Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kvm_host.h>
  14#include "linux/lockdep.h"
  15#include <linux/export.h>
  16#include <linux/vmalloc.h>
  17#include <linux/uaccess.h>
  18#include <linux/sched/stat.h>
  19
  20#include <asm/processor.h>
  21#include <asm/user.h>
  22#include <asm/fpu/xstate.h>
  23#include <asm/sgx.h>
  24#include <asm/cpuid.h>
  25#include "cpuid.h"
  26#include "lapic.h"
  27#include "mmu.h"
  28#include "trace.h"
  29#include "pmu.h"
  30#include "xen.h"
  31
  32/*
  33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  35 */
  36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  38
  39struct cpuid_xstate_sizes {
  40	u32 eax;
  41	u32 ebx;
  42	u32 ecx;
  43};
  44
  45static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
  46
  47void __init kvm_init_xstate_sizes(void)
  48{
  49	u32 ign;
  50	int i;
  51
  52	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
  53		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
  54
  55		cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
  56	}
  57}
  58
  59u32 xstate_required_size(u64 xstate_bv, bool compacted)
  60{
  61	int feature_bit = 0;
  62	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  63
  64	xstate_bv &= XFEATURE_MASK_EXTEND;
  65	while (xstate_bv) {
  66		if (xstate_bv & 0x1) {
  67			struct cpuid_xstate_sizes *xs = &xstate_sizes[feature_bit];
  68			u32 offset;
  69
  70			/* ECX[1]: 64B alignment in compacted form */
  71			if (compacted)
  72				offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
  73			else
  74				offset = xs->ebx;
  75			ret = max(ret, offset + xs->eax);
  76		}
  77
  78		xstate_bv >>= 1;
  79		feature_bit++;
  80	}
  81
  82	return ret;
  83}
  84
  85#define F feature_bit
  86
  87/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  88#define SF(name)						\
  89({								\
  90	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  91	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  92})
  93
  94/*
  95 * Magic value used by KVM when querying userspace-provided CPUID entries and
  96 * doesn't care about the CPIUD index because the index of the function in
  97 * question is not significant.  Note, this magic value must have at least one
  98 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  99 * to avoid false positives when processing guest CPUID input.
 100 */
 101#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
 102
 103static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
 104	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
 105{
 106	struct kvm_cpuid_entry2 *e;
 107	int i;
 108
 109	/*
 110	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
 111	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
 112	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
 113	 * typically disabled in KVM only when KVM is in a performance critical
 114	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
 115	 * if this rule is violated, this assertion is purely to flag potential
 116	 * performance issues.  If this fires, consider moving the lookup out
 117	 * of the hotpath, e.g. by caching information during CPUID updates.
 118	 */
 119	lockdep_assert_irqs_enabled();
 120
 121	for (i = 0; i < nent; i++) {
 122		e = &entries[i];
 123
 124		if (e->function != function)
 125			continue;
 126
 127		/*
 128		 * If the index isn't significant, use the first entry with a
 129		 * matching function.  It's userspace's responsibility to not
 130		 * provide "duplicate" entries in all cases.
 131		 */
 132		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 133			return e;
 134
 135
 136		/*
 137		 * Similarly, use the first matching entry if KVM is doing a
 138		 * lookup (as opposed to emulating CPUID) for a function that's
 139		 * architecturally defined as not having a significant index.
 140		 */
 141		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 142			/*
 143			 * Direct lookups from KVM should not diverge from what
 144			 * KVM defines internally (the architectural behavior).
 145			 */
 146			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 147			return e;
 148		}
 149	}
 150
 151	return NULL;
 152}
 153
 154static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 155			   struct kvm_cpuid_entry2 *entries,
 156			   int nent)
 157{
 158	struct kvm_cpuid_entry2 *best;
 159	u64 xfeatures;
 160
 161	/*
 162	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 163	 * canonical address checks; exit if it is ever changed.
 164	 */
 165	best = cpuid_entry2_find(entries, nent, 0x80000008,
 166				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 167	if (best) {
 168		int vaddr_bits = (best->eax & 0xff00) >> 8;
 169
 170		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 171			return -EINVAL;
 172	}
 173
 174	/*
 175	 * Exposing dynamic xfeatures to the guest requires additional
 176	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 177	 */
 178	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 179	if (!best)
 180		return 0;
 181
 182	xfeatures = best->eax | ((u64)best->edx << 32);
 183	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 184	if (!xfeatures)
 185		return 0;
 186
 187	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 188}
 189
 190/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 191static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 192				 int nent)
 193{
 194	struct kvm_cpuid_entry2 *orig;
 195	int i;
 196
 197	if (nent != vcpu->arch.cpuid_nent)
 198		return -EINVAL;
 199
 200	for (i = 0; i < nent; i++) {
 201		orig = &vcpu->arch.cpuid_entries[i];
 202		if (e2[i].function != orig->function ||
 203		    e2[i].index != orig->index ||
 204		    e2[i].flags != orig->flags ||
 205		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 206		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 207			return -EINVAL;
 208	}
 209
 210	return 0;
 211}
 212
 213static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
 214							      int nent, const char *sig)
 215{
 216	struct kvm_hypervisor_cpuid cpuid = {};
 217	struct kvm_cpuid_entry2 *entry;
 218	u32 base;
 219
 220	for_each_possible_hypervisor_cpuid_base(base) {
 221		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 222
 223		if (entry) {
 224			u32 signature[3];
 225
 226			signature[0] = entry->ebx;
 227			signature[1] = entry->ecx;
 228			signature[2] = entry->edx;
 229
 230			if (!memcmp(signature, sig, sizeof(signature))) {
 231				cpuid.base = base;
 232				cpuid.limit = entry->eax;
 233				break;
 234			}
 235		}
 236	}
 237
 238	return cpuid;
 239}
 240
 241static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
 242							    const char *sig)
 243{
 244	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
 245					  vcpu->arch.cpuid_nent, sig);
 246}
 247
 248static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
 249							      int nent, u32 kvm_cpuid_base)
 250{
 251	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
 252				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 253}
 254
 255static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 256{
 257	u32 base = vcpu->arch.kvm_cpuid.base;
 258
 259	if (!base)
 260		return NULL;
 261
 262	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
 263					     vcpu->arch.cpuid_nent, base);
 264}
 265
 266void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 267{
 268	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 269
 270	/*
 271	 * save the feature bitmap to avoid cpuid lookup for every PV
 272	 * operation
 273	 */
 274	if (best)
 275		vcpu->arch.pv_cpuid.features = best->eax;
 276}
 277
 278/*
 279 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 280 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 281 */
 282static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 283{
 284	struct kvm_cpuid_entry2 *best;
 285
 286	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 287	if (!best)
 288		return 0;
 289
 290	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 291}
 292
 293static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 294				       int nent)
 295{
 296	struct kvm_cpuid_entry2 *best;
 297	struct kvm_hypervisor_cpuid kvm_cpuid;
 298
 299	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 300	if (best) {
 301		/* Update OSXSAVE bit */
 302		if (boot_cpu_has(X86_FEATURE_XSAVE))
 303			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 304					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
 305
 306		cpuid_entry_change(best, X86_FEATURE_APIC,
 307			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 308	}
 309
 310	best = cpuid_entry2_find(entries, nent, 7, 0);
 311	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 312		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 313				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
 314
 315	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 316	if (best)
 317		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 318
 319	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 320	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 321		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 322		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 323
 324	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
 325	if (kvm_cpuid.base) {
 326		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
 327		if (kvm_hlt_in_guest(vcpu->kvm) && best)
 328			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 329	}
 330
 331	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 332		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 333		if (best)
 334			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 335					   vcpu->arch.ia32_misc_enable_msr &
 336					   MSR_IA32_MISC_ENABLE_MWAIT);
 337	}
 338}
 339
 340void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 341{
 342	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 343}
 344EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 345
 346static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 347{
 348#ifdef CONFIG_KVM_HYPERV
 349	struct kvm_cpuid_entry2 *entry;
 350
 351	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 352				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 353	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 354#else
 355	return false;
 356#endif
 357}
 358
 359static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
 360{
 361	struct kvm_cpuid_entry2 *entry;
 362
 363	entry = kvm_find_cpuid_entry(vcpu, 0);
 364	if (!entry)
 365		return false;
 366
 367	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
 368	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
 369}
 370
 371static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 372{
 373	struct kvm_lapic *apic = vcpu->arch.apic;
 374	struct kvm_cpuid_entry2 *best;
 375	bool allow_gbpages;
 376
 377	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
 378	bitmap_zero(vcpu->arch.governed_features.enabled,
 379		    KVM_MAX_NR_GOVERNED_FEATURES);
 380
 381	/*
 382	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
 383	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
 384	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
 385	 * walk for performance and complexity reasons.  Not to mention KVM
 386	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
 387	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
 388	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
 389	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
 390	 * and can install smaller shadow pages if the host lacks 1GiB support.
 391	 */
 392	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
 393				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
 394	if (allow_gbpages)
 395		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
 396
 397	best = kvm_find_cpuid_entry(vcpu, 1);
 398	if (best && apic) {
 399		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 400			apic->lapic_timer.timer_mode_mask = 3 << 17;
 401		else
 402			apic->lapic_timer.timer_mode_mask = 1 << 17;
 403
 404		kvm_apic_set_version(vcpu);
 405	}
 406
 407	vcpu->arch.guest_supported_xcr0 =
 408		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 409
 410	kvm_update_pv_runtime(vcpu);
 411
 412	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
 413	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 414	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 415
 416	kvm_pmu_refresh(vcpu);
 417	vcpu->arch.cr4_guest_rsvd_bits =
 418	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 419
 420	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 421						    vcpu->arch.cpuid_nent));
 422
 423	/* Invoke the vendor callback only after the above state is updated. */
 424	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
 425
 426	/*
 427	 * Except for the MMU, which needs to do its thing any vendor specific
 428	 * adjustments to the reserved GPA bits.
 429	 */
 430	kvm_mmu_after_set_cpuid(vcpu);
 431}
 432
 433int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 434{
 435	struct kvm_cpuid_entry2 *best;
 436
 437	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 438	if (!best || best->eax < 0x80000008)
 439		goto not_found;
 440	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 441	if (best)
 442		return best->eax & 0xff;
 443not_found:
 444	return 36;
 445}
 446
 447/*
 448 * This "raw" version returns the reserved GPA bits without any adjustments for
 449 * encryption technologies that usurp bits.  The raw mask should be used if and
 450 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 451 */
 452u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 453{
 454	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 455}
 456
 457static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 458                        int nent)
 459{
 460	int r;
 461
 462	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 463
 464	/*
 465	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 466	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 467	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 468	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 469	 * the core vCPU model on the fly. It would've been better to forbid any
 470	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 471	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 472	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 473	 * whether the supplied CPUID data is equal to what's already set.
 474	 */
 475	if (kvm_vcpu_has_run(vcpu)) {
 476		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 477		if (r)
 478			return r;
 479
 480		kvfree(e2);
 481		return 0;
 482	}
 483
 484#ifdef CONFIG_KVM_HYPERV
 485	if (kvm_cpuid_has_hyperv(e2, nent)) {
 486		r = kvm_hv_vcpu_init(vcpu);
 487		if (r)
 488			return r;
 489	}
 490#endif
 491
 492	r = kvm_check_cpuid(vcpu, e2, nent);
 493	if (r)
 494		return r;
 495
 496	kvfree(vcpu->arch.cpuid_entries);
 497	vcpu->arch.cpuid_entries = e2;
 498	vcpu->arch.cpuid_nent = nent;
 499
 500	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
 501#ifdef CONFIG_KVM_XEN
 502	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
