Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6
   7int sched_rr_timeslice = RR_TIMESLICE;
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
 
 
 
 
  11/*
  12 * period over which we measure -rt task CPU usage in us.
  13 * default: 1s
  14 */
  15int sysctl_sched_rt_period = 1000000;
  16
  17/*
  18 * part of the period that we allow rt tasks to run in us.
  19 * default: 0.95s
  20 */
  21int sysctl_sched_rt_runtime = 950000;
  22
  23#ifdef CONFIG_SYSCTL
  24static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
  25static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
  26		size_t *lenp, loff_t *ppos);
  27static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
  28		size_t *lenp, loff_t *ppos);
  29static struct ctl_table sched_rt_sysctls[] = {
  30	{
  31		.procname       = "sched_rt_period_us",
  32		.data           = &sysctl_sched_rt_period,
  33		.maxlen         = sizeof(int),
  34		.mode           = 0644,
  35		.proc_handler   = sched_rt_handler,
  36		.extra1         = SYSCTL_ONE,
  37		.extra2         = SYSCTL_INT_MAX,
  38	},
  39	{
  40		.procname       = "sched_rt_runtime_us",
  41		.data           = &sysctl_sched_rt_runtime,
  42		.maxlen         = sizeof(int),
  43		.mode           = 0644,
  44		.proc_handler   = sched_rt_handler,
  45		.extra1         = SYSCTL_NEG_ONE,
  46		.extra2         = (void *)&sysctl_sched_rt_period,
  47	},
  48	{
  49		.procname       = "sched_rr_timeslice_ms",
  50		.data           = &sysctl_sched_rr_timeslice,
  51		.maxlen         = sizeof(int),
  52		.mode           = 0644,
  53		.proc_handler   = sched_rr_handler,
  54	},
 
  55};
  56
  57static int __init sched_rt_sysctl_init(void)
  58{
  59	register_sysctl_init("kernel", sched_rt_sysctls);
  60	return 0;
  61}
  62late_initcall(sched_rt_sysctl_init);
  63#endif
  64
  65void init_rt_rq(struct rt_rq *rt_rq)
  66{
  67	struct rt_prio_array *array;
  68	int i;
  69
  70	array = &rt_rq->active;
  71	for (i = 0; i < MAX_RT_PRIO; i++) {
  72		INIT_LIST_HEAD(array->queue + i);
  73		__clear_bit(i, array->bitmap);
  74	}
  75	/* delimiter for bitsearch: */
  76	__set_bit(MAX_RT_PRIO, array->bitmap);
  77
  78#if defined CONFIG_SMP
  79	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
  80	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
  81	rt_rq->overloaded = 0;
  82	plist_head_init(&rt_rq->pushable_tasks);
  83#endif /* CONFIG_SMP */
  84	/* We start is dequeued state, because no RT tasks are queued */
  85	rt_rq->rt_queued = 0;
  86
  87#ifdef CONFIG_RT_GROUP_SCHED
  88	rt_rq->rt_time = 0;
  89	rt_rq->rt_throttled = 0;
  90	rt_rq->rt_runtime = 0;
  91	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  92#endif
  93}
  94
  95#ifdef CONFIG_RT_GROUP_SCHED
  96
  97static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  98
  99static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
 100{
 101	struct rt_bandwidth *rt_b =
 102		container_of(timer, struct rt_bandwidth, rt_period_timer);
 103	int idle = 0;
 104	int overrun;
 105
 106	raw_spin_lock(&rt_b->rt_runtime_lock);
 107	for (;;) {
 108		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
 109		if (!overrun)
 110			break;
 111
 112		raw_spin_unlock(&rt_b->rt_runtime_lock);
 113		idle = do_sched_rt_period_timer(rt_b, overrun);
 114		raw_spin_lock(&rt_b->rt_runtime_lock);
 115	}
 116	if (idle)
 117		rt_b->rt_period_active = 0;
 118	raw_spin_unlock(&rt_b->rt_runtime_lock);
 119
 120	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 121}
 122
 123void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
 124{
 125	rt_b->rt_period = ns_to_ktime(period);
 126	rt_b->rt_runtime = runtime;
 127
 128	raw_spin_lock_init(&rt_b->rt_runtime_lock);
 129
 130	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
 131		     HRTIMER_MODE_REL_HARD);
 132	rt_b->rt_period_timer.function = sched_rt_period_timer;
 133}
 134
 135static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 136{
 137	raw_spin_lock(&rt_b->rt_runtime_lock);
 138	if (!rt_b->rt_period_active) {
 139		rt_b->rt_period_active = 1;
 140		/*
 141		 * SCHED_DEADLINE updates the bandwidth, as a run away
 142		 * RT task with a DL task could hog a CPU. But DL does
 143		 * not reset the period. If a deadline task was running
 144		 * without an RT task running, it can cause RT tasks to
 145		 * throttle when they start up. Kick the timer right away
 146		 * to update the period.
 147		 */
 148		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 149		hrtimer_start_expires(&rt_b->rt_period_timer,
 150				      HRTIMER_MODE_ABS_PINNED_HARD);
 151	}
 152	raw_spin_unlock(&rt_b->rt_runtime_lock);
 153}
 154
 155static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 156{
 157	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 158		return;
 159
 160	do_start_rt_bandwidth(rt_b);
 161}
 162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 164{
 165	hrtimer_cancel(&rt_b->rt_period_timer);
 166}
 167
 168#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 169
 170static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 171{
 172#ifdef CONFIG_SCHED_DEBUG
 173	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 174#endif
 175	return container_of(rt_se, struct task_struct, rt);
 176}
 177
 178static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 179{
 180	return rt_rq->rq;
 181}
 182
 183static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 184{
 185	return rt_se->rt_rq;
 186}
 187
 188static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 189{
 190	struct rt_rq *rt_rq = rt_se->rt_rq;
 191
 192	return rt_rq->rq;
 193}
 194
 195void unregister_rt_sched_group(struct task_group *tg)
 196{
 197	if (tg->rt_se)
 198		destroy_rt_bandwidth(&tg->rt_bandwidth);
 
 199}
 200
 201void free_rt_sched_group(struct task_group *tg)
 202{
 203	int i;
 204
 205	for_each_possible_cpu(i) {
 206		if (tg->rt_rq)
 207			kfree(tg->rt_rq[i]);
 208		if (tg->rt_se)
 209			kfree(tg->rt_se[i]);
 210	}
 211
 212	kfree(tg->rt_rq);
 213	kfree(tg->rt_se);
 214}
 215
 216void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 217		struct sched_rt_entity *rt_se, int cpu,
 218		struct sched_rt_entity *parent)
 219{
 220	struct rq *rq = cpu_rq(cpu);
 221
 222	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 223	rt_rq->rt_nr_boosted = 0;
 224	rt_rq->rq = rq;
 225	rt_rq->tg = tg;
 226
 227	tg->rt_rq[cpu] = rt_rq;
 228	tg->rt_se[cpu] = rt_se;
 229
 230	if (!rt_se)
 231		return;
 232
 233	if (!parent)
 234		rt_se->rt_rq = &rq->rt;
 235	else
 236		rt_se->rt_rq = parent->my_q;
 237
 238	rt_se->my_q = rt_rq;
 239	rt_se->parent = parent;
 240	INIT_LIST_HEAD(&rt_se->run_list);
 241}
 242
 243int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 244{
 245	struct rt_rq *rt_rq;
 246	struct sched_rt_entity *rt_se;
 247	int i;
 248
 249	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 250	if (!tg->rt_rq)
 251		goto err;
 252	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 253	if (!tg->rt_se)
 254		goto err;
 255
 256	init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
 
 257
 258	for_each_possible_cpu(i) {
 259		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 260				     GFP_KERNEL, cpu_to_node(i));
 261		if (!rt_rq)
 262			goto err;
 263
 264		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 265				     GFP_KERNEL, cpu_to_node(i));
 266		if (!rt_se)
 267			goto err_free_rq;
 268
 269		init_rt_rq(rt_rq);
 270		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 271		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 272	}
 273
 274	return 1;
 275
 276err_free_rq:
 277	kfree(rt_rq);
 278err:
 279	return 0;
 280}
 281
 282#else /* CONFIG_RT_GROUP_SCHED */
 283
 284#define rt_entity_is_task(rt_se) (1)
 285
 286static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 287{
 288	return container_of(rt_se, struct task_struct, rt);
 289}
 290
 291static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 292{
 293	return container_of(rt_rq, struct rq, rt);
 294}
 295
 296static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 297{
 298	struct task_struct *p = rt_task_of(rt_se);
 299
 300	return task_rq(p);
 301}
 302
 303static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 304{
 305	struct rq *rq = rq_of_rt_se(rt_se);
 306
 307	return &rq->rt;
 308}
 309
 310void unregister_rt_sched_group(struct task_group *tg) { }
 311
 312void free_rt_sched_group(struct task_group *tg) { }
 313
 314int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 315{
 316	return 1;
 317}
 318#endif /* CONFIG_RT_GROUP_SCHED */
 319
 320#ifdef CONFIG_SMP
 321
 322static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 323{
 324	/* Try to pull RT tasks here if we lower this rq's prio */
 325	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 326}
 327
 328static inline int rt_overloaded(struct rq *rq)
 329{
 330	return atomic_read(&rq->rd->rto_count);
 331}
 332
 333static inline void rt_set_overload(struct rq *rq)
 334{
 335	if (!rq->online)
 336		return;
 337
 338	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 339	/*
 340	 * Make sure the mask is visible before we set
 341	 * the overload count. That is checked to determine
 342	 * if we should look at the mask. It would be a shame
 343	 * if we looked at the mask, but the mask was not
 344	 * updated yet.
 345	 *
 346	 * Matched by the barrier in pull_rt_task().
 347	 */
 348	smp_wmb();
 349	atomic_inc(&rq->rd->rto_count);
 350}
 351
 352static inline void rt_clear_overload(struct rq *rq)
 353{
 354	if (!rq->online)
 355		return;
 356
 357	/* the order here really doesn't matter */
 358	atomic_dec(&rq->rd->rto_count);
 359	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 360}
 361
 362static inline int has_pushable_tasks(struct rq *rq)
 363{
 364	return !plist_head_empty(&rq->rt.pushable_tasks);
 365}
 366
 367static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 368static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 369
 370static void push_rt_tasks(struct rq *);
 371static void pull_rt_task(struct rq *);
 372
 373static inline void rt_queue_push_tasks(struct rq *rq)
 374{
 375	if (!has_pushable_tasks(rq))
 376		return;
 377
 378	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 379}
 380
 381static inline void rt_queue_pull_task(struct rq *rq)
 382{
 383	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 384}
 385
 386static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 387{
 388	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 389	plist_node_init(&p->pushable_tasks, p->prio);
 390	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 391
 392	/* Update the highest prio pushable task */
 393	if (p->prio < rq->rt.highest_prio.next)
 394		rq->rt.highest_prio.next = p->prio;
 395
 396	if (!rq->rt.overloaded) {
 397		rt_set_overload(rq);
 398		rq->rt.overloaded = 1;
 399	}
 400}
 401
 402static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 403{
 404	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 405
 406	/* Update the new highest prio pushable task */
 407	if (has_pushable_tasks(rq)) {
 408		p = plist_first_entry(&rq->rt.pushable_tasks,
 409				      struct task_struct, pushable_tasks);
 410		rq->rt.highest_prio.next = p->prio;
 411	} else {
 412		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 413
 414		if (rq->rt.overloaded) {
 415			rt_clear_overload(rq);
 416			rq->rt.overloaded = 0;
 417		}
 418	}
 419}
 420
 421#else
 422
 423static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 424{
 425}
 426
 427static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 428{
 429}
 430
 431static inline void rt_queue_push_tasks(struct rq *rq)
 432{
 433}
 434#endif /* CONFIG_SMP */
 435
 436static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 437static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 438
 439static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 440{
 441	return rt_se->on_rq;
 442}
 443
 444#ifdef CONFIG_UCLAMP_TASK
 445/*
 446 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 447 * settings.
 448 *
 449 * This check is only important for heterogeneous systems where uclamp_min value
 450 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 451 * function will always return true.
 452 *
 453 * The function will return true if the capacity of the @cpu is >= the
 454 * uclamp_min and false otherwise.
 455 *
 456 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 457 * > uclamp_max.
 458 */
 459static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 460{
 461	unsigned int min_cap;
 462	unsigned int max_cap;
 463	unsigned int cpu_cap;
 464
 465	/* Only heterogeneous systems can benefit from this check */
 466	if (!sched_asym_cpucap_active())
 467		return true;
 468
 469	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 470	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 471
 472	cpu_cap = arch_scale_cpu_capacity(cpu);
 473
 474	return cpu_cap >= min(min_cap, max_cap);
 475}
 476#else
 477static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 478{
 479	return true;
 480}
 481#endif
 482
 483#ifdef CONFIG_RT_GROUP_SCHED
 484
 485static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 486{
 487	if (!rt_rq->tg)
 488		return RUNTIME_INF;
 489
 490	return rt_rq->rt_runtime;
 491}
 492
 493static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 494{
 495	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 496}
 497
 498typedef struct task_group *rt_rq_iter_t;
 499
 500static inline struct task_group *next_task_group(struct task_group *tg)
 501{
 502	do {
 503		tg = list_entry_rcu(tg->list.next,
 504			typeof(struct task_group), list);
 505	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 506
 507	if (&tg->list == &task_groups)
 508		tg = NULL;
 509
 510	return tg;
 511}
 512
 513#define for_each_rt_rq(rt_rq, iter, rq)					\
 514	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 515		(iter = next_task_group(iter)) &&			\
 516		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 517
 518#define for_each_sched_rt_entity(rt_se) \
 519	for (; rt_se; rt_se = rt_se->parent)
 520
 521static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 522{
 523	return rt_se->my_q;
 524}
 525
 526static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 527static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 528
 529static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 530{
 531	struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
 532	struct rq *rq = rq_of_rt_rq(rt_rq);
 533	struct sched_rt_entity *rt_se;
 534
 535	int cpu = cpu_of(rq);
 536
 537	rt_se = rt_rq->tg->rt_se[cpu];
 538
 539	if (rt_rq->rt_nr_running) {
 540		if (!rt_se)
 541			enqueue_top_rt_rq(rt_rq);
 542		else if (!on_rt_rq(rt_se))
 543			enqueue_rt_entity(rt_se, 0);
 544
 545		if (rt_rq->highest_prio.curr < donor->prio)
 546			resched_curr(rq);
 547	}
 548}
 549
 550static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 551{
 552	struct sched_rt_entity *rt_se;
 553	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 554
 555	rt_se = rt_rq->tg->rt_se[cpu];
 556
 557	if (!rt_se) {
 558		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 559		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 560		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 561	}
 562	else if (on_rt_rq(rt_se))
 563		dequeue_rt_entity(rt_se, 0);
 564}
 565
 566static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 567{
 568	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 569}
 570
 571static int rt_se_boosted(struct sched_rt_entity *rt_se)
 572{
 573	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 574	struct task_struct *p;
 575
 576	if (rt_rq)
 577		return !!rt_rq->rt_nr_boosted;
 578
 579	p = rt_task_of(rt_se);
 580	return p->prio != p->normal_prio;
 581}
 582
 583#ifdef CONFIG_SMP
 584static inline const struct cpumask *sched_rt_period_mask(void)
 585{
 586	return this_rq()->rd->span;
 587}
 588#else
 589static inline const struct cpumask *sched_rt_period_mask(void)
 590{
 591	return cpu_online_mask;
 592}
 593#endif
 594
 595static inline
 596struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 597{
 598	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 599}
 600
 601static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 602{
 603	return &rt_rq->tg->rt_bandwidth;
 604}
 605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 607{
 608	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 609
 610	return (hrtimer_active(&rt_b->rt_period_timer) ||
 611		rt_rq->rt_time < rt_b->rt_runtime);
 612}
 613
 614#ifdef CONFIG_SMP
 615/*
 616 * We ran out of runtime, see if we can borrow some from our neighbours.
 617 */
 618static void do_balance_runtime(struct rt_rq *rt_rq)
 619{
 620	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 621	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 622	int i, weight;
 623	u64 rt_period;
 624
 625	weight = cpumask_weight(rd->span);
 626
 627	raw_spin_lock(&rt_b->rt_runtime_lock);
 628	rt_period = ktime_to_ns(rt_b->rt_period);
 629	for_each_cpu(i, rd->span) {
 630		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 631		s64 diff;
 632
 633		if (iter == rt_rq)
 634			continue;
 635
 636		raw_spin_lock(&iter->rt_runtime_lock);
 637		/*
 638		 * Either all rqs have inf runtime and there's nothing to steal
 639		 * or __disable_runtime() below sets a specific rq to inf to
 640		 * indicate its been disabled and disallow stealing.
 641		 */
 642		if (iter->rt_runtime == RUNTIME_INF)
 643			goto next;
 644
 645		/*
 646		 * From runqueues with spare time, take 1/n part of their
 647		 * spare time, but no more than our period.
 648		 */
 649		diff = iter->rt_runtime - iter->rt_time;
 650		if (diff > 0) {
 651			diff = div_u64((u64)diff, weight);
 652			if (rt_rq->rt_runtime + diff > rt_period)
 653				diff = rt_period - rt_rq->rt_runtime;
 654			iter->rt_runtime -= diff;
 655			rt_rq->rt_runtime += diff;
 656			if (rt_rq->rt_runtime == rt_period) {
 657				raw_spin_unlock(&iter->rt_runtime_lock);
 658				break;
 659			}
 660		}
 661next:
 662		raw_spin_unlock(&iter->rt_runtime_lock);
 663	}
 664	raw_spin_unlock(&rt_b->rt_runtime_lock);
 665}
 666
 667/*
 668 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 669 */
 670static void __disable_runtime(struct rq *rq)
 671{
 672	struct root_domain *rd = rq->rd;
 673	rt_rq_iter_t iter;
 674	struct rt_rq *rt_rq;
 675
 676	if (unlikely(!scheduler_running))
 677		return;
 678
 679	for_each_rt_rq(rt_rq, iter, rq) {
 680		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 681		s64 want;
 682		int i;
 683
 684		raw_spin_lock(&rt_b->rt_runtime_lock);
 685		raw_spin_lock(&rt_rq->rt_runtime_lock);
 686		/*
 687		 * Either we're all inf and nobody needs to borrow, or we're
 688		 * already disabled and thus have nothing to do, or we have
 689		 * exactly the right amount of runtime to take out.
 690		 */
 691		if (rt_rq->rt_runtime == RUNTIME_INF ||
 692				rt_rq->rt_runtime == rt_b->rt_runtime)
 693			goto balanced;
 694		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 695
 696		/*
 697		 * Calculate the difference between what we started out with
 698		 * and what we current have, that's the amount of runtime
 699		 * we lend and now have to reclaim.
 700		 */
 701		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 702
 703		/*
 704		 * Greedy reclaim, take back as much as we can.
 705		 */
 706		for_each_cpu(i, rd->span) {
 707			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 708			s64 diff;
 709
 710			/*
 711			 * Can't reclaim from ourselves or disabled runqueues.
 712			 */
 713			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 714				continue;
 715
 716			raw_spin_lock(&iter->rt_runtime_lock);
 717			if (want > 0) {
 718				diff = min_t(s64, iter->rt_runtime, want);
 719				iter->rt_runtime -= diff;
 720				want -= diff;
 721			} else {
 722				iter->rt_runtime -= want;
 723				want -= want;
 724			}
 725			raw_spin_unlock(&iter->rt_runtime_lock);
 726
 727			if (!want)
 728				break;
 729		}
 730
 731		raw_spin_lock(&rt_rq->rt_runtime_lock);
 732		/*
 733		 * We cannot be left wanting - that would mean some runtime
 734		 * leaked out of the system.
 735		 */
 736		WARN_ON_ONCE(want);
 737balanced:
 738		/*
 739		 * Disable all the borrow logic by pretending we have inf
 740		 * runtime - in which case borrowing doesn't make sense.
 741		 */
 742		rt_rq->rt_runtime = RUNTIME_INF;
 743		rt_rq->rt_throttled = 0;
 744		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 745		raw_spin_unlock(&rt_b->rt_runtime_lock);
 746
 747		/* Make rt_rq available for pick_next_task() */
 748		sched_rt_rq_enqueue(rt_rq);
 749	}
 750}
 751
 752static void __enable_runtime(struct rq *rq)
 753{
 754	rt_rq_iter_t iter;
 755	struct rt_rq *rt_rq;
 756
 757	if (unlikely(!scheduler_running))
 758		return;
 759
 760	/*
 761	 * Reset each runqueue's bandwidth settings
 762	 */
 763	for_each_rt_rq(rt_rq, iter, rq) {
 764		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 765
 766		raw_spin_lock(&rt_b->rt_runtime_lock);
 767		raw_spin_lock(&rt_rq->rt_runtime_lock);
 768		rt_rq->rt_runtime = rt_b->rt_runtime;
 769		rt_rq->rt_time = 0;
 770		rt_rq->rt_throttled = 0;
 771		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 772		raw_spin_unlock(&rt_b->rt_runtime_lock);
 773	}
 774}
 775
 776static void balance_runtime(struct rt_rq *rt_rq)
 777{
 778	if (!sched_feat(RT_RUNTIME_SHARE))
 779		return;
 780
 781	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 782		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 783		do_balance_runtime(rt_rq);
 784		raw_spin_lock(&rt_rq->rt_runtime_lock);
 785	}
 786}
 787#else /* !CONFIG_SMP */
 788static inline void balance_runtime(struct rt_rq *rt_rq) {}
 789#endif /* CONFIG_SMP */
 790
 791static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 792{
 793	int i, idle = 1, throttled = 0;
 794	const struct cpumask *span;
 795
 796	span = sched_rt_period_mask();
 797
 798	/*
 799	 * FIXME: isolated CPUs should really leave the root task group,
 800	 * whether they are isolcpus or were isolated via cpusets, lest
 801	 * the timer run on a CPU which does not service all runqueues,
 802	 * potentially leaving other CPUs indefinitely throttled.  If
 803	 * isolation is really required, the user will turn the throttle
 804	 * off to kill the perturbations it causes anyway.  Meanwhile,
 805	 * this maintains functionality for boot and/or troubleshooting.
 806	 */
 807	if (rt_b == &root_task_group.rt_bandwidth)
 808		span = cpu_online_mask;
 809
 810	for_each_cpu(i, span) {
 811		int enqueue = 0;
 812		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 813		struct rq *rq = rq_of_rt_rq(rt_rq);
 814		struct rq_flags rf;
 815		int skip;
 816
 817		/*
 818		 * When span == cpu_online_mask, taking each rq->lock
 819		 * can be time-consuming. Try to avoid it when possible.
 820		 */
 821		raw_spin_lock(&rt_rq->rt_runtime_lock);
 822		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 823			rt_rq->rt_runtime = rt_b->rt_runtime;
 824		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 825		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 826		if (skip)
 827			continue;
 828
 829		rq_lock(rq, &rf);
 830		update_rq_clock(rq);
 831
 832		if (rt_rq->rt_time) {
 833			u64 runtime;
 834
 835			raw_spin_lock(&rt_rq->rt_runtime_lock);
 836			if (rt_rq->rt_throttled)
 837				balance_runtime(rt_rq);
 838			runtime = rt_rq->rt_runtime;
 839			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 840			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 841				rt_rq->rt_throttled = 0;
 842				enqueue = 1;
 843
 844				/*
 845				 * When we're idle and a woken (rt) task is
 846				 * throttled wakeup_preempt() will set
 847				 * skip_update and the time between the wakeup
 848				 * and this unthrottle will get accounted as
 849				 * 'runtime'.
 850				 */
 851				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 852					rq_clock_cancel_skipupdate(rq);
 853			}
 854			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 855				idle = 0;
 856			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 857		} else if (rt_rq->rt_nr_running) {
 858			idle = 0;
 859			if (!rt_rq_throttled(rt_rq))
 860				enqueue = 1;
 861		}
 862		if (rt_rq->rt_throttled)
 863			throttled = 1;
 864
 865		if (enqueue)
 866			sched_rt_rq_enqueue(rt_rq);
 867		rq_unlock(rq, &rf);
 868	}
 869
 870	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 871		return 1;
 872
 873	return idle;
 874}
 875
 
