Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright (C) 2009, 2010 ARM Limited
   5 *
   6 * Author: Will Deacon <will.deacon@arm.com>
   7 */
   8
   9/*
  10 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  11 * using the CPU's debug registers.
  12 */
  13#define pr_fmt(fmt) "hw-breakpoint: " fmt
  14
  15#include <linux/errno.h>
  16#include <linux/hardirq.h>
  17#include <linux/perf_event.h>
  18#include <linux/hw_breakpoint.h>
  19#include <linux/smp.h>
  20#include <linux/cfi.h>
  21#include <linux/cpu_pm.h>
  22#include <linux/coresight.h>
  23
  24#include <asm/cacheflush.h>
  25#include <asm/cputype.h>
  26#include <asm/current.h>
  27#include <asm/hw_breakpoint.h>
  28#include <asm/traps.h>
  29
  30/* Breakpoint currently in use for each BRP. */
  31static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
  32
  33/* Watchpoint currently in use for each WRP. */
  34static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
  35
  36/* Number of BRP/WRP registers on this CPU. */
  37static int core_num_brps __ro_after_init;
  38static int core_num_wrps __ro_after_init;
  39
  40/* Debug architecture version. */
  41static u8 debug_arch __ro_after_init;
  42
  43/* Does debug architecture support OS Save and Restore? */
  44static bool has_ossr __ro_after_init;
  45
  46/* Maximum supported watchpoint length. */
  47static u8 max_watchpoint_len __ro_after_init;
  48
  49#define READ_WB_REG_CASE(OP2, M, VAL)			\
  50	case ((OP2 << 4) + M):				\
  51		ARM_DBG_READ(c0, c ## M, OP2, VAL);	\
  52		break
  53
  54#define WRITE_WB_REG_CASE(OP2, M, VAL)			\
  55	case ((OP2 << 4) + M):				\
  56		ARM_DBG_WRITE(c0, c ## M, OP2, VAL);	\
  57		break
  58
  59#define GEN_READ_WB_REG_CASES(OP2, VAL)		\
  60	READ_WB_REG_CASE(OP2, 0, VAL);		\
  61	READ_WB_REG_CASE(OP2, 1, VAL);		\
  62	READ_WB_REG_CASE(OP2, 2, VAL);		\
  63	READ_WB_REG_CASE(OP2, 3, VAL);		\
  64	READ_WB_REG_CASE(OP2, 4, VAL);		\
  65	READ_WB_REG_CASE(OP2, 5, VAL);		\
  66	READ_WB_REG_CASE(OP2, 6, VAL);		\
  67	READ_WB_REG_CASE(OP2, 7, VAL);		\
  68	READ_WB_REG_CASE(OP2, 8, VAL);		\
  69	READ_WB_REG_CASE(OP2, 9, VAL);		\
  70	READ_WB_REG_CASE(OP2, 10, VAL);		\
  71	READ_WB_REG_CASE(OP2, 11, VAL);		\
  72	READ_WB_REG_CASE(OP2, 12, VAL);		\
  73	READ_WB_REG_CASE(OP2, 13, VAL);		\
  74	READ_WB_REG_CASE(OP2, 14, VAL);		\
  75	READ_WB_REG_CASE(OP2, 15, VAL)
  76
  77#define GEN_WRITE_WB_REG_CASES(OP2, VAL)	\
  78	WRITE_WB_REG_CASE(OP2, 0, VAL);		\
  79	WRITE_WB_REG_CASE(OP2, 1, VAL);		\
  80	WRITE_WB_REG_CASE(OP2, 2, VAL);		\
  81	WRITE_WB_REG_CASE(OP2, 3, VAL);		\
  82	WRITE_WB_REG_CASE(OP2, 4, VAL);		\
  83	WRITE_WB_REG_CASE(OP2, 5, VAL);		\
  84	WRITE_WB_REG_CASE(OP2, 6, VAL);		\
  85	WRITE_WB_REG_CASE(OP2, 7, VAL);		\
  86	WRITE_WB_REG_CASE(OP2, 8, VAL);		\
  87	WRITE_WB_REG_CASE(OP2, 9, VAL);		\
  88	WRITE_WB_REG_CASE(OP2, 10, VAL);	\
  89	WRITE_WB_REG_CASE(OP2, 11, VAL);	\
  90	WRITE_WB_REG_CASE(OP2, 12, VAL);	\
  91	WRITE_WB_REG_CASE(OP2, 13, VAL);	\
  92	WRITE_WB_REG_CASE(OP2, 14, VAL);	\
  93	WRITE_WB_REG_CASE(OP2, 15, VAL)
  94
  95static u32 read_wb_reg(int n)
  96{
  97	u32 val = 0;
  98
  99	switch (n) {
 100	GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
 101	GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
 102	GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
 103	GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
 104	default:
 105		pr_warn("attempt to read from unknown breakpoint register %d\n",
 106			n);
 107	}
 108
 109	return val;
 110}
 111
 112static void write_wb_reg(int n, u32 val)
 113{
 114	switch (n) {
 115	GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
 116	GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
 117	GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
 118	GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
 119	default:
 120		pr_warn("attempt to write to unknown breakpoint register %d\n",
 121			n);
 122	}
 123	isb();
 124}
 125
 126/* Determine debug architecture. */
 127static u8 get_debug_arch(void)
 128{
 129	u32 didr;
 130
 131	/* Do we implement the extended CPUID interface? */
 132	if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
 133		pr_warn_once("CPUID feature registers not supported. "
 134			     "Assuming v6 debug is present.\n");
 135		return ARM_DEBUG_ARCH_V6;
 136	}
 137
 138	ARM_DBG_READ(c0, c0, 0, didr);
 139	return (didr >> 16) & 0xf;
 140}
 141
 142u8 arch_get_debug_arch(void)
 143{
 144	return debug_arch;
 145}
 146
 147static int debug_arch_supported(void)
 148{
 149	u8 arch = get_debug_arch();
 150
 151	/* We don't support the memory-mapped interface. */
 152	return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
 153		arch >= ARM_DEBUG_ARCH_V7_1;
 154}
 155
 156/* Can we determine the watchpoint access type from the fsr? */
 157static int debug_exception_updates_fsr(void)
 158{
 159	return get_debug_arch() >= ARM_DEBUG_ARCH_V8;
 160}
 161
 162/* Determine number of WRP registers available. */
 163static int get_num_wrp_resources(void)
 164{
 165	u32 didr;
 166	ARM_DBG_READ(c0, c0, 0, didr);
 167	return ((didr >> 28) & 0xf) + 1;
 168}
 169
 170/* Determine number of BRP registers available. */
 171static int get_num_brp_resources(void)
 172{
 173	u32 didr;
 174	ARM_DBG_READ(c0, c0, 0, didr);
 175	return ((didr >> 24) & 0xf) + 1;
 176}
 177
 178/* Does this core support mismatch breakpoints? */
 179static int core_has_mismatch_brps(void)
 180{
 181	return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
 182		get_num_brp_resources() > 1);
 183}
 184
 185/* Determine number of usable WRPs available. */
 186static int get_num_wrps(void)
 187{
 188	/*
 189	 * On debug architectures prior to 7.1, when a watchpoint fires, the
 190	 * only way to work out which watchpoint it was is by disassembling
 191	 * the faulting instruction and working out the address of the memory
 192	 * access.
 193	 *
 194	 * Furthermore, we can only do this if the watchpoint was precise
 195	 * since imprecise watchpoints prevent us from calculating register
 196	 * based addresses.
 197	 *
 198	 * Providing we have more than 1 breakpoint register, we only report
 199	 * a single watchpoint register for the time being. This way, we always
 200	 * know which watchpoint fired. In the future we can either add a
 201	 * disassembler and address generation emulator, or we can insert a
 202	 * check to see if the DFAR is set on watchpoint exception entry
 203	 * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
 204	 * that it is set on some implementations].
 205	 */
 206	if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
 207		return 1;
 208
 209	return get_num_wrp_resources();
 210}
 211
 212/* Determine number of usable BRPs available. */
 213static int get_num_brps(void)
 214{
 215	int brps = get_num_brp_resources();
 216	return core_has_mismatch_brps() ? brps - 1 : brps;
 217}
 218
 219/*
 220 * In order to access the breakpoint/watchpoint control registers,
 221 * we must be running in debug monitor mode. Unfortunately, we can
 222 * be put into halting debug mode at any time by an external debugger
 223 * but there is nothing we can do to prevent that.
 224 */
 225static int monitor_mode_enabled(void)
 226{
 227	u32 dscr;
 228	ARM_DBG_READ(c0, c1, 0, dscr);
 229	return !!(dscr & ARM_DSCR_MDBGEN);
 230}
 231
 232static int enable_monitor_mode(void)
 233{
 234	u32 dscr;
 235	ARM_DBG_READ(c0, c1, 0, dscr);
 236
 237	/* If monitor mode is already enabled, just return. */
 238	if (dscr & ARM_DSCR_MDBGEN)
 239		goto out;
 240
 241	/* Write to the corresponding DSCR. */
 242	switch (get_debug_arch()) {
 243	case ARM_DEBUG_ARCH_V6:
 244	case ARM_DEBUG_ARCH_V6_1:
 245		ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
 246		break;
 247	case ARM_DEBUG_ARCH_V7_ECP14:
 248	case ARM_DEBUG_ARCH_V7_1:
 249	case ARM_DEBUG_ARCH_V8:
 250	case ARM_DEBUG_ARCH_V8_1:
 251	case ARM_DEBUG_ARCH_V8_2:
 252	case ARM_DEBUG_ARCH_V8_4:
 253		ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
 254		isb();
 255		break;
 256	default:
 257		return -ENODEV;
 258	}
 259
 260	/* Check that the write made it through. */
 261	ARM_DBG_READ(c0, c1, 0, dscr);
 262	if (!(dscr & ARM_DSCR_MDBGEN)) {
 263		pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
 264				smp_processor_id());
 265		return -EPERM;
 266	}
 267
 268out:
 269	return 0;
 270}
 271
 272int hw_breakpoint_slots(int type)
 273{
 274	if (!debug_arch_supported())
 275		return 0;
 276
 277	/*
 278	 * We can be called early, so don't rely on
 279	 * our static variables being initialised.