 503#endif
 504	kvm_vcpu_after_set_cpuid(vcpu);
 505
 506	return 0;
 507}
 508
 509/* when an old userspace process fills a new kernel module */
 510int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 511			     struct kvm_cpuid *cpuid,
 512			     struct kvm_cpuid_entry __user *entries)
 513{
 514	int r, i;
 515	struct kvm_cpuid_entry *e = NULL;
 516	struct kvm_cpuid_entry2 *e2 = NULL;
 517
 518	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 519		return -E2BIG;
 520
 521	if (cpuid->nent) {
 522		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
 523		if (IS_ERR(e))
 524			return PTR_ERR(e);
 525
 526		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 527		if (!e2) {
 528			r = -ENOMEM;
 529			goto out_free_cpuid;
 530		}
 531	}
 532	for (i = 0; i < cpuid->nent; i++) {
 533		e2[i].function = e[i].function;
 534		e2[i].eax = e[i].eax;
 535		e2[i].ebx = e[i].ebx;
 536		e2[i].ecx = e[i].ecx;
 537		e2[i].edx = e[i].edx;
 538		e2[i].index = 0;
 539		e2[i].flags = 0;
 540		e2[i].padding[0] = 0;
 541		e2[i].padding[1] = 0;
 542		e2[i].padding[2] = 0;
 543	}
 544
 545	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 546	if (r)
 547		kvfree(e2);
 548
 549out_free_cpuid:
 550	kvfree(e);
 551
 552	return r;
 553}
 554
 555int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 556			      struct kvm_cpuid2 *cpuid,
 557			      struct kvm_cpuid_entry2 __user *entries)
 558{
 559	struct kvm_cpuid_entry2 *e2 = NULL;
 560	int r;
 561
 562	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 563		return -E2BIG;
 564
 565	if (cpuid->nent) {
 566		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
 567		if (IS_ERR(e2))
 568			return PTR_ERR(e2);
 569	}
 570
 571	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 572	if (r)
 573		kvfree(e2);
 574
 575	return r;
 576}
 577
 578int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 579			      struct kvm_cpuid2 *cpuid,
 580			      struct kvm_cpuid_entry2 __user *entries)
 581{
 582	if (cpuid->nent < vcpu->arch.cpuid_nent)
 583		return -E2BIG;
 584
 585	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 586			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 587		return -EFAULT;
 588
 589	cpuid->nent = vcpu->arch.cpuid_nent;
 590	return 0;
 591}
 592
 593/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 594static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 595{
 596	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 597	struct kvm_cpuid_entry2 entry;
 598
 599	reverse_cpuid_check(leaf);
 600
 601	cpuid_count(cpuid.function, cpuid.index,
 602		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 603
 604	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 605}
 606
 607static __always_inline
 608void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 609{
 610	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 611	BUILD_BUG_ON(leaf < NCAPINTS);
 612
 613	kvm_cpu_caps[leaf] = mask;
 614
 615	__kvm_cpu_cap_mask(leaf);
 616}
 617
 618static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 619{
 620	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 621	BUILD_BUG_ON(leaf >= NCAPINTS);
 622
 623	kvm_cpu_caps[leaf] &= mask;
 624
 625	__kvm_cpu_cap_mask(leaf);
 626}
 627
 628void kvm_set_cpu_caps(void)
 629{
 630#ifdef CONFIG_X86_64
 631	unsigned int f_gbpages = F(GBPAGES);
 632	unsigned int f_lm = F(LM);
 633	unsigned int f_xfd = F(XFD);
 634#else
 635	unsigned int f_gbpages = 0;
 636	unsigned int f_lm = 0;
 637	unsigned int f_xfd = 0;
 638#endif
 639	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 640
 641	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 642		     sizeof(boot_cpu_data.x86_capability));
 643
 644	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 645	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 646
 647	kvm_cpu_cap_mask(CPUID_1_ECX,
 648		/*
 649		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 650		 * advertised to guests via CPUID!
 651		 */
 652		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 653		0 /* DS-CPL, VMX, SMX, EST */ |
 654		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 655		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 656		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 657		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 658		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 659		F(F16C) | F(RDRAND)
 660	);
 661	/* KVM emulates x2apic in software irrespective of host support. */
 662	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 663
 664	kvm_cpu_cap_mask(CPUID_1_EDX,
 665		F(FPU) | F(VME) | F(DE) | F(PSE) |
 666		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 667		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 668		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 669		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 670		0 /* Reserved, DS, ACPI */ | F(MMX) |
 671		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 672		0 /* HTT, TM, Reserved, PBE */
 673	);
 674
 675	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 676		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 677		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 678		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 679		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 680		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 681		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 682		F(AVX512VL));
 683
 684	kvm_cpu_cap_mask(CPUID_7_ECX,
 685		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 686		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 687		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 688		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 689		F(SGX_LC) | F(BUS_LOCK_DETECT)
 690	);
 691	/* Set LA57 based on hardware capability. */
 692	if (cpuid_ecx(7) & F(LA57))
 693		kvm_cpu_cap_set(X86_FEATURE_LA57);
 694
 695	/*
 696	 * PKU not yet implemented for shadow paging and requires OSPKE
 697	 * to be set on the host. Clear it if that is not the case
 698	 */
 699	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 700		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 701
 702	kvm_cpu_cap_mask(CPUID_7_EDX,
 703		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 704		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 705		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 706		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 707		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
 708	);
 709
 710	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 711	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 712	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 713
 714	if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
 715	    boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
 716	    boot_cpu_has(X86_FEATURE_AMD_IBRS))
 717		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 718	if (boot_cpu_has(X86_FEATURE_STIBP))
 719		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 720	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 721		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 722
 723	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 724		F(SHA512) | F(SM3) | F(SM4) | F(AVX_VNNI) | F(AVX512_BF16) |
 725		F(CMPCCXADD) | F(FZRM) | F(FSRS) | F(FSRC) | F(AMX_FP16) |
 726		F(AVX_IFMA) | F(LAM)
 727	);
 728
 729	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 730		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(AMX_COMPLEX) |
 731		F(AVX_VNNI_INT16) | F(PREFETCHITI) | F(AVX10)
 732	);
 733
 734	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
 735		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
 736		F(BHI_CTRL) | F(MCDT_NO)
 737	);
 738
 739	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 740		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 741	);
 742
 743	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 744		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 745	);
 746
 747	kvm_cpu_cap_init_kvm_defined(CPUID_24_0_EBX,
 748		F(AVX10_128) | F(AVX10_256) | F(AVX10_512)
 749	);
 750
 751	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 752		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 753		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 754		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 755		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 756		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 757	);
 758
 759	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 760		F(FPU) | F(VME) | F(DE) | F(PSE) |
 761		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 762		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 763		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 764		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 765		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 766		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 767		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 768	);
 769
 770	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 771		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 772
 773	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
 774		SF(CONSTANT_TSC)
 775	);
 776
 777	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 778		F(CLZERO) | F(XSAVEERPTR) |
 779		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 780		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 781		F(AMD_PSFD) | F(AMD_IBPB_RET)
 782	);
 783
 784	/*
 785	 * AMD has separate bits for each SPEC_CTRL bit.
 786	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 787	 * record that in cpufeatures so use them.
 788	 */
 789	if (boot_cpu_has(X86_FEATURE_IBPB)) {
 790		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 791		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
 792		    !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
 793			kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
 794	}
 795	if (boot_cpu_has(X86_FEATURE_IBRS))
 796		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 797	if (boot_cpu_has(X86_FEATURE_STIBP))
 798		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 799	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 800		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 801	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 802		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 803	/*
 804	 * The preference is to use SPEC CTRL MSR instead of the
 805	 * VIRT_SPEC MSR.
 806	 */
 807	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 808	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 809		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 810
 811	/*
 812	 * Hide all SVM features by default, SVM will set the cap bits for
 813	 * features it emulates and/or exposes for L1.
 814	 */
 815	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 816
 817	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 818		0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
 819		F(SME_COHERENT));
 820
 821	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
 822		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
 823		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
 824		F(WRMSR_XX_BASE_NS)
 825	);
 826
 827	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
 828	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
 829	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
 830
 831	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
 832		F(PERFMON_V2)
 833	);
 834
 835	/*
 836	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
 837	 * KVM's supported CPUID if the feature is reported as supported by the
 838	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
 839	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
 840	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
 841	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
 842	 * the mask with the raw host CPUID, and reporting support in AMD's
 843	 * leaf can make it easier for userspace to detect the feature.
 844	 */
 845	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
 846		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
 847	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
 848		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
 849	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
 850
 851	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 852		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 853		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 854		F(PMM) | F(PMM_EN)
 855	);
 856
 857	/*
 858	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 859	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 860	 * should never happen, but the guest will likely crash if RDTSCP or
 861	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 862	 * the past.  For example, the sanity check may fire if this instance of
 863	 * KVM is running as L1 on top of an older, broken KVM.
 864	 */
 865	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 866		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 867		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 868		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 869		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 870	}
 871}
 872EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 873
 874struct kvm_cpuid_array {
 875	struct kvm_cpuid_entry2 *entries;
 876	int maxnent;
 877	int nent;
 878};
 879
 880static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 881{
 882	if (array->nent >= array->maxnent)
 883		return NULL;
 884
 885	return &array->entries[array->nent++];
 886}
 887
 888static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 889					      u32 function, u32 index)
 890{
 891	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 892
 893	if (!entry)
 894		return NULL;
 895
 896	memset(entry, 0, sizeof(*entry));
 897	entry->function = function;
 898	entry->index = index;
 899	switch (function & 0xC0000000) {
 900	case 0x40000000:
 901		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 902		return entry;
 903
 904	case 0x80000000:
 905		/*
 906		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 907		 * would result in out-of-bounds calls to do_host_cpuid.
 908		 */
 909		{
 910			static int max_cpuid_80000000;
 911			if (!READ_ONCE(max_cpuid_80000000))
 912				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 913			if (function > READ_ONCE(max_cpuid_80000000))
 914				return entry;
 915		}
 916		break;
 917
 918	default:
 919		break;
 920	}
 921
 922	cpuid_count(entry->function, entry->index,
 923		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 924
 925	if (cpuid_function_is_indexed(function))
 926		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 927
 928	return entry;
 929}
 930
 931static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 932{
 933	struct kvm_cpuid_entry2 *entry;
 934
 935	if (array->nent >= array->maxnent)
 936		return -E2BIG;
 937
 938	entry = &array->entries[array->nent];
 939	entry->function = func;
 940	entry->index = 0;
 941	entry->flags = 0;
 942
 943	switch (func) {
 944	case 0:
 945		entry->eax = 7;
 946		++array->nent;
 947		break;
 948	case 1:
 949		entry->ecx = F(MOVBE);
 950		++array->nent;
 951		break;
 952	case 7:
 953		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 954		entry->eax = 0;
 955		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 956			entry->ecx = F(RDPID);
 957		++array->nent;
 958		break;
 959	default:
 960		break;
 961	}
 962
 963	return 0;
 964}
 965
 966static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 967{
 968	struct kvm_cpuid_entry2 *entry;
 969	int r, i, max_idx;
 970
 971	/* all calls to cpuid_count() should be made on the same cpu */
 972	get_cpu();
 973
 974	r = -E2BIG;
 975
 976	entry = do_host_cpuid(array, function, 0);
 977	if (!entry)
 978		goto out;
 979
 980	switch (function) {
 981	case 0:
 982		/* Limited to the highest leaf implemented in KVM. */
 983		entry->eax = min(entry->eax, 0x24U);
 984		break;
 985	case 1:
 986		cpuid_entry_override(entry, CPUID_1_EDX);
 987		cpuid_entry_override(entry, CPUID_1_ECX);
 988		break;
 989	case 2:
 990		/*
 991		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 992		 * CPUID(function=2, index=0) may return different results each
 993		 * time, with the least-significant byte in EAX enumerating the
 994		 * number of times software should do CPUID(2, 0).
 995		 *
 996		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 997		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 998		 * return 01H. Software should ignore this value and not
 999		 * interpret it as an informational descriptor", while AMD's
1000		 * APM states that CPUID(2) is reserved.
1001		 *
1002		 * WARN if a frankenstein CPU that supports virtualization and
1003		 * a stateful CPUID.0x2 is encountered.
1004		 */
1005		WARN_ON_ONCE((entry->eax & 0xff) > 1);
1006		break;
1007	/* functions 4 and 0x8000001d have additional index. */
1008	case 4:
1009	case 0x8000001d:
1010		/*
1011		 * Read entries until the cache type in the previous entry is
1012		 * zero, i.e. indicates an invalid entry.
1013		 */
1014		for (i = 1; entry->eax & 0x1f; ++i) {
1015			entry = do_host_cpuid(array, function, i);
1016			if (!entry)
1017				goto out;
1018		}
1019		break;
1020	case 6: /* Thermal management */
1021		entry->eax = 0x4; /* allow ARAT */
1022		entry->ebx = 0;
1023		entry->ecx = 0;
1024		entry->edx = 0;
1025		break;
1026	/* function 7 has additional index. */
1027	case 7:
1028		max_idx = entry->eax = min(entry->eax, 2u);
1029		cpuid_entry_override(entry, CPUID_7_0_EBX);
1030		cpuid_entry_override(entry, CPUID_7_ECX);
1031		cpuid_entry_override(entry, CPUID_7_EDX);
1032
1033		/* KVM only supports up to 0x7.2, capped above via min(). */
1034		if (max_idx >= 1) {
1035			entry = do_host_cpuid(array, function, 1);
1036			if (!entry)
1037				goto out;
1038
1039			cpuid_entry_override(entry, CPUID_7_1_EAX);
1040			cpuid_entry_override(entry, CPUID_7_1_EDX);
1041			entry->ebx = 0;
1042			entry->ecx = 0;
1043		}
1044		if (max_idx >= 2) {
1045			entry = do_host_cpuid(array, function, 2);
1046			if (!entry)
1047				goto out;
1048
1049			cpuid_entry_override(entry, CPUID_7_2_EDX);
1050			entry->ecx = 0;
1051			entry->ebx = 0;
1052			entry->eax = 0;
1053		}
1054		break;
1055	case 0xa: { /* Architectural Performance Monitoring */
1056		union cpuid10_eax eax;
1057		union cpuid10_edx edx;
1058
1059		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1060			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1061			break;
1062		}
1063
1064		eax.split.version_id = kvm_pmu_cap.version;
1065		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1066		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1067		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1068		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1069		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1070
1071		if (kvm_pmu_cap.version)
1072			edx.split.anythread_deprecated = 1;
1073		edx.split.reserved1 = 0;
1074		edx.split.reserved2 = 0;
1075
1076		entry->eax = eax.full;
1077		entry->ebx = kvm_pmu_cap.events_mask;
1078		entry->ecx = 0;
1079		entry->edx = edx.full;
1080		break;
1081	}
1082	case 0x1f:
1083	case 0xb:
1084		/*
1085		 * No topology; a valid topology is indicated by the presence
1086		 * of subleaf 1.
1087		 */
1088		entry->eax = entry->ebx = entry->ecx = 0;
1089		break;
1090	case 0xd: {
1091		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1092		u64 permitted_xss = kvm_caps.supported_xss;
1093
1094		entry->eax &= permitted_xcr0;
1095		entry->ebx = xstate_required_size(permitted_xcr0, false);
1096		entry->ecx = entry->ebx;
1097		entry->edx &= permitted_xcr0 >> 32;
1098		if (!permitted_xcr0)
1099			break;
1100
1101		entry = do_host_cpuid(array, function, 1);
1102		if (!entry)
1103			goto out;
1104
1105		cpuid_entry_override(entry, CPUID_D_1_EAX);
1106		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1107			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1108							  true);
1109		else {
1110			WARN_ON_ONCE(permitted_xss != 0);
1111			entry->ebx = 0;
1112		}
1113		entry->ecx &= permitted_xss;
1114		entry->edx &= permitted_xss >> 32;
1115
1116		for (i = 2; i < 64; ++i) {
1117			bool s_state;
1118			if (permitted_xcr0 & BIT_ULL(i))
1119				s_state = false;
1120			else if (permitted_xss & BIT_ULL(i))
1121				s_state = true;
1122			else
1123				continue;
1124
1125			entry = do_host_cpuid(array, function, i);
1126			if (!entry)
1127				goto out;
1128
1129			/*
1130			 * The supported check above should have filtered out
1131			 * invalid sub-leafs.  Only valid sub-leafs should
1132			 * reach this point, and they should have a non-zero
1133			 * save state size.  Furthermore, check whether the
1134			 * processor agrees with permitted_xcr0/permitted_xss
1135			 * on whether this is an XCR0- or IA32_XSS-managed area.
1136			 */
1137			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1138				--array->nent;
1139				continue;
1140			}
1141
1142			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1143				entry->ecx &= ~BIT_ULL(2);
1144			entry->edx = 0;
1145		}
1146		break;
1147	}
1148	case 0x12:
1149		/* Intel SGX */
1150		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1151			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1152			break;
1153		}
1154
1155		/*
1156		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1157		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1158		 * are restricted by kernel and KVM capabilities (like most
1159		 * feature flags), while enclave size is unrestricted.
1160		 */
1161		cpuid_entry_override(entry, CPUID_12_EAX);
1162		entry->ebx &= SGX_MISC_EXINFO;
1163
1164		entry = do_host_cpuid(array, function, 1);
1165		if (!entry)
1166			goto out;
1167
1168		/*
1169		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1170		 * feature flags.  Advertise all supported flags, including
1171		 * privileged attributes that require explicit opt-in from
1172		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1173		 * expected to derive it from supported XCR0.
1174		 */
1175		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1176		entry->ebx &= 0;
1177		break;
1178	/* Intel PT */
1179	case 0x14:
1180		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1181			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1182			break;
1183		}
1184
1185		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1186			if (!do_host_cpuid(array, function, i))
1187				goto out;
1188		}
1189		break;
1190	/* Intel AMX TILE */
1191	case 0x1d:
1192		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1193			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1194			break;
1195		}
1196
1197		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1198			if (!do_host_cpuid(array, function, i))
1199				goto out;
1200		}
1201		break;
1202	case 0x1e: /* TMUL information */
1203		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1204			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1205			break;
1206		}
1207		break;
1208	case 0x24: {
1209		u8 avx10_version;
1210
1211		if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1212			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1213			break;
1214		}
1215
1216		/*
1217		 * The AVX10 version is encoded in EBX[7:0].  Note, the version
1218		 * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1219		 * version needs to be captured before overriding EBX features!
1220		 */
1221		avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1222		cpuid_entry_override(entry, CPUID_24_0_EBX);
1223		entry->ebx |= avx10_version;
1224
1225		entry->eax = 0;
1226		entry->ecx = 0;
1227		entry->edx = 0;
1228		break;
1229	}
1230	case KVM_CPUID_SIGNATURE: {
1231		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1232		entry->eax = KVM_CPUID_FEATURES;
1233		entry->ebx = sigptr[0];
1234		entry->ecx = sigptr[1];
1235		entry->edx = sigptr[2];
1236		break;
1237	}
1238	case KVM_CPUID_FEATURES:
1239		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1240			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1241			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1242			     (1 << KVM_FEATURE_ASYNC_PF) |
1243			     (1 << KVM_FEATURE_PV_EOI) |
1244			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1245			     (1 << KVM_FEATURE_PV_UNHALT) |
1246			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1247			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1248			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1249			     (1 << KVM_FEATURE_POLL_CONTROL) |
1250			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1251			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1252
1253		if (sched_info_on())
1254			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1255
1256		entry->ebx = 0;
1257		entry->ecx = 0;
1258		entry->edx = 0;
1259		break;
1260	case 0x80000000:
1261		entry->eax = min(entry->eax, 0x80000022);
1262		/*
1263		 * Serializing LFENCE is reported in a multitude of ways, and
1264		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1265		 * userspace by providing the CPUID leaf ourselves.
1266		 *
1267		 * However, only do it if the host has CPUID leaf 0x8000001d.
1268		 * QEMU thinks that it can query the host blindly for that
1269		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1270		 * above.  The processor merrily returns values from the
1271		 * highest Intel leaf which QEMU tries to use as the guest's
1272		 * 0x8000001d.  Even worse, this can result in an infinite
1273		 * loop if said highest leaf has no subleaves indexed by ECX.
1274		 */
1275		if (entry->eax >= 0x8000001d &&
1276		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1277		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1278			entry->eax = max(entry->eax, 0x80000021);
1279		break;
1280	case 0x80000001:
1281		entry->ebx &= ~GENMASK(27, 16);
1282		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1283		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1284		break;
1285	case 0x80000005:
1286		/*  Pass host L1 cache and TLB info. */
1287		break;
1288	case 0x80000006:
1289		/* Drop reserved bits, pass host L2 cache and TLB info. */
1290		entry->edx &= ~GENMASK(17, 16);
1291		break;
1292	case 0x80000007: /* Advanced power management */
1293		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1294
1295		/* mask against host */
1296		entry->edx &= boot_cpu_data.x86_power;
1297		entry->eax = entry->ebx = entry->ecx = 0;
1298		break;
1299	case 0x80000008: {
1300		/*
1301		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1302		 * use.
1303		 *
1304		 * KVM's ABI is to report the effective MAXPHYADDR for the
1305		 * guest in PhysAddrSize (phys_as), and the maximum
1306		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1307		 *
1308		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1309		 * in which case the max GPA that can be addressed by KVM may
1310		 * be less than the max GPA that can be legally generated by
1311		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1312		 * support 5-level TDP.
1313		 */
1314		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1315		unsigned int phys_as, g_phys_as;
1316
1317		/*
1318		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1319		 * the guest operates in the same PA space as the host, i.e.
1320		 * reductions in MAXPHYADDR for memory encryption affect shadow
1321		 * paging, too.
1322		 *
1323		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1324		 * reductions to the HPAs do not affect GPAs.  The max
1325		 * addressable GPA is the same as the max effective GPA, except
1326		 * that it's capped at 48 bits if 5-level TDP isn't supported
1327		 * (hardware processes bits 51:48 only when walking the fifth
1328		 * level page table).
1329		 */
1330		if (!tdp_enabled) {
1331			phys_as = boot_cpu_data.x86_phys_bits;
1332			g_phys_as = 0;
1333		} else {
1334			phys_as = entry->eax & 0xff;
1335			g_phys_as = phys_as;
1336			if (kvm_mmu_get_max_tdp_level() < 5)
1337				g_phys_as = min(g_phys_as, 48);
1338		}
1339
1340		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1341		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1342		entry->edx = 0;
1343		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1344		break;
1345	}
1346	case 0x8000000A:
1347		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1348			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1349			break;
1350		}
1351		entry->eax = 1; /* SVM revision 1 */
1352		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1353				   ASID emulation to nested SVM */
1354		entry->ecx = 0; /* Reserved */
1355		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1356		break;
1357	case 0x80000019:
1358		entry->ecx = entry->edx = 0;
1359		break;
1360	case 0x8000001a:
1361		entry->eax &= GENMASK(2, 0);
1362		entry->ebx = entry->ecx = entry->edx = 0;
1363		break;
1364	case 0x8000001e:
1365		/* Do not return host topology information.  */
1366		entry->eax = entry->ebx = entry->ecx = 0;
1367		entry->edx = 0; /* reserved */
1368		break;
1369	case 0x8000001F:
1370		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1371			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1372		} else {
1373			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1374			/* Clear NumVMPL since KVM does not support VMPL.  */
1375			entry->ebx &= ~GENMASK(31, 12);
1376			/*
1377			 * Enumerate '0' for "PA bits reduction", the adjusted
1378			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1379			 */
1380			entry->ebx &= ~GENMASK(11, 6);
1381		}
1382		break;
1383	case 0x80000020:
1384		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1385		break;
1386	case 0x80000021:
1387		entry->ebx = entry->ecx = entry->edx = 0;
1388		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1389		break;
1390	/* AMD Extended Performance Monitoring and Debug */
1391	case 0x80000022: {
1392		union cpuid_0x80000022_ebx ebx;
1393
1394		entry->ecx = entry->edx = 0;
1395		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1396			entry->eax = entry->ebx = 0;
1397			break;
1398		}
1399
1400		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1401
