Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/kernel.h>
  3#include <linux/tcp.h>
  4#include <linux/rcupdate.h>
  5#include <net/tcp.h>
  6
  7void tcp_fastopen_init_key_once(struct net *net)
  8{
  9	u8 key[TCP_FASTOPEN_KEY_LENGTH];
 10	struct tcp_fastopen_context *ctxt;
 11
 12	rcu_read_lock();
 13	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
 14	if (ctxt) {
 15		rcu_read_unlock();
 16		return;
 17	}
 18	rcu_read_unlock();
 19
 20	/* tcp_fastopen_reset_cipher publishes the new context
 21	 * atomically, so we allow this race happening here.
 22	 *
 23	 * All call sites of tcp_fastopen_cookie_gen also check
 24	 * for a valid cookie, so this is an acceptable risk.
 25	 */
 26	get_random_bytes(key, sizeof(key));
 27	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
 28}
 29
 30static void tcp_fastopen_ctx_free(struct rcu_head *head)
 31{
 32	struct tcp_fastopen_context *ctx =
 33	    container_of(head, struct tcp_fastopen_context, rcu);
 34
 35	kfree_sensitive(ctx);
 36}
 37
 38void tcp_fastopen_destroy_cipher(struct sock *sk)
 39{
 40	struct tcp_fastopen_context *ctx;
 41
 42	ctx = rcu_dereference_protected(
 43			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
 44	if (ctx)
 45		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
 46}
 47
 48void tcp_fastopen_ctx_destroy(struct net *net)
 49{
 50	struct tcp_fastopen_context *ctxt;
 51
 52	ctxt = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, NULL));
 53
 54	if (ctxt)
 55		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
 56}
 57
 58int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
 59			      void *primary_key, void *backup_key)
 60{
 61	struct tcp_fastopen_context *ctx, *octx;
 62	struct fastopen_queue *q;
 63	int err = 0;
 64
 65	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 66	if (!ctx) {
 67		err = -ENOMEM;
 68		goto out;
 69	}
 70
 71	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
 72	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
 73	if (backup_key) {
 74		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
 75		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
 76		ctx->num = 2;
 77	} else {
 78		ctx->num = 1;
 79	}
 80
 81	if (sk) {
 82		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
 83		octx = unrcu_pointer(xchg(&q->ctx, RCU_INITIALIZER(ctx)));
 84	} else {
 85		octx = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx,
 86					  RCU_INITIALIZER(ctx)));
 87	}
 88
 89	if (octx)
 90		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
 91out:
 92	return err;
 93}
 94
 95int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
 96			    u64 *key)
 97{
 98	struct tcp_fastopen_context *ctx;
 99	int n_keys = 0, i;
100
101	rcu_read_lock();
102	if (icsk)
103		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
104	else
105		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
106	if (ctx) {
107		n_keys = tcp_fastopen_context_len(ctx);
108		for (i = 0; i < n_keys; i++) {
109			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
110			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
111		}
112	}
113	rcu_read_unlock();
114
115	return n_keys;
116}
117
118static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
119					     struct sk_buff *syn,
120					     const siphash_key_t *key,
121					     struct tcp_fastopen_cookie *foc)
122{
123	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
124
125	if (req->rsk_ops->family == AF_INET) {
126		const struct iphdr *iph = ip_hdr(syn);
127
128		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
129					  sizeof(iph->saddr) +
130					  sizeof(iph->daddr),
131					  key));
132		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
133		return true;
134	}
135#if IS_ENABLED(CONFIG_IPV6)
136	if (req->rsk_ops->family == AF_INET6) {
137		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
138
139		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
140					  sizeof(ip6h->saddr) +
141					  sizeof(ip6h->daddr),
142					  key));
143		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
144		return true;
145	}
146#endif
147	return false;
148}
149
150/* Generate the fastopen cookie by applying SipHash to both the source and
151 * destination addresses.
152 */
153static void tcp_fastopen_cookie_gen(struct sock *sk,
154				    struct request_sock *req,
155				    struct sk_buff *syn,
156				    struct tcp_fastopen_cookie *foc)
157{
158	struct tcp_fastopen_context *ctx;
159
160	rcu_read_lock();
161	ctx = tcp_fastopen_get_ctx(sk);
162	if (ctx)
163		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
164	rcu_read_unlock();
165}
166
167/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
168 * queue this additional data / FIN.
