Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
  32#include <linux/byteorder/generic.h>
  33#include <linux/cec.h>
  34#include <linux/hdmi.h>
  35#include <linux/i2c.h>
  36#include <linux/kernel.h>
  37#include <linux/module.h>
  38#include <linux/pci.h>
  39#include <linux/seq_buf.h>
  40#include <linux/slab.h>
  41#include <linux/vga_switcheroo.h>
  42
  43#include <drm/drm_drv.h>
  44#include <drm/drm_edid.h>
  45#include <drm/drm_eld.h>
  46#include <drm/drm_encoder.h>
  47#include <drm/drm_print.h>
  48
  49#include "drm_crtc_internal.h"
  50#include "drm_displayid_internal.h"
  51#include "drm_internal.h"
  52
  53static int oui(u8 first, u8 second, u8 third)
  54{
  55	return (first << 16) | (second << 8) | third;
  56}
  57
  58#define EDID_EST_TIMINGS 16
  59#define EDID_STD_TIMINGS 8
  60#define EDID_DETAILED_TIMINGS 4
  61
  62/*
  63 * EDID blocks out in the wild have a variety of bugs, try to collect
  64 * them here (note that userspace may work around broken monitors first,
  65 * but fixes should make their way here so that the kernel "just works"
  66 * on as many displays as possible).
  67 */
  68
  69/* First detailed mode wrong, use largest 60Hz mode */
  70#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  71/* Reported 135MHz pixel clock is too high, needs adjustment */
  72#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  73/* Prefer the largest mode at 75 Hz */
  74#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  75/* Detail timing is in cm not mm */
  76#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  77/* Detailed timing descriptors have bogus size values, so just take the
  78 * maximum size and use that.
  79 */
  80#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
 
 
  81/* use +hsync +vsync for detailed mode */
  82#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  83/* Force reduced-blanking timings for detailed modes */
  84#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  85/* Force 8bpc */
  86#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  87/* Force 12bpc */
  88#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  89/* Force 6bpc */
  90#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  91/* Force 10bpc */
  92#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  93/* Non desktop display (i.e. HMD) */
  94#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  95/* Cap the DSC target bitrate to 15bpp */
  96#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  97
  98#define MICROSOFT_IEEE_OUI	0xca125c
  99
 100struct detailed_mode_closure {
 101	struct drm_connector *connector;
 102	const struct drm_edid *drm_edid;
 103	bool preferred;
 
 104	int modes;
 105};
 106
 107struct drm_edid_match_closure {
 108	const struct drm_edid_ident *ident;
 109	bool matched;
 110};
 111
 112#define LEVEL_DMT	0
 113#define LEVEL_GTF	1
 114#define LEVEL_GTF2	2
 115#define LEVEL_CVT	3
 116
 117#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 118{ \
 119	.ident = { \
 120		.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, \
 121						     vend_chr_2, product_id), \
 122	}, \
 123	.quirks = _quirks \
 124}
 125
 126static const struct edid_quirk {
 127	const struct drm_edid_ident ident;
 128	u32 quirks;
 129} edid_quirk_list[] = {
 130	/* Acer AL1706 */
 131	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 132	/* Acer F51 */
 133	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 134
 135	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 136	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 137
 138	/* BenQ GW2765 */
 139	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
 140
 141	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 142	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 143
 144	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 145	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 146
 147	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 148	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 149
 150	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 151	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 152
 153	/* Belinea 10 15 55 */
 154	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 155	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 156
 157	/* Envision Peripherals, Inc. EN-7100e */
 158	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 159	/* Envision EN2028 */
 160	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 161
 162	/* Funai Electronics PM36B */
 163	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 164				       EDID_QUIRK_DETAILED_IN_CM),
 165
 166	/* LG 27GP950 */
 167	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 168
 169	/* LG 27GN950 */
 170	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 
 171
 172	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 173	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 174
 175	/* LG Philips LCD LP154W01-A5 */
 176	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 177	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 178
 179	/* Samsung SyncMaster 205BW.  Note: irony */
 180	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 181	/* Samsung SyncMaster 22[5-6]BW */
 182	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 183	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 184
 185	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 186	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 187
 188	/* ViewSonic VA2026w */
 189	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 190
 191	/* Medion MD 30217 PG */
 192	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 193
 194	/* Lenovo G50 */
 195	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 196
 197	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 198	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 199
 200	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 201	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 202
 203	/* Valve Index Headset */
 204	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 207	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 208	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 209	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 211	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 212	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 213	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 214	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 216	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 217	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 218	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 219	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 221
 222	/* HTC Vive and Vive Pro VR Headsets */
 223	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 224	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 225
 226	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 227	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 228	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 229	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 230	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 231
 232	/* Windows Mixed Reality Headsets */
 233	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 234	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 235	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 236	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 237	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 238	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 239
 240	/* Sony PlayStation VR Headset */
 241	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 242
 243	/* Sensics VR Headsets */
 244	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 245
 246	/* OSVR HDK and HDK2 VR Headsets */
 247	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 248	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
 249};
 250
 251/*
 252 * Autogenerated from the DMT spec.
 253 * This table is copied from xfree86/modes/xf86EdidModes.c.
 254 */
 255static const struct drm_display_mode drm_dmt_modes[] = {
 256	/* 0x01 - 640x350@85Hz */
 257	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 258		   736, 832, 0, 350, 382, 385, 445, 0,
 259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 260	/* 0x02 - 640x400@85Hz */
 261	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 262		   736, 832, 0, 400, 401, 404, 445, 0,
 263		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 264	/* 0x03 - 720x400@85Hz */
 265	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 266		   828, 936, 0, 400, 401, 404, 446, 0,
 267		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 268	/* 0x04 - 640x480@60Hz */
 269	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 270		   752, 800, 0, 480, 490, 492, 525, 0,
 271		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 272	/* 0x05 - 640x480@72Hz */
 273	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 274		   704, 832, 0, 480, 489, 492, 520, 0,
 275		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 276	/* 0x06 - 640x480@75Hz */
 277	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 278		   720, 840, 0, 480, 481, 484, 500, 0,
 279		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 280	/* 0x07 - 640x480@85Hz */
 281	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 282		   752, 832, 0, 480, 481, 484, 509, 0,
 283		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 284	/* 0x08 - 800x600@56Hz */
 285	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 286		   896, 1024, 0, 600, 601, 603, 625, 0,
 287		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 288	/* 0x09 - 800x600@60Hz */
 289	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 290		   968, 1056, 0, 600, 601, 605, 628, 0,
 291		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 292	/* 0x0a - 800x600@72Hz */
 293	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 294		   976, 1040, 0, 600, 637, 643, 666, 0,
 295		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 296	/* 0x0b - 800x600@75Hz */
 297	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 298		   896, 1056, 0, 600, 601, 604, 625, 0,
 299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 300	/* 0x0c - 800x600@85Hz */
 301	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 302		   896, 1048, 0, 600, 601, 604, 631, 0,
 303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 304	/* 0x0d - 800x600@120Hz RB */
 305	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 306		   880, 960, 0, 600, 603, 607, 636, 0,
 307		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 308	/* 0x0e - 848x480@60Hz */
 309	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 310		   976, 1088, 0, 480, 486, 494, 517, 0,
 311		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 312	/* 0x0f - 1024x768@43Hz, interlace */
 313	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 314		   1208, 1264, 0, 768, 768, 776, 817, 0,
 315		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 316		   DRM_MODE_FLAG_INTERLACE) },
 317	/* 0x10 - 1024x768@60Hz */
 318	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 319		   1184, 1344, 0, 768, 771, 777, 806, 0,
 320		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 321	/* 0x11 - 1024x768@70Hz */
 322	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 323		   1184, 1328, 0, 768, 771, 777, 806, 0,
 324		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 325	/* 0x12 - 1024x768@75Hz */
 326	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 327		   1136, 1312, 0, 768, 769, 772, 800, 0,
 328		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 329	/* 0x13 - 1024x768@85Hz */
 330	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 331		   1168, 1376, 0, 768, 769, 772, 808, 0,
 332		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 333	/* 0x14 - 1024x768@120Hz RB */
 334	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 335		   1104, 1184, 0, 768, 771, 775, 813, 0,
 336		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 337	/* 0x15 - 1152x864@75Hz */
 338	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 339		   1344, 1600, 0, 864, 865, 868, 900, 0,
 340		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 341	/* 0x55 - 1280x720@60Hz */
 342	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 343		   1430, 1650, 0, 720, 725, 730, 750, 0,
 344		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 345	/* 0x16 - 1280x768@60Hz RB */
 346	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 347		   1360, 1440, 0, 768, 771, 778, 790, 0,
 348		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 349	/* 0x17 - 1280x768@60Hz */
 350	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 351		   1472, 1664, 0, 768, 771, 778, 798, 0,
 352		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 353	/* 0x18 - 1280x768@75Hz */
 354	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 355		   1488, 1696, 0, 768, 771, 778, 805, 0,
 356		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 357	/* 0x19 - 1280x768@85Hz */
 358	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 359		   1496, 1712, 0, 768, 771, 778, 809, 0,
 360		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 361	/* 0x1a - 1280x768@120Hz RB */
 362	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 363		   1360, 1440, 0, 768, 771, 778, 813, 0,
 364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 365	/* 0x1b - 1280x800@60Hz RB */
 366	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 367		   1360, 1440, 0, 800, 803, 809, 823, 0,
 368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 369	/* 0x1c - 1280x800@60Hz */
 370	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 371		   1480, 1680, 0, 800, 803, 809, 831, 0,
 372		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 373	/* 0x1d - 1280x800@75Hz */
 374	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 375		   1488, 1696, 0, 800, 803, 809, 838, 0,
 376		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 377	/* 0x1e - 1280x800@85Hz */
 378	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 379		   1496, 1712, 0, 800, 803, 809, 843, 0,
 380		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 381	/* 0x1f - 1280x800@120Hz RB */
 382	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 383		   1360, 1440, 0, 800, 803, 809, 847, 0,
 384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 385	/* 0x20 - 1280x960@60Hz */
 386	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 387		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 389	/* 0x21 - 1280x960@85Hz */
 390	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 391		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 392		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 393	/* 0x22 - 1280x960@120Hz RB */
 394	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 395		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 396		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 397	/* 0x23 - 1280x1024@60Hz */
 398	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 399		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 400		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 401	/* 0x24 - 1280x1024@75Hz */
 402	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 403		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 404		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 405	/* 0x25 - 1280x1024@85Hz */
 406	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 407		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 408		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 409	/* 0x26 - 1280x1024@120Hz RB */
 410	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 411		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 412		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 413	/* 0x27 - 1360x768@60Hz */
 414	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 415		   1536, 1792, 0, 768, 771, 777, 795, 0,
 416		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 417	/* 0x28 - 1360x768@120Hz RB */
 418	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 419		   1440, 1520, 0, 768, 771, 776, 813, 0,
 420		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 421	/* 0x51 - 1366x768@60Hz */
 422	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 423		   1579, 1792, 0, 768, 771, 774, 798, 0,
 424		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 425	/* 0x56 - 1366x768@60Hz */
 426	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 427		   1436, 1500, 0, 768, 769, 772, 800, 0,
 428		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 429	/* 0x29 - 1400x1050@60Hz RB */
 430	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 431		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 432		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 433	/* 0x2a - 1400x1050@60Hz */
 434	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 435		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 436		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 437	/* 0x2b - 1400x1050@75Hz */
 438	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 439		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 440		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 441	/* 0x2c - 1400x1050@85Hz */
 442	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 443		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 444		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 445	/* 0x2d - 1400x1050@120Hz RB */
 446	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 447		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 448		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 449	/* 0x2e - 1440x900@60Hz RB */
 450	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 451		   1520, 1600, 0, 900, 903, 909, 926, 0,
 452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 453	/* 0x2f - 1440x900@60Hz */
 454	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 455		   1672, 1904, 0, 900, 903, 909, 934, 0,
 456		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 457	/* 0x30 - 1440x900@75Hz */
 458	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 459		   1688, 1936, 0, 900, 903, 909, 942, 0,
 460		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 461	/* 0x31 - 1440x900@85Hz */
 462	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 463		   1696, 1952, 0, 900, 903, 909, 948, 0,
 464		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 465	/* 0x32 - 1440x900@120Hz RB */
 466	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 467		   1520, 1600, 0, 900, 903, 909, 953, 0,
 468		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 469	/* 0x53 - 1600x900@60Hz */
 470	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 471		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 472		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 473	/* 0x33 - 1600x1200@60Hz */
 474	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 475		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 477	/* 0x34 - 1600x1200@65Hz */
 478	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 479		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 480		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 481	/* 0x35 - 1600x1200@70Hz */
 482	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 483		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 484		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 485	/* 0x36 - 1600x1200@75Hz */
 486	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 487		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 488		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 489	/* 0x37 - 1600x1200@85Hz */
 490	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 491		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 492		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 493	/* 0x38 - 1600x1200@120Hz RB */
 494	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 495		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 497	/* 0x39 - 1680x1050@60Hz RB */
 498	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 499		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 500		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 501	/* 0x3a - 1680x1050@60Hz */
 502	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 503		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 504		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 505	/* 0x3b - 1680x1050@75Hz */
 506	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 507		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 508		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 509	/* 0x3c - 1680x1050@85Hz */
 510	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 511		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 512		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 513	/* 0x3d - 1680x1050@120Hz RB */
 514	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 515		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 517	/* 0x3e - 1792x1344@60Hz */
 518	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 519		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 520		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 521	/* 0x3f - 1792x1344@75Hz */
 522	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 523		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 524		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 525	/* 0x40 - 1792x1344@120Hz RB */
 526	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 527		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 528		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 529	/* 0x41 - 1856x1392@60Hz */
 530	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 531		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 532		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 533	/* 0x42 - 1856x1392@75Hz */
 534	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 535		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 536		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 537	/* 0x43 - 1856x1392@120Hz RB */
 538	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 539		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 540		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 541	/* 0x52 - 1920x1080@60Hz */
 542	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 543		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 544		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 545	/* 0x44 - 1920x1200@60Hz RB */
 546	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 547		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 548		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 549	/* 0x45 - 1920x1200@60Hz */
 550	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 551		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 552		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 553	/* 0x46 - 1920x1200@75Hz */
 554	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 555		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 556		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 557	/* 0x47 - 1920x1200@85Hz */
 558	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 559		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 560		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 561	/* 0x48 - 1920x1200@120Hz RB */
 562	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 563		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 564		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 565	/* 0x49 - 1920x1440@60Hz */
 566	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 567		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 568		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 569	/* 0x4a - 1920x1440@75Hz */
 570	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 571		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 572		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 573	/* 0x4b - 1920x1440@120Hz RB */
 574	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 575		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 576		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 577	/* 0x54 - 2048x1152@60Hz */
 578	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 579		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 580		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 581	/* 0x4c - 2560x1600@60Hz RB */
 582	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 583		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 584		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 585	/* 0x4d - 2560x1600@60Hz */
 586	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 587		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 588		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 589	/* 0x4e - 2560x1600@75Hz */
 590	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 591		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 592		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 593	/* 0x4f - 2560x1600@85Hz */
 594	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 595		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 596		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 597	/* 0x50 - 2560x1600@120Hz RB */
 598	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 599		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 600		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 601	/* 0x57 - 4096x2160@60Hz RB */
 602	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 603		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 604		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 605	/* 0x58 - 4096x2160@59.94Hz RB */
 606	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 607		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 608		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 609};
 610
 611/*
 612 * These more or less come from the DMT spec.  The 720x400 modes are
 613 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 614 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 615 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 616 * mode.
 617 *
 618 * The DMT modes have been fact-checked; the rest are mild guesses.
 619 */
 620static const struct drm_display_mode edid_est_modes[] = {
 621	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 622		   968, 1056, 0, 600, 601, 605, 628, 0,
 623		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 624	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 625		   896, 1024, 0, 600, 601, 603,  625, 0,
 626		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 627	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 628		   720, 840, 0, 480, 481, 484, 500, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 630	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 631		   704,  832, 0, 480, 489, 492, 520, 0,
 632		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 633	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 634		   768,  864, 0, 480, 483, 486, 525, 0,
 635		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 636	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 637		   752, 800, 0, 480, 490, 492, 525, 0,
 638		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 639	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 640		   846, 900, 0, 400, 421, 423,  449, 0,
 641		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 642	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 643		   846,  900, 0, 400, 412, 414, 449, 0,
 644		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 645	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 646		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 647		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 648	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 649		   1136, 1312, 0,  768, 769, 772, 800, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 651	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 652		   1184, 1328, 0,  768, 771, 777, 806, 0,
 653		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 654	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 655		   1184, 1344, 0,  768, 771, 777, 806, 0,
 656		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 657	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 658		   1208, 1264, 0, 768, 768, 776, 817, 0,
 659		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 660	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 661		   928, 1152, 0, 624, 625, 628, 667, 0,
 662		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 663	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 664		   896, 1056, 0, 600, 601, 604,  625, 0,
 665		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 666	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 667		   976, 1040, 0, 600, 637, 643, 666, 0,
 668		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 669	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 670		   1344, 1600, 0,  864, 865, 868, 900, 0,
 671		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 672};
 673
 674struct minimode {
 675	short w;
 676	short h;
 677	short r;
 678	short rb;
 679};
 680
 681static const struct minimode est3_modes[] = {
 682	/* byte 6 */
 683	{ 640, 350, 85, 0 },
 684	{ 640, 400, 85, 0 },
 685	{ 720, 400, 85, 0 },
 686	{ 640, 480, 85, 0 },
 687	{ 848, 480, 60, 0 },
 688	{ 800, 600, 85, 0 },
 689	{ 1024, 768, 85, 0 },
 690	{ 1152, 864, 75, 0 },
 691	/* byte 7 */
 692	{ 1280, 768, 60, 1 },
 693	{ 1280, 768, 60, 0 },
 694	{ 1280, 768, 75, 0 },
 695	{ 1280, 768, 85, 0 },
 696	{ 1280, 960, 60, 0 },
 697	{ 1280, 960, 85, 0 },
 698	{ 1280, 1024, 60, 0 },
 699	{ 1280, 1024, 85, 0 },
 700	/* byte 8 */
 701	{ 1360, 768, 60, 0 },
 702	{ 1440, 900, 60, 1 },
 703	{ 1440, 900, 60, 0 },
 704	{ 1440, 900, 75, 0 },
 705	{ 1440, 900, 85, 0 },
 706	{ 1400, 1050, 60, 1 },
 707	{ 1400, 1050, 60, 0 },
 708	{ 1400, 1050, 75, 0 },
 709	/* byte 9 */
 710	{ 1400, 1050, 85, 0 },
 711	{ 1680, 1050, 60, 1 },
 712	{ 1680, 1050, 60, 0 },
 713	{ 1680, 1050, 75, 0 },
 714	{ 1680, 1050, 85, 0 },
 715	{ 1600, 1200, 60, 0 },
 716	{ 1600, 1200, 65, 0 },
 717	{ 1600, 1200, 70, 0 },
 718	/* byte 10 */
 719	{ 1600, 1200, 75, 0 },
 720	{ 1600, 1200, 85, 0 },
 721	{ 1792, 1344, 60, 0 },
 722	{ 1792, 1344, 75, 0 },
 723	{ 1856, 1392, 60, 0 },
 724	{ 1856, 1392, 75, 0 },
 725	{ 1920, 1200, 60, 1 },
 726	{ 1920, 1200, 60, 0 },
 727	/* byte 11 */
 728	{ 1920, 1200, 75, 0 },
 729	{ 1920, 1200, 85, 0 },
 730	{ 1920, 1440, 60, 0 },
 731	{ 1920, 1440, 75, 0 },
 732};
 733
 734static const struct minimode extra_modes[] = {
 735	{ 1024, 576,  60, 0 },
 736	{ 1366, 768,  60, 0 },
 737	{ 1600, 900,  60, 0 },
 738	{ 1680, 945,  60, 0 },
 739	{ 1920, 1080, 60, 0 },
 740	{ 2048, 1152, 60, 0 },
 741	{ 2048, 1536, 60, 0 },
 742};
 743
 744/*
 745 * From CEA/CTA-861 spec.
 746 *
 747 * Do not access directly, instead always use cea_mode_for_vic().
 748 */
 749static const struct drm_display_mode edid_cea_modes_1[] = {
 750	/* 1 - 640x480@60Hz 4:3 */
 751	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 752		   752, 800, 0, 480, 490, 492, 525, 0,
 753		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 754	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 755	/* 2 - 720x480@60Hz 4:3 */
 756	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 757		   798, 858, 0, 480, 489, 495, 525, 0,
 758		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 759	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 760	/* 3 - 720x480@60Hz 16:9 */
 761	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 762		   798, 858, 0, 480, 489, 495, 525, 0,
 763		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 764	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 765	/* 4 - 1280x720@60Hz 16:9 */
 766	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 767		   1430, 1650, 0, 720, 725, 730, 750, 0,
 768		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 769	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 770	/* 5 - 1920x1080i@60Hz 16:9 */
 771	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 772		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 773		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 774		   DRM_MODE_FLAG_INTERLACE),
 775	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 776	/* 6 - 720(1440)x480i@60Hz 4:3 */
 777	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 778		   801, 858, 0, 480, 488, 494, 525, 0,
 779		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 780		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 781	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 782	/* 7 - 720(1440)x480i@60Hz 16:9 */
 783	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 784		   801, 858, 0, 480, 488, 494, 525, 0,
 785		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 786		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 787	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 788	/* 8 - 720(1440)x240@60Hz 4:3 */
 789	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 790		   801, 858, 0, 240, 244, 247, 262, 0,
 791		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 792		   DRM_MODE_FLAG_DBLCLK),
 793	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 794	/* 9 - 720(1440)x240@60Hz 16:9 */
 795	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 796		   801, 858, 0, 240, 244, 247, 262, 0,
 797		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 798		   DRM_MODE_FLAG_DBLCLK),
 799	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 800	/* 10 - 2880x480i@60Hz 4:3 */
 801	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 802		   3204, 3432, 0, 480, 488, 494, 525, 0,
 803		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 804		   DRM_MODE_FLAG_INTERLACE),
 805	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 806	/* 11 - 2880x480i@60Hz 16:9 */
 807	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 808		   3204, 3432, 0, 480, 488, 494, 525, 0,
 809		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 810		   DRM_MODE_FLAG_INTERLACE),
 811	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 812	/* 12 - 2880x240@60Hz 4:3 */
 813	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 814		   3204, 3432, 0, 240, 244, 247, 262, 0,
 815		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 816	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 817	/* 13 - 2880x240@60Hz 16:9 */
 818	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 819		   3204, 3432, 0, 240, 244, 247, 262, 0,
 820		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 821	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 822	/* 14 - 1440x480@60Hz 4:3 */
 823	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 824		   1596, 1716, 0, 480, 489, 495, 525, 0,
 825		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 826	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 827	/* 15 - 1440x480@60Hz 16:9 */
 828	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 829		   1596, 1716, 0, 480, 489, 495, 525, 0,
 830		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 831	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 832	/* 16 - 1920x1080@60Hz 16:9 */
 833	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 834		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 835		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 836	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 837	/* 17 - 720x576@50Hz 4:3 */
 838	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 839		   796, 864, 0, 576, 581, 586, 625, 0,
 840		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 841	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 842	/* 18 - 720x576@50Hz 16:9 */
 843	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 844		   796, 864, 0, 576, 581, 586, 625, 0,
 845		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 846	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 847	/* 19 - 1280x720@50Hz 16:9 */
 848	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 849		   1760, 1980, 0, 720, 725, 730, 750, 0,
 850		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 851	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 852	/* 20 - 1920x1080i@50Hz 16:9 */
 853	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 854		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 855		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 856		   DRM_MODE_FLAG_INTERLACE),
 857	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 858	/* 21 - 720(1440)x576i@50Hz 4:3 */
 859	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 860		   795, 864, 0, 576, 580, 586, 625, 0,
 861		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 862		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 863	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 864	/* 22 - 720(1440)x576i@50Hz 16:9 */
 865	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 866		   795, 864, 0, 576, 580, 586, 625, 0,
 867		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 868		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 869	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 870	/* 23 - 720(1440)x288@50Hz 4:3 */
 871	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 872		   795, 864, 0, 288, 290, 293, 312, 0,
 873		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 874		   DRM_MODE_FLAG_DBLCLK),
 875	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 876	/* 24 - 720(1440)x288@50Hz 16:9 */
 877	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 878		   795, 864, 0, 288, 290, 293, 312, 0,
 879		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 880		   DRM_MODE_FLAG_DBLCLK),
 881	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 882	/* 25 - 2880x576i@50Hz 4:3 */
 883	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 884		   3180, 3456, 0, 576, 580, 586, 625, 0,
 885		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 886		   DRM_MODE_FLAG_INTERLACE),
 887	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 888	/* 26 - 2880x576i@50Hz 16:9 */
 889	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 890		   3180, 3456, 0, 576, 580, 586, 625, 0,
 891		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 892		   DRM_MODE_FLAG_INTERLACE),
 893	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 894	/* 27 - 2880x288@50Hz 4:3 */
 895	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 896		   3180, 3456, 0, 288, 290, 293, 312, 0,
 897		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 898	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 899	/* 28 - 2880x288@50Hz 16:9 */
 900	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 901		   3180, 3456, 0, 288, 290, 293, 312, 0,
 902		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 903	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 904	/* 29 - 1440x576@50Hz 4:3 */
 905	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 906		   1592, 1728, 0, 576, 581, 586, 625, 0,
 907		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 908	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 909	/* 30 - 1440x576@50Hz 16:9 */
 910	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 911		   1592, 1728, 0, 576, 581, 586, 625, 0,
 912		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 913	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 914	/* 31 - 1920x1080@50Hz 16:9 */
 915	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 916		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 917		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 918	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 919	/* 32 - 1920x1080@24Hz 16:9 */
 920	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 921		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 922		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 923	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 924	/* 33 - 1920x1080@25Hz 16:9 */
 925	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 926		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 927		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 928	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 929	/* 34 - 1920x1080@30Hz 16:9 */
 930	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 931		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 932		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 933	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 934	/* 35 - 2880x480@60Hz 4:3 */
 935	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 936		   3192, 3432, 0, 480, 489, 495, 525, 0,
 937		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 938	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 939	/* 36 - 2880x480@60Hz 16:9 */
 940	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 941		   3192, 3432, 0, 480, 489, 495, 525, 0,
 942		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 943	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 944	/* 37 - 2880x576@50Hz 4:3 */
 945	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 946		   3184, 3456, 0, 576, 581, 586, 625, 0,
 947		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 948	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 949	/* 38 - 2880x576@50Hz 16:9 */
 950	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 951		   3184, 3456, 0, 576, 581, 586, 625, 0,
 952		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 953	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 954	/* 39 - 1920x1080i@50Hz 16:9 */
 955	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 956		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 957		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 958		   DRM_MODE_FLAG_INTERLACE),
 959	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 960	/* 40 - 1920x1080i@100Hz 16:9 */
 961	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 962		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 963		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 964		   DRM_MODE_FLAG_INTERLACE),
 965	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 966	/* 41 - 1280x720@100Hz 16:9 */
 967	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 968		   1760, 1980, 0, 720, 725, 730, 750, 0,
 969		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 970	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 971	/* 42 - 720x576@100Hz 4:3 */
 972	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 973		   796, 864, 0, 576, 581, 586, 625, 0,
 974		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 975	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 976	/* 43 - 720x576@100Hz 16:9 */
 977	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 978		   796, 864, 0, 576, 581, 586, 625, 0,
 979		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 980	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 981	/* 44 - 720(1440)x576i@100Hz 4:3 */
 982	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 983		   795, 864, 0, 576, 580, 586, 625, 0,
 984		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 985		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 986	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 987	/* 45 - 720(1440)x576i@100Hz 16:9 */
 988	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 989		   795, 864, 0, 576, 580, 586, 625, 0,
 990		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 991		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 992	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 993	/* 46 - 1920x1080i@120Hz 16:9 */
 994	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 995		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 996		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 997		   DRM_MODE_FLAG_INTERLACE),
 998	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 999	/* 47 - 1280x720@120Hz 16:9 */
1000	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1001		   1430, 1650, 0, 720, 725, 730, 750, 0,
1002		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1003	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1004	/* 48 - 720x480@120Hz 4:3 */
1005	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1006		   798, 858, 0, 480, 489, 495, 525, 0,
1007		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1008	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1009	/* 49 - 720x480@120Hz 16:9 */
1010	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1011		   798, 858, 0, 480, 489, 495, 525, 0,
1012		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1013	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1014	/* 50 - 720(1440)x480i@120Hz 4:3 */
1015	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1016		   801, 858, 0, 480, 488, 494, 525, 0,
1017		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1018		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1019	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1020	/* 51 - 720(1440)x480i@120Hz 16:9 */
1021	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1022		   801, 858, 0, 480, 488, 494, 525, 0,
1023		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1024		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1025	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1026	/* 52 - 720x576@200Hz 4:3 */
1027	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1028		   796, 864, 0, 576, 581, 586, 625, 0,
1029		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1030	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1031	/* 53 - 720x576@200Hz 16:9 */
1032	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1033		   796, 864, 0, 576, 581, 586, 625, 0,
1034		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1035	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1036	/* 54 - 720(1440)x576i@200Hz 4:3 */
1037	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1038		   795, 864, 0, 576, 580, 586, 625, 0,
1039		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1040		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1041	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1042	/* 55 - 720(1440)x576i@200Hz 16:9 */
1043	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1044		   795, 864, 0, 576, 580, 586, 625, 0,
1045		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1046		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1047	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1048	/* 56 - 720x480@240Hz 4:3 */
1049	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1050		   798, 858, 0, 480, 489, 495, 525, 0,
1051		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1052	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1053	/* 57 - 720x480@240Hz 16:9 */
1054	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1055		   798, 858, 0, 480, 489, 495, 525, 0,
1056		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1057	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1058	/* 58 - 720(1440)x480i@240Hz 4:3 */
1059	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1060		   801, 858, 0, 480, 488, 494, 525, 0,
1061		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1062		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1063	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1064	/* 59 - 720(1440)x480i@240Hz 16:9 */
1065	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1066		   801, 858, 0, 480, 488, 494, 525, 0,
1067		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1068		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1069	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070	/* 60 - 1280x720@24Hz 16:9 */
1071	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1072		   3080, 3300, 0, 720, 725, 730, 750, 0,
1073		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075	/* 61 - 1280x720@25Hz 16:9 */
1076	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1077		   3740, 3960, 0, 720, 725, 730, 750, 0,
1078		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080	/* 62 - 1280x720@30Hz 16:9 */
1081	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1082		   3080, 3300, 0, 720, 725, 730, 750, 0,
1083		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1085	/* 63 - 1920x1080@120Hz 16:9 */
1086	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1087		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1088		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1090	/* 64 - 1920x1080@100Hz 16:9 */
1091	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1092		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1093		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1095	/* 65 - 1280x720@24Hz 64:27 */
1096	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1097		   3080, 3300, 0, 720, 725, 730, 750, 0,
1098		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100	/* 66 - 1280x720@25Hz 64:27 */
1101	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1102		   3740, 3960, 0, 720, 725, 730, 750, 0,
1103		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105	/* 67 - 1280x720@30Hz 64:27 */
1106	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1107		   3080, 3300, 0, 720, 725, 730, 750, 0,
1108		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110	/* 68 - 1280x720@50Hz 64:27 */
1111	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1112		   1760, 1980, 0, 720, 725, 730, 750, 0,
1113		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115	/* 69 - 1280x720@60Hz 64:27 */
1116	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1117		   1430, 1650, 0, 720, 725, 730, 750, 0,
1118		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120	/* 70 - 1280x720@100Hz 64:27 */
1121	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1122		   1760, 1980, 0, 720, 725, 730, 750, 0,
1123		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125	/* 71 - 1280x720@120Hz 64:27 */
1126	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1127		   1430, 1650, 0, 720, 725, 730, 750, 0,
1128		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130	/* 72 - 1920x1080@24Hz 64:27 */
1131	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1132		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1133		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135	/* 73 - 1920x1080@25Hz 64:27 */
1136	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1137		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1138		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140	/* 74 - 1920x1080@30Hz 64:27 */
1141	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1142		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1143		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145	/* 75 - 1920x1080@50Hz 64:27 */
1146	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1147		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1148		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150	/* 76 - 1920x1080@60Hz 64:27 */
1151	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1152		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1153		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155	/* 77 - 1920x1080@100Hz 64:27 */
1156	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1157		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1158		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160	/* 78 - 1920x1080@120Hz 64:27 */
1161	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1162		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1163		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165	/* 79 - 1680x720@24Hz 64:27 */
1166	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1167		   3080, 3300, 0, 720, 725, 730, 750, 0,
1168		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170	/* 80 - 1680x720@25Hz 64:27 */
1171	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1172		   2948, 3168, 0, 720, 725, 730, 750, 0,
1173		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175	/* 81 - 1680x720@30Hz 64:27 */
1176	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1177		   2420, 2640, 0, 720, 725, 730, 750, 0,
1178		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180	/* 82 - 1680x720@50Hz 64:27 */
1181	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1182		   1980, 2200, 0, 720, 725, 730, 750, 0,
1183		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185	/* 83 - 1680x720@60Hz 64:27 */
1186	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1187		   1980, 2200, 0, 720, 725, 730, 750, 0,
1188		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190	/* 84 - 1680x720@100Hz 64:27 */
1191	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1192		   1780, 2000, 0, 720, 725, 730, 825, 0,
1193		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195	/* 85 - 1680x720@120Hz 64:27 */
1196	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1197		   1780, 2000, 0, 720, 725, 730, 825, 0,
1198		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200	/* 86 - 2560x1080@24Hz 64:27 */
1201	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1202		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1203		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205	/* 87 - 2560x1080@25Hz 64:27 */
1206	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1207		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1208		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210	/* 88 - 2560x1080@30Hz 64:27 */
1211	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1212		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1213		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215	/* 89 - 2560x1080@50Hz 64:27 */
1216	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1217		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1218		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220	/* 90 - 2560x1080@60Hz 64:27 */
1221	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1222		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1223		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1225	/* 91 - 2560x1080@100Hz 64:27 */
1226	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1227		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1228		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1230	/* 92 - 2560x1080@120Hz 64:27 */
1231	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1232		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1233		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1235	/* 93 - 3840x2160@24Hz 16:9 */
1236	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1237		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1238		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240	/* 94 - 3840x2160@25Hz 16:9 */
1241	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1242		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1243		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245	/* 95 - 3840x2160@30Hz 16:9 */
1246	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1247		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1248		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1250	/* 96 - 3840x2160@50Hz 16:9 */
1251	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1252		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1255	/* 97 - 3840x2160@60Hz 16:9 */
1256	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1257		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1260	/* 98 - 4096x2160@24Hz 256:135 */
1261	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1262		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1263		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265	/* 99 - 4096x2160@25Hz 256:135 */
1266	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1267		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1268		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270	/* 100 - 4096x2160@30Hz 256:135 */
1271	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1272		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1273		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1275	/* 101 - 4096x2160@50Hz 256:135 */
1276	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1277		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1280	/* 102 - 4096x2160@60Hz 256:135 */
1281	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1282		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1285	/* 103 - 3840x2160@24Hz 64:27 */
1286	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1287		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1288		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290	/* 104 - 3840x2160@25Hz 64:27 */
1291	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1292		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1293		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295	/* 105 - 3840x2160@30Hz 64:27 */
1296	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1297		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1300	/* 106 - 3840x2160@50Hz 64:27 */
1301	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1302		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305	/* 107 - 3840x2160@60Hz 64:27 */
1306	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1307		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1308		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310	/* 108 - 1280x720@48Hz 16:9 */
1311	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1312		   2280, 2500, 0, 720, 725, 730, 750, 0,
1313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315	/* 109 - 1280x720@48Hz 64:27 */
1316	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1317		   2280, 2500, 0, 720, 725, 730, 750, 0,
1318		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320	/* 110 - 1680x720@48Hz 64:27 */
1321	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1322		   2530, 2750, 0, 720, 725, 730, 750, 0,
1323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325	/* 111 - 1920x1080@48Hz 16:9 */
1326	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1327		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1328		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330	/* 112 - 1920x1080@48Hz 64:27 */
1331	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1332		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1333		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1335	/* 113 - 2560x1080@48Hz 64:27 */
1336	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1337		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1338		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340	/* 114 - 3840x2160@48Hz 16:9 */
1341	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1342		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1343		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345	/* 115 - 4096x2160@48Hz 256:135 */
1346	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1347		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1348		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1350	/* 116 - 3840x2160@48Hz 64:27 */
1351	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1352		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1353		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355	/* 117 - 3840x2160@100Hz 16:9 */
1356	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1357		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1358		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1360	/* 118 - 3840x2160@120Hz 16:9 */
1361	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1362		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1363		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1365	/* 119 - 3840x2160@100Hz 64:27 */
1366	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1367		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370	/* 120 - 3840x2160@120Hz 64:27 */
1371	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1372		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375	/* 121 - 5120x2160@24Hz 64:27 */
1376	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1377		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1378		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380	/* 122 - 5120x2160@25Hz 64:27 */
1381	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1382		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385	/* 123 - 5120x2160@30Hz 64:27 */
1386	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1387		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390	/* 124 - 5120x2160@48Hz 64:27 */
1391	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1392		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395	/* 125 - 5120x2160@50Hz 64:27 */
1396	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1397		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1398		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1399	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1400	/* 126 - 5120x2160@60Hz 64:27 */
1401	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1402		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1403		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1404	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1405	/* 127 - 5120x2160@100Hz 64:27 */
1406	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1407		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1408		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1409	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1410};
1411
1412/*
1413 * From CEA/CTA-861 spec.
1414 *
1415 * Do not access directly, instead always use cea_mode_for_vic().
1416 */
1417static const struct drm_display_mode edid_cea_modes_193[] = {
1418	/* 193 - 5120x2160@120Hz 64:27 */
1419	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1420		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1421		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1423	/* 194 - 7680x4320@24Hz 16:9 */
1424	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1425		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428	/* 195 - 7680x4320@25Hz 16:9 */
1429	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1430		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433	/* 196 - 7680x4320@30Hz 16:9 */
1434	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1435		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438	/* 197 - 7680x4320@48Hz 16:9 */
1439	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1440		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1441		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443	/* 198 - 7680x4320@50Hz 16:9 */
1444	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1445		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1446		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448	/* 199 - 7680x4320@60Hz 16:9 */
1449	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1450		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1451		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1453	/* 200 - 7680x4320@100Hz 16:9 */
1454	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1455		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1456		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1458	/* 201 - 7680x4320@120Hz 16:9 */
1459	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1460		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1461		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1463	/* 202 - 7680x4320@24Hz 64:27 */
1464	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1465		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468	/* 203 - 7680x4320@25Hz 64:27 */
1469	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1470		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473	/* 204 - 7680x4320@30Hz 64:27 */
1474	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1475		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478	/* 205 - 7680x4320@48Hz 64:27 */
1479	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1480		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1481		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483	/* 206 - 7680x4320@50Hz 64:27 */
1484	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1485		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1486		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488	/* 207 - 7680x4320@60Hz 64:27 */
1489	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1490		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493	/* 208 - 7680x4320@100Hz 64:27 */
1494	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1495		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498	/* 209 - 7680x4320@120Hz 64:27 */
1499	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1500		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1501		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503	/* 210 - 10240x4320@24Hz 64:27 */
1504	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1505		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508	/* 211 - 10240x4320@25Hz 64:27 */
1509	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1510		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513	/* 212 - 10240x4320@30Hz 64:27 */
1514	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1515		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518	/* 213 - 10240x4320@48Hz 64:27 */
1519	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1520		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1521		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523	/* 214 - 10240x4320@50Hz 64:27 */
1524	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1525		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1526		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528	/* 215 - 10240x4320@60Hz 64:27 */
1529	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1530		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1533	/* 216 - 10240x4320@100Hz 64:27 */
1534	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1535		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1536		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1538	/* 217 - 10240x4320@120Hz 64:27 */
1539	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1540		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1541		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1542	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1543	/* 218 - 4096x2160@100Hz 256:135 */
1544	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1545		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1546		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1547	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1548	/* 219 - 4096x2160@120Hz 256:135 */
1549	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1550		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1551		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1552	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1553};
1554
1555/*
1556 * HDMI 1.4 4k modes. Index using the VIC.
1557 */
1558static const struct drm_display_mode edid_4k_modes[] = {
1559	/* 0 - dummy, VICs start at 1 */
1560	{ },
1561	/* 1 - 3840x2160@30Hz */
1562	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1563		   3840, 4016, 4104, 4400, 0,
1564		   2160, 2168, 2178, 2250, 0,
1565		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1566	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1567	/* 2 - 3840x2160@25Hz */
1568	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1569		   3840, 4896, 4984, 5280, 0,
1570		   2160, 2168, 2178, 2250, 0,
1571		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1572	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1573	/* 3 - 3840x2160@24Hz */
1574	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1575		   3840, 5116, 5204, 5500, 0,
1576		   2160, 2168, 2178, 2250, 0,
1577		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1578	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1579	/* 4 - 4096x2160@24Hz (SMPTE) */
1580	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1581		   4096, 5116, 5204, 5500, 0,
1582		   2160, 2168, 2178, 2250, 0,
1583		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1584	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1585};
1586
1587/*** DDC fetch and block validation ***/
1588
1589/*
1590 * The opaque EDID type, internal to drm_edid.c.
1591 */
1592struct drm_edid {
1593	/* Size allocated for edid */
1594	size_t size;
1595	const struct edid *edid;
1596};
1597
1598static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1599
1600static int edid_hfeeodb_block_count(const struct edid *edid)
1601{
1602	int eeodb = edid_hfeeodb_extension_block_count(edid);
1603
1604	return eeodb ? eeodb + 1 : 0;
1605}
1606
1607static int edid_extension_block_count(const struct edid *edid)
1608{
1609	return edid->extensions;
1610}
1611
1612static int edid_block_count(const struct edid *edid)
1613{
1614	return edid_extension_block_count(edid) + 1;
1615}
1616
1617static int edid_size_by_blocks(int num_blocks)
1618{
1619	return num_blocks * EDID_LENGTH;
1620}
1621
1622static int edid_size(const struct edid *edid)
1623{
1624	return edid_size_by_blocks(edid_block_count(edid));
1625}
1626
1627static const void *edid_block_data(const struct edid *edid, int index)
1628{
1629	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1630
1631	return edid + index;
1632}
1633
1634static const void *edid_extension_block_data(const struct edid *edid, int index)
1635{
1636	return edid_block_data(edid, index + 1);
1637}
1638
1639/* EDID block count indicated in EDID, may exceed allocated size */
1640static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1641{
1642	int num_blocks;
1643
1644	/* Starting point */
1645	num_blocks = edid_block_count(drm_edid->edid);
1646
1647	/* HF-EEODB override */
1648	if (drm_edid->size >= edid_size_by_blocks(2)) {
1649		int eeodb;
1650
1651		/*
1652		 * Note: HF-EEODB may specify a smaller extension count than the
1653		 * regular one. Unlike in buffer allocation, here we can use it.
1654		 */
1655		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1656		if (eeodb)
1657			num_blocks = eeodb;
1658	}
1659
1660	return num_blocks;
1661}
1662
1663/* EDID block count, limited by allocated size */
1664static int drm_edid_block_count(const struct drm_edid *drm_edid)
1665{
1666	/* Limit by allocated size */
1667	return min(__drm_edid_block_count(drm_edid),
1668		   (int)drm_edid->size / EDID_LENGTH);
1669}
1670
1671/* EDID extension block count, limited by allocated size */
1672static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1673{
1674	return drm_edid_block_count(drm_edid) - 1;
1675}
1676
1677static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1678{
1679	return edid_block_data(drm_edid->edid, index);
1680}
1681
1682static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1683						 int index)
1684{
1685	return edid_extension_block_data(drm_edid->edid, index);
1686}
1687
1688/*
1689 * Initializer helper for legacy interfaces, where we have no choice but to
1690 * trust edid size. Not for general purpose use.
1691 */
1692static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1693						   const struct edid *edid)
1694{
1695	if (!edid)
1696		return NULL;
1697
1698	memset(drm_edid, 0, sizeof(*drm_edid));
1699
1700	drm_edid->edid = edid;
1701	drm_edid->size = edid_size(edid);
1702
1703	return drm_edid;
1704}
1705
1706/*
1707 * EDID base and extension block iterator.
1708 *
1709 * struct drm_edid_iter iter;
1710 * const u8 *block;
1711 *
1712 * drm_edid_iter_begin(drm_edid, &iter);
1713 * drm_edid_iter_for_each(block, &iter) {
1714 *         // do stuff with block
1715 * }
1716 * drm_edid_iter_end(&iter);
1717 */
1718struct drm_edid_iter {
1719	const struct drm_edid *drm_edid;
1720
1721	/* Current block index. */
1722	int index;
1723};
1724
1725static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1726				struct drm_edid_iter *iter)
1727{
1728	memset(iter, 0, sizeof(*iter));
1729
1730	iter->drm_edid = drm_edid;
1731}
1732
1733static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1734{
1735	const void *block = NULL;
1736
1737	if (!iter->drm_edid)
1738		return NULL;
1739
1740	if (iter->index < drm_edid_block_count(iter->drm_edid))
1741		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1742
1743	return block;
1744}
1745
1746#define drm_edid_iter_for_each(__block, __iter)			\
1747	while (((__block) = __drm_edid_iter_next(__iter)))
1748
1749static void drm_edid_iter_end(struct drm_edid_iter *iter)
1750{
1751	memset(iter, 0, sizeof(*iter));
1752}
1753
1754static const u8 edid_header[] = {
1755	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1756};
1757
1758static void edid_header_fix(void *edid)
1759{
1760	memcpy(edid, edid_header, sizeof(edid_header));
1761}
1762
1763/**
1764 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1765 * @_edid: pointer to raw base EDID block
1766 *
1767 * Sanity check the header of the base EDID block.
1768 *
1769 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1770 */
1771int drm_edid_header_is_valid(const void *_edid)
1772{
1773	const struct edid *edid = _edid;
1774	int i, score = 0;
1775
1776	for (i = 0; i < sizeof(edid_header); i++) {
1777		if (edid->header[i] == edid_header[i])
1778			score++;
1779	}
1780
1781	return score;
1782}
1783EXPORT_SYMBOL(drm_edid_header_is_valid);
1784
1785static int edid_fixup __read_mostly = 6;
1786module_param_named(edid_fixup, edid_fixup, int, 0400);
1787MODULE_PARM_DESC(edid_fixup,
1788		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1789
1790static int edid_block_compute_checksum(const void *_block)
 
