Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
  32#include <linux/byteorder/generic.h>
  33#include <linux/cec.h>
  34#include <linux/hdmi.h>
  35#include <linux/i2c.h>
  36#include <linux/kernel.h>
  37#include <linux/module.h>
  38#include <linux/pci.h>
  39#include <linux/seq_buf.h>
  40#include <linux/slab.h>
  41#include <linux/vga_switcheroo.h>
  42
 
  43#include <drm/drm_drv.h>
  44#include <drm/drm_edid.h>
  45#include <drm/drm_eld.h>
  46#include <drm/drm_encoder.h>
  47#include <drm/drm_print.h>
  48
  49#include "drm_crtc_internal.h"
  50#include "drm_displayid_internal.h"
  51#include "drm_internal.h"
  52
  53static int oui(u8 first, u8 second, u8 third)
  54{
  55	return (first << 16) | (second << 8) | third;
  56}
  57
  58#define EDID_EST_TIMINGS 16
  59#define EDID_STD_TIMINGS 8
  60#define EDID_DETAILED_TIMINGS 4
  61
  62/*
  63 * EDID blocks out in the wild have a variety of bugs, try to collect
  64 * them here (note that userspace may work around broken monitors first,
  65 * but fixes should make their way here so that the kernel "just works"
  66 * on as many displays as possible).
  67 */
  68
  69/* First detailed mode wrong, use largest 60Hz mode */
  70#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  71/* Reported 135MHz pixel clock is too high, needs adjustment */
  72#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  73/* Prefer the largest mode at 75 Hz */
  74#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  75/* Detail timing is in cm not mm */
  76#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  77/* Detailed timing descriptors have bogus size values, so just take the
  78 * maximum size and use that.
  79 */
  80#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  81/* use +hsync +vsync for detailed mode */
  82#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  83/* Force reduced-blanking timings for detailed modes */
  84#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  85/* Force 8bpc */
  86#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  87/* Force 12bpc */
  88#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  89/* Force 6bpc */
  90#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  91/* Force 10bpc */
  92#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  93/* Non desktop display (i.e. HMD) */
  94#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  95/* Cap the DSC target bitrate to 15bpp */
  96#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  97
  98#define MICROSOFT_IEEE_OUI	0xca125c
  99
 100struct detailed_mode_closure {
 101	struct drm_connector *connector;
 102	const struct drm_edid *drm_edid;
 103	bool preferred;
 104	int modes;
 105};
 106
 107struct drm_edid_match_closure {
 108	const struct drm_edid_ident *ident;
 109	bool matched;
 110};
 111
 112#define LEVEL_DMT	0
 113#define LEVEL_GTF	1
 114#define LEVEL_GTF2	2
 115#define LEVEL_CVT	3
 116
 117#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 118{ \
 119	.ident = { \
 120		.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, \
 121						     vend_chr_2, product_id), \
 122	}, \
 123	.quirks = _quirks \
 124}
 125
 126static const struct edid_quirk {
 127	const struct drm_edid_ident ident;
 128	u32 quirks;
 129} edid_quirk_list[] = {
 130	/* Acer AL1706 */
 131	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 132	/* Acer F51 */
 133	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 134
 135	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 136	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 137
 138	/* BenQ GW2765 */
 139	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
 140
 141	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 142	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 143
 144	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 145	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 146
 147	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 148	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 149
 150	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 151	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 152
 153	/* Belinea 10 15 55 */
 154	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 155	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 156
 157	/* Envision Peripherals, Inc. EN-7100e */
 158	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 159	/* Envision EN2028 */
 160	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 161
 162	/* Funai Electronics PM36B */
 163	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 164				       EDID_QUIRK_DETAILED_IN_CM),
 165
 166	/* LG 27GP950 */
 167	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 168
 169	/* LG 27GN950 */
 170	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 171
 172	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 173	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 174
 175	/* LG Philips LCD LP154W01-A5 */
 176	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 177	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 178
 179	/* Samsung SyncMaster 205BW.  Note: irony */
 180	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 181	/* Samsung SyncMaster 22[5-6]BW */
 182	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 183	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 184
 185	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 186	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 187
 188	/* ViewSonic VA2026w */
 189	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 190
 191	/* Medion MD 30217 PG */
 192	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 193
 194	/* Lenovo G50 */
 195	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 196
 197	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 198	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 199
 200	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 201	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 202
 203	/* Valve Index Headset */
 204	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 207	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 208	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 209	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 211	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 212	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 213	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 214	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 216	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 217	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 218	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 219	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 221
 222	/* HTC Vive and Vive Pro VR Headsets */
 223	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 224	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 225
 226	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 227	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 228	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 229	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 230	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 231
 232	/* Windows Mixed Reality Headsets */
 233	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 234	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 235	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 236	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 237	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 238	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 239
 240	/* Sony PlayStation VR Headset */
 241	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 242
 243	/* Sensics VR Headsets */
 244	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 245
 246	/* OSVR HDK and HDK2 VR Headsets */
 247	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 248	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
 249};
 250
 251/*
 252 * Autogenerated from the DMT spec.
 253 * This table is copied from xfree86/modes/xf86EdidModes.c.
 254 */
 255static const struct drm_display_mode drm_dmt_modes[] = {
 256	/* 0x01 - 640x350@85Hz */
 257	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 258		   736, 832, 0, 350, 382, 385, 445, 0,
 259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 260	/* 0x02 - 640x400@85Hz */
 261	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 262		   736, 832, 0, 400, 401, 404, 445, 0,
 263		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 264	/* 0x03 - 720x400@85Hz */
 265	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 266		   828, 936, 0, 400, 401, 404, 446, 0,
 267		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 268	/* 0x04 - 640x480@60Hz */
 269	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 270		   752, 800, 0, 480, 490, 492, 525, 0,
 271		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 272	/* 0x05 - 640x480@72Hz */
 273	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 274		   704, 832, 0, 480, 489, 492, 520, 0,
 275		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 276	/* 0x06 - 640x480@75Hz */
 277	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 278		   720, 840, 0, 480, 481, 484, 500, 0,
 279		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 280	/* 0x07 - 640x480@85Hz */
 281	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 282		   752, 832, 0, 480, 481, 484, 509, 0,
 283		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 284	/* 0x08 - 800x600@56Hz */
 285	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 286		   896, 1024, 0, 600, 601, 603, 625, 0,
 287		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 288	/* 0x09 - 800x600@60Hz */
 289	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 290		   968, 1056, 0, 600, 601, 605, 628, 0,
 291		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 292	/* 0x0a - 800x600@72Hz */
 293	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 294		   976, 1040, 0, 600, 637, 643, 666, 0,
 295		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 296	/* 0x0b - 800x600@75Hz */
 297	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 298		   896, 1056, 0, 600, 601, 604, 625, 0,
 299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 300	/* 0x0c - 800x600@85Hz */
 301	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 302		   896, 1048, 0, 600, 601, 604, 631, 0,
 303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 304	/* 0x0d - 800x600@120Hz RB */
 305	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 306		   880, 960, 0, 600, 603, 607, 636, 0,
 307		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 308	/* 0x0e - 848x480@60Hz */
 309	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 310		   976, 1088, 0, 480, 486, 494, 517, 0,
 311		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 312	/* 0x0f - 1024x768@43Hz, interlace */
 313	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 314		   1208, 1264, 0, 768, 768, 776, 817, 0,
 315		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 316		   DRM_MODE_FLAG_INTERLACE) },
 317	/* 0x10 - 1024x768@60Hz */
 318	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 319		   1184, 1344, 0, 768, 771, 777, 806, 0,
 320		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 321	/* 0x11 - 1024x768@70Hz */
 322	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 323		   1184, 1328, 0, 768, 771, 777, 806, 0,
 324		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 325	/* 0x12 - 1024x768@75Hz */
 326	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 327		   1136, 1312, 0, 768, 769, 772, 800, 0,
 328		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 329	/* 0x13 - 1024x768@85Hz */
 330	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 331		   1168, 1376, 0, 768, 769, 772, 808, 0,
 332		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 333	/* 0x14 - 1024x768@120Hz RB */
 334	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 335		   1104, 1184, 0, 768, 771, 775, 813, 0,
 336		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 337	/* 0x15 - 1152x864@75Hz */
 338	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 339		   1344, 1600, 0, 864, 865, 868, 900, 0,
 340		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 341	/* 0x55 - 1280x720@60Hz */
 342	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 343		   1430, 1650, 0, 720, 725, 730, 750, 0,
 344		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 345	/* 0x16 - 1280x768@60Hz RB */
 346	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 347		   1360, 1440, 0, 768, 771, 778, 790, 0,
 348		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 349	/* 0x17 - 1280x768@60Hz */
 350	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 351		   1472, 1664, 0, 768, 771, 778, 798, 0,
 352		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 353	/* 0x18 - 1280x768@75Hz */
 354	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 355		   1488, 1696, 0, 768, 771, 778, 805, 0,
 356		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 357	/* 0x19 - 1280x768@85Hz */
 358	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 359		   1496, 1712, 0, 768, 771, 778, 809, 0,
 360		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 361	/* 0x1a - 1280x768@120Hz RB */
 362	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 363		   1360, 1440, 0, 768, 771, 778, 813, 0,
 364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 365	/* 0x1b - 1280x800@60Hz RB */
 366	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 367		   1360, 1440, 0, 800, 803, 809, 823, 0,
 368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 369	/* 0x1c - 1280x800@60Hz */
 370	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 371		   1480, 1680, 0, 800, 803, 809, 831, 0,
 372		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 373	/* 0x1d - 1280x800@75Hz */
 374	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 375		   1488, 1696, 0, 800, 803, 809, 838, 0,
 376		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 377	/* 0x1e - 1280x800@85Hz */
 378	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 379		   1496, 1712, 0, 800, 803, 809, 843, 0,
 380		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 381	/* 0x1f - 1280x800@120Hz RB */
 382	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 383		   1360, 1440, 0, 800, 803, 809, 847, 0,
 384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 385	/* 0x20 - 1280x960@60Hz */
 386	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 387		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 389	/* 0x21 - 1280x960@85Hz */
 390	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 391		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 392		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 393	/* 0x22 - 1280x960@120Hz RB */
 394	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 395		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 396		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 397	/* 0x23 - 1280x1024@60Hz */
 398	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 399		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 400		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 401	/* 0x24 - 1280x1024@75Hz */
 402	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 403		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 404		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 405	/* 0x25 - 1280x1024@85Hz */
 406	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 407		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 408		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 409	/* 0x26 - 1280x1024@120Hz RB */
 410	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 411		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 412		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 413	/* 0x27 - 1360x768@60Hz */
 414	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 415		   1536, 1792, 0, 768, 771, 777, 795, 0,
 416		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 417	/* 0x28 - 1360x768@120Hz RB */
 418	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 419		   1440, 1520, 0, 768, 771, 776, 813, 0,
 420		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 421	/* 0x51 - 1366x768@60Hz */
 422	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 423		   1579, 1792, 0, 768, 771, 774, 798, 0,
 424		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 425	/* 0x56 - 1366x768@60Hz */
 426	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 427		   1436, 1500, 0, 768, 769, 772, 800, 0,
 428		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 429	/* 0x29 - 1400x1050@60Hz RB */
 430	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 431		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 432		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 433	/* 0x2a - 1400x1050@60Hz */
 434	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 435		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 436		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 437	/* 0x2b - 1400x1050@75Hz */
 438	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 439		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 440		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 441	/* 0x2c - 1400x1050@85Hz */
 442	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 443		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 444		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 445	/* 0x2d - 1400x1050@120Hz RB */
 446	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 447		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 448		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 449	/* 0x2e - 1440x900@60Hz RB */
 450	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 451		   1520, 1600, 0, 900, 903, 909, 926, 0,
 452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 453	/* 0x2f - 1440x900@60Hz */
 454	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 455		   1672, 1904, 0, 900, 903, 909, 934, 0,
 456		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 457	/* 0x30 - 1440x900@75Hz */
 458	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 459		   1688, 1936, 0, 900, 903, 909, 942, 0,
 460		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 461	/* 0x31 - 1440x900@85Hz */
 462	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 463		   1696, 1952, 0, 900, 903, 909, 948, 0,
 464		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 465	/* 0x32 - 1440x900@120Hz RB */
 466	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 467		   1520, 1600, 0, 900, 903, 909, 953, 0,
 468		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 469	/* 0x53 - 1600x900@60Hz */
 470	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 471		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 472		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 473	/* 0x33 - 1600x1200@60Hz */
 474	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 475		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 477	/* 0x34 - 1600x1200@65Hz */
 478	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 479		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 480		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 481	/* 0x35 - 1600x1200@70Hz */
 482	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 483		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 484		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 485	/* 0x36 - 1600x1200@75Hz */
 486	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 487		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 488		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 489	/* 0x37 - 1600x1200@85Hz */
 490	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 491		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 492		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 493	/* 0x38 - 1600x1200@120Hz RB */
 494	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 495		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 497	/* 0x39 - 1680x1050@60Hz RB */
 498	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 499		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 500		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 501	/* 0x3a - 1680x1050@60Hz */
 502	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 503		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 504		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 505	/* 0x3b - 1680x1050@75Hz */
 506	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 507		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 508		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 509	/* 0x3c - 1680x1050@85Hz */
 510	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 511		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 512		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 513	/* 0x3d - 1680x1050@120Hz RB */
 514	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 515		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 517	/* 0x3e - 1792x1344@60Hz */
 518	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 519		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 520		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 521	/* 0x3f - 1792x1344@75Hz */
 522	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 523		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 524		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 525	/* 0x40 - 1792x1344@120Hz RB */
 526	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 527		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 528		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 529	/* 0x41 - 1856x1392@60Hz */
 530	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 531		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 532		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 533	/* 0x42 - 1856x1392@75Hz */
 534	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 535		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 536		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 537	/* 0x43 - 1856x1392@120Hz RB */
 538	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 539		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 540		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 541	/* 0x52 - 1920x1080@60Hz */
 542	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 543		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 544		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 545	/* 0x44 - 1920x1200@60Hz RB */
 546	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 547		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 548		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 549	/* 0x45 - 1920x1200@60Hz */
 550	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 551		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 552		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 553	/* 0x46 - 1920x1200@75Hz */
 554	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 555		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 556		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 557	/* 0x47 - 1920x1200@85Hz */
 558	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 559		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 560		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 561	/* 0x48 - 1920x1200@120Hz RB */
 562	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 563		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 564		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 565	/* 0x49 - 1920x1440@60Hz */
 566	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 567		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 568		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 569	/* 0x4a - 1920x1440@75Hz */
 570	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 571		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 572		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 573	/* 0x4b - 1920x1440@120Hz RB */
 574	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 575		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 576		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 577	/* 0x54 - 2048x1152@60Hz */
 578	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 579		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 580		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 581	/* 0x4c - 2560x1600@60Hz RB */
 582	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 583		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 584		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 585	/* 0x4d - 2560x1600@60Hz */
 586	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 587		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 588		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 589	/* 0x4e - 2560x1600@75Hz */
 590	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 591		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 592		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 593	/* 0x4f - 2560x1600@85Hz */
 594	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 595		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 596		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 597	/* 0x50 - 2560x1600@120Hz RB */
 598	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 599		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 600		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 601	/* 0x57 - 4096x2160@60Hz RB */
 602	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 603		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 604		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 605	/* 0x58 - 4096x2160@59.94Hz RB */
 606	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 607		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 608		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 609};
 610
 611/*
 612 * These more or less come from the DMT spec.  The 720x400 modes are
 613 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 614 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 615 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 616 * mode.
 617 *
 618 * The DMT modes have been fact-checked; the rest are mild guesses.
 619 */
 620static const struct drm_display_mode edid_est_modes[] = {
 621	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 622		   968, 1056, 0, 600, 601, 605, 628, 0,
 623		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 624	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 625		   896, 1024, 0, 600, 601, 603,  625, 0,
 626		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 627	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 628		   720, 840, 0, 480, 481, 484, 500, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 630	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 631		   704,  832, 0, 480, 489, 492, 520, 0,
 632		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 633	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 634		   768,  864, 0, 480, 483, 486, 525, 0,
 635		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 636	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 637		   752, 800, 0, 480, 490, 492, 525, 0,
 638		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 639	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 640		   846, 900, 0, 400, 421, 423,  449, 0,
 641		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 642	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 643		   846,  900, 0, 400, 412, 414, 449, 0,
 644		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 645	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 646		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 647		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 648	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 649		   1136, 1312, 0,  768, 769, 772, 800, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 651	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 652		   1184, 1328, 0,  768, 771, 777, 806, 0,
 653		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 654	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 655		   1184, 1344, 0,  768, 771, 777, 806, 0,
 656		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 657	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 658		   1208, 1264, 0, 768, 768, 776, 817, 0,
 659		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 660	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 661		   928, 1152, 0, 624, 625, 628, 667, 0,
 662		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 663	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 664		   896, 1056, 0, 600, 601, 604,  625, 0,
 665		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 666	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 667		   976, 1040, 0, 600, 637, 643, 666, 0,
 668		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 669	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 670		   1344, 1600, 0,  864, 865, 868, 900, 0,
 671		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 672};
 673
 674struct minimode {
 675	short w;
 676	short h;
 677	short r;
 678	short rb;
 679};
 680
 681static const struct minimode est3_modes[] = {
 682	/* byte 6 */
 683	{ 640, 350, 85, 0 },
 684	{ 640, 400, 85, 0 },
 685	{ 720, 400, 85, 0 },
 686	{ 640, 480, 85, 0 },
 687	{ 848, 480, 60, 0 },
 688	{ 800, 600, 85, 0 },
 689	{ 1024, 768, 85, 0 },
 690	{ 1152, 864, 75, 0 },
 691	/* byte 7 */
 692	{ 1280, 768, 60, 1 },
 693	{ 1280, 768, 60, 0 },
 694	{ 1280, 768, 75, 0 },
 695	{ 1280, 768, 85, 0 },
 696	{ 1280, 960, 60, 0 },
 697	{ 1280, 960, 85, 0 },
 698	{ 1280, 1024, 60, 0 },
 699	{ 1280, 1024, 85, 0 },
 700	/* byte 8 */
 701	{ 1360, 768, 60, 0 },
 702	{ 1440, 900, 60, 1 },
 703	{ 1440, 900, 60, 0 },
 704	{ 1440, 900, 75, 0 },
 705	{ 1440, 900, 85, 0 },
 706	{ 1400, 1050, 60, 1 },
 707	{ 1400, 1050, 60, 0 },
 708	{ 1400, 1050, 75, 0 },
 709	/* byte 9 */
 710	{ 1400, 1050, 85, 0 },
 711	{ 1680, 1050, 60, 1 },
 712	{ 1680, 1050, 60, 0 },
 713	{ 1680, 1050, 75, 0 },
 714	{ 1680, 1050, 85, 0 },
 715	{ 1600, 1200, 60, 0 },
 716	{ 1600, 1200, 65, 0 },
 717	{ 1600, 1200, 70, 0 },
 718	/* byte 10 */
 719	{ 1600, 1200, 75, 0 },
 720	{ 1600, 1200, 85, 0 },
 721	{ 1792, 1344, 60, 0 },
 722	{ 1792, 1344, 75, 0 },
 723	{ 1856, 1392, 60, 0 },
 724	{ 1856, 1392, 75, 0 },
 725	{ 1920, 1200, 60, 1 },
 726	{ 1920, 1200, 60, 0 },
 727	/* byte 11 */
 728	{ 1920, 1200, 75, 0 },
 729	{ 1920, 1200, 85, 0 },
 730	{ 1920, 1440, 60, 0 },
 731	{ 1920, 1440, 75, 0 },
 732};
 733
 734static const struct minimode extra_modes[] = {
 735	{ 1024, 576,  60, 0 },
 736	{ 1366, 768,  60, 0 },
 737	{ 1600, 900,  60, 0 },
 738	{ 1680, 945,  60, 0 },
 739	{ 1920, 1080, 60, 0 },
 740	{ 2048, 1152, 60, 0 },
 741	{ 2048, 1536, 60, 0 },
 742};
 743
 744/*
 745 * From CEA/CTA-861 spec.
 746 *
 747 * Do not access directly, instead always use cea_mode_for_vic().
 748 */
 749static const struct drm_display_mode edid_cea_modes_1[] = {
 750	/* 1 - 640x480@60Hz 4:3 */
 751	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 752		   752, 800, 0, 480, 490, 492, 525, 0,
 753		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 754	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 755	/* 2 - 720x480@60Hz 4:3 */
 756	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 757		   798, 858, 0, 480, 489, 495, 525, 0,
 758		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 759	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 760	/* 3 - 720x480@60Hz 16:9 */
 761	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 762		   798, 858, 0, 480, 489, 495, 525, 0,
 763		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 764	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 765	/* 4 - 1280x720@60Hz 16:9 */
 766	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 767		   1430, 1650, 0, 720, 725, 730, 750, 0,
 768		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 769	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 770	/* 5 - 1920x1080i@60Hz 16:9 */
 771	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 772		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 773		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 774		   DRM_MODE_FLAG_INTERLACE),
 775	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 776	/* 6 - 720(1440)x480i@60Hz 4:3 */
 777	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 778		   801, 858, 0, 480, 488, 494, 525, 0,
 779		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 780		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 781	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 782	/* 7 - 720(1440)x480i@60Hz 16:9 */
 783	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 784		   801, 858, 0, 480, 488, 494, 525, 0,
 785		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 786		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 787	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 788	/* 8 - 720(1440)x240@60Hz 4:3 */
 789	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 790		   801, 858, 0, 240, 244, 247, 262, 0,
 791		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 792		   DRM_MODE_FLAG_DBLCLK),
 793	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 794	/* 9 - 720(1440)x240@60Hz 16:9 */
 795	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 796		   801, 858, 0, 240, 244, 247, 262, 0,
 797		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 798		   DRM_MODE_FLAG_DBLCLK),
 799	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 800	/* 10 - 2880x480i@60Hz 4:3 */
 801	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 802		   3204, 3432, 0, 480, 488, 494, 525, 0,
 803		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 804		   DRM_MODE_FLAG_INTERLACE),
 805	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 806	/* 11 - 2880x480i@60Hz 16:9 */
 807	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 808		   3204, 3432, 0, 480, 488, 494, 525, 0,
 809		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 810		   DRM_MODE_FLAG_INTERLACE),
 811	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 812	/* 12 - 2880x240@60Hz 4:3 */
 813	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 814		   3204, 3432, 0, 240, 244, 247, 262, 0,
 815		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 816	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 817	/* 13 - 2880x240@60Hz 16:9 */
 818	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 819		   3204, 3432, 0, 240, 244, 247, 262, 0,
 820		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 821	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 822	/* 14 - 1440x480@60Hz 4:3 */
 823	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 824		   1596, 1716, 0, 480, 489, 495, 525, 0,
 825		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 826	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 827	/* 15 - 1440x480@60Hz 16:9 */
 828	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 829		   1596, 1716, 0, 480, 489, 495, 525, 0,
 830		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 831	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 832	/* 16 - 1920x1080@60Hz 16:9 */
 833	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 834		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 835		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 836	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 837	/* 17 - 720x576@50Hz 4:3 */
 838	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 839		   796, 864, 0, 576, 581, 586, 625, 0,
 840		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 841	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 842	/* 18 - 720x576@50Hz 16:9 */
 843	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 844		   796, 864, 0, 576, 581, 586, 625, 0,
 845		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 846	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 847	/* 19 - 1280x720@50Hz 16:9 */
 848	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 849		   1760, 1980, 0, 720, 725, 730, 750, 0,
 850		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 851	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 852	/* 20 - 1920x1080i@50Hz 16:9 */
 853	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 854		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 855		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 856		   DRM_MODE_FLAG_INTERLACE),
 857	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 858	/* 21 - 720(1440)x576i@50Hz 4:3 */
 859	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 860		   795, 864, 0, 576, 580, 586, 625, 0,
 861		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 862		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 863	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 864	/* 22 - 720(1440)x576i@50Hz 16:9 */
 865	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 866		   795, 864, 0, 576, 580, 586, 625, 0,
 867		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 868		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 869	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 870	/* 23 - 720(1440)x288@50Hz 4:3 */
 871	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 872		   795, 864, 0, 288, 290, 293, 312, 0,
 873		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 874		   DRM_MODE_FLAG_DBLCLK),
 875	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 876	/* 24 - 720(1440)x288@50Hz 16:9 */
 877	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 878		   795, 864, 0, 288, 290, 293, 312, 0,
 879		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 880		   DRM_MODE_FLAG_DBLCLK),
 881	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 882	/* 25 - 2880x576i@50Hz 4:3 */
 883	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 884		   3180, 3456, 0, 576, 580, 586, 625, 0,
 885		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 886		   DRM_MODE_FLAG_INTERLACE),
 887	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 888	/* 26 - 2880x576i@50Hz 16:9 */
 889	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 890		   3180, 3456, 0, 576, 580, 586, 625, 0,
 891		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 892		   DRM_MODE_FLAG_INTERLACE),
 893	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 894	/* 27 - 2880x288@50Hz 4:3 */
 895	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 896		   3180, 3456, 0, 288, 290, 293, 312, 0,
 897		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 898	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 899	/* 28 - 2880x288@50Hz 16:9 */
 900	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 901		   3180, 3456, 0, 288, 290, 293, 312, 0,
 902		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 903	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 904	/* 29 - 1440x576@50Hz 4:3 */
 905	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 906		   1592, 1728, 0, 576, 581, 586, 625, 0,
 907		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 908	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 909	/* 30 - 1440x576@50Hz 16:9 */
 910	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 911		   1592, 1728, 0, 576, 581, 586, 625, 0,
 912		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 913	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 914	/* 31 - 1920x1080@50Hz 16:9 */
 915	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 916		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 917		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 918	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 919	/* 32 - 1920x1080@24Hz 16:9 */
 920	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 921		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 922		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 923	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 924	/* 33 - 1920x1080@25Hz 16:9 */
 925	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 926		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 927		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 928	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 929	/* 34 - 1920x1080@30Hz 16:9 */
 930	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 931		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 932		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 933	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 934	/* 35 - 2880x480@60Hz 4:3 */
 935	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 936		   3192, 3432, 0, 480, 489, 495, 525, 0,
 937		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 938	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 939	/* 36 - 2880x480@60Hz 16:9 */
 940	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 941		   3192, 3432, 0, 480, 489, 495, 525, 0,
 942		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 943	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 944	/* 37 - 2880x576@50Hz 4:3 */
 945	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 946		   3184, 3456, 0, 576, 581, 586, 625, 0,
 947		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 948	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 949	/* 38 - 2880x576@50Hz 16:9 */
 950	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 951		   3184, 3456, 0, 576, 581, 586, 625, 0,
 952		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 953	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 954	/* 39 - 1920x1080i@50Hz 16:9 */
 955	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 956		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 957		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 958		   DRM_MODE_FLAG_INTERLACE),
 959	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 960	/* 40 - 1920x1080i@100Hz 16:9 */
 961	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 962		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 963		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 964		   DRM_MODE_FLAG_INTERLACE),
 965	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 966	/* 41 - 1280x720@100Hz 16:9 */
 967	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 968		   1760, 1980, 0, 720, 725, 730, 750, 0,
 969		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 970	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 971	/* 42 - 720x576@100Hz 4:3 */
 972	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 973		   796, 864, 0, 576, 581, 586, 625, 0,
 974		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 975	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 976	/* 43 - 720x576@100Hz 16:9 */
 977	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 978		   796, 864, 0, 576, 581, 586, 625, 0,
 979		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 980	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 981	/* 44 - 720(1440)x576i@100Hz 4:3 */
 982	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 983		   795, 864, 0, 576, 580, 586, 625, 0,
 984		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 985		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 986	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 987	/* 45 - 720(1440)x576i@100Hz 16:9 */
 988	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 989		   795, 864, 0, 576, 580, 586, 625, 0,
 990		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 991		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 992	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 993	/* 46 - 1920x1080i@120Hz 16:9 */
 994	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 995		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 996		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 997		   DRM_MODE_FLAG_INTERLACE),
 998	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 999	/* 47 - 1280x720@120Hz 16:9 */
1000	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1001		   1430, 1650, 0, 720, 725, 730, 750, 0,
1002		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1003	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1004	/* 48 - 720x480@120Hz 4:3 */
1005	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1006		   798, 858, 0, 480, 489, 495, 525, 0,
1007		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1008	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1009	/* 49 - 720x480@120Hz 16:9 */
1010	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1011		   798, 858, 0, 480, 489, 495, 525, 0,
1012		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1013	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1014	/* 50 - 720(1440)x480i@120Hz 4:3 */
1015	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1016		   801, 858, 0, 480, 488, 494, 525, 0,
1017		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1018		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1019	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1020	/* 51 - 720(1440)x480i@120Hz 16:9 */
1021	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1022		   801, 858, 0, 480, 488, 494, 525, 0,
1023		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1024		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1025	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1026	/* 52 - 720x576@200Hz 4:3 */
1027	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1028		   796, 864, 0, 576, 581, 586, 625, 0,
1029		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1030	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1031	/* 53 - 720x576@200Hz 16:9 */
1032	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1033		   796, 864, 0, 576, 581, 586, 625, 0,
1034		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1035	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1036	/* 54 - 720(1440)x576i@200Hz 4:3 */
1037	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1038		   795, 864, 0, 576, 580, 586, 625, 0,
1039		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1040		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1041	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1042	/* 55 - 720(1440)x576i@200Hz 16:9 */
1043	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1044		   795, 864, 0, 576, 580, 586, 625, 0,
1045		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1046		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1047	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1048	/* 56 - 720x480@240Hz 4:3 */
1049	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1050		   798, 858, 0, 480, 489, 495, 525, 0,
1051		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1052	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1053	/* 57 - 720x480@240Hz 16:9 */
1054	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1055		   798, 858, 0, 480, 489, 495, 525, 0,
1056		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1057	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1058	/* 58 - 720(1440)x480i@240Hz 4:3 */
1059	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1060		   801, 858, 0, 480, 488, 494, 525, 0,
1061		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1062		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1063	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1064	/* 59 - 720(1440)x480i@240Hz 16:9 */
1065	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1066		   801, 858, 0, 480, 488, 494, 525, 0,
1067		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1068		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1069	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070	/* 60 - 1280x720@24Hz 16:9 */
1071	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1072		   3080, 3300, 0, 720, 725, 730, 750, 0,
1073		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075	/* 61 - 1280x720@25Hz 16:9 */
1076	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1077		   3740, 3960, 0, 720, 725, 730, 750, 0,
1078		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080	/* 62 - 1280x720@30Hz 16:9 */
1081	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1082		   3080, 3300, 0, 720, 725, 730, 750, 0,
1083		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1085	/* 63 - 1920x1080@120Hz 16:9 */
1086	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1087		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1088		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1090	/* 64 - 1920x1080@100Hz 16:9 */
1091	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1092		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1093		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1095	/* 65 - 1280x720@24Hz 64:27 */
1096	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1097		   3080, 3300, 0, 720, 725, 730, 750, 0,
1098		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100	/* 66 - 1280x720@25Hz 64:27 */
1101	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1102		   3740, 3960, 0, 720, 725, 730, 750, 0,
1103		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105	/* 67 - 1280x720@30Hz 64:27 */
1106	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1107		   3080, 3300, 0, 720, 725, 730, 750, 0,
1108		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110	/* 68 - 1280x720@50Hz 64:27 */
1111	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1112		   1760, 1980, 0, 720, 725, 730, 750, 0,
1113		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115	/* 69 - 1280x720@60Hz 64:27 */
1116	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1117		   1430, 1650, 0, 720, 725, 730, 750, 0,
1118		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120	/* 70 - 1280x720@100Hz 64:27 */
1121	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1122		   1760, 1980, 0, 720, 725, 730, 750, 0,
1123		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125	/* 71 - 1280x720@120Hz 64:27 */
1126	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1127		   1430, 1650, 0, 720, 725, 730, 750, 0,
1128		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130	/* 72 - 1920x1080@24Hz 64:27 */
1131	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1132		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1133		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135	/* 73 - 1920x1080@25Hz 64:27 */
1136	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1137		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1138		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140	/* 74 - 1920x1080@30Hz 64:27 */
1141	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1142		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1143		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145	/* 75 - 1920x1080@50Hz 64:27 */
1146	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1147		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1148		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150	/* 76 - 1920x1080@60Hz 64:27 */
1151	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1152		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1153		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155	/* 77 - 1920x1080@100Hz 64:27 */
1156	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1157		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1158		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160	/* 78 - 1920x1080@120Hz 64:27 */
1161	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1162		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1163		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165	/* 79 - 1680x720@24Hz 64:27 */
1166	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1167		   3080, 3300, 0, 720, 725, 730, 750, 0,
1168		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170	/* 80 - 1680x720@25Hz 64:27 */
1171	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1172		   2948, 3168, 0, 720, 725, 730, 750, 0,
1173		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175	/* 81 - 1680x720@30Hz 64:27 */
1176	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1177		   2420, 2640, 0, 720, 725, 730, 750, 0,
1178		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180	/* 82 - 1680x720@50Hz 64:27 */
1181	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1182		   1980, 2200, 0, 720, 725, 730, 750, 0,
1183		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185	/* 83 - 1680x720@60Hz 64:27 */
1186	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1187		   1980, 2200, 0, 720, 725, 730, 750, 0,
1188		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190	/* 84 - 1680x720@100Hz 64:27 */
1191	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1192		   1780, 2000, 0, 720, 725, 730, 825, 0,
1193		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195	/* 85 - 1680x720@120Hz 64:27 */
1196	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1197		   1780, 2000, 0, 720, 725, 730, 825, 0,
1198		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200	/* 86 - 2560x1080@24Hz 64:27 */
1201	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1202		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1203		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205	/* 87 - 2560x1080@25Hz 64:27 */
1206	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1207		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1208		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210	/* 88 - 2560x1080@30Hz 64:27 */
1211	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1212		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1213		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215	/* 89 - 2560x1080@50Hz 64:27 */
1216	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1217		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1218		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220	/* 90 - 2560x1080@60Hz 64:27 */
1221	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1222		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1223		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1225	/* 91 - 2560x1080@100Hz 64:27 */
1226	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1227		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1228		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1230	/* 92 - 2560x1080@120Hz 64:27 */
1231	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1232		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1233		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1235	/* 93 - 3840x2160@24Hz 16:9 */
1236	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1237		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1238		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240	/* 94 - 3840x2160@25Hz 16:9 */
1241	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1242		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1243		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245	/* 95 - 3840x2160@30Hz 16:9 */
1246	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1247		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1248		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1250	/* 96 - 3840x2160@50Hz 16:9 */
1251	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1252		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1255	/* 97 - 3840x2160@60Hz 16:9 */
1256	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1257		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1260	/* 98 - 4096x2160@24Hz 256:135 */
1261	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1262		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1263		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265	/* 99 - 4096x2160@25Hz 256:135 */
1266	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1267		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1268		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270	/* 100 - 4096x2160@30Hz 256:135 */
1271	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1272		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1273		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1275	/* 101 - 4096x2160@50Hz 256:135 */
1276	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1277		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1280	/* 102 - 4096x2160@60Hz 256:135 */
1281	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1282		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1285	/* 103 - 3840x2160@24Hz 64:27 */
1286	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1287		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1288		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290	/* 104 - 3840x2160@25Hz 64:27 */
1291	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1292		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1293		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295	/* 105 - 3840x2160@30Hz 64:27 */
1296	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1297		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1300	/* 106 - 3840x2160@50Hz 64:27 */
1301	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1302		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305	/* 107 - 3840x2160@60Hz 64:27 */
1306	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1307		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1308		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310	/* 108 - 1280x720@48Hz 16:9 */
1311	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1312		   2280, 2500, 0, 720, 725, 730, 750, 0,
1313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315	/* 109 - 1280x720@48Hz 64:27 */
1316	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1317		   2280, 2500, 0, 720, 725, 730, 750, 0,
1318		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320	/* 110 - 1680x720@48Hz 64:27 */
1321	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1322		   2530, 2750, 0, 720, 725, 730, 750, 0,
1323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325	/* 111 - 1920x1080@48Hz 16:9 */
1326	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1327		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1328		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330	/* 112 - 1920x1080@48Hz 64:27 */
1331	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1332		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1333		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1335	/* 113 - 2560x1080@48Hz 64:27 */
1336	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1337		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1338		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340	/* 114 - 3840x2160@48Hz 16:9 */
1341	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1342		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1343		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345	/* 115 - 4096x2160@48Hz 256:135 */
1346	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1347		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1348		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1350	/* 116 - 3840x2160@48Hz 64:27 */
1351	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1352		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1353		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355	/* 117 - 3840x2160@100Hz 16:9 */
1356	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1357		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1358		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1360	/* 118 - 3840x2160@120Hz 16:9 */
1361	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1362		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1363		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1365	/* 119 - 3840x2160@100Hz 64:27 */
1366	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1367		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370	/* 120 - 3840x2160@120Hz 64:27 */
1371	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1372		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375	/* 121 - 5120x2160@24Hz 64:27 */
1376	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1377		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1378		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380	/* 122 - 5120x2160@25Hz 64:27 */
1381	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1382		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385	/* 123 - 5120x2160@30Hz 64:27 */
1386	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1387		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390	/* 124 - 5120x2160@48Hz 64:27 */
1391	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1392		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395	/* 125 - 5120x2160@50Hz 64:27 */
1396	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1397		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1398		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1399	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1400	/* 126 - 5120x2160@60Hz 64:27 */
1401	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1402		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1403		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1404	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1405	/* 127 - 5120x2160@100Hz 64:27 */
1406	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1407		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1408		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1409	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1410};
1411
1412/*
1413 * From CEA/CTA-861 spec.
1414 *
1415 * Do not access directly, instead always use cea_mode_for_vic().
1416 */
1417static const struct drm_display_mode edid_cea_modes_193[] = {
1418	/* 193 - 5120x2160@120Hz 64:27 */
1419	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1420		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1421		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1423	/* 194 - 7680x4320@24Hz 16:9 */
1424	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1425		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428	/* 195 - 7680x4320@25Hz 16:9 */
1429	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1430		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433	/* 196 - 7680x4320@30Hz 16:9 */
1434	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1435		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438	/* 197 - 7680x4320@48Hz 16:9 */
1439	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1440		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1441		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443	/* 198 - 7680x4320@50Hz 16:9 */
1444	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1445		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1446		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448	/* 199 - 7680x4320@60Hz 16:9 */
1449	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1450		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1451		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1453	/* 200 - 7680x4320@100Hz 16:9 */
1454	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1455		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1456		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1458	/* 201 - 7680x4320@120Hz 16:9 */
1459	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1460		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1461		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1463	/* 202 - 7680x4320@24Hz 64:27 */
1464	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1465		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468	/* 203 - 7680x4320@25Hz 64:27 */
1469	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1470		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473	/* 204 - 7680x4320@30Hz 64:27 */
1474	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1475		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478	/* 205 - 7680x4320@48Hz 64:27 */
1479	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1480		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1481		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483	/* 206 - 7680x4320@50Hz 64:27 */
1484	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1485		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1486		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488	/* 207 - 7680x4320@60Hz 64:27 */
1489	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1490		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493	/* 208 - 7680x4320@100Hz 64:27 */
1494	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1495		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498	/* 209 - 7680x4320@120Hz 64:27 */
1499	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1500		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1501		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503	/* 210 - 10240x4320@24Hz 64:27 */
1504	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1505		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508	/* 211 - 10240x4320@25Hz 64:27 */
1509	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1510		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513	/* 212 - 10240x4320@30Hz 64:27 */
1514	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1515		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518	/* 213 - 10240x4320@48Hz 64:27 */
1519	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1520		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1521		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523	/* 214 - 10240x4320@50Hz 64:27 */
1524	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1525		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1526		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528	/* 215 - 10240x4320@60Hz 64:27 */
1529	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1530		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1533	/* 216 - 10240x4320@100Hz 64:27 */
1534	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1535		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1536		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1538	/* 217 - 10240x4320@120Hz 64:27 */
1539	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1540		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1541		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1542	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1543	/* 218 - 4096x2160@100Hz 256:135 */
1544	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1545		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1546		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1547	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1548	/* 219 - 4096x2160@120Hz 256:135 */
1549	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1550		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1551		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1552	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1553};
1554
1555/*
1556 * HDMI 1.4 4k modes. Index using the VIC.
1557 */
1558static const struct drm_display_mode edid_4k_modes[] = {
1559	/* 0 - dummy, VICs start at 1 */
1560	{ },
1561	/* 1 - 3840x2160@30Hz */
1562	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1563		   3840, 4016, 4104, 4400, 0,
1564		   2160, 2168, 2178, 2250, 0,
1565		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1566	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1567	/* 2 - 3840x2160@25Hz */
1568	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1569		   3840, 4896, 4984, 5280, 0,
1570		   2160, 2168, 2178, 2250, 0,
1571		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1572	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1573	/* 3 - 3840x2160@24Hz */
1574	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1575		   3840, 5116, 5204, 5500, 0,
1576		   2160, 2168, 2178, 2250, 0,
1577		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1578	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1579	/* 4 - 4096x2160@24Hz (SMPTE) */
1580	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1581		   4096, 5116, 5204, 5500, 0,
1582		   2160, 2168, 2178, 2250, 0,
1583		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1584	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1585};
1586
1587/*** DDC fetch and block validation ***/
1588
1589/*
1590 * The opaque EDID type, internal to drm_edid.c.
1591 */
1592struct drm_edid {
1593	/* Size allocated for edid */
1594	size_t size;
1595	const struct edid *edid;
1596};
1597
1598static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1599
1600static int edid_hfeeodb_block_count(const struct edid *edid)
1601{
1602	int eeodb = edid_hfeeodb_extension_block_count(edid);
1603
1604	return eeodb ? eeodb + 1 : 0;
1605}
1606
1607static int edid_extension_block_count(const struct edid *edid)
1608{
1609	return edid->extensions;
1610}
1611
1612static int edid_block_count(const struct edid *edid)
1613{
1614	return edid_extension_block_count(edid) + 1;
1615}
1616
1617static int edid_size_by_blocks(int num_blocks)
1618{
1619	return num_blocks * EDID_LENGTH;
1620}
1621
1622static int edid_size(const struct edid *edid)
1623{
1624	return edid_size_by_blocks(edid_block_count(edid));
1625}
1626
1627static const void *edid_block_data(const struct edid *edid, int index)
1628{
1629	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1630
1631	return edid + index;
1632}
1633
1634static const void *edid_extension_block_data(const struct edid *edid, int index)
1635{
1636	return edid_block_data(edid, index + 1);
1637}
1638
1639/* EDID block count indicated in EDID, may exceed allocated size */
1640static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1641{
1642	int num_blocks;
1643
1644	/* Starting point */
1645	num_blocks = edid_block_count(drm_edid->edid);
1646
1647	/* HF-EEODB override */
1648	if (drm_edid->size >= edid_size_by_blocks(2)) {
1649		int eeodb;
1650
1651		/*
1652		 * Note: HF-EEODB may specify a smaller extension count than the
1653		 * regular one. Unlike in buffer allocation, here we can use it.
1654		 */
1655		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1656		if (eeodb)
1657			num_blocks = eeodb;
1658	}
1659
1660	return num_blocks;
1661}
1662
1663/* EDID block count, limited by allocated size */
1664static int drm_edid_block_count(const struct drm_edid *drm_edid)
1665{
1666	/* Limit by allocated size */
1667	return min(__drm_edid_block_count(drm_edid),
1668		   (int)drm_edid->size / EDID_LENGTH);
1669}
1670
1671/* EDID extension block count, limited by allocated size */
1672static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1673{
1674	return drm_edid_block_count(drm_edid) - 1;
1675}
1676
1677static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1678{
1679	return edid_block_data(drm_edid->edid, index);
1680}
1681
1682static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1683						 int index)
1684{
1685	return edid_extension_block_data(drm_edid->edid, index);
1686}
1687
1688/*
1689 * Initializer helper for legacy interfaces, where we have no choice but to
1690 * trust edid size. Not for general purpose use.
1691 */
1692static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1693						   const struct edid *edid)
1694{
1695	if (!edid)
1696		return NULL;
1697
1698	memset(drm_edid, 0, sizeof(*drm_edid));
1699
1700	drm_edid->edid = edid;
1701	drm_edid->size = edid_size(edid);
1702
1703	return drm_edid;
1704}
1705
1706/*
1707 * EDID base and extension block iterator.
1708 *
1709 * struct drm_edid_iter iter;
1710 * const u8 *block;
1711 *
1712 * drm_edid_iter_begin(drm_edid, &iter);
1713 * drm_edid_iter_for_each(block, &iter) {
1714 *         // do stuff with block
1715 * }
1716 * drm_edid_iter_end(&iter);
1717 */
1718struct drm_edid_iter {
1719	const struct drm_edid *drm_edid;
1720
1721	/* Current block index. */
1722	int index;
1723};
1724
1725static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1726				struct drm_edid_iter *iter)
1727{
1728	memset(iter, 0, sizeof(*iter));
1729
1730	iter->drm_edid = drm_edid;
1731}
1732
1733static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1734{
1735	const void *block = NULL;
1736
1737	if (!iter->drm_edid)
1738		return NULL;
1739
1740	if (iter->index < drm_edid_block_count(iter->drm_edid))
1741		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1742
1743	return block;
1744}
1745
1746#define drm_edid_iter_for_each(__block, __iter)			\
1747	while (((__block) = __drm_edid_iter_next(__iter)))
1748
1749static void drm_edid_iter_end(struct drm_edid_iter *iter)
1750{
1751	memset(iter, 0, sizeof(*iter));
1752}
1753
1754static const u8 edid_header[] = {
1755	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1756};
1757
1758static void edid_header_fix(void *edid)
1759{
1760	memcpy(edid, edid_header, sizeof(edid_header));
1761}
1762
1763/**
1764 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1765 * @_edid: pointer to raw base EDID block
1766 *
1767 * Sanity check the header of the base EDID block.
1768 *
1769 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1770 */
1771int drm_edid_header_is_valid(const void *_edid)
1772{
1773	const struct edid *edid = _edid;
1774	int i, score = 0;
1775
1776	for (i = 0; i < sizeof(edid_header); i++) {
1777		if (edid->header[i] == edid_header[i])
1778			score++;
1779	}
1780
1781	return score;
1782}
1783EXPORT_SYMBOL(drm_edid_header_is_valid);
1784
1785static int edid_fixup __read_mostly = 6;
1786module_param_named(edid_fixup, edid_fixup, int, 0400);
1787MODULE_PARM_DESC(edid_fixup,
1788		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1789
1790static int edid_block_compute_checksum(const void *_block)
1791{
1792	const u8 *block = _block;
1793	int i;
1794	u8 csum = 0, crc = 0;
1795
1796	for (i = 0; i < EDID_LENGTH - 1; i++)
1797		csum += block[i];
1798
1799	crc = 0x100 - csum;
1800
1801	return crc;
1802}
1803
1804static int edid_block_get_checksum(const void *_block)
1805{
1806	const struct edid *block = _block;
1807
1808	return block->checksum;
1809}
1810
1811static int edid_block_tag(const void *_block)
1812{
1813	const u8 *block = _block;
1814
1815	return block[0];
1816}
1817
1818static bool edid_block_is_zero(const void *edid)
1819{
1820	return mem_is_zero(edid, EDID_LENGTH);
1821}
1822
1823static bool drm_edid_eq(const struct drm_edid *drm_edid,
1824			const void *raw_edid, size_t raw_edid_size)
1825{
1826	bool edid1_present = drm_edid && drm_edid->edid && drm_edid->size;
1827	bool edid2_present = raw_edid && raw_edid_size;
 
 
 
 
 
 
 
1828
1829	if (edid1_present != edid2_present)
1830		return false;
1831
1832	if (edid1_present) {
1833		if (drm_edid->size != raw_edid_size)
 
 
 
1834			return false;
1835
1836		if (memcmp(drm_edid->edid, raw_edid, drm_edid->size))
1837			return false;
1838	}
1839
1840	return true;
1841}
 
1842
1843enum edid_block_status {
1844	EDID_BLOCK_OK = 0,
1845	EDID_BLOCK_READ_FAIL,
1846	EDID_BLOCK_NULL,
1847	EDID_BLOCK_ZERO,
1848	EDID_BLOCK_HEADER_CORRUPT,
1849	EDID_BLOCK_HEADER_REPAIR,
1850	EDID_BLOCK_HEADER_FIXED,
1851	EDID_BLOCK_CHECKSUM,
1852	EDID_BLOCK_VERSION,
1853};
1854
1855static enum edid_block_status edid_block_check(const void *_block,
1856					       bool is_base_block)
1857{
1858	const struct edid *block = _block;
1859
1860	if (!block)
1861		return EDID_BLOCK_NULL;
1862
1863	if (is_base_block) {
1864		int score = drm_edid_header_is_valid(block);
1865
1866		if (score < clamp(edid_fixup, 0, 8)) {
1867			if (edid_block_is_zero(block))
1868				return EDID_BLOCK_ZERO;
1869			else
1870				return EDID_BLOCK_HEADER_CORRUPT;
1871		}
1872
1873		if (score < 8)
1874			return EDID_BLOCK_HEADER_REPAIR;
1875	}
1876
1877	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1878		if (edid_block_is_zero(block))
1879			return EDID_BLOCK_ZERO;
1880		else
1881			return EDID_BLOCK_CHECKSUM;
1882	}
1883
1884	if (is_base_block) {
1885		if (block->version != 1)
1886			return EDID_BLOCK_VERSION;
1887	}
1888
1889	return EDID_BLOCK_OK;
1890}
1891
1892static bool edid_block_status_valid(enum edid_block_status status, int tag)
1893{
1894	return status == EDID_BLOCK_OK ||
1895		status == EDID_BLOCK_HEADER_FIXED ||
1896		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1897}
1898
1899static bool edid_block_valid(const void *block, bool base)
1900{
1901	return edid_block_status_valid(edid_block_check(block, base),
1902				       edid_block_tag(block));
1903}
1904
1905static void edid_block_status_print(enum edid_block_status status,
1906				    const struct edid *block,
1907				    int block_num)
1908{
1909	switch (status) {
1910	case EDID_BLOCK_OK:
1911		break;
1912	case EDID_BLOCK_READ_FAIL:
1913		pr_debug("EDID block %d read failed\n", block_num);
1914		break;
1915	case EDID_BLOCK_NULL:
1916		pr_debug("EDID block %d pointer is NULL\n", block_num);
1917		break;
1918	case EDID_BLOCK_ZERO:
1919		pr_notice("EDID block %d is all zeroes\n", block_num);
1920		break;
1921	case EDID_BLOCK_HEADER_CORRUPT:
1922		pr_notice("EDID has corrupt header\n");
1923		break;
1924	case EDID_BLOCK_HEADER_REPAIR:
1925		pr_debug("EDID corrupt header needs repair\n");
1926		break;
1927	case EDID_BLOCK_HEADER_FIXED:
1928		pr_debug("EDID corrupt header fixed\n");
1929		break;
1930	case EDID_BLOCK_CHECKSUM:
1931		if (edid_block_status_valid(status, edid_block_tag(block))) {
1932			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1933				 block_num, edid_block_tag(block),
1934				 edid_block_compute_checksum(block));
1935		} else {
1936			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1937				  block_num, edid_block_tag(block),
1938				  edid_block_compute_checksum(block));
1939		}
1940		break;
1941	case EDID_BLOCK_VERSION:
1942		pr_notice("EDID has major version %d, instead of 1\n",
1943			  block->version);
1944		break;
1945	default:
1946		WARN(1, "EDID block %d unknown edid block status code %d\n",
1947		     block_num, status);
1948		break;
1949	}
1950}
1951
1952static void edid_block_dump(const char *level, const void *block, int block_num)
1953{
1954	enum edid_block_status status;
1955	char prefix[20];
1956
1957	status = edid_block_check(block, block_num == 0);
1958	if (status == EDID_BLOCK_ZERO)
1959		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1960	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1961		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1962	else
1963		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1964
1965	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1966		       block, EDID_LENGTH, false);
1967}
1968
1969/*
 
 
 
 
 
 
1970 * Validate a base or extension EDID block and optionally dump bad blocks to
1971 * the console.
 