1402		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1403			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1404		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1405			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1406		else
1407			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1408
1409		entry->ebx = ebx.full;
1410		break;
1411	}
1412	/*Add support for Centaur's CPUID instruction*/
1413	case 0xC0000000:
1414		/*Just support up to 0xC0000004 now*/
1415		entry->eax = min(entry->eax, 0xC0000004);
1416		break;
1417	case 0xC0000001:
1418		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1419		break;
1420	case 3: /* Processor serial number */
1421	case 5: /* MONITOR/MWAIT */
1422	case 0xC0000002:
1423	case 0xC0000003:
1424	case 0xC0000004:
1425	default:
1426		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1427		break;
1428	}
1429
1430	r = 0;
1431
1432out:
1433	put_cpu();
1434
1435	return r;
1436}
1437
1438static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1439			 unsigned int type)
1440{
1441	if (type == KVM_GET_EMULATED_CPUID)
1442		return __do_cpuid_func_emulated(array, func);
1443
1444	return __do_cpuid_func(array, func);
1445}
1446
1447#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1448
1449static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1450			  unsigned int type)
1451{
1452	u32 limit;
1453	int r;
1454
1455	if (func == CENTAUR_CPUID_SIGNATURE &&
1456	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1457		return 0;
1458
1459	r = do_cpuid_func(array, func, type);
1460	if (r)
1461		return r;
1462
1463	limit = array->entries[array->nent - 1].eax;
1464	for (func = func + 1; func <= limit; ++func) {
1465		r = do_cpuid_func(array, func, type);
1466		if (r)
1467			break;
1468	}
1469
1470	return r;
1471}
1472
1473static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1474				 __u32 num_entries, unsigned int ioctl_type)
1475{
1476	int i;
1477	__u32 pad[3];
1478
1479	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1480		return false;
1481
1482	/*
1483	 * We want to make sure that ->padding is being passed clean from
1484	 * userspace in case we want to use it for something in the future.
1485	 *
1486	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1487	 * have to give ourselves satisfied only with the emulated side. /me
1488	 * sheds a tear.
1489	 */
1490	for (i = 0; i < num_entries; i++) {
1491		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1492			return true;
1493
1494		if (pad[0] || pad[1] || pad[2])
1495			return true;
1496	}
1497	return false;
1498}
1499
1500int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1501			    struct kvm_cpuid_entry2 __user *entries,
1502			    unsigned int type)
1503{
1504	static const u32 funcs[] = {
1505		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1506	};
1507
1508	struct kvm_cpuid_array array = {
1509		.nent = 0,
1510	};
1511	int r, i;
1512
1513	if (cpuid->nent < 1)
1514		return -E2BIG;
1515	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1516		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1517
1518	if (sanity_check_entries(entries, cpuid->nent, type))
1519		return -EINVAL;
1520
1521	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1522	if (!array.entries)
1523		return -ENOMEM;
1524
1525	array.maxnent = cpuid->nent;
1526
1527	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1528		r = get_cpuid_func(&array, funcs[i], type);
1529		if (r)
1530			goto out_free;
1531	}
1532	cpuid->nent = array.nent;
1533
1534	if (copy_to_user(entries, array.entries,
1535			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1536		r = -EFAULT;
1537
1538out_free:
1539	kvfree(array.entries);
1540	return r;
1541}
1542
1543struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1544						    u32 function, u32 index)
1545{
1546	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1547				 function, index);
1548}
1549EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1550
1551struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1552					      u32 function)
1553{
1554	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1555				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1556}
1557EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1558
1559/*
1560 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1561 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1562 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1563 * range.  Centaur/VIA follows Intel semantics.
1564 *
1565 * A leaf is considered out-of-range if its function is higher than the maximum
1566 * supported leaf of its associated class or if its associated class does not
1567 * exist.
1568 *
1569 * There are three primary classes to be considered, with their respective
1570 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1571 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1572 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1573 *
1574 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1575 *  - Hypervisor: 0x40000000 - 0x4fffffff
1576 *  - Extended:   0x80000000 - 0xbfffffff
1577 *  - Centaur:    0xc0000000 - 0xcfffffff
1578 *
1579 * The Hypervisor class is further subdivided into sub-classes that each act as
1580 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1581 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1582 * CPUID sub-classes are:
1583 *
1584 *  - HyperV:     0x40000000 - 0x400000ff
1585 *  - KVM:        0x40000100 - 0x400001ff
1586 */
1587static struct kvm_cpuid_entry2 *
1588get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1589{
1590	struct kvm_cpuid_entry2 *basic, *class;
1591	u32 function = *fn_ptr;
1592
1593	basic = kvm_find_cpuid_entry(vcpu, 0);
1594	if (!basic)
1595		return NULL;
1596
1597	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1598	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1599		return NULL;
1600
1601	if (function >= 0x40000000 && function <= 0x4fffffff)
1602		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1603	else if (function >= 0xc0000000)
1604		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1605	else
1606		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1607
1608	if (class && function <= class->eax)
1609		return NULL;
1610
1611	/*
1612	 * Leaf specific adjustments are also applied when redirecting to the
1613	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1614	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1615	 * needs to be pulled from CPUID.0xb.1.
1616	 */
1617	*fn_ptr = basic->eax;
1618
1619	/*
1620	 * The class does not exist or the requested function is out of range;
1621	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1622	 * the original requested leaf is observed!
1623	 */
1624	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1625}
1626
1627bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1628	       u32 *ecx, u32 *edx, bool exact_only)
1629{
1630	u32 orig_function = *eax, function = *eax, index = *ecx;
1631	struct kvm_cpuid_entry2 *entry;
1632	bool exact, used_max_basic = false;
1633
1634	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1635	exact = !!entry;
1636
1637	if (!entry && !exact_only) {
1638		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1639		used_max_basic = !!entry;
1640	}
1641
1642	if (entry) {
1643		*eax = entry->eax;
1644		*ebx = entry->ebx;
1645		*ecx = entry->ecx;
1646		*edx = entry->edx;
1647		if (function == 7 && index == 0) {
1648			u64 data;
1649		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1650			    (data & TSX_CTRL_CPUID_CLEAR))
1651				*ebx &= ~(F(RTM) | F(HLE));
1652		} else if (function == 0x80000007) {
1653			if (kvm_hv_invtsc_suppressed(vcpu))
1654				*edx &= ~SF(CONSTANT_TSC);
1655		}
1656	} else {
1657		*eax = *ebx = *ecx = *edx = 0;
1658		/*
1659		 * When leaf 0BH or 1FH is defined, CL is pass-through
1660		 * and EDX is always the x2APIC ID, even for undefined
1661		 * subleaves. Index 1 will exist iff the leaf is
1662		 * implemented, so we pass through CL iff leaf 1
1663		 * exists. EDX can be copied from any existing index.
1664		 */
1665		if (function == 0xb || function == 0x1f) {
1666			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1667			if (entry) {
1668				*ecx = index & 0xff;
1669				*edx = entry->edx;
1670			}
1671		}
1672	}
1673	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1674			used_max_basic);
1675	return exact;
1676}
1677EXPORT_SYMBOL_GPL(kvm_cpuid);
1678
1679int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1680{
1681	u32 eax, ebx, ecx, edx;
1682
1683	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1684		return 1;
1685
1686	eax = kvm_rax_read(vcpu);
1687	ecx = kvm_rcx_read(vcpu);
1688	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1689	kvm_rax_write(vcpu, eax);
1690	kvm_rbx_write(vcpu, ebx);
1691	kvm_rcx_write(vcpu, ecx);
1692	kvm_rdx_write(vcpu, edx);
1693	return kvm_skip_emulated_instruction(vcpu);
1694}
1695EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kvm_host.h>
  14#include "linux/lockdep.h"
  15#include <linux/export.h>
  16#include <linux/vmalloc.h>
  17#include <linux/uaccess.h>
  18#include <linux/sched/stat.h>
  19
  20#include <asm/processor.h>
  21#include <asm/user.h>
  22#include <asm/fpu/xstate.h>
  23#include <asm/sgx.h>
  24#include <asm/cpuid.h>
  25#include "cpuid.h"
  26#include "lapic.h"
  27#include "mmu.h"
  28#include "trace.h"
  29#include "pmu.h"
  30#include "xen.h"
  31
  32/*
  33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  35 */
  36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39u32 xstate_required_size(u64 xstate_bv, bool compacted)
  40{
  41	int feature_bit = 0;
  42	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  43
  44	xstate_bv &= XFEATURE_MASK_EXTEND;
  45	while (xstate_bv) {
  46		if (xstate_bv & 0x1) {
  47		        u32 eax, ebx, ecx, edx, offset;
  48		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 
  49			/* ECX[1]: 64B alignment in compacted form */
  50			if (compacted)
  51				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
  52			else
  53				offset = ebx;
  54			ret = max(ret, offset + eax);
  55		}
  56
  57		xstate_bv >>= 1;
  58		feature_bit++;
  59	}
  60
  61	return ret;
  62}
  63
  64#define F feature_bit
  65
  66/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  67#define SF(name)						\
  68({								\
  69	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  70	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  71})
  72
  73/*
  74 * Magic value used by KVM when querying userspace-provided CPUID entries and
  75 * doesn't care about the CPIUD index because the index of the function in
  76 * question is not significant.  Note, this magic value must have at least one
  77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  78 * to avoid false positives when processing guest CPUID input.
  79 */
  80#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
  81
  82static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
  83	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
  84{
  85	struct kvm_cpuid_entry2 *e;
  86	int i;
  87
  88	/*
  89	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
  90	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
  91	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
  92	 * typically disabled in KVM only when KVM is in a performance critical
  93	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
  94	 * if this rule is violated, this assertion is purely to flag potential
  95	 * performance issues.  If this fires, consider moving the lookup out
  96	 * of the hotpath, e.g. by caching information during CPUID updates.
  97	 */
  98	lockdep_assert_irqs_enabled();
  99
 100	for (i = 0; i < nent; i++) {
 101		e = &entries[i];
 102
 103		if (e->function != function)
 104			continue;
 105
 106		/*
 107		 * If the index isn't significant, use the first entry with a
 108		 * matching function.  It's userspace's responsibility to not
 109		 * provide "duplicate" entries in all cases.
 110		 */
 111		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 112			return e;
 113
 114
 115		/*
 116		 * Similarly, use the first matching entry if KVM is doing a
 117		 * lookup (as opposed to emulating CPUID) for a function that's
 118		 * architecturally defined as not having a significant index.
 119		 */
 120		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 121			/*
 122			 * Direct lookups from KVM should not diverge from what
 123			 * KVM defines internally (the architectural behavior).
 124			 */
 125			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 126			return e;
 127		}
 128	}
 129
 130	return NULL;
 131}
 132
 133static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 134			   struct kvm_cpuid_entry2 *entries,
 135			   int nent)
 136{
 137	struct kvm_cpuid_entry2 *best;
 138	u64 xfeatures;
 139
 140	/*
 141	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 142	 * canonical address checks; exit if it is ever changed.
 143	 */
 144	best = cpuid_entry2_find(entries, nent, 0x80000008,
 145				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 146	if (best) {
 147		int vaddr_bits = (best->eax & 0xff00) >> 8;
 148
 149		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 150			return -EINVAL;
 151	}
 152
 153	/*
 154	 * Exposing dynamic xfeatures to the guest requires additional
 155	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 156	 */
 157	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 158	if (!best)
 159		return 0;
 160
 161	xfeatures = best->eax | ((u64)best->edx << 32);
 162	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 163	if (!xfeatures)
 164		return 0;
 165
 166	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 167}
 168
 169/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 170static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 171				 int nent)
 172{
 173	struct kvm_cpuid_entry2 *orig;
 174	int i;
 175
 176	if (nent != vcpu->arch.cpuid_nent)
 177		return -EINVAL;
 178
 179	for (i = 0; i < nent; i++) {
 180		orig = &vcpu->arch.cpuid_entries[i];
 181		if (e2[i].function != orig->function ||
 182		    e2[i].index != orig->index ||
 183		    e2[i].flags != orig->flags ||
 184		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 185		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 186			return -EINVAL;
 187	}
 188
 189	return 0;
 190}
 191
 192static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
 193							    const char *sig)
 194{
 195	struct kvm_hypervisor_cpuid cpuid = {};
 196	struct kvm_cpuid_entry2 *entry;
 197	u32 base;
 198
 199	for_each_possible_hypervisor_cpuid_base(base) {
 200		entry = kvm_find_cpuid_entry(vcpu, base);
 201
 202		if (entry) {
 203			u32 signature[3];
 204
 205			signature[0] = entry->ebx;
 206			signature[1] = entry->ecx;
 207			signature[2] = entry->edx;
 208
 209			if (!memcmp(signature, sig, sizeof(signature))) {
 210				cpuid.base = base;
 211				cpuid.limit = entry->eax;
 212				break;
 213			}
 214		}
 215	}
 216
 217	return cpuid;
 218}
 219
 220static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
 221					      struct kvm_cpuid_entry2 *entries, int nent)
 222{
 223	u32 base = vcpu->arch.kvm_cpuid.base;
 
