Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   4 * policies)
   5 */
   6
   7int sched_rr_timeslice = RR_TIMESLICE;
   8/* More than 4 hours if BW_SHIFT equals 20. */
   9static const u64 max_rt_runtime = MAX_BW;
  10
  11/*
  12 * period over which we measure -rt task CPU usage in us.
  13 * default: 1s
  14 */
  15int sysctl_sched_rt_period = 1000000;
  16
  17/*
  18 * part of the period that we allow rt tasks to run in us.
  19 * default: 0.95s
  20 */
  21int sysctl_sched_rt_runtime = 950000;
  22
  23#ifdef CONFIG_SYSCTL
  24static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
  25static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
  26		size_t *lenp, loff_t *ppos);
  27static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
  28		size_t *lenp, loff_t *ppos);
  29static struct ctl_table sched_rt_sysctls[] = {
  30	{
  31		.procname       = "sched_rt_period_us",
  32		.data           = &sysctl_sched_rt_period,
  33		.maxlen         = sizeof(int),
  34		.mode           = 0644,
  35		.proc_handler   = sched_rt_handler,
  36		.extra1         = SYSCTL_ONE,
  37		.extra2         = SYSCTL_INT_MAX,
  38	},
  39	{
  40		.procname       = "sched_rt_runtime_us",
  41		.data           = &sysctl_sched_rt_runtime,
  42		.maxlen         = sizeof(int),
  43		.mode           = 0644,
  44		.proc_handler   = sched_rt_handler,
  45		.extra1         = SYSCTL_NEG_ONE,
  46		.extra2         = (void *)&sysctl_sched_rt_period,
  47	},
  48	{
  49		.procname       = "sched_rr_timeslice_ms",
  50		.data           = &sysctl_sched_rr_timeslice,
  51		.maxlen         = sizeof(int),
  52		.mode           = 0644,
  53		.proc_handler   = sched_rr_handler,
  54	},
  55};
  56
  57static int __init sched_rt_sysctl_init(void)
  58{
  59	register_sysctl_init("kernel", sched_rt_sysctls);
  60	return 0;
  61}
  62late_initcall(sched_rt_sysctl_init);
  63#endif
  64
  65void init_rt_rq(struct rt_rq *rt_rq)
  66{
  67	struct rt_prio_array *array;
  68	int i;
  69
  70	array = &rt_rq->active;
  71	for (i = 0; i < MAX_RT_PRIO; i++) {
  72		INIT_LIST_HEAD(array->queue + i);
  73		__clear_bit(i, array->bitmap);
  74	}
  75	/* delimiter for bitsearch: */
  76	__set_bit(MAX_RT_PRIO, array->bitmap);
  77
  78#if defined CONFIG_SMP
  79	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
  80	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
  81	rt_rq->overloaded = 0;
  82	plist_head_init(&rt_rq->pushable_tasks);
  83#endif /* CONFIG_SMP */
  84	/* We start is dequeued state, because no RT tasks are queued */
  85	rt_rq->rt_queued = 0;
  86
  87#ifdef CONFIG_RT_GROUP_SCHED
  88	rt_rq->rt_time = 0;
  89	rt_rq->rt_throttled = 0;
  90	rt_rq->rt_runtime = 0;
  91	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  92#endif
  93}
  94
  95#ifdef CONFIG_RT_GROUP_SCHED
  96
  97static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  98
  99static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
 100{
 101	struct rt_bandwidth *rt_b =
 102		container_of(timer, struct rt_bandwidth, rt_period_timer);
 103	int idle = 0;
 104	int overrun;
 105
 106	raw_spin_lock(&rt_b->rt_runtime_lock);
 107	for (;;) {
 108		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
 109		if (!overrun)
 110			break;
 111
 112		raw_spin_unlock(&rt_b->rt_runtime_lock);
 113		idle = do_sched_rt_period_timer(rt_b, overrun);
 114		raw_spin_lock(&rt_b->rt_runtime_lock);
 115	}
 116	if (idle)
 117		rt_b->rt_period_active = 0;
 118	raw_spin_unlock(&rt_b->rt_runtime_lock);
 119
 120	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
 121}
 122
 123void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
 124{
 125	rt_b->rt_period = ns_to_ktime(period);
 126	rt_b->rt_runtime = runtime;
 127
 128	raw_spin_lock_init(&rt_b->rt_runtime_lock);
 129
 130	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
 131		     HRTIMER_MODE_REL_HARD);
 132	rt_b->rt_period_timer.function = sched_rt_period_timer;
 133}
 134
 135static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
 136{
 137	raw_spin_lock(&rt_b->rt_runtime_lock);
 138	if (!rt_b->rt_period_active) {
 139		rt_b->rt_period_active = 1;
 140		/*
 141		 * SCHED_DEADLINE updates the bandwidth, as a run away
 142		 * RT task with a DL task could hog a CPU. But DL does
 143		 * not reset the period. If a deadline task was running
 144		 * without an RT task running, it can cause RT tasks to
 145		 * throttle when they start up. Kick the timer right away
 146		 * to update the period.
 147		 */
 148		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
 149		hrtimer_start_expires(&rt_b->rt_period_timer,
 150				      HRTIMER_MODE_ABS_PINNED_HARD);
 151	}
 152	raw_spin_unlock(&rt_b->rt_runtime_lock);
 153}
 154
 155static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
 156{
 157	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
 158		return;
 159
 160	do_start_rt_bandwidth(rt_b);
 161}
 162
 163static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 164{
 165	hrtimer_cancel(&rt_b->rt_period_timer);
 166}
 167
 168#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 169
 170static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 171{
 172#ifdef CONFIG_SCHED_DEBUG
 173	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 174#endif
 175	return container_of(rt_se, struct task_struct, rt);
 176}
 177
 178static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 179{
 180	return rt_rq->rq;
 181}
 182
 183static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 184{
 185	return rt_se->rt_rq;
 186}
 187
 188static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 189{
 190	struct rt_rq *rt_rq = rt_se->rt_rq;
 191
 192	return rt_rq->rq;
 193}
 194
 195void unregister_rt_sched_group(struct task_group *tg)
 196{
 197	if (tg->rt_se)
 198		destroy_rt_bandwidth(&tg->rt_bandwidth);
 199}
 200
 201void free_rt_sched_group(struct task_group *tg)
 202{
 203	int i;
 204
 205	for_each_possible_cpu(i) {
 206		if (tg->rt_rq)
 207			kfree(tg->rt_rq[i]);
 208		if (tg->rt_se)
 209			kfree(tg->rt_se[i]);
 210	}
 211
 212	kfree(tg->rt_rq);
 213	kfree(tg->rt_se);
 214}
 215
 216void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 217		struct sched_rt_entity *rt_se, int cpu,
 218		struct sched_rt_entity *parent)
 219{
 220	struct rq *rq = cpu_rq(cpu);
 221
 222	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
 223	rt_rq->rt_nr_boosted = 0;
 224	rt_rq->rq = rq;
 225	rt_rq->tg = tg;
 226
 227	tg->rt_rq[cpu] = rt_rq;
 228	tg->rt_se[cpu] = rt_se;
 229
 230	if (!rt_se)
 231		return;
 232
 233	if (!parent)
 234		rt_se->rt_rq = &rq->rt;
 235	else
 236		rt_se->rt_rq = parent->my_q;
 237
 238	rt_se->my_q = rt_rq;
 239	rt_se->parent = parent;
 240	INIT_LIST_HEAD(&rt_se->run_list);
 241}
 242
 243int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 244{
 245	struct rt_rq *rt_rq;
 246	struct sched_rt_entity *rt_se;
 247	int i;
 248
 249	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
 250	if (!tg->rt_rq)
 251		goto err;
 252	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
 253	if (!tg->rt_se)
 254		goto err;
 255
 256	init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
 257
 258	for_each_possible_cpu(i) {
 259		rt_rq = kzalloc_node(sizeof(struct rt_rq),
 260				     GFP_KERNEL, cpu_to_node(i));
 261		if (!rt_rq)
 262			goto err;
 263
 264		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 265				     GFP_KERNEL, cpu_to_node(i));
 266		if (!rt_se)
 267			goto err_free_rq;
 268
 269		init_rt_rq(rt_rq);
 270		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 271		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 272	}
 273
 274	return 1;
 275
 276err_free_rq:
 277	kfree(rt_rq);
 278err:
 279	return 0;
 280}
 281
 282#else /* CONFIG_RT_GROUP_SCHED */
 283
 284#define rt_entity_is_task(rt_se) (1)
 285
 286static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 287{
 288	return container_of(rt_se, struct task_struct, rt);
 289}
 290
 291static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 292{
 293	return container_of(rt_rq, struct rq, rt);
 294}
 295
 296static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 297{
 298	struct task_struct *p = rt_task_of(rt_se);
 299
 300	return task_rq(p);
 301}
 302
 303static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 304{
 305	struct rq *rq = rq_of_rt_se(rt_se);
 306
 307	return &rq->rt;
 308}
 309
 310void unregister_rt_sched_group(struct task_group *tg) { }
 311
 312void free_rt_sched_group(struct task_group *tg) { }
 313
 314int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 315{
 316	return 1;
 317}
 318#endif /* CONFIG_RT_GROUP_SCHED */
 319
 320#ifdef CONFIG_SMP
 321
 322static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 323{
 324	/* Try to pull RT tasks here if we lower this rq's prio */
 325	return rq->online && rq->rt.highest_prio.curr > prev->prio;
 326}
 327
 328static inline int rt_overloaded(struct rq *rq)
 329{
 330	return atomic_read(&rq->rd->rto_count);
 331}
 332
 333static inline void rt_set_overload(struct rq *rq)
 334{
 335	if (!rq->online)
 336		return;
 337
 338	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 339	/*
 340	 * Make sure the mask is visible before we set
 341	 * the overload count. That is checked to determine
 342	 * if we should look at the mask. It would be a shame
 343	 * if we looked at the mask, but the mask was not
 344	 * updated yet.