 
1972 */
1973static bool drm_edid_block_valid(void *_block, int block_num, bool print_bad_edid,
1974				 bool *edid_corrupt)
1975{
1976	struct edid *block = _block;
1977	enum edid_block_status status;
1978	bool is_base_block = block_num == 0;
1979	bool valid;
1980
1981	if (WARN_ON(!block))
1982		return false;
1983
1984	status = edid_block_check(block, is_base_block);
1985	if (status == EDID_BLOCK_HEADER_REPAIR) {
1986		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1987		edid_header_fix(block);
1988
1989		/* Retry with fixed header, update status if that worked. */
1990		status = edid_block_check(block, is_base_block);
1991		if (status == EDID_BLOCK_OK)
1992			status = EDID_BLOCK_HEADER_FIXED;
1993	}
1994
1995	if (edid_corrupt) {
1996		/*
1997		 * Unknown major version isn't corrupt but we can't use it. Only
1998		 * the base block can reset edid_corrupt to false.
1999		 */
2000		if (is_base_block &&
2001		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2002			*edid_corrupt = false;
2003		else if (status != EDID_BLOCK_OK)
2004			*edid_corrupt = true;
2005	}
2006
2007	edid_block_status_print(status, block, block_num);
2008
2009	/* Determine whether we can use this block with this status. */
2010	valid = edid_block_status_valid(status, edid_block_tag(block));
2011
2012	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2013		pr_notice("Raw EDID:\n");
2014		edid_block_dump(KERN_NOTICE, block, block_num);
2015	}
2016
2017	return valid;
2018}
 
2019
2020/**
2021 * drm_edid_is_valid - sanity check EDID data
2022 * @edid: EDID data
2023 *
2024 * Sanity-check an entire EDID record (including extensions)
2025 *
2026 * Return: True if the EDID data is valid, false otherwise.
2027 */
2028bool drm_edid_is_valid(struct edid *edid)
2029{
2030	int i;
2031
2032	if (!edid)
2033		return false;
2034
2035	for (i = 0; i < edid_block_count(edid); i++) {
2036		void *block = (void *)edid_block_data(edid, i);
2037
2038		if (!drm_edid_block_valid(block, i, true, NULL))
2039			return false;
2040	}
2041
2042	return true;
2043}
2044EXPORT_SYMBOL(drm_edid_is_valid);
2045
2046/**
2047 * drm_edid_valid - sanity check EDID data
2048 * @drm_edid: EDID data
2049 *
2050 * Sanity check an EDID. Cross check block count against allocated size and
2051 * checksum the blocks.
2052 *
2053 * Return: True if the EDID data is valid, false otherwise.
2054 */
2055bool drm_edid_valid(const struct drm_edid *drm_edid)
2056{
2057	int i;
2058
2059	if (!drm_edid)
2060		return false;
2061
2062	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2063		return false;
2064
2065	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2066		const void *block = drm_edid_block_data(drm_edid, i);
2067
2068		if (!edid_block_valid(block, i == 0))
2069			return false;
2070	}
2071
2072	return true;
2073}
2074EXPORT_SYMBOL(drm_edid_valid);
2075
2076static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2077					       size_t *alloc_size)
2078{
2079	struct edid *new;
2080	int i, valid_blocks = 0;
2081
2082	/*
2083	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2084	 * back to regular extension count here. We don't want to start
2085	 * modifying the HF-EEODB extension too.
2086	 */
2087	for (i = 0; i < edid_block_count(edid); i++) {
2088		const void *src_block = edid_block_data(edid, i);
2089
2090		if (edid_block_valid(src_block, i == 0)) {
2091			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2092
2093			memmove(dst_block, src_block, EDID_LENGTH);
2094			valid_blocks++;
2095		}
2096	}
2097
2098	/* We already trusted the base block to be valid here... */
2099	if (WARN_ON(!valid_blocks)) {
2100		kfree(edid);
2101		return NULL;
2102	}
2103
2104	edid->extensions = valid_blocks - 1;
2105	edid->checksum = edid_block_compute_checksum(edid);
2106
2107	*alloc_size = edid_size_by_blocks(valid_blocks);
2108
2109	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2110	if (!new)
2111		kfree(edid);
2112
2113	return new;
2114}
2115
2116#define DDC_SEGMENT_ADDR 0x30
2117/**
2118 * drm_do_probe_ddc_edid() - get EDID information via I2C
2119 * @data: I2C device adapter
2120 * @buf: EDID data buffer to be filled
2121 * @block: 128 byte EDID block to start fetching from
2122 * @len: EDID data buffer length to fetch
2123 *
2124 * Try to fetch EDID information by calling I2C driver functions.
2125 *
2126 * Return: 0 on success or -1 on failure.
2127 */
2128static int
2129drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2130{
2131	struct i2c_adapter *adapter = data;
2132	unsigned char start = block * EDID_LENGTH;
2133	unsigned char segment = block >> 1;
2134	unsigned char xfers = segment ? 3 : 2;
2135	int ret, retries = 5;
2136
2137	/*
2138	 * The core I2C driver will automatically retry the transfer if the
2139	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2140	 * are susceptible to errors under a heavily loaded machine and
2141	 * generate spurious NAKs and timeouts. Retrying the transfer
2142	 * of the individual block a few times seems to overcome this.
2143	 */
2144	do {
2145		struct i2c_msg msgs[] = {
2146			{
2147				.addr	= DDC_SEGMENT_ADDR,
2148				.flags	= 0,
2149				.len	= 1,
2150				.buf	= &segment,
2151			}, {
2152				.addr	= DDC_ADDR,
2153				.flags	= 0,
2154				.len	= 1,
2155				.buf	= &start,
2156			}, {
2157				.addr	= DDC_ADDR,
2158				.flags	= I2C_M_RD,
2159				.len	= len,
2160				.buf	= buf,
2161			}
2162		};
2163
2164		/*
2165		 * Avoid sending the segment addr to not upset non-compliant
2166		 * DDC monitors.
2167		 */
2168		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2169
2170		if (ret == -ENXIO) {
2171			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2172					adapter->name);
2173			break;
2174		}
2175	} while (ret != xfers && --retries);
2176
2177	return ret == xfers ? 0 : -1;
2178}
2179
2180static void connector_bad_edid(struct drm_connector *connector,
2181			       const struct edid *edid, int num_blocks)
2182{
2183	int i;
2184	u8 last_block;
2185
2186	/*
2187	 * 0x7e in the EDID is the number of extension blocks. The EDID
2188	 * is 1 (base block) + num_ext_blocks big. That means we can think
2189	 * of 0x7e in the EDID of the _index_ of the last block in the
2190	 * combined chunk of memory.
2191	 */
2192	last_block = edid->extensions;
2193
2194	/* Calculate real checksum for the last edid extension block data */
2195	if (last_block < num_blocks)
2196		connector->real_edid_checksum =
2197			edid_block_compute_checksum(edid + last_block);
2198
2199	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2200		return;
2201
2202	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2203		    connector->base.id, connector->name);
2204	for (i = 0; i < num_blocks; i++)
2205		edid_block_dump(KERN_DEBUG, edid + i, i);
2206}
2207
2208/* Get override or firmware EDID */
2209static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2210{
2211	const struct drm_edid *override = NULL;
2212
2213	mutex_lock(&connector->edid_override_mutex);
2214
2215	if (connector->edid_override)
2216		override = drm_edid_dup(connector->edid_override);
2217
2218	mutex_unlock(&connector->edid_override_mutex);
2219
2220	if (!override)
2221		override = drm_edid_load_firmware(connector);
2222
2223	return IS_ERR(override) ? NULL : override;
2224}
2225
2226/* For debugfs edid_override implementation */
2227int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2228{
2229	const struct drm_edid *drm_edid;
2230
2231	mutex_lock(&connector->edid_override_mutex);
2232
2233	drm_edid = connector->edid_override;
2234	if (drm_edid)
2235		seq_write(m, drm_edid->edid, drm_edid->size);
2236
2237	mutex_unlock(&connector->edid_override_mutex);
2238
2239	return 0;
2240}
2241
2242/* For debugfs edid_override implementation */
2243int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2244			  size_t size)
2245{
2246	const struct drm_edid *drm_edid;
2247
2248	drm_edid = drm_edid_alloc(edid, size);
2249	if (!drm_edid_valid(drm_edid)) {
2250		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2251			    connector->base.id, connector->name);
2252		drm_edid_free(drm_edid);
2253		return -EINVAL;
2254	}
2255
2256	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2257		    connector->base.id, connector->name);
2258
2259	mutex_lock(&connector->edid_override_mutex);
2260
2261	drm_edid_free(connector->edid_override);
2262	connector->edid_override = drm_edid;
2263
2264	mutex_unlock(&connector->edid_override_mutex);
2265
2266	return 0;
2267}
2268
2269/* For debugfs edid_override implementation */
2270int drm_edid_override_reset(struct drm_connector *connector)
2271{
2272	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2273		    connector->base.id, connector->name);
2274
2275	mutex_lock(&connector->edid_override_mutex);
2276
2277	drm_edid_free(connector->edid_override);
2278	connector->edid_override = NULL;
2279
2280	mutex_unlock(&connector->edid_override_mutex);
2281
2282	return 0;
2283}
2284
2285/**
2286 * drm_edid_override_connector_update - add modes from override/firmware EDID
2287 * @connector: connector we're probing
2288 *
2289 * Add modes from the override/firmware EDID, if available. Only to be used from
2290 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2291 * failed during drm_get_edid() and caused the override/firmware EDID to be
2292 * skipped.
2293 *
2294 * Return: The number of modes added or 0 if we couldn't find any.
2295 */
2296int drm_edid_override_connector_update(struct drm_connector *connector)
2297{
2298	const struct drm_edid *override;
2299	int num_modes = 0;
2300
2301	override = drm_edid_override_get(connector);
2302	if (override) {
2303		if (drm_edid_connector_update(connector, override) == 0)
2304			num_modes = drm_edid_connector_add_modes(connector);
2305
2306		drm_edid_free(override);
2307
2308		drm_dbg_kms(connector->dev,
2309			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2310			    connector->base.id, connector->name, num_modes);
2311	}
2312
2313	return num_modes;
2314}
2315EXPORT_SYMBOL(drm_edid_override_connector_update);
2316
2317typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2318
2319static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2320					      read_block_fn read_block,
2321					      void *context)
2322{
2323	enum edid_block_status status;
2324	bool is_base_block = block_num == 0;
2325	int try;
2326
2327	for (try = 0; try < 4; try++) {
2328		if (read_block(context, block, block_num, EDID_LENGTH))
2329			return EDID_BLOCK_READ_FAIL;
2330
2331		status = edid_block_check(block, is_base_block);
2332		if (status == EDID_BLOCK_HEADER_REPAIR) {
2333			edid_header_fix(block);
2334
2335			/* Retry with fixed header, update status if that worked. */
2336			status = edid_block_check(block, is_base_block);
2337			if (status == EDID_BLOCK_OK)
2338				status = EDID_BLOCK_HEADER_FIXED;
2339		}
2340
2341		if (edid_block_status_valid(status, edid_block_tag(block)))
2342			break;
2343
2344		/* Fail early for unrepairable base block all zeros. */
2345		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2346			break;
2347	}
2348
2349	return status;
2350}
2351
2352static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2353				     read_block_fn read_block, void *context,
2354				     size_t *size)
2355{
2356	enum edid_block_status status;
2357	int i, num_blocks, invalid_blocks = 0;
2358	const struct drm_edid *override;
2359	struct edid *edid, *new;
2360	size_t alloc_size = EDID_LENGTH;
2361
2362	override = drm_edid_override_get(connector);
2363	if (override) {
2364		alloc_size = override->size;
2365		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2366		drm_edid_free(override);
2367		if (!edid)
2368			return NULL;
2369		goto ok;
2370	}
2371
2372	edid = kmalloc(alloc_size, GFP_KERNEL);
2373	if (!edid)
2374		return NULL;
2375
2376	status = edid_block_read(edid, 0, read_block, context);
2377
2378	edid_block_status_print(status, edid, 0);
2379
2380	if (status == EDID_BLOCK_READ_FAIL)
2381		goto fail;
2382
2383	/* FIXME: Clarify what a corrupt EDID actually means. */
2384	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2385		connector->edid_corrupt = false;
2386	else
2387		connector->edid_corrupt = true;
2388
2389	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2390		if (status == EDID_BLOCK_ZERO)
2391			connector->null_edid_counter++;
2392
2393		connector_bad_edid(connector, edid, 1);
2394		goto fail;
2395	}
2396
2397	if (!edid_extension_block_count(edid))
2398		goto ok;
2399
2400	alloc_size = edid_size(edid);
2401	new = krealloc(edid, alloc_size, GFP_KERNEL);
2402	if (!new)
2403		goto fail;
2404	edid = new;
2405
2406	num_blocks = edid_block_count(edid);
2407	for (i = 1; i < num_blocks; i++) {
2408		void *block = (void *)edid_block_data(edid, i);
2409
2410		status = edid_block_read(block, i, read_block, context);
2411
2412		edid_block_status_print(status, block, i);
2413
2414		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2415			if (status == EDID_BLOCK_READ_FAIL)
2416				goto fail;
2417			invalid_blocks++;
2418		} else if (i == 1) {
2419			/*
2420			 * If the first EDID extension is a CTA extension, and
2421			 * the first Data Block is HF-EEODB, override the
2422			 * extension block count.
2423			 *
2424			 * Note: HF-EEODB could specify a smaller extension
2425			 * count too, but we can't risk allocating a smaller
2426			 * amount.
2427			 */
2428			int eeodb = edid_hfeeodb_block_count(edid);
2429
2430			if (eeodb > num_blocks) {
2431				num_blocks = eeodb;
2432				alloc_size = edid_size_by_blocks(num_blocks);
2433				new = krealloc(edid, alloc_size, GFP_KERNEL);
2434				if (!new)
2435					goto fail;
2436				edid = new;
2437			}
2438		}
2439	}
2440
2441	if (invalid_blocks) {
2442		connector_bad_edid(connector, edid, num_blocks);
2443
2444		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2445	}
2446
2447ok:
2448	if (size)
2449		*size = alloc_size;
2450
2451	return edid;
2452
2453fail:
2454	kfree(edid);
2455	return NULL;
2456}
2457
2458/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2459 * drm_edid_raw - Get a pointer to the raw EDID data.
2460 * @drm_edid: drm_edid container
2461 *
2462 * Get a pointer to the raw EDID data.
2463 *
2464 * This is for transition only. Avoid using this like the plague.
2465 *
2466 * Return: Pointer to raw EDID data.
2467 */
2468const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2469{
2470	if (!drm_edid || !drm_edid->size)
2471		return NULL;
2472
2473	/*
2474	 * Do not return pointers where relying on EDID extension count would
2475	 * lead to buffer overflow.
2476	 */
2477	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2478		return NULL;
2479
2480	return drm_edid->edid;
2481}
2482EXPORT_SYMBOL(drm_edid_raw);
2483
2484/* Allocate struct drm_edid container *without* duplicating the edid data */
2485static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2486{
2487	struct drm_edid *drm_edid;
2488
2489	if (!edid || !size || size < EDID_LENGTH)
2490		return NULL;
2491
2492	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2493	if (drm_edid) {
2494		drm_edid->edid = edid;
2495		drm_edid->size = size;
2496	}
2497
2498	return drm_edid;
2499}
2500
2501/**
2502 * drm_edid_alloc - Allocate a new drm_edid container
2503 * @edid: Pointer to raw EDID data
2504 * @size: Size of memory allocated for EDID
2505 *
2506 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2507 * the actual size that has been allocated for the data. There is no validation
2508 * of the raw EDID data against the size, but at least the EDID base block must
2509 * fit in the buffer.
2510 *
2511 * The returned pointer must be freed using drm_edid_free().
2512 *
2513 * Return: drm_edid container, or NULL on errors
2514 */
2515const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2516{
2517	const struct drm_edid *drm_edid;
2518
2519	if (!edid || !size || size < EDID_LENGTH)
2520		return NULL;
2521
2522	edid = kmemdup(edid, size, GFP_KERNEL);
2523	if (!edid)
2524		return NULL;
2525
2526	drm_edid = _drm_edid_alloc(edid, size);
2527	if (!drm_edid)
2528		kfree(edid);
2529
2530	return drm_edid;
2531}
2532EXPORT_SYMBOL(drm_edid_alloc);
2533
2534/**
2535 * drm_edid_dup - Duplicate a drm_edid container
2536 * @drm_edid: EDID to duplicate
2537 *
2538 * The returned pointer must be freed using drm_edid_free().
2539 *
2540 * Returns: drm_edid container copy, or NULL on errors
2541 */
2542const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2543{
2544	if (!drm_edid)
2545		return NULL;
2546
2547	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2548}
2549EXPORT_SYMBOL(drm_edid_dup);
2550
2551/**
2552 * drm_edid_free - Free the drm_edid container
2553 * @drm_edid: EDID to free
2554 */
2555void drm_edid_free(const struct drm_edid *drm_edid)
2556{
2557	if (!drm_edid)
2558		return;
2559
2560	kfree(drm_edid->edid);
2561	kfree(drm_edid);
2562}
2563EXPORT_SYMBOL(drm_edid_free);
2564
2565/**
2566 * drm_probe_ddc() - probe DDC presence
2567 * @adapter: I2C adapter to probe
2568 *
2569 * Return: True on success, false on failure.
2570 */
2571bool
2572drm_probe_ddc(struct i2c_adapter *adapter)
2573{
2574	unsigned char out;
2575
2576	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2577}
2578EXPORT_SYMBOL(drm_probe_ddc);
2579
2580/**
2581 * drm_get_edid - get EDID data, if available
2582 * @connector: connector we're probing
2583 * @adapter: I2C adapter to use for DDC
2584 *
2585 * Poke the given I2C channel to grab EDID data if possible.  If found,
2586 * attach it to the connector.
2587 *
2588 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2589 */
2590struct edid *drm_get_edid(struct drm_connector *connector,
2591			  struct i2c_adapter *adapter)
2592{
2593	struct edid *edid;
2594
2595	if (connector->force == DRM_FORCE_OFF)
2596		return NULL;
2597
2598	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2599		return NULL;
2600
2601	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2602	drm_connector_update_edid_property(connector, edid);
2603	return edid;
2604}
2605EXPORT_SYMBOL(drm_get_edid);
2606
2607/**
2608 * drm_edid_read_custom - Read EDID data using given EDID block read function
2609 * @connector: Connector to use
2610 * @read_block: EDID block read function
2611 * @context: Private data passed to the block read function
2612 *
2613 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2614 * exposes a different interface to read EDID blocks this function can be used
2615 * to get EDID data using a custom block read function.
2616 *
2617 * As in the general case the DDC bus is accessible by the kernel at the I2C
2618 * level, drivers must make all reasonable efforts to expose it as an I2C
2619 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2620 * this function.
2621 *
2622 * The EDID may be overridden using debugfs override_edid or firmware EDID
2623 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2624 * order. Having either of them bypasses actual EDID reads.
2625 *
2626 * The returned pointer must be freed using drm_edid_free().
2627 *
2628 * Return: Pointer to EDID, or NULL if probe/read failed.
2629 */
2630const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2631					    read_block_fn read_block,
2632					    void *context)
2633{
2634	const struct drm_edid *drm_edid;
2635	struct edid *edid;
2636	size_t size = 0;
2637
2638	edid = _drm_do_get_edid(connector, read_block, context, &size);
2639	if (!edid)
2640		return NULL;
2641
2642	/* Sanity check for now */
2643	drm_WARN_ON(connector->dev, !size);
2644
2645	drm_edid = _drm_edid_alloc(edid, size);
2646	if (!drm_edid)
2647		kfree(edid);
2648
2649	return drm_edid;
2650}
2651EXPORT_SYMBOL(drm_edid_read_custom);
2652
2653/**
2654 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2655 * @connector: Connector to use
2656 * @adapter: I2C adapter to use for DDC
2657 *
2658 * Read EDID using the given I2C adapter.
2659 *
2660 * The EDID may be overridden using debugfs override_edid or firmware EDID
2661 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2662 * order. Having either of them bypasses actual EDID reads.
2663 *
2664 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2665 * using drm_edid_read() instead of this function.
2666 *
2667 * The returned pointer must be freed using drm_edid_free().
2668 *
2669 * Return: Pointer to EDID, or NULL if probe/read failed.
2670 */
2671const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2672					 struct i2c_adapter *adapter)
2673{
2674	const struct drm_edid *drm_edid;
2675
2676	if (connector->force == DRM_FORCE_OFF)
2677		return NULL;
2678
2679	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2680		return NULL;
2681
2682	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2683
2684	/* Note: Do *not* call connector updates here. */
2685
2686	return drm_edid;
2687}
2688EXPORT_SYMBOL(drm_edid_read_ddc);
2689
2690/**
2691 * drm_edid_read - Read EDID data using connector's I2C adapter
2692 * @connector: Connector to use
2693 *
2694 * Read EDID using the connector's I2C adapter.
2695 *
2696 * The EDID may be overridden using debugfs override_edid or firmware EDID
2697 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2698 * order. Having either of them bypasses actual EDID reads.
2699 *
2700 * The returned pointer must be freed using drm_edid_free().
2701 *
2702 * Return: Pointer to EDID, or NULL if probe/read failed.
2703 */
2704const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2705{
2706	if (drm_WARN_ON(connector->dev, !connector->ddc))
2707		return NULL;
2708
2709	return drm_edid_read_ddc(connector, connector->ddc);
2710}
2711EXPORT_SYMBOL(drm_edid_read);
2712
2713/**
2714 * drm_edid_get_product_id - Get the vendor and product identification
2715 * @drm_edid: EDID
2716 * @id: Where to place the product id
2717 */
2718void drm_edid_get_product_id(const struct drm_edid *drm_edid,
2719			     struct drm_edid_product_id *id)
2720{
2721	if (drm_edid && drm_edid->edid && drm_edid->size >= EDID_LENGTH)
2722		memcpy(id, &drm_edid->edid->product_id, sizeof(*id));
2723	else
2724		memset(id, 0, sizeof(*id));
2725}
2726EXPORT_SYMBOL(drm_edid_get_product_id);
2727
2728static void decode_date(struct seq_buf *s, const struct drm_edid_product_id *id)
2729{
2730	int week = id->week_of_manufacture;
2731	int year = id->year_of_manufacture + 1990;
2732
2733	if (week == 0xff)
2734		seq_buf_printf(s, "model year: %d", year);
2735	else if (!week)
2736		seq_buf_printf(s, "year of manufacture: %d", year);
2737	else
2738		seq_buf_printf(s, "week/year of manufacture: %d/%d", week, year);
2739}
2740
2741/**
2742 * drm_edid_print_product_id - Print decoded product id to printer
2743 * @p: drm printer
2744 * @id: EDID product id
2745 * @raw: If true, also print the raw hex
2746 *
2747 * See VESA E-EDID 1.4 section 3.4.
2748 */
2749void drm_edid_print_product_id(struct drm_printer *p,
2750			       const struct drm_edid_product_id *id, bool raw)
2751{
2752	DECLARE_SEQ_BUF(date, 40);
2753	char vend[4];
2754
2755	drm_edid_decode_mfg_id(be16_to_cpu(id->manufacturer_name), vend);
2756
2757	decode_date(&date, id);
2758
2759	drm_printf(p, "manufacturer name: %s, product code: %u, serial number: %u, %s\n",
2760		   vend, le16_to_cpu(id->product_code),
2761		   le32_to_cpu(id->serial_number), seq_buf_str(&date));
2762
2763	if (raw)
2764		drm_printf(p, "raw product id: %*ph\n", (int)sizeof(*id), id);
2765
2766	WARN_ON(seq_buf_has_overflowed(&date));
2767}
2768EXPORT_SYMBOL(drm_edid_print_product_id);
2769
2770/**
2771 * drm_edid_get_panel_id - Get a panel's ID from EDID
2772 * @drm_edid: EDID that contains panel ID.
2773 *
2774 * This function uses the first block of the EDID of a panel and (assuming
2775 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2776 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2777 * supposed to be different for each different modem of panel.
2778 *
2779 * Return: A 32-bit ID that should be different for each make/model of panel.
2780 *         See the functions drm_edid_encode_panel_id() and
2781 *         drm_edid_decode_panel_id() for some details on the structure of this
2782 *         ID. Return 0 if the EDID size is less than a base block.
2783 */
2784u32 drm_edid_get_panel_id(const struct drm_edid *drm_edid)
2785{
2786	const struct edid *edid = drm_edid->edid;
2787
2788	if (drm_edid->size < EDID_LENGTH)
2789		return 0;
2790
2791	/*
2792	 * We represent the ID as a 32-bit number so it can easily be compared
2793	 * with "==".
2794	 *
2795	 * NOTE that we deal with endianness differently for the top half
2796	 * of this ID than for the bottom half. The bottom half (the product
2797	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2798	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2799	 * gets stored as big endian because that makes
2800	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2801	 * to write (it's easier to extract the ASCII). It doesn't really
2802	 * matter, though, as long as the number here is unique.
2803	 */
2804	return (u32)edid->mfg_id[0] << 24   |
2805	       (u32)edid->mfg_id[1] << 16   |
2806	       (u32)EDID_PRODUCT_ID(edid);
2807}
2808EXPORT_SYMBOL(drm_edid_get_panel_id);
2809
2810/**
2811 * drm_edid_read_base_block - Get a panel's EDID base block
2812 * @adapter: I2C adapter to use for DDC
2813 *
2814 * This function returns the drm_edid containing the first block of the EDID of
2815 * a panel.
 
 
2816 *
2817 * This function is intended to be used during early probing on devices where
2818 * more than one panel might be present. Because of its intended use it must
2819 * assume that the EDID of the panel is correct, at least as far as the base
2820 * block is concerned (in other words, we don't process any overrides here).
2821 *
2822 * Caller should call drm_edid_free() after use.
2823 *
2824 * NOTE: it's expected that this function and drm_do_get_edid() will both
2825 * be read the EDID, but there is no caching between them. Since we're only
2826 * reading the first block, hopefully this extra overhead won't be too big.
2827 *
2828 * WARNING: Only use this function when the connector is unknown. For example,
2829 * during the early probe of panel. The EDID read from the function is temporary
2830 * and should be replaced by the full EDID returned from other drm_edid_read.
2831 *
2832 * Return: Pointer to allocated EDID base block, or NULL on any failure.
2833 */
2834const struct drm_edid *drm_edid_read_base_block(struct i2c_adapter *adapter)
 
2835{
2836	enum edid_block_status status;
2837	void *base_block;
 
 
 
 
 
 
2838
2839	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2840	if (!base_block)
2841		return NULL;
2842
2843	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2844
2845	edid_block_status_print(status, base_block, 0);
2846
2847	if (!edid_block_status_valid(status, edid_block_tag(base_block))) {
 
 
2848		edid_block_dump(KERN_NOTICE, base_block, 0);
2849		kfree(base_block);
2850		return NULL;
2851	}
2852
2853	return _drm_edid_alloc(base_block, EDID_LENGTH);
 
 
2854}
2855EXPORT_SYMBOL(drm_edid_read_base_block);
2856
2857/**
2858 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2859 * @connector: connector we're probing
2860 * @adapter: I2C adapter to use for DDC
2861 *
2862 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2863 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2864 * switch DDC to the GPU which is retrieving EDID.
2865 *
2866 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2867 */
2868struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2869				     struct i2c_adapter *adapter)
2870{
2871	struct drm_device *dev = connector->dev;
2872	struct pci_dev *pdev = to_pci_dev(dev->dev);
2873	struct edid *edid;
2874
2875	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2876		return NULL;
2877
2878	vga_switcheroo_lock_ddc(pdev);
2879	edid = drm_get_edid(connector, adapter);
2880	vga_switcheroo_unlock_ddc(pdev);
2881
2882	return edid;
2883}
2884EXPORT_SYMBOL(drm_get_edid_switcheroo);
2885
2886/**
2887 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2888 * @connector: connector we're probing
2889 * @adapter: I2C adapter to use for DDC
2890 *
2891 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2892 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2893 * temporarily switch DDC to the GPU which is retrieving EDID.
2894 *
2895 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2896 */
2897const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2898						struct i2c_adapter *adapter)
2899{
2900	struct drm_device *dev = connector->dev;
2901	struct pci_dev *pdev = to_pci_dev(dev->dev);
2902	const struct drm_edid *drm_edid;
2903
2904	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2905		return NULL;
2906
2907	vga_switcheroo_lock_ddc(pdev);
2908	drm_edid = drm_edid_read_ddc(connector, adapter);
2909	vga_switcheroo_unlock_ddc(pdev);
2910
2911	return drm_edid;
2912}
2913EXPORT_SYMBOL(drm_edid_read_switcheroo);
2914
2915/**
2916 * drm_edid_duplicate - duplicate an EDID and the extensions
2917 * @edid: EDID to duplicate
2918 *
2919 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2920 */
2921struct edid *drm_edid_duplicate(const struct edid *edid)
2922{
2923	if (!edid)
2924		return NULL;
2925
2926	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2927}
2928EXPORT_SYMBOL(drm_edid_duplicate);
2929
2930/*** EDID parsing ***/
2931
2932/**
2933 * edid_get_quirks - return quirk flags for a given EDID
2934 * @drm_edid: EDID to process
2935 *
2936 * This tells subsequent routines what fixes they need to apply.
2937 *
2938 * Return: A u32 represents the quirks to apply.
2939 */
2940static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2941{
 