 
 224
 225	if (!base)
 226		return NULL;
 227
 228	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
 229				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 230}
 231
 232static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 233{
 234	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
 235					     vcpu->arch.cpuid_nent);
 
 
 
 
 
 236}
 237
 238void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 239{
 240	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 241
 242	/*
 243	 * save the feature bitmap to avoid cpuid lookup for every PV
 244	 * operation
 245	 */
 246	if (best)
 247		vcpu->arch.pv_cpuid.features = best->eax;
 248}
 249
 250/*
 251 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 252 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 253 */
 254static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 255{
 256	struct kvm_cpuid_entry2 *best;
 257
 258	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 259	if (!best)
 260		return 0;
 261
 262	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 263}
 264
 265static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 266				       int nent)
 267{
 268	struct kvm_cpuid_entry2 *best;
 
 269
 270	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 271	if (best) {
 272		/* Update OSXSAVE bit */
 273		if (boot_cpu_has(X86_FEATURE_XSAVE))
 274			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 275					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
 276
 277		cpuid_entry_change(best, X86_FEATURE_APIC,
 278			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 279	}
 280
 281	best = cpuid_entry2_find(entries, nent, 7, 0);
 282	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 283		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 284				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
 285
 286	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 287	if (best)
 288		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 289
 290	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 291	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 292		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 293		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 294
 295	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
 296	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 297		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 298		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 
 
 299
 300	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 301		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 302		if (best)
 303			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 304					   vcpu->arch.ia32_misc_enable_msr &
 305					   MSR_IA32_MISC_ENABLE_MWAIT);
 306	}
 307}
 308
 309void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 310{
 311	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 312}
 313EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 314
 315static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 316{
 317#ifdef CONFIG_KVM_HYPERV
 318	struct kvm_cpuid_entry2 *entry;
 319
 320	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 321				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 322	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 323#else
 324	return false;
 325#endif
 326}
 327
 
 
 
 
 
 
 
 
 
 
 
 
 328static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 329{
 330	struct kvm_lapic *apic = vcpu->arch.apic;
 331	struct kvm_cpuid_entry2 *best;
 332	bool allow_gbpages;
 333
 334	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
 335	bitmap_zero(vcpu->arch.governed_features.enabled,
 336		    KVM_MAX_NR_GOVERNED_FEATURES);
 337
 338	/*
 339	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
 340	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
 341	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
 342	 * walk for performance and complexity reasons.  Not to mention KVM
 343	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
 344	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
 345	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
 346	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
 347	 * and can install smaller shadow pages if the host lacks 1GiB support.
 348	 */
 349	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
 350				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
 351	if (allow_gbpages)
 352		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
 353
 354	best = kvm_find_cpuid_entry(vcpu, 1);
 355	if (best && apic) {
 356		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 357			apic->lapic_timer.timer_mode_mask = 3 << 17;
 358		else
 359			apic->lapic_timer.timer_mode_mask = 1 << 17;
 360
 361		kvm_apic_set_version(vcpu);
 362	}
 363
 364	vcpu->arch.guest_supported_xcr0 =
 365		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 366
 367	kvm_update_pv_runtime(vcpu);
 368
 