 345	 *
 346	 * Matched by the barrier in pull_rt_task().
 347	 */
 348	smp_wmb();
 349	atomic_inc(&rq->rd->rto_count);
 350}
 351
 352static inline void rt_clear_overload(struct rq *rq)
 353{
 354	if (!rq->online)
 355		return;
 356
 357	/* the order here really doesn't matter */
 358	atomic_dec(&rq->rd->rto_count);
 359	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 360}
 361
 362static inline int has_pushable_tasks(struct rq *rq)
 363{
 364	return !plist_head_empty(&rq->rt.pushable_tasks);
 365}
 366
 367static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
 368static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
 369
 370static void push_rt_tasks(struct rq *);
 371static void pull_rt_task(struct rq *);
 372
 373static inline void rt_queue_push_tasks(struct rq *rq)
 374{
 375	if (!has_pushable_tasks(rq))
 376		return;
 377
 378	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 379}
 380
 381static inline void rt_queue_pull_task(struct rq *rq)
 382{
 383	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 384}
 385
 386static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 387{
 388	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 389	plist_node_init(&p->pushable_tasks, p->prio);
 390	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 391
 392	/* Update the highest prio pushable task */
 393	if (p->prio < rq->rt.highest_prio.next)
 394		rq->rt.highest_prio.next = p->prio;
 395
 396	if (!rq->rt.overloaded) {
 397		rt_set_overload(rq);
 398		rq->rt.overloaded = 1;
 399	}
 400}
 401
 402static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 403{
 404	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 405
 406	/* Update the new highest prio pushable task */
 407	if (has_pushable_tasks(rq)) {
 408		p = plist_first_entry(&rq->rt.pushable_tasks,
 409				      struct task_struct, pushable_tasks);
 410		rq->rt.highest_prio.next = p->prio;
 411	} else {
 412		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
 413
 414		if (rq->rt.overloaded) {
 415			rt_clear_overload(rq);
 416			rq->rt.overloaded = 0;
 417		}
 418	}
 419}
 420
 421#else
 422
 423static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 424{
 425}
 426
 427static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 428{
 429}
 430
 431static inline void rt_queue_push_tasks(struct rq *rq)
 432{
 433}
 434#endif /* CONFIG_SMP */
 435
 436static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 437static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
 438
 439static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 440{
 441	return rt_se->on_rq;
 442}
 443
 444#ifdef CONFIG_UCLAMP_TASK
 445/*
 446 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
 447 * settings.
 448 *
 449 * This check is only important for heterogeneous systems where uclamp_min value
 450 * is higher than the capacity of a @cpu. For non-heterogeneous system this
 451 * function will always return true.
 452 *
 453 * The function will return true if the capacity of the @cpu is >= the
 454 * uclamp_min and false otherwise.
 455 *
 456 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
 457 * > uclamp_max.
 458 */
 459static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 460{
 461	unsigned int min_cap;
 462	unsigned int max_cap;
 463	unsigned int cpu_cap;
 464
 465	/* Only heterogeneous systems can benefit from this check */
 466	if (!sched_asym_cpucap_active())
 467		return true;
 468
 469	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
 470	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
 471
 472	cpu_cap = arch_scale_cpu_capacity(cpu);
 473
 474	return cpu_cap >= min(min_cap, max_cap);
 475}
 476#else
 477static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
 478{
 479	return true;
 480}
 481#endif
 482
 483#ifdef CONFIG_RT_GROUP_SCHED
 484
 485static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 486{
 487	if (!rt_rq->tg)
 488		return RUNTIME_INF;
 489
 490	return rt_rq->rt_runtime;
 491}
 492
 493static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 494{
 495	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 496}
 497
 498typedef struct task_group *rt_rq_iter_t;
 499
 500static inline struct task_group *next_task_group(struct task_group *tg)
 501{
 502	do {
 503		tg = list_entry_rcu(tg->list.next,
 504			typeof(struct task_group), list);
 505	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 506
 507	if (&tg->list == &task_groups)
 508		tg = NULL;
 509
 510	return tg;
 511}
 512
 513#define for_each_rt_rq(rt_rq, iter, rq)					\
 514	for (iter = container_of(&task_groups, typeof(*iter), list);	\
 515		(iter = next_task_group(iter)) &&			\
 516		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
 517
 518#define for_each_sched_rt_entity(rt_se) \
 519	for (; rt_se; rt_se = rt_se->parent)
 520
 521static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 522{
 523	return rt_se->my_q;
 524}
 525
 526static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 527static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
 528
 529static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 530{
 531	struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
 532	struct rq *rq = rq_of_rt_rq(rt_rq);
 533	struct sched_rt_entity *rt_se;
 534
 535	int cpu = cpu_of(rq);
 536
 537	rt_se = rt_rq->tg->rt_se[cpu];
 538
 539	if (rt_rq->rt_nr_running) {
 540		if (!rt_se)
 541			enqueue_top_rt_rq(rt_rq);
 542		else if (!on_rt_rq(rt_se))
 543			enqueue_rt_entity(rt_se, 0);
 544
 545		if (rt_rq->highest_prio.curr < donor->prio)
 546			resched_curr(rq);
 547	}
 548}
 549
 550static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 551{
 552	struct sched_rt_entity *rt_se;
 553	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 554
 555	rt_se = rt_rq->tg->rt_se[cpu];
 556
 557	if (!rt_se) {
 558		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 559		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
 560		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
 561	}
 562	else if (on_rt_rq(rt_se))
 563		dequeue_rt_entity(rt_se, 0);
 564}
 565
 566static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 567{
 568	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 569}
 570
 571static int rt_se_boosted(struct sched_rt_entity *rt_se)
 572{
 573	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 574	struct task_struct *p;
 575
 576	if (rt_rq)
 577		return !!rt_rq->rt_nr_boosted;
 578
 579	p = rt_task_of(rt_se);
 580	return p->prio != p->normal_prio;
 581}
 582
 583#ifdef CONFIG_SMP
 584static inline const struct cpumask *sched_rt_period_mask(void)
 585{
 586	return this_rq()->rd->span;
 587}
 588#else
 589static inline const struct cpumask *sched_rt_period_mask(void)
 590{
 591	return cpu_online_mask;
 592}
 593#endif
 594
 595static inline
 596struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 597{
 598	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 599}
 600
 601static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 602{
 603	return &rt_rq->tg->rt_bandwidth;
 604}
 605
 606bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 607{
 608	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 609
 610	return (hrtimer_active(&rt_b->rt_period_timer) ||
 611		rt_rq->rt_time < rt_b->rt_runtime);
 612}
 613
 614#ifdef CONFIG_SMP
 615/*
 616 * We ran out of runtime, see if we can borrow some from our neighbours.
 617 */
 618static void do_balance_runtime(struct rt_rq *rt_rq)
 619{
 620	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 621	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 622	int i, weight;
 623	u64 rt_period;
 624
 625	weight = cpumask_weight(rd->span);
 626
 627	raw_spin_lock(&rt_b->rt_runtime_lock);
 628	rt_period = ktime_to_ns(rt_b->rt_period);
 629	for_each_cpu(i, rd->span) {
 630		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 631		s64 diff;
 632
 633		if (iter == rt_rq)
 634			continue;
 635
 636		raw_spin_lock(&iter->rt_runtime_lock);
 637		/*
 638		 * Either all rqs have inf runtime and there's nothing to steal
 639		 * or __disable_runtime() below sets a specific rq to inf to
 640		 * indicate its been disabled and disallow stealing.
