Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kvm_host.h>
  14#include "linux/lockdep.h"
  15#include <linux/export.h>
  16#include <linux/vmalloc.h>
  17#include <linux/uaccess.h>
  18#include <linux/sched/stat.h>
  19
  20#include <asm/processor.h>
  21#include <asm/user.h>
  22#include <asm/fpu/xstate.h>
  23#include <asm/sgx.h>
  24#include <asm/cpuid.h>
  25#include "cpuid.h"
  26#include "lapic.h"
  27#include "mmu.h"
  28#include "trace.h"
  29#include "pmu.h"
  30#include "xen.h"
  31
  32/*
  33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  35 */
  36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  38
  39struct cpuid_xstate_sizes {
  40	u32 eax;
  41	u32 ebx;
  42	u32 ecx;
  43};
  44
  45static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
  46
  47void __init kvm_init_xstate_sizes(void)
  48{
  49	u32 ign;
  50	int i;
  51
  52	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
  53		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
  54
  55		cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
  56	}
  57}
  58
  59u32 xstate_required_size(u64 xstate_bv, bool compacted)
  60{
  61	int feature_bit = 0;
  62	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  63
  64	xstate_bv &= XFEATURE_MASK_EXTEND;
  65	while (xstate_bv) {
  66		if (xstate_bv & 0x1) {
  67			struct cpuid_xstate_sizes *xs = &xstate_sizes[feature_bit];
  68			u32 offset;
  69
  70			/* ECX[1]: 64B alignment in compacted form */
  71			if (compacted)
  72				offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
  73			else
  74				offset = xs->ebx;
  75			ret = max(ret, offset + xs->eax);
  76		}
  77
  78		xstate_bv >>= 1;
  79		feature_bit++;
  80	}
  81
  82	return ret;
  83}
  84
  85#define F feature_bit
  86
  87/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  88#define SF(name)						\
  89({								\
  90	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  91	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  92})
  93
  94/*
  95 * Magic value used by KVM when querying userspace-provided CPUID entries and
  96 * doesn't care about the CPIUD index because the index of the function in
  97 * question is not significant.  Note, this magic value must have at least one
  98 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  99 * to avoid false positives when processing guest CPUID input.
 100 */
 101#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
 102
 103static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
 104	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
 105{
 106	struct kvm_cpuid_entry2 *e;
 107	int i;
 108
 109	/*
 110	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
 111	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
 112	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
 113	 * typically disabled in KVM only when KVM is in a performance critical
 114	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
 115	 * if this rule is violated, this assertion is purely to flag potential
 116	 * performance issues.  If this fires, consider moving the lookup out
 117	 * of the hotpath, e.g. by caching information during CPUID updates.
 118	 */
 119	lockdep_assert_irqs_enabled();
 120
 121	for (i = 0; i < nent; i++) {
 122		e = &entries[i];
 123
 124		if (e->function != function)
 125			continue;
 126
 127		/*
 128		 * If the index isn't significant, use the first entry with a
 129		 * matching function.  It's userspace's responsibility to not
 130		 * provide "duplicate" entries in all cases.
 131		 */
 132		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 133			return e;
 134
 135
 136		/*
 137		 * Similarly, use the first matching entry if KVM is doing a
 138		 * lookup (as opposed to emulating CPUID) for a function that's
 139		 * architecturally defined as not having a significant index.
 140		 */
 141		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 142			/*
 143			 * Direct lookups from KVM should not diverge from what
 144			 * KVM defines internally (the architectural behavior).
 145			 */
 146			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 147			return e;
 148		}
 149	}
 150
 151	return NULL;
 152}
 153
 154static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 155			   struct kvm_cpuid_entry2 *entries,
 156			   int nent)
 157{
 158	struct kvm_cpuid_entry2 *best;
 159	u64 xfeatures;
 160
 161	/*
 162	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 163	 * canonical address checks; exit if it is ever changed.
 164	 */
 165	best = cpuid_entry2_find(entries, nent, 0x80000008,
 166				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 167	if (best) {
 168		int vaddr_bits = (best->eax & 0xff00) >> 8;
 169
 170		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 171			return -EINVAL;
 172	}
 173
 174	/*
 175	 * Exposing dynamic xfeatures to the guest requires additional
 176	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 177	 */
 178	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 179	if (!best)
 180		return 0;
 181
 182	xfeatures = best->eax | ((u64)best->edx << 32);
 183	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 184	if (!xfeatures)
 185		return 0;
 186
 187	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 188}
 189
 190/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 191static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 192				 int nent)
 193{
 194	struct kvm_cpuid_entry2 *orig;
 195	int i;
 196
 197	if (nent != vcpu->arch.cpuid_nent)
 198		return -EINVAL;
 199
 200	for (i = 0; i < nent; i++) {
 201		orig = &vcpu->arch.cpuid_entries[i];
 202		if (e2[i].function != orig->function ||
 203		    e2[i].index != orig->index ||
 204		    e2[i].flags != orig->flags ||
 205		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 206		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 207			return -EINVAL;
 208	}
 209
 210	return 0;
 211}
 212
 213static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
 214							      int nent, const char *sig)
 215{
 216	struct kvm_hypervisor_cpuid cpuid = {};
 217	struct kvm_cpuid_entry2 *entry;
 218	u32 base;
 219
 220	for_each_possible_hypervisor_cpuid_base(base) {
 221		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 222
 223		if (entry) {
 224			u32 signature[3];
 225
 226			signature[0] = entry->ebx;
 227			signature[1] = entry->ecx;
 228			signature[2] = entry->edx;
 229
 230			if (!memcmp(signature, sig, sizeof(signature))) {
 231				cpuid.base = base;
 232				cpuid.limit = entry->eax;
 233				break;
 234			}
 235		}
 236	}
 237
 238	return cpuid;
 239}
 240
 241static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
 242							    const char *sig)
 243{
 244	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
 245					  vcpu->arch.cpuid_nent, sig);
 246}
 247
 248static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
 249							      int nent, u32 kvm_cpuid_base)
 250{
 251	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
 252				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 253}
 254
 255static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 256{
 257	u32 base = vcpu->arch.kvm_cpuid.base;
 258
 259	if (!base)
 260		return NULL;
 261
 262	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
 263					     vcpu->arch.cpuid_nent, base);
 264}
 265
 266void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 267{
 268	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 269
 270	/*
 271	 * save the feature bitmap to avoid cpuid lookup for every PV
 272	 * operation
 273	 */
 274	if (best)
 275		vcpu->arch.pv_cpuid.features = best->eax;
 276}
 277
 278/*
 279 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 280 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 281 */
 282static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 283{
 284	struct kvm_cpuid_entry2 *best;
 285
 286	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 287	if (!best)
 288		return 0;
 289
 290	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 291}
 292
 293static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 294				       int nent)
 295{
 296	struct kvm_cpuid_entry2 *best;
 297	struct kvm_hypervisor_cpuid kvm_cpuid;
 298
 299	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 300	if (best) {
 301		/* Update OSXSAVE bit */
 302		if (boot_cpu_has(X86_FEATURE_XSAVE))
 303			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 304					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
 305
 306		cpuid_entry_change(best, X86_FEATURE_APIC,
 307			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 308	}
 309
 310	best = cpuid_entry2_find(entries, nent, 7, 0);
 311	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 312		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 313				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
 314
 315	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 316	if (best)
 317		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 318
 319	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 320	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 321		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 322		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 323
 324	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
 325	if (kvm_cpuid.base) {
 326		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
 327		if (kvm_hlt_in_guest(vcpu->kvm) && best)
 328			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 329	}
 330
 331	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 332		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 333		if (best)
 334			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 335					   vcpu->arch.ia32_misc_enable_msr &
 336					   MSR_IA32_MISC_ENABLE_MWAIT);
 337	}
 338}
 339
 340void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 341{
 342	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 343}
 344EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 345
 346static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 347{
 348#ifdef CONFIG_KVM_HYPERV
 349	struct kvm_cpuid_entry2 *entry;
 350
 351	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 352				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 353	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 354#else
 355	return false;
 356#endif
 357}
 358
 359static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
 360{
 361	struct kvm_cpuid_entry2 *entry;
 362
 363	entry = kvm_find_cpuid_entry(vcpu, 0);
 364	if (!entry)
 365		return false;
 366
 367	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
 368	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
 369}
 370
 371static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 372{
 373	struct kvm_lapic *apic = vcpu->arch.apic;
 374	struct kvm_cpuid_entry2 *best;
 375	bool allow_gbpages;
 376
 377	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
 378	bitmap_zero(vcpu->arch.governed_features.enabled,
 379		    KVM_MAX_NR_GOVERNED_FEATURES);
 380
 381	/*
 382	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
 383	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
 384	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
 385	 * walk for performance and complexity reasons.  Not to mention KVM
 386	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
 387	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
 388	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
 389	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
 390	 * and can install smaller shadow pages if the host lacks 1GiB support.
 391	 */
 392	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
 393				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
 394	if (allow_gbpages)
 395		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
 396
 397	best = kvm_find_cpuid_entry(vcpu, 1);
 398	if (best && apic) {
 399		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 400			apic->lapic_timer.timer_mode_mask = 3 << 17;
 401		else
 402			apic->lapic_timer.timer_mode_mask = 1 << 17;
 403
 404		kvm_apic_set_version(vcpu);
 405	}
 406
 407	vcpu->arch.guest_supported_xcr0 =
 408		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 409
 410	kvm_update_pv_runtime(vcpu);
 411
 412	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
 413	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 414	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 415
 416	kvm_pmu_refresh(vcpu);
 417	vcpu->arch.cr4_guest_rsvd_bits =
 418	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 419
 420	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 421						    vcpu->arch.cpuid_nent));
 422
 423	/* Invoke the vendor callback only after the above state is updated. */
 424	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
 425
 426	/*
 427	 * Except for the MMU, which needs to do its thing any vendor specific
 428	 * adjustments to the reserved GPA bits.
 429	 */
 430	kvm_mmu_after_set_cpuid(vcpu);
 431}
 432
 433int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 434{
 435	struct kvm_cpuid_entry2 *best;
 436
 437	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 438	if (!best || best->eax < 0x80000008)
 439		goto not_found;
 440	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 441	if (best)
 442		return best->eax & 0xff;
 443not_found:
 444	return 36;
 445}
 446
 447/*
 448 * This "raw" version returns the reserved GPA bits without any adjustments for
 449 * encryption technologies that usurp bits.  The raw mask should be used if and
 450 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 451 */
 452u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 453{
 454	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 455}
 456
 457static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 458                        int nent)
 459{
 460	int r;
 461
 462	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 463
 464	/*
 465	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 466	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 467	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 468	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 469	 * the core vCPU model on the fly. It would've been better to forbid any
 470	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 471	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 472	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 473	 * whether the supplied CPUID data is equal to what's already set.