 
 
 
 
 
 
 
 
 
 
 
 876static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 877{
 878	u64 runtime = sched_rt_runtime(rt_rq);
 879
 880	if (rt_rq->rt_throttled)
 881		return rt_rq_throttled(rt_rq);
 882
 883	if (runtime >= sched_rt_period(rt_rq))
 884		return 0;
 885
 886	balance_runtime(rt_rq);
 887	runtime = sched_rt_runtime(rt_rq);
 888	if (runtime == RUNTIME_INF)
 889		return 0;
 890
 891	if (rt_rq->rt_time > runtime) {
 892		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 893
 894		/*
 895		 * Don't actually throttle groups that have no runtime assigned
 896		 * but accrue some time due to boosting.
 897		 */
 898		if (likely(rt_b->rt_runtime)) {
 899			rt_rq->rt_throttled = 1;
 900			printk_deferred_once("sched: RT throttling activated\n");
 901		} else {
 902			/*
 903			 * In case we did anyway, make it go away,
 904			 * replenishment is a joke, since it will replenish us
 905			 * with exactly 0 ns.
 906			 */
 907			rt_rq->rt_time = 0;
 908		}
 909
 910		if (rt_rq_throttled(rt_rq)) {
 911			sched_rt_rq_dequeue(rt_rq);
 912			return 1;
 913		}
 914	}
 915
 916	return 0;
 917}
 918
 919#else /* !CONFIG_RT_GROUP_SCHED */
 920
 921typedef struct rt_rq *rt_rq_iter_t;
 922
 923#define for_each_rt_rq(rt_rq, iter, rq) \
 924	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 925
 926#define for_each_sched_rt_entity(rt_se) \
 927	for (; rt_se; rt_se = NULL)
 928
 929static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 930{
 931	return NULL;
 932}
 933
 934static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 935{
 936	struct rq *rq = rq_of_rt_rq(rt_rq);
 937
 938	if (!rt_rq->rt_nr_running)
 939		return;
 940
 941	enqueue_top_rt_rq(rt_rq);
 942	resched_curr(rq);
 943}
 944
 945static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 946{
 947	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 948}
 949
 950static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 951{
 952	return false;
 953}
 954
 955static inline const struct cpumask *sched_rt_period_mask(void)
 956{
 957	return cpu_online_mask;
 958}
 959
 960static inline
 961struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 962{
 963	return &cpu_rq(cpu)->rt;
 964}
 965
 966#ifdef CONFIG_SMP
 967static void __enable_runtime(struct rq *rq) { }
 968static void __disable_runtime(struct rq *rq) { }
 969#endif
 970
 971#endif /* CONFIG_RT_GROUP_SCHED */
 972
 973static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 974{
 975#ifdef CONFIG_RT_GROUP_SCHED
 976	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 977
 978	if (rt_rq)
 979		return rt_rq->highest_prio.curr;
 980#endif
 981
 982	return rt_task_of(rt_se)->prio;
 983}
 984
 985/*
 986 * Update the current task's runtime statistics. Skip current tasks that
 987 * are not in our scheduling class.
 988 */
 989static void update_curr_rt(struct rq *rq)
 990{
 991	struct task_struct *donor = rq->donor;
 
 992	s64 delta_exec;
 993
 994	if (donor->sched_class != &rt_sched_class)
 995		return;
 996
 997	delta_exec = update_curr_common(rq);
 998	if (unlikely(delta_exec <= 0))
 999		return;
1000
1001#ifdef CONFIG_RT_GROUP_SCHED
1002	struct sched_rt_entity *rt_se = &donor->rt;
1003
1004	if (!rt_bandwidth_enabled())
1005		return;
1006
1007	for_each_sched_rt_entity(rt_se) {
1008		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1009		int exceeded;
1010
1011		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1012			raw_spin_lock(&rt_rq->rt_runtime_lock);
1013			rt_rq->rt_time += delta_exec;
1014			exceeded = sched_rt_runtime_exceeded(rt_rq);
1015			if (exceeded)
1016				resched_curr(rq);
1017			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1018			if (exceeded)
1019				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1020		}
1021	}
1022#endif
1023}
1024
1025static void
1026dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1027{
1028	struct rq *rq = rq_of_rt_rq(rt_rq);
1029
1030	BUG_ON(&rq->rt != rt_rq);
1031
1032	if (!rt_rq->rt_queued)
1033		return;
1034
1035	BUG_ON(!rq->nr_running);
1036
1037	sub_nr_running(rq, count);
1038	rt_rq->rt_queued = 0;
1039
1040}
1041
1042static void
1043enqueue_top_rt_rq(struct rt_rq *rt_rq)
1044{
1045	struct rq *rq = rq_of_rt_rq(rt_rq);
1046
1047	BUG_ON(&rq->rt != rt_rq);
1048
1049	if (rt_rq->rt_queued)
1050		return;
1051
1052	if (rt_rq_throttled(rt_rq))
1053		return;
1054
1055	if (rt_rq->rt_nr_running) {
1056		add_nr_running(rq, rt_rq->rt_nr_running);
1057		rt_rq->rt_queued = 1;
1058	}
1059
1060	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1061	cpufreq_update_util(rq, 0);
1062}
1063
1064#if defined CONFIG_SMP
1065
1066static void
1067inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1068{
1069	struct rq *rq = rq_of_rt_rq(rt_rq);
1070
1071#ifdef CONFIG_RT_GROUP_SCHED
1072	/*
1073	 * Change rq's cpupri only if rt_rq is the top queue.
1074	 */
1075	if (&rq->rt != rt_rq)
1076		return;
1077#endif
1078	if (rq->online && prio < prev_prio)
1079		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1080}
1081
1082static void
1083dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084{
1085	struct rq *rq = rq_of_rt_rq(rt_rq);
1086
1087#ifdef CONFIG_RT_GROUP_SCHED
1088	/*
1089	 * Change rq's cpupri only if rt_rq is the top queue.
1090	 */
1091	if (&rq->rt != rt_rq)
1092		return;
1093#endif
1094	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1096}
1097
1098#else /* CONFIG_SMP */
1099
1100static inline
1101void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102static inline
1103void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1104
1105#endif /* CONFIG_SMP */
1106
1107#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1108static void
1109inc_rt_prio(struct rt_rq *rt_rq, int prio)
1110{
1111	int prev_prio = rt_rq->highest_prio.curr;
1112
1113	if (prio < prev_prio)
1114		rt_rq->highest_prio.curr = prio;
1115
1116	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1117}
1118
1119static void
1120dec_rt_prio(struct rt_rq *rt_rq, int prio)
1121{
1122	int prev_prio = rt_rq->highest_prio.curr;
1123
1124	if (rt_rq->rt_nr_running) {
1125
1126		WARN_ON(prio < prev_prio);
1127
1128		/*
1129		 * This may have been our highest task, and therefore
1130		 * we may have some re-computation to do
1131		 */
1132		if (prio == prev_prio) {
1133			struct rt_prio_array *array = &rt_rq->active;
1134
1135			rt_rq->highest_prio.curr =
1136				sched_find_first_bit(array->bitmap);
1137		}
1138
1139	} else {
1140		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1141	}
1142
1143	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1144}
1145
1146#else
1147
1148static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1150
1151#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1152
1153#ifdef CONFIG_RT_GROUP_SCHED
1154
1155static void
1156inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1157{
1158	if (rt_se_boosted(rt_se))
1159		rt_rq->rt_nr_boosted++;
1160
1161	if (rt_rq->tg)
1162		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1163}
1164
1165static void
1166dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1167{
1168	if (rt_se_boosted(rt_se))
1169		rt_rq->rt_nr_boosted--;
1170
1171	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1172}
1173
1174#else /* CONFIG_RT_GROUP_SCHED */
1175
1176static void
1177inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178{
 
1179}
1180
1181static inline
1182void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1183
1184#endif /* CONFIG_RT_GROUP_SCHED */
1185
1186static inline
1187unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1188{
1189	struct rt_rq *group_rq = group_rt_rq(rt_se);
1190
1191	if (group_rq)
1192		return group_rq->rt_nr_running;
1193	else
1194		return 1;
1195}
1196
1197static inline
1198unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1199{
1200	struct rt_rq *group_rq = group_rt_rq(rt_se);
1201	struct task_struct *tsk;
1202
1203	if (group_rq)
1204		return group_rq->rr_nr_running;
1205
1206	tsk = rt_task_of(rt_se);
1207
1208	return (tsk->policy == SCHED_RR) ? 1 : 0;
1209}
1210
1211static inline
1212void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1213{
1214	int prio = rt_se_prio(rt_se);
1215
1216	WARN_ON(!rt_prio(prio));
1217	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1218	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1219
1220	inc_rt_prio(rt_rq, prio);
1221	inc_rt_group(rt_se, rt_rq);
1222}
1223
1224static inline
1225void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1226{
1227	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1228	WARN_ON(!rt_rq->rt_nr_running);
1229	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1230	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1231
1232	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1233	dec_rt_group(rt_se, rt_rq);
1234}
1235
1236/*
1237 * Change rt_se->run_list location unless SAVE && !MOVE
1238 *
1239 * assumes ENQUEUE/DEQUEUE flags match
1240 */
1241static inline bool move_entity(unsigned int flags)
1242{
1243	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1244		return false;
1245
1246	return true;
1247}
1248
1249static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1250{
1251	list_del_init(&rt_se->run_list);
1252
1253	if (list_empty(array->queue + rt_se_prio(rt_se)))
1254		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1255
1256	rt_se->on_list = 0;
1257}
1258
1259static inline struct sched_statistics *
1260__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1261{
1262#ifdef CONFIG_RT_GROUP_SCHED
1263	/* schedstats is not supported for rt group. */
1264	if (!rt_entity_is_task(rt_se))
1265		return NULL;
1266#endif
1267
1268	return &rt_task_of(rt_se)->stats;
1269}
1270
1271static inline void
1272update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1273{
1274	struct sched_statistics *stats;
1275	struct task_struct *p = NULL;
1276
1277	if (!schedstat_enabled())
1278		return;
1279
1280	if (rt_entity_is_task(rt_se))
1281		p = rt_task_of(rt_se);
1282
1283	stats = __schedstats_from_rt_se(rt_se);
1284	if (!stats)
1285		return;
1286
1287	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1288}
1289
1290static inline void
1291update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292{
1293	struct sched_statistics *stats;
1294	struct task_struct *p = NULL;
1295
1296	if (!schedstat_enabled())
1297		return;
1298
1299	if (rt_entity_is_task(rt_se))
1300		p = rt_task_of(rt_se);
1301
1302	stats = __schedstats_from_rt_se(rt_se);
1303	if (!stats)
1304		return;
1305
1306	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1307}
1308
1309static inline void
1310update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1311			int flags)
1312{
1313	if (!schedstat_enabled())
1314		return;
1315
1316	if (flags & ENQUEUE_WAKEUP)
1317		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1318}
1319
1320static inline void
1321update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1322{
1323	struct sched_statistics *stats;
1324	struct task_struct *p = NULL;
1325
1326	if (!schedstat_enabled())
1327		return;
1328
1329	if (rt_entity_is_task(rt_se))
1330		p = rt_task_of(rt_se);
1331
1332	stats = __schedstats_from_rt_se(rt_se);
1333	if (!stats)
1334		return;
1335
1336	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1337}
1338
1339static inline void
1340update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1341			int flags)
1342{
1343	struct task_struct *p = NULL;
1344
1345	if (!schedstat_enabled())
1346		return;
1347
1348	if (rt_entity_is_task(rt_se))
1349		p = rt_task_of(rt_se);
1350
1351	if ((flags & DEQUEUE_SLEEP) && p) {
1352		unsigned int state;
1353
1354		state = READ_ONCE(p->__state);
1355		if (state & TASK_INTERRUPTIBLE)
1356			__schedstat_set(p->stats.sleep_start,
1357					rq_clock(rq_of_rt_rq(rt_rq)));
1358
1359		if (state & TASK_UNINTERRUPTIBLE)
1360			__schedstat_set(p->stats.block_start,
1361					rq_clock(rq_of_rt_rq(rt_rq)));
1362	}
1363}
1364
1365static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1366{
1367	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1368	struct rt_prio_array *array = &rt_rq->active;
1369	struct rt_rq *group_rq = group_rt_rq(rt_se);
1370	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1371
1372	/*
1373	 * Don't enqueue the group if its throttled, or when empty.
1374	 * The latter is a consequence of the former when a child group
1375	 * get throttled and the current group doesn't have any other
1376	 * active members.
1377	 */
1378	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1379		if (rt_se->on_list)
1380			__delist_rt_entity(rt_se, array);
1381		return;
1382	}
1383
1384	if (move_entity(flags)) {
1385		WARN_ON_ONCE(rt_se->on_list);
1386		if (flags & ENQUEUE_HEAD)
1387			list_add(&rt_se->run_list, queue);
1388		else
1389			list_add_tail(&rt_se->run_list, queue);
1390
1391		__set_bit(rt_se_prio(rt_se), array->bitmap);
1392		rt_se->on_list = 1;
1393	}
1394	rt_se->on_rq = 1;
1395
1396	inc_rt_tasks(rt_se, rt_rq);
1397}
1398
1399static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1400{
1401	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1402	struct rt_prio_array *array = &rt_rq->active;
1403
1404	if (move_entity(flags)) {
1405		WARN_ON_ONCE(!rt_se->on_list);
1406		__delist_rt_entity(rt_se, array);
1407	}
1408	rt_se->on_rq = 0;
1409
1410	dec_rt_tasks(rt_se, rt_rq);
1411}
1412
1413/*
1414 * Because the prio of an upper entry depends on the lower
1415 * entries, we must remove entries top - down.
1416 */
1417static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1418{
1419	struct sched_rt_entity *back = NULL;
1420	unsigned int rt_nr_running;
1421
1422	for_each_sched_rt_entity(rt_se) {
1423		rt_se->back = back;
1424		back = rt_se;
1425	}
1426
1427	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1428
1429	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1430		if (on_rt_rq(rt_se))
1431			__dequeue_rt_entity(rt_se, flags);
1432	}
1433
1434	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1435}
1436
1437static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1438{
1439	struct rq *rq = rq_of_rt_se(rt_se);
1440
1441	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1442
1443	dequeue_rt_stack(rt_se, flags);
1444	for_each_sched_rt_entity(rt_se)
1445		__enqueue_rt_entity(rt_se, flags);
1446	enqueue_top_rt_rq(&rq->rt);
1447}
1448
1449static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1450{
1451	struct rq *rq = rq_of_rt_se(rt_se);
1452
1453	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1454
1455	dequeue_rt_stack(rt_se, flags);
1456
1457	for_each_sched_rt_entity(rt_se) {
1458		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1459
1460		if (rt_rq && rt_rq->rt_nr_running)
1461			__enqueue_rt_entity(rt_se, flags);
1462	}
1463	enqueue_top_rt_rq(&rq->rt);
1464}
1465
1466/*
1467 * Adding/removing a task to/from a priority array:
1468 */
1469static void
1470enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1471{
1472	struct sched_rt_entity *rt_se = &p->rt;
1473
1474	if (flags & ENQUEUE_WAKEUP)
1475		rt_se->timeout = 0;
1476
1477	check_schedstat_required();
1478	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1479
1480	enqueue_rt_entity(rt_se, flags);
1481
1482	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1483		enqueue_pushable_task(rq, p);
1484}
1485
1486static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1487{
1488	struct sched_rt_entity *rt_se = &p->rt;
1489
1490	update_curr_rt(rq);
1491	dequeue_rt_entity(rt_se, flags);
1492
1493	dequeue_pushable_task(rq, p);
1494
1495	return true;
1496}
1497
1498/*
1499 * Put task to the head or the end of the run list without the overhead of
1500 * dequeue followed by enqueue.
1501 */
1502static void
1503requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1504{
1505	if (on_rt_rq(rt_se)) {
1506		struct rt_prio_array *array = &rt_rq->active;
1507		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1508
1509		if (head)
1510			list_move(&rt_se->run_list, queue);
1511		else
1512			list_move_tail(&rt_se->run_list, queue);
1513	}
1514}
1515
1516static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1517{
1518	struct sched_rt_entity *rt_se = &p->rt;
1519	struct rt_rq *rt_rq;
1520
1521	for_each_sched_rt_entity(rt_se) {
1522		rt_rq = rt_rq_of_se(rt_se);
1523		requeue_rt_entity(rt_rq, rt_se, head);
1524	}
1525}
1526
1527static void yield_task_rt(struct rq *rq)
1528{
1529	requeue_task_rt(rq, rq->curr, 0);
1530}
1531
1532#ifdef CONFIG_SMP
1533static int find_lowest_rq(struct task_struct *task);
1534
1535static int
1536select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1537{
1538	struct task_struct *curr, *donor;
1539	struct rq *rq;
1540	bool test;
1541
1542	/* For anything but wake ups, just return the task_cpu */
1543	if (!(flags & (WF_TTWU | WF_FORK)))
1544		goto out;
1545
1546	rq = cpu_rq(cpu);
1547
1548	rcu_read_lock();
1549	curr = READ_ONCE(rq->curr); /* unlocked access */
1550	donor = READ_ONCE(rq->donor);
1551
1552	/*
1553	 * If the current task on @p's runqueue is an RT task, then
1554	 * try to see if we can wake this RT task up on another
1555	 * runqueue. Otherwise simply start this RT task
1556	 * on its current runqueue.
1557	 *
1558	 * We want to avoid overloading runqueues. If the woken
1559	 * task is a higher priority, then it will stay on this CPU
1560	 * and the lower prio task should be moved to another CPU.
1561	 * Even though this will probably make the lower prio task
1562	 * lose its cache, we do not want to bounce a higher task
1563	 * around just because it gave up its CPU, perhaps for a
1564	 * lock?
1565	 *
1566	 * For equal prio tasks, we just let the scheduler sort it out.
1567	 *
1568	 * Otherwise, just let it ride on the affine RQ and the
1569	 * post-schedule router will push the preempted task away
1570	 *
1571	 * This test is optimistic, if we get it wrong the load-balancer
1572	 * will have to sort it out.
1573	 *
1574	 * We take into account the capacity of the CPU to ensure it fits the
1575	 * requirement of the task - which is only important on heterogeneous
1576	 * systems like big.LITTLE.
1577	 */
1578	test = curr &&
1579	       unlikely(rt_task(donor)) &&
1580	       (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
1581
1582	if (test || !rt_task_fits_capacity(p, cpu)) {
1583		int target = find_lowest_rq(p);
1584
1585		/*
1586		 * Bail out if we were forcing a migration to find a better
1587		 * fitting CPU but our search failed.
1588		 */
1589		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1590			goto out_unlock;
1591
1592		/*
1593		 * Don't bother moving it if the destination CPU is
1594		 * not running a lower priority task.
1595		 */
1596		if (target != -1 &&
1597		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1598			cpu = target;
1599	}
1600
1601out_unlock:
1602	rcu_read_unlock();
1603
1604out:
1605	return cpu;
1606}
1607
1608static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1609{
 