 369	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 370	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 371
 372	kvm_pmu_refresh(vcpu);
 373	vcpu->arch.cr4_guest_rsvd_bits =
 374	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 375
 376	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 377						    vcpu->arch.cpuid_nent));
 378
 379	/* Invoke the vendor callback only after the above state is updated. */
 380	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 381
 382	/*
 383	 * Except for the MMU, which needs to do its thing any vendor specific
 384	 * adjustments to the reserved GPA bits.
 385	 */
 386	kvm_mmu_after_set_cpuid(vcpu);
 387}
 388
 389int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 390{
 391	struct kvm_cpuid_entry2 *best;
 392
 393	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 394	if (!best || best->eax < 0x80000008)
 395		goto not_found;
 396	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 397	if (best)
 398		return best->eax & 0xff;
 399not_found:
 400	return 36;
 401}
 402
 403/*
 404 * This "raw" version returns the reserved GPA bits without any adjustments for
 405 * encryption technologies that usurp bits.  The raw mask should be used if and
 406 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 407 */
 408u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 409{
 410	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 411}
 412
 413static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 414                        int nent)
 415{
 416	int r;
 417
 418	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 419
 420	/*
 421	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 422	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 423	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 424	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 425	 * the core vCPU model on the fly. It would've been better to forbid any
 426	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 427	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 428	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 429	 * whether the supplied CPUID data is equal to what's already set.
 430	 */
 431	if (kvm_vcpu_has_run(vcpu)) {
 432		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 433		if (r)
 434			return r;
 435
 436		kvfree(e2);
 437		return 0;
 438	}
 439
 440#ifdef CONFIG_KVM_HYPERV
 441	if (kvm_cpuid_has_hyperv(e2, nent)) {
 442		r = kvm_hv_vcpu_init(vcpu);
 443		if (r)
 444			return r;
 445	}
 446#endif
 447
 448	r = kvm_check_cpuid(vcpu, e2, nent);
 449	if (r)
 450		return r;
 451
 452	kvfree(vcpu->arch.cpuid_entries);
 453	vcpu->arch.cpuid_entries = e2;
 454	vcpu->arch.cpuid_nent = nent;
 455
 456	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
 457#ifdef CONFIG_KVM_XEN
 458	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
 459#endif
 460	kvm_vcpu_after_set_cpuid(vcpu);
 461
 462	return 0;
 463}
 464
 465/* when an old userspace process fills a new kernel module */
 466int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 467			     struct kvm_cpuid *cpuid,
 468			     struct kvm_cpuid_entry __user *entries)
 469{
 470	int r, i;
 471	struct kvm_cpuid_entry *e = NULL;
 472	struct kvm_cpuid_entry2 *e2 = NULL;
 473
 474	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 475		return -E2BIG;
 476
 477	if (cpuid->nent) {
 478		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
 479		if (IS_ERR(e))
 480			return PTR_ERR(e);
 481
 482		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 483		if (!e2) {
 484			r = -ENOMEM;
 485			goto out_free_cpuid;
 486		}
 487	}
 488	for (i = 0; i < cpuid->nent; i++) {
 489		e2[i].function = e[i].function;
 490		e2[i].eax = e[i].eax;
 491		e2[i].ebx = e[i].ebx;
 492		e2[i].ecx = e[i].ecx;
 493		e2[i].edx = e[i].edx;
 494		e2[i].index = 0;
 495		e2[i].flags = 0;
 496		e2[i].padding[0] = 0;
 497		e2[i].padding[1] = 0;
 498		e2[i].padding[2] = 0;
 499	}
 500
 501	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 502	if (r)
 503		kvfree(e2);
 504
 505out_free_cpuid:
 506	kvfree(e);
 507
 508	return r;
 509}
 510
 511int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 512			      struct kvm_cpuid2 *cpuid,
 513			      struct kvm_cpuid_entry2 __user *entries)
 514{
 515	struct kvm_cpuid_entry2 *e2 = NULL;
 516	int r;
 517
 518	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 519		return -E2BIG;
 520
 521	if (cpuid->nent) {
 522		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
 523		if (IS_ERR(e2))
 524			return PTR_ERR(e2);
 525	}
 526
 527	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 528	if (r)
 529		kvfree(e2);
 530
 531	return r;
 532}
 533
 534int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 535			      struct kvm_cpuid2 *cpuid,
 536			      struct kvm_cpuid_entry2 __user *entries)
 537{
 538	if (cpuid->nent < vcpu->arch.cpuid_nent)
 539		return -E2BIG;
 540
 541	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 542			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 543		return -EFAULT;
 544
 545	cpuid->nent = vcpu->arch.cpuid_nent;
 546	return 0;
 547}
 548
 549/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 550static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 551{
 552	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 553	struct kvm_cpuid_entry2 entry;
 554
 555	reverse_cpuid_check(leaf);
 556
 557	cpuid_count(cpuid.function, cpuid.index,
 558		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 559
 560	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 561}
 562
 563static __always_inline
 564void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 565{
 566	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 567	BUILD_BUG_ON(leaf < NCAPINTS);
 568
 569	kvm_cpu_caps[leaf] = mask;
 570
 571	__kvm_cpu_cap_mask(leaf);
 572}
 573
 574static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 575{
 576	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 577	BUILD_BUG_ON(leaf >= NCAPINTS);
 578
 579	kvm_cpu_caps[leaf] &= mask;
 580
 581	__kvm_cpu_cap_mask(leaf);
 582}
 583
 584void kvm_set_cpu_caps(void)
 585{
 586#ifdef CONFIG_X86_64
 587	unsigned int f_gbpages = F(GBPAGES);
 588	unsigned int f_lm = F(LM);
 589	unsigned int f_xfd = F(XFD);
 590#else
 591	unsigned int f_gbpages = 0;
 592	unsigned int f_lm = 0;
 593	unsigned int f_xfd = 0;
 594#endif
 595	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 596
 597	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 598		     sizeof(boot_cpu_data.x86_capability));
 599
 600	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 601	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 602
 603	kvm_cpu_cap_mask(CPUID_1_ECX,
 604		/*
 605		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 606		 * advertised to guests via CPUID!
 607		 */
 608		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 609		0 /* DS-CPL, VMX, SMX, EST */ |
 610		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 611		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 612		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 613		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 614		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 615		F(F16C) | F(RDRAND)
 616	);
 617	/* KVM emulates x2apic in software irrespective of host support. */
 618	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 619
 620	kvm_cpu_cap_mask(CPUID_1_EDX,
 621		F(FPU) | F(VME) | F(DE) | F(PSE) |
 622		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 623		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 624		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 625		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 626		0 /* Reserved, DS, ACPI */ | F(MMX) |
 627		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 628		0 /* HTT, TM, Reserved, PBE */
 629	);
 630
 631	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 632		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 633		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 634		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 635		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 636		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 637		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 638		F(AVX512VL));
 639
 640	kvm_cpu_cap_mask(CPUID_7_ECX,
 641		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 642		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 643		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 644		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 645		F(SGX_LC) | F(BUS_LOCK_DETECT)
 646	);
 647	/* Set LA57 based on hardware capability. */
 648	if (cpuid_ecx(7) & F(LA57))
 649		kvm_cpu_cap_set(X86_FEATURE_LA57);
 650
 651	/*
 652	 * PKU not yet implemented for shadow paging and requires OSPKE
 653	 * to be set on the host. Clear it if that is not the case
 654	 */
 655	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 656		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 657
 658	kvm_cpu_cap_mask(CPUID_7_EDX,
 659		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 660		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 661		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 662		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 663		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
 664	);
 665
 666	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 667	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 668	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 669
 670	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 
 
 671		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 672	if (boot_cpu_has(X86_FEATURE_STIBP))
 673		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 674	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 675		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 676
 677	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 678		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
 679		F(FZRM) | F(FSRS) | F(FSRC) |
 680		F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
 681	);
 682
 683	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 684		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
 685		F(AMX_COMPLEX)
 686	);
 687
 688	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
 689		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
 690		F(BHI_CTRL) | F(MCDT_NO)
 691	);
 692
 693	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 694		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 695	);
 696
 697	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 698		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 699	);
 700
 
 
 
 
 701	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 702		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 703		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 704		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 705		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 706		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 707	);
 708
 709	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 710		F(FPU) | F(VME) | F(DE) | F(PSE) |
 711		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 712		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 713		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 714		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 715		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 716		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 717		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 718	);
 719
 720	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 721		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 722
 723	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
 724		SF(CONSTANT_TSC)
 725	);
 726
 727	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 728		F(CLZERO) | F(XSAVEERPTR) |
 729		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 730		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 731		F(AMD_PSFD)
 732	);
 733
 734	/*
 735	 * AMD has separate bits for each SPEC_CTRL bit.
 736	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 737	 * record that in cpufeatures so use them.
 738	 */
 739	if (boot_cpu_has(X86_FEATURE_IBPB))
 740		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 
 
 
 
