Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
 
 
 
  2#include <linux/kernel.h>
 
  3#include <linux/tcp.h>
  4#include <linux/rcupdate.h>
 
 
  5#include <net/tcp.h>
  6
  7void tcp_fastopen_init_key_once(struct net *net)
  8{
  9	u8 key[TCP_FASTOPEN_KEY_LENGTH];
 10	struct tcp_fastopen_context *ctxt;
 11
 12	rcu_read_lock();
 13	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
 14	if (ctxt) {
 15		rcu_read_unlock();
 16		return;
 17	}
 18	rcu_read_unlock();
 19
 20	/* tcp_fastopen_reset_cipher publishes the new context
 21	 * atomically, so we allow this race happening here.
 22	 *
 23	 * All call sites of tcp_fastopen_cookie_gen also check
 24	 * for a valid cookie, so this is an acceptable risk.
 25	 */
 26	get_random_bytes(key, sizeof(key));
 27	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
 28}
 29
 30static void tcp_fastopen_ctx_free(struct rcu_head *head)
 31{
 32	struct tcp_fastopen_context *ctx =
 33	    container_of(head, struct tcp_fastopen_context, rcu);
 34
 35	kfree_sensitive(ctx);
 36}
 37
 38void tcp_fastopen_destroy_cipher(struct sock *sk)
 39{
 40	struct tcp_fastopen_context *ctx;
 41
 42	ctx = rcu_dereference_protected(
 43			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
 44	if (ctx)
 45		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
 46}
 47
 48void tcp_fastopen_ctx_destroy(struct net *net)
 49{
 50	struct tcp_fastopen_context *ctxt;
 51
 52	ctxt = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, NULL));
 
 
 
 
 
 53
 54	if (ctxt)
 55		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
 56}
 57
 58int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
 59			      void *primary_key, void *backup_key)
 60{
 61	struct tcp_fastopen_context *ctx, *octx;
 62	struct fastopen_queue *q;
 63	int err = 0;
 64
 65	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 66	if (!ctx) {
 67		err = -ENOMEM;
 68		goto out;
 69	}
 70
 71	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
 72	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
 73	if (backup_key) {
 74		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
 75		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
 76		ctx->num = 2;
 77	} else {
 78		ctx->num = 1;
 
 
 
 79	}
 
 80
 
 
 81	if (sk) {
 82		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
 83		octx = unrcu_pointer(xchg(&q->ctx, RCU_INITIALIZER(ctx)));
 
 
 84	} else {
 85		octx = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx,
 86					  RCU_INITIALIZER(ctx)));
 
 87	}
 
 88
 89	if (octx)
 90		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
 91out:
 92	return err;
 93}
 94
 95int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
 96			    u64 *key)
 97{
 98	struct tcp_fastopen_context *ctx;
 99	int n_keys = 0, i;
100
101	rcu_read_lock();
102	if (icsk)
103		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
104	else
105		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
 
106	if (ctx) {
107		n_keys = tcp_fastopen_context_len(ctx);
108		for (i = 0; i < n_keys; i++) {
109			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
110			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
111		}
112	}
113	rcu_read_unlock();
114
115	return n_keys;
116}
117
118static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
119					     struct sk_buff *syn,
120					     const siphash_key_t *key,
121					     struct tcp_fastopen_cookie *foc)
 
 
 
 
 
 
122{
123	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
124
125	if (req->rsk_ops->family == AF_INET) {
126		const struct iphdr *iph = ip_hdr(syn);
127
128		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
129					  sizeof(iph->saddr) +
130					  sizeof(iph->daddr),
131					  key));
132		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
133		return true;
134	}
 
135#if IS_ENABLED(CONFIG_IPV6)
136	if (req->rsk_ops->family == AF_INET6) {
137		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
 
138
139		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
140					  sizeof(ip6h->saddr) +
141					  sizeof(ip6h->daddr),
142					  key));
143		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
144		return true;
 