 
 
 
1791{
1792	const u8 *block = _block;
1793	int i;
1794	u8 csum = 0, crc = 0;
1795
1796	for (i = 0; i < EDID_LENGTH - 1; i++)
1797		csum += block[i];
1798
1799	crc = 0x100 - csum;
1800
1801	return crc;
1802}
1803
1804static int edid_block_get_checksum(const void *_block)
1805{
1806	const struct edid *block = _block;
1807
1808	return block->checksum;
1809}
1810
1811static int edid_block_tag(const void *_block)
1812{
1813	const u8 *block = _block;
1814
1815	return block[0];
1816}
1817
1818static bool edid_block_is_zero(const void *edid)
1819{
1820	return mem_is_zero(edid, EDID_LENGTH);
1821}
1822
1823static bool drm_edid_eq(const struct drm_edid *drm_edid,
1824			const void *raw_edid, size_t raw_edid_size)
1825{
1826	bool edid1_present = drm_edid && drm_edid->edid && drm_edid->size;
1827	bool edid2_present = raw_edid && raw_edid_size;
1828
1829	if (edid1_present != edid2_present)
1830		return false;
1831
1832	if (edid1_present) {
1833		if (drm_edid->size != raw_edid_size)
1834			return false;
1835
1836		if (memcmp(drm_edid->edid, raw_edid, drm_edid->size))
1837			return false;
1838	}
1839
1840	return true;
1841}
1842
1843enum edid_block_status {
1844	EDID_BLOCK_OK = 0,
1845	EDID_BLOCK_READ_FAIL,
1846	EDID_BLOCK_NULL,
1847	EDID_BLOCK_ZERO,
1848	EDID_BLOCK_HEADER_CORRUPT,
1849	EDID_BLOCK_HEADER_REPAIR,
1850	EDID_BLOCK_HEADER_FIXED,
1851	EDID_BLOCK_CHECKSUM,
1852	EDID_BLOCK_VERSION,
1853};
1854
1855static enum edid_block_status edid_block_check(const void *_block,
1856					       bool is_base_block)
1857{
1858	const struct edid *block = _block;
1859
1860	if (!block)
1861		return EDID_BLOCK_NULL;
1862
1863	if (is_base_block) {
1864		int score = drm_edid_header_is_valid(block);
1865
1866		if (score < clamp(edid_fixup, 0, 8)) {
1867			if (edid_block_is_zero(block))
1868				return EDID_BLOCK_ZERO;
1869			else
1870				return EDID_BLOCK_HEADER_CORRUPT;
1871		}
1872
1873		if (score < 8)
1874			return EDID_BLOCK_HEADER_REPAIR;
1875	}
1876
1877	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1878		if (edid_block_is_zero(block))
1879			return EDID_BLOCK_ZERO;
1880		else
1881			return EDID_BLOCK_CHECKSUM;
1882	}
1883
1884	if (is_base_block) {
1885		if (block->version != 1)
1886			return EDID_BLOCK_VERSION;
1887	}
1888
1889	return EDID_BLOCK_OK;
1890}
1891
1892static bool edid_block_status_valid(enum edid_block_status status, int tag)
1893{
1894	return status == EDID_BLOCK_OK ||
1895		status == EDID_BLOCK_HEADER_FIXED ||
1896		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1897}
1898
1899static bool edid_block_valid(const void *block, bool base)
1900{
1901	return edid_block_status_valid(edid_block_check(block, base),
1902				       edid_block_tag(block));
1903}
1904
1905static void edid_block_status_print(enum edid_block_status status,
1906				    const struct edid *block,
1907				    int block_num)
1908{
1909	switch (status) {
1910	case EDID_BLOCK_OK:
1911		break;
1912	case EDID_BLOCK_READ_FAIL:
1913		pr_debug("EDID block %d read failed\n", block_num);
1914		break;
1915	case EDID_BLOCK_NULL:
1916		pr_debug("EDID block %d pointer is NULL\n", block_num);
1917		break;
1918	case EDID_BLOCK_ZERO:
1919		pr_notice("EDID block %d is all zeroes\n", block_num);
1920		break;
1921	case EDID_BLOCK_HEADER_CORRUPT:
1922		pr_notice("EDID has corrupt header\n");
1923		break;
1924	case EDID_BLOCK_HEADER_REPAIR:
1925		pr_debug("EDID corrupt header needs repair\n");
1926		break;
1927	case EDID_BLOCK_HEADER_FIXED:
1928		pr_debug("EDID corrupt header fixed\n");
1929		break;
1930	case EDID_BLOCK_CHECKSUM:
1931		if (edid_block_status_valid(status, edid_block_tag(block))) {
1932			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1933				 block_num, edid_block_tag(block),
1934				 edid_block_compute_checksum(block));
1935		} else {
1936			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1937				  block_num, edid_block_tag(block),
1938				  edid_block_compute_checksum(block));
1939		}
 
 
 
1940		break;
1941	case EDID_BLOCK_VERSION:
1942		pr_notice("EDID has major version %d, instead of 1\n",
1943			  block->version);
1944		break;
1945	default:
1946		WARN(1, "EDID block %d unknown edid block status code %d\n",
1947		     block_num, status);
1948		break;
1949	}
1950}
1951
1952static void edid_block_dump(const char *level, const void *block, int block_num)
1953{
1954	enum edid_block_status status;
1955	char prefix[20];
1956
1957	status = edid_block_check(block, block_num == 0);
1958	if (status == EDID_BLOCK_ZERO)
1959		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1960	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1961		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1962	else
1963		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1964
1965	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1966		       block, EDID_LENGTH, false);
1967}
1968
1969/*
1970 * Validate a base or extension EDID block and optionally dump bad blocks to
1971 * the console.
1972 */
1973static bool drm_edid_block_valid(void *_block, int block_num, bool print_bad_edid,
1974				 bool *edid_corrupt)
1975{
1976	struct edid *block = _block;
1977	enum edid_block_status status;
1978	bool is_base_block = block_num == 0;
1979	bool valid;
1980
1981	if (WARN_ON(!block))
1982		return false;
1983
1984	status = edid_block_check(block, is_base_block);
1985	if (status == EDID_BLOCK_HEADER_REPAIR) {
1986		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1987		edid_header_fix(block);
1988
1989		/* Retry with fixed header, update status if that worked. */
1990		status = edid_block_check(block, is_base_block);
1991		if (status == EDID_BLOCK_OK)
1992			status = EDID_BLOCK_HEADER_FIXED;
1993	}
1994
1995	if (edid_corrupt) {
1996		/*
1997		 * Unknown major version isn't corrupt but we can't use it. Only
1998		 * the base block can reset edid_corrupt to false.
1999		 */
2000		if (is_base_block &&
2001		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2002			*edid_corrupt = false;
2003		else if (status != EDID_BLOCK_OK)
2004			*edid_corrupt = true;
2005	}
2006
2007	edid_block_status_print(status, block, block_num);
2008
2009	/* Determine whether we can use this block with this status. */
2010	valid = edid_block_status_valid(status, edid_block_tag(block));
2011
2012	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2013		pr_notice("Raw EDID:\n");
2014		edid_block_dump(KERN_NOTICE, block, block_num);
 
 
2015	}
2016
2017	return valid;
2018}
 
2019
2020/**
2021 * drm_edid_is_valid - sanity check EDID data
2022 * @edid: EDID data
2023 *
2024 * Sanity-check an entire EDID record (including extensions)
2025 *
2026 * Return: True if the EDID data is valid, false otherwise.
2027 */
2028bool drm_edid_is_valid(struct edid *edid)
2029{
2030	int i;
 
2031
2032	if (!edid)
2033		return false;
2034
2035	for (i = 0; i < edid_block_count(edid); i++) {
2036		void *block = (void *)edid_block_data(edid, i);
2037
2038		if (!drm_edid_block_valid(block, i, true, NULL))
2039			return false;
2040	}
2041
2042	return true;
2043}
2044EXPORT_SYMBOL(drm_edid_is_valid);
2045
2046/**
2047 * drm_edid_valid - sanity check EDID data
2048 * @drm_edid: EDID data
2049 *
2050 * Sanity check an EDID. Cross check block count against allocated size and
2051 * checksum the blocks.
2052 *
2053 * Return: True if the EDID data is valid, false otherwise.
2054 */
2055bool drm_edid_valid(const struct drm_edid *drm_edid)
2056{
2057	int i;
2058
2059	if (!drm_edid)
2060		return false;
2061
2062	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2063		return false;
2064
2065	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2066		const void *block = drm_edid_block_data(drm_edid, i);
2067
2068		if (!edid_block_valid(block, i == 0))
2069			return false;
2070	}
2071
2072	return true;
2073}
2074EXPORT_SYMBOL(drm_edid_valid);
2075
2076static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2077					       size_t *alloc_size)
2078{
2079	struct edid *new;
2080	int i, valid_blocks = 0;
2081
2082	/*
2083	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2084	 * back to regular extension count here. We don't want to start
2085	 * modifying the HF-EEODB extension too.
2086	 */
2087	for (i = 0; i < edid_block_count(edid); i++) {
2088		const void *src_block = edid_block_data(edid, i);
2089
2090		if (edid_block_valid(src_block, i == 0)) {
2091			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2092
2093			memmove(dst_block, src_block, EDID_LENGTH);
2094			valid_blocks++;
2095		}
2096	}
2097
2098	/* We already trusted the base block to be valid here... */
2099	if (WARN_ON(!valid_blocks)) {
2100		kfree(edid);
2101		return NULL;
2102	}
2103
2104	edid->extensions = valid_blocks - 1;
2105	edid->checksum = edid_block_compute_checksum(edid);
2106
2107	*alloc_size = edid_size_by_blocks(valid_blocks);
2108
2109	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2110	if (!new)
2111		kfree(edid);
2112
2113	return new;
2114}
2115
2116#define DDC_SEGMENT_ADDR 0x30
2117/**
2118 * drm_do_probe_ddc_edid() - get EDID information via I2C
2119 * @data: I2C device adapter
 
2120 * @buf: EDID data buffer to be filled
2121 * @block: 128 byte EDID block to start fetching from
2122 * @len: EDID data buffer length to fetch
2123 *
2124 * Try to fetch EDID information by calling I2C driver functions.
 
 
2125 *
2126 * Return: 0 on success or -1 on failure.
2127 */
2128static int
2129drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
 
2130{
2131	struct i2c_adapter *adapter = data;
2132	unsigned char start = block * EDID_LENGTH;
2133	unsigned char segment = block >> 1;
2134	unsigned char xfers = segment ? 3 : 2;
2135	int ret, retries = 5;
2136
2137	/*
2138	 * The core I2C driver will automatically retry the transfer if the
2139	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2140	 * are susceptible to errors under a heavily loaded machine and
2141	 * generate spurious NAKs and timeouts. Retrying the transfer
2142	 * of the individual block a few times seems to overcome this.
2143	 */
2144	do {
2145		struct i2c_msg msgs[] = {
2146			{
2147				.addr	= DDC_SEGMENT_ADDR,
2148				.flags	= 0,
2149				.len	= 1,
2150				.buf	= &segment,
2151			}, {
2152				.addr	= DDC_ADDR,
2153				.flags	= 0,
2154				.len	= 1,
2155				.buf	= &start,
2156			}, {
2157				.addr	= DDC_ADDR,
2158				.flags	= I2C_M_RD,
2159				.len	= len,
2160				.buf	= buf,
2161			}
2162		};
2163
2164		/*
2165		 * Avoid sending the segment addr to not upset non-compliant
2166		 * DDC monitors.
2167		 */
2168		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2169
2170		if (ret == -ENXIO) {
2171			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2172					adapter->name);
2173			break;
2174		}
2175	} while (ret != xfers && --retries);
2176
2177	return ret == xfers ? 0 : -1;
2178}
2179
2180static void connector_bad_edid(struct drm_connector *connector,
2181			       const struct edid *edid, int num_blocks)
2182{
2183	int i;
2184	u8 last_block;
2185
2186	/*
2187	 * 0x7e in the EDID is the number of extension blocks. The EDID
2188	 * is 1 (base block) + num_ext_blocks big. That means we can think
2189	 * of 0x7e in the EDID of the _index_ of the last block in the
2190	 * combined chunk of memory.
2191	 */
2192	last_block = edid->extensions;
2193
2194	/* Calculate real checksum for the last edid extension block data */
2195	if (last_block < num_blocks)
2196		connector->real_edid_checksum =
2197			edid_block_compute_checksum(edid + last_block);
2198
2199	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2200		return;
2201
2202	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2203		    connector->base.id, connector->name);
2204	for (i = 0; i < num_blocks; i++)
2205		edid_block_dump(KERN_DEBUG, edid + i, i);
2206}
2207
2208/* Get override or firmware EDID */
2209static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2210{
2211	const struct drm_edid *override = NULL;
2212
2213	mutex_lock(&connector->edid_override_mutex);
2214
2215	if (connector->edid_override)
2216		override = drm_edid_dup(connector->edid_override);
2217
2218	mutex_unlock(&connector->edid_override_mutex);
2219
2220	if (!override)
2221		override = drm_edid_load_firmware(connector);
2222
2223	return IS_ERR(override) ? NULL : override;
2224}
2225
2226/* For debugfs edid_override implementation */
2227int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2228{
2229	const struct drm_edid *drm_edid;
2230
2231	mutex_lock(&connector->edid_override_mutex);
2232
2233	drm_edid = connector->edid_override;
2234	if (drm_edid)
2235		seq_write(m, drm_edid->edid, drm_edid->size);
2236
2237	mutex_unlock(&connector->edid_override_mutex);
2238
2239	return 0;
2240}
2241
2242/* For debugfs edid_override implementation */
2243int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2244			  size_t size)
2245{
2246	const struct drm_edid *drm_edid;
2247
2248	drm_edid = drm_edid_alloc(edid, size);
2249	if (!drm_edid_valid(drm_edid)) {
2250		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2251			    connector->base.id, connector->name);
2252		drm_edid_free(drm_edid);
2253		return -EINVAL;
2254	}
2255
2256	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2257		    connector->base.id, connector->name);
2258
2259	mutex_lock(&connector->edid_override_mutex);
2260
2261	drm_edid_free(connector->edid_override);
2262	connector->edid_override = drm_edid;
2263
2264	mutex_unlock(&connector->edid_override_mutex);
2265
2266	return 0;
2267}
2268
2269/* For debugfs edid_override implementation */
2270int drm_edid_override_reset(struct drm_connector *connector)
2271{
2272	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2273		    connector->base.id, connector->name);
2274
2275	mutex_lock(&connector->edid_override_mutex);
2276
2277	drm_edid_free(connector->edid_override);
2278	connector->edid_override = NULL;
2279
2280	mutex_unlock(&connector->edid_override_mutex);
2281
2282	return 0;
2283}
2284
2285/**
2286 * drm_edid_override_connector_update - add modes from override/firmware EDID
2287 * @connector: connector we're probing
2288 *
2289 * Add modes from the override/firmware EDID, if available. Only to be used from
2290 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2291 * failed during drm_get_edid() and caused the override/firmware EDID to be
2292 * skipped.
2293 *
2294 * Return: The number of modes added or 0 if we couldn't find any.
2295 */
2296int drm_edid_override_connector_update(struct drm_connector *connector)
2297{
2298	const struct drm_edid *override;
2299	int num_modes = 0;
2300
2301	override = drm_edid_override_get(connector);
2302	if (override) {
2303		if (drm_edid_connector_update(connector, override) == 0)
2304			num_modes = drm_edid_connector_add_modes(connector);
2305
2306		drm_edid_free(override);
2307
2308		drm_dbg_kms(connector->dev,
2309			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2310			    connector->base.id, connector->name, num_modes);
2311	}
2312
2313	return num_modes;
2314}
2315EXPORT_SYMBOL(drm_edid_override_connector_update);
2316
2317typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2318
2319static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2320					      read_block_fn read_block,
2321					      void *context)
2322{
2323	enum edid_block_status status;
2324	bool is_base_block = block_num == 0;
2325	int try;
2326
2327	for (try = 0; try < 4; try++) {
2328		if (read_block(context, block, block_num, EDID_LENGTH))
2329			return EDID_BLOCK_READ_FAIL;
2330
2331		status = edid_block_check(block, is_base_block);
2332		if (status == EDID_BLOCK_HEADER_REPAIR) {
2333			edid_header_fix(block);
2334
2335			/* Retry with fixed header, update status if that worked. */
2336			status = edid_block_check(block, is_base_block);
2337			if (status == EDID_BLOCK_OK)
2338				status = EDID_BLOCK_HEADER_FIXED;
2339		}
2340
2341		if (edid_block_status_valid(status, edid_block_tag(block)))
2342			break;
2343
2344		/* Fail early for unrepairable base block all zeros. */
2345		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2346			break;
2347	}
2348
2349	return status;
2350}
2351
2352static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2353				     read_block_fn read_block, void *context,
2354				     size_t *size)
2355{
2356	enum edid_block_status status;
2357	int i, num_blocks, invalid_blocks = 0;
2358	const struct drm_edid *override;
2359	struct edid *edid, *new;
2360	size_t alloc_size = EDID_LENGTH;
2361
2362	override = drm_edid_override_get(connector);
2363	if (override) {
2364		alloc_size = override->size;
2365		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2366		drm_edid_free(override);
2367		if (!edid)
2368			return NULL;
2369		goto ok;
2370	}
2371
2372	edid = kmalloc(alloc_size, GFP_KERNEL);
2373	if (!edid)
2374		return NULL;
2375
2376	status = edid_block_read(edid, 0, read_block, context);
2377
2378	edid_block_status_print(status, edid, 0);
2379
2380	if (status == EDID_BLOCK_READ_FAIL)
2381		goto fail;
2382
2383	/* FIXME: Clarify what a corrupt EDID actually means. */
2384	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2385		connector->edid_corrupt = false;
2386	else
2387		connector->edid_corrupt = true;
2388
2389	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2390		if (status == EDID_BLOCK_ZERO)
2391			connector->null_edid_counter++;
2392
2393		connector_bad_edid(connector, edid, 1);
2394		goto fail;
2395	}
 
 
2396
2397	if (!edid_extension_block_count(edid))
2398		goto ok;
 
2399
2400	alloc_size = edid_size(edid);
2401	new = krealloc(edid, alloc_size, GFP_KERNEL);
2402	if (!new)
2403		goto fail;
2404	edid = new;
2405
2406	num_blocks = edid_block_count(edid);
2407	for (i = 1; i < num_blocks; i++) {
2408		void *block = (void *)edid_block_data(edid, i);
2409
2410		status = edid_block_read(block, i, read_block, context);
2411
2412		edid_block_status_print(status, block, i);
2413
2414		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2415			if (status == EDID_BLOCK_READ_FAIL)
2416				goto fail;
2417			invalid_blocks++;
2418		} else if (i == 1) {
2419			/*
2420			 * If the first EDID extension is a CTA extension, and
2421			 * the first Data Block is HF-EEODB, override the
2422			 * extension block count.
2423			 *
2424			 * Note: HF-EEODB could specify a smaller extension
2425			 * count too, but we can't risk allocating a smaller
2426			 * amount.
2427			 */
2428			int eeodb = edid_hfeeodb_block_count(edid);
2429
2430			if (eeodb > num_blocks) {
2431				num_blocks = eeodb;
2432				alloc_size = edid_size_by_blocks(num_blocks);
2433				new = krealloc(edid, alloc_size, GFP_KERNEL);
2434				if (!new)
2435					goto fail;
2436				edid = new;
 
 
2437			}
2438		}
2439	}
2440
2441	if (invalid_blocks) {
2442		connector_bad_edid(connector, edid, num_blocks);
2443
2444		edid = edid_filter_invalid_blocks(edid, &alloc_size);
 
 
 
2445	}
2446
2447ok:
2448	if (size)
2449		*size = alloc_size;
2450
2451	return edid;
2452
2453fail:
2454	kfree(edid);
2455	return NULL;
2456}
2457
2458/**
2459 * drm_edid_raw - Get a pointer to the raw EDID data.
2460 * @drm_edid: drm_edid container
2461 *
2462 * Get a pointer to the raw EDID data.
2463 *
2464 * This is for transition only. Avoid using this like the plague.
2465 *
2466 * Return: Pointer to raw EDID data.
2467 */
2468const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2469{
2470	if (!drm_edid || !drm_edid->size)
2471		return NULL;
2472
2473	/*
2474	 * Do not return pointers where relying on EDID extension count would
2475	 * lead to buffer overflow.
2476	 */
2477	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2478		return NULL;
2479
2480	return drm_edid->edid;
2481}
2482EXPORT_SYMBOL(drm_edid_raw);
2483
2484/* Allocate struct drm_edid container *without* duplicating the edid data */
2485static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2486{
2487	struct drm_edid *drm_edid;
2488
2489	if (!edid || !size || size < EDID_LENGTH)
2490		return NULL;
2491
2492	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2493	if (drm_edid) {
2494		drm_edid->edid = edid;
2495		drm_edid->size = size;
2496	}
2497
2498	return drm_edid;
2499}
2500
2501/**
2502 * drm_edid_alloc - Allocate a new drm_edid container
2503 * @edid: Pointer to raw EDID data
2504 * @size: Size of memory allocated for EDID
2505 *
2506 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2507 * the actual size that has been allocated for the data. There is no validation
2508 * of the raw EDID data against the size, but at least the EDID base block must
2509 * fit in the buffer.
2510 *
2511 * The returned pointer must be freed using drm_edid_free().
2512 *
2513 * Return: drm_edid container, or NULL on errors
2514 */
2515const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2516{
2517	const struct drm_edid *drm_edid;
2518
2519	if (!edid || !size || size < EDID_LENGTH)
2520		return NULL;
2521
2522	edid = kmemdup(edid, size, GFP_KERNEL);
2523	if (!edid)
2524		return NULL;
2525
2526	drm_edid = _drm_edid_alloc(edid, size);
2527	if (!drm_edid)
2528		kfree(edid);
 
 
 
2529
2530	return drm_edid;
 
 
2531}
2532EXPORT_SYMBOL(drm_edid_alloc);
2533
2534/**
2535 * drm_edid_dup - Duplicate a drm_edid container
2536 * @drm_edid: EDID to duplicate
2537 *
2538 * The returned pointer must be freed using drm_edid_free().
2539 *
2540 * Returns: drm_edid container copy, or NULL on errors
2541 */
2542const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2543{
2544	if (!drm_edid)
2545		return NULL;
2546
2547	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2548}
2549EXPORT_SYMBOL(drm_edid_dup);
2550
2551/**
2552 * drm_edid_free - Free the drm_edid container
2553 * @drm_edid: EDID to free
2554 */
2555void drm_edid_free(const struct drm_edid *drm_edid)
2556{
2557	if (!drm_edid)
2558		return;
2559
2560	kfree(drm_edid->edid);
2561	kfree(drm_edid);
2562}
2563EXPORT_SYMBOL(drm_edid_free);
2564
2565/**
2566 * drm_probe_ddc() - probe DDC presence
2567 * @adapter: I2C adapter to probe
2568 *
2569 * Return: True on success, false on failure.
2570 */
2571bool
2572drm_probe_ddc(struct i2c_adapter *adapter)
2573{
2574	unsigned char out;
2575
2576	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2577}
2578EXPORT_SYMBOL(drm_probe_ddc);
2579
2580/**
2581 * drm_get_edid - get EDID data, if available
2582 * @connector: connector we're probing
2583 * @adapter: I2C adapter to use for DDC
2584 *
2585 * Poke the given I2C channel to grab EDID data if possible.  If found,
2586 * attach it to the connector.
2587 *
2588 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2589 */
2590struct edid *drm_get_edid(struct drm_connector *connector,
2591			  struct i2c_adapter *adapter)
2592{
2593	struct edid *edid;
2594
2595	if (connector->force == DRM_FORCE_OFF)
2596		return NULL;
2597
2598	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2599		return NULL;
2600
2601	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2602	drm_connector_update_edid_property(connector, edid);
2603	return edid;
2604}
2605EXPORT_SYMBOL(drm_get_edid);
2606
2607/**
2608 * drm_edid_read_custom - Read EDID data using given EDID block read function
2609 * @connector: Connector to use
2610 * @read_block: EDID block read function
2611 * @context: Private data passed to the block read function
2612 *
2613 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2614 * exposes a different interface to read EDID blocks this function can be used
2615 * to get EDID data using a custom block read function.
2616 *
2617 * As in the general case the DDC bus is accessible by the kernel at the I2C
2618 * level, drivers must make all reasonable efforts to expose it as an I2C
2619 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2620 * this function.
2621 *
2622 * The EDID may be overridden using debugfs override_edid or firmware EDID
2623 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2624 * order. Having either of them bypasses actual EDID reads.
2625 *
2626 * The returned pointer must be freed using drm_edid_free().
2627 *
2628 * Return: Pointer to EDID, or NULL if probe/read failed.
2629 */
2630const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2631					    read_block_fn read_block,
2632					    void *context)
2633{
2634	const struct drm_edid *drm_edid;
2635	struct edid *edid;
2636	size_t size = 0;
2637
2638	edid = _drm_do_get_edid(connector, read_block, context, &size);
2639	if (!edid)
2640		return NULL;
2641
2642	/* Sanity check for now */
2643	drm_WARN_ON(connector->dev, !size);
2644
2645	drm_edid = _drm_edid_alloc(edid, size);
2646	if (!drm_edid)
2647		kfree(edid);
2648
2649	return drm_edid;
2650}
2651EXPORT_SYMBOL(drm_edid_read_custom);
2652
2653/**
2654 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2655 * @connector: Connector to use
2656 * @adapter: I2C adapter to use for DDC
2657 *
2658 * Read EDID using the given I2C adapter.
2659 *
2660 * The EDID may be overridden using debugfs override_edid or firmware EDID
2661 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2662 * order. Having either of them bypasses actual EDID reads.
2663 *
2664 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2665 * using drm_edid_read() instead of this function.
2666 *
2667 * The returned pointer must be freed using drm_edid_free().
2668 *
2669 * Return: Pointer to EDID, or NULL if probe/read failed.
2670 */
2671const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2672					 struct i2c_adapter *adapter)
2673{
2674	const struct drm_edid *drm_edid;
2675
2676	if (connector->force == DRM_FORCE_OFF)
2677		return NULL;
2678
2679	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2680		return NULL;
2681
2682	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2683
2684	/* Note: Do *not* call connector updates here. */
2685
2686	return drm_edid;
2687}
2688EXPORT_SYMBOL(drm_edid_read_ddc);
2689
2690/**
2691 * drm_edid_read - Read EDID data using connector's I2C adapter
2692 * @connector: Connector to use
2693 *
2694 * Read EDID using the connector's I2C adapter.
2695 *
2696 * The EDID may be overridden using debugfs override_edid or firmware EDID
2697 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2698 * order. Having either of them bypasses actual EDID reads.
2699 *
2700 * The returned pointer must be freed using drm_edid_free().
2701 *
2702 * Return: Pointer to EDID, or NULL if probe/read failed.
2703 */
2704const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2705{
2706	if (drm_WARN_ON(connector->dev, !connector->ddc))
2707		return NULL;
2708
2709	return drm_edid_read_ddc(connector, connector->ddc);
2710}
2711EXPORT_SYMBOL(drm_edid_read);
2712
2713/**
2714 * drm_edid_get_product_id - Get the vendor and product identification
2715 * @drm_edid: EDID
2716 * @id: Where to place the product id
2717 */
2718void drm_edid_get_product_id(const struct drm_edid *drm_edid,
2719			     struct drm_edid_product_id *id)
2720{
2721	if (drm_edid && drm_edid->edid && drm_edid->size >= EDID_LENGTH)
2722		memcpy(id, &drm_edid->edid->product_id, sizeof(*id));
2723	else
2724		memset(id, 0, sizeof(*id));
2725}
2726EXPORT_SYMBOL(drm_edid_get_product_id);
2727
2728static void decode_date(struct seq_buf *s, const struct drm_edid_product_id *id)
2729{
2730	int week = id->week_of_manufacture;
2731	int year = id->year_of_manufacture + 1990;
2732
2733	if (week == 0xff)
2734		seq_buf_printf(s, "model year: %d", year);
2735	else if (!week)
2736		seq_buf_printf(s, "year of manufacture: %d", year);
2737	else
2738		seq_buf_printf(s, "week/year of manufacture: %d/%d", week, year);
2739}
2740
2741/**
2742 * drm_edid_print_product_id - Print decoded product id to printer
2743 * @p: drm printer
2744 * @id: EDID product id
2745 * @raw: If true, also print the raw hex
2746 *
2747 * See VESA E-EDID 1.4 section 3.4.
2748 */
2749void drm_edid_print_product_id(struct drm_printer *p,
2750			       const struct drm_edid_product_id *id, bool raw)
2751{
2752	DECLARE_SEQ_BUF(date, 40);
2753	char vend[4];
2754
2755	drm_edid_decode_mfg_id(be16_to_cpu(id->manufacturer_name), vend);
2756
2757	decode_date(&date, id);
2758
2759	drm_printf(p, "manufacturer name: %s, product code: %u, serial number: %u, %s\n",
2760		   vend, le16_to_cpu(id->product_code),
2761		   le32_to_cpu(id->serial_number), seq_buf_str(&date));
2762
2763	if (raw)
2764		drm_printf(p, "raw product id: %*ph\n", (int)sizeof(*id), id);
2765
2766	WARN_ON(seq_buf_has_overflowed(&date));
2767}
2768EXPORT_SYMBOL(drm_edid_print_product_id);
2769
2770/**
2771 * drm_edid_get_panel_id - Get a panel's ID from EDID
2772 * @drm_edid: EDID that contains panel ID.
2773 *
2774 * This function uses the first block of the EDID of a panel and (assuming
2775 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2776 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2777 * supposed to be different for each different modem of panel.
2778 *
2779 * Return: A 32-bit ID that should be different for each make/model of panel.
2780 *         See the functions drm_edid_encode_panel_id() and
2781 *         drm_edid_decode_panel_id() for some details on the structure of this
2782 *         ID. Return 0 if the EDID size is less than a base block.
2783 */
2784u32 drm_edid_get_panel_id(const struct drm_edid *drm_edid)
2785{
2786	const struct edid *edid = drm_edid->edid;
2787
2788	if (drm_edid->size < EDID_LENGTH)
2789		return 0;
2790
2791	/*
2792	 * We represent the ID as a 32-bit number so it can easily be compared
2793	 * with "==".
2794	 *
2795	 * NOTE that we deal with endianness differently for the top half
2796	 * of this ID than for the bottom half. The bottom half (the product
2797	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2798	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2799	 * gets stored as big endian because that makes
2800	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2801	 * to write (it's easier to extract the ASCII). It doesn't really
2802	 * matter, though, as long as the number here is unique.
2803	 */
2804	return (u32)edid->mfg_id[0] << 24   |
2805	       (u32)edid->mfg_id[1] << 16   |
2806	       (u32)EDID_PRODUCT_ID(edid);
2807}
2808EXPORT_SYMBOL(drm_edid_get_panel_id);
2809
2810/**
2811 * drm_edid_read_base_block - Get a panel's EDID base block
2812 * @adapter: I2C adapter to use for DDC
2813 *
2814 * This function returns the drm_edid containing the first block of the EDID of
2815 * a panel.
2816 *
2817 * This function is intended to be used during early probing on devices where
2818 * more than one panel might be present. Because of its intended use it must
2819 * assume that the EDID of the panel is correct, at least as far as the base
2820 * block is concerned (in other words, we don't process any overrides here).
2821 *
2822 * Caller should call drm_edid_free() after use.
2823 *
2824 * NOTE: it's expected that this function and drm_do_get_edid() will both
2825 * be read the EDID, but there is no caching between them. Since we're only
2826 * reading the first block, hopefully this extra overhead won't be too big.
2827 *
2828 * WARNING: Only use this function when the connector is unknown. For example,
2829 * during the early probe of panel. The EDID read from the function is temporary
2830 * and should be replaced by the full EDID returned from other drm_edid_read.
2831 *
2832 * Return: Pointer to allocated EDID base block, or NULL on any failure.
2833 */
2834const struct drm_edid *drm_edid_read_base_block(struct i2c_adapter *adapter)
2835{
2836	enum edid_block_status status;
2837	void *base_block;
2838
2839	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2840	if (!base_block)
2841		return NULL;
2842
2843	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2844
2845	edid_block_status_print(status, base_block, 0);
2846
2847	if (!edid_block_status_valid(status, edid_block_tag(base_block))) {
2848		edid_block_dump(KERN_NOTICE, base_block, 0);
2849		kfree(base_block);
2850		return NULL;
2851	}
2852
2853	return _drm_edid_alloc(base_block, EDID_LENGTH);
2854}
2855EXPORT_SYMBOL(drm_edid_read_base_block);
2856
2857/**
2858 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2859 * @connector: connector we're probing
2860 * @adapter: I2C adapter to use for DDC
2861 *
2862 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2863 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2864 * switch DDC to the GPU which is retrieving EDID.
2865 *
2866 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2867 */
2868struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2869				     struct i2c_adapter *adapter)
2870{
2871	struct drm_device *dev = connector->dev;
2872	struct pci_dev *pdev = to_pci_dev(dev->dev);
2873	struct edid *edid;
2874
2875	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2876		return NULL;
2877
2878	vga_switcheroo_lock_ddc(pdev);
2879	edid = drm_get_edid(connector, adapter);
2880	vga_switcheroo_unlock_ddc(pdev);
2881
2882	return edid;
2883}
2884EXPORT_SYMBOL(drm_get_edid_switcheroo);
2885
2886/**
2887 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2888 * @connector: connector we're probing
2889 * @adapter: I2C adapter to use for DDC
2890 *
2891 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2892 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2893 * temporarily switch DDC to the GPU which is retrieving EDID.
2894 *
2895 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2896 */
2897const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2898						struct i2c_adapter *adapter)
2899{
2900	struct drm_device *dev = connector->dev;
2901	struct pci_dev *pdev = to_pci_dev(dev->dev);
2902	const struct drm_edid *drm_edid;
2903
2904	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2905		return NULL;
2906
2907	vga_switcheroo_lock_ddc(pdev);
2908	drm_edid = drm_edid_read_ddc(connector, adapter);
2909	vga_switcheroo_unlock_ddc(pdev);
2910
2911	return drm_edid;
2912}
2913EXPORT_SYMBOL(drm_edid_read_switcheroo);
2914
2915/**
2916 * drm_edid_duplicate - duplicate an EDID and the extensions
2917 * @edid: EDID to duplicate
2918 *
2919 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2920 */
2921struct edid *drm_edid_duplicate(const struct edid *edid)
2922{
2923	if (!edid)
2924		return NULL;
2925
2926	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2927}
2928EXPORT_SYMBOL(drm_edid_duplicate);
2929
2930/*** EDID parsing ***/
2931
2932/**
2933 * edid_get_quirks - return quirk flags for a given EDID
2934 * @drm_edid: EDID to process
2935 *
2936 * This tells subsequent routines what fixes they need to apply.
2937 *
2938 * Return: A u32 represents the quirks to apply.
2939 */
2940static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2941{
2942	const struct edid_quirk *quirk;
2943	int i;
2944
2945	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2946		quirk = &edid_quirk_list[i];
2947		if (drm_edid_match(drm_edid, &quirk->ident))
 
 
2948			return quirk->quirks;
2949	}
2950
2951	return 0;
2952}
2953
2954#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2955#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2956
2957/*
2958 * Walk the mode list for connector, clearing the preferred status on existing
2959 * modes and setting it anew for the right mode ala quirks.
 