 641		 */
 642		if (iter->rt_runtime == RUNTIME_INF)
 643			goto next;
 644
 645		/*
 646		 * From runqueues with spare time, take 1/n part of their
 647		 * spare time, but no more than our period.
 648		 */
 649		diff = iter->rt_runtime - iter->rt_time;
 650		if (diff > 0) {
 651			diff = div_u64((u64)diff, weight);
 652			if (rt_rq->rt_runtime + diff > rt_period)
 653				diff = rt_period - rt_rq->rt_runtime;
 654			iter->rt_runtime -= diff;
 655			rt_rq->rt_runtime += diff;
 656			if (rt_rq->rt_runtime == rt_period) {
 657				raw_spin_unlock(&iter->rt_runtime_lock);
 658				break;
 659			}
 660		}
 661next:
 662		raw_spin_unlock(&iter->rt_runtime_lock);
 663	}
 664	raw_spin_unlock(&rt_b->rt_runtime_lock);
 665}
 666
 667/*
 668 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 669 */
 670static void __disable_runtime(struct rq *rq)
 671{
 672	struct root_domain *rd = rq->rd;
 673	rt_rq_iter_t iter;
 674	struct rt_rq *rt_rq;
 675
 676	if (unlikely(!scheduler_running))
 677		return;
 678
 679	for_each_rt_rq(rt_rq, iter, rq) {
 680		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 681		s64 want;
 682		int i;
 683
 684		raw_spin_lock(&rt_b->rt_runtime_lock);
 685		raw_spin_lock(&rt_rq->rt_runtime_lock);
 686		/*
 687		 * Either we're all inf and nobody needs to borrow, or we're
 688		 * already disabled and thus have nothing to do, or we have
 689		 * exactly the right amount of runtime to take out.
 690		 */
 691		if (rt_rq->rt_runtime == RUNTIME_INF ||
 692				rt_rq->rt_runtime == rt_b->rt_runtime)
 693			goto balanced;
 694		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 695
 696		/*
 697		 * Calculate the difference between what we started out with
 698		 * and what we current have, that's the amount of runtime
 699		 * we lend and now have to reclaim.
 700		 */
 701		want = rt_b->rt_runtime - rt_rq->rt_runtime;
 702
 703		/*
 704		 * Greedy reclaim, take back as much as we can.
 705		 */
 706		for_each_cpu(i, rd->span) {
 707			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 708			s64 diff;
 709
 710			/*
 711			 * Can't reclaim from ourselves or disabled runqueues.
 712			 */
 713			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 714				continue;
 715
 716			raw_spin_lock(&iter->rt_runtime_lock);
 717			if (want > 0) {
 718				diff = min_t(s64, iter->rt_runtime, want);
 719				iter->rt_runtime -= diff;
 720				want -= diff;
 721			} else {
 722				iter->rt_runtime -= want;
 723				want -= want;
 724			}
 725			raw_spin_unlock(&iter->rt_runtime_lock);
 726
 727			if (!want)
 728				break;
 729		}
 730
 731		raw_spin_lock(&rt_rq->rt_runtime_lock);
 732		/*
 733		 * We cannot be left wanting - that would mean some runtime
 734		 * leaked out of the system.
 735		 */
 736		WARN_ON_ONCE(want);
 737balanced:
 738		/*
 739		 * Disable all the borrow logic by pretending we have inf
 740		 * runtime - in which case borrowing doesn't make sense.
 741		 */
 742		rt_rq->rt_runtime = RUNTIME_INF;
 743		rt_rq->rt_throttled = 0;
 744		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 745		raw_spin_unlock(&rt_b->rt_runtime_lock);
 746
 747		/* Make rt_rq available for pick_next_task() */
 748		sched_rt_rq_enqueue(rt_rq);
 749	}
 750}
 751
 752static void __enable_runtime(struct rq *rq)
 753{
 754	rt_rq_iter_t iter;
 755	struct rt_rq *rt_rq;
 756
 757	if (unlikely(!scheduler_running))
 758		return;
 759
 760	/*
 761	 * Reset each runqueue's bandwidth settings
 762	 */
 763	for_each_rt_rq(rt_rq, iter, rq) {
 764		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 765
 766		raw_spin_lock(&rt_b->rt_runtime_lock);
 767		raw_spin_lock(&rt_rq->rt_runtime_lock);
 768		rt_rq->rt_runtime = rt_b->rt_runtime;
 769		rt_rq->rt_time = 0;
 770		rt_rq->rt_throttled = 0;
 771		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 772		raw_spin_unlock(&rt_b->rt_runtime_lock);
 773	}
 774}
 775
 776static void balance_runtime(struct rt_rq *rt_rq)
 777{
 778	if (!sched_feat(RT_RUNTIME_SHARE))
 779		return;
 780
 781	if (rt_rq->rt_time > rt_rq->rt_runtime) {
 782		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 783		do_balance_runtime(rt_rq);
 784		raw_spin_lock(&rt_rq->rt_runtime_lock);
 785	}
 786}
 787#else /* !CONFIG_SMP */
 788static inline void balance_runtime(struct rt_rq *rt_rq) {}
 789#endif /* CONFIG_SMP */
 790
 791static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 792{
 793	int i, idle = 1, throttled = 0;
 794	const struct cpumask *span;
 795
 796	span = sched_rt_period_mask();
 797
 798	/*
 799	 * FIXME: isolated CPUs should really leave the root task group,
 800	 * whether they are isolcpus or were isolated via cpusets, lest
 801	 * the timer run on a CPU which does not service all runqueues,
 802	 * potentially leaving other CPUs indefinitely throttled.  If
 803	 * isolation is really required, the user will turn the throttle
 804	 * off to kill the perturbations it causes anyway.  Meanwhile,
 805	 * this maintains functionality for boot and/or troubleshooting.
 806	 */
 807	if (rt_b == &root_task_group.rt_bandwidth)
 808		span = cpu_online_mask;
 809
 810	for_each_cpu(i, span) {
 811		int enqueue = 0;
 812		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 813		struct rq *rq = rq_of_rt_rq(rt_rq);
 814		struct rq_flags rf;
 815		int skip;
 816
 817		/*
 818		 * When span == cpu_online_mask, taking each rq->lock
 819		 * can be time-consuming. Try to avoid it when possible.
 820		 */
 821		raw_spin_lock(&rt_rq->rt_runtime_lock);
 822		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
 823			rt_rq->rt_runtime = rt_b->rt_runtime;
 824		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
 825		raw_spin_unlock(&rt_rq->rt_runtime_lock);
 826		if (skip)
 827			continue;
 828
 829		rq_lock(rq, &rf);
 830		update_rq_clock(rq);
 831
 832		if (rt_rq->rt_time) {
 833			u64 runtime;
 834
 835			raw_spin_lock(&rt_rq->rt_runtime_lock);
 836			if (rt_rq->rt_throttled)
 837				balance_runtime(rt_rq);
 838			runtime = rt_rq->rt_runtime;
 839			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 840			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 841				rt_rq->rt_throttled = 0;
 842				enqueue = 1;
 843
 844				/*
 845				 * When we're idle and a woken (rt) task is
 846				 * throttled wakeup_preempt() will set
 847				 * skip_update and the time between the wakeup
 848				 * and this unthrottle will get accounted as
 849				 * 'runtime'.
 850				 */
 851				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 852					rq_clock_cancel_skipupdate(rq);
 853			}
 854			if (rt_rq->rt_time || rt_rq->rt_nr_running)
 855				idle = 0;
 856			raw_spin_unlock(&rt_rq->rt_runtime_lock);
 857		} else if (rt_rq->rt_nr_running) {
 858			idle = 0;
 859			if (!rt_rq_throttled(rt_rq))
 860				enqueue = 1;
 861		}
 862		if (rt_rq->rt_throttled)
 863			throttled = 1;
 864
 865		if (enqueue)
 866			sched_rt_rq_enqueue(rt_rq);
 867		rq_unlock(rq, &rf);
 868	}
 869
 870	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 871		return 1;
 872
 873	return idle;
 874}
 875
 876static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 877{
 878	u64 runtime = sched_rt_runtime(rt_rq);
 879
 880	if (rt_rq->rt_throttled)
 881		return rt_rq_throttled(rt_rq);
 882
 883	if (runtime >= sched_rt_period(rt_rq))
 884		return 0;
 885
 886	balance_runtime(rt_rq);
 887	runtime = sched_rt_runtime(rt_rq);
 888	if (runtime == RUNTIME_INF)
 889		return 0;
 890
 891	if (rt_rq->rt_time > runtime) {
 892		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 893
 894		/*
 895		 * Don't actually throttle groups that have no runtime assigned
 896		 * but accrue some time due to boosting.