 280	 */
 281	switch (type) {
 282	case TYPE_INST:
 283		return get_num_brps();
 284	case TYPE_DATA:
 285		return get_num_wrps();
 286	default:
 287		pr_warn("unknown slot type: %d\n", type);
 288		return 0;
 289	}
 290}
 291
 292/*
 293 * Check if 8-bit byte-address select is available.
 294 * This clobbers WRP 0.
 295 */
 296static u8 get_max_wp_len(void)
 297{
 298	u32 ctrl_reg;
 299	struct arch_hw_breakpoint_ctrl ctrl;
 300	u8 size = 4;
 301
 302	if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
 303		goto out;
 304
 305	memset(&ctrl, 0, sizeof(ctrl));
 306	ctrl.len = ARM_BREAKPOINT_LEN_8;
 307	ctrl_reg = encode_ctrl_reg(ctrl);
 308
 309	write_wb_reg(ARM_BASE_WVR, 0);
 310	write_wb_reg(ARM_BASE_WCR, ctrl_reg);
 311	if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
 312		size = 8;
 313
 314out:
 315	return size;
 316}
 317
 318u8 arch_get_max_wp_len(void)
 319{
 320	return max_watchpoint_len;
 321}
 322
 323/*
 324 * Install a perf counter breakpoint.
 325 */
 326int arch_install_hw_breakpoint(struct perf_event *bp)
 327{
 328	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 329	struct perf_event **slot, **slots;
 330	int i, max_slots, ctrl_base, val_base;
 331	u32 addr, ctrl;
 332
 333	addr = info->address;
 334	ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
 335
 336	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
 337		/* Breakpoint */
 338		ctrl_base = ARM_BASE_BCR;
 339		val_base = ARM_BASE_BVR;
 340		slots = this_cpu_ptr(bp_on_reg);
 341		max_slots = core_num_brps;
 342	} else {
 343		/* Watchpoint */
 344		ctrl_base = ARM_BASE_WCR;
 345		val_base = ARM_BASE_WVR;
 346		slots = this_cpu_ptr(wp_on_reg);
 347		max_slots = core_num_wrps;
 348	}
 349
 350	for (i = 0; i < max_slots; ++i) {
 351		slot = &slots[i];
 352
 353		if (!*slot) {
 354			*slot = bp;
 355			break;
 356		}
 357	}
 358
 359	if (i == max_slots) {
 360		pr_warn("Can't find any breakpoint slot\n");
 361		return -EBUSY;
 362	}
 363
 364	/* Override the breakpoint data with the step data. */
 365	if (info->step_ctrl.enabled) {
 366		addr = info->trigger & ~0x3;
 367		ctrl = encode_ctrl_reg(info->step_ctrl);
 368		if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
 369			i = 0;
 370			ctrl_base = ARM_BASE_BCR + core_num_brps;
 371			val_base = ARM_BASE_BVR + core_num_brps;
 372		}
 373	}
 374
 375	/* Setup the address register. */
 376	write_wb_reg(val_base + i, addr);
 377
 378	/* Setup the control register. */
 379	write_wb_reg(ctrl_base + i, ctrl);
 380	return 0;
 381}
 382
 383void arch_uninstall_hw_breakpoint(struct perf_event *bp)
 384{
 385	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 386	struct perf_event **slot, **slots;
 387	int i, max_slots, base;
 388
 389	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
 390		/* Breakpoint */
 391		base = ARM_BASE_BCR;
 392		slots = this_cpu_ptr(bp_on_reg);
 393		max_slots = core_num_brps;
 394	} else {
 395		/* Watchpoint */
 396		base = ARM_BASE_WCR;
 397		slots = this_cpu_ptr(wp_on_reg);
 398		max_slots = core_num_wrps;
 399	}
 400
 401	/* Remove the breakpoint. */
 402	for (i = 0; i < max_slots; ++i) {
 403		slot = &slots[i];
 404
 405		if (*slot == bp) {
 406			*slot = NULL;
 407			break;
 408		}
 409	}
 410
 411	if (i == max_slots) {
 412		pr_warn("Can't find any breakpoint slot\n");
 413		return;
 414	}
 415
 416	/* Ensure that we disable the mismatch breakpoint. */
 417	if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
 418	    info->step_ctrl.enabled) {
 419		i = 0;
 420		base = ARM_BASE_BCR + core_num_brps;
 421	}
 422
 423	/* Reset the control register. */
 424	write_wb_reg(base + i, 0);
 425}
 426
 427static int get_hbp_len(u8 hbp_len)
 428{
 429	unsigned int len_in_bytes = 0;
 430
 431	switch (hbp_len) {
 432	case ARM_BREAKPOINT_LEN_1:
 433		len_in_bytes = 1;
 434		break;
 435	case ARM_BREAKPOINT_LEN_2:
 436		len_in_bytes = 2;
 437		break;
 438	case ARM_BREAKPOINT_LEN_4:
 439		len_in_bytes = 4;
 440		break;
 441	case ARM_BREAKPOINT_LEN_8:
 442		len_in_bytes = 8;
 443		break;
 444	}
 445
 446	return len_in_bytes;
 447}
 448
 449/*
 450 * Check whether bp virtual address is in kernel space.
 451 */
 452int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
 453{
 454	unsigned int len;
 455	unsigned long va;
 456
 457	va = hw->address;
 458	len = get_hbp_len(hw->ctrl.len);
 459
 460	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
 461}
 462
 463/*
 464 * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
 465 * Hopefully this will disappear when ptrace can bypass the conversion
 466 * to generic breakpoint descriptions.
 467 */
 468int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
 469			   int *gen_len, int *gen_type)
 470{
 471	/* Type */
 472	switch (ctrl.type) {
 473	case ARM_BREAKPOINT_EXECUTE:
 474		*gen_type = HW_BREAKPOINT_X;
 475		break;
 476	case ARM_BREAKPOINT_LOAD:
 477		*gen_type = HW_BREAKPOINT_R;
 478		break;
 479	case ARM_BREAKPOINT_STORE:
 480		*gen_type = HW_BREAKPOINT_W;
 481		break;
 482	case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
 483		*gen_type = HW_BREAKPOINT_RW;
 484		break;
 485	default:
 486		return -EINVAL;
 487	}
 488
 489	/* Len */
 490	switch (ctrl.len) {
 491	case ARM_BREAKPOINT_LEN_1:
 492		*gen_len = HW_BREAKPOINT_LEN_1;
 493		break;
 494	case ARM_BREAKPOINT_LEN_2:
 495		*gen_len = HW_BREAKPOINT_LEN_2;
 496		break;
 497	case ARM_BREAKPOINT_LEN_4:
 498		*gen_len = HW_BREAKPOINT_LEN_4;
 499		break;
 500	case ARM_BREAKPOINT_LEN_8:
 501		*gen_len = HW_BREAKPOINT_LEN_8;
 502		break;
 503	default:
 504		return -EINVAL;
 505	}
 506
 507	return 0;
 508}
 509
 510/*
 511 * Construct an arch_hw_breakpoint from a perf_event.
 512 */
 513static int arch_build_bp_info(struct perf_event *bp,
 514			      const struct perf_event_attr *attr,
 515			      struct arch_hw_breakpoint *hw)
 516{
 517	/* Type */
 518	switch (attr->bp_type) {
 519	case HW_BREAKPOINT_X:
 520		hw->ctrl.type = ARM_BREAKPOINT_EXECUTE;
 521		break;
 522	case HW_BREAKPOINT_R:
 523		hw->ctrl.type = ARM_BREAKPOINT_LOAD;
 524		break;
 525	case HW_BREAKPOINT_W:
 526		hw->ctrl.type = ARM_BREAKPOINT_STORE;
 527		break;
 528	case HW_BREAKPOINT_RW:
 529		hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
 530		break;
 531	default:
 532		return -EINVAL;
 533	}
 534
 535	/* Len */
 536	switch (attr->bp_len) {
 537	case HW_BREAKPOINT_LEN_1:
 538		hw->ctrl.len = ARM_BREAKPOINT_LEN_1;
 539		break;
 540	case HW_BREAKPOINT_LEN_2:
 541		hw->ctrl.len = ARM_BREAKPOINT_LEN_2;
 542		break;
 543	case HW_BREAKPOINT_LEN_4:
 544		hw->ctrl.len = ARM_BREAKPOINT_LEN_4;
 545		break;
 546	case HW_BREAKPOINT_LEN_8:
 547		hw->ctrl.len = ARM_BREAKPOINT_LEN_8;
 548		if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE)
 549			&& max_watchpoint_len >= 8)
 550			break;
 551		fallthrough;
 552	default:
 553		return -EINVAL;
 554	}
 555
 556	/*
 557	 * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
 558	 * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
 559	 * by the hardware and must be aligned to the appropriate number of
 560	 * bytes.
 561	 */
 562	if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
 563	    hw->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
 564	    hw->ctrl.len != ARM_BREAKPOINT_LEN_4)
 565		return -EINVAL;
 566
 567	/* Address */
 568	hw->address = attr->bp_addr;
 569
 570	/* Privilege */
 571	hw->ctrl.privilege = ARM_BREAKPOINT_USER;
 572	if (arch_check_bp_in_kernelspace(hw))
 573		hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
 574
 575	/* Enabled? */
 576	hw->ctrl.enabled = !attr->disabled;
 577
 578	/* Mismatch */
 579	hw->ctrl.mismatch = 0;
 580
 581	return 0;
 582}
 583
 584/*
 585 * Validate the arch-specific HW Breakpoint register settings.
 586 */
 587int hw_breakpoint_arch_parse(struct perf_event *bp,
 588			     const struct perf_event_attr *attr,
 589			     struct arch_hw_breakpoint *hw)
 590{
 591	int ret = 0;
 592	u32 offset, alignment_mask = 0x3;
 593
 594	/* Ensure that we are in monitor debug mode. */
 595	if (!monitor_mode_enabled())
 596		return -ENODEV;
 597
 598	/* Build the arch_hw_breakpoint. */
 599	ret = arch_build_bp_info(bp, attr, hw);
 600	if (ret)
 601		goto out;
 602
 603	/* Check address alignment. */
 604	if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8)
 605		alignment_mask = 0x7;
 606	offset = hw->address & alignment_mask;
 607	switch (offset) {
 608	case 0:
 609		/* Aligned */
 610		break;
 611	case 1:
 612	case 2:
 613		/* Allow halfword watchpoints and breakpoints. */
 614		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2)
 615			break;
 616		fallthrough;
 617	case 3:
 618		/* Allow single byte watchpoint. */
 619		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1)
 620			break;
 621		fallthrough;
 622	default:
 623		ret = -EINVAL;
 624		goto out;
 625	}
 626
 627	hw->address &= ~alignment_mask;
 628	hw->ctrl.len <<= offset;
 629
 630	if (is_default_overflow_handler(bp)) {
 631		/*
 632		 * Mismatch breakpoints are required for single-stepping
 633		 * breakpoints.