 
 
 
1610	if (rq->curr->nr_cpus_allowed == 1 ||
1611	    !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
1612		return;
1613
1614	/*
1615	 * p is migratable, so let's not schedule it and
1616	 * see if it is pushed or pulled somewhere else.
1617	 */
1618	if (p->nr_cpus_allowed != 1 &&
1619	    cpupri_find(&rq->rd->cpupri, p, NULL))
1620		return;
1621
1622	/*
1623	 * There appear to be other CPUs that can accept
1624	 * the current task but none can run 'p', so lets reschedule
1625	 * to try and push the current task away:
1626	 */
1627	requeue_task_rt(rq, p, 1);
1628	resched_curr(rq);
1629}
1630
1631static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1632{
1633	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1634		/*
1635		 * This is OK, because current is on_cpu, which avoids it being
1636		 * picked for load-balance and preemption/IRQs are still
1637		 * disabled avoiding further scheduler activity on it and we've
1638		 * not yet started the picking loop.
1639		 */
1640		rq_unpin_lock(rq, rf);
1641		pull_rt_task(rq);
1642		rq_repin_lock(rq, rf);
1643	}
1644
1645	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1646}
1647#endif /* CONFIG_SMP */
1648
1649/*
1650 * Preempt the current task with a newly woken task if needed:
1651 */
1652static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1653{
1654	struct task_struct *donor = rq->donor;
1655
1656	if (p->prio < donor->prio) {
1657		resched_curr(rq);
1658		return;
1659	}
1660
1661#ifdef CONFIG_SMP
1662	/*
1663	 * If:
1664	 *
1665	 * - the newly woken task is of equal priority to the current task
1666	 * - the newly woken task is non-migratable while current is migratable
1667	 * - current will be preempted on the next reschedule
1668	 *
1669	 * we should check to see if current can readily move to a different
1670	 * cpu.  If so, we will reschedule to allow the push logic to try
1671	 * to move current somewhere else, making room for our non-migratable
1672	 * task.
1673	 */
1674	if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
1675		check_preempt_equal_prio(rq, p);
1676#endif
1677}
1678
1679static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1680{
1681	struct sched_rt_entity *rt_se = &p->rt;
1682	struct rt_rq *rt_rq = &rq->rt;
1683
1684	p->se.exec_start = rq_clock_task(rq);
1685	if (on_rt_rq(&p->rt))
1686		update_stats_wait_end_rt(rt_rq, rt_se);
1687
1688	/* The running task is never eligible for pushing */
1689	dequeue_pushable_task(rq, p);
1690
1691	if (!first)
1692		return;
1693
1694	/*
1695	 * If prev task was rt, put_prev_task() has already updated the
1696	 * utilization. We only care of the case where we start to schedule a
1697	 * rt task
1698	 */
1699	if (rq->donor->sched_class != &rt_sched_class)
1700		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1701
1702	rt_queue_push_tasks(rq);
1703}
1704
1705static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1706{
1707	struct rt_prio_array *array = &rt_rq->active;
1708	struct sched_rt_entity *next = NULL;
1709	struct list_head *queue;
1710	int idx;
1711
1712	idx = sched_find_first_bit(array->bitmap);
1713	BUG_ON(idx >= MAX_RT_PRIO);
1714
1715	queue = array->queue + idx;
1716	if (SCHED_WARN_ON(list_empty(queue)))
1717		return NULL;
1718	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1719
1720	return next;
1721}
1722
1723static struct task_struct *_pick_next_task_rt(struct rq *rq)
1724{
1725	struct sched_rt_entity *rt_se;
1726	struct rt_rq *rt_rq  = &rq->rt;
1727
1728	do {
1729		rt_se = pick_next_rt_entity(rt_rq);
1730		if (unlikely(!rt_se))
1731			return NULL;
1732		rt_rq = group_rt_rq(rt_se);
1733	} while (rt_rq);
1734
1735	return rt_task_of(rt_se);
1736}
1737
1738static struct task_struct *pick_task_rt(struct rq *rq)
1739{
1740	struct task_struct *p;
1741
1742	if (!sched_rt_runnable(rq))
1743		return NULL;
1744
1745	p = _pick_next_task_rt(rq);
1746
1747	return p;
1748}
1749
1750static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
 
 
 
 
 
 
 
 
 
 
1751{
1752	struct sched_rt_entity *rt_se = &p->rt;
1753	struct rt_rq *rt_rq = &rq->rt;
1754
1755	if (on_rt_rq(&p->rt))
1756		update_stats_wait_start_rt(rt_rq, rt_se);
1757
1758	update_curr_rt(rq);
1759
1760	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1761
1762	/*
1763	 * The previous task needs to be made eligible for pushing
1764	 * if it is still active
1765	 */
1766	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1767		enqueue_pushable_task(rq, p);
1768}
1769
1770#ifdef CONFIG_SMP
1771
1772/* Only try algorithms three times */
1773#define RT_MAX_TRIES 3
1774
 
 
 
 
 
 
 
 
 
1775/*
1776 * Return the highest pushable rq's task, which is suitable to be executed
1777 * on the CPU, NULL otherwise
1778 */
1779static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1780{
1781	struct plist_head *head = &rq->rt.pushable_tasks;
1782	struct task_struct *p;
1783
1784	if (!has_pushable_tasks(rq))
1785		return NULL;
1786
1787	plist_for_each_entry(p, head, pushable_tasks) {
1788		if (task_is_pushable(rq, p, cpu))
1789			return p;
1790	}
1791
1792	return NULL;
1793}
1794
1795static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1796
1797static int find_lowest_rq(struct task_struct *task)
1798{
1799	struct sched_domain *sd;
1800	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1801	int this_cpu = smp_processor_id();
1802	int cpu      = task_cpu(task);
1803	int ret;
1804
1805	/* Make sure the mask is initialized first */
1806	if (unlikely(!lowest_mask))
1807		return -1;
1808
1809	if (task->nr_cpus_allowed == 1)
1810		return -1; /* No other targets possible */
1811
1812	/*
1813	 * If we're on asym system ensure we consider the different capacities
1814	 * of the CPUs when searching for the lowest_mask.
1815	 */
1816	if (sched_asym_cpucap_active()) {
1817
1818		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1819					  task, lowest_mask,
1820					  rt_task_fits_capacity);
1821	} else {
1822
1823		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1824				  task, lowest_mask);
1825	}
1826
1827	if (!ret)
1828		return -1; /* No targets found */
1829
1830	/*
1831	 * At this point we have built a mask of CPUs representing the
1832	 * lowest priority tasks in the system.  Now we want to elect
1833	 * the best one based on our affinity and topology.
1834	 *
1835	 * We prioritize the last CPU that the task executed on since
1836	 * it is most likely cache-hot in that location.
1837	 */
1838	if (cpumask_test_cpu(cpu, lowest_mask))
1839		return cpu;
1840
1841	/*
1842	 * Otherwise, we consult the sched_domains span maps to figure
1843	 * out which CPU is logically closest to our hot cache data.
1844	 */
1845	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1846		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1847
1848	rcu_read_lock();
1849	for_each_domain(cpu, sd) {
1850		if (sd->flags & SD_WAKE_AFFINE) {
1851			int best_cpu;
1852
1853			/*
1854			 * "this_cpu" is cheaper to preempt than a
1855			 * remote processor.
1856			 */
1857			if (this_cpu != -1 &&
1858			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1859				rcu_read_unlock();
1860				return this_cpu;
1861			}
1862
1863			best_cpu = cpumask_any_and_distribute(lowest_mask,
1864							      sched_domain_span(sd));
1865			if (best_cpu < nr_cpu_ids) {
1866				rcu_read_unlock();
1867				return best_cpu;
1868			}
1869		}
1870	}
1871	rcu_read_unlock();
1872
1873	/*
1874	 * And finally, if there were no matches within the domains
1875	 * just give the caller *something* to work with from the compatible
1876	 * locations.
1877	 */
1878	if (this_cpu != -1)
1879		return this_cpu;
1880
1881	cpu = cpumask_any_distribute(lowest_mask);
1882	if (cpu < nr_cpu_ids)
1883		return cpu;
1884
1885	return -1;
1886}
1887
1888/* Will lock the rq it finds */
1889static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1890{
1891	struct rq *lowest_rq = NULL;
1892	int tries;
1893	int cpu;
1894
1895	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1896		cpu = find_lowest_rq(task);
1897
1898		if ((cpu == -1) || (cpu == rq->cpu))
1899			break;
1900
1901		lowest_rq = cpu_rq(cpu);
1902
1903		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1904			/*
1905			 * Target rq has tasks of equal or higher priority,
1906			 * retrying does not release any lock and is unlikely
1907			 * to yield a different result.
1908			 */
1909			lowest_rq = NULL;
1910			break;
1911		}
1912
1913		/* if the prio of this runqueue changed, try again */
1914		if (double_lock_balance(rq, lowest_rq)) {
1915			/*
1916			 * We had to unlock the run queue. In
1917			 * the mean time, task could have
1918			 * migrated already or had its affinity changed.
1919			 * Also make sure that it wasn't scheduled on its rq.
1920			 * It is possible the task was scheduled, set
1921			 * "migrate_disabled" and then got preempted, so we must
1922			 * check the task migration disable flag here too.
1923			 */
1924			if (unlikely(task_rq(task) != rq ||
1925				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1926				     task_on_cpu(rq, task) ||
1927				     !rt_task(task) ||
1928				     is_migration_disabled(task) ||
1929				     !task_on_rq_queued(task))) {
1930
1931				double_unlock_balance(rq, lowest_rq);
1932				lowest_rq = NULL;
1933				break;
1934			}
1935		}
1936
1937		/* If this rq is still suitable use it. */
1938		if (lowest_rq->rt.highest_prio.curr > task->prio)
1939			break;
1940
1941		/* try again */
1942		double_unlock_balance(rq, lowest_rq);
1943		lowest_rq = NULL;
1944	}
1945
1946	return lowest_rq;
1947}
1948
1949static struct task_struct *pick_next_pushable_task(struct rq *rq)
1950{
1951	struct task_struct *p;
1952
1953	if (!has_pushable_tasks(rq))
1954		return NULL;
1955
1956	p = plist_first_entry(&rq->rt.pushable_tasks,
1957			      struct task_struct, pushable_tasks);
1958
1959	BUG_ON(rq->cpu != task_cpu(p));
1960	BUG_ON(task_current(rq, p));
1961	BUG_ON(task_current_donor(rq, p));
1962	BUG_ON(p->nr_cpus_allowed <= 1);
1963
1964	BUG_ON(!task_on_rq_queued(p));
1965	BUG_ON(!rt_task(p));
1966
1967	return p;
1968}
1969
1970/*
1971 * If the current CPU has more than one RT task, see if the non
1972 * running task can migrate over to a CPU that is running a task
1973 * of lesser priority.
1974 */
1975static int push_rt_task(struct rq *rq, bool pull)
1976{
1977	struct task_struct *next_task;
1978	struct rq *lowest_rq;
1979	int ret = 0;
1980
1981	if (!rq->rt.overloaded)
1982		return 0;
1983
1984	next_task = pick_next_pushable_task(rq);
1985	if (!next_task)
1986		return 0;
1987
1988retry:
1989	/*
1990	 * It's possible that the next_task slipped in of
1991	 * higher priority than current. If that's the case
1992	 * just reschedule current.
1993	 */
1994	if (unlikely(next_task->prio < rq->donor->prio)) {
1995		resched_curr(rq);
1996		return 0;
1997	}
1998
1999	if (is_migration_disabled(next_task)) {
2000		struct task_struct *push_task = NULL;
2001		int cpu;
2002
2003		if (!pull || rq->push_busy)
2004			return 0;
2005
2006		/*
2007		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2008		 * make sense. Per the above priority check, curr has to
2009		 * be of higher priority than next_task, so no need to
2010		 * reschedule when bailing out.
2011		 *
2012		 * Note that the stoppers are masqueraded as SCHED_FIFO
2013		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2014		 */
2015		if (rq->donor->sched_class != &rt_sched_class)
2016			return 0;
2017
2018		cpu = find_lowest_rq(rq->curr);
2019		if (cpu == -1 || cpu == rq->cpu)
2020			return 0;
2021
2022		/*
2023		 * Given we found a CPU with lower priority than @next_task,
2024		 * therefore it should be running. However we cannot migrate it
2025		 * to this other CPU, instead attempt to push the current
2026		 * running task on this CPU away.
2027		 */
2028		push_task = get_push_task(rq);
2029		if (push_task) {
2030			preempt_disable();
2031			raw_spin_rq_unlock(rq);
2032			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2033					    push_task, &rq->push_work);
2034			preempt_enable();
2035			raw_spin_rq_lock(rq);
2036		}
2037
2038		return 0;
2039	}
2040
2041	if (WARN_ON(next_task == rq->curr))
2042		return 0;
2043
2044	/* We might release rq lock */
2045	get_task_struct(next_task);
2046
2047	/* find_lock_lowest_rq locks the rq if found */
2048	lowest_rq = find_lock_lowest_rq(next_task, rq);
2049	if (!lowest_rq) {
2050		struct task_struct *task;
2051		/*
2052		 * find_lock_lowest_rq releases rq->lock
2053		 * so it is possible that next_task has migrated.
2054		 *
2055		 * We need to make sure that the task is still on the same
2056		 * run-queue and is also still the next task eligible for
2057		 * pushing.
2058		 */
2059		task = pick_next_pushable_task(rq);
2060		if (task == next_task) {
2061			/*
2062			 * The task hasn't migrated, and is still the next
2063			 * eligible task, but we failed to find a run-queue
2064			 * to push it to.  Do not retry in this case, since
2065			 * other CPUs will pull from us when ready.
2066			 */
2067			goto out;
2068		}
2069
2070		if (!task)
2071			/* No more tasks, just exit */
2072			goto out;
2073
2074		/*
2075		 * Something has shifted, try again.
2076		 */
2077		put_task_struct(next_task);
2078		next_task = task;
2079		goto retry;
2080	}
2081
2082	move_queued_task_locked(rq, lowest_rq, next_task);
 
 
2083	resched_curr(lowest_rq);
2084	ret = 1;
2085
2086	double_unlock_balance(rq, lowest_rq);
2087out:
2088	put_task_struct(next_task);
2089
2090	return ret;
2091}
2092
2093static void push_rt_tasks(struct rq *rq)
2094{
2095	/* push_rt_task will return true if it moved an RT */
2096	while (push_rt_task(rq, false))
2097		;
2098}
2099
2100#ifdef HAVE_RT_PUSH_IPI
2101
2102/*
2103 * When a high priority task schedules out from a CPU and a lower priority
2104 * task is scheduled in, a check is made to see if there's any RT tasks
2105 * on other CPUs that are waiting to run because a higher priority RT task
2106 * is currently running on its CPU. In this case, the CPU with multiple RT
2107 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2108 * up that may be able to run one of its non-running queued RT tasks.
2109 *
2110 * All CPUs with overloaded RT tasks need to be notified as there is currently
2111 * no way to know which of these CPUs have the highest priority task waiting
2112 * to run. Instead of trying to take a spinlock on each of these CPUs,
2113 * which has shown to cause large latency when done on machines with many
2114 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2115 * RT tasks waiting to run.
2116 *
2117 * Just sending an IPI to each of the CPUs is also an issue, as on large
2118 * count CPU machines, this can cause an IPI storm on a CPU, especially
2119 * if its the only CPU with multiple RT tasks queued, and a large number
2120 * of CPUs scheduling a lower priority task at the same time.
2121 *
2122 * Each root domain has its own IRQ work function that can iterate over
2123 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2124 * task must be checked if there's one or many CPUs that are lowering
2125 * their priority, there's a single IRQ work iterator that will try to
2126 * push off RT tasks that are waiting to run.
2127 *
2128 * When a CPU schedules a lower priority task, it will kick off the
2129 * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2130 * As it only takes the first CPU that schedules a lower priority task
2131 * to start the process, the rto_start variable is incremented and if
2132 * the atomic result is one, then that CPU will try to take the rto_lock.
2133 * This prevents high contention on the lock as the process handles all
2134 * CPUs scheduling lower priority tasks.
2135 *
2136 * All CPUs that are scheduling a lower priority task will increment the
2137 * rt_loop_next variable. This will make sure that the IRQ work iterator
2138 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2139 * priority task, even if the iterator is in the middle of a scan. Incrementing
2140 * the rt_loop_next will cause the iterator to perform another scan.
2141 *
2142 */
2143static int rto_next_cpu(struct root_domain *rd)
2144{
2145	int next;
2146	int cpu;
2147
2148	/*
2149	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2150	 * rt_next_cpu() will simply return the first CPU found in
2151	 * the rto_mask.
2152	 *
2153	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2154	 * will return the next CPU found in the rto_mask.
2155	 *
2156	 * If there are no more CPUs left in the rto_mask, then a check is made
2157	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2158	 * the rto_lock held, but any CPU may increment the rto_loop_next
2159	 * without any locking.
2160	 */
2161	for (;;) {
2162
2163		/* When rto_cpu is -1 this acts like cpumask_first() */
2164		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2165
2166		rd->rto_cpu = cpu;
2167
2168		if (cpu < nr_cpu_ids)
2169			return cpu;
2170
2171		rd->rto_cpu = -1;
2172
2173		/*
2174		 * ACQUIRE ensures we see the @rto_mask changes
2175		 * made prior to the @next value observed.
2176		 *
2177		 * Matches WMB in rt_set_overload().
2178		 */
2179		next = atomic_read_acquire(&rd->rto_loop_next);
2180
2181		if (rd->rto_loop == next)
2182			break;
2183
2184		rd->rto_loop = next;
2185	}
2186
2187	return -1;
2188}
2189
2190static inline bool rto_start_trylock(atomic_t *v)
2191{
2192	return !atomic_cmpxchg_acquire(v, 0, 1);
2193}
2194
2195static inline void rto_start_unlock(atomic_t *v)
2196{
2197	atomic_set_release(v, 0);
2198}
2199
2200static void tell_cpu_to_push(struct rq *rq)
2201{
2202	int cpu = -1;
2203
2204	/* Keep the loop going if the IPI is currently active */
2205	atomic_inc(&rq->rd->rto_loop_next);
2206
2207	/* Only one CPU can initiate a loop at a time */
2208	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2209		return;
2210
2211	raw_spin_lock(&rq->rd->rto_lock);
2212
2213	/*
2214	 * The rto_cpu is updated under the lock, if it has a valid CPU
2215	 * then the IPI is still running and will continue due to the
2216	 * update to loop_next, and nothing needs to be done here.
2217	 * Otherwise it is finishing up and an IPI needs to be sent.
2218	 */
2219	if (rq->rd->rto_cpu < 0)
2220		cpu = rto_next_cpu(rq->rd);
2221
2222	raw_spin_unlock(&rq->rd->rto_lock);
2223
2224	rto_start_unlock(&rq->rd->rto_loop_start);
2225
2226	if (cpu >= 0) {
2227		/* Make sure the rd does not get freed while pushing */
2228		sched_get_rd(rq->rd);
2229		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2230	}
2231}
2232
2233/* Called from hardirq context */
2234void rto_push_irq_work_func(struct irq_work *work)
2235{
2236	struct root_domain *rd =
2237		container_of(work, struct root_domain, rto_push_work);
2238	struct rq *rq;
2239	int cpu;
2240
2241	rq = this_rq();
2242
2243	/*
2244	 * We do not need to grab the lock to check for has_pushable_tasks.
2245	 * When it gets updated, a check is made if a push is possible.
2246	 */
2247	if (has_pushable_tasks(rq)) {
2248		raw_spin_rq_lock(rq);
2249		while (push_rt_task(rq, true))
2250			;
2251		raw_spin_rq_unlock(rq);
2252	}
2253
2254	raw_spin_lock(&rd->rto_lock);
2255
2256	/* Pass the IPI to the next rt overloaded queue */
2257	cpu = rto_next_cpu(rd);
2258
2259	raw_spin_unlock(&rd->rto_lock);
2260
2261	if (cpu < 0) {
2262		sched_put_rd(rd);
2263		return;
2264	}
2265
2266	/* Try the next RT overloaded CPU */
2267	irq_work_queue_on(&rd->rto_push_work, cpu);
2268}
2269#endif /* HAVE_RT_PUSH_IPI */
2270
2271static void pull_rt_task(struct rq *this_rq)
2272{
2273	int this_cpu = this_rq->cpu, cpu;
2274	bool resched = false;
2275	struct task_struct *p, *push_task;
2276	struct rq *src_rq;
2277	int rt_overload_count = rt_overloaded(this_rq);
2278
2279	if (likely(!rt_overload_count))
2280		return;
2281
2282	/*
2283	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2284	 * see overloaded we must also see the rto_mask bit.
2285	 */
2286	smp_rmb();
2287
2288	/* If we are the only overloaded CPU do nothing */
2289	if (rt_overload_count == 1 &&
2290	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2291		return;
2292
2293#ifdef HAVE_RT_PUSH_IPI
2294	if (sched_feat(RT_PUSH_IPI)) {
2295		tell_cpu_to_push(this_rq);
2296		return;
2297	}
2298#endif
2299
2300	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2301		if (this_cpu == cpu)
2302			continue;
2303
2304		src_rq = cpu_rq(cpu);
2305
2306		/*
2307		 * Don't bother taking the src_rq->lock if the next highest
2308		 * task is known to be lower-priority than our current task.
2309		 * This may look racy, but if this value is about to go
2310		 * logically higher, the src_rq will push this task away.
2311		 * And if its going logically lower, we do not care
2312		 */
2313		if (src_rq->rt.highest_prio.next >=
2314		    this_rq->rt.highest_prio.curr)
2315			continue;
2316
2317		/*
2318		 * We can potentially drop this_rq's lock in
2319		 * double_lock_balance, and another CPU could
2320		 * alter this_rq
2321		 */
2322		push_task = NULL;
2323		double_lock_balance(this_rq, src_rq);
2324
2325		/*
2326		 * We can pull only a task, which is pushable
2327		 * on its rq, and no others.
2328		 */
2329		p = pick_highest_pushable_task(src_rq, this_cpu);
2330
2331		/*
2332		 * Do we have an RT task that preempts
2333		 * the to-be-scheduled task?
2334		 */
2335		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2336			WARN_ON(p == src_rq->curr);
2337			WARN_ON(!task_on_rq_queued(p));
2338
2339			/*
2340			 * There's a chance that p is higher in priority
2341			 * than what's currently running on its CPU.
2342			 * This is just that p is waking up and hasn't
2343			 * had a chance to schedule. We only pull
2344			 * p if it is lower in priority than the
2345			 * current task on the run queue
2346			 */
2347			if (p->prio < src_rq->donor->prio)
2348				goto skip;
2349
2350			if (is_migration_disabled(p)) {
2351				push_task = get_push_task(src_rq);
2352			} else {
2353				move_queued_task_locked(src_rq, this_rq, p);
 