169 */
170void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
171{
172	struct tcp_sock *tp = tcp_sk(sk);
173
174	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
175		return;
176
177	skb = skb_clone(skb, GFP_ATOMIC);
178	if (!skb)
179		return;
180
181	tcp_cleanup_skb(skb);
182	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
183	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
184	 * to avoid double counting.  Also, tcp_segs_in() expects
185	 * skb->len to include the tcp_hdrlen.  Hence, it should
186	 * be called before __skb_pull().
187	 */
188	tp->segs_in = 0;
189	tcp_segs_in(tp, skb);
190	__skb_pull(skb, tcp_hdrlen(skb));
191	sk_forced_mem_schedule(sk, skb->truesize);
192	skb_set_owner_r(skb, sk);
193
194	TCP_SKB_CB(skb)->seq++;
195	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
196
197	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
198	tcp_add_receive_queue(sk, skb);
199	tp->syn_data_acked = 1;
200
201	/* u64_stats_update_begin(&tp->syncp) not needed here,
202	 * as we certainly are not changing upper 32bit value (0)
203	 */
204	tp->bytes_received = skb->len;
205
206	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
207		tcp_fin(sk);
208}
209
210/* returns 0 - no key match, 1 for primary, 2 for backup */
211static int tcp_fastopen_cookie_gen_check(struct sock *sk,
212					 struct request_sock *req,
213					 struct sk_buff *syn,
214					 struct tcp_fastopen_cookie *orig,
215					 struct tcp_fastopen_cookie *valid_foc)
216{
217	struct tcp_fastopen_cookie search_foc = { .len = -1 };
218	struct tcp_fastopen_cookie *foc = valid_foc;
219	struct tcp_fastopen_context *ctx;
220	int i, ret = 0;
221
222	rcu_read_lock();
223	ctx = tcp_fastopen_get_ctx(sk);
224	if (!ctx)
225		goto out;
226	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
227		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
228		if (tcp_fastopen_cookie_match(foc, orig)) {
229			ret = i + 1;
230			goto out;
231		}
232		foc = &search_foc;
233	}
234out:
235	rcu_read_unlock();
236	return ret;
237}
238
239static struct sock *tcp_fastopen_create_child(struct sock *sk,
240					      struct sk_buff *skb,
241					      struct request_sock *req)
242{
243	struct tcp_sock *tp;
244	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
245	struct sock *child;
246	bool own_req;
247
248	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
249							 NULL, &own_req);
250	if (!child)
251		return NULL;
252
253	spin_lock(&queue->fastopenq.lock);
254	queue->fastopenq.qlen++;
255	spin_unlock(&queue->fastopenq.lock);
256
257	/* Initialize the child socket. Have to fix some values to take
258	 * into account the child is a Fast Open socket and is created
259	 * only out of the bits carried in the SYN packet.
260	 */
261	tp = tcp_sk(child);
262
263	rcu_assign_pointer(tp->fastopen_rsk, req);
264	tcp_rsk(req)->tfo_listener = true;
265
266	/* RFC1323: The window in SYN & SYN/ACK segments is never
267	 * scaled. So correct it appropriately.
268	 */
269	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
270	tp->max_window = tp->snd_wnd;
271
272	/* Activate the retrans timer so that SYNACK can be retransmitted.
273	 * The request socket is not added to the ehash
274	 * because it's been added to the accept queue directly.
275	 */
276	req->timeout = tcp_timeout_init(child);
277	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
278				  req->timeout, TCP_RTO_MAX);
279
280	refcount_set(&req->rsk_refcnt, 2);
281
282	/* Now finish processing the fastopen child socket. */
283	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
284
285	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
286
287	tcp_fastopen_add_skb(child, skb);
288
289	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
290	tp->rcv_wup = tp->rcv_nxt;
291	/* tcp_conn_request() is sending the SYNACK,
292	 * and queues the child into listener accept queue.
293	 */
294	return child;
295}
296
297static bool tcp_fastopen_queue_check(struct sock *sk)
298{
299	struct fastopen_queue *fastopenq;
300	int max_qlen;
301
302	/* Make sure the listener has enabled fastopen, and we don't
303	 * exceed the max # of pending TFO requests allowed before trying
304	 * to validating the cookie in order to avoid burning CPU cycles
305	 * unnecessarily.