 
 
 
2960 */
2961static void edid_fixup_preferred(struct drm_connector *connector)
 
2962{
2963	const struct drm_display_info *info = &connector->display_info;
2964	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2965	int target_refresh = 0;
2966	int cur_vrefresh, preferred_vrefresh;
2967
2968	if (list_empty(&connector->probed_modes))
2969		return;
2970
2971	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2972		target_refresh = 60;
2973	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2974		target_refresh = 75;
2975
2976	preferred_mode = list_first_entry(&connector->probed_modes,
2977					  struct drm_display_mode, head);
2978
2979	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2980		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2981
2982		if (cur_mode == preferred_mode)
2983			continue;
2984
2985		/* Largest mode is preferred */
2986		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2987			preferred_mode = cur_mode;
2988
2989		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2990		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
 
 
2991		/* At a given size, try to get closest to target refresh */
2992		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2993		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2994		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2995			preferred_mode = cur_mode;
2996		}
2997	}
2998
2999	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
3000}
3001
3002static bool
3003mode_is_rb(const struct drm_display_mode *mode)
3004{
3005	return (mode->htotal - mode->hdisplay == 160) &&
3006	       (mode->hsync_end - mode->hdisplay == 80) &&
3007	       (mode->hsync_end - mode->hsync_start == 32) &&
3008	       (mode->vsync_start - mode->vdisplay == 3);
3009}
3010
3011/*
3012 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
3013 * @dev: Device to duplicate against
3014 * @hsize: Mode width
3015 * @vsize: Mode height
3016 * @fresh: Mode refresh rate
3017 * @rb: Mode reduced-blanking-ness
3018 *
3019 * Walk the DMT mode list looking for a match for the given parameters.
3020 *
3021 * Return: A newly allocated copy of the mode, or NULL if not found.
3022 */
3023struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
3024					   int hsize, int vsize, int fresh,
3025					   bool rb)
3026{
3027	int i;
3028
3029	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3030		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3031
3032		if (hsize != ptr->hdisplay)
3033			continue;
3034		if (vsize != ptr->vdisplay)
3035			continue;
3036		if (fresh != drm_mode_vrefresh(ptr))
3037			continue;
3038		if (rb != mode_is_rb(ptr))
3039			continue;
3040
3041		return drm_mode_duplicate(dev, ptr);
3042	}
3043
3044	return NULL;
3045}
3046EXPORT_SYMBOL(drm_mode_find_dmt);
3047
3048static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3049{
3050	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3051	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3052	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3053
3054	return descriptor->pixel_clock == 0 &&
3055		descriptor->data.other_data.pad1 == 0 &&
3056		descriptor->data.other_data.type == type;
3057}
3058
3059static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3060{
3061	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3062
3063	return descriptor->pixel_clock != 0;
3064}
3065
3066typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3067
3068static void
3069cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3070{
3071	int i, n;
3072	u8 d = ext[0x02];
3073	const u8 *det_base = ext + d;
3074
3075	if (d < 4 || d > 127)
3076		return;
3077
3078	n = (127 - d) / 18;
3079	for (i = 0; i < n; i++)
3080		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3081}
3082
3083static void
3084vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3085{
3086	unsigned int i, n = min((int)ext[0x02], 6);
3087	const u8 *det_base = ext + 5;
3088
3089	if (ext[0x01] != 1)
3090		return; /* unknown version */
3091
3092	for (i = 0; i < n; i++)
3093		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3094}
3095
3096static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3097					detailed_cb *cb, void *closure)
3098{
3099	struct drm_edid_iter edid_iter;
3100	const u8 *ext;
3101	int i;
 
3102
3103	if (!drm_edid)
3104		return;
3105
3106	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3107		cb(&drm_edid->edid->detailed_timings[i], closure);
3108
3109	drm_edid_iter_begin(drm_edid, &edid_iter);
3110	drm_edid_iter_for_each(ext, &edid_iter) {
3111		switch (*ext) {
3112		case CEA_EXT:
3113			cea_for_each_detailed_block(ext, cb, closure);
3114			break;
3115		case VTB_EXT:
3116			vtb_for_each_detailed_block(ext, cb, closure);
3117			break;
3118		default:
3119			break;
3120		}
3121	}
3122	drm_edid_iter_end(&edid_iter);
3123}
3124
3125static void
3126is_rb(const struct detailed_timing *descriptor, void *data)
3127{
3128	bool *res = data;
3129
3130	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3131		return;
3132
3133	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3134	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3135
3136	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3137	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3138		*res = true;
3139}
3140
3141/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3142static bool
3143drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3144{
3145	if (drm_edid->edid->revision >= 4) {
3146		bool ret = false;
3147
3148		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3149		return ret;
3150	}
3151
3152	return drm_edid_is_digital(drm_edid);
3153}
3154
3155static void
3156find_gtf2(const struct detailed_timing *descriptor, void *data)
3157{
3158	const struct detailed_timing **res = data;
3159
3160	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3161		return;
3162
3163	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3164
3165	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3166		*res = descriptor;
3167}
3168
3169/* Secondary GTF curve kicks in above some break frequency */
3170static int
3171drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3172{
3173	const struct detailed_timing *descriptor = NULL;
3174
3175	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3176
3177	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3178
3179	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3180}
3181
3182static int
3183drm_gtf2_2c(const struct drm_edid *drm_edid)
3184{
3185	const struct detailed_timing *descriptor = NULL;
3186
3187	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3188
3189	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3190
3191	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3192}
3193
3194static int
3195drm_gtf2_m(const struct drm_edid *drm_edid)
3196{
3197	const struct detailed_timing *descriptor = NULL;
3198
3199	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3200
3201	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3202
3203	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3204}
3205
3206static int
3207drm_gtf2_k(const struct drm_edid *drm_edid)
3208{
3209	const struct detailed_timing *descriptor = NULL;
3210
3211	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3212
3213	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3214
3215	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3216}
3217
3218static int
3219drm_gtf2_2j(const struct drm_edid *drm_edid)
3220{
3221	const struct detailed_timing *descriptor = NULL;
3222
3223	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3224
3225	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3226
3227	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3228}
3229
3230static void
3231get_timing_level(const struct detailed_timing *descriptor, void *data)
3232{
3233	int *res = data;
3234
3235	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3236		return;
3237
3238	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3239
3240	switch (descriptor->data.other_data.data.range.flags) {
3241	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3242		*res = LEVEL_GTF;
3243		break;
3244	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3245		*res = LEVEL_GTF2;
3246		break;
3247	case DRM_EDID_CVT_SUPPORT_FLAG:
3248		*res = LEVEL_CVT;
3249		break;
3250	default:
3251		break;
3252	}
3253}
3254
3255/* Get standard timing level (CVT/GTF/DMT). */
3256static int standard_timing_level(const struct drm_edid *drm_edid)
 
 
 
3257{
3258	const struct edid *edid = drm_edid->edid;
3259
3260	if (edid->revision >= 4) {
3261		/*
3262		 * If the range descriptor doesn't
3263		 * indicate otherwise default to CVT
3264		 */
3265		int ret = LEVEL_CVT;
3266
3267		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3268
3269		return ret;
3270	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3271		return LEVEL_GTF2;
3272	} else if (edid->revision >= 2) {
3273		return LEVEL_GTF;
3274	} else {
3275		return LEVEL_DMT;
3276	}
 
3277}
3278
3279/*
3280 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3281 * monitors fill with ascii space (0x20) instead.
3282 */
3283static int
3284bad_std_timing(u8 a, u8 b)
3285{
3286	return (a == 0x00 && b == 0x00) ||
3287	       (a == 0x01 && b == 0x01) ||
3288	       (a == 0x20 && b == 0x20);
3289}
3290
3291static int drm_mode_hsync(const struct drm_display_mode *mode)
3292{
3293	if (mode->htotal <= 0)
3294		return 0;
3295
3296	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3297}
3298
3299static struct drm_display_mode *
3300drm_gtf2_mode(struct drm_device *dev,
3301	      const struct drm_edid *drm_edid,
3302	      int hsize, int vsize, int vrefresh_rate)
3303{
3304	struct drm_display_mode *mode;
3305
3306	/*
3307	 * This is potentially wrong if there's ever a monitor with
3308	 * more than one ranges section, each claiming a different
3309	 * secondary GTF curve.  Please don't do that.
3310	 */
3311	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3312	if (!mode)
3313		return NULL;
3314
3315	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3316		drm_mode_destroy(dev, mode);
3317		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3318					    vrefresh_rate, 0, 0,
3319					    drm_gtf2_m(drm_edid),
3320					    drm_gtf2_2c(drm_edid),
3321					    drm_gtf2_k(drm_edid),
3322					    drm_gtf2_2j(drm_edid));
3323	}
3324
3325	return mode;
3326}
3327
3328/*
3329 * Take the standard timing params (in this case width, aspect, and refresh)
3330 * and convert them into a real mode using CVT/GTF/DMT.
3331 */
3332static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3333					     const struct drm_edid *drm_edid,
3334					     const struct std_timing *t)
3335{
3336	struct drm_device *dev = connector->dev;
3337	struct drm_display_mode *m, *mode = NULL;
3338	int hsize, vsize;
3339	int vrefresh_rate;
3340	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3341		>> EDID_TIMING_ASPECT_SHIFT;
3342	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3343		>> EDID_TIMING_VFREQ_SHIFT;
3344	int timing_level = standard_timing_level(drm_edid);
3345
3346	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3347		return NULL;
3348
3349	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3350	hsize = t->hsize * 8 + 248;
3351	/* vrefresh_rate = vfreq + 60 */
3352	vrefresh_rate = vfreq + 60;
3353	/* the vdisplay is calculated based on the aspect ratio */
3354	if (aspect_ratio == 0) {
3355		if (drm_edid->edid->revision < 3)
3356			vsize = hsize;
3357		else
3358			vsize = (hsize * 10) / 16;
3359	} else if (aspect_ratio == 1)
3360		vsize = (hsize * 3) / 4;
3361	else if (aspect_ratio == 2)
3362		vsize = (hsize * 4) / 5;
3363	else
3364		vsize = (hsize * 9) / 16;
3365
3366	/* HDTV hack, part 1 */
3367	if (vrefresh_rate == 60 &&
3368	    ((hsize == 1360 && vsize == 765) ||
3369	     (hsize == 1368 && vsize == 769))) {
3370		hsize = 1366;
3371		vsize = 768;
3372	}
3373
3374	/*
3375	 * If this connector already has a mode for this size and refresh
3376	 * rate (because it came from detailed or CVT info), use that
3377	 * instead.  This way we don't have to guess at interlace or
3378	 * reduced blanking.
3379	 */
3380	list_for_each_entry(m, &connector->probed_modes, head)
3381		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3382		    drm_mode_vrefresh(m) == vrefresh_rate)
3383			return NULL;
3384
3385	/* HDTV hack, part 2 */
3386	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3387		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3388				    false);
3389		if (!mode)
3390			return NULL;
3391		mode->hdisplay = 1366;
3392		mode->hsync_start = mode->hsync_start - 1;
3393		mode->hsync_end = mode->hsync_end - 1;
3394		return mode;
3395	}
3396
3397	/* check whether it can be found in default mode table */
3398	if (drm_monitor_supports_rb(drm_edid)) {
3399		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3400					 true);
3401		if (mode)
3402			return mode;
3403	}
3404	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3405	if (mode)
3406		return mode;
3407
3408	/* okay, generate it */
3409	switch (timing_level) {
3410	case LEVEL_DMT:
3411		break;
3412	case LEVEL_GTF:
3413		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3414		break;
3415	case LEVEL_GTF2:
3416		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417		break;
3418	case LEVEL_CVT:
3419		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3420				    false);
3421		break;
3422	}
3423	return mode;
3424}
3425
3426/*
3427 * EDID is delightfully ambiguous about how interlaced modes are to be
3428 * encoded.  Our internal representation is of frame height, but some
3429 * HDTV detailed timings are encoded as field height.
3430 *
3431 * The format list here is from CEA, in frame size.  Technically we
3432 * should be checking refresh rate too.  Whatever.
3433 */
3434static void
3435drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3436			    const struct detailed_pixel_timing *pt)
3437{
3438	int i;
3439	static const struct {
3440		int w, h;
3441	} cea_interlaced[] = {
3442		{ 1920, 1080 },
3443		{  720,  480 },
3444		{ 1440,  480 },
3445		{ 2880,  480 },
3446		{  720,  576 },
3447		{ 1440,  576 },
3448		{ 2880,  576 },
3449	};
3450
3451	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3452		return;
3453
3454	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3455		if ((mode->hdisplay == cea_interlaced[i].w) &&
3456		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3457			mode->vdisplay *= 2;
3458			mode->vsync_start *= 2;
3459			mode->vsync_end *= 2;
3460			mode->vtotal *= 2;
3461			mode->vtotal |= 1;
3462		}
3463	}
3464
3465	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3466}
3467
3468/*
3469 * Create a new mode from an EDID detailed timing section. An EDID detailed
3470 * timing block contains enough info for us to create and return a new struct
3471 * drm_display_mode.
3472 */
3473static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3474						  const struct drm_edid *drm_edid,
3475						  const struct detailed_timing *timing)
 
 
 
 
 
 
3476{
3477	const struct drm_display_info *info = &connector->display_info;
3478	struct drm_device *dev = connector->dev;
3479	struct drm_display_mode *mode;
3480	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3481	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3482	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3483	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3484	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3485	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3486	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3487	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3488	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3489
3490	/* ignore tiny modes */
3491	if (hactive < 64 || vactive < 64)
3492		return NULL;
3493
3494	if (pt->misc & DRM_EDID_PT_STEREO) {
3495		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3496			    connector->base.id, connector->name);
3497		return NULL;
3498	}
3499	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3500		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3501			    connector->base.id, connector->name);
3502	}
3503
3504	/* it is incorrect if hsync/vsync width is zero */
3505	if (!hsync_pulse_width || !vsync_pulse_width) {
3506		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3507			    connector->base.id, connector->name);
3508		return NULL;
3509	}
3510
3511	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3512		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3513		if (!mode)
3514			return NULL;
3515
3516		goto set_size;
3517	}
3518
3519	mode = drm_mode_create(dev);
3520	if (!mode)
3521		return NULL;
3522
3523	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3524		mode->clock = 1088 * 10;
3525	else
3526		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3527
3528	mode->hdisplay = hactive;
3529	mode->hsync_start = mode->hdisplay + hsync_offset;
3530	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3531	mode->htotal = mode->hdisplay + hblank;
3532
3533	mode->vdisplay = vactive;
3534	mode->vsync_start = mode->vdisplay + vsync_offset;
3535	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3536	mode->vtotal = mode->vdisplay + vblank;
3537
3538	/* Some EDIDs have bogus h/vsync_end values */
3539	if (mode->hsync_end > mode->htotal) {
3540		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3541			    connector->base.id, connector->name,
3542			    mode->hsync_end, mode->htotal);
3543		mode->hsync_end = mode->htotal;
3544	}
3545	if (mode->vsync_end > mode->vtotal) {
3546		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3547			    connector->base.id, connector->name,
3548			    mode->vsync_end, mode->vtotal);
3549		mode->vsync_end = mode->vtotal;
3550	}
3551
3552	drm_mode_do_interlace_quirk(mode, pt);
3553
3554	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3555		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3556	} else {
3557		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3558			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3559		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3560			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3561	}
3562
 
 
 
 
 
3563set_size:
3564	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3565	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3566
3567	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3568		mode->width_mm *= 10;
3569		mode->height_mm *= 10;
3570	}
3571
3572	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3573		mode->width_mm = drm_edid->edid->width_cm * 10;
3574		mode->height_mm = drm_edid->edid->height_cm * 10;
3575	}
3576
3577	mode->type = DRM_MODE_TYPE_DRIVER;
 
3578	drm_mode_set_name(mode);
3579
3580	return mode;
3581}
3582
3583static bool
3584mode_in_hsync_range(const struct drm_display_mode *mode,
3585		    const struct edid *edid, const u8 *t)
3586{
3587	int hsync, hmin, hmax;
3588
3589	hmin = t[7];
3590	if (edid->revision >= 4)
3591	    hmin += ((t[4] & 0x04) ? 255 : 0);
3592	hmax = t[8];
3593	if (edid->revision >= 4)
3594	    hmax += ((t[4] & 0x08) ? 255 : 0);
3595	hsync = drm_mode_hsync(mode);
3596
3597	return (hsync <= hmax && hsync >= hmin);
3598}
3599
3600static bool
3601mode_in_vsync_range(const struct drm_display_mode *mode,
3602		    const struct edid *edid, const u8 *t)
3603{
3604	int vsync, vmin, vmax;
3605
3606	vmin = t[5];
3607	if (edid->revision >= 4)
3608	    vmin += ((t[4] & 0x01) ? 255 : 0);
3609	vmax = t[6];
3610	if (edid->revision >= 4)
3611	    vmax += ((t[4] & 0x02) ? 255 : 0);
3612	vsync = drm_mode_vrefresh(mode);
3613
3614	return (vsync <= vmax && vsync >= vmin);
3615}
3616
3617static u32
3618range_pixel_clock(const struct edid *edid, const u8 *t)
3619{
3620	/* unspecified */
3621	if (t[9] == 0 || t[9] == 255)
3622		return 0;
3623
3624	/* 1.4 with CVT support gives us real precision, yay */
3625	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3626		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3627
3628	/* 1.3 is pathetic, so fuzz up a bit */
3629	return t[9] * 10000 + 5001;
3630}
3631
3632static bool mode_in_range(const struct drm_display_mode *mode,
3633			  const struct drm_edid *drm_edid,
3634			  const struct detailed_timing *timing)
3635{
3636	const struct edid *edid = drm_edid->edid;
3637	u32 max_clock;
3638	const u8 *t = (const u8 *)timing;
3639
3640	if (!mode_in_hsync_range(mode, edid, t))
3641		return false;
3642
3643	if (!mode_in_vsync_range(mode, edid, t))
3644		return false;
3645
3646	max_clock = range_pixel_clock(edid, t);
3647	if (max_clock)
3648		if (mode->clock > max_clock)
3649			return false;
3650
3651	/* 1.4 max horizontal check */
3652	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3653		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3654			return false;
3655
3656	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3657		return false;
3658
3659	return true;
3660}
3661
3662static bool valid_inferred_mode(const struct drm_connector *connector,
3663				const struct drm_display_mode *mode)
3664{
3665	const struct drm_display_mode *m;
3666	bool ok = false;
3667
3668	list_for_each_entry(m, &connector->probed_modes, head) {
3669		if (mode->hdisplay == m->hdisplay &&
3670		    mode->vdisplay == m->vdisplay &&
3671		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3672			return false; /* duplicated */
3673		if (mode->hdisplay <= m->hdisplay &&
3674		    mode->vdisplay <= m->vdisplay)
3675			ok = true;
3676	}
3677	return ok;
3678}
3679
3680static int drm_dmt_modes_for_range(struct drm_connector *connector,
3681				   const struct drm_edid *drm_edid,
3682				   const struct detailed_timing *timing)
3683{
3684	int i, modes = 0;
3685	struct drm_display_mode *newmode;
3686	struct drm_device *dev = connector->dev;
3687
3688	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3689		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3690		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3691			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3692			if (newmode) {
3693				drm_mode_probed_add(connector, newmode);
3694				modes++;
3695			}
3696		}
3697	}
3698
3699	return modes;
3700}
3701
3702/* fix up 1366x768 mode from 1368x768;
3703 * GFT/CVT can't express 1366 width which isn't dividable by 8
3704 */
3705void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3706{
3707	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3708		mode->hdisplay = 1366;
3709		mode->hsync_start--;
3710		mode->hsync_end--;
3711		drm_mode_set_name(mode);
3712	}
3713}
3714
3715static int drm_gtf_modes_for_range(struct drm_connector *connector,
3716				   const struct drm_edid *drm_edid,
3717				   const struct detailed_timing *timing)
3718{
3719	int i, modes = 0;
3720	struct drm_display_mode *newmode;
3721	struct drm_device *dev = connector->dev;
3722
3723	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3724		const struct minimode *m = &extra_modes[i];
3725
3726		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3727		if (!newmode)
3728			return modes;
3729
3730		drm_mode_fixup_1366x768(newmode);
3731		if (!mode_in_range(newmode, drm_edid, timing) ||
3732		    !valid_inferred_mode(connector, newmode)) {
3733			drm_mode_destroy(dev, newmode);
3734			continue;
3735		}
3736
3737		drm_mode_probed_add(connector, newmode);
3738		modes++;
3739	}
3740
3741	return modes;
3742}
3743
3744static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3745				    const struct drm_edid *drm_edid,
3746				    const struct detailed_timing *timing)
3747{
3748	int i, modes = 0;
3749	struct drm_display_mode *newmode;
3750	struct drm_device *dev = connector->dev;
3751
3752	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3753		const struct minimode *m = &extra_modes[i];
3754
3755		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3756		if (!newmode)
3757			return modes;
3758
3759		drm_mode_fixup_1366x768(newmode);
3760		if (!mode_in_range(newmode, drm_edid, timing) ||
3761		    !valid_inferred_mode(connector, newmode)) {
3762			drm_mode_destroy(dev, newmode);
3763			continue;
3764		}
3765
3766		drm_mode_probed_add(connector, newmode);
3767		modes++;
3768	}
3769
3770	return modes;
3771}
3772
3773static int drm_cvt_modes_for_range(struct drm_connector *connector,
3774				   const struct drm_edid *drm_edid,
3775				   const struct detailed_timing *timing)
3776{
3777	int i, modes = 0;
3778	struct drm_display_mode *newmode;
3779	struct drm_device *dev = connector->dev;
3780	bool rb = drm_monitor_supports_rb(drm_edid);
3781
3782	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3783		const struct minimode *m = &extra_modes[i];
3784
3785		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3786		if (!newmode)
3787			return modes;
3788
3789		drm_mode_fixup_1366x768(newmode);
3790		if (!mode_in_range(newmode, drm_edid, timing) ||
3791		    !valid_inferred_mode(connector, newmode)) {
3792			drm_mode_destroy(dev, newmode);
3793			continue;
3794		}
3795
3796		drm_mode_probed_add(connector, newmode);
3797		modes++;
3798	}
3799
3800	return modes;
3801}
3802
3803static void
3804do_inferred_modes(const struct detailed_timing *timing, void *c)
3805{
3806	struct detailed_mode_closure *closure = c;
3807	const struct detailed_non_pixel *data = &timing->data.other_data;
3808	const struct detailed_data_monitor_range *range = &data->data.range;
3809
3810	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3811		return;
3812
3813	closure->modes += drm_dmt_modes_for_range(closure->connector,
3814						  closure->drm_edid,
3815						  timing);
3816
3817	if (closure->drm_edid->edid->revision < 2)
3818		return; /* GTF not defined yet */
3819
3820	switch (range->flags) {
3821	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3822		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3823							   closure->drm_edid,
3824							   timing);
3825		break;
3826	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3827		closure->modes += drm_gtf_modes_for_range(closure->connector,
3828							  closure->drm_edid,
3829							  timing);
3830		break;
3831	case DRM_EDID_CVT_SUPPORT_FLAG:
3832		if (closure->drm_edid->edid->revision < 4)
3833			break;
3834
3835		closure->modes += drm_cvt_modes_for_range(closure->connector,
3836							  closure->drm_edid,
3837							  timing);
3838		break;
3839	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3840	default:
3841		break;
3842	}
3843}
3844
3845static int add_inferred_modes(struct drm_connector *connector,
3846			      const struct drm_edid *drm_edid)
3847{
3848	struct detailed_mode_closure closure = {
3849		.connector = connector,
3850		.drm_edid = drm_edid,
3851	};
3852
3853	if (drm_edid->edid->revision >= 1)
3854		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
 
3855
3856	return closure.modes;
3857}
3858
3859static int
3860drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3861{
3862	int i, j, m, modes = 0;
3863	struct drm_display_mode *mode;
3864	const u8 *est = ((const u8 *)timing) + 6;
3865
3866	for (i = 0; i < 6; i++) {
3867		for (j = 7; j >= 0; j--) {
3868			m = (i * 8) + (7 - j);
3869			if (m >= ARRAY_SIZE(est3_modes))
3870				break;
3871			if (est[i] & (1 << j)) {
3872				mode = drm_mode_find_dmt(connector->dev,
3873							 est3_modes[m].w,
3874							 est3_modes[m].h,
3875							 est3_modes[m].r,
3876							 est3_modes[m].rb);
3877				if (mode) {
3878					drm_mode_probed_add(connector, mode);
3879					modes++;
3880				}
3881			}
3882		}
3883	}
3884
3885	return modes;
3886}
3887
3888static void
3889do_established_modes(const struct detailed_timing *timing, void *c)
3890{
3891	struct detailed_mode_closure *closure = c;
 
3892
3893	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3894		return;
3895
3896	closure->modes += drm_est3_modes(closure->connector, timing);
3897}
3898
3899/*
3900 * Get established modes from EDID and add them. Each EDID block contains a
3901 * bitmap of the supported "established modes" list (defined above). Tease them
3902 * out and add them to the global modes list.
 
 
 
3903 */
3904static int add_established_modes(struct drm_connector *connector,
3905				 const struct drm_edid *drm_edid)
3906{
3907	struct drm_device *dev = connector->dev;
3908	const struct edid *edid = drm_edid->edid;
3909	unsigned long est_bits = edid->established_timings.t1 |
3910		(edid->established_timings.t2 << 8) |
3911		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3912	int i, modes = 0;
3913	struct detailed_mode_closure closure = {
3914		.connector = connector,
3915		.drm_edid = drm_edid,
3916	};
3917
3918	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3919		if (est_bits & (1<<i)) {
3920			struct drm_display_mode *newmode;
3921
3922			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3923			if (newmode) {
3924				drm_mode_probed_add(connector, newmode);
3925				modes++;
3926			}
3927		}
3928	}
3929
3930	if (edid->revision >= 1)
3931		drm_for_each_detailed_block(drm_edid, do_established_modes,
3932					    &closure);
3933
3934	return modes + closure.modes;
3935}
3936
3937static void
3938do_standard_modes(const struct detailed_timing *timing, void *c)
3939{
3940	struct detailed_mode_closure *closure = c;
3941	const struct detailed_non_pixel *data = &timing->data.other_data;
3942	struct drm_connector *connector = closure->connector;
3943	int i;
3944
3945	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3946		return;
3947
3948	for (i = 0; i < 6; i++) {
3949		const struct std_timing *std = &data->data.timings[i];
3950		struct drm_display_mode *newmode;
 
 
3951
3952		newmode = drm_mode_std(connector, closure->drm_edid, std);
3953		if (newmode) {
3954			drm_mode_probed_add(connector, newmode);
3955			closure->modes++;
 
 
 
3956		}
3957	}
3958}
3959
3960/*
3961 * Get standard modes from EDID and add them. Standard modes can be calculated
3962 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3963 * add them to the list.
 
 
 
3964 */
3965static int add_standard_modes(struct drm_connector *connector,
3966			      const struct drm_edid *drm_edid)
3967{
3968	int i, modes = 0;
3969	struct detailed_mode_closure closure = {
3970		.connector = connector,
3971		.drm_edid = drm_edid,
3972	};
3973
3974	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3975		struct drm_display_mode *newmode;
3976
3977		newmode = drm_mode_std(connector, drm_edid,
3978				       &drm_edid->edid->standard_timings[i]);
 
3979		if (newmode) {
3980			drm_mode_probed_add(connector, newmode);
3981			modes++;
3982		}
3983	}
3984
3985	if (drm_edid->edid->revision >= 1)
3986		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3987					    &closure);
3988
3989	/* XXX should also look for standard codes in VTB blocks */
3990
3991	return modes + closure.modes;
3992}
3993
3994static int drm_cvt_modes(struct drm_connector *connector,
3995			 const struct detailed_timing *timing)
3996{
3997	int i, j, modes = 0;
3998	struct drm_display_mode *newmode;
3999	struct drm_device *dev = connector->dev;
4000	const struct cvt_timing *cvt;
4001	static const int rates[] = { 60, 85, 75, 60, 50 };
4002	const u8 empty[3] = { 0, 0, 0 };
4003
4004	for (i = 0; i < 4; i++) {
4005		int width, height;
4006
4007		cvt = &(timing->data.other_data.data.cvt[i]);
4008
4009		if (!memcmp(cvt->code, empty, 3))
4010			continue;
4011
4012		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4013		switch (cvt->code[1] & 0x0c) {
4014		/* default - because compiler doesn't see that we've enumerated all cases */
4015		default:
4016		case 0x00:
4017			width = height * 4 / 3;
4018			break;
4019		case 0x04:
4020			width = height * 16 / 9;
4021			break;
4022		case 0x08:
4023			width = height * 16 / 10;
4024			break;
4025		case 0x0c:
4026			width = height * 15 / 9;
4027			break;
4028		}
4029
4030		for (j = 1; j < 5; j++) {
4031			if (cvt->code[2] & (1 << j)) {
4032				newmode = drm_cvt_mode(dev, width, height,
4033						       rates[j], j == 0,
4034						       false, false);
4035				if (newmode) {
4036					drm_mode_probed_add(connector, newmode);
4037					modes++;
4038				}
4039			}
4040		}
4041	}
4042
4043	return modes;
4044}
4045
4046static void
4047do_cvt_mode(const struct detailed_timing *timing, void *c)
4048{
4049	struct detailed_mode_closure *closure = c;
 
4050
4051	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4052		return;
4053
4054	closure->modes += drm_cvt_modes(closure->connector, timing);
4055}
4056
4057static int
4058add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4059{
4060	struct detailed_mode_closure closure = {
4061		.connector = connector,
4062		.drm_edid = drm_edid,
4063	};
4064
4065	if (drm_edid->edid->revision >= 3)
4066		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4067
4068	/* XXX should also look for CVT codes in VTB blocks */
4069
4070	return closure.modes;
4071}
4072
4073static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4074					  struct drm_display_mode *mode);
4075
4076static void
4077do_detailed_mode(const struct detailed_timing *timing, void *c)
4078{
4079	struct detailed_mode_closure *closure = c;
4080	struct drm_display_mode *newmode;
4081
4082	if (!is_detailed_timing_descriptor(timing))
4083		return;
4084
4085	newmode = drm_mode_detailed(closure->connector,
4086				    closure->drm_edid, timing);
4087	if (!newmode)
4088		return;
4089
4090	if (closure->preferred)
4091		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4092
4093	/*
4094	 * Detailed modes are limited to 10kHz pixel clock resolution,
4095	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4096	 * is just slightly off.
4097	 */
4098	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4099
4100	drm_mode_probed_add(closure->connector, newmode);
4101	closure->modes++;
4102	closure->preferred = false;
4103}
4104
4105/*
4106 * add_detailed_modes - Add modes from detailed timings
4107 * @connector: attached connector
4108 * @drm_edid: EDID block to scan
 
4109 */
4110static int add_detailed_modes(struct drm_connector *connector,
4111			      const struct drm_edid *drm_edid)
 
4112{
4113	struct detailed_mode_closure closure = {
4114		.connector = connector,
4115		.drm_edid = drm_edid,
 
 
 
4116	};
4117
4118	if (drm_edid->edid->revision >= 4)
4119		closure.preferred = true; /* first detailed timing is always preferred */
4120	else
4121		closure.preferred =
4122			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4123
4124	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4125
4126	return closure.modes;
4127}
4128
4129/* CTA-861-H Table 60 - CTA Tag Codes */
4130#define CTA_DB_AUDIO			1
4131#define CTA_DB_VIDEO			2
4132#define CTA_DB_VENDOR			3
4133#define CTA_DB_SPEAKER			4
4134#define CTA_DB_EXTENDED_TAG		7
4135
4136/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4137#define CTA_EXT_DB_VIDEO_CAP		0
4138#define CTA_EXT_DB_VENDOR		1
4139#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4140#define CTA_EXT_DB_420_VIDEO_DATA	14
4141#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4142#define CTA_EXT_DB_HF_EEODB		0x78
4143#define CTA_EXT_DB_HF_SCDB		0x79
4144
4145#define EDID_BASIC_AUDIO	(1 << 6)
4146#define EDID_CEA_YCRCB444	(1 << 5)
4147#define EDID_CEA_YCRCB422	(1 << 4)
4148#define EDID_CEA_VCDB_QS	(1 << 6)
4149
4150/*
4151 * Search EDID for CEA extension block.
4152 *
4153 * FIXME: Prefer not returning pointers to raw EDID data.
4154 */
4155const u8 *drm_edid_find_extension(const struct drm_edid *drm_edid,
4156				  int ext_id, int *ext_index)
4157{
4158	const u8 *edid_ext = NULL;
4159	int i;
4160
4161	/* No EDID or EDID extensions */
4162	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4163		return NULL;
4164
4165	/* Find CEA extension */
4166	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4167		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4168		if (edid_block_tag(edid_ext) == ext_id)
4169			break;
4170	}
4171
4172	if (i >= drm_edid_extension_block_count(drm_edid))
4173		return NULL;
4174
4175	*ext_index = i + 1;
4176
4177	return edid_ext;
4178}
4179
4180/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4181static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4182{
4183	const struct displayid_block *block;
4184	struct displayid_iter iter;
4185	struct drm_edid_iter edid_iter;
4186	const u8 *ext;
4187	bool found = false;
4188
4189	/* Look for a top level CEA extension block */
4190	drm_edid_iter_begin(drm_edid, &edid_iter);
4191	drm_edid_iter_for_each(ext, &edid_iter) {
4192		if (ext[0] == CEA_EXT) {
4193			found = true;
4194			break;
4195		}
4196	}
4197	drm_edid_iter_end(&edid_iter);
4198
4199	if (found)
4200		return true;
4201
4202	/* CEA blocks can also be found embedded in a DisplayID block */
4203	displayid_iter_edid_begin(drm_edid, &iter);
4204	displayid_iter_for_each(block, &iter) {
4205		if (block->tag == DATA_BLOCK_CTA) {
4206			found = true;
4207			break;
4208		}
4209	}
4210	displayid_iter_end(&iter);
4211
4212	return found;
4213}
4214
4215static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4216{
4217	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4218	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4219
4220	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4221		return &edid_cea_modes_1[vic - 1];
4222	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4223		return &edid_cea_modes_193[vic - 193];
4224	return NULL;
4225}
4226
4227static u8 cea_num_vics(void)
4228{
4229	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4230}
4231
4232static u8 cea_next_vic(u8 vic)
4233{
4234	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4235		vic = 193;
4236	return vic;
4237}
4238
4239/*
4240 * Calculate the alternate clock for the CEA mode
4241 * (60Hz vs. 59.94Hz etc.)
4242 */
4243static unsigned int
4244cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4245{
4246	unsigned int clock = cea_mode->clock;
4247
4248	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4249		return clock;
4250
4251	/*
4252	 * edid_cea_modes contains the 59.94Hz
4253	 * variant for 240 and 480 line modes,
4254	 * and the 60Hz variant otherwise.
4255	 */
4256	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4257		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4258	else
4259		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4260
4261	return clock;
4262}
4263
4264static bool
4265cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4266{
4267	/*
4268	 * For certain VICs the spec allows the vertical
4269	 * front porch to vary by one or two lines.
4270	 *
4271	 * cea_modes[] stores the variant with the shortest
4272	 * vertical front porch. We can adjust the mode to
4273	 * get the other variants by simply increasing the
4274	 * vertical front porch length.
4275	 */
4276	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4277		     cea_mode_for_vic(9)->vtotal != 262 ||
4278		     cea_mode_for_vic(12)->vtotal != 262 ||
4279		     cea_mode_for_vic(13)->vtotal != 262 ||
4280		     cea_mode_for_vic(23)->vtotal != 312 ||
4281		     cea_mode_for_vic(24)->vtotal != 312 ||
4282		     cea_mode_for_vic(27)->vtotal != 312 ||
4283		     cea_mode_for_vic(28)->vtotal != 312);
4284
4285	if (((vic == 8 || vic == 9 ||
4286	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4287	    ((vic == 23 || vic == 24 ||
4288	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4289		mode->vsync_start++;
4290		mode->vsync_end++;
4291		mode->vtotal++;
4292
4293		return true;
4294	}
4295
4296	return false;
4297}
4298
4299static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4300					     unsigned int clock_tolerance)
4301{
4302	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4303	u8 vic;
4304
4305	if (!to_match->clock)
4306		return 0;
4307
4308	if (to_match->picture_aspect_ratio)
4309		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4310
4311	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4312		struct drm_display_mode cea_mode;
4313		unsigned int clock1, clock2;
4314
4315		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4316
4317		/* Check both 60Hz and 59.94Hz */
4318		clock1 = cea_mode.clock;
4319		clock2 = cea_mode_alternate_clock(&cea_mode);
4320
4321		if (abs(to_match->clock - clock1) > clock_tolerance &&
4322		    abs(to_match->clock - clock2) > clock_tolerance)
4323			continue;
4324
4325		do {
4326			if (drm_mode_match(to_match, &cea_mode, match_flags))
4327				return vic;
4328		} while (cea_mode_alternate_timings(vic, &cea_mode));
4329	}
4330
4331	return 0;
4332}
4333
4334/**
4335 * drm_match_cea_mode - look for a CEA mode matching given mode
4336 * @to_match: display mode
4337 *
4338 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4339 * mode.
4340 */
4341u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4342{
4343	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4344	u8 vic;
4345
4346	if (!to_match->clock)
4347		return 0;
4348
4349	if (to_match->picture_aspect_ratio)
4350		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4351
4352	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4353		struct drm_display_mode cea_mode;
4354		unsigned int clock1, clock2;
4355
4356		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4357
4358		/* Check both 60Hz and 59.94Hz */
4359		clock1 = cea_mode.clock;
4360		clock2 = cea_mode_alternate_clock(&cea_mode);
4361
4362		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4363		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4364			continue;
4365
4366		do {
4367			if (drm_mode_match(to_match, &cea_mode, match_flags))
4368				return vic;
4369		} while (cea_mode_alternate_timings(vic, &cea_mode));
4370	}
4371
4372	return 0;
4373}
4374EXPORT_SYMBOL(drm_match_cea_mode);
4375
4376static bool drm_valid_cea_vic(u8 vic)
4377{
4378	return cea_mode_for_vic(vic) != NULL;
4379}
4380
4381static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4382{
4383	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4384
4385	if (mode)
4386		return mode->picture_aspect_ratio;
4387
4388	return HDMI_PICTURE_ASPECT_NONE;
4389}
4390
4391static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4392{
4393	return edid_4k_modes[video_code].picture_aspect_ratio;
4394}
4395
4396/*
4397 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4398 * specific block).
 