 897		 */
 898		if (likely(rt_b->rt_runtime)) {
 899			rt_rq->rt_throttled = 1;
 900			printk_deferred_once("sched: RT throttling activated\n");
 901		} else {
 902			/*
 903			 * In case we did anyway, make it go away,
 904			 * replenishment is a joke, since it will replenish us
 905			 * with exactly 0 ns.
 906			 */
 907			rt_rq->rt_time = 0;
 908		}
 909
 910		if (rt_rq_throttled(rt_rq)) {
 911			sched_rt_rq_dequeue(rt_rq);
 912			return 1;
 913		}
 914	}
 915
 916	return 0;
 917}
 918
 919#else /* !CONFIG_RT_GROUP_SCHED */
 920
 921typedef struct rt_rq *rt_rq_iter_t;
 922
 923#define for_each_rt_rq(rt_rq, iter, rq) \
 924	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 925
 926#define for_each_sched_rt_entity(rt_se) \
 927	for (; rt_se; rt_se = NULL)
 928
 929static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 930{
 931	return NULL;
 932}
 933
 934static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 935{
 936	struct rq *rq = rq_of_rt_rq(rt_rq);
 937
 938	if (!rt_rq->rt_nr_running)
 939		return;
 940
 941	enqueue_top_rt_rq(rt_rq);
 942	resched_curr(rq);
 943}
 944
 945static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 946{
 947	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
 948}
 949
 950static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 951{
 952	return false;
 953}
 954
 955static inline const struct cpumask *sched_rt_period_mask(void)
 956{
 957	return cpu_online_mask;
 958}
 959
 960static inline
 961struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 962{
 963	return &cpu_rq(cpu)->rt;
 964}
 965
 966#ifdef CONFIG_SMP
 967static void __enable_runtime(struct rq *rq) { }
 968static void __disable_runtime(struct rq *rq) { }
 969#endif
 970
 971#endif /* CONFIG_RT_GROUP_SCHED */
 972
 973static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 974{
 975#ifdef CONFIG_RT_GROUP_SCHED
 976	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 977
 978	if (rt_rq)
 979		return rt_rq->highest_prio.curr;
 980#endif
 981
 982	return rt_task_of(rt_se)->prio;
 983}
 984
 985/*
 986 * Update the current task's runtime statistics. Skip current tasks that
 987 * are not in our scheduling class.
 988 */
 989static void update_curr_rt(struct rq *rq)
 990{
 991	struct task_struct *donor = rq->donor;
 992	s64 delta_exec;
 993
 994	if (donor->sched_class != &rt_sched_class)
 995		return;
 996
 997	delta_exec = update_curr_common(rq);
 998	if (unlikely(delta_exec <= 0))
 999		return;
1000
1001#ifdef CONFIG_RT_GROUP_SCHED
1002	struct sched_rt_entity *rt_se = &donor->rt;
1003
1004	if (!rt_bandwidth_enabled())
1005		return;
1006
1007	for_each_sched_rt_entity(rt_se) {
1008		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1009		int exceeded;
1010
1011		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1012			raw_spin_lock(&rt_rq->rt_runtime_lock);
1013			rt_rq->rt_time += delta_exec;
1014			exceeded = sched_rt_runtime_exceeded(rt_rq);
1015			if (exceeded)
1016				resched_curr(rq);
1017			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1018			if (exceeded)
1019				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1020		}
1021	}
1022#endif
1023}
1024
1025static void
1026dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1027{
1028	struct rq *rq = rq_of_rt_rq(rt_rq);
1029
1030	BUG_ON(&rq->rt != rt_rq);
1031
1032	if (!rt_rq->rt_queued)
1033		return;
1034
1035	BUG_ON(!rq->nr_running);
1036
1037	sub_nr_running(rq, count);
1038	rt_rq->rt_queued = 0;
1039
1040}
1041
1042static void
1043enqueue_top_rt_rq(struct rt_rq *rt_rq)
1044{
1045	struct rq *rq = rq_of_rt_rq(rt_rq);
1046
1047	BUG_ON(&rq->rt != rt_rq);
1048
1049	if (rt_rq->rt_queued)
1050		return;
1051
1052	if (rt_rq_throttled(rt_rq))
1053		return;
1054
1055	if (rt_rq->rt_nr_running) {
1056		add_nr_running(rq, rt_rq->rt_nr_running);
1057		rt_rq->rt_queued = 1;
1058	}
1059
1060	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1061	cpufreq_update_util(rq, 0);
1062}
1063
1064#if defined CONFIG_SMP
1065
1066static void
1067inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1068{
1069	struct rq *rq = rq_of_rt_rq(rt_rq);
1070
1071#ifdef CONFIG_RT_GROUP_SCHED
1072	/*
1073	 * Change rq's cpupri only if rt_rq is the top queue.
1074	 */
1075	if (&rq->rt != rt_rq)
1076		return;
1077#endif
1078	if (rq->online && prio < prev_prio)
1079		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1080}
1081
1082static void
1083dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084{
1085	struct rq *rq = rq_of_rt_rq(rt_rq);
1086
1087#ifdef CONFIG_RT_GROUP_SCHED
1088	/*
1089	 * Change rq's cpupri only if rt_rq is the top queue.
1090	 */
1091	if (&rq->rt != rt_rq)
1092		return;
1093#endif
1094	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1096}
1097
1098#else /* CONFIG_SMP */
1099
1100static inline
1101void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102static inline
1103void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1104
1105#endif /* CONFIG_SMP */
1106
1107#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1108static void
1109inc_rt_prio(struct rt_rq *rt_rq, int prio)
1110{
1111	int prev_prio = rt_rq->highest_prio.curr;
1112
1113	if (prio < prev_prio)
1114		rt_rq->highest_prio.curr = prio;
1115
1116	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1117}
1118
1119static void
1120dec_rt_prio(struct rt_rq *rt_rq, int prio)
1121{
1122	int prev_prio = rt_rq->highest_prio.curr;
1123
1124	if (rt_rq->rt_nr_running) {
1125
1126		WARN_ON(prio < prev_prio);
1127
1128		/*
1129		 * This may have been our highest task, and therefore
1130		 * we may have some re-computation to do
1131		 */
1132		if (prio == prev_prio) {
1133			struct rt_prio_array *array = &rt_rq->active;
1134
1135			rt_rq->highest_prio.curr =
1136				sched_find_first_bit(array->bitmap);
1137		}
1138
1139	} else {
1140		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1141	}
1142
1143	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1144}
1145
1146#else
1147
1148static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1150
1151#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1152
1153#ifdef CONFIG_RT_GROUP_SCHED
1154
1155static void
1156inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1157{
1158	if (rt_se_boosted(rt_se))
1159		rt_rq->rt_nr_boosted++;
1160
1161	if (rt_rq->tg)
1162		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1163}
1164
1165static void
1166dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1167{
1168	if (rt_se_boosted(rt_se))
1169		rt_rq->rt_nr_boosted--;
1170
1171	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1172}
1173
1174#else /* CONFIG_RT_GROUP_SCHED */
1175
1176static void
1177inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178{
1179}
1180
1181static inline
1182void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1183
1184#endif /* CONFIG_RT_GROUP_SCHED */
1185
1186static inline
1187unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1188{
1189	struct rt_rq *group_rq = group_rt_rq(rt_se);
1190
1191	if (group_rq)
1192		return group_rq->rt_nr_running;
1193	else
1194		return 1;
1195}
1196
1197static inline
1198unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1199{
1200	struct rt_rq *group_rq = group_rt_rq(rt_se);
1201	struct task_struct *tsk;
1202
1203	if (group_rq)
1204		return group_rq->rr_nr_running;
1205
1206	tsk = rt_task_of(rt_se);
1207
1208	return (tsk->policy == SCHED_RR) ? 1 : 0;
1209}
1210
1211static inline
1212void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1213{
1214	int prio = rt_se_prio(rt_se);
1215
1216	WARN_ON(!rt_prio(prio));
1217	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1218	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1219
1220	inc_rt_prio(rt_rq, prio);
1221	inc_rt_group(rt_se, rt_rq);
1222}
1223
1224static inline
1225void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1226{
1227	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1228	WARN_ON(!rt_rq->rt_nr_running);
1229	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1230	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1231
1232	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1233	dec_rt_group(rt_se, rt_rq);
1234}
1235
1236/*
1237 * Change rt_se->run_list location unless SAVE && !MOVE
1238 *
1239 * assumes ENQUEUE/DEQUEUE flags match