 634		 */
 635		if (!core_has_mismatch_brps())
 636			return -EINVAL;
 637
 638		/* We don't allow mismatch breakpoints in kernel space. */
 639		if (arch_check_bp_in_kernelspace(hw))
 640			return -EPERM;
 641
 642		/*
 643		 * Per-cpu breakpoints are not supported by our stepping
 644		 * mechanism.
 645		 */
 646		if (!bp->hw.target)
 647			return -EINVAL;
 648
 649		/*
 650		 * We only support specific access types if the fsr
 651		 * reports them.
 652		 */
 653		if (!debug_exception_updates_fsr() &&
 654		    (hw->ctrl.type == ARM_BREAKPOINT_LOAD ||
 655		     hw->ctrl.type == ARM_BREAKPOINT_STORE))
 656			return -EINVAL;
 657	}
 658
 659out:
 660	return ret;
 661}
 662
 663/*
 664 * Enable/disable single-stepping over the breakpoint bp at address addr.
 665 */
 666static void enable_single_step(struct perf_event *bp, u32 addr)
 667{
 668	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 669
 670	arch_uninstall_hw_breakpoint(bp);
 671	info->step_ctrl.mismatch  = 1;
 672	info->step_ctrl.len	  = ARM_BREAKPOINT_LEN_4;
 673	info->step_ctrl.type	  = ARM_BREAKPOINT_EXECUTE;
 674	info->step_ctrl.privilege = info->ctrl.privilege;
 675	info->step_ctrl.enabled	  = 1;
 676	info->trigger		  = addr;
 677	arch_install_hw_breakpoint(bp);
 678}
 679
 680static void disable_single_step(struct perf_event *bp)
 681{
 682	arch_uninstall_hw_breakpoint(bp);
 683	counter_arch_bp(bp)->step_ctrl.enabled = 0;
 684	arch_install_hw_breakpoint(bp);
 685}
 686
 687/*
 688 * Arm32 hardware does not always report a watchpoint hit address that matches
 689 * one of the watchpoints set. It can also report an address "near" the
 690 * watchpoint if a single instruction access both watched and unwatched
 691 * addresses. There is no straight-forward way, short of disassembling the
 692 * offending instruction, to map that address back to the watchpoint. This
 693 * function computes the distance of the memory access from the watchpoint as a
 694 * heuristic for the likelyhood that a given access triggered the watchpoint.
 695 *
 696 * See this same function in the arm64 platform code, which has the same
 697 * problem.
 698 *
 699 * The function returns the distance of the address from the bytes watched by
 700 * the watchpoint. In case of an exact match, it returns 0.
 701 */
 702static u32 get_distance_from_watchpoint(unsigned long addr, u32 val,
 703					struct arch_hw_breakpoint_ctrl *ctrl)
 704{
 705	u32 wp_low, wp_high;
 706	u32 lens, lene;
 707
 708	lens = __ffs(ctrl->len);
 709	lene = __fls(ctrl->len);
 710
 711	wp_low = val + lens;
 712	wp_high = val + lene;
 713	if (addr < wp_low)
 714		return wp_low - addr;
 715	else if (addr > wp_high)
 716		return addr - wp_high;
 717	else
 718		return 0;
 719}
 720
 721static int watchpoint_fault_on_uaccess(struct pt_regs *regs,
 722				       struct arch_hw_breakpoint *info)
 723{
 724	return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER;
 725}
 726
 727static void watchpoint_handler(unsigned long addr, unsigned int fsr,
 728			       struct pt_regs *regs)
 729{
 730	int i, access, closest_match = 0;
 731	u32 min_dist = -1, dist;
 732	u32 val, ctrl_reg;
 733	struct perf_event *wp, **slots;
 734	struct arch_hw_breakpoint *info;
 735	struct arch_hw_breakpoint_ctrl ctrl;
 736
 737	slots = this_cpu_ptr(wp_on_reg);
 738
 739	/*
 740	 * Find all watchpoints that match the reported address. If no exact
 741	 * match is found. Attribute the hit to the closest watchpoint.
 742	 */
 743	rcu_read_lock();
 744	for (i = 0; i < core_num_wrps; ++i) {
 745		wp = slots[i];
 746		if (wp == NULL)
 747			continue;
 748
 749		/*
 750		 * The DFAR is an unknown value on debug architectures prior
 751		 * to 7.1. Since we only allow a single watchpoint on these
 752		 * older CPUs, we can set the trigger to the lowest possible
 753		 * faulting address.
 754		 */
 755		if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
 756			BUG_ON(i > 0);
 757			info = counter_arch_bp(wp);
 758			info->trigger = wp->attr.bp_addr;
 759		} else {
 760			/* Check that the access type matches. */
 761			if (debug_exception_updates_fsr()) {
 762				access = (fsr & ARM_FSR_ACCESS_MASK) ?
 763					  HW_BREAKPOINT_W : HW_BREAKPOINT_R;
 764				if (!(access & hw_breakpoint_type(wp)))
 765					continue;
 766			}
 767
 768			val = read_wb_reg(ARM_BASE_WVR + i);
 769			ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
 770			decode_ctrl_reg(ctrl_reg, &ctrl);
 771			dist = get_distance_from_watchpoint(addr, val, &ctrl);
 772			if (dist < min_dist) {
 773				min_dist = dist;
 774				closest_match = i;
 775			}
 776			/* Is this an exact match? */
 777			if (dist != 0)
 778				continue;
 779
 780			/* We have a winner. */
 781			info = counter_arch_bp(wp);
 782			info->trigger = addr;
 783		}
 784
 785		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
 786
 787		/*
 788		 * If we triggered a user watchpoint from a uaccess routine,
 789		 * then handle the stepping ourselves since userspace really
 790		 * can't help us with this.
 791		 */
 792		if (watchpoint_fault_on_uaccess(regs, info))
 793			goto step;
 794
 795		perf_bp_event(wp, regs);
 796
 797		/*
 798		 * Defer stepping to the overflow handler if one is installed.
 799		 * Otherwise, insert a temporary mismatch breakpoint so that
 800		 * we can single-step over the watchpoint trigger.
 801		 */
 802		if (!is_default_overflow_handler(wp))
 803			continue;
 804step:
 805		enable_single_step(wp, instruction_pointer(regs));
 806	}
 807
 808	if (min_dist > 0 && min_dist != -1) {
 809		/* No exact match found. */
 810		wp = slots[closest_match];
 811		info = counter_arch_bp(wp);
 812		info->trigger = addr;
 813		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
 814		perf_bp_event(wp, regs);
 815		if (is_default_overflow_handler(wp))
 816			enable_single_step(wp, instruction_pointer(regs));
 817	}
 818
 819	rcu_read_unlock();
 820}
 821
 822static void watchpoint_single_step_handler(unsigned long pc)
 823{
 824	int i;
 825	struct perf_event *wp, **slots;
 826	struct arch_hw_breakpoint *info;
 827
 828	slots = this_cpu_ptr(wp_on_reg);
 829
 830	for (i = 0; i < core_num_wrps; ++i) {
 831		rcu_read_lock();
 832
 833		wp = slots[i];
 834
 835		if (wp == NULL)
 836			goto unlock;
 837
 838		info = counter_arch_bp(wp);
 839		if (!info->step_ctrl.enabled)
 840			goto unlock;
 841
 842		/*
 843		 * Restore the original watchpoint if we've completed the
 844		 * single-step.
 845		 */
 846		if (info->trigger != pc)
 847			disable_single_step(wp);
 848
 849unlock:
 850		rcu_read_unlock();
 851	}
 852}
 853
 854static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
 855{
 856	int i;
 857	u32 ctrl_reg, val, addr;
 858	struct perf_event *bp, **slots;
 859	struct arch_hw_breakpoint *info;
 860	struct arch_hw_breakpoint_ctrl ctrl;
 861
 862	slots = this_cpu_ptr(bp_on_reg);
 863
 864	/* The exception entry code places the amended lr in the PC. */
 865	addr = regs->ARM_pc;
 866
 867	/* Check the currently installed breakpoints first. */
 868	for (i = 0; i < core_num_brps; ++i) {
 869		rcu_read_lock();
 870
 871		bp = slots[i];
 872
 873		if (bp == NULL)
 874			goto unlock;
 875
 876		info = counter_arch_bp(bp);
 877
 878		/* Check if the breakpoint value matches. */
 879		val = read_wb_reg(ARM_BASE_BVR + i);
 880		if (val != (addr & ~0x3))
 881			goto mismatch;
 882
 883		/* Possible match, check the byte address select to confirm. */
 884		ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
 885		decode_ctrl_reg(ctrl_reg, &ctrl);
 886		if ((1 << (addr & 0x3)) & ctrl.len) {
 887			info->trigger = addr;
 888			pr_debug("breakpoint fired: address = 0x%x\n", addr);
 889			perf_bp_event(bp, regs);
 890			if (is_default_overflow_handler(bp))
 891				enable_single_step(bp, addr);
 892			goto unlock;
 893		}
 894
 895mismatch:
 896		/* If we're stepping a breakpoint, it can now be restored. */
 897		if (info->step_ctrl.enabled)
 898			disable_single_step(bp);
 899unlock:
 900		rcu_read_unlock();
 901	}
 902
 903	/* Handle any pending watchpoint single-step breakpoints. */
 904	watchpoint_single_step_handler(addr);
 905}
 906
 907#ifdef CONFIG_CFI_CLANG
 908static void hw_breakpoint_cfi_handler(struct pt_regs *regs)
 909{
 910	/*
 911	 * TODO: implementing target and type to pass to CFI using the more
 912	 * elaborate report_cfi_failure() requires compiler work. To be able
 913	 * to properly extract target information the compiler needs to
 914	 * emit a stable instructions sequence for the CFI checks so we can
 915	 * decode the instructions preceding the trap and figure out which
 916	 * registers were used.