306	 *
307	 * XXX (TFO) - The implication of checking the max_qlen before
308	 * processing a cookie request is that clients can't differentiate
309	 * between qlen overflow causing Fast Open to be disabled
310	 * temporarily vs a server not supporting Fast Open at all.
311	 */
312	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
313	max_qlen = READ_ONCE(fastopenq->max_qlen);
314	if (max_qlen == 0)
315		return false;
316
317	if (fastopenq->qlen >= max_qlen) {
318		struct request_sock *req1;
319		spin_lock(&fastopenq->lock);
320		req1 = fastopenq->rskq_rst_head;
321		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
322			__NET_INC_STATS(sock_net(sk),
323					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
324			spin_unlock(&fastopenq->lock);
325			return false;
326		}
327		fastopenq->rskq_rst_head = req1->dl_next;
328		fastopenq->qlen--;
329		spin_unlock(&fastopenq->lock);
330		reqsk_put(req1);
331	}
332	return true;
333}
334
335static bool tcp_fastopen_no_cookie(const struct sock *sk,
336				   const struct dst_entry *dst,
337				   int flag)
338{
339	return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
340	       tcp_sk(sk)->fastopen_no_cookie ||
341	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
342}
343
344/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
345 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
346 * cookie request (foc->len == 0).
347 */
348struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
349			      struct request_sock *req,
350			      struct tcp_fastopen_cookie *foc,
351			      const struct dst_entry *dst)
352{
353	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
354	int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
355	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
356	struct sock *child;
357	int ret = 0;
358
359	if (foc->len == 0) /* Client requests a cookie */
360		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
361
362	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
363	      (syn_data || foc->len >= 0) &&
364	      tcp_fastopen_queue_check(sk))) {
365		foc->len = -1;
366		return NULL;
367	}
368
369	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
370		goto fastopen;
371
372	if (foc->len == 0) {
373		/* Client requests a cookie. */
374		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
375	} else if (foc->len > 0) {
376		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
377						    &valid_foc);
378		if (!ret) {
379			NET_INC_STATS(sock_net(sk),
380				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
381		} else {
382			/* Cookie is valid. Create a (full) child socket to
383			 * accept the data in SYN before returning a SYN-ACK to
384			 * ack the data. If we fail to create the socket, fall
385			 * back and ack the ISN only but includes the same
386			 * cookie.
387			 *
388			 * Note: Data-less SYN with valid cookie is allowed to
389			 * send data in SYN_RECV state.
390			 */
391fastopen:
392			child = tcp_fastopen_create_child(sk, skb, req);
393			if (child) {
394				if (ret == 2) {
395					valid_foc.exp = foc->exp;
396					*foc = valid_foc;
397					NET_INC_STATS(sock_net(sk),
398						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
399				} else {
400					foc->len = -1;
401				}
402				NET_INC_STATS(sock_net(sk),
403					      LINUX_MIB_TCPFASTOPENPASSIVE);
404				return child;
405			}
406			NET_INC_STATS(sock_net(sk),
407				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
408		}
409	}
410	valid_foc.exp = foc->exp;
411	*foc = valid_foc;
412	return NULL;
413}
414
415bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
416			       struct tcp_fastopen_cookie *cookie)
417{
418	const struct dst_entry *dst;
419
420	tcp_fastopen_cache_get(sk, mss, cookie);
421
422	/* Firewall blackhole issue check */
423	if (tcp_fastopen_active_should_disable(sk)) {
424		cookie->len = -1;
425		return false;
426	}
427
428	dst = __sk_dst_get(sk);
429
430	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
431		cookie->len = -1;
432		return true;
433	}
434	if (cookie->len > 0)
435		return true;
436	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
437	return false;
438}
439
440/* This function checks if we want to defer sending SYN until the first
441 * write().  We defer under the following conditions:
442 * 1. fastopen_connect sockopt is set
443 * 2. we have a valid cookie
444 * Return value: return true if we want to defer until application writes data
445 *               return false if we want to send out SYN immediately
446 */
447bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
448{
449	struct tcp_fastopen_cookie cookie = { .len = 0 };
450	struct tcp_sock *tp = tcp_sk(sk);
451	u16 mss;
452
453	if (tp->fastopen_connect && !tp->fastopen_req) {
454		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
455			inet_set_bit(DEFER_CONNECT, sk);
456			return true;
457		}
458
459		/* Alloc fastopen_req in order for FO option to be included
460		 * in SYN
461		 */
462		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
463					   sk->sk_allocation);
464		if (tp->fastopen_req)
465			tp->fastopen_req->cookie = cookie;
466		else
467			*err = -ENOBUFS;
468	}
469	return false;
470}
471EXPORT_SYMBOL(tcp_fastopen_defer_connect);
472
473/*
474 * The following code block is to deal with middle box issues with TFO:
475 * Middlebox firewall issues can potentially cause server's data being
476 * blackholed after a successful 3WHS using TFO.
