probe
4922 * and destroy them only once in remove
4923 */
4924 mutex_init(&adapter->crit_lock);
4925 mutex_init(&adapter->client_lock);
4926 mutex_init(&hw->aq.asq_mutex);
4927 mutex_init(&hw->aq.arq_mutex);
4928
4929 spin_lock_init(&adapter->mac_vlan_list_lock);
4930 spin_lock_init(&adapter->cloud_filter_list_lock);
4931 spin_lock_init(&adapter->fdir_fltr_lock);
4932 spin_lock_init(&adapter->adv_rss_lock);
4933
4934 INIT_LIST_HEAD(&adapter->mac_filter_list);
4935 INIT_LIST_HEAD(&adapter->vlan_filter_list);
4936 INIT_LIST_HEAD(&adapter->cloud_filter_list);
4937 INIT_LIST_HEAD(&adapter->fdir_list_head);
4938 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4939
4940 INIT_WORK(&adapter->reset_task, iavf_reset_task);
4941 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4942 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4943 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4944 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
4945 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4946
4947 /* Setup the wait queue for indicating transition to down status */
4948 init_waitqueue_head(&adapter->down_waitqueue);
4949
4950 /* Setup the wait queue for indicating virtchannel events */
4951 init_waitqueue_head(&adapter->vc_waitqueue);
4952
4953 return 0;
4954
4955err_ioremap:
4956 destroy_workqueue(adapter->wq);
4957err_alloc_wq:
4958 free_netdev(netdev);
4959err_alloc_etherdev:
4960 pci_disable_pcie_error_reporting(pdev);
4961 pci_release_regions(pdev);
4962err_pci_reg:
4963err_dma:
4964 pci_disable_device(pdev);
4965 return err;
4966}
4967
4968/**
4969 * iavf_suspend - Power management suspend routine
4970 * @dev_d: device info pointer
4971 *
4972 * Called when the system (VM) is entering sleep/suspend.
4973 **/
4974static int __maybe_unused iavf_suspend(struct device *dev_d)
4975{
4976 struct net_device *netdev = dev_get_drvdata(dev_d);
4977 struct iavf_adapter *adapter = netdev_priv(netdev);
4978
4979 netif_device_detach(netdev);
4980
4981 while (!mutex_trylock(&adapter->crit_lock))
4982 usleep_range(500, 1000);
4983
4984 if (netif_running(netdev)) {
4985 rtnl_lock();
4986 iavf_down(adapter);
4987 rtnl_unlock();
4988 }
4989 iavf_free_misc_irq(adapter);
4990 iavf_reset_interrupt_capability(adapter);
4991
4992 mutex_unlock(&adapter->crit_lock);
4993
4994 return 0;
4995}
4996
4997/**
4998 * iavf_resume - Power management resume routine
4999 * @dev_d: device info pointer
5000 *
5001 * Called when the system (VM) is resumed from sleep/suspend.
5002 **/
5003static int __maybe_unused iavf_resume(struct device *dev_d)
5004{
5005 struct pci_dev *pdev = to_pci_dev(dev_d);
5006 struct iavf_adapter *adapter;
5007 u32 err;
5008
5009 adapter = iavf_pdev_to_adapter(pdev);
5010
5011 pci_set_master(pdev);
5012
5013 rtnl_lock();
5014 err = iavf_set_interrupt_capability(adapter);
5015 if (err) {
5016 rtnl_unlock();
5017 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5018 return err;
5019 }
5020 err = iavf_request_misc_irq(adapter);
5021 rtnl_unlock();
5022 if (err) {
5023 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5024 return err;
5025 }
5026
5027 queue_work(adapter->wq, &adapter->reset_task);
5028
5029 netif_device_attach(adapter->netdev);
5030
5031 return err;
5032}
5033
5034/**
5035 * iavf_remove - Device Removal Routine
5036 * @pdev: PCI device information struct
5037 *
5038 * iavf_remove is called by the PCI subsystem to alert the driver
5039 * that it should release a PCI device. The could be caused by a
5040 * Hot-Plug event, or because the driver is going to be removed from
5041 * memory.
5042 **/
5043static void iavf_remove(struct pci_dev *pdev)
5044{
5045 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
5046 struct iavf_fdir_fltr *fdir, *fdirtmp;
5047 struct iavf_vlan_filter *vlf, *vlftmp;
5048 struct iavf_cloud_filter *cf, *cftmp;
5049 struct iavf_adv_rss *rss, *rsstmp;
5050 struct iavf_mac_filter *f, *ftmp;
5051 struct net_device *netdev;
5052 struct iavf_hw *hw;
5053 int err;
5054
5055 netdev = adapter->netdev;
5056 hw = &adapter->hw;
5057
5058 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5059 return;
5060
5061 /* Wait until port initialization is complete.
5062 * There are flows where register/unregister netdev may race.