 917	 */
 918
 919	switch (report_cfi_failure_noaddr(regs, instruction_pointer(regs))) {
 920	case BUG_TRAP_TYPE_BUG:
 921		die("Oops - CFI", regs, 0);
 922		break;
 923	case BUG_TRAP_TYPE_WARN:
 924		/* Skip the breaking instruction */
 925		instruction_pointer(regs) += 4;
 926		break;
 927	default:
 928		die("Unknown CFI error", regs, 0);
 929		break;
 930	}
 931}
 932#else
 933static void hw_breakpoint_cfi_handler(struct pt_regs *regs)
 934{
 935}
 936#endif
 937
 938/*
 939 * Called from either the Data Abort Handler [watchpoint] or the
 940 * Prefetch Abort Handler [breakpoint] with interrupts disabled.
 941 */
 942static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
 943				 struct pt_regs *regs)
 944{
 945	int ret = 0;
 946	u32 dscr;
 947
 948	preempt_disable();
 949
 950	if (interrupts_enabled(regs))
 951		local_irq_enable();
 952
 953	/* We only handle watchpoints and hardware breakpoints. */
 954	ARM_DBG_READ(c0, c1, 0, dscr);
 955
 956	/* Perform perf callbacks. */
 957	switch (ARM_DSCR_MOE(dscr)) {
 958	case ARM_ENTRY_BREAKPOINT:
 959		breakpoint_handler(addr, regs);
 960		break;
 961	case ARM_ENTRY_ASYNC_WATCHPOINT:
 962		WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
 963		fallthrough;
 964	case ARM_ENTRY_SYNC_WATCHPOINT:
 965		watchpoint_handler(addr, fsr, regs);
 966		break;
 967	case ARM_ENTRY_CFI_BREAKPOINT:
 968		hw_breakpoint_cfi_handler(regs);
 969		break;
 970	default:
 971		ret = 1; /* Unhandled fault. */
 972	}
 973
 974	preempt_enable();
 975
 976	return ret;
 977}
 978
 979#ifdef CONFIG_ARM_ERRATA_764319
 980static int oslsr_fault;
 981
 982static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr)
 983{
 984	oslsr_fault = 1;
 985	instruction_pointer(regs) += 4;
 986	return 0;
 987}
 988
 989static struct undef_hook debug_oslsr_hook = {
 990	.instr_mask  = 0xffffffff,
 991	.instr_val = 0xee115e91,
 992	.fn = debug_oslsr_trap,
 993};
 994#endif
 995
 996/*
 997 * One-time initialisation.
 998 */
 999static cpumask_t debug_err_mask;
1000
1001static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
1002{
1003	int cpu = smp_processor_id();
1004
1005	pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
1006		instr, cpu);
1007
1008	/* Set the error flag for this CPU and skip the faulting instruction. */
1009	cpumask_set_cpu(cpu, &debug_err_mask);
1010	instruction_pointer(regs) += 4;
1011	return 0;
1012}
1013
1014static struct undef_hook debug_reg_hook = {
1015	.instr_mask	= 0x0fe80f10,
1016	.instr_val	= 0x0e000e10,
1017	.fn		= debug_reg_trap,
1018};
1019
1020/* Does this core support OS Save and Restore? */
1021static bool core_has_os_save_restore(void)
1022{
1023	u32 oslsr;
1024
1025	switch (get_debug_arch()) {
1026	case ARM_DEBUG_ARCH_V7_1:
1027		return true;
1028	case ARM_DEBUG_ARCH_V7_ECP14:
1029#ifdef CONFIG_ARM_ERRATA_764319
1030		oslsr_fault = 0;
1031		register_undef_hook(&debug_oslsr_hook);
1032		ARM_DBG_READ(c1, c1, 4, oslsr);
1033		unregister_undef_hook(&debug_oslsr_hook);
1034		if (oslsr_fault)
1035			return false;
1036#else
1037		ARM_DBG_READ(c1, c1, 4, oslsr);
1038#endif
1039		if (oslsr & ARM_OSLSR_OSLM0)
1040			return true;
1041		fallthrough;
1042	default:
1043		return false;
1044	}
1045}
1046
1047static void reset_ctrl_regs(unsigned int cpu)
1048{
1049	int i, raw_num_brps, err = 0;
1050	u32 val;
1051
1052	/*
1053	 * v7 debug contains save and restore registers so that debug state
1054	 * can be maintained across low-power modes without leaving the debug
1055	 * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
1056	 * the debug registers out of reset, so we must unlock the OS Lock
1057	 * Access Register to avoid taking undefined instruction exceptions
1058	 * later on.
1059	 */
1060	switch (debug_arch) {
1061	case ARM_DEBUG_ARCH_V6:
1062	case ARM_DEBUG_ARCH_V6_1:
1063		/* ARMv6 cores clear the registers out of reset. */
1064		goto out_mdbgen;
1065	case ARM_DEBUG_ARCH_V7_ECP14:
1066		/*
1067		 * Ensure sticky power-down is clear (i.e. debug logic is
1068		 * powered up).
1069		 */
1070		ARM_DBG_READ(c1, c5, 4, val);
1071		if ((val & 0x1) == 0)
1072			err = -EPERM;
1073
1074		if (!has_ossr)
1075			goto clear_vcr;
1076		break;
1077	case ARM_DEBUG_ARCH_V7_1:
1078		/*
1079		 * Ensure the OS double lock is clear.
1080		 */
1081		ARM_DBG_READ(c1, c3, 4, val);
1082		if ((val & 0x1) == 1)
1083			err = -EPERM;
1084		break;
1085	}
1086
1087	if (err) {
1088		pr_warn_once("CPU %d debug is powered down!\n", cpu);
1089		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1090		return;
1091	}
1092
1093	/*
1094	 * Unconditionally clear the OS lock by writing a value
1095	 * other than CS_LAR_KEY to the access register.
1096	 */
1097	ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK);
1098	isb();
1099
1100	/*
1101	 * Clear any configured vector-catch events before
1102	 * enabling monitor mode.
1103	 */
1104clear_vcr:
1105	ARM_DBG_WRITE(c0, c7, 0, 0);
1106	isb();
1107
1108	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1109		pr_warn_once("CPU %d failed to disable vector catch\n", cpu);
1110		return;
1111	}
1112
1113	/*
1114	 * The control/value register pairs are UNKNOWN out of reset so
1115	 * clear them to avoid spurious debug events.
1116	 */
1117	raw_num_brps = get_num_brp_resources();
1118	for (i = 0; i < raw_num_brps; ++i) {
1119		write_wb_reg(ARM_BASE_BCR + i, 0UL);
1120		write_wb_reg(ARM_BASE_BVR + i, 0UL);
1121	}
1122
1123	for (i = 0; i < core_num_wrps; ++i) {
1124		write_wb_reg(ARM_BASE_WCR + i, 0UL);
1125		write_wb_reg(ARM_BASE_WVR + i, 0UL);
1126	}
1127
1128	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1129		pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu);
1130		return;
1131	}
1132
1133	/*
1134	 * Have a crack at enabling monitor mode. We don't actually need
1135	 * it yet, but reporting an error early is useful if it fails.
1136	 */
1137out_mdbgen:
1138	if (enable_monitor_mode())
1139		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1140}
1141
1142static int dbg_reset_online(unsigned int cpu)
1143{
1144	local_irq_disable();
1145	reset_ctrl_regs(cpu);
1146	local_irq_enable();
1147	return 0;
1148}
1149
1150#ifdef CONFIG_CPU_PM
1151static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action,
1152			     void *v)
1153{
1154	if (action == CPU_PM_EXIT)
1155		reset_ctrl_regs(smp_processor_id());
1156
1157	return NOTIFY_OK;
1158}
1159
1160static struct notifier_block dbg_cpu_pm_nb = {
1161	.notifier_call = dbg_cpu_pm_notify,
1162};
1163
1164static void __init pm_init(void)
1165{
1166	cpu_pm_register_notifier(&dbg_cpu_pm_nb);
1167}
1168#else
1169static inline void pm_init(void)
1170{
1171}
1172#endif
1173
1174static int __init arch_hw_breakpoint_init(void)
1175{
1176	int ret;
1177
1178	debug_arch = get_debug_arch();
1179
1180	if (!debug_arch_supported()) {
1181		pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
1182		return 0;
1183	}
1184
1185	/*
1186	 * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD
1187	 * whenever a WFI is issued, even if the core is not powered down, in
1188	 * violation of the architecture.  When DBGPRSR.SPD is set, accesses to
1189	 * breakpoint and watchpoint registers are treated as undefined, so
1190	 * this results in boot time and runtime failures when these are
1191	 * accessed and we unexpectedly take a trap.
1192	 *
1193	 * It's not clear if/how this can be worked around, so we blacklist
1194	 * Scorpion CPUs to avoid these issues.
1195	*/
1196	if (read_cpuid_part() == ARM_CPU_PART_SCORPION) {
1197		pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n");
1198		return 0;
1199	}
1200
1201	has_ossr = core_has_os_save_restore();
1202
1203	/* Determine how many BRPs/WRPs are available. */
1204	core_num_brps = get_num_brps();
1205	core_num_wrps = get_num_wrps();
1206
1207	/*
1208	 * We need to tread carefully here because DBGSWENABLE may be
1209	 * driven low on this core and there isn't an architected way to
1210	 * determine that.
1211	 */
1212	cpus_read_lock();
1213	register_undef_hook(&debug_reg_hook);
1214
1215	/*
1216	 * Register CPU notifier which resets the breakpoint resources. We
1217	 * assume that a halting debugger will leave the world in a nice state
1218	 * for us.
1219	 */
1220	ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
1221					   "arm/hw_breakpoint:online",
1222					   dbg_reset_online, NULL);
1223	unregister_undef_hook(&debug_reg_hook);
1224	if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) {
1225		core_num_brps = 0;
1226		core_num_wrps = 0;
1227		if (ret > 0)
1228			cpuhp_remove_state_nocalls_cpuslocked(ret);
1229		cpus_read_unlock();
1230		return 0;
1231	}
1232
1233	pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
1234		core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
1235		"", core_num_wrps);
1236
1237	/* Work out the maximum supported watchpoint length. */
1238	max_watchpoint_len = get_max_wp_len();
1239	pr_info("maximum watchpoint size is %u bytes.\n",
1240			max_watchpoint_len);
1241
1242	/* Register debug fault handler. */
1243	hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1244			TRAP_HWBKPT, "watchpoint debug exception");
1245	hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1246			TRAP_HWBKPT, "breakpoint debug exception");
1247	cpus_read_unlock();
1248
1249	/* Register PM notifiers. */
1250	pm_init();
1251	return 0;
1252}
1253arch_initcall(arch_hw_breakpoint_init);
1254
1255void hw_breakpoint_pmu_read(struct perf_event *bp)
1256{
1257}
1258
1259/*
1260 * Dummy function to register with die_notifier.