 
 
 
4399 */
4400static unsigned int
4401hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4402{
4403	return cea_mode_alternate_clock(hdmi_mode);
4404}
4405
4406static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4407					      unsigned int clock_tolerance)
4408{
4409	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4410	u8 vic;
4411
4412	if (!to_match->clock)
4413		return 0;
4414
4415	if (to_match->picture_aspect_ratio)
4416		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4417
4418	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4419		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4420		unsigned int clock1, clock2;
4421
4422		/* Make sure to also match alternate clocks */
4423		clock1 = hdmi_mode->clock;
4424		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4425
4426		if (abs(to_match->clock - clock1) > clock_tolerance &&
4427		    abs(to_match->clock - clock2) > clock_tolerance)
4428			continue;
4429
4430		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4431			return vic;
4432	}
4433
4434	return 0;
4435}
4436
4437/*
4438 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4439 * @to_match: display mode
4440 *
4441 * An HDMI mode is one defined in the HDMI vendor specific block.
4442 *
4443 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4444 */
4445static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4446{
4447	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4448	u8 vic;
4449
4450	if (!to_match->clock)
4451		return 0;
4452
4453	if (to_match->picture_aspect_ratio)
4454		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4455
4456	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4457		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4458		unsigned int clock1, clock2;
4459
4460		/* Make sure to also match alternate clocks */
4461		clock1 = hdmi_mode->clock;
4462		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4463
4464		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4465		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4466		    drm_mode_match(to_match, hdmi_mode, match_flags))
4467			return vic;
4468	}
4469	return 0;
4470}
4471
4472static bool drm_valid_hdmi_vic(u8 vic)
4473{
4474	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4475}
4476
4477static int add_alternate_cea_modes(struct drm_connector *connector,
4478				   const struct drm_edid *drm_edid)
4479{
4480	struct drm_device *dev = connector->dev;
4481	struct drm_display_mode *mode, *tmp;
4482	LIST_HEAD(list);
4483	int modes = 0;
4484
4485	/* Don't add CTA modes if the CTA extension block is missing */
4486	if (!drm_edid_has_cta_extension(drm_edid))
4487		return 0;
4488
4489	/*
4490	 * Go through all probed modes and create a new mode
4491	 * with the alternate clock for certain CEA modes.
4492	 */
4493	list_for_each_entry(mode, &connector->probed_modes, head) {
4494		const struct drm_display_mode *cea_mode = NULL;
4495		struct drm_display_mode *newmode;
4496		u8 vic = drm_match_cea_mode(mode);
4497		unsigned int clock1, clock2;
4498
4499		if (drm_valid_cea_vic(vic)) {
4500			cea_mode = cea_mode_for_vic(vic);
4501			clock2 = cea_mode_alternate_clock(cea_mode);
4502		} else {
4503			vic = drm_match_hdmi_mode(mode);
4504			if (drm_valid_hdmi_vic(vic)) {
4505				cea_mode = &edid_4k_modes[vic];
4506				clock2 = hdmi_mode_alternate_clock(cea_mode);
4507			}
4508		}
4509
4510		if (!cea_mode)
4511			continue;
4512
4513		clock1 = cea_mode->clock;
4514
4515		if (clock1 == clock2)
4516			continue;
4517
4518		if (mode->clock != clock1 && mode->clock != clock2)
4519			continue;
4520
4521		newmode = drm_mode_duplicate(dev, cea_mode);
4522		if (!newmode)
4523			continue;
4524
4525		/* Carry over the stereo flags */
4526		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4527
4528		/*
4529		 * The current mode could be either variant. Make
4530		 * sure to pick the "other" clock for the new mode.
4531		 */
4532		if (mode->clock != clock1)
4533			newmode->clock = clock1;
4534		else
4535			newmode->clock = clock2;
4536
4537		list_add_tail(&newmode->head, &list);
4538	}
4539
4540	list_for_each_entry_safe(mode, tmp, &list, head) {
4541		list_del(&mode->head);
4542		drm_mode_probed_add(connector, mode);
4543		modes++;
4544	}
4545
4546	return modes;
4547}
4548
4549static u8 svd_to_vic(u8 svd)
4550{
4551	/* 0-6 bit vic, 7th bit native mode indicator */
4552	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4553		return svd & 127;
4554
4555	return svd;
4556}
4557
4558/*
4559 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4560 * the EDID, or NULL on errors.
4561 */
4562static struct drm_display_mode *
4563drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
 
 
4564{
4565	const struct drm_display_info *info = &connector->display_info;
4566	struct drm_device *dev = connector->dev;
 
 
4567
4568	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4569		return NULL;
4570
4571	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4572}
4573
4574/*
4575 * do_y420vdb_modes - Parse YCBCR 420 only modes
4576 * @connector: connector corresponding to the HDMI sink
4577 * @svds: start of the data block of CEA YCBCR 420 VDB
4578 * @len: length of the CEA YCBCR 420 VDB
4579 *
4580 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4581 * which contains modes which can be supported in YCBCR 420
4582 * output format only.
4583 */
4584static int do_y420vdb_modes(struct drm_connector *connector,
4585			    const u8 *svds, u8 svds_len)
4586{
4587	struct drm_device *dev = connector->dev;
4588	int modes = 0, i;
4589
4590	for (i = 0; i < svds_len; i++) {
4591		u8 vic = svd_to_vic(svds[i]);
4592		struct drm_display_mode *newmode;
4593
4594		if (!drm_valid_cea_vic(vic))
4595			continue;
4596
4597		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4598		if (!newmode)
4599			break;
4600		drm_mode_probed_add(connector, newmode);
4601		modes++;
4602	}
4603
4604	return modes;
4605}
4606
4607/**
4608 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4609 * @dev: DRM device
4610 * @video_code: CEA VIC of the mode
4611 *
4612 * Creates a new mode matching the specified CEA VIC.
4613 *
4614 * Returns: A new drm_display_mode on success or NULL on failure
4615 */
4616struct drm_display_mode *
4617drm_display_mode_from_cea_vic(struct drm_device *dev,
4618			      u8 video_code)
4619{
4620	const struct drm_display_mode *cea_mode;
4621	struct drm_display_mode *newmode;
4622
4623	cea_mode = cea_mode_for_vic(video_code);
4624	if (!cea_mode)
4625		return NULL;
4626
4627	newmode = drm_mode_duplicate(dev, cea_mode);
4628	if (!newmode)
4629		return NULL;
4630
 
 
4631	return newmode;
4632}
4633EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4634
4635/* Add modes based on VICs parsed in parse_cta_vdb() */
4636static int add_cta_vdb_modes(struct drm_connector *connector)
4637{
4638	const struct drm_display_info *info = &connector->display_info;
4639	int i, modes = 0;
4640
4641	if (!info->vics)
4642		return 0;
4643
4644	for (i = 0; i < info->vics_len; i++) {
4645		struct drm_display_mode *mode;
4646
4647		mode = drm_display_mode_from_vic_index(connector, i);
4648		if (mode) {
4649			drm_mode_probed_add(connector, mode);
4650			modes++;
4651		}
4652	}
4653
4654	return modes;
4655}
4656
4657struct stereo_mandatory_mode {
4658	int width, height, vrefresh;
4659	unsigned int flags;
4660};
4661
4662static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4663	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4664	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4665	{ 1920, 1080, 50,
4666	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4667	{ 1920, 1080, 60,
4668	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4669	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4670	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4671	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4672	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4673};
4674
4675static bool
4676stereo_match_mandatory(const struct drm_display_mode *mode,
4677		       const struct stereo_mandatory_mode *stereo_mode)
4678{
4679	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4680
4681	return mode->hdisplay == stereo_mode->width &&
4682	       mode->vdisplay == stereo_mode->height &&
4683	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4684	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4685}
4686
4687static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4688{
4689	struct drm_device *dev = connector->dev;
4690	const struct drm_display_mode *mode;
4691	struct list_head stereo_modes;
4692	int modes = 0, i;
4693
4694	INIT_LIST_HEAD(&stereo_modes);
4695
4696	list_for_each_entry(mode, &connector->probed_modes, head) {
4697		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4698			const struct stereo_mandatory_mode *mandatory;
4699			struct drm_display_mode *new_mode;
4700
4701			if (!stereo_match_mandatory(mode,
4702						    &stereo_mandatory_modes[i]))
4703				continue;
4704
4705			mandatory = &stereo_mandatory_modes[i];
4706			new_mode = drm_mode_duplicate(dev, mode);
4707			if (!new_mode)
4708				continue;
4709
4710			new_mode->flags |= mandatory->flags;
4711			list_add_tail(&new_mode->head, &stereo_modes);
4712			modes++;
4713		}
4714	}
4715
4716	list_splice_tail(&stereo_modes, &connector->probed_modes);
4717
4718	return modes;
4719}
4720
4721static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4722{
4723	struct drm_device *dev = connector->dev;
4724	struct drm_display_mode *newmode;
4725
4726	if (!drm_valid_hdmi_vic(vic)) {
4727		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4728			connector->base.id, connector->name, vic);
4729		return 0;
4730	}
4731
4732	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4733	if (!newmode)
4734		return 0;
4735
4736	drm_mode_probed_add(connector, newmode);
4737
4738	return 1;
4739}
4740
4741static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4742			       int vic_index)
4743{
4744	struct drm_display_mode *newmode;
4745	int modes = 0;
4746
4747	if (structure & (1 << 0)) {
4748		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4749		if (newmode) {
4750			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4751			drm_mode_probed_add(connector, newmode);
4752			modes++;
4753		}
4754	}
4755	if (structure & (1 << 6)) {
4756		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4757		if (newmode) {
4758			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4759			drm_mode_probed_add(connector, newmode);
4760			modes++;
4761		}
4762	}
4763	if (structure & (1 << 8)) {
4764		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4765		if (newmode) {
4766			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4767			drm_mode_probed_add(connector, newmode);
4768			modes++;
4769		}
4770	}
4771
4772	return modes;
4773}
4774
4775static bool hdmi_vsdb_latency_present(const u8 *db)
4776{
4777	return db[8] & BIT(7);
4778}
4779
4780static bool hdmi_vsdb_i_latency_present(const u8 *db)
4781{
4782	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4783}
4784
4785static int hdmi_vsdb_latency_length(const u8 *db)
4786{
4787	if (hdmi_vsdb_i_latency_present(db))
4788		return 4;
4789	else if (hdmi_vsdb_latency_present(db))
4790		return 2;
4791	else
4792		return 0;
4793}
4794
4795/*
4796 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4797 * @connector: connector corresponding to the HDMI sink
4798 * @db: start of the CEA vendor specific block
4799 * @len: length of the CEA block payload, ie. one can access up to db[len]
4800 *
4801 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4802 * also adds the stereo 3d modes when applicable.
4803 */
4804static int
4805do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
 
4806{
4807	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4808	u8 vic_len, hdmi_3d_len = 0;
4809	u16 mask;
4810	u16 structure_all;
4811
4812	if (len < 8)
4813		goto out;
4814
4815	/* no HDMI_Video_Present */
4816	if (!(db[8] & (1 << 5)))
4817		goto out;
4818
4819	offset += hdmi_vsdb_latency_length(db);
 
 
 
 
 
 
4820
4821	/* the declared length is not long enough for the 2 first bytes
4822	 * of additional video format capabilities */
4823	if (len < (8 + offset + 2))
4824		goto out;
4825
4826	/* 3D_Present */
4827	offset++;
4828	if (db[8 + offset] & (1 << 7)) {
4829		modes += add_hdmi_mandatory_stereo_modes(connector);
4830
4831		/* 3D_Multi_present */
4832		multi_present = (db[8 + offset] & 0x60) >> 5;
4833	}
4834
4835	offset++;
4836	vic_len = db[8 + offset] >> 5;
4837	hdmi_3d_len = db[8 + offset] & 0x1f;
4838
4839	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4840		u8 vic;
4841
4842		vic = db[9 + offset + i];
4843		modes += add_hdmi_mode(connector, vic);
4844	}
4845	offset += 1 + vic_len;
4846
4847	if (multi_present == 1)
4848		multi_len = 2;
4849	else if (multi_present == 2)
4850		multi_len = 4;
4851	else
4852		multi_len = 0;
4853
4854	if (len < (8 + offset + hdmi_3d_len - 1))
4855		goto out;
4856
4857	if (hdmi_3d_len < multi_len)
4858		goto out;
4859
4860	if (multi_present == 1 || multi_present == 2) {
4861		/* 3D_Structure_ALL */
4862		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4863
4864		/* check if 3D_MASK is present */
4865		if (multi_present == 2)
4866			mask = (db[10 + offset] << 8) | db[11 + offset];
4867		else
4868			mask = 0xffff;
4869
4870		for (i = 0; i < 16; i++) {
4871			if (mask & (1 << i))
4872				modes += add_3d_struct_modes(connector,
4873							     structure_all, i);
 
 
4874		}
4875	}
4876
4877	offset += multi_len;
4878
4879	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4880		int vic_index;
4881		struct drm_display_mode *newmode = NULL;
4882		unsigned int newflag = 0;
4883		bool detail_present;
4884
4885		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4886
4887		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4888			break;
4889
4890		/* 2D_VIC_order_X */
4891		vic_index = db[8 + offset + i] >> 4;
4892
4893		/* 3D_Structure_X */
4894		switch (db[8 + offset + i] & 0x0f) {
4895		case 0:
4896			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4897			break;
4898		case 6:
4899			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4900			break;
4901		case 8:
4902			/* 3D_Detail_X */
4903			if ((db[9 + offset + i] >> 4) == 1)
4904				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4905			break;
4906		}
4907
4908		if (newflag != 0) {
4909			newmode = drm_display_mode_from_vic_index(connector,
 
 
4910								  vic_index);
4911
4912			if (newmode) {
4913				newmode->flags |= newflag;
4914				drm_mode_probed_add(connector, newmode);
4915				modes++;
4916			}
4917		}
4918
4919		if (detail_present)
4920			i++;
4921	}
4922
4923out:
4924	return modes;
4925}
4926
4927static int
4928cea_revision(const u8 *cea)
4929{
4930	/*
4931	 * FIXME is this correct for the DispID variant?
4932	 * The DispID spec doesn't really specify whether
4933	 * this is the revision of the CEA extension or
4934	 * the DispID CEA data block. And the only value
4935	 * given as an example is 0.
4936	 */
4937	return cea[1];
4938}
4939
4940/*
4941 * CTA Data Block iterator.
4942 *
4943 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4944 * CTA Data Blocks.
4945 *
4946 * struct cea_db *db:
4947 * struct cea_db_iter iter;
4948 *
4949 * cea_db_iter_edid_begin(edid, &iter);
4950 * cea_db_iter_for_each(db, &iter) {
4951 *         // do stuff with db
4952 * }
4953 * cea_db_iter_end(&iter);
4954 */
4955struct cea_db_iter {
4956	struct drm_edid_iter edid_iter;
4957	struct displayid_iter displayid_iter;
4958
4959	/* Current Data Block Collection. */
4960	const u8 *collection;
4961
4962	/* Current Data Block index in current collection. */
4963	int index;
4964
4965	/* End index in current collection. */
4966	int end;
4967};
4968
4969/* CTA-861-H section 7.4 CTA Data BLock Collection */
4970struct cea_db {
4971	u8 tag_length;
4972	u8 data[];
4973} __packed;
4974
4975static int cea_db_tag(const struct cea_db *db)
4976{
4977	return db->tag_length >> 5;
4978}
4979
4980static int cea_db_payload_len(const void *_db)
4981{
4982	/* FIXME: Transition to passing struct cea_db * everywhere. */
4983	const struct cea_db *db = _db;
4984
4985	return db->tag_length & 0x1f;
4986}
4987
4988static const void *cea_db_data(const struct cea_db *db)
4989{
4990	return db->data;
4991}
4992
4993static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4994{
4995	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4996		cea_db_payload_len(db) >= 1 &&
4997		db->data[0] == tag;
4998}
4999
5000static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
 
5001{
5002	const u8 *data = cea_db_data(db);
5003
5004	return cea_db_tag(db) == CTA_DB_VENDOR &&
5005		cea_db_payload_len(db) >= 3 &&
5006		oui(data[2], data[1], data[0]) == vendor_oui;
5007}
5008
5009static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
5010				   struct cea_db_iter *iter)
5011{
5012	memset(iter, 0, sizeof(*iter));
5013
5014	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
5015	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
 
 
 
 
5016}
5017
5018static const struct cea_db *
5019__cea_db_iter_current_block(const struct cea_db_iter *iter)
5020{
5021	const struct cea_db *db;
5022
5023	if (!iter->collection)
5024		return NULL;
5025
5026	db = (const struct cea_db *)&iter->collection[iter->index];
5027
5028	if (iter->index + sizeof(*db) <= iter->end &&
5029	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
5030		return db;
5031
5032	return NULL;
5033}
5034
5035/*
5036 * References:
5037 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5038 */
5039static int cea_db_collection_size(const u8 *cta)
5040{
5041	u8 d = cta[2];
5042
5043	if (d < 4 || d > 127)
5044		return 0;
5045
5046	return d - 4;
5047}
5048
5049/*
5050 * References:
5051 * - VESA E-EDID v1.4
5052 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5053 */
5054static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5055{
5056	const u8 *ext;
5057
5058	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5059		int size;
5060
5061		/* Only support CTA Extension revision 3+ */
5062		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5063			continue;
5064
5065		size = cea_db_collection_size(ext);
5066		if (!size)
5067			continue;
5068
5069		iter->index = 4;
5070		iter->end = iter->index + size;
5071
5072		return ext;
5073	}
5074
5075	return NULL;
5076}
5077
5078/*
5079 * References:
5080 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5081 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5082 *
5083 * Note that the above do not specify any connection between DisplayID Data
5084 * Block revision and CTA Extension versions.
5085 */
5086static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5087{
5088	const struct displayid_block *block;
5089
5090	displayid_iter_for_each(block, &iter->displayid_iter) {
5091		if (block->tag != DATA_BLOCK_CTA)
5092			continue;
5093
5094		/*
5095		 * The displayid iterator has already verified the block bounds
5096		 * in displayid_iter_block().
5097		 */
5098		iter->index = sizeof(*block);
5099		iter->end = iter->index + block->num_bytes;
5100
5101		return block;
5102	}
5103
5104	return NULL;
5105}
5106
5107static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5108{
5109	const struct cea_db *db;
5110
5111	if (iter->collection) {
5112		/* Current collection should always be valid. */
5113		db = __cea_db_iter_current_block(iter);
5114		if (WARN_ON(!db)) {
5115			iter->collection = NULL;
5116			return NULL;
 
 
 
5117		}
5118
5119		/* Next block in CTA Data Block Collection */
5120		iter->index += sizeof(*db) + cea_db_payload_len(db);
5121
5122		db = __cea_db_iter_current_block(iter);
5123		if (db)
5124			return db;
5125	}
5126
5127	for (;;) {
5128		/*
5129		 * Find the next CTA Data Block Collection. First iterate all
5130		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5131		 *
5132		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5133		 * Extension, it's recommended that DisplayID extensions are
5134		 * exposed after all of the CTA Extensions.
5135		 */
5136		iter->collection = __cea_db_iter_edid_next(iter);
5137		if (!iter->collection)
5138			iter->collection = __cea_db_iter_displayid_next(iter);
5139
5140		if (!iter->collection)
5141			return NULL;
5142
5143		db = __cea_db_iter_current_block(iter);
5144		if (db)
5145			return db;
5146	}
5147}
5148
5149#define cea_db_iter_for_each(__db, __iter) \
5150	while (((__db) = __cea_db_iter_next(__iter)))
5151
5152static void cea_db_iter_end(struct cea_db_iter *iter)
5153{
5154	displayid_iter_end(&iter->displayid_iter);
5155	drm_edid_iter_end(&iter->edid_iter);
5156
5157	memset(iter, 0, sizeof(*iter));
5158}
5159
5160static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5161{
5162	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5163		cea_db_payload_len(db) >= 5;
5164}
5165
5166static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5167{
5168	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5169		cea_db_payload_len(db) >= 7;
5170}
5171
5172static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5173{
5174	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5175		cea_db_payload_len(db) >= 2;
5176}
5177
5178static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5179{
5180	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5181		cea_db_payload_len(db) == 21;
5182}
5183
5184static bool cea_db_is_vcdb(const struct cea_db *db)
5185{
5186	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5187		cea_db_payload_len(db) == 2;
5188}
5189
5190static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5191{
5192	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5193		cea_db_payload_len(db) >= 7;
5194}
5195
5196static bool cea_db_is_y420cmdb(const struct cea_db *db)
5197{
5198	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5199}
5200
5201static bool cea_db_is_y420vdb(const struct cea_db *db)
5202{
5203	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5204}
5205
5206static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5207{
5208	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5209		cea_db_payload_len(db) >= 3;
5210}
5211
5212/*
5213 * Get the HF-EEODB override extension block count from EDID.
5214 *
5215 * The passed in EDID may be partially read, as long as it has at least two
5216 * blocks (base block and one extension block) if EDID extension count is > 0.
5217 *
5218 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5219 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5220 * iterators instead.
5221 *
5222 * References:
5223 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5224 */
5225static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5226{
5227	const u8 *cta;
5228
5229	/* No extensions according to base block, no HF-EEODB. */
5230	if (!edid_extension_block_count(edid))
5231		return 0;
5232
5233	/* HF-EEODB is always in the first EDID extension block only */
5234	cta = edid_extension_block_data(edid, 0);
5235	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5236		return 0;
5237
5238	/* Need to have the data block collection, and at least 3 bytes. */
5239	if (cea_db_collection_size(cta) < 3)
5240		return 0;
5241
5242	/*
5243	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5244	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5245	 * through 6 of Block 1 of the E-EDID.
5246	 */
5247	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5248		return 0;
5249
5250	return cta[4 + 2];
5251}
5252
5253/*
5254 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5255 *
5256 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5257 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5258 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5259 * support YCBCR420 output too.
5260 */
5261static void parse_cta_y420cmdb(struct drm_connector *connector,
5262			       const struct cea_db *db, u64 *y420cmdb_map)
5263{
5264	struct drm_display_info *info = &connector->display_info;
5265	int i, map_len = cea_db_payload_len(db) - 1;
5266	const u8 *data = cea_db_data(db) + 1;
5267	u64 map = 0;
5268
5269	if (map_len == 0) {
5270		/* All CEA modes support ycbcr420 sampling also.*/
5271		map = U64_MAX;
5272		goto out;
5273	}
5274
5275	/*
5276	 * This map indicates which of the existing CEA block modes
5277	 * from VDB can support YCBCR420 output too. So if bit=0 is
5278	 * set, first mode from VDB can support YCBCR420 output too.
5279	 * We will parse and keep this map, before parsing VDB itself
5280	 * to avoid going through the same block again and again.
5281	 *
5282	 * Spec is not clear about max possible size of this block.
5283	 * Clamping max bitmap block size at 8 bytes. Every byte can
5284	 * address 8 CEA modes, in this way this map can address
5285	 * 8*8 = first 64 SVDs.
5286	 */
5287	if (WARN_ON_ONCE(map_len > 8))
5288		map_len = 8;
5289
5290	for (i = 0; i < map_len; i++)
5291		map |= (u64)data[i] << (8 * i);
5292
5293out:
5294	if (map)
5295		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5296
5297	*y420cmdb_map = map;
5298}
5299
5300static int add_cea_modes(struct drm_connector *connector,
5301			 const struct drm_edid *drm_edid)
5302{
5303	const struct cea_db *db;
5304	struct cea_db_iter iter;
5305	int modes;
5306
5307	/* CTA VDB block VICs parsed earlier */
5308	modes = add_cta_vdb_modes(connector);
5309
5310	cea_db_iter_edid_begin(drm_edid, &iter);
5311	cea_db_iter_for_each(db, &iter) {
5312		if (cea_db_is_hdmi_vsdb(db)) {
5313			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5314						    cea_db_payload_len(db));
5315		} else if (cea_db_is_y420vdb(db)) {
5316			const u8 *vdb420 = cea_db_data(db) + 1;
5317
5318			/* Add 4:2:0(only) modes present in EDID */
5319			modes += do_y420vdb_modes(connector, vdb420,
5320						  cea_db_payload_len(db) - 1);
5321		}
5322	}
5323	cea_db_iter_end(&iter);
5324
5325	return modes;
5326}
5327
5328static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5329					  struct drm_display_mode *mode)
5330{
5331	const struct drm_display_mode *cea_mode;
5332	int clock1, clock2, clock;
5333	u8 vic;
5334	const char *type;
5335
5336	/*
5337	 * allow 5kHz clock difference either way to account for
5338	 * the 10kHz clock resolution limit of detailed timings.
5339	 */
5340	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5341	if (drm_valid_cea_vic(vic)) {
5342		type = "CEA";
5343		cea_mode = cea_mode_for_vic(vic);
5344		clock1 = cea_mode->clock;
5345		clock2 = cea_mode_alternate_clock(cea_mode);
5346	} else {
5347		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5348		if (drm_valid_hdmi_vic(vic)) {
5349			type = "HDMI";
5350			cea_mode = &edid_4k_modes[vic];
5351			clock1 = cea_mode->clock;
5352			clock2 = hdmi_mode_alternate_clock(cea_mode);
5353		} else {
5354			return;
5355		}
5356	}
5357
5358	/* pick whichever is closest */
5359	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5360		clock = clock1;
5361	else
5362		clock = clock2;
5363
5364	if (mode->clock == clock)
5365		return;
5366
5367	drm_dbg_kms(connector->dev,
5368		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5369		    connector->base.id, connector->name,
5370		    type, vic, mode->clock, clock);
5371	mode->clock = clock;
5372}
5373
5374static void drm_calculate_luminance_range(struct drm_connector *connector)
5375{
5376	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5377	struct drm_luminance_range_info *luminance_range =
5378		&connector->display_info.luminance_range;
5379	static const u8 pre_computed_values[] = {
5380		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5381		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5382	};
5383	u32 max_avg, min_cll, max, min, q, r;
5384
5385	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5386		return;
5387
5388	max_avg = hdr_metadata->max_fall;
5389	min_cll = hdr_metadata->min_cll;
5390
5391	/*
5392	 * From the specification (CTA-861-G), for calculating the maximum
5393	 * luminance we need to use:
5394	 *	Luminance = 50*2**(CV/32)
5395	 * Where CV is a one-byte value.
5396	 * For calculating this expression we may need float point precision;
5397	 * to avoid this complexity level, we take advantage that CV is divided
5398	 * by a constant. From the Euclids division algorithm, we know that CV
5399	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5400	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5401	 * need to pre-compute the value of r/32. For pre-computing the values
5402	 * We just used the following Ruby line:
5403	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5404	 * The results of the above expressions can be verified at
5405	 * pre_computed_values.
5406	 */
5407	q = max_avg >> 5;
5408	r = max_avg % 32;
5409	max = (1 << q) * pre_computed_values[r];
5410
5411	/* min luminance: maxLum * (CV/255)^2 / 100 */
5412	q = DIV_ROUND_CLOSEST(min_cll, 255);
5413	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5414
5415	luminance_range->min_luminance = min;
5416	luminance_range->max_luminance = max;
5417}
5418
5419static uint8_t eotf_supported(const u8 *edid_ext)
5420{
5421	return edid_ext[2] &
5422		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5423		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5424		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5425		 BIT(HDMI_EOTF_BT_2100_HLG));
5426}
5427
5428static uint8_t hdr_metadata_type(const u8 *edid_ext)
5429{
5430	return edid_ext[3] &
5431		BIT(HDMI_STATIC_METADATA_TYPE1);
5432}
5433
5434static void
5435drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5436{
5437	u16 len;
5438
5439	len = cea_db_payload_len(db);
5440
5441	connector->hdr_sink_metadata.hdmi_type1.eotf =
5442						eotf_supported(db);
5443	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5444						hdr_metadata_type(db);
5445
5446	if (len >= 4)
5447		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5448	if (len >= 5)
5449		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5450	if (len >= 6) {
5451		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5452
5453		/* Calculate only when all values are available */
5454		drm_calculate_luminance_range(connector);
5455	}
5456}
5457
5458/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5459static void
5460drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5461{
5462	u8 len = cea_db_payload_len(db);
5463
5464	if (len >= 6 && (db[6] & (1 << 7)))
5465		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5466
5467	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5468		connector->latency_present[0] = true;
5469		connector->video_latency[0] = db[9];
 
5470		connector->audio_latency[0] = db[10];
5471	}
5472
5473	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5474		connector->latency_present[1] = true;
5475		connector->video_latency[1] = db[11];
 
5476		connector->audio_latency[1] = db[12];
5477	}
5478
5479	drm_dbg_kms(connector->dev,
5480		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5481		    connector->base.id, connector->name,
5482		    connector->latency_present[0], connector->latency_present[1],
5483		    connector->video_latency[0], connector->video_latency[1],
5484		    connector->audio_latency[0], connector->audio_latency[1]);
5485}
5486
5487static void
5488match_identity(const struct detailed_timing *timing, void *data)
5489{
5490	struct drm_edid_match_closure *closure = data;
5491	unsigned int i;
5492	const char *name = closure->ident->name;
5493	unsigned int name_len = strlen(name);
5494	const char *desc = timing->data.other_data.data.str.str;
5495	unsigned int desc_len = ARRAY_SIZE(timing->data.other_data.data.str.str);
5496
5497	if (name_len > desc_len ||
5498	    !(is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME) ||
5499	      is_display_descriptor(timing, EDID_DETAIL_MONITOR_STRING)))
5500		return;
5501
5502	if (strncmp(name, desc, name_len))
5503		return;
5504
5505	for (i = name_len; i < desc_len; i++) {
5506		if (desc[i] == '\n')
5507			break;
5508		/* Allow white space before EDID string terminator. */
5509		if (!isspace(desc[i]))
5510			return;
5511	}
5512
5513	closure->matched = true;
5514}
5515
5516/**
5517 * drm_edid_match - match drm_edid with given identity
5518 * @drm_edid: EDID
5519 * @ident: the EDID identity to match with
5520 *
5521 * Check if the EDID matches with the given identity.
5522 *
5523 * Return: True if the given identity matched with EDID, false otherwise.
5524 */
5525bool drm_edid_match(const struct drm_edid *drm_edid,
5526		    const struct drm_edid_ident *ident)
5527{
5528	if (!drm_edid || drm_edid_get_panel_id(drm_edid) != ident->panel_id)
5529		return false;
5530
5531	/* Match with name only if it's not NULL. */
5532	if (ident->name) {
5533		struct drm_edid_match_closure closure = {
5534			.ident = ident,
5535			.matched = false,
5536		};
5537
5538		drm_for_each_detailed_block(drm_edid, match_identity, &closure);
5539
5540		return closure.matched;
5541	}
5542
5543	return true;
5544}
5545EXPORT_SYMBOL(drm_edid_match);
5546
5547static void
5548monitor_name(const struct detailed_timing *timing, void *data)
5549{
5550	const char **res = data;
5551
5552	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5553		return;
5554
5555	*res = timing->data.other_data.data.str.str;
5556}
5557
5558static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5559{
5560	const char *edid_name = NULL;
5561	int mnl;
5562
5563	if (!drm_edid || !name)
5564		return 0;
5565
5566	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5567	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5568		if (edid_name[mnl] == 0x0a)
5569			break;
5570
5571		name[mnl] = edid_name[mnl];
5572	}
5573
5574	return mnl;
5575}
5576
5577/**
5578 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5579 * @edid: monitor EDID information
5580 * @name: pointer to a character array to hold the name of the monitor
5581 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5582 *
5583 */
5584void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5585{
5586	int name_length = 0;
5587
5588	if (bufsize <= 0)
5589		return;
5590
5591	if (edid) {
5592		char buf[13];
5593		struct drm_edid drm_edid = {
5594			.edid = edid,
5595			.size = edid_size(edid),
5596		};
5597
5598		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5599		memcpy(name, buf, name_length);
5600	}
5601
5602	name[name_length] = '\0';
5603}
5604EXPORT_SYMBOL(drm_edid_get_monitor_name);
5605
5606static void clear_eld(struct drm_connector *connector)
5607{
5608	mutex_lock(&connector->eld_mutex);
5609	memset(connector->eld, 0, sizeof(connector->eld));
5610	mutex_unlock(&connector->eld_mutex);
5611
5612	connector->latency_present[0] = false;
5613	connector->latency_present[1] = false;
5614	connector->video_latency[0] = 0;
5615	connector->audio_latency[0] = 0;
5616	connector->video_latency[1] = 0;
5617	connector->audio_latency[1] = 0;
5618}
5619
5620/*
5621 * Get 3-byte SAD buffer from struct cea_sad.
5622 */
5623void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5624{
5625	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5626	sad[1] = cta_sad->freq;
5627	sad[2] = cta_sad->byte2;
5628}
5629
5630/*
5631 * Set struct cea_sad from 3-byte SAD buffer.
5632 */
5633void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5634{
5635	cta_sad->format = (sad[0] & 0x78) >> 3;
5636	cta_sad->channels = sad[0] & 0x07;
5637	cta_sad->freq = sad[1] & 0x7f;
5638	cta_sad->byte2 = sad[2];
5639}
5640
5641/*
5642 * drm_edid_to_eld - build ELD from EDID
5643 * @connector: connector corresponding to the HDMI/DP sink
5644 * @drm_edid: EDID to parse
5645 *
5646 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5647 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
 
 
 
5648 */
5649static void drm_edid_to_eld(struct drm_connector *connector,
5650			    const struct drm_edid *drm_edid)
5651{
5652	const struct drm_display_info *info = &connector->display_info;
5653	const struct cea_db *db;
5654	struct cea_db_iter iter;
5655	uint8_t *eld = connector->eld;
5656	int total_sad_count = 0;
 
 
 
5657	int mnl;
 
5658
5659	if (!drm_edid)
5660		return;
5661
5662	mutex_lock(&connector->eld_mutex);
 
 
 
 
5663
5664	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5665	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5666		    connector->base.id, connector->name,
5667		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5668
5669	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5670	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5671
5672	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5673
5674	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5675	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5676	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5677	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5678
5679	cea_db_iter_edid_begin(drm_edid, &iter);
5680	cea_db_iter_for_each(db, &iter) {
5681		const u8 *data = cea_db_data(db);
5682		int len = cea_db_payload_len(db);
5683		int sad_count;
5684
5685		switch (cea_db_tag(db)) {
5686		case CTA_DB_AUDIO:
5687			/* Audio Data Block, contains SADs */
5688			sad_count = min(len / 3, 15 - total_sad_count);
5689			if (sad_count >= 1)
5690				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5691				       data, sad_count * 3);
5692			total_sad_count += sad_count;
5693			break;
5694		case CTA_DB_SPEAKER:
5695			/* Speaker Allocation Data Block */
5696			if (len >= 1)
5697				eld[DRM_ELD_SPEAKER] = data[0];
5698			break;
5699		case CTA_DB_VENDOR:
5700			/* HDMI Vendor-Specific Data Block */
5701			if (cea_db_is_hdmi_vsdb(db))
5702				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5703			break;
5704		default:
5705			break;
5706		}
5707	}
5708	cea_db_iter_end(&iter);
 