2942	const struct edid_quirk *quirk;
2943	int i;
2944
2945	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2946		quirk = &edid_quirk_list[i];
2947		if (drm_edid_match(drm_edid, &quirk->ident))
2948			return quirk->quirks;
2949	}
2950
2951	return 0;
2952}
2953
2954#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2955#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2956
2957/*
2958 * Walk the mode list for connector, clearing the preferred status on existing
2959 * modes and setting it anew for the right mode ala quirks.
2960 */
2961static void edid_fixup_preferred(struct drm_connector *connector)
2962{
2963	const struct drm_display_info *info = &connector->display_info;
2964	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2965	int target_refresh = 0;
2966	int cur_vrefresh, preferred_vrefresh;
2967
2968	if (list_empty(&connector->probed_modes))
2969		return;
2970
2971	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2972		target_refresh = 60;
2973	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2974		target_refresh = 75;
2975
2976	preferred_mode = list_first_entry(&connector->probed_modes,
2977					  struct drm_display_mode, head);
2978
2979	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2980		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2981
2982		if (cur_mode == preferred_mode)
2983			continue;
2984
2985		/* Largest mode is preferred */
2986		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2987			preferred_mode = cur_mode;
2988
2989		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2990		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2991		/* At a given size, try to get closest to target refresh */
2992		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2993		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2994		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2995			preferred_mode = cur_mode;
2996		}
2997	}
2998
2999	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
3000}
3001
3002static bool
3003mode_is_rb(const struct drm_display_mode *mode)
3004{
3005	return (mode->htotal - mode->hdisplay == 160) &&
3006	       (mode->hsync_end - mode->hdisplay == 80) &&
3007	       (mode->hsync_end - mode->hsync_start == 32) &&
3008	       (mode->vsync_start - mode->vdisplay == 3);
3009}
3010
3011/*
3012 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
3013 * @dev: Device to duplicate against
3014 * @hsize: Mode width
3015 * @vsize: Mode height
3016 * @fresh: Mode refresh rate
3017 * @rb: Mode reduced-blanking-ness
3018 *
3019 * Walk the DMT mode list looking for a match for the given parameters.
3020 *
3021 * Return: A newly allocated copy of the mode, or NULL if not found.
3022 */
3023struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
3024					   int hsize, int vsize, int fresh,
3025					   bool rb)
3026{
3027	int i;
3028
3029	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3030		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3031
3032		if (hsize != ptr->hdisplay)
3033			continue;
3034		if (vsize != ptr->vdisplay)
3035			continue;
3036		if (fresh != drm_mode_vrefresh(ptr))
3037			continue;
3038		if (rb != mode_is_rb(ptr))
3039			continue;
3040
3041		return drm_mode_duplicate(dev, ptr);
3042	}
3043
3044	return NULL;
3045}
3046EXPORT_SYMBOL(drm_mode_find_dmt);
3047
3048static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3049{
3050	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3051	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3052	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3053
3054	return descriptor->pixel_clock == 0 &&
3055		descriptor->data.other_data.pad1 == 0 &&
3056		descriptor->data.other_data.type == type;
3057}
3058
3059static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3060{
3061	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3062
3063	return descriptor->pixel_clock != 0;
3064}
3065
3066typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3067
3068static void
3069cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3070{
3071	int i, n;
3072	u8 d = ext[0x02];
3073	const u8 *det_base = ext + d;
3074
3075	if (d < 4 || d > 127)
3076		return;
3077
3078	n = (127 - d) / 18;
3079	for (i = 0; i < n; i++)
3080		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3081}
3082
3083static void
3084vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3085{
3086	unsigned int i, n = min((int)ext[0x02], 6);
3087	const u8 *det_base = ext + 5;
3088
3089	if (ext[0x01] != 1)
3090		return; /* unknown version */
3091
3092	for (i = 0; i < n; i++)
3093		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3094}
3095
3096static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3097					detailed_cb *cb, void *closure)
3098{
3099	struct drm_edid_iter edid_iter;
3100	const u8 *ext;
3101	int i;
3102
3103	if (!drm_edid)
3104		return;
3105
3106	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3107		cb(&drm_edid->edid->detailed_timings[i], closure);
3108
3109	drm_edid_iter_begin(drm_edid, &edid_iter);
3110	drm_edid_iter_for_each(ext, &edid_iter) {
3111		switch (*ext) {
3112		case CEA_EXT:
3113			cea_for_each_detailed_block(ext, cb, closure);
3114			break;
3115		case VTB_EXT:
3116			vtb_for_each_detailed_block(ext, cb, closure);
3117			break;
3118		default:
3119			break;
3120		}
3121	}
3122	drm_edid_iter_end(&edid_iter);
3123}
3124
3125static void
3126is_rb(const struct detailed_timing *descriptor, void *data)
3127{
3128	bool *res = data;
3129
3130	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3131		return;
3132
3133	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3134	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3135
3136	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3137	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3138		*res = true;
3139}
3140
3141/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3142static bool
3143drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3144{
3145	if (drm_edid->edid->revision >= 4) {
3146		bool ret = false;
3147
3148		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3149		return ret;
3150	}
3151
3152	return drm_edid_is_digital(drm_edid);
3153}
3154
3155static void
3156find_gtf2(const struct detailed_timing *descriptor, void *data)
3157{
3158	const struct detailed_timing **res = data;
3159
3160	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3161		return;
3162
3163	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3164
3165	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3166		*res = descriptor;
3167}
3168
3169/* Secondary GTF curve kicks in above some break frequency */
3170static int
3171drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3172{
3173	const struct detailed_timing *descriptor = NULL;
3174
3175	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3176
3177	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3178
3179	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3180}
3181
3182static int
3183drm_gtf2_2c(const struct drm_edid *drm_edid)
3184{
3185	const struct detailed_timing *descriptor = NULL;
3186
3187	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3188
3189	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3190
3191	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3192}
3193
3194static int
3195drm_gtf2_m(const struct drm_edid *drm_edid)
3196{
3197	const struct detailed_timing *descriptor = NULL;
3198
3199	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3200
3201	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3202
3203	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3204}
3205
3206static int
3207drm_gtf2_k(const struct drm_edid *drm_edid)
3208{
3209	const struct detailed_timing *descriptor = NULL;
3210
3211	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3212
3213	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3214
3215	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3216}
3217
3218static int
3219drm_gtf2_2j(const struct drm_edid *drm_edid)
3220{
3221	const struct detailed_timing *descriptor = NULL;
3222
3223	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3224
3225	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3226
3227	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3228}
3229
3230static void
3231get_timing_level(const struct detailed_timing *descriptor, void *data)
3232{
3233	int *res = data;
3234
3235	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3236		return;
3237
3238	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3239
3240	switch (descriptor->data.other_data.data.range.flags) {
3241	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3242		*res = LEVEL_GTF;
3243		break;
3244	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3245		*res = LEVEL_GTF2;
3246		break;
3247	case DRM_EDID_CVT_SUPPORT_FLAG:
3248		*res = LEVEL_CVT;
3249		break;
3250	default:
3251		break;
3252	}
3253}
3254
3255/* Get standard timing level (CVT/GTF/DMT). */
3256static int standard_timing_level(const struct drm_edid *drm_edid)
3257{
3258	const struct edid *edid = drm_edid->edid;
3259
3260	if (edid->revision >= 4) {
3261		/*
3262		 * If the range descriptor doesn't
3263		 * indicate otherwise default to CVT
3264		 */
3265		int ret = LEVEL_CVT;
3266
3267		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3268
3269		return ret;
3270	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3271		return LEVEL_GTF2;
3272	} else if (edid->revision >= 2) {
3273		return LEVEL_GTF;
3274	} else {
3275		return LEVEL_DMT;
3276	}
3277}
3278
3279/*
3280 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3281 * monitors fill with ascii space (0x20) instead.
3282 */
3283static int
3284bad_std_timing(u8 a, u8 b)
3285{
3286	return (a == 0x00 && b == 0x00) ||
3287	       (a == 0x01 && b == 0x01) ||
3288	       (a == 0x20 && b == 0x20);
3289}
3290
3291static int drm_mode_hsync(const struct drm_display_mode *mode)
3292{
3293	if (mode->htotal <= 0)
3294		return 0;
3295
3296	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3297}
3298
3299static struct drm_display_mode *
3300drm_gtf2_mode(struct drm_device *dev,
3301	      const struct drm_edid *drm_edid,
3302	      int hsize, int vsize, int vrefresh_rate)
3303{
3304	struct drm_display_mode *mode;
3305
3306	/*
3307	 * This is potentially wrong if there's ever a monitor with
3308	 * more than one ranges section, each claiming a different
3309	 * secondary GTF curve.  Please don't do that.
3310	 */
3311	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3312	if (!mode)
3313		return NULL;
3314
3315	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3316		drm_mode_destroy(dev, mode);
3317		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3318					    vrefresh_rate, 0, 0,
3319					    drm_gtf2_m(drm_edid),
3320					    drm_gtf2_2c(drm_edid),
3321					    drm_gtf2_k(drm_edid),
3322					    drm_gtf2_2j(drm_edid));
3323	}
3324
3325	return mode;
3326}
3327
3328/*
3329 * Take the standard timing params (in this case width, aspect, and refresh)
3330 * and convert them into a real mode using CVT/GTF/DMT.
3331 */
3332static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3333					     const struct drm_edid *drm_edid,
3334					     const struct std_timing *t)
3335{
3336	struct drm_device *dev = connector->dev;
3337	struct drm_display_mode *m, *mode = NULL;
3338	int hsize, vsize;
3339	int vrefresh_rate;
3340	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3341		>> EDID_TIMING_ASPECT_SHIFT;
3342	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3343		>> EDID_TIMING_VFREQ_SHIFT;
3344	int timing_level = standard_timing_level(drm_edid);
3345
3346	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3347		return NULL;
3348
3349	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3350	hsize = t->hsize * 8 + 248;
3351	/* vrefresh_rate = vfreq + 60 */
3352	vrefresh_rate = vfreq + 60;
3353	/* the vdisplay is calculated based on the aspect ratio */
3354	if (aspect_ratio == 0) {
3355		if (drm_edid->edid->revision < 3)
3356			vsize = hsize;
3357		else
3358			vsize = (hsize * 10) / 16;
3359	} else if (aspect_ratio == 1)
3360		vsize = (hsize * 3) / 4;
3361	else if (aspect_ratio == 2)
3362		vsize = (hsize * 4) / 5;
3363	else
3364		vsize = (hsize * 9) / 16;
3365
3366	/* HDTV hack, part 1 */
3367	if (vrefresh_rate == 60 &&
3368	    ((hsize == 1360 && vsize == 765) ||
3369	     (hsize == 1368 && vsize == 769))) {
3370		hsize = 1366;
3371		vsize = 768;
3372	}
3373
3374	/*
3375	 * If this connector already has a mode for this size and refresh
3376	 * rate (because it came from detailed or CVT info), use that
3377	 * instead.  This way we don't have to guess at interlace or
3378	 * reduced blanking.
3379	 */
3380	list_for_each_entry(m, &connector->probed_modes, head)
3381		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3382		    drm_mode_vrefresh(m) == vrefresh_rate)
3383			return NULL;
3384
3385	/* HDTV hack, part 2 */
3386	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3387		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3388				    false);
3389		if (!mode)
3390			return NULL;
3391		mode->hdisplay = 1366;
3392		mode->hsync_start = mode->hsync_start - 1;
3393		mode->hsync_end = mode->hsync_end - 1;
3394		return mode;
3395	}
3396
3397	/* check whether it can be found in default mode table */
3398	if (drm_monitor_supports_rb(drm_edid)) {
3399		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3400					 true);
3401		if (mode)
3402			return mode;
3403	}
3404	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3405	if (mode)
3406		return mode;
3407
3408	/* okay, generate it */
3409	switch (timing_level) {
3410	case LEVEL_DMT:
3411		break;
3412	case LEVEL_GTF:
3413		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3414		break;
3415	case LEVEL_GTF2:
3416		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3417		break;
3418	case LEVEL_CVT:
3419		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3420				    false);
3421		break;
3422	}
3423	return mode;
3424}
3425
3426/*
3427 * EDID is delightfully ambiguous about how interlaced modes are to be
3428 * encoded.  Our internal representation is of frame height, but some
3429 * HDTV detailed timings are encoded as field height.
3430 *
3431 * The format list here is from CEA, in frame size.  Technically we
3432 * should be checking refresh rate too.  Whatever.
3433 */
3434static void
3435drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3436			    const struct detailed_pixel_timing *pt)
3437{
3438	int i;
3439	static const struct {
3440		int w, h;
3441	} cea_interlaced[] = {
3442		{ 1920, 1080 },
3443		{  720,  480 },
3444		{ 1440,  480 },
3445		{ 2880,  480 },
3446		{  720,  576 },
3447		{ 1440,  576 },
3448		{ 2880,  576 },
3449	};
3450
3451	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3452		return;
3453
3454	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3455		if ((mode->hdisplay == cea_interlaced[i].w) &&
3456		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3457			mode->vdisplay *= 2;
3458			mode->vsync_start *= 2;
3459			mode->vsync_end *= 2;
3460			mode->vtotal *= 2;
3461			mode->vtotal |= 1;
3462		}
3463	}
3464
3465	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3466}
3467
3468/*
3469 * Create a new mode from an EDID detailed timing section. An EDID detailed
3470 * timing block contains enough info for us to create and return a new struct
3471 * drm_display_mode.
3472 */
3473static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3474						  const struct drm_edid *drm_edid,
3475						  const struct detailed_timing *timing)
3476{
3477	const struct drm_display_info *info = &connector->display_info;
3478	struct drm_device *dev = connector->dev;
3479	struct drm_display_mode *mode;
3480	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3481	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3482	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3483	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3484	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3485	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3486	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3487	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3488	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3489
3490	/* ignore tiny modes */
3491	if (hactive < 64 || vactive < 64)
3492		return NULL;
3493
3494	if (pt->misc & DRM_EDID_PT_STEREO) {
3495		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3496			    connector->base.id, connector->name);
3497		return NULL;
3498	}
3499	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3500		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3501			    connector->base.id, connector->name);
3502	}
3503
3504	/* it is incorrect if hsync/vsync width is zero */
3505	if (!hsync_pulse_width || !vsync_pulse_width) {
3506		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3507			    connector->base.id, connector->name);
3508		return NULL;
3509	}
3510
3511	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3512		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3513		if (!mode)
3514			return NULL;
3515
3516		goto set_size;
3517	}
3518
3519	mode = drm_mode_create(dev);
3520	if (!mode)
3521		return NULL;
3522
3523	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3524		mode->clock = 1088 * 10;
3525	else
3526		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3527
3528	mode->hdisplay = hactive;
3529	mode->hsync_start = mode->hdisplay + hsync_offset;
3530	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3531	mode->htotal = mode->hdisplay + hblank;
3532
3533	mode->vdisplay = vactive;
3534	mode->vsync_start = mode->vdisplay + vsync_offset;
3535	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3536	mode->vtotal = mode->vdisplay + vblank;
3537
3538	/* Some EDIDs have bogus h/vsync_end values */
3539	if (mode->hsync_end > mode->htotal) {
3540		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3541			    connector->base.id, connector->name,
3542			    mode->hsync_end, mode->htotal);
3543		mode->hsync_end = mode->htotal;
3544	}
3545	if (mode->vsync_end > mode->vtotal) {
3546		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3547			    connector->base.id, connector->name,
3548			    mode->vsync_end, mode->vtotal);
3549		mode->vsync_end = mode->vtotal;
3550	}
3551
3552	drm_mode_do_interlace_quirk(mode, pt);
3553
3554	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3555		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3556	} else {
3557		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3558			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3559		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3560			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3561	}
3562
3563set_size:
3564	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3565	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3566
3567	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3568		mode->width_mm *= 10;
3569		mode->height_mm *= 10;
3570	}
3571
3572	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3573		mode->width_mm = drm_edid->edid->width_cm * 10;
3574		mode->height_mm = drm_edid->edid->height_cm * 10;
3575	}
3576
3577	mode->type = DRM_MODE_TYPE_DRIVER;
3578	drm_mode_set_name(mode);
3579
3580	return mode;
3581}
3582
3583static bool
3584mode_in_hsync_range(const struct drm_display_mode *mode,
3585		    const struct edid *edid, const u8 *t)
3586{
3587	int hsync, hmin, hmax;
3588
3589	hmin = t[7];
3590	if (edid->revision >= 4)
3591	    hmin += ((t[4] & 0x04) ? 255 : 0);
3592	hmax = t[8];
3593	if (edid->revision >= 4)
3594	    hmax += ((t[4] & 0x08) ? 255 : 0);
3595	hsync = drm_mode_hsync(mode);
3596
3597	return (hsync <= hmax && hsync >= hmin);
3598}
3599
3600static bool
3601mode_in_vsync_range(const struct drm_display_mode *mode,
3602		    const struct edid *edid, const u8 *t)
3603{
3604	int vsync, vmin, vmax;
3605
3606	vmin = t[5];
3607	if (edid->revision >= 4)
3608	    vmin += ((t[4] & 0x01) ? 255 : 0);
3609	vmax = t[6];
3610	if (edid->revision >= 4)
3611	    vmax += ((t[4] & 0x02) ? 255 : 0);
3612	vsync = drm_mode_vrefresh(mode);
3613
3614	return (vsync <= vmax && vsync >= vmin);
3615}
3616
3617static u32
3618range_pixel_clock(const struct edid *edid, const u8 *t)
3619{
3620	/* unspecified */
3621	if (t[9] == 0 || t[9] == 255)
3622		return 0;
3623
3624	/* 1.4 with CVT support gives us real precision, yay */
3625	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3626		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3627
3628	/* 1.3 is pathetic, so fuzz up a bit */
3629	return t[9] * 10000 + 5001;
3630}
3631
3632static bool mode_in_range(const struct drm_display_mode *mode,
3633			  const struct drm_edid *drm_edid,
3634			  const struct detailed_timing *timing)
3635{
3636	const struct edid *edid = drm_edid->edid;
3637	u32 max_clock;
3638	const u8 *t = (const u8 *)timing;
3639
3640	if (!mode_in_hsync_range(mode, edid, t))
3641		return false;
3642
3643	if (!mode_in_vsync_range(mode, edid, t))
3644		return false;
3645
3646	max_clock = range_pixel_clock(edid, t);
3647	if (max_clock)
3648		if (mode->clock > max_clock)
3649			return false;
3650
3651	/* 1.4 max horizontal check */
3652	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3653		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3654			return false;
3655
3656	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3657		return false;
3658
3659	return true;
3660}
3661
3662static bool valid_inferred_mode(const struct drm_connector *connector,
3663				const struct drm_display_mode *mode)
3664{
3665	const struct drm_display_mode *m;
3666	bool ok = false;
3667
3668	list_for_each_entry(m, &connector->probed_modes, head) {
3669		if (mode->hdisplay == m->hdisplay &&
3670		    mode->vdisplay == m->vdisplay &&
3671		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3672			return false; /* duplicated */
3673		if (mode->hdisplay <= m->hdisplay &&
3674		    mode->vdisplay <= m->vdisplay)
3675			ok = true;
3676	}
3677	return ok;
3678}
3679
3680static int drm_dmt_modes_for_range(struct drm_connector *connector,
3681				   const struct drm_edid *drm_edid,
3682				   const struct detailed_timing *timing)
3683{
3684	int i, modes = 0;
3685	struct drm_display_mode *newmode;
3686	struct drm_device *dev = connector->dev;
3687
3688	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3689		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3690		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3691			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3692			if (newmode) {
3693				drm_mode_probed_add(connector, newmode);
3694				modes++;
3695			}
3696		}
3697	}
3698
3699	return modes;
3700}
3701
3702/* fix up 1366x768 mode from 1368x768;
3703 * GFT/CVT can't express 1366 width which isn't dividable by 8
3704 */
3705void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3706{
3707	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3708		mode->hdisplay = 1366;
3709		mode->hsync_start--;
3710		mode->hsync_end--;
3711		drm_mode_set_name(mode);
3712	}
3713}
3714
3715static int drm_gtf_modes_for_range(struct drm_connector *connector,
3716				   const struct drm_edid *drm_edid,
3717				   const struct detailed_timing *timing)
3718{
3719	int i, modes = 0;
3720	struct drm_display_mode *newmode;
3721	struct drm_device *dev = connector->dev;
3722
3723	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3724		const struct minimode *m = &extra_modes[i];
3725
3726		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3727		if (!newmode)
3728			return modes;
3729
3730		drm_mode_fixup_1366x768(newmode);
3731		if (!mode_in_range(newmode, drm_edid, timing) ||
3732		    !valid_inferred_mode(connector, newmode)) {
3733			drm_mode_destroy(dev, newmode);
3734			continue;
3735		}
3736
3737		drm_mode_probed_add(connector, newmode);
3738		modes++;
3739	}
3740
3741	return modes;
3742}
3743
3744static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3745				    const struct drm_edid *drm_edid,
3746				    const struct detailed_timing *timing)
3747{
3748	int i, modes = 0;
3749	struct drm_display_mode *newmode;
3750	struct drm_device *dev = connector->dev;
3751
3752	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3753		const struct minimode *m = &extra_modes[i];
3754
3755		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3756		if (!newmode)
3757			return modes;
3758
3759		drm_mode_fixup_1366x768(newmode);
3760		if (!mode_in_range(newmode, drm_edid, timing) ||
3761		    !valid_inferred_mode(connector, newmode)) {
3762			drm_mode_destroy(dev, newmode);
3763			continue;
3764		}
3765
3766		drm_mode_probed_add(connector, newmode);
3767		modes++;
3768	}
3769
3770	return modes;
3771}
3772
3773static int drm_cvt_modes_for_range(struct drm_connector *connector,
3774				   const struct drm_edid *drm_edid,
3775				   const struct detailed_timing *timing)
3776{
3777	int i, modes = 0;
3778	struct drm_display_mode *newmode;
3779	struct drm_device *dev = connector->dev;
3780	bool rb = drm_monitor_supports_rb(drm_edid);
3781
3782	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3783		const struct minimode *m = &extra_modes[i];
3784
3785		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3786		if (!newmode)
3787			return modes;
3788
3789		drm_mode_fixup_1366x768(newmode);
3790		if (!mode_in_range(newmode, drm_edid, timing) ||
3791		    !valid_inferred_mode(connector, newmode)) {
3792			drm_mode_destroy(dev, newmode);
3793			continue;
3794		}
3795
3796		drm_mode_probed_add(connector, newmode);
3797		modes++;
3798	}
3799
3800	return modes;
3801}
3802
3803static void
3804do_inferred_modes(const struct detailed_timing *timing, void *c)
3805{
3806	struct detailed_mode_closure *closure = c;
3807	const struct detailed_non_pixel *data = &timing->data.other_data;
3808	const struct detailed_data_monitor_range *range = &data->data.range;
3809
3810	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3811		return;
3812
3813	closure->modes += drm_dmt_modes_for_range(closure->connector,
3814						  closure->drm_edid,
3815						  timing);
3816
3817	if (closure->drm_edid->edid->revision < 2)
3818		return; /* GTF not defined yet */
3819
3820	switch (range->flags) {
3821	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3822		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3823							   closure->drm_edid,
3824							   timing);
3825		break;
3826	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3827		closure->modes += drm_gtf_modes_for_range(closure->connector,
3828							  closure->drm_edid,
3829							  timing);
3830		break;
3831	case DRM_EDID_CVT_SUPPORT_FLAG:
3832		if (closure->drm_edid->edid->revision < 4)
3833			break;
3834
3835		closure->modes += drm_cvt_modes_for_range(closure->connector,
3836							  closure->drm_edid,
3837							  timing);
3838		break;
3839	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3840	default:
3841		break;
3842	}
3843}
3844
3845static int add_inferred_modes(struct drm_connector *connector,
3846			      const struct drm_edid *drm_edid)
3847{
3848	struct detailed_mode_closure closure = {
3849		.connector = connector,
3850		.drm_edid = drm_edid,
3851	};
3852
3853	if (drm_edid->edid->revision >= 1)
3854		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3855
3856	return closure.modes;
3857}
3858
3859static int
3860drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3861{
3862	int i, j, m, modes = 0;
3863	struct drm_display_mode *mode;
3864	const u8 *est = ((const u8 *)timing) + 6;
3865
3866	for (i = 0; i < 6; i++) {
3867		for (j = 7; j >= 0; j--) {
3868			m = (i * 8) + (7 - j);
3869			if (m >= ARRAY_SIZE(est3_modes))
3870				break;
3871			if (est[i] & (1 << j)) {
3872				mode = drm_mode_find_dmt(connector->dev,
3873							 est3_modes[m].w,
3874							 est3_modes[m].h,
3875							 est3_modes[m].r,
3876							 est3_modes[m].rb);
3877				if (mode) {
3878					drm_mode_probed_add(connector, mode);
3879					modes++;
3880				}
3881			}
3882		}
3883	}
3884
3885	return modes;
3886}
3887
3888static void
3889do_established_modes(const struct detailed_timing *timing, void *c)
3890{
3891	struct detailed_mode_closure *closure = c;
3892
3893	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3894		return;
3895
3896	closure->modes += drm_est3_modes(closure->connector, timing);
3897}
3898
3899/*
3900 * Get established modes from EDID and add them. Each EDID block contains a
3901 * bitmap of the supported "established modes" list (defined above). Tease them
3902 * out and add them to the global modes list.
3903 */
3904static int add_established_modes(struct drm_connector *connector,
3905				 const struct drm_edid *drm_edid)
3906{
3907	struct drm_device *dev = connector->dev;
3908	const struct edid *edid = drm_edid->edid;
3909	unsigned long est_bits = edid->established_timings.t1 |
3910		(edid->established_timings.t2 << 8) |
3911		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3912	int i, modes = 0;
3913	struct detailed_mode_closure closure = {
3914		.connector = connector,
3915		.drm_edid = drm_edid,
3916	};
3917
3918	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3919		if (est_bits & (1<<i)) {
3920			struct drm_display_mode *newmode;
3921
3922			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3923			if (newmode) {
3924				drm_mode_probed_add(connector, newmode);
3925				modes++;
3926			}
3927		}
3928	}
3929
3930	if (edid->revision >= 1)
3931		drm_for_each_detailed_block(drm_edid, do_established_modes,
3932					    &closure);
3933
3934	return modes + closure.modes;
3935}
3936
3937static void
3938do_standard_modes(const struct detailed_timing *timing, void *c)
3939{
3940	struct detailed_mode_closure *closure = c;
3941	const struct detailed_non_pixel *data = &timing->data.other_data;
3942	struct drm_connector *connector = closure->connector;
3943	int i;
3944
3945	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3946		return;
3947
3948	for (i = 0; i < 6; i++) {
3949		const struct std_timing *std = &data->data.timings[i];
3950		struct drm_display_mode *newmode;
3951
3952		newmode = drm_mode_std(connector, closure->drm_edid, std);
3953		if (newmode) {
3954			drm_mode_probed_add(connector, newmode);
3955			closure->modes++;
3956		}
3957	}
3958}
3959
3960/*
3961 * Get standard modes from EDID and add them. Standard modes can be calculated
3962 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3963 * add them to the list.
3964 */
3965static int add_standard_modes(struct drm_connector *connector,
3966			      const struct drm_edid *drm_edid)
3967{
3968	int i, modes = 0;
3969	struct detailed_mode_closure closure = {
3970		.connector = connector,
3971		.drm_edid = drm_edid,
3972	};
3973
3974	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3975		struct drm_display_mode *newmode;
3976
3977		newmode = drm_mode_std(connector, drm_edid,
3978				       &drm_edid->edid->standard_timings[i]);
3979		if (newmode) {
3980			drm_mode_probed_add(connector, newmode);
3981			modes++;
3982		}
3983	}
3984
3985	if (drm_edid->edid->revision >= 1)
3986		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3987					    &closure);
3988
3989	/* XXX should also look for standard codes in VTB blocks */
3990
3991	return modes + closure.modes;
3992}
3993
3994static int drm_cvt_modes(struct drm_connector *connector,
3995			 const struct detailed_timing *timing)
3996{
3997	int i, j, modes = 0;
3998	struct drm_display_mode *newmode;
3999	struct drm_device *dev = connector->dev;
4000	const struct cvt_timing *cvt;
4001	static const int rates[] = { 60, 85, 75, 60, 50 };
4002	const u8 empty[3] = { 0, 0, 0 };
4003
4004	for (i = 0; i < 4; i++) {
4005		int width, height;
4006
4007		cvt = &(timing->data.other_data.data.cvt[i]);
4008
4009		if (!memcmp(cvt->code, empty, 3))
4010			continue;
4011
4012		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4013		switch (cvt->code[1] & 0x0c) {
4014		/* default - because compiler doesn't see that we've enumerated all cases */
4015		default:
4016		case 0x00:
4017			width = height * 4 / 3;
4018			break;
4019		case 0x04:
4020			width = height * 16 / 9;
4021			break;
4022		case 0x08:
4023			width = height * 16 / 10;
4024			break;
4025		case 0x0c:
4026			width = height * 15 / 9;
4027			break;
4028		}
4029
4030		for (j = 1; j < 5; j++) {
4031			if (cvt->code[2] & (1 << j)) {
4032				newmode = drm_cvt_mode(dev, width, height,
4033						       rates[j], j == 0,
4034						       false, false);
4035				if (newmode) {
4036					drm_mode_probed_add(connector, newmode);
4037					modes++;
4038				}
4039			}
4040		}
4041	}
4042
4043	return modes;
4044}
4045
4046static void
4047do_cvt_mode(const struct detailed_timing *timing, void *c)
4048{
4049	struct detailed_mode_closure *closure = c;
4050
4051	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4052		return;
4053
4054	closure->modes += drm_cvt_modes(closure->connector, timing);
4055}
4056
4057static int
4058add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4059{
4060	struct detailed_mode_closure closure = {
4061		.connector = connector,
4062		.drm_edid = drm_edid,
4063	};
4064
4065	if (drm_edid->edid->revision >= 3)
4066		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4067
4068	/* XXX should also look for CVT codes in VTB blocks */
4069
4070	return closure.modes;
4071}
4072
4073static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4074					  struct drm_display_mode *mode);
4075
4076static void
4077do_detailed_mode(const struct detailed_timing *timing, void *c)
4078{
4079	struct detailed_mode_closure *closure = c;
4080	struct drm_display_mode *newmode;
4081
4082	if (!is_detailed_timing_descriptor(timing))
4083		return;
4084
4085	newmode = drm_mode_detailed(closure->connector,
4086				    closure->drm_edid, timing);
4087	if (!newmode)
4088		return;
4089
4090	if (closure->preferred)
4091		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4092
4093	/*
4094	 * Detailed modes are limited to 10kHz pixel clock resolution,
4095	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4096	 * is just slightly off.
4097	 */
4098	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4099
4100	drm_mode_probed_add(closure->connector, newmode);
4101	closure->modes++;
4102	closure->preferred = false;
4103}
4104
4105/*
4106 * add_detailed_modes - Add modes from detailed timings
4107 * @connector: attached connector
4108 * @drm_edid: EDID block to scan
4109 */
4110static int add_detailed_modes(struct drm_connector *connector,
4111			      const struct drm_edid *drm_edid)
4112{
4113	struct detailed_mode_closure closure = {
4114		.connector = connector,
4115		.drm_edid = drm_edid,
4116	};
4117
4118	if (drm_edid->edid->revision >= 4)
4119		closure.preferred = true; /* first detailed timing is always preferred */
4120	else
4121		closure.preferred =
4122			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4123
4124	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4125
4126	return closure.modes;
4127}
4128
4129/* CTA-861-H Table 60 - CTA Tag Codes */
4130#define CTA_DB_AUDIO			1
4131#define CTA_DB_VIDEO			2
4132#define CTA_DB_VENDOR			3
4133#define CTA_DB_SPEAKER			4
4134#define CTA_DB_EXTENDED_TAG		7
4135
4136/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4137#define CTA_EXT_DB_VIDEO_CAP		0
4138#define CTA_EXT_DB_VENDOR		1
4139#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4140#define CTA_EXT_DB_420_VIDEO_DATA	14
4141#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4142#define CTA_EXT_DB_HF_EEODB		0x78
4143#define CTA_EXT_DB_HF_SCDB		0x79
4144
4145#define EDID_BASIC_AUDIO	(1 << 6)
4146#define EDID_CEA_YCRCB444	(1 << 5)
4147#define EDID_CEA_YCRCB422	(1 << 4)
4148#define EDID_CEA_VCDB_QS	(1 << 6)
4149
4150/*
4151 * Search EDID for CEA extension block.
4152 *
4153 * FIXME: Prefer not returning pointers to raw EDID data.
4154 */
4155const u8 *drm_edid_find_extension(const struct drm_edid *drm_edid,
4156				  int ext_id, int *ext_index)
4157{
4158	const u8 *edid_ext = NULL;
4159	int i;
4160
4161	/* No EDID or EDID extensions */
4162	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4163		return NULL;
4164
4165	/* Find CEA extension */
4166	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4167		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4168		if (edid_block_tag(edid_ext) == ext_id)
4169			break;
4170	}
4171
4172	if (i >= drm_edid_extension_block_count(drm_edid))
4173		return NULL;
4174
4175	*ext_index = i + 1;
4176
4177	return edid_ext;
4178}
4179
4180/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4181static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4182{
4183	const struct displayid_block *block;
4184	struct displayid_iter iter;
4185	struct drm_edid_iter edid_iter;
4186	const u8 *ext;
4187	bool found = false;
4188
4189	/* Look for a top level CEA extension block */
4190	drm_edid_iter_begin(drm_edid, &edid_iter);
4191	drm_edid_iter_for_each(ext, &edid_iter) {
4192		if (ext[0] == CEA_EXT) {
4193			found = true;
4194			break;
4195		}
4196	}
4197	drm_edid_iter_end(&edid_iter);
4198
4199	if (found)
4200		return true;
4201
4202	/* CEA blocks can also be found embedded in a DisplayID block */
4203	displayid_iter_edid_begin(drm_edid, &iter);
4204	displayid_iter_for_each(block, &iter) {
4205		if (block->tag == DATA_BLOCK_CTA) {
4206			found = true;
4207			break;
4208		}
4209	}
4210	displayid_iter_end(&iter);
4211
4212	return found;
4213}
4214
4215static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4216{
4217	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4218	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4219
4220	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4221		return &edid_cea_modes_1[vic - 1];
4222	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4223		return &edid_cea_modes_193[vic - 193];
4224	return NULL;
4225}
4226
4227static u8 cea_num_vics(void)
4228{
4229	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4230}
4231
4232static u8 cea_next_vic(u8 vic)
4233{
4234	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4235		vic = 193;
4236	return vic;
4237}
4238
4239/*
4240 * Calculate the alternate clock for the CEA mode
4241 * (60Hz vs. 59.94Hz etc.)
4242 */
4243static unsigned int
4244cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4245{
4246	unsigned int clock = cea_mode->clock;
4247
4248	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4249		return clock;
4250
4251	/*
4252	 * edid_cea_modes contains the 59.94Hz
4253	 * variant for 240 and 480 line modes,
4254	 * and the 60Hz variant otherwise.
4255	 */
4256	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4257		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4258	else
4259		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4260
4261	return clock;
4262}
4263
4264static bool
4265cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4266{
4267	/*
4268	 * For certain VICs the spec allows the vertical
4269	 * front porch to vary by one or two lines.
4270	 *
4271	 * cea_modes[] stores the variant with the shortest
4272	 * vertical front porch. We can adjust the mode to
4273	 * get the other variants by simply increasing the
4274	 * vertical front porch length.
4275	 */
4276	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4277		     cea_mode_for_vic(9)->vtotal != 262 ||
4278		     cea_mode_for_vic(12)->vtotal != 262 ||
4279		     cea_mode_for_vic(13)->vtotal != 262 ||
4280		     cea_mode_for_vic(23)->vtotal != 312 ||
4281		     cea_mode_for_vic(24)->vtotal != 312 ||
4282		     cea_mode_for_vic(27)->vtotal != 312 ||
4283		     cea_mode_for_vic(28)->vtotal != 312);
4284
4285	if (((vic == 8 || vic == 9 ||
4286	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4287	    ((vic == 23 || vic == 24 ||
4288	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4289		mode->vsync_start++;
4290		mode->vsync_end++;
4291		mode->vtotal++;
4292
4293		return true;
4294	}
4295
4296	return false;
4297}
4298
4299static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4300					     unsigned int clock_tolerance)
4301{
4302	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4303	u8 vic;
4304
4305	if (!to_match->clock)
4306		return 0;
4307
4308	if (to_match->picture_aspect_ratio)
4309		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4310
4311	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4312		struct drm_display_mode cea_mode;
4313		unsigned int clock1, clock2;
4314
4315		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4316
4317		/* Check both 60Hz and 59.94Hz */
4318		clock1 = cea_mode.clock;
4319		clock2 = cea_mode_alternate_clock(&cea_mode);
4320
4321		if (abs(to_match->clock - clock1) > clock_tolerance &&
4322		    abs(to_match->clock - clock2) > clock_tolerance)
4323			continue;
4324
4325		do {
4326			if (drm_mode_match(to_match, &cea_mode, match_flags))
4327				return vic;
4328		} while (cea_mode_alternate_timings(vic, &cea_mode));
4329	}
4330
4331	return 0;
4332}
4333
4334/**
4335 * drm_match_cea_mode - look for a CEA mode matching given mode
4336 * @to_match: display mode
4337 *
4338 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4339 * mode.
4340 */
4341u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4342{
4343	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4344	u8 vic;
4345
4346	if (!to_match->clock)
4347		return 0;
4348
4349	if (to_match->picture_aspect_ratio)
4350		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4351
4352	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4353		struct drm_display_mode cea_mode;
4354		unsigned int clock1, clock2;
4355
4356		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4357
4358		/* Check both 60Hz and 59.94Hz */
4359		clock1 = cea_mode.clock;
4360		clock2 = cea_mode_alternate_clock(&cea_mode);
4361
4362		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4363		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4364			continue;
4365
4366		do {
4367			if (drm_mode_match(to_match, &cea_mode, match_flags))
4368				return vic;
4369		} while (cea_mode_alternate_timings(vic, &cea_mode));
4370	}
4371
4372	return 0;
4373}
4374EXPORT_SYMBOL(drm_match_cea_mode);
4375
4376static bool drm_valid_cea_vic(u8 vic)
4377{
4378	return cea_mode_for_vic(vic) != NULL;
4379}
4380
4381static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4382{
4383	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4384
4385	if (mode)
4386		return mode->picture_aspect_ratio;
4387
4388	return HDMI_PICTURE_ASPECT_NONE;
4389}
4390
4391static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4392{
4393	return edid_4k_modes[video_code].picture_aspect_ratio;
4394}
4395
4396/*
4397 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4398 * specific block).
4399 */
4400static unsigned int
4401hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4402{
4403	return cea_mode_alternate_clock(hdmi_mode);
4404}
4405
4406static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4407					      unsigned int clock_tolerance)
4408{
4409	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4410	u8 vic;
4411
4412	if (!to_match->clock)
4413		return 0;
4414
4415	if (to_match->picture_aspect_ratio)
4416		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4417
4418	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4419		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4420		unsigned int clock1, clock2;
4421
4422		/* Make sure to also match alternate clocks */
4423		clock1 = hdmi_mode->clock;
4424		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4425
4426		if (abs(to_match->clock - clock1) > clock_tolerance &&
4427		    abs(to_match->clock - clock2) > clock_tolerance)
4428			continue;
4429
4430		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4431			return vic;
4432	}
4433
4434	return 0;
4435}
4436
4437/*
4438 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4439 * @to_match: display mode
4440 *
4441 * An HDMI mode is one defined in the HDMI vendor specific block.
4442 *
4443 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4444 */
4445static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4446{
4447	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4448	u8 vic;
4449
4450	if (!to_match->clock)
4451		return 0;
4452
4453	if (to_match->picture_aspect_ratio)
4454		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4455
4456	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4457		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4458		unsigned int clock1, clock2;
4459
4460		/* Make sure to also match alternate clocks */
4461		clock1 = hdmi_mode->clock;
4462		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4463
4464		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4465		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4466		    drm_mode_match(to_match, hdmi_mode, match_flags))
4467			return vic;
4468	}
4469	return 0;
4470}
4471
4472static bool drm_valid_hdmi_vic(u8 vic)
4473{
4474	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4475}
4476
4477static int add_alternate_cea_modes(struct drm_connector *connector,
4478				   const struct drm_edid *drm_edid)
4479{
4480	struct drm_device *dev = connector->dev;
4481	struct drm_display_mode *mode, *tmp;
4482	LIST_HEAD(list);
4483	int modes = 0;
4484
4485	/* Don't add CTA modes if the CTA extension block is missing */
4486	if (!drm_edid_has_cta_extension(drm_edid))
4487		return 0;
4488
4489	/*
4490	 * Go through all probed modes and create a new mode
4491	 * with the alternate clock for certain CEA modes.
4492	 */
4493	list_for_each_entry(mode, &connector->probed_modes, head) {
4494		const struct drm_display_mode *cea_mode = NULL;
4495		struct drm_display_mode *newmode;
4496		u8 vic = drm_match_cea_mode(mode);
4497		unsigned int clock1, clock2;
4498
4499		if (drm_valid_cea_vic(vic)) {
4500			cea_mode = cea_mode_for_vic(vic);
4501			clock2 = cea_mode_alternate_clock(cea_mode);
4502		} else {
4503			vic = drm_match_hdmi_mode(mode);
4504			if (drm_valid_hdmi_vic(vic)) {
4505				cea_mode = &edid_4k_modes[vic];
4506				clock2 = hdmi_mode_alternate_clock(cea_mode);
4507			}
4508		}
4509
4510		if (!cea_mode)
4511			continue;
4512
4513		clock1 = cea_mode->clock;
4514
4515		if (clock1 == clock2)
4516			continue;
4517
4518		if (mode->clock != clock1 && mode->clock != clock2)
4519			continue;
4520
4521		newmode = drm_mode_duplicate(dev, cea_mode);
4522		if (!newmode)
4523			continue;
4524
4525		/* Carry over the stereo flags */
4526		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4527
4528		/*
4529		 * The current mode could be either variant. Make
4530		 * sure to pick the "other" clock for the new mode.
4531		 */
4532		if (mode->clock != clock1)
4533			newmode->clock = clock1;
4534		else
4535			newmode->clock = clock2;
4536
4537		list_add_tail(&newmode->head, &list);
4538	}
4539
4540	list_for_each_entry_safe(mode, tmp, &list, head) {
4541		list_del(&mode->head);
4542		drm_mode_probed_add(connector, mode);
4543		modes++;
4544	}
4545
4546	return modes;
4547}
4548
4549static u8 svd_to_vic(u8 svd)
4550{
4551	/* 0-6 bit vic, 7th bit native mode indicator */
4552	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4553		return svd & 127;
4554
4555	return svd;
4556}
4557
4558/*
4559 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4560 * the EDID, or NULL on errors.
4561 */
4562static struct drm_display_mode *
4563drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4564{
4565	const struct drm_display_info *info = &connector->display_info;
4566	struct drm_device *dev = connector->dev;
4567
4568	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4569		return NULL;
4570
4571	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4572}
4573
4574/*
4575 * do_y420vdb_modes - Parse YCBCR 420 only modes
4576 * @connector: connector corresponding to the HDMI sink
4577 * @svds: start of the data block of CEA YCBCR 420 VDB
4578 * @len: length of the CEA YCBCR 420 VDB
4579 *
4580 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4581 * which contains modes which can be supported in YCBCR 420
4582 * output format only.
4583 */
4584static int do_y420vdb_modes(struct drm_connector *connector,
4585			    const u8 *svds, u8 svds_len)
4586{
4587	struct drm_device *dev = connector->dev;
4588	int modes = 0, i;
4589
4590	for (i = 0; i < svds_len; i++) {
4591		u8 vic = svd_to_vic(svds[i]);
4592		struct drm_display_mode *newmode;
4593
4594		if (!drm_valid_cea_vic(vic))
4595			continue;
4596
4597		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4598		if (!newmode)
4599			break;
4600		drm_mode_probed_add(connector, newmode);
4601		modes++;
4602	}
4603
4604	return modes;
4605}
4606
4607/**
4608 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4609 * @dev: DRM device
4610 * @video_code: CEA VIC of the mode
4611 *
4612 * Creates a new mode matching the specified CEA VIC.
4613 *
4614 * Returns: A new drm_display_mode on success or NULL on failure
4615 */
4616struct drm_display_mode *
4617drm_display_mode_from_cea_vic(struct drm_device *dev,
4618			      u8 video_code)
4619{
4620	const struct drm_display_mode *cea_mode;
4621	struct drm_display_mode *newmode;
4622
4623	cea_mode = cea_mode_for_vic(video_code);
4624	if (!cea_mode)
4625		return NULL;
4626
4627	newmode = drm_mode_duplicate(dev, cea_mode);
4628	if (!newmode)
4629		return NULL;
4630
4631	return newmode;
4632}
4633EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4634
4635/* Add modes based on VICs parsed in parse_cta_vdb() */
4636static int add_cta_vdb_modes(struct drm_connector *connector)
4637{
4638	const struct drm_display_info *info = &connector->display_info;
4639	int i, modes = 0;
4640
4641	if (!info->vics)
4642		return 0;
4643
4644	for (i = 0; i < info->vics_len; i++) {
4645		struct drm_display_mode *mode;
4646
4647		mode = drm_display_mode_from_vic_index(connector, i);
4648		if (mode) {
4649			drm_mode_probed_add(connector, mode);
4650			modes++;
4651		}
4652	}
4653
4654	return modes;
4655}
4656
4657struct stereo_mandatory_mode {
4658	int width, height, vrefresh;
4659	unsigned int flags;
4660};
4661
4662static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4663	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4664	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4665	{ 1920, 1080, 50,
4666	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4667	{ 1920, 1080, 60,
4668	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4669	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4670	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4671	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4672	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4673};
4674
4675static bool
4676stereo_match_mandatory(const struct drm_display_mode *mode,
4677		       const struct stereo_mandatory_mode *stereo_mode)
4678{
4679	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4680
4681	return mode->hdisplay == stereo_mode->width &&
4682	       mode->vdisplay == stereo_mode->height &&
4683	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4684	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4685}
4686
4687static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4688{
4689	struct drm_device *dev = connector->dev;
4690	const struct drm_display_mode *mode;
4691	struct list_head stereo_modes;
4692	int modes = 0, i;
4693
4694	INIT_LIST_HEAD(&stereo_modes);
4695
4696	list_for_each_entry(mode, &connector->probed_modes, head) {
4697		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4698			const struct stereo_mandatory_mode *mandatory;
4699			struct drm_display_mode *new_mode;
4700
4701			if (!stereo_match_mandatory(mode,
4702						    &stereo_mandatory_modes[i]))
4703				continue;
4704
4705			mandatory = &stereo_mandatory_modes[i];
4706			new_mode = drm_mode_duplicate(dev, mode);
4707			if (!new_mode)
4708				continue;
4709
4710			new_mode->flags |= mandatory->flags;
4711			list_add_tail(&new_mode->head, &stereo_modes);
4712			modes++;
4713		}
4714	}
4715
4716	list_splice_tail(&stereo_modes, &connector->probed_modes);
4717
4718	return modes;
4719}
4720
4721static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4722{
4723	struct drm_device *dev = connector->dev;
4724	struct drm_display_mode *newmode;
4725
4726	if (!drm_valid_hdmi_vic(vic)) {
4727		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4728			connector->base.id, connector->name, vic);
4729		return 0;
4730	}
4731
4732	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4733	if (!newmode)
4734		return 0;
4735
4736	drm_mode_probed_add(connector, newmode);
4737
4738	return 1;
4739}
4740
4741static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4742			       int vic_index)
4743{
4744	struct drm_display_mode *newmode;
4745	int modes = 0;
4746
4747	if (structure & (1 << 0)) {
4748		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4749		if (newmode) {
4750			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4751			drm_mode_probed_add(connector, newmode);
4752			modes++;
4753		}
4754	}
4755	if (structure & (1 << 6)) {
4756		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4757		if (newmode) {
4758			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4759			drm_mode_probed_add(connector, newmode);
4760			modes++;
4761		}
4762	}
4763	if (structure & (1 << 8)) {
4764		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4765		if (newmode) {
4766			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4767			drm_mode_probed_add(connector, newmode);
4768			modes++;
4769		}
4770	}
4771
4772	return modes;
4773}
4774
4775static bool hdmi_vsdb_latency_present(const u8 *db)
4776{
4777	return db[8] & BIT(7);
4778}
4779
4780static bool hdmi_vsdb_i_latency_present(const u8 *db)
4781{
4782	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4783}
4784
4785static int hdmi_vsdb_latency_length(const u8 *db)
4786{
4787	if (hdmi_vsdb_i_latency_present(db))
4788		return 4;
4789	else if (hdmi_vsdb_latency_present(db))
4790		return 2;
4791	else
4792		return 0;
4793}
4794
4795/*
4796 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4797 * @connector: connector corresponding to the HDMI sink
4798 * @db: start of the CEA vendor specific block
4799 * @len: length of the CEA block payload, ie. one can access up to db[len]
4800 *
4801 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4802 * also adds the stereo 3d modes when applicable.
4803 */
4804static int
4805do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4806{
4807	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4808	u8 vic_len, hdmi_3d_len = 0;
4809	u16 mask;
4810	u16 structure_all;
4811
4812	if (len < 8)
4813		goto out;
4814
4815	/* no HDMI_Video_Present */
4816	if (!(db[8] & (1 << 5)))
4817		goto out;
4818
4819	offset += hdmi_vsdb_latency_length(db);
4820
4821	/* the declared length is not long enough for the 2 first bytes
4822	 * of additional video format capabilities */
4823	if (len < (8 + offset + 2))
4824		goto out;
4825
4826	/* 3D_Present */
4827	offset++;
4828	if (db[8 + offset] & (1 << 7)) {
4829		modes += add_hdmi_mandatory_stereo_modes(connector);
4830
4831		/* 3D_Multi_present */
4832		multi_present = (db[8 + offset] & 0x60) >> 5;
4833	}
4834
4835	offset++;
4836	vic_len = db[8 + offset] >> 5;
4837	hdmi_3d_len = db[8 + offset] & 0x1f;
4838
4839	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4840		u8 vic;
4841
4842		vic = db[9 + offset + i];
4843		modes += add_hdmi_mode(connector, vic);
4844	}
4845	offset += 1 + vic_len;
4846
4847	if (multi_present == 1)
4848		multi_len = 2;
4849	else if (multi_present == 2)
4850		multi_len = 4;
4851	else
4852		multi_len = 0;
4853
4854	if (len < (8 + offset + hdmi_3d_len - 1))
4855		goto out;
4856
4857	if (hdmi_3d_len < multi_len)
4858		goto out;
4859
4860	if (multi_present == 1 || multi_present == 2) {
4861		/* 3D_Structure_ALL */
4862		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4863
4864		/* check if 3D_MASK is present */
4865		if (multi_present == 2)
4866			mask = (db[10 + offset] << 8) | db[11 + offset];
4867		else
4868			mask = 0xffff;
4869
4870		for (i = 0; i < 16; i++) {
4871			if (mask & (1 << i))
4872				modes += add_3d_struct_modes(connector,
4873							     structure_all, i);
4874		}
4875	}
4876
4877	offset += multi_len;
4878
4879	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4880		int vic_index;
4881		struct drm_display_mode *newmode = NULL;
4882		unsigned int newflag = 0;
4883		bool detail_present;
4884
4885		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4886
4887		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4888			break;
4889
4890		/* 2D_VIC_order_X */
4891		vic_index = db[8 + offset + i] >> 4;
4892
4893		/* 3D_Structure_X */
4894		switch (db[8 + offset + i] & 0x0f) {
4895		case 0:
4896			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4897			break;
4898		case 6:
4899			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4900			break;
4901		case 8:
4902			/* 3D_Detail_X */
4903			if ((db[9 + offset + i] >> 4) == 1)
4904				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4905			break;
4906		}
4907
4908		if (newflag != 0) {
4909			newmode = drm_display_mode_from_vic_index(connector,
4910								  vic_index);
4911
4912			if (newmode) {
4913				newmode->flags |= newflag;
4914				drm_mode_probed_add(connector, newmode);
4915				modes++;
4916			}
4917		}
4918
4919		if (detail_present)
4920			i++;
4921	}
4922
4923out:
4924	return modes;
4925}
4926
4927static int
4928cea_revision(const u8 *cea)
4929{
4930	/*
4931	 * FIXME is this correct for the DispID variant?
4932	 * The DispID spec doesn't really specify whether
4933	 * this is the revision of the CEA extension or
4934	 * the DispID CEA data block. And the only value
4935	 * given as an example is 0.
4936	 */
4937	return cea[1];
4938}
4939
4940/*
4941 * CTA Data Block iterator.
4942 *
4943 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4944 * CTA Data Blocks.
4945 *
4946 * struct cea_db *db:
4947 * struct cea_db_iter iter;
4948 *
4949 * cea_db_iter_edid_begin(edid, &iter);
4950 * cea_db_iter_for_each(db, &iter) {
4951 *         // do stuff with db
4952 * }
4953 * cea_db_iter_end(&iter);
4954 */
4955struct cea_db_iter {
4956	struct drm_edid_iter edid_iter;
4957	struct displayid_iter displayid_iter;
4958
4959	/* Current Data Block Collection. */
4960	const u8 *collection;
4961
4962	/* Current Data Block index in current collection. */
4963	int index;
4964
4965	/* End index in current collection. */
4966	int end;
4967};
4968
4969/* CTA-861-H section 7.4 CTA Data BLock Collection */
4970struct cea_db {
4971	u8 tag_length;
4972	u8 data[];
4973} __packed;
4974
4975static int cea_db_tag(const struct cea_db *db)
4976{
4977	return db->tag_length >> 5;
4978}
4979
4980static int cea_db_payload_len(const void *_db)
4981{
4982	/* FIXME: Transition to passing struct cea_db * everywhere. */
4983	const struct cea_db *db = _db;
4984
4985	return db->tag_length & 0x1f;
4986}
4987
4988static const void *cea_db_data(const struct cea_db *db)
4989{
4990	return db->data;
4991}
4992
4993static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4994{
4995	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4996		cea_db_payload_len(db) >= 1 &&
4997		db->data[0] == tag;
4998}
4999
5000static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
5001{
5002	const u8 *data = cea_db_data(db);
5003
5004	return cea_db_tag(db) == CTA_DB_VENDOR &&
5005		cea_db_payload_len(db) >= 3 &&
5006		oui(data[2], data[1], data[0]) == vendor_oui;
5007}
5008
5009static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
5010				   struct cea_db_iter *iter)
5011{
5012	memset(iter, 0, sizeof(*iter));
5013
5014	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
5015	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
5016}
5017
5018static const struct cea_db *
5019__cea_db_iter_current_block(const struct cea_db_iter *iter)
5020{
5021	const struct cea_db *db;
5022
5023	if (!iter->collection)
5024		return NULL;
5025
5026	db = (const struct cea_db *)&iter->collection[iter->index];
5027
5028	if (iter->index + sizeof(*db) <= iter->end &&
5029	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
5030		return db;
5031
5032	return NULL;
5033}
5034
5035/*
5036 * References:
5037 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5038 */
5039static int cea_db_collection_size(const u8 *cta)
5040{
5041	u8 d = cta[2];
5042
5043	if (d < 4 || d > 127)
5044		return 0;
5045
5046	return d - 4;
5047}
5048
5049/*
5050 * References:
5051 * - VESA E-EDID v1.4
5052 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5053 */
5054static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5055{
5056	const u8 *ext;
5057
5058	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5059		int size;
5060
5061		/* Only support CTA Extension revision 3+ */
5062		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5063			continue;
5064
5065		size = cea_db_collection_size(ext);
5066		if (!size)
5067			continue;
5068
5069		iter->index = 4;
5070		iter->end = iter->index + size;
5071
5072		return ext;
5073	}
5074
5075	return NULL;
5076}
5077
5078/*
5079 * References:
5080 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5081 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5082 *
5083 * Note that the above do not specify any connection between DisplayID Data
5084 * Block revision and CTA Extension versions.
5085 */
5086static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5087{
5088	const struct displayid_block *block;
5089
5090	displayid_iter_for_each(block, &iter->displayid_iter) {
5091		if (block->tag != DATA_BLOCK_CTA)
5092			continue;
5093
5094		/*
5095		 * The displayid iterator has already verified the block bounds
5096		 * in displayid_iter_block().
5097		 */
5098		iter->index = sizeof(*block);
5099		iter->end = iter->index + block->num_bytes;
5100
5101		return block;
5102	}
5103
5104	return NULL;
5105}
5106
5107static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5108{
5109	const struct cea_db *db;
5110
5111	if (iter->collection) {
5112		/* Current collection should always be valid. */
5113		db = __cea_db_iter_current_block(iter);
5114		if (WARN_ON(!db)) {
5115			iter->collection = NULL;
5116			return NULL;
5117		}
5118
5119		/* Next block in CTA Data Block Collection */
5120		iter->index += sizeof(*db) + cea_db_payload_len(db);
5121
5122		db = __cea_db_iter_current_block(iter);
5123		if (db)
5124			return db;
5125	}
5126
5127	for (;;) {
5128		/*
5129		 * Find the next CTA Data Block Collection. First iterate all
5130		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5131		 *
5132		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5133		 * Extension, it's recommended that DisplayID extensions are
5134		 * exposed after all of the CTA Extensions.
5135		 */
5136		iter->collection = __cea_db_iter_edid_next(iter);
5137		if (!iter->collection)
5138			iter->collection = __cea_db_iter_displayid_next(iter);
5139
5140		if (!iter->collection)
5141			return NULL;
5142
5143		db = __cea_db_iter_current_block(iter);
5144		if (db)
5145			return db;
5146	}
5147}
5148
5149#define cea_db_iter_for_each(__db, __iter) \
5150	while (((__db) = __cea_db_iter_next(__iter)))
5151
5152static void cea_db_iter_end(struct cea_db_iter *iter)
5153{
5154	displayid_iter_end(&iter->displayid_iter);
5155	drm_edid_iter_end(&iter->edid_iter);
5156
5157	memset(iter, 0, sizeof(*iter));
5158}
5159
5160static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5161{
5162	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5163		cea_db_payload_len(db) >= 5;
5164}
5165
5166static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5167{
5168	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5169		cea_db_payload_len(db) >= 7;
5170}
5171
5172static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5173{
5174	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5175		cea_db_payload_len(db) >= 2;
5176}
5177
5178static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5179{
5180	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5181		cea_db_payload_len(db) == 21;
5182}
5183
5184static bool cea_db_is_vcdb(const struct cea_db *db)
5185{
5186	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5187		cea_db_payload_len(db) == 2;
5188}
5189
5190static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5191{
5192	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5193		cea_db_payload_len(db) >= 7;
5194}
5195
5196static bool cea_db_is_y420cmdb(const struct cea_db *db)
5197{
5198	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5199}
5200
5201static bool cea_db_is_y420vdb(const struct cea_db *db)
5202{
5203	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5204}
5205
5206static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5207{
5208	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5209		cea_db_payload_len(db) >= 3;
5210}
5211
5212/*
5213 * Get the HF-EEODB override extension block count from EDID.
5214 *
5215 * The passed in EDID may be partially read, as long as it has at least two
5216 * blocks (base block and one extension block) if EDID extension count is > 0.
5217 *
5218 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5219 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5220 * iterators instead.
5221 *
5222 * References:
5223 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5224 */
5225static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5226{
5227	const u8 *cta;
5228
5229	/* No extensions according to base block, no HF-EEODB. */
5230	if (!edid_extension_block_count(edid))
5231		return 0;
5232
5233	/* HF-EEODB is always in the first EDID extension block only */
5234	cta = edid_extension_block_data(edid, 0);
5235	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5236		return 0;
5237
5238	/* Need to have the data block collection, and at least 3 bytes. */
5239	if (cea_db_collection_size(cta) < 3)
5240		return 0;
5241
5242	/*
5243	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5244	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5245	 * through 6 of Block 1 of the E-EDID.
5246	 */
5247	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5248		return 0;
5249
5250	return cta[4 + 2];
5251}
5252
5253/*
5254 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5255 *
5256 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5257 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5258 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5259 * support YCBCR420 output too.
5260 */
5261static void parse_cta_y420cmdb(struct drm_connector *connector,
5262			       const struct cea_db *db, u64 *y420cmdb_map)
5263{
5264	struct drm_display_info *info = &connector->display_info;
5265	int i, map_len = cea_db_payload_len(db) - 1;
5266	const u8 *data = cea_db_data(db) + 1;
5267	u64 map = 0;
5268
5269	if (map_len == 0) {
5270		/* All CEA modes support ycbcr420 sampling also.*/
5271		map = U64_MAX;
5272		goto out;
5273	}
5274
5275	/*
5276	 * This map indicates which of the existing CEA block modes
5277	 * from VDB can support YCBCR420 output too. So if bit=0 is
5278	 * set, first mode from VDB can support YCBCR420 output too.
5279	 * We will parse and keep this map, before parsing VDB itself
5280	 * to avoid going through the same block again and again.
5281	 *
5282	 * Spec is not clear about max possible size of this block.
5283	 * Clamping max bitmap block size at 8 bytes. Every byte can
5284	 * address 8 CEA modes, in this way this map can address
5285	 * 8*8 = first 64 SVDs.
5286	 */
5287	if (WARN_ON_ONCE(map_len > 8))
5288		map_len = 8;
5289
5290	for (i = 0; i < map_len; i++)
5291		map |= (u64)data[i] << (8 * i);
5292
5293out:
5294	if (map)
5295		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5296
5297	*y420cmdb_map = map;
5298}
5299
5300static int add_cea_modes(struct drm_connector *connector,
5301			 const struct drm_edid *drm_edid)
5302{
5303	const struct cea_db *db;
5304	struct cea_db_iter iter;
5305	int modes;
5306
5307	/* CTA VDB block VICs parsed earlier */
5308	modes = add_cta_vdb_modes(connector);
5309
5310	cea_db_iter_edid_begin(drm_edid, &iter);
5311	cea_db_iter_for_each(db, &iter) {
5312		if (cea_db_is_hdmi_vsdb(db)) {
5313			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5314						    cea_db_payload_len(db));
5315		} else if (cea_db_is_y420vdb(db)) {
5316			const u8 *vdb420 = cea_db_data(db) + 1;
5317
5318			/* Add 4:2:0(only) modes present in EDID */
5319			modes += do_y420vdb_modes(connector, vdb420,
5320						  cea_db_payload_len(db) - 1);
5321		}
5322	}
5323	cea_db_iter_end(&iter);
5324
5325	return modes;
5326}
5327
5328static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5329					  struct drm_display_mode *mode)
5330{
5331	const struct drm_display_mode *cea_mode;
5332	int clock1, clock2, clock;
5333	u8 vic;
5334	const char *type;
5335
5336	/*
5337	 * allow 5kHz clock difference either way to account for
5338	 * the 10kHz clock resolution limit of detailed timings.
5339	 */
5340	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5341	if (drm_valid_cea_vic(vic)) {
5342		type = "CEA";
5343		cea_mode = cea_mode_for_vic(vic);
5344		clock1 = cea_mode->clock;
5345		clock2 = cea_mode_alternate_clock(cea_mode);
5346	} else {
5347		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5348		if (drm_valid_hdmi_vic(vic)) {
5349			type = "HDMI";
5350			cea_mode = &edid_4k_modes[vic];
5351			clock1 = cea_mode->clock;
5352			clock2 = hdmi_mode_alternate_clock(cea_mode);
5353		} else {
5354			return;
5355		}
5356	}
5357
5358	/* pick whichever is closest */
5359	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5360		clock = clock1;
5361	else
5362		clock = clock2;
5363
5364	if (mode->clock == clock)
5365		return;
5366
5367	drm_dbg_kms(connector->dev,
5368		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5369		    connector->base.id, connector->name,
5370		    type, vic, mode->clock, clock);
5371	mode->clock = clock;
5372}
5373
5374static void drm_calculate_luminance_range(struct drm_connector *connector)
5375{
5376	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5377	struct drm_luminance_range_info *luminance_range =
5378		&connector->display_info.luminance_range;
5379	static const u8 pre_computed_values[] = {
5380		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5381		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5382	};
5383	u32 max_avg, min_cll, max, min, q, r;
5384
5385	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5386		return;
5387
5388	max_avg = hdr_metadata->max_fall;
5389	min_cll = hdr_metadata->min_cll;
5390
5391	/*
5392	 * From the specification (CTA-861-G), for calculating the maximum
5393	 * luminance we need to use:
5394	 *	Luminance = 50*2**(CV/32)
5395	 * Where CV is a one-byte value.
5396	 * For calculating this expression we may need float point precision;
5397	 * to avoid this complexity level, we take advantage that CV is divided
5398	 * by a constant. From the Euclids division algorithm, we know that CV
5399	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5400	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5401	 * need to pre-compute the value of r/32. For pre-computing the values
5402	 * We just used the following Ruby line:
5403	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5404	 * The results of the above expressions can be verified at
5405	 * pre_computed_values.
5406	 */
5407	q = max_avg >> 5;
5408	r = max_avg % 32;
5409	max = (1 << q) * pre_computed_values[r];
5410
5411	/* min luminance: maxLum * (CV/255)^2 / 100 */
5412	q = DIV_ROUND_CLOSEST(min_cll, 255);
5413	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5414
5415	luminance_range->min_luminance = min;
5416	luminance_range->max_luminance = max;
5417}
5418
5419static uint8_t eotf_supported(const u8 *edid_ext)
5420{
5421	return edid_ext[2] &
5422		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5423		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5424		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5425		 BIT(HDMI_EOTF_BT_2100_HLG));
5426}
5427
5428static uint8_t hdr_metadata_type(const u8 *edid_ext)
5429{
5430	return edid_ext[3] &
5431		BIT(HDMI_STATIC_METADATA_TYPE1);
5432}
5433
5434static void
5435drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5436{
5437	u16 len;
5438
5439	len = cea_db_payload_len(db);
5440
5441	connector->hdr_sink_metadata.hdmi_type1.eotf =
5442						eotf_supported(db);
5443	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5444						hdr_metadata_type(db);
5445
5446	if (len >= 4)
5447		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5448	if (len >= 5)
5449		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5450	if (len >= 6) {
5451		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5452
5453		/* Calculate only when all values are available */
5454		drm_calculate_luminance_range(connector);
5455	}
5456}
5457
5458/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5459static void
5460drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5461{
5462	u8 len = cea_db_payload_len(db);
5463
5464	if (len >= 6 && (db[6] & (1 << 7)))
5465		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5466
5467	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5468		connector->latency_present[0] = true;
5469		connector->video_latency[0] = db[9];
5470		connector->audio_latency[0] = db[10];
5471	}
5472
5473	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5474		connector->latency_present[1] = true;
5475		connector->video_latency[1] = db[11];
5476		connector->audio_latency[1] = db[12];
5477	}
5478
5479	drm_dbg_kms(connector->dev,
5480		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5481		    connector->base.id, connector->name,
5482		    connector->latency_present[0], connector->latency_present[1],
5483		    connector->video_latency[0], connector->video_latency[1],
5484		    connector->audio_latency[0], connector->audio_latency[1]);
5485}
5486
5487static void
5488match_identity(const struct detailed_timing *timing, void *data)
5489{
5490	struct drm_edid_match_closure *closure = data;
5491	unsigned int i;
5492	const char *name = closure->ident->name;
5493	unsigned int name_len = strlen(name);
5494	const char *desc = timing->data.other_data.data.str.str;
5495	unsigned int desc_len = ARRAY_SIZE(timing->data.other_data.data.str.str);
5496
5497	if (name_len > desc_len ||
5498	    !(is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME) ||
5499	      is_display_descriptor(timing, EDID_DETAIL_MONITOR_STRING)))
5500		return;
5501
5502	if (strncmp(name, desc, name_len))
5503		return;
5504
5505	for (i = name_len; i < desc_len; i++) {
5506		if (desc[i] == '\n')
5507			break;
5508		/* Allow white space before EDID string terminator. */
5509		if (!isspace(desc[i]))
5510			return;
5511	}
5512
5513	closure->matched = true;
5514}
5515
5516/**
5517 * drm_edid_match - match drm_edid with given identity
5518 * @drm_edid: EDID
5519 * @ident: the EDID identity to match with
5520 *
5521 * Check if the EDID matches with the given identity.
5522 *
5523 * Return: True if the given identity matched with EDID, false otherwise.
5524 */
5525bool drm_edid_match(const struct drm_edid *drm_edid,
5526		    const struct drm_edid_ident *ident)
5527{
5528	if (!drm_edid || drm_edid_get_panel_id(drm_edid) != ident->panel_id)
5529		return false;
5530
5531	/* Match with name only if it's not NULL. */
5532	if (ident->name) {
5533		struct drm_edid_match_closure closure = {
5534			.ident = ident,
5535			.matched = false,
5536		};
5537
5538		drm_for_each_detailed_block(drm_edid, match_identity, &closure);
5539
5540		return closure.matched;
5541	}
5542
5543	return true;
5544}
5545EXPORT_SYMBOL(drm_edid_match);
5546
5547static void
5548monitor_name(const struct detailed_timing *timing, void *data)
5549{
5550	const char **res = data;
5551
5552	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5553		return;
5554
5555	*res = timing->data.other_data.data.str.str;
5556}
5557
5558static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5559{
5560	const char *edid_name = NULL;
5561	int mnl;
5562
5563	if (!drm_edid || !name)
5564		return 0;
5565
5566	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5567	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5568		if (edid_name[mnl] == 0x0a)
5569			break;
5570
5571		name[mnl] = edid_name[mnl];
5572	}
5573
5574	return mnl;
5575}
5576
5577/**
5578 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5579 * @edid: monitor EDID information
5580 * @name: pointer to a character array to hold the name of the monitor
5581 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5582 *
5583 */
5584void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5585{
5586	int name_length = 0;
5587
5588	if (bufsize <= 0)
5589		return;
5590
5591	if (edid) {
5592		char buf[13];
5593		struct drm_edid drm_edid = {
5594			.edid = edid,
5595			.size = edid_size(edid),
5596		};
5597
5598		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5599		memcpy(name, buf, name_length);
5600	}
5601
5602	name[name_length] = '\0';
5603}
5604EXPORT_SYMBOL(drm_edid_get_monitor_name);
5605
5606static void clear_eld(struct drm_connector *connector)
5607{
5608	mutex_lock(&connector->eld_mutex);
5609	memset(connector->eld, 0, sizeof(connector->eld));
5610	mutex_unlock(&connector->eld_mutex);
5611
5612	connector->latency_present[0] = false;
5613	connector->latency_present[1] = false;
5614	connector->video_latency[0] = 0;
5615	connector->audio_latency[0] = 0;
5616	connector->video_latency[1] = 0;
5617	connector->audio_latency[1] = 0;
5618}
5619
5620/*
5621 * Get 3-byte SAD buffer from struct cea_sad.
5622 */
5623void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5624{
5625	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5626	sad[1] = cta_sad->freq;
5627	sad[2] = cta_sad->byte2;
5628}
5629
5630/*
5631 * Set struct cea_sad from 3-byte SAD buffer.
5632 */
5633void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5634{
5635	cta_sad->format = (sad[0] & 0x78) >> 3;
5636	cta_sad->channels = sad[0] & 0x07;
5637	cta_sad->freq = sad[1] & 0x7f;
5638	cta_sad->byte2 = sad[2];
5639}
5640
5641/*
5642 * drm_edid_to_eld - build ELD from EDID
5643 * @connector: connector corresponding to the HDMI/DP sink
5644 * @drm_edid: EDID to parse
5645 *
5646 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5647 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5648 */
5649static void drm_edid_to_eld(struct drm_connector *connector,
5650			    const struct drm_edid *drm_edid)
5651{
5652	const struct drm_display_info *info = &connector->display_info;
5653	const struct cea_db *db;
5654	struct cea_db_iter iter;
5655	uint8_t *eld = connector->eld;
5656	int total_sad_count = 0;
5657	int mnl;
5658
5659	if (!drm_edid)
5660		return;
5661
5662	mutex_lock(&connector->eld_mutex);
5663
5664	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5665	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5666		    connector->base.id, connector->name,
5667		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5668
5669	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5670	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5671
5672	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5673
5674	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5675	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5676	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5677	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5678
5679	cea_db_iter_edid_begin(drm_edid, &iter);
5680	cea_db_iter_for_each(db, &iter) {
5681		const u8 *data = cea_db_data(db);
5682		int len = cea_db_payload_len(db);
5683		int sad_count;
5684
5685		switch (cea_db_tag(db)) {
5686		case CTA_DB_AUDIO:
5687			/* Audio Data Block, contains SADs */
5688			sad_count = min(len / 3, 15 - total_sad_count);
5689			if (sad_count >= 1)
5690				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5691				       data, sad_count * 3);
5692			total_sad_count += sad_count;
5693			break;
5694		case CTA_DB_SPEAKER:
5695			/* Speaker Allocation Data Block */
5696			if (len >= 1)
5697				eld[DRM_ELD_SPEAKER] = data[0];
5698			break;
5699		case CTA_DB_VENDOR:
5700			/* HDMI Vendor-Specific Data Block */
5701			if (cea_db_is_hdmi_vsdb(db))
5702				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5703			break;
5704		default:
5705			break;
5706		}
5707	}
5708	cea_db_iter_end(&iter);
5709
5710	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5711
5712	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5713	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5714		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5715	else
5716		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5717
5718	eld[DRM_ELD_BASELINE_ELD_LEN] =
5719		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5720
5721	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5722		    connector->base.id, connector->name,
5723		    drm_eld_size(eld), total_sad_count);
5724
5725	mutex_unlock(&connector->eld_mutex);
5726}
5727
5728static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5729			    struct cea_sad **psads)
5730{
5731	const struct cea_db *db;
5732	struct cea_db_iter iter;
5733	int count = 0;
5734
5735	cea_db_iter_edid_begin(drm_edid, &iter);
5736	cea_db_iter_for_each(db, &iter) {
5737		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5738			struct cea_sad *sads;
5739			int i;
5740
5741			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5742			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5743			*psads = sads;
5744			if (!sads)
5745				return -ENOMEM;
5746			for (i = 0; i < count; i++)
5747				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5748			break;
5749		}
5750	}
5751	cea_db_iter_end(&iter);
5752
5753	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5754
5755	return count;
5756}
5757
5758/**
5759 * drm_edid_to_sad - extracts SADs from EDID
5760 * @edid: EDID to parse
5761 * @sads: pointer that will be set to the extracted SADs
5762 *
5763 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5764 *
5765 * Note: The returned pointer needs to be freed using kfree().
5766 *
5767 * Return: The number of found SADs or negative number on error.
5768 */
5769int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5770{
5771	struct drm_edid drm_edid;
5772
5773	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5774}
5775EXPORT_SYMBOL(drm_edid_to_sad);
5776
5777static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5778					   u8 **sadb)
5779{
5780	const struct cea_db *db;
5781	struct cea_db_iter iter;
5782	int count = 0;
5783
5784	cea_db_iter_edid_begin(drm_edid, &iter);
5785	cea_db_iter_for_each(db, &iter) {
5786		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5787		    cea_db_payload_len(db) == 3) {
5788			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5789					GFP_KERNEL);
5790			if (!*sadb)
5791				return -ENOMEM;
5792			count = cea_db_payload_len(db);
5793			break;
5794		}
5795	}
5796	cea_db_iter_end(&iter);
5797
5798	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5799
5800	return count;
5801}
5802
5803/**
5804 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5805 * @edid: EDID to parse
5806 * @sadb: pointer to the speaker block
5807 *
5808 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5809 *
5810 * Note: The returned pointer needs to be freed using kfree().
5811 *
5812 * Return: The number of found Speaker Allocation Blocks or negative number on
5813 * error.
5814 */
5815int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5816{
5817	struct drm_edid drm_edid;
5818
5819	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5820					       sadb);
5821}
5822EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5823
5824/**
5825 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5826 * @connector: connector associated with the HDMI/DP sink
5827 * @mode: the display mode
5828 *
5829 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5830 * the sink doesn't support audio or video.
5831 */
5832int drm_av_sync_delay(struct drm_connector *connector,
5833		      const struct drm_display_mode *mode)
5834{
5835	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5836	int a, v;
5837
5838	if (!connector->latency_present[0])
5839		return 0;
5840	if (!connector->latency_present[1])
5841		i = 0;
5842
5843	a = connector->audio_latency[i];
5844	v = connector->video_latency[i];
5845
5846	/*
5847	 * HDMI/DP sink doesn't support audio or video?
5848	 */
5849	if (a == 255 || v == 255)
5850		return 0;
5851
5852	/*
5853	 * Convert raw EDID values to millisecond.
5854	 * Treat unknown latency as 0ms.
5855	 */
5856	if (a)
5857		a = min(2 * (a - 1), 500);
5858	if (v)
5859		v = min(2 * (v - 1), 500);
5860
5861	return max(v - a, 0);
5862}
5863EXPORT_SYMBOL(drm_av_sync_delay);
5864
5865static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5866{
5867	const struct cea_db *db;
5868	struct cea_db_iter iter;
5869	bool hdmi = false;
5870
5871	/*
5872	 * Because HDMI identifier is in Vendor Specific Block,
5873	 * search it from all data blocks of CEA extension.
5874	 */
5875	cea_db_iter_edid_begin(drm_edid, &iter);
5876	cea_db_iter_for_each(db, &iter) {
5877		if (cea_db_is_hdmi_vsdb(db)) {
5878			hdmi = true;
5879			break;
5880		}
5881	}
5882	cea_db_iter_end(&iter);
5883
5884	return hdmi;
5885}
5886
5887/**
5888 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5889 * @edid: monitor EDID information
5890 *
5891 * Parse the CEA extension according to CEA-861-B.
5892 *
5893 * Drivers that have added the modes parsed from EDID to drm_display_info
5894 * should use &drm_display_info.is_hdmi instead of calling this function.
5895 *
5896 * Return: True if the monitor is HDMI, false if not or unknown.
5897 */
5898bool drm_detect_hdmi_monitor(const struct edid *edid)
5899{
5900	struct drm_edid drm_edid;
5901
5902	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5903}
5904EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5905
5906static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5907{
5908	struct drm_edid_iter edid_iter;
5909	const struct cea_db *db;
5910	struct cea_db_iter iter;
5911	const u8 *edid_ext;
5912	bool has_audio = false;
5913
5914	drm_edid_iter_begin(drm_edid, &edid_iter);
5915	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5916		if (edid_ext[0] == CEA_EXT) {
5917			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5918			if (has_audio)
5919				break;
5920		}
5921	}
5922	drm_edid_iter_end(&edid_iter);
5923
5924	if (has_audio) {
5925		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5926		goto end;
5927	}
5928
5929	cea_db_iter_edid_begin(drm_edid, &iter);
5930	cea_db_iter_for_each(db, &iter) {
5931		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5932			const u8 *data = cea_db_data(db);
5933			int i;
5934
5935			for (i = 0; i < cea_db_payload_len(db); i += 3)
5936				DRM_DEBUG_KMS("CEA audio format %d\n",
5937					      (data[i] >> 3) & 0xf);
5938			has_audio = true;
5939			break;
5940		}
5941	}
5942	cea_db_iter_end(&iter);
5943
5944end:
5945	return has_audio;
5946}
5947
5948/**
5949 * drm_detect_monitor_audio - check monitor audio capability
5950 * @edid: EDID block to scan
5951 *
5952 * Monitor should have CEA extension block.
5953 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5954 * audio' only. If there is any audio extension block and supported
5955 * audio format, assume at least 'basic audio' support, even if 'basic
5956 * audio' is not defined in EDID.
5957 *
5958 * Return: True if the monitor supports audio, false otherwise.
5959 */
5960bool drm_detect_monitor_audio(const struct edid *edid)
5961{
5962	struct drm_edid drm_edid;
5963
5964	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5965}
5966EXPORT_SYMBOL(drm_detect_monitor_audio);
5967
5968
5969/**
5970 * drm_default_rgb_quant_range - default RGB quantization range
5971 * @mode: display mode
5972 *
5973 * Determine the default RGB quantization range for the mode,
5974 * as specified in CEA-861.
5975 *
5976 * Return: The default RGB quantization range for the mode
5977 */
5978enum hdmi_quantization_range
5979drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5980{
5981	/* All CEA modes other than VIC 1 use limited quantization range. */
5982	return drm_match_cea_mode(mode) > 1 ?
5983		HDMI_QUANTIZATION_RANGE_LIMITED :
5984		HDMI_QUANTIZATION_RANGE_FULL;
5985}
5986EXPORT_SYMBOL(drm_default_rgb_quant_range);
5987
5988/* CTA-861 Video Data Block (CTA VDB) */
5989static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5990{
5991	struct drm_display_info *info = &connector->display_info;
5992	int i, vic_index, len = cea_db_payload_len(db);
5993	const u8 *svds = cea_db_data(db);
5994	u8 *vics;
5995
5996	if (!len)
5997		return;
5998
5999	/* Gracefully handle multiple VDBs, however unlikely that is */
6000	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
6001	if (!vics)
6002		return;
6003
6004	vic_index = info->vics_len;
6005	info->vics_len += len;
6006	info->vics = vics;
6007
6008	for (i = 0; i < len; i++) {
6009		u8 vic = svd_to_vic(svds[i]);
6010
6011		if (!drm_valid_cea_vic(vic))
6012			vic = 0;
6013
6014		info->vics[vic_index++] = vic;
6015	}
6016}
6017
6018/*
6019 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
6020 *
6021 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
6022 * using the VICs themselves.
6023 */
6024static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
6025{
6026	struct drm_display_info *info = &connector->display_info;
6027	struct drm_hdmi_info *hdmi = &info->hdmi;
6028	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
6029
6030	for (i = 0; i < len; i++) {
6031		u8 vic = info->vics[i];
6032
6033		if (vic && y420cmdb_map & BIT_ULL(i))
6034			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
6035	}
6036}
6037
6038static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
6039{
6040	const struct drm_display_info *info = &connector->display_info;
6041	int i;
6042
6043	if (!vic || !info->vics)
6044		return false;
6045
6046	for (i = 0; i < info->vics_len; i++) {
6047		if (info->vics[i] == vic)
6048			return true;
6049	}
6050
6051	return false;
6052}
6053
6054/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
6055static void parse_cta_y420vdb(struct drm_connector *connector,
6056			      const struct cea_db *db)
6057{
6058	struct drm_display_info *info = &connector->display_info;
6059	struct drm_hdmi_info *hdmi = &info->hdmi;
6060	const u8 *svds = cea_db_data(db) + 1;
6061	int i;
6062
6063	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
6064		u8 vic = svd_to_vic(svds[i]);
6065
6066		if (!drm_valid_cea_vic(vic))
6067			continue;
6068
6069		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
6070		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
6071	}
6072}
6073
6074static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
6075{
6076	struct drm_display_info *info = &connector->display_info;
6077
6078	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
6079		    connector->base.id, connector->name, db[2]);
6080
6081	if (db[2] & EDID_CEA_VCDB_QS)
6082		info->rgb_quant_range_selectable = true;
6083}
6084
6085static
6086void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
6087{
6088	switch (max_frl_rate) {
6089	case 1:
6090		*max_lanes = 3;
6091		*max_rate_per_lane = 3;
6092		break;
6093	case 2:
6094		*max_lanes = 3;
6095		*max_rate_per_lane = 6;
6096		break;
6097	case 3:
6098		*max_lanes = 4;
6099		*max_rate_per_lane = 6;
6100		break;
6101	case 4:
6102		*max_lanes = 4;
6103		*max_rate_per_lane = 8;
6104		break;
6105	case 5:
6106		*max_lanes = 4;
6107		*max_rate_per_lane = 10;
6108		break;
6109	case 6:
6110		*max_lanes = 4;
6111		*max_rate_per_lane = 12;
6112		break;
6113	case 0:
6114	default:
6115		*max_lanes = 0;
6116		*max_rate_per_lane = 0;
6117	}
6118}
6119
6120static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6121					       const u8 *db)
6122{
6123	u8 dc_mask;
6124	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6125
6126	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6127	hdmi->y420_dc_modes = dc_mask;
6128}
6129
6130static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6131			       const u8 *hf_scds)
6132{
6133	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6134
6135	if (!hdmi_dsc->v_1p2)
6136		return;
6137
6138	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6139	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6140
6141	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6142		hdmi_dsc->bpc_supported = 16;
6143	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6144		hdmi_dsc->bpc_supported = 12;
6145	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6146		hdmi_dsc->bpc_supported = 10;
6147	else
6148		/* Supports min 8 BPC if DSC 1.2 is supported*/
6149		hdmi_dsc->bpc_supported = 8;
6150
6151	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6152		u8 dsc_max_slices;
6153		u8 dsc_max_frl_rate;
6154
6155		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6156		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6157				     &hdmi_dsc->max_frl_rate_per_lane);
6158
6159		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6160
6161		switch (dsc_max_slices) {
6162		case 1:
6163			hdmi_dsc->max_slices = 1;
6164			hdmi_dsc->clk_per_slice = 340;
6165			break;
6166		case 2:
6167			hdmi_dsc->max_slices = 2;
6168			hdmi_dsc->clk_per_slice = 340;
6169			break;
6170		case 3:
6171			hdmi_dsc->max_slices = 4;
6172			hdmi_dsc->clk_per_slice = 340;
6173			break;
6174		case 4:
6175			hdmi_dsc->max_slices = 8;
6176			hdmi_dsc->clk_per_slice = 340;
6177			break;
6178		case 5:
6179			hdmi_dsc->max_slices = 8;
6180			hdmi_dsc->clk_per_slice = 400;
6181			break;
6182		case 6:
6183			hdmi_dsc->max_slices = 12;
6184			hdmi_dsc->clk_per_slice = 400;
6185			break;
6186		case 7:
6187			hdmi_dsc->max_slices = 16;
6188			hdmi_dsc->clk_per_slice = 400;
6189			break;
6190		case 0:
6191		default:
6192			hdmi_dsc->max_slices = 0;
6193			hdmi_dsc->clk_per_slice = 0;
6194		}
6195	}
6196
6197	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6198		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6199}
6200
6201/* Sink Capability Data Structure */
6202static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6203				      const u8 *hf_scds)
6204{
6205	struct drm_display_info *info = &connector->display_info;
6206	struct drm_hdmi_info *hdmi = &info->hdmi;
6207	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6208	int max_tmds_clock = 0;
6209	u8 max_frl_rate = 0;
6210	bool dsc_support = false;
6211
6212	info->has_hdmi_infoframe = true;
6213
6214	if (hf_scds[6] & 0x80) {
6215		hdmi->scdc.supported = true;
6216		if (hf_scds[6] & 0x40)
6217			hdmi->scdc.read_request = true;
6218	}
6219
6220	/*
6221	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6222	 * And as per the spec, three factors confirm this:
6223	 * * Availability of a HF-VSDB block in EDID (check)
6224	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6225	 * * SCDC support available (let's check)
6226	 * Lets check it out.
6227	 */
6228
6229	if (hf_scds[5]) {
6230		struct drm_scdc *scdc = &hdmi->scdc;
6231
6232		/* max clock is 5000 KHz times block value */
6233		max_tmds_clock = hf_scds[5] * 5000;
6234
6235		if (max_tmds_clock > 340000) {
6236			info->max_tmds_clock = max_tmds_clock;
6237		}
6238
6239		if (scdc->supported) {
6240			scdc->scrambling.supported = true;
6241
6242			/* Few sinks support scrambling for clocks < 340M */
6243			if ((hf_scds[6] & 0x8))
6244				scdc->scrambling.low_rates = true;
6245		}
6246	}
6247
6248	if (hf_scds[7]) {
6249		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6250		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6251				     &hdmi->max_frl_rate_per_lane);
6252	}
6253
6254	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6255
6256	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6257		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6258		dsc_support = true;
6259	}
6260
6261	drm_dbg_kms(connector->dev,
6262		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6263		    connector->base.id, connector->name,
6264		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6265}
6266
6267static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6268					   const u8 *hdmi)
6269{
6270	struct drm_display_info *info = &connector->display_info;
6271	unsigned int dc_bpc = 0;
6272
6273	/* HDMI supports at least 8 bpc */
6274	info->bpc = 8;
6275
6276	if (cea_db_payload_len(hdmi) < 6)
6277		return;
6278
6279	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6280		dc_bpc = 10;
6281		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6282		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6283			    connector->base.id, connector->name);
6284	}
6285
6286	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6287		dc_bpc = 12;
6288		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6289		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6290			    connector->base.id, connector->name);
6291	}
6292
6293	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6294		dc_bpc = 16;
6295		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6296		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6297			    connector->base.id, connector->name);
6298	}
6299
6300	if (dc_bpc == 0) {
6301		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6302			    connector->base.id, connector->name);
6303		return;
6304	}
6305
6306	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6307		    connector->base.id, connector->name, dc_bpc);
6308	info->bpc = dc_bpc;
6309
6310	/* YCRCB444 is optional according to spec. */
6311	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6312		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6313		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6314			    connector->base.id, connector->name);
6315	}
6316
6317	/*
6318	 * Spec says that if any deep color mode is supported at all,
6319	 * then deep color 36 bit must be supported.
6320	 */
6321	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6322		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6323			    connector->base.id, connector->name);
6324	}
6325}
6326
6327/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6328static void
6329drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6330{
6331	struct drm_display_info *info = &connector->display_info;
6332	u8 len = cea_db_payload_len(db);
6333
6334	info->is_hdmi = true;
6335
6336	info->source_physical_address = (db[4] << 8) | db[5];
6337
6338	if (len >= 6)
6339		info->dvi_dual = db[6] & 1;
6340	if (len >= 7)
6341		info->max_tmds_clock = db[7] * 5000;
6342
6343	/*
6344	 * Try to infer whether the sink supports HDMI infoframes.
6345	 *
6346	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6347	 * supports infoframes if HDMI_Video_present is set.
6348	 */
6349	if (len >= 8 && db[8] & BIT(5))
6350		info->has_hdmi_infoframe = true;
6351
6352	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6353		    connector->base.id, connector->name,
6354		    info->dvi_dual, info->max_tmds_clock);
6355
6356	drm_parse_hdmi_deep_color_info(connector, db);
6357}
6358
6359/*
6360 * See EDID extension for head-mounted and specialized monitors, specified at:
6361 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6362 */
6363static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6364				     const u8 *db)
6365{
6366	struct drm_display_info *info = &connector->display_info;
6367	u8 version = db[4];
6368	bool desktop_usage = db[5] & BIT(6);
6369
6370	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6371	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6372		info->non_desktop = true;
6373
6374	drm_dbg_kms(connector->dev,
6375		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6376		    connector->base.id, connector->name, version, db[5]);
6377}
6378
6379static void drm_parse_cea_ext(struct drm_connector *connector,
6380			      const struct drm_edid *drm_edid)
6381{
6382	struct drm_display_info *info = &connector->display_info;
6383	struct drm_edid_iter edid_iter;
6384	const struct cea_db *db;
6385	struct cea_db_iter iter;
6386	const u8 *edid_ext;
6387	u64 y420cmdb_map = 0;
6388
6389	drm_edid_iter_begin(drm_edid, &edid_iter);
6390	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6391		if (edid_ext[0] != CEA_EXT)
6392			continue;
6393
6394		if (!info->cea_rev)
6395			info->cea_rev = edid_ext[1];
6396
6397		if (info->cea_rev != edid_ext[1])
6398			drm_dbg_kms(connector->dev,
6399				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6400				    connector->base.id, connector->name,
6401				    info->cea_rev, edid_ext[1]);
6402
6403		/* The existence of a CTA extension should imply RGB support */
6404		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6405		if (edid_ext[3] & EDID_CEA_YCRCB444)
6406			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6407		if (edid_ext[3] & EDID_CEA_YCRCB422)
6408			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6409		if (edid_ext[3] & EDID_BASIC_AUDIO)
6410			info->has_audio = true;
6411
6412	}
6413	drm_edid_iter_end(&edid_iter);
6414
6415	cea_db_iter_edid_begin(drm_edid, &iter);
6416	cea_db_iter_for_each(db, &iter) {
6417		/* FIXME: convert parsers to use struct cea_db */
6418		const u8 *data = (const u8 *)db;
6419
6420		if (cea_db_is_hdmi_vsdb(db))
6421			drm_parse_hdmi_vsdb_video(connector, data);
6422		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6423			 cea_db_is_hdmi_forum_scdb(db))
6424			drm_parse_hdmi_forum_scds(connector, data);
6425		else if (cea_db_is_microsoft_vsdb(db))
6426			drm_parse_microsoft_vsdb(connector, data);
6427		else if (cea_db_is_y420cmdb(db))
6428			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6429		else if (cea_db_is_y420vdb(db))
6430			parse_cta_y420vdb(connector, db);
6431		else if (cea_db_is_vcdb(db))
6432			drm_parse_vcdb(connector, data);
6433		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6434			drm_parse_hdr_metadata_block(connector, data);
6435		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6436			parse_cta_vdb(connector, db);
6437		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6438			info->has_audio = true;
6439	}
6440	cea_db_iter_end(&iter);
6441
6442	if (y420cmdb_map)
6443		update_cta_y420cmdb(connector, y420cmdb_map);
6444}
6445
6446static
6447void get_monitor_range(const struct detailed_timing *timing, void *c)
6448{
6449	struct detailed_mode_closure *closure = c;
6450	struct drm_display_info *info = &closure->connector->display_info;
6451	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6452	const struct detailed_non_pixel *data = &timing->data.other_data;
6453	const struct detailed_data_monitor_range *range = &data->data.range;
6454	const struct edid *edid = closure->drm_edid->edid;
6455
6456	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6457		return;
6458
6459	/*
6460	 * These limits are used to determine the VRR refresh
6461	 * rate range. Only the "range limits only" variant
6462	 * of the range descriptor seems to guarantee that
6463	 * any and all timings are accepted by the sink, as
6464	 * opposed to just timings conforming to the indicated
6465	 * formula (GTF/GTF2/CVT). Thus other variants of the
6466	 * range descriptor are not accepted here.
6467	 */
6468	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6469		return;
6470
6471	monitor_range->min_vfreq = range->min_vfreq;
6472	monitor_range->max_vfreq = range->max_vfreq;
6473
6474	if (edid->revision >= 4) {
6475		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6476			monitor_range->min_vfreq += 255;
6477		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6478			monitor_range->max_vfreq += 255;
6479	}
6480}
6481
6482static void drm_get_monitor_range(struct drm_connector *connector,
6483				  const struct drm_edid *drm_edid)
6484{
6485	const struct drm_display_info *info = &connector->display_info;
6486	struct detailed_mode_closure closure = {
6487		.connector = connector,
6488		.drm_edid = drm_edid,
6489	};
6490
6491	if (drm_edid->edid->revision < 4)
6492		return;
6493
6494	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6495		return;
6496
6497	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6498
6499	drm_dbg_kms(connector->dev,
6500		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6501		    connector->base.id, connector->name,
6502		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6503}
6504
6505static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6506				    const struct displayid_block *block)
6507{
6508	struct displayid_vesa_vendor_specific_block *vesa =
6509		(struct displayid_vesa_vendor_specific_block *)block;
6510	struct drm_display_info *info = &connector->display_info;
6511
6512	if (block->num_bytes < 3) {
6513		drm_dbg_kms(connector->dev,
6514			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6515			    connector->base.id, connector->name, block->num_bytes);
6516		return;
6517	}
6518
6519	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6520		return;
6521
6522	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6523		drm_dbg_kms(connector->dev,
6524			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6525			    connector->base.id, connector->name);
6526		return;
6527	}
6528
6529	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6530	default:
6531		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6532			    connector->base.id, connector->name);
6533		fallthrough;
6534	case 0:
6535		info->mso_stream_count = 0;
6536		break;
6537	case 1:
6538		info->mso_stream_count = 2; /* 2 or 4 links */
6539		break;
6540	case 2:
6541		info->mso_stream_count = 4; /* 4 links */
6542		break;
6543	}
6544
6545	if (!info->mso_stream_count) {
6546		info->mso_pixel_overlap = 0;
6547		return;
6548	}
6549
6550	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6551	if (info->mso_pixel_overlap > 8) {
6552		drm_dbg_kms(connector->dev,
6553			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6554			    connector->base.id, connector->name,
6555			    info->mso_pixel_overlap);
6556		info->mso_pixel_overlap = 8;
6557	}
6558
6559	drm_dbg_kms(connector->dev,
6560		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6561		    connector->base.id, connector->name,
6562		    info->mso_stream_count, info->mso_pixel_overlap);
6563}
6564
6565static void drm_update_mso(struct drm_connector *connector,
6566			   const struct drm_edid *drm_edid)
6567{
6568	const struct displayid_block *block;
6569	struct displayid_iter iter;
6570
6571	displayid_iter_edid_begin(drm_edid, &iter);
6572	displayid_iter_for_each(block, &iter) {
6573		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6574			drm_parse_vesa_mso_data(connector, block);
6575	}
6576	displayid_iter_end(&iter);
6577}
6578
6579/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6580 * all of the values which would have been set from EDID
6581 */
6582static void drm_reset_display_info(struct drm_connector *connector)
6583{
6584	struct drm_display_info *info = &connector->display_info;
6585
6586	info->width_mm = 0;
6587	info->height_mm = 0;
6588
6589	info->bpc = 0;
6590	info->color_formats = 0;
6591	info->cea_rev = 0;
6592	info->max_tmds_clock = 0;
6593	info->dvi_dual = false;
6594	info->is_hdmi = false;
6595	info->has_audio = false;
6596	info->has_hdmi_infoframe = false;
6597	info->rgb_quant_range_selectable = false;
6598	memset(&info->hdmi, 0, sizeof(info->hdmi));
6599
6600	info->edid_hdmi_rgb444_dc_modes = 0;
6601	info->edid_hdmi_ycbcr444_dc_modes = 0;
6602
6603	info->non_desktop = 0;
6604	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6605	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6606
6607	info->mso_stream_count = 0;
6608	info->mso_pixel_overlap = 0;
6609	info->max_dsc_bpp = 0;
6610
6611	kfree(info->vics);
6612	info->vics = NULL;
6613	info->vics_len = 0;
6614
6615	info->quirks = 0;
6616
6617	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6618}
6619
6620static void update_displayid_info(struct drm_connector *connector,
6621				  const struct drm_edid *drm_edid)
6622{
6623	struct drm_display_info *info = &connector->display_info;
6624	const struct displayid_block *block;
6625	struct displayid_iter iter;
6626
6627	displayid_iter_edid_begin(drm_edid, &iter);
6628	displayid_iter_for_each(block, &iter) {
6629		drm_dbg_kms(connector->dev,
6630			    "[CONNECTOR:%d:%s] DisplayID extension version 0x%02x, primary use 0x%02x\n",
6631			    connector->base.id, connector->name,
6632			    displayid_version(&iter),
6633			    displayid_primary_use(&iter));
6634		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6635		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6636		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6637			info->non_desktop = true;
6638
6639		/*
6640		 * We're only interested in the base section here, no need to
6641		 * iterate further.
6642		 */
6643		break;
6644	}
6645	displayid_iter_end(&iter);
6646}
6647
6648static void update_display_info(struct drm_connector *connector,
6649				const struct drm_edid *drm_edid)
6650{
6651	struct drm_display_info *info = &connector->display_info;
6652	const struct edid *edid;
6653
6654	drm_reset_display_info(connector);
6655	clear_eld(connector);
6656
6657	if (!drm_edid)
6658		return;
6659
6660	edid = drm_edid->edid;
6661
6662	info->quirks = edid_get_quirks(drm_edid);
6663
6664	info->width_mm = edid->width_cm * 10;
6665	info->height_mm = edid->height_cm * 10;
6666
6667	drm_get_monitor_range(connector, drm_edid);
6668
6669	if (edid->revision < 3)
6670		goto out;
6671
6672	if (!drm_edid_is_digital(drm_edid))
6673		goto out;
6674
6675	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6676	drm_parse_cea_ext(connector, drm_edid);
6677
6678	update_displayid_info(connector, drm_edid);
6679
6680	/*
6681	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6682	 *
6683	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6684	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6685	 * extensions which tell otherwise.
6686	 */
6687	if (info->bpc == 0 && edid->revision == 3 &&
6688	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6689		info->bpc = 8;
6690		drm_dbg_kms(connector->dev,
6691			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6692			    connector->base.id, connector->name, info->bpc);
6693	}
6694
6695	/* Only defined for 1.4 with digital displays */
6696	if (edid->revision < 4)
6697		goto out;
6698
6699	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6700	case DRM_EDID_DIGITAL_DEPTH_6:
6701		info->bpc = 6;
6702		break;
6703	case DRM_EDID_DIGITAL_DEPTH_8:
6704		info->bpc = 8;
6705		break;
6706	case DRM_EDID_DIGITAL_DEPTH_10:
6707		info->bpc = 10;
6708		break;
6709	case DRM_EDID_DIGITAL_DEPTH_12:
6710		info->bpc = 12;
6711		break;
6712	case DRM_EDID_DIGITAL_DEPTH_14:
6713		info->bpc = 14;
6714		break;
6715	case DRM_EDID_DIGITAL_DEPTH_16:
6716		info->bpc = 16;
6717		break;
6718	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6719	default:
6720		info->bpc = 0;
6721		break;
6722	}
6723
6724	drm_dbg_kms(connector->dev,
6725		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6726		    connector->base.id, connector->name, info->bpc);
6727
6728	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6729		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6730	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6731		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6732
6733	drm_update_mso(connector, drm_edid);
6734
6735out:
6736	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6737		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6738			    connector->base.id, connector->name,
6739			    info->non_desktop ? " (redundant quirk)" : "");
6740		info->non_desktop = true;
6741	}
6742
6743	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6744		info->max_dsc_bpp = 15;
6745
6746	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6747		info->bpc = 6;
6748
6749	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6750		info->bpc = 8;
6751
6752	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6753		info->bpc = 10;
6754
6755	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6756		info->bpc = 12;
6757
6758	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6759	drm_edid_to_eld(connector, drm_edid);
6760}
6761
6762static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6763							    struct displayid_detailed_timings_1 *timings,
6764							    bool type_7)
6765{
6766	struct drm_display_mode *mode;
6767	unsigned pixel_clock = (timings->pixel_clock[0] |
6768				(timings->pixel_clock[1] << 8) |
6769				(timings->pixel_clock[2] << 16)) + 1;
6770	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6771	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6772	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6773	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6774	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6775	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6776	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6777	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6778	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6779	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6780
6781	mode = drm_mode_create(dev);
6782	if (!mode)
6783		return NULL;
6784
6785	/* resolution is kHz for type VII, and 10 kHz for type I */
6786	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6787	mode->hdisplay = hactive;
6788	mode->hsync_start = mode->hdisplay + hsync;
6789	mode->hsync_end = mode->hsync_start + hsync_width;
6790	mode->htotal = mode->hdisplay + hblank;
6791
6792	mode->vdisplay = vactive;
6793	mode->vsync_start = mode->vdisplay + vsync;
6794	mode->vsync_end = mode->vsync_start + vsync_width;
6795	mode->vtotal = mode->vdisplay + vblank;
6796
6797	mode->flags = 0;
6798	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6799	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6800	mode->type = DRM_MODE_TYPE_DRIVER;
6801
6802	if (timings->flags & 0x80)
6803		mode->type |= DRM_MODE_TYPE_PREFERRED;
6804	drm_mode_set_name(mode);
6805
6806	return mode;
6807}
6808
6809static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6810					  const struct displayid_block *block)
6811{
6812	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6813	int i;
6814	int num_timings;
6815	struct drm_display_mode *newmode;
6816	int num_modes = 0;
6817	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6818	/* blocks must be multiple of 20 bytes length */
6819	if (block->num_bytes % 20)
6820		return 0;
6821
6822	num_timings = block->num_bytes / 20;
6823	for (i = 0; i < num_timings; i++) {
6824		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6825
6826		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6827		if (!newmode)
6828			continue;
6829
6830		drm_mode_probed_add(connector, newmode);
6831		num_modes++;
6832	}
6833	return num_modes;
6834}
6835
6836static int add_displayid_detailed_modes(struct drm_connector *connector,
6837					const struct drm_edid *drm_edid)
6838{
6839	const struct displayid_block *block;
6840	struct displayid_iter iter;
6841	int num_modes = 0;
6842
6843	displayid_iter_edid_begin(drm_edid, &iter);
6844	displayid_iter_for_each(block, &iter) {
6845		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6846		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6847			num_modes += add_displayid_detailed_1_modes(connector, block);
6848	}
6849	displayid_iter_end(&iter);
6850
6851	return num_modes;
6852}
6853
6854static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6855					 const struct drm_edid *drm_edid)
6856{
6857	const struct drm_display_info *info = &connector->display_info;
6858	int num_modes = 0;
6859
6860	if (!drm_edid)
6861		return 0;
6862
6863	/*
6864	 * EDID spec says modes should be preferred in this order:
6865	 * - preferred detailed mode
6866	 * - other detailed modes from base block
6867	 * - detailed modes from extension blocks
6868	 * - CVT 3-byte code modes
6869	 * - standard timing codes
6870	 * - established timing codes
6871	 * - modes inferred from GTF or CVT range information
6872	 *
6873	 * We get this pretty much right.
6874	 *
6875	 * XXX order for additional mode types in extension blocks?
6876	 */
6877	num_modes += add_detailed_modes(connector, drm_edid);
6878	num_modes += add_cvt_modes(connector, drm_edid);
6879	num_modes += add_standard_modes(connector, drm_edid);
6880	num_modes += add_established_modes(connector, drm_edid);
6881	num_modes += add_cea_modes(connector, drm_edid);
6882	num_modes += add_alternate_cea_modes(connector, drm_edid);
6883	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6884	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6885		num_modes += add_inferred_modes(connector, drm_edid);
6886
6887	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6888		edid_fixup_preferred(connector);
6889
6890	return num_modes;
6891}
6892
6893static void _drm_update_tile_info(struct drm_connector *connector,
6894				  const struct drm_edid *drm_edid);
6895
6896static int _drm_edid_connector_property_update(struct drm_connector *connector,
6897					       const struct drm_edid *drm_edid)
6898{
6899	struct drm_device *dev = connector->dev;
6900	int ret;
6901
6902	if (connector->edid_blob_ptr) {
6903		const void *old_edid = connector->edid_blob_ptr->data;
6904		size_t old_edid_size = connector->edid_blob_ptr->length;
6905
6906		if (old_edid && !drm_edid_eq(drm_edid, old_edid, old_edid_size)) {
6907			connector->epoch_counter++;
6908			drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6909				    connector->base.id, connector->name,
6910				    connector->epoch_counter);
 