1261 */
1262int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1263					unsigned long val, void *data)
1264{
1265	return NOTIFY_DONE;
1266}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright (C) 2009, 2010 ARM Limited
   5 *
   6 * Author: Will Deacon <will.deacon@arm.com>
   7 */
   8
   9/*
  10 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  11 * using the CPU's debug registers.
  12 */
  13#define pr_fmt(fmt) "hw-breakpoint: " fmt
  14
  15#include <linux/errno.h>
  16#include <linux/hardirq.h>
  17#include <linux/perf_event.h>
  18#include <linux/hw_breakpoint.h>
  19#include <linux/smp.h>
 
  20#include <linux/cpu_pm.h>
  21#include <linux/coresight.h>
  22
  23#include <asm/cacheflush.h>
  24#include <asm/cputype.h>
  25#include <asm/current.h>
  26#include <asm/hw_breakpoint.h>
  27#include <asm/traps.h>
  28
  29/* Breakpoint currently in use for each BRP. */
  30static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
  31
  32/* Watchpoint currently in use for each WRP. */
  33static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
  34
  35/* Number of BRP/WRP registers on this CPU. */
  36static int core_num_brps __ro_after_init;
  37static int core_num_wrps __ro_after_init;
  38
  39/* Debug architecture version. */
  40static u8 debug_arch __ro_after_init;
  41
  42/* Does debug architecture support OS Save and Restore? */
  43static bool has_ossr __ro_after_init;
  44
  45/* Maximum supported watchpoint length. */
  46static u8 max_watchpoint_len __ro_after_init;
  47
  48#define READ_WB_REG_CASE(OP2, M, VAL)			\
  49	case ((OP2 << 4) + M):				\
  50		ARM_DBG_READ(c0, c ## M, OP2, VAL);	\
  51		break
  52
  53#define WRITE_WB_REG_CASE(OP2, M, VAL)			\
  54	case ((OP2 << 4) + M):				\
  55		ARM_DBG_WRITE(c0, c ## M, OP2, VAL);	\
  56		break
  57
  58#define GEN_READ_WB_REG_CASES(OP2, VAL)		\
  59	READ_WB_REG_CASE(OP2, 0, VAL);		\
  60	READ_WB_REG_CASE(OP2, 1, VAL);		\
  61	READ_WB_REG_CASE(OP2, 2, VAL);		\
  62	READ_WB_REG_CASE(OP2, 3, VAL);		\
  63	READ_WB_REG_CASE(OP2, 4, VAL);		\
  64	READ_WB_REG_CASE(OP2, 5, VAL);		\
  65	READ_WB_REG_CASE(OP2, 6, VAL);		\
  66	READ_WB_REG_CASE(OP2, 7, VAL);		\
  67	READ_WB_REG_CASE(OP2, 8, VAL);		\
  68	READ_WB_REG_CASE(OP2, 9, VAL);		\
  69	READ_WB_REG_CASE(OP2, 10, VAL);		\
  70	READ_WB_REG_CASE(OP2, 11, VAL);		\
  71	READ_WB_REG_CASE(OP2, 12, VAL);		\
  72	READ_WB_REG_CASE(OP2, 13, VAL);		\
  73	READ_WB_REG_CASE(OP2, 14, VAL);		\
  74	READ_WB_REG_CASE(OP2, 15, VAL)
  75
  76#define GEN_WRITE_WB_REG_CASES(OP2, VAL)	\
  77	WRITE_WB_REG_CASE(OP2, 0, VAL);		\
  78	WRITE_WB_REG_CASE(OP2, 1, VAL);		\
  79	WRITE_WB_REG_CASE(OP2, 2, VAL);		\
  80	WRITE_WB_REG_CASE(OP2, 3, VAL);		\
  81	WRITE_WB_REG_CASE(OP2, 4, VAL);		\
  82	WRITE_WB_REG_CASE(OP2, 5, VAL);		\
  83	WRITE_WB_REG_CASE(OP2, 6, VAL);		\
  84	WRITE_WB_REG_CASE(OP2, 7, VAL);		\
  85	WRITE_WB_REG_CASE(OP2, 8, VAL);		\
  86	WRITE_WB_REG_CASE(OP2, 9, VAL);		\
  87	WRITE_WB_REG_CASE(OP2, 10, VAL);	\
  88	WRITE_WB_REG_CASE(OP2, 11, VAL);	\
  89	WRITE_WB_REG_CASE(OP2, 12, VAL);	\
  90	WRITE_WB_REG_CASE(OP2, 13, VAL);	\
  91	WRITE_WB_REG_CASE(OP2, 14, VAL);	\
  92	WRITE_WB_REG_CASE(OP2, 15, VAL)
  93
  94static u32 read_wb_reg(int n)
  95{
  96	u32 val = 0;
  97
  98	switch (n) {
  99	GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
 100	GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
 101	GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
 102	GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
 103	default:
 104		pr_warn("attempt to read from unknown breakpoint register %d\n",
 105			n);
 106	}
 107
 108	return val;
 109}
 110
 111static void write_wb_reg(int n, u32 val)
 112{
 113	switch (n) {
 114	GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
 115	GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
 116	GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
 117	GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
 118	default:
 119		pr_warn("attempt to write to unknown breakpoint register %d\n",
 120			n);
 121	}
 122	isb();
 123}
 124
 125/* Determine debug architecture. */
 126static u8 get_debug_arch(void)
 127{
 128	u32 didr;
 129
 130	/* Do we implement the extended CPUID interface? */
 131	if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
 132		pr_warn_once("CPUID feature registers not supported. "
 133			     "Assuming v6 debug is present.\n");
 134		return ARM_DEBUG_ARCH_V6;
 135	}
 136
 137	ARM_DBG_READ(c0, c0, 0, didr);
 138	return (didr >> 16) & 0xf;
 139}
 140
 141u8 arch_get_debug_arch(void)
 142{
 143	return debug_arch;
 144}
 145
 146static int debug_arch_supported(void)
 147{
 148	u8 arch = get_debug_arch();
 149
 150	/* We don't support the memory-mapped interface. */
 151	return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
 152		arch >= ARM_DEBUG_ARCH_V7_1;
 153}
 154
 155/* Can we determine the watchpoint access type from the fsr? */
 156static int debug_exception_updates_fsr(void)
 157{
 158	return get_debug_arch() >= ARM_DEBUG_ARCH_V8;
 159}
 160
 161/* Determine number of WRP registers available. */
 162static int get_num_wrp_resources(void)
 163{
 164	u32 didr;
 165	ARM_DBG_READ(c0, c0, 0, didr);
 166	return ((didr >> 28) & 0xf) + 1;
 167}
 168
 169/* Determine number of BRP registers available. */
 170static int get_num_brp_resources(void)
 171{
 172	u32 didr;
 173	ARM_DBG_READ(c0, c0, 0, didr);
 174	return ((didr >> 24) & 0xf) + 1;
 175}
 176
 177/* Does this core support mismatch breakpoints? */
 178static int core_has_mismatch_brps(void)
 179{
 180	return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
 181		get_num_brp_resources() > 1);
 182}
 183
 184/* Determine number of usable WRPs available. */
 185static int get_num_wrps(void)
 186{
 187	/*
 188	 * On debug architectures prior to 7.1, when a watchpoint fires, the
 189	 * only way to work out which watchpoint it was is by disassembling
 190	 * the faulting instruction and working out the address of the memory
 191	 * access.
 192	 *
 193	 * Furthermore, we can only do this if the watchpoint was precise
 194	 * since imprecise watchpoints prevent us from calculating register
 195	 * based addresses.
 196	 *
 197	 * Providing we have more than 1 breakpoint register, we only report
 198	 * a single watchpoint register for the time being. This way, we always
 199	 * know which watchpoint fired. In the future we can either add a
 200	 * disassembler and address generation emulator, or we can insert a
 201	 * check to see if the DFAR is set on watchpoint exception entry
 202	 * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
 203	 * that it is set on some implementations].
 204	 */
 205	if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
 206		return 1;
 207
 208	return get_num_wrp_resources();
 209}
 210
 211/* Determine number of usable BRPs available. */
 212static int get_num_brps(void)
 213{
 214	int brps = get_num_brp_resources();
 215	return core_has_mismatch_brps() ? brps - 1 : brps;
 216}
 217
 218/*
 219 * In order to access the breakpoint/watchpoint control registers,
 220 * we must be running in debug monitor mode. Unfortunately, we can
 221 * be put into halting debug mode at any time by an external debugger
 222 * but there is nothing we can do to prevent that.
 223 */
 224static int monitor_mode_enabled(void)
 225{
 226	u32 dscr;
 227	ARM_DBG_READ(c0, c1, 0, dscr);
 228	return !!(dscr & ARM_DSCR_MDBGEN);
 229}
 230
 231static int enable_monitor_mode(void)
 232{
 233	u32 dscr;
 234	ARM_DBG_READ(c0, c1, 0, dscr);
 235
 236	/* If monitor mode is already enabled, just return. */
 237	if (dscr & ARM_DSCR_MDBGEN)
 238		goto out;
 239
 240	/* Write to the corresponding DSCR. */
 241	switch (get_debug_arch()) {
 242	case ARM_DEBUG_ARCH_V6:
 243	case ARM_DEBUG_ARCH_V6_1:
 244		ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
 245		break;
 246	case ARM_DEBUG_ARCH_V7_ECP14:
 247	case ARM_DEBUG_ARCH_V7_1:
 248	case ARM_DEBUG_ARCH_V8:
 249	case ARM_DEBUG_ARCH_V8_1:
 250	case ARM_DEBUG_ARCH_V8_2:
 251	case ARM_DEBUG_ARCH_V8_4:
 252		ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
 253		isb();
 254		break;
 255	default:
 256		return -ENODEV;
 257	}
 258
 259	/* Check that the write made it through. */
 260	ARM_DBG_READ(c0, c1, 0, dscr);
 261	if (!(dscr & ARM_DSCR_MDBGEN)) {
 262		pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
 263				smp_processor_id());
 264		return -EPERM;
 265	}
 266
 267out:
 268	return 0;
 269}
 270
 271int hw_breakpoint_slots(int type)
 272{
 273	if (!debug_arch_supported())
 274		return 0;
 275
 276	/*
 277	 * We can be called early, so don't rely on
 278	 * our static variables being initialised.