5709
5710	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5711
5712	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5713	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5714		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5715	else
5716		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5717
5718	eld[DRM_ELD_BASELINE_ELD_LEN] =
5719		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5720
5721	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5722		    connector->base.id, connector->name,
5723		    drm_eld_size(eld), total_sad_count);
 
5724
5725	mutex_unlock(&connector->eld_mutex);
5726}
 
5727
5728static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5729			    struct cea_sad **psads)
5730{
5731	const struct cea_db *db;
5732	struct cea_db_iter iter;
5733	int count = 0;
5734
5735	cea_db_iter_edid_begin(drm_edid, &iter);
5736	cea_db_iter_for_each(db, &iter) {
5737		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5738			struct cea_sad *sads;
5739			int i;
5740
5741			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5742			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5743			*psads = sads;
5744			if (!sads)
5745				return -ENOMEM;
5746			for (i = 0; i < count; i++)
5747				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5748			break;
5749		}
5750	}
5751	cea_db_iter_end(&iter);
5752
5753	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5754
5755	return count;
5756}
 
5757
5758/**
5759 * drm_edid_to_sad - extracts SADs from EDID
5760 * @edid: EDID to parse
5761 * @sads: pointer that will be set to the extracted SADs
5762 *
5763 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
 
5764 *
5765 * Note: The returned pointer needs to be freed using kfree().
5766 *
5767 * Return: The number of found SADs or negative number on error.
5768 */
5769int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5770{
5771	struct drm_edid drm_edid;
 
 
5772
5773	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5774}
5775EXPORT_SYMBOL(drm_edid_to_sad);
 
 
5776
5777static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5778					   u8 **sadb)
5779{
5780	const struct cea_db *db;
5781	struct cea_db_iter iter;
5782	int count = 0;
5783
5784	cea_db_iter_edid_begin(drm_edid, &iter);
5785	cea_db_iter_for_each(db, &iter) {
5786		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5787		    cea_db_payload_len(db) == 3) {
5788			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5789					GFP_KERNEL);
5790			if (!*sadb)
 
 
 
 
 
 
 
 
5791				return -ENOMEM;
5792			count = cea_db_payload_len(db);
 
 
 
 
 
 
 
5793			break;
5794		}
5795	}
5796	cea_db_iter_end(&iter);
5797
5798	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5799
5800	return count;
5801}
 
5802
5803/**
5804 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5805 * @edid: EDID to parse
5806 * @sadb: pointer to the speaker block
5807 *
5808 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
 
5809 *
5810 * Note: The returned pointer needs to be freed using kfree().
5811 *
5812 * Return: The number of found Speaker Allocation Blocks or negative number on
5813 * error.
5814 */
5815int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5816{
5817	struct drm_edid drm_edid;
 
 
 
 
 
 
 
 
5818
5819	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5820					       sadb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5821}
5822EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5823
5824/**
5825 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5826 * @connector: connector associated with the HDMI/DP sink
5827 * @mode: the display mode
5828 *
5829 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5830 * the sink doesn't support audio or video.
5831 */
5832int drm_av_sync_delay(struct drm_connector *connector,
5833		      const struct drm_display_mode *mode)
5834{
5835	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5836	int a, v;
5837
5838	if (!connector->latency_present[0])
5839		return 0;
5840	if (!connector->latency_present[1])
5841		i = 0;
5842
5843	a = connector->audio_latency[i];
5844	v = connector->video_latency[i];
5845
5846	/*
5847	 * HDMI/DP sink doesn't support audio or video?
5848	 */
5849	if (a == 255 || v == 255)
5850		return 0;
5851
5852	/*
5853	 * Convert raw EDID values to millisecond.
5854	 * Treat unknown latency as 0ms.
5855	 */
5856	if (a)
5857		a = min(2 * (a - 1), 500);
5858	if (v)
5859		v = min(2 * (v - 1), 500);
5860
5861	return max(v - a, 0);
5862}
5863EXPORT_SYMBOL(drm_av_sync_delay);
5864
5865static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
 
 
 
 
 
 
 
 
 
5866{
5867	const struct cea_db *db;
5868	struct cea_db_iter iter;
5869	bool hdmi = false;
5870
5871	/*
5872	 * Because HDMI identifier is in Vendor Specific Block,
5873	 * search it from all data blocks of CEA extension.
5874	 */
5875	cea_db_iter_edid_begin(drm_edid, &iter);
5876	cea_db_iter_for_each(db, &iter) {
5877		if (cea_db_is_hdmi_vsdb(db)) {
5878			hdmi = true;
5879			break;
5880		}
5881	}
5882	cea_db_iter_end(&iter);
5883
5884	return hdmi;
5885}
 
5886
5887/**
5888 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5889 * @edid: monitor EDID information
5890 *
5891 * Parse the CEA extension according to CEA-861-B.
5892 *
5893 * Drivers that have added the modes parsed from EDID to drm_display_info
5894 * should use &drm_display_info.is_hdmi instead of calling this function.
5895 *
5896 * Return: True if the monitor is HDMI, false if not or unknown.
5897 */
5898bool drm_detect_hdmi_monitor(const struct edid *edid)
5899{
5900	struct drm_edid drm_edid;
5901
5902	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5903}
5904EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5905
5906static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5907{
5908	struct drm_edid_iter edid_iter;
5909	const struct cea_db *db;
5910	struct cea_db_iter iter;
5911	const u8 *edid_ext;
5912	bool has_audio = false;
5913
5914	drm_edid_iter_begin(drm_edid, &edid_iter);
5915	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5916		if (edid_ext[0] == CEA_EXT) {
5917			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5918			if (has_audio)
5919				break;
5920		}
5921	}
5922	drm_edid_iter_end(&edid_iter);
5923
5924	if (has_audio) {
5925		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5926		goto end;
5927	}
5928
5929	cea_db_iter_edid_begin(drm_edid, &iter);
5930	cea_db_iter_for_each(db, &iter) {
5931		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5932			const u8 *data = cea_db_data(db);
5933			int i;
5934
5935			for (i = 0; i < cea_db_payload_len(db); i += 3)
5936				DRM_DEBUG_KMS("CEA audio format %d\n",
5937					      (data[i] >> 3) & 0xf);
5938			has_audio = true;
5939			break;
5940		}
 
5941	}
5942	cea_db_iter_end(&iter);
5943
5944end:
5945	return has_audio;
5946}
 
5947
5948/**
5949 * drm_detect_monitor_audio - check monitor audio capability
5950 * @edid: EDID block to scan
5951 *
5952 * Monitor should have CEA extension block.
5953 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5954 * audio' only. If there is any audio extension block and supported
5955 * audio format, assume at least 'basic audio' support, even if 'basic
5956 * audio' is not defined in EDID.
5957 *
5958 * Return: True if the monitor supports audio, false otherwise.
5959 */
5960bool drm_detect_monitor_audio(const struct edid *edid)
5961{
5962	struct drm_edid drm_edid;
5963
5964	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5965}
5966EXPORT_SYMBOL(drm_detect_monitor_audio);
5967
5968
5969/**
5970 * drm_default_rgb_quant_range - default RGB quantization range
5971 * @mode: display mode
5972 *
5973 * Determine the default RGB quantization range for the mode,
5974 * as specified in CEA-861.
5975 *
5976 * Return: The default RGB quantization range for the mode
5977 */
5978enum hdmi_quantization_range
5979drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5980{
5981	/* All CEA modes other than VIC 1 use limited quantization range. */
5982	return drm_match_cea_mode(mode) > 1 ?
5983		HDMI_QUANTIZATION_RANGE_LIMITED :
5984		HDMI_QUANTIZATION_RANGE_FULL;
5985}
5986EXPORT_SYMBOL(drm_default_rgb_quant_range);
5987
5988/* CTA-861 Video Data Block (CTA VDB) */
5989static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5990{
5991	struct drm_display_info *info = &connector->display_info;
5992	int i, vic_index, len = cea_db_payload_len(db);
5993	const u8 *svds = cea_db_data(db);
5994	u8 *vics;
5995
5996	if (!len)
5997		return;
5998
5999	/* Gracefully handle multiple VDBs, however unlikely that is */
6000	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
6001	if (!vics)
6002		return;
6003
6004	vic_index = info->vics_len;
6005	info->vics_len += len;
6006	info->vics = vics;
6007
6008	for (i = 0; i < len; i++) {
6009		u8 vic = svd_to_vic(svds[i]);
 
 
6010
6011		if (!drm_valid_cea_vic(vic))
6012			vic = 0;
6013
6014		info->vics[vic_index++] = vic;
 
 
 
 
 
 
 
6015	}
 
 
6016}
 
6017
6018/*
6019 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
 
6020 *
6021 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
6022 * using the VICs themselves.
 
6023 */
6024static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
6025{
6026	struct drm_display_info *info = &connector->display_info;
6027	struct drm_hdmi_info *hdmi = &info->hdmi;
6028	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
6029
6030	for (i = 0; i < len; i++) {
6031		u8 vic = info->vics[i];
6032
6033		if (vic && y420cmdb_map & BIT_ULL(i))
6034			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
6035	}
6036}
6037
6038static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
6039{
6040	const struct drm_display_info *info = &connector->display_info;
6041	int i;
6042
6043	if (!vic || !info->vics)
6044		return false;
6045
6046	for (i = 0; i < info->vics_len; i++) {
6047		if (info->vics[i] == vic)
6048			return true;
 
 
 
6049	}
6050
6051	return false;
6052}
 
6053
6054/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
6055static void parse_cta_y420vdb(struct drm_connector *connector,
6056			      const struct cea_db *db)
6057{
6058	struct drm_display_info *info = &connector->display_info;
6059	struct drm_hdmi_info *hdmi = &info->hdmi;
6060	const u8 *svds = cea_db_data(db) + 1;
6061	int i;
6062
6063	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
6064		u8 vic = svd_to_vic(svds[i]);
6065
6066		if (!drm_valid_cea_vic(vic))
6067			continue;
6068
6069		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
6070		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
6071	}
6072}
6073
6074static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
6075{
6076	struct drm_display_info *info = &connector->display_info;
6077
6078	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
6079		    connector->base.id, connector->name, db[2]);
6080
6081	if (db[2] & EDID_CEA_VCDB_QS)
6082		info->rgb_quant_range_selectable = true;
6083}
6084
6085static
6086void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
6087{
6088	switch (max_frl_rate) {
6089	case 1:
6090		*max_lanes = 3;
6091		*max_rate_per_lane = 3;
6092		break;
6093	case 2:
6094		*max_lanes = 3;
6095		*max_rate_per_lane = 6;
6096		break;
6097	case 3:
6098		*max_lanes = 4;
6099		*max_rate_per_lane = 6;
6100		break;
6101	case 4:
6102		*max_lanes = 4;
6103		*max_rate_per_lane = 8;
6104		break;
6105	case 5:
6106		*max_lanes = 4;
6107		*max_rate_per_lane = 10;
6108		break;
6109	case 6:
6110		*max_lanes = 4;
6111		*max_rate_per_lane = 12;
6112		break;
6113	case 0:
6114	default:
6115		*max_lanes = 0;
6116		*max_rate_per_lane = 0;
6117	}
6118}
6119
6120static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6121					       const u8 *db)
6122{
6123	u8 dc_mask;
6124	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6125
6126	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6127	hdmi->y420_dc_modes = dc_mask;
6128}
6129
6130static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6131			       const u8 *hf_scds)
6132{
6133	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6134
6135	if (!hdmi_dsc->v_1p2)
6136		return;
6137
6138	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6139	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6140
6141	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6142		hdmi_dsc->bpc_supported = 16;
6143	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6144		hdmi_dsc->bpc_supported = 12;
6145	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6146		hdmi_dsc->bpc_supported = 10;
6147	else
6148		/* Supports min 8 BPC if DSC 1.2 is supported*/
6149		hdmi_dsc->bpc_supported = 8;
6150
6151	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6152		u8 dsc_max_slices;
6153		u8 dsc_max_frl_rate;
6154
6155		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6156		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6157				     &hdmi_dsc->max_frl_rate_per_lane);
6158
6159		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6160
6161		switch (dsc_max_slices) {
6162		case 1:
6163			hdmi_dsc->max_slices = 1;
6164			hdmi_dsc->clk_per_slice = 340;
6165			break;
6166		case 2:
6167			hdmi_dsc->max_slices = 2;
6168			hdmi_dsc->clk_per_slice = 340;
6169			break;
6170		case 3:
6171			hdmi_dsc->max_slices = 4;
6172			hdmi_dsc->clk_per_slice = 340;
6173			break;
6174		case 4:
6175			hdmi_dsc->max_slices = 8;
6176			hdmi_dsc->clk_per_slice = 340;
6177			break;
6178		case 5:
6179			hdmi_dsc->max_slices = 8;
6180			hdmi_dsc->clk_per_slice = 400;
6181			break;
6182		case 6:
6183			hdmi_dsc->max_slices = 12;
6184			hdmi_dsc->clk_per_slice = 400;
6185			break;
6186		case 7:
6187			hdmi_dsc->max_slices = 16;
6188			hdmi_dsc->clk_per_slice = 400;
6189			break;
6190		case 0:
6191		default:
6192			hdmi_dsc->max_slices = 0;
6193			hdmi_dsc->clk_per_slice = 0;
6194		}
6195	}
6196
6197	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6198		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6199}
6200
6201/* Sink Capability Data Structure */
6202static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6203				      const u8 *hf_scds)
6204{
6205	struct drm_display_info *info = &connector->display_info;
6206	struct drm_hdmi_info *hdmi = &info->hdmi;
6207	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6208	int max_tmds_clock = 0;
6209	u8 max_frl_rate = 0;
6210	bool dsc_support = false;
6211
6212	info->has_hdmi_infoframe = true;
6213
6214	if (hf_scds[6] & 0x80) {
6215		hdmi->scdc.supported = true;
6216		if (hf_scds[6] & 0x40)
6217			hdmi->scdc.read_request = true;
6218	}
6219
6220	/*
6221	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6222	 * And as per the spec, three factors confirm this:
6223	 * * Availability of a HF-VSDB block in EDID (check)
6224	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6225	 * * SCDC support available (let's check)
6226	 * Lets check it out.
6227	 */
6228
6229	if (hf_scds[5]) {
6230		struct drm_scdc *scdc = &hdmi->scdc;
6231
6232		/* max clock is 5000 KHz times block value */
6233		max_tmds_clock = hf_scds[5] * 5000;
6234
6235		if (max_tmds_clock > 340000) {
6236			info->max_tmds_clock = max_tmds_clock;
6237		}
6238
6239		if (scdc->supported) {
6240			scdc->scrambling.supported = true;
6241
6242			/* Few sinks support scrambling for clocks < 340M */
6243			if ((hf_scds[6] & 0x8))
6244				scdc->scrambling.low_rates = true;
6245		}
6246	}
6247
6248	if (hf_scds[7]) {
6249		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6250		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6251				     &hdmi->max_frl_rate_per_lane);
6252	}
6253
6254	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6255
6256	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6257		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6258		dsc_support = true;
6259	}
6260
6261	drm_dbg_kms(connector->dev,
6262		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6263		    connector->base.id, connector->name,
6264		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6265}
6266
6267static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6268					   const u8 *hdmi)
6269{
6270	struct drm_display_info *info = &connector->display_info;
6271	unsigned int dc_bpc = 0;
6272
6273	/* HDMI supports at least 8 bpc */
6274	info->bpc = 8;
 
6275
6276	if (cea_db_payload_len(hdmi) < 6)
6277		return;
6278
6279	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6280		dc_bpc = 10;
6281		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6282		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6283			    connector->base.id, connector->name);
6284	}
6285
6286	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6287		dc_bpc = 12;
6288		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6289		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6290			    connector->base.id, connector->name);
6291	}
6292
6293	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6294		dc_bpc = 16;
6295		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6296		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6297			    connector->base.id, connector->name);
6298	}
6299
6300	if (dc_bpc == 0) {
6301		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6302			    connector->base.id, connector->name);
6303		return;
6304	}
6305
6306	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6307		    connector->base.id, connector->name, dc_bpc);
6308	info->bpc = dc_bpc;
6309
6310	/* YCRCB444 is optional according to spec. */
6311	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6312		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6313		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6314			    connector->base.id, connector->name);
6315	}
6316
6317	/*
6318	 * Spec says that if any deep color mode is supported at all,
6319	 * then deep color 36 bit must be supported.
6320	 */
6321	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6322		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6323			    connector->base.id, connector->name);
6324	}
6325}
6326
6327/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6328static void
6329drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6330{
6331	struct drm_display_info *info = &connector->display_info;
6332	u8 len = cea_db_payload_len(db);
6333
6334	info->is_hdmi = true;
6335
6336	info->source_physical_address = (db[4] << 8) | db[5];
6337
6338	if (len >= 6)
6339		info->dvi_dual = db[6] & 1;
6340	if (len >= 7)
6341		info->max_tmds_clock = db[7] * 5000;
6342
6343	/*
6344	 * Try to infer whether the sink supports HDMI infoframes.
6345	 *
6346	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6347	 * supports infoframes if HDMI_Video_present is set.
6348	 */
6349	if (len >= 8 && db[8] & BIT(5))
6350		info->has_hdmi_infoframe = true;
6351
6352	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6353		    connector->base.id, connector->name,
6354		    info->dvi_dual, info->max_tmds_clock);
6355
6356	drm_parse_hdmi_deep_color_info(connector, db);
6357}
 
 
6358
6359/*
6360 * See EDID extension for head-mounted and specialized monitors, specified at:
6361 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6362 */
6363static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6364				     const u8 *db)
6365{
6366	struct drm_display_info *info = &connector->display_info;
6367	u8 version = db[4];
6368	bool desktop_usage = db[5] & BIT(6);
6369
6370	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6371	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6372		info->non_desktop = true;
6373
6374	drm_dbg_kms(connector->dev,
6375		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6376		    connector->base.id, connector->name, version, db[5]);
6377}
6378
6379static void drm_parse_cea_ext(struct drm_connector *connector,
6380			      const struct drm_edid *drm_edid)
6381{
6382	struct drm_display_info *info = &connector->display_info;
6383	struct drm_edid_iter edid_iter;
6384	const struct cea_db *db;
6385	struct cea_db_iter iter;
6386	const u8 *edid_ext;
6387	u64 y420cmdb_map = 0;
6388
6389	drm_edid_iter_begin(drm_edid, &edid_iter);
6390	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6391		if (edid_ext[0] != CEA_EXT)
6392			continue;
6393
6394		if (!info->cea_rev)
6395			info->cea_rev = edid_ext[1];
6396
6397		if (info->cea_rev != edid_ext[1])
6398			drm_dbg_kms(connector->dev,
6399				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6400				    connector->base.id, connector->name,
6401				    info->cea_rev, edid_ext[1]);
6402
6403		/* The existence of a CTA extension should imply RGB support */
6404		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6405		if (edid_ext[3] & EDID_CEA_YCRCB444)
6406			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6407		if (edid_ext[3] & EDID_CEA_YCRCB422)
6408			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6409		if (edid_ext[3] & EDID_BASIC_AUDIO)
6410			info->has_audio = true;
6411
6412	}
6413	drm_edid_iter_end(&edid_iter);
6414
6415	cea_db_iter_edid_begin(drm_edid, &iter);
6416	cea_db_iter_for_each(db, &iter) {
6417		/* FIXME: convert parsers to use struct cea_db */
6418		const u8 *data = (const u8 *)db;
6419
6420		if (cea_db_is_hdmi_vsdb(db))
6421			drm_parse_hdmi_vsdb_video(connector, data);
6422		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6423			 cea_db_is_hdmi_forum_scdb(db))
6424			drm_parse_hdmi_forum_scds(connector, data);
6425		else if (cea_db_is_microsoft_vsdb(db))
6426			drm_parse_microsoft_vsdb(connector, data);
6427		else if (cea_db_is_y420cmdb(db))
6428			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6429		else if (cea_db_is_y420vdb(db))
6430			parse_cta_y420vdb(connector, db);
6431		else if (cea_db_is_vcdb(db))
6432			drm_parse_vcdb(connector, data);
6433		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6434			drm_parse_hdr_metadata_block(connector, data);
6435		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6436			parse_cta_vdb(connector, db);
6437		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6438			info->has_audio = true;
6439	}
6440	cea_db_iter_end(&iter);
6441
6442	if (y420cmdb_map)
6443		update_cta_y420cmdb(connector, y420cmdb_map);
6444}
6445
6446static
6447void get_monitor_range(const struct detailed_timing *timing, void *c)
6448{
6449	struct detailed_mode_closure *closure = c;
6450	struct drm_display_info *info = &closure->connector->display_info;
6451	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6452	const struct detailed_non_pixel *data = &timing->data.other_data;
6453	const struct detailed_data_monitor_range *range = &data->data.range;
6454	const struct edid *edid = closure->drm_edid->edid;
6455
6456	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6457		return;
6458
6459	/*
6460	 * These limits are used to determine the VRR refresh
6461	 * rate range. Only the "range limits only" variant
6462	 * of the range descriptor seems to guarantee that
6463	 * any and all timings are accepted by the sink, as
6464	 * opposed to just timings conforming to the indicated
6465	 * formula (GTF/GTF2/CVT). Thus other variants of the
6466	 * range descriptor are not accepted here.
6467	 */
6468	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6469		return;
6470
6471	monitor_range->min_vfreq = range->min_vfreq;
6472	monitor_range->max_vfreq = range->max_vfreq;
6473
6474	if (edid->revision >= 4) {
6475		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6476			monitor_range->min_vfreq += 255;
6477		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6478			monitor_range->max_vfreq += 255;
6479	}
6480}
6481
6482static void drm_get_monitor_range(struct drm_connector *connector,
6483				  const struct drm_edid *drm_edid)
6484{
6485	const struct drm_display_info *info = &connector->display_info;
6486	struct detailed_mode_closure closure = {
6487		.connector = connector,
6488		.drm_edid = drm_edid,
6489	};
6490
6491	if (drm_edid->edid->revision < 4)
6492		return;
6493
6494	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6495		return;
6496
6497	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6498
6499	drm_dbg_kms(connector->dev,
6500		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6501		    connector->base.id, connector->name,
6502		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6503}
6504
6505static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6506				    const struct displayid_block *block)
6507{
6508	struct displayid_vesa_vendor_specific_block *vesa =
6509		(struct displayid_vesa_vendor_specific_block *)block;
6510	struct drm_display_info *info = &connector->display_info;
6511
6512	if (block->num_bytes < 3) {
6513		drm_dbg_kms(connector->dev,
6514			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6515			    connector->base.id, connector->name, block->num_bytes);
6516		return;
6517	}
6518
6519	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6520		return;
6521
6522	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6523		drm_dbg_kms(connector->dev,
6524			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6525			    connector->base.id, connector->name);
6526		return;
6527	}
6528
6529	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6530	default:
6531		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6532			    connector->base.id, connector->name);
6533		fallthrough;
6534	case 0:
6535		info->mso_stream_count = 0;
6536		break;
6537	case 1:
6538		info->mso_stream_count = 2; /* 2 or 4 links */
6539		break;
6540	case 2:
6541		info->mso_stream_count = 4; /* 4 links */
6542		break;
6543	}
6544
6545	if (!info->mso_stream_count) {
6546		info->mso_pixel_overlap = 0;
6547		return;
6548	}
6549
6550	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6551	if (info->mso_pixel_overlap > 8) {
6552		drm_dbg_kms(connector->dev,
6553			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6554			    connector->base.id, connector->name,
6555			    info->mso_pixel_overlap);
6556		info->mso_pixel_overlap = 8;
6557	}
6558
6559	drm_dbg_kms(connector->dev,
6560		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6561		    connector->base.id, connector->name,
6562		    info->mso_stream_count, info->mso_pixel_overlap);
6563}
6564
6565static void drm_update_mso(struct drm_connector *connector,
6566			   const struct drm_edid *drm_edid)
6567{
6568	const struct displayid_block *block;
6569	struct displayid_iter iter;
6570
6571	displayid_iter_edid_begin(drm_edid, &iter);
6572	displayid_iter_for_each(block, &iter) {
6573		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6574			drm_parse_vesa_mso_data(connector, block);
6575	}
6576	displayid_iter_end(&iter);
6577}
6578
6579/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6580 * all of the values which would have been set from EDID
6581 */
6582static void drm_reset_display_info(struct drm_connector *connector)
6583{
6584	struct drm_display_info *info = &connector->display_info;
6585
6586	info->width_mm = 0;
6587	info->height_mm = 0;
6588
6589	info->bpc = 0;
6590	info->color_formats = 0;
6591	info->cea_rev = 0;
6592	info->max_tmds_clock = 0;
6593	info->dvi_dual = false;
6594	info->is_hdmi = false;
6595	info->has_audio = false;
6596	info->has_hdmi_infoframe = false;
6597	info->rgb_quant_range_selectable = false;
6598	memset(&info->hdmi, 0, sizeof(info->hdmi));
6599
6600	info->edid_hdmi_rgb444_dc_modes = 0;
6601	info->edid_hdmi_ycbcr444_dc_modes = 0;
6602
6603	info->non_desktop = 0;
6604	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6605	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6606
6607	info->mso_stream_count = 0;
6608	info->mso_pixel_overlap = 0;
6609	info->max_dsc_bpp = 0;
6610
6611	kfree(info->vics);
6612	info->vics = NULL;
6613	info->vics_len = 0;
6614
6615	info->quirks = 0;
6616
6617	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6618}
6619
6620static void update_displayid_info(struct drm_connector *connector,
6621				  const struct drm_edid *drm_edid)
6622{
6623	struct drm_display_info *info = &connector->display_info;
6624	const struct displayid_block *block;
6625	struct displayid_iter iter;
6626
6627	displayid_iter_edid_begin(drm_edid, &iter);
6628	displayid_iter_for_each(block, &iter) {
6629		drm_dbg_kms(connector->dev,
6630			    "[CONNECTOR:%d:%s] DisplayID extension version 0x%02x, primary use 0x%02x\n",
6631			    connector->base.id, connector->name,
6632			    displayid_version(&iter),
6633			    displayid_primary_use(&iter));
6634		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6635		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6636		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6637			info->non_desktop = true;
6638
6639		/*
6640		 * We're only interested in the base section here, no need to
6641		 * iterate further.
6642		 */
6643		break;
6644	}
6645	displayid_iter_end(&iter);
6646}
6647
6648static void update_display_info(struct drm_connector *connector,
6649				const struct drm_edid *drm_edid)
6650{
6651	struct drm_display_info *info = &connector->display_info;
6652	const struct edid *edid;
6653
6654	drm_reset_display_info(connector);
6655	clear_eld(connector);
6656
6657	if (!drm_edid)
6658		return;
6659
6660	edid = drm_edid->edid;
6661
6662	info->quirks = edid_get_quirks(drm_edid);
6663
6664	info->width_mm = edid->width_cm * 10;
6665	info->height_mm = edid->height_cm * 10;
6666
6667	drm_get_monitor_range(connector, drm_edid);
6668
6669	if (edid->revision < 3)
6670		goto out;
6671
6672	if (!drm_edid_is_digital(drm_edid))
6673		goto out;
6674
6675	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6676	drm_parse_cea_ext(connector, drm_edid);
6677
6678	update_displayid_info(connector, drm_edid);
6679
6680	/*
6681	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6682	 *
6683	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6684	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6685	 * extensions which tell otherwise.
6686	 */
6687	if (info->bpc == 0 && edid->revision == 3 &&
6688	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6689		info->bpc = 8;
6690		drm_dbg_kms(connector->dev,
6691			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6692			    connector->base.id, connector->name, info->bpc);
6693	}
6694
6695	/* Only defined for 1.4 with digital displays */
6696	if (edid->revision < 4)
6697		goto out;
6698
6699	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6700	case DRM_EDID_DIGITAL_DEPTH_6:
6701		info->bpc = 6;
6702		break;
6703	case DRM_EDID_DIGITAL_DEPTH_8:
6704		info->bpc = 8;
6705		break;
6706	case DRM_EDID_DIGITAL_DEPTH_10:
6707		info->bpc = 10;
6708		break;
6709	case DRM_EDID_DIGITAL_DEPTH_12:
6710		info->bpc = 12;
6711		break;
6712	case DRM_EDID_DIGITAL_DEPTH_14:
6713		info->bpc = 14;
6714		break;
6715	case DRM_EDID_DIGITAL_DEPTH_16:
6716		info->bpc = 16;
6717		break;
6718	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6719	default:
6720		info->bpc = 0;
6721		break;
6722	}
6723
6724	drm_dbg_kms(connector->dev,
6725		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6726		    connector->base.id, connector->name, info->bpc);
6727
6728	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6729		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6730	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6731		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6732
6733	drm_update_mso(connector, drm_edid);
6734
6735out:
6736	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6737		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6738			    connector->base.id, connector->name,
6739			    info->non_desktop ? " (redundant quirk)" : "");
6740		info->non_desktop = true;
6741	}
6742
6743	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6744		info->max_dsc_bpp = 15;
6745
6746	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6747		info->bpc = 6;
6748
6749	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6750		info->bpc = 8;
6751
6752	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6753		info->bpc = 10;
6754
6755	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6756		info->bpc = 12;
6757
6758	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6759	drm_edid_to_eld(connector, drm_edid);
6760}
6761
6762static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6763							    struct displayid_detailed_timings_1 *timings,
6764							    bool type_7)
6765{
6766	struct drm_display_mode *mode;
6767	unsigned pixel_clock = (timings->pixel_clock[0] |
6768				(timings->pixel_clock[1] << 8) |
6769				(timings->pixel_clock[2] << 16)) + 1;
6770	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6771	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6772	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6773	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6774	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6775	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6776	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6777	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6778	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6779	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6780
6781	mode = drm_mode_create(dev);
6782	if (!mode)
6783		return NULL;
6784
6785	/* resolution is kHz for type VII, and 10 kHz for type I */
6786	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6787	mode->hdisplay = hactive;
6788	mode->hsync_start = mode->hdisplay + hsync;
6789	mode->hsync_end = mode->hsync_start + hsync_width;
6790	mode->htotal = mode->hdisplay + hblank;
6791
6792	mode->vdisplay = vactive;
6793	mode->vsync_start = mode->vdisplay + vsync;
6794	mode->vsync_end = mode->vsync_start + vsync_width;
6795	mode->vtotal = mode->vdisplay + vblank;
6796
6797	mode->flags = 0;
6798	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6799	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6800	mode->type = DRM_MODE_TYPE_DRIVER;
6801
6802	if (timings->flags & 0x80)
6803		mode->type |= DRM_MODE_TYPE_PREFERRED;
6804	drm_mode_set_name(mode);
6805
6806	return mode;
6807}
6808
6809static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6810					  const struct displayid_block *block)
 
 
 
 
 
 
 
 
6811{
6812	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6813	int i;
6814	int num_timings;
6815	struct drm_display_mode *newmode;
6816	int num_modes = 0;
6817	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6818	/* blocks must be multiple of 20 bytes length */
6819	if (block->num_bytes % 20)
6820		return 0;
6821
6822	num_timings = block->num_bytes / 20;
6823	for (i = 0; i < num_timings; i++) {
6824		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6825
6826		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6827		if (!newmode)
6828			continue;
6829
6830		drm_mode_probed_add(connector, newmode);
6831		num_modes++;
6832	}
6833	return num_modes;
6834}
6835
6836static int add_displayid_detailed_modes(struct drm_connector *connector,
6837					const struct drm_edid *drm_edid)
6838{
6839	const struct displayid_block *block;
6840	struct displayid_iter iter;
6841	int num_modes = 0;
6842
6843	displayid_iter_edid_begin(drm_edid, &iter);
6844	displayid_iter_for_each(block, &iter) {
6845		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6846		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6847			num_modes += add_displayid_detailed_1_modes(connector, block);
6848	}
6849	displayid_iter_end(&iter);
6850
6851	return num_modes;
6852}
6853
6854static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6855					 const struct drm_edid *drm_edid)
6856{
6857	const struct drm_display_info *info = &connector->display_info;
6858	int num_modes = 0;
6859
6860	if (!drm_edid)
6861		return 0;
6862
6863	/*
6864	 * EDID spec says modes should be preferred in this order:
6865	 * - preferred detailed mode
6866	 * - other detailed modes from base block
6867	 * - detailed modes from extension blocks
6868	 * - CVT 3-byte code modes
6869	 * - standard timing codes
6870	 * - established timing codes
6871	 * - modes inferred from GTF or CVT range information
6872	 *
6873	 * We get this pretty much right.
6874	 *
6875	 * XXX order for additional mode types in extension blocks?
6876	 */
6877	num_modes += add_detailed_modes(connector, drm_edid);
6878	num_modes += add_cvt_modes(connector, drm_edid);
6879	num_modes += add_standard_modes(connector, drm_edid);
6880	num_modes += add_established_modes(connector, drm_edid);
6881	num_modes += add_cea_modes(connector, drm_edid);
6882	num_modes += add_alternate_cea_modes(connector, drm_edid);
6883	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6884	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6885		num_modes += add_inferred_modes(connector, drm_edid);
6886
6887	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6888		edid_fixup_preferred(connector);
6889
6890	return num_modes;
6891}
6892
6893static void _drm_update_tile_info(struct drm_connector *connector,
6894				  const struct drm_edid *drm_edid);
6895
6896static int _drm_edid_connector_property_update(struct drm_connector *connector,
6897					       const struct drm_edid *drm_edid)
6898{
6899	struct drm_device *dev = connector->dev;
6900	int ret;
6901
6902	if (connector->edid_blob_ptr) {
6903		const void *old_edid = connector->edid_blob_ptr->data;
6904		size_t old_edid_size = connector->edid_blob_ptr->length;
6905
6906		if (old_edid && !drm_edid_eq(drm_edid, old_edid, old_edid_size)) {
6907			connector->epoch_counter++;
6908			drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6909				    connector->base.id, connector->name,
6910				    connector->epoch_counter);
6911		}
6912	}
6913
6914	ret = drm_property_replace_global_blob(dev,
6915					       &connector->edid_blob_ptr,
6916					       drm_edid ? drm_edid->size : 0,
6917					       drm_edid ? drm_edid->edid : NULL,
6918					       &connector->base,
6919					       dev->mode_config.edid_property);
6920	if (ret) {
6921		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6922			    connector->base.id, connector->name, ret);
6923		goto out;
6924	}
6925
6926	ret = drm_object_property_set_value(&connector->base,
6927					    dev->mode_config.non_desktop_property,
6928					    connector->display_info.non_desktop);
6929	if (ret) {
6930		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6931			    connector->base.id, connector->name, ret);
6932		goto out;
6933	}
6934
6935	ret = drm_connector_set_tile_property(connector);
6936	if (ret) {
6937		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6938			    connector->base.id, connector->name, ret);
6939		goto out;
6940	}
6941
6942out:
6943	return ret;
6944}
6945
6946/* For sysfs edid show implementation */
6947ssize_t drm_edid_connector_property_show(struct drm_connector *connector,
6948					 char *buf, loff_t off, size_t count)
6949{
6950	const void *edid;
6951	size_t size;
6952	ssize_t ret = 0;
6953
6954	mutex_lock(&connector->dev->mode_config.mutex);
6955
6956	if (!connector->edid_blob_ptr)
6957		goto unlock;
6958
6959	edid = connector->edid_blob_ptr->data;
6960	size = connector->edid_blob_ptr->length;
6961	if (!edid)
6962		goto unlock;
6963
6964	if (off >= size)
6965		goto unlock;
6966
6967	if (off + count > size)
6968		count = size - off;
6969
6970	memcpy(buf, edid + off, count);
6971
6972	ret = count;
6973unlock:
6974	mutex_unlock(&connector->dev->mode_config.mutex);
6975
6976	return ret;
6977}
6978
6979/**
6980 * drm_edid_connector_update - Update connector information from EDID
6981 * @connector: Connector
6982 * @drm_edid: EDID
6983 *
6984 * Update the connector display info, ELD, HDR metadata, relevant properties,
6985 * etc. from the passed in EDID.
6986 *
6987 * If EDID is NULL, reset the information.
6988 *
6989 * Must be called before calling drm_edid_connector_add_modes().
6990 *
6991 * Return: 0 on success, negative error on errors.
6992 */
6993int drm_edid_connector_update(struct drm_connector *connector,
6994			      const struct drm_edid *drm_edid)
6995{
6996	update_display_info(connector, drm_edid);
6997
6998	_drm_update_tile_info(connector, drm_edid);
6999
7000	return _drm_edid_connector_property_update(connector, drm_edid);
7001}
7002EXPORT_SYMBOL(drm_edid_connector_update);
7003
7004/**
7005 * drm_edid_connector_add_modes - Update probed modes from the EDID property
7006 * @connector: Connector
7007 *
7008 * Add the modes from the previously updated EDID property to the connector
7009 * probed modes list.
7010 *
7011 * drm_edid_connector_update() must have been called before this to update the
7012 * EDID property.
7013 *
7014 * Return: The number of modes added, or 0 if we couldn't find any.
7015 */
7016int drm_edid_connector_add_modes(struct drm_connector *connector)
7017{
7018	const struct drm_edid *drm_edid = NULL;
7019	int count;
7020
7021	if (connector->edid_blob_ptr)
7022		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
7023					  connector->edid_blob_ptr->length);
7024
7025	count = _drm_edid_connector_add_modes(connector, drm_edid);
7026
7027	drm_edid_free(drm_edid);
7028
7029	return count;
7030}
7031EXPORT_SYMBOL(drm_edid_connector_add_modes);
7032
7033/**
7034 * drm_connector_update_edid_property - update the edid property of a connector
7035 * @connector: drm connector
7036 * @edid: new value of the edid property
7037 *
7038 * This function creates a new blob modeset object and assigns its id to the
7039 * connector's edid property.
7040 * Since we also parse tile information from EDID's displayID block, we also
7041 * set the connector's tile property here. See drm_connector_set_tile_property()
7042 * for more details.
7043 *
7044 * This function is deprecated. Use drm_edid_connector_update() instead.
7045 *
7046 * Returns:
7047 * Zero on success, negative errno on failure.
7048 */
7049int drm_connector_update_edid_property(struct drm_connector *connector,
7050				       const struct edid *edid)
7051{
7052	struct drm_edid drm_edid;
7053
7054	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
7055}
7056EXPORT_SYMBOL(drm_connector_update_edid_property);
7057
7058/**
7059 * drm_add_edid_modes - add modes from EDID data, if available
7060 * @connector: connector we're probing
7061 * @edid: EDID data
7062 *
7063 * Add the specified modes to the connector's mode list. Also fills out the
7064 * &drm_display_info structure and ELD in @connector with any information which
7065 * can be derived from the edid.
7066 *
7067 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
7068 *
7069 * Return: The number of modes added or 0 if we couldn't find any.
7070 */
7071int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
7072{
7073	struct drm_edid _drm_edid;
7074	const struct drm_edid *drm_edid;
7075
7076	if (edid && !drm_edid_is_valid(edid)) {
7077		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
7078			 connector->base.id, connector->name);
7079		edid = NULL;
7080	}
7081
7082	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
7083
7084	update_display_info(connector, drm_edid);
 