5063 */
5064 while (1) {
5065 mutex_lock(&adapter->crit_lock);
5066 if (adapter->state == __IAVF_RUNNING ||
5067 adapter->state == __IAVF_DOWN ||
5068 adapter->state == __IAVF_INIT_FAILED) {
5069 mutex_unlock(&adapter->crit_lock);
5070 break;
5071 }
5072
5073 mutex_unlock(&adapter->crit_lock);
5074 usleep_range(500, 1000);
5075 }
5076 cancel_delayed_work_sync(&adapter->watchdog_task);
5077
5078 if (adapter->netdev_registered) {
5079 rtnl_lock();
5080 unregister_netdevice(netdev);
5081 adapter->netdev_registered = false;
5082 rtnl_unlock();
5083 }
5084 if (CLIENT_ALLOWED(adapter)) {
5085 err = iavf_lan_del_device(adapter);
5086 if (err)
5087 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
5088 err);
5089 }
5090
5091 mutex_lock(&adapter->crit_lock);
5092 dev_info(&adapter->pdev->dev, "Removing device\n");
5093 iavf_change_state(adapter, __IAVF_REMOVE);
5094
5095 iavf_request_reset(adapter);
5096 msleep(50);
5097 /* If the FW isn't responding, kick it once, but only once. */
5098 if (!iavf_asq_done(hw)) {
5099 iavf_request_reset(adapter);
5100 msleep(50);
5101 }
5102
5103 iavf_misc_irq_disable(adapter);
5104 /* Shut down all the garbage mashers on the detention level */
5105 cancel_work_sync(&adapter->reset_task);
5106 cancel_delayed_work_sync(&adapter->watchdog_task);
5107 cancel_work_sync(&adapter->adminq_task);
5108 cancel_delayed_work_sync(&adapter->client_task);
5109
5110 adapter->aq_required = 0;
5111 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5112
5113 iavf_free_all_tx_resources(adapter);
5114 iavf_free_all_rx_resources(adapter);
5115 iavf_free_misc_irq(adapter);
5116
5117 iavf_reset_interrupt_capability(adapter);
5118 iavf_free_q_vectors(adapter);
5119
5120 iavf_free_rss(adapter);
5121
5122 if (hw->aq.asq.count)
5123 iavf_shutdown_adminq(hw);
5124
5125 /* destroy the locks only once, here */
5126 mutex_destroy(&hw->aq.arq_mutex);
5127 mutex_destroy(&hw->aq.asq_mutex);
5128 mutex_destroy(&adapter->client_lock);
5129 mutex_unlock(&adapter->crit_lock);
5130 mutex_destroy(&adapter->crit_lock);
5131
5132 iounmap(hw->hw_addr);
5133 pci_release_regions(pdev);
5134 iavf_free_queues(adapter);
5135 kfree(adapter->vf_res);
5136 spin_lock_bh(&adapter->mac_vlan_list_lock);
5137 /* If we got removed before an up/down sequence, we've got a filter
5138 * hanging out there that we need to get rid of.
5139 */
5140 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5141 list_del(&f->list);
5142 kfree(f);
5143 }
5144 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5145 list) {
5146 list_del(&vlf->list);
5147 kfree(vlf);
5148 }
5149
5150 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5151
5152 spin_lock_bh(&adapter->cloud_filter_list_lock);
5153 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5154 list_del(&cf->list);
5155 kfree(cf);
5156 }
5157 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5158
5159 spin_lock_bh(&adapter->fdir_fltr_lock);
5160 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5161 list_del(&fdir->list);
5162 kfree(fdir);
5163 }
5164 spin_unlock_bh(&adapter->fdir_fltr_lock);
5165
5166 spin_lock_bh(&adapter->adv_rss_lock);
5167 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5168 list) {
5169 list_del(&rss->list);
5170 kfree(rss);
5171 }
5172 spin_unlock_bh(&adapter->adv_rss_lock);
5173
5174 destroy_workqueue(adapter->wq);
5175
5176 free_netdev(netdev);
5177
5178 pci_disable_pcie_error_reporting(pdev);
5179
5180 pci_disable_device(pdev);
5181}
5182
5183static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5184
5185static struct pci_driver iavf_driver = {
5186 .name = iavf_driver_name,
5187 .id_table = iavf_pci_tbl,
5188 .probe = iavf_probe,
5189 .remove = iavf_remove,
5190 .driver.pm = &iavf_pm_ops,
5191 .shutdown = iavf_shutdown,
5192};
5193
5194/**
5195 * iavf_init_module - Driver Registration Routine
5196 *
5197 * iavf_init_module is the first routine called when the driver is
5198 * loaded. All it does is register with the PCI subsystem.
5199 **/
5200static int __init iavf_init_module(void)
5201{
5202 pr_info("iavf: %s\n", iavf_driver_string);
5203
5204 pr_info("%s\n", iavf_copyright);
5205
5206 return pci_register_driver(&iavf_driver);
5207}
5208
5209module_init(iavf_init_module);
5210
5211/**
5212 * iavf_exit_module - Driver Exit Cleanup Routine
5213 *
5214 * iavf_exit_module is called just before the driver is removed
5215 * from memory.
5216 **/
5217static void __exit iavf_exit_module(void)
5218{
5219 pci_unregister_driver(&iavf_driver);
5220}
5221
5222module_exit(iavf_exit_module);
5223
5224/* iavf_main.c */