 
145	}
146#endif
147	return false;
148}
149
150/* Generate the fastopen cookie by applying SipHash to both the source and
151 * destination addresses.
152 */
153static void tcp_fastopen_cookie_gen(struct sock *sk,
154				    struct request_sock *req,
155				    struct sk_buff *syn,
156				    struct tcp_fastopen_cookie *foc)
157{
158	struct tcp_fastopen_context *ctx;
159
160	rcu_read_lock();
161	ctx = tcp_fastopen_get_ctx(sk);
162	if (ctx)
163		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
164	rcu_read_unlock();
165}
166
167/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
168 * queue this additional data / FIN.
169 */
170void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
171{
172	struct tcp_sock *tp = tcp_sk(sk);
173
174	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
175		return;
176
177	skb = skb_clone(skb, GFP_ATOMIC);
178	if (!skb)
179		return;
180
181	tcp_cleanup_skb(skb);
182	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
183	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
184	 * to avoid double counting.  Also, tcp_segs_in() expects
185	 * skb->len to include the tcp_hdrlen.  Hence, it should
186	 * be called before __skb_pull().
187	 */
188	tp->segs_in = 0;
189	tcp_segs_in(tp, skb);
190	__skb_pull(skb, tcp_hdrlen(skb));
191	sk_forced_mem_schedule(sk, skb->truesize);
192	skb_set_owner_r(skb, sk);
193
194	TCP_SKB_CB(skb)->seq++;
195	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
196
197	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
198	tcp_add_receive_queue(sk, skb);
199	tp->syn_data_acked = 1;
200
201	/* u64_stats_update_begin(&tp->syncp) not needed here,
202	 * as we certainly are not changing upper 32bit value (0)
203	 */
204	tp->bytes_received = skb->len;
205
206	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
207		tcp_fin(sk);
208}
209
210/* returns 0 - no key match, 1 for primary, 2 for backup */
211static int tcp_fastopen_cookie_gen_check(struct sock *sk,
212					 struct request_sock *req,
213					 struct sk_buff *syn,
214					 struct tcp_fastopen_cookie *orig,
215					 struct tcp_fastopen_cookie *valid_foc)
216{
217	struct tcp_fastopen_cookie search_foc = { .len = -1 };
218	struct tcp_fastopen_cookie *foc = valid_foc;
219	struct tcp_fastopen_context *ctx;
220	int i, ret = 0;
221
222	rcu_read_lock();
223	ctx = tcp_fastopen_get_ctx(sk);
224	if (!ctx)
225		goto out;
226	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
227		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
228		if (tcp_fastopen_cookie_match(foc, orig)) {
229			ret = i + 1;
230			goto out;
231		}
232		foc = &search_foc;
233	}
234out:
235	rcu_read_unlock();
236	return ret;
237}
238
239static struct sock *tcp_fastopen_create_child(struct sock *sk,
240					      struct sk_buff *skb,
241					      struct request_sock *req)
242{
243	struct tcp_sock *tp;
244	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
245	struct sock *child;
246	bool own_req;
247
 
 
 