7085
7086	return _drm_edid_connector_add_modes(connector, drm_edid);
7087}
7088EXPORT_SYMBOL(drm_add_edid_modes);
7089
7090/**
7091 * drm_add_modes_noedid - add modes for the connectors without EDID
7092 * @connector: connector we're probing
7093 * @hdisplay: the horizontal display limit
7094 * @vdisplay: the vertical display limit
7095 *
7096 * Add the specified modes to the connector's mode list. Only when the
7097 * hdisplay/vdisplay is not beyond the given limit, it will be added.
7098 *
7099 * Return: The number of modes added or 0 if we couldn't find any.
7100 */
7101int drm_add_modes_noedid(struct drm_connector *connector,
7102			int hdisplay, int vdisplay)
7103{
7104	int i, count, num_modes = 0;
7105	struct drm_display_mode *mode;
7106	struct drm_device *dev = connector->dev;
7107
7108	count = ARRAY_SIZE(drm_dmt_modes);
7109	if (hdisplay < 0)
7110		hdisplay = 0;
7111	if (vdisplay < 0)
7112		vdisplay = 0;
7113
7114	for (i = 0; i < count; i++) {
7115		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
7116
7117		if (hdisplay && vdisplay) {
7118			/*
7119			 * Only when two are valid, they will be used to check
7120			 * whether the mode should be added to the mode list of
7121			 * the connector.
7122			 */
7123			if (ptr->hdisplay > hdisplay ||
7124					ptr->vdisplay > vdisplay)
7125				continue;
7126		}
7127		if (drm_mode_vrefresh(ptr) > 61)
7128			continue;
7129		mode = drm_mode_duplicate(dev, ptr);
7130		if (mode) {
7131			drm_mode_probed_add(connector, mode);
7132			num_modes++;
7133		}
7134	}
7135	return num_modes;
7136}
7137EXPORT_SYMBOL(drm_add_modes_noedid);
7138
7139static bool is_hdmi2_sink(const struct drm_connector *connector)
 
7140{
7141	/*
7142	 * FIXME: sil-sii8620 doesn't have a connector around when
7143	 * we need one, so we have to be prepared for a NULL connector.
7144	 */
7145	if (!connector)
7146		return true;
7147
7148	return connector->display_info.hdmi.scdc.supported ||
7149		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7150}
7151
7152static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7153			    const struct drm_display_mode *mode)
7154{
7155	bool has_hdmi_infoframe = connector ?
7156		connector->display_info.has_hdmi_infoframe : false;
7157
7158	if (!has_hdmi_infoframe)
7159		return 0;
7160
7161	/* No HDMI VIC when signalling 3D video format */
7162	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7163		return 0;
7164
7165	return drm_match_hdmi_mode(mode);
7166}
7167
7168static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7169			   const struct drm_display_mode *mode)
7170{
7171	/*
7172	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7173	 * we should send its VIC in vendor infoframes, else send the
7174	 * VIC in AVI infoframes. Lets check if this mode is present in
7175	 * HDMI 1.4b 4K modes
7176	 */
7177	if (drm_mode_hdmi_vic(connector, mode))
7178		return 0;
7179
7180	return drm_match_cea_mode(mode);
7181}
7182
7183/*
7184 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7185 * conform to HDMI 1.4.
7186 *
7187 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7188 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7189 *
7190 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7191 * version.
7192 */
7193static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7194{
7195	if (!is_hdmi2_sink(connector) && vic > 64 &&
7196	    !cta_vdb_has_vic(connector, vic))
7197		return 0;
7198
7199	return vic;
 
 
 
 
7200}
 
7201
7202/**
7203 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7204 *                                              data from a DRM display mode
7205 * @frame: HDMI AVI infoframe
7206 * @connector: the connector
7207 * @mode: DRM display mode
7208 *
7209 * Return: 0 on success or a negative error code on failure.
7210 */
7211int
7212drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7213					 const struct drm_connector *connector,
7214					 const struct drm_display_mode *mode)
7215{
7216	enum hdmi_picture_aspect picture_aspect;
7217	u8 vic, hdmi_vic;
7218
7219	if (!frame || !mode)
7220		return -EINVAL;
7221
7222	hdmi_avi_infoframe_init(frame);
 
 
7223
7224	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7225		frame->pixel_repeat = 1;
7226
7227	vic = drm_mode_cea_vic(connector, mode);
7228	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7229
7230	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7231
7232	/*
7233	 * As some drivers don't support atomic, we can't use connector state.
7234	 * So just initialize the frame with default values, just the same way
7235	 * as it's done with other properties here.
7236	 */
7237	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7238	frame->itc = 0;
7239
7240	/*
7241	 * Populate picture aspect ratio from either
7242	 * user input (if specified) or from the CEA/HDMI mode lists.
7243	 */
7244	picture_aspect = mode->picture_aspect_ratio;
7245	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7246		if (vic)
7247			picture_aspect = drm_get_cea_aspect_ratio(vic);
7248		else if (hdmi_vic)
7249			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7250	}
7251
7252	/*
7253	 * The infoframe can't convey anything but none, 4:3
7254	 * and 16:9, so if the user has asked for anything else
7255	 * we can only satisfy it by specifying the right VIC.
7256	 */
7257	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7258		if (vic) {
7259			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7260				return -EINVAL;
7261		} else if (hdmi_vic) {
7262			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7263				return -EINVAL;
7264		} else {
7265			return -EINVAL;
7266		}
7267
7268		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7269	}
7270
7271	frame->video_code = vic_for_avi_infoframe(connector, vic);
7272	frame->picture_aspect = picture_aspect;
7273	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7274	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7275
7276	return 0;
7277}
7278EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7279
7280/**
7281 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7282 *                                        quantization range information
7283 * @frame: HDMI AVI infoframe
7284 * @connector: the connector
7285 * @mode: DRM display mode
7286 * @rgb_quant_range: RGB quantization range (Q)
7287 */
7288void
7289drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7290				   const struct drm_connector *connector,
7291				   const struct drm_display_mode *mode,
7292				   enum hdmi_quantization_range rgb_quant_range)
7293{
7294	const struct drm_display_info *info = &connector->display_info;
7295
7296	/*
7297	 * CEA-861:
7298	 * "A Source shall not send a non-zero Q value that does not correspond
7299	 *  to the default RGB Quantization Range for the transmitted Picture
7300	 *  unless the Sink indicates support for the Q bit in a Video
7301	 *  Capabilities Data Block."
7302	 *
7303	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7304	 * default RGB quantization range for the mode, even when QS=0.
7305	 */
7306	if (info->rgb_quant_range_selectable ||
7307	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7308		frame->quantization_range = rgb_quant_range;
7309	else
7310		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7311
7312	/*
7313	 * CEA-861-F:
7314	 * "When transmitting any RGB colorimetry, the Source should set the
7315	 *  YQ-field to match the RGB Quantization Range being transmitted
7316	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7317	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7318	 *
7319	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7320	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7321	 * good way to tell which version of CEA-861 the sink supports, so
7322	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7323	 * on CEA-861-F.
7324	 */
7325	if (!is_hdmi2_sink(connector) ||
7326	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7327		frame->ycc_quantization_range =
7328			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7329	else
7330		frame->ycc_quantization_range =
7331			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7332}
7333EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7334
7335static enum hdmi_3d_structure
7336s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7337{
7338	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7339
7340	switch (layout) {
7341	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7342		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7343	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7344		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7345	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7346		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7347	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7348		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7349	case DRM_MODE_FLAG_3D_L_DEPTH:
7350		return HDMI_3D_STRUCTURE_L_DEPTH;
7351	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7352		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7353	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7354		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7355	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7356		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7357	default:
7358		return HDMI_3D_STRUCTURE_INVALID;
7359	}
7360}
7361
7362/**
7363 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7364 * data from a DRM display mode
7365 * @frame: HDMI vendor infoframe
7366 * @connector: the connector
7367 * @mode: DRM display mode
7368 *
7369 * Note that there's is a need to send HDMI vendor infoframes only when using a
7370 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7371 * function will return -EINVAL, error that can be safely ignored.
7372 *
7373 * Return: 0 on success or a negative error code on failure.
7374 */
7375int
7376drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7377					    const struct drm_connector *connector,
7378					    const struct drm_display_mode *mode)
7379{
7380	/*
7381	 * FIXME: sil-sii8620 doesn't have a connector around when
7382	 * we need one, so we have to be prepared for a NULL connector.
7383	 */
7384	bool has_hdmi_infoframe = connector ?
7385		connector->display_info.has_hdmi_infoframe : false;
7386	int err;
 
 
7387
7388	if (!frame || !mode)
7389		return -EINVAL;
7390
7391	if (!has_hdmi_infoframe)
 
 
 
 
 
 
7392		return -EINVAL;
7393
7394	err = hdmi_vendor_infoframe_init(frame);
7395	if (err < 0)
7396		return err;
7397
7398	/*
7399	 * Even if it's not absolutely necessary to send the infoframe
7400	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7401	 * know that the sink can handle it. This is based on a
7402	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7403	 * have trouble realizing that they should switch from 3D to 2D
7404	 * mode if the source simply stops sending the infoframe when
7405	 * it wants to switch from 3D to 2D.
7406	 */
7407	frame->vic = drm_mode_hdmi_vic(connector, mode);
7408	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7409
7410	return 0;
7411}
7412EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7413
7414static void drm_parse_tiled_block(struct drm_connector *connector,
7415				  const struct displayid_block *block)
7416{
7417	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7418	u16 w, h;
7419	u8 tile_v_loc, tile_h_loc;
7420	u8 num_v_tile, num_h_tile;
7421	struct drm_tile_group *tg;
7422
7423	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7424	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7425
7426	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7427	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7428	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7429	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7430
7431	connector->has_tile = true;
7432	if (tile->tile_cap & 0x80)
7433		connector->tile_is_single_monitor = true;
7434
7435	connector->num_h_tile = num_h_tile + 1;
7436	connector->num_v_tile = num_v_tile + 1;
7437	connector->tile_h_loc = tile_h_loc;
7438	connector->tile_v_loc = tile_v_loc;
7439	connector->tile_h_size = w + 1;
7440	connector->tile_v_size = h + 1;
7441
7442	drm_dbg_kms(connector->dev,
7443		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7444		    connector->base.id, connector->name,
7445		    tile->tile_cap,
7446		    connector->tile_h_size, connector->tile_v_size,
7447		    connector->num_h_tile, connector->num_v_tile,
7448		    connector->tile_h_loc, connector->tile_v_loc,
7449		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7450
7451	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7452	if (!tg)
7453		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7454	if (!tg)
7455		return;
7456
7457	if (connector->tile_group != tg) {
7458		/* if we haven't got a pointer,
7459		   take the reference, drop ref to old tile group */
7460		if (connector->tile_group)
7461			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7462		connector->tile_group = tg;
7463	} else {
7464		/* if same tile group, then release the ref we just took. */
7465		drm_mode_put_tile_group(connector->dev, tg);
7466	}
7467}
7468
7469static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7470				     const struct displayid_block *block)
7471{
7472	return (displayid_version(iter) < DISPLAY_ID_STRUCTURE_VER_20 &&
7473		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7474		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7475		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7476}
7477
7478static void _drm_update_tile_info(struct drm_connector *connector,
7479				  const struct drm_edid *drm_edid)
7480{
7481	const struct displayid_block *block;
7482	struct displayid_iter iter;
7483
7484	connector->has_tile = false;
7485
7486	displayid_iter_edid_begin(drm_edid, &iter);
7487	displayid_iter_for_each(block, &iter) {
7488		if (displayid_is_tiled_block(&iter, block))
7489			drm_parse_tiled_block(connector, block);
7490	}
7491	displayid_iter_end(&iter);
7492
7493	if (!connector->has_tile && connector->tile_group) {
7494		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7495		connector->tile_group = NULL;
7496	}
7497}
7498
7499/**
7500 * drm_edid_is_digital - is digital?
7501 * @drm_edid: The EDID
7502 *
7503 * Return true if input is digital.
7504 */
7505bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7506{
7507	return drm_edid && drm_edid->edid &&
7508		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7509}
7510EXPORT_SYMBOL(drm_edid_is_digital);
v3.15
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30#include <linux/kernel.h>
  31#include <linux/slab.h>
 
 
  32#include <linux/hdmi.h>
  33#include <linux/i2c.h>
 
  34#include <linux/module.h>
  35#include <drm/drmP.h>
 
 
 
 
 
  36#include <drm/drm_edid.h>
 
 
 
  37
  38#define version_greater(edid, maj, min) \
  39	(((edid)->version > (maj)) || \
  40	 ((edid)->version == (maj) && (edid)->revision > (min)))
 
 
 
 
 
  41
  42#define EDID_EST_TIMINGS 16
  43#define EDID_STD_TIMINGS 8
  44#define EDID_DETAILED_TIMINGS 4
  45
  46/*
  47 * EDID blocks out in the wild have a variety of bugs, try to collect
  48 * them here (note that userspace may work around broken monitors first,
  49 * but fixes should make their way here so that the kernel "just works"
  50 * on as many displays as possible).
  51 */
  52
  53/* First detailed mode wrong, use largest 60Hz mode */
  54#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  55/* Reported 135MHz pixel clock is too high, needs adjustment */
  56#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  57/* Prefer the largest mode at 75 Hz */
  58#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  59/* Detail timing is in cm not mm */
  60#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  61/* Detailed timing descriptors have bogus size values, so just take the
  62 * maximum size and use that.
  63 */
  64#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  65/* Monitor forgot to set the first detailed is preferred bit. */
  66#define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
  67/* use +hsync +vsync for detailed mode */
  68#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  69/* Force reduced-blanking timings for detailed modes */
  70#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  71/* Force 8bpc */
  72#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74struct detailed_mode_closure {
  75	struct drm_connector *connector;
  76	struct edid *edid;
  77	bool preferred;
  78	u32 quirks;
  79	int modes;
  80};
  81
 
 
 
 
 
  82#define LEVEL_DMT	0
  83#define LEVEL_GTF	1
  84#define LEVEL_GTF2	2
  85#define LEVEL_CVT	3
  86
  87static struct edid_quirk {
  88	char vendor[4];
  89	int product_id;
 
 
 
 
 
 
 
 
  90	u32 quirks;
  91} edid_quirk_list[] = {
  92	/* Acer AL1706 */
  93	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
  94	/* Acer F51 */
  95	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
  96	/* Unknown Acer */
  97	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98
  99	/* Belinea 10 15 55 */
 100	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
 101	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
 102
 103	/* Envision Peripherals, Inc. EN-7100e */
 104	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
 105	/* Envision EN2028 */
 106	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
 107
 108	/* Funai Electronics PM36B */
 109	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
 110	  EDID_QUIRK_DETAILED_IN_CM },
 
 
 
 111
 112	/* LG Philips LCD LP154W01-A5 */
 113	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 114	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 115
 116	/* Philips 107p5 CRT */
 117	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
 118
 119	/* Proview AY765C */
 120	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
 
 121
 122	/* Samsung SyncMaster 205BW.  Note: irony */
 123	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
 124	/* Samsung SyncMaster 22[5-6]BW */
 125	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
 126	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
 
 
 
 127
 128	/* ViewSonic VA2026w */
 129	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
 130
 131	/* Medion MD 30217 PG */
 132	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
 
 
 
 133
 134	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 135	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136};
 137
 138/*
 139 * Autogenerated from the DMT spec.
 140 * This table is copied from xfree86/modes/xf86EdidModes.c.
 141 */
 142static const struct drm_display_mode drm_dmt_modes[] = {
 143	/* 640x350@85Hz */
 144	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 145		   736, 832, 0, 350, 382, 385, 445, 0,
 146		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 147	/* 640x400@85Hz */
 148	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 149		   736, 832, 0, 400, 401, 404, 445, 0,
 150		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 151	/* 720x400@85Hz */
 152	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 153		   828, 936, 0, 400, 401, 404, 446, 0,
 154		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 155	/* 640x480@60Hz */
 156	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 157		   752, 800, 0, 480, 489, 492, 525, 0,
 158		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 159	/* 640x480@72Hz */
 160	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 161		   704, 832, 0, 480, 489, 492, 520, 0,
 162		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 163	/* 640x480@75Hz */
 164	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 165		   720, 840, 0, 480, 481, 484, 500, 0,
 166		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 167	/* 640x480@85Hz */
 168	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 169		   752, 832, 0, 480, 481, 484, 509, 0,
 170		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 171	/* 800x600@56Hz */
 172	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 173		   896, 1024, 0, 600, 601, 603, 625, 0,
 174		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 175	/* 800x600@60Hz */
 176	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 177		   968, 1056, 0, 600, 601, 605, 628, 0,
 178		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 179	/* 800x600@72Hz */
 180	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 181		   976, 1040, 0, 600, 637, 643, 666, 0,
 182		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 183	/* 800x600@75Hz */
 184	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 185		   896, 1056, 0, 600, 601, 604, 625, 0,
 186		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 187	/* 800x600@85Hz */
 188	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 189		   896, 1048, 0, 600, 601, 604, 631, 0,
 190		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 191	/* 800x600@120Hz RB */
 192	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 193		   880, 960, 0, 600, 603, 607, 636, 0,
 194		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 195	/* 848x480@60Hz */
 196	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 197		   976, 1088, 0, 480, 486, 494, 517, 0,
 198		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 199	/* 1024x768@43Hz, interlace */
 200	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 201		   1208, 1264, 0, 768, 768, 772, 817, 0,
 202		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 203			DRM_MODE_FLAG_INTERLACE) },
 204	/* 1024x768@60Hz */
 205	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 206		   1184, 1344, 0, 768, 771, 777, 806, 0,
 207		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 208	/* 1024x768@70Hz */
 209	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 210		   1184, 1328, 0, 768, 771, 777, 806, 0,
 211		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 212	/* 1024x768@75Hz */
 213	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 214		   1136, 1312, 0, 768, 769, 772, 800, 0,
 215		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 216	/* 1024x768@85Hz */
 217	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 218		   1168, 1376, 0, 768, 769, 772, 808, 0,
 219		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 220	/* 1024x768@120Hz RB */
 221	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 222		   1104, 1184, 0, 768, 771, 775, 813, 0,
 223		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 224	/* 1152x864@75Hz */
 225	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 226		   1344, 1600, 0, 864, 865, 868, 900, 0,
 227		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 228	/* 1280x768@60Hz RB */
 
 
 
 
 229	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 230		   1360, 1440, 0, 768, 771, 778, 790, 0,
 231		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 232	/* 1280x768@60Hz */
 233	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 234		   1472, 1664, 0, 768, 771, 778, 798, 0,
 235		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 236	/* 1280x768@75Hz */
 237	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 238		   1488, 1696, 0, 768, 771, 778, 805, 0,
 239		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 240	/* 1280x768@85Hz */
 241	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 242		   1496, 1712, 0, 768, 771, 778, 809, 0,
 243		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 244	/* 1280x768@120Hz RB */
 245	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 246		   1360, 1440, 0, 768, 771, 778, 813, 0,
 247		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 248	/* 1280x800@60Hz RB */
 249	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 250		   1360, 1440, 0, 800, 803, 809, 823, 0,
 251		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 252	/* 1280x800@60Hz */
 253	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 254		   1480, 1680, 0, 800, 803, 809, 831, 0,
 255		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 256	/* 1280x800@75Hz */
 257	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 258		   1488, 1696, 0, 800, 803, 809, 838, 0,
 259		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 260	/* 1280x800@85Hz */
 261	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 262		   1496, 1712, 0, 800, 803, 809, 843, 0,
 263		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 264	/* 1280x800@120Hz RB */
 265	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 266		   1360, 1440, 0, 800, 803, 809, 847, 0,
 267		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 268	/* 1280x960@60Hz */
 269	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 270		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 271		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 272	/* 1280x960@85Hz */
 273	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 274		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 275		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 276	/* 1280x960@120Hz RB */
 277	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 278		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 280	/* 1280x1024@60Hz */
 281	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 282		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 283		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 284	/* 1280x1024@75Hz */
 285	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 286		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 287		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 288	/* 1280x1024@85Hz */
 289	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 290		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 291		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 292	/* 1280x1024@120Hz RB */
 293	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 294		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 295		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 296	/* 1360x768@60Hz */
 297	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 298		   1536, 1792, 0, 768, 771, 777, 795, 0,
 299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 300	/* 1360x768@120Hz RB */
 301	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 302		   1440, 1520, 0, 768, 771, 776, 813, 0,
 303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 304	/* 1400x1050@60Hz RB */
 
 
 
 
 
 
 
 
 305	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 306		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 307		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 308	/* 1400x1050@60Hz */
 309	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 310		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 311		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 312	/* 1400x1050@75Hz */
 313	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 314		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 315		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 316	/* 1400x1050@85Hz */
 317	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 318		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 319		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 320	/* 1400x1050@120Hz RB */
 321	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 322		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 324	/* 1440x900@60Hz RB */
 325	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 326		   1520, 1600, 0, 900, 903, 909, 926, 0,
 327		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 328	/* 1440x900@60Hz */
 329	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 330		   1672, 1904, 0, 900, 903, 909, 934, 0,
 331		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 332	/* 1440x900@75Hz */
 333	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 334		   1688, 1936, 0, 900, 903, 909, 942, 0,
 335		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 336	/* 1440x900@85Hz */
 337	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 338		   1696, 1952, 0, 900, 903, 909, 948, 0,
 339		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 340	/* 1440x900@120Hz RB */
 341	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 342		   1520, 1600, 0, 900, 903, 909, 953, 0,
 343		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 344	/* 1600x1200@60Hz */
 
 
 
 
 345	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 346		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 347		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 348	/* 1600x1200@65Hz */
 349	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 350		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 351		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 352	/* 1600x1200@70Hz */
 353	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 354		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 355		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 356	/* 1600x1200@75Hz */
 357	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 358		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 360	/* 1600x1200@85Hz */
 361	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 362		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 363		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 364	/* 1600x1200@120Hz RB */
 365	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 366		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 367		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 368	/* 1680x1050@60Hz RB */
 369	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 370		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 371		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 372	/* 1680x1050@60Hz */
 373	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 374		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 375		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 376	/* 1680x1050@75Hz */
 377	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 378		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 379		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 380	/* 1680x1050@85Hz */
 381	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 382		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 383		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 384	/* 1680x1050@120Hz RB */
 385	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 386		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 387		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 388	/* 1792x1344@60Hz */
 389	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 390		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 391		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 392	/* 1792x1344@75Hz */
 393	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 394		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 395		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 396	/* 1792x1344@120Hz RB */
 397	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 398		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 400	/* 1856x1392@60Hz */
 401	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 402		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 403		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 404	/* 1856x1392@75Hz */
 405	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 406		   2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
 407		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 408	/* 1856x1392@120Hz RB */
 409	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 410		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 411		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 412	/* 1920x1200@60Hz RB */
 
 
 
 
 413	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 414		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 415		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 416	/* 1920x1200@60Hz */
 417	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 418		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 419		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 420	/* 1920x1200@75Hz */
 421	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 422		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 423		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 424	/* 1920x1200@85Hz */
 425	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 426		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 427		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 428	/* 1920x1200@120Hz RB */
 429	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 430		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 431		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 432	/* 1920x1440@60Hz */
 433	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 434		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 435		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 436	/* 1920x1440@75Hz */
 437	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 438		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 439		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 440	/* 1920x1440@120Hz RB */
 441	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 442		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 443		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 444	/* 2560x1600@60Hz RB */
 
 
 
 
 445	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 446		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 447		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 448	/* 2560x1600@60Hz */
 449	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 450		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 451		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 452	/* 2560x1600@75HZ */
 453	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 454		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 455		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 456	/* 2560x1600@85HZ */
 457	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 458		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 459		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 460	/* 2560x1600@120Hz RB */
 461	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 462		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 463		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 
 
 
 
 
 
 
 
 464};
 465
 466/*
 467 * These more or less come from the DMT spec.  The 720x400 modes are
 468 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 469 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 470 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 471 * mode.
 472 *
 473 * The DMT modes have been fact-checked; the rest are mild guesses.
 474 */
 475static const struct drm_display_mode edid_est_modes[] = {
 476	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 477		   968, 1056, 0, 600, 601, 605, 628, 0,
 478		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 479	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 480		   896, 1024, 0, 600, 601, 603,  625, 0,
 481		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 482	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 483		   720, 840, 0, 480, 481, 484, 500, 0,
 484		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 485	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 486		   704,  832, 0, 480, 489, 491, 520, 0,
 487		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 488	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 489		   768,  864, 0, 480, 483, 486, 525, 0,
 490		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 491	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
 492		   752, 800, 0, 480, 490, 492, 525, 0,
 493		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 494	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 495		   846, 900, 0, 400, 421, 423,  449, 0,
 496		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 497	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 498		   846,  900, 0, 400, 412, 414, 449, 0,
 499		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 500	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 501		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 502		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 503	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
 504		   1136, 1312, 0,  768, 769, 772, 800, 0,
 505		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 506	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 507		   1184, 1328, 0,  768, 771, 777, 806, 0,
 508		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 509	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 510		   1184, 1344, 0,  768, 771, 777, 806, 0,
 511		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 512	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 513		   1208, 1264, 0, 768, 768, 776, 817, 0,
 514		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 515	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 516		   928, 1152, 0, 624, 625, 628, 667, 0,
 517		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 518	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 519		   896, 1056, 0, 600, 601, 604,  625, 0,
 520		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 521	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 522		   976, 1040, 0, 600, 637, 643, 666, 0,
 523		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 524	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 525		   1344, 1600, 0,  864, 865, 868, 900, 0,
 526		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 527};
 528
 529struct minimode {
 530	short w;
 531	short h;
 532	short r;
 533	short rb;
 534};
 535
 536static const struct minimode est3_modes[] = {
 537	/* byte 6 */
 538	{ 640, 350, 85, 0 },
 539	{ 640, 400, 85, 0 },
 540	{ 720, 400, 85, 0 },
 541	{ 640, 480, 85, 0 },
 542	{ 848, 480, 60, 0 },
 543	{ 800, 600, 85, 0 },
 544	{ 1024, 768, 85, 0 },
 545	{ 1152, 864, 75, 0 },
 546	/* byte 7 */
 547	{ 1280, 768, 60, 1 },
 548	{ 1280, 768, 60, 0 },
 549	{ 1280, 768, 75, 0 },
 550	{ 1280, 768, 85, 0 },
 551	{ 1280, 960, 60, 0 },
 552	{ 1280, 960, 85, 0 },
 553	{ 1280, 1024, 60, 0 },
 554	{ 1280, 1024, 85, 0 },
 555	/* byte 8 */
 556	{ 1360, 768, 60, 0 },
 557	{ 1440, 900, 60, 1 },
 558	{ 1440, 900, 60, 0 },
 559	{ 1440, 900, 75, 0 },
 560	{ 1440, 900, 85, 0 },
 561	{ 1400, 1050, 60, 1 },
 562	{ 1400, 1050, 60, 0 },
 563	{ 1400, 1050, 75, 0 },
 564	/* byte 9 */
 565	{ 1400, 1050, 85, 0 },
 566	{ 1680, 1050, 60, 1 },
 567	{ 1680, 1050, 60, 0 },
 568	{ 1680, 1050, 75, 0 },
 569	{ 1680, 1050, 85, 0 },
 570	{ 1600, 1200, 60, 0 },
 571	{ 1600, 1200, 65, 0 },
 572	{ 1600, 1200, 70, 0 },
 573	/* byte 10 */
 574	{ 1600, 1200, 75, 0 },
 575	{ 1600, 1200, 85, 0 },
 576	{ 1792, 1344, 60, 0 },
 577	{ 1792, 1344, 75, 0 },
 578	{ 1856, 1392, 60, 0 },
 579	{ 1856, 1392, 75, 0 },
 580	{ 1920, 1200, 60, 1 },
 581	{ 1920, 1200, 60, 0 },
 582	/* byte 11 */
 583	{ 1920, 1200, 75, 0 },
 584	{ 1920, 1200, 85, 0 },
 585	{ 1920, 1440, 60, 0 },
 586	{ 1920, 1440, 75, 0 },
 587};
 588
 589static const struct minimode extra_modes[] = {
 590	{ 1024, 576,  60, 0 },
 591	{ 1366, 768,  60, 0 },
 592	{ 1600, 900,  60, 0 },
 593	{ 1680, 945,  60, 0 },
 594	{ 1920, 1080, 60, 0 },
 595	{ 2048, 1152, 60, 0 },
 596	{ 2048, 1536, 60, 0 },
 597};
 598
 599/*
 600 * Probably taken from CEA-861 spec.
 601 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
 
 602 */
 603static const struct drm_display_mode edid_cea_modes[] = {
 604	/* 1 - 640x480@60Hz */
 605	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 606		   752, 800, 0, 480, 490, 492, 525, 0,
 607		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 608	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 609	/* 2 - 720x480@60Hz */
 610	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 611		   798, 858, 0, 480, 489, 495, 525, 0,
 612		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 613	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 614	/* 3 - 720x480@60Hz */
 615	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 616		   798, 858, 0, 480, 489, 495, 525, 0,
 617		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 618	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 619	/* 4 - 1280x720@60Hz */
 620	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 621		   1430, 1650, 0, 720, 725, 730, 750, 0,
 622		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 623	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 624	/* 5 - 1920x1080i@60Hz */
 625	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 626		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 627		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 628			DRM_MODE_FLAG_INTERLACE),
 629	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 630	/* 6 - 1440x480i@60Hz */
 631	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
 632		   1602, 1716, 0, 480, 488, 494, 525, 0,
 633		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 634			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 635	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 636	/* 7 - 1440x480i@60Hz */
 637	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
 638		   1602, 1716, 0, 480, 488, 494, 525, 0,
 639		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 640			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 641	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 642	/* 8 - 1440x240@60Hz */
 643	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
 644		   1602, 1716, 0, 240, 244, 247, 262, 0,
 645		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 646			DRM_MODE_FLAG_DBLCLK),
 647	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 648	/* 9 - 1440x240@60Hz */
 649	{ DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
 650		   1602, 1716, 0, 240, 244, 247, 262, 0,
 651		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 652			DRM_MODE_FLAG_DBLCLK),
 653	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 654	/* 10 - 2880x480i@60Hz */
 655	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 656		   3204, 3432, 0, 480, 488, 494, 525, 0,
 657		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 658			DRM_MODE_FLAG_INTERLACE),
 659	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 660	/* 11 - 2880x480i@60Hz */
 661	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 662		   3204, 3432, 0, 480, 488, 494, 525, 0,
 663		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 664			DRM_MODE_FLAG_INTERLACE),
 665	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 666	/* 12 - 2880x240@60Hz */
 667	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 668		   3204, 3432, 0, 240, 244, 247, 262, 0,
 669		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 670	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 671	/* 13 - 2880x240@60Hz */
 672	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 673		   3204, 3432, 0, 240, 244, 247, 262, 0,
 674		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 675	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 676	/* 14 - 1440x480@60Hz */
 677	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 678		   1596, 1716, 0, 480, 489, 495, 525, 0,
 679		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 680	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 681	/* 15 - 1440x480@60Hz */
 682	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 683		   1596, 1716, 0, 480, 489, 495, 525, 0,
 684		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 685	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 686	/* 16 - 1920x1080@60Hz */
 687	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 688		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 689		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 690	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 691	/* 17 - 720x576@50Hz */
 692	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 693		   796, 864, 0, 576, 581, 586, 625, 0,
 694		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 695	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 696	/* 18 - 720x576@50Hz */
 697	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 698		   796, 864, 0, 576, 581, 586, 625, 0,
 699		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 700	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 701	/* 19 - 1280x720@50Hz */
 702	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 703		   1760, 1980, 0, 720, 725, 730, 750, 0,
 704		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 705	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 706	/* 20 - 1920x1080i@50Hz */
 707	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 708		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 709		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 710			DRM_MODE_FLAG_INTERLACE),
 711	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 712	/* 21 - 1440x576i@50Hz */
 713	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
 714		   1590, 1728, 0, 576, 580, 586, 625, 0,
 715		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 716			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 717	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 718	/* 22 - 1440x576i@50Hz */
 719	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
 720		   1590, 1728, 0, 576, 580, 586, 625, 0,
 721		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 722			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 723	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 724	/* 23 - 1440x288@50Hz */
 725	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
 726		   1590, 1728, 0, 288, 290, 293, 312, 0,
 727		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 728			DRM_MODE_FLAG_DBLCLK),
 729	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 730	/* 24 - 1440x288@50Hz */
 731	{ DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
 732		   1590, 1728, 0, 288, 290, 293, 312, 0,
 733		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 734			DRM_MODE_FLAG_DBLCLK),
 735	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 736	/* 25 - 2880x576i@50Hz */
 737	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 738		   3180, 3456, 0, 576, 580, 586, 625, 0,
 739		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 740			DRM_MODE_FLAG_INTERLACE),
 741	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 742	/* 26 - 2880x576i@50Hz */
 743	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 744		   3180, 3456, 0, 576, 580, 586, 625, 0,
 745		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 746			DRM_MODE_FLAG_INTERLACE),
 747	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 748	/* 27 - 2880x288@50Hz */
 749	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 750		   3180, 3456, 0, 288, 290, 293, 312, 0,
 751		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 752	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 753	/* 28 - 2880x288@50Hz */
 754	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 755		   3180, 3456, 0, 288, 290, 293, 312, 0,
 756		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 757	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 758	/* 29 - 1440x576@50Hz */
 759	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 760		   1592, 1728, 0, 576, 581, 586, 625, 0,
 761		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 762	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 763	/* 30 - 1440x576@50Hz */
 764	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 765		   1592, 1728, 0, 576, 581, 586, 625, 0,
 766		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 767	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 768	/* 31 - 1920x1080@50Hz */
 769	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 770		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 771		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 772	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 773	/* 32 - 1920x1080@24Hz */
 774	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 775		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 776		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 777	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 778	/* 33 - 1920x1080@25Hz */
 779	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 780		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 781		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 782	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 783	/* 34 - 1920x1080@30Hz */
 784	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 785		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 786		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 787	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 788	/* 35 - 2880x480@60Hz */
 789	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 790		   3192, 3432, 0, 480, 489, 495, 525, 0,
 791		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 792	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 793	/* 36 - 2880x480@60Hz */
 794	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 795		   3192, 3432, 0, 480, 489, 495, 525, 0,
 796		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 797	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 798	/* 37 - 2880x576@50Hz */
 799	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 800		   3184, 3456, 0, 576, 581, 586, 625, 0,
 801		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 802	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 803	/* 38 - 2880x576@50Hz */
 804	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 805		   3184, 3456, 0, 576, 581, 586, 625, 0,
 806		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 807	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 808	/* 39 - 1920x1080i@50Hz */
 809	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 810		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 811		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 812			DRM_MODE_FLAG_INTERLACE),
 813	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 814	/* 40 - 1920x1080i@100Hz */
 815	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 816		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 817		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 818			DRM_MODE_FLAG_INTERLACE),
 819	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 820	/* 41 - 1280x720@100Hz */
 821	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 822		   1760, 1980, 0, 720, 725, 730, 750, 0,
 823		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 824	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 825	/* 42 - 720x576@100Hz */
 826	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 827		   796, 864, 0, 576, 581, 586, 625, 0,
 828		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 829	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 830	/* 43 - 720x576@100Hz */
 831	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 832		   796, 864, 0, 576, 581, 586, 625, 0,
 833		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 834	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 835	/* 44 - 1440x576i@100Hz */
 836	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 837		   1590, 1728, 0, 576, 580, 586, 625, 0,
 838		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 839			DRM_MODE_FLAG_DBLCLK),
 840	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 841	/* 45 - 1440x576i@100Hz */
 842	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 843		   1590, 1728, 0, 576, 580, 586, 625, 0,
 844		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 845			DRM_MODE_FLAG_DBLCLK),
 846	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 847	/* 46 - 1920x1080i@120Hz */
 848	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 849		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 850		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 851			DRM_MODE_FLAG_INTERLACE),
 852	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 853	/* 47 - 1280x720@120Hz */
 854	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 855		   1430, 1650, 0, 720, 725, 730, 750, 0,
 856		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 857	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 858	/* 48 - 720x480@120Hz */
 859	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 860		   798, 858, 0, 480, 489, 495, 525, 0,
 861		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 862	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 863	/* 49 - 720x480@120Hz */
 864	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 865		   798, 858, 0, 480, 489, 495, 525, 0,
 866		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 867	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 868	/* 50 - 1440x480i@120Hz */
 869	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
 870		   1602, 1716, 0, 480, 488, 494, 525, 0,
 871		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 872			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 873	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 874	/* 51 - 1440x480i@120Hz */
 875	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
 876		   1602, 1716, 0, 480, 488, 494, 525, 0,
 877		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 878			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 879	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 880	/* 52 - 720x576@200Hz */
 881	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
 882		   796, 864, 0, 576, 581, 586, 625, 0,
 883		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 884	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 885	/* 53 - 720x576@200Hz */
 886	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
 887		   796, 864, 0, 576, 581, 586, 625, 0,
 888		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 889	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 890	/* 54 - 1440x576i@200Hz */
 891	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
 892		   1590, 1728, 0, 576, 580, 586, 625, 0,
 893		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 894			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 895	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 896	/* 55 - 1440x576i@200Hz */
 897	{ DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
 898		   1590, 1728, 0, 576, 580, 586, 625, 0,
 899		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 900			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 901	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 902	/* 56 - 720x480@240Hz */
 903	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
 904		   798, 858, 0, 480, 489, 495, 525, 0,
 905		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 906	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 907	/* 57 - 720x480@240Hz */
 908	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
 909		   798, 858, 0, 480, 489, 495, 525, 0,
 910		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 911	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 912	/* 58 - 1440x480i@240 */
 913	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
 914		   1602, 1716, 0, 480, 488, 494, 525, 0,
 915		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 916			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 917	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 918	/* 59 - 1440x480i@240 */
 919	{ DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
 920		   1602, 1716, 0, 480, 488, 494, 525, 0,
 921		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 922			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 923	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 924	/* 60 - 1280x720@24Hz */
 925	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
 926		   3080, 3300, 0, 720, 725, 730, 750, 0,
 927		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 928	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 929	/* 61 - 1280x720@25Hz */
 930	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
 931		   3740, 3960, 0, 720, 725, 730, 750, 0,
 932		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 933	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 934	/* 62 - 1280x720@30Hz */
 935	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
 936		   3080, 3300, 0, 720, 725, 730, 750, 0,
 937		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 938	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 939	/* 63 - 1920x1080@120Hz */
 940	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
 941		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 942		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 943	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 944	/* 64 - 1920x1080@100Hz */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
 946		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 948	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 949};
 950
 951/*
 952 * HDMI 1.4 4k modes.
 953 */
 954static const struct drm_display_mode edid_4k_modes[] = {
 
 
 955	/* 1 - 3840x2160@30Hz */
 956	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
 957		   3840, 4016, 4104, 4400, 0,
 958		   2160, 2168, 2178, 2250, 0,
 959		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 960	  .vrefresh = 30, },
 961	/* 2 - 3840x2160@25Hz */
 962	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
 963		   3840, 4896, 4984, 5280, 0,
 964		   2160, 2168, 2178, 2250, 0,
 965		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 966	  .vrefresh = 25, },
 967	/* 3 - 3840x2160@24Hz */
 968	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
 969		   3840, 5116, 5204, 5500, 0,
 970		   2160, 2168, 2178, 2250, 0,
 971		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 972	  .vrefresh = 24, },
 973	/* 4 - 4096x2160@24Hz (SMPTE) */
 974	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
 975		   4096, 5116, 5204, 5500, 0,
 976		   2160, 2168, 2178, 2250, 0,
 977		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 978	  .vrefresh = 24, },
 979};
 980
 981/*** DDC fetch and block validation ***/
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983static const u8 edid_header[] = {
 984	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
 985};
 986
 987 /*
 988 * Sanity check the header of the base EDID block.  Return 8 if the header
 989 * is perfect, down to 0 if it's totally wrong.
 