 474	 */
 475	if (kvm_vcpu_has_run(vcpu)) {
 476		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 477		if (r)
 478			return r;
 479
 480		kvfree(e2);
 481		return 0;
 482	}
 483
 484#ifdef CONFIG_KVM_HYPERV
 485	if (kvm_cpuid_has_hyperv(e2, nent)) {
 486		r = kvm_hv_vcpu_init(vcpu);
 487		if (r)
 488			return r;
 489	}
 490#endif
 491
 492	r = kvm_check_cpuid(vcpu, e2, nent);
 493	if (r)
 494		return r;
 495
 496	kvfree(vcpu->arch.cpuid_entries);
 497	vcpu->arch.cpuid_entries = e2;
 498	vcpu->arch.cpuid_nent = nent;
 499
 500	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
 501#ifdef CONFIG_KVM_XEN
 502	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
 503#endif
 504	kvm_vcpu_after_set_cpuid(vcpu);
 505
 506	return 0;
 507}
 508
 509/* when an old userspace process fills a new kernel module */
 510int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 511			     struct kvm_cpuid *cpuid,
 512			     struct kvm_cpuid_entry __user *entries)
 513{
 514	int r, i;
 515	struct kvm_cpuid_entry *e = NULL;
 516	struct kvm_cpuid_entry2 *e2 = NULL;
 517
 518	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 519		return -E2BIG;
 520
 521	if (cpuid->nent) {
 522		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
 523		if (IS_ERR(e))
 524			return PTR_ERR(e);
 525
 526		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 527		if (!e2) {
 528			r = -ENOMEM;
 529			goto out_free_cpuid;
 530		}
 531	}
 532	for (i = 0; i < cpuid->nent; i++) {
 533		e2[i].function = e[i].function;
 534		e2[i].eax = e[i].eax;
 535		e2[i].ebx = e[i].ebx;
 536		e2[i].ecx = e[i].ecx;
 537		e2[i].edx = e[i].edx;
 538		e2[i].index = 0;
 539		e2[i].flags = 0;
 540		e2[i].padding[0] = 0;
 541		e2[i].padding[1] = 0;
 542		e2[i].padding[2] = 0;
 543	}
 544
 545	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 546	if (r)
 547		kvfree(e2);
 548
 549out_free_cpuid:
 550	kvfree(e);
 551
 552	return r;
 553}
 554
 555int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 556			      struct kvm_cpuid2 *cpuid,
 557			      struct kvm_cpuid_entry2 __user *entries)
 558{
 559	struct kvm_cpuid_entry2 *e2 = NULL;
 560	int r;
 561
 562	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 563		return -E2BIG;
 564
 565	if (cpuid->nent) {
 566		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
 567		if (IS_ERR(e2))
 568			return PTR_ERR(e2);
 569	}
 570
 571	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 572	if (r)
 573		kvfree(e2);
 574
 575	return r;
 576}
 577
 578int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 579			      struct kvm_cpuid2 *cpuid,
 580			      struct kvm_cpuid_entry2 __user *entries)
 581{
 582	if (cpuid->nent < vcpu->arch.cpuid_nent)
 583		return -E2BIG;
 584
 585	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 586			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 587		return -EFAULT;
 588
 589	cpuid->nent = vcpu->arch.cpuid_nent;
 590	return 0;
 591}
 592
 593/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 594static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 595{
 596	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 597	struct kvm_cpuid_entry2 entry;
 598
 599	reverse_cpuid_check(leaf);
 600
 601	cpuid_count(cpuid.function, cpuid.index,
 602		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 603
 604	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 605}
 606
 607static __always_inline
 608void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 609{
 610	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 611	BUILD_BUG_ON(leaf < NCAPINTS);
 612
 613	kvm_cpu_caps[leaf] = mask;
 614
 615	__kvm_cpu_cap_mask(leaf);
 616}
 617
 618static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 619{
 620	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 621	BUILD_BUG_ON(leaf >= NCAPINTS);
 622
 623	kvm_cpu_caps[leaf] &= mask;
 624
 625	__kvm_cpu_cap_mask(leaf);
 626}
 627
 628void kvm_set_cpu_caps(void)
 629{
 630#ifdef CONFIG_X86_64
 631	unsigned int f_gbpages = F(GBPAGES);
 632	unsigned int f_lm = F(LM);
 633	unsigned int f_xfd = F(XFD);
 634#else
 635	unsigned int f_gbpages = 0;
 636	unsigned int f_lm = 0;
 637	unsigned int f_xfd = 0;
 638#endif
 639	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 640
 641	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 642		     sizeof(boot_cpu_data.x86_capability));
 643
 644	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 645	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 646
 647	kvm_cpu_cap_mask(CPUID_1_ECX,
 648		/*
 649		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 650		 * advertised to guests via CPUID!
 651		 */
 652		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 653		0 /* DS-CPL, VMX, SMX, EST */ |
 654		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 655		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 656		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 657		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 658		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 659		F(F16C) | F(RDRAND)
 660	);
 661	/* KVM emulates x2apic in software irrespective of host support. */
 662	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 663
 664	kvm_cpu_cap_mask(CPUID_1_EDX,
 665		F(FPU) | F(VME) | F(DE) | F(PSE) |
 666		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 667		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 668		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 669		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 670		0 /* Reserved, DS, ACPI */ | F(MMX) |
 671		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 672		0 /* HTT, TM, Reserved, PBE */
 673	);
 674
 675	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 676		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 677		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 678		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 679		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 680		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 681		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 682		F(AVX512VL));
 683
 684	kvm_cpu_cap_mask(CPUID_7_ECX,
 685		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 686		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 687		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 688		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 689		F(SGX_LC) | F(BUS_LOCK_DETECT)
 690	);
 691	/* Set LA57 based on hardware capability. */
 692	if (cpuid_ecx(7) & F(LA57))
 693		kvm_cpu_cap_set(X86_FEATURE_LA57);
 694
 695	/*
 696	 * PKU not yet implemented for shadow paging and requires OSPKE
 697	 * to be set on the host. Clear it if that is not the case
 698	 */
 699	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 700		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 701
 702	kvm_cpu_cap_mask(CPUID_7_EDX,
 703		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 704		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 705		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 706		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 707		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
 708	);
 709
 710	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 711	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 712	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 713
 714	if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
 715	    boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
 716	    boot_cpu_has(X86_FEATURE_AMD_IBRS))
 717		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 718	if (boot_cpu_has(X86_FEATURE_STIBP))
 719		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 720	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 721		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 722
 723	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 724		F(SHA512) | F(SM3) | F(SM4) | F(AVX_VNNI) | F(AVX512_BF16) |
 725		F(CMPCCXADD) | F(FZRM) | F(FSRS) | F(FSRC) | F(AMX_FP16) |
 726		F(AVX_IFMA) | F(LAM)
 727	);
 728
 729	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 730		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(AMX_COMPLEX) |
 731		F(AVX_VNNI_INT16) | F(PREFETCHITI) | F(AVX10)
 732	);
 733
 734	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
 735		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
 736		F(BHI_CTRL) | F(MCDT_NO)
 737	);
 738
 739	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 740		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 741	);
 742
 743	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 744		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 745	);
 746
 747	kvm_cpu_cap_init_kvm_defined(CPUID_24_0_EBX,
 748		F(AVX10_128) | F(AVX10_256) | F(AVX10_512)
 749	);
 750
 751	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 752		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 753		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 754		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 755		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 756		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 757	);
 758
 759	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 760		F(FPU) | F(VME) | F(DE) | F(PSE) |
 761		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 762		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 763		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 764		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 765		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 766		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 767		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 768	);
 769
 770	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 771		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 772
 773	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
 774		SF(CONSTANT_TSC)
 775	);
 776
 777	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 778		F(CLZERO) | F(XSAVEERPTR) |
 779		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 780		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 781		F(AMD_PSFD) | F(AMD_IBPB_RET)
 782	);
 783
 784	/*
 785	 * AMD has separate bits for each SPEC_CTRL bit.
 786	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 787	 * record that in cpufeatures so use them.
 788	 */
 789	if (boot_cpu_has(X86_FEATURE_IBPB)) {
 790		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 791		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
 792		    !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
 793			kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
 794	}
 795	if (boot_cpu_has(X86_FEATURE_IBRS))
 796		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 797	if (boot_cpu_has(X86_FEATURE_STIBP))
 798		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 799	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 800		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 801	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 802		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 803	/*
 804	 * The preference is to use SPEC CTRL MSR instead of the
 805	 * VIRT_SPEC MSR.
 806	 */
 807	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 808	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 809		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 810
 811	/*
 812	 * Hide all SVM features by default, SVM will set the cap bits for
 813	 * features it emulates and/or exposes for L1.
 814	 */
 815	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 816
 817	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 818		0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
 819		F(SME_COHERENT));
 820
 821	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
 822		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
 823		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
 824		F(WRMSR_XX_BASE_NS)
 825	);
 826
 827	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
 828	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
 829	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
 830
 831	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
 832		F(PERFMON_V2)
 833	);
 834
 835	/*
 836	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
 837	 * KVM's supported CPUID if the feature is reported as supported by the
 838	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
 839	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
 840	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
 841	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
 842	 * the mask with the raw host CPUID, and reporting support in AMD's
 843	 * leaf can make it easier for userspace to detect the feature.
 844	 */
 845	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
 846		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
 847	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
 848		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
 849	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
 850
 851	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 852		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 853		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 854		F(PMM) | F(PMM_EN)
 855	);
 856
 857	/*
 858	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 859	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 860	 * should never happen, but the guest will likely crash if RDTSCP or
 861	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 862	 * the past.  For example, the sanity check may fire if this instance of
 863	 * KVM is running as L1 on top of an older, broken KVM.
 864	 */
 865	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 866		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 867		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 868		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 869		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 870	}
 871}
 872EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 873
 874struct kvm_cpuid_array {
 875	struct kvm_cpuid_entry2 *entries;
 876	int maxnent;
 877	int nent;
 878};
 879
 880static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 881{
 882	if (array->nent >= array->maxnent)
 883		return NULL;
 884
 885	return &array->entries[array->nent++];
 886}
 887
 888static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 889					      u32 function, u32 index)
 890{
 891	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 892
 893	if (!entry)
 894		return NULL;
 895
 896	memset(entry, 0, sizeof(*entry));
 897	entry->function = function;
 898	entry->index = index;
 899	switch (function & 0xC0000000) {
 900	case 0x40000000:
 901		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 902		return entry;
 903
 904	case 0x80000000:
 905		/*
 906		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 907		 * would result in out-of-bounds calls to do_host_cpuid.