 279	 */
 280	switch (type) {
 281	case TYPE_INST:
 282		return get_num_brps();
 283	case TYPE_DATA:
 284		return get_num_wrps();
 285	default:
 286		pr_warn("unknown slot type: %d\n", type);
 287		return 0;
 288	}
 289}
 290
 291/*
 292 * Check if 8-bit byte-address select is available.
 293 * This clobbers WRP 0.
 294 */
 295static u8 get_max_wp_len(void)
 296{
 297	u32 ctrl_reg;
 298	struct arch_hw_breakpoint_ctrl ctrl;
 299	u8 size = 4;
 300
 301	if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
 302		goto out;
 303
 304	memset(&ctrl, 0, sizeof(ctrl));
 305	ctrl.len = ARM_BREAKPOINT_LEN_8;
 306	ctrl_reg = encode_ctrl_reg(ctrl);
 307
 308	write_wb_reg(ARM_BASE_WVR, 0);
 309	write_wb_reg(ARM_BASE_WCR, ctrl_reg);
 310	if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
 311		size = 8;
 312
 313out:
 314	return size;
 315}
 316
 317u8 arch_get_max_wp_len(void)
 318{
 319	return max_watchpoint_len;
 320}
 321
 322/*
 323 * Install a perf counter breakpoint.
 324 */
 325int arch_install_hw_breakpoint(struct perf_event *bp)
 326{
 327	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 328	struct perf_event **slot, **slots;
 329	int i, max_slots, ctrl_base, val_base;
 330	u32 addr, ctrl;
 331
 332	addr = info->address;
 333	ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
 334
 335	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
 336		/* Breakpoint */
 337		ctrl_base = ARM_BASE_BCR;
 338		val_base = ARM_BASE_BVR;
 339		slots = this_cpu_ptr(bp_on_reg);
 340		max_slots = core_num_brps;
 341	} else {
 342		/* Watchpoint */
 343		ctrl_base = ARM_BASE_WCR;
 344		val_base = ARM_BASE_WVR;
 345		slots = this_cpu_ptr(wp_on_reg);
 346		max_slots = core_num_wrps;
 347	}
 348
 349	for (i = 0; i < max_slots; ++i) {
 350		slot = &slots[i];
 351
 352		if (!*slot) {
 353			*slot = bp;
 354			break;
 355		}
 356	}
 357
 358	if (i == max_slots) {
 359		pr_warn("Can't find any breakpoint slot\n");
 360		return -EBUSY;
 361	}
 362
 363	/* Override the breakpoint data with the step data. */
 364	if (info->step_ctrl.enabled) {
 365		addr = info->trigger & ~0x3;
 366		ctrl = encode_ctrl_reg(info->step_ctrl);
 367		if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
 368			i = 0;
 369			ctrl_base = ARM_BASE_BCR + core_num_brps;
 370			val_base = ARM_BASE_BVR + core_num_brps;
 371		}
 372	}
 373
 374	/* Setup the address register. */
 375	write_wb_reg(val_base + i, addr);
 376
 377	/* Setup the control register. */
 378	write_wb_reg(ctrl_base + i, ctrl);
 379	return 0;
 380}
 381
 382void arch_uninstall_hw_breakpoint(struct perf_event *bp)
 383{
 384	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 385	struct perf_event **slot, **slots;
 386	int i, max_slots, base;
 387
 388	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
 389		/* Breakpoint */
 390		base = ARM_BASE_BCR;
 391		slots = this_cpu_ptr(bp_on_reg);
 392		max_slots = core_num_brps;
 393	} else {
 394		/* Watchpoint */
 395		base = ARM_BASE_WCR;
 396		slots = this_cpu_ptr(wp_on_reg);
 397		max_slots = core_num_wrps;
 398	}
 399
 400	/* Remove the breakpoint. */
 401	for (i = 0; i < max_slots; ++i) {
 402		slot = &slots[i];
 403
 404		if (*slot == bp) {
 405			*slot = NULL;
 406			break;
 407		}
 408	}
 409
 410	if (i == max_slots) {
 411		pr_warn("Can't find any breakpoint slot\n");
 412		return;
 413	}
 414
 415	/* Ensure that we disable the mismatch breakpoint. */
 416	if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
 417	    info->step_ctrl.enabled) {
 418		i = 0;
 419		base = ARM_BASE_BCR + core_num_brps;
 420	}
 421
 422	/* Reset the control register. */
 423	write_wb_reg(base + i, 0);
 424}
 425
 426static int get_hbp_len(u8 hbp_len)
 427{
 428	unsigned int len_in_bytes = 0;
 429
 430	switch (hbp_len) {
 431	case ARM_BREAKPOINT_LEN_1:
 432		len_in_bytes = 1;
 433		break;
 434	case ARM_BREAKPOINT_LEN_2:
 435		len_in_bytes = 2;
 436		break;
 437	case ARM_BREAKPOINT_LEN_4:
 438		len_in_bytes = 4;
 439		break;
 440	case ARM_BREAKPOINT_LEN_8:
 441		len_in_bytes = 8;
 442		break;
 443	}
 444
 445	return len_in_bytes;
 446}
 447
 448/*
 449 * Check whether bp virtual address is in kernel space.
 450 */
 451int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
 452{
 453	unsigned int len;
 454	unsigned long va;
 455
 456	va = hw->address;
 457	len = get_hbp_len(hw->ctrl.len);
 458
 459	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
 460}
 461
 462/*
 463 * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
 464 * Hopefully this will disappear when ptrace can bypass the conversion
 465 * to generic breakpoint descriptions.
 466 */
 467int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
 468			   int *gen_len, int *gen_type)
 469{
 470	/* Type */
 471	switch (ctrl.type) {
 472	case ARM_BREAKPOINT_EXECUTE:
 473		*gen_type = HW_BREAKPOINT_X;
 474		break;
 475	case ARM_BREAKPOINT_LOAD:
 476		*gen_type = HW_BREAKPOINT_R;
 477		break;
 478	case ARM_BREAKPOINT_STORE:
 479		*gen_type = HW_BREAKPOINT_W;
 480		break;
 481	case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
 482		*gen_type = HW_BREAKPOINT_RW;
 483		break;
 484	default:
 485		return -EINVAL;
 486	}
 487
 488	/* Len */
 489	switch (ctrl.len) {
 490	case ARM_BREAKPOINT_LEN_1:
 491		*gen_len = HW_BREAKPOINT_LEN_1;
 492		break;
 493	case ARM_BREAKPOINT_LEN_2:
 494		*gen_len = HW_BREAKPOINT_LEN_2;
 495		break;
 496	case ARM_BREAKPOINT_LEN_4:
 497		*gen_len = HW_BREAKPOINT_LEN_4;
 498		break;
 499	case ARM_BREAKPOINT_LEN_8:
 500		*gen_len = HW_BREAKPOINT_LEN_8;
 501		break;
 502	default:
 503		return -EINVAL;
 504	}
 505
 506	return 0;
 507}
 508
 509/*
 510 * Construct an arch_hw_breakpoint from a perf_event.
 511 */
 512static int arch_build_bp_info(struct perf_event *bp,
 513			      const struct perf_event_attr *attr,
 514			      struct arch_hw_breakpoint *hw)
 515{
 516	/* Type */
 517	switch (attr->bp_type) {
 518	case HW_BREAKPOINT_X:
 519		hw->ctrl.type = ARM_BREAKPOINT_EXECUTE;
 520		break;
 521	case HW_BREAKPOINT_R:
 522		hw->ctrl.type = ARM_BREAKPOINT_LOAD;
 523		break;
 524	case HW_BREAKPOINT_W:
 525		hw->ctrl.type = ARM_BREAKPOINT_STORE;
 526		break;
 527	case HW_BREAKPOINT_RW:
 528		hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
 529		break;
 530	default:
 531		return -EINVAL;
 532	}
 533
 534	/* Len */
 535	switch (attr->bp_len) {
 536	case HW_BREAKPOINT_LEN_1:
 537		hw->ctrl.len = ARM_BREAKPOINT_LEN_1;
 538		break;
 539	case HW_BREAKPOINT_LEN_2:
 540		hw->ctrl.len = ARM_BREAKPOINT_LEN_2;
 541		break;
 542	case HW_BREAKPOINT_LEN_4:
 543		hw->ctrl.len = ARM_BREAKPOINT_LEN_4;
 544		break;
 545	case HW_BREAKPOINT_LEN_8:
 546		hw->ctrl.len = ARM_BREAKPOINT_LEN_8;
 547		if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE)
 548			&& max_watchpoint_len >= 8)
 549			break;
 550		fallthrough;
 551	default:
 552		return -EINVAL;
 553	}
 554
 555	/*
 556	 * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
 557	 * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
 558	 * by the hardware and must be aligned to the appropriate number of
 559	 * bytes.
 560	 */
 561	if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
 562	    hw->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
 563	    hw->ctrl.len != ARM_BREAKPOINT_LEN_4)
 564		return -EINVAL;
 565
 566	/* Address */
 567	hw->address = attr->bp_addr;
 568
 569	/* Privilege */
 570	hw->ctrl.privilege = ARM_BREAKPOINT_USER;
 571	if (arch_check_bp_in_kernelspace(hw))
 572		hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
 573
 574	/* Enabled? */
 575	hw->ctrl.enabled = !attr->disabled;
 576
 577	/* Mismatch */
 578	hw->ctrl.mismatch = 0;
 579
 580	return 0;
 581}
 582
 583/*
 584 * Validate the arch-specific HW Breakpoint register settings.