477 * The proposed solution is to disable active TFO globally under the
478 * following circumstances:
479 *   1. client side TFO socket receives out of order FIN
480 *   2. client side TFO socket receives out of order RST
481 *   3. client side TFO socket has timed out three times consecutively during
482 *      or after handshake
483 * We disable active side TFO globally for 1hr at first. Then if it
484 * happens again, we disable it for 2h, then 4h, 8h, ...
485 * And we reset the timeout back to 1hr when we see a successful active
486 * TFO connection with data exchanges.
487 */
488
489/* Disable active TFO and record current jiffies and
490 * tfo_active_disable_times
491 */
492void tcp_fastopen_active_disable(struct sock *sk)
493{
494	struct net *net = sock_net(sk);
495
496	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
497		return;
498
499	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
500	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
501
502	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
503	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
504	 */
505	smp_mb__before_atomic();
506	atomic_inc(&net->ipv4.tfo_active_disable_times);
507
508	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
509}
510
511/* Calculate timeout for tfo active disable
512 * Return true if we are still in the active TFO disable period
513 * Return false if timeout already expired and we should use active TFO
514 */
515bool tcp_fastopen_active_should_disable(struct sock *sk)
516{
517	unsigned int tfo_bh_timeout =
518		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
519	unsigned long timeout;
520	int tfo_da_times;
521	int multiplier;
522
523	if (!tfo_bh_timeout)
524		return false;
525
526	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
527	if (!tfo_da_times)
528		return false;
529
530	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
531	smp_rmb();
532
533	/* Limit timeout to max: 2^6 * initial timeout */
534	multiplier = 1 << min(tfo_da_times - 1, 6);
535
536	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
537	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
538		  multiplier * tfo_bh_timeout * HZ;
539	if (time_before(jiffies, timeout))
540		return true;
541
542	/* Mark check bit so we can check for successful active TFO
543	 * condition and reset tfo_active_disable_times
544	 */
545	tcp_sk(sk)->syn_fastopen_ch = 1;
546	return false;
547}
548
549/* Disable active TFO if FIN is the only packet in the ofo queue
550 * and no data is received.
551 * Also check if we can reset tfo_active_disable_times if data is
552 * received successfully on a marked active TFO sockets opened on
553 * a non-loopback interface
554 */
555void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
556{
557	struct tcp_sock *tp = tcp_sk(sk);
558	struct dst_entry *dst;
559	struct sk_buff *skb;
560
561	if (!tp->syn_fastopen)
562		return;
563
564	if (!tp->data_segs_in) {
565		skb = skb_rb_first(&tp->out_of_order_queue);
566		if (skb && !skb_rb_next(skb)) {
567			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
568				tcp_fastopen_active_disable(sk);
569				return;
570			}
571		}
572	} else if (tp->syn_fastopen_ch &&
573		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
574		dst = sk_dst_get(sk);
575		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
576			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
577		dst_release(dst);
578	}
579}
580
581void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
582{
583	u32 timeouts = inet_csk(sk)->icsk_retransmits;
584	struct tcp_sock *tp = tcp_sk(sk);
585
586	/* Broken middle-boxes may black-hole Fast Open connection during or
587	 * even after the handshake. Be extremely conservative and pause
588	 * Fast Open globally after hitting the third consecutive timeout or
589	 * exceeding the configured timeout limit.