 
2354				resched = true;
2355			}
2356			/*
2357			 * We continue with the search, just in
2358			 * case there's an even higher prio task
2359			 * in another runqueue. (low likelihood
2360			 * but possible)
2361			 */
2362		}
2363skip:
2364		double_unlock_balance(this_rq, src_rq);
2365
2366		if (push_task) {
2367			preempt_disable();
2368			raw_spin_rq_unlock(this_rq);
2369			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2370					    push_task, &src_rq->push_work);
2371			preempt_enable();
2372			raw_spin_rq_lock(this_rq);
2373		}
2374	}
2375
2376	if (resched)
2377		resched_curr(this_rq);
2378}
2379
2380/*
2381 * If we are not running and we are not going to reschedule soon, we should
2382 * try to push tasks away now
2383 */
2384static void task_woken_rt(struct rq *rq, struct task_struct *p)
2385{
2386	bool need_to_push = !task_on_cpu(rq, p) &&
2387			    !test_tsk_need_resched(rq->curr) &&
2388			    p->nr_cpus_allowed > 1 &&
2389			    (dl_task(rq->donor) || rt_task(rq->donor)) &&
2390			    (rq->curr->nr_cpus_allowed < 2 ||
2391			     rq->donor->prio <= p->prio);
2392
2393	if (need_to_push)
2394		push_rt_tasks(rq);
2395}
2396
2397/* Assumes rq->lock is held */
2398static void rq_online_rt(struct rq *rq)
2399{
2400	if (rq->rt.overloaded)
2401		rt_set_overload(rq);
2402
2403	__enable_runtime(rq);
2404
2405	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2406}
2407
2408/* Assumes rq->lock is held */
2409static void rq_offline_rt(struct rq *rq)
2410{
2411	if (rq->rt.overloaded)
2412		rt_clear_overload(rq);
2413
2414	__disable_runtime(rq);
2415
2416	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2417}
2418
2419/*
2420 * When switch from the rt queue, we bring ourselves to a position
2421 * that we might want to pull RT tasks from other runqueues.
2422 */
2423static void switched_from_rt(struct rq *rq, struct task_struct *p)
2424{
2425	/*
2426	 * If there are other RT tasks then we will reschedule
2427	 * and the scheduling of the other RT tasks will handle
2428	 * the balancing. But if we are the last RT task
2429	 * we may need to handle the pulling of RT tasks
2430	 * now.
2431	 */
2432	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2433		return;
2434
2435	rt_queue_pull_task(rq);
2436}
2437
2438void __init init_sched_rt_class(void)
2439{
2440	unsigned int i;
2441
2442	for_each_possible_cpu(i) {
2443		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2444					GFP_KERNEL, cpu_to_node(i));
2445	}
2446}
2447#endif /* CONFIG_SMP */
2448
2449/*
2450 * When switching a task to RT, we may overload the runqueue
2451 * with RT tasks. In this case we try to push them off to
2452 * other runqueues.
2453 */
2454static void switched_to_rt(struct rq *rq, struct task_struct *p)
2455{
2456	/*
2457	 * If we are running, update the avg_rt tracking, as the running time
2458	 * will now on be accounted into the latter.
2459	 */
2460	if (task_current(rq, p)) {
2461		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2462		return;
2463	}
2464
2465	/*
2466	 * If we are not running we may need to preempt the current
2467	 * running task. If that current running task is also an RT task
2468	 * then see if we can move to another run queue.
2469	 */
2470	if (task_on_rq_queued(p)) {
2471#ifdef CONFIG_SMP
2472		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2473			rt_queue_push_tasks(rq);
2474#endif /* CONFIG_SMP */
2475		if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
2476			resched_curr(rq);
2477	}
2478}
2479
2480/*
2481 * Priority of the task has changed. This may cause
2482 * us to initiate a push or pull.
2483 */
2484static void
2485prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2486{
2487	if (!task_on_rq_queued(p))
2488		return;
2489
2490	if (task_current_donor(rq, p)) {
2491#ifdef CONFIG_SMP
2492		/*
2493		 * If our priority decreases while running, we
2494		 * may need to pull tasks to this runqueue.
2495		 */
2496		if (oldprio < p->prio)
2497			rt_queue_pull_task(rq);
2498
2499		/*
2500		 * If there's a higher priority task waiting to run
2501		 * then reschedule.
2502		 */
2503		if (p->prio > rq->rt.highest_prio.curr)
2504			resched_curr(rq);
2505#else
2506		/* For UP simply resched on drop of prio */
2507		if (oldprio < p->prio)
2508			resched_curr(rq);
2509#endif /* CONFIG_SMP */
2510	} else {
2511		/*
2512		 * This task is not running, but if it is
2513		 * greater than the current running task
2514		 * then reschedule.
2515		 */
2516		if (p->prio < rq->donor->prio)
2517			resched_curr(rq);
2518	}
2519}
2520
2521#ifdef CONFIG_POSIX_TIMERS
2522static void watchdog(struct rq *rq, struct task_struct *p)
2523{
2524	unsigned long soft, hard;
2525
2526	/* max may change after cur was read, this will be fixed next tick */
2527	soft = task_rlimit(p, RLIMIT_RTTIME);
2528	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2529
2530	if (soft != RLIM_INFINITY) {
2531		unsigned long next;
2532
2533		if (p->rt.watchdog_stamp != jiffies) {
2534			p->rt.timeout++;
2535			p->rt.watchdog_stamp = jiffies;
2536		}
2537
2538		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2539		if (p->rt.timeout > next) {
2540			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2541						    p->se.sum_exec_runtime);
2542		}
2543	}
2544}
2545#else
2546static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2547#endif
2548
2549/*
2550 * scheduler tick hitting a task of our scheduling class.
2551 *
2552 * NOTE: This function can be called remotely by the tick offload that
2553 * goes along full dynticks. Therefore no local assumption can be made
2554 * and everything must be accessed through the @rq and @curr passed in
2555 * parameters.
2556 */
2557static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2558{
2559	struct sched_rt_entity *rt_se = &p->rt;
2560
2561	update_curr_rt(rq);
2562	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2563
2564	watchdog(rq, p);
2565
2566	/*
2567	 * RR tasks need a special form of time-slice management.
2568	 * FIFO tasks have no timeslices.
2569	 */
2570	if (p->policy != SCHED_RR)
2571		return;
2572
2573	if (--p->rt.time_slice)
2574		return;
2575
2576	p->rt.time_slice = sched_rr_timeslice;
2577
2578	/*
2579	 * Requeue to the end of queue if we (and all of our ancestors) are not
2580	 * the only element on the queue
2581	 */
2582	for_each_sched_rt_entity(rt_se) {
2583		if (rt_se->run_list.prev != rt_se->run_list.next) {
2584			requeue_task_rt(rq, p, 0);
2585			resched_curr(rq);
2586			return;
2587		}
2588	}
2589}
2590
2591static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2592{
2593	/*
2594	 * Time slice is 0 for SCHED_FIFO tasks
2595	 */
2596	if (task->policy == SCHED_RR)
2597		return sched_rr_timeslice;
2598	else
2599		return 0;
2600}
2601
2602#ifdef CONFIG_SCHED_CORE
2603static int task_is_throttled_rt(struct task_struct *p, int cpu)
2604{
2605	struct rt_rq *rt_rq;
2606
2607#ifdef CONFIG_RT_GROUP_SCHED
2608	rt_rq = task_group(p)->rt_rq[cpu];
2609#else
2610	rt_rq = &cpu_rq(cpu)->rt;
2611#endif
2612
2613	return rt_rq_throttled(rt_rq);
2614}
2615#endif
2616
2617DEFINE_SCHED_CLASS(rt) = {
2618
2619	.enqueue_task		= enqueue_task_rt,
2620	.dequeue_task		= dequeue_task_rt,
2621	.yield_task		= yield_task_rt,
2622
2623	.wakeup_preempt		= wakeup_preempt_rt,
2624
2625	.pick_task		= pick_task_rt,
2626	.put_prev_task		= put_prev_task_rt,
2627	.set_next_task          = set_next_task_rt,
2628
2629#ifdef CONFIG_SMP
2630	.balance		= balance_rt,
 
2631	.select_task_rq		= select_task_rq_rt,
2632	.set_cpus_allowed       = set_cpus_allowed_common,
2633	.rq_online              = rq_online_rt,
2634	.rq_offline             = rq_offline_rt,
2635	.task_woken		= task_woken_rt,
2636	.switched_from		= switched_from_rt,
2637	.find_lock_rq		= find_lock_lowest_rq,
2638#endif
2639
2640	.task_tick		= task_tick_rt,
2641
2642	.get_rr_interval	= get_rr_interval_rt,
2643
2644	.prio_changed		= prio_changed_rt,
2645	.switched_to		= switched_to_rt,
2646
2647	.update_curr		= update_curr_rt,
2648
2649#ifdef CONFIG_SCHED_CORE
2650	.task_is_throttled	= task_is_throttled_rt,
2651#endif
2652
2653#ifdef CONFIG_UCLAMP_TASK
2654	.uclamp_enabled		= 1,
2655#endif
2656};
2657
2658#ifdef CONFIG_RT_GROUP_SCHED
2659/*
2660 * Ensure that the real time constraints are schedulable.
2661 */
2662static DEFINE_MUTEX(rt_constraints_mutex);
2663
2664static inline int tg_has_rt_tasks(struct task_group *tg)
2665{
2666	struct task_struct *task;
2667	struct css_task_iter it;
2668	int ret = 0;
2669
2670	/*
2671	 * Autogroups do not have RT tasks; see autogroup_create().
2672	 */
2673	if (task_group_is_autogroup(tg))
2674		return 0;
2675
2676	css_task_iter_start(&tg->css, 0, &it);
2677	while (!ret && (task = css_task_iter_next(&it)))
2678		ret |= rt_task(task);
2679	css_task_iter_end(&it);
2680
2681	return ret;
2682}
2683
2684struct rt_schedulable_data {
2685	struct task_group *tg;
2686	u64 rt_period;
2687	u64 rt_runtime;
2688};
2689
2690static int tg_rt_schedulable(struct task_group *tg, void *data)
2691{
2692	struct rt_schedulable_data *d = data;
2693	struct task_group *child;
2694	unsigned long total, sum = 0;
2695	u64 period, runtime;
2696
2697	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2698	runtime = tg->rt_bandwidth.rt_runtime;
2699
2700	if (tg == d->tg) {
2701		period = d->rt_period;
2702		runtime = d->rt_runtime;
2703	}
2704
2705	/*
2706	 * Cannot have more runtime than the period.
2707	 */
2708	if (runtime > period && runtime != RUNTIME_INF)
2709		return -EINVAL;
2710
2711	/*
2712	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2713	 */
2714	if (rt_bandwidth_enabled() && !runtime &&
2715	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2716		return -EBUSY;
2717
2718	total = to_ratio(period, runtime);
2719
2720	/*
2721	 * Nobody can have more than the global setting allows.
2722	 */
2723	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2724		return -EINVAL;
2725
2726	/*
2727	 * The sum of our children's runtime should not exceed our own.
2728	 */
2729	list_for_each_entry_rcu(child, &tg->children, siblings) {
2730		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2731		runtime = child->rt_bandwidth.rt_runtime;
2732
2733		if (child == d->tg) {
2734			period = d->rt_period;
2735			runtime = d->rt_runtime;
2736		}
2737
2738		sum += to_ratio(period, runtime);
2739	}
2740
2741	if (sum > total)
2742		return -EINVAL;
2743
2744	return 0;
2745}
2746
2747static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2748{
2749	int ret;
2750
2751	struct rt_schedulable_data data = {
2752		.tg = tg,
2753		.rt_period = period,
2754		.rt_runtime = runtime,
2755	};
2756
2757	rcu_read_lock();
2758	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2759	rcu_read_unlock();
2760
2761	return ret;
2762}
2763
2764static int tg_set_rt_bandwidth(struct task_group *tg,
2765		u64 rt_period, u64 rt_runtime)
2766{
2767	int i, err = 0;
2768
2769	/*
2770	 * Disallowing the root group RT runtime is BAD, it would disallow the
2771	 * kernel creating (and or operating) RT threads.
2772	 */
2773	if (tg == &root_task_group && rt_runtime == 0)
2774		return -EINVAL;
2775
2776	/* No period doesn't make any sense. */
2777	if (rt_period == 0)
2778		return -EINVAL;
2779
2780	/*
2781	 * Bound quota to defend quota against overflow during bandwidth shift.
2782	 */
2783	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2784		return -EINVAL;
2785
2786	mutex_lock(&rt_constraints_mutex);
2787	err = __rt_schedulable(tg, rt_period, rt_runtime);
2788	if (err)
2789		goto unlock;
2790
2791	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2792	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2793	tg->rt_bandwidth.rt_runtime = rt_runtime;
2794
2795	for_each_possible_cpu(i) {
2796		struct rt_rq *rt_rq = tg->rt_rq[i];
2797
2798		raw_spin_lock(&rt_rq->rt_runtime_lock);
2799		rt_rq->rt_runtime = rt_runtime;
2800		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2801	}
2802	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2803unlock:
2804	mutex_unlock(&rt_constraints_mutex);
2805
2806	return err;
2807}
2808
2809int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2810{
2811	u64 rt_runtime, rt_period;
2812
2813	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2814	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2815	if (rt_runtime_us < 0)
2816		rt_runtime = RUNTIME_INF;
2817	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2818		return -EINVAL;
2819
2820	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2821}
2822
2823long sched_group_rt_runtime(struct task_group *tg)
2824{
2825	u64 rt_runtime_us;
2826
2827	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2828		return -1;
2829
2830	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2831	do_div(rt_runtime_us, NSEC_PER_USEC);
2832	return rt_runtime_us;
2833}
2834
2835int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2836{
2837	u64 rt_runtime, rt_period;
2838
2839	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2840		return -EINVAL;
2841
2842	rt_period = rt_period_us * NSEC_PER_USEC;
2843	rt_runtime = tg->rt_bandwidth.rt_runtime;
2844
2845	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2846}
2847
2848long sched_group_rt_period(struct task_group *tg)
2849{
2850	u64 rt_period_us;
2851
2852	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2853	do_div(rt_period_us, NSEC_PER_USEC);
2854	return rt_period_us;
2855}
2856
2857#ifdef CONFIG_SYSCTL
2858static int sched_rt_global_constraints(void)
2859{
2860	int ret = 0;
2861
2862	mutex_lock(&rt_constraints_mutex);
2863	ret = __rt_schedulable(NULL, 0, 0);
2864	mutex_unlock(&rt_constraints_mutex);
2865
2866	return ret;
2867}
2868#endif /* CONFIG_SYSCTL */
2869
2870int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2871{
2872	/* Don't accept real-time tasks when there is no way for them to run */
2873	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2874		return 0;
2875
2876	return 1;
2877}
2878
2879#else /* !CONFIG_RT_GROUP_SCHED */
2880
2881#ifdef CONFIG_SYSCTL
2882static int sched_rt_global_constraints(void)
2883{
 
 
 
 
 
 
 
 
 
 
 
 
 
2884	return 0;
2885}
2886#endif /* CONFIG_SYSCTL */
2887#endif /* CONFIG_RT_GROUP_SCHED */
2888
2889#ifdef CONFIG_SYSCTL
2890static int sched_rt_global_validate(void)
2891{
2892	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2893		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2894		 ((u64)sysctl_sched_rt_runtime *
2895			NSEC_PER_USEC > max_rt_runtime)))
2896		return -EINVAL;
2897
2898	return 0;
2899}
2900
2901static void sched_rt_do_global(void)
2902{
 
 
 
 
 