 908		 */
 909		{
 910			static int max_cpuid_80000000;
 911			if (!READ_ONCE(max_cpuid_80000000))
 912				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 913			if (function > READ_ONCE(max_cpuid_80000000))
 914				return entry;
 915		}
 916		break;
 917
 918	default:
 919		break;
 920	}
 921
 922	cpuid_count(entry->function, entry->index,
 923		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 924
 925	if (cpuid_function_is_indexed(function))
 926		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 927
 928	return entry;
 929}
 930
 931static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 932{
 933	struct kvm_cpuid_entry2 *entry;
 934
 935	if (array->nent >= array->maxnent)
 936		return -E2BIG;
 937
 938	entry = &array->entries[array->nent];
 939	entry->function = func;
 940	entry->index = 0;
 941	entry->flags = 0;
 942
 943	switch (func) {
 944	case 0:
 945		entry->eax = 7;
 946		++array->nent;
 947		break;
 948	case 1:
 949		entry->ecx = F(MOVBE);
 950		++array->nent;
 951		break;
 952	case 7:
 953		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 954		entry->eax = 0;
 955		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 956			entry->ecx = F(RDPID);
 957		++array->nent;
 958		break;
 959	default:
 960		break;
 961	}
 962
 963	return 0;
 964}
 965
 966static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 967{
 968	struct kvm_cpuid_entry2 *entry;
 969	int r, i, max_idx;
 970
 971	/* all calls to cpuid_count() should be made on the same cpu */
 972	get_cpu();
 973
 974	r = -E2BIG;
 975
 976	entry = do_host_cpuid(array, function, 0);
 977	if (!entry)
 978		goto out;
 979
 980	switch (function) {
 981	case 0:
 982		/* Limited to the highest leaf implemented in KVM. */
 983		entry->eax = min(entry->eax, 0x24U);
 984		break;
 985	case 1:
 986		cpuid_entry_override(entry, CPUID_1_EDX);
 987		cpuid_entry_override(entry, CPUID_1_ECX);
 988		break;
 989	case 2:
 990		/*
 991		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 992		 * CPUID(function=2, index=0) may return different results each
 993		 * time, with the least-significant byte in EAX enumerating the
 994		 * number of times software should do CPUID(2, 0).
 995		 *
 996		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 997		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 998		 * return 01H. Software should ignore this value and not
 999		 * interpret it as an informational descriptor", while AMD's
1000		 * APM states that CPUID(2) is reserved.
1001		 *
1002		 * WARN if a frankenstein CPU that supports virtualization and
1003		 * a stateful CPUID.0x2 is encountered.
1004		 */
1005		WARN_ON_ONCE((entry->eax & 0xff) > 1);
1006		break;
1007	/* functions 4 and 0x8000001d have additional index. */
1008	case 4:
1009	case 0x8000001d:
1010		/*
1011		 * Read entries until the cache type in the previous entry is
1012		 * zero, i.e. indicates an invalid entry.
1013		 */
1014		for (i = 1; entry->eax & 0x1f; ++i) {
1015			entry = do_host_cpuid(array, function, i);
1016			if (!entry)
1017				goto out;
1018		}
1019		break;
1020	case 6: /* Thermal management */
1021		entry->eax = 0x4; /* allow ARAT */
1022		entry->ebx = 0;
1023		entry->ecx = 0;
1024		entry->edx = 0;
1025		break;
1026	/* function 7 has additional index. */
1027	case 7:
1028		max_idx = entry->eax = min(entry->eax, 2u);
1029		cpuid_entry_override(entry, CPUID_7_0_EBX);
1030		cpuid_entry_override(entry, CPUID_7_ECX);
1031		cpuid_entry_override(entry, CPUID_7_EDX);
1032
1033		/* KVM only supports up to 0x7.2, capped above via min(). */
1034		if (max_idx >= 1) {
1035			entry = do_host_cpuid(array, function, 1);
1036			if (!entry)
1037				goto out;
1038
1039			cpuid_entry_override(entry, CPUID_7_1_EAX);
1040			cpuid_entry_override(entry, CPUID_7_1_EDX);
1041			entry->ebx = 0;
1042			entry->ecx = 0;
1043		}
1044		if (max_idx >= 2) {
1045			entry = do_host_cpuid(array, function, 2);
1046			if (!entry)
1047				goto out;
1048
1049			cpuid_entry_override(entry, CPUID_7_2_EDX);
1050			entry->ecx = 0;
1051			entry->ebx = 0;
1052			entry->eax = 0;
1053		}
1054		break;
1055	case 0xa: { /* Architectural Performance Monitoring */
1056		union cpuid10_eax eax;
1057		union cpuid10_edx edx;
1058
1059		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1060			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1061			break;
1062		}
1063
1064		eax.split.version_id = kvm_pmu_cap.version;
1065		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1066		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1067		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1068		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1069		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1070
1071		if (kvm_pmu_cap.version)
1072			edx.split.anythread_deprecated = 1;
1073		edx.split.reserved1 = 0;
1074		edx.split.reserved2 = 0;
1075
1076		entry->eax = eax.full;
1077		entry->ebx = kvm_pmu_cap.events_mask;
1078		entry->ecx = 0;
1079		entry->edx = edx.full;
1080		break;
1081	}
1082	case 0x1f:
1083	case 0xb:
1084		/*
1085		 * No topology; a valid topology is indicated by the presence
1086		 * of subleaf 1.
1087		 */
1088		entry->eax = entry->ebx = entry->ecx = 0;
1089		break;
1090	case 0xd: {
1091		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1092		u64 permitted_xss = kvm_caps.supported_xss;
1093
1094		entry->eax &= permitted_xcr0;
1095		entry->ebx = xstate_required_size(permitted_xcr0, false);
1096		entry->ecx = entry->ebx;
1097		entry->edx &= permitted_xcr0 >> 32;
1098		if (!permitted_xcr0)
1099			break;
1100
1101		entry = do_host_cpuid(array, function, 1);
1102		if (!entry)
1103			goto out;
1104
1105		cpuid_entry_override(entry, CPUID_D_1_EAX);
1106		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1107			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1108							  true);
1109		else {
1110			WARN_ON_ONCE(permitted_xss != 0);
1111			entry->ebx = 0;
1112		}
1113		entry->ecx &= permitted_xss;
1114		entry->edx &= permitted_xss >> 32;
1115
1116		for (i = 2; i < 64; ++i) {
1117			bool s_state;
1118			if (permitted_xcr0 & BIT_ULL(i))
1119				s_state = false;
1120			else if (permitted_xss & BIT_ULL(i))
1121				s_state = true;
1122			else
1123				continue;
1124
1125			entry = do_host_cpuid(array, function, i);
1126			if (!entry)
1127				goto out;
1128
1129			/*
1130			 * The supported check above should have filtered out
1131			 * invalid sub-leafs.  Only valid sub-leafs should
1132			 * reach this point, and they should have a non-zero
1133			 * save state size.  Furthermore, check whether the
1134			 * processor agrees with permitted_xcr0/permitted_xss
1135			 * on whether this is an XCR0- or IA32_XSS-managed area.
1136			 */
1137			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1138				--array->nent;
1139				continue;
1140			}
1141
1142			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1143				entry->ecx &= ~BIT_ULL(2);
1144			entry->edx = 0;
1145		}
1146		break;
1147	}
1148	case 0x12:
1149		/* Intel SGX */
1150		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1151			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1152			break;
1153		}
1154
1155		/*
1156		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1157		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1158		 * are restricted by kernel and KVM capabilities (like most
1159		 * feature flags), while enclave size is unrestricted.
1160		 */
1161		cpuid_entry_override(entry, CPUID_12_EAX);
1162		entry->ebx &= SGX_MISC_EXINFO;
1163
1164		entry = do_host_cpuid(array, function, 1);
1165		if (!entry)
1166			goto out;
1167
1168		/*
1169		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1170		 * feature flags.  Advertise all supported flags, including
1171		 * privileged attributes that require explicit opt-in from
1172		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1173		 * expected to derive it from supported XCR0.
1174		 */
1175		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1176		entry->ebx &= 0;
1177		break;
1178	/* Intel PT */
1179	case 0x14:
1180		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1181			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1182			break;
1183		}
1184
1185		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1186			if (!do_host_cpuid(array, function, i))
1187				goto out;
1188		}
1189		break;
1190	/* Intel AMX TILE */
1191	case 0x1d:
1192		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1193			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1194			break;
1195		}
1196
1197		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1198			if (!do_host_cpuid(array, function, i))
1199				goto out;
1200		}
1201		break;
1202	case 0x1e: /* TMUL information */
1203		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1204			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1205			break;
1206		}
1207		break;
1208	case 0x24: {
1209		u8 avx10_version;
1210
1211		if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1212			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1213			break;
1214		}
1215
1216		/*
1217		 * The AVX10 version is encoded in EBX[7:0].  Note, the version
1218		 * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1219		 * version needs to be captured before overriding EBX features!
1220		 */
1221		avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1222		cpuid_entry_override(entry, CPUID_24_0_EBX);
1223		entry->ebx |= avx10_version;
1224
1225		entry->eax = 0;
1226		entry->ecx = 0;
1227		entry->edx = 0;
1228		break;
1229	}
1230	case KVM_CPUID_SIGNATURE: {
1231		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1232		entry->eax = KVM_CPUID_FEATURES;
1233		entry->ebx = sigptr[0];
1234		entry->ecx = sigptr[1];
1235		entry->edx = sigptr[2];
1236		break;
1237	}
1238	case KVM_CPUID_FEATURES:
1239		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1240			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1241			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1242			     (1 << KVM_FEATURE_ASYNC_PF) |
1243			     (1 << KVM_FEATURE_PV_EOI) |
1244			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1245			     (1 << KVM_FEATURE_PV_UNHALT) |
1246			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1247			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1248			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1249			     (1 << KVM_FEATURE_POLL_CONTROL) |
1250			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1251			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1252
1253		if (sched_info_on())
1254			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1255
1256		entry->ebx = 0;
1257		entry->ecx = 0;
1258		entry->edx = 0;
1259		break;
1260	case 0x80000000:
1261		entry->eax = min(entry->eax, 0x80000022);
1262		/*
1263		 * Serializing LFENCE is reported in a multitude of ways, and
1264		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1265		 * userspace by providing the CPUID leaf ourselves.