 
248	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
249							 NULL, &own_req);
250	if (!child)
251		return NULL;
252
253	spin_lock(&queue->fastopenq.lock);
254	queue->fastopenq.qlen++;
255	spin_unlock(&queue->fastopenq.lock);
256
257	/* Initialize the child socket. Have to fix some values to take
258	 * into account the child is a Fast Open socket and is created
259	 * only out of the bits carried in the SYN packet.
260	 */
261	tp = tcp_sk(child);
262
263	rcu_assign_pointer(tp->fastopen_rsk, req);
264	tcp_rsk(req)->tfo_listener = true;
265
266	/* RFC1323: The window in SYN & SYN/ACK segments is never
267	 * scaled. So correct it appropriately.
268	 */
269	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
270	tp->max_window = tp->snd_wnd;
271
272	/* Activate the retrans timer so that SYNACK can be retransmitted.
273	 * The request socket is not added to the ehash
274	 * because it's been added to the accept queue directly.
275	 */
276	req->timeout = tcp_timeout_init(child);
277	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
278				  req->timeout, TCP_RTO_MAX);
279
280	refcount_set(&req->rsk_refcnt, 2);
281
282	/* Now finish processing the fastopen child socket. */
283	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
284
285	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
286
287	tcp_fastopen_add_skb(child, skb);
288
289	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
290	tp->rcv_wup = tp->rcv_nxt;
291	/* tcp_conn_request() is sending the SYNACK,
292	 * and queues the child into listener accept queue.
293	 */
294	return child;
295}
296
297static bool tcp_fastopen_queue_check(struct sock *sk)
298{
299	struct fastopen_queue *fastopenq;
300	int max_qlen;
301
302	/* Make sure the listener has enabled fastopen, and we don't
303	 * exceed the max # of pending TFO requests allowed before trying
304	 * to validating the cookie in order to avoid burning CPU cycles
305	 * unnecessarily.
306	 *
307	 * XXX (TFO) - The implication of checking the max_qlen before
308	 * processing a cookie request is that clients can't differentiate
309	 * between qlen overflow causing Fast Open to be disabled
310	 * temporarily vs a server not supporting Fast Open at all.
311	 */
312	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
313	max_qlen = READ_ONCE(fastopenq->max_qlen);
314	if (max_qlen == 0)
315		return false;
316
317	if (fastopenq->qlen >= max_qlen) {
318		struct request_sock *req1;
319		spin_lock(&fastopenq->lock);
320		req1 = fastopenq->rskq_rst_head;
321		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
322			__NET_INC_STATS(sock_net(sk),
323					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
324			spin_unlock(&fastopenq->lock);
325			return false;
326		}
327		fastopenq->rskq_rst_head = req1->dl_next;
328		fastopenq->qlen--;
329		spin_unlock(&fastopenq->lock);
330		reqsk_put(req1);
331	}
332	return true;
333}
334
335static bool tcp_fastopen_no_cookie(const struct sock *sk,
336				   const struct dst_entry *dst,
337				   int flag)
338{
339	return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
340	       tcp_sk(sk)->fastopen_no_cookie ||
341	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
342}
343
344/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
345 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
346 * cookie request (foc->len == 0).
347 */
348struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
349			      struct request_sock *req,
350			      struct tcp_fastopen_cookie *foc,
351			      const struct dst_entry *dst)
352{
353	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
354	int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
355	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
356	struct sock *child;
357	int ret = 0;
358
359	if (foc->len == 0) /* Client requests a cookie */
360		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
361
362	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
363	      (syn_data || foc->len >= 0) &&
364	      tcp_fastopen_queue_check(sk))) {
365		foc->len = -1;
366		return NULL;
367	}
368
369	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
 
370		goto fastopen;
371
372	if (foc->len == 0) {
373		/* Client requests a cookie. */
374		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
375	} else if (foc->len > 0) {
376		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
377						    &valid_foc);
378		if (!ret) {
379			NET_INC_STATS(sock_net(sk),
380				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
381		} else {
382			/* Cookie is valid. Create a (full) child socket to
383			 * accept the data in SYN before returning a SYN-ACK to
384			 * ack the data. If we fail to create the socket, fall
385			 * back and ack the ISN only but includes the same
386			 * cookie.
387			 *
388			 * Note: Data-less SYN with valid cookie is allowed to
389			 * send data in SYN_RECV state.
390			 */
391fastopen:
392			child = tcp_fastopen_create_child(sk, skb, req);
393			if (child) {
394				if (ret == 2) {
395					valid_foc.exp = foc->exp;
396					*foc = valid_foc;
397					NET_INC_STATS(sock_net(sk),
398						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
399				} else {
400					foc->len = -1;
401				}
402				NET_INC_STATS(sock_net(sk),
403					      LINUX_MIB_TCPFASTOPENPASSIVE);
404				return child;
405			}
406			NET_INC_STATS(sock_net(sk),
407				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
 
408		}
409	}
 
 
 