 
2903}
2904
2905static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2906		size_t *lenp, loff_t *ppos)
2907{
2908	int old_period, old_runtime;
2909	static DEFINE_MUTEX(mutex);
2910	int ret;
2911
2912	mutex_lock(&mutex);
2913	old_period = sysctl_sched_rt_period;
2914	old_runtime = sysctl_sched_rt_runtime;
2915
2916	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2917
2918	if (!ret && write) {
2919		ret = sched_rt_global_validate();
2920		if (ret)
2921			goto undo;
2922
2923		ret = sched_dl_global_validate();
2924		if (ret)
2925			goto undo;
2926
2927		ret = sched_rt_global_constraints();
2928		if (ret)
2929			goto undo;
2930
2931		sched_rt_do_global();
2932		sched_dl_do_global();
2933	}
2934	if (0) {
2935undo:
2936		sysctl_sched_rt_period = old_period;
2937		sysctl_sched_rt_runtime = old_runtime;
2938	}
2939	mutex_unlock(&mutex);
2940
2941	return ret;
2942}
2943
2944static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2945		size_t *lenp, loff_t *ppos)
2946{
2947	int ret;
2948	static DEFINE_MUTEX(mutex);
2949
2950	mutex_lock(&mutex);
2951	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2952	/*
2953	 * Make sure that internally we keep jiffies.
2954	 * Also, writing zero resets the time-slice to default:
2955	 */
2956	if (!ret && write) {
2957		sched_rr_timeslice =
2958			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2959			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2960
2961		if (sysctl_sched_rr_timeslice <= 0)
2962			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2963	}
2964	mutex_unlock(&mutex);
2965
2966	return ret;
2967}
2968#endif /* CONFIG_SYSCTL */
2969
2970#ifdef CONFIG_SCHED_DEBUG
2971void print_rt_stats(struct seq_file *m, int cpu)
2972{
2973	rt_rq_iter_t iter;
2974	struct rt_rq *rt_rq;
2975
2976	rcu_read_lock();
2977	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2978		print_rt_rq(m, cpu, rt_rq);
2979	rcu_read_unlock();
2980}
2981#endif /* CONFIG_SCHED_DEBUG */
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6
   7int sched_rr_timeslice = RR_TIMESLICE;
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
  11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  12
  13struct rt_bandwidth def_rt_bandwidth;
  14
  15/*
  16 * period over which we measure -rt task CPU usage in us.
  17 * default: 1s
  18 */
  19int sysctl_sched_rt_period = 1000000;
  20
  21/*
  22 * part of the period that we allow rt tasks to run in us.
  23 * default: 0.95s
  24 */
  25int sysctl_sched_rt_runtime = 950000;
  26
  27#ifdef CONFIG_SYSCTL
  28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
  29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
  30		size_t *lenp, loff_t *ppos);
  31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
  32		size_t *lenp, loff_t *ppos);
  33static struct ctl_table sched_rt_sysctls[] = {
  34	{
  35		.procname       = "sched_rt_period_us",
  36		.data           = &sysctl_sched_rt_period,
  37		.maxlen         = sizeof(int),
  38		.mode           = 0644,
  39		.proc_handler   = sched_rt_handler,
  40		.extra1         = SYSCTL_ONE,
  41		.extra2         = SYSCTL_INT_MAX,
  42	},
  43	{
  44		.procname       = "sched_rt_runtime_us",
  45		.data           = &sysctl_sched_rt_runtime,
  46		.maxlen         = sizeof(int),
  47		.mode           = 0644,
  48		.proc_handler   = sched_rt_handler,
  49		.extra1         = SYSCTL_NEG_ONE,
  50		.extra2         = (void *)&sysctl_sched_rt_period,
  51	},
  52	{
  53		.procname       = "sched_rr_timeslice_ms",
  54		.data           = &sysctl_sched_rr_timeslice,
  55		.maxlen         = sizeof(int),
  56		.mode           = 0644,
  57		.proc_handler   = sched_rr_handler,
  58	},
  59	{}
  60};
  61
  62static int __init sched_rt_sysctl_init(void)
  63{
  64	register_sysctl_init("kernel", sched_rt_sysctls);
  65	return 0;
  66}
  67late_initcall(sched_rt_sysctl_init);
  68#endif
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  71{
  72	struct rt_bandwidth *rt_b =
  73		container_of(timer, struct rt_bandwidth, rt_period_timer);
  74	int idle = 0;
  75	int overrun;
  76
  77	raw_spin_lock(&rt_b->rt_runtime_lock);
  78	for (;;) {
  79		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  80		if (!overrun)
  81			break;
  82
  83		raw_spin_unlock(&rt_b->rt_runtime_lock);
  84		idle = do_sched_rt_period_timer(rt_b, overrun);
  85		raw_spin_lock(&rt_b->rt_runtime_lock);
  86	}
  87	if (idle)
  88		rt_b->rt_period_active = 0;
  89	raw_spin_unlock(&rt_b->rt_runtime_lock);
  90
  91	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  92}
  93
  94void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  95{
  96	rt_b->rt_period = ns_to_ktime(period);
  97	rt_b->rt_runtime = runtime;
  98
  99	raw_spin_lock_init(&rt_b->rt_runtime_lock);
 100
 101	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
 102		     HRTIMER_MODE_REL_HARD);
 103	rt_b->rt_period_timer.function = sched_rt_period_timer;
 104}
 105
 106static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 107{
 108	raw_spin_lock(&rt_b->rt_runtime_lock);
 109	if (!rt_b->rt_period_active) {
 110		rt_b->rt_period_active = 1;
 111		/*
 112		 * SCHED_DEADLINE updates the bandwidth, as a run away
 113		 * RT task with a DL task could hog a CPU. But DL does
 114		 * not reset the period. If a deadline task was running
 115		 * without an RT task running, it can cause RT tasks to
 116		 * throttle when they start up. Kick the timer right away
 117		 * to update the period.
 118		 */
 119		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 120		hrtimer_start_expires(&rt_b->rt_period_timer,
 121				      HRTIMER_MODE_ABS_PINNED_HARD);
 122	}
 123	raw_spin_unlock(&rt_b->rt_runtime_lock);
 124}
 125
 126static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 127{
 128	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 129		return;
 130
 131	do_start_rt_bandwidth(rt_b);
 132}
 133
 134void init_rt_rq(struct rt_rq *rt_rq)
 135{
 136	struct rt_prio_array *array;
 137	int i;
 138
 139	array = &rt_rq->active;
 140	for (i = 0; i < MAX_RT_PRIO; i++) {
 141		INIT_LIST_HEAD(array->queue + i);
 142		__clear_bit(i, array->bitmap);
 143	}
 144	/* delimiter for bitsearch: */
 145	__set_bit(MAX_RT_PRIO, array->bitmap);
 146
 147#if defined CONFIG_SMP
 148	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 149	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
 150	rt_rq->overloaded = 0;
 151	plist_head_init(&rt_rq->pushable_tasks);
 152#endif /* CONFIG_SMP */
 153	/* We start is dequeued state, because no RT tasks are queued */
 154	rt_rq->rt_queued = 0;
 155
 156	rt_rq->rt_time = 0;
 157	rt_rq->rt_throttled = 0;
 158	rt_rq->rt_runtime = 0;
 159	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 160}
 161
 162#ifdef CONFIG_RT_GROUP_SCHED
 163static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 164{
 165	hrtimer_cancel(&rt_b->rt_period_timer);
 166}
 167
 168#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 169
 170static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 171{
 172#ifdef CONFIG_SCHED_DEBUG
 173	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 174#endif
 175	return container_of(rt_se, struct task_struct, rt);
 176}
 177
 178static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 179{
 180	return rt_rq->rq;
 181}
 182
 183static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 184{
 185	return rt_se->rt_rq;
 186}
 187
 188static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 189{
 190	struct rt_rq *rt_rq = rt_se->rt_rq;
 191
 192	return rt_rq->rq;
 193}
 194
 195void unregister_rt_sched_group(struct task_group *tg)
 196{
 197	if (tg->rt_se)
 198		destroy_rt_bandwidth(&tg->rt_bandwidth);
 199
 200}
 201
 202void free_rt_sched_group(struct task_group *tg)
 203{
 204	int i;
 205
 206	for_each_possible_cpu(i) {
 207		if (tg->rt_rq)
 208			kfree(tg->rt_rq[i]);
 209		if (tg->rt_se)
 210			kfree(tg->rt_se[i]);
 211	}
 212
 213	kfree(tg->rt_rq);
 214	kfree(tg->rt_se);
 215}
 216
 217void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 218		struct sched_rt_entity *rt_se, int cpu,
 219		struct sched_rt_entity *parent)
 220{
 221	struct rq *rq = cpu_rq(cpu);
 222
 223	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 224	rt_rq->rt_nr_boosted = 0;
 225	rt_rq->rq = rq;
 226	rt_rq->tg = tg;
 227
 228	tg->rt_rq[cpu] = rt_rq;
 229	tg->rt_se[cpu] = rt_se;
 230
 231	if (!rt_se)
 232		return;
 233
 234	if (!parent)
 235		rt_se->rt_rq = &rq->rt;
 236	else
 237		rt_se->rt_rq = parent->my_q;
 238
 239	rt_se->my_q = rt_rq;
 240	rt_se->parent = parent;
 241	INIT_LIST_HEAD(&rt_se->run_list);
 242}
 243
 244int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 245{
 246	struct rt_rq *rt_rq;
 247	struct sched_rt_entity *rt_se;
 248	int i;
 249
 250	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 251	if (!tg->rt_rq)
 252		goto err;
 253	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 254	if (!tg->rt_se)
 255		goto err;
 256
 257	init_rt_bandwidth(&tg->rt_bandwidth,
 258			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 259
 260	for_each_possible_cpu(i) {
 261		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 262				     GFP_KERNEL, cpu_to_node(i));
 263		if (!rt_rq)
 264			goto err;
 265
 266		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 267				     GFP_KERNEL, cpu_to_node(i));
 268		if (!rt_se)
 269			goto err_free_rq;
 270
 271		init_rt_rq(rt_rq);
 272		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 273		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 274	}
 275
 276	return 1;
 277
 278err_free_rq:
 279	kfree(rt_rq);
 280err:
 281	return 0;
 282}
 283
 284#else /* CONFIG_RT_GROUP_SCHED */
 285
 286#define rt_entity_is_task(rt_se) (1)
 287
 288static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 289{
 290	return container_of(rt_se, struct task_struct, rt);
 291}
 292
 293static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 294{
 295	return container_of(rt_rq, struct rq, rt);
 296}
 297
 298static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 299{
 300	struct task_struct *p = rt_task_of(rt_se);
 301
 302	return task_rq(p);
 303}
 304
 305static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 306{
 307	struct rq *rq = rq_of_rt_se(rt_se);
 308
 309	return &rq->rt;
 310}
 311
 312void unregister_rt_sched_group(struct task_group *tg) { }
 313
 314void free_rt_sched_group(struct task_group *tg) { }
 315
 316int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 317{
 318	return 1;
 319}
 320#endif /* CONFIG_RT_GROUP_SCHED */
 321
 322#ifdef CONFIG_SMP
 323
 324static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 325{
 326	/* Try to pull RT tasks here if we lower this rq's prio */
 327	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 328}
 329
 330static inline int rt_overloaded(struct rq *rq)
 331{
 332	return atomic_read(&rq->rd->rto_count);
 333}
 334
 335static inline void rt_set_overload(struct rq *rq)
 336{
 337	if (!rq->online)
 338		return;
 339
 340	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 341	/*
 342	 * Make sure the mask is visible before we set
 343	 * the overload count. That is checked to determine
 344	 * if we should look at the mask. It would be a shame
 345	 * if we looked at the mask, but the mask was not
 346	 * updated yet.
 347	 *
 348	 * Matched by the barrier in pull_rt_task().
 349	 */
 350	smp_wmb();
 351	atomic_inc(&rq->rd->rto_count);
 352}
 353
 354static inline void rt_clear_overload(struct rq *rq)
 355{
 356	if (!rq->online)
 357		return;
 358
 359	/* the order here really doesn't matter */
 360	atomic_dec(&rq->rd->rto_count);
 361	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 362}
 363
 364static inline int has_pushable_tasks(struct rq *rq)
 365{
 366	return !plist_head_empty(&rq->rt.pushable_tasks);
 367}
 368
 369static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 370static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 371
 372static void push_rt_tasks(struct rq *);
 373static void pull_rt_task(struct rq *);
 374
 375static inline void rt_queue_push_tasks(struct rq *rq)
 376{
 377	if (!has_pushable_tasks(rq))
 378		return;
 379
 380	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 381}
 382
 383static inline void rt_queue_pull_task(struct rq *rq)
 384{
 385	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 386}
 387
 388static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 389{
 390	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 391	plist_node_init(&p->pushable_tasks, p->prio);
 392	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 393
 394	/* Update the highest prio pushable task */
 395	if (p->prio < rq->rt.highest_prio.next)
 396		rq->rt.highest_prio.next = p->prio;
 397
 398	if (!rq->rt.overloaded) {
 399		rt_set_overload(rq);
 400		rq->rt.overloaded = 1;
 401	}
 402}
 403
 404static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 405{
 406	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 407
 408	/* Update the new highest prio pushable task */
 409	if (has_pushable_tasks(rq)) {
 410		p = plist_first_entry(&rq->rt.pushable_tasks,
 411				      struct task_struct, pushable_tasks);
 412		rq->rt.highest_prio.next = p->prio;
 413	} else {
 414		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 415
 416		if (rq->rt.overloaded) {
 417			rt_clear_overload(rq);
 418			rq->rt.overloaded = 0;
 419		}
 420	}
 421}
 422
 423#else
 424
 425static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 426{
 427}
 428
 429static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 430{
 431}
 432
 433static inline void rt_queue_push_tasks(struct rq *rq)
 434{
 435}
 436#endif /* CONFIG_SMP */
 437
 438static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 439static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 440
 441static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 442{
 443	return rt_se->on_rq;
 444}
 445
 446#ifdef CONFIG_UCLAMP_TASK
 447/*
 448 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 449 * settings.
 450 *
 451 * This check is only important for heterogeneous systems where uclamp_min value
 452 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 453 * function will always return true.
 454 *
 455 * The function will return true if the capacity of the @cpu is >= the
 456 * uclamp_min and false otherwise.
 457 *
 458 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 459 * > uclamp_max.
 460 */
 461static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 462{
 463	unsigned int min_cap;
 464	unsigned int max_cap;
 465	unsigned int cpu_cap;
 466
 467	/* Only heterogeneous systems can benefit from this check */
 468	if (!sched_asym_cpucap_active())
 469		return true;
 470
 471	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 472	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 473
 474	cpu_cap = arch_scale_cpu_capacity(cpu);
 475
 476	return cpu_cap >= min(min_cap, max_cap);
 477}
 478#else
 479static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 480{
 481	return true;
 482}
 483#endif
 484
 485#ifdef CONFIG_RT_GROUP_SCHED
 486
 487static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 488{
 489	if (!rt_rq->tg)
 490		return RUNTIME_INF;
 491
 492	return rt_rq->rt_runtime;
 493}
 494
 495static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 496{
 497	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 498}
 499
 500typedef struct task_group *rt_rq_iter_t;
 501
 502static inline struct task_group *next_task_group(struct task_group *tg)
 503{
 504	do {
 505		tg = list_entry_rcu(tg->list.next,
 506			typeof(struct task_group), list);
 507	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 508
 509	if (&tg->list == &task_groups)
 510		tg = NULL;
 511
 512	return tg;
 513}
 514
 515#define for_each_rt_rq(rt_rq, iter, rq)					\
 516	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 517		(iter = next_task_group(iter)) &&			\
 518		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 519
 520#define for_each_sched_rt_entity(rt_se) \
 521	for (; rt_se; rt_se = rt_se->parent)
 522
 523static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 524{
 525	return rt_se->my_q;
 526}
 527
 528static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 529static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 530
 531static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 532{
 533	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 534	struct rq *rq = rq_of_rt_rq(rt_rq);
 535	struct sched_rt_entity *rt_se;
 536
 537	int cpu = cpu_of(rq);
 538
 539	rt_se = rt_rq->tg->rt_se[cpu];
 540
 541	if (rt_rq->rt_nr_running) {
 542		if (!rt_se)
 543			enqueue_top_rt_rq(rt_rq);
 544		else if (!on_rt_rq(rt_se))
 545			enqueue_rt_entity(rt_se, 0);
 546
 547		if (rt_rq->highest_prio.curr < curr->prio)
 548			resched_curr(rq);
 549	}
 550}
 551
 552static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 553{
 554	struct sched_rt_entity *rt_se;
 555	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 556
 557	rt_se = rt_rq->tg->rt_se[cpu];
 558
 559	if (!rt_se) {
 560		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 561		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 562		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 563	}
 564	else if (on_rt_rq(rt_se))
 565		dequeue_rt_entity(rt_se, 0);
 566}
 567
 568static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 569{
 570	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 571}
 572
 573static int rt_se_boosted(struct sched_rt_entity *rt_se)
 574{
 575	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 576	struct task_struct *p;
 577
 578	if (rt_rq)
 579		return !!rt_rq->rt_nr_boosted;
 580
 581	p = rt_task_of(rt_se);
 582	return p->prio != p->normal_prio;
 583}
 584
 585#ifdef CONFIG_SMP
 586static inline const struct cpumask *sched_rt_period_mask(void)
 587{
 588	return this_rq()->rd->span;
 589}
 590#else
 591static inline const struct cpumask *sched_rt_period_mask(void)
 592{
 593	return cpu_online_mask;
 594}
 595#endif
 596
 597static inline
 598struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 599{
 600	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 601}
 602
 603static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 604{
 605	return &rt_rq->tg->rt_bandwidth;
 606}
 607
 608#else /* !CONFIG_RT_GROUP_SCHED */
 609
 610static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 611{
 612	return rt_rq->rt_runtime;
 613}
 614
 615static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 616{
 617	return ktime_to_ns(def_rt_bandwidth.rt_period);
 618}
 619
 620typedef struct rt_rq *rt_rq_iter_t;
 621
 622#define for_each_rt_rq(rt_rq, iter, rq) \
 623	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 624
 625#define for_each_sched_rt_entity(rt_se) \
 626	for (; rt_se; rt_se = NULL)
 627
 628static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 629{
 630	return NULL;
 631}
 632
 633static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 634{
 635	struct rq *rq = rq_of_rt_rq(rt_rq);
 636
 637	if (!rt_rq->rt_nr_running)
 638		return;
 639
 640	enqueue_top_rt_rq(rt_rq);
 641	resched_curr(rq);
 642}
 643
 644static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 645{
 646	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 647}
 648
 649static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 650{
 651	return rt_rq->rt_throttled;
 652}
 653
 654static inline const struct cpumask *sched_rt_period_mask(void)
 655{
 656	return cpu_online_mask;
 657}
 658
 659static inline
 660struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 661{
 662	return &cpu_rq(cpu)->rt;
 663}
 664
 665static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 666{
 667	return &def_rt_bandwidth;
 668}
 669
 670#endif /* CONFIG_RT_GROUP_SCHED */
 671
 672bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 673{
 674	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 675
 676	return (hrtimer_active(&rt_b->rt_period_timer) ||
 677		rt_rq->rt_time < rt_b->rt_runtime);
 678}
 679
 680#ifdef CONFIG_SMP
 681/*
 682 * We ran out of runtime, see if we can borrow some from our neighbours.
 683 */
 684static void do_balance_runtime(struct rt_rq *rt_rq)
 685{
 686	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 687	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 688	int i, weight;
 689	u64 rt_period;
 690
 691	weight = cpumask_weight(rd->span);
 692
 693	raw_spin_lock(&rt_b->rt_runtime_lock);
 694	rt_period = ktime_to_ns(rt_b->rt_period);
 695	for_each_cpu(i, rd->span) {
 696		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 697		s64 diff;
 698
 699		if (iter == rt_rq)
 700			continue;
 701
 702		raw_spin_lock(&iter->rt_runtime_lock);
 703		/*
 704		 * Either all rqs have inf runtime and there's nothing to steal
 705		 * or __disable_runtime() below sets a specific rq to inf to
 706		 * indicate its been disabled and disallow stealing.
 707		 */
 708		if (iter->rt_runtime == RUNTIME_INF)
 709			goto next;
 710
 711		/*
 712		 * From runqueues with spare time, take 1/n part of their
 713		 * spare time, but no more than our period.
 714		 */
 715		diff = iter->rt_runtime - iter->rt_time;
 716		if (diff > 0) {
 717			diff = div_u64((u64)diff, weight);
 718			if (rt_rq->rt_runtime + diff > rt_period)
 719				diff = rt_period - rt_rq->rt_runtime;
 720			iter->rt_runtime -= diff;
 721			rt_rq->rt_runtime += diff;
 722			if (rt_rq->rt_runtime == rt_period) {
 723				raw_spin_unlock(&iter->rt_runtime_lock);
 724				break;
 725			}
 726		}
 727next:
 728		raw_spin_unlock(&iter->rt_runtime_lock);
 729	}
 730	raw_spin_unlock(&rt_b->rt_runtime_lock);
 731}
 732
 733/*
 734 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 735 */
 736static void __disable_runtime(struct rq *rq)
 737{
 738	struct root_domain *rd = rq->rd;
 739	rt_rq_iter_t iter;
 740	struct rt_rq *rt_rq;
 741
 742	if (unlikely(!scheduler_running))
 743		return;
 744
 745	for_each_rt_rq(rt_rq, iter, rq) {
 746		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 747		s64 want;
 748		int i;
 749
 750		raw_spin_lock(&rt_b->rt_runtime_lock);
 751		raw_spin_lock(&rt_rq->rt_runtime_lock);
 752		/*
 753		 * Either we're all inf and nobody needs to borrow, or we're
 754		 * already disabled and thus have nothing to do, or we have
 755		 * exactly the right amount of runtime to take out.
 756		 */
 757		if (rt_rq->rt_runtime == RUNTIME_INF ||
 758				rt_rq->rt_runtime == rt_b->rt_runtime)
 759			goto balanced;
 760		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 761
 762		/*
 763		 * Calculate the difference between what we started out with
 764		 * and what we current have, that's the amount of runtime
 765		 * we lend and now have to reclaim.
 766		 */
 767		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 768
 769		/*
 770		 * Greedy reclaim, take back as much as we can.
 771		 */
 772		for_each_cpu(i, rd->span) {
 773			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 774			s64 diff;
 775
 776			/*
 777			 * Can't reclaim from ourselves or disabled runqueues.
 778			 */
 779			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 780				continue;
 781
 782			raw_spin_lock(&iter->rt_runtime_lock);
 783			if (want > 0) {
 784				diff = min_t(s64, iter->rt_runtime, want);
 785				iter->rt_runtime -= diff;
 786				want -= diff;
 787			} else {
 788				iter->rt_runtime -= want;
 789				want -= want;
 790			}
 791			raw_spin_unlock(&iter->rt_runtime_lock);
 792
 793			if (!want)
 794				break;
 795		}
 796
 797		raw_spin_lock(&rt_rq->rt_runtime_lock);
 798		/*
 799		 * We cannot be left wanting - that would mean some runtime
 800		 * leaked out of the system.
 801		 */
 802		WARN_ON_ONCE(want);
 803balanced:
 804		/*
 805		 * Disable all the borrow logic by pretending we have inf
 806		 * runtime - in which case borrowing doesn't make sense.
 807		 */
 808		rt_rq->rt_runtime = RUNTIME_INF;
 809		rt_rq->rt_throttled = 0;
 810		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 811		raw_spin_unlock(&rt_b->rt_runtime_lock);
 812
 813		/* Make rt_rq available for pick_next_task() */
 814		sched_rt_rq_enqueue(rt_rq);
 815	}
 816}
 817
 818static void __enable_runtime(struct rq *rq)
 819{
 820	rt_rq_iter_t iter;
 821	struct rt_rq *rt_rq;
 822
 823	if (unlikely(!scheduler_running))
 824		return;
 825
 826	/*
 827	 * Reset each runqueue's bandwidth settings
 828	 */
 829	for_each_rt_rq(rt_rq, iter, rq) {
 830		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 831
 832		raw_spin_lock(&rt_b->rt_runtime_lock);
 833		raw_spin_lock(&rt_rq->rt_runtime_lock);
 834		rt_rq->rt_runtime = rt_b->rt_runtime;
 835		rt_rq->rt_time = 0;
 836		rt_rq->rt_throttled = 0;
 837		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 838		raw_spin_unlock(&rt_b->rt_runtime_lock);
 839	}
 840}
 841
 842static void balance_runtime(struct rt_rq *rt_rq)
 843{
 844	if (!sched_feat(RT_RUNTIME_SHARE))
 845		return;
 846
 847	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 848		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 849		do_balance_runtime(rt_rq);
 850		raw_spin_lock(&rt_rq->rt_runtime_lock);
 851	}
 852}
 853#else /* !CONFIG_SMP */
 854static inline void balance_runtime(struct rt_rq *rt_rq) {}
 855#endif /* CONFIG_SMP */
 856
 857static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 858{
 859	int i, idle = 1, throttled = 0;
 860	const struct cpumask *span;
 861
 862	span = sched_rt_period_mask();
 863#ifdef CONFIG_RT_GROUP_SCHED
 864	/*
 865	 * FIXME: isolated CPUs should really leave the root task group,
 866	 * whether they are isolcpus or were isolated via cpusets, lest
 867	 * the timer run on a CPU which does not service all runqueues,
 868	 * potentially leaving other CPUs indefinitely throttled.  If
 869	 * isolation is really required, the user will turn the throttle
 870	 * off to kill the perturbations it causes anyway.  Meanwhile,
 871	 * this maintains functionality for boot and/or troubleshooting.
 872	 */
 873	if (rt_b == &root_task_group.rt_bandwidth)
 874		span = cpu_online_mask;
 875#endif
 876	for_each_cpu(i, span) {
 877		int enqueue = 0;
 878		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 879		struct rq *rq = rq_of_rt_rq(rt_rq);
 880		struct rq_flags rf;
 881		int skip;
 882
 883		/*
 884		 * When span == cpu_online_mask, taking each rq->lock
 885		 * can be time-consuming. Try to avoid it when possible.
 886		 */
 887		raw_spin_lock(&rt_rq->rt_runtime_lock);
 888		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 889			rt_rq->rt_runtime = rt_b->rt_runtime;
 890		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 891		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 892		if (skip)
 893			continue;
 894
 895		rq_lock(rq, &rf);
 896		update_rq_clock(rq);
 897
 898		if (rt_rq->rt_time) {
 899			u64 runtime;
 900
 901			raw_spin_lock(&rt_rq->rt_runtime_lock);
 902			if (rt_rq->rt_throttled)
 903				balance_runtime(rt_rq);
 904			runtime = rt_rq->rt_runtime;
 905			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 906			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 907				rt_rq->rt_throttled = 0;
 908				enqueue = 1;
 909
 910				/*
 911				 * When we're idle and a woken (rt) task is
 912				 * throttled wakeup_preempt() will set
 913				 * skip_update and the time between the wakeup
 914				 * and this unthrottle will get accounted as
 915				 * 'runtime'.
 916				 */
 917				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 918					rq_clock_cancel_skipupdate(rq);
 919			}
 920			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 921				idle = 0;
 922			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 923		} else if (rt_rq->rt_nr_running) {
 924			idle = 0;
 925			if (!rt_rq_throttled(rt_rq))
 926				enqueue = 1;
 927		}
 928		if (rt_rq->rt_throttled)
 929			throttled = 1;
 930
 931		if (enqueue)
 932			sched_rt_rq_enqueue(rt_rq);
 933		rq_unlock(rq, &rf);
 934	}
 935
 936	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 937		return 1;
 938
 939	return idle;
 940}
 941
 942static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 943{
 944#ifdef CONFIG_RT_GROUP_SCHED
 945	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 946
 947	if (rt_rq)
 948		return rt_rq->highest_prio.curr;
 949#endif
 950
 951	return rt_task_of(rt_se)->prio;
 952}
 953
 954static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 955{
 956	u64 runtime = sched_rt_runtime(rt_rq);
 957
 958	if (rt_rq->rt_throttled)
 959		return rt_rq_throttled(rt_rq);
 960
 961	if (runtime >= sched_rt_period(rt_rq))
 962		return 0;
 963
 964	balance_runtime(rt_rq);
 965	runtime = sched_rt_runtime(rt_rq);
 966	if (runtime == RUNTIME_INF)
 967		return 0;
 968
 969	if (rt_rq->rt_time > runtime) {
 970		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 971
 972		/*
 973		 * Don't actually throttle groups that have no runtime assigned
 974		 * but accrue some time due to boosting.
 975		 */
 976		if (likely(rt_b->rt_runtime)) {
 977			rt_rq->rt_throttled = 1;
 978			printk_deferred_once("sched: RT throttling activated\n");
 979		} else {
 980			/*
 981			 * In case we did anyway, make it go away,
 982			 * replenishment is a joke, since it will replenish us
 983			 * with exactly 0 ns.
 984			 */
 985			rt_rq->rt_time = 0;
 986		}
 987
 988		if (rt_rq_throttled(rt_rq)) {
 989			sched_rt_rq_dequeue(rt_rq);
 990			return 1;
 991		}
 992	}
 993
 994	return 0;
 995}
 996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997/*
 998 * Update the current task's runtime statistics. Skip current tasks that
 999 * are not in our scheduling class.
1000 */
1001static void update_curr_rt(struct rq *rq)
1002{
1003	struct task_struct *curr = rq->curr;
1004	struct sched_rt_entity *rt_se = &curr->rt;
1005	s64 delta_exec;
1006
1007	if (curr->sched_class != &rt_sched_class)
1008		return;
1009
1010	delta_exec = update_curr_common(rq);
1011	if (unlikely(delta_exec <= 0))
1012		return;
1013
 