1266		 *
1267		 * However, only do it if the host has CPUID leaf 0x8000001d.
1268		 * QEMU thinks that it can query the host blindly for that
1269		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1270		 * above.  The processor merrily returns values from the
1271		 * highest Intel leaf which QEMU tries to use as the guest's
1272		 * 0x8000001d.  Even worse, this can result in an infinite
1273		 * loop if said highest leaf has no subleaves indexed by ECX.
1274		 */
1275		if (entry->eax >= 0x8000001d &&
1276		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1277		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1278			entry->eax = max(entry->eax, 0x80000021);
1279		break;
1280	case 0x80000001:
1281		entry->ebx &= ~GENMASK(27, 16);
1282		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1283		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1284		break;
1285	case 0x80000005:
1286		/*  Pass host L1 cache and TLB info. */
1287		break;
1288	case 0x80000006:
1289		/* Drop reserved bits, pass host L2 cache and TLB info. */
1290		entry->edx &= ~GENMASK(17, 16);
1291		break;
1292	case 0x80000007: /* Advanced power management */
1293		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1294
1295		/* mask against host */
1296		entry->edx &= boot_cpu_data.x86_power;
1297		entry->eax = entry->ebx = entry->ecx = 0;
1298		break;
1299	case 0x80000008: {
1300		/*
1301		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1302		 * use.
1303		 *
1304		 * KVM's ABI is to report the effective MAXPHYADDR for the
1305		 * guest in PhysAddrSize (phys_as), and the maximum
1306		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1307		 *
1308		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1309		 * in which case the max GPA that can be addressed by KVM may
1310		 * be less than the max GPA that can be legally generated by
1311		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1312		 * support 5-level TDP.
1313		 */
1314		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1315		unsigned int phys_as, g_phys_as;
1316
1317		/*
1318		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1319		 * the guest operates in the same PA space as the host, i.e.
1320		 * reductions in MAXPHYADDR for memory encryption affect shadow
1321		 * paging, too.
1322		 *
1323		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1324		 * reductions to the HPAs do not affect GPAs.  The max
1325		 * addressable GPA is the same as the max effective GPA, except
1326		 * that it's capped at 48 bits if 5-level TDP isn't supported
1327		 * (hardware processes bits 51:48 only when walking the fifth
1328		 * level page table).
1329		 */
1330		if (!tdp_enabled) {
1331			phys_as = boot_cpu_data.x86_phys_bits;
1332			g_phys_as = 0;
1333		} else {
1334			phys_as = entry->eax & 0xff;
1335			g_phys_as = phys_as;
1336			if (kvm_mmu_get_max_tdp_level() < 5)
1337				g_phys_as = min(g_phys_as, 48);
1338		}
1339
1340		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1341		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1342		entry->edx = 0;
1343		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1344		break;
1345	}
1346	case 0x8000000A:
1347		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1348			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1349			break;
1350		}
1351		entry->eax = 1; /* SVM revision 1 */
1352		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1353				   ASID emulation to nested SVM */
1354		entry->ecx = 0; /* Reserved */
1355		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1356		break;
1357	case 0x80000019:
1358		entry->ecx = entry->edx = 0;
1359		break;
1360	case 0x8000001a:
1361		entry->eax &= GENMASK(2, 0);
1362		entry->ebx = entry->ecx = entry->edx = 0;
1363		break;
1364	case 0x8000001e:
1365		/* Do not return host topology information.  */
1366		entry->eax = entry->ebx = entry->ecx = 0;
1367		entry->edx = 0; /* reserved */
1368		break;
1369	case 0x8000001F:
1370		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1371			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1372		} else {
1373			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1374			/* Clear NumVMPL since KVM does not support VMPL.  */
1375			entry->ebx &= ~GENMASK(31, 12);
1376			/*
1377			 * Enumerate '0' for "PA bits reduction", the adjusted
1378			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1379			 */
1380			entry->ebx &= ~GENMASK(11, 6);
1381		}
1382		break;
1383	case 0x80000020:
1384		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1385		break;
1386	case 0x80000021:
1387		entry->ebx = entry->ecx = entry->edx = 0;
1388		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1389		break;
1390	/* AMD Extended Performance Monitoring and Debug */
1391	case 0x80000022: {
1392		union cpuid_0x80000022_ebx ebx;
1393
1394		entry->ecx = entry->edx = 0;
1395		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1396			entry->eax = entry->ebx = 0;
1397			break;
1398		}
1399
1400		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1401
1402		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1403			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1404		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1405			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1406		else
1407			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1408
1409		entry->ebx = ebx.full;
1410		break;
1411	}
1412	/*Add support for Centaur's CPUID instruction*/
1413	case 0xC0000000:
1414		/*Just support up to 0xC0000004 now*/
1415		entry->eax = min(entry->eax, 0xC0000004);
1416		break;
1417	case 0xC0000001:
1418		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1419		break;
1420	case 3: /* Processor serial number */
1421	case 5: /* MONITOR/MWAIT */
1422	case 0xC0000002:
1423	case 0xC0000003:
1424	case 0xC0000004:
1425	default:
1426		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1427		break;
1428	}
1429
1430	r = 0;
1431
1432out:
1433	put_cpu();
1434
1435	return r;
1436}
1437
1438static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1439			 unsigned int type)
1440{
1441	if (type == KVM_GET_EMULATED_CPUID)
1442		return __do_cpuid_func_emulated(array, func);
1443
1444	return __do_cpuid_func(array, func);
1445}
1446
1447#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1448
1449static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1450			  unsigned int type)
1451{
1452	u32 limit;
1453	int r;
1454
1455	if (func == CENTAUR_CPUID_SIGNATURE &&
1456	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1457		return 0;
1458
1459	r = do_cpuid_func(array, func, type);
1460	if (r)
1461		return r;
1462
1463	limit = array->entries[array->nent - 1].eax;
1464	for (func = func + 1; func <= limit; ++func) {
1465		r = do_cpuid_func(array, func, type);
1466		if (r)
1467			break;
1468	}
1469
1470	return r;
1471}
1472
1473static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1474				 __u32 num_entries, unsigned int ioctl_type)
1475{
1476	int i;
1477	__u32 pad[3];
1478
1479	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1480		return false;
1481
1482	/*
1483	 * We want to make sure that ->padding is being passed clean from
1484	 * userspace in case we want to use it for something in the future.
1485	 *
1486	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1487	 * have to give ourselves satisfied only with the emulated side. /me
1488	 * sheds a tear.
1489	 */
1490	for (i = 0; i < num_entries; i++) {
1491		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1492			return true;
1493
1494		if (pad[0] || pad[1] || pad[2])
1495			return true;
1496	}
1497	return false;
1498}
1499
1500int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1501			    struct kvm_cpuid_entry2 __user *entries,
1502			    unsigned int type)
1503{
1504	static const u32 funcs[] = {
1505		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1506	};
1507
1508	struct kvm_cpuid_array array = {
1509		.nent = 0,
1510	};
1511	int r, i;
1512
1513	if (cpuid->nent < 1)
1514		return -E2BIG;
1515	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1516		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1517
1518	if (sanity_check_entries(entries, cpuid->nent, type))
1519		return -EINVAL;
1520
1521	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1522	if (!array.entries)
1523		return -ENOMEM;
1524
1525	array.maxnent = cpuid->nent;
1526
1527	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1528		r = get_cpuid_func(&array, funcs[i], type);
1529		if (r)
1530			goto out_free;
1531	}
1532	cpuid->nent = array.nent;
1533
1534	if (copy_to_user(entries, array.entries,
1535			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1536		r = -EFAULT;
1537
1538out_free:
1539	kvfree(array.entries);
1540	return r;
1541}
1542
1543struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1544						    u32 function, u32 index)
1545{
1546	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1547				 function, index);
1548}
1549EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1550
1551struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1552					      u32 function)
1553{
1554	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1555				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1556}
1557EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1558
1559/*
1560 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1561 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1562 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1563 * range.  Centaur/VIA follows Intel semantics.
1564 *
1565 * A leaf is considered out-of-range if its function is higher than the maximum
1566 * supported leaf of its associated class or if its associated class does not
1567 * exist.
1568 *
1569 * There are three primary classes to be considered, with their respective
1570 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1571 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1572 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1573 *
1574 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1575 *  - Hypervisor: 0x40000000 - 0x4fffffff
1576 *  - Extended:   0x80000000 - 0xbfffffff
1577 *  - Centaur:    0xc0000000 - 0xcfffffff
1578 *
1579 * The Hypervisor class is further subdivided into sub-classes that each act as
1580 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1581 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1582 * CPUID sub-classes are:
1583 *
1584 *  - HyperV:     0x40000000 - 0x400000ff
1585 *  - KVM:        0x40000100 - 0x400001ff
1586 */
1587static struct kvm_cpuid_entry2 *
1588get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1589{
1590	struct kvm_cpuid_entry2 *basic, *class;
1591	u32 function = *fn_ptr;
1592
1593	basic = kvm_find_cpuid_entry(vcpu, 0);
1594	if (!basic)
1595		return NULL;
1596
1597	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1598	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1599		return NULL;
1600
1601	if (function >= 0x40000000 && function <= 0x4fffffff)
1602		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1603	else if (function >= 0xc0000000)
1604		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1605	else
1606		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1607
1608	if (class && function <= class->eax)
1609		return NULL;
1610
1611	/*
1612	 * Leaf specific adjustments are also applied when redirecting to the
1613	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1614	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1615	 * needs to be pulled from CPUID.0xb.1.
1616	 */
1617	*fn_ptr = basic->eax;
1618
1619	/*
1620	 * The class does not exist or the requested function is out of range;
1621	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1622	 * the original requested leaf is observed!
1623	 */
1624	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1625}
1626
1627bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1628	       u32 *ecx, u32 *edx, bool exact_only)
1629{
1630	u32 orig_function = *eax, function = *eax, index = *ecx;
1631	struct kvm_cpuid_entry2 *entry;
1632	bool exact, used_max_basic = false;
1633
1634	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1635	exact = !!entry;
1636
1637	if (!entry && !exact_only) {
1638		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1639		used_max_basic = !!entry;
1640	}
1641
1642	if (entry) {
1643		*eax = entry->eax;
1644		*ebx = entry->ebx;
1645		*ecx = entry->ecx;
1646		*edx = entry->edx;
1647		if (function == 7 && index == 0) {
1648			u64 data;
1649		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1650			    (data & TSX_CTRL_CPUID_CLEAR))
1651				*ebx &= ~(F(RTM) | F(HLE));
1652		} else if (function == 0x80000007) {
1653			if (kvm_hv_invtsc_suppressed(vcpu))
1654				*edx &= ~SF(CONSTANT_TSC);
1655		}
1656	} else {
1657		*eax = *ebx = *ecx = *edx = 0;
1658		/*
1659		 * When leaf 0BH or 1FH is defined, CL is pass-through
1660		 * and EDX is always the x2APIC ID, even for undefined
1661		 * subleaves. Index 1 will exist iff the leaf is
1662		 * implemented, so we pass through CL iff leaf 1
1663		 * exists. EDX can be copied from any existing index.