410	valid_foc.exp = foc->exp;
411	*foc = valid_foc;
412	return NULL;
413}
414
415bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
416			       struct tcp_fastopen_cookie *cookie)
417{
418	const struct dst_entry *dst;
419
420	tcp_fastopen_cache_get(sk, mss, cookie);
421
422	/* Firewall blackhole issue check */
423	if (tcp_fastopen_active_should_disable(sk)) {
424		cookie->len = -1;
425		return false;
426	}
427
428	dst = __sk_dst_get(sk);
429
430	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
431		cookie->len = -1;
432		return true;
433	}
434	if (cookie->len > 0)
435		return true;
436	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
437	return false;
438}
439
440/* This function checks if we want to defer sending SYN until the first
441 * write().  We defer under the following conditions:
442 * 1. fastopen_connect sockopt is set
443 * 2. we have a valid cookie
444 * Return value: return true if we want to defer until application writes data
445 *               return false if we want to send out SYN immediately
446 */
447bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
448{
449	struct tcp_fastopen_cookie cookie = { .len = 0 };
450	struct tcp_sock *tp = tcp_sk(sk);
451	u16 mss;
452
453	if (tp->fastopen_connect && !tp->fastopen_req) {
454		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
455			inet_set_bit(DEFER_CONNECT, sk);
456			return true;
457		}
458
459		/* Alloc fastopen_req in order for FO option to be included
460		 * in SYN
461		 */
462		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
463					   sk->sk_allocation);
464		if (tp->fastopen_req)
465			tp->fastopen_req->cookie = cookie;
466		else
467			*err = -ENOBUFS;
468	}
469	return false;
470}
471EXPORT_SYMBOL(tcp_fastopen_defer_connect);
472
473/*
474 * The following code block is to deal with middle box issues with TFO:
475 * Middlebox firewall issues can potentially cause server's data being
476 * blackholed after a successful 3WHS using TFO.
477 * The proposed solution is to disable active TFO globally under the
478 * following circumstances:
479 *   1. client side TFO socket receives out of order FIN
480 *   2. client side TFO socket receives out of order RST
481 *   3. client side TFO socket has timed out three times consecutively during
482 *      or after handshake
483 * We disable active side TFO globally for 1hr at first. Then if it
484 * happens again, we disable it for 2h, then 4h, 8h, ...
485 * And we reset the timeout back to 1hr when we see a successful active
486 * TFO connection with data exchanges.
487 */
488
489/* Disable active TFO and record current jiffies and
490 * tfo_active_disable_times
491 */
492void tcp_fastopen_active_disable(struct sock *sk)
493{
494	struct net *net = sock_net(sk);
495
496	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
497		return;
498
499	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
500	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
501
502	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
503	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
504	 */
505	smp_mb__before_atomic();
506	atomic_inc(&net->ipv4.tfo_active_disable_times);
507
508	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
509}
510
511/* Calculate timeout for tfo active disable
512 * Return true if we are still in the active TFO disable period
513 * Return false if timeout already expired and we should use active TFO
514 */
515bool tcp_fastopen_active_should_disable(struct sock *sk)
516{
517	unsigned int tfo_bh_timeout =
518		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
519	unsigned long timeout;
520	int tfo_da_times;
521	int multiplier;
522
523	if (!tfo_bh_timeout)
524		return false;
525
526	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
527	if (!tfo_da_times)
528		return false;
529
530	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
531	smp_rmb();
532
533	/* Limit timeout to max: 2^6 * initial timeout */
534	multiplier = 1 << min(tfo_da_times - 1, 6);
535
536	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
537	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
538		  multiplier * tfo_bh_timeout * HZ;
539	if (time_before(jiffies, timeout))