1240 */
1241static inline bool move_entity(unsigned int flags)
1242{
1243	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1244		return false;
1245
1246	return true;
1247}
1248
1249static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1250{
1251	list_del_init(&rt_se->run_list);
1252
1253	if (list_empty(array->queue + rt_se_prio(rt_se)))
1254		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1255
1256	rt_se->on_list = 0;
1257}
1258
1259static inline struct sched_statistics *
1260__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1261{
1262#ifdef CONFIG_RT_GROUP_SCHED
1263	/* schedstats is not supported for rt group. */
1264	if (!rt_entity_is_task(rt_se))
1265		return NULL;
1266#endif
1267
1268	return &rt_task_of(rt_se)->stats;
1269}
1270
1271static inline void
1272update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1273{
1274	struct sched_statistics *stats;
1275	struct task_struct *p = NULL;
1276
1277	if (!schedstat_enabled())
1278		return;
1279
1280	if (rt_entity_is_task(rt_se))
1281		p = rt_task_of(rt_se);
1282
1283	stats = __schedstats_from_rt_se(rt_se);
1284	if (!stats)
1285		return;
1286
1287	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1288}
1289
1290static inline void
1291update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292{
1293	struct sched_statistics *stats;
1294	struct task_struct *p = NULL;
1295
1296	if (!schedstat_enabled())
1297		return;
1298
1299	if (rt_entity_is_task(rt_se))
1300		p = rt_task_of(rt_se);
1301
1302	stats = __schedstats_from_rt_se(rt_se);
1303	if (!stats)
1304		return;
1305
1306	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1307}
1308
1309static inline void
1310update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1311			int flags)
1312{
1313	if (!schedstat_enabled())
1314		return;
1315
1316	if (flags & ENQUEUE_WAKEUP)
1317		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1318}
1319
1320static inline void
1321update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1322{
1323	struct sched_statistics *stats;
1324	struct task_struct *p = NULL;
1325
1326	if (!schedstat_enabled())
1327		return;
1328
1329	if (rt_entity_is_task(rt_se))
1330		p = rt_task_of(rt_se);
1331
1332	stats = __schedstats_from_rt_se(rt_se);
1333	if (!stats)
1334		return;
1335
1336	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1337}
1338
1339static inline void
1340update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1341			int flags)
1342{
1343	struct task_struct *p = NULL;
1344
1345	if (!schedstat_enabled())
1346		return;
1347
1348	if (rt_entity_is_task(rt_se))
1349		p = rt_task_of(rt_se);
1350
1351	if ((flags & DEQUEUE_SLEEP) && p) {
1352		unsigned int state;
1353
1354		state = READ_ONCE(p->__state);
1355		if (state & TASK_INTERRUPTIBLE)
1356			__schedstat_set(p->stats.sleep_start,
1357					rq_clock(rq_of_rt_rq(rt_rq)));
1358
1359		if (state & TASK_UNINTERRUPTIBLE)
1360			__schedstat_set(p->stats.block_start,
1361					rq_clock(rq_of_rt_rq(rt_rq)));
1362	}
1363}
1364
1365static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1366{
1367	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1368	struct rt_prio_array *array = &rt_rq->active;
1369	struct rt_rq *group_rq = group_rt_rq(rt_se);
1370	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1371
1372	/*
1373	 * Don't enqueue the group if its throttled, or when empty.
1374	 * The latter is a consequence of the former when a child group
1375	 * get throttled and the current group doesn't have any other
1376	 * active members.
1377	 */
1378	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1379		if (rt_se->on_list)
1380			__delist_rt_entity(rt_se, array);
1381		return;
1382	}
1383
1384	if (move_entity(flags)) {
1385		WARN_ON_ONCE(rt_se->on_list);
1386		if (flags & ENQUEUE_HEAD)
1387			list_add(&rt_se->run_list, queue);
1388		else
1389			list_add_tail(&rt_se->run_list, queue);
1390
1391		__set_bit(rt_se_prio(rt_se), array->bitmap);
1392		rt_se->on_list = 1;
1393	}
1394	rt_se->on_rq = 1;
1395
1396	inc_rt_tasks(rt_se, rt_rq);
1397}
1398
1399static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1400{
1401	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1402	struct rt_prio_array *array = &rt_rq->active;
1403
1404	if (move_entity(flags)) {
1405		WARN_ON_ONCE(!rt_se->on_list);
1406		__delist_rt_entity(rt_se, array);
1407	}
1408	rt_se->on_rq = 0;
1409
1410	dec_rt_tasks(rt_se, rt_rq);
1411}
1412
1413/*
1414 * Because the prio of an upper entry depends on the lower
1415 * entries, we must remove entries top - down.
1416 */
1417static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1418{
1419	struct sched_rt_entity *back = NULL;
1420	unsigned int rt_nr_running;
1421
1422	for_each_sched_rt_entity(rt_se) {
1423		rt_se->back = back;
1424		back = rt_se;
1425	}
1426
1427	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1428
1429	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1430		if (on_rt_rq(rt_se))
1431			__dequeue_rt_entity(rt_se, flags);
1432	}
1433
1434	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1435}
1436
1437static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1438{
1439	struct rq *rq = rq_of_rt_se(rt_se);
1440
1441	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1442
1443	dequeue_rt_stack(rt_se, flags);
1444	for_each_sched_rt_entity(rt_se)
1445		__enqueue_rt_entity(rt_se, flags);
1446	enqueue_top_rt_rq(&rq->rt);
1447}
1448
1449static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1450{
1451	struct rq *rq = rq_of_rt_se(rt_se);
1452
1453	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1454
1455	dequeue_rt_stack(rt_se, flags);
1456
1457	for_each_sched_rt_entity(rt_se) {
1458		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1459
1460		if (rt_rq && rt_rq->rt_nr_running)
1461			__enqueue_rt_entity(rt_se, flags);
1462	}
1463	enqueue_top_rt_rq(&rq->rt);
1464}
1465
1466/*
1467 * Adding/removing a task to/from a priority array:
1468 */
1469static void
1470enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1471{
1472	struct sched_rt_entity *rt_se = &p->rt;
1473
1474	if (flags & ENQUEUE_WAKEUP)
1475		rt_se->timeout = 0;
1476
1477	check_schedstat_required();
1478	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1479
1480	enqueue_rt_entity(rt_se, flags);
1481
1482	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1483		enqueue_pushable_task(rq, p);
1484}
1485
1486static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1487{
1488	struct sched_rt_entity *rt_se = &p->rt;
1489
1490	update_curr_rt(rq);
1491	dequeue_rt_entity(rt_se, flags);
1492
1493	dequeue_pushable_task(rq, p);
1494
1495	return true;
1496}
1497
1498/*
1499 * Put task to the head or the end of the run list without the overhead of
1500 * dequeue followed by enqueue.
1501 */
1502static void
1503requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1504{
1505	if (on_rt_rq(rt_se)) {
1506		struct rt_prio_array *array = &rt_rq->active;
1507		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1508
1509		if (head)
1510			list_move(&rt_se->run_list, queue);
1511		else
1512			list_move_tail(&rt_se->run_list, queue);
1513	}
1514}
1515
1516static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1517{
1518	struct sched_rt_entity *rt_se = &p->rt;
1519	struct rt_rq *rt_rq;
1520
1521	for_each_sched_rt_entity(rt_se) {
1522		rt_rq = rt_rq_of_se(rt_se);
1523		requeue_rt_entity(rt_rq, rt_se, head);
1524	}
1525}
1526
1527static void yield_task_rt(struct rq *rq)
1528{
1529	requeue_task_rt(rq, rq->curr, 0);
1530}
1531
1532#ifdef CONFIG_SMP
1533static int find_lowest_rq(struct task_struct *task);
1534
1535static int
1536select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1537{
1538	struct task_struct *curr, *donor;
1539	struct rq *rq;
1540	bool test;
1541
1542	/* For anything but wake ups, just return the task_cpu */
1543	if (!(flags & (WF_TTWU | WF_FORK)))
1544		goto out;
1545
1546	rq = cpu_rq(cpu);
1547
1548	rcu_read_lock();
1549	curr = READ_ONCE(rq->curr); /* unlocked access */
1550	donor = READ_ONCE(rq->donor);
1551
1552	/*
1553	 * If the current task on @p's runqueue is an RT task, then
1554	 * try to see if we can wake this RT task up on another
1555	 * runqueue. Otherwise simply start this RT task
1556	 * on its current runqueue.