 
6911		}
6912	}
6913
6914	ret = drm_property_replace_global_blob(dev,
6915					       &connector->edid_blob_ptr,
6916					       drm_edid ? drm_edid->size : 0,
6917					       drm_edid ? drm_edid->edid : NULL,
6918					       &connector->base,
6919					       dev->mode_config.edid_property);
6920	if (ret) {
6921		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6922			    connector->base.id, connector->name, ret);
6923		goto out;
6924	}
6925
6926	ret = drm_object_property_set_value(&connector->base,
6927					    dev->mode_config.non_desktop_property,
6928					    connector->display_info.non_desktop);
6929	if (ret) {
6930		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6931			    connector->base.id, connector->name, ret);
6932		goto out;
6933	}
6934
6935	ret = drm_connector_set_tile_property(connector);
6936	if (ret) {
6937		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6938			    connector->base.id, connector->name, ret);
6939		goto out;
6940	}
6941
6942out:
6943	return ret;
6944}
6945
6946/* For sysfs edid show implementation */
6947ssize_t drm_edid_connector_property_show(struct drm_connector *connector,
6948					 char *buf, loff_t off, size_t count)
6949{
6950	const void *edid;
6951	size_t size;
6952	ssize_t ret = 0;
6953
6954	mutex_lock(&connector->dev->mode_config.mutex);
6955
6956	if (!connector->edid_blob_ptr)
6957		goto unlock;
6958
6959	edid = connector->edid_blob_ptr->data;
6960	size = connector->edid_blob_ptr->length;
6961	if (!edid)
6962		goto unlock;
6963
6964	if (off >= size)
6965		goto unlock;
6966
6967	if (off + count > size)
6968		count = size - off;
6969
6970	memcpy(buf, edid + off, count);
6971
6972	ret = count;
6973unlock:
6974	mutex_unlock(&connector->dev->mode_config.mutex);
6975
6976	return ret;
6977}
6978
6979/**
6980 * drm_edid_connector_update - Update connector information from EDID
6981 * @connector: Connector
6982 * @drm_edid: EDID
6983 *
6984 * Update the connector display info, ELD, HDR metadata, relevant properties,
6985 * etc. from the passed in EDID.
6986 *
6987 * If EDID is NULL, reset the information.
6988 *
6989 * Must be called before calling drm_edid_connector_add_modes().
6990 *
6991 * Return: 0 on success, negative error on errors.
6992 */
6993int drm_edid_connector_update(struct drm_connector *connector,
6994			      const struct drm_edid *drm_edid)
6995{
6996	update_display_info(connector, drm_edid);
6997
6998	_drm_update_tile_info(connector, drm_edid);
6999
7000	return _drm_edid_connector_property_update(connector, drm_edid);
7001}
7002EXPORT_SYMBOL(drm_edid_connector_update);
7003
7004/**
7005 * drm_edid_connector_add_modes - Update probed modes from the EDID property
7006 * @connector: Connector
7007 *
7008 * Add the modes from the previously updated EDID property to the connector
7009 * probed modes list.
7010 *
7011 * drm_edid_connector_update() must have been called before this to update the
7012 * EDID property.
7013 *
7014 * Return: The number of modes added, or 0 if we couldn't find any.
7015 */
7016int drm_edid_connector_add_modes(struct drm_connector *connector)
7017{
7018	const struct drm_edid *drm_edid = NULL;
7019	int count;
7020
7021	if (connector->edid_blob_ptr)
7022		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
7023					  connector->edid_blob_ptr->length);
7024
7025	count = _drm_edid_connector_add_modes(connector, drm_edid);
7026
7027	drm_edid_free(drm_edid);
7028
7029	return count;
7030}
7031EXPORT_SYMBOL(drm_edid_connector_add_modes);
7032
7033/**
7034 * drm_connector_update_edid_property - update the edid property of a connector
7035 * @connector: drm connector
7036 * @edid: new value of the edid property
7037 *
7038 * This function creates a new blob modeset object and assigns its id to the
7039 * connector's edid property.
7040 * Since we also parse tile information from EDID's displayID block, we also
7041 * set the connector's tile property here. See drm_connector_set_tile_property()
7042 * for more details.
7043 *
7044 * This function is deprecated. Use drm_edid_connector_update() instead.
7045 *
7046 * Returns:
7047 * Zero on success, negative errno on failure.
7048 */
7049int drm_connector_update_edid_property(struct drm_connector *connector,
7050				       const struct edid *edid)
7051{
7052	struct drm_edid drm_edid;
7053
7054	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
7055}
7056EXPORT_SYMBOL(drm_connector_update_edid_property);
7057
7058/**
7059 * drm_add_edid_modes - add modes from EDID data, if available
7060 * @connector: connector we're probing
7061 * @edid: EDID data
7062 *
7063 * Add the specified modes to the connector's mode list. Also fills out the
7064 * &drm_display_info structure and ELD in @connector with any information which
7065 * can be derived from the edid.
7066 *
7067 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
7068 *
7069 * Return: The number of modes added or 0 if we couldn't find any.
7070 */
7071int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
7072{
7073	struct drm_edid _drm_edid;
7074	const struct drm_edid *drm_edid;
7075
7076	if (edid && !drm_edid_is_valid(edid)) {
7077		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
7078			 connector->base.id, connector->name);
7079		edid = NULL;
7080	}
7081
7082	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
7083
7084	update_display_info(connector, drm_edid);
7085
7086	return _drm_edid_connector_add_modes(connector, drm_edid);
7087}
7088EXPORT_SYMBOL(drm_add_edid_modes);
7089
7090/**
7091 * drm_add_modes_noedid - add modes for the connectors without EDID
7092 * @connector: connector we're probing
7093 * @hdisplay: the horizontal display limit
7094 * @vdisplay: the vertical display limit
7095 *
7096 * Add the specified modes to the connector's mode list. Only when the
7097 * hdisplay/vdisplay is not beyond the given limit, it will be added.
7098 *
7099 * Return: The number of modes added or 0 if we couldn't find any.
7100 */
7101int drm_add_modes_noedid(struct drm_connector *connector,
7102			int hdisplay, int vdisplay)
7103{
7104	int i, count, num_modes = 0;
7105	struct drm_display_mode *mode;
7106	struct drm_device *dev = connector->dev;
7107
7108	count = ARRAY_SIZE(drm_dmt_modes);
7109	if (hdisplay < 0)
7110		hdisplay = 0;
7111	if (vdisplay < 0)
7112		vdisplay = 0;
7113
7114	for (i = 0; i < count; i++) {
7115		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
7116
7117		if (hdisplay && vdisplay) {
7118			/*
7119			 * Only when two are valid, they will be used to check
7120			 * whether the mode should be added to the mode list of
7121			 * the connector.
7122			 */
7123			if (ptr->hdisplay > hdisplay ||
7124					ptr->vdisplay > vdisplay)
7125				continue;
7126		}
7127		if (drm_mode_vrefresh(ptr) > 61)
7128			continue;
7129		mode = drm_mode_duplicate(dev, ptr);
7130		if (mode) {
7131			drm_mode_probed_add(connector, mode);
7132			num_modes++;
7133		}
7134	}
7135	return num_modes;
7136}
7137EXPORT_SYMBOL(drm_add_modes_noedid);
7138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7139static bool is_hdmi2_sink(const struct drm_connector *connector)
7140{
7141	/*
7142	 * FIXME: sil-sii8620 doesn't have a connector around when
7143	 * we need one, so we have to be prepared for a NULL connector.
7144	 */
7145	if (!connector)
7146		return true;
7147
7148	return connector->display_info.hdmi.scdc.supported ||
7149		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7150}
7151
7152static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7153			    const struct drm_display_mode *mode)
7154{
7155	bool has_hdmi_infoframe = connector ?
7156		connector->display_info.has_hdmi_infoframe : false;
7157
7158	if (!has_hdmi_infoframe)
7159		return 0;
7160
7161	/* No HDMI VIC when signalling 3D video format */
7162	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7163		return 0;
7164
7165	return drm_match_hdmi_mode(mode);
7166}
7167
7168static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7169			   const struct drm_display_mode *mode)
7170{
7171	/*
7172	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7173	 * we should send its VIC in vendor infoframes, else send the
7174	 * VIC in AVI infoframes. Lets check if this mode is present in
7175	 * HDMI 1.4b 4K modes
7176	 */
7177	if (drm_mode_hdmi_vic(connector, mode))
7178		return 0;
7179
7180	return drm_match_cea_mode(mode);
7181}
7182
7183/*
7184 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7185 * conform to HDMI 1.4.
7186 *
7187 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7188 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7189 *
7190 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7191 * version.
7192 */
7193static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7194{
7195	if (!is_hdmi2_sink(connector) && vic > 64 &&
7196	    !cta_vdb_has_vic(connector, vic))
7197		return 0;
7198
7199	return vic;
7200}
7201
7202/**
7203 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7204 *                                              data from a DRM display mode
7205 * @frame: HDMI AVI infoframe
7206 * @connector: the connector
7207 * @mode: DRM display mode
7208 *
7209 * Return: 0 on success or a negative error code on failure.
7210 */
7211int
7212drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7213					 const struct drm_connector *connector,
7214					 const struct drm_display_mode *mode)
7215{
7216	enum hdmi_picture_aspect picture_aspect;
7217	u8 vic, hdmi_vic;
7218
7219	if (!frame || !mode)
7220		return -EINVAL;
7221
7222	hdmi_avi_infoframe_init(frame);
7223
7224	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7225		frame->pixel_repeat = 1;
7226
7227	vic = drm_mode_cea_vic(connector, mode);
7228	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7229
7230	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7231
7232	/*
7233	 * As some drivers don't support atomic, we can't use connector state.
7234	 * So just initialize the frame with default values, just the same way
7235	 * as it's done with other properties here.
7236	 */
7237	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7238	frame->itc = 0;
7239
7240	/*
7241	 * Populate picture aspect ratio from either
7242	 * user input (if specified) or from the CEA/HDMI mode lists.
7243	 */
7244	picture_aspect = mode->picture_aspect_ratio;
7245	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7246		if (vic)
7247			picture_aspect = drm_get_cea_aspect_ratio(vic);
7248		else if (hdmi_vic)
7249			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7250	}
7251
7252	/*
7253	 * The infoframe can't convey anything but none, 4:3
7254	 * and 16:9, so if the user has asked for anything else
7255	 * we can only satisfy it by specifying the right VIC.
7256	 */
7257	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7258		if (vic) {
7259			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7260				return -EINVAL;
7261		} else if (hdmi_vic) {
7262			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7263				return -EINVAL;
7264		} else {
7265			return -EINVAL;
7266		}
7267
7268		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7269	}
7270
7271	frame->video_code = vic_for_avi_infoframe(connector, vic);
7272	frame->picture_aspect = picture_aspect;
7273	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7274	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7275
7276	return 0;
7277}
7278EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7279
7280/**
7281 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7282 *                                        quantization range information
7283 * @frame: HDMI AVI infoframe
7284 * @connector: the connector
7285 * @mode: DRM display mode
7286 * @rgb_quant_range: RGB quantization range (Q)
7287 */
7288void
7289drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7290				   const struct drm_connector *connector,
7291				   const struct drm_display_mode *mode,
7292				   enum hdmi_quantization_range rgb_quant_range)
7293{
7294	const struct drm_display_info *info = &connector->display_info;
7295
7296	/*
7297	 * CEA-861:
7298	 * "A Source shall not send a non-zero Q value that does not correspond
7299	 *  to the default RGB Quantization Range for the transmitted Picture
7300	 *  unless the Sink indicates support for the Q bit in a Video
7301	 *  Capabilities Data Block."
7302	 *
7303	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7304	 * default RGB quantization range for the mode, even when QS=0.
7305	 */
7306	if (info->rgb_quant_range_selectable ||
7307	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7308		frame->quantization_range = rgb_quant_range;
7309	else
7310		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7311
7312	/*
7313	 * CEA-861-F:
7314	 * "When transmitting any RGB colorimetry, the Source should set the
7315	 *  YQ-field to match the RGB Quantization Range being transmitted
7316	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7317	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7318	 *
7319	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7320	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7321	 * good way to tell which version of CEA-861 the sink supports, so
7322	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7323	 * on CEA-861-F.
7324	 */
7325	if (!is_hdmi2_sink(connector) ||
7326	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7327		frame->ycc_quantization_range =
7328			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7329	else
7330		frame->ycc_quantization_range =
7331			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7332}
7333EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7334
7335static enum hdmi_3d_structure
7336s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7337{
7338	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7339
7340	switch (layout) {
7341	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7342		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7343	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7344		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7345	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7346		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7347	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7348		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7349	case DRM_MODE_FLAG_3D_L_DEPTH:
7350		return HDMI_3D_STRUCTURE_L_DEPTH;
7351	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7352		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7353	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7354		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7355	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7356		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7357	default:
7358		return HDMI_3D_STRUCTURE_INVALID;
7359	}
7360}
7361
7362/**
7363 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7364 * data from a DRM display mode
7365 * @frame: HDMI vendor infoframe
7366 * @connector: the connector
7367 * @mode: DRM display mode
7368 *
7369 * Note that there's is a need to send HDMI vendor infoframes only when using a
7370 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7371 * function will return -EINVAL, error that can be safely ignored.
7372 *
7373 * Return: 0 on success or a negative error code on failure.
7374 */
7375int
7376drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7377					    const struct drm_connector *connector,
7378					    const struct drm_display_mode *mode)
7379{
7380	/*
7381	 * FIXME: sil-sii8620 doesn't have a connector around when
7382	 * we need one, so we have to be prepared for a NULL connector.
7383	 */
7384	bool has_hdmi_infoframe = connector ?
7385		connector->display_info.has_hdmi_infoframe : false;
7386	int err;
7387
7388	if (!frame || !mode)
7389		return -EINVAL;
7390
7391	if (!has_hdmi_infoframe)
7392		return -EINVAL;
7393
7394	err = hdmi_vendor_infoframe_init(frame);
7395	if (err < 0)
7396		return err;
7397
7398	/*
7399	 * Even if it's not absolutely necessary to send the infoframe
7400	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7401	 * know that the sink can handle it. This is based on a
7402	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7403	 * have trouble realizing that they should switch from 3D to 2D
7404	 * mode if the source simply stops sending the infoframe when
7405	 * it wants to switch from 3D to 2D.
7406	 */
7407	frame->vic = drm_mode_hdmi_vic(connector, mode);
7408	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7409
7410	return 0;
7411}
7412EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7413
7414static void drm_parse_tiled_block(struct drm_connector *connector,
7415				  const struct displayid_block *block)
7416{
7417	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7418	u16 w, h;
7419	u8 tile_v_loc, tile_h_loc;
7420	u8 num_v_tile, num_h_tile;
7421	struct drm_tile_group *tg;
7422
7423	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7424	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7425
7426	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7427	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7428	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7429	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7430
7431	connector->has_tile = true;
7432	if (tile->tile_cap & 0x80)
7433		connector->tile_is_single_monitor = true;
7434
7435	connector->num_h_tile = num_h_tile + 1;
7436	connector->num_v_tile = num_v_tile + 1;
7437	connector->tile_h_loc = tile_h_loc;
7438	connector->tile_v_loc = tile_v_loc;
7439	connector->tile_h_size = w + 1;
7440	connector->tile_v_size = h + 1;
7441
7442	drm_dbg_kms(connector->dev,
7443		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7444		    connector->base.id, connector->name,
7445		    tile->tile_cap,
7446		    connector->tile_h_size, connector->tile_v_size,
7447		    connector->num_h_tile, connector->num_v_tile,
7448		    connector->tile_h_loc, connector->tile_v_loc,
7449		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7450
7451	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7452	if (!tg)
7453		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7454	if (!tg)
7455		return;
7456
7457	if (connector->tile_group != tg) {
7458		/* if we haven't got a pointer,
7459		   take the reference, drop ref to old tile group */
7460		if (connector->tile_group)
7461			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7462		connector->tile_group = tg;
7463	} else {
7464		/* if same tile group, then release the ref we just took. */
7465		drm_mode_put_tile_group(connector->dev, tg);
7466	}
7467}
7468
7469static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7470				     const struct displayid_block *block)
7471{
7472	return (displayid_version(iter) < DISPLAY_ID_STRUCTURE_VER_20 &&
7473		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7474		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7475		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7476}
7477
7478static void _drm_update_tile_info(struct drm_connector *connector,
7479				  const struct drm_edid *drm_edid)
7480{
7481	const struct displayid_block *block;
7482	struct displayid_iter iter;
7483
7484	connector->has_tile = false;
7485
7486	displayid_iter_edid_begin(drm_edid, &iter);
7487	displayid_iter_for_each(block, &iter) {
7488		if (displayid_is_tiled_block(&iter, block))
7489			drm_parse_tiled_block(connector, block);
7490	}
7491	displayid_iter_end(&iter);
7492
7493	if (!connector->has_tile && connector->tile_group) {
7494		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7495		connector->tile_group = NULL;
7496	}
7497}
7498
7499/**
7500 * drm_edid_is_digital - is digital?
7501 * @drm_edid: The EDID
7502 *
7503 * Return true if input is digital.
7504 */
7505bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7506{
7507	return drm_edid && drm_edid->edid &&
7508		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7509}
7510EXPORT_SYMBOL(drm_edid_is_digital);
v6.8
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
 