590	 */
591	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
592	    (timeouts == 2 || (timeouts < 2 && expired))) {
593		tcp_fastopen_active_disable(sk);
594		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
595	}
596}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/kernel.h>
  3#include <linux/tcp.h>
  4#include <linux/rcupdate.h>
  5#include <net/tcp.h>
  6
  7void tcp_fastopen_init_key_once(struct net *net)
  8{
  9	u8 key[TCP_FASTOPEN_KEY_LENGTH];
 10	struct tcp_fastopen_context *ctxt;
 11
 12	rcu_read_lock();
 13	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
 14	if (ctxt) {
 15		rcu_read_unlock();
 16		return;
 17	}
 18	rcu_read_unlock();
 19
 20	/* tcp_fastopen_reset_cipher publishes the new context
 21	 * atomically, so we allow this race happening here.
 22	 *
 23	 * All call sites of tcp_fastopen_cookie_gen also check
 24	 * for a valid cookie, so this is an acceptable risk.
 25	 */
 26	get_random_bytes(key, sizeof(key));
 27	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
 28}
 29
 30static void tcp_fastopen_ctx_free(struct rcu_head *head)
 31{
 32	struct tcp_fastopen_context *ctx =
 33	    container_of(head, struct tcp_fastopen_context, rcu);
 34
 35	kfree_sensitive(ctx);
 36}
 37
 38void tcp_fastopen_destroy_cipher(struct sock *sk)
 39{
 40	struct tcp_fastopen_context *ctx;
 41
 42	ctx = rcu_dereference_protected(
 43			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
 44	if (ctx)
 45		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
 46}
 47
 48void tcp_fastopen_ctx_destroy(struct net *net)
 49{
 50	struct tcp_fastopen_context *ctxt;
 51
 52	ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL);
 53
 54	if (ctxt)
 55		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
 56}
 57
 58int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
 59			      void *primary_key, void *backup_key)
 60{
 61	struct tcp_fastopen_context *ctx, *octx;
 62	struct fastopen_queue *q;
 63	int err = 0;
 64
 65	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 66	if (!ctx) {
 67		err = -ENOMEM;
 68		goto out;
 69	}
 70
 71	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
 72	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
 73	if (backup_key) {
 74		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
 75		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
 76		ctx->num = 2;
 77	} else {
 78		ctx->num = 1;
 79	}
 80
 81	if (sk) {
 82		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
 83		octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx);
 84	} else {
 85		octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx);
 
 86	}
 87
 88	if (octx)
 89		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
 90out:
 91	return err;
 92}
 93
 94int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
 95			    u64 *key)
 96{
 97	struct tcp_fastopen_context *ctx;
 98	int n_keys = 0, i;
 99
100	rcu_read_lock();
101	if (icsk)
102		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
103	else
104		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
105	if (ctx) {
106		n_keys = tcp_fastopen_context_len(ctx);
107		for (i = 0; i < n_keys; i++) {
108			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
109			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
110		}
111	}
112	rcu_read_unlock();
113
114	return n_keys;
115}
116
117static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
118					     struct sk_buff *syn,
119					     const siphash_key_t *key,
120					     struct tcp_fastopen_cookie *foc)
121{
122	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
123
124	if (req->rsk_ops->family == AF_INET) {
125		const struct iphdr *iph = ip_hdr(syn);
126
127		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
128					  sizeof(iph->saddr) +
129					  sizeof(iph->daddr),
130					  key));
131		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
132		return true;
133	}
134#if IS_ENABLED(CONFIG_IPV6)
135	if (req->rsk_ops->family == AF_INET6) {
136		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
137
138		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
139					  sizeof(ip6h->saddr) +
140					  sizeof(ip6h->daddr),
141					  key));
142		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
143		return true;
144	}
145#endif
146	return false;
147}
148
149/* Generate the fastopen cookie by applying SipHash to both the source and
150 * destination addresses.
151 */
152static void tcp_fastopen_cookie_gen(struct sock *sk,
153				    struct request_sock *req,
154				    struct sk_buff *syn,
155				    struct tcp_fastopen_cookie *foc)
156{
157	struct tcp_fastopen_context *ctx;
158
159	rcu_read_lock();
160	ctx = tcp_fastopen_get_ctx(sk);
161	if (ctx)
162		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
163	rcu_read_unlock();
164}
165
166/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
167 * queue this additional data / FIN.