540		return true;
541
542	/* Mark check bit so we can check for successful active TFO
543	 * condition and reset tfo_active_disable_times
544	 */
545	tcp_sk(sk)->syn_fastopen_ch = 1;
546	return false;
547}
548
549/* Disable active TFO if FIN is the only packet in the ofo queue
550 * and no data is received.
551 * Also check if we can reset tfo_active_disable_times if data is
552 * received successfully on a marked active TFO sockets opened on
553 * a non-loopback interface
554 */
555void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
556{
557	struct tcp_sock *tp = tcp_sk(sk);
558	struct dst_entry *dst;
559	struct sk_buff *skb;
560
561	if (!tp->syn_fastopen)
562		return;
563
564	if (!tp->data_segs_in) {
565		skb = skb_rb_first(&tp->out_of_order_queue);
566		if (skb && !skb_rb_next(skb)) {
567			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
568				tcp_fastopen_active_disable(sk);
569				return;
570			}
571		}
572	} else if (tp->syn_fastopen_ch &&
573		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
574		dst = sk_dst_get(sk);
575		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
576			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
577		dst_release(dst);
578	}
579}
580
581void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
582{
583	u32 timeouts = inet_csk(sk)->icsk_retransmits;
584	struct tcp_sock *tp = tcp_sk(sk);
585
586	/* Broken middle-boxes may black-hole Fast Open connection during or
587	 * even after the handshake. Be extremely conservative and pause
588	 * Fast Open globally after hitting the third consecutive timeout or
589	 * exceeding the configured timeout limit.
590	 */
591	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
592	    (timeouts == 2 || (timeouts < 2 && expired))) {
593		tcp_fastopen_active_disable(sk);
594		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
595	}
596}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/crypto.h>
  3#include <linux/err.h>
  4#include <linux/init.h>
  5#include <linux/kernel.h>
  6#include <linux/list.h>
  7#include <linux/tcp.h>
  8#include <linux/rcupdate.h>
  9#include <linux/rculist.h>
 10#include <net/inetpeer.h>
 11#include <net/tcp.h>
 12
 13void tcp_fastopen_init_key_once(struct net *net)
 14{
 15	u8 key[TCP_FASTOPEN_KEY_LENGTH];
 16	struct tcp_fastopen_context *ctxt;
 17
 18	rcu_read_lock();
 19	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
 20	if (ctxt) {
 21		rcu_read_unlock();
 22		return;
 23	}
 24	rcu_read_unlock();
 25
 26	/* tcp_fastopen_reset_cipher publishes the new context
 27	 * atomically, so we allow this race happening here.
 28	 *
 29	 * All call sites of tcp_fastopen_cookie_gen also check
 30	 * for a valid cookie, so this is an acceptable risk.
 31	 */
 32	get_random_bytes(key, sizeof(key));
 33	tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key));
 34}
 35
 36static void tcp_fastopen_ctx_free(struct rcu_head *head)
 37{
 38	struct tcp_fastopen_context *ctx =
 39	    container_of(head, struct tcp_fastopen_context, rcu);
 40	crypto_free_cipher(ctx->tfm);
 41	kfree(ctx);
 42}
 43
 44void tcp_fastopen_destroy_cipher(struct sock *sk)
 45{
 46	struct tcp_fastopen_context *ctx;
 47
 48	ctx = rcu_dereference_protected(
 49			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
 50	if (ctx)
 51		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
 52}
 53
 54void tcp_fastopen_ctx_destroy(struct net *net)
 55{
 56	struct tcp_fastopen_context *ctxt;
 57
 58	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
 59
 60	ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
 61				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
 62	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
 63	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
 64
 65	if (ctxt)
 66		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
 67}
 68
 69int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
 70			      void *key, unsigned int len)
 71{
 72	struct tcp_fastopen_context *ctx, *octx;
 73	struct fastopen_queue *q;
 74	int err;
 75
 76	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 77	if (!ctx)
 78		return -ENOMEM;
 79	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
 