  32#include <linux/cec.h>
  33#include <linux/hdmi.h>
  34#include <linux/i2c.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/pci.h>
 
  38#include <linux/slab.h>
  39#include <linux/vga_switcheroo.h>
  40
  41#include <drm/drm_displayid.h>
  42#include <drm/drm_drv.h>
  43#include <drm/drm_edid.h>
  44#include <drm/drm_eld.h>
  45#include <drm/drm_encoder.h>
  46#include <drm/drm_print.h>
  47
  48#include "drm_crtc_internal.h"
 
  49#include "drm_internal.h"
  50
  51static int oui(u8 first, u8 second, u8 third)
  52{
  53	return (first << 16) | (second << 8) | third;
  54}
  55
  56#define EDID_EST_TIMINGS 16
  57#define EDID_STD_TIMINGS 8
  58#define EDID_DETAILED_TIMINGS 4
  59
  60/*
  61 * EDID blocks out in the wild have a variety of bugs, try to collect
  62 * them here (note that userspace may work around broken monitors first,
  63 * but fixes should make their way here so that the kernel "just works"
  64 * on as many displays as possible).
  65 */
  66
  67/* First detailed mode wrong, use largest 60Hz mode */
  68#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  69/* Reported 135MHz pixel clock is too high, needs adjustment */
  70#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  71/* Prefer the largest mode at 75 Hz */
  72#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  73/* Detail timing is in cm not mm */
  74#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  75/* Detailed timing descriptors have bogus size values, so just take the
  76 * maximum size and use that.
  77 */
  78#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  79/* use +hsync +vsync for detailed mode */
  80#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  81/* Force reduced-blanking timings for detailed modes */
  82#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  83/* Force 8bpc */
  84#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  85/* Force 12bpc */
  86#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  87/* Force 6bpc */
  88#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  89/* Force 10bpc */
  90#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  91/* Non desktop display (i.e. HMD) */
  92#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  93/* Cap the DSC target bitrate to 15bpp */
  94#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  95
  96#define MICROSOFT_IEEE_OUI	0xca125c
  97
  98struct detailed_mode_closure {
  99	struct drm_connector *connector;
 100	const struct drm_edid *drm_edid;
 101	bool preferred;
 102	int modes;
 103};
 104
 
 
 
 
 
 105#define LEVEL_DMT	0
 106#define LEVEL_GTF	1
 107#define LEVEL_GTF2	2
 108#define LEVEL_CVT	3
 109
 110#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 111{ \
 112	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
 113					     product_id), \
 
 
 114	.quirks = _quirks \
 115}
 116
 117static const struct edid_quirk {
 118	u32 panel_id;
 119	u32 quirks;
 120} edid_quirk_list[] = {
 121	/* Acer AL1706 */
 122	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 123	/* Acer F51 */
 124	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 125
 126	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 127	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 128
 129	/* BenQ GW2765 */
 130	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
 131
 132	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 133	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 134
 135	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 136	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 137
 138	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 139	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 140
 141	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 142	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 143
 144	/* Belinea 10 15 55 */
 145	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 146	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 147
 148	/* Envision Peripherals, Inc. EN-7100e */
 149	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 150	/* Envision EN2028 */
 151	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 152
 153	/* Funai Electronics PM36B */
 154	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 155				       EDID_QUIRK_DETAILED_IN_CM),
 156
 157	/* LG 27GP950 */
 158	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 159
 160	/* LG 27GN950 */
 161	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 162
 163	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 164	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 165
 166	/* LG Philips LCD LP154W01-A5 */
 167	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 168	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 169
 170	/* Samsung SyncMaster 205BW.  Note: irony */
 171	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 172	/* Samsung SyncMaster 22[5-6]BW */
 173	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 174	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 175
 176	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 177	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 178
 179	/* ViewSonic VA2026w */
 180	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 181
 182	/* Medion MD 30217 PG */
 183	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 184
 185	/* Lenovo G50 */
 186	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 187
 188	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 189	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 190
 191	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 192	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 193
 194	/* Valve Index Headset */
 195	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 196	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 197	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 198	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 199	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 200	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 201	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 202	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 203	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 204	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 207	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 208	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 209	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 211	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 212
 213	/* HTC Vive and Vive Pro VR Headsets */
 214	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 216
 217	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 218	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 219	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 221	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 222
 223	/* Windows Mixed Reality Headsets */
 224	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 225	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 226	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 227	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 228	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 229	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 230
 231	/* Sony PlayStation VR Headset */
 232	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 233
 234	/* Sensics VR Headsets */
 235	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 236
 237	/* OSVR HDK and HDK2 VR Headsets */
 238	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 239	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
 240};
 241
 242/*
 243 * Autogenerated from the DMT spec.
 244 * This table is copied from xfree86/modes/xf86EdidModes.c.
 245 */
 246static const struct drm_display_mode drm_dmt_modes[] = {
 247	/* 0x01 - 640x350@85Hz */
 248	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 249		   736, 832, 0, 350, 382, 385, 445, 0,
 250		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 251	/* 0x02 - 640x400@85Hz */
 252	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 253		   736, 832, 0, 400, 401, 404, 445, 0,
 254		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 255	/* 0x03 - 720x400@85Hz */
 256	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 257		   828, 936, 0, 400, 401, 404, 446, 0,
 258		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 259	/* 0x04 - 640x480@60Hz */
 260	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 261		   752, 800, 0, 480, 490, 492, 525, 0,
 262		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 263	/* 0x05 - 640x480@72Hz */
 264	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 265		   704, 832, 0, 480, 489, 492, 520, 0,
 266		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 267	/* 0x06 - 640x480@75Hz */
 268	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 269		   720, 840, 0, 480, 481, 484, 500, 0,
 270		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 271	/* 0x07 - 640x480@85Hz */
 272	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 273		   752, 832, 0, 480, 481, 484, 509, 0,
 274		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 275	/* 0x08 - 800x600@56Hz */
 276	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 277		   896, 1024, 0, 600, 601, 603, 625, 0,
 278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 279	/* 0x09 - 800x600@60Hz */
 280	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 281		   968, 1056, 0, 600, 601, 605, 628, 0,
 282		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 283	/* 0x0a - 800x600@72Hz */
 284	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 285		   976, 1040, 0, 600, 637, 643, 666, 0,
 286		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 287	/* 0x0b - 800x600@75Hz */
 288	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 289		   896, 1056, 0, 600, 601, 604, 625, 0,
 290		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 291	/* 0x0c - 800x600@85Hz */
 292	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 293		   896, 1048, 0, 600, 601, 604, 631, 0,
 294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 295	/* 0x0d - 800x600@120Hz RB */
 296	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 297		   880, 960, 0, 600, 603, 607, 636, 0,
 298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 299	/* 0x0e - 848x480@60Hz */
 300	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 301		   976, 1088, 0, 480, 486, 494, 517, 0,
 302		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 303	/* 0x0f - 1024x768@43Hz, interlace */
 304	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 305		   1208, 1264, 0, 768, 768, 776, 817, 0,
 306		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 307		   DRM_MODE_FLAG_INTERLACE) },
 308	/* 0x10 - 1024x768@60Hz */
 309	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 310		   1184, 1344, 0, 768, 771, 777, 806, 0,
 311		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 312	/* 0x11 - 1024x768@70Hz */
 313	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 314		   1184, 1328, 0, 768, 771, 777, 806, 0,
 315		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 316	/* 0x12 - 1024x768@75Hz */
 317	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 318		   1136, 1312, 0, 768, 769, 772, 800, 0,
 319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 320	/* 0x13 - 1024x768@85Hz */
 321	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 322		   1168, 1376, 0, 768, 769, 772, 808, 0,
 323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 324	/* 0x14 - 1024x768@120Hz RB */
 325	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 326		   1104, 1184, 0, 768, 771, 775, 813, 0,
 327		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 328	/* 0x15 - 1152x864@75Hz */
 329	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 330		   1344, 1600, 0, 864, 865, 868, 900, 0,
 331		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 332	/* 0x55 - 1280x720@60Hz */
 333	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 334		   1430, 1650, 0, 720, 725, 730, 750, 0,
 335		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 336	/* 0x16 - 1280x768@60Hz RB */
 337	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 338		   1360, 1440, 0, 768, 771, 778, 790, 0,
 339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 340	/* 0x17 - 1280x768@60Hz */
 341	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 342		   1472, 1664, 0, 768, 771, 778, 798, 0,
 343		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 344	/* 0x18 - 1280x768@75Hz */
 345	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 346		   1488, 1696, 0, 768, 771, 778, 805, 0,
 347		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 348	/* 0x19 - 1280x768@85Hz */
 349	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 350		   1496, 1712, 0, 768, 771, 778, 809, 0,
 351		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 352	/* 0x1a - 1280x768@120Hz RB */
 353	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 354		   1360, 1440, 0, 768, 771, 778, 813, 0,
 355		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 356	/* 0x1b - 1280x800@60Hz RB */
 357	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 358		   1360, 1440, 0, 800, 803, 809, 823, 0,
 359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 360	/* 0x1c - 1280x800@60Hz */
 361	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 362		   1480, 1680, 0, 800, 803, 809, 831, 0,
 363		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 364	/* 0x1d - 1280x800@75Hz */
 365	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 366		   1488, 1696, 0, 800, 803, 809, 838, 0,
 367		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 368	/* 0x1e - 1280x800@85Hz */
 369	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 370		   1496, 1712, 0, 800, 803, 809, 843, 0,
 371		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 372	/* 0x1f - 1280x800@120Hz RB */
 373	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 374		   1360, 1440, 0, 800, 803, 809, 847, 0,
 375		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 376	/* 0x20 - 1280x960@60Hz */
 377	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 378		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 380	/* 0x21 - 1280x960@85Hz */
 381	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 382		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 384	/* 0x22 - 1280x960@120Hz RB */
 385	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 386		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 387		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 388	/* 0x23 - 1280x1024@60Hz */
 389	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 390		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 391		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 392	/* 0x24 - 1280x1024@75Hz */
 393	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 394		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 395		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 396	/* 0x25 - 1280x1024@85Hz */
 397	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 398		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 400	/* 0x26 - 1280x1024@120Hz RB */
 401	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 402		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 403		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 404	/* 0x27 - 1360x768@60Hz */
 405	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 406		   1536, 1792, 0, 768, 771, 777, 795, 0,
 407		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 408	/* 0x28 - 1360x768@120Hz RB */
 409	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 410		   1440, 1520, 0, 768, 771, 776, 813, 0,
 411		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 412	/* 0x51 - 1366x768@60Hz */
 413	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 414		   1579, 1792, 0, 768, 771, 774, 798, 0,
 415		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 416	/* 0x56 - 1366x768@60Hz */
 417	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 418		   1436, 1500, 0, 768, 769, 772, 800, 0,
 419		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 420	/* 0x29 - 1400x1050@60Hz RB */
 421	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 422		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 423		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 424	/* 0x2a - 1400x1050@60Hz */
 425	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 426		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 427		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 428	/* 0x2b - 1400x1050@75Hz */
 429	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 430		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 431		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 432	/* 0x2c - 1400x1050@85Hz */
 433	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 434		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 435		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 436	/* 0x2d - 1400x1050@120Hz RB */
 437	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 438		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 439		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 440	/* 0x2e - 1440x900@60Hz RB */
 441	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 442		   1520, 1600, 0, 900, 903, 909, 926, 0,
 443		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 444	/* 0x2f - 1440x900@60Hz */
 445	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 446		   1672, 1904, 0, 900, 903, 909, 934, 0,
 447		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 448	/* 0x30 - 1440x900@75Hz */
 449	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 450		   1688, 1936, 0, 900, 903, 909, 942, 0,
 451		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 452	/* 0x31 - 1440x900@85Hz */
 453	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 454		   1696, 1952, 0, 900, 903, 909, 948, 0,
 455		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 456	/* 0x32 - 1440x900@120Hz RB */
 457	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 458		   1520, 1600, 0, 900, 903, 909, 953, 0,
 459		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 460	/* 0x53 - 1600x900@60Hz */
 461	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 462		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 463		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 464	/* 0x33 - 1600x1200@60Hz */
 465	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 466		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 468	/* 0x34 - 1600x1200@65Hz */
 469	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 470		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 472	/* 0x35 - 1600x1200@70Hz */
 473	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 474		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 475		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 476	/* 0x36 - 1600x1200@75Hz */
 477	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 478		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 479		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 480	/* 0x37 - 1600x1200@85Hz */
 481	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 482		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 483		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 484	/* 0x38 - 1600x1200@120Hz RB */
 485	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 486		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 488	/* 0x39 - 1680x1050@60Hz RB */
 489	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 490		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 492	/* 0x3a - 1680x1050@60Hz */
 493	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 494		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 495		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 496	/* 0x3b - 1680x1050@75Hz */
 497	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 498		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 499		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 500	/* 0x3c - 1680x1050@85Hz */
 501	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 502		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 503		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 504	/* 0x3d - 1680x1050@120Hz RB */
 505	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 506		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 508	/* 0x3e - 1792x1344@60Hz */
 509	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 510		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 511		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 512	/* 0x3f - 1792x1344@75Hz */
 513	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 514		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 515		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 516	/* 0x40 - 1792x1344@120Hz RB */
 517	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 518		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 519		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 520	/* 0x41 - 1856x1392@60Hz */
 521	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 522		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 523		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 524	/* 0x42 - 1856x1392@75Hz */
 525	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 526		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 527		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 528	/* 0x43 - 1856x1392@120Hz RB */
 529	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 530		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 532	/* 0x52 - 1920x1080@60Hz */
 533	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 534		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 535		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 536	/* 0x44 - 1920x1200@60Hz RB */
 537	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 538		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 539		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 540	/* 0x45 - 1920x1200@60Hz */
 541	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 542		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 543		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 544	/* 0x46 - 1920x1200@75Hz */
 545	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 546		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 547		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 548	/* 0x47 - 1920x1200@85Hz */
 549	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 550		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 551		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 552	/* 0x48 - 1920x1200@120Hz RB */
 553	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 554		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 555		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 556	/* 0x49 - 1920x1440@60Hz */
 557	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 558		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 559		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 560	/* 0x4a - 1920x1440@75Hz */
 561	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 562		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 563		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 564	/* 0x4b - 1920x1440@120Hz RB */
 565	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 566		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 567		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 568	/* 0x54 - 2048x1152@60Hz */
 569	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 570		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 571		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 572	/* 0x4c - 2560x1600@60Hz RB */
 573	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 574		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 575		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 576	/* 0x4d - 2560x1600@60Hz */
 577	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 578		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 579		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 580	/* 0x4e - 2560x1600@75Hz */
 581	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 582		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 583		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 584	/* 0x4f - 2560x1600@85Hz */
 585	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 586		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 587		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 588	/* 0x50 - 2560x1600@120Hz RB */
 589	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 590		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 591		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 592	/* 0x57 - 4096x2160@60Hz RB */
 593	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 594		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 595		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 596	/* 0x58 - 4096x2160@59.94Hz RB */
 597	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 598		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 599		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 600};
 601
 602/*
 603 * These more or less come from the DMT spec.  The 720x400 modes are
 604 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 605 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 607 * mode.
 608 *
 609 * The DMT modes have been fact-checked; the rest are mild guesses.
 610 */
 611static const struct drm_display_mode edid_est_modes[] = {
 612	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 613		   968, 1056, 0, 600, 601, 605, 628, 0,
 614		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 615	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 616		   896, 1024, 0, 600, 601, 603,  625, 0,
 617		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 618	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 619		   720, 840, 0, 480, 481, 484, 500, 0,
 620		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 621	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 622		   704,  832, 0, 480, 489, 492, 520, 0,
 623		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 624	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 625		   768,  864, 0, 480, 483, 486, 525, 0,
 626		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 627	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 628		   752, 800, 0, 480, 490, 492, 525, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 630	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 631		   846, 900, 0, 400, 421, 423,  449, 0,
 632		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 633	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 634		   846,  900, 0, 400, 412, 414, 449, 0,
 635		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 636	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 637		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 638		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 639	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 640		   1136, 1312, 0,  768, 769, 772, 800, 0,
 641		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 642	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 643		   1184, 1328, 0,  768, 771, 777, 806, 0,
 644		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 645	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 646		   1184, 1344, 0,  768, 771, 777, 806, 0,
 647		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 648	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 649		   1208, 1264, 0, 768, 768, 776, 817, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 651	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 652		   928, 1152, 0, 624, 625, 628, 667, 0,
 653		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 654	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 655		   896, 1056, 0, 600, 601, 604,  625, 0,
 656		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 657	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 658		   976, 1040, 0, 600, 637, 643, 666, 0,
 659		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 660	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 661		   1344, 1600, 0,  864, 865, 868, 900, 0,
 662		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 663};
 664
 665struct minimode {
 666	short w;
 667	short h;
 668	short r;
 669	short rb;
 670};
 671
 672static const struct minimode est3_modes[] = {
 673	/* byte 6 */
 674	{ 640, 350, 85, 0 },
 675	{ 640, 400, 85, 0 },
 676	{ 720, 400, 85, 0 },
 677	{ 640, 480, 85, 0 },
 678	{ 848, 480, 60, 0 },
 679	{ 800, 600, 85, 0 },
 680	{ 1024, 768, 85, 0 },
 681	{ 1152, 864, 75, 0 },
 682	/* byte 7 */
 683	{ 1280, 768, 60, 1 },
 684	{ 1280, 768, 60, 0 },
 685	{ 1280, 768, 75, 0 },
 686	{ 1280, 768, 85, 0 },
 687	{ 1280, 960, 60, 0 },
 688	{ 1280, 960, 85, 0 },
 689	{ 1280, 1024, 60, 0 },
 690	{ 1280, 1024, 85, 0 },
 691	/* byte 8 */
 692	{ 1360, 768, 60, 0 },
 693	{ 1440, 900, 60, 1 },
 694	{ 1440, 900, 60, 0 },
 695	{ 1440, 900, 75, 0 },
 696	{ 1440, 900, 85, 0 },
 697	{ 1400, 1050, 60, 1 },
 698	{ 1400, 1050, 60, 0 },
 699	{ 1400, 1050, 75, 0 },
 700	/* byte 9 */
 701	{ 1400, 1050, 85, 0 },
 702	{ 1680, 1050, 60, 1 },
 703	{ 1680, 1050, 60, 0 },
 704	{ 1680, 1050, 75, 0 },
 705	{ 1680, 1050, 85, 0 },
 706	{ 1600, 1200, 60, 0 },
 707	{ 1600, 1200, 65, 0 },
 708	{ 1600, 1200, 70, 0 },
 709	/* byte 10 */
 710	{ 1600, 1200, 75, 0 },
 711	{ 1600, 1200, 85, 0 },
 712	{ 1792, 1344, 60, 0 },
 713	{ 1792, 1344, 75, 0 },
 714	{ 1856, 1392, 60, 0 },
 715	{ 1856, 1392, 75, 0 },
 716	{ 1920, 1200, 60, 1 },
 717	{ 1920, 1200, 60, 0 },
 718	/* byte 11 */
 719	{ 1920, 1200, 75, 0 },
 720	{ 1920, 1200, 85, 0 },
 721	{ 1920, 1440, 60, 0 },
 722	{ 1920, 1440, 75, 0 },
 723};
 724
 725static const struct minimode extra_modes[] = {
 726	{ 1024, 576,  60, 0 },
 727	{ 1366, 768,  60, 0 },
 728	{ 1600, 900,  60, 0 },
 729	{ 1680, 945,  60, 0 },
 730	{ 1920, 1080, 60, 0 },
 731	{ 2048, 1152, 60, 0 },
 732	{ 2048, 1536, 60, 0 },
 733};
 734
 735/*
 736 * From CEA/CTA-861 spec.
 737 *
 738 * Do not access directly, instead always use cea_mode_for_vic().
 739 */
 740static const struct drm_display_mode edid_cea_modes_1[] = {
 741	/* 1 - 640x480@60Hz 4:3 */
 742	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 743		   752, 800, 0, 480, 490, 492, 525, 0,
 744		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 745	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 746	/* 2 - 720x480@60Hz 4:3 */
 747	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 748		   798, 858, 0, 480, 489, 495, 525, 0,
 749		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 750	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 751	/* 3 - 720x480@60Hz 16:9 */
 752	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 753		   798, 858, 0, 480, 489, 495, 525, 0,
 754		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 755	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 756	/* 4 - 1280x720@60Hz 16:9 */
 757	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 758		   1430, 1650, 0, 720, 725, 730, 750, 0,
 759		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 760	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 761	/* 5 - 1920x1080i@60Hz 16:9 */
 762	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 763		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 764		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 765		   DRM_MODE_FLAG_INTERLACE),
 766	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 767	/* 6 - 720(1440)x480i@60Hz 4:3 */
 768	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 769		   801, 858, 0, 480, 488, 494, 525, 0,
 770		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 771		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 772	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 773	/* 7 - 720(1440)x480i@60Hz 16:9 */
 774	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 775		   801, 858, 0, 480, 488, 494, 525, 0,
 776		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 777		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 778	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 779	/* 8 - 720(1440)x240@60Hz 4:3 */
 780	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 781		   801, 858, 0, 240, 244, 247, 262, 0,
 782		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 783		   DRM_MODE_FLAG_DBLCLK),
 784	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 785	/* 9 - 720(1440)x240@60Hz 16:9 */
 786	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 787		   801, 858, 0, 240, 244, 247, 262, 0,
 788		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 789		   DRM_MODE_FLAG_DBLCLK),
 790	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 791	/* 10 - 2880x480i@60Hz 4:3 */
 792	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 793		   3204, 3432, 0, 480, 488, 494, 525, 0,
 794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 795		   DRM_MODE_FLAG_INTERLACE),
 796	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 797	/* 11 - 2880x480i@60Hz 16:9 */
 798	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 799		   3204, 3432, 0, 480, 488, 494, 525, 0,
 800		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 801		   DRM_MODE_FLAG_INTERLACE),
 802	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 803	/* 12 - 2880x240@60Hz 4:3 */
 804	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 805		   3204, 3432, 0, 240, 244, 247, 262, 0,
 806		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 807	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 808	/* 13 - 2880x240@60Hz 16:9 */
 809	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 810		   3204, 3432, 0, 240, 244, 247, 262, 0,
 811		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 812	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 813	/* 14 - 1440x480@60Hz 4:3 */
 814	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 815		   1596, 1716, 0, 480, 489, 495, 525, 0,
 816		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 817	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 818	/* 15 - 1440x480@60Hz 16:9 */
 819	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 820		   1596, 1716, 0, 480, 489, 495, 525, 0,
 821		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 822	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 823	/* 16 - 1920x1080@60Hz 16:9 */
 824	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 825		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 826		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 827	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 828	/* 17 - 720x576@50Hz 4:3 */
 829	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 830		   796, 864, 0, 576, 581, 586, 625, 0,
 831		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 832	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 833	/* 18 - 720x576@50Hz 16:9 */
 834	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 835		   796, 864, 0, 576, 581, 586, 625, 0,
 836		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 837	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 838	/* 19 - 1280x720@50Hz 16:9 */
 839	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 840		   1760, 1980, 0, 720, 725, 730, 750, 0,
 841		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 842	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 843	/* 20 - 1920x1080i@50Hz 16:9 */
 844	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 845		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 846		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 847		   DRM_MODE_FLAG_INTERLACE),
 848	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 849	/* 21 - 720(1440)x576i@50Hz 4:3 */
 850	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 851		   795, 864, 0, 576, 580, 586, 625, 0,
 852		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 853		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 854	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 855	/* 22 - 720(1440)x576i@50Hz 16:9 */
 856	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 857		   795, 864, 0, 576, 580, 586, 625, 0,
 858		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 859		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 860	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 861	/* 23 - 720(1440)x288@50Hz 4:3 */
 862	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 863		   795, 864, 0, 288, 290, 293, 312, 0,
 864		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 865		   DRM_MODE_FLAG_DBLCLK),
 866	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 867	/* 24 - 720(1440)x288@50Hz 16:9 */
 868	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 869		   795, 864, 0, 288, 290, 293, 312, 0,
 870		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 871		   DRM_MODE_FLAG_DBLCLK),
 872	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 873	/* 25 - 2880x576i@50Hz 4:3 */
 874	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 875		   3180, 3456, 0, 576, 580, 586, 625, 0,
 876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 877		   DRM_MODE_FLAG_INTERLACE),
 878	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 879	/* 26 - 2880x576i@50Hz 16:9 */
 880	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 881		   3180, 3456, 0, 576, 580, 586, 625, 0,
 882		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 883		   DRM_MODE_FLAG_INTERLACE),
 884	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 885	/* 27 - 2880x288@50Hz 4:3 */
 886	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 887		   3180, 3456, 0, 288, 290, 293, 312, 0,
 888		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 889	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 890	/* 28 - 2880x288@50Hz 16:9 */
 891	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 892		   3180, 3456, 0, 288, 290, 293, 312, 0,
 893		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 894	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 895	/* 29 - 1440x576@50Hz 4:3 */
 896	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 897		   1592, 1728, 0, 576, 581, 586, 625, 0,
 898		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 899	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 900	/* 30 - 1440x576@50Hz 16:9 */
 901	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 902		   1592, 1728, 0, 576, 581, 586, 625, 0,
 903		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 904	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 905	/* 31 - 1920x1080@50Hz 16:9 */
 906	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 907		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 908		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 909	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 910	/* 32 - 1920x1080@24Hz 16:9 */
 911	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 912		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 913		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 914	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 915	/* 33 - 1920x1080@25Hz 16:9 */
 916	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 917		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 918		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 919	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 920	/* 34 - 1920x1080@30Hz 16:9 */
 921	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 922		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 923		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 924	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 925	/* 35 - 2880x480@60Hz 4:3 */
 926	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 927		   3192, 3432, 0, 480, 489, 495, 525, 0,
 928		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 929	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 930	/* 36 - 2880x480@60Hz 16:9 */
 931	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 932		   3192, 3432, 0, 480, 489, 495, 525, 0,
 933		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 934	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 935	/* 37 - 2880x576@50Hz 4:3 */
 936	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 937		   3184, 3456, 0, 576, 581, 586, 625, 0,
 938		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 939	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 940	/* 38 - 2880x576@50Hz 16:9 */
 941	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 942		   3184, 3456, 0, 576, 581, 586, 625, 0,
 943		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 944	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 945	/* 39 - 1920x1080i@50Hz 16:9 */
 946	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 947		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 948		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 949		   DRM_MODE_FLAG_INTERLACE),
 950	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 951	/* 40 - 1920x1080i@100Hz 16:9 */
 952	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 953		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 954		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 955		   DRM_MODE_FLAG_INTERLACE),
 956	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 957	/* 41 - 1280x720@100Hz 16:9 */
 958	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 959		   1760, 1980, 0, 720, 725, 730, 750, 0,
 960		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 961	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 962	/* 42 - 720x576@100Hz 4:3 */
 963	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 964		   796, 864, 0, 576, 581, 586, 625, 0,
 965		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 966	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 967	/* 43 - 720x576@100Hz 16:9 */
 968	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 969		   796, 864, 0, 576, 581, 586, 625, 0,
 970		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 971	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 972	/* 44 - 720(1440)x576i@100Hz 4:3 */
 973	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 974		   795, 864, 0, 576, 580, 586, 625, 0,
 975		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 976		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 977	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 978	/* 45 - 720(1440)x576i@100Hz 16:9 */
 979	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 980		   795, 864, 0, 576, 580, 586, 625, 0,
 981		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 982		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 983	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 984	/* 46 - 1920x1080i@120Hz 16:9 */
 985	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 986		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 987		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 988		   DRM_MODE_FLAG_INTERLACE),
 989	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 990	/* 47 - 1280x720@120Hz 16:9 */
 991	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 992		   1430, 1650, 0, 720, 725, 730, 750, 0,
 993		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 994	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 995	/* 48 - 720x480@120Hz 4:3 */
 996	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 997		   798, 858, 0, 480, 489, 495, 525, 0,
 998		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 999	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000	/* 49 - 720x480@120Hz 16:9 */
1001	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002		   798, 858, 0, 480, 489, 495, 525, 0,
1003		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005	/* 50 - 720(1440)x480i@120Hz 4:3 */
1006	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007		   801, 858, 0, 480, 488, 494, 525, 0,
1008		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011	/* 51 - 720(1440)x480i@120Hz 16:9 */
1012	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013		   801, 858, 0, 480, 488, 494, 525, 0,
1014		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017	/* 52 - 720x576@200Hz 4:3 */
1018	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019		   796, 864, 0, 576, 581, 586, 625, 0,
1020		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022	/* 53 - 720x576@200Hz 16:9 */
1023	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024		   796, 864, 0, 576, 581, 586, 625, 0,
1025		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027	/* 54 - 720(1440)x576i@200Hz 4:3 */
1028	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029		   795, 864, 0, 576, 580, 586, 625, 0,
1030		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033	/* 55 - 720(1440)x576i@200Hz 16:9 */
1034	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035		   795, 864, 0, 576, 580, 586, 625, 0,
1036		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039	/* 56 - 720x480@240Hz 4:3 */
1040	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041		   798, 858, 0, 480, 489, 495, 525, 0,
1042		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044	/* 57 - 720x480@240Hz 16:9 */
1045	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046		   798, 858, 0, 480, 489, 495, 525, 0,
1047		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049	/* 58 - 720(1440)x480i@240Hz 4:3 */
1050	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051		   801, 858, 0, 480, 488, 494, 525, 0,
1052		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055	/* 59 - 720(1440)x480i@240Hz 16:9 */
1056	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057		   801, 858, 0, 480, 488, 494, 525, 0,
1058		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061	/* 60 - 1280x720@24Hz 16:9 */
1062	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063		   3080, 3300, 0, 720, 725, 730, 750, 0,
1064		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066	/* 61 - 1280x720@25Hz 16:9 */
1067	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068		   3740, 3960, 0, 720, 725, 730, 750, 0,
1069		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071	/* 62 - 1280x720@30Hz 16:9 */
1072	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073		   3080, 3300, 0, 720, 725, 730, 750, 0,
1074		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076	/* 63 - 1920x1080@120Hz 16:9 */
1077	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081	/* 64 - 1920x1080@100Hz 16:9 */
1082	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086	/* 65 - 1280x720@24Hz 64:27 */
1087	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088		   3080, 3300, 0, 720, 725, 730, 750, 0,
1089		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091	/* 66 - 1280x720@25Hz 64:27 */
1092	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093		   3740, 3960, 0, 720, 725, 730, 750, 0,
1094		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096	/* 67 - 1280x720@30Hz 64:27 */
1097	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098		   3080, 3300, 0, 720, 725, 730, 750, 0,
1099		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101	/* 68 - 1280x720@50Hz 64:27 */
1102	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103		   1760, 1980, 0, 720, 725, 730, 750, 0,
1104		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106	/* 69 - 1280x720@60Hz 64:27 */
1107	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108		   1430, 1650, 0, 720, 725, 730, 750, 0,
1109		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111	/* 70 - 1280x720@100Hz 64:27 */
1112	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113		   1760, 1980, 0, 720, 725, 730, 750, 0,
1114		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116	/* 71 - 1280x720@120Hz 64:27 */
1117	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118		   1430, 1650, 0, 720, 725, 730, 750, 0,
1119		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121	/* 72 - 1920x1080@24Hz 64:27 */
1122	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126	/* 73 - 1920x1080@25Hz 64:27 */
1127	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131	/* 74 - 1920x1080@30Hz 64:27 */
1132	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136	/* 75 - 1920x1080@50Hz 64:27 */
1137	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141	/* 76 - 1920x1080@60Hz 64:27 */
1142	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146	/* 77 - 1920x1080@100Hz 64:27 */
1147	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151	/* 78 - 1920x1080@120Hz 64:27 */
1152	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156	/* 79 - 1680x720@24Hz 64:27 */
1157	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158		   3080, 3300, 0, 720, 725, 730, 750, 0,
1159		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161	/* 80 - 1680x720@25Hz 64:27 */
1162	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163		   2948, 3168, 0, 720, 725, 730, 750, 0,
1164		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166	/* 81 - 1680x720@30Hz 64:27 */
1167	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168		   2420, 2640, 0, 720, 725, 730, 750, 0,
1169		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171	/* 82 - 1680x720@50Hz 64:27 */
1172	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173		   1980, 2200, 0, 720, 725, 730, 750, 0,
1174		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176	/* 83 - 1680x720@60Hz 64:27 */
1177	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178		   1980, 2200, 0, 720, 725, 730, 750, 0,
1179		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181	/* 84 - 1680x720@100Hz 64:27 */
1182	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183		   1780, 2000, 0, 720, 725, 730, 825, 0,
1184		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186	/* 85 - 1680x720@120Hz 64:27 */
1187	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188		   1780, 2000, 0, 720, 725, 730, 825, 0,
1189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191	/* 86 - 2560x1080@24Hz 64:27 */
1192	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196	/* 87 - 2560x1080@25Hz 64:27 */
1197	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201	/* 88 - 2560x1080@30Hz 64:27 */
1202	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206	/* 89 - 2560x1080@50Hz 64:27 */
1207	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211	/* 90 - 2560x1080@60Hz 64:27 */
1212	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216	/* 91 - 2560x1080@100Hz 64:27 */
1217	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221	/* 92 - 2560x1080@120Hz 64:27 */
1222	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226	/* 93 - 3840x2160@24Hz 16:9 */
1227	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231	/* 94 - 3840x2160@25Hz 16:9 */
1232	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236	/* 95 - 3840x2160@30Hz 16:9 */
1237	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241	/* 96 - 3840x2160@50Hz 16:9 */
1242	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246	/* 97 - 3840x2160@60Hz 16:9 */
1247	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251	/* 98 - 4096x2160@24Hz 256:135 */
1252	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256	/* 99 - 4096x2160@25Hz 256:135 */
1257	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261	/* 100 - 4096x2160@30Hz 256:135 */
1262	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266	/* 101 - 4096x2160@50Hz 256:135 */
1267	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271	/* 102 - 4096x2160@60Hz 256:135 */
1272	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276	/* 103 - 3840x2160@24Hz 64:27 */
1277	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281	/* 104 - 3840x2160@25Hz 64:27 */
1282	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286	/* 105 - 3840x2160@30Hz 64:27 */
1287	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291	/* 106 - 3840x2160@50Hz 64:27 */
1292	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296	/* 107 - 3840x2160@60Hz 64:27 */
1297	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301	/* 108 - 1280x720@48Hz 16:9 */
1302	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303		   2280, 2500, 0, 720, 725, 730, 750, 0,
1304		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306	/* 109 - 1280x720@48Hz 64:27 */
1307	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308		   2280, 2500, 0, 720, 725, 730, 750, 0,
1309		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311	/* 110 - 1680x720@48Hz 64:27 */
1312	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313		   2530, 2750, 0, 720, 725, 730, 750, 0,
1314		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316	/* 111 - 1920x1080@48Hz 16:9 */
1317	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321	/* 112 - 1920x1080@48Hz 64:27 */
1322	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326	/* 113 - 2560x1080@48Hz 64:27 */
1327	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331	/* 114 - 3840x2160@48Hz 16:9 */
1332	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336	/* 115 - 4096x2160@48Hz 256:135 */
1337	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341	/* 116 - 3840x2160@48Hz 64:27 */
1342	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346	/* 117 - 3840x2160@100Hz 16:9 */
1347	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351	/* 118 - 3840x2160@120Hz 16:9 */
1352	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356	/* 119 - 3840x2160@100Hz 64:27 */
1357	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361	/* 120 - 3840x2160@120Hz 64:27 */
1362	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366	/* 121 - 5120x2160@24Hz 64:27 */
1367	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371	/* 122 - 5120x2160@25Hz 64:27 */
1372	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376	/* 123 - 5120x2160@30Hz 64:27 */
1377	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381	/* 124 - 5120x2160@48Hz 64:27 */
1382	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386	/* 125 - 5120x2160@50Hz 64:27 */
1387	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391	/* 126 - 5120x2160@60Hz 64:27 */
1392	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396	/* 127 - 5120x2160@100Hz 64:27 */
1397	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401};
1402
1403/*
1404 * From CEA/CTA-861 spec.
1405 *
1406 * Do not access directly, instead always use cea_mode_for_vic().
1407 */
1408static const struct drm_display_mode edid_cea_modes_193[] = {
1409	/* 193 - 5120x2160@120Hz 64:27 */
1410	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414	/* 194 - 7680x4320@24Hz 16:9 */
1415	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419	/* 195 - 7680x4320@25Hz 16:9 */
1420	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424	/* 196 - 7680x4320@30Hz 16:9 */
1425	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429	/* 197 - 7680x4320@48Hz 16:9 */
1430	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434	/* 198 - 7680x4320@50Hz 16:9 */
1435	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439	/* 199 - 7680x4320@60Hz 16:9 */
1440	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444	/* 200 - 7680x4320@100Hz 16:9 */
1445	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449	/* 201 - 7680x4320@120Hz 16:9 */
1450	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454	/* 202 - 7680x4320@24Hz 64:27 */
1455	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459	/* 203 - 7680x4320@25Hz 64:27 */
1460	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464	/* 204 - 7680x4320@30Hz 64:27 */
1465	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469	/* 205 - 7680x4320@48Hz 64:27 */
1470	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474	/* 206 - 7680x4320@50Hz 64:27 */
1475	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479	/* 207 - 7680x4320@60Hz 64:27 */
1480	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484	/* 208 - 7680x4320@100Hz 64:27 */
1485	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489	/* 209 - 7680x4320@120Hz 64:27 */
1490	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494	/* 210 - 10240x4320@24Hz 64:27 */
1495	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499	/* 211 - 10240x4320@25Hz 64:27 */
1500	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504	/* 212 - 10240x4320@30Hz 64:27 */
1505	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509	/* 213 - 10240x4320@48Hz 64:27 */
1510	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514	/* 214 - 10240x4320@50Hz 64:27 */
1515	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519	/* 215 - 10240x4320@60Hz 64:27 */
1520	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524	/* 216 - 10240x4320@100Hz 64:27 */
1525	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529	/* 217 - 10240x4320@120Hz 64:27 */
1530	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534	/* 218 - 4096x2160@100Hz 256:135 */
1535	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539	/* 219 - 4096x2160@120Hz 256:135 */
1540	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544};
1545
1546/*
1547 * HDMI 1.4 4k modes. Index using the VIC.
1548 */
1549static const struct drm_display_mode edid_4k_modes[] = {
1550	/* 0 - dummy, VICs start at 1 */
1551	{ },
1552	/* 1 - 3840x2160@30Hz */
1553	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554		   3840, 4016, 4104, 4400, 0,
1555		   2160, 2168, 2178, 2250, 0,
1556		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558	/* 2 - 3840x2160@25Hz */
1559	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560		   3840, 4896, 4984, 5280, 0,
1561		   2160, 2168, 2178, 2250, 0,
1562		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564	/* 3 - 3840x2160@24Hz */
1565	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566		   3840, 5116, 5204, 5500, 0,
1567		   2160, 2168, 2178, 2250, 0,
1568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570	/* 4 - 4096x2160@24Hz (SMPTE) */
1571	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572		   4096, 5116, 5204, 5500, 0,
1573		   2160, 2168, 2178, 2250, 0,
1574		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576};
1577
1578/*** DDC fetch and block validation ***/
1579
1580/*
1581 * The opaque EDID type, internal to drm_edid.c.
1582 */
1583struct drm_edid {
1584	/* Size allocated for edid */
1585	size_t size;
1586	const struct edid *edid;
1587};
1588
1589static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590
1591static int edid_hfeeodb_block_count(const struct edid *edid)
1592{
1593	int eeodb = edid_hfeeodb_extension_block_count(edid);
1594
1595	return eeodb ? eeodb + 1 : 0;
1596}
1597
1598static int edid_extension_block_count(const struct edid *edid)
1599{
1600	return edid->extensions;
1601}
1602
1603static int edid_block_count(const struct edid *edid)
1604{
1605	return edid_extension_block_count(edid) + 1;
1606}
1607
1608static int edid_size_by_blocks(int num_blocks)
1609{
1610	return num_blocks * EDID_LENGTH;
1611}
1612
1613static int edid_size(const struct edid *edid)
1614{
1615	return edid_size_by_blocks(edid_block_count(edid));
1616}
1617
1618static const void *edid_block_data(const struct edid *edid, int index)
1619{
1620	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621
1622	return edid + index;
1623}
1624
1625static const void *edid_extension_block_data(const struct edid *edid, int index)
1626{
1627	return edid_block_data(edid, index + 1);
1628}
1629
1630/* EDID block count indicated in EDID, may exceed allocated size */
1631static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632{
1633	int num_blocks;
1634
1635	/* Starting point */
1636	num_blocks = edid_block_count(drm_edid->edid);
1637
1638	/* HF-EEODB override */
1639	if (drm_edid->size >= edid_size_by_blocks(2)) {
1640		int eeodb;
1641
1642		/*
1643		 * Note: HF-EEODB may specify a smaller extension count than the
1644		 * regular one. Unlike in buffer allocation, here we can use it.
1645		 */
1646		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647		if (eeodb)
1648			num_blocks = eeodb;
1649	}
1650
1651	return num_blocks;
1652}
1653
1654/* EDID block count, limited by allocated size */
1655static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656{
1657	/* Limit by allocated size */
1658	return min(__drm_edid_block_count(drm_edid),
1659		   (int)drm_edid->size / EDID_LENGTH);
1660}
1661
1662/* EDID extension block count, limited by allocated size */
1663static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664{
1665	return drm_edid_block_count(drm_edid) - 1;
1666}
1667
1668static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669{
1670	return edid_block_data(drm_edid->edid, index);
1671}
1672
1673static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674						 int index)
1675{
1676	return edid_extension_block_data(drm_edid->edid, index);
1677}
1678
1679/*
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1682 */
1683static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684						   const struct edid *edid)
1685{
1686	if (!edid)
1687		return NULL;
1688
1689	memset(drm_edid, 0, sizeof(*drm_edid));
1690
1691	drm_edid->edid = edid;
1692	drm_edid->size = edid_size(edid);
1693
1694	return drm_edid;
1695}
1696
1697/*
1698 * EDID base and extension block iterator.
1699 *
1700 * struct drm_edid_iter iter;
1701 * const u8 *block;
1702 *
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 *         // do stuff with block
1706 * }
1707 * drm_edid_iter_end(&iter);
1708 */
1709struct drm_edid_iter {
1710	const struct drm_edid *drm_edid;
1711
1712	/* Current block index. */
1713	int index;
1714};
1715
1716static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717				struct drm_edid_iter *iter)
1718{
1719	memset(iter, 0, sizeof(*iter));
1720
1721	iter->drm_edid = drm_edid;
1722}
1723
1724static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725{
1726	const void *block = NULL;
1727
1728	if (!iter->drm_edid)
1729		return NULL;
1730
1731	if (iter->index < drm_edid_block_count(iter->drm_edid))
1732		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733
1734	return block;
1735}
1736
1737#define drm_edid_iter_for_each(__block, __iter)			\
1738	while (((__block) = __drm_edid_iter_next(__iter)))
1739
1740static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741{
1742	memset(iter, 0, sizeof(*iter));
1743}
1744
1745static const u8 edid_header[] = {
1746	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747};
1748
1749static void edid_header_fix(void *edid)
1750{
1751	memcpy(edid, edid_header, sizeof(edid_header));
1752}
1753
1754/**
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1757 *
1758 * Sanity check the header of the base EDID block.
1759 *
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761 */
1762int drm_edid_header_is_valid(const void *_edid)
1763{
1764	const struct edid *edid = _edid;
1765	int i, score = 0;
1766
1767	for (i = 0; i < sizeof(edid_header); i++) {
1768		if (edid->header[i] == edid_header[i])
1769			score++;
1770	}
1771
1772	return score;
1773}
1774EXPORT_SYMBOL(drm_edid_header_is_valid);
1775
1776static int edid_fixup __read_mostly = 6;
1777module_param_named(edid_fixup, edid_fixup, int, 0400);
1778MODULE_PARM_DESC(edid_fixup,
1779		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780
1781static int edid_block_compute_checksum(const void *_block)
1782{
1783	const u8 *block = _block;
1784	int i;
1785	u8 csum = 0, crc = 0;
1786
1787	for (i = 0; i < EDID_LENGTH - 1; i++)
1788		csum += block[i];
1789
1790	crc = 0x100 - csum;
1791
1792	return crc;
1793}
1794
1795static int edid_block_get_checksum(const void *_block)
1796{
1797	const struct edid *block = _block;
1798
1799	return block->checksum;
1800}
1801
1802static int edid_block_tag(const void *_block)
1803{
1804	const u8 *block = _block;
1805
1806	return block[0];
1807}
1808
1809static bool edid_block_is_zero(const void *edid)
1810{
1811	return !memchr_inv(edid, 0, EDID_LENGTH);
1812}
1813
1814/**
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1819 * edid had changed.
1820 */
1821bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822{
1823	int edid1_len, edid2_len;
1824	bool edid1_present = edid1 != NULL;
1825	bool edid2_present = edid2 != NULL;
1826
1827	if (edid1_present != edid2_present)
1828		return false;
1829
1830	if (edid1) {
1831		edid1_len = edid_size(edid1);
1832		edid2_len = edid_size(edid2);
1833
1834		if (edid1_len != edid2_len)
1835			return false;
1836
1837		if (memcmp(edid1, edid2, edid1_len))
1838			return false;
1839	}
1840
1841	return true;
1842}
1843EXPORT_SYMBOL(drm_edid_are_equal);
1844
1845enum edid_block_status {
1846	EDID_BLOCK_OK = 0,
1847	EDID_BLOCK_READ_FAIL,
1848	EDID_BLOCK_NULL,
1849	EDID_BLOCK_ZERO,
1850	EDID_BLOCK_HEADER_CORRUPT,
1851	EDID_BLOCK_HEADER_REPAIR,
1852	EDID_BLOCK_HEADER_FIXED,
1853	EDID_BLOCK_CHECKSUM,
1854	EDID_BLOCK_VERSION,
1855};
1856
1857static enum edid_block_status edid_block_check(const void *_block,
1858					       bool is_base_block)
1859{
1860	const struct edid *block = _block;
1861
1862	if (!block)
1863		return EDID_BLOCK_NULL;
1864
1865	if (is_base_block) {
1866		int score = drm_edid_header_is_valid(block);
1867
1868		if (score < clamp(edid_fixup, 0, 8)) {
1869			if (edid_block_is_zero(block))
1870				return EDID_BLOCK_ZERO;
1871			else
1872				return EDID_BLOCK_HEADER_CORRUPT;
1873		}
1874
1875		if (score < 8)
1876			return EDID_BLOCK_HEADER_REPAIR;
1877	}
1878
1879	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880		if (edid_block_is_zero(block))
1881			return EDID_BLOCK_ZERO;
1882		else
1883			return EDID_BLOCK_CHECKSUM;
1884	}
1885
1886	if (is_base_block) {
1887		if (block->version != 1)
1888			return EDID_BLOCK_VERSION;
1889	}
1890
1891	return EDID_BLOCK_OK;
1892}
1893
1894static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895{
1896	return status == EDID_BLOCK_OK ||
1897		status == EDID_BLOCK_HEADER_FIXED ||
1898		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899}
1900
1901static bool edid_block_valid(const void *block, bool base)
1902{
1903	return edid_block_status_valid(edid_block_check(block, base),
1904				       edid_block_tag(block));
1905}
1906
1907static void edid_block_status_print(enum edid_block_status status,
1908				    const struct edid *block,
1909				    int block_num)
1910{
1911	switch (status) {
1912	case EDID_BLOCK_OK:
1913		break;
1914	case EDID_BLOCK_READ_FAIL:
1915		pr_debug("EDID block %d read failed\n", block_num);
1916		break;
1917	case EDID_BLOCK_NULL:
1918		pr_debug("EDID block %d pointer is NULL\n", block_num);
1919		break;
1920	case EDID_BLOCK_ZERO:
1921		pr_notice("EDID block %d is all zeroes\n", block_num);
1922		break;
1923	case EDID_BLOCK_HEADER_CORRUPT:
1924		pr_notice("EDID has corrupt header\n");
1925		break;
1926	case EDID_BLOCK_HEADER_REPAIR:
1927		pr_debug("EDID corrupt header needs repair\n");
1928		break;
1929	case EDID_BLOCK_HEADER_FIXED:
1930		pr_debug("EDID corrupt header fixed\n");
1931		break;
1932	case EDID_BLOCK_CHECKSUM:
1933		if (edid_block_status_valid(status, edid_block_tag(block))) {
1934			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935				 block_num, edid_block_tag(block),
1936				 edid_block_compute_checksum(block));
1937		} else {
1938			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939				  block_num, edid_block_tag(block),
1940				  edid_block_compute_checksum(block));
1941		}
1942		break;
1943	case EDID_BLOCK_VERSION:
1944		pr_notice("EDID has major version %d, instead of 1\n",
1945			  block->version);
1946		break;
1947	default:
1948		WARN(1, "EDID block %d unknown edid block status code %d\n",
1949		     block_num, status);
1950		break;
1951	}
1952}
1953
1954static void edid_block_dump(const char *level, const void *block, int block_num)
1955{
1956	enum edid_block_status status;
1957	char prefix[20];
1958
1959	status = edid_block_check(block, block_num == 0);
1960	if (status == EDID_BLOCK_ZERO)
1961		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1964	else
1965		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966
1967	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968		       block, EDID_LENGTH, false);
1969}
1970
1971/**
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1977 *
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1979 * the console.
1980 *
1981 * Return: True if the block is valid, false otherwise.
1982 */
1983bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984			  bool *edid_corrupt)
1985{
1986	struct edid *block = (struct edid *)_block;
1987	enum edid_block_status status;
1988	bool is_base_block = block_num == 0;
1989	bool valid;
1990
1991	if (WARN_ON(!block))
1992		return false;
1993
1994	status = edid_block_check(block, is_base_block);
1995	if (status == EDID_BLOCK_HEADER_REPAIR) {
1996		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997		edid_header_fix(block);
1998
1999		/* Retry with fixed header, update status if that worked. */
2000		status = edid_block_check(block, is_base_block);
2001		if (status == EDID_BLOCK_OK)
2002			status = EDID_BLOCK_HEADER_FIXED;
2003	}
2004
2005	if (edid_corrupt) {
2006		/*
2007		 * Unknown major version isn't corrupt but we can't use it. Only
2008		 * the base block can reset edid_corrupt to false.
2009		 */
2010		if (is_base_block &&
2011		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012			*edid_corrupt = false;
2013		else if (status != EDID_BLOCK_OK)
2014			*edid_corrupt = true;
2015	}
2016
2017	edid_block_status_print(status, block, block_num);
2018
2019	/* Determine whether we can use this block with this status. */
2020	valid = edid_block_status_valid(status, edid_block_tag(block));
2021
2022	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023		pr_notice("Raw EDID:\n");
2024		edid_block_dump(KERN_NOTICE, block, block_num);
2025	}
2026
2027	return valid;
2028}
2029EXPORT_SYMBOL(drm_edid_block_valid);
2030
2031/**
2032 * drm_edid_is_valid - sanity check EDID data
2033 * @edid: EDID data
2034 *
2035 * Sanity-check an entire EDID record (including extensions)
2036 *
2037 * Return: True if the EDID data is valid, false otherwise.
2038 */
2039bool drm_edid_is_valid(struct edid *edid)
2040{
2041	int i;
2042
2043	if (!edid)
2044		return false;
2045
2046	for (i = 0; i < edid_block_count(edid); i++) {
2047		void *block = (void *)edid_block_data(edid, i);
2048
2049		if (!drm_edid_block_valid(block, i, true, NULL))
2050			return false;
2051	}
2052
2053	return true;
2054}
2055EXPORT_SYMBOL(drm_edid_is_valid);
2056
2057/**
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2060 *
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2063 *
2064 * Return: True if the EDID data is valid, false otherwise.
2065 */
2066bool drm_edid_valid(const struct drm_edid *drm_edid)
2067{
2068	int i;
2069
2070	if (!drm_edid)
2071		return false;
2072
2073	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074		return false;
2075
2076	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077		const void *block = drm_edid_block_data(drm_edid, i);
2078
2079		if (!edid_block_valid(block, i == 0))
2080			return false;
2081	}
2082
2083	return true;
2084}
2085EXPORT_SYMBOL(drm_edid_valid);
2086
2087static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088					       size_t *alloc_size)
2089{
2090	struct edid *new;
2091	int i, valid_blocks = 0;
2092
2093	/*
2094	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095	 * back to regular extension count here. We don't want to start
2096	 * modifying the HF-EEODB extension too.
2097	 */
2098	for (i = 0; i < edid_block_count(edid); i++) {
2099		const void *src_block = edid_block_data(edid, i);
2100
2101		if (edid_block_valid(src_block, i == 0)) {
2102			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103
2104			memmove(dst_block, src_block, EDID_LENGTH);
2105			valid_blocks++;
2106		}
2107	}
2108
2109	/* We already trusted the base block to be valid here... */
2110	if (WARN_ON(!valid_blocks)) {
2111		kfree(edid);
2112		return NULL;
2113	}
2114
2115	edid->extensions = valid_blocks - 1;
2116	edid->checksum = edid_block_compute_checksum(edid);
2117
2118	*alloc_size = edid_size_by_blocks(valid_blocks);
2119
2120	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121	if (!new)
2122		kfree(edid);
2123
2124	return new;
2125}
2126
2127#define DDC_SEGMENT_ADDR 0x30
2128/**
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2134 *
2135 * Try to fetch EDID information by calling I2C driver functions.
2136 *
2137 * Return: 0 on success or -1 on failure.
2138 */
2139static int
2140drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141{
2142	struct i2c_adapter *adapter = data;
2143	unsigned char start = block * EDID_LENGTH;
2144	unsigned char segment = block >> 1;
2145	unsigned char xfers = segment ? 3 : 2;
2146	int ret, retries = 5;
2147
2148	/*
2149	 * The core I2C driver will automatically retry the transfer if the
2150	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151	 * are susceptible to errors under a heavily loaded machine and
2152	 * generate spurious NAKs and timeouts. Retrying the transfer
2153	 * of the individual block a few times seems to overcome this.
2154	 */
2155	do {
2156		struct i2c_msg msgs[] = {
2157			{
2158				.addr	= DDC_SEGMENT_ADDR,
2159				.flags	= 0,
2160				.len	= 1,
2161				.buf	= &segment,
2162			}, {
2163				.addr	= DDC_ADDR,
2164				.flags	= 0,
2165				.len	= 1,
2166				.buf	= &start,
2167			}, {
2168				.addr	= DDC_ADDR,
2169				.flags	= I2C_M_RD,
2170				.len	= len,
2171				.buf	= buf,
2172			}
2173		};
2174
2175		/*
2176		 * Avoid sending the segment addr to not upset non-compliant
2177		 * DDC monitors.
2178		 */
2179		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180
2181		if (ret == -ENXIO) {
2182			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183					adapter->name);
2184			break;
2185		}
2186	} while (ret != xfers && --retries);
2187
2188	return ret == xfers ? 0 : -1;
2189}
2190
2191static void connector_bad_edid(struct drm_connector *connector,
2192			       const struct edid *edid, int num_blocks)
2193{
2194	int i;
2195	u8 last_block;
2196
2197	/*
2198	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200	 * of 0x7e in the EDID of the _index_ of the last block in the
2201	 * combined chunk of memory.
2202	 */
2203	last_block = edid->extensions;
2204
2205	/* Calculate real checksum for the last edid extension block data */
2206	if (last_block < num_blocks)
2207		connector->real_edid_checksum =
2208			edid_block_compute_checksum(edid + last_block);
2209
2210	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211		return;
2212
2213	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214		    connector->base.id, connector->name);
2215	for (i = 0; i < num_blocks; i++)
2216		edid_block_dump(KERN_DEBUG, edid + i, i);
2217}
2218
2219/* Get override or firmware EDID */
2220static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221{
2222	const struct drm_edid *override = NULL;
2223
2224	mutex_lock(&connector->edid_override_mutex);
2225
2226	if (connector->edid_override)
2227		override = drm_edid_dup(connector->edid_override);
2228
2229	mutex_unlock(&connector->edid_override_mutex);
2230
2231	if (!override)
2232		override = drm_edid_load_firmware(connector);
2233
2234	return IS_ERR(override) ? NULL : override;
2235}
2236
2237/* For debugfs edid_override implementation */
2238int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239{
2240	const struct drm_edid *drm_edid;
2241
2242	mutex_lock(&connector->edid_override_mutex);
2243
2244	drm_edid = connector->edid_override;
2245	if (drm_edid)
2246		seq_write(m, drm_edid->edid, drm_edid->size);
2247
2248	mutex_unlock(&connector->edid_override_mutex);
2249
2250	return 0;
2251}
2252
2253/* For debugfs edid_override implementation */
2254int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255			  size_t size)
2256{
2257	const struct drm_edid *drm_edid;
2258
2259	drm_edid = drm_edid_alloc(edid, size);
2260	if (!drm_edid_valid(drm_edid)) {
2261		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262			    connector->base.id, connector->name);
2263		drm_edid_free(drm_edid);
2264		return -EINVAL;
2265	}
2266
2267	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268		    connector->base.id, connector->name);
2269
2270	mutex_lock(&connector->edid_override_mutex);
2271
2272	drm_edid_free(connector->edid_override);
2273	connector->edid_override = drm_edid;
2274
2275	mutex_unlock(&connector->edid_override_mutex);
2276
2277	return 0;
2278}
2279
2280/* For debugfs edid_override implementation */
2281int drm_edid_override_reset(struct drm_connector *connector)
2282{
2283	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284		    connector->base.id, connector->name);
2285
2286	mutex_lock(&connector->edid_override_mutex);
2287
2288	drm_edid_free(connector->edid_override);
2289	connector->edid_override = NULL;
2290
2291	mutex_unlock(&connector->edid_override_mutex);
2292
2293	return 0;
2294}
2295
2296/**
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2299 *
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2303 * skipped.
2304 *
2305 * Return: The number of modes added or 0 if we couldn't find any.
2306 */
2307int drm_edid_override_connector_update(struct drm_connector *connector)
2308{
2309	const struct drm_edid *override;
2310	int num_modes = 0;
2311
2312	override = drm_edid_override_get(connector);
2313	if (override) {
2314		if (drm_edid_connector_update(connector, override) == 0)
2315			num_modes = drm_edid_connector_add_modes(connector);
2316
2317		drm_edid_free(override);
2318
2319		drm_dbg_kms(connector->dev,
2320			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321			    connector->base.id, connector->name, num_modes);
2322	}
2323
2324	return num_modes;
2325}
2326EXPORT_SYMBOL(drm_edid_override_connector_update);
2327
2328typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329
2330static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331					      read_block_fn read_block,
2332					      void *context)
2333{
2334	enum edid_block_status status;
2335	bool is_base_block = block_num == 0;
2336	int try;
2337
2338	for (try = 0; try < 4; try++) {
2339		if (read_block(context, block, block_num, EDID_LENGTH))
2340			return EDID_BLOCK_READ_FAIL;
2341
2342		status = edid_block_check(block, is_base_block);
2343		if (status == EDID_BLOCK_HEADER_REPAIR) {
2344			edid_header_fix(block);
2345
2346			/* Retry with fixed header, update status if that worked. */
2347			status = edid_block_check(block, is_base_block);
2348			if (status == EDID_BLOCK_OK)
2349				status = EDID_BLOCK_HEADER_FIXED;
2350		}
2351
2352		if (edid_block_status_valid(status, edid_block_tag(block)))
2353			break;
2354
2355		/* Fail early for unrepairable base block all zeros. */
2356		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357			break;
2358	}
2359
2360	return status;
2361}
2362
2363static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364				     read_block_fn read_block, void *context,
2365				     size_t *size)
2366{
2367	enum edid_block_status status;
2368	int i, num_blocks, invalid_blocks = 0;
2369	const struct drm_edid *override;
2370	struct edid *edid, *new;
2371	size_t alloc_size = EDID_LENGTH;
2372
2373	override = drm_edid_override_get(connector);
2374	if (override) {
2375		alloc_size = override->size;
2376		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377		drm_edid_free(override);
2378		if (!edid)
2379			return NULL;
2380		goto ok;
2381	}
2382
2383	edid = kmalloc(alloc_size, GFP_KERNEL);
2384	if (!edid)
2385		return NULL;
2386
2387	status = edid_block_read(edid, 0, read_block, context);
2388
2389	edid_block_status_print(status, edid, 0);
2390
2391	if (status == EDID_BLOCK_READ_FAIL)
2392		goto fail;
2393
2394	/* FIXME: Clarify what a corrupt EDID actually means. */
2395	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396		connector->edid_corrupt = false;
2397	else
2398		connector->edid_corrupt = true;
2399
2400	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401		if (status == EDID_BLOCK_ZERO)
2402			connector->null_edid_counter++;
2403
2404		connector_bad_edid(connector, edid, 1);
2405		goto fail;
2406	}
2407
2408	if (!edid_extension_block_count(edid))
2409		goto ok;
2410
2411	alloc_size = edid_size(edid);
2412	new = krealloc(edid, alloc_size, GFP_KERNEL);
2413	if (!new)
2414		goto fail;
2415	edid = new;
2416
2417	num_blocks = edid_block_count(edid);
2418	for (i = 1; i < num_blocks; i++) {
2419		void *block = (void *)edid_block_data(edid, i);
2420
2421		status = edid_block_read(block, i, read_block, context);
2422
2423		edid_block_status_print(status, block, i);
2424
2425		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426			if (status == EDID_BLOCK_READ_FAIL)
2427				goto fail;
2428			invalid_blocks++;
2429		} else if (i == 1) {
2430			/*
2431			 * If the first EDID extension is a CTA extension, and
2432			 * the first Data Block is HF-EEODB, override the
2433			 * extension block count.
2434			 *
2435			 * Note: HF-EEODB could specify a smaller extension
2436			 * count too, but we can't risk allocating a smaller
2437			 * amount.
2438			 */
2439			int eeodb = edid_hfeeodb_block_count(edid);
2440
2441			if (eeodb > num_blocks) {
2442				num_blocks = eeodb;
2443				alloc_size = edid_size_by_blocks(num_blocks);
2444				new = krealloc(edid, alloc_size, GFP_KERNEL);
2445				if (!new)
2446					goto fail;
2447				edid = new;
2448			}
2449		}
2450	}
2451
2452	if (invalid_blocks) {
2453		connector_bad_edid(connector, edid, num_blocks);
2454
2455		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456	}
2457
2458ok:
2459	if (size)
2460		*size = alloc_size;
2461
2462	return edid;
2463
2464fail:
2465	kfree(edid);
2466	return NULL;
2467}
2468
2469/**
2470 * drm_do_get_edid - get EDID data using a custom EDID block read function
2471 * @connector: connector we're probing
2472 * @read_block: EDID block read function
2473 * @context: private data passed to the block read function
2474 *
2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476 * exposes a different interface to read EDID blocks this function can be used
2477 * to get EDID data using a custom block read function.
2478 *
2479 * As in the general case the DDC bus is accessible by the kernel at the I2C
2480 * level, drivers must make all reasonable efforts to expose it as an I2C
2481 * adapter and use drm_get_edid() instead of abusing this function.
2482 *
2483 * The EDID may be overridden using debugfs override_edid or firmware EDID
2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485 * order. Having either of them bypasses actual EDID reads.
2486 *
2487 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488 */
2489struct edid *drm_do_get_edid(struct drm_connector *connector,
2490			     read_block_fn read_block,
2491			     void *context)
2492{
2493	return _drm_do_get_edid(connector, read_block, context, NULL);
2494}
2495EXPORT_SYMBOL_GPL(drm_do_get_edid);
2496
2497/**
2498 * drm_edid_raw - Get a pointer to the raw EDID data.
2499 * @drm_edid: drm_edid container
2500 *
2501 * Get a pointer to the raw EDID data.
2502 *
2503 * This is for transition only. Avoid using this like the plague.
2504 *
2505 * Return: Pointer to raw EDID data.
2506 */
2507const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508{
2509	if (!drm_edid || !drm_edid->size)
2510		return NULL;
2511
2512	/*
2513	 * Do not return pointers where relying on EDID extension count would
2514	 * lead to buffer overflow.
2515	 */
2516	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517		return NULL;
2518
2519	return drm_edid->edid;
2520}
2521EXPORT_SYMBOL(drm_edid_raw);
2522
2523/* Allocate struct drm_edid container *without* duplicating the edid data */
2524static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525{
2526	struct drm_edid *drm_edid;
2527
2528	if (!edid || !size || size < EDID_LENGTH)
2529		return NULL;
2530
2531	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532	if (drm_edid) {
2533		drm_edid->edid = edid;
2534		drm_edid->size = size;
2535	}
2536
2537	return drm_edid;
2538}
2539
2540/**
2541 * drm_edid_alloc - Allocate a new drm_edid container
2542 * @edid: Pointer to raw EDID data
2543 * @size: Size of memory allocated for EDID
2544 *
2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546 * the actual size that has been allocated for the data. There is no validation
2547 * of the raw EDID data against the size, but at least the EDID base block must
2548 * fit in the buffer.
2549 *
2550 * The returned pointer must be freed using drm_edid_free().
2551 *
2552 * Return: drm_edid container, or NULL on errors
2553 */
2554const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555{
2556	const struct drm_edid *drm_edid;
2557
2558	if (!edid || !size || size < EDID_LENGTH)
2559		return NULL;
2560
2561	edid = kmemdup(edid, size, GFP_KERNEL);
2562	if (!edid)
2563		return NULL;
2564
2565	drm_edid = _drm_edid_alloc(edid, size);
2566	if (!drm_edid)
2567		kfree(edid);
2568
2569	return drm_edid;
2570}
2571EXPORT_SYMBOL(drm_edid_alloc);
2572
2573/**
2574 * drm_edid_dup - Duplicate a drm_edid container
2575 * @drm_edid: EDID to duplicate
2576 *
2577 * The returned pointer must be freed using drm_edid_free().
2578 *
2579 * Returns: drm_edid container copy, or NULL on errors
2580 */
2581const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582{
2583	if (!drm_edid)
2584		return NULL;
2585
2586	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587}
2588EXPORT_SYMBOL(drm_edid_dup);
2589
2590/**
2591 * drm_edid_free - Free the drm_edid container
2592 * @drm_edid: EDID to free
2593 */
2594void drm_edid_free(const struct drm_edid *drm_edid)
2595{
2596	if (!drm_edid)
2597		return;
2598
2599	kfree(drm_edid->edid);
2600	kfree(drm_edid);
2601}
2602EXPORT_SYMBOL(drm_edid_free);
2603
2604/**
2605 * drm_probe_ddc() - probe DDC presence
2606 * @adapter: I2C adapter to probe
2607 *
2608 * Return: True on success, false on failure.
2609 */
2610bool
2611drm_probe_ddc(struct i2c_adapter *adapter)
2612{
2613	unsigned char out;
2614
2615	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616}
2617EXPORT_SYMBOL(drm_probe_ddc);
2618
2619/**
2620 * drm_get_edid - get EDID data, if available
2621 * @connector: connector we're probing
2622 * @adapter: I2C adapter to use for DDC
2623 *
2624 * Poke the given I2C channel to grab EDID data if possible.  If found,
2625 * attach it to the connector.
2626 *
2627 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628 */
2629struct edid *drm_get_edid(struct drm_connector *connector,
2630			  struct i2c_adapter *adapter)
2631{
2632	struct edid *edid;
2633
2634	if (connector->force == DRM_FORCE_OFF)
2635		return NULL;
2636
2637	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638		return NULL;
2639
2640	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641	drm_connector_update_edid_property(connector, edid);
2642	return edid;
2643}
2644EXPORT_SYMBOL(drm_get_edid);
2645
2646/**
2647 * drm_edid_read_custom - Read EDID data using given EDID block read function
2648 * @connector: Connector to use
2649 * @read_block: EDID block read function
2650 * @context: Private data passed to the block read function
2651 *
2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653 * exposes a different interface to read EDID blocks this function can be used
2654 * to get EDID data using a custom block read function.
2655 *
2656 * As in the general case the DDC bus is accessible by the kernel at the I2C
2657 * level, drivers must make all reasonable efforts to expose it as an I2C
2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659 * this function.
2660 *
2661 * The EDID may be overridden using debugfs override_edid or firmware EDID
2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663 * order. Having either of them bypasses actual EDID reads.
2664 *
2665 * The returned pointer must be freed using drm_edid_free().
2666 *
2667 * Return: Pointer to EDID, or NULL if probe/read failed.
2668 */
2669const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670					    read_block_fn read_block,
2671					    void *context)
2672{
2673	const struct drm_edid *drm_edid;
2674	struct edid *edid;
2675	size_t size = 0;
2676
2677	edid = _drm_do_get_edid(connector, read_block, context, &size);
2678	if (!edid)
2679		return NULL;
2680
2681	/* Sanity check for now */
2682	drm_WARN_ON(connector->dev, !size);
2683
2684	drm_edid = _drm_edid_alloc(edid, size);
2685	if (!drm_edid)
2686		kfree(edid);
2687
2688	return drm_edid;
2689}
2690EXPORT_SYMBOL(drm_edid_read_custom);
2691
2692/**
2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694 * @connector: Connector to use
2695 * @adapter: I2C adapter to use for DDC
2696 *
2697 * Read EDID using the given I2C adapter.
2698 *
2699 * The EDID may be overridden using debugfs override_edid or firmware EDID
2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701 * order. Having either of them bypasses actual EDID reads.
2702 *
2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704 * using drm_edid_read() instead of this function.
2705 *
2706 * The returned pointer must be freed using drm_edid_free().
2707 *
2708 * Return: Pointer to EDID, or NULL if probe/read failed.
2709 */
2710const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711					 struct i2c_adapter *adapter)
2712{
2713	const struct drm_edid *drm_edid;
2714
2715	if (connector->force == DRM_FORCE_OFF)
2716		return NULL;
2717
2718	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719		return NULL;
2720
2721	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722
2723	/* Note: Do *not* call connector updates here. */
2724
2725	return drm_edid;
2726}
2727EXPORT_SYMBOL(drm_edid_read_ddc);
2728
2729/**
2730 * drm_edid_read - Read EDID data using connector's I2C adapter
2731 * @connector: Connector to use
2732 *
2733 * Read EDID using the connector's I2C adapter.
2734 *
2735 * The EDID may be overridden using debugfs override_edid or firmware EDID
2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737 * order. Having either of them bypasses actual EDID reads.
2738 *
2739 * The returned pointer must be freed using drm_edid_free().
2740 *
2741 * Return: Pointer to EDID, or NULL if probe/read failed.
2742 */
2743const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744{
2745	if (drm_WARN_ON(connector->dev, !connector->ddc))
2746		return NULL;
2747
2748	return drm_edid_read_ddc(connector, connector->ddc);
2749}
2750EXPORT_SYMBOL(drm_edid_read);
2751
2752static u32 edid_extract_panel_id(const struct edid *edid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2754	/*
2755	 * We represent the ID as a 32-bit number so it can easily be compared
2756	 * with "==".
2757	 *
2758	 * NOTE that we deal with endianness differently for the top half
2759	 * of this ID than for the bottom half. The bottom half (the product
2760	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762	 * gets stored as big endian because that makes
2763	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764	 * to write (it's easier to extract the ASCII). It doesn't really
2765	 * matter, though, as long as the number here is unique.
2766	 */
2767	return (u32)edid->mfg_id[0] << 24   |
2768	       (u32)edid->mfg_id[1] << 16   |
2769	       (u32)EDID_PRODUCT_ID(edid);
2770}
 