168 */
169void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
170{
171	struct tcp_sock *tp = tcp_sk(sk);
172
173	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
174		return;
175
176	skb = skb_clone(skb, GFP_ATOMIC);
177	if (!skb)
178		return;
179
180	skb_dst_drop(skb);
181	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
182	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
183	 * to avoid double counting.  Also, tcp_segs_in() expects
184	 * skb->len to include the tcp_hdrlen.  Hence, it should
185	 * be called before __skb_pull().
186	 */
187	tp->segs_in = 0;
188	tcp_segs_in(tp, skb);
189	__skb_pull(skb, tcp_hdrlen(skb));
190	sk_forced_mem_schedule(sk, skb->truesize);
191	skb_set_owner_r(skb, sk);
192
193	TCP_SKB_CB(skb)->seq++;
194	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
195
196	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197	__skb_queue_tail(&sk->sk_receive_queue, skb);
198	tp->syn_data_acked = 1;
199
200	/* u64_stats_update_begin(&tp->syncp) not needed here,
201	 * as we certainly are not changing upper 32bit value (0)
202	 */
203	tp->bytes_received = skb->len;
204
205	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
206		tcp_fin(sk);
207}
208
209/* returns 0 - no key match, 1 for primary, 2 for backup */
210static int tcp_fastopen_cookie_gen_check(struct sock *sk,
211					 struct request_sock *req,
212					 struct sk_buff *syn,
213					 struct tcp_fastopen_cookie *orig,
214					 struct tcp_fastopen_cookie *valid_foc)
215{
216	struct tcp_fastopen_cookie search_foc = { .len = -1 };
217	struct tcp_fastopen_cookie *foc = valid_foc;
218	struct tcp_fastopen_context *ctx;
219	int i, ret = 0;
220
221	rcu_read_lock();
222	ctx = tcp_fastopen_get_ctx(sk);
223	if (!ctx)
224		goto out;
225	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
226		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
227		if (tcp_fastopen_cookie_match(foc, orig)) {
228			ret = i + 1;
229			goto out;
230		}
231		foc = &search_foc;
232	}
233out:
234	rcu_read_unlock();
235	return ret;
236}
237
238static struct sock *tcp_fastopen_create_child(struct sock *sk,
239					      struct sk_buff *skb,
240					      struct request_sock *req)
241{
242	struct tcp_sock *tp;
243	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
244	struct sock *child;
245	bool own_req;
246
247	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
248							 NULL, &own_req);
249	if (!child)
250		return NULL;
251
252	spin_lock(&queue->fastopenq.lock);
253	queue->fastopenq.qlen++;
254	spin_unlock(&queue->fastopenq.lock);
255
256	/* Initialize the child socket. Have to fix some values to take
257	 * into account the child is a Fast Open socket and is created
258	 * only out of the bits carried in the SYN packet.
259	 */
260	tp = tcp_sk(child);
261
262	rcu_assign_pointer(tp->fastopen_rsk, req);
263	tcp_rsk(req)->tfo_listener = true;
264
265	/* RFC1323: The window in SYN & SYN/ACK segments is never
266	 * scaled. So correct it appropriately.
267	 */
268	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
269	tp->max_window = tp->snd_wnd;
270
271	/* Activate the retrans timer so that SYNACK can be retransmitted.
272	 * The request socket is not added to the ehash
273	 * because it's been added to the accept queue directly.
274	 */
275	req->timeout = tcp_timeout_init(child);
276	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
277				  req->timeout, TCP_RTO_MAX);
278
279	refcount_set(&req->rsk_refcnt, 2);
280
281	/* Now finish processing the fastopen child socket. */
282	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
283
284	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
285
286	tcp_fastopen_add_skb(child, skb);
287
288	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
289	tp->rcv_wup = tp->rcv_nxt;
290	/* tcp_conn_request() is sending the SYNACK,
291	 * and queues the child into listener accept queue.
292	 */
293	return child;
294}
295
296static bool tcp_fastopen_queue_check(struct sock *sk)
297{
298	struct fastopen_queue *fastopenq;
299	int max_qlen;
300
301	/* Make sure the listener has enabled fastopen, and we don't
302	 * exceed the max # of pending TFO requests allowed before trying
303	 * to validating the cookie in order to avoid burning CPU cycles
304	 * unnecessarily.