1664		 */
1665		if (function == 0xb || function == 0x1f) {
1666			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1667			if (entry) {
1668				*ecx = index & 0xff;
1669				*edx = entry->edx;
1670			}
1671		}
1672	}
1673	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1674			used_max_basic);
1675	return exact;
1676}
1677EXPORT_SYMBOL_GPL(kvm_cpuid);
1678
1679int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1680{
1681	u32 eax, ebx, ecx, edx;
1682
1683	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1684		return 1;
1685
1686	eax = kvm_rax_read(vcpu);
1687	ecx = kvm_rcx_read(vcpu);
1688	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1689	kvm_rax_write(vcpu, eax);
1690	kvm_rbx_write(vcpu, ebx);
1691	kvm_rcx_write(vcpu, ecx);
1692	kvm_rdx_write(vcpu, edx);
1693	return kvm_skip_emulated_instruction(vcpu);
1694}
1695EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kvm_host.h>
  14#include "linux/lockdep.h"
  15#include <linux/export.h>
  16#include <linux/vmalloc.h>
  17#include <linux/uaccess.h>
  18#include <linux/sched/stat.h>
  19
  20#include <asm/processor.h>
  21#include <asm/user.h>
  22#include <asm/fpu/xstate.h>
  23#include <asm/sgx.h>
  24#include <asm/cpuid.h>
  25#include "cpuid.h"
  26#include "lapic.h"
  27#include "mmu.h"
  28#include "trace.h"
  29#include "pmu.h"
  30#include "xen.h"
  31
  32/*
  33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  35 */
  36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39u32 xstate_required_size(u64 xstate_bv, bool compacted)
  40{
  41	int feature_bit = 0;
  42	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  43
  44	xstate_bv &= XFEATURE_MASK_EXTEND;
  45	while (xstate_bv) {
  46		if (xstate_bv & 0x1) {
  47		        u32 eax, ebx, ecx, edx, offset;
  48		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 
  49			/* ECX[1]: 64B alignment in compacted form */
  50			if (compacted)
  51				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
  52			else
  53				offset = ebx;
  54			ret = max(ret, offset + eax);
  55		}
  56
  57		xstate_bv >>= 1;
  58		feature_bit++;
  59	}
  60
  61	return ret;
  62}
  63
  64#define F feature_bit
  65
  66/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  67#define SF(name)						\
  68({								\
  69	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  70	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  71})
  72
  73/*
  74 * Magic value used by KVM when querying userspace-provided CPUID entries and
  75 * doesn't care about the CPIUD index because the index of the function in
  76 * question is not significant.  Note, this magic value must have at least one
  77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  78 * to avoid false positives when processing guest CPUID input.
  79 */
  80#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
  81
  82static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
  83	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
  84{
  85	struct kvm_cpuid_entry2 *e;
  86	int i;
  87
  88	/*
  89	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
  90	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
  91	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
  92	 * typically disabled in KVM only when KVM is in a performance critical
  93	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
  94	 * if this rule is violated, this assertion is purely to flag potential
  95	 * performance issues.  If this fires, consider moving the lookup out
  96	 * of the hotpath, e.g. by caching information during CPUID updates.
  97	 */
  98	lockdep_assert_irqs_enabled();
  99
 100	for (i = 0; i < nent; i++) {
 101		e = &entries[i];
 102
 103		if (e->function != function)
 104			continue;
 105
 106		/*
 107		 * If the index isn't significant, use the first entry with a
 108		 * matching function.  It's userspace's responsibility to not
 109		 * provide "duplicate" entries in all cases.
 110		 */
 111		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 112			return e;
 113
 114
 115		/*
 116		 * Similarly, use the first matching entry if KVM is doing a
 117		 * lookup (as opposed to emulating CPUID) for a function that's
 118		 * architecturally defined as not having a significant index.
 119		 */
 120		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 121			/*
 122			 * Direct lookups from KVM should not diverge from what
 123			 * KVM defines internally (the architectural behavior).
 124			 */
 125			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 126			return e;
 127		}
 128	}
 129
 130	return NULL;
 131}
 132
 133static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 134			   struct kvm_cpuid_entry2 *entries,
 135			   int nent)
 136{
 137	struct kvm_cpuid_entry2 *best;
 138	u64 xfeatures;
 139
 140	/*
 141	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 142	 * canonical address checks; exit if it is ever changed.
 143	 */
 144	best = cpuid_entry2_find(entries, nent, 0x80000008,
 145				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 146	if (best) {
 147		int vaddr_bits = (best->eax & 0xff00) >> 8;
 148
 149		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 150			return -EINVAL;
 151	}
 152
 153	/*
 154	 * Exposing dynamic xfeatures to the guest requires additional
 155	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 156	 */
 157	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 158	if (!best)
 159		return 0;
 160
 161	xfeatures = best->eax | ((u64)best->edx << 32);
 162	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 163	if (!xfeatures)
 164		return 0;
 165
 166	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 167}
 168
 169/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 170static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 171				 int nent)
 172{
 173	struct kvm_cpuid_entry2 *orig;
 174	int i;
 175
 176	if (nent != vcpu->arch.cpuid_nent)
 177		return -EINVAL;
 178
 179	for (i = 0; i < nent; i++) {
 180		orig = &vcpu->arch.cpuid_entries[i];
 181		if (e2[i].function != orig->function ||
 182		    e2[i].index != orig->index ||
 183		    e2[i].flags != orig->flags ||
 184		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 185		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 186			return -EINVAL;
 187	}
 188
 189	return 0;
 190}
 191
 192static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
 193							      int nent, const char *sig)
 194{
 195	struct kvm_hypervisor_cpuid cpuid = {};
 196	struct kvm_cpuid_entry2 *entry;
 197	u32 base;
 198
 199	for_each_possible_hypervisor_cpuid_base(base) {
 200		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 201
 202		if (entry) {
 203			u32 signature[3];
 204
 205			signature[0] = entry->ebx;
 206			signature[1] = entry->ecx;
 207			signature[2] = entry->edx;
 208
 209			if (!memcmp(signature, sig, sizeof(signature))) {
 210				cpuid.base = base;
 211				cpuid.limit = entry->eax;
 212				break;
 213			}
 214		}
 215	}
 216
 217	return cpuid;
 218}
 219
 220static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
 221							    const char *sig)
 222{
 223	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
 224					  vcpu->arch.cpuid_nent, sig);
 225}
 226
 227static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
 228							      int nent, u32 kvm_cpuid_base)
 229{
 230	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
 231				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 232}
 233
 234static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 235{
 236	u32 base = vcpu->arch.kvm_cpuid.base;
 237
 238	if (!base)
 239		return NULL;
 240
 241	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
 242					     vcpu->arch.cpuid_nent, base);
 243}
 244
 245void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 246{
 247	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 248
 249	/*
 250	 * save the feature bitmap to avoid cpuid lookup for every PV
 251	 * operation
 252	 */
 253	if (best)
 254		vcpu->arch.pv_cpuid.features = best->eax;
 255}
 256
 257/*
 258 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 259 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 260 */
 261static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 262{
 263	struct kvm_cpuid_entry2 *best;
 264
 265	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 266	if (!best)
 267		return 0;
 268
 269	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 270}
 271
 272static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 273				       int nent)
 274{
 275	struct kvm_cpuid_entry2 *best;
 276	struct kvm_hypervisor_cpuid kvm_cpuid;
 277
 278	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 279	if (best) {
 280		/* Update OSXSAVE bit */
 281		if (boot_cpu_has(X86_FEATURE_XSAVE))
 282			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 283					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
 284
 285		cpuid_entry_change(best, X86_FEATURE_APIC,
 286			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 287	}
 288
 289	best = cpuid_entry2_find(entries, nent, 7, 0);
 290	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 291		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 292				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
 293
 294	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 295	if (best)
 296		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 297
 298	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 299	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 300		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 301		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 302
 303	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
 304	if (kvm_cpuid.base) {
 305		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
 306		if (kvm_hlt_in_guest(vcpu->kvm) && best)
 307			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 308	}
 309
 310	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 311		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 312		if (best)
 313			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 314					   vcpu->arch.ia32_misc_enable_msr &
 315					   MSR_IA32_MISC_ENABLE_MWAIT);
 316	}
 317}
 318
 319void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 320{
 321	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 322}
 323EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 324
 325static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 326{
 327#ifdef CONFIG_KVM_HYPERV
 328	struct kvm_cpuid_entry2 *entry;
 329
 330	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 331				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 332	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 333#else
 334	return false;
 335#endif
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 338static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 339{
 340	struct kvm_lapic *apic = vcpu->arch.apic;
 341	struct kvm_cpuid_entry2 *best;
 342	bool allow_gbpages;
 343
 344	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
 345	bitmap_zero(vcpu->arch.governed_features.enabled,
 346		    KVM_MAX_NR_GOVERNED_FEATURES);
 347
 348	/*
 349	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
 350	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
 351	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
 352	 * walk for performance and complexity reasons.  Not to mention KVM
 353	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
 354	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
 355	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
 356	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
 357	 * and can install smaller shadow pages if the host lacks 1GiB support.
 358	 */
 359	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
 360				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
 361	if (allow_gbpages)
 362		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
 363
 364	best = kvm_find_cpuid_entry(vcpu, 1);
 365	if (best && apic) {
 366		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 367			apic->lapic_timer.timer_mode_mask = 3 << 17;
 368		else
 369			apic->lapic_timer.timer_mode_mask = 1 << 17;
 370
 371		kvm_apic_set_version(vcpu);
 372	}
 373
 374	vcpu->arch.guest_supported_xcr0 =
 375		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 376
 377	kvm_update_pv_runtime(vcpu);
 378
 379	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
 380	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 381	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 382
 383	kvm_pmu_refresh(vcpu);
 384	vcpu->arch.cr4_guest_rsvd_bits =
 385	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 386
 387	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 388						    vcpu->arch.cpuid_nent));
 389
 390	/* Invoke the vendor callback only after the above state is updated. */
 391	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 392
 393	/*
 394	 * Except for the MMU, which needs to do its thing any vendor specific
 395	 * adjustments to the reserved GPA bits.