2771
2772/**
2773 * drm_edid_get_panel_id - Get a panel's ID through DDC
2774 * @adapter: I2C adapter to use for DDC
2775 *
2776 * This function reads the first block of the EDID of a panel and (assuming
2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779 * supposed to be different for each different modem of panel.
2780 *
2781 * This function is intended to be used during early probing on devices where
2782 * more than one panel might be present. Because of its intended use it must
2783 * assume that the EDID of the panel is correct, at least as far as the ID
2784 * is concerned (in other words, we don't process any overrides here).
 
 
2785 *
2786 * NOTE: it's expected that this function and drm_do_get_edid() will both
2787 * be read the EDID, but there is no caching between them. Since we're only
2788 * reading the first block, hopefully this extra overhead won't be too big.
2789 *
2790 * Return: A 32-bit ID that should be different for each make/model of panel.
2791 *         See the functions drm_edid_encode_panel_id() and
2792 *         drm_edid_decode_panel_id() for some details on the structure of this
2793 *         ID.
 
2794 */
2795
2796u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797{
2798	enum edid_block_status status;
2799	void *base_block;
2800	u32 panel_id = 0;
2801
2802	/*
2803	 * There are no manufacturer IDs of 0, so if there is a problem reading
2804	 * the EDID then we'll just return 0.
2805	 */
2806
2807	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808	if (!base_block)
2809		return 0;
2810
2811	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812
2813	edid_block_status_print(status, base_block, 0);
2814
2815	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816		panel_id = edid_extract_panel_id(base_block);
2817	else
2818		edid_block_dump(KERN_NOTICE, base_block, 0);
 
 
 
2819
2820	kfree(base_block);
2821
2822	return panel_id;
2823}
2824EXPORT_SYMBOL(drm_edid_get_panel_id);
2825
2826/**
2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828 * @connector: connector we're probing
2829 * @adapter: I2C adapter to use for DDC
2830 *
2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833 * switch DDC to the GPU which is retrieving EDID.
2834 *
2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836 */
2837struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838				     struct i2c_adapter *adapter)
2839{
2840	struct drm_device *dev = connector->dev;
2841	struct pci_dev *pdev = to_pci_dev(dev->dev);
2842	struct edid *edid;
2843
2844	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845		return NULL;
2846
2847	vga_switcheroo_lock_ddc(pdev);
2848	edid = drm_get_edid(connector, adapter);
2849	vga_switcheroo_unlock_ddc(pdev);
2850
2851	return edid;
2852}
2853EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854
2855/**
2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857 * @connector: connector we're probing
2858 * @adapter: I2C adapter to use for DDC
2859 *
2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862 * temporarily switch DDC to the GPU which is retrieving EDID.
2863 *
2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865 */
2866const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867						struct i2c_adapter *adapter)
2868{
2869	struct drm_device *dev = connector->dev;
2870	struct pci_dev *pdev = to_pci_dev(dev->dev);
2871	const struct drm_edid *drm_edid;
2872
2873	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874		return NULL;
2875
2876	vga_switcheroo_lock_ddc(pdev);
2877	drm_edid = drm_edid_read_ddc(connector, adapter);
2878	vga_switcheroo_unlock_ddc(pdev);
2879
2880	return drm_edid;
2881}
2882EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883
2884/**
2885 * drm_edid_duplicate - duplicate an EDID and the extensions
2886 * @edid: EDID to duplicate
2887 *
2888 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889 */
2890struct edid *drm_edid_duplicate(const struct edid *edid)
2891{
2892	if (!edid)
2893		return NULL;
2894
2895	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896}
2897EXPORT_SYMBOL(drm_edid_duplicate);
2898
2899/*** EDID parsing ***/
2900
2901/**
2902 * edid_get_quirks - return quirk flags for a given EDID
2903 * @drm_edid: EDID to process
2904 *
2905 * This tells subsequent routines what fixes they need to apply.
 
 
2906 */
2907static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908{
2909	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910	const struct edid_quirk *quirk;
2911	int i;
2912
2913	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914		quirk = &edid_quirk_list[i];
2915		if (quirk->panel_id == panel_id)
2916			return quirk->quirks;
2917	}
2918
2919	return 0;
2920}
2921
2922#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924
2925/*
2926 * Walk the mode list for connector, clearing the preferred status on existing
2927 * modes and setting it anew for the right mode ala quirks.
2928 */
2929static void edid_fixup_preferred(struct drm_connector *connector)
2930{
2931	const struct drm_display_info *info = &connector->display_info;
2932	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933	int target_refresh = 0;
2934	int cur_vrefresh, preferred_vrefresh;
2935
2936	if (list_empty(&connector->probed_modes))
2937		return;
2938
2939	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940		target_refresh = 60;
2941	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942		target_refresh = 75;
2943
2944	preferred_mode = list_first_entry(&connector->probed_modes,
2945					  struct drm_display_mode, head);
2946
2947	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949
2950		if (cur_mode == preferred_mode)
2951			continue;
2952
2953		/* Largest mode is preferred */
2954		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955			preferred_mode = cur_mode;
2956
2957		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959		/* At a given size, try to get closest to target refresh */
2960		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963			preferred_mode = cur_mode;
2964		}
2965	}
2966
2967	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968}
2969
2970static bool
2971mode_is_rb(const struct drm_display_mode *mode)
2972{
2973	return (mode->htotal - mode->hdisplay == 160) &&
2974	       (mode->hsync_end - mode->hdisplay == 80) &&
2975	       (mode->hsync_end - mode->hsync_start == 32) &&
2976	       (mode->vsync_start - mode->vdisplay == 3);
2977}
2978
2979/*
2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981 * @dev: Device to duplicate against
2982 * @hsize: Mode width
2983 * @vsize: Mode height
2984 * @fresh: Mode refresh rate
2985 * @rb: Mode reduced-blanking-ness
2986 *
2987 * Walk the DMT mode list looking for a match for the given parameters.
2988 *
2989 * Return: A newly allocated copy of the mode, or NULL if not found.
2990 */
2991struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992					   int hsize, int vsize, int fresh,
2993					   bool rb)
2994{
2995	int i;
2996
2997	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999
3000		if (hsize != ptr->hdisplay)
3001			continue;
3002		if (vsize != ptr->vdisplay)
3003			continue;
3004		if (fresh != drm_mode_vrefresh(ptr))
3005			continue;
3006		if (rb != mode_is_rb(ptr))
3007			continue;
3008
3009		return drm_mode_duplicate(dev, ptr);
3010	}
3011
3012	return NULL;
3013}
3014EXPORT_SYMBOL(drm_mode_find_dmt);
3015
3016static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017{
3018	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021
3022	return descriptor->pixel_clock == 0 &&
3023		descriptor->data.other_data.pad1 == 0 &&
3024		descriptor->data.other_data.type == type;
3025}
3026
3027static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028{
3029	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030
3031	return descriptor->pixel_clock != 0;
3032}
3033
3034typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035
3036static void
3037cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038{
3039	int i, n;
3040	u8 d = ext[0x02];
3041	const u8 *det_base = ext + d;
3042
3043	if (d < 4 || d > 127)
3044		return;
3045
3046	n = (127 - d) / 18;
3047	for (i = 0; i < n; i++)
3048		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049}
3050
3051static void
3052vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053{
3054	unsigned int i, n = min((int)ext[0x02], 6);
3055	const u8 *det_base = ext + 5;
3056
3057	if (ext[0x01] != 1)
3058		return; /* unknown version */
3059
3060	for (i = 0; i < n; i++)
3061		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062}
3063
3064static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065					detailed_cb *cb, void *closure)
3066{
3067	struct drm_edid_iter edid_iter;
3068	const u8 *ext;
3069	int i;
3070
3071	if (!drm_edid)
3072		return;
3073
3074	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075		cb(&drm_edid->edid->detailed_timings[i], closure);
3076
3077	drm_edid_iter_begin(drm_edid, &edid_iter);
3078	drm_edid_iter_for_each(ext, &edid_iter) {
3079		switch (*ext) {
3080		case CEA_EXT:
3081			cea_for_each_detailed_block(ext, cb, closure);
3082			break;
3083		case VTB_EXT:
3084			vtb_for_each_detailed_block(ext, cb, closure);
3085			break;
3086		default:
3087			break;
3088		}
3089	}
3090	drm_edid_iter_end(&edid_iter);
3091}
3092
3093static void
3094is_rb(const struct detailed_timing *descriptor, void *data)
3095{
3096	bool *res = data;
3097
3098	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099		return;
3100
3101	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103
3104	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106		*res = true;
3107}
3108
3109/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3110static bool
3111drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112{
3113	if (drm_edid->edid->revision >= 4) {
3114		bool ret = false;
3115
3116		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117		return ret;
3118	}
3119
3120	return drm_edid_is_digital(drm_edid);
3121}
3122
3123static void
3124find_gtf2(const struct detailed_timing *descriptor, void *data)
3125{
3126	const struct detailed_timing **res = data;
3127
3128	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129		return;
3130
3131	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132
3133	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134		*res = descriptor;
3135}
3136
3137/* Secondary GTF curve kicks in above some break frequency */
3138static int
3139drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140{
3141	const struct detailed_timing *descriptor = NULL;
3142
3143	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144
3145	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146
3147	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148}
3149
3150static int
3151drm_gtf2_2c(const struct drm_edid *drm_edid)
3152{
3153	const struct detailed_timing *descriptor = NULL;
3154
3155	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156
3157	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158
3159	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3160}
3161
3162static int
3163drm_gtf2_m(const struct drm_edid *drm_edid)
3164{
3165	const struct detailed_timing *descriptor = NULL;
3166
3167	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168
3169	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170
3171	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172}
3173
3174static int
3175drm_gtf2_k(const struct drm_edid *drm_edid)
3176{
3177	const struct detailed_timing *descriptor = NULL;
3178
3179	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180
3181	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182
3183	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184}
3185
3186static int
3187drm_gtf2_2j(const struct drm_edid *drm_edid)
3188{
3189	const struct detailed_timing *descriptor = NULL;
3190
3191	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192
3193	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194
3195	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196}
3197
3198static void
3199get_timing_level(const struct detailed_timing *descriptor, void *data)
3200{
3201	int *res = data;
3202
3203	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204		return;
3205
3206	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207
3208	switch (descriptor->data.other_data.data.range.flags) {
3209	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210		*res = LEVEL_GTF;
3211		break;
3212	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213		*res = LEVEL_GTF2;
3214		break;
3215	case DRM_EDID_CVT_SUPPORT_FLAG:
3216		*res = LEVEL_CVT;
3217		break;
3218	default:
3219		break;
3220	}
3221}
3222
3223/* Get standard timing level (CVT/GTF/DMT). */
3224static int standard_timing_level(const struct drm_edid *drm_edid)
3225{
3226	const struct edid *edid = drm_edid->edid;
3227
3228	if (edid->revision >= 4) {
3229		/*
3230		 * If the range descriptor doesn't
3231		 * indicate otherwise default to CVT
3232		 */
3233		int ret = LEVEL_CVT;
3234
3235		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236
3237		return ret;
3238	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239		return LEVEL_GTF2;
3240	} else if (edid->revision >= 2) {
3241		return LEVEL_GTF;
3242	} else {
3243		return LEVEL_DMT;
3244	}
3245}
3246
3247/*
3248 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3249 * monitors fill with ascii space (0x20) instead.
3250 */
3251static int
3252bad_std_timing(u8 a, u8 b)
3253{
3254	return (a == 0x00 && b == 0x00) ||
3255	       (a == 0x01 && b == 0x01) ||
3256	       (a == 0x20 && b == 0x20);
3257}
3258
3259static int drm_mode_hsync(const struct drm_display_mode *mode)
3260{
3261	if (mode->htotal <= 0)
3262		return 0;
3263
3264	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265}
3266
3267static struct drm_display_mode *
3268drm_gtf2_mode(struct drm_device *dev,
3269	      const struct drm_edid *drm_edid,
3270	      int hsize, int vsize, int vrefresh_rate)
3271{
3272	struct drm_display_mode *mode;
3273
3274	/*
3275	 * This is potentially wrong if there's ever a monitor with
3276	 * more than one ranges section, each claiming a different
3277	 * secondary GTF curve.  Please don't do that.
3278	 */
3279	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280	if (!mode)
3281		return NULL;
3282
3283	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284		drm_mode_destroy(dev, mode);
3285		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286					    vrefresh_rate, 0, 0,
3287					    drm_gtf2_m(drm_edid),
3288					    drm_gtf2_2c(drm_edid),
3289					    drm_gtf2_k(drm_edid),
3290					    drm_gtf2_2j(drm_edid));
3291	}
3292
3293	return mode;
3294}
3295
3296/*
3297 * Take the standard timing params (in this case width, aspect, and refresh)
3298 * and convert them into a real mode using CVT/GTF/DMT.
3299 */
3300static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301					     const struct drm_edid *drm_edid,
3302					     const struct std_timing *t)
3303{
3304	struct drm_device *dev = connector->dev;
3305	struct drm_display_mode *m, *mode = NULL;
3306	int hsize, vsize;
3307	int vrefresh_rate;
3308	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309		>> EDID_TIMING_ASPECT_SHIFT;
3310	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311		>> EDID_TIMING_VFREQ_SHIFT;
3312	int timing_level = standard_timing_level(drm_edid);
3313
3314	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315		return NULL;
3316
3317	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318	hsize = t->hsize * 8 + 248;
3319	/* vrefresh_rate = vfreq + 60 */
3320	vrefresh_rate = vfreq + 60;
3321	/* the vdisplay is calculated based on the aspect ratio */
3322	if (aspect_ratio == 0) {
3323		if (drm_edid->edid->revision < 3)
3324			vsize = hsize;
3325		else
3326			vsize = (hsize * 10) / 16;
3327	} else if (aspect_ratio == 1)
3328		vsize = (hsize * 3) / 4;
3329	else if (aspect_ratio == 2)
3330		vsize = (hsize * 4) / 5;
3331	else
3332		vsize = (hsize * 9) / 16;
3333
3334	/* HDTV hack, part 1 */
3335	if (vrefresh_rate == 60 &&
3336	    ((hsize == 1360 && vsize == 765) ||
3337	     (hsize == 1368 && vsize == 769))) {
3338		hsize = 1366;
3339		vsize = 768;
3340	}
3341
3342	/*
3343	 * If this connector already has a mode for this size and refresh
3344	 * rate (because it came from detailed or CVT info), use that
3345	 * instead.  This way we don't have to guess at interlace or
3346	 * reduced blanking.
3347	 */
3348	list_for_each_entry(m, &connector->probed_modes, head)
3349		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350		    drm_mode_vrefresh(m) == vrefresh_rate)
3351			return NULL;
3352
3353	/* HDTV hack, part 2 */
3354	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356				    false);
3357		if (!mode)
3358			return NULL;
3359		mode->hdisplay = 1366;
3360		mode->hsync_start = mode->hsync_start - 1;
3361		mode->hsync_end = mode->hsync_end - 1;
3362		return mode;
3363	}
3364
3365	/* check whether it can be found in default mode table */
3366	if (drm_monitor_supports_rb(drm_edid)) {
3367		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368					 true);
3369		if (mode)
3370			return mode;
3371	}
3372	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373	if (mode)
3374		return mode;
3375
3376	/* okay, generate it */
3377	switch (timing_level) {
3378	case LEVEL_DMT:
3379		break;
3380	case LEVEL_GTF:
3381		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382		break;
3383	case LEVEL_GTF2:
3384		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3385		break;
3386	case LEVEL_CVT:
3387		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388				    false);
3389		break;
3390	}
3391	return mode;
3392}
3393
3394/*
3395 * EDID is delightfully ambiguous about how interlaced modes are to be
3396 * encoded.  Our internal representation is of frame height, but some
3397 * HDTV detailed timings are encoded as field height.
3398 *
3399 * The format list here is from CEA, in frame size.  Technically we
3400 * should be checking refresh rate too.  Whatever.
3401 */
3402static void
3403drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404			    const struct detailed_pixel_timing *pt)
3405{
3406	int i;
3407	static const struct {
3408		int w, h;
3409	} cea_interlaced[] = {
3410		{ 1920, 1080 },
3411		{  720,  480 },
3412		{ 1440,  480 },
3413		{ 2880,  480 },
3414		{  720,  576 },
3415		{ 1440,  576 },
3416		{ 2880,  576 },
3417	};
3418
3419	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420		return;
3421
3422	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423		if ((mode->hdisplay == cea_interlaced[i].w) &&
3424		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425			mode->vdisplay *= 2;
3426			mode->vsync_start *= 2;
3427			mode->vsync_end *= 2;
3428			mode->vtotal *= 2;
3429			mode->vtotal |= 1;
3430		}
3431	}
3432
3433	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434}
3435
3436/*
3437 * Create a new mode from an EDID detailed timing section. An EDID detailed
3438 * timing block contains enough info for us to create and return a new struct
3439 * drm_display_mode.
3440 */
3441static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442						  const struct drm_edid *drm_edid,
3443						  const struct detailed_timing *timing)
3444{
3445	const struct drm_display_info *info = &connector->display_info;
3446	struct drm_device *dev = connector->dev;
3447	struct drm_display_mode *mode;
3448	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457
3458	/* ignore tiny modes */
3459	if (hactive < 64 || vactive < 64)
3460		return NULL;
3461
3462	if (pt->misc & DRM_EDID_PT_STEREO) {
3463		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464			    connector->base.id, connector->name);
3465		return NULL;
3466	}
3467	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469			    connector->base.id, connector->name);
3470	}
3471
3472	/* it is incorrect if hsync/vsync width is zero */
3473	if (!hsync_pulse_width || !vsync_pulse_width) {
3474		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475			    connector->base.id, connector->name);
3476		return NULL;
3477	}
3478
3479	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481		if (!mode)
3482			return NULL;
3483
3484		goto set_size;
3485	}
3486
3487	mode = drm_mode_create(dev);
3488	if (!mode)
3489		return NULL;
3490
3491	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492		mode->clock = 1088 * 10;
3493	else
3494		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495
3496	mode->hdisplay = hactive;
3497	mode->hsync_start = mode->hdisplay + hsync_offset;
3498	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499	mode->htotal = mode->hdisplay + hblank;
3500
3501	mode->vdisplay = vactive;
3502	mode->vsync_start = mode->vdisplay + vsync_offset;
3503	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504	mode->vtotal = mode->vdisplay + vblank;
3505
3506	/* Some EDIDs have bogus h/vsync_end values */
3507	if (mode->hsync_end > mode->htotal) {
3508		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509			    connector->base.id, connector->name,
3510			    mode->hsync_end, mode->htotal);
3511		mode->hsync_end = mode->htotal;
3512	}
3513	if (mode->vsync_end > mode->vtotal) {
3514		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515			    connector->base.id, connector->name,
3516			    mode->vsync_end, mode->vtotal);
3517		mode->vsync_end = mode->vtotal;
3518	}
3519
3520	drm_mode_do_interlace_quirk(mode, pt);
3521
3522	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524	} else {
3525		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529	}
3530
3531set_size:
3532	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534
3535	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536		mode->width_mm *= 10;
3537		mode->height_mm *= 10;
3538	}
3539
3540	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541		mode->width_mm = drm_edid->edid->width_cm * 10;
3542		mode->height_mm = drm_edid->edid->height_cm * 10;
3543	}
3544
3545	mode->type = DRM_MODE_TYPE_DRIVER;
3546	drm_mode_set_name(mode);
3547
3548	return mode;
3549}
3550
3551static bool
3552mode_in_hsync_range(const struct drm_display_mode *mode,
3553		    const struct edid *edid, const u8 *t)
3554{
3555	int hsync, hmin, hmax;
3556
3557	hmin = t[7];
3558	if (edid->revision >= 4)
3559	    hmin += ((t[4] & 0x04) ? 255 : 0);
3560	hmax = t[8];
3561	if (edid->revision >= 4)
3562	    hmax += ((t[4] & 0x08) ? 255 : 0);
3563	hsync = drm_mode_hsync(mode);
3564
3565	return (hsync <= hmax && hsync >= hmin);
3566}
3567
3568static bool
3569mode_in_vsync_range(const struct drm_display_mode *mode,
3570		    const struct edid *edid, const u8 *t)
3571{
3572	int vsync, vmin, vmax;
3573
3574	vmin = t[5];
3575	if (edid->revision >= 4)
3576	    vmin += ((t[4] & 0x01) ? 255 : 0);
3577	vmax = t[6];
3578	if (edid->revision >= 4)
3579	    vmax += ((t[4] & 0x02) ? 255 : 0);
3580	vsync = drm_mode_vrefresh(mode);
3581
3582	return (vsync <= vmax && vsync >= vmin);
3583}
3584
3585static u32
3586range_pixel_clock(const struct edid *edid, const u8 *t)
3587{
3588	/* unspecified */
3589	if (t[9] == 0 || t[9] == 255)
3590		return 0;
3591
3592	/* 1.4 with CVT support gives us real precision, yay */
3593	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595
3596	/* 1.3 is pathetic, so fuzz up a bit */
3597	return t[9] * 10000 + 5001;
3598}
3599
3600static bool mode_in_range(const struct drm_display_mode *mode,
3601			  const struct drm_edid *drm_edid,
3602			  const struct detailed_timing *timing)
3603{
3604	const struct edid *edid = drm_edid->edid;
3605	u32 max_clock;
3606	const u8 *t = (const u8 *)timing;
3607
3608	if (!mode_in_hsync_range(mode, edid, t))
3609		return false;
3610
3611	if (!mode_in_vsync_range(mode, edid, t))
3612		return false;
3613
3614	if ((max_clock = range_pixel_clock(edid, t)))
 