 
 
 
 
 
 
 
 
 990 */
 991int drm_edid_header_is_valid(const u8 *raw_edid)
 992{
 
 993	int i, score = 0;
 994
 995	for (i = 0; i < sizeof(edid_header); i++)
 996		if (raw_edid[i] == edid_header[i])
 997			score++;
 
 998
 999	return score;
1000}
1001EXPORT_SYMBOL(drm_edid_header_is_valid);
1002
1003static int edid_fixup __read_mostly = 6;
1004module_param_named(edid_fixup, edid_fixup, int, 0400);
1005MODULE_PARM_DESC(edid_fixup,
1006		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1007
1008/*
1009 * Sanity check the EDID block (base or extension).  Return 0 if the block
1010 * doesn't check out, or 1 if it's valid.
1011 */
1012bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
1013{
 
1014	int i;
1015	u8 csum = 0;
1016	struct edid *edid = (struct edid *)raw_edid;
 
 
 
 
1017
1018	if (WARN_ON(!raw_edid))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019		return false;
1020
1021	if (edid_fixup > 8 || edid_fixup < 0)
1022		edid_fixup = 6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023
1024	if (block == 0) {
1025		int score = drm_edid_header_is_valid(raw_edid);
1026		if (score == 8) ;
1027		else if (score >= edid_fixup) {
1028			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1029			memcpy(raw_edid, edid_header, sizeof(edid_header));
1030		} else {
1031			goto bad;
1032		}
 
 
 
1033	}
1034
1035	for (i = 0; i < EDID_LENGTH; i++)
1036		csum += raw_edid[i];
1037	if (csum) {
1038		if (print_bad_edid) {
1039			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1040		}
1041
1042		/* allow CEA to slide through, switches mangle this */
1043		if (raw_edid[0] != 0x02)
1044			goto bad;
1045	}
1046
1047	/* per-block-type checks */
1048	switch (raw_edid[0]) {
1049	case 0: /* base */
1050		if (edid->version != 1) {
1051			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1052			goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053		}
1054
1055		if (edid->revision > 4)
1056			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1057		break;
1058
 
 
 
1059	default:
 
 
1060		break;
1061	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062
1063	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064
1065bad:
1066	if (print_bad_edid) {
1067		printk(KERN_ERR "Raw EDID:\n");
1068		print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1069			       raw_edid, EDID_LENGTH, false);
1070	}
1071	return false;
 
1072}
1073EXPORT_SYMBOL(drm_edid_block_valid);
1074
1075/**
1076 * drm_edid_is_valid - sanity check EDID data
1077 * @edid: EDID data
1078 *
1079 * Sanity-check an entire EDID record (including extensions)
 
 
1080 */
1081bool drm_edid_is_valid(struct edid *edid)
1082{
1083	int i;
1084	u8 *raw = (u8 *)edid;
1085
1086	if (!edid)
1087		return false;
1088
1089	for (i = 0; i <= edid->extensions; i++)
1090		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
 
 
1091			return false;
 
1092
1093	return true;
1094}
1095EXPORT_SYMBOL(drm_edid_is_valid);
1096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1097#define DDC_SEGMENT_ADDR 0x30
1098/**
1099 * Get EDID information via I2C.
1100 *
1101 * @adapter : i2c device adaptor
1102 * @buf: EDID data buffer to be filled
1103 * @block: 128 byte EDID block to start fetching from
1104 * @len: EDID data buffer length to fetch
1105 *
1106 * Returns:
1107 *
1108 * 0 on success or -1 on failure.
1109 *
1110 * Try to fetch EDID information by calling i2c driver function.
1111 */
1112static int
1113drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1114		      int block, int len)
1115{
 
1116	unsigned char start = block * EDID_LENGTH;
1117	unsigned char segment = block >> 1;
1118	unsigned char xfers = segment ? 3 : 2;
1119	int ret, retries = 5;
1120
1121	/* The core i2c driver will automatically retry the transfer if the
 
1122	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1123	 * are susceptible to errors under a heavily loaded machine and
1124	 * generate spurious NAKs and timeouts. Retrying the transfer
1125	 * of the individual block a few times seems to overcome this.
1126	 */
1127	do {
1128		struct i2c_msg msgs[] = {
1129			{
1130				.addr	= DDC_SEGMENT_ADDR,
1131				.flags	= 0,
1132				.len	= 1,
1133				.buf	= &segment,
1134			}, {
1135				.addr	= DDC_ADDR,
1136				.flags	= 0,
1137				.len	= 1,
1138				.buf	= &start,
1139			}, {
1140				.addr	= DDC_ADDR,
1141				.flags	= I2C_M_RD,
1142				.len	= len,
1143				.buf	= buf,
1144			}
1145		};
1146
1147	/*
1148	 * Avoid sending the segment addr to not upset non-compliant ddc
1149	 * monitors.
1150	 */
1151		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1152
1153		if (ret == -ENXIO) {
1154			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1155					adapter->name);
1156			break;
1157		}
1158	} while (ret != xfers && --retries);
1159
1160	return ret == xfers ? 0 : -1;
1161}
1162
1163static bool drm_edid_is_zero(u8 *in_edid, int length)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164{
1165	if (memchr_inv(in_edid, 0, length))
1166		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167
1168	return true;
1169}
1170
1171static u8 *
1172drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1173{
1174	int i, j = 0, valid_extensions = 0;
1175	u8 *block, *new;
1176	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
 
1177
1178	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179		return NULL;
1180
1181	/* base block fetch */
1182	for (i = 0; i < 4; i++) {
1183		if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1184			goto out;
1185		if (drm_edid_block_valid(block, 0, print_bad_edid))
1186			break;
1187		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
 
 
 
 
 
 
 
 
1188			connector->null_edid_counter++;
1189			goto carp;
1190		}
 
1191	}
1192	if (i == 4)
1193		goto carp;
1194
1195	/* if there's no extensions, we're done */
1196	if (block[0x7e] == 0)
1197		return block;
1198
1199	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
 
1200	if (!new)
1201		goto out;
1202	block = new;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203
1204	for (j = 1; j <= block[0x7e]; j++) {
1205		for (i = 0; i < 4; i++) {
1206			if (drm_do_probe_ddc_edid(adapter,
1207				  block + (valid_extensions + 1) * EDID_LENGTH,
1208				  j, EDID_LENGTH))
1209				goto out;
1210			if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1211				valid_extensions++;
1212				break;
1213			}
1214		}
 
1215
1216		if (i == 4 && print_bad_edid) {
1217			dev_warn(connector->dev->dev,
1218			 "%s: Ignoring invalid EDID block %d.\n",
1219			 drm_get_connector_name(connector), j);
1220
1221			connector->bad_edid_counter++;
1222		}
1223	}
1224
1225	if (valid_extensions != block[0x7e]) {
1226		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1227		block[0x7e] = valid_extensions;
1228		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1229		if (!new)
1230			goto out;
1231		block = new;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232	}
1233
1234	return block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235
1236carp:
1237	if (print_bad_edid) {
1238		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1239			 drm_get_connector_name(connector), j);
1240	}
1241	connector->bad_edid_counter++;
1242
1243out:
1244	kfree(block);
1245	return NULL;
1246}
 
1247
1248/**
1249 * Probe DDC presence.
1250 * @adapter: i2c adapter to probe
 
 
1251 *
1252 * Returns:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253 *
1254 * 1 on success
1255 */
1256bool
1257drm_probe_ddc(struct i2c_adapter *adapter)
1258{
1259	unsigned char out;
1260
1261	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1262}
1263EXPORT_SYMBOL(drm_probe_ddc);
1264
1265/**
1266 * drm_get_edid - get EDID data, if available
1267 * @connector: connector we're probing
1268 * @adapter: i2c adapter to use for DDC
1269 *
1270 * Poke the given i2c channel to grab EDID data if possible.  If found,
1271 * attach it to the connector.
1272 *
1273 * Return edid data or NULL if we couldn't find any.
1274 */
1275struct edid *drm_get_edid(struct drm_connector *connector,
1276			  struct i2c_adapter *adapter)
1277{
1278	struct edid *edid = NULL;
 
 
 
1279
1280	if (drm_probe_ddc(adapter))
1281		edid = (struct edid *)drm_do_get_edid(connector, adapter);
1282
 
 
1283	return edid;
1284}
1285EXPORT_SYMBOL(drm_get_edid);
1286
1287/**
1288 * drm_edid_duplicate - duplicate an EDID and the extensions
1289 * @edid: EDID to duplicate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290 *
1291 * Return duplicate edid or NULL on allocation failure.
1292 */
1293struct edid *drm_edid_duplicate(const struct edid *edid)
1294{
1295	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296}
1297EXPORT_SYMBOL(drm_edid_duplicate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298
1299/*** EDID parsing ***/
 
 
1300
1301/**
1302 * edid_vendor - match a string against EDID's obfuscated vendor field
1303 * @edid: EDID to match
1304 * @vendor: vendor string
 
 
 
 
1305 *
1306 * Returns true if @vendor is in @edid, false otherwise
1307 */
1308static bool edid_vendor(struct edid *edid, char *vendor)
 
1309{
1310	char edid_vendor[3];
 
 
 
 
 
 
 
 
 
1311
1312	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1313	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1314			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1315	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
 
 
 
 
 
 
 
 
 
 
1316
1317	return !strncmp(edid_vendor, vendor, 3);
1318}
 
 
 
1319
1320/**
1321 * edid_get_quirks - return quirk flags for a given EDID
1322 * @edid: EDID to process
1323 *
1324 * This tells subsequent routines what fixes they need to apply.
 
 
1325 */
1326static u32 edid_get_quirks(struct edid *edid)
1327{
1328	struct edid_quirk *quirk;
1329	int i;
1330
1331	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1332		quirk = &edid_quirk_list[i];
1333
1334		if (edid_vendor(edid, quirk->vendor) &&
1335		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1336			return quirk->quirks;
1337	}
1338
1339	return 0;
1340}
1341
1342#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1343#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1344
1345/**
1346 * edid_fixup_preferred - set preferred modes based on quirk list
1347 * @connector: has mode list to fix up
1348 * @quirks: quirks list
1349 *
1350 * Walk the mode list for @connector, clearing the preferred status
1351 * on existing modes and setting it anew for the right mode ala @quirks.
1352 */
1353static void edid_fixup_preferred(struct drm_connector *connector,
1354				 u32 quirks)
1355{
 
1356	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1357	int target_refresh = 0;
1358	int cur_vrefresh, preferred_vrefresh;
1359
1360	if (list_empty(&connector->probed_modes))
1361		return;
1362
1363	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1364		target_refresh = 60;
1365	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1366		target_refresh = 75;
1367
1368	preferred_mode = list_first_entry(&connector->probed_modes,
1369					  struct drm_display_mode, head);
1370
1371	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1372		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1373
1374		if (cur_mode == preferred_mode)
1375			continue;
1376
1377		/* Largest mode is preferred */
1378		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1379			preferred_mode = cur_mode;
1380
1381		cur_vrefresh = cur_mode->vrefresh ?
1382			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1383		preferred_vrefresh = preferred_mode->vrefresh ?
1384			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1385		/* At a given size, try to get closest to target refresh */
1386		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1387		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1388		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1389			preferred_mode = cur_mode;
1390		}
1391	}
1392
1393	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1394}
1395
1396static bool
1397mode_is_rb(const struct drm_display_mode *mode)
1398{
1399	return (mode->htotal - mode->hdisplay == 160) &&
1400	       (mode->hsync_end - mode->hdisplay == 80) &&
1401	       (mode->hsync_end - mode->hsync_start == 32) &&
1402	       (mode->vsync_start - mode->vdisplay == 3);
1403}
1404
1405/*
1406 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1407 * @dev: Device to duplicate against
1408 * @hsize: Mode width
1409 * @vsize: Mode height
1410 * @fresh: Mode refresh rate
1411 * @rb: Mode reduced-blanking-ness
1412 *
1413 * Walk the DMT mode list looking for a match for the given parameters.
1414 * Return a newly allocated copy of the mode, or NULL if not found.
 
1415 */
1416struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1417					   int hsize, int vsize, int fresh,
1418					   bool rb)
1419{
1420	int i;
1421
1422	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1423		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
 
1424		if (hsize != ptr->hdisplay)
1425			continue;
1426		if (vsize != ptr->vdisplay)
1427			continue;
1428		if (fresh != drm_mode_vrefresh(ptr))
1429			continue;
1430		if (rb != mode_is_rb(ptr))
1431			continue;
1432
1433		return drm_mode_duplicate(dev, ptr);
1434	}
1435
1436	return NULL;
1437}
1438EXPORT_SYMBOL(drm_mode_find_dmt);
1439
1440typedef void detailed_cb(struct detailed_timing *timing, void *closure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441
1442static void
1443cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1444{
1445	int i, n = 0;
1446	u8 d = ext[0x02];
1447	u8 *det_base = ext + d;
 
 
 
1448
1449	n = (127 - d) / 18;
1450	for (i = 0; i < n; i++)
1451		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1452}
1453
1454static void
1455vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1456{
1457	unsigned int i, n = min((int)ext[0x02], 6);
1458	u8 *det_base = ext + 5;
1459
1460	if (ext[0x01] != 1)
1461		return; /* unknown version */
1462
1463	for (i = 0; i < n; i++)
1464		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1465}
1466
1467static void
1468drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1469{
 
 
1470	int i;
1471	struct edid *edid = (struct edid *)raw_edid;
1472
1473	if (edid == NULL)
1474		return;
1475
1476	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1477		cb(&(edid->detailed_timings[i]), closure);
1478
1479	for (i = 1; i <= raw_edid[0x7e]; i++) {
1480		u8 *ext = raw_edid + (i * EDID_LENGTH);
1481		switch (*ext) {
1482		case CEA_EXT:
1483			cea_for_each_detailed_block(ext, cb, closure);
1484			break;
1485		case VTB_EXT:
1486			vtb_for_each_detailed_block(ext, cb, closure);
1487			break;
1488		default:
1489			break;
1490		}
1491	}
 
1492}
1493
1494static void
1495is_rb(struct detailed_timing *t, void *data)
1496{
1497	u8 *r = (u8 *)t;
1498	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1499		if (r[15] & 0x10)
1500			*(bool *)data = true;
 
 
 
 
 
 
 
1501}
1502
1503/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1504static bool
1505drm_monitor_supports_rb(struct edid *edid)
1506{
1507	if (edid->revision >= 4) {
1508		bool ret = false;
1509		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
 
1510		return ret;
1511	}
1512
1513	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1514}
1515
1516static void
1517find_gtf2(struct detailed_timing *t, void *data)
1518{
1519	u8 *r = (u8 *)t;
1520	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1521		*(u8 **)data = r;
 
 
 
 
 
 
1522}
1523
1524/* Secondary GTF curve kicks in above some break frequency */
1525static int
1526drm_gtf2_hbreak(struct edid *edid)
1527{
1528	u8 *r = NULL;
1529	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1530	return r ? (r[12] * 2) : 0;
 
 
 
 
1531}
1532
1533static int
1534drm_gtf2_2c(struct edid *edid)
1535{
1536	u8 *r = NULL;
1537	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1538	return r ? r[13] : 0;
 
 
 
 
1539}
1540
1541static int
1542drm_gtf2_m(struct edid *edid)
1543{
1544	u8 *r = NULL;
1545	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1546	return r ? (r[15] << 8) + r[14] : 0;
 
 
 
 
1547}
1548
1549static int
1550drm_gtf2_k(struct edid *edid)
1551{
1552	u8 *r = NULL;
1553	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1554	return r ? r[16] : 0;
 
 
 
 
1555}
1556
1557static int
1558drm_gtf2_2j(struct edid *edid)
1559{
1560	u8 *r = NULL;
1561	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1562	return r ? r[17] : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563}
1564
1565/**
1566 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1567 * @edid: EDID block to scan
1568 */
1569static int standard_timing_level(struct edid *edid)
1570{
1571	if (edid->revision >= 2) {
1572		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1573			return LEVEL_CVT;
1574		if (drm_gtf2_hbreak(edid))
1575			return LEVEL_GTF2;
 
 
 
 
 
 
 
 
 
 
1576		return LEVEL_GTF;
 
 
1577	}
1578	return LEVEL_DMT;
1579}
1580
1581/*
1582 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1583 * monitors fill with ascii space (0x20) instead.
1584 */
1585static int
1586bad_std_timing(u8 a, u8 b)
1587{
1588	return (a == 0x00 && b == 0x00) ||
1589	       (a == 0x01 && b == 0x01) ||
1590	       (a == 0x20 && b == 0x20);
1591}
1592
1593/**
1594 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1595 * @connector: connector of for the EDID block
1596 * @edid: EDID block to scan
1597 * @t: standard timing params
1598 * @revision: standard timing level
1599 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600 * Take the standard timing params (in this case width, aspect, and refresh)
1601 * and convert them into a real mode using CVT/GTF/DMT.
1602 */
1603static struct drm_display_mode *
1604drm_mode_std(struct drm_connector *connector, struct edid *edid,
1605	     struct std_timing *t, int revision)
1606{
1607	struct drm_device *dev = connector->dev;
1608	struct drm_display_mode *m, *mode = NULL;
1609	int hsize, vsize;
1610	int vrefresh_rate;
1611	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1612		>> EDID_TIMING_ASPECT_SHIFT;
1613	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1614		>> EDID_TIMING_VFREQ_SHIFT;
1615	int timing_level = standard_timing_level(edid);
1616
1617	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1618		return NULL;
1619
1620	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1621	hsize = t->hsize * 8 + 248;
1622	/* vrefresh_rate = vfreq + 60 */
1623	vrefresh_rate = vfreq + 60;
1624	/* the vdisplay is calculated based on the aspect ratio */
1625	if (aspect_ratio == 0) {
1626		if (revision < 3)
1627			vsize = hsize;
1628		else
1629			vsize = (hsize * 10) / 16;
1630	} else if (aspect_ratio == 1)
1631		vsize = (hsize * 3) / 4;
1632	else if (aspect_ratio == 2)
1633		vsize = (hsize * 4) / 5;
1634	else
1635		vsize = (hsize * 9) / 16;
1636
1637	/* HDTV hack, part 1 */
1638	if (vrefresh_rate == 60 &&
1639	    ((hsize == 1360 && vsize == 765) ||
1640	     (hsize == 1368 && vsize == 769))) {
1641		hsize = 1366;
1642		vsize = 768;
1643	}
1644
1645	/*
1646	 * If this connector already has a mode for this size and refresh
1647	 * rate (because it came from detailed or CVT info), use that
1648	 * instead.  This way we don't have to guess at interlace or
1649	 * reduced blanking.
1650	 */
1651	list_for_each_entry(m, &connector->probed_modes, head)
1652		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1653		    drm_mode_vrefresh(m) == vrefresh_rate)
1654			return NULL;
1655
1656	/* HDTV hack, part 2 */
1657	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1658		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1659				    false);
 
 
1660		mode->hdisplay = 1366;
1661		mode->hsync_start = mode->hsync_start - 1;
1662		mode->hsync_end = mode->hsync_end - 1;
1663		return mode;
1664	}
1665
1666	/* check whether it can be found in default mode table */
1667	if (drm_monitor_supports_rb(edid)) {
1668		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1669					 true);
1670		if (mode)
1671			return mode;
1672	}
1673	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1674	if (mode)
1675		return mode;
1676
1677	/* okay, generate it */
1678	switch (timing_level) {
1679	case LEVEL_DMT:
1680		break;
1681	case LEVEL_GTF:
1682		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1683		break;
1684	case LEVEL_GTF2:
1685		/*
1686		 * This is potentially wrong if there's ever a monitor with
1687		 * more than one ranges section, each claiming a different
1688		 * secondary GTF curve.  Please don't do that.
1689		 */
1690		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1691		if (!mode)
1692			return NULL;
1693		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1694			drm_mode_destroy(dev, mode);
1695			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1696						    vrefresh_rate, 0, 0,
1697						    drm_gtf2_m(edid),
1698						    drm_gtf2_2c(edid),
1699						    drm_gtf2_k(edid),
1700						    drm_gtf2_2j(edid));
1701		}
1702		break;
1703	case LEVEL_CVT:
1704		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1705				    false);
1706		break;
1707	}
1708	return mode;
1709}
1710
1711/*
1712 * EDID is delightfully ambiguous about how interlaced modes are to be
1713 * encoded.  Our internal representation is of frame height, but some
1714 * HDTV detailed timings are encoded as field height.
1715 *
1716 * The format list here is from CEA, in frame size.  Technically we
1717 * should be checking refresh rate too.  Whatever.
1718 */
1719static void
1720drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1721			    struct detailed_pixel_timing *pt)
1722{
1723	int i;
1724	static const struct {
1725		int w, h;
1726	} cea_interlaced[] = {
1727		{ 1920, 1080 },
1728		{  720,  480 },
1729		{ 1440,  480 },
1730		{ 2880,  480 },
1731		{  720,  576 },
1732		{ 1440,  576 },
1733		{ 2880,  576 },
1734	};
1735
1736	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1737		return;
1738
1739	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1740		if ((mode->hdisplay == cea_interlaced[i].w) &&
1741		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1742			mode->vdisplay *= 2;
1743			mode->vsync_start *= 2;
1744			mode->vsync_end *= 2;
1745			mode->vtotal *= 2;
1746			mode->vtotal |= 1;
1747		}
1748	}
1749
1750	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1751}
1752
1753/**
1754 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1755 * @dev: DRM device (needed to create new mode)
1756 * @edid: EDID block
1757 * @timing: EDID detailed timing info
1758 * @quirks: quirks to apply
1759 *
1760 * An EDID detailed timing block contains enough info for us to create and
1761 * return a new struct drm_display_mode.
1762 */
1763static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1764						  struct edid *edid,
1765						  struct detailed_timing *timing,
1766						  u32 quirks)
1767{
 
 
1768	struct drm_display_mode *mode;
1769	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1770	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1771	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1772	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1773	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1774	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1775	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1776	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1777	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1778
1779	/* ignore tiny modes */
1780	if (hactive < 64 || vactive < 64)
1781		return NULL;
1782
1783	if (pt->misc & DRM_EDID_PT_STEREO) {
1784		DRM_DEBUG_KMS("stereo mode not supported\n");
 
1785		return NULL;
1786	}
1787	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1788		DRM_DEBUG_KMS("composite sync not supported\n");
 
1789	}
1790
1791	/* it is incorrect if hsync/vsync width is zero */
1792	if (!hsync_pulse_width || !vsync_pulse_width) {
1793		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1794				"Wrong Hsync/Vsync pulse width\n");
1795		return NULL;
1796	}
1797
1798	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1799		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1800		if (!mode)
1801			return NULL;
1802
1803		goto set_size;
1804	}
1805
1806	mode = drm_mode_create(dev);
1807	if (!mode)
1808		return NULL;
1809
1810	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1811		timing->pixel_clock = cpu_to_le16(1088);
1812
1813	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1814
1815	mode->hdisplay = hactive;
1816	mode->hsync_start = mode->hdisplay + hsync_offset;
1817	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1818	mode->htotal = mode->hdisplay + hblank;
1819
1820	mode->vdisplay = vactive;
1821	mode->vsync_start = mode->vdisplay + vsync_offset;
1822	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1823	mode->vtotal = mode->vdisplay + vblank;
1824
1825	/* Some EDIDs have bogus h/vtotal values */
1826	if (mode->hsync_end > mode->htotal)
1827		mode->htotal = mode->hsync_end + 1;
1828	if (mode->vsync_end > mode->vtotal)
1829		mode->vtotal = mode->vsync_end + 1;
 
 
 
 
 
 
 
 
1830
1831	drm_mode_do_interlace_quirk(mode, pt);
1832
1833	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1834		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
 
 
 
 
 
1835	}
1836
1837	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1838		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1839	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1840		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1841
1842set_size:
1843	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1844	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1845
1846	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1847		mode->width_mm *= 10;
1848		mode->height_mm *= 10;
1849	}
1850
1851	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1852		mode->width_mm = edid->width_cm * 10;
1853		mode->height_mm = edid->height_cm * 10;
1854	}
1855
1856	mode->type = DRM_MODE_TYPE_DRIVER;
1857	mode->vrefresh = drm_mode_vrefresh(mode);
1858	drm_mode_set_name(mode);
1859
1860	return mode;
1861}
1862
1863static bool
1864mode_in_hsync_range(const struct drm_display_mode *mode,
1865		    struct edid *edid, u8 *t)
1866{
1867	int hsync, hmin, hmax;
1868
1869	hmin = t[7];
1870	if (edid->revision >= 4)
1871	    hmin += ((t[4] & 0x04) ? 255 : 0);
1872	hmax = t[8];
1873	if (edid->revision >= 4)
1874	    hmax += ((t[4] & 0x08) ? 255 : 0);
1875	hsync = drm_mode_hsync(mode);
1876
1877	return (hsync <= hmax && hsync >= hmin);
1878}
1879
1880static bool
1881mode_in_vsync_range(const struct drm_display_mode *mode,
1882		    struct edid *edid, u8 *t)
1883{
1884	int vsync, vmin, vmax;
1885
1886	vmin = t[5];
1887	if (edid->revision >= 4)
1888	    vmin += ((t[4] & 0x01) ? 255 : 0);
1889	vmax = t[6];
1890	if (edid->revision >= 4)
1891	    vmax += ((t[4] & 0x02) ? 255 : 0);
1892	vsync = drm_mode_vrefresh(mode);
1893
1894	return (vsync <= vmax && vsync >= vmin);
1895}
1896
1897static u32
1898range_pixel_clock(struct edid *edid, u8 *t)
1899{
1900	/* unspecified */
1901	if (t[9] == 0 || t[9] == 255)
1902		return 0;
1903
1904	/* 1.4 with CVT support gives us real precision, yay */
1905	if (edid->revision >= 4 && t[10] == 0x04)
1906		return (t[9] * 10000) - ((t[12] >> 2) * 250);
1907
1908	/* 1.3 is pathetic, so fuzz up a bit */
1909	return t[9] * 10000 + 5001;
1910}
1911
1912static bool
1913mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1914	      struct detailed_timing *timing)
1915{
 
1916	u32 max_clock;
1917	u8 *t = (u8 *)timing;
1918
1919	if (!mode_in_hsync_range(mode, edid, t))
1920		return false;
1921
1922	if (!mode_in_vsync_range(mode, edid, t))
1923		return false;
1924
1925	if ((max_clock = range_pixel_clock(edid, t)))
 
1926		if (mode->clock > max_clock)
1927			return false;
1928
1929	/* 1.4 max horizontal check */
1930	if (edid->revision >= 4 && t[10] == 0x04)
1931		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1932			return false;
1933
1934	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1935		return false;
1936
1937	return true;
1938}
1939
1940static bool valid_inferred_mode(const struct drm_connector *connector,
1941				const struct drm_display_mode *mode)
1942{
1943	struct drm_display_mode *m;
1944	bool ok = false;
1945
1946	list_for_each_entry(m, &connector->probed_modes, head) {
1947		if (mode->hdisplay == m->hdisplay &&
1948		    mode->vdisplay == m->vdisplay &&
1949		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1950			return false; /* duplicated */
1951		if (mode->hdisplay <= m->hdisplay &&
1952		    mode->vdisplay <= m->vdisplay)
1953			ok = true;
1954	}
1955	return ok;
1956}
1957
1958static int
1959drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1960			struct detailed_timing *timing)
1961{
1962	int i, modes = 0;
1963	struct drm_display_mode *newmode;
1964	struct drm_device *dev = connector->dev;
1965
1966	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1967		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1968		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
1969			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1970			if (newmode) {
1971				drm_mode_probed_add(connector, newmode);
1972				modes++;
1973			}
1974		}
1975	}
1976
1977	return modes;
1978}
1979
1980/* fix up 1366x768 mode from 1368x768;
1981 * GFT/CVT can't express 1366 width which isn't dividable by 8
1982 */
1983static void fixup_mode_1366x768(struct drm_display_mode *mode)
1984{
1985	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1986		mode->hdisplay = 1366;
1987		mode->hsync_start--;
1988		mode->hsync_end--;
1989		drm_mode_set_name(mode);
1990	}
1991}
1992
1993static int
1994drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1995			struct detailed_timing *timing)
1996{
1997	int i, modes = 0;
1998	struct drm_display_mode *newmode;
1999	struct drm_device *dev = connector->dev;
2000
2001	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2002		const struct minimode *m = &extra_modes[i];
 
2003		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2004		if (!newmode)
2005			return modes;
2006
2007		fixup_mode_1366x768(newmode);
2008		if (!mode_in_range(newmode, edid, timing) ||
2009		    !valid_inferred_mode(connector, newmode)) {
2010			drm_mode_destroy(dev, newmode);
2011			continue;
2012		}
2013
2014		drm_mode_probed_add(connector, newmode);
2015		modes++;
2016	}
2017
2018	return modes;
2019}
2020
2021static int
2022drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2023			struct detailed_timing *timing)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024{
2025	int i, modes = 0;
2026	struct drm_display_mode *newmode;
2027	struct drm_device *dev = connector->dev;
2028	bool rb = drm_monitor_supports_rb(edid);
2029
2030	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2031		const struct minimode *m = &extra_modes[i];
 
2032		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2033		if (!newmode)
2034			return modes;
2035
2036		fixup_mode_1366x768(newmode);
2037		if (!mode_in_range(newmode, edid, timing) ||
2038		    !valid_inferred_mode(connector, newmode)) {
2039			drm_mode_destroy(dev, newmode);
2040			continue;
2041		}
2042
2043		drm_mode_probed_add(connector, newmode);
2044		modes++;
2045	}
2046
2047	return modes;
2048}
2049
2050static void
2051do_inferred_modes(struct detailed_timing *timing, void *c)
2052{
2053	struct detailed_mode_closure *closure = c;
2054	struct detailed_non_pixel *data = &timing->data.other_data;
2055	struct detailed_data_monitor_range *range = &data->data.range;
2056
2057	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2058		return;
2059
2060	closure->modes += drm_dmt_modes_for_range(closure->connector,
2061						  closure->edid,
2062						  timing);
2063	
2064	if (!version_greater(closure->edid, 1, 1))
2065		return; /* GTF not defined yet */
2066
2067	switch (range->flags) {
2068	case 0x02: /* secondary gtf, XXX could do more */
2069	case 0x00: /* default gtf */
 
 
 
 
2070		closure->modes += drm_gtf_modes_for_range(closure->connector,
2071							  closure->edid,
2072							  timing);
2073		break;
2074	case 0x04: /* cvt, only in 1.4+ */
2075		if (!version_greater(closure->edid, 1, 3))
2076			break;
2077
2078		closure->modes += drm_cvt_modes_for_range(closure->connector,
2079							  closure->edid,
2080							  timing);
2081		break;
2082	case 0x01: /* just the ranges, no formula */
2083	default:
2084		break;
2085	}
2086}
2087
2088static int
2089add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2090{
2091	struct detailed_mode_closure closure = {
2092		connector, edid, 0, 0, 0
 
2093	};
2094
2095	if (version_greater(edid, 1, 0))
2096		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2097					    &closure);
2098
2099	return closure.modes;
2100}
2101
2102static int
2103drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2104{
2105	int i, j, m, modes = 0;
2106	struct drm_display_mode *mode;
2107	u8 *est = ((u8 *)timing) + 5;
2108
2109	for (i = 0; i < 6; i++) {
2110		for (j = 7; j >= 0; j--) {
2111			m = (i * 8) + (7 - j);
2112			if (m >= ARRAY_SIZE(est3_modes))
2113				break;
2114			if (est[i] & (1 << j)) {
2115				mode = drm_mode_find_dmt(connector->dev,
2116							 est3_modes[m].w,
2117							 est3_modes[m].h,
2118							 est3_modes[m].r,
2119							 est3_modes[m].rb);
2120				if (mode) {
2121					drm_mode_probed_add(connector, mode);
2122					modes++;
2123				}
2124			}
2125		}
2126	}
2127
2128	return modes;
2129}
2130
2131static void
2132do_established_modes(struct detailed_timing *timing, void *c)
2133{
2134	struct detailed_mode_closure *closure = c;
2135	struct detailed_non_pixel *data = &timing->data.other_data;
2136
2137	if (data->type == EDID_DETAIL_EST_TIMINGS)
2138		closure->modes += drm_est3_modes(closure->connector, timing);
 
 
2139}
2140
2141/**
2142 * add_established_modes - get est. modes from EDID and add them
2143 * @connector: connector of for the EDID block
2144 * @edid: EDID block to scan
2145 *
2146 * Each EDID block contains a bitmap of the supported "established modes" list
2147 * (defined above).  Tease them out and add them to the global modes list.
2148 */
2149static int
2150add_established_modes(struct drm_connector *connector, struct edid *edid)
2151{
2152	struct drm_device *dev = connector->dev;
 
2153	unsigned long est_bits = edid->established_timings.t1 |
2154		(edid->established_timings.t2 << 8) |
2155		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2156	int i, modes = 0;
2157	struct detailed_mode_closure closure = {
2158		connector, edid, 0, 0, 0
 
2159	};
2160
2161	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2162		if (est_bits & (1<<i)) {
2163			struct drm_display_mode *newmode;
 
2164			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2165			if (newmode) {
2166				drm_mode_probed_add(connector, newmode);
2167				modes++;
2168			}
2169		}
2170	}
2171
2172	if (version_greater(edid, 1, 0))
2173		    drm_for_each_detailed_block((u8 *)edid,
2174						do_established_modes, &closure);
2175
2176	return modes + closure.modes;
2177}
2178
2179static void
2180do_standard_modes(struct detailed_timing *timing, void *c)
2181{
2182	struct detailed_mode_closure *closure = c;
2183	struct detailed_non_pixel *data = &timing->data.other_data;
2184	struct drm_connector *connector = closure->connector;
2185	struct edid *edid = closure->edid;
 
 
 
2186
2187	if (data->type == EDID_DETAIL_STD_MODES) {
2188		int i;
2189		for (i = 0; i < 6; i++) {
2190			struct std_timing *std;
2191			struct drm_display_mode *newmode;
2192
2193			std = &data->data.timings[i];
2194			newmode = drm_mode_std(connector, edid, std,
2195					       edid->revision);
2196			if (newmode) {
2197				drm_mode_probed_add(connector, newmode);
2198				closure->modes++;
2199			}
2200		}
2201	}
2202}
2203
2204/**
2205 * add_standard_modes - get std. modes from EDID and add them
2206 * @connector: connector of for the EDID block
2207 * @edid: EDID block to scan
2208 *
2209 * Standard modes can be calculated using the appropriate standard (DMT,
2210 * GTF or CVT. Grab them from @edid and add them to the list.
2211 */
2212static int
2213add_standard_modes(struct drm_connector *connector, struct edid *edid)
2214{
2215	int i, modes = 0;
2216	struct detailed_mode_closure closure = {
2217		connector, edid, 0, 0, 0
 
2218	};
2219
2220	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2221		struct drm_display_mode *newmode;
2222
2223		newmode = drm_mode_std(connector, edid,
2224				       &edid->standard_timings[i],
2225				       edid->revision);
2226		if (newmode) {
2227			drm_mode_probed_add(connector, newmode);
2228			modes++;
2229		}
2230	}
2231
2232	if (version_greater(edid, 1, 0))
2233		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2234					    &closure);
2235
2236	/* XXX should also look for standard codes in VTB blocks */
2237
2238	return modes + closure.modes;
2239}
2240
2241static int drm_cvt_modes(struct drm_connector *connector,
2242			 struct detailed_timing *timing)
2243{
2244	int i, j, modes = 0;
2245	struct drm_display_mode *newmode;
2246	struct drm_device *dev = connector->dev;
2247	struct cvt_timing *cvt;
2248	const int rates[] = { 60, 85, 75, 60, 50 };
2249	const u8 empty[3] = { 0, 0, 0 };
2250
2251	for (i = 0; i < 4; i++) {
2252		int uninitialized_var(width), height;
 
2253		cvt = &(timing->data.other_data.data.cvt[i]);
2254
2255		if (!memcmp(cvt->code, empty, 3))
2256			continue;
2257
2258		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2259		switch (cvt->code[1] & 0x0c) {
 
 
2260		case 0x00:
2261			width = height * 4 / 3;
2262			break;
2263		case 0x04:
2264			width = height * 16 / 9;
2265			break;
2266		case 0x08:
2267			width = height * 16 / 10;
2268			break;
2269		case 0x0c:
2270			width = height * 15 / 9;
2271			break;
2272		}
2273
2274		for (j = 1; j < 5; j++) {
2275			if (cvt->code[2] & (1 << j)) {
2276				newmode = drm_cvt_mode(dev, width, height,
2277						       rates[j], j == 0,
2278						       false, false);
2279				if (newmode) {
2280					drm_mode_probed_add(connector, newmode);
2281					modes++;
2282				}
2283			}
2284		}
2285	}
2286
2287	return modes;
2288}
2289
2290static void
2291do_cvt_mode(struct detailed_timing *timing, void *c)
2292{
2293	struct detailed_mode_closure *closure = c;
2294	struct detailed_non_pixel *data = &timing->data.other_data;
2295
2296	if (data->type == EDID_DETAIL_CVT_3BYTE)
2297		closure->modes += drm_cvt_modes(closure->connector, timing);
 
 
2298}
2299
2300static int
2301add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2302{	
2303	struct detailed_mode_closure closure = {
2304		connector, edid, 0, 0, 0
 
2305	};
2306
2307	if (version_greater(edid, 1, 2))
2308		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2309
2310	/* XXX should also look for CVT codes in VTB blocks */
2311
2312	return closure.modes;
2313}
2314
 
 
 
2315static void
2316do_detailed_mode(struct detailed_timing *timing, void *c)
2317{
2318	struct detailed_mode_closure *closure = c;
2319	struct drm_display_mode *newmode;
2320
2321	if (timing->pixel_clock) {
2322		newmode = drm_mode_detailed(closure->connector->dev,
2323					    closure->edid, timing,
2324					    closure->quirks);
2325		if (!newmode)
2326			return;
 
2327
2328		if (closure->preferred)
2329			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2330
2331		drm_mode_probed_add(closure->connector, newmode);
2332		closure->modes++;
2333		closure->preferred = 0;
2334	}
 
 
 
 
 
 
2335}
2336
2337/*
2338 * add_detailed_modes - Add modes from detailed timings
2339 * @connector: attached connector
2340 * @edid: EDID block to scan
2341 * @quirks: quirks to apply
2342 */
2343static int
2344add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2345		   u32 quirks)
2346{
2347	struct detailed_mode_closure closure = {
2348		connector,
2349		edid,
2350		1,
2351		quirks,
2352		0
2353	};
2354
2355	if (closure.preferred && !version_greater(edid, 1, 3))
 
 
2356		closure.preferred =
2357		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2358
2359	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2360
2361	return closure.modes;
2362}
2363
2364#define AUDIO_BLOCK	0x01
2365#define VIDEO_BLOCK     0x02
2366#define VENDOR_BLOCK    0x03
2367#define SPEAKER_BLOCK	0x04
2368#define VIDEO_CAPABILITY_BLOCK	0x07
 
 
 
 
 
 
 
 
 
 
 
2369#define EDID_BASIC_AUDIO	(1 << 6)
2370#define EDID_CEA_YCRCB444	(1 << 5)
2371#define EDID_CEA_YCRCB422	(1 << 4)
2372#define EDID_CEA_VCDB_QS	(1 << 6)
2373
2374/*
2375 * Search EDID for CEA extension block.
 