 
 
1014	if (!rt_bandwidth_enabled())
1015		return;
1016
1017	for_each_sched_rt_entity(rt_se) {
1018		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1019		int exceeded;
1020
1021		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1022			raw_spin_lock(&rt_rq->rt_runtime_lock);
1023			rt_rq->rt_time += delta_exec;
1024			exceeded = sched_rt_runtime_exceeded(rt_rq);
1025			if (exceeded)
1026				resched_curr(rq);
1027			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028			if (exceeded)
1029				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1030		}
1031	}
 
1032}
1033
1034static void
1035dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1036{
1037	struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039	BUG_ON(&rq->rt != rt_rq);
1040
1041	if (!rt_rq->rt_queued)
1042		return;
1043
1044	BUG_ON(!rq->nr_running);
1045
1046	sub_nr_running(rq, count);
1047	rt_rq->rt_queued = 0;
1048
1049}
1050
1051static void
1052enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053{
1054	struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056	BUG_ON(&rq->rt != rt_rq);
1057
1058	if (rt_rq->rt_queued)
1059		return;
1060
1061	if (rt_rq_throttled(rt_rq))
1062		return;
1063
1064	if (rt_rq->rt_nr_running) {
1065		add_nr_running(rq, rt_rq->rt_nr_running);
1066		rt_rq->rt_queued = 1;
1067	}
1068
1069	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070	cpufreq_update_util(rq, 0);
1071}
1072
1073#if defined CONFIG_SMP
1074
1075static void
1076inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077{
1078	struct rq *rq = rq_of_rt_rq(rt_rq);
1079
1080#ifdef CONFIG_RT_GROUP_SCHED
1081	/*
1082	 * Change rq's cpupri only if rt_rq is the top queue.
1083	 */
1084	if (&rq->rt != rt_rq)
1085		return;
1086#endif
1087	if (rq->online && prio < prev_prio)
1088		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089}
1090
1091static void
1092dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093{
1094	struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096#ifdef CONFIG_RT_GROUP_SCHED
1097	/*
1098	 * Change rq's cpupri only if rt_rq is the top queue.
1099	 */
1100	if (&rq->rt != rt_rq)
1101		return;
1102#endif
1103	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105}
1106
1107#else /* CONFIG_SMP */
1108
1109static inline
1110void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111static inline
1112void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114#endif /* CONFIG_SMP */
1115
1116#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117static void
1118inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119{
1120	int prev_prio = rt_rq->highest_prio.curr;
1121
1122	if (prio < prev_prio)
1123		rt_rq->highest_prio.curr = prio;
1124
1125	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126}
1127
1128static void
1129dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130{
1131	int prev_prio = rt_rq->highest_prio.curr;
1132
1133	if (rt_rq->rt_nr_running) {
1134
1135		WARN_ON(prio < prev_prio);
1136
1137		/*
1138		 * This may have been our highest task, and therefore
1139		 * we may have some recomputation to do
1140		 */
1141		if (prio == prev_prio) {
1142			struct rt_prio_array *array = &rt_rq->active;
1143
1144			rt_rq->highest_prio.curr =
1145				sched_find_first_bit(array->bitmap);
1146		}
1147
1148	} else {
1149		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1150	}
1151
1152	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1153}
1154
1155#else
1156
1157static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159
1160#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1161
1162#ifdef CONFIG_RT_GROUP_SCHED
1163
1164static void
1165inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166{
1167	if (rt_se_boosted(rt_se))
1168		rt_rq->rt_nr_boosted++;
1169
1170	if (rt_rq->tg)
1171		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1172}
1173
1174static void
1175dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176{
1177	if (rt_se_boosted(rt_se))
1178		rt_rq->rt_nr_boosted--;
1179
1180	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1181}
1182
1183#else /* CONFIG_RT_GROUP_SCHED */
1184
1185static void
1186inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187{
1188	start_rt_bandwidth(&def_rt_bandwidth);
1189}
1190
1191static inline
1192void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1193
1194#endif /* CONFIG_RT_GROUP_SCHED */
1195
1196static inline
1197unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1198{
1199	struct rt_rq *group_rq = group_rt_rq(rt_se);
1200
1201	if (group_rq)
1202		return group_rq->rt_nr_running;
1203	else
1204		return 1;
1205}
1206
1207static inline
1208unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1209{
1210	struct rt_rq *group_rq = group_rt_rq(rt_se);
1211	struct task_struct *tsk;
1212
1213	if (group_rq)
1214		return group_rq->rr_nr_running;
1215
1216	tsk = rt_task_of(rt_se);
1217
1218	return (tsk->policy == SCHED_RR) ? 1 : 0;
1219}
1220
1221static inline
1222void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223{
1224	int prio = rt_se_prio(rt_se);
1225
1226	WARN_ON(!rt_prio(prio));
1227	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1228	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1229
1230	inc_rt_prio(rt_rq, prio);
1231	inc_rt_group(rt_se, rt_rq);
1232}
1233
1234static inline
1235void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236{
1237	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238	WARN_ON(!rt_rq->rt_nr_running);
1239	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241
1242	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243	dec_rt_group(rt_se, rt_rq);
1244}
1245
1246/*
1247 * Change rt_se->run_list location unless SAVE && !MOVE
1248 *
1249 * assumes ENQUEUE/DEQUEUE flags match
1250 */
1251static inline bool move_entity(unsigned int flags)
1252{
1253	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1254		return false;
1255
1256	return true;
1257}
1258
1259static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1260{
1261	list_del_init(&rt_se->run_list);
1262
1263	if (list_empty(array->queue + rt_se_prio(rt_se)))
1264		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1265
1266	rt_se->on_list = 0;
1267}
1268
1269static inline struct sched_statistics *
1270__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1271{
1272#ifdef CONFIG_RT_GROUP_SCHED
1273	/* schedstats is not supported for rt group. */
1274	if (!rt_entity_is_task(rt_se))
1275		return NULL;
1276#endif
1277
1278	return &rt_task_of(rt_se)->stats;
1279}
1280
1281static inline void
1282update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1283{
1284	struct sched_statistics *stats;
1285	struct task_struct *p = NULL;
1286
1287	if (!schedstat_enabled())
1288		return;
1289
1290	if (rt_entity_is_task(rt_se))
1291		p = rt_task_of(rt_se);
1292
1293	stats = __schedstats_from_rt_se(rt_se);
1294	if (!stats)
1295		return;
1296
1297	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1298}
1299
1300static inline void
1301update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1302{
1303	struct sched_statistics *stats;
1304	struct task_struct *p = NULL;
1305
1306	if (!schedstat_enabled())
1307		return;
1308
1309	if (rt_entity_is_task(rt_se))
1310		p = rt_task_of(rt_se);
1311
1312	stats = __schedstats_from_rt_se(rt_se);
1313	if (!stats)
1314		return;
1315
1316	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1317}
1318
1319static inline void
1320update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1321			int flags)
1322{
1323	if (!schedstat_enabled())
1324		return;
1325
1326	if (flags & ENQUEUE_WAKEUP)
1327		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1328}
1329
1330static inline void
1331update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1332{
1333	struct sched_statistics *stats;
1334	struct task_struct *p = NULL;
1335
1336	if (!schedstat_enabled())
1337		return;
1338
1339	if (rt_entity_is_task(rt_se))
1340		p = rt_task_of(rt_se);
1341
1342	stats = __schedstats_from_rt_se(rt_se);
1343	if (!stats)
1344		return;
1345
1346	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1347}
1348
1349static inline void
1350update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1351			int flags)
1352{
1353	struct task_struct *p = NULL;
1354
1355	if (!schedstat_enabled())
1356		return;
1357
1358	if (rt_entity_is_task(rt_se))
1359		p = rt_task_of(rt_se);
1360
1361	if ((flags & DEQUEUE_SLEEP) && p) {
1362		unsigned int state;
1363
1364		state = READ_ONCE(p->__state);
1365		if (state & TASK_INTERRUPTIBLE)
1366			__schedstat_set(p->stats.sleep_start,
1367					rq_clock(rq_of_rt_rq(rt_rq)));
1368
1369		if (state & TASK_UNINTERRUPTIBLE)
1370			__schedstat_set(p->stats.block_start,
1371					rq_clock(rq_of_rt_rq(rt_rq)));
1372	}
1373}
1374
1375static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1376{
1377	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1378	struct rt_prio_array *array = &rt_rq->active;
1379	struct rt_rq *group_rq = group_rt_rq(rt_se);
1380	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1381
1382	/*
1383	 * Don't enqueue the group if its throttled, or when empty.
1384	 * The latter is a consequence of the former when a child group
1385	 * get throttled and the current group doesn't have any other
1386	 * active members.
1387	 */
1388	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1389		if (rt_se->on_list)
1390			__delist_rt_entity(rt_se, array);
1391		return;
1392	}
1393
1394	if (move_entity(flags)) {
1395		WARN_ON_ONCE(rt_se->on_list);
1396		if (flags & ENQUEUE_HEAD)
1397			list_add(&rt_se->run_list, queue);
1398		else
1399			list_add_tail(&rt_se->run_list, queue);
1400
1401		__set_bit(rt_se_prio(rt_se), array->bitmap);
1402		rt_se->on_list = 1;
1403	}
1404	rt_se->on_rq = 1;
1405
1406	inc_rt_tasks(rt_se, rt_rq);
1407}
1408
1409static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1410{
1411	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1412	struct rt_prio_array *array = &rt_rq->active;
1413
1414	if (move_entity(flags)) {
1415		WARN_ON_ONCE(!rt_se->on_list);
1416		__delist_rt_entity(rt_se, array);
1417	}
1418	rt_se->on_rq = 0;
1419
1420	dec_rt_tasks(rt_se, rt_rq);
1421}
1422
1423/*
1424 * Because the prio of an upper entry depends on the lower
1425 * entries, we must remove entries top - down.
1426 */
1427static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1428{
1429	struct sched_rt_entity *back = NULL;
1430	unsigned int rt_nr_running;
1431
1432	for_each_sched_rt_entity(rt_se) {
1433		rt_se->back = back;
1434		back = rt_se;
1435	}
1436
1437	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1438
1439	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1440		if (on_rt_rq(rt_se))
1441			__dequeue_rt_entity(rt_se, flags);
1442	}
1443
1444	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1445}
1446
1447static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1448{
1449	struct rq *rq = rq_of_rt_se(rt_se);
1450
1451	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1452
1453	dequeue_rt_stack(rt_se, flags);
1454	for_each_sched_rt_entity(rt_se)
1455		__enqueue_rt_entity(rt_se, flags);
1456	enqueue_top_rt_rq(&rq->rt);
1457}
1458
1459static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1460{
1461	struct rq *rq = rq_of_rt_se(rt_se);
1462
1463	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1464
1465	dequeue_rt_stack(rt_se, flags);
1466
1467	for_each_sched_rt_entity(rt_se) {
1468		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1469
1470		if (rt_rq && rt_rq->rt_nr_running)
1471			__enqueue_rt_entity(rt_se, flags);
1472	}
1473	enqueue_top_rt_rq(&rq->rt);
1474}
1475
1476/*
1477 * Adding/removing a task to/from a priority array:
1478 */
1479static void
1480enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1481{
1482	struct sched_rt_entity *rt_se = &p->rt;
1483
1484	if (flags & ENQUEUE_WAKEUP)
1485		rt_se->timeout = 0;
1486
1487	check_schedstat_required();
1488	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1489
1490	enqueue_rt_entity(rt_se, flags);
1491
1492	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1493		enqueue_pushable_task(rq, p);
1494}
1495
1496static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1497{
1498	struct sched_rt_entity *rt_se = &p->rt;
1499
1500	update_curr_rt(rq);
1501	dequeue_rt_entity(rt_se, flags);
1502
1503	dequeue_pushable_task(rq, p);
 
 
1504}
1505
1506/*
1507 * Put task to the head or the end of the run list without the overhead of
1508 * dequeue followed by enqueue.
1509 */
1510static void
1511requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1512{
1513	if (on_rt_rq(rt_se)) {
1514		struct rt_prio_array *array = &rt_rq->active;
1515		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1516
1517		if (head)
1518			list_move(&rt_se->run_list, queue);
1519		else
1520			list_move_tail(&rt_se->run_list, queue);
1521	}
1522}
1523
1524static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1525{
1526	struct sched_rt_entity *rt_se = &p->rt;
1527	struct rt_rq *rt_rq;
1528
1529	for_each_sched_rt_entity(rt_se) {
1530		rt_rq = rt_rq_of_se(rt_se);
1531		requeue_rt_entity(rt_rq, rt_se, head);
1532	}
1533}
1534
1535static void yield_task_rt(struct rq *rq)
1536{
1537	requeue_task_rt(rq, rq->curr, 0);
1538}
1539
1540#ifdef CONFIG_SMP
1541static int find_lowest_rq(struct task_struct *task);
1542
1543static int
1544select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1545{
1546	struct task_struct *curr;
1547	struct rq *rq;
1548	bool test;
1549
1550	/* For anything but wake ups, just return the task_cpu */
1551	if (!(flags & (WF_TTWU | WF_FORK)))
1552		goto out;
1553
1554	rq = cpu_rq(cpu);
1555
1556	rcu_read_lock();
1557	curr = READ_ONCE(rq->curr); /* unlocked access */
 