3615		if (mode->clock > max_clock)
3616			return false;
3617
3618	/* 1.4 max horizontal check */
3619	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3620		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3621			return false;
3622
3623	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3624		return false;
3625
3626	return true;
3627}
3628
3629static bool valid_inferred_mode(const struct drm_connector *connector,
3630				const struct drm_display_mode *mode)
3631{
3632	const struct drm_display_mode *m;
3633	bool ok = false;
3634
3635	list_for_each_entry(m, &connector->probed_modes, head) {
3636		if (mode->hdisplay == m->hdisplay &&
3637		    mode->vdisplay == m->vdisplay &&
3638		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3639			return false; /* duplicated */
3640		if (mode->hdisplay <= m->hdisplay &&
3641		    mode->vdisplay <= m->vdisplay)
3642			ok = true;
3643	}
3644	return ok;
3645}
3646
3647static int drm_dmt_modes_for_range(struct drm_connector *connector,
3648				   const struct drm_edid *drm_edid,
3649				   const struct detailed_timing *timing)
3650{
3651	int i, modes = 0;
3652	struct drm_display_mode *newmode;
3653	struct drm_device *dev = connector->dev;
3654
3655	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3656		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3657		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3658			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3659			if (newmode) {
3660				drm_mode_probed_add(connector, newmode);
3661				modes++;
3662			}
3663		}
3664	}
3665
3666	return modes;
3667}
3668
3669/* fix up 1366x768 mode from 1368x768;
3670 * GFT/CVT can't express 1366 width which isn't dividable by 8
3671 */
3672void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3673{
3674	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3675		mode->hdisplay = 1366;
3676		mode->hsync_start--;
3677		mode->hsync_end--;
3678		drm_mode_set_name(mode);
3679	}
3680}
3681
3682static int drm_gtf_modes_for_range(struct drm_connector *connector,
3683				   const struct drm_edid *drm_edid,
3684				   const struct detailed_timing *timing)
3685{
3686	int i, modes = 0;
3687	struct drm_display_mode *newmode;
3688	struct drm_device *dev = connector->dev;
3689
3690	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3691		const struct minimode *m = &extra_modes[i];
3692
3693		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3694		if (!newmode)
3695			return modes;
3696
3697		drm_mode_fixup_1366x768(newmode);
3698		if (!mode_in_range(newmode, drm_edid, timing) ||
3699		    !valid_inferred_mode(connector, newmode)) {
3700			drm_mode_destroy(dev, newmode);
3701			continue;
3702		}
3703
3704		drm_mode_probed_add(connector, newmode);
3705		modes++;
3706	}
3707
3708	return modes;
3709}
3710
3711static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3712				    const struct drm_edid *drm_edid,
3713				    const struct detailed_timing *timing)
3714{
3715	int i, modes = 0;
3716	struct drm_display_mode *newmode;
3717	struct drm_device *dev = connector->dev;
3718
3719	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3720		const struct minimode *m = &extra_modes[i];
3721
3722		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3723		if (!newmode)
3724			return modes;
3725
3726		drm_mode_fixup_1366x768(newmode);
3727		if (!mode_in_range(newmode, drm_edid, timing) ||
3728		    !valid_inferred_mode(connector, newmode)) {
3729			drm_mode_destroy(dev, newmode);
3730			continue;
3731		}
3732
3733		drm_mode_probed_add(connector, newmode);
3734		modes++;
3735	}
3736
3737	return modes;
3738}
3739
3740static int drm_cvt_modes_for_range(struct drm_connector *connector,
3741				   const struct drm_edid *drm_edid,
3742				   const struct detailed_timing *timing)
3743{
3744	int i, modes = 0;
3745	struct drm_display_mode *newmode;
3746	struct drm_device *dev = connector->dev;
3747	bool rb = drm_monitor_supports_rb(drm_edid);
3748
3749	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3750		const struct minimode *m = &extra_modes[i];
3751
3752		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3753		if (!newmode)
3754			return modes;
3755
3756		drm_mode_fixup_1366x768(newmode);
3757		if (!mode_in_range(newmode, drm_edid, timing) ||
3758		    !valid_inferred_mode(connector, newmode)) {
3759			drm_mode_destroy(dev, newmode);
3760			continue;
3761		}
3762
3763		drm_mode_probed_add(connector, newmode);
3764		modes++;
3765	}
3766
3767	return modes;
3768}
3769
3770static void
3771do_inferred_modes(const struct detailed_timing *timing, void *c)
3772{
3773	struct detailed_mode_closure *closure = c;
3774	const struct detailed_non_pixel *data = &timing->data.other_data;
3775	const struct detailed_data_monitor_range *range = &data->data.range;
3776
3777	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3778		return;
3779
3780	closure->modes += drm_dmt_modes_for_range(closure->connector,
3781						  closure->drm_edid,
3782						  timing);
3783
3784	if (closure->drm_edid->edid->revision < 2)
3785		return; /* GTF not defined yet */
3786
3787	switch (range->flags) {
3788	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3789		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3790							   closure->drm_edid,
3791							   timing);
3792		break;
3793	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3794		closure->modes += drm_gtf_modes_for_range(closure->connector,
3795							  closure->drm_edid,
3796							  timing);
3797		break;
3798	case DRM_EDID_CVT_SUPPORT_FLAG:
3799		if (closure->drm_edid->edid->revision < 4)
3800			break;
3801
3802		closure->modes += drm_cvt_modes_for_range(closure->connector,
3803							  closure->drm_edid,
3804							  timing);
3805		break;
3806	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3807	default:
3808		break;
3809	}
3810}
3811
3812static int add_inferred_modes(struct drm_connector *connector,
3813			      const struct drm_edid *drm_edid)
3814{
3815	struct detailed_mode_closure closure = {
3816		.connector = connector,
3817		.drm_edid = drm_edid,
3818	};
3819
3820	if (drm_edid->edid->revision >= 1)
3821		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3822
3823	return closure.modes;
3824}
3825
3826static int
3827drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3828{
3829	int i, j, m, modes = 0;
3830	struct drm_display_mode *mode;
3831	const u8 *est = ((const u8 *)timing) + 6;
3832
3833	for (i = 0; i < 6; i++) {
3834		for (j = 7; j >= 0; j--) {
3835			m = (i * 8) + (7 - j);
3836			if (m >= ARRAY_SIZE(est3_modes))
3837				break;
3838			if (est[i] & (1 << j)) {
3839				mode = drm_mode_find_dmt(connector->dev,
3840							 est3_modes[m].w,
3841							 est3_modes[m].h,
3842							 est3_modes[m].r,
3843							 est3_modes[m].rb);
3844				if (mode) {
3845					drm_mode_probed_add(connector, mode);
3846					modes++;
3847				}
3848			}
3849		}
3850	}
3851
3852	return modes;
3853}
3854
3855static void
3856do_established_modes(const struct detailed_timing *timing, void *c)
3857{
3858	struct detailed_mode_closure *closure = c;
3859
3860	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3861		return;
3862
3863	closure->modes += drm_est3_modes(closure->connector, timing);
3864}
3865
3866/*
3867 * Get established modes from EDID and add them. Each EDID block contains a
3868 * bitmap of the supported "established modes" list (defined above). Tease them
3869 * out and add them to the global modes list.
3870 */
3871static int add_established_modes(struct drm_connector *connector,
3872				 const struct drm_edid *drm_edid)
3873{
3874	struct drm_device *dev = connector->dev;
3875	const struct edid *edid = drm_edid->edid;
3876	unsigned long est_bits = edid->established_timings.t1 |
3877		(edid->established_timings.t2 << 8) |
3878		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3879	int i, modes = 0;
3880	struct detailed_mode_closure closure = {
3881		.connector = connector,
3882		.drm_edid = drm_edid,
3883	};
3884
3885	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3886		if (est_bits & (1<<i)) {
3887			struct drm_display_mode *newmode;
3888
3889			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3890			if (newmode) {
3891				drm_mode_probed_add(connector, newmode);
3892				modes++;
3893			}
3894		}
3895	}
3896
3897	if (edid->revision >= 1)
3898		drm_for_each_detailed_block(drm_edid, do_established_modes,
3899					    &closure);
3900
3901	return modes + closure.modes;
3902}
3903
3904static void
3905do_standard_modes(const struct detailed_timing *timing, void *c)
3906{
3907	struct detailed_mode_closure *closure = c;
3908	const struct detailed_non_pixel *data = &timing->data.other_data;
3909	struct drm_connector *connector = closure->connector;
3910	int i;
3911
3912	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3913		return;
3914
3915	for (i = 0; i < 6; i++) {
3916		const struct std_timing *std = &data->data.timings[i];
3917		struct drm_display_mode *newmode;
3918
3919		newmode = drm_mode_std(connector, closure->drm_edid, std);
3920		if (newmode) {
3921			drm_mode_probed_add(connector, newmode);
3922			closure->modes++;
3923		}
3924	}
3925}
3926
3927/*
3928 * Get standard modes from EDID and add them. Standard modes can be calculated
3929 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3930 * add them to the list.
3931 */
3932static int add_standard_modes(struct drm_connector *connector,
3933			      const struct drm_edid *drm_edid)
3934{
3935	int i, modes = 0;
3936	struct detailed_mode_closure closure = {
3937		.connector = connector,
3938		.drm_edid = drm_edid,
3939	};
3940
3941	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3942		struct drm_display_mode *newmode;
3943
3944		newmode = drm_mode_std(connector, drm_edid,
3945				       &drm_edid->edid->standard_timings[i]);
3946		if (newmode) {
3947			drm_mode_probed_add(connector, newmode);
3948			modes++;
3949		}
3950	}
3951
3952	if (drm_edid->edid->revision >= 1)
3953		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3954					    &closure);
3955
3956	/* XXX should also look for standard codes in VTB blocks */
3957
3958	return modes + closure.modes;
3959}
3960
3961static int drm_cvt_modes(struct drm_connector *connector,
3962			 const struct detailed_timing *timing)
3963{
3964	int i, j, modes = 0;
3965	struct drm_display_mode *newmode;
3966	struct drm_device *dev = connector->dev;
3967	const struct cvt_timing *cvt;
3968	static const int rates[] = { 60, 85, 75, 60, 50 };
3969	const u8 empty[3] = { 0, 0, 0 };
3970
3971	for (i = 0; i < 4; i++) {
3972		int width, height;
3973
3974		cvt = &(timing->data.other_data.data.cvt[i]);
3975
3976		if (!memcmp(cvt->code, empty, 3))
3977			continue;
3978
3979		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3980		switch (cvt->code[1] & 0x0c) {
3981		/* default - because compiler doesn't see that we've enumerated all cases */
3982		default:
3983		case 0x00:
3984			width = height * 4 / 3;
3985			break;
3986		case 0x04:
3987			width = height * 16 / 9;
3988			break;
3989		case 0x08:
3990			width = height * 16 / 10;
3991			break;
3992		case 0x0c:
3993			width = height * 15 / 9;
3994			break;
3995		}
3996
3997		for (j = 1; j < 5; j++) {
3998			if (cvt->code[2] & (1 << j)) {
3999				newmode = drm_cvt_mode(dev, width, height,
4000						       rates[j], j == 0,
4001						       false, false);
4002				if (newmode) {
4003					drm_mode_probed_add(connector, newmode);
4004					modes++;
4005				}
4006			}
4007		}
4008	}
4009
4010	return modes;
4011}
4012
4013static void
4014do_cvt_mode(const struct detailed_timing *timing, void *c)
4015{
4016	struct detailed_mode_closure *closure = c;
4017
4018	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4019		return;
4020
4021	closure->modes += drm_cvt_modes(closure->connector, timing);
4022}
4023
4024static int
4025add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4026{
4027	struct detailed_mode_closure closure = {
4028		.connector = connector,
4029		.drm_edid = drm_edid,
4030	};
4031
4032	if (drm_edid->edid->revision >= 3)
4033		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4034
4035	/* XXX should also look for CVT codes in VTB blocks */
4036
4037	return closure.modes;
4038}
4039
4040static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4041					  struct drm_display_mode *mode);
4042
4043static void
4044do_detailed_mode(const struct detailed_timing *timing, void *c)
4045{
4046	struct detailed_mode_closure *closure = c;
4047	struct drm_display_mode *newmode;
4048
4049	if (!is_detailed_timing_descriptor(timing))
4050		return;
4051
4052	newmode = drm_mode_detailed(closure->connector,
4053				    closure->drm_edid, timing);
4054	if (!newmode)
4055		return;
4056
4057	if (closure->preferred)
4058		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4059
4060	/*
4061	 * Detailed modes are limited to 10kHz pixel clock resolution,
4062	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4063	 * is just slightly off.
4064	 */
4065	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4066
4067	drm_mode_probed_add(closure->connector, newmode);
4068	closure->modes++;
4069	closure->preferred = false;
4070}
4071
4072/*
4073 * add_detailed_modes - Add modes from detailed timings
4074 * @connector: attached connector
4075 * @drm_edid: EDID block to scan
4076 */
4077static int add_detailed_modes(struct drm_connector *connector,
4078			      const struct drm_edid *drm_edid)
4079{
4080	struct detailed_mode_closure closure = {
4081		.connector = connector,
4082		.drm_edid = drm_edid,
4083	};
4084
4085	if (drm_edid->edid->revision >= 4)
4086		closure.preferred = true; /* first detailed timing is always preferred */
4087	else
4088		closure.preferred =
4089			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4090
4091	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4092
4093	return closure.modes;
4094}
4095
4096/* CTA-861-H Table 60 - CTA Tag Codes */
4097#define CTA_DB_AUDIO			1
4098#define CTA_DB_VIDEO			2
4099#define CTA_DB_VENDOR			3
4100#define CTA_DB_SPEAKER			4
4101#define CTA_DB_EXTENDED_TAG		7
4102
4103/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4104#define CTA_EXT_DB_VIDEO_CAP		0
4105#define CTA_EXT_DB_VENDOR		1
4106#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4107#define CTA_EXT_DB_420_VIDEO_DATA	14
4108#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4109#define CTA_EXT_DB_HF_EEODB		0x78
4110#define CTA_EXT_DB_HF_SCDB		0x79
4111
4112#define EDID_BASIC_AUDIO	(1 << 6)
4113#define EDID_CEA_YCRCB444	(1 << 5)
4114#define EDID_CEA_YCRCB422	(1 << 4)
4115#define EDID_CEA_VCDB_QS	(1 << 6)
4116
4117/*
4118 * Search EDID for CEA extension block.
4119 *
4120 * FIXME: Prefer not returning pointers to raw EDID data.
4121 */
4122const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4123				  int ext_id, int *ext_index)
4124{
4125	const u8 *edid_ext = NULL;
4126	int i;
4127
4128	/* No EDID or EDID extensions */
4129	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4130		return NULL;
4131
4132	/* Find CEA extension */
4133	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4134		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4135		if (edid_block_tag(edid_ext) == ext_id)
4136			break;
4137	}
4138
4139	if (i >= drm_edid_extension_block_count(drm_edid))
4140		return NULL;
4141
4142	*ext_index = i + 1;
4143
4144	return edid_ext;
4145}
4146
4147/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4148static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4149{
4150	const struct displayid_block *block;
4151	struct displayid_iter iter;
4152	int ext_index = 0;
 
4153	bool found = false;
4154
4155	/* Look for a top level CEA extension block */
4156	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
 
 
 
 
 
 
 
 
 
4157		return true;
4158
4159	/* CEA blocks can also be found embedded in a DisplayID block */
4160	displayid_iter_edid_begin(drm_edid, &iter);
4161	displayid_iter_for_each(block, &iter) {
4162		if (block->tag == DATA_BLOCK_CTA) {
4163			found = true;
4164			break;
4165		}
4166	}
4167	displayid_iter_end(&iter);
4168
4169	return found;
4170}
4171
4172static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4173{
4174	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4175	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4176
4177	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4178		return &edid_cea_modes_1[vic - 1];
4179	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4180		return &edid_cea_modes_193[vic - 193];
4181	return NULL;
4182}
4183
4184static u8 cea_num_vics(void)
4185{
4186	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4187}
4188
4189static u8 cea_next_vic(u8 vic)
4190{
4191	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4192		vic = 193;
4193	return vic;
4194}
4195
4196/*
4197 * Calculate the alternate clock for the CEA mode
4198 * (60Hz vs. 59.94Hz etc.)
4199 */
4200static unsigned int
4201cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4202{
4203	unsigned int clock = cea_mode->clock;
4204
4205	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4206		return clock;
4207
4208	/*
4209	 * edid_cea_modes contains the 59.94Hz
4210	 * variant for 240 and 480 line modes,
4211	 * and the 60Hz variant otherwise.
4212	 */
4213	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4214		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4215	else
4216		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4217
4218	return clock;
4219}
4220
4221static bool
4222cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4223{
4224	/*
4225	 * For certain VICs the spec allows the vertical
4226	 * front porch to vary by one or two lines.
4227	 *
4228	 * cea_modes[] stores the variant with the shortest
4229	 * vertical front porch. We can adjust the mode to
4230	 * get the other variants by simply increasing the
4231	 * vertical front porch length.
4232	 */
4233	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4234		     cea_mode_for_vic(9)->vtotal != 262 ||
4235		     cea_mode_for_vic(12)->vtotal != 262 ||
4236		     cea_mode_for_vic(13)->vtotal != 262 ||
4237		     cea_mode_for_vic(23)->vtotal != 312 ||
4238		     cea_mode_for_vic(24)->vtotal != 312 ||
4239		     cea_mode_for_vic(27)->vtotal != 312 ||
4240		     cea_mode_for_vic(28)->vtotal != 312);
4241
4242	if (((vic == 8 || vic == 9 ||
4243	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4244	    ((vic == 23 || vic == 24 ||
4245	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4246		mode->vsync_start++;
4247		mode->vsync_end++;
4248		mode->vtotal++;
4249
4250		return true;
4251	}
4252
4253	return false;
4254}
4255
4256static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4257					     unsigned int clock_tolerance)
4258{
4259	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4260	u8 vic;
4261
4262	if (!to_match->clock)
4263		return 0;
4264
4265	if (to_match->picture_aspect_ratio)
4266		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4267
4268	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4269		struct drm_display_mode cea_mode;
4270		unsigned int clock1, clock2;
4271
4272		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4273
4274		/* Check both 60Hz and 59.94Hz */
4275		clock1 = cea_mode.clock;
4276		clock2 = cea_mode_alternate_clock(&cea_mode);
4277
4278		if (abs(to_match->clock - clock1) > clock_tolerance &&
4279		    abs(to_match->clock - clock2) > clock_tolerance)
4280			continue;
4281
4282		do {
4283			if (drm_mode_match(to_match, &cea_mode, match_flags))
4284				return vic;
4285		} while (cea_mode_alternate_timings(vic, &cea_mode));
4286	}
4287
4288	return 0;
4289}
4290
4291/**
4292 * drm_match_cea_mode - look for a CEA mode matching given mode
4293 * @to_match: display mode
4294 *
4295 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4296 * mode.
4297 */
4298u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4299{
4300	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4301	u8 vic;
4302
4303	if (!to_match->clock)
4304		return 0;
4305
4306	if (to_match->picture_aspect_ratio)
4307		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4308
4309	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4310		struct drm_display_mode cea_mode;
4311		unsigned int clock1, clock2;
4312
4313		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4314
4315		/* Check both 60Hz and 59.94Hz */
4316		clock1 = cea_mode.clock;
4317		clock2 = cea_mode_alternate_clock(&cea_mode);
4318
4319		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4320		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4321			continue;
4322
4323		do {
4324			if (drm_mode_match(to_match, &cea_mode, match_flags))
4325				return vic;
4326		} while (cea_mode_alternate_timings(vic, &cea_mode));
4327	}
4328
4329	return 0;
4330}
4331EXPORT_SYMBOL(drm_match_cea_mode);
4332
4333static bool drm_valid_cea_vic(u8 vic)
4334{
4335	return cea_mode_for_vic(vic) != NULL;
4336}
4337
4338static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4339{
4340	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4341
4342	if (mode)
4343		return mode->picture_aspect_ratio;
4344
4345	return HDMI_PICTURE_ASPECT_NONE;
4346}
4347
4348static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4349{
4350	return edid_4k_modes[video_code].picture_aspect_ratio;
4351}
4352
4353/*
4354 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4355 * specific block).
4356 */
4357static unsigned int
4358hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4359{
4360	return cea_mode_alternate_clock(hdmi_mode);
4361}
4362
4363static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4364					      unsigned int clock_tolerance)
4365{
4366	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4367	u8 vic;
4368
4369	if (!to_match->clock)
4370		return 0;
4371
4372	if (to_match->picture_aspect_ratio)
4373		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4374
4375	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4376		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4377		unsigned int clock1, clock2;
4378
4379		/* Make sure to also match alternate clocks */
4380		clock1 = hdmi_mode->clock;
4381		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4382
4383		if (abs(to_match->clock - clock1) > clock_tolerance &&
4384		    abs(to_match->clock - clock2) > clock_tolerance)
4385			continue;
4386
4387		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4388			return vic;
4389	}
4390
4391	return 0;
4392}
4393
4394/*
4395 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4396 * @to_match: display mode
4397 *
4398 * An HDMI mode is one defined in the HDMI vendor specific block.
4399 *
4400 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4401 */
4402static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4403{
4404	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4405	u8 vic;
4406
4407	if (!to_match->clock)
4408		return 0;
4409
4410	if (to_match->picture_aspect_ratio)
4411		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4412
4413	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4414		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4415		unsigned int clock1, clock2;
4416
4417		/* Make sure to also match alternate clocks */
4418		clock1 = hdmi_mode->clock;
4419		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4420
4421		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4422		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4423		    drm_mode_match(to_match, hdmi_mode, match_flags))
4424			return vic;
4425	}
4426	return 0;
4427}
4428
4429static bool drm_valid_hdmi_vic(u8 vic)
4430{
4431	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4432}
4433
4434static int add_alternate_cea_modes(struct drm_connector *connector,
4435				   const struct drm_edid *drm_edid)
4436{
4437	struct drm_device *dev = connector->dev;
4438	struct drm_display_mode *mode, *tmp;
4439	LIST_HEAD(list);
4440	int modes = 0;
4441
4442	/* Don't add CTA modes if the CTA extension block is missing */
4443	if (!drm_edid_has_cta_extension(drm_edid))
4444		return 0;
4445
4446	/*
4447	 * Go through all probed modes and create a new mode
4448	 * with the alternate clock for certain CEA modes.
4449	 */
4450	list_for_each_entry(mode, &connector->probed_modes, head) {
4451		const struct drm_display_mode *cea_mode = NULL;
4452		struct drm_display_mode *newmode;
4453		u8 vic = drm_match_cea_mode(mode);
4454		unsigned int clock1, clock2;
4455
4456		if (drm_valid_cea_vic(vic)) {
4457			cea_mode = cea_mode_for_vic(vic);
4458			clock2 = cea_mode_alternate_clock(cea_mode);
4459		} else {
4460			vic = drm_match_hdmi_mode(mode);
4461			if (drm_valid_hdmi_vic(vic)) {
4462				cea_mode = &edid_4k_modes[vic];
4463				clock2 = hdmi_mode_alternate_clock(cea_mode);
4464			}
4465		}
4466
4467		if (!cea_mode)
4468			continue;
4469
4470		clock1 = cea_mode->clock;
4471
4472		if (clock1 == clock2)
4473			continue;
4474
4475		if (mode->clock != clock1 && mode->clock != clock2)
4476			continue;
4477
4478		newmode = drm_mode_duplicate(dev, cea_mode);
4479		if (!newmode)
4480			continue;
4481
4482		/* Carry over the stereo flags */
4483		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4484
4485		/*
4486		 * The current mode could be either variant. Make
4487		 * sure to pick the "other" clock for the new mode.
4488		 */
4489		if (mode->clock != clock1)
4490			newmode->clock = clock1;
4491		else
4492			newmode->clock = clock2;
4493
4494		list_add_tail(&newmode->head, &list);
4495	}
4496
4497	list_for_each_entry_safe(mode, tmp, &list, head) {
4498		list_del(&mode->head);
4499		drm_mode_probed_add(connector, mode);
4500		modes++;
4501	}
4502
4503	return modes;
4504}
4505
4506static u8 svd_to_vic(u8 svd)
4507{
4508	/* 0-6 bit vic, 7th bit native mode indicator */
4509	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4510		return svd & 127;
4511
4512	return svd;
4513}
4514
4515/*
4516 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4517 * the EDID, or NULL on errors.
4518 */
4519static struct drm_display_mode *
4520drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4521{
4522	const struct drm_display_info *info = &connector->display_info;
4523	struct drm_device *dev = connector->dev;
4524
4525	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4526		return NULL;
4527
4528	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4529}
4530
4531/*
4532 * do_y420vdb_modes - Parse YCBCR 420 only modes
4533 * @connector: connector corresponding to the HDMI sink
4534 * @svds: start of the data block of CEA YCBCR 420 VDB
4535 * @len: length of the CEA YCBCR 420 VDB
4536 *
4537 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4538 * which contains modes which can be supported in YCBCR 420
4539 * output format only.
4540 */
4541static int do_y420vdb_modes(struct drm_connector *connector,
4542			    const u8 *svds, u8 svds_len)
4543{
4544	struct drm_device *dev = connector->dev;
4545	int modes = 0, i;
4546
4547	for (i = 0; i < svds_len; i++) {
4548		u8 vic = svd_to_vic(svds[i]);
4549		struct drm_display_mode *newmode;
4550
4551		if (!drm_valid_cea_vic(vic))
4552			continue;
4553
4554		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4555		if (!newmode)
4556			break;
4557		drm_mode_probed_add(connector, newmode);
4558		modes++;
4559	}
4560
4561	return modes;
4562}
4563
4564/**
4565 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4566 * @dev: DRM device
4567 * @video_code: CEA VIC of the mode
4568 *
4569 * Creates a new mode matching the specified CEA VIC.
4570 *
4571 * Returns: A new drm_display_mode on success or NULL on failure
4572 */
4573struct drm_display_mode *
4574drm_display_mode_from_cea_vic(struct drm_device *dev,
4575			      u8 video_code)
4576{
4577	const struct drm_display_mode *cea_mode;
4578	struct drm_display_mode *newmode;
4579
4580	cea_mode = cea_mode_for_vic(video_code);
4581	if (!cea_mode)
4582		return NULL;
4583
4584	newmode = drm_mode_duplicate(dev, cea_mode);
4585	if (!newmode)
4586		return NULL;
4587
4588	return newmode;
4589}
4590EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4591
4592/* Add modes based on VICs parsed in parse_cta_vdb() */
4593static int add_cta_vdb_modes(struct drm_connector *connector)
4594{
4595	const struct drm_display_info *info = &connector->display_info;
4596	int i, modes = 0;
4597
4598	if (!info->vics)
4599		return 0;
4600
4601	for (i = 0; i < info->vics_len; i++) {
4602		struct drm_display_mode *mode;
4603
4604		mode = drm_display_mode_from_vic_index(connector, i);
4605		if (mode) {
4606			drm_mode_probed_add(connector, mode);
4607			modes++;
4608		}
4609	}
4610
4611	return modes;
4612}
4613
4614struct stereo_mandatory_mode {
4615	int width, height, vrefresh;
4616	unsigned int flags;
4617};
4618
4619static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4620	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4621	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4622	{ 1920, 1080, 50,
4623	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4624	{ 1920, 1080, 60,
4625	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4626	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4627	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4628	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4629	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4630};
4631
4632static bool
4633stereo_match_mandatory(const struct drm_display_mode *mode,
4634		       const struct stereo_mandatory_mode *stereo_mode)
4635{
4636	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4637
4638	return mode->hdisplay == stereo_mode->width &&
4639	       mode->vdisplay == stereo_mode->height &&
4640	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4641	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4642}
4643
4644static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4645{
4646	struct drm_device *dev = connector->dev;
4647	const struct drm_display_mode *mode;
4648	struct list_head stereo_modes;
4649	int modes = 0, i;
4650
4651	INIT_LIST_HEAD(&stereo_modes);
4652
4653	list_for_each_entry(mode, &connector->probed_modes, head) {
4654		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4655			const struct stereo_mandatory_mode *mandatory;
4656			struct drm_display_mode *new_mode;
4657
4658			if (!stereo_match_mandatory(mode,
4659						    &stereo_mandatory_modes[i]))
4660				continue;
4661
4662			mandatory = &stereo_mandatory_modes[i];
4663			new_mode = drm_mode_duplicate(dev, mode);
4664			if (!new_mode)
4665				continue;
4666
4667			new_mode->flags |= mandatory->flags;
4668			list_add_tail(&new_mode->head, &stereo_modes);
4669			modes++;
4670		}
4671	}
4672
4673	list_splice_tail(&stereo_modes, &connector->probed_modes);
4674
4675	return modes;
4676}
4677
4678static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4679{
4680	struct drm_device *dev = connector->dev;
4681	struct drm_display_mode *newmode;
4682
4683	if (!drm_valid_hdmi_vic(vic)) {
4684		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4685			connector->base.id, connector->name, vic);
4686		return 0;
4687	}
4688
4689	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4690	if (!newmode)
4691		return 0;
4692
4693	drm_mode_probed_add(connector, newmode);
4694
4695	return 1;
4696}
4697
4698static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4699			       int vic_index)
4700{
4701	struct drm_display_mode *newmode;
4702	int modes = 0;
4703
4704	if (structure & (1 << 0)) {
4705		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4706		if (newmode) {
4707			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4708			drm_mode_probed_add(connector, newmode);
4709			modes++;
4710		}
4711	}
4712	if (structure & (1 << 6)) {
4713		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4714		if (newmode) {
4715			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4716			drm_mode_probed_add(connector, newmode);
4717			modes++;
4718		}
4719	}
4720	if (structure & (1 << 8)) {
4721		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4722		if (newmode) {
4723			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4724			drm_mode_probed_add(connector, newmode);
4725			modes++;
4726		}
4727	}
4728
4729	return modes;
4730}
4731
4732static bool hdmi_vsdb_latency_present(const u8 *db)
4733{
4734	return db[8] & BIT(7);
4735}
4736
4737static bool hdmi_vsdb_i_latency_present(const u8 *db)
4738{
4739	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4740}
4741
4742static int hdmi_vsdb_latency_length(const u8 *db)
4743{
4744	if (hdmi_vsdb_i_latency_present(db))
4745		return 4;
4746	else if (hdmi_vsdb_latency_present(db))
4747		return 2;
4748	else
4749		return 0;
4750}
4751
4752/*
4753 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4754 * @connector: connector corresponding to the HDMI sink
4755 * @db: start of the CEA vendor specific block
4756 * @len: length of the CEA block payload, ie. one can access up to db[len]
4757 *
4758 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4759 * also adds the stereo 3d modes when applicable.
4760 */
4761static int
4762do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4763{
4764	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4765	u8 vic_len, hdmi_3d_len = 0;
4766	u16 mask;
4767	u16 structure_all;
4768
4769	if (len < 8)
4770		goto out;
4771
4772	/* no HDMI_Video_Present */
4773	if (!(db[8] & (1 << 5)))
4774		goto out;
4775
4776	offset += hdmi_vsdb_latency_length(db);
4777
4778	/* the declared length is not long enough for the 2 first bytes
4779	 * of additional video format capabilities */
4780	if (len < (8 + offset + 2))
4781		goto out;
4782
4783	/* 3D_Present */
4784	offset++;
4785	if (db[8 + offset] & (1 << 7)) {
4786		modes += add_hdmi_mandatory_stereo_modes(connector);
4787
4788		/* 3D_Multi_present */
4789		multi_present = (db[8 + offset] & 0x60) >> 5;
4790	}
4791
4792	offset++;
4793	vic_len = db[8 + offset] >> 5;
4794	hdmi_3d_len = db[8 + offset] & 0x1f;
4795
4796	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4797		u8 vic;
4798
4799		vic = db[9 + offset + i];
4800		modes += add_hdmi_mode(connector, vic);
4801	}
4802	offset += 1 + vic_len;
4803
4804	if (multi_present == 1)
4805		multi_len = 2;
4806	else if (multi_present == 2)
4807		multi_len = 4;
4808	else
4809		multi_len = 0;
4810
4811	if (len < (8 + offset + hdmi_3d_len - 1))
4812		goto out;
4813
4814	if (hdmi_3d_len < multi_len)
4815		goto out;
4816
4817	if (multi_present == 1 || multi_present == 2) {
4818		/* 3D_Structure_ALL */
4819		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4820
4821		/* check if 3D_MASK is present */
4822		if (multi_present == 2)
4823			mask = (db[10 + offset] << 8) | db[11 + offset];
4824		else
4825			mask = 0xffff;
4826
4827		for (i = 0; i < 16; i++) {
4828			if (mask & (1 << i))
4829				modes += add_3d_struct_modes(connector,
4830							     structure_all, i);
4831		}
4832	}
4833
4834	offset += multi_len;
4835
4836	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4837		int vic_index;
4838		struct drm_display_mode *newmode = NULL;
4839		unsigned int newflag = 0;
4840		bool detail_present;
4841
4842		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4843
4844		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4845			break;
4846
4847		/* 2D_VIC_order_X */
4848		vic_index = db[8 + offset + i] >> 4;
4849
4850		/* 3D_Structure_X */
4851		switch (db[8 + offset + i] & 0x0f) {
4852		case 0:
4853			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4854			break;
4855		case 6:
4856			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4857			break;
4858		case 8:
4859			/* 3D_Detail_X */
4860			if ((db[9 + offset + i] >> 4) == 1)
4861				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4862			break;
4863		}
4864
4865		if (newflag != 0) {
4866			newmode = drm_display_mode_from_vic_index(connector,
4867								  vic_index);
4868
4869			if (newmode) {
4870				newmode->flags |= newflag;
4871				drm_mode_probed_add(connector, newmode);
4872				modes++;
4873			}
4874		}
4875
4876		if (detail_present)
4877			i++;
4878	}
4879
4880out:
4881	return modes;
4882}
4883
4884static int
4885cea_revision(const u8 *cea)
4886{
4887	/*
4888	 * FIXME is this correct for the DispID variant?
4889	 * The DispID spec doesn't really specify whether
4890	 * this is the revision of the CEA extension or
4891	 * the DispID CEA data block. And the only value
4892	 * given as an example is 0.
4893	 */
4894	return cea[1];
4895}
4896
4897/*
4898 * CTA Data Block iterator.
4899 *
4900 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4901 * CTA Data Blocks.
4902 *
4903 * struct cea_db *db:
4904 * struct cea_db_iter iter;
4905 *
4906 * cea_db_iter_edid_begin(edid, &iter);
4907 * cea_db_iter_for_each(db, &iter) {
4908 *         // do stuff with db
4909 * }
4910 * cea_db_iter_end(&iter);
4911 */
4912struct cea_db_iter {
4913	struct drm_edid_iter edid_iter;
4914	struct displayid_iter displayid_iter;
4915
4916	/* Current Data Block Collection. */
4917	const u8 *collection;
4918
4919	/* Current Data Block index in current collection. */
4920	int index;
4921
4922	/* End index in current collection. */
4923	int end;
4924};
4925
4926/* CTA-861-H section 7.4 CTA Data BLock Collection */
4927struct cea_db {
4928	u8 tag_length;
4929	u8 data[];
4930} __packed;
4931
4932static int cea_db_tag(const struct cea_db *db)
4933{
4934	return db->tag_length >> 5;
4935}
4936
4937static int cea_db_payload_len(const void *_db)
4938{
4939	/* FIXME: Transition to passing struct cea_db * everywhere. */
4940	const struct cea_db *db = _db;
4941
4942	return db->tag_length & 0x1f;
4943}
4944
4945static const void *cea_db_data(const struct cea_db *db)
4946{
4947	return db->data;
4948}
4949
4950static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4951{
4952	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4953		cea_db_payload_len(db) >= 1 &&
4954		db->data[0] == tag;
4955}
4956
4957static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4958{
4959	const u8 *data = cea_db_data(db);
4960
4961	return cea_db_tag(db) == CTA_DB_VENDOR &&
4962		cea_db_payload_len(db) >= 3 &&
4963		oui(data[2], data[1], data[0]) == vendor_oui;
4964}
4965
4966static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4967				   struct cea_db_iter *iter)
4968{
4969	memset(iter, 0, sizeof(*iter));
4970
4971	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4972	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4973}
4974
4975static const struct cea_db *
4976__cea_db_iter_current_block(const struct cea_db_iter *iter)
4977{
4978	const struct cea_db *db;
4979
4980	if (!iter->collection)
4981		return NULL;
4982
4983	db = (const struct cea_db *)&iter->collection[iter->index];
4984
4985	if (iter->index + sizeof(*db) <= iter->end &&
4986	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4987		return db;
4988
4989	return NULL;
4990}
4991
4992/*
4993 * References:
4994 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4995 */
4996static int cea_db_collection_size(const u8 *cta)
4997{
4998	u8 d = cta[2];
4999
5000	if (d < 4 || d > 127)
5001		return 0;
5002
5003	return d - 4;
5004}
5005
5006/*
5007 * References:
5008 * - VESA E-EDID v1.4
5009 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5010 */
5011static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5012{
5013	const u8 *ext;
5014
5015	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5016		int size;
5017
5018		/* Only support CTA Extension revision 3+ */
5019		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5020			continue;
5021
5022		size = cea_db_collection_size(ext);
5023		if (!size)
5024			continue;
5025
5026		iter->index = 4;
5027		iter->end = iter->index + size;
5028
5029		return ext;
5030	}
5031
5032	return NULL;
5033}
5034
5035/*
5036 * References:
5037 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5038 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5039 *
5040 * Note that the above do not specify any connection between DisplayID Data
5041 * Block revision and CTA Extension versions.
5042 */
5043static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5044{
5045	const struct displayid_block *block;
5046
5047	displayid_iter_for_each(block, &iter->displayid_iter) {
5048		if (block->tag != DATA_BLOCK_CTA)
5049			continue;
5050
5051		/*
5052		 * The displayid iterator has already verified the block bounds
5053		 * in displayid_iter_block().
5054		 */
5055		iter->index = sizeof(*block);
5056		iter->end = iter->index + block->num_bytes;
5057
5058		return block;
5059	}
5060
5061	return NULL;
5062}
5063
5064static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5065{
5066	const struct cea_db *db;
5067
5068	if (iter->collection) {
5069		/* Current collection should always be valid. */
5070		db = __cea_db_iter_current_block(iter);
5071		if (WARN_ON(!db)) {
5072			iter->collection = NULL;
5073			return NULL;
5074		}
5075
5076		/* Next block in CTA Data Block Collection */
5077		iter->index += sizeof(*db) + cea_db_payload_len(db);
5078
5079		db = __cea_db_iter_current_block(iter);
5080		if (db)
5081			return db;
5082	}
5083
5084	for (;;) {
5085		/*
5086		 * Find the next CTA Data Block Collection. First iterate all
5087		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5088		 *
5089		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5090		 * Extension, it's recommended that DisplayID extensions are
5091		 * exposed after all of the CTA Extensions.
5092		 */
5093		iter->collection = __cea_db_iter_edid_next(iter);
5094		if (!iter->collection)
5095			iter->collection = __cea_db_iter_displayid_next(iter);
5096
5097		if (!iter->collection)
5098			return NULL;
5099
5100		db = __cea_db_iter_current_block(iter);
5101		if (db)
5102			return db;
5103	}
5104}
5105
5106#define cea_db_iter_for_each(__db, __iter) \
5107	while (((__db) = __cea_db_iter_next(__iter)))
5108
5109static void cea_db_iter_end(struct cea_db_iter *iter)
5110{
5111	displayid_iter_end(&iter->displayid_iter);
5112	drm_edid_iter_end(&iter->edid_iter);
5113
5114	memset(iter, 0, sizeof(*iter));
5115}
5116
5117static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5118{
5119	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5120		cea_db_payload_len(db) >= 5;
5121}
5122
5123static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5124{
5125	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5126		cea_db_payload_len(db) >= 7;
5127}
5128
5129static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5130{
5131	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5132		cea_db_payload_len(db) >= 2;
5133}
5134
5135static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5136{
5137	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5138		cea_db_payload_len(db) == 21;
5139}
5140
5141static bool cea_db_is_vcdb(const struct cea_db *db)
5142{
5143	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5144		cea_db_payload_len(db) == 2;
5145}
5146
5147static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5148{
5149	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5150		cea_db_payload_len(db) >= 7;
5151}
5152
5153static bool cea_db_is_y420cmdb(const struct cea_db *db)
5154{
5155	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5156}
5157
5158static bool cea_db_is_y420vdb(const struct cea_db *db)
5159{
5160	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5161}
5162
5163static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5164{
5165	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5166		cea_db_payload_len(db) >= 3;
5167}
5168
5169/*
5170 * Get the HF-EEODB override extension block count from EDID.
5171 *
5172 * The passed in EDID may be partially read, as long as it has at least two
5173 * blocks (base block and one extension block) if EDID extension count is > 0.
5174 *
5175 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5176 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5177 * iterators instead.
5178 *
5179 * References:
5180 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5181 */
5182static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5183{
5184	const u8 *cta;
5185
5186	/* No extensions according to base block, no HF-EEODB. */
5187	if (!edid_extension_block_count(edid))
5188		return 0;
5189
5190	/* HF-EEODB is always in the first EDID extension block only */
5191	cta = edid_extension_block_data(edid, 0);
5192	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5193		return 0;
5194
5195	/* Need to have the data block collection, and at least 3 bytes. */
5196	if (cea_db_collection_size(cta) < 3)
5197		return 0;
5198
5199	/*
5200	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5201	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5202	 * through 6 of Block 1 of the E-EDID.
5203	 */
5204	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5205		return 0;
5206
5207	return cta[4 + 2];
5208}
5209
5210/*
5211 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5212 *
5213 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5214 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5215 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5216 * support YCBCR420 output too.
5217 */
5218static void parse_cta_y420cmdb(struct drm_connector *connector,
5219			       const struct cea_db *db, u64 *y420cmdb_map)
5220{
5221	struct drm_display_info *info = &connector->display_info;
5222	int i, map_len = cea_db_payload_len(db) - 1;
5223	const u8 *data = cea_db_data(db) + 1;
5224	u64 map = 0;
5225
5226	if (map_len == 0) {
5227		/* All CEA modes support ycbcr420 sampling also.*/
5228		map = U64_MAX;
5229		goto out;
5230	}
5231
5232	/*
5233	 * This map indicates which of the existing CEA block modes
5234	 * from VDB can support YCBCR420 output too. So if bit=0 is
5235	 * set, first mode from VDB can support YCBCR420 output too.
5236	 * We will parse and keep this map, before parsing VDB itself
5237	 * to avoid going through the same block again and again.
5238	 *
5239	 * Spec is not clear about max possible size of this block.
5240	 * Clamping max bitmap block size at 8 bytes. Every byte can
5241	 * address 8 CEA modes, in this way this map can address
5242	 * 8*8 = first 64 SVDs.
5243	 */
5244	if (WARN_ON_ONCE(map_len > 8))
5245		map_len = 8;
5246
5247	for (i = 0; i < map_len; i++)
5248		map |= (u64)data[i] << (8 * i);
5249
5250out:
5251	if (map)
5252		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5253
5254	*y420cmdb_map = map;
5255}
5256
5257static int add_cea_modes(struct drm_connector *connector,
5258			 const struct drm_edid *drm_edid)
5259{
5260	const struct cea_db *db;
5261	struct cea_db_iter iter;
5262	int modes;
5263
5264	/* CTA VDB block VICs parsed earlier */
5265	modes = add_cta_vdb_modes(connector);
5266
5267	cea_db_iter_edid_begin(drm_edid, &iter);
5268	cea_db_iter_for_each(db, &iter) {
5269		if (cea_db_is_hdmi_vsdb(db)) {
5270			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5271						    cea_db_payload_len(db));
5272		} else if (cea_db_is_y420vdb(db)) {
5273			const u8 *vdb420 = cea_db_data(db) + 1;
5274
5275			/* Add 4:2:0(only) modes present in EDID */
5276			modes += do_y420vdb_modes(connector, vdb420,
5277						  cea_db_payload_len(db) - 1);
5278		}
5279	}
5280	cea_db_iter_end(&iter);
5281
5282	return modes;
5283}
5284
5285static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5286					  struct drm_display_mode *mode)
5287{
5288	const struct drm_display_mode *cea_mode;
5289	int clock1, clock2, clock;
5290	u8 vic;
5291	const char *type;
5292
5293	/*
5294	 * allow 5kHz clock difference either way to account for
5295	 * the 10kHz clock resolution limit of detailed timings.
5296	 */
5297	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5298	if (drm_valid_cea_vic(vic)) {
5299		type = "CEA";
5300		cea_mode = cea_mode_for_vic(vic);
5301		clock1 = cea_mode->clock;
5302		clock2 = cea_mode_alternate_clock(cea_mode);
5303	} else {
5304		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5305		if (drm_valid_hdmi_vic(vic)) {
5306			type = "HDMI";
5307			cea_mode = &edid_4k_modes[vic];
5308			clock1 = cea_mode->clock;
5309			clock2 = hdmi_mode_alternate_clock(cea_mode);
5310		} else {
5311			return;
5312		}
5313	}
5314
5315	/* pick whichever is closest */
5316	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5317		clock = clock1;
5318	else
5319		clock = clock2;
5320
5321	if (mode->clock == clock)
5322		return;
5323
5324	drm_dbg_kms(connector->dev,
5325		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5326		    connector->base.id, connector->name,
5327		    type, vic, mode->clock, clock);
5328	mode->clock = clock;
5329}
5330
5331static void drm_calculate_luminance_range(struct drm_connector *connector)
5332{
5333	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5334	struct drm_luminance_range_info *luminance_range =
5335		&connector->display_info.luminance_range;
5336	static const u8 pre_computed_values[] = {
5337		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5338		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5339	};
5340	u32 max_avg, min_cll, max, min, q, r;
5341
5342	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5343		return;
5344
5345	max_avg = hdr_metadata->max_fall;
5346	min_cll = hdr_metadata->min_cll;
5347
5348	/*
5349	 * From the specification (CTA-861-G), for calculating the maximum
5350	 * luminance we need to use:
5351	 *	Luminance = 50*2**(CV/32)
5352	 * Where CV is a one-byte value.
5353	 * For calculating this expression we may need float point precision;
5354	 * to avoid this complexity level, we take advantage that CV is divided
5355	 * by a constant. From the Euclids division algorithm, we know that CV
5356	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5357	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5358	 * need to pre-compute the value of r/32. For pre-computing the values
5359	 * We just used the following Ruby line:
5360	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5361	 * The results of the above expressions can be verified at
5362	 * pre_computed_values.
5363	 */
5364	q = max_avg >> 5;
5365	r = max_avg % 32;
5366	max = (1 << q) * pre_computed_values[r];
5367
5368	/* min luminance: maxLum * (CV/255)^2 / 100 */
5369	q = DIV_ROUND_CLOSEST(min_cll, 255);
5370	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5371
5372	luminance_range->min_luminance = min;
5373	luminance_range->max_luminance = max;
5374}
5375
5376static uint8_t eotf_supported(const u8 *edid_ext)
5377{
5378	return edid_ext[2] &
5379		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5380		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5381		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5382		 BIT(HDMI_EOTF_BT_2100_HLG));
5383}
5384
5385static uint8_t hdr_metadata_type(const u8 *edid_ext)
5386{
5387	return edid_ext[3] &
5388		BIT(HDMI_STATIC_METADATA_TYPE1);
5389}
5390
5391static void
5392drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5393{
5394	u16 len;
5395
5396	len = cea_db_payload_len(db);
5397
5398	connector->hdr_sink_metadata.hdmi_type1.eotf =
5399						eotf_supported(db);
5400	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5401						hdr_metadata_type(db);
5402
5403	if (len >= 4)
5404		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5405	if (len >= 5)
5406		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5407	if (len >= 6) {
5408		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5409
5410		/* Calculate only when all values are available */
5411		drm_calculate_luminance_range(connector);
5412	}
5413}
5414
5415/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5416static void
5417drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5418{
5419	u8 len = cea_db_payload_len(db);
5420
5421	if (len >= 6 && (db[6] & (1 << 7)))
5422		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5423
5424	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5425		connector->latency_present[0] = true;
5426		connector->video_latency[0] = db[9];
5427		connector->audio_latency[0] = db[10];
5428	}
5429
5430	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5431		connector->latency_present[1] = true;
5432		connector->video_latency[1] = db[11];
5433		connector->audio_latency[1] = db[12];
5434	}
5435
5436	drm_dbg_kms(connector->dev,
5437		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5438		    connector->base.id, connector->name,
5439		    connector->latency_present[0], connector->latency_present[1],
5440		    connector->video_latency[0], connector->video_latency[1],
5441		    connector->audio_latency[0], connector->audio_latency[1]);
5442}
5443
5444static void
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5445monitor_name(const struct detailed_timing *timing, void *data)
5446{
5447	const char **res = data;
5448
5449	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5450		return;
5451
5452	*res = timing->data.other_data.data.str.str;
5453}
5454
5455static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5456{
5457	const char *edid_name = NULL;
5458	int mnl;
5459
5460	if (!drm_edid || !name)
5461		return 0;
5462
5463	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5464	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5465		if (edid_name[mnl] == 0x0a)
5466			break;
5467
5468		name[mnl] = edid_name[mnl];
5469	}
5470
5471	return mnl;
5472}
5473
5474/**
5475 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5476 * @edid: monitor EDID information
5477 * @name: pointer to a character array to hold the name of the monitor
5478 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5479 *
5480 */
5481void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5482{
5483	int name_length = 0;
5484
5485	if (bufsize <= 0)
5486		return;
5487
5488	if (edid) {
5489		char buf[13];
5490		struct drm_edid drm_edid = {
5491			.edid = edid,
5492			.size = edid_size(edid),
5493		};
5494
5495		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5496		memcpy(name, buf, name_length);
5497	}
5498
5499	name[name_length] = '\0';
5500}
5501EXPORT_SYMBOL(drm_edid_get_monitor_name);
5502
5503static void clear_eld(struct drm_connector *connector)
5504{
 
5505	memset(connector->eld, 0, sizeof(connector->eld));
 
5506
5507	connector->latency_present[0] = false;
5508	connector->latency_present[1] = false;
5509	connector->video_latency[0] = 0;
5510	connector->audio_latency[0] = 0;
5511	connector->video_latency[1] = 0;
5512	connector->audio_latency[1] = 0;
5513}
5514
5515/*
5516 * Get 3-byte SAD buffer from struct cea_sad.
5517 */
5518void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5519{
5520	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5521	sad[1] = cta_sad->freq;
5522	sad[2] = cta_sad->byte2;
5523}
5524
5525/*
5526 * Set struct cea_sad from 3-byte SAD buffer.
5527 */
5528void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5529{
5530	cta_sad->format = (sad[0] & 0x78) >> 3;
5531	cta_sad->channels = sad[0] & 0x07;
5532	cta_sad->freq = sad[1] & 0x7f;
5533	cta_sad->byte2 = sad[2];
5534}
5535
5536/*
5537 * drm_edid_to_eld - build ELD from EDID
5538 * @connector: connector corresponding to the HDMI/DP sink
5539 * @drm_edid: EDID to parse
5540 *
5541 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5542 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5543 */
5544static void drm_edid_to_eld(struct drm_connector *connector,
5545			    const struct drm_edid *drm_edid)
5546{
5547	const struct drm_display_info *info = &connector->display_info;
5548	const struct cea_db *db;
5549	struct cea_db_iter iter;
5550	uint8_t *eld = connector->eld;
5551	int total_sad_count = 0;
5552	int mnl;
5553
5554	if (!drm_edid)
5555		return;
5556
 
 
5557	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5558	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5559		    connector->base.id, connector->name,
5560		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5561
5562	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5563	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5564
5565	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5566
5567	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5568	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5569	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5570	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5571
5572	cea_db_iter_edid_begin(drm_edid, &iter);
5573	cea_db_iter_for_each(db, &iter) {
5574		const u8 *data = cea_db_data(db);
5575		int len = cea_db_payload_len(db);
5576		int sad_count;
5577
5578		switch (cea_db_tag(db)) {
5579		case CTA_DB_AUDIO:
5580			/* Audio Data Block, contains SADs */
5581			sad_count = min(len / 3, 15 - total_sad_count);
5582			if (sad_count >= 1)
5583				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5584				       data, sad_count * 3);
5585			total_sad_count += sad_count;
5586			break;
5587		case CTA_DB_SPEAKER:
5588			/* Speaker Allocation Data Block */
5589			if (len >= 1)
5590				eld[DRM_ELD_SPEAKER] = data[0];
5591			break;
5592		case CTA_DB_VENDOR:
5593			/* HDMI Vendor-Specific Data Block */
5594			if (cea_db_is_hdmi_vsdb(db))
5595				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5596			break;
5597		default:
5598			break;
5599		}
5600	}
5601	cea_db_iter_end(&iter);
5602
5603	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5604
5605	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5606	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5607		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5608	else
5609		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5610
5611	eld[DRM_ELD_BASELINE_ELD_LEN] =
5612		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5613
5614	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5615		    connector->base.id, connector->name,
5616		    drm_eld_size(eld), total_sad_count);
 