 80
 81	if (IS_ERR(ctx->tfm)) {
 82		err = PTR_ERR(ctx->tfm);
 83error:		kfree(ctx);
 84		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
 85		return err;
 86	}
 87	err = crypto_cipher_setkey(ctx->tfm, key, len);
 88	if (err) {
 89		pr_err("TCP: TFO cipher key error: %d\n", err);
 90		crypto_free_cipher(ctx->tfm);
 91		goto error;
 92	}
 93	memcpy(ctx->key, key, len);
 94
 95
 96	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
 97	if (sk) {
 98		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
 99		octx = rcu_dereference_protected(q->ctx,
100			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
101		rcu_assign_pointer(q->ctx, ctx);
102	} else {
103		octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
104			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
105		rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
106	}
107	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
108
109	if (octx)
110		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
 
111	return err;
112}
113
114static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path,
115				      struct tcp_fastopen_cookie *foc)
116{
117	struct tcp_fastopen_context *ctx;
118	bool ok = false;
119
120	rcu_read_lock();
121
122	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
123	if (!ctx)
124		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
125
126	if (ctx) {
127		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
128		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
129		ok = true;
 
 
130	}
131	rcu_read_unlock();
132	return ok;
 
133}
134
135/* Generate the fastopen cookie by doing aes128 encryption on both
136 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
137 * addresses. For the longer IPv6 addresses use CBC-MAC.
138 *
139 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
140 */
141static bool tcp_fastopen_cookie_gen(struct sock *sk,
142				    struct request_sock *req,
143				    struct sk_buff *syn,
144				    struct tcp_fastopen_cookie *foc)
145{
 
 
146	if (req->rsk_ops->family == AF_INET) {
147		const struct iphdr *iph = ip_hdr(syn);
148
149		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
150		return __tcp_fastopen_cookie_gen(sk, path, foc);
 
 
 
 
151	}
152
153#if IS_ENABLED(CONFIG_IPV6)
154	if (req->rsk_ops->family == AF_INET6) {
155		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
156		struct tcp_fastopen_cookie tmp;
157
158		if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) {
159			struct in6_addr *buf = &tmp.addr;
160			int i;
161
162			for (i = 0; i < 4; i++)
163				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
164			return __tcp_fastopen_cookie_gen(sk, buf, foc);
165		}
166	}
167#endif
168	return false;
169}
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
172/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
173 * queue this additional data / FIN.
174 */
175void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
176{
177	struct tcp_sock *tp = tcp_sk(sk);
178
179	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
180		return;
181
182	skb = skb_clone(skb, GFP_ATOMIC);
183	if (!skb)
184		return;
185
186	skb_dst_drop(skb);
187	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
188	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
189	 * to avoid double counting.  Also, tcp_segs_in() expects
190	 * skb->len to include the tcp_hdrlen.  Hence, it should
191	 * be called before __skb_pull().
192	 */
193	tp->segs_in = 0;
194	tcp_segs_in(tp, skb);
195	__skb_pull(skb, tcp_hdrlen(skb));
196	sk_forced_mem_schedule(sk, skb->truesize);
197	skb_set_owner_r(skb, sk);
198
199	TCP_SKB_CB(skb)->seq++;
200	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
201
202	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
203	__skb_queue_tail(&sk->sk_receive_queue, skb);
204	tp->syn_data_acked = 1;
205
206	/* u64_stats_update_begin(&tp->syncp) not needed here,
207	 * as we certainly are not changing upper 32bit value (0)
208	 */
209	tp->bytes_received = skb->len;
210
211	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
212		tcp_fin(sk);
213}
214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215static struct sock *tcp_fastopen_create_child(struct sock *sk,
216					      struct sk_buff *skb,
217					      struct request_sock *req)
218{
219	struct tcp_sock *tp;
220	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
221	struct sock *child;
222	bool own_req;
223
224	req->num_retrans = 0;
225	req->num_timeout = 0;
226	req->sk = NULL;
227
228	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
229							 NULL, &own_req);
230	if (!child)
231		return NULL;
232
233	spin_lock(&queue->fastopenq.lock);
234	queue->fastopenq.qlen++;
235	spin_unlock(&queue->fastopenq.lock);
236
237	/* Initialize the child socket. Have to fix some values to take
238	 * into account the child is a Fast Open socket and is created
239	 * only out of the bits carried in the SYN packet.
240	 */
241	tp = tcp_sk(child);
242
243	tp->fastopen_rsk = req;
244	tcp_rsk(req)->tfo_listener = true;
245
246	/* RFC1323: The window in SYN & SYN/ACK segments is never
247	 * scaled. So correct it appropriately.
248	 */
249	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
250	tp->max_window = tp->snd_wnd;
251
252	/* Activate the retrans timer so that SYNACK can be retransmitted.
253	 * The request socket is not added to the ehash
254	 * because it's been added to the accept queue directly.
255	 */
 
256	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
257				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
258
259	refcount_set(&req->rsk_refcnt, 2);
260
261	/* Now finish processing the fastopen child socket. */
262	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
263
264	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
265
266	tcp_fastopen_add_skb(child, skb);
267
268	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
269	tp->rcv_wup = tp->rcv_nxt;
270	/* tcp_conn_request() is sending the SYNACK,
271	 * and queues the child into listener accept queue.
272	 */
273	return child;
274}
275
276static bool tcp_fastopen_queue_check(struct sock *sk)
277{
278	struct fastopen_queue *fastopenq;
 