 585 */
 586int hw_breakpoint_arch_parse(struct perf_event *bp,
 587			     const struct perf_event_attr *attr,
 588			     struct arch_hw_breakpoint *hw)
 589{
 590	int ret = 0;
 591	u32 offset, alignment_mask = 0x3;
 592
 593	/* Ensure that we are in monitor debug mode. */
 594	if (!monitor_mode_enabled())
 595		return -ENODEV;
 596
 597	/* Build the arch_hw_breakpoint. */
 598	ret = arch_build_bp_info(bp, attr, hw);
 599	if (ret)
 600		goto out;
 601
 602	/* Check address alignment. */
 603	if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8)
 604		alignment_mask = 0x7;
 605	offset = hw->address & alignment_mask;
 606	switch (offset) {
 607	case 0:
 608		/* Aligned */
 609		break;
 610	case 1:
 611	case 2:
 612		/* Allow halfword watchpoints and breakpoints. */
 613		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2)
 614			break;
 615		fallthrough;
 616	case 3:
 617		/* Allow single byte watchpoint. */
 618		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1)
 619			break;
 620		fallthrough;
 621	default:
 622		ret = -EINVAL;
 623		goto out;
 624	}
 625
 626	hw->address &= ~alignment_mask;
 627	hw->ctrl.len <<= offset;
 628
 629	if (uses_default_overflow_handler(bp)) {
 630		/*
 631		 * Mismatch breakpoints are required for single-stepping
 632		 * breakpoints.
 633		 */
 634		if (!core_has_mismatch_brps())
 635			return -EINVAL;
 636
 637		/* We don't allow mismatch breakpoints in kernel space. */
 638		if (arch_check_bp_in_kernelspace(hw))
 639			return -EPERM;
 640
 641		/*
 642		 * Per-cpu breakpoints are not supported by our stepping
 643		 * mechanism.
 644		 */
 645		if (!bp->hw.target)
 646			return -EINVAL;
 647
 648		/*
 649		 * We only support specific access types if the fsr
 650		 * reports them.
 651		 */
 652		if (!debug_exception_updates_fsr() &&
 653		    (hw->ctrl.type == ARM_BREAKPOINT_LOAD ||
 654		     hw->ctrl.type == ARM_BREAKPOINT_STORE))
 655			return -EINVAL;
 656	}
 657
 658out:
 659	return ret;
 660}
 661
 662/*
 663 * Enable/disable single-stepping over the breakpoint bp at address addr.
 664 */
 665static void enable_single_step(struct perf_event *bp, u32 addr)
 666{
 667	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 668
 669	arch_uninstall_hw_breakpoint(bp);
 670	info->step_ctrl.mismatch  = 1;
 671	info->step_ctrl.len	  = ARM_BREAKPOINT_LEN_4;
 672	info->step_ctrl.type	  = ARM_BREAKPOINT_EXECUTE;
 673	info->step_ctrl.privilege = info->ctrl.privilege;
 674	info->step_ctrl.enabled	  = 1;
 675	info->trigger		  = addr;
 676	arch_install_hw_breakpoint(bp);
 677}
 678
 679static void disable_single_step(struct perf_event *bp)
 680{
 681	arch_uninstall_hw_breakpoint(bp);
 682	counter_arch_bp(bp)->step_ctrl.enabled = 0;
 683	arch_install_hw_breakpoint(bp);
 684}
 685
 686/*
 687 * Arm32 hardware does not always report a watchpoint hit address that matches
 688 * one of the watchpoints set. It can also report an address "near" the
 689 * watchpoint if a single instruction access both watched and unwatched
 690 * addresses. There is no straight-forward way, short of disassembling the
 691 * offending instruction, to map that address back to the watchpoint. This
 692 * function computes the distance of the memory access from the watchpoint as a
 693 * heuristic for the likelyhood that a given access triggered the watchpoint.
 694 *
 695 * See this same function in the arm64 platform code, which has the same
 696 * problem.
 697 *
 698 * The function returns the distance of the address from the bytes watched by
 699 * the watchpoint. In case of an exact match, it returns 0.
 700 */
 701static u32 get_distance_from_watchpoint(unsigned long addr, u32 val,
 702					struct arch_hw_breakpoint_ctrl *ctrl)
 703{
 704	u32 wp_low, wp_high;
 705	u32 lens, lene;
 706
 707	lens = __ffs(ctrl->len);
 708	lene = __fls(ctrl->len);
 709
 710	wp_low = val + lens;
 711	wp_high = val + lene;
 712	if (addr < wp_low)
 713		return wp_low - addr;
 714	else if (addr > wp_high)
 715		return addr - wp_high;
 716	else
 717		return 0;
 718}
 719
 720static int watchpoint_fault_on_uaccess(struct pt_regs *regs,
 721				       struct arch_hw_breakpoint *info)
 722{
 723	return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER;
 724}
 725
 726static void watchpoint_handler(unsigned long addr, unsigned int fsr,
 727			       struct pt_regs *regs)
 728{
 729	int i, access, closest_match = 0;
 730	u32 min_dist = -1, dist;
 731	u32 val, ctrl_reg;
 732	struct perf_event *wp, **slots;
 733	struct arch_hw_breakpoint *info;
 734	struct arch_hw_breakpoint_ctrl ctrl;
 735
 736	slots = this_cpu_ptr(wp_on_reg);
 737
 738	/*
 739	 * Find all watchpoints that match the reported address. If no exact
 740	 * match is found. Attribute the hit to the closest watchpoint.
 741	 */
 742	rcu_read_lock();
 743	for (i = 0; i < core_num_wrps; ++i) {
 744		wp = slots[i];
 745		if (wp == NULL)
 746			continue;
 747
 748		/*
 749		 * The DFAR is an unknown value on debug architectures prior
 750		 * to 7.1. Since we only allow a single watchpoint on these
 751		 * older CPUs, we can set the trigger to the lowest possible
 752		 * faulting address.
 753		 */
 754		if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
 755			BUG_ON(i > 0);
 756			info = counter_arch_bp(wp);
 757			info->trigger = wp->attr.bp_addr;
 758		} else {
 759			/* Check that the access type matches. */
 760			if (debug_exception_updates_fsr()) {
 761				access = (fsr & ARM_FSR_ACCESS_MASK) ?
 762					  HW_BREAKPOINT_W : HW_BREAKPOINT_R;
 763				if (!(access & hw_breakpoint_type(wp)))
 764					continue;
 765			}
 766
 767			val = read_wb_reg(ARM_BASE_WVR + i);
 768			ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
 769			decode_ctrl_reg(ctrl_reg, &ctrl);
 770			dist = get_distance_from_watchpoint(addr, val, &ctrl);
 771			if (dist < min_dist) {
 772				min_dist = dist;
 773				closest_match = i;
 774			}
 775			/* Is this an exact match? */
 776			if (dist != 0)
 777				continue;
 778
 779			/* We have a winner. */
 780			info = counter_arch_bp(wp);
 781			info->trigger = addr;
 782		}
 783
 784		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
 785
 786		/*
 787		 * If we triggered a user watchpoint from a uaccess routine,
 788		 * then handle the stepping ourselves since userspace really
 789		 * can't help us with this.
 790		 */
 791		if (watchpoint_fault_on_uaccess(regs, info))
 792			goto step;
 793
 794		perf_bp_event(wp, regs);
 795
 796		/*
 797		 * Defer stepping to the overflow handler if one is installed.
 798		 * Otherwise, insert a temporary mismatch breakpoint so that
 799		 * we can single-step over the watchpoint trigger.
 800		 */
 801		if (!uses_default_overflow_handler(wp))
 802			continue;
 803step:
 804		enable_single_step(wp, instruction_pointer(regs));
 805	}
 806
 807	if (min_dist > 0 && min_dist != -1) {
 808		/* No exact match found. */
 809		wp = slots[closest_match];
 810		info = counter_arch_bp(wp);
 811		info->trigger = addr;
 812		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
 813		perf_bp_event(wp, regs);
 814		if (uses_default_overflow_handler(wp))
 815			enable_single_step(wp, instruction_pointer(regs));
 816	}
 817
 818	rcu_read_unlock();
 819}
 820
 821static void watchpoint_single_step_handler(unsigned long pc)
 822{
 823	int i;
 824	struct perf_event *wp, **slots;
 825	struct arch_hw_breakpoint *info;
 826
 827	slots = this_cpu_ptr(wp_on_reg);
 828
 829	for (i = 0; i < core_num_wrps; ++i) {
 830		rcu_read_lock();
 831
 832		wp = slots[i];
 833
 834		if (wp == NULL)
 835			goto unlock;
 836
 837		info = counter_arch_bp(wp);
 838		if (!info->step_ctrl.enabled)
 839			goto unlock;
 840
 841		/*
 842		 * Restore the original watchpoint if we've completed the
 843		 * single-step.
 844		 */
 845		if (info->trigger != pc)
 846			disable_single_step(wp);
 847
 848unlock:
 849		rcu_read_unlock();
 850	}
 851}
 852
 853static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
 854{
 855	int i;
 856	u32 ctrl_reg, val, addr;
 857	struct perf_event *bp, **slots;
 858	struct arch_hw_breakpoint *info;
 859	struct arch_hw_breakpoint_ctrl ctrl;
 860
 861	slots = this_cpu_ptr(bp_on_reg);
 862
 863	/* The exception entry code places the amended lr in the PC. */
 864	addr = regs->ARM_pc;
 865
 866	/* Check the currently installed breakpoints first. */
 867	for (i = 0; i < core_num_brps; ++i) {
 868		rcu_read_lock();
 869
 870		bp = slots[i];
 871
 872		if (bp == NULL)
 873			goto unlock;
 874
 875		info = counter_arch_bp(bp);
 876
 877		/* Check if the breakpoint value matches. */
 878		val = read_wb_reg(ARM_BASE_BVR + i);
 879		if (val != (addr & ~0x3))
 880			goto mismatch;
 881
 882		/* Possible match, check the byte address select to confirm. */
 883		ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
 884		decode_ctrl_reg(ctrl_reg, &ctrl);
 885		if ((1 << (addr & 0x3)) & ctrl.len) {
 886			info->trigger = addr;
 887			pr_debug("breakpoint fired: address = 0x%x\n", addr);
 888			perf_bp_event(bp, regs);
 889			if (uses_default_overflow_handler(bp))
 890				enable_single_step(bp, addr);
 891			goto unlock;
 892		}
 893
 894mismatch:
 895		/* If we're stepping a breakpoint, it can now be restored. */
 896		if (info->step_ctrl.enabled)
 897			disable_single_step(bp);
 898unlock:
 899		rcu_read_unlock();
 900	}
 901
 902	/* Handle any pending watchpoint single-step breakpoints. */
 903	watchpoint_single_step_handler(addr);
 904}
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906/*
 907 * Called from either the Data Abort Handler [watchpoint] or the
 908 * Prefetch Abort Handler [breakpoint] with interrupts disabled.