 
5617}
5618
5619static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5620			    struct cea_sad **psads)
5621{
5622	const struct cea_db *db;
5623	struct cea_db_iter iter;
5624	int count = 0;
5625
5626	cea_db_iter_edid_begin(drm_edid, &iter);
5627	cea_db_iter_for_each(db, &iter) {
5628		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5629			struct cea_sad *sads;
5630			int i;
5631
5632			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5633			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5634			*psads = sads;
5635			if (!sads)
5636				return -ENOMEM;
5637			for (i = 0; i < count; i++)
5638				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5639			break;
5640		}
5641	}
5642	cea_db_iter_end(&iter);
5643
5644	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5645
5646	return count;
5647}
5648
5649/**
5650 * drm_edid_to_sad - extracts SADs from EDID
5651 * @edid: EDID to parse
5652 * @sads: pointer that will be set to the extracted SADs
5653 *
5654 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5655 *
5656 * Note: The returned pointer needs to be freed using kfree().
5657 *
5658 * Return: The number of found SADs or negative number on error.
5659 */
5660int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5661{
5662	struct drm_edid drm_edid;
5663
5664	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5665}
5666EXPORT_SYMBOL(drm_edid_to_sad);
5667
5668static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5669					   u8 **sadb)
5670{
5671	const struct cea_db *db;
5672	struct cea_db_iter iter;
5673	int count = 0;
5674
5675	cea_db_iter_edid_begin(drm_edid, &iter);
5676	cea_db_iter_for_each(db, &iter) {
5677		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5678		    cea_db_payload_len(db) == 3) {
5679			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5680					GFP_KERNEL);
5681			if (!*sadb)
5682				return -ENOMEM;
5683			count = cea_db_payload_len(db);
5684			break;
5685		}
5686	}
5687	cea_db_iter_end(&iter);
5688
5689	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5690
5691	return count;
5692}
5693
5694/**
5695 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5696 * @edid: EDID to parse
5697 * @sadb: pointer to the speaker block
5698 *
5699 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5700 *
5701 * Note: The returned pointer needs to be freed using kfree().
5702 *
5703 * Return: The number of found Speaker Allocation Blocks or negative number on
5704 * error.
5705 */
5706int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5707{
5708	struct drm_edid drm_edid;
5709
5710	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5711					       sadb);
5712}
5713EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5714
5715/**
5716 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5717 * @connector: connector associated with the HDMI/DP sink
5718 * @mode: the display mode
5719 *
5720 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5721 * the sink doesn't support audio or video.
5722 */
5723int drm_av_sync_delay(struct drm_connector *connector,
5724		      const struct drm_display_mode *mode)
5725{
5726	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5727	int a, v;
5728
5729	if (!connector->latency_present[0])
5730		return 0;
5731	if (!connector->latency_present[1])
5732		i = 0;
5733
5734	a = connector->audio_latency[i];
5735	v = connector->video_latency[i];
5736
5737	/*
5738	 * HDMI/DP sink doesn't support audio or video?
5739	 */
5740	if (a == 255 || v == 255)
5741		return 0;
5742
5743	/*
5744	 * Convert raw EDID values to millisecond.
5745	 * Treat unknown latency as 0ms.
5746	 */
5747	if (a)
5748		a = min(2 * (a - 1), 500);
5749	if (v)
5750		v = min(2 * (v - 1), 500);
5751
5752	return max(v - a, 0);
5753}
5754EXPORT_SYMBOL(drm_av_sync_delay);
5755
5756static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5757{
5758	const struct cea_db *db;
5759	struct cea_db_iter iter;
5760	bool hdmi = false;
5761
5762	/*
5763	 * Because HDMI identifier is in Vendor Specific Block,
5764	 * search it from all data blocks of CEA extension.
5765	 */
5766	cea_db_iter_edid_begin(drm_edid, &iter);
5767	cea_db_iter_for_each(db, &iter) {
5768		if (cea_db_is_hdmi_vsdb(db)) {
5769			hdmi = true;
5770			break;
5771		}
5772	}
5773	cea_db_iter_end(&iter);
5774
5775	return hdmi;
5776}
5777
5778/**
5779 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5780 * @edid: monitor EDID information
5781 *
5782 * Parse the CEA extension according to CEA-861-B.
5783 *
5784 * Drivers that have added the modes parsed from EDID to drm_display_info
5785 * should use &drm_display_info.is_hdmi instead of calling this function.
5786 *
5787 * Return: True if the monitor is HDMI, false if not or unknown.
5788 */
5789bool drm_detect_hdmi_monitor(const struct edid *edid)
5790{
5791	struct drm_edid drm_edid;
5792
5793	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5794}
5795EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5796
5797static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5798{
5799	struct drm_edid_iter edid_iter;
5800	const struct cea_db *db;
5801	struct cea_db_iter iter;
5802	const u8 *edid_ext;
5803	bool has_audio = false;
5804
5805	drm_edid_iter_begin(drm_edid, &edid_iter);
5806	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5807		if (edid_ext[0] == CEA_EXT) {
5808			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5809			if (has_audio)
5810				break;
5811		}
5812	}
5813	drm_edid_iter_end(&edid_iter);
5814
5815	if (has_audio) {
5816		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5817		goto end;
5818	}
5819
5820	cea_db_iter_edid_begin(drm_edid, &iter);
5821	cea_db_iter_for_each(db, &iter) {
5822		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5823			const u8 *data = cea_db_data(db);
5824			int i;
5825
5826			for (i = 0; i < cea_db_payload_len(db); i += 3)
5827				DRM_DEBUG_KMS("CEA audio format %d\n",
5828					      (data[i] >> 3) & 0xf);
5829			has_audio = true;
5830			break;
5831		}
5832	}
5833	cea_db_iter_end(&iter);
5834
5835end:
5836	return has_audio;
5837}
5838
5839/**
5840 * drm_detect_monitor_audio - check monitor audio capability
5841 * @edid: EDID block to scan
5842 *
5843 * Monitor should have CEA extension block.
5844 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5845 * audio' only. If there is any audio extension block and supported
5846 * audio format, assume at least 'basic audio' support, even if 'basic
5847 * audio' is not defined in EDID.
5848 *
5849 * Return: True if the monitor supports audio, false otherwise.
5850 */
5851bool drm_detect_monitor_audio(const struct edid *edid)
5852{
5853	struct drm_edid drm_edid;
5854
5855	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5856}
5857EXPORT_SYMBOL(drm_detect_monitor_audio);
5858
5859
5860/**
5861 * drm_default_rgb_quant_range - default RGB quantization range
5862 * @mode: display mode
5863 *
5864 * Determine the default RGB quantization range for the mode,
5865 * as specified in CEA-861.
5866 *
5867 * Return: The default RGB quantization range for the mode
5868 */
5869enum hdmi_quantization_range
5870drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5871{
5872	/* All CEA modes other than VIC 1 use limited quantization range. */
5873	return drm_match_cea_mode(mode) > 1 ?
5874		HDMI_QUANTIZATION_RANGE_LIMITED :
5875		HDMI_QUANTIZATION_RANGE_FULL;
5876}
5877EXPORT_SYMBOL(drm_default_rgb_quant_range);
5878
5879/* CTA-861 Video Data Block (CTA VDB) */
5880static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5881{
5882	struct drm_display_info *info = &connector->display_info;
5883	int i, vic_index, len = cea_db_payload_len(db);
5884	const u8 *svds = cea_db_data(db);
5885	u8 *vics;
5886
5887	if (!len)
5888		return;
5889
5890	/* Gracefully handle multiple VDBs, however unlikely that is */
5891	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5892	if (!vics)
5893		return;
5894
5895	vic_index = info->vics_len;
5896	info->vics_len += len;
5897	info->vics = vics;
5898
5899	for (i = 0; i < len; i++) {
5900		u8 vic = svd_to_vic(svds[i]);
5901
5902		if (!drm_valid_cea_vic(vic))
5903			vic = 0;
5904
5905		info->vics[vic_index++] = vic;
5906	}
5907}
5908
5909/*
5910 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5911 *
5912 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5913 * using the VICs themselves.
5914 */
5915static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5916{
5917	struct drm_display_info *info = &connector->display_info;
5918	struct drm_hdmi_info *hdmi = &info->hdmi;
5919	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5920
5921	for (i = 0; i < len; i++) {
5922		u8 vic = info->vics[i];
5923
5924		if (vic && y420cmdb_map & BIT_ULL(i))
5925			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5926	}
5927}
5928
5929static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5930{
5931	const struct drm_display_info *info = &connector->display_info;
5932	int i;
5933
5934	if (!vic || !info->vics)
5935		return false;
5936
5937	for (i = 0; i < info->vics_len; i++) {
5938		if (info->vics[i] == vic)
5939			return true;
5940	}
5941
5942	return false;
5943}
5944
5945/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5946static void parse_cta_y420vdb(struct drm_connector *connector,
5947			      const struct cea_db *db)
5948{
5949	struct drm_display_info *info = &connector->display_info;
5950	struct drm_hdmi_info *hdmi = &info->hdmi;
5951	const u8 *svds = cea_db_data(db) + 1;
5952	int i;
5953
5954	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5955		u8 vic = svd_to_vic(svds[i]);
5956
5957		if (!drm_valid_cea_vic(vic))
5958			continue;
5959
5960		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5961		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5962	}
5963}
5964
5965static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5966{
5967	struct drm_display_info *info = &connector->display_info;
5968
5969	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5970		    connector->base.id, connector->name, db[2]);
5971
5972	if (db[2] & EDID_CEA_VCDB_QS)
5973		info->rgb_quant_range_selectable = true;
5974}
5975
5976static
5977void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5978{
5979	switch (max_frl_rate) {
5980	case 1:
5981		*max_lanes = 3;
5982		*max_rate_per_lane = 3;
5983		break;
5984	case 2:
5985		*max_lanes = 3;
5986		*max_rate_per_lane = 6;
5987		break;
5988	case 3:
5989		*max_lanes = 4;
5990		*max_rate_per_lane = 6;
5991		break;
5992	case 4:
5993		*max_lanes = 4;
5994		*max_rate_per_lane = 8;
5995		break;
5996	case 5:
5997		*max_lanes = 4;
5998		*max_rate_per_lane = 10;
5999		break;
6000	case 6:
6001		*max_lanes = 4;
6002		*max_rate_per_lane = 12;
6003		break;
6004	case 0:
6005	default:
6006		*max_lanes = 0;
6007		*max_rate_per_lane = 0;
6008	}
6009}
6010
6011static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6012					       const u8 *db)
6013{
6014	u8 dc_mask;
6015	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6016
6017	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6018	hdmi->y420_dc_modes = dc_mask;
6019}
6020
6021static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6022			       const u8 *hf_scds)
6023{
6024	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6025
6026	if (!hdmi_dsc->v_1p2)
6027		return;
6028
6029	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6030	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6031
6032	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6033		hdmi_dsc->bpc_supported = 16;
6034	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6035		hdmi_dsc->bpc_supported = 12;
6036	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6037		hdmi_dsc->bpc_supported = 10;
6038	else
6039		/* Supports min 8 BPC if DSC 1.2 is supported*/
6040		hdmi_dsc->bpc_supported = 8;
6041
6042	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6043		u8 dsc_max_slices;
6044		u8 dsc_max_frl_rate;
6045
6046		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6047		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6048				     &hdmi_dsc->max_frl_rate_per_lane);
6049
6050		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6051
6052		switch (dsc_max_slices) {
6053		case 1:
6054			hdmi_dsc->max_slices = 1;
6055			hdmi_dsc->clk_per_slice = 340;
6056			break;
6057		case 2:
6058			hdmi_dsc->max_slices = 2;
6059			hdmi_dsc->clk_per_slice = 340;
6060			break;
6061		case 3:
6062			hdmi_dsc->max_slices = 4;
6063			hdmi_dsc->clk_per_slice = 340;
6064			break;
6065		case 4:
6066			hdmi_dsc->max_slices = 8;
6067			hdmi_dsc->clk_per_slice = 340;
6068			break;
6069		case 5:
6070			hdmi_dsc->max_slices = 8;
6071			hdmi_dsc->clk_per_slice = 400;
6072			break;
6073		case 6:
6074			hdmi_dsc->max_slices = 12;
6075			hdmi_dsc->clk_per_slice = 400;
6076			break;
6077		case 7:
6078			hdmi_dsc->max_slices = 16;
6079			hdmi_dsc->clk_per_slice = 400;
6080			break;
6081		case 0:
6082		default:
6083			hdmi_dsc->max_slices = 0;
6084			hdmi_dsc->clk_per_slice = 0;
6085		}
6086	}
6087
6088	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6089		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6090}
6091
6092/* Sink Capability Data Structure */
6093static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6094				      const u8 *hf_scds)
6095{
6096	struct drm_display_info *info = &connector->display_info;
6097	struct drm_hdmi_info *hdmi = &info->hdmi;
6098	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6099	int max_tmds_clock = 0;
6100	u8 max_frl_rate = 0;
6101	bool dsc_support = false;
6102
6103	info->has_hdmi_infoframe = true;
6104
6105	if (hf_scds[6] & 0x80) {
6106		hdmi->scdc.supported = true;
6107		if (hf_scds[6] & 0x40)
6108			hdmi->scdc.read_request = true;
6109	}
6110
6111	/*
6112	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6113	 * And as per the spec, three factors confirm this:
6114	 * * Availability of a HF-VSDB block in EDID (check)
6115	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6116	 * * SCDC support available (let's check)
6117	 * Lets check it out.
6118	 */
6119
6120	if (hf_scds[5]) {
6121		struct drm_scdc *scdc = &hdmi->scdc;
6122
6123		/* max clock is 5000 KHz times block value */
6124		max_tmds_clock = hf_scds[5] * 5000;
6125
6126		if (max_tmds_clock > 340000) {
6127			info->max_tmds_clock = max_tmds_clock;
6128		}
6129
6130		if (scdc->supported) {
6131			scdc->scrambling.supported = true;
6132
6133			/* Few sinks support scrambling for clocks < 340M */
6134			if ((hf_scds[6] & 0x8))
6135				scdc->scrambling.low_rates = true;
6136		}
6137	}
6138
6139	if (hf_scds[7]) {
6140		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6141		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6142				     &hdmi->max_frl_rate_per_lane);
6143	}
6144
6145	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6146
6147	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6148		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6149		dsc_support = true;
6150	}
6151
6152	drm_dbg_kms(connector->dev,
6153		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6154		    connector->base.id, connector->name,
6155		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6156}
6157
6158static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6159					   const u8 *hdmi)
6160{
6161	struct drm_display_info *info = &connector->display_info;
6162	unsigned int dc_bpc = 0;
6163
6164	/* HDMI supports at least 8 bpc */
6165	info->bpc = 8;
6166
6167	if (cea_db_payload_len(hdmi) < 6)
6168		return;
6169
6170	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6171		dc_bpc = 10;
6172		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6173		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6174			    connector->base.id, connector->name);
6175	}
6176
6177	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6178		dc_bpc = 12;
6179		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6180		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6181			    connector->base.id, connector->name);
6182	}
6183
6184	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6185		dc_bpc = 16;
6186		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6187		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6188			    connector->base.id, connector->name);
6189	}
6190
6191	if (dc_bpc == 0) {
6192		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6193			    connector->base.id, connector->name);
6194		return;
6195	}
6196
6197	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6198		    connector->base.id, connector->name, dc_bpc);
6199	info->bpc = dc_bpc;
6200
6201	/* YCRCB444 is optional according to spec. */
6202	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6203		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6204		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6205			    connector->base.id, connector->name);
6206	}
6207
6208	/*
6209	 * Spec says that if any deep color mode is supported at all,
6210	 * then deep color 36 bit must be supported.
6211	 */
6212	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6213		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6214			    connector->base.id, connector->name);
6215	}
6216}
6217
6218/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6219static void
6220drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6221{
6222	struct drm_display_info *info = &connector->display_info;
6223	u8 len = cea_db_payload_len(db);
6224
6225	info->is_hdmi = true;
6226
6227	info->source_physical_address = (db[4] << 8) | db[5];
6228
6229	if (len >= 6)
6230		info->dvi_dual = db[6] & 1;
6231	if (len >= 7)
6232		info->max_tmds_clock = db[7] * 5000;
6233
6234	/*
6235	 * Try to infer whether the sink supports HDMI infoframes.
6236	 *
6237	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6238	 * supports infoframes if HDMI_Video_present is set.
6239	 */
6240	if (len >= 8 && db[8] & BIT(5))
6241		info->has_hdmi_infoframe = true;
6242
6243	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6244		    connector->base.id, connector->name,
6245		    info->dvi_dual, info->max_tmds_clock);
6246
6247	drm_parse_hdmi_deep_color_info(connector, db);
6248}
6249
6250/*
6251 * See EDID extension for head-mounted and specialized monitors, specified at:
6252 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6253 */
6254static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6255				     const u8 *db)
6256{
6257	struct drm_display_info *info = &connector->display_info;
6258	u8 version = db[4];
6259	bool desktop_usage = db[5] & BIT(6);
6260
6261	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6262	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6263		info->non_desktop = true;
6264
6265	drm_dbg_kms(connector->dev,
6266		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6267		    connector->base.id, connector->name, version, db[5]);
6268}
6269
6270static void drm_parse_cea_ext(struct drm_connector *connector,
6271			      const struct drm_edid *drm_edid)
6272{
6273	struct drm_display_info *info = &connector->display_info;
6274	struct drm_edid_iter edid_iter;
6275	const struct cea_db *db;
6276	struct cea_db_iter iter;
6277	const u8 *edid_ext;
6278	u64 y420cmdb_map = 0;
6279
6280	drm_edid_iter_begin(drm_edid, &edid_iter);
6281	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6282		if (edid_ext[0] != CEA_EXT)
6283			continue;
6284
6285		if (!info->cea_rev)
6286			info->cea_rev = edid_ext[1];
6287
6288		if (info->cea_rev != edid_ext[1])
6289			drm_dbg_kms(connector->dev,
6290				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6291				    connector->base.id, connector->name,
6292				    info->cea_rev, edid_ext[1]);
6293
6294		/* The existence of a CTA extension should imply RGB support */
6295		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6296		if (edid_ext[3] & EDID_CEA_YCRCB444)
6297			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6298		if (edid_ext[3] & EDID_CEA_YCRCB422)
6299			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6300		if (edid_ext[3] & EDID_BASIC_AUDIO)
6301			info->has_audio = true;
6302
6303	}
6304	drm_edid_iter_end(&edid_iter);
6305
6306	cea_db_iter_edid_begin(drm_edid, &iter);
6307	cea_db_iter_for_each(db, &iter) {
6308		/* FIXME: convert parsers to use struct cea_db */
6309		const u8 *data = (const u8 *)db;
6310
6311		if (cea_db_is_hdmi_vsdb(db))
6312			drm_parse_hdmi_vsdb_video(connector, data);
6313		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6314			 cea_db_is_hdmi_forum_scdb(db))
6315			drm_parse_hdmi_forum_scds(connector, data);
6316		else if (cea_db_is_microsoft_vsdb(db))
6317			drm_parse_microsoft_vsdb(connector, data);
6318		else if (cea_db_is_y420cmdb(db))
6319			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6320		else if (cea_db_is_y420vdb(db))
6321			parse_cta_y420vdb(connector, db);
6322		else if (cea_db_is_vcdb(db))
6323			drm_parse_vcdb(connector, data);
6324		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6325			drm_parse_hdr_metadata_block(connector, data);
6326		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6327			parse_cta_vdb(connector, db);
6328		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6329			info->has_audio = true;
6330	}
6331	cea_db_iter_end(&iter);
6332
6333	if (y420cmdb_map)
6334		update_cta_y420cmdb(connector, y420cmdb_map);
6335}
6336
6337static
6338void get_monitor_range(const struct detailed_timing *timing, void *c)
6339{
6340	struct detailed_mode_closure *closure = c;
6341	struct drm_display_info *info = &closure->connector->display_info;
6342	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6343	const struct detailed_non_pixel *data = &timing->data.other_data;
6344	const struct detailed_data_monitor_range *range = &data->data.range;
6345	const struct edid *edid = closure->drm_edid->edid;
6346
6347	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6348		return;
6349
6350	/*
6351	 * These limits are used to determine the VRR refresh
6352	 * rate range. Only the "range limits only" variant
6353	 * of the range descriptor seems to guarantee that
6354	 * any and all timings are accepted by the sink, as
6355	 * opposed to just timings conforming to the indicated
6356	 * formula (GTF/GTF2/CVT). Thus other variants of the
6357	 * range descriptor are not accepted here.
6358	 */
6359	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6360		return;
6361
6362	monitor_range->min_vfreq = range->min_vfreq;
6363	monitor_range->max_vfreq = range->max_vfreq;
6364
6365	if (edid->revision >= 4) {
6366		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6367			monitor_range->min_vfreq += 255;
6368		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6369			monitor_range->max_vfreq += 255;
6370	}
6371}
6372
6373static void drm_get_monitor_range(struct drm_connector *connector,
6374				  const struct drm_edid *drm_edid)
6375{
6376	const struct drm_display_info *info = &connector->display_info;
6377	struct detailed_mode_closure closure = {
6378		.connector = connector,
6379		.drm_edid = drm_edid,
6380	};
6381
6382	if (drm_edid->edid->revision < 4)
6383		return;
6384
6385	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6386		return;
6387
6388	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6389
6390	drm_dbg_kms(connector->dev,
6391		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6392		    connector->base.id, connector->name,
6393		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6394}
6395
6396static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6397				    const struct displayid_block *block)
6398{
6399	struct displayid_vesa_vendor_specific_block *vesa =
6400		(struct displayid_vesa_vendor_specific_block *)block;
6401	struct drm_display_info *info = &connector->display_info;
6402
6403	if (block->num_bytes < 3) {
6404		drm_dbg_kms(connector->dev,
6405			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6406			    connector->base.id, connector->name, block->num_bytes);
6407		return;
6408	}
6409
6410	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6411		return;
6412
6413	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6414		drm_dbg_kms(connector->dev,
6415			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6416			    connector->base.id, connector->name);
6417		return;
6418	}
6419
6420	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6421	default:
6422		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6423			    connector->base.id, connector->name);
6424		fallthrough;
6425	case 0:
6426		info->mso_stream_count = 0;
6427		break;
6428	case 1:
6429		info->mso_stream_count = 2; /* 2 or 4 links */
6430		break;
6431	case 2:
6432		info->mso_stream_count = 4; /* 4 links */
6433		break;
6434	}
6435
6436	if (!info->mso_stream_count) {
6437		info->mso_pixel_overlap = 0;
6438		return;
6439	}
6440
6441	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6442	if (info->mso_pixel_overlap > 8) {
6443		drm_dbg_kms(connector->dev,
6444			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6445			    connector->base.id, connector->name,
6446			    info->mso_pixel_overlap);
6447		info->mso_pixel_overlap = 8;
6448	}
6449
6450	drm_dbg_kms(connector->dev,
6451		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6452		    connector->base.id, connector->name,
6453		    info->mso_stream_count, info->mso_pixel_overlap);
6454}
6455
6456static void drm_update_mso(struct drm_connector *connector,
6457			   const struct drm_edid *drm_edid)
6458{
6459	const struct displayid_block *block;
6460	struct displayid_iter iter;
6461
6462	displayid_iter_edid_begin(drm_edid, &iter);
6463	displayid_iter_for_each(block, &iter) {
6464		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6465			drm_parse_vesa_mso_data(connector, block);
6466	}
6467	displayid_iter_end(&iter);
6468}
6469
6470/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6471 * all of the values which would have been set from EDID
6472 */
6473static void drm_reset_display_info(struct drm_connector *connector)
6474{
6475	struct drm_display_info *info = &connector->display_info;
6476
6477	info->width_mm = 0;
6478	info->height_mm = 0;
6479
6480	info->bpc = 0;
6481	info->color_formats = 0;
6482	info->cea_rev = 0;
6483	info->max_tmds_clock = 0;
6484	info->dvi_dual = false;
6485	info->is_hdmi = false;
6486	info->has_audio = false;
6487	info->has_hdmi_infoframe = false;
6488	info->rgb_quant_range_selectable = false;
6489	memset(&info->hdmi, 0, sizeof(info->hdmi));
6490
6491	info->edid_hdmi_rgb444_dc_modes = 0;
6492	info->edid_hdmi_ycbcr444_dc_modes = 0;
6493
6494	info->non_desktop = 0;
6495	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6496	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6497
6498	info->mso_stream_count = 0;
6499	info->mso_pixel_overlap = 0;
6500	info->max_dsc_bpp = 0;
6501
6502	kfree(info->vics);
6503	info->vics = NULL;
6504	info->vics_len = 0;
6505
6506	info->quirks = 0;
6507
6508	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6509}
6510
6511static void update_displayid_info(struct drm_connector *connector,
6512				  const struct drm_edid *drm_edid)
6513{
6514	struct drm_display_info *info = &connector->display_info;
6515	const struct displayid_block *block;
6516	struct displayid_iter iter;
6517
6518	displayid_iter_edid_begin(drm_edid, &iter);
6519	displayid_iter_for_each(block, &iter) {
 
 
 
 
 
6520		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6521		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6522		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6523			info->non_desktop = true;
6524
6525		/*
6526		 * We're only interested in the base section here, no need to
6527		 * iterate further.
6528		 */
6529		break;
6530	}
6531	displayid_iter_end(&iter);
6532}
6533
6534static void update_display_info(struct drm_connector *connector,
6535				const struct drm_edid *drm_edid)
6536{
6537	struct drm_display_info *info = &connector->display_info;
6538	const struct edid *edid;
6539
6540	drm_reset_display_info(connector);
6541	clear_eld(connector);
6542
6543	if (!drm_edid)
6544		return;
6545
6546	edid = drm_edid->edid;
6547
6548	info->quirks = edid_get_quirks(drm_edid);
6549
6550	info->width_mm = edid->width_cm * 10;
6551	info->height_mm = edid->height_cm * 10;
6552
6553	drm_get_monitor_range(connector, drm_edid);
6554
6555	if (edid->revision < 3)
6556		goto out;
6557
6558	if (!drm_edid_is_digital(drm_edid))
6559		goto out;
6560
6561	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6562	drm_parse_cea_ext(connector, drm_edid);
6563
6564	update_displayid_info(connector, drm_edid);
6565
6566	/*
6567	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6568	 *
6569	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6570	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6571	 * extensions which tell otherwise.
6572	 */
6573	if (info->bpc == 0 && edid->revision == 3 &&
6574	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6575		info->bpc = 8;
6576		drm_dbg_kms(connector->dev,
6577			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6578			    connector->base.id, connector->name, info->bpc);
6579	}
6580
6581	/* Only defined for 1.4 with digital displays */
6582	if (edid->revision < 4)
6583		goto out;
6584
6585	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6586	case DRM_EDID_DIGITAL_DEPTH_6:
6587		info->bpc = 6;
6588		break;
6589	case DRM_EDID_DIGITAL_DEPTH_8:
6590		info->bpc = 8;
6591		break;
6592	case DRM_EDID_DIGITAL_DEPTH_10:
6593		info->bpc = 10;
6594		break;
6595	case DRM_EDID_DIGITAL_DEPTH_12:
6596		info->bpc = 12;
6597		break;
6598	case DRM_EDID_DIGITAL_DEPTH_14:
6599		info->bpc = 14;
6600		break;
6601	case DRM_EDID_DIGITAL_DEPTH_16:
6602		info->bpc = 16;
6603		break;
6604	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6605	default:
6606		info->bpc = 0;
6607		break;
6608	}
6609
6610	drm_dbg_kms(connector->dev,
6611		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6612		    connector->base.id, connector->name, info->bpc);
6613
6614	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6615		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6616	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6617		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6618
6619	drm_update_mso(connector, drm_edid);
6620
6621out:
6622	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6623		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6624			    connector->base.id, connector->name,
6625			    info->non_desktop ? " (redundant quirk)" : "");
6626		info->non_desktop = true;
6627	}
6628
6629	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6630		info->max_dsc_bpp = 15;
6631
6632	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6633		info->bpc = 6;
6634
6635	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6636		info->bpc = 8;
6637
6638	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6639		info->bpc = 10;
6640
6641	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6642		info->bpc = 12;
6643
6644	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6645	drm_edid_to_eld(connector, drm_edid);
6646}
6647
6648static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6649							    struct displayid_detailed_timings_1 *timings,
6650							    bool type_7)
6651{
6652	struct drm_display_mode *mode;
6653	unsigned pixel_clock = (timings->pixel_clock[0] |
6654				(timings->pixel_clock[1] << 8) |
6655				(timings->pixel_clock[2] << 16)) + 1;
6656	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6657	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6658	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6659	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6660	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6661	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6662	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6663	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6664	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6665	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6666
6667	mode = drm_mode_create(dev);
6668	if (!mode)
6669		return NULL;
6670
6671	/* resolution is kHz for type VII, and 10 kHz for type I */
6672	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6673	mode->hdisplay = hactive;
6674	mode->hsync_start = mode->hdisplay + hsync;
6675	mode->hsync_end = mode->hsync_start + hsync_width;
6676	mode->htotal = mode->hdisplay + hblank;
6677
6678	mode->vdisplay = vactive;
6679	mode->vsync_start = mode->vdisplay + vsync;
6680	mode->vsync_end = mode->vsync_start + vsync_width;
6681	mode->vtotal = mode->vdisplay + vblank;
6682
6683	mode->flags = 0;
6684	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6685	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6686	mode->type = DRM_MODE_TYPE_DRIVER;
6687
6688	if (timings->flags & 0x80)
6689		mode->type |= DRM_MODE_TYPE_PREFERRED;
6690	drm_mode_set_name(mode);
6691
6692	return mode;
6693}
6694
6695static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6696					  const struct displayid_block *block)
6697{
6698	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6699	int i;
6700	int num_timings;
6701	struct drm_display_mode *newmode;
6702	int num_modes = 0;
6703	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6704	/* blocks must be multiple of 20 bytes length */
6705	if (block->num_bytes % 20)
6706		return 0;
6707
6708	num_timings = block->num_bytes / 20;
6709	for (i = 0; i < num_timings; i++) {
6710		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6711
6712		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6713		if (!newmode)
6714			continue;
6715
6716		drm_mode_probed_add(connector, newmode);
6717		num_modes++;
6718	}
6719	return num_modes;
6720}
6721
6722static int add_displayid_detailed_modes(struct drm_connector *connector,
6723					const struct drm_edid *drm_edid)
6724{
6725	const struct displayid_block *block;
6726	struct displayid_iter iter;
6727	int num_modes = 0;
6728
6729	displayid_iter_edid_begin(drm_edid, &iter);
6730	displayid_iter_for_each(block, &iter) {
6731		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6732		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6733			num_modes += add_displayid_detailed_1_modes(connector, block);
6734	}
6735	displayid_iter_end(&iter);
6736
6737	return num_modes;
6738}
6739
6740static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6741					 const struct drm_edid *drm_edid)
6742{
6743	const struct drm_display_info *info = &connector->display_info;
6744	int num_modes = 0;
6745
6746	if (!drm_edid)
6747		return 0;
6748
6749	/*
6750	 * EDID spec says modes should be preferred in this order:
6751	 * - preferred detailed mode
6752	 * - other detailed modes from base block
6753	 * - detailed modes from extension blocks
6754	 * - CVT 3-byte code modes
6755	 * - standard timing codes
6756	 * - established timing codes
6757	 * - modes inferred from GTF or CVT range information
6758	 *
6759	 * We get this pretty much right.
6760	 *
6761	 * XXX order for additional mode types in extension blocks?
6762	 */
6763	num_modes += add_detailed_modes(connector, drm_edid);
6764	num_modes += add_cvt_modes(connector, drm_edid);
6765	num_modes += add_standard_modes(connector, drm_edid);
6766	num_modes += add_established_modes(connector, drm_edid);
6767	num_modes += add_cea_modes(connector, drm_edid);
6768	num_modes += add_alternate_cea_modes(connector, drm_edid);
6769	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6770	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6771		num_modes += add_inferred_modes(connector, drm_edid);
6772
6773	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6774		edid_fixup_preferred(connector);
6775
6776	return num_modes;
6777}
6778
6779static void _drm_update_tile_info(struct drm_connector *connector,
6780				  const struct drm_edid *drm_edid);
6781
6782static int _drm_edid_connector_property_update(struct drm_connector *connector,
6783					       const struct drm_edid *drm_edid)
6784{
6785	struct drm_device *dev = connector->dev;
6786	int ret;
6787
6788	if (connector->edid_blob_ptr) {
6789		const struct edid *old_edid = connector->edid_blob_ptr->data;
 
6790
6791		if (old_edid) {
6792			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6793				connector->epoch_counter++;
6794				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6795					    connector->base.id, connector->name,
6796					    connector->epoch_counter);
6797			}
6798		}
6799	}
6800
6801	ret = drm_property_replace_global_blob(dev,
6802					       &connector->edid_blob_ptr,
6803					       drm_edid ? drm_edid->size : 0,
6804					       drm_edid ? drm_edid->edid : NULL,
6805					       &connector->base,
6806					       dev->mode_config.edid_property);
6807	if (ret) {
6808		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6809			    connector->base.id, connector->name, ret);
6810		goto out;
6811	}
6812
6813	ret = drm_object_property_set_value(&connector->base,
6814					    dev->mode_config.non_desktop_property,
6815					    connector->display_info.non_desktop);
6816	if (ret) {
6817		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6818			    connector->base.id, connector->name, ret);
6819		goto out;
6820	}
6821
6822	ret = drm_connector_set_tile_property(connector);
6823	if (ret) {
6824		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6825			    connector->base.id, connector->name, ret);
6826		goto out;
6827	}
6828
6829out:
6830	return ret;
6831}
6832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6833/**
6834 * drm_edid_connector_update - Update connector information from EDID
6835 * @connector: Connector
6836 * @drm_edid: EDID
6837 *
6838 * Update the connector display info, ELD, HDR metadata, relevant properties,
6839 * etc. from the passed in EDID.
6840 *
6841 * If EDID is NULL, reset the information.
6842 *
6843 * Must be called before calling drm_edid_connector_add_modes().
6844 *
6845 * Return: 0 on success, negative error on errors.
6846 */
6847int drm_edid_connector_update(struct drm_connector *connector,
6848			      const struct drm_edid *drm_edid)
6849{
6850	update_display_info(connector, drm_edid);
6851
6852	_drm_update_tile_info(connector, drm_edid);
6853
6854	return _drm_edid_connector_property_update(connector, drm_edid);
6855}
6856EXPORT_SYMBOL(drm_edid_connector_update);
6857
6858/**
6859 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6860 * @connector: Connector
6861 *
6862 * Add the modes from the previously updated EDID property to the connector
6863 * probed modes list.
6864 *
6865 * drm_edid_connector_update() must have been called before this to update the
6866 * EDID property.
6867 *
6868 * Return: The number of modes added, or 0 if we couldn't find any.
6869 */
6870int drm_edid_connector_add_modes(struct drm_connector *connector)
6871{
6872	const struct drm_edid *drm_edid = NULL;
6873	int count;
6874
6875	if (connector->edid_blob_ptr)
6876		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6877					  connector->edid_blob_ptr->length);
6878
6879	count = _drm_edid_connector_add_modes(connector, drm_edid);
6880
6881	drm_edid_free(drm_edid);
6882
6883	return count;
6884}
6885EXPORT_SYMBOL(drm_edid_connector_add_modes);
6886
6887/**
6888 * drm_connector_update_edid_property - update the edid property of a connector
6889 * @connector: drm connector
6890 * @edid: new value of the edid property
6891 *
6892 * This function creates a new blob modeset object and assigns its id to the
6893 * connector's edid property.
6894 * Since we also parse tile information from EDID's displayID block, we also
6895 * set the connector's tile property here. See drm_connector_set_tile_property()
6896 * for more details.
6897 *
6898 * This function is deprecated. Use drm_edid_connector_update() instead.
6899 *
6900 * Returns:
6901 * Zero on success, negative errno on failure.
6902 */
6903int drm_connector_update_edid_property(struct drm_connector *connector,
6904				       const struct edid *edid)
6905{
6906	struct drm_edid drm_edid;
6907
6908	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6909}
6910EXPORT_SYMBOL(drm_connector_update_edid_property);
6911
6912/**
6913 * drm_add_edid_modes - add modes from EDID data, if available
6914 * @connector: connector we're probing
6915 * @edid: EDID data
6916 *
6917 * Add the specified modes to the connector's mode list. Also fills out the
6918 * &drm_display_info structure and ELD in @connector with any information which
6919 * can be derived from the edid.
6920 *
6921 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6922 *
6923 * Return: The number of modes added or 0 if we couldn't find any.
6924 */
6925int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6926{
6927	struct drm_edid _drm_edid;
6928	const struct drm_edid *drm_edid;
6929
6930	if (edid && !drm_edid_is_valid(edid)) {
6931		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6932			 connector->base.id, connector->name);
6933		edid = NULL;
6934	}
6935
6936	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6937
6938	update_display_info(connector, drm_edid);
6939
6940	return _drm_edid_connector_add_modes(connector, drm_edid);
6941}
6942EXPORT_SYMBOL(drm_add_edid_modes);
6943
6944/**
6945 * drm_add_modes_noedid - add modes for the connectors without EDID
6946 * @connector: connector we're probing
6947 * @hdisplay: the horizontal display limit
6948 * @vdisplay: the vertical display limit
6949 *
6950 * Add the specified modes to the connector's mode list. Only when the
6951 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6952 *
6953 * Return: The number of modes added or 0 if we couldn't find any.
6954 */
6955int drm_add_modes_noedid(struct drm_connector *connector,
6956			int hdisplay, int vdisplay)
6957{
6958	int i, count, num_modes = 0;
6959	struct drm_display_mode *mode;
6960	struct drm_device *dev = connector->dev;
6961
6962	count = ARRAY_SIZE(drm_dmt_modes);
6963	if (hdisplay < 0)
6964		hdisplay = 0;
6965	if (vdisplay < 0)
6966		vdisplay = 0;
6967
6968	for (i = 0; i < count; i++) {
6969		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6970
6971		if (hdisplay && vdisplay) {
6972			/*
6973			 * Only when two are valid, they will be used to check
6974			 * whether the mode should be added to the mode list of
6975			 * the connector.
6976			 */
6977			if (ptr->hdisplay > hdisplay ||
6978					ptr->vdisplay > vdisplay)
6979				continue;
6980		}
6981		if (drm_mode_vrefresh(ptr) > 61)
6982			continue;
6983		mode = drm_mode_duplicate(dev, ptr);
6984		if (mode) {
6985			drm_mode_probed_add(connector, mode);
6986			num_modes++;
6987		}
6988	}
6989	return num_modes;
6990}
6991EXPORT_SYMBOL(drm_add_modes_noedid);
6992
6993/**
6994 * drm_set_preferred_mode - Sets the preferred mode of a connector
6995 * @connector: connector whose mode list should be processed
6996 * @hpref: horizontal resolution of preferred mode
6997 * @vpref: vertical resolution of preferred mode
6998 *
6999 * Marks a mode as preferred if it matches the resolution specified by @hpref
7000 * and @vpref.
7001 */
7002void drm_set_preferred_mode(struct drm_connector *connector,
7003			   int hpref, int vpref)
7004{
7005	struct drm_display_mode *mode;
7006
7007	list_for_each_entry(mode, &connector->probed_modes, head) {
7008		if (mode->hdisplay == hpref &&
7009		    mode->vdisplay == vpref)
7010			mode->type |= DRM_MODE_TYPE_PREFERRED;
7011	}
7012}
7013EXPORT_SYMBOL(drm_set_preferred_mode);
7014
7015static bool is_hdmi2_sink(const struct drm_connector *connector)
7016{
7017	/*
7018	 * FIXME: sil-sii8620 doesn't have a connector around when
7019	 * we need one, so we have to be prepared for a NULL connector.
7020	 */
7021	if (!connector)
7022		return true;
7023
7024	return connector->display_info.hdmi.scdc.supported ||
7025		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7026}
7027
7028static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7029			    const struct drm_display_mode *mode)
7030{
7031	bool has_hdmi_infoframe = connector ?
7032		connector->display_info.has_hdmi_infoframe : false;
7033
7034	if (!has_hdmi_infoframe)
7035		return 0;
7036
7037	/* No HDMI VIC when signalling 3D video format */
7038	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7039		return 0;
7040
7041	return drm_match_hdmi_mode(mode);
7042}
7043
7044static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7045			   const struct drm_display_mode *mode)
7046{
7047	/*
7048	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7049	 * we should send its VIC in vendor infoframes, else send the
7050	 * VIC in AVI infoframes. Lets check if this mode is present in
7051	 * HDMI 1.4b 4K modes
7052	 */
7053	if (drm_mode_hdmi_vic(connector, mode))
7054		return 0;
7055
7056	return drm_match_cea_mode(mode);
7057}
7058
7059/*
7060 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7061 * conform to HDMI 1.4.
7062 *
7063 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7064 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7065 *
7066 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7067 * version.
7068 */
7069static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7070{
7071	if (!is_hdmi2_sink(connector) && vic > 64 &&
7072	    !cta_vdb_has_vic(connector, vic))
7073		return 0;
7074
7075	return vic;
7076}
7077
7078/**
7079 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7080 *                                              data from a DRM display mode
7081 * @frame: HDMI AVI infoframe
7082 * @connector: the connector
7083 * @mode: DRM display mode
7084 *
7085 * Return: 0 on success or a negative error code on failure.
7086 */
7087int
7088drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7089					 const struct drm_connector *connector,
7090					 const struct drm_display_mode *mode)
7091{
7092	enum hdmi_picture_aspect picture_aspect;
7093	u8 vic, hdmi_vic;
7094
7095	if (!frame || !mode)
7096		return -EINVAL;
7097
7098	hdmi_avi_infoframe_init(frame);
7099
7100	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7101		frame->pixel_repeat = 1;
7102
7103	vic = drm_mode_cea_vic(connector, mode);
7104	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7105
7106	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7107
7108	/*
7109	 * As some drivers don't support atomic, we can't use connector state.
7110	 * So just initialize the frame with default values, just the same way
7111	 * as it's done with other properties here.
7112	 */
7113	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7114	frame->itc = 0;
7115
7116	/*
7117	 * Populate picture aspect ratio from either
7118	 * user input (if specified) or from the CEA/HDMI mode lists.
7119	 */
7120	picture_aspect = mode->picture_aspect_ratio;
7121	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7122		if (vic)
7123			picture_aspect = drm_get_cea_aspect_ratio(vic);
7124		else if (hdmi_vic)
7125			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7126	}
7127
7128	/*
7129	 * The infoframe can't convey anything but none, 4:3
7130	 * and 16:9, so if the user has asked for anything else
7131	 * we can only satisfy it by specifying the right VIC.
7132	 */
7133	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7134		if (vic) {
7135			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7136				return -EINVAL;
7137		} else if (hdmi_vic) {
7138			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7139				return -EINVAL;
7140		} else {
7141			return -EINVAL;
7142		}
7143
7144		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7145	}
7146
7147	frame->video_code = vic_for_avi_infoframe(connector, vic);
7148	frame->picture_aspect = picture_aspect;
7149	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7150	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7151
7152	return 0;
7153}
7154EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7155
7156/**
7157 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7158 *                                        quantization range information
7159 * @frame: HDMI AVI infoframe
7160 * @connector: the connector
7161 * @mode: DRM display mode
7162 * @rgb_quant_range: RGB quantization range (Q)
7163 */
7164void
7165drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7166				   const struct drm_connector *connector,
7167				   const struct drm_display_mode *mode,
7168				   enum hdmi_quantization_range rgb_quant_range)
7169{
7170	const struct drm_display_info *info = &connector->display_info;
7171
7172	/*
7173	 * CEA-861:
7174	 * "A Source shall not send a non-zero Q value that does not correspond
7175	 *  to the default RGB Quantization Range for the transmitted Picture
7176	 *  unless the Sink indicates support for the Q bit in a Video
7177	 *  Capabilities Data Block."
7178	 *
7179	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7180	 * default RGB quantization range for the mode, even when QS=0.
7181	 */
7182	if (info->rgb_quant_range_selectable ||
7183	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7184		frame->quantization_range = rgb_quant_range;
7185	else
7186		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7187
7188	/*
7189	 * CEA-861-F:
7190	 * "When transmitting any RGB colorimetry, the Source should set the
7191	 *  YQ-field to match the RGB Quantization Range being transmitted
7192	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7193	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7194	 *
7195	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7196	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7197	 * good way to tell which version of CEA-861 the sink supports, so
7198	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7199	 * on CEA-861-F.
7200	 */
7201	if (!is_hdmi2_sink(connector) ||
7202	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7203		frame->ycc_quantization_range =
7204			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7205	else
7206		frame->ycc_quantization_range =
7207			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7208}
7209EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7210
7211static enum hdmi_3d_structure
7212s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7213{
7214	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7215
7216	switch (layout) {
7217	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7218		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7219	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7220		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7221	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7222		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7223	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7224		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7225	case DRM_MODE_FLAG_3D_L_DEPTH:
7226		return HDMI_3D_STRUCTURE_L_DEPTH;
7227	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7228		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7229	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7230		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7231	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7232		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7233	default:
7234		return HDMI_3D_STRUCTURE_INVALID;
7235	}
7236}
7237
7238/**
7239 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7240 * data from a DRM display mode
7241 * @frame: HDMI vendor infoframe
7242 * @connector: the connector
7243 * @mode: DRM display mode
7244 *
7245 * Note that there's is a need to send HDMI vendor infoframes only when using a
7246 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7247 * function will return -EINVAL, error that can be safely ignored.
7248 *
7249 * Return: 0 on success or a negative error code on failure.
7250 */
7251int
7252drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7253					    const struct drm_connector *connector,
7254					    const struct drm_display_mode *mode)
7255{
7256	/*
7257	 * FIXME: sil-sii8620 doesn't have a connector around when
7258	 * we need one, so we have to be prepared for a NULL connector.
7259	 */
7260	bool has_hdmi_infoframe = connector ?
7261		connector->display_info.has_hdmi_infoframe : false;
7262	int err;
7263
7264	if (!frame || !mode)
7265		return -EINVAL;
7266
7267	if (!has_hdmi_infoframe)
7268		return -EINVAL;
7269
7270	err = hdmi_vendor_infoframe_init(frame);
7271	if (err < 0)
7272		return err;
7273
7274	/*
7275	 * Even if it's not absolutely necessary to send the infoframe
7276	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7277	 * know that the sink can handle it. This is based on a
7278	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7279	 * have trouble realizing that they should switch from 3D to 2D
7280	 * mode if the source simply stops sending the infoframe when
7281	 * it wants to switch from 3D to 2D.
7282	 */
7283	frame->vic = drm_mode_hdmi_vic(connector, mode);
7284	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7285
7286	return 0;
7287}
7288EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7289
7290static void drm_parse_tiled_block(struct drm_connector *connector,
7291				  const struct displayid_block *block)
7292{
7293	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7294	u16 w, h;
7295	u8 tile_v_loc, tile_h_loc;
7296	u8 num_v_tile, num_h_tile;
7297	struct drm_tile_group *tg;
7298
7299	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7300	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7301
7302	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7303	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7304	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7305	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7306
7307	connector->has_tile = true;
7308	if (tile->tile_cap & 0x80)
7309		connector->tile_is_single_monitor = true;
7310
7311	connector->num_h_tile = num_h_tile + 1;
7312	connector->num_v_tile = num_v_tile + 1;
7313	connector->tile_h_loc = tile_h_loc;
7314	connector->tile_v_loc = tile_v_loc;
7315	connector->tile_h_size = w + 1;
7316	connector->tile_v_size = h + 1;
7317
7318	drm_dbg_kms(connector->dev,
7319		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7320		    connector->base.id, connector->name,
7321		    tile->tile_cap,
7322		    connector->tile_h_size, connector->tile_v_size,
7323		    connector->num_h_tile, connector->num_v_tile,
7324		    connector->tile_h_loc, connector->tile_v_loc,
7325		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7326
7327	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7328	if (!tg)
7329		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7330	if (!tg)
7331		return;
7332
7333	if (connector->tile_group != tg) {
7334		/* if we haven't got a pointer,
7335		   take the reference, drop ref to old tile group */
7336		if (connector->tile_group)
7337			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7338		connector->tile_group = tg;
7339	} else {
7340		/* if same tile group, then release the ref we just took. */
7341		drm_mode_put_tile_group(connector->dev, tg);
7342	}
7343}
7344
7345static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7346				     const struct displayid_block *block)
7347{
7348	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7349		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7350		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7351		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7352}
7353
7354static void _drm_update_tile_info(struct drm_connector *connector,
7355				  const struct drm_edid *drm_edid)
7356{
7357	const struct displayid_block *block;
7358	struct displayid_iter iter;
7359
7360	connector->has_tile = false;
7361
7362	displayid_iter_edid_begin(drm_edid, &iter);
7363	displayid_iter_for_each(block, &iter) {
7364		if (displayid_is_tiled_block(&iter, block))
7365			drm_parse_tiled_block(connector, block);
7366	}
7367	displayid_iter_end(&iter);
7368
7369	if (!connector->has_tile && connector->tile_group) {
7370		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7371		connector->tile_group = NULL;
7372	}
7373}
7374
7375/**
7376 * drm_edid_is_digital - is digital?
7377 * @drm_edid: The EDID
7378 *
7379 * Return true if input is digital.
7380 */
7381bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7382{
7383	return drm_edid && drm_edid->edid &&
7384		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7385}
7386EXPORT_SYMBOL(drm_edid_is_digital);