279
280	/* Make sure the listener has enabled fastopen, and we don't
281	 * exceed the max # of pending TFO requests allowed before trying
282	 * to validating the cookie in order to avoid burning CPU cycles
283	 * unnecessarily.
284	 *
285	 * XXX (TFO) - The implication of checking the max_qlen before
286	 * processing a cookie request is that clients can't differentiate
287	 * between qlen overflow causing Fast Open to be disabled
288	 * temporarily vs a server not supporting Fast Open at all.
289	 */
290	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
291	if (fastopenq->max_qlen == 0)
 
292		return false;
293
294	if (fastopenq->qlen >= fastopenq->max_qlen) {
295		struct request_sock *req1;
296		spin_lock(&fastopenq->lock);
297		req1 = fastopenq->rskq_rst_head;
298		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
299			__NET_INC_STATS(sock_net(sk),
300					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
301			spin_unlock(&fastopenq->lock);
302			return false;
303		}
304		fastopenq->rskq_rst_head = req1->dl_next;
305		fastopenq->qlen--;
306		spin_unlock(&fastopenq->lock);
307		reqsk_put(req1);
308	}
309	return true;
310}
311
312static bool tcp_fastopen_no_cookie(const struct sock *sk,
313				   const struct dst_entry *dst,
314				   int flag)
315{
316	return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
317	       tcp_sk(sk)->fastopen_no_cookie ||
318	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
319}
320
321/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
322 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
323 * cookie request (foc->len == 0).
324 */
325struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
326			      struct request_sock *req,
327			      struct tcp_fastopen_cookie *foc,
328			      const struct dst_entry *dst)
329{
330	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
331	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
332	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
333	struct sock *child;
 
334
335	if (foc->len == 0) /* Client requests a cookie */
336		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
337
338	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
339	      (syn_data || foc->len >= 0) &&
340	      tcp_fastopen_queue_check(sk))) {
341		foc->len = -1;
342		return NULL;
343	}
344
345	if (syn_data &&
346	    tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
347		goto fastopen;
348
349	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
350	    tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) &&
351	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
352	    foc->len == valid_foc.len &&
353	    !memcmp(foc->val, valid_foc.val, foc->len)) {
354		/* Cookie is valid. Create a (full) child socket to accept
355		 * the data in SYN before returning a SYN-ACK to ack the
356		 * data. If we fail to create the socket, fall back and
357		 * ack the ISN only but includes the same cookie.
358		 *
359		 * Note: Data-less SYN with valid cookie is allowed to send
360		 * data in SYN_RECV state.
361		 */
 
 
 
 
 
 
362fastopen:
363		child = tcp_fastopen_create_child(sk, skb, req);
364		if (child) {
365			foc->len = -1;
 
 
 
 
 
 
 
 
 
 
 
366			NET_INC_STATS(sock_net(sk),
367				      LINUX_MIB_TCPFASTOPENPASSIVE);
368			return child;
369		}
370		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
371	} else if (foc->len > 0) /* Client presents an invalid cookie */
372		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
373
374	valid_foc.exp = foc->exp;
375	*foc = valid_foc;
376	return NULL;
377}
378
379bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
380			       struct tcp_fastopen_cookie *cookie)
381{
382	const struct dst_entry *dst;
383
384	tcp_fastopen_cache_get(sk, mss, cookie);
385
386	/* Firewall blackhole issue check */
387	if (tcp_fastopen_active_should_disable(sk)) {
388		cookie->len = -1;
389		return false;
390	}
391
392	dst = __sk_dst_get(sk);
393
394	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
395		cookie->len = -1;
396		return true;
397	}
398	return cookie->len > 0;
 
 
 