305	 *
306	 * XXX (TFO) - The implication of checking the max_qlen before
307	 * processing a cookie request is that clients can't differentiate
308	 * between qlen overflow causing Fast Open to be disabled
309	 * temporarily vs a server not supporting Fast Open at all.
310	 */
311	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
312	max_qlen = READ_ONCE(fastopenq->max_qlen);
313	if (max_qlen == 0)
314		return false;
315
316	if (fastopenq->qlen >= max_qlen) {
317		struct request_sock *req1;
318		spin_lock(&fastopenq->lock);
319		req1 = fastopenq->rskq_rst_head;
320		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
321			__NET_INC_STATS(sock_net(sk),
322					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
323			spin_unlock(&fastopenq->lock);
324			return false;
325		}
326		fastopenq->rskq_rst_head = req1->dl_next;
327		fastopenq->qlen--;
328		spin_unlock(&fastopenq->lock);
329		reqsk_put(req1);
330	}
331	return true;
332}
333
334static bool tcp_fastopen_no_cookie(const struct sock *sk,
335				   const struct dst_entry *dst,
336				   int flag)
337{
338	return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
339	       tcp_sk(sk)->fastopen_no_cookie ||
340	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
341}
342
343/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
344 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
345 * cookie request (foc->len == 0).
346 */
347struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
348			      struct request_sock *req,
349			      struct tcp_fastopen_cookie *foc,
350			      const struct dst_entry *dst)
351{
352	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
353	int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
354	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
355	struct sock *child;
356	int ret = 0;
357
358	if (foc->len == 0) /* Client requests a cookie */
359		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
360
361	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
362	      (syn_data || foc->len >= 0) &&
363	      tcp_fastopen_queue_check(sk))) {
364		foc->len = -1;
365		return NULL;
366	}
367
368	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
369		goto fastopen;
370
371	if (foc->len == 0) {
372		/* Client requests a cookie. */
373		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
374	} else if (foc->len > 0) {
375		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
376						    &valid_foc);
377		if (!ret) {
378			NET_INC_STATS(sock_net(sk),
379				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
380		} else {
381			/* Cookie is valid. Create a (full) child socket to
382			 * accept the data in SYN before returning a SYN-ACK to
383			 * ack the data. If we fail to create the socket, fall
384			 * back and ack the ISN only but includes the same
385			 * cookie.
386			 *
387			 * Note: Data-less SYN with valid cookie is allowed to
388			 * send data in SYN_RECV state.
389			 */
390fastopen:
391			child = tcp_fastopen_create_child(sk, skb, req);
392			if (child) {
393				if (ret == 2) {
394					valid_foc.exp = foc->exp;
395					*foc = valid_foc;
396					NET_INC_STATS(sock_net(sk),
397						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
398				} else {
399					foc->len = -1;
400				}
401				NET_INC_STATS(sock_net(sk),
402					      LINUX_MIB_TCPFASTOPENPASSIVE);
403				return child;
404			}
405			NET_INC_STATS(sock_net(sk),
406				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
407		}
408	}
409	valid_foc.exp = foc->exp;
410	*foc = valid_foc;
411	return NULL;
412}
413
414bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
415			       struct tcp_fastopen_cookie *cookie)
416{
417	const struct dst_entry *dst;
418
419	tcp_fastopen_cache_get(sk, mss, cookie);
420
421	/* Firewall blackhole issue check */
422	if (tcp_fastopen_active_should_disable(sk)) {
423		cookie->len = -1;
424		return false;
425	}
426
427	dst = __sk_dst_get(sk);
428
429	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
430		cookie->len = -1;
431		return true;
432	}
433	if (cookie->len > 0)
434		return true;
435	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
436	return false;
437}
438
439/* This function checks if we want to defer sending SYN until the first
440 * write().  We defer under the following conditions:
441 * 1. fastopen_connect sockopt is set
442 * 2. we have a valid cookie
443 * Return value: return true if we want to defer until application writes data
444 *               return false if we want to send out SYN immediately
445 */
446bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
447{
448	struct tcp_fastopen_cookie cookie = { .len = 0 };
449	struct tcp_sock *tp = tcp_sk(sk);
450	u16 mss;
451
452	if (tp->fastopen_connect && !tp->fastopen_req) {
453		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
454			inet_set_bit(DEFER_CONNECT, sk);
455			return true;
456		}
457
458		/* Alloc fastopen_req in order for FO option to be included
459		 * in SYN
460		 */
461		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
462					   sk->sk_allocation);
463		if (tp->fastopen_req)
464			tp->fastopen_req->cookie = cookie;
465		else
466			*err = -ENOBUFS;
467	}
468	return false;
469}
470EXPORT_SYMBOL(tcp_fastopen_defer_connect);
471
472/*
473 * The following code block is to deal with middle box issues with TFO:
474 * Middlebox firewall issues can potentially cause server's data being
475 * blackholed after a successful 3WHS using TFO.