1557	 *
1558	 * We want to avoid overloading runqueues. If the woken
1559	 * task is a higher priority, then it will stay on this CPU
1560	 * and the lower prio task should be moved to another CPU.
1561	 * Even though this will probably make the lower prio task
1562	 * lose its cache, we do not want to bounce a higher task
1563	 * around just because it gave up its CPU, perhaps for a
1564	 * lock?
1565	 *
1566	 * For equal prio tasks, we just let the scheduler sort it out.
1567	 *
1568	 * Otherwise, just let it ride on the affine RQ and the
1569	 * post-schedule router will push the preempted task away
1570	 *
1571	 * This test is optimistic, if we get it wrong the load-balancer
1572	 * will have to sort it out.
1573	 *
1574	 * We take into account the capacity of the CPU to ensure it fits the
1575	 * requirement of the task - which is only important on heterogeneous
1576	 * systems like big.LITTLE.
1577	 */
1578	test = curr &&
1579	       unlikely(rt_task(donor)) &&
1580	       (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
1581
1582	if (test || !rt_task_fits_capacity(p, cpu)) {
1583		int target = find_lowest_rq(p);
1584
1585		/*
1586		 * Bail out if we were forcing a migration to find a better
1587		 * fitting CPU but our search failed.
1588		 */
1589		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1590			goto out_unlock;
1591
1592		/*
1593		 * Don't bother moving it if the destination CPU is
1594		 * not running a lower priority task.
1595		 */
1596		if (target != -1 &&
1597		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1598			cpu = target;
1599	}
1600
1601out_unlock:
1602	rcu_read_unlock();
1603
1604out:
1605	return cpu;
1606}
1607
1608static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1609{
1610	if (rq->curr->nr_cpus_allowed == 1 ||
1611	    !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
1612		return;
1613
1614	/*
1615	 * p is migratable, so let's not schedule it and
1616	 * see if it is pushed or pulled somewhere else.
1617	 */
1618	if (p->nr_cpus_allowed != 1 &&
1619	    cpupri_find(&rq->rd->cpupri, p, NULL))
1620		return;
1621
1622	/*
1623	 * There appear to be other CPUs that can accept
1624	 * the current task but none can run 'p', so lets reschedule
1625	 * to try and push the current task away:
1626	 */
1627	requeue_task_rt(rq, p, 1);
1628	resched_curr(rq);
1629}
1630
1631static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1632{
1633	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1634		/*
1635		 * This is OK, because current is on_cpu, which avoids it being
1636		 * picked for load-balance and preemption/IRQs are still
1637		 * disabled avoiding further scheduler activity on it and we've
1638		 * not yet started the picking loop.
1639		 */
1640		rq_unpin_lock(rq, rf);
1641		pull_rt_task(rq);
1642		rq_repin_lock(rq, rf);
1643	}
1644
1645	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1646}
1647#endif /* CONFIG_SMP */
1648
1649/*
1650 * Preempt the current task with a newly woken task if needed:
1651 */
1652static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1653{
1654	struct task_struct *donor = rq->donor;
1655
1656	if (p->prio < donor->prio) {
1657		resched_curr(rq);
1658		return;
1659	}
1660
1661#ifdef CONFIG_SMP
1662	/*
1663	 * If:
1664	 *
1665	 * - the newly woken task is of equal priority to the current task
1666	 * - the newly woken task is non-migratable while current is migratable
1667	 * - current will be preempted on the next reschedule
1668	 *
1669	 * we should check to see if current can readily move to a different
1670	 * cpu.  If so, we will reschedule to allow the push logic to try
1671	 * to move current somewhere else, making room for our non-migratable
1672	 * task.
1673	 */
1674	if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
1675		check_preempt_equal_prio(rq, p);
1676#endif
1677}
1678
1679static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1680{
1681	struct sched_rt_entity *rt_se = &p->rt;
1682	struct rt_rq *rt_rq = &rq->rt;
1683
1684	p->se.exec_start = rq_clock_task(rq);
1685	if (on_rt_rq(&p->rt))
1686		update_stats_wait_end_rt(rt_rq, rt_se);
1687
1688	/* The running task is never eligible for pushing */
1689	dequeue_pushable_task(rq, p);
1690
1691	if (!first)
1692		return;
1693
1694	/*
1695	 * If prev task was rt, put_prev_task() has already updated the
1696	 * utilization. We only care of the case where we start to schedule a
1697	 * rt task
1698	 */
1699	if (rq->donor->sched_class != &rt_sched_class)
1700		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1701
1702	rt_queue_push_tasks(rq);
1703}
1704
1705static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1706{
1707	struct rt_prio_array *array = &rt_rq->active;
1708	struct sched_rt_entity *next = NULL;
1709	struct list_head *queue;
1710	int idx;
1711
1712	idx = sched_find_first_bit(array->bitmap);
1713	BUG_ON(idx >= MAX_RT_PRIO);
1714
1715	queue = array->queue + idx;
1716	if (SCHED_WARN_ON(list_empty(queue)))
1717		return NULL;
1718	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1719
1720	return next;
1721}
1722
1723static struct task_struct *_pick_next_task_rt(struct rq *rq)
1724{
1725	struct sched_rt_entity *rt_se;
1726	struct rt_rq *rt_rq  = &rq->rt;
1727
1728	do {
1729		rt_se = pick_next_rt_entity(rt_rq);
1730		if (unlikely(!rt_se))
1731			return NULL;
1732		rt_rq = group_rt_rq(rt_se);
1733	} while (rt_rq);
1734
1735	return rt_task_of(rt_se);
1736}
1737
1738static struct task_struct *pick_task_rt(struct rq *rq)
1739{
1740	struct task_struct *p;
1741
1742	if (!sched_rt_runnable(rq))
1743		return NULL;
1744
1745	p = _pick_next_task_rt(rq);
1746
1747	return p;
1748}
1749
1750static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1751{
1752	struct sched_rt_entity *rt_se = &p->rt;
1753	struct rt_rq *rt_rq = &rq->rt;
1754
1755	if (on_rt_rq(&p->rt))
1756		update_stats_wait_start_rt(rt_rq, rt_se);
1757
1758	update_curr_rt(rq);
1759
1760	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1761
1762	/*
1763	 * The previous task needs to be made eligible for pushing
1764	 * if it is still active
1765	 */
1766	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1767		enqueue_pushable_task(rq, p);
1768}
1769
1770#ifdef CONFIG_SMP
1771
1772/* Only try algorithms three times */
1773#define RT_MAX_TRIES 3
1774
1775/*
1776 * Return the highest pushable rq's task, which is suitable to be executed
1777 * on the CPU, NULL otherwise
1778 */
1779static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1780{
1781	struct plist_head *head = &rq->rt.pushable_tasks;
1782	struct task_struct *p;
1783
1784	if (!has_pushable_tasks(rq))
1785		return NULL;
1786
1787	plist_for_each_entry(p, head, pushable_tasks) {
1788		if (task_is_pushable(rq, p, cpu))
1789			return p;
1790	}
1791
1792	return NULL;
1793}
1794
1795static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1796
1797static int find_lowest_rq(struct task_struct *task)
1798{
1799	struct sched_domain *sd;
1800	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1801	int this_cpu = smp_processor_id();
1802	int cpu      = task_cpu(task);
1803	int ret;
1804
1805	/* Make sure the mask is initialized first */
1806	if (unlikely(!lowest_mask))
1807		return -1;
1808
1809	if (task->nr_cpus_allowed == 1)
1810		return -1; /* No other targets possible */
1811
1812	/*
1813	 * If we're on asym system ensure we consider the different capacities
1814	 * of the CPUs when searching for the lowest_mask.
1815	 */
1816	if (sched_asym_cpucap_active()) {
1817
1818		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1819					  task, lowest_mask,
1820					  rt_task_fits_capacity);
1821	} else {
1822
1823		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1824				  task, lowest_mask);
1825	}
1826
1827	if (!ret)
1828		return -1; /* No targets found */
1829
1830	/*
1831	 * At this point we have built a mask of CPUs representing the
1832	 * lowest priority tasks in the system.  Now we want to elect
1833	 * the best one based on our affinity and topology.
1834	 *
1835	 * We prioritize the last CPU that the task executed on since
1836	 * it is most likely cache-hot in that location.