399}
400
401/* This function checks if we want to defer sending SYN until the first
402 * write().  We defer under the following conditions:
403 * 1. fastopen_connect sockopt is set
404 * 2. we have a valid cookie
405 * Return value: return true if we want to defer until application writes data
406 *               return false if we want to send out SYN immediately
407 */
408bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
409{
410	struct tcp_fastopen_cookie cookie = { .len = 0 };
411	struct tcp_sock *tp = tcp_sk(sk);
412	u16 mss;
413
414	if (tp->fastopen_connect && !tp->fastopen_req) {
415		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
416			inet_sk(sk)->defer_connect = 1;
417			return true;
418		}
419
420		/* Alloc fastopen_req in order for FO option to be included
421		 * in SYN
422		 */
423		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
424					   sk->sk_allocation);
425		if (tp->fastopen_req)
426			tp->fastopen_req->cookie = cookie;
427		else
428			*err = -ENOBUFS;
429	}
430	return false;
431}
432EXPORT_SYMBOL(tcp_fastopen_defer_connect);
433
434/*
435 * The following code block is to deal with middle box issues with TFO:
436 * Middlebox firewall issues can potentially cause server's data being
437 * blackholed after a successful 3WHS using TFO.
438 * The proposed solution is to disable active TFO globally under the
439 * following circumstances:
440 *   1. client side TFO socket receives out of order FIN
441 *   2. client side TFO socket receives out of order RST
442 *   3. client side TFO socket has timed out three times consecutively during
443 *      or after handshake
444 * We disable active side TFO globally for 1hr at first. Then if it
445 * happens again, we disable it for 2h, then 4h, 8h, ...
446 * And we reset the timeout back to 1hr when we see a successful active
447 * TFO connection with data exchanges.
448 */
449
450/* Disable active TFO and record current jiffies and
451 * tfo_active_disable_times
452 */
453void tcp_fastopen_active_disable(struct sock *sk)
454{
455	struct net *net = sock_net(sk);
456
 
 
 
 
 
 
 
 
 
 
457	atomic_inc(&net->ipv4.tfo_active_disable_times);
458	net->ipv4.tfo_active_disable_stamp = jiffies;
459	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
460}
461
462/* Calculate timeout for tfo active disable
463 * Return true if we are still in the active TFO disable period
464 * Return false if timeout already expired and we should use active TFO
465 */
466bool tcp_fastopen_active_should_disable(struct sock *sk)
467{
468	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
469	int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
470	unsigned long timeout;
 
471	int multiplier;
472
 
 
 
 
473	if (!tfo_da_times)
474		return false;
475
476	/* Limit timout to max: 2^6 * initial timeout */
 
 
 
477	multiplier = 1 << min(tfo_da_times - 1, 6);
478	timeout = multiplier * tfo_bh_timeout * HZ;
479	if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
 
 
 
480		return true;
481
482	/* Mark check bit so we can check for successful active TFO
483	 * condition and reset tfo_active_disable_times
484	 */
485	tcp_sk(sk)->syn_fastopen_ch = 1;
486	return false;
487}
488
489/* Disable active TFO if FIN is the only packet in the ofo queue
490 * and no data is received.
491 * Also check if we can reset tfo_active_disable_times if data is
492 * received successfully on a marked active TFO sockets opened on
493 * a non-loopback interface
494 */
495void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
496{
497	struct tcp_sock *tp = tcp_sk(sk);
498	struct dst_entry *dst;
499	struct sk_buff *skb;
500
501	if (!tp->syn_fastopen)
502		return;
503
504	if (!tp->data_segs_in) {
505		skb = skb_rb_first(&tp->out_of_order_queue);
506		if (skb && !skb_rb_next(skb)) {
507			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
508				tcp_fastopen_active_disable(sk);
509				return;
510			}
511		}
512	} else if (tp->syn_fastopen_ch &&
513		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
514		dst = sk_dst_get(sk);
515		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
516			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
517		dst_release(dst);
518	}
519}
520
521void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
522{
523	u32 timeouts = inet_csk(sk)->icsk_retransmits;
524	struct tcp_sock *tp = tcp_sk(sk);
525
526	/* Broken middle-boxes may black-hole Fast Open connection during or
527	 * even after the handshake. Be extremely conservative and pause
528	 * Fast Open globally after hitting the third consecutive timeout or
529	 * exceeding the configured timeout limit.
530	 */
531	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
532	    (timeouts == 2 || (timeouts < 2 && expired))) {
533		tcp_fastopen_active_disable(sk);
534		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
535	}
536}