1558
1559	/*
1560	 * If the current task on @p's runqueue is an RT task, then
1561	 * try to see if we can wake this RT task up on another
1562	 * runqueue. Otherwise simply start this RT task
1563	 * on its current runqueue.
1564	 *
1565	 * We want to avoid overloading runqueues. If the woken
1566	 * task is a higher priority, then it will stay on this CPU
1567	 * and the lower prio task should be moved to another CPU.
1568	 * Even though this will probably make the lower prio task
1569	 * lose its cache, we do not want to bounce a higher task
1570	 * around just because it gave up its CPU, perhaps for a
1571	 * lock?
1572	 *
1573	 * For equal prio tasks, we just let the scheduler sort it out.
1574	 *
1575	 * Otherwise, just let it ride on the affined RQ and the
1576	 * post-schedule router will push the preempted task away
1577	 *
1578	 * This test is optimistic, if we get it wrong the load-balancer
1579	 * will have to sort it out.
1580	 *
1581	 * We take into account the capacity of the CPU to ensure it fits the
1582	 * requirement of the task - which is only important on heterogeneous
1583	 * systems like big.LITTLE.
1584	 */
1585	test = curr &&
1586	       unlikely(rt_task(curr)) &&
1587	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1588
1589	if (test || !rt_task_fits_capacity(p, cpu)) {
1590		int target = find_lowest_rq(p);
1591
1592		/*
1593		 * Bail out if we were forcing a migration to find a better
1594		 * fitting CPU but our search failed.
1595		 */
1596		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1597			goto out_unlock;
1598
1599		/*
1600		 * Don't bother moving it if the destination CPU is
1601		 * not running a lower priority task.
1602		 */
1603		if (target != -1 &&
1604		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1605			cpu = target;
1606	}
1607
1608out_unlock:
1609	rcu_read_unlock();
1610
1611out:
1612	return cpu;
1613}
1614
1615static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1616{
1617	/*
1618	 * Current can't be migrated, useless to reschedule,
1619	 * let's hope p can move out.
1620	 */
1621	if (rq->curr->nr_cpus_allowed == 1 ||
1622	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1623		return;
1624
1625	/*
1626	 * p is migratable, so let's not schedule it and
1627	 * see if it is pushed or pulled somewhere else.
1628	 */
1629	if (p->nr_cpus_allowed != 1 &&
1630	    cpupri_find(&rq->rd->cpupri, p, NULL))
1631		return;
1632
1633	/*
1634	 * There appear to be other CPUs that can accept
1635	 * the current task but none can run 'p', so lets reschedule
1636	 * to try and push the current task away:
1637	 */
1638	requeue_task_rt(rq, p, 1);
1639	resched_curr(rq);
1640}
1641
1642static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1643{
1644	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1645		/*
1646		 * This is OK, because current is on_cpu, which avoids it being
1647		 * picked for load-balance and preemption/IRQs are still
1648		 * disabled avoiding further scheduler activity on it and we've
1649		 * not yet started the picking loop.
1650		 */
1651		rq_unpin_lock(rq, rf);
1652		pull_rt_task(rq);
1653		rq_repin_lock(rq, rf);
1654	}
1655
1656	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1657}
1658#endif /* CONFIG_SMP */
1659
1660/*
1661 * Preempt the current task with a newly woken task if needed:
1662 */
1663static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1664{
1665	if (p->prio < rq->curr->prio) {
 
 
1666		resched_curr(rq);
1667		return;
1668	}
1669
1670#ifdef CONFIG_SMP
1671	/*
1672	 * If:
1673	 *
1674	 * - the newly woken task is of equal priority to the current task
1675	 * - the newly woken task is non-migratable while current is migratable
1676	 * - current will be preempted on the next reschedule
1677	 *
1678	 * we should check to see if current can readily move to a different
1679	 * cpu.  If so, we will reschedule to allow the push logic to try
1680	 * to move current somewhere else, making room for our non-migratable
1681	 * task.
1682	 */
1683	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1684		check_preempt_equal_prio(rq, p);
1685#endif
1686}
1687
1688static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1689{
1690	struct sched_rt_entity *rt_se = &p->rt;
1691	struct rt_rq *rt_rq = &rq->rt;
1692
1693	p->se.exec_start = rq_clock_task(rq);
1694	if (on_rt_rq(&p->rt))
1695		update_stats_wait_end_rt(rt_rq, rt_se);
1696
1697	/* The running task is never eligible for pushing */
1698	dequeue_pushable_task(rq, p);
1699
1700	if (!first)
1701		return;
1702
1703	/*
1704	 * If prev task was rt, put_prev_task() has already updated the
1705	 * utilization. We only care of the case where we start to schedule a
1706	 * rt task
1707	 */
1708	if (rq->curr->sched_class != &rt_sched_class)
1709		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1710
1711	rt_queue_push_tasks(rq);
1712}
1713
1714static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1715{
1716	struct rt_prio_array *array = &rt_rq->active;
1717	struct sched_rt_entity *next = NULL;
1718	struct list_head *queue;
1719	int idx;
1720
1721	idx = sched_find_first_bit(array->bitmap);
1722	BUG_ON(idx >= MAX_RT_PRIO);
1723
1724	queue = array->queue + idx;
1725	if (SCHED_WARN_ON(list_empty(queue)))
1726		return NULL;
1727	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1728
1729	return next;
1730}
1731
1732static struct task_struct *_pick_next_task_rt(struct rq *rq)
1733{
1734	struct sched_rt_entity *rt_se;
1735	struct rt_rq *rt_rq  = &rq->rt;
1736
1737	do {
1738		rt_se = pick_next_rt_entity(rt_rq);
1739		if (unlikely(!rt_se))
1740			return NULL;
1741		rt_rq = group_rt_rq(rt_se);
1742	} while (rt_rq);
1743
1744	return rt_task_of(rt_se);
1745}
1746
1747static struct task_struct *pick_task_rt(struct rq *rq)
1748{
1749	struct task_struct *p;
1750
1751	if (!sched_rt_runnable(rq))
1752		return NULL;
1753
1754	p = _pick_next_task_rt(rq);
1755
1756	return p;
1757}
1758
1759static struct task_struct *pick_next_task_rt(struct rq *rq)
1760{
1761	struct task_struct *p = pick_task_rt(rq);
1762
1763	if (p)
1764		set_next_task_rt(rq, p, true);
1765
1766	return p;
1767}
1768
1769static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1770{
1771	struct sched_rt_entity *rt_se = &p->rt;
1772	struct rt_rq *rt_rq = &rq->rt;
1773
1774	if (on_rt_rq(&p->rt))
1775		update_stats_wait_start_rt(rt_rq, rt_se);
1776
1777	update_curr_rt(rq);
1778
1779	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1780
1781	/*
1782	 * The previous task needs to be made eligible for pushing
1783	 * if it is still active
1784	 */
1785	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1786		enqueue_pushable_task(rq, p);
1787}
1788
1789#ifdef CONFIG_SMP
1790
1791/* Only try algorithms three times */
1792#define RT_MAX_TRIES 3
1793
1794static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1795{
1796	if (!task_on_cpu(rq, p) &&
1797	    cpumask_test_cpu(cpu, &p->cpus_mask))
1798		return 1;
1799
1800	return 0;
1801}
1802
1803/*
1804 * Return the highest pushable rq's task, which is suitable to be executed
1805 * on the CPU, NULL otherwise
1806 */
1807static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1808{
1809	struct plist_head *head = &rq->rt.pushable_tasks;
1810	struct task_struct *p;
1811
1812	if (!has_pushable_tasks(rq))
1813		return NULL;
1814
1815	plist_for_each_entry(p, head, pushable_tasks) {
1816		if (pick_rt_task(rq, p, cpu))
1817			return p;
1818	}
1819
1820	return NULL;
1821}
1822
1823static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1824
1825static int find_lowest_rq(struct task_struct *task)
1826{
1827	struct sched_domain *sd;
1828	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1829	int this_cpu = smp_processor_id();
1830	int cpu      = task_cpu(task);
1831	int ret;
1832
1833	/* Make sure the mask is initialized first */
1834	if (unlikely(!lowest_mask))
1835		return -1;
1836
1837	if (task->nr_cpus_allowed == 1)
1838		return -1; /* No other targets possible */
1839
1840	/*
1841	 * If we're on asym system ensure we consider the different capacities
1842	 * of the CPUs when searching for the lowest_mask.
1843	 */
1844	if (sched_asym_cpucap_active()) {
1845
1846		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1847					  task, lowest_mask,
1848					  rt_task_fits_capacity);
1849	} else {
1850
1851		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1852				  task, lowest_mask);
1853	}
1854
1855	if (!ret)
1856		return -1; /* No targets found */
1857
1858	/*
1859	 * At this point we have built a mask of CPUs representing the
1860	 * lowest priority tasks in the system.  Now we want to elect
1861	 * the best one based on our affinity and topology.
1862	 *
1863	 * We prioritize the last CPU that the task executed on since
1864	 * it is most likely cache-hot in that location.
1865	 */
1866	if (cpumask_test_cpu(cpu, lowest_mask))
1867		return cpu;
1868
1869	/*
1870	 * Otherwise, we consult the sched_domains span maps to figure
1871	 * out which CPU is logically closest to our hot cache data.
1872	 */
1873	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1874		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1875
1876	rcu_read_lock();
1877	for_each_domain(cpu, sd) {
1878		if (sd->flags & SD_WAKE_AFFINE) {
1879			int best_cpu;
1880
1881			/*
1882			 * "this_cpu" is cheaper to preempt than a
1883			 * remote processor.
1884			 */
1885			if (this_cpu != -1 &&
1886			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1887				rcu_read_unlock();
1888				return this_cpu;
1889			}
1890
1891			best_cpu = cpumask_any_and_distribute(lowest_mask,
1892							      sched_domain_span(sd));
1893			if (best_cpu < nr_cpu_ids) {
1894				rcu_read_unlock();
1895				return best_cpu;
1896			}
1897		}
1898	}
1899	rcu_read_unlock();
1900
1901	/*
1902	 * And finally, if there were no matches within the domains
1903	 * just give the caller *something* to work with from the compatible
1904	 * locations.
1905	 */
1906	if (this_cpu != -1)
1907		return this_cpu;
1908
1909	cpu = cpumask_any_distribute(lowest_mask);
1910	if (cpu < nr_cpu_ids)
1911		return cpu;
1912
1913	return -1;
1914}
1915
1916/* Will lock the rq it finds */
1917static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1918{
1919	struct rq *lowest_rq = NULL;
1920	int tries;
1921	int cpu;
1922
1923	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1924		cpu = find_lowest_rq(task);
1925
1926		if ((cpu == -1) || (cpu == rq->cpu))
1927			break;
1928
1929		lowest_rq = cpu_rq(cpu);
1930
1931		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1932			/*
1933			 * Target rq has tasks of equal or higher priority,
1934			 * retrying does not release any lock and is unlikely
1935			 * to yield a different result.
1936			 */
1937			lowest_rq = NULL;
1938			break;
1939		}
1940
1941		/* if the prio of this runqueue changed, try again */
1942		if (double_lock_balance(rq, lowest_rq)) {
1943			/*
1944			 * We had to unlock the run queue. In
1945			 * the mean time, task could have
1946			 * migrated already or had its affinity changed.
1947			 * Also make sure that it wasn't scheduled on its rq.
1948			 * It is possible the task was scheduled, set
1949			 * "migrate_disabled" and then got preempted, so we must
1950			 * check the task migration disable flag here too.
1951			 */
1952			if (unlikely(task_rq(task) != rq ||
1953				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1954				     task_on_cpu(rq, task) ||
1955				     !rt_task(task) ||
1956				     is_migration_disabled(task) ||
1957				     !task_on_rq_queued(task))) {
1958
1959				double_unlock_balance(rq, lowest_rq);
1960				lowest_rq = NULL;
1961				break;
1962			}
1963		}
1964
1965		/* If this rq is still suitable use it. */
1966		if (lowest_rq->rt.highest_prio.curr > task->prio)
1967			break;
1968
1969		/* try again */
1970		double_unlock_balance(rq, lowest_rq);
1971		lowest_rq = NULL;
1972	}
1973
1974	return lowest_rq;
1975}
1976
1977static struct task_struct *pick_next_pushable_task(struct rq *rq)
1978{
1979	struct task_struct *p;
1980
1981	if (!has_pushable_tasks(rq))
1982		return NULL;
1983
1984	p = plist_first_entry(&rq->rt.pushable_tasks,
1985			      struct task_struct, pushable_tasks);
1986
1987	BUG_ON(rq->cpu != task_cpu(p));
1988	BUG_ON(task_current(rq, p));
 