 741	if (boot_cpu_has(X86_FEATURE_IBRS))
 742		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 743	if (boot_cpu_has(X86_FEATURE_STIBP))
 744		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 745	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 746		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 747	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 748		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 749	/*
 750	 * The preference is to use SPEC CTRL MSR instead of the
 751	 * VIRT_SPEC MSR.
 752	 */
 753	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 754	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 755		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 756
 757	/*
 758	 * Hide all SVM features by default, SVM will set the cap bits for
 759	 * features it emulates and/or exposes for L1.
 760	 */
 761	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 762
 763	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 764		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 765		F(SME_COHERENT));
 766
 767	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
 768		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
 769		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
 770		F(WRMSR_XX_BASE_NS)
 771	);
 772
 773	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
 774	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
 775	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
 776
 777	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
 778		F(PERFMON_V2)
 779	);
 780
 781	/*
 782	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
 783	 * KVM's supported CPUID if the feature is reported as supported by the
 784	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
 785	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
 786	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
 787	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
 788	 * the mask with the raw host CPUID, and reporting support in AMD's
 789	 * leaf can make it easier for userspace to detect the feature.
 790	 */
 791	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
 792		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
 793	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
 794		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
 795	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
 796
 797	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 798		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 799		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 800		F(PMM) | F(PMM_EN)
 801	);
 802
 803	/*
 804	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 805	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 806	 * should never happen, but the guest will likely crash if RDTSCP or
 807	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 808	 * the past.  For example, the sanity check may fire if this instance of
 809	 * KVM is running as L1 on top of an older, broken KVM.
 810	 */
 811	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 812		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 813		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 814		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 815		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 816	}
 817}
 818EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 819
 820struct kvm_cpuid_array {
 821	struct kvm_cpuid_entry2 *entries;
 822	int maxnent;
 823	int nent;
 824};
 825
 826static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 827{
 828	if (array->nent >= array->maxnent)
 829		return NULL;
 830
 831	return &array->entries[array->nent++];
 832}
 833
 834static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 835					      u32 function, u32 index)
 836{
 837	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 838
 839	if (!entry)
 840		return NULL;
 841
 842	memset(entry, 0, sizeof(*entry));
 843	entry->function = function;
 844	entry->index = index;
 845	switch (function & 0xC0000000) {
 846	case 0x40000000:
 847		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 848		return entry;
 849
 850	case 0x80000000:
 851		/*
 852		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 853		 * would result in out-of-bounds calls to do_host_cpuid.
 854		 */
 855		{
 856			static int max_cpuid_80000000;
 857			if (!READ_ONCE(max_cpuid_80000000))
 858				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 859			if (function > READ_ONCE(max_cpuid_80000000))
 860				return entry;
 861		}
 862		break;
 863
 864	default:
 865		break;
 866	}
 867
 868	cpuid_count(entry->function, entry->index,
 869		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 870
 871	if (cpuid_function_is_indexed(function))
 872		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 873
 874	return entry;
 875}
 876
 877static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 878{
 879	struct kvm_cpuid_entry2 *entry;
 880
 881	if (array->nent >= array->maxnent)
 882		return -E2BIG;
 883
 884	entry = &array->entries[array->nent];
 885	entry->function = func;
 886	entry->index = 0;
 887	entry->flags = 0;
 888
 889	switch (func) {
 890	case 0:
 891		entry->eax = 7;
 892		++array->nent;
 893		break;
 894	case 1:
 895		entry->ecx = F(MOVBE);
 896		++array->nent;
 897		break;
 898	case 7:
 899		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 900		entry->eax = 0;
 901		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 902			entry->ecx = F(RDPID);
 903		++array->nent;
 904		break;
 905	default:
 906		break;
 907	}
 908
 909	return 0;
 910}
 911
 912static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 913{
 914	struct kvm_cpuid_entry2 *entry;
 915	int r, i, max_idx;
 916
 917	/* all calls to cpuid_count() should be made on the same cpu */
 918	get_cpu();
 919
 920	r = -E2BIG;
 921
 922	entry = do_host_cpuid(array, function, 0);
 923	if (!entry)
 924		goto out;
 925
 926	switch (function) {
 927	case 0:
 928		/* Limited to the highest leaf implemented in KVM. */
 929		entry->eax = min(entry->eax, 0x1fU);
 930		break;
 931	case 1:
 932		cpuid_entry_override(entry, CPUID_1_EDX);
 933		cpuid_entry_override(entry, CPUID_1_ECX);
 934		break;
 935	case 2:
 936		/*
 937		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 938		 * CPUID(function=2, index=0) may return different results each
 939		 * time, with the least-significant byte in EAX enumerating the
 940		 * number of times software should do CPUID(2, 0).
 941		 *
 942		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 943		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 944		 * return 01H. Software should ignore this value and not
 945		 * interpret it as an informational descriptor", while AMD's
 946		 * APM states that CPUID(2) is reserved.
 947		 *
 948		 * WARN if a frankenstein CPU that supports virtualization and
 949		 * a stateful CPUID.0x2 is encountered.
 950		 */
 951		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 952		break;
 953	/* functions 4 and 0x8000001d have additional index. */
 954	case 4:
 955	case 0x8000001d:
 956		/*
 957		 * Read entries until the cache type in the previous entry is
 958		 * zero, i.e. indicates an invalid entry.
 959		 */
 960		for (i = 1; entry->eax & 0x1f; ++i) {
 961			entry = do_host_cpuid(array, function, i);
 962			if (!entry)
 963				goto out;
 964		}
 965		break;
 966	case 6: /* Thermal management */
 967		entry->eax = 0x4; /* allow ARAT */
 968		entry->ebx = 0;
 969		entry->ecx = 0;
 970		entry->edx = 0;
 971		break;
 972	/* function 7 has additional index. */
 973	case 7:
 974		max_idx = entry->eax = min(entry->eax, 2u);
 975		cpuid_entry_override(entry, CPUID_7_0_EBX);
 976		cpuid_entry_override(entry, CPUID_7_ECX);
 977		cpuid_entry_override(entry, CPUID_7_EDX);
 978
 979		/* KVM only supports up to 0x7.2, capped above via min(). */
 980		if (max_idx >= 1) {
 981			entry = do_host_cpuid(array, function, 1);
 982			if (!entry)
 983				goto out;
 984
 985			cpuid_entry_override(entry, CPUID_7_1_EAX);
 986			cpuid_entry_override(entry, CPUID_7_1_EDX);
 987			entry->ebx = 0;
 988			entry->ecx = 0;
 989		}
 990		if (max_idx >= 2) {
 991			entry = do_host_cpuid(array, function, 2);
 992			if (!entry)
 993				goto out;
 994
 995			cpuid_entry_override(entry, CPUID_7_2_EDX);
 996			entry->ecx = 0;
 997			entry->ebx = 0;
 998			entry->eax = 0;
 999		}
1000		break;
1001	case 0xa: { /* Architectural Performance Monitoring */
1002		union cpuid10_eax eax;
1003		union cpuid10_edx edx;
1004
1005		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1006			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1007			break;
1008		}
1009
1010		eax.split.version_id = kvm_pmu_cap.version;
1011		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1012		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1013		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1014		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1015		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1016
1017		if (kvm_pmu_cap.version)
1018			edx.split.anythread_deprecated = 1;
1019		edx.split.reserved1 = 0;
1020		edx.split.reserved2 = 0;
1021
1022		entry->eax = eax.full;
1023		entry->ebx = kvm_pmu_cap.events_mask;
1024		entry->ecx = 0;
1025		entry->edx = edx.full;
1026		break;
1027	}
1028	case 0x1f:
1029	case 0xb:
1030		/*
1031		 * No topology; a valid topology is indicated by the presence
1032		 * of subleaf 1.
1033		 */
1034		entry->eax = entry->ebx = entry->ecx = 0;
1035		break;
1036	case 0xd: {
1037		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1038		u64 permitted_xss = kvm_caps.supported_xss;
1039
1040		entry->eax &= permitted_xcr0;
1041		entry->ebx = xstate_required_size(permitted_xcr0, false);
1042		entry->ecx = entry->ebx;
1043		entry->edx &= permitted_xcr0 >> 32;
1044		if (!permitted_xcr0)
1045			break;
1046
1047		entry = do_host_cpuid(array, function, 1);
1048		if (!entry)
1049			goto out;
1050
1051		cpuid_entry_override(entry, CPUID_D_1_EAX);
1052		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1053			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1054							  true);
1055		else {
1056			WARN_ON_ONCE(permitted_xss != 0);
1057			entry->ebx = 0;
1058		}
1059		entry->ecx &= permitted_xss;
1060		entry->edx &= permitted_xss >> 32;
1061
1062		for (i = 2; i < 64; ++i) {
1063			bool s_state;
1064			if (permitted_xcr0 & BIT_ULL(i))
1065				s_state = false;
1066			else if (permitted_xss & BIT_ULL(i))
1067				s_state = true;
1068			else
1069				continue;
1070
1071			entry = do_host_cpuid(array, function, i);
1072			if (!entry)
1073				goto out;
1074
1075			/*
1076			 * The supported check above should have filtered out
1077			 * invalid sub-leafs.  Only valid sub-leafs should
1078			 * reach this point, and they should have a non-zero
1079			 * save state size.  Furthermore, check whether the
1080			 * processor agrees with permitted_xcr0/permitted_xss
1081			 * on whether this is an XCR0- or IA32_XSS-managed area.
1082			 */
1083			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1084				--array->nent;
1085				continue;
1086			}
1087
1088			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1089				entry->ecx &= ~BIT_ULL(2);
1090			entry->edx = 0;
1091		}
1092		break;
1093	}
1094	case 0x12:
1095		/* Intel SGX */
1096		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1097			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1098			break;
1099		}
1100
1101		/*
1102		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1103		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1104		 * are restricted by kernel and KVM capabilities (like most
1105		 * feature flags), while enclave size is unrestricted.
1106		 */
1107		cpuid_entry_override(entry, CPUID_12_EAX);
1108		entry->ebx &= SGX_MISC_EXINFO;
1109
1110		entry = do_host_cpuid(array, function, 1);
1111		if (!entry)
1112			goto out;
1113
1114		/*
1115		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1116		 * feature flags.  Advertise all supported flags, including
1117		 * privileged attributes that require explicit opt-in from
1118		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1119		 * expected to derive it from supported XCR0.
1120		 */
1121		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1122		entry->ebx &= 0;
1123		break;
1124	/* Intel PT */
1125	case 0x14:
1126		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1127			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1128			break;
1129		}
1130
1131		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1132			if (!do_host_cpuid(array, function, i))
1133				goto out;
1134		}
1135		break;
1136	/* Intel AMX TILE */
1137	case 0x1d:
1138		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1139			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1140			break;
1141		}
1142
1143		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1144			if (!do_host_cpuid(array, function, i))
1145				goto out;
1146		}
1147		break;
1148	case 0x1e: /* TMUL information */
1149		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1150			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151			break;
1152		}
1153		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154	case KVM_CPUID_SIGNATURE: {
1155		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1156		entry->eax = KVM_CPUID_FEATURES;
1157		entry->ebx = sigptr[0];
1158		entry->ecx = sigptr[1];
1159		entry->edx = sigptr[2];
1160		break;
1161	}
1162	case KVM_CPUID_FEATURES:
1163		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1164			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1165			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1166			     (1 << KVM_FEATURE_ASYNC_PF) |
1167			     (1 << KVM_FEATURE_PV_EOI) |
1168			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1169			     (1 << KVM_FEATURE_PV_UNHALT) |
1170			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1171			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1172			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1173			     (1 << KVM_FEATURE_POLL_CONTROL) |
1174			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1175			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1176
1177		if (sched_info_on())
1178			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1179
1180		entry->ebx = 0;
1181		entry->ecx = 0;
1182		entry->edx = 0;
1183		break;
1184	case 0x80000000:
1185		entry->eax = min(entry->eax, 0x80000022);
1186		/*
1187		 * Serializing LFENCE is reported in a multitude of ways, and
1188		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1189		 * userspace by providing the CPUID leaf ourselves.
1190		 *
1191		 * However, only do it if the host has CPUID leaf 0x8000001d.
1192		 * QEMU thinks that it can query the host blindly for that
1193		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1194		 * above.  The processor merrily returns values from the
1195		 * highest Intel leaf which QEMU tries to use as the guest's
1196		 * 0x8000001d.  Even worse, this can result in an infinite
1197		 * loop if said highest leaf has no subleaves indexed by ECX.
1198		 */
1199		if (entry->eax >= 0x8000001d &&
1200		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1201		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1202			entry->eax = max(entry->eax, 0x80000021);
1203		break;
1204	case 0x80000001:
1205		entry->ebx &= ~GENMASK(27, 16);
1206		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1207		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1208		break;
1209	case 0x80000005:
1210		/*  Pass host L1 cache and TLB info. */
1211		break;
1212	case 0x80000006:
1213		/* Drop reserved bits, pass host L2 cache and TLB info. */
1214		entry->edx &= ~GENMASK(17, 16);
1215		break;
1216	case 0x80000007: /* Advanced power management */
1217		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1218
1219		/* mask against host */
1220		entry->edx &= boot_cpu_data.x86_power;
1221		entry->eax = entry->ebx = entry->ecx = 0;
1222		break;
1223	case 0x80000008: {
1224		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1225		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1226		unsigned phys_as = entry->eax & 0xff;
 
 
 
 
 
 
 
 
 
 
 
 
 
1227
1228		/*
1229		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1230		 * the guest operates in the same PA space as the host, i.e.
1231		 * reductions in MAXPHYADDR for memory encryption affect shadow
1232		 * paging, too.
1233		 *
1234		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1235		 * provided, use the raw bare metal MAXPHYADDR as reductions to
1236		 * the HPAs do not affect GPAs.
 