 396	 */
 397	kvm_mmu_after_set_cpuid(vcpu);
 398}
 399
 400int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 401{
 402	struct kvm_cpuid_entry2 *best;
 403
 404	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 405	if (!best || best->eax < 0x80000008)
 406		goto not_found;
 407	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 408	if (best)
 409		return best->eax & 0xff;
 410not_found:
 411	return 36;
 412}
 413
 414/*
 415 * This "raw" version returns the reserved GPA bits without any adjustments for
 416 * encryption technologies that usurp bits.  The raw mask should be used if and
 417 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 418 */
 419u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 420{
 421	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 422}
 423
 424static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 425                        int nent)
 426{
 427	int r;
 428
 429	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 430
 431	/*
 432	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 433	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 434	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 435	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 436	 * the core vCPU model on the fly. It would've been better to forbid any
 437	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 438	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 439	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 440	 * whether the supplied CPUID data is equal to what's already set.
 441	 */
 442	if (kvm_vcpu_has_run(vcpu)) {
 443		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 444		if (r)
 445			return r;
 446
 447		kvfree(e2);
 448		return 0;
 449	}
 450
 451#ifdef CONFIG_KVM_HYPERV
 452	if (kvm_cpuid_has_hyperv(e2, nent)) {
 453		r = kvm_hv_vcpu_init(vcpu);
 454		if (r)
 455			return r;
 456	}
 457#endif
 458
 459	r = kvm_check_cpuid(vcpu, e2, nent);
 460	if (r)
 461		return r;
 462
 463	kvfree(vcpu->arch.cpuid_entries);
 464	vcpu->arch.cpuid_entries = e2;
 465	vcpu->arch.cpuid_nent = nent;
 466
 467	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
 468#ifdef CONFIG_KVM_XEN
 469	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
 470#endif
 471	kvm_vcpu_after_set_cpuid(vcpu);
 472
 473	return 0;
 474}
 475
 476/* when an old userspace process fills a new kernel module */
 477int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 478			     struct kvm_cpuid *cpuid,
 479			     struct kvm_cpuid_entry __user *entries)
 480{
 481	int r, i;
 482	struct kvm_cpuid_entry *e = NULL;
 483	struct kvm_cpuid_entry2 *e2 = NULL;
 484
 485	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 486		return -E2BIG;
 487
 488	if (cpuid->nent) {
 489		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
 490		if (IS_ERR(e))
 491			return PTR_ERR(e);
 492
 493		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 494		if (!e2) {
 495			r = -ENOMEM;
 496			goto out_free_cpuid;
 497		}
 498	}
 499	for (i = 0; i < cpuid->nent; i++) {
 500		e2[i].function = e[i].function;
 501		e2[i].eax = e[i].eax;
 502		e2[i].ebx = e[i].ebx;
 503		e2[i].ecx = e[i].ecx;
 504		e2[i].edx = e[i].edx;
 505		e2[i].index = 0;
 506		e2[i].flags = 0;
 507		e2[i].padding[0] = 0;
 508		e2[i].padding[1] = 0;
 509		e2[i].padding[2] = 0;
 510	}
 511
 512	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 513	if (r)
 514		kvfree(e2);
 515
 516out_free_cpuid:
 517	kvfree(e);
 518
 519	return r;
 520}
 521
 522int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 523			      struct kvm_cpuid2 *cpuid,
 524			      struct kvm_cpuid_entry2 __user *entries)
 525{
 526	struct kvm_cpuid_entry2 *e2 = NULL;
 527	int r;
 528
 529	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 530		return -E2BIG;
 531
 532	if (cpuid->nent) {
 533		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
 534		if (IS_ERR(e2))
 535			return PTR_ERR(e2);
 536	}
 537
 538	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 539	if (r)
 540		kvfree(e2);
 541
 542	return r;
 543}
 544
 545int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 546			      struct kvm_cpuid2 *cpuid,
 547			      struct kvm_cpuid_entry2 __user *entries)
 548{
 549	if (cpuid->nent < vcpu->arch.cpuid_nent)
 550		return -E2BIG;
 551
 552	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 553			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 554		return -EFAULT;
 555
 556	cpuid->nent = vcpu->arch.cpuid_nent;
 557	return 0;
 558}
 559
 560/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 561static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 562{
 563	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 564	struct kvm_cpuid_entry2 entry;
 565
 566	reverse_cpuid_check(leaf);
 567
 568	cpuid_count(cpuid.function, cpuid.index,
 569		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 570
 571	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 572}
 573
 574static __always_inline
 575void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 576{
 577	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 578	BUILD_BUG_ON(leaf < NCAPINTS);
 579
 580	kvm_cpu_caps[leaf] = mask;
 581
 582	__kvm_cpu_cap_mask(leaf);
 583}
 584
 585static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 586{
 587	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 588	BUILD_BUG_ON(leaf >= NCAPINTS);
 589
 590	kvm_cpu_caps[leaf] &= mask;
 591
 592	__kvm_cpu_cap_mask(leaf);
 593}
 594
 595void kvm_set_cpu_caps(void)
 596{
 597#ifdef CONFIG_X86_64
 598	unsigned int f_gbpages = F(GBPAGES);
 599	unsigned int f_lm = F(LM);
 600	unsigned int f_xfd = F(XFD);
 601#else
 602	unsigned int f_gbpages = 0;
 603	unsigned int f_lm = 0;
 604	unsigned int f_xfd = 0;
 605#endif
 606	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 607
 608	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 609		     sizeof(boot_cpu_data.x86_capability));
 610
 611	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 612	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 613
 614	kvm_cpu_cap_mask(CPUID_1_ECX,
 615		/*
 616		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 617		 * advertised to guests via CPUID!
 618		 */
 619		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 620		0 /* DS-CPL, VMX, SMX, EST */ |
 621		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 622		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 623		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 624		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 625		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 626		F(F16C) | F(RDRAND)
 627	);
 628	/* KVM emulates x2apic in software irrespective of host support. */
 629	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 630
 631	kvm_cpu_cap_mask(CPUID_1_EDX,
 632		F(FPU) | F(VME) | F(DE) | F(PSE) |
 633		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 634		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 635		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 636		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 637		0 /* Reserved, DS, ACPI */ | F(MMX) |
 638		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 639		0 /* HTT, TM, Reserved, PBE */
 640	);
 641
 642	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 643		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 644		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 645		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 646		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 647		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 648		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 649		F(AVX512VL));
 650
 651	kvm_cpu_cap_mask(CPUID_7_ECX,
 652		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 653		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 654		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 655		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 656		F(SGX_LC) | F(BUS_LOCK_DETECT)
 657	);
 658	/* Set LA57 based on hardware capability. */
 659	if (cpuid_ecx(7) & F(LA57))
 660		kvm_cpu_cap_set(X86_FEATURE_LA57);
 661
 662	/*
 663	 * PKU not yet implemented for shadow paging and requires OSPKE
 664	 * to be set on the host. Clear it if that is not the case
 665	 */
 666	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 667		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 668
 669	kvm_cpu_cap_mask(CPUID_7_EDX,
 670		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 671		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 672		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 673		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 674		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
 675	);
 676
 677	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 678	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 679	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 680
 681	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 
 
 682		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 683	if (boot_cpu_has(X86_FEATURE_STIBP))
 684		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 685	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 686		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 687
 688	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 689		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
 690		F(FZRM) | F(FSRS) | F(FSRC) |
 691		F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
 692	);
 693
 694	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 695		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
 696		F(AMX_COMPLEX)
 697	);
 698
 699	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
 700		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
 701		F(BHI_CTRL) | F(MCDT_NO)
 702	);
 703
 704	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 705		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 706	);
 707
 708	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 709		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 710	);
 711
 
 
 
 
 712	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 713		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 714		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 715		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 716		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 717		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 718	);
 719
 720	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 721		F(FPU) | F(VME) | F(DE) | F(PSE) |
 722		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 723		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 724		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 725		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 726		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 727		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 728		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 729	);
 730
 731	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 732		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 733
 734	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
 735		SF(CONSTANT_TSC)
 736	);
 737
 738	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 739		F(CLZERO) | F(XSAVEERPTR) |
 740		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 741		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 742		F(AMD_PSFD)
 743	);
 744
 745	/*
 746	 * AMD has separate bits for each SPEC_CTRL bit.
 747	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 748	 * record that in cpufeatures so use them.
 749	 */
 750	if (boot_cpu_has(X86_FEATURE_IBPB))
 751		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 
 
 
 
 752	if (boot_cpu_has(X86_FEATURE_IBRS))
 753		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 754	if (boot_cpu_has(X86_FEATURE_STIBP))
 755		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 756	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 757		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 758	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 759		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 760	/*
 761	 * The preference is to use SPEC CTRL MSR instead of the
 762	 * VIRT_SPEC MSR.
 763	 */
 764	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 765	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 766		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 767
 768	/*
 769	 * Hide all SVM features by default, SVM will set the cap bits for
 770	 * features it emulates and/or exposes for L1.
 771	 */
 772	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 773
 774	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 775		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 776		F(SME_COHERENT));
 777
 778	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
 779		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
 780		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
 781		F(WRMSR_XX_BASE_NS)
 782	);
 783
 784	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
 785	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
 786	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
 787
 788	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
 789		F(PERFMON_V2)
 790	);
 791
 792	/*
 793	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
 794	 * KVM's supported CPUID if the feature is reported as supported by the
 795	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
 796	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
 797	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
 798	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
 799	 * the mask with the raw host CPUID, and reporting support in AMD's
 800	 * leaf can make it easier for userspace to detect the feature.
 801	 */
 802	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
 803		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
 804	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
 805		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
 806	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
 807
 808	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 809		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 810		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 811		F(PMM) | F(PMM_EN)
 812	);
 813
 814	/*
 815	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 816	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 817	 * should never happen, but the guest will likely crash if RDTSCP or
 818	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 819	 * the past.  For example, the sanity check may fire if this instance of
 820	 * KVM is running as L1 on top of an older, broken KVM.
 821	 */
 822	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 823		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 824		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 825		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 826		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 827	}
 828}
 829EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 830
 831struct kvm_cpuid_array {
 832	struct kvm_cpuid_entry2 *entries;
 833	int maxnent;
 834	int nent;
 835};
 836
 837static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 838{
 839	if (array->nent >= array->maxnent)
 840		return NULL;
 841
 842	return &array->entries[array->nent++];
 843}
 844
 845static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 846					      u32 function, u32 index)
 847{
 848	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 849
 850	if (!entry)
 851		return NULL;
 852
 853	memset(entry, 0, sizeof(*entry));
 854	entry->function = function;
 855	entry->index = index;
 856	switch (function & 0xC0000000) {
 857	case 0x40000000:
 858		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 859		return entry;
 860
 861	case 0x80000000:
 862		/*
 863		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 864		 * would result in out-of-bounds calls to do_host_cpuid.