1837	 */
1838	if (cpumask_test_cpu(cpu, lowest_mask))
1839		return cpu;
1840
1841	/*
1842	 * Otherwise, we consult the sched_domains span maps to figure
1843	 * out which CPU is logically closest to our hot cache data.
1844	 */
1845	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1846		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1847
1848	rcu_read_lock();
1849	for_each_domain(cpu, sd) {
1850		if (sd->flags & SD_WAKE_AFFINE) {
1851			int best_cpu;
1852
1853			/*
1854			 * "this_cpu" is cheaper to preempt than a
1855			 * remote processor.
1856			 */
1857			if (this_cpu != -1 &&
1858			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1859				rcu_read_unlock();
1860				return this_cpu;
1861			}
1862
1863			best_cpu = cpumask_any_and_distribute(lowest_mask,
1864							      sched_domain_span(sd));
1865			if (best_cpu < nr_cpu_ids) {
1866				rcu_read_unlock();
1867				return best_cpu;
1868			}
1869		}
1870	}
1871	rcu_read_unlock();
1872
1873	/*
1874	 * And finally, if there were no matches within the domains
1875	 * just give the caller *something* to work with from the compatible
1876	 * locations.
1877	 */
1878	if (this_cpu != -1)
1879		return this_cpu;
1880
1881	cpu = cpumask_any_distribute(lowest_mask);
1882	if (cpu < nr_cpu_ids)
1883		return cpu;
1884
1885	return -1;
1886}
1887
1888/* Will lock the rq it finds */
1889static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1890{
1891	struct rq *lowest_rq = NULL;
1892	int tries;
1893	int cpu;
1894
1895	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1896		cpu = find_lowest_rq(task);
1897
1898		if ((cpu == -1) || (cpu == rq->cpu))
1899			break;
1900
1901		lowest_rq = cpu_rq(cpu);
1902
1903		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1904			/*
1905			 * Target rq has tasks of equal or higher priority,
1906			 * retrying does not release any lock and is unlikely
1907			 * to yield a different result.
1908			 */
1909			lowest_rq = NULL;
1910			break;
1911		}
1912
1913		/* if the prio of this runqueue changed, try again */
1914		if (double_lock_balance(rq, lowest_rq)) {
1915			/*
1916			 * We had to unlock the run queue. In
1917			 * the mean time, task could have
1918			 * migrated already or had its affinity changed.
1919			 * Also make sure that it wasn't scheduled on its rq.
1920			 * It is possible the task was scheduled, set
1921			 * "migrate_disabled" and then got preempted, so we must
1922			 * check the task migration disable flag here too.
1923			 */
1924			if (unlikely(task_rq(task) != rq ||
1925				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1926				     task_on_cpu(rq, task) ||
1927				     !rt_task(task) ||
1928				     is_migration_disabled(task) ||
1929				     !task_on_rq_queued(task))) {
1930
1931				double_unlock_balance(rq, lowest_rq);
1932				lowest_rq = NULL;
1933				break;
1934			}
1935		}
1936
1937		/* If this rq is still suitable use it. */
1938		if (lowest_rq->rt.highest_prio.curr > task->prio)
1939			break;
1940
1941		/* try again */
1942		double_unlock_balance(rq, lowest_rq);
1943		lowest_rq = NULL;
1944	}
1945
1946	return lowest_rq;
1947}
1948
1949static struct task_struct *pick_next_pushable_task(struct rq *rq)
1950{
1951	struct task_struct *p;
1952
1953	if (!has_pushable_tasks(rq))
1954		return NULL;
1955
1956	p = plist_first_entry(&rq->rt.pushable_tasks,
1957			      struct task_struct, pushable_tasks);
1958
1959	BUG_ON(rq->cpu != task_cpu(p));
1960	BUG_ON(task_current(rq, p));
1961	BUG_ON(task_current_donor(rq, p));
1962	BUG_ON(p->nr_cpus_allowed <= 1);
1963
1964	BUG_ON(!task_on_rq_queued(p));
1965	BUG_ON(!rt_task(p));
1966
1967	return p;
1968}
1969
1970/*
1971 * If the current CPU has more than one RT task, see if the non
1972 * running task can migrate over to a CPU that is running a task
1973 * of lesser priority.
1974 */
1975static int push_rt_task(struct rq *rq, bool pull)
1976{
1977	struct task_struct *next_task;
1978	struct rq *lowest_rq;
1979	int ret = 0;
1980
1981	if (!rq->rt.overloaded)
1982		return 0;
1983
1984	next_task = pick_next_pushable_task(rq);
1985	if (!next_task)
1986		return 0;
1987
1988retry:
1989	/*
1990	 * It's possible that the next_task slipped in of
1991	 * higher priority than current. If that's the case
1992	 * just reschedule current.
1993	 */
1994	if (unlikely(next_task->prio < rq->donor->prio)) {
1995		resched_curr(rq);
1996		return 0;
1997	}
1998
1999	if (is_migration_disabled(next_task)) {
2000		struct task_struct *push_task = NULL;
2001		int cpu;
2002
2003		if (!pull || rq->push_busy)
2004			return 0;
2005
2006		/*
2007		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2008		 * make sense. Per the above priority check, curr has to
2009		 * be of higher priority than next_task, so no need to
2010		 * reschedule when bailing out.
2011		 *
2012		 * Note that the stoppers are masqueraded as SCHED_FIFO
2013		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2014		 */
2015		if (rq->donor->sched_class != &rt_sched_class)
2016			return 0;
2017
2018		cpu = find_lowest_rq(rq->curr);
2019		if (cpu == -1 || cpu == rq->cpu)
2020			return 0;
2021
2022		/*
2023		 * Given we found a CPU with lower priority than @next_task,
2024		 * therefore it should be running. However we cannot migrate it
2025		 * to this other CPU, instead attempt to push the current
2026		 * running task on this CPU away.
2027		 */
2028		push_task = get_push_task(rq);
2029		if (push_task) {
2030			preempt_disable();
2031			raw_spin_rq_unlock(rq);
2032			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2033					    push_task, &rq->push_work);
2034			preempt_enable();
2035			raw_spin_rq_lock(rq);
2036		}
2037
2038		return 0;
2039	}
2040
2041	if (WARN_ON(next_task == rq->curr))
2042		return 0;
2043
2044	/* We might release rq lock */
2045	get_task_struct(next_task);
2046
2047	/* find_lock_lowest_rq locks the rq if found */
2048	lowest_rq = find_lock_lowest_rq(next_task, rq);
2049	if (!lowest_rq) {
2050		struct task_struct *task;
2051		/*
2052		 * find_lock_lowest_rq releases rq->lock
2053		 * so it is possible that next_task has migrated.
2054		 *
2055		 * We need to make sure that the task is still on the same
2056		 * run-queue and is also still the next task eligible for
2057		 * pushing.
2058		 */
2059		task = pick_next_pushable_task(rq);
2060		if (task == next_task) {
2061			/*
2062			 * The task hasn't migrated, and is still the next
2063			 * eligible task, but we failed to find a run-queue
2064			 * to push it to.  Do not retry in this case, since
2065			 * other CPUs will pull from us when ready.
2066			 */
2067			goto out;
2068		}
2069
2070		if (!task)
2071			/* No more tasks, just exit */
2072			goto out;
2073
2074		/*
2075		 * Something has shifted, try again.
2076		 */
2077		put_task_struct(next_task);
2078		next_task = task;
2079		goto retry;
2080	}
2081
2082	move_queued_task_locked(rq, lowest_rq, next_task);
2083	resched_curr(lowest_rq);
2084	ret = 1;
2085
2086	double_unlock_balance(rq, lowest_rq);
2087out:
2088	put_task_struct(next_task);
2089
2090	return ret;
2091}
2092
2093static void push_rt_tasks(struct rq *rq)
2094{
2095	/* push_rt_task will return true if it moved an RT */
2096	while (push_rt_task(rq, false))
2097		;
2098}
2099
2100#ifdef HAVE_RT_PUSH_IPI
2101
2102/*
2103 * When a high priority task schedules out from a CPU and a lower priority
2104 * task is scheduled in, a check is made to see if there's any RT tasks
2105 * on other CPUs that are waiting to run because a higher priority RT task
2106 * is currently running on its CPU. In this case, the CPU with multiple RT
2107 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2108 * up that may be able to run one of its non-running queued RT tasks.
2109 *
2110 * All CPUs with overloaded RT tasks need to be notified as there is currently
2111 * no way to know which of these CPUs have the highest priority task waiting
2112 * to run. Instead of trying to take a spinlock on each of these CPUs,
2113 * which has shown to cause large latency when done on machines with many
2114 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2115 * RT tasks waiting to run.