 
2376 */
2377static u8 *drm_find_cea_extension(struct edid *edid)
 
2378{
2379	u8 *edid_ext = NULL;
2380	int i;
2381
2382	/* No EDID or EDID extensions */
2383	if (edid == NULL || edid->extensions == 0)
2384		return NULL;
2385
2386	/* Find CEA extension */
2387	for (i = 0; i < edid->extensions; i++) {
2388		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2389		if (edid_ext[0] == CEA_EXT)
2390			break;
2391	}
2392
2393	if (i == edid->extensions)
2394		return NULL;
2395
 
 
2396	return edid_ext;
2397}
2398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399/*
2400 * Calculate the alternate clock for the CEA mode
2401 * (60Hz vs. 59.94Hz etc.)
2402 */
2403static unsigned int
2404cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2405{
2406	unsigned int clock = cea_mode->clock;
2407
2408	if (cea_mode->vrefresh % 6 != 0)
2409		return clock;
2410
2411	/*
2412	 * edid_cea_modes contains the 59.94Hz
2413	 * variant for 240 and 480 line modes,
2414	 * and the 60Hz variant otherwise.
2415	 */
2416	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2417		clock = clock * 1001 / 1000;
2418	else
2419		clock = DIV_ROUND_UP(clock * 1000, 1001);
2420
2421	return clock;
2422}
2423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424/**
2425 * drm_match_cea_mode - look for a CEA mode matching given mode
2426 * @to_match: display mode
2427 *
2428 * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2429 * mode.
2430 */
2431u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2432{
2433	u8 mode;
 
2434
2435	if (!to_match->clock)
2436		return 0;
2437
2438	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2439		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
 
 
 
2440		unsigned int clock1, clock2;
2441
 
 
2442		/* Check both 60Hz and 59.94Hz */
2443		clock1 = cea_mode->clock;
2444		clock2 = cea_mode_alternate_clock(cea_mode);
 
 
 
 
2445
2446		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2447		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2448		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2449			return mode + 1;
2450	}
 
2451	return 0;
2452}
2453EXPORT_SYMBOL(drm_match_cea_mode);
2454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2455/*
2456 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2457 * specific block).
2458 *
2459 * It's almost like cea_mode_alternate_clock(), we just need to add an
2460 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2461 * one.
2462 */
2463static unsigned int
2464hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2465{
2466	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2467		return hdmi_mode->clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468
2469	return cea_mode_alternate_clock(hdmi_mode);
 
 
 
 
 
 
 
 
2470}
2471
2472/*
2473 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2474 * @to_match: display mode
2475 *
2476 * An HDMI mode is one defined in the HDMI vendor specific block.
2477 *
2478 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2479 */
2480static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2481{
2482	u8 mode;
 
2483
2484	if (!to_match->clock)
2485		return 0;
2486
2487	for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2488		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
 
 
 
2489		unsigned int clock1, clock2;
2490
2491		/* Make sure to also match alternate clocks */
2492		clock1 = hdmi_mode->clock;
2493		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2494
2495		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2496		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2497		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2498			return mode + 1;
2499	}
2500	return 0;
2501}
2502
2503static int
2504add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
 
 
 
 
 
2505{
2506	struct drm_device *dev = connector->dev;
2507	struct drm_display_mode *mode, *tmp;
2508	LIST_HEAD(list);
2509	int modes = 0;
2510
2511	/* Don't add CEA modes if the CEA extension block is missing */
2512	if (!drm_find_cea_extension(edid))
2513		return 0;
2514
2515	/*
2516	 * Go through all probed modes and create a new mode
2517	 * with the alternate clock for certain CEA modes.
2518	 */
2519	list_for_each_entry(mode, &connector->probed_modes, head) {
2520		const struct drm_display_mode *cea_mode = NULL;
2521		struct drm_display_mode *newmode;
2522		u8 mode_idx = drm_match_cea_mode(mode) - 1;
2523		unsigned int clock1, clock2;
2524
2525		if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2526			cea_mode = &edid_cea_modes[mode_idx];
2527			clock2 = cea_mode_alternate_clock(cea_mode);
2528		} else {
2529			mode_idx = drm_match_hdmi_mode(mode) - 1;
2530			if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2531				cea_mode = &edid_4k_modes[mode_idx];
2532				clock2 = hdmi_mode_alternate_clock(cea_mode);
2533			}
2534		}
2535
2536		if (!cea_mode)
2537			continue;
2538
2539		clock1 = cea_mode->clock;
2540
2541		if (clock1 == clock2)
2542			continue;
2543
2544		if (mode->clock != clock1 && mode->clock != clock2)
2545			continue;
2546
2547		newmode = drm_mode_duplicate(dev, cea_mode);
2548		if (!newmode)
2549			continue;
2550
2551		/* Carry over the stereo flags */
2552		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2553
2554		/*
2555		 * The current mode could be either variant. Make
2556		 * sure to pick the "other" clock for the new mode.
2557		 */
2558		if (mode->clock != clock1)
2559			newmode->clock = clock1;
2560		else
2561			newmode->clock = clock2;
2562
2563		list_add_tail(&newmode->head, &list);
2564	}
2565
2566	list_for_each_entry_safe(mode, tmp, &list, head) {
2567		list_del(&mode->head);
2568		drm_mode_probed_add(connector, mode);
2569		modes++;
2570	}
2571
2572	return modes;
2573}
2574
 
 
 
 
 
 
 
 
 
 
 
 
 
2575static struct drm_display_mode *
2576drm_display_mode_from_vic_index(struct drm_connector *connector,
2577				const u8 *video_db, u8 video_len,
2578				u8 video_index)
2579{
 
2580	struct drm_device *dev = connector->dev;
2581	struct drm_display_mode *newmode;
2582	u8 cea_mode;
2583
2584	if (video_db == NULL || video_index >= video_len)
2585		return NULL;
2586
2587	/* CEA modes are numbered 1..127 */
2588	cea_mode = (video_db[video_index] & 127) - 1;
2589	if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590		return NULL;
2591
2592	newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2593	if (!newmode)
2594		return NULL;
2595
2596	newmode->vrefresh = 0;
2597
2598	return newmode;
2599}
 
2600
2601static int
2602do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2603{
 
2604	int i, modes = 0;
2605
2606	for (i = 0; i < len; i++) {
 
 
 
2607		struct drm_display_mode *mode;
2608		mode = drm_display_mode_from_vic_index(connector, db, len, i);
 
2609		if (mode) {
2610			drm_mode_probed_add(connector, mode);
2611			modes++;
2612		}
2613	}
2614
2615	return modes;
2616}
2617
2618struct stereo_mandatory_mode {
2619	int width, height, vrefresh;
2620	unsigned int flags;
2621};
2622
2623static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2624	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2625	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2626	{ 1920, 1080, 50,
2627	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2628	{ 1920, 1080, 60,
2629	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2630	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2631	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2632	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2633	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2634};
2635
2636static bool
2637stereo_match_mandatory(const struct drm_display_mode *mode,
2638		       const struct stereo_mandatory_mode *stereo_mode)
2639{
2640	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2641
2642	return mode->hdisplay == stereo_mode->width &&
2643	       mode->vdisplay == stereo_mode->height &&
2644	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2645	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2646}
2647
2648static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2649{
2650	struct drm_device *dev = connector->dev;
2651	const struct drm_display_mode *mode;
2652	struct list_head stereo_modes;
2653	int modes = 0, i;
2654
2655	INIT_LIST_HEAD(&stereo_modes);
2656
2657	list_for_each_entry(mode, &connector->probed_modes, head) {
2658		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2659			const struct stereo_mandatory_mode *mandatory;
2660			struct drm_display_mode *new_mode;
2661
2662			if (!stereo_match_mandatory(mode,
2663						    &stereo_mandatory_modes[i]))
2664				continue;
2665
2666			mandatory = &stereo_mandatory_modes[i];
2667			new_mode = drm_mode_duplicate(dev, mode);
2668			if (!new_mode)
2669				continue;
2670
2671			new_mode->flags |= mandatory->flags;
2672			list_add_tail(&new_mode->head, &stereo_modes);
2673			modes++;
2674		}
2675	}
2676
2677	list_splice_tail(&stereo_modes, &connector->probed_modes);
2678
2679	return modes;
2680}
2681
2682static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2683{
2684	struct drm_device *dev = connector->dev;
2685	struct drm_display_mode *newmode;
2686
2687	vic--; /* VICs start at 1 */
2688	if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2689		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2690		return 0;
2691	}
2692
2693	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2694	if (!newmode)
2695		return 0;
2696
2697	drm_mode_probed_add(connector, newmode);
2698
2699	return 1;
2700}
2701
2702static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2703			       const u8 *video_db, u8 video_len, u8 video_index)
2704{
2705	struct drm_display_mode *newmode;
2706	int modes = 0;
2707
2708	if (structure & (1 << 0)) {
2709		newmode = drm_display_mode_from_vic_index(connector, video_db,
2710							  video_len,
2711							  video_index);
2712		if (newmode) {
2713			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2714			drm_mode_probed_add(connector, newmode);
2715			modes++;
2716		}
2717	}
2718	if (structure & (1 << 6)) {
2719		newmode = drm_display_mode_from_vic_index(connector, video_db,
2720							  video_len,
2721							  video_index);
2722		if (newmode) {
2723			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2724			drm_mode_probed_add(connector, newmode);
2725			modes++;
2726		}
2727	}
2728	if (structure & (1 << 8)) {
2729		newmode = drm_display_mode_from_vic_index(connector, video_db,
2730							  video_len,
2731							  video_index);
2732		if (newmode) {
2733			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2734			drm_mode_probed_add(connector, newmode);
2735			modes++;
2736		}
2737	}
2738
2739	return modes;
2740}
2741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742/*
2743 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2744 * @connector: connector corresponding to the HDMI sink
2745 * @db: start of the CEA vendor specific block
2746 * @len: length of the CEA block payload, ie. one can access up to db[len]
2747 *
2748 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2749 * also adds the stereo 3d modes when applicable.
2750 */
2751static int
2752do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2753		   const u8 *video_db, u8 video_len)
2754{
2755	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2756	u8 vic_len, hdmi_3d_len = 0;
2757	u16 mask;
2758	u16 structure_all;
2759
2760	if (len < 8)
2761		goto out;
2762
2763	/* no HDMI_Video_Present */
2764	if (!(db[8] & (1 << 5)))
2765		goto out;
2766
2767	/* Latency_Fields_Present */
2768	if (db[8] & (1 << 7))
2769		offset += 2;
2770
2771	/* I_Latency_Fields_Present */
2772	if (db[8] & (1 << 6))
2773		offset += 2;
2774
2775	/* the declared length is not long enough for the 2 first bytes
2776	 * of additional video format capabilities */
2777	if (len < (8 + offset + 2))
2778		goto out;
2779
2780	/* 3D_Present */
2781	offset++;
2782	if (db[8 + offset] & (1 << 7)) {
2783		modes += add_hdmi_mandatory_stereo_modes(connector);
2784
2785		/* 3D_Multi_present */
2786		multi_present = (db[8 + offset] & 0x60) >> 5;
2787	}
2788
2789	offset++;
2790	vic_len = db[8 + offset] >> 5;
2791	hdmi_3d_len = db[8 + offset] & 0x1f;
2792
2793	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2794		u8 vic;
2795
2796		vic = db[9 + offset + i];
2797		modes += add_hdmi_mode(connector, vic);
2798	}
2799	offset += 1 + vic_len;
2800
2801	if (multi_present == 1)
2802		multi_len = 2;
2803	else if (multi_present == 2)
2804		multi_len = 4;
2805	else
2806		multi_len = 0;
2807
2808	if (len < (8 + offset + hdmi_3d_len - 1))
2809		goto out;
2810
2811	if (hdmi_3d_len < multi_len)
2812		goto out;
2813
2814	if (multi_present == 1 || multi_present == 2) {
2815		/* 3D_Structure_ALL */
2816		structure_all = (db[8 + offset] << 8) | db[9 + offset];
2817
2818		/* check if 3D_MASK is present */
2819		if (multi_present == 2)
2820			mask = (db[10 + offset] << 8) | db[11 + offset];
2821		else
2822			mask = 0xffff;
2823
2824		for (i = 0; i < 16; i++) {
2825			if (mask & (1 << i))
2826				modes += add_3d_struct_modes(connector,
2827						structure_all,
2828						video_db,
2829						video_len, i);
2830		}
2831	}
2832
2833	offset += multi_len;
2834
2835	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2836		int vic_index;
2837		struct drm_display_mode *newmode = NULL;
2838		unsigned int newflag = 0;
2839		bool detail_present;
2840
2841		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2842
2843		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2844			break;
2845
2846		/* 2D_VIC_order_X */
2847		vic_index = db[8 + offset + i] >> 4;
2848
2849		/* 3D_Structure_X */
2850		switch (db[8 + offset + i] & 0x0f) {
2851		case 0:
2852			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2853			break;
2854		case 6:
2855			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2856			break;
2857		case 8:
2858			/* 3D_Detail_X */
2859			if ((db[9 + offset + i] >> 4) == 1)
2860				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2861			break;
2862		}
2863
2864		if (newflag != 0) {
2865			newmode = drm_display_mode_from_vic_index(connector,
2866								  video_db,
2867								  video_len,
2868								  vic_index);
2869
2870			if (newmode) {
2871				newmode->flags |= newflag;
2872				drm_mode_probed_add(connector, newmode);
2873				modes++;
2874			}
2875		}
2876
2877		if (detail_present)
2878			i++;
2879	}
2880
2881out:
2882	return modes;
2883}
2884
2885static int
2886cea_db_payload_len(const u8 *db)
2887{
2888	return db[0] & 0x1f;
 
 
 
 
 
 
 
2889}
2890
2891static int
2892cea_db_tag(const u8 *db)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2893{
2894	return db[0] >> 5;
 
 
2895}
2896
2897static int
2898cea_revision(const u8 *cea)
2899{
2900	return cea[1];
 
 
 
 
2901}
2902
2903static int
2904cea_db_offsets(const u8 *cea, int *start, int *end)
2905{
2906	/* Data block offset in CEA extension block */
2907	*start = 4;
2908	*end = cea[2];
2909	if (*end == 0)
2910		*end = 127;
2911	if (*end < 4 || *end > 127)
2912		return -ERANGE;
2913	return 0;
2914}
2915
2916static bool cea_db_is_hdmi_vsdb(const u8 *db)
 
2917{
2918	int hdmi_id;
 
 
 
 
 
 
 
 
 
2919
2920	if (cea_db_tag(db) != VENDOR_BLOCK)
2921		return false;
2922
2923	if (cea_db_payload_len(db) < 5)
2924		return false;
 
 
 
 
 
2925
2926	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
 
2927
2928	return hdmi_id == HDMI_IEEE_OUI;
2929}
2930
2931#define for_each_cea_db(cea, i, start, end) \
2932	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2933
2934static int
2935add_cea_modes(struct drm_connector *connector, struct edid *edid)
 
 
 
 
 
 
 
2936{
2937	const u8 *cea = drm_find_cea_extension(edid);
2938	const u8 *db, *hdmi = NULL, *video = NULL;
2939	u8 dbl, hdmi_len, video_len = 0;
2940	int modes = 0;
 
 
 
 
 
 
 
 
2941
2942	if (cea && cea_revision(cea) >= 3) {
2943		int i, start, end;
2944
2945		if (cea_db_offsets(cea, &start, &end))
2946			return 0;
2947
2948		for_each_cea_db(cea, i, start, end) {
2949			db = &cea[i];
2950			dbl = cea_db_payload_len(db);
2951
2952			if (cea_db_tag(db) == VIDEO_BLOCK) {
2953				video = db + 1;
2954				video_len = dbl;
2955				modes += do_cea_modes(connector, video, dbl);
2956			}
2957			else if (cea_db_is_hdmi_vsdb(db)) {
2958				hdmi = db;
2959				hdmi_len = dbl;
2960			}
2961		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962	}
2963
2964	/*
2965	 * We parse the HDMI VSDB after having added the cea modes as we will
2966	 * be patching their flags when the sink supports stereo 3D.
 
 
 
 
 
 
 
 
2967	 */
2968	if (hdmi)
2969		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
2970					    video_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2971
2972	return modes;
2973}
2974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2975static void
2976parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2977{
2978	u8 len = cea_db_payload_len(db);
 
 
 
 
 
 
 
2979
 
 
 
 
2980	if (len >= 6) {
2981		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
2982		connector->dvi_dual = db[6] & 1;
 
 
2983	}
2984	if (len >= 7)
2985		connector->max_tmds_clock = db[7] * 5;
2986	if (len >= 8) {
2987		connector->latency_present[0] = db[8] >> 7;
2988		connector->latency_present[1] = (db[8] >> 6) & 1;
2989	}
2990	if (len >= 9)
 
 
 
 
 
 
2991		connector->video_latency[0] = db[9];
2992	if (len >= 10)
2993		connector->audio_latency[0] = db[10];
2994	if (len >= 11)
 
 
 
2995		connector->video_latency[1] = db[11];
2996	if (len >= 12)
2997		connector->audio_latency[1] = db[12];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2998
2999	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3000		    "max TMDS clock %d, "
3001		    "latency present %d %d, "
3002		    "video latency %d %d, "
3003		    "audio latency %d %d\n",
3004		    connector->dvi_dual,
3005		    connector->max_tmds_clock,
3006	      (int) connector->latency_present[0],
3007	      (int) connector->latency_present[1],
3008		    connector->video_latency[0],
3009		    connector->video_latency[1],
3010		    connector->audio_latency[0],
3011		    connector->audio_latency[1]);
3012}
 
3013
3014static void
3015monitor_name(struct detailed_timing *t, void *data)
 
 
 
 
 
 
 
 
 
 
3016{
3017	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3018		*(u8 **)data = t->data.other_data.data.str.str;
 
 
 
 
 
 
 
 
 
 
 
 
 
3019}
3020
3021/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3022 * drm_edid_to_eld - build ELD from EDID
3023 * @connector: connector corresponding to the HDMI/DP sink
3024 * @edid: EDID to parse
3025 *
3026 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
3027 * Some ELD fields are left to the graphics driver caller:
3028 * - Conn_Type
3029 * - HDCP
3030 * - Port_ID
3031 */
3032void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
 
3033{
 
 
 
3034	uint8_t *eld = connector->eld;
3035	u8 *cea;
3036	u8 *name;
3037	u8 *db;
3038	int sad_count = 0;
3039	int mnl;
3040	int dbl;
3041
3042	memset(eld, 0, sizeof(connector->eld));
 
3043
3044	cea = drm_find_cea_extension(edid);
3045	if (!cea) {
3046		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3047		return;
3048	}
3049
3050	name = NULL;
3051	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3052	for (mnl = 0; name && mnl < 13; mnl++) {
3053		if (name[mnl] == 0x0a)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054			break;
3055		eld[20 + mnl] = name[mnl];
 
 
3056	}
3057	eld[4] = (cea[1] << 5) | mnl;
3058	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3059
3060	eld[0] = 2 << 3;		/* ELD version: 2 */
3061
3062	eld[16] = edid->mfg_id[0];
3063	eld[17] = edid->mfg_id[1];
3064	eld[18] = edid->prod_code[0];
3065	eld[19] = edid->prod_code[1];
 
3066
3067	if (cea_revision(cea) >= 3) {
3068		int i, start, end;
3069
3070		if (cea_db_offsets(cea, &start, &end)) {
3071			start = 0;
3072			end = 0;
3073		}
3074
3075		for_each_cea_db(cea, i, start, end) {
3076			db = &cea[i];
3077			dbl = cea_db_payload_len(db);
3078
3079			switch (cea_db_tag(db)) {
3080			case AUDIO_BLOCK:
3081				/* Audio Data Block, contains SADs */
3082				sad_count = dbl / 3;
3083				if (dbl >= 1)
3084					memcpy(eld + 20 + mnl, &db[1], dbl);
3085				break;
3086			case SPEAKER_BLOCK:
3087				/* Speaker Allocation Data Block */
3088				if (dbl >= 1)
3089					eld[7] = db[1];
3090				break;
3091			case VENDOR_BLOCK:
3092				/* HDMI Vendor-Specific Data Block */
3093				if (cea_db_is_hdmi_vsdb(db))
3094					parse_hdmi_vsdb(connector, db);
3095				break;
3096			default:
3097				break;
3098			}
 
3099		}
3100	}
3101	eld[5] |= sad_count << 4;
3102	eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
 
3103
3104	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
3105}
3106EXPORT_SYMBOL(drm_edid_to_eld);
3107
3108/**
3109 * drm_edid_to_sad - extracts SADs from EDID
3110 * @edid: EDID to parse
3111 * @sads: pointer that will be set to the extracted SADs
3112 *
3113 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3114 * Note: returned pointer needs to be kfreed
3115 *
3116 * Return number of found SADs or negative number on error.
 
 
3117 */
3118int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3119{
3120	int count = 0;
3121	int i, start, end, dbl;
3122	u8 *cea;
3123
3124	cea = drm_find_cea_extension(edid);
3125	if (!cea) {
3126		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3127		return -ENOENT;
3128	}
3129
3130	if (cea_revision(cea) < 3) {
3131		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3132		return -ENOTSUPP;
3133	}
 
 
3134
3135	if (cea_db_offsets(cea, &start, &end)) {
3136		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3137		return -EPROTO;
3138	}
3139
3140	for_each_cea_db(cea, i, start, end) {
3141		u8 *db = &cea[i];
3142
3143		if (cea_db_tag(db) == AUDIO_BLOCK) {
3144			int j;
3145			dbl = cea_db_payload_len(db);
3146
3147			count = dbl / 3; /* SAD is 3B */
3148			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3149			if (!*sads)
3150				return -ENOMEM;
3151			for (j = 0; j < count; j++) {
3152				u8 *sad = &db[1 + j * 3];
3153
3154				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3155				(*sads)[j].channels = sad[0] & 0x7;
3156				(*sads)[j].freq = sad[1] & 0x7F;
3157				(*sads)[j].byte2 = sad[2];
3158			}
3159			break;
3160		}
3161	}
 
 
 
3162
3163	return count;
3164}
3165EXPORT_SYMBOL(drm_edid_to_sad);
3166
3167/**
3168 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3169 * @edid: EDID to parse
3170 * @sadb: pointer to the speaker block
3171 *
3172 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3173 * Note: returned pointer needs to be kfreed
3174 *
3175 * Return number of found Speaker Allocation Blocks or negative number on error.
 
 
 
3176 */
3177int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3178{
3179	int count = 0;
3180	int i, start, end, dbl;
3181	const u8 *cea;
3182
3183	cea = drm_find_cea_extension(edid);
3184	if (!cea) {
3185		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3186		return -ENOENT;
3187	}
3188
3189	if (cea_revision(cea) < 3) {
3190		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3191		return -ENOTSUPP;
3192	}
3193
3194	if (cea_db_offsets(cea, &start, &end)) {
3195		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3196		return -EPROTO;
3197	}
3198
3199	for_each_cea_db(cea, i, start, end) {
3200		const u8 *db = &cea[i];
3201
3202		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3203			dbl = cea_db_payload_len(db);
3204
3205			/* Speaker Allocation Data Block */
3206			if (dbl == 3) {
3207				*sadb = kmalloc(dbl, GFP_KERNEL);
3208				if (!*sadb)
3209					return -ENOMEM;
3210				memcpy(*sadb, &db[1], dbl);
3211				count = dbl;
3212				break;
3213			}
3214		}
3215	}
3216
3217	return count;
3218}
3219EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3220
3221/**
3222 * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
3223 * @connector: connector associated with the HDMI/DP sink
3224 * @mode: the display mode
 
 
 
3225 */
3226int drm_av_sync_delay(struct drm_connector *connector,
3227		      struct drm_display_mode *mode)
3228{
3229	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3230	int a, v;
3231
3232	if (!connector->latency_present[0])
3233		return 0;
3234	if (!connector->latency_present[1])
3235		i = 0;
3236
3237	a = connector->audio_latency[i];
3238	v = connector->video_latency[i];
3239
3240	/*
3241	 * HDMI/DP sink doesn't support audio or video?
3242	 */
3243	if (a == 255 || v == 255)
3244		return 0;
3245
3246	/*
3247	 * Convert raw EDID values to millisecond.
3248	 * Treat unknown latency as 0ms.
3249	 */
3250	if (a)
3251		a = min(2 * (a - 1), 500);
3252	if (v)
3253		v = min(2 * (v - 1), 500);
3254
3255	return max(v - a, 0);
3256}
3257EXPORT_SYMBOL(drm_av_sync_delay);
3258
3259/**
3260 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3261 * @encoder: the encoder just changed display mode
3262 * @mode: the adjusted display mode
3263 *
3264 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3265 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3266 */
3267struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3268				     struct drm_display_mode *mode)
3269{
3270	struct drm_connector *connector;
3271	struct drm_device *dev = encoder->dev;
 
3272
3273	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
3274		if (connector->encoder == encoder && connector->eld[0])
3275			return connector;
 
 
 
 
 
 
 
 
 
3276
3277	return NULL;
3278}
3279EXPORT_SYMBOL(drm_select_eld);
3280
3281/**
3282 * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3283 * @edid: monitor EDID information
3284 *
3285 * Parse the CEA extension according to CEA-861-B.
3286 * Return true if HDMI, false if not or unknown.
 
 
 
 
3287 */
3288bool drm_detect_hdmi_monitor(struct edid *edid)
 
 
 
 
 
 
 
 
3289{
3290	u8 *edid_ext;
3291	int i;
3292	int start_offset, end_offset;
 
 
 
 
 
 
 
 
 
 
 
 
3293
3294	edid_ext = drm_find_cea_extension(edid);
3295	if (!edid_ext)
3296		return false;
 
3297
3298	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3299		return false;
 
 
 
3300
3301	/*
3302	 * Because HDMI identifier is in Vendor Specific Block,
3303	 * search it from all data blocks of CEA extension.
3304	 */
3305	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3306		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3307			return true;
3308	}
 
3309
3310	return false;
 
3311}
3312EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3313
3314/**
3315 * drm_detect_monitor_audio - check monitor audio capability
3316 * @edid: EDID block to scan
3317 *
3318 * Monitor should have CEA extension block.
3319 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3320 * audio' only. If there is any audio extension block and supported
3321 * audio format, assume at least 'basic audio' support, even if 'basic
3322 * audio' is not defined in EDID.
3323 *
 
3324 */
3325bool drm_detect_monitor_audio(struct edid *edid)
3326{
3327	u8 *edid_ext;
3328	int i, j;
3329	bool has_audio = false;
3330	int start_offset, end_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3331
3332	edid_ext = drm_find_cea_extension(edid);
3333	if (!edid_ext)
3334		goto end;
 
3335
3336	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
 
 
3337
3338	if (has_audio) {
3339		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3340		goto end;
3341	}
3342
3343	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3344		goto end;
3345
3346	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3347		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3348			has_audio = true;
3349			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3350				DRM_DEBUG_KMS("CEA audio format %d\n",
3351					      (edid_ext[i + j] >> 3) & 0xf);
3352			goto end;
3353		}
3354	}
3355end:
3356	return has_audio;
3357}
3358EXPORT_SYMBOL(drm_detect_monitor_audio);
3359
3360/**
3361 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3362 * @edid: EDID block to scan
3363 *
3364 * Check whether the monitor reports the RGB quantization range selection
3365 * as supported. The AVI infoframe can then be used to inform the monitor
3366 * which quantization range (full or limited) is used.
3367 */
3368bool drm_rgb_quant_range_selectable(struct edid *edid)
3369{
3370	u8 *edid_ext;
3371	int i, start, end;
 
3372
3373	edid_ext = drm_find_cea_extension(edid);
3374	if (!edid_ext)
3375		return false;
 
 
 
 
 
 
 
 
 
3376
3377	if (cea_db_offsets(edid_ext, &start, &end))
3378		return false;
3379
3380	for_each_cea_db(edid_ext, i, start, end) {
3381		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3382		    cea_db_payload_len(&edid_ext[i]) == 2) {
3383			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3384			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3385		}
3386	}
3387
3388	return false;
3389}
3390EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3391
3392/**
3393 * drm_add_display_info - pull display info out if present
3394 * @edid: EDID data
3395 * @info: display info (attached to connector)
3396 *
3397 * Grab any available display info and stuff it into the drm_display_info
3398 * structure that's part of the connector.  Useful for tracking bpp and
3399 * color spaces.
3400 */
3401static void drm_add_display_info(struct edid *edid,
3402				 struct drm_display_info *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403{
3404	u8 *edid_ext;
 
 
 
3405
3406	info->width_mm = edid->width_cm * 10;
3407	info->height_mm = edid->height_cm * 10;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408
3409	/* driver figures it out in this case */
3410	info->bpc = 0;
3411	info->color_formats = 0;
3412
3413	if (edid->revision < 3)
3414		return;
3415
3416	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418
3419	/* Get data from CEA blocks if present */
3420	edid_ext = drm_find_cea_extension(edid);
3421	if (edid_ext) {
3422		info->cea_rev = edid_ext[1];
3423
3424		/* The existence of a CEA block should imply RGB support */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3426		if (edid_ext[3] & EDID_CEA_YCRCB444)
3427			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3428		if (edid_ext[3] & EDID_CEA_YCRCB422)
3429			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3430	}
3431
3432	/* Only defined for 1.4 with digital displays */
3433	if (edid->revision < 4)
3434		return;
3435
3436	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3437	case DRM_EDID_DIGITAL_DEPTH_6:
3438		info->bpc = 6;
3439		break;
3440	case DRM_EDID_DIGITAL_DEPTH_8:
3441		info->bpc = 8;
3442		break;
3443	case DRM_EDID_DIGITAL_DEPTH_10:
3444		info->bpc = 10;
3445		break;
3446	case DRM_EDID_DIGITAL_DEPTH_12:
3447		info->bpc = 12;
3448		break;
3449	case DRM_EDID_DIGITAL_DEPTH_14:
3450		info->bpc = 14;
3451		break;
3452	case DRM_EDID_DIGITAL_DEPTH_16:
3453		info->bpc = 16;
3454		break;
3455	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3456	default:
3457		info->bpc = 0;
3458		break;
3459	}
3460
3461	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
 
 
 
3462	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3463		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3464	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3465		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3466}
3467
3468/**
3469 * drm_add_edid_modes - add modes from EDID data, if available
3470 * @connector: connector we're probing
3471 * @edid: edid data
3472 *
3473 * Add the specified modes to the connector's mode list.
3474 *
3475 * Return number of modes added or 0 if we couldn't find any.
3476 */
3477int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3478{
 
 
 
 
3479	int num_modes = 0;
3480	u32 quirks;
 
 
 
 
 
 
 
 
 
 
 
3481
3482	if (edid == NULL) {
3483		return 0;
3484	}
3485	if (!drm_edid_is_valid(edid)) {
3486		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3487			 drm_get_connector_name(connector));
3488		return 0;
 
 
 
 
 
 
 
 
 
 
 
3489	}
 
 
 
 
3490
3491	quirks = edid_get_quirks(edid);
 
 
 
 
 
 
 
3492
3493	/*
3494	 * EDID spec says modes should be preferred in this order:
3495	 * - preferred detailed mode
3496	 * - other detailed modes from base block
3497	 * - detailed modes from extension blocks
3498	 * - CVT 3-byte code modes
3499	 * - standard timing codes
3500	 * - established timing codes
3501	 * - modes inferred from GTF or CVT range information
3502	 *
3503	 * We get this pretty much right.
3504	 *
3505	 * XXX order for additional mode types in extension blocks?
3506	 */
3507	num_modes += add_detailed_modes(connector, edid, quirks);
3508	num_modes += add_cvt_modes(connector, edid);
3509	num_modes += add_standard_modes(connector, edid);
3510	num_modes += add_established_modes(connector, edid);
3511	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3512		num_modes += add_inferred_modes(connector, edid);
3513	num_modes += add_cea_modes(connector, edid);
3514	num_modes += add_alternate_cea_modes(connector, edid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3515
3516	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3517		edid_fixup_preferred(connector, quirks);
 
 
 
3518
3519	drm_add_display_info(edid, &connector->display_info);
3520
3521	if (quirks & EDID_QUIRK_FORCE_8BPC)
3522		connector->display_info.bpc = 8;
3523
3524	return num_modes;
3525}
3526EXPORT_SYMBOL(drm_add_edid_modes);
3527
3528/**
3529 * drm_add_modes_noedid - add modes for the connectors without EDID
3530 * @connector: connector we're probing
3531 * @hdisplay: the horizontal display limit
3532 * @vdisplay: the vertical display limit
3533 *
3534 * Add the specified modes to the connector's mode list. Only when the
3535 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3536 *
3537 * Return number of modes added or 0 if we couldn't find any.
3538 */
3539int drm_add_modes_noedid(struct drm_connector *connector,
3540			int hdisplay, int vdisplay)
3541{
3542	int i, count, num_modes = 0;
3543	struct drm_display_mode *mode;
3544	struct drm_device *dev = connector->dev;
3545
3546	count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3547	if (hdisplay < 0)
3548		hdisplay = 0;
3549	if (vdisplay < 0)
3550		vdisplay = 0;
3551
3552	for (i = 0; i < count; i++) {
3553		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
 
3554		if (hdisplay && vdisplay) {
3555			/*
3556			 * Only when two are valid, they will be used to check
3557			 * whether the mode should be added to the mode list of
3558			 * the connector.
3559			 */
3560			if (ptr->hdisplay > hdisplay ||
3561					ptr->vdisplay > vdisplay)
3562				continue;
3563		}
3564		if (drm_mode_vrefresh(ptr) > 61)
3565			continue;
3566		mode = drm_mode_duplicate(dev, ptr);
3567		if (mode) {
3568			drm_mode_probed_add(connector, mode);
3569			num_modes++;
3570		}
3571	}
3572	return num_modes;
3573}
3574EXPORT_SYMBOL(drm_add_modes_noedid);
3575
3576void drm_set_preferred_mode(struct drm_connector *connector,
3577			   int hpref, int vpref)
3578{
3579	struct drm_display_mode *mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3580
3581	list_for_each_entry(mode, &connector->probed_modes, head) {
3582		if (mode->hdisplay  == hpref &&
3583		    mode->vdisplay == vpref)
3584			mode->type |= DRM_MODE_TYPE_PREFERRED;
3585	}
3586}
3587EXPORT_SYMBOL(drm_set_preferred_mode);
3588
3589/**
3590 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3591 *                                              data from a DRM display mode
3592 * @frame: HDMI AVI infoframe
 
3593 * @mode: DRM display mode
3594 *
3595 * Returns 0 on success or a negative error code on failure.
3596 */
3597int
3598drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
 
3599					 const struct drm_display_mode *mode)
3600{
3601	int err;
 
3602
3603	if (!frame || !mode)
3604		return -EINVAL;
3605
3606	err = hdmi_avi_infoframe_init(frame);
3607	if (err < 0)
3608		return err;
3609
3610	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3611		frame->pixel_repeat = 1;
3612
3613	frame->video_code = drm_match_cea_mode(mode);
 
3614
3615	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3616	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3617	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
3618
3619	return 0;
3620}
3621EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3623static enum hdmi_3d_structure
3624s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3625{
3626	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3627
3628	switch (layout) {
3629	case DRM_MODE_FLAG_3D_FRAME_PACKING:
3630		return HDMI_3D_STRUCTURE_FRAME_PACKING;
3631	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3632		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3633	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3634		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3635	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3636		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3637	case DRM_MODE_FLAG_3D_L_DEPTH:
3638		return HDMI_3D_STRUCTURE_L_DEPTH;
3639	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3640		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3641	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3642		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3643	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3644		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3645	default:
3646		return HDMI_3D_STRUCTURE_INVALID;
3647	}
3648}
3649
3650/**
3651 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3652 * data from a DRM display mode
3653 * @frame: HDMI vendor infoframe
 
3654 * @mode: DRM display mode
3655 *
3656 * Note that there's is a need to send HDMI vendor infoframes only when using a
3657 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3658 * function will return -EINVAL, error that can be safely ignored.
3659 *
3660 * Returns 0 on success or a negative error code on failure.
3661 */
3662int
3663drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
 
3664					    const struct drm_display_mode *mode)
3665{
 
 
 
 
 
 
3666	int err;
3667	u32 s3d_flags;
3668	u8 vic;
3669
3670	if (!frame || !mode)
3671		return -EINVAL;
3672
3673	vic = drm_match_hdmi_mode(mode);
3674	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
3675
3676	if (!vic && !s3d_flags)
3677		return -EINVAL;
3678
3679	if (vic && s3d_flags)
3680		return -EINVAL;
3681
3682	err = hdmi_vendor_infoframe_init(frame);
3683	if (err < 0)
3684		return err;
3685
3686	if (vic)
3687		frame->vic = vic;
3688	else
3689		frame->s3d_struct = s3d_structure_from_display_mode(mode);
 
 
 
 
 
 
 
3690
3691	return 0;
3692}
3693EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);