 865		 */
 866		{
 867			static int max_cpuid_80000000;
 868			if (!READ_ONCE(max_cpuid_80000000))
 869				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 870			if (function > READ_ONCE(max_cpuid_80000000))
 871				return entry;
 872		}
 873		break;
 874
 875	default:
 876		break;
 877	}
 878
 879	cpuid_count(entry->function, entry->index,
 880		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 881
 882	if (cpuid_function_is_indexed(function))
 883		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 884
 885	return entry;
 886}
 887
 888static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 889{
 890	struct kvm_cpuid_entry2 *entry;
 891
 892	if (array->nent >= array->maxnent)
 893		return -E2BIG;
 894
 895	entry = &array->entries[array->nent];
 896	entry->function = func;
 897	entry->index = 0;
 898	entry->flags = 0;
 899
 900	switch (func) {
 901	case 0:
 902		entry->eax = 7;
 903		++array->nent;
 904		break;
 905	case 1:
 906		entry->ecx = F(MOVBE);
 907		++array->nent;
 908		break;
 909	case 7:
 910		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 911		entry->eax = 0;
 912		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 913			entry->ecx = F(RDPID);
 914		++array->nent;
 915		break;
 916	default:
 917		break;
 918	}
 919
 920	return 0;
 921}
 922
 923static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 924{
 925	struct kvm_cpuid_entry2 *entry;
 926	int r, i, max_idx;
 927
 928	/* all calls to cpuid_count() should be made on the same cpu */
 929	get_cpu();
 930
 931	r = -E2BIG;
 932
 933	entry = do_host_cpuid(array, function, 0);
 934	if (!entry)
 935		goto out;
 936
 937	switch (function) {
 938	case 0:
 939		/* Limited to the highest leaf implemented in KVM. */
 940		entry->eax = min(entry->eax, 0x1fU);
 941		break;
 942	case 1:
 943		cpuid_entry_override(entry, CPUID_1_EDX);
 944		cpuid_entry_override(entry, CPUID_1_ECX);
 945		break;
 946	case 2:
 947		/*
 948		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 949		 * CPUID(function=2, index=0) may return different results each
 950		 * time, with the least-significant byte in EAX enumerating the
 951		 * number of times software should do CPUID(2, 0).
 952		 *
 953		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 954		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 955		 * return 01H. Software should ignore this value and not
 956		 * interpret it as an informational descriptor", while AMD's
 957		 * APM states that CPUID(2) is reserved.
 958		 *
 959		 * WARN if a frankenstein CPU that supports virtualization and
 960		 * a stateful CPUID.0x2 is encountered.
 961		 */
 962		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 963		break;
 964	/* functions 4 and 0x8000001d have additional index. */
 965	case 4:
 966	case 0x8000001d:
 967		/*
 968		 * Read entries until the cache type in the previous entry is
 969		 * zero, i.e. indicates an invalid entry.
 970		 */
 971		for (i = 1; entry->eax & 0x1f; ++i) {
 972			entry = do_host_cpuid(array, function, i);
 973			if (!entry)
 974				goto out;
 975		}
 976		break;
 977	case 6: /* Thermal management */
 978		entry->eax = 0x4; /* allow ARAT */
 979		entry->ebx = 0;
 980		entry->ecx = 0;
 981		entry->edx = 0;
 982		break;
 983	/* function 7 has additional index. */
 984	case 7:
 985		max_idx = entry->eax = min(entry->eax, 2u);
 986		cpuid_entry_override(entry, CPUID_7_0_EBX);
 987		cpuid_entry_override(entry, CPUID_7_ECX);
 988		cpuid_entry_override(entry, CPUID_7_EDX);
 989
 990		/* KVM only supports up to 0x7.2, capped above via min(). */
 991		if (max_idx >= 1) {
 992			entry = do_host_cpuid(array, function, 1);
 993			if (!entry)
 994				goto out;
 995
 996			cpuid_entry_override(entry, CPUID_7_1_EAX);
 997			cpuid_entry_override(entry, CPUID_7_1_EDX);
 998			entry->ebx = 0;
 999			entry->ecx = 0;
1000		}
1001		if (max_idx >= 2) {
1002			entry = do_host_cpuid(array, function, 2);
1003			if (!entry)
1004				goto out;
1005
1006			cpuid_entry_override(entry, CPUID_7_2_EDX);
1007			entry->ecx = 0;
1008			entry->ebx = 0;
1009			entry->eax = 0;
1010		}
1011		break;
1012	case 0xa: { /* Architectural Performance Monitoring */
1013		union cpuid10_eax eax;
1014		union cpuid10_edx edx;
1015
1016		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1017			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1018			break;
1019		}
1020
1021		eax.split.version_id = kvm_pmu_cap.version;
1022		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1023		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1024		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1025		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1026		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1027
1028		if (kvm_pmu_cap.version)
1029			edx.split.anythread_deprecated = 1;
1030		edx.split.reserved1 = 0;
1031		edx.split.reserved2 = 0;
1032
1033		entry->eax = eax.full;
1034		entry->ebx = kvm_pmu_cap.events_mask;
1035		entry->ecx = 0;
1036		entry->edx = edx.full;
1037		break;
1038	}
1039	case 0x1f:
1040	case 0xb:
1041		/*
1042		 * No topology; a valid topology is indicated by the presence
1043		 * of subleaf 1.
1044		 */
1045		entry->eax = entry->ebx = entry->ecx = 0;
1046		break;
1047	case 0xd: {
1048		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1049		u64 permitted_xss = kvm_caps.supported_xss;
1050
1051		entry->eax &= permitted_xcr0;
1052		entry->ebx = xstate_required_size(permitted_xcr0, false);
1053		entry->ecx = entry->ebx;
1054		entry->edx &= permitted_xcr0 >> 32;
1055		if (!permitted_xcr0)
1056			break;
1057
1058		entry = do_host_cpuid(array, function, 1);
1059		if (!entry)
1060			goto out;
1061
1062		cpuid_entry_override(entry, CPUID_D_1_EAX);
1063		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1064			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1065							  true);
1066		else {
1067			WARN_ON_ONCE(permitted_xss != 0);
1068			entry->ebx = 0;
1069		}
1070		entry->ecx &= permitted_xss;
1071		entry->edx &= permitted_xss >> 32;
1072
1073		for (i = 2; i < 64; ++i) {
1074			bool s_state;
1075			if (permitted_xcr0 & BIT_ULL(i))
1076				s_state = false;
1077			else if (permitted_xss & BIT_ULL(i))
1078				s_state = true;
1079			else
1080				continue;
1081
1082			entry = do_host_cpuid(array, function, i);
1083			if (!entry)
1084				goto out;
1085
1086			/*
1087			 * The supported check above should have filtered out
1088			 * invalid sub-leafs.  Only valid sub-leafs should
1089			 * reach this point, and they should have a non-zero
1090			 * save state size.  Furthermore, check whether the
1091			 * processor agrees with permitted_xcr0/permitted_xss
1092			 * on whether this is an XCR0- or IA32_XSS-managed area.
1093			 */
1094			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1095				--array->nent;
1096				continue;
1097			}
1098
1099			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1100				entry->ecx &= ~BIT_ULL(2);
1101			entry->edx = 0;
1102		}
1103		break;
1104	}
1105	case 0x12:
1106		/* Intel SGX */
1107		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1108			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1109			break;
1110		}
1111
1112		/*
1113		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1114		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1115		 * are restricted by kernel and KVM capabilities (like most
1116		 * feature flags), while enclave size is unrestricted.
1117		 */
1118		cpuid_entry_override(entry, CPUID_12_EAX);
1119		entry->ebx &= SGX_MISC_EXINFO;
1120
1121		entry = do_host_cpuid(array, function, 1);
1122		if (!entry)
1123			goto out;
1124
1125		/*
1126		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1127		 * feature flags.  Advertise all supported flags, including
1128		 * privileged attributes that require explicit opt-in from
1129		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1130		 * expected to derive it from supported XCR0.
1131		 */
1132		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1133		entry->ebx &= 0;
1134		break;
1135	/* Intel PT */
1136	case 0x14:
1137		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1138			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1139			break;
1140		}
1141
1142		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1143			if (!do_host_cpuid(array, function, i))
1144				goto out;
1145		}
1146		break;
1147	/* Intel AMX TILE */
1148	case 0x1d:
1149		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1150			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151			break;
1152		}
1153
1154		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1155			if (!do_host_cpuid(array, function, i))
1156				goto out;
1157		}
1158		break;
1159	case 0x1e: /* TMUL information */
1160		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1161			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1162			break;
1163		}
1164		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165	case KVM_CPUID_SIGNATURE: {
1166		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1167		entry->eax = KVM_CPUID_FEATURES;
1168		entry->ebx = sigptr[0];
1169		entry->ecx = sigptr[1];
1170		entry->edx = sigptr[2];
1171		break;
1172	}
1173	case KVM_CPUID_FEATURES:
1174		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1175			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1176			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1177			     (1 << KVM_FEATURE_ASYNC_PF) |
1178			     (1 << KVM_FEATURE_PV_EOI) |
1179			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1180			     (1 << KVM_FEATURE_PV_UNHALT) |
1181			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1182			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1183			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1184			     (1 << KVM_FEATURE_POLL_CONTROL) |
1185			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1186			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1187
1188		if (sched_info_on())
1189			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1190
1191		entry->ebx = 0;
1192		entry->ecx = 0;
1193		entry->edx = 0;
1194		break;
1195	case 0x80000000:
1196		entry->eax = min(entry->eax, 0x80000022);
1197		/*
1198		 * Serializing LFENCE is reported in a multitude of ways, and
1199		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1200		 * userspace by providing the CPUID leaf ourselves.
1201		 *
1202		 * However, only do it if the host has CPUID leaf 0x8000001d.
1203		 * QEMU thinks that it can query the host blindly for that
1204		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1205		 * above.  The processor merrily returns values from the
1206		 * highest Intel leaf which QEMU tries to use as the guest's
1207		 * 0x8000001d.  Even worse, this can result in an infinite
1208		 * loop if said highest leaf has no subleaves indexed by ECX.