476 * The proposed solution is to disable active TFO globally under the
477 * following circumstances:
478 *   1. client side TFO socket receives out of order FIN
479 *   2. client side TFO socket receives out of order RST
480 *   3. client side TFO socket has timed out three times consecutively during
481 *      or after handshake
482 * We disable active side TFO globally for 1hr at first. Then if it
483 * happens again, we disable it for 2h, then 4h, 8h, ...
484 * And we reset the timeout back to 1hr when we see a successful active
485 * TFO connection with data exchanges.
486 */
487
488/* Disable active TFO and record current jiffies and
489 * tfo_active_disable_times
490 */
491void tcp_fastopen_active_disable(struct sock *sk)
492{
493	struct net *net = sock_net(sk);
494
495	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
496		return;
497
498	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
499	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
500
501	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
502	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
503	 */
504	smp_mb__before_atomic();
505	atomic_inc(&net->ipv4.tfo_active_disable_times);
506
507	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
508}
509
510/* Calculate timeout for tfo active disable
511 * Return true if we are still in the active TFO disable period
512 * Return false if timeout already expired and we should use active TFO
513 */
514bool tcp_fastopen_active_should_disable(struct sock *sk)
515{
516	unsigned int tfo_bh_timeout =
517		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
518	unsigned long timeout;
519	int tfo_da_times;
520	int multiplier;
521
522	if (!tfo_bh_timeout)
523		return false;
524
525	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
526	if (!tfo_da_times)
527		return false;
528
529	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
530	smp_rmb();
531
532	/* Limit timeout to max: 2^6 * initial timeout */
533	multiplier = 1 << min(tfo_da_times - 1, 6);
534
535	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
536	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
537		  multiplier * tfo_bh_timeout * HZ;
538	if (time_before(jiffies, timeout))
539		return true;
540
541	/* Mark check bit so we can check for successful active TFO
542	 * condition and reset tfo_active_disable_times
543	 */
544	tcp_sk(sk)->syn_fastopen_ch = 1;
545	return false;
546}
547
548/* Disable active TFO if FIN is the only packet in the ofo queue
549 * and no data is received.
550 * Also check if we can reset tfo_active_disable_times if data is
551 * received successfully on a marked active TFO sockets opened on
552 * a non-loopback interface
553 */
554void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
555{
556	struct tcp_sock *tp = tcp_sk(sk);
557	struct dst_entry *dst;
558	struct sk_buff *skb;
559
560	if (!tp->syn_fastopen)
561		return;
562
563	if (!tp->data_segs_in) {
564		skb = skb_rb_first(&tp->out_of_order_queue);
565		if (skb && !skb_rb_next(skb)) {
566			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
567				tcp_fastopen_active_disable(sk);
568				return;
569			}
570		}
571	} else if (tp->syn_fastopen_ch &&
572		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
573		dst = sk_dst_get(sk);
574		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
575			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
576		dst_release(dst);
577	}
578}
579
580void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
581{
582	u32 timeouts = inet_csk(sk)->icsk_retransmits;
583	struct tcp_sock *tp = tcp_sk(sk);
584
585	/* Broken middle-boxes may black-hole Fast Open connection during or
586	 * even after the handshake. Be extremely conservative and pause
587	 * Fast Open globally after hitting the third consecutive timeout or
588	 * exceeding the configured timeout limit.
589	 */
590	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
591	    (timeouts == 2 || (timeouts < 2 && expired))) {
592		tcp_fastopen_active_disable(sk);
593		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
594	}
595}