1989	BUG_ON(p->nr_cpus_allowed <= 1);
1990
1991	BUG_ON(!task_on_rq_queued(p));
1992	BUG_ON(!rt_task(p));
1993
1994	return p;
1995}
1996
1997/*
1998 * If the current CPU has more than one RT task, see if the non
1999 * running task can migrate over to a CPU that is running a task
2000 * of lesser priority.
2001 */
2002static int push_rt_task(struct rq *rq, bool pull)
2003{
2004	struct task_struct *next_task;
2005	struct rq *lowest_rq;
2006	int ret = 0;
2007
2008	if (!rq->rt.overloaded)
2009		return 0;
2010
2011	next_task = pick_next_pushable_task(rq);
2012	if (!next_task)
2013		return 0;
2014
2015retry:
2016	/*
2017	 * It's possible that the next_task slipped in of
2018	 * higher priority than current. If that's the case
2019	 * just reschedule current.
2020	 */
2021	if (unlikely(next_task->prio < rq->curr->prio)) {
2022		resched_curr(rq);
2023		return 0;
2024	}
2025
2026	if (is_migration_disabled(next_task)) {
2027		struct task_struct *push_task = NULL;
2028		int cpu;
2029
2030		if (!pull || rq->push_busy)
2031			return 0;
2032
2033		/*
2034		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2035		 * make sense. Per the above priority check, curr has to
2036		 * be of higher priority than next_task, so no need to
2037		 * reschedule when bailing out.
2038		 *
2039		 * Note that the stoppers are masqueraded as SCHED_FIFO
2040		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2041		 */
2042		if (rq->curr->sched_class != &rt_sched_class)
2043			return 0;
2044
2045		cpu = find_lowest_rq(rq->curr);
2046		if (cpu == -1 || cpu == rq->cpu)
2047			return 0;
2048
2049		/*
2050		 * Given we found a CPU with lower priority than @next_task,
2051		 * therefore it should be running. However we cannot migrate it
2052		 * to this other CPU, instead attempt to push the current
2053		 * running task on this CPU away.
2054		 */
2055		push_task = get_push_task(rq);
2056		if (push_task) {
2057			preempt_disable();
2058			raw_spin_rq_unlock(rq);
2059			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2060					    push_task, &rq->push_work);
2061			preempt_enable();
2062			raw_spin_rq_lock(rq);
2063		}
2064
2065		return 0;
2066	}
2067
2068	if (WARN_ON(next_task == rq->curr))
2069		return 0;
2070
2071	/* We might release rq lock */
2072	get_task_struct(next_task);
2073
2074	/* find_lock_lowest_rq locks the rq if found */
2075	lowest_rq = find_lock_lowest_rq(next_task, rq);
2076	if (!lowest_rq) {
2077		struct task_struct *task;
2078		/*
2079		 * find_lock_lowest_rq releases rq->lock
2080		 * so it is possible that next_task has migrated.
2081		 *
2082		 * We need to make sure that the task is still on the same
2083		 * run-queue and is also still the next task eligible for
2084		 * pushing.
2085		 */
2086		task = pick_next_pushable_task(rq);
2087		if (task == next_task) {
2088			/*
2089			 * The task hasn't migrated, and is still the next
2090			 * eligible task, but we failed to find a run-queue
2091			 * to push it to.  Do not retry in this case, since
2092			 * other CPUs will pull from us when ready.
2093			 */
2094			goto out;
2095		}
2096
2097		if (!task)
2098			/* No more tasks, just exit */
2099			goto out;
2100
2101		/*
2102		 * Something has shifted, try again.
2103		 */
2104		put_task_struct(next_task);
2105		next_task = task;
2106		goto retry;
2107	}
2108
2109	deactivate_task(rq, next_task, 0);
2110	set_task_cpu(next_task, lowest_rq->cpu);
2111	activate_task(lowest_rq, next_task, 0);
2112	resched_curr(lowest_rq);
2113	ret = 1;
2114
2115	double_unlock_balance(rq, lowest_rq);
2116out:
2117	put_task_struct(next_task);
2118
2119	return ret;
2120}
2121
2122static void push_rt_tasks(struct rq *rq)
2123{
2124	/* push_rt_task will return true if it moved an RT */
2125	while (push_rt_task(rq, false))
2126		;
2127}
2128
2129#ifdef HAVE_RT_PUSH_IPI
2130
2131/*
2132 * When a high priority task schedules out from a CPU and a lower priority
2133 * task is scheduled in, a check is made to see if there's any RT tasks
2134 * on other CPUs that are waiting to run because a higher priority RT task
2135 * is currently running on its CPU. In this case, the CPU with multiple RT
2136 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2137 * up that may be able to run one of its non-running queued RT tasks.
2138 *
2139 * All CPUs with overloaded RT tasks need to be notified as there is currently
2140 * no way to know which of these CPUs have the highest priority task waiting
2141 * to run. Instead of trying to take a spinlock on each of these CPUs,
2142 * which has shown to cause large latency when done on machines with many
2143 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2144 * RT tasks waiting to run.
2145 *
2146 * Just sending an IPI to each of the CPUs is also an issue, as on large
2147 * count CPU machines, this can cause an IPI storm on a CPU, especially
2148 * if its the only CPU with multiple RT tasks queued, and a large number
2149 * of CPUs scheduling a lower priority task at the same time.
2150 *
2151 * Each root domain has its own irq work function that can iterate over
2152 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2153 * task must be checked if there's one or many CPUs that are lowering
2154 * their priority, there's a single irq work iterator that will try to
2155 * push off RT tasks that are waiting to run.
2156 *
2157 * When a CPU schedules a lower priority task, it will kick off the
2158 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2159 * As it only takes the first CPU that schedules a lower priority task
2160 * to start the process, the rto_start variable is incremented and if
2161 * the atomic result is one, then that CPU will try to take the rto_lock.
2162 * This prevents high contention on the lock as the process handles all
2163 * CPUs scheduling lower priority tasks.
2164 *
2165 * All CPUs that are scheduling a lower priority task will increment the
2166 * rt_loop_next variable. This will make sure that the irq work iterator
2167 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2168 * priority task, even if the iterator is in the middle of a scan. Incrementing
2169 * the rt_loop_next will cause the iterator to perform another scan.
2170 *
2171 */
2172static int rto_next_cpu(struct root_domain *rd)
2173{
2174	int next;
2175	int cpu;
2176
2177	/*
2178	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2179	 * rt_next_cpu() will simply return the first CPU found in
2180	 * the rto_mask.
2181	 *
2182	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2183	 * will return the next CPU found in the rto_mask.
2184	 *
2185	 * If there are no more CPUs left in the rto_mask, then a check is made
2186	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2187	 * the rto_lock held, but any CPU may increment the rto_loop_next
2188	 * without any locking.
2189	 */
2190	for (;;) {
2191
2192		/* When rto_cpu is -1 this acts like cpumask_first() */
2193		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2194
2195		rd->rto_cpu = cpu;
2196
2197		if (cpu < nr_cpu_ids)
2198			return cpu;
2199
2200		rd->rto_cpu = -1;
2201
2202		/*
2203		 * ACQUIRE ensures we see the @rto_mask changes
2204		 * made prior to the @next value observed.
2205		 *
2206		 * Matches WMB in rt_set_overload().
2207		 */
2208		next = atomic_read_acquire(&rd->rto_loop_next);
2209
2210		if (rd->rto_loop == next)
2211			break;
2212
2213		rd->rto_loop = next;
2214	}
2215
2216	return -1;
2217}
2218
2219static inline bool rto_start_trylock(atomic_t *v)
2220{
2221	return !atomic_cmpxchg_acquire(v, 0, 1);
2222}
2223
2224static inline void rto_start_unlock(atomic_t *v)
2225{
2226	atomic_set_release(v, 0);
2227}
2228
2229static void tell_cpu_to_push(struct rq *rq)
2230{
2231	int cpu = -1;
2232
2233	/* Keep the loop going if the IPI is currently active */
2234	atomic_inc(&rq->rd->rto_loop_next);
2235
2236	/* Only one CPU can initiate a loop at a time */
2237	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2238		return;
2239
2240	raw_spin_lock(&rq->rd->rto_lock);
2241
2242	/*
2243	 * The rto_cpu is updated under the lock, if it has a valid CPU
2244	 * then the IPI is still running and will continue due to the
2245	 * update to loop_next, and nothing needs to be done here.
2246	 * Otherwise it is finishing up and an ipi needs to be sent.
2247	 */
2248	if (rq->rd->rto_cpu < 0)
2249		cpu = rto_next_cpu(rq->rd);
2250
2251	raw_spin_unlock(&rq->rd->rto_lock);
2252
2253	rto_start_unlock(&rq->rd->rto_loop_start);
2254
2255	if (cpu >= 0) {
2256		/* Make sure the rd does not get freed while pushing */
2257		sched_get_rd(rq->rd);
2258		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2259	}
2260}
2261
2262/* Called from hardirq context */
2263void rto_push_irq_work_func(struct irq_work *work)
2264{
2265	struct root_domain *rd =
2266		container_of(work, struct root_domain, rto_push_work);
2267	struct rq *rq;
2268	int cpu;
2269
2270	rq = this_rq();
2271
2272	/*
2273	 * We do not need to grab the lock to check for has_pushable_tasks.
2274	 * When it gets updated, a check is made if a push is possible.
2275	 */
2276	if (has_pushable_tasks(rq)) {
2277		raw_spin_rq_lock(rq);
2278		while (push_rt_task(rq, true))
2279			;
2280		raw_spin_rq_unlock(rq);
2281	}
2282
2283	raw_spin_lock(&rd->rto_lock);
2284
2285	/* Pass the IPI to the next rt overloaded queue */
2286	cpu = rto_next_cpu(rd);
2287
2288	raw_spin_unlock(&rd->rto_lock);
2289
2290	if (cpu < 0) {
2291		sched_put_rd(rd);
2292		return;
2293	}
2294
2295	/* Try the next RT overloaded CPU */
2296	irq_work_queue_on(&rd->rto_push_work, cpu);
2297}
2298#endif /* HAVE_RT_PUSH_IPI */
2299
2300static void pull_rt_task(struct rq *this_rq)
2301{
2302	int this_cpu = this_rq->cpu, cpu;
2303	bool resched = false;
2304	struct task_struct *p, *push_task;
2305	struct rq *src_rq;
2306	int rt_overload_count = rt_overloaded(this_rq);
2307
2308	if (likely(!rt_overload_count))
2309		return;
2310
2311	/*
2312	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2313	 * see overloaded we must also see the rto_mask bit.
2314	 */
2315	smp_rmb();
2316
2317	/* If we are the only overloaded CPU do nothing */
2318	if (rt_overload_count == 1 &&
2319	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2320		return;
2321
2322#ifdef HAVE_RT_PUSH_IPI
2323	if (sched_feat(RT_PUSH_IPI)) {
2324		tell_cpu_to_push(this_rq);
2325		return;
2326	}
2327#endif
2328
2329	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2330		if (this_cpu == cpu)
2331			continue;
2332
2333		src_rq = cpu_rq(cpu);
2334
2335		/*
2336		 * Don't bother taking the src_rq->lock if the next highest
2337		 * task is known to be lower-priority than our current task.
2338		 * This may look racy, but if this value is about to go
2339		 * logically higher, the src_rq will push this task away.
2340		 * And if its going logically lower, we do not care
2341		 */
2342		if (src_rq->rt.highest_prio.next >=
2343		    this_rq->rt.highest_prio.curr)
2344			continue;
2345
2346		/*
2347		 * We can potentially drop this_rq's lock in
2348		 * double_lock_balance, and another CPU could
2349		 * alter this_rq
2350		 */
2351		push_task = NULL;
2352		double_lock_balance(this_rq, src_rq);
2353
2354		/*
2355		 * We can pull only a task, which is pushable
2356		 * on its rq, and no others.
2357		 */
2358		p = pick_highest_pushable_task(src_rq, this_cpu);
2359
2360		/*
2361		 * Do we have an RT task that preempts
2362		 * the to-be-scheduled task?
2363		 */
2364		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2365			WARN_ON(p == src_rq->curr);
2366			WARN_ON(!task_on_rq_queued(p));
2367
2368			/*
2369			 * There's a chance that p is higher in priority
2370			 * than what's currently running on its CPU.
2371			 * This is just that p is waking up and hasn't
2372			 * had a chance to schedule. We only pull
2373			 * p if it is lower in priority than the
2374			 * current task on the run queue
2375			 */
2376			if (p->prio < src_rq->curr->prio)
2377				goto skip;
2378
2379			if (is_migration_disabled(p)) {
2380				push_task = get_push_task(src_rq);
2381			} else {
2382				deactivate_task(src_rq, p, 0);
2383				set_task_cpu(p, this_cpu);
2384				activate_task(this_rq, p, 0);
2385				resched = true;
2386			}
2387			/*
2388			 * We continue with the search, just in
2389			 * case there's an even higher prio task
2390			 * in another runqueue. (low likelihood
2391			 * but possible)
2392			 */
2393		}
2394skip:
2395		double_unlock_balance(this_rq, src_rq);
2396
2397		if (push_task) {
2398			preempt_disable();
2399			raw_spin_rq_unlock(this_rq);
2400			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2401					    push_task, &src_rq->push_work);
2402			preempt_enable();
2403			raw_spin_rq_lock(this_rq);
2404		}
2405	}
2406
2407	if (resched)
2408		resched_curr(this_rq);
2409}
2410
2411/*
2412 * If we are not running and we are not going to reschedule soon, we should
2413 * try to push tasks away now
2414 */
2415static void task_woken_rt(struct rq *rq, struct task_struct *p)
2416{
2417	bool need_to_push = !task_on_cpu(rq, p) &&
2418			    !test_tsk_need_resched(rq->curr) &&
2419			    p->nr_cpus_allowed > 1 &&
2420			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2421			    (rq->curr->nr_cpus_allowed < 2 ||
2422			     rq->curr->prio <= p->prio);
2423
2424	if (need_to_push)
2425		push_rt_tasks(rq);
2426}
2427
2428/* Assumes rq->lock is held */
2429static void rq_online_rt(struct rq *rq)
2430{
2431	if (rq->rt.overloaded)
2432		rt_set_overload(rq);
2433
2434	__enable_runtime(rq);
2435
2436	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2437}
2438
2439/* Assumes rq->lock is held */
2440static void rq_offline_rt(struct rq *rq)
2441{
2442	if (rq->rt.overloaded)
2443		rt_clear_overload(rq);
2444
2445	__disable_runtime(rq);
2446
2447	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2448}
2449
2450/*
2451 * When switch from the rt queue, we bring ourselves to a position
2452 * that we might want to pull RT tasks from other runqueues.
2453 */
2454static void switched_from_rt(struct rq *rq, struct task_struct *p)
2455{
2456	/*
2457	 * If there are other RT tasks then we will reschedule
2458	 * and the scheduling of the other RT tasks will handle
2459	 * the balancing. But if we are the last RT task
2460	 * we may need to handle the pulling of RT tasks
2461	 * now.
2462	 */
2463	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2464		return;
2465
2466	rt_queue_pull_task(rq);
2467}
2468
2469void __init init_sched_rt_class(void)
2470{
2471	unsigned int i;
2472
2473	for_each_possible_cpu(i) {
2474		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2475					GFP_KERNEL, cpu_to_node(i));
2476	}
2477}
2478#endif /* CONFIG_SMP */
2479
2480/*
2481 * When switching a task to RT, we may overload the runqueue
2482 * with RT tasks. In this case we try to push them off to
2483 * other runqueues.
2484 */
2485static void switched_to_rt(struct rq *rq, struct task_struct *p)
2486{
2487	/*
2488	 * If we are running, update the avg_rt tracking, as the running time
2489	 * will now on be accounted into the latter.
2490	 */
2491	if (task_current(rq, p)) {
2492		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2493		return;
2494	}
2495
2496	/*
2497	 * If we are not running we may need to preempt the current
2498	 * running task. If that current running task is also an RT task
2499	 * then see if we can move to another run queue.
2500	 */
2501	if (task_on_rq_queued(p)) {
2502#ifdef CONFIG_SMP
2503		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2504			rt_queue_push_tasks(rq);
2505#endif /* CONFIG_SMP */
2506		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2507			resched_curr(rq);
2508	}
2509}
2510
2511/*
2512 * Priority of the task has changed. This may cause
2513 * us to initiate a push or pull.
2514 */
2515static void
2516prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2517{
2518	if (!task_on_rq_queued(p))
2519		return;
2520
2521	if (task_current(rq, p)) {
2522#ifdef CONFIG_SMP
2523		/*
2524		 * If our priority decreases while running, we
2525		 * may need to pull tasks to this runqueue.
2526		 */
2527		if (oldprio < p->prio)
2528			rt_queue_pull_task(rq);
2529
2530		/*
2531		 * If there's a higher priority task waiting to run
2532		 * then reschedule.
2533		 */
2534		if (p->prio > rq->rt.highest_prio.curr)
2535			resched_curr(rq);
2536#else
2537		/* For UP simply resched on drop of prio */
2538		if (oldprio < p->prio)
2539			resched_curr(rq);
2540#endif /* CONFIG_SMP */
2541	} else {
2542		/*
2543		 * This task is not running, but if it is
2544		 * greater than the current running task
2545		 * then reschedule.
2546		 */
2547		if (p->prio < rq->curr->prio)
2548			resched_curr(rq);
2549	}
2550}
2551
2552#ifdef CONFIG_POSIX_TIMERS
2553static void watchdog(struct rq *rq, struct task_struct *p)
2554{
2555	unsigned long soft, hard;
2556
2557	/* max may change after cur was read, this will be fixed next tick */
2558	soft = task_rlimit(p, RLIMIT_RTTIME);
2559	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2560
2561	if (soft != RLIM_INFINITY) {
2562		unsigned long next;
2563
2564		if (p->rt.watchdog_stamp != jiffies) {
2565			p->rt.timeout++;
2566			p->rt.watchdog_stamp = jiffies;
2567		}
2568
2569		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2570		if (p->rt.timeout > next) {
2571			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2572						    p->se.sum_exec_runtime);
2573		}
2574	}
2575}
2576#else
2577static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2578#endif
2579
2580/*
2581 * scheduler tick hitting a task of our scheduling class.
2582 *
2583 * NOTE: This function can be called remotely by the tick offload that
2584 * goes along full dynticks. Therefore no local assumption can be made
2585 * and everything must be accessed through the @rq and @curr passed in
2586 * parameters.
2587 */
2588static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2589{
2590	struct sched_rt_entity *rt_se = &p->rt;
2591
2592	update_curr_rt(rq);
2593	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2594
2595	watchdog(rq, p);
2596
2597	/*
2598	 * RR tasks need a special form of timeslice management.
2599	 * FIFO tasks have no timeslices.
2600	 */
2601	if (p->policy != SCHED_RR)
2602		return;
2603
2604	if (--p->rt.time_slice)
2605		return;
2606
2607	p->rt.time_slice = sched_rr_timeslice;
2608
2609	/*
2610	 * Requeue to the end of queue if we (and all of our ancestors) are not
2611	 * the only element on the queue
2612	 */
2613	for_each_sched_rt_entity(rt_se) {
2614		if (rt_se->run_list.prev != rt_se->run_list.next) {
2615			requeue_task_rt(rq, p, 0);
2616			resched_curr(rq);
2617			return;
2618		}
2619	}
2620}
2621
2622static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2623{
2624	/*
2625	 * Time slice is 0 for SCHED_FIFO tasks
2626	 */
2627	if (task->policy == SCHED_RR)
2628		return sched_rr_timeslice;
2629	else
2630		return 0;
2631}
2632
2633#ifdef CONFIG_SCHED_CORE
2634static int task_is_throttled_rt(struct task_struct *p, int cpu)
2635{
2636	struct rt_rq *rt_rq;
2637
2638#ifdef CONFIG_RT_GROUP_SCHED
2639	rt_rq = task_group(p)->rt_rq[cpu];
2640#else
2641	rt_rq = &cpu_rq(cpu)->rt;
2642#endif
2643
2644	return rt_rq_throttled(rt_rq);
2645}
2646#endif
2647
2648DEFINE_SCHED_CLASS(rt) = {
2649
2650	.enqueue_task		= enqueue_task_rt,
2651	.dequeue_task		= dequeue_task_rt,
2652	.yield_task		= yield_task_rt,
2653
2654	.wakeup_preempt		= wakeup_preempt_rt,
2655
2656	.pick_next_task		= pick_next_task_rt,
2657	.put_prev_task		= put_prev_task_rt,
2658	.set_next_task          = set_next_task_rt,
2659
2660#ifdef CONFIG_SMP
2661	.balance		= balance_rt,
2662	.pick_task		= pick_task_rt,
2663	.select_task_rq		= select_task_rq_rt,
2664	.set_cpus_allowed       = set_cpus_allowed_common,
2665	.rq_online              = rq_online_rt,
2666	.rq_offline             = rq_offline_rt,
2667	.task_woken		= task_woken_rt,
2668	.switched_from		= switched_from_rt,
2669	.find_lock_rq		= find_lock_lowest_rq,
2670#endif
2671
2672	.task_tick		= task_tick_rt,
2673
2674	.get_rr_interval	= get_rr_interval_rt,
2675
2676	.prio_changed		= prio_changed_rt,
2677	.switched_to		= switched_to_rt,
2678
2679	.update_curr		= update_curr_rt,
2680
2681#ifdef CONFIG_SCHED_CORE
2682	.task_is_throttled	= task_is_throttled_rt,
2683#endif
2684
2685#ifdef CONFIG_UCLAMP_TASK
2686	.uclamp_enabled		= 1,
2687#endif
2688};
2689
2690#ifdef CONFIG_RT_GROUP_SCHED
2691/*
2692 * Ensure that the real time constraints are schedulable.
2693 */
2694static DEFINE_MUTEX(rt_constraints_mutex);
2695
2696static inline int tg_has_rt_tasks(struct task_group *tg)
2697{
2698	struct task_struct *task;
2699	struct css_task_iter it;
2700	int ret = 0;
2701
2702	/*
2703	 * Autogroups do not have RT tasks; see autogroup_create().
2704	 */
2705	if (task_group_is_autogroup(tg))
2706		return 0;
2707
2708	css_task_iter_start(&tg->css, 0, &it);
2709	while (!ret && (task = css_task_iter_next(&it)))
2710		ret |= rt_task(task);
2711	css_task_iter_end(&it);
2712
2713	return ret;
2714}
2715
2716struct rt_schedulable_data {
2717	struct task_group *tg;
2718	u64 rt_period;
2719	u64 rt_runtime;
2720};
2721
2722static int tg_rt_schedulable(struct task_group *tg, void *data)
2723{
2724	struct rt_schedulable_data *d = data;
2725	struct task_group *child;
2726	unsigned long total, sum = 0;
2727	u64 period, runtime;
2728
2729	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2730	runtime = tg->rt_bandwidth.rt_runtime;
2731
2732	if (tg == d->tg) {
2733		period = d->rt_period;
2734		runtime = d->rt_runtime;
2735	}
2736
2737	/*
2738	 * Cannot have more runtime than the period.
2739	 */
2740	if (runtime > period && runtime != RUNTIME_INF)
2741		return -EINVAL;
2742
2743	/*
2744	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2745	 */
2746	if (rt_bandwidth_enabled() && !runtime &&
2747	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2748		return -EBUSY;
2749
2750	total = to_ratio(period, runtime);
2751
2752	/*
2753	 * Nobody can have more than the global setting allows.
2754	 */
2755	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2756		return -EINVAL;
2757
2758	/*
2759	 * The sum of our children's runtime should not exceed our own.
2760	 */
2761	list_for_each_entry_rcu(child, &tg->children, siblings) {
2762		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2763		runtime = child->rt_bandwidth.rt_runtime;
2764
2765		if (child == d->tg) {
2766			period = d->rt_period;
2767			runtime = d->rt_runtime;
2768		}
2769
2770		sum += to_ratio(period, runtime);
2771	}
2772
2773	if (sum > total)
2774		return -EINVAL;
2775
2776	return 0;
2777}
2778
2779static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2780{
2781	int ret;
2782
2783	struct rt_schedulable_data data = {
2784		.tg = tg,
2785		.rt_period = period,
2786		.rt_runtime = runtime,
2787	};
2788
2789	rcu_read_lock();
2790	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2791	rcu_read_unlock();
2792
2793	return ret;
2794}
2795
2796static int tg_set_rt_bandwidth(struct task_group *tg,
2797		u64 rt_period, u64 rt_runtime)
2798{
2799	int i, err = 0;
2800
2801	/*
2802	 * Disallowing the root group RT runtime is BAD, it would disallow the
2803	 * kernel creating (and or operating) RT threads.
2804	 */
2805	if (tg == &root_task_group && rt_runtime == 0)
2806		return -EINVAL;
2807
2808	/* No period doesn't make any sense. */
2809	if (rt_period == 0)
2810		return -EINVAL;
2811
2812	/*
2813	 * Bound quota to defend quota against overflow during bandwidth shift.
2814	 */
2815	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2816		return -EINVAL;
2817
2818	mutex_lock(&rt_constraints_mutex);
2819	err = __rt_schedulable(tg, rt_period, rt_runtime);
2820	if (err)
2821		goto unlock;
2822
2823	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2824	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2825	tg->rt_bandwidth.rt_runtime = rt_runtime;
2826
2827	for_each_possible_cpu(i) {
2828		struct rt_rq *rt_rq = tg->rt_rq[i];
2829
2830		raw_spin_lock(&rt_rq->rt_runtime_lock);
2831		rt_rq->rt_runtime = rt_runtime;
2832		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2833	}
2834	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2835unlock:
2836	mutex_unlock(&rt_constraints_mutex);
2837
2838	return err;
2839}
2840
2841int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2842{
2843	u64 rt_runtime, rt_period;
2844
2845	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2846	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2847	if (rt_runtime_us < 0)
2848		rt_runtime = RUNTIME_INF;
2849	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2850		return -EINVAL;
2851
2852	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2853}
2854
2855long sched_group_rt_runtime(struct task_group *tg)
2856{
2857	u64 rt_runtime_us;
2858
2859	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2860		return -1;
2861
2862	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2863	do_div(rt_runtime_us, NSEC_PER_USEC);
2864	return rt_runtime_us;
2865}
2866
2867int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2868{
2869	u64 rt_runtime, rt_period;
2870
2871	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2872		return -EINVAL;
2873
2874	rt_period = rt_period_us * NSEC_PER_USEC;
2875	rt_runtime = tg->rt_bandwidth.rt_runtime;
2876
2877	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878}
2879
2880long sched_group_rt_period(struct task_group *tg)
2881{
2882	u64 rt_period_us;
2883
2884	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2885	do_div(rt_period_us, NSEC_PER_USEC);
2886	return rt_period_us;
2887}
2888
2889#ifdef CONFIG_SYSCTL
2890static int sched_rt_global_constraints(void)
2891{
2892	int ret = 0;
2893
2894	mutex_lock(&rt_constraints_mutex);
2895	ret = __rt_schedulable(NULL, 0, 0);
2896	mutex_unlock(&rt_constraints_mutex);
2897
2898	return ret;
2899}
2900#endif /* CONFIG_SYSCTL */
2901
2902int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2903{
2904	/* Don't accept realtime tasks when there is no way for them to run */
2905	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2906		return 0;
2907
2908	return 1;
2909}
2910
2911#else /* !CONFIG_RT_GROUP_SCHED */
2912
2913#ifdef CONFIG_SYSCTL
2914static int sched_rt_global_constraints(void)
2915{
2916	unsigned long flags;
2917	int i;
2918
2919	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2920	for_each_possible_cpu(i) {
2921		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2922
2923		raw_spin_lock(&rt_rq->rt_runtime_lock);
2924		rt_rq->rt_runtime = global_rt_runtime();
2925		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2926	}
2927	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2928
2929	return 0;
2930}
2931#endif /* CONFIG_SYSCTL */
2932#endif /* CONFIG_RT_GROUP_SCHED */
2933
2934#ifdef CONFIG_SYSCTL
2935static int sched_rt_global_validate(void)
2936{
2937	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2938		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2939		 ((u64)sysctl_sched_rt_runtime *
2940			NSEC_PER_USEC > max_rt_runtime)))
2941		return -EINVAL;
2942
2943	return 0;
2944}
2945
2946static void sched_rt_do_global(void)
2947{
2948	unsigned long flags;
2949
2950	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2951	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2952	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2953	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2954}
2955
2956static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2957		size_t *lenp, loff_t *ppos)
2958{
2959	int old_period, old_runtime;
2960	static DEFINE_MUTEX(mutex);
2961	int ret;
2962
2963	mutex_lock(&mutex);
2964	old_period = sysctl_sched_rt_period;
2965	old_runtime = sysctl_sched_rt_runtime;
2966
2967	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2968
2969	if (!ret && write) {
2970		ret = sched_rt_global_validate();
2971		if (ret)
2972			goto undo;
2973
2974		ret = sched_dl_global_validate();
2975		if (ret)
2976			goto undo;
2977
2978		ret = sched_rt_global_constraints();
2979		if (ret)
2980			goto undo;
2981
2982		sched_rt_do_global();
2983		sched_dl_do_global();
2984	}
2985	if (0) {
2986undo:
2987		sysctl_sched_rt_period = old_period;
2988		sysctl_sched_rt_runtime = old_runtime;
2989	}
2990	mutex_unlock(&mutex);
2991
2992	return ret;
2993}
2994
2995static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2996		size_t *lenp, loff_t *ppos)
2997{
2998	int ret;
2999	static DEFINE_MUTEX(mutex);
3000
3001	mutex_lock(&mutex);
3002	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3003	/*
3004	 * Make sure that internally we keep jiffies.
3005	 * Also, writing zero resets the timeslice to default:
3006	 */
3007	if (!ret && write) {
3008		sched_rr_timeslice =
3009			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3010			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3011
3012		if (sysctl_sched_rr_timeslice <= 0)
3013			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3014	}
3015	mutex_unlock(&mutex);
3016
3017	return ret;
3018}
3019#endif /* CONFIG_SYSCTL */
3020
3021#ifdef CONFIG_SCHED_DEBUG
3022void print_rt_stats(struct seq_file *m, int cpu)
3023{
3024	rt_rq_iter_t iter;
3025	struct rt_rq *rt_rq;
3026
3027	rcu_read_lock();
3028	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3029		print_rt_rq(m, cpu, rt_rq);
3030	rcu_read_unlock();
3031}
3032#endif /* CONFIG_SCHED_DEBUG */