1209		 */
1210		if (entry->eax >= 0x8000001d &&
1211		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1212		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1213			entry->eax = max(entry->eax, 0x80000021);
1214		break;
1215	case 0x80000001:
1216		entry->ebx &= ~GENMASK(27, 16);
1217		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1218		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1219		break;
1220	case 0x80000005:
1221		/*  Pass host L1 cache and TLB info. */
1222		break;
1223	case 0x80000006:
1224		/* Drop reserved bits, pass host L2 cache and TLB info. */
1225		entry->edx &= ~GENMASK(17, 16);
1226		break;
1227	case 0x80000007: /* Advanced power management */
1228		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1229
1230		/* mask against host */
1231		entry->edx &= boot_cpu_data.x86_power;
1232		entry->eax = entry->ebx = entry->ecx = 0;
1233		break;
1234	case 0x80000008: {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1236		unsigned int phys_as;
1237
1238		/*
1239		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1240		 * the guest operates in the same PA space as the host, i.e.
1241		 * reductions in MAXPHYADDR for memory encryption affect shadow
1242		 * paging, too.
1243		 *
1244		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1245		 * reductions to the HPAs do not affect GPAs.
 
 
 
 
1246		 */
1247		if (!tdp_enabled) {
1248			phys_as = boot_cpu_data.x86_phys_bits;
 
1249		} else {
1250			phys_as = entry->eax & 0xff;
 
 
 
1251		}
1252
1253		entry->eax = phys_as | (virt_as << 8);
1254		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1255		entry->edx = 0;
1256		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1257		break;
1258	}
1259	case 0x8000000A:
1260		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1261			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1262			break;
1263		}
1264		entry->eax = 1; /* SVM revision 1 */
1265		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1266				   ASID emulation to nested SVM */
1267		entry->ecx = 0; /* Reserved */
1268		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1269		break;
1270	case 0x80000019:
1271		entry->ecx = entry->edx = 0;
1272		break;
1273	case 0x8000001a:
1274		entry->eax &= GENMASK(2, 0);
1275		entry->ebx = entry->ecx = entry->edx = 0;
1276		break;
1277	case 0x8000001e:
1278		/* Do not return host topology information.  */
1279		entry->eax = entry->ebx = entry->ecx = 0;
1280		entry->edx = 0; /* reserved */
1281		break;
1282	case 0x8000001F:
1283		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1284			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1285		} else {
1286			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1287			/* Clear NumVMPL since KVM does not support VMPL.  */
1288			entry->ebx &= ~GENMASK(31, 12);
1289			/*
1290			 * Enumerate '0' for "PA bits reduction", the adjusted
1291			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1292			 */
1293			entry->ebx &= ~GENMASK(11, 6);
1294		}
1295		break;
1296	case 0x80000020:
1297		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1298		break;
1299	case 0x80000021:
1300		entry->ebx = entry->ecx = entry->edx = 0;
1301		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1302		break;
1303	/* AMD Extended Performance Monitoring and Debug */
1304	case 0x80000022: {
1305		union cpuid_0x80000022_ebx ebx;
1306
1307		entry->ecx = entry->edx = 0;
1308		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1309			entry->eax = entry->ebx;
1310			break;
1311		}
1312
1313		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1314
1315		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1316			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1317		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1318			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1319		else
1320			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1321
1322		entry->ebx = ebx.full;
1323		break;
1324	}
1325	/*Add support for Centaur's CPUID instruction*/
1326	case 0xC0000000:
1327		/*Just support up to 0xC0000004 now*/
1328		entry->eax = min(entry->eax, 0xC0000004);
1329		break;
1330	case 0xC0000001:
1331		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1332		break;
1333	case 3: /* Processor serial number */
1334	case 5: /* MONITOR/MWAIT */
1335	case 0xC0000002:
1336	case 0xC0000003:
1337	case 0xC0000004:
1338	default:
1339		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1340		break;
1341	}
1342
1343	r = 0;
1344
1345out:
1346	put_cpu();
1347
1348	return r;
1349}
1350
1351static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1352			 unsigned int type)
1353{
1354	if (type == KVM_GET_EMULATED_CPUID)
1355		return __do_cpuid_func_emulated(array, func);
1356
1357	return __do_cpuid_func(array, func);
1358}
1359
1360#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1361
1362static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1363			  unsigned int type)
1364{
1365	u32 limit;
1366	int r;
1367
1368	if (func == CENTAUR_CPUID_SIGNATURE &&
1369	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1370		return 0;
1371
1372	r = do_cpuid_func(array, func, type);
1373	if (r)
1374		return r;
1375
1376	limit = array->entries[array->nent - 1].eax;
1377	for (func = func + 1; func <= limit; ++func) {
1378		r = do_cpuid_func(array, func, type);
1379		if (r)
1380			break;
1381	}
1382
1383	return r;
1384}
1385
1386static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1387				 __u32 num_entries, unsigned int ioctl_type)
1388{
1389	int i;
1390	__u32 pad[3];
1391
1392	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1393		return false;
1394
1395	/*
1396	 * We want to make sure that ->padding is being passed clean from
1397	 * userspace in case we want to use it for something in the future.
1398	 *
1399	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1400	 * have to give ourselves satisfied only with the emulated side. /me
1401	 * sheds a tear.
1402	 */
1403	for (i = 0; i < num_entries; i++) {
1404		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1405			return true;
1406
1407		if (pad[0] || pad[1] || pad[2])
1408			return true;
1409	}
1410	return false;
1411}
1412
1413int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1414			    struct kvm_cpuid_entry2 __user *entries,
1415			    unsigned int type)
1416{
1417	static const u32 funcs[] = {
1418		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1419	};
1420
1421	struct kvm_cpuid_array array = {
1422		.nent = 0,
1423	};
1424	int r, i;
1425
1426	if (cpuid->nent < 1)
1427		return -E2BIG;
1428	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1429		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1430
1431	if (sanity_check_entries(entries, cpuid->nent, type))
1432		return -EINVAL;
1433
1434	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1435	if (!array.entries)
1436		return -ENOMEM;
1437
1438	array.maxnent = cpuid->nent;
1439
1440	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1441		r = get_cpuid_func(&array, funcs[i], type);
1442		if (r)
1443			goto out_free;
1444	}
1445	cpuid->nent = array.nent;
1446
1447	if (copy_to_user(entries, array.entries,
1448			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1449		r = -EFAULT;
1450
1451out_free:
1452	kvfree(array.entries);
1453	return r;
1454}
1455
1456struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1457						    u32 function, u32 index)
1458{
1459	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1460				 function, index);
1461}
1462EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1463
1464struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1465					      u32 function)
1466{
1467	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1468				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1469}
1470EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1471
1472/*
1473 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1474 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1475 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1476 * range.  Centaur/VIA follows Intel semantics.
1477 *
1478 * A leaf is considered out-of-range if its function is higher than the maximum
1479 * supported leaf of its associated class or if its associated class does not
1480 * exist.
1481 *
1482 * There are three primary classes to be considered, with their respective
1483 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1484 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1485 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1486 *
1487 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1488 *  - Hypervisor: 0x40000000 - 0x4fffffff
1489 *  - Extended:   0x80000000 - 0xbfffffff
1490 *  - Centaur:    0xc0000000 - 0xcfffffff
1491 *
1492 * The Hypervisor class is further subdivided into sub-classes that each act as
1493 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1494 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1495 * CPUID sub-classes are:
1496 *
1497 *  - HyperV:     0x40000000 - 0x400000ff
1498 *  - KVM:        0x40000100 - 0x400001ff
1499 */
1500static struct kvm_cpuid_entry2 *
1501get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1502{
1503	struct kvm_cpuid_entry2 *basic, *class;
1504	u32 function = *fn_ptr;
1505
1506	basic = kvm_find_cpuid_entry(vcpu, 0);
1507	if (!basic)
1508		return NULL;
1509
1510	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1511	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1512		return NULL;
1513
1514	if (function >= 0x40000000 && function <= 0x4fffffff)
1515		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1516	else if (function >= 0xc0000000)
1517		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1518	else
1519		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1520
1521	if (class && function <= class->eax)
1522		return NULL;
1523
1524	/*
1525	 * Leaf specific adjustments are also applied when redirecting to the
1526	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1527	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1528	 * needs to be pulled from CPUID.0xb.1.
1529	 */
1530	*fn_ptr = basic->eax;
1531
1532	/*
1533	 * The class does not exist or the requested function is out of range;
1534	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1535	 * the original requested leaf is observed!
1536	 */
1537	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1538}
1539
1540bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1541	       u32 *ecx, u32 *edx, bool exact_only)
1542{
1543	u32 orig_function = *eax, function = *eax, index = *ecx;
1544	struct kvm_cpuid_entry2 *entry;
1545	bool exact, used_max_basic = false;
1546
1547	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1548	exact = !!entry;
1549
1550	if (!entry && !exact_only) {
1551		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1552		used_max_basic = !!entry;
1553	}
1554
1555	if (entry) {
1556		*eax = entry->eax;
1557		*ebx = entry->ebx;
1558		*ecx = entry->ecx;
1559		*edx = entry->edx;
1560		if (function == 7 && index == 0) {
1561			u64 data;
1562		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1563			    (data & TSX_CTRL_CPUID_CLEAR))
1564				*ebx &= ~(F(RTM) | F(HLE));
1565		} else if (function == 0x80000007) {
1566			if (kvm_hv_invtsc_suppressed(vcpu))
1567				*edx &= ~SF(CONSTANT_TSC);
1568		}
1569	} else {
1570		*eax = *ebx = *ecx = *edx = 0;
1571		/*
1572		 * When leaf 0BH or 1FH is defined, CL is pass-through
1573		 * and EDX is always the x2APIC ID, even for undefined
1574		 * subleaves. Index 1 will exist iff the leaf is
1575		 * implemented, so we pass through CL iff leaf 1
1576		 * exists. EDX can be copied from any existing index.
1577		 */
1578		if (function == 0xb || function == 0x1f) {
1579			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1580			if (entry) {
1581				*ecx = index & 0xff;
1582				*edx = entry->edx;
1583			}
1584		}
1585	}
1586	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1587			used_max_basic);
1588	return exact;
1589}
1590EXPORT_SYMBOL_GPL(kvm_cpuid);
1591
1592int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1593{
1594	u32 eax, ebx, ecx, edx;
1595
1596	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1597		return 1;
1598
1599	eax = kvm_rax_read(vcpu);
1600	ecx = kvm_rcx_read(vcpu);
1601	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1602	kvm_rax_write(vcpu, eax);
1603	kvm_rbx_write(vcpu, ebx);
1604	kvm_rcx_write(vcpu, ecx);
1605	kvm_rdx_write(vcpu, edx);
1606	return kvm_skip_emulated_instruction(vcpu);
1607}
1608EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);