 
 
1237		 */
1238		if (!tdp_enabled)
1239			g_phys_as = boot_cpu_data.x86_phys_bits;
1240		else if (!g_phys_as)
 
 
1241			g_phys_as = phys_as;
 
 
 
1242
1243		entry->eax = g_phys_as | (virt_as << 8);
1244		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1245		entry->edx = 0;
1246		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1247		break;
1248	}
1249	case 0x8000000A:
1250		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1251			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1252			break;
1253		}
1254		entry->eax = 1; /* SVM revision 1 */
1255		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1256				   ASID emulation to nested SVM */
1257		entry->ecx = 0; /* Reserved */
1258		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1259		break;
1260	case 0x80000019:
1261		entry->ecx = entry->edx = 0;
1262		break;
1263	case 0x8000001a:
1264		entry->eax &= GENMASK(2, 0);
1265		entry->ebx = entry->ecx = entry->edx = 0;
1266		break;
1267	case 0x8000001e:
1268		/* Do not return host topology information.  */
1269		entry->eax = entry->ebx = entry->ecx = 0;
1270		entry->edx = 0; /* reserved */
1271		break;
1272	case 0x8000001F:
1273		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1274			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1275		} else {
1276			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1277			/* Clear NumVMPL since KVM does not support VMPL.  */
1278			entry->ebx &= ~GENMASK(31, 12);
1279			/*
1280			 * Enumerate '0' for "PA bits reduction", the adjusted
1281			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1282			 */
1283			entry->ebx &= ~GENMASK(11, 6);
1284		}
1285		break;
1286	case 0x80000020:
1287		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1288		break;
1289	case 0x80000021:
1290		entry->ebx = entry->ecx = entry->edx = 0;
1291		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1292		break;
1293	/* AMD Extended Performance Monitoring and Debug */
1294	case 0x80000022: {
1295		union cpuid_0x80000022_ebx ebx;
1296
1297		entry->ecx = entry->edx = 0;
1298		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1299			entry->eax = entry->ebx;
1300			break;
1301		}
1302
1303		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1304
1305		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1306			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1307		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1308			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1309		else
1310			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1311
1312		entry->ebx = ebx.full;
1313		break;
1314	}
1315	/*Add support for Centaur's CPUID instruction*/
1316	case 0xC0000000:
1317		/*Just support up to 0xC0000004 now*/
1318		entry->eax = min(entry->eax, 0xC0000004);
1319		break;
1320	case 0xC0000001:
1321		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1322		break;
1323	case 3: /* Processor serial number */
1324	case 5: /* MONITOR/MWAIT */
1325	case 0xC0000002:
1326	case 0xC0000003:
1327	case 0xC0000004:
1328	default:
1329		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1330		break;
1331	}
1332
1333	r = 0;
1334
1335out:
1336	put_cpu();
1337
1338	return r;
1339}
1340
1341static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1342			 unsigned int type)
1343{
1344	if (type == KVM_GET_EMULATED_CPUID)
1345		return __do_cpuid_func_emulated(array, func);
1346
1347	return __do_cpuid_func(array, func);
1348}
1349
1350#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1351
1352static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1353			  unsigned int type)
1354{
1355	u32 limit;
1356	int r;
1357
1358	if (func == CENTAUR_CPUID_SIGNATURE &&
1359	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1360		return 0;
1361
1362	r = do_cpuid_func(array, func, type);
1363	if (r)
1364		return r;
1365
1366	limit = array->entries[array->nent - 1].eax;
1367	for (func = func + 1; func <= limit; ++func) {
1368		r = do_cpuid_func(array, func, type);
1369		if (r)
1370			break;
1371	}
1372
1373	return r;
1374}
1375
1376static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1377				 __u32 num_entries, unsigned int ioctl_type)
1378{
1379	int i;
1380	__u32 pad[3];
1381
1382	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1383		return false;
1384
1385	/*
1386	 * We want to make sure that ->padding is being passed clean from
1387	 * userspace in case we want to use it for something in the future.
1388	 *
1389	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1390	 * have to give ourselves satisfied only with the emulated side. /me
1391	 * sheds a tear.
1392	 */
1393	for (i = 0; i < num_entries; i++) {
1394		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1395			return true;
1396
1397		if (pad[0] || pad[1] || pad[2])
1398			return true;
1399	}
1400	return false;
1401}
1402
1403int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1404			    struct kvm_cpuid_entry2 __user *entries,
1405			    unsigned int type)
1406{
1407	static const u32 funcs[] = {
1408		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1409	};
1410
1411	struct kvm_cpuid_array array = {
1412		.nent = 0,
1413	};
1414	int r, i;
1415
1416	if (cpuid->nent < 1)
1417		return -E2BIG;
1418	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1419		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1420
1421	if (sanity_check_entries(entries, cpuid->nent, type))
1422		return -EINVAL;
1423
1424	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1425	if (!array.entries)
1426		return -ENOMEM;
1427
1428	array.maxnent = cpuid->nent;
1429
1430	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1431		r = get_cpuid_func(&array, funcs[i], type);
1432		if (r)
1433			goto out_free;
1434	}
1435	cpuid->nent = array.nent;
1436
1437	if (copy_to_user(entries, array.entries,
1438			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1439		r = -EFAULT;
1440
1441out_free:
1442	kvfree(array.entries);
1443	return r;
1444}
1445
1446struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1447						    u32 function, u32 index)
1448{
1449	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1450				 function, index);
1451}
1452EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1453
1454struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1455					      u32 function)
1456{
1457	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1458				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1459}
1460EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1461
1462/*
1463 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1464 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1465 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1466 * range.  Centaur/VIA follows Intel semantics.
1467 *
1468 * A leaf is considered out-of-range if its function is higher than the maximum
1469 * supported leaf of its associated class or if its associated class does not
1470 * exist.
1471 *
1472 * There are three primary classes to be considered, with their respective
1473 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1474 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1475 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1476 *
1477 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1478 *  - Hypervisor: 0x40000000 - 0x4fffffff
1479 *  - Extended:   0x80000000 - 0xbfffffff
1480 *  - Centaur:    0xc0000000 - 0xcfffffff
1481 *
1482 * The Hypervisor class is further subdivided into sub-classes that each act as
1483 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1484 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1485 * CPUID sub-classes are:
1486 *
1487 *  - HyperV:     0x40000000 - 0x400000ff
1488 *  - KVM:        0x40000100 - 0x400001ff
1489 */
1490static struct kvm_cpuid_entry2 *
1491get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1492{
1493	struct kvm_cpuid_entry2 *basic, *class;
1494	u32 function = *fn_ptr;
1495
1496	basic = kvm_find_cpuid_entry(vcpu, 0);
1497	if (!basic)
1498		return NULL;
1499
1500	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1501	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1502		return NULL;
1503
1504	if (function >= 0x40000000 && function <= 0x4fffffff)
1505		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1506	else if (function >= 0xc0000000)
1507		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1508	else
1509		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1510
1511	if (class && function <= class->eax)
1512		return NULL;
1513
1514	/*
1515	 * Leaf specific adjustments are also applied when redirecting to the
1516	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1517	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1518	 * needs to be pulled from CPUID.0xb.1.
1519	 */
1520	*fn_ptr = basic->eax;
1521
1522	/*
1523	 * The class does not exist or the requested function is out of range;
1524	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1525	 * the original requested leaf is observed!
1526	 */
1527	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1528}
1529
1530bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1531	       u32 *ecx, u32 *edx, bool exact_only)
1532{
1533	u32 orig_function = *eax, function = *eax, index = *ecx;
1534	struct kvm_cpuid_entry2 *entry;
1535	bool exact, used_max_basic = false;
1536
1537	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1538	exact = !!entry;
1539
1540	if (!entry && !exact_only) {
1541		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1542		used_max_basic = !!entry;
1543	}
1544
1545	if (entry) {
1546		*eax = entry->eax;
1547		*ebx = entry->ebx;
1548		*ecx = entry->ecx;
1549		*edx = entry->edx;
1550		if (function == 7 && index == 0) {
1551			u64 data;
1552		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1553			    (data & TSX_CTRL_CPUID_CLEAR))
1554				*ebx &= ~(F(RTM) | F(HLE));
1555		} else if (function == 0x80000007) {
1556			if (kvm_hv_invtsc_suppressed(vcpu))
1557				*edx &= ~SF(CONSTANT_TSC);
1558		}
1559	} else {
1560		*eax = *ebx = *ecx = *edx = 0;
1561		/*
1562		 * When leaf 0BH or 1FH is defined, CL is pass-through
1563		 * and EDX is always the x2APIC ID, even for undefined
1564		 * subleaves. Index 1 will exist iff the leaf is
1565		 * implemented, so we pass through CL iff leaf 1
1566		 * exists. EDX can be copied from any existing index.
1567		 */
1568		if (function == 0xb || function == 0x1f) {
1569			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1570			if (entry) {
1571				*ecx = index & 0xff;
1572				*edx = entry->edx;
1573			}
1574		}
1575	}
1576	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1577			used_max_basic);
1578	return exact;
1579}
1580EXPORT_SYMBOL_GPL(kvm_cpuid);
1581
1582int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1583{
1584	u32 eax, ebx, ecx, edx;
1585
1586	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1587		return 1;
1588
1589	eax = kvm_rax_read(vcpu);
1590	ecx = kvm_rcx_read(vcpu);
1591	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1592	kvm_rax_write(vcpu, eax);
1593	kvm_rbx_write(vcpu, ebx);
1594	kvm_rcx_write(vcpu, ecx);
1595	kvm_rdx_write(vcpu, edx);
1596	return kvm_skip_emulated_instruction(vcpu);
1597}
1598EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);