 909 */
 910static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
 911				 struct pt_regs *regs)
 912{
 913	int ret = 0;
 914	u32 dscr;
 915
 916	preempt_disable();
 917
 918	if (interrupts_enabled(regs))
 919		local_irq_enable();
 920
 921	/* We only handle watchpoints and hardware breakpoints. */
 922	ARM_DBG_READ(c0, c1, 0, dscr);
 923
 924	/* Perform perf callbacks. */
 925	switch (ARM_DSCR_MOE(dscr)) {
 926	case ARM_ENTRY_BREAKPOINT:
 927		breakpoint_handler(addr, regs);
 928		break;
 929	case ARM_ENTRY_ASYNC_WATCHPOINT:
 930		WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
 931		fallthrough;
 932	case ARM_ENTRY_SYNC_WATCHPOINT:
 933		watchpoint_handler(addr, fsr, regs);
 
 
 
 934		break;
 935	default:
 936		ret = 1; /* Unhandled fault. */
 937	}
 938
 939	preempt_enable();
 940
 941	return ret;
 942}
 943
 944#ifdef CONFIG_ARM_ERRATA_764319
 945static int oslsr_fault;
 946
 947static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr)
 948{
 949	oslsr_fault = 1;
 950	instruction_pointer(regs) += 4;
 951	return 0;
 952}
 953
 954static struct undef_hook debug_oslsr_hook = {
 955	.instr_mask  = 0xffffffff,
 956	.instr_val = 0xee115e91,
 957	.fn = debug_oslsr_trap,
 958};
 959#endif
 960
 961/*
 962 * One-time initialisation.
 963 */
 964static cpumask_t debug_err_mask;
 965
 966static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
 967{
 968	int cpu = smp_processor_id();
 969
 970	pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
 971		instr, cpu);
 972
 973	/* Set the error flag for this CPU and skip the faulting instruction. */
 974	cpumask_set_cpu(cpu, &debug_err_mask);
 975	instruction_pointer(regs) += 4;
 976	return 0;
 977}
 978
 979static struct undef_hook debug_reg_hook = {
 980	.instr_mask	= 0x0fe80f10,
 981	.instr_val	= 0x0e000e10,
 982	.fn		= debug_reg_trap,
 983};
 984
 985/* Does this core support OS Save and Restore? */
 986static bool core_has_os_save_restore(void)
 987{
 988	u32 oslsr;
 989
 990	switch (get_debug_arch()) {
 991	case ARM_DEBUG_ARCH_V7_1:
 992		return true;
 993	case ARM_DEBUG_ARCH_V7_ECP14:
 994#ifdef CONFIG_ARM_ERRATA_764319
 995		oslsr_fault = 0;
 996		register_undef_hook(&debug_oslsr_hook);
 997		ARM_DBG_READ(c1, c1, 4, oslsr);
 998		unregister_undef_hook(&debug_oslsr_hook);
 999		if (oslsr_fault)
1000			return false;
1001#else
1002		ARM_DBG_READ(c1, c1, 4, oslsr);
1003#endif
1004		if (oslsr & ARM_OSLSR_OSLM0)
1005			return true;
1006		fallthrough;
1007	default:
1008		return false;
1009	}
1010}
1011
1012static void reset_ctrl_regs(unsigned int cpu)
1013{
1014	int i, raw_num_brps, err = 0;
1015	u32 val;
1016
1017	/*
1018	 * v7 debug contains save and restore registers so that debug state
1019	 * can be maintained across low-power modes without leaving the debug
1020	 * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
1021	 * the debug registers out of reset, so we must unlock the OS Lock
1022	 * Access Register to avoid taking undefined instruction exceptions
1023	 * later on.
1024	 */
1025	switch (debug_arch) {
1026	case ARM_DEBUG_ARCH_V6:
1027	case ARM_DEBUG_ARCH_V6_1:
1028		/* ARMv6 cores clear the registers out of reset. */
1029		goto out_mdbgen;
1030	case ARM_DEBUG_ARCH_V7_ECP14:
1031		/*
1032		 * Ensure sticky power-down is clear (i.e. debug logic is
1033		 * powered up).
1034		 */
1035		ARM_DBG_READ(c1, c5, 4, val);
1036		if ((val & 0x1) == 0)
1037			err = -EPERM;
1038
1039		if (!has_ossr)
1040			goto clear_vcr;
1041		break;
1042	case ARM_DEBUG_ARCH_V7_1:
1043		/*
1044		 * Ensure the OS double lock is clear.
1045		 */
1046		ARM_DBG_READ(c1, c3, 4, val);
1047		if ((val & 0x1) == 1)
1048			err = -EPERM;
1049		break;
1050	}
1051
1052	if (err) {
1053		pr_warn_once("CPU %d debug is powered down!\n", cpu);
1054		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1055		return;
1056	}
1057
1058	/*
1059	 * Unconditionally clear the OS lock by writing a value
1060	 * other than CS_LAR_KEY to the access register.
1061	 */
1062	ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK);
1063	isb();
1064
1065	/*
1066	 * Clear any configured vector-catch events before
1067	 * enabling monitor mode.
1068	 */
1069clear_vcr:
1070	ARM_DBG_WRITE(c0, c7, 0, 0);
1071	isb();
1072
1073	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1074		pr_warn_once("CPU %d failed to disable vector catch\n", cpu);
1075		return;
1076	}
1077
1078	/*
1079	 * The control/value register pairs are UNKNOWN out of reset so
1080	 * clear them to avoid spurious debug events.
1081	 */
1082	raw_num_brps = get_num_brp_resources();
1083	for (i = 0; i < raw_num_brps; ++i) {
1084		write_wb_reg(ARM_BASE_BCR + i, 0UL);
1085		write_wb_reg(ARM_BASE_BVR + i, 0UL);
1086	}
1087
1088	for (i = 0; i < core_num_wrps; ++i) {
1089		write_wb_reg(ARM_BASE_WCR + i, 0UL);
1090		write_wb_reg(ARM_BASE_WVR + i, 0UL);
1091	}
1092
1093	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1094		pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu);
1095		return;
1096	}
1097
1098	/*
1099	 * Have a crack at enabling monitor mode. We don't actually need
1100	 * it yet, but reporting an error early is useful if it fails.
1101	 */
1102out_mdbgen:
1103	if (enable_monitor_mode())
1104		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1105}
1106
1107static int dbg_reset_online(unsigned int cpu)
1108{
1109	local_irq_disable();
1110	reset_ctrl_regs(cpu);
1111	local_irq_enable();
1112	return 0;
1113}
1114
1115#ifdef CONFIG_CPU_PM
1116static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action,
1117			     void *v)
1118{
1119	if (action == CPU_PM_EXIT)
1120		reset_ctrl_regs(smp_processor_id());
1121
1122	return NOTIFY_OK;
1123}
1124
1125static struct notifier_block dbg_cpu_pm_nb = {
1126	.notifier_call = dbg_cpu_pm_notify,
1127};
1128
1129static void __init pm_init(void)
1130{
1131	cpu_pm_register_notifier(&dbg_cpu_pm_nb);
1132}
1133#else
1134static inline void pm_init(void)
1135{
1136}
1137#endif
1138
1139static int __init arch_hw_breakpoint_init(void)
1140{
1141	int ret;
1142
1143	debug_arch = get_debug_arch();
1144
1145	if (!debug_arch_supported()) {
1146		pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
1147		return 0;
1148	}
1149
1150	/*
1151	 * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD
1152	 * whenever a WFI is issued, even if the core is not powered down, in
1153	 * violation of the architecture.  When DBGPRSR.SPD is set, accesses to
1154	 * breakpoint and watchpoint registers are treated as undefined, so
1155	 * this results in boot time and runtime failures when these are
1156	 * accessed and we unexpectedly take a trap.
1157	 *
1158	 * It's not clear if/how this can be worked around, so we blacklist
1159	 * Scorpion CPUs to avoid these issues.
1160	*/
1161	if (read_cpuid_part() == ARM_CPU_PART_SCORPION) {
1162		pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n");
1163		return 0;
1164	}
1165
1166	has_ossr = core_has_os_save_restore();
1167
1168	/* Determine how many BRPs/WRPs are available. */
1169	core_num_brps = get_num_brps();
1170	core_num_wrps = get_num_wrps();
1171
1172	/*
1173	 * We need to tread carefully here because DBGSWENABLE may be
1174	 * driven low on this core and there isn't an architected way to
1175	 * determine that.
1176	 */
1177	cpus_read_lock();
1178	register_undef_hook(&debug_reg_hook);
1179
1180	/*
1181	 * Register CPU notifier which resets the breakpoint resources. We
1182	 * assume that a halting debugger will leave the world in a nice state
1183	 * for us.
1184	 */
1185	ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
1186					   "arm/hw_breakpoint:online",
1187					   dbg_reset_online, NULL);
1188	unregister_undef_hook(&debug_reg_hook);
1189	if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) {
1190		core_num_brps = 0;
1191		core_num_wrps = 0;
1192		if (ret > 0)
1193			cpuhp_remove_state_nocalls_cpuslocked(ret);
1194		cpus_read_unlock();
1195		return 0;
1196	}
1197
1198	pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
1199		core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
1200		"", core_num_wrps);
1201
1202	/* Work out the maximum supported watchpoint length. */
1203	max_watchpoint_len = get_max_wp_len();
1204	pr_info("maximum watchpoint size is %u bytes.\n",
1205			max_watchpoint_len);
1206
1207	/* Register debug fault handler. */
1208	hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1209			TRAP_HWBKPT, "watchpoint debug exception");
1210	hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1211			TRAP_HWBKPT, "breakpoint debug exception");
1212	cpus_read_unlock();
1213
1214	/* Register PM notifiers. */
1215	pm_init();
1216	return 0;
1217}
1218arch_initcall(arch_hw_breakpoint_init);
1219
1220void hw_breakpoint_pmu_read(struct perf_event *bp)
1221{
1222}
1223
1224/*
1225 * Dummy function to register with die_notifier.
1226 */
1227int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1228					unsigned long val, void *data)
1229{
1230	return NOTIFY_DONE;
1231}