2116 *
2117 * Just sending an IPI to each of the CPUs is also an issue, as on large
2118 * count CPU machines, this can cause an IPI storm on a CPU, especially
2119 * if its the only CPU with multiple RT tasks queued, and a large number
2120 * of CPUs scheduling a lower priority task at the same time.
2121 *
2122 * Each root domain has its own IRQ work function that can iterate over
2123 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2124 * task must be checked if there's one or many CPUs that are lowering
2125 * their priority, there's a single IRQ work iterator that will try to
2126 * push off RT tasks that are waiting to run.
2127 *
2128 * When a CPU schedules a lower priority task, it will kick off the
2129 * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2130 * As it only takes the first CPU that schedules a lower priority task
2131 * to start the process, the rto_start variable is incremented and if
2132 * the atomic result is one, then that CPU will try to take the rto_lock.
2133 * This prevents high contention on the lock as the process handles all
2134 * CPUs scheduling lower priority tasks.
2135 *
2136 * All CPUs that are scheduling a lower priority task will increment the
2137 * rt_loop_next variable. This will make sure that the IRQ work iterator
2138 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2139 * priority task, even if the iterator is in the middle of a scan. Incrementing
2140 * the rt_loop_next will cause the iterator to perform another scan.
2141 *
2142 */
2143static int rto_next_cpu(struct root_domain *rd)
2144{
2145	int next;
2146	int cpu;
2147
2148	/*
2149	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2150	 * rt_next_cpu() will simply return the first CPU found in
2151	 * the rto_mask.
2152	 *
2153	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2154	 * will return the next CPU found in the rto_mask.
2155	 *
2156	 * If there are no more CPUs left in the rto_mask, then a check is made
2157	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2158	 * the rto_lock held, but any CPU may increment the rto_loop_next
2159	 * without any locking.
2160	 */
2161	for (;;) {
2162
2163		/* When rto_cpu is -1 this acts like cpumask_first() */
2164		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2165
2166		rd->rto_cpu = cpu;
2167
2168		if (cpu < nr_cpu_ids)
2169			return cpu;
2170
2171		rd->rto_cpu = -1;
2172
2173		/*
2174		 * ACQUIRE ensures we see the @rto_mask changes
2175		 * made prior to the @next value observed.
2176		 *
2177		 * Matches WMB in rt_set_overload().
2178		 */
2179		next = atomic_read_acquire(&rd->rto_loop_next);
2180
2181		if (rd->rto_loop == next)
2182			break;
2183
2184		rd->rto_loop = next;
2185	}
2186
2187	return -1;
2188}
2189
2190static inline bool rto_start_trylock(atomic_t *v)
2191{
2192	return !atomic_cmpxchg_acquire(v, 0, 1);
2193}
2194
2195static inline void rto_start_unlock(atomic_t *v)
2196{
2197	atomic_set_release(v, 0);
2198}
2199
2200static void tell_cpu_to_push(struct rq *rq)
2201{
2202	int cpu = -1;
2203
2204	/* Keep the loop going if the IPI is currently active */
2205	atomic_inc(&rq->rd->rto_loop_next);
2206
2207	/* Only one CPU can initiate a loop at a time */
2208	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2209		return;
2210
2211	raw_spin_lock(&rq->rd->rto_lock);
2212
2213	/*
2214	 * The rto_cpu is updated under the lock, if it has a valid CPU
2215	 * then the IPI is still running and will continue due to the
2216	 * update to loop_next, and nothing needs to be done here.
2217	 * Otherwise it is finishing up and an IPI needs to be sent.
2218	 */
2219	if (rq->rd->rto_cpu < 0)
2220		cpu = rto_next_cpu(rq->rd);
2221
2222	raw_spin_unlock(&rq->rd->rto_lock);
2223
2224	rto_start_unlock(&rq->rd->rto_loop_start);
2225
2226	if (cpu >= 0) {
2227		/* Make sure the rd does not get freed while pushing */
2228		sched_get_rd(rq->rd);
2229		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2230	}
2231}
2232
2233/* Called from hardirq context */
2234void rto_push_irq_work_func(struct irq_work *work)
2235{
2236	struct root_domain *rd =
2237		container_of(work, struct root_domain, rto_push_work);
2238	struct rq *rq;
2239	int cpu;
2240
2241	rq = this_rq();
2242
2243	/*
2244	 * We do not need to grab the lock to check for has_pushable_tasks.
2245	 * When it gets updated, a check is made if a push is possible.
2246	 */
2247	if (has_pushable_tasks(rq)) {
2248		raw_spin_rq_lock(rq);
2249		while (push_rt_task(rq, true))
2250			;
2251		raw_spin_rq_unlock(rq);
2252	}
2253
2254	raw_spin_lock(&rd->rto_lock);
2255
2256	/* Pass the IPI to the next rt overloaded queue */
2257	cpu = rto_next_cpu(rd);
2258
2259	raw_spin_unlock(&rd->rto_lock);
2260
2261	if (cpu < 0) {
2262		sched_put_rd(rd);
2263		return;
2264	}
2265
2266	/* Try the next RT overloaded CPU */
2267	irq_work_queue_on(&rd->rto_push_work, cpu);
2268}
2269#endif /* HAVE_RT_PUSH_IPI */
2270
2271static void pull_rt_task(struct rq *this_rq)
2272{
2273	int this_cpu = this_rq->cpu, cpu;
2274	bool resched = false;
2275	struct task_struct *p, *push_task;
2276	struct rq *src_rq;
2277	int rt_overload_count = rt_overloaded(this_rq);
2278
2279	if (likely(!rt_overload_count))
2280		return;
2281
2282	/*
2283	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2284	 * see overloaded we must also see the rto_mask bit.
2285	 */
2286	smp_rmb();
2287
2288	/* If we are the only overloaded CPU do nothing */
2289	if (rt_overload_count == 1 &&
2290	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2291		return;
2292
2293#ifdef HAVE_RT_PUSH_IPI
2294	if (sched_feat(RT_PUSH_IPI)) {
2295		tell_cpu_to_push(this_rq);
2296		return;
2297	}
2298#endif
2299
2300	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2301		if (this_cpu == cpu)
2302			continue;
2303
2304		src_rq = cpu_rq(cpu);
2305
2306		/*
2307		 * Don't bother taking the src_rq->lock if the next highest
2308		 * task is known to be lower-priority than our current task.
2309		 * This may look racy, but if this value is about to go
2310		 * logically higher, the src_rq will push this task away.
2311		 * And if its going logically lower, we do not care
2312		 */
2313		if (src_rq->rt.highest_prio.next >=
2314		    this_rq->rt.highest_prio.curr)
2315			continue;
2316
2317		/*
2318		 * We can potentially drop this_rq's lock in
2319		 * double_lock_balance, and another CPU could
2320		 * alter this_rq
2321		 */
2322		push_task = NULL;
2323		double_lock_balance(this_rq, src_rq);
2324
2325		/*
2326		 * We can pull only a task, which is pushable
2327		 * on its rq, and no others.
2328		 */
2329		p = pick_highest_pushable_task(src_rq, this_cpu);
2330
2331		/*
2332		 * Do we have an RT task that preempts
2333		 * the to-be-scheduled task?
2334		 */
2335		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2336			WARN_ON(p == src_rq->curr);
2337			WARN_ON(!task_on_rq_queued(p));
2338
2339			/*
2340			 * There's a chance that p is higher in priority
2341			 * than what's currently running on its CPU.
2342			 * This is just that p is waking up and hasn't
2343			 * had a chance to schedule. We only pull
2344			 * p if it is lower in priority than the
2345			 * current task on the run queue
2346			 */
2347			if (p->prio < src_rq->donor->prio)
2348				goto skip;
2349
2350			if (is_migration_disabled(p)) {
2351				push_task = get_push_task(src_rq);
2352			} else {
2353				move_queued_task_locked(src_rq, this_rq, p);
2354				resched = true;
2355			}
2356			/*
2357			 * We continue with the search, just in
2358			 * case there's an even higher prio task
2359			 * in another runqueue. (low likelihood
2360			 * but possible)
2361			 */
2362		}
2363skip:
2364		double_unlock_balance(this_rq, src_rq);
2365
2366		if (push_task) {
2367			preempt_disable();
2368			raw_spin_rq_unlock(this_rq);
2369			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2370					    push_task, &src_rq->push_work);
2371			preempt_enable();
2372			raw_spin_rq_lock(this_rq);
2373		}
2374	}
2375
2376	if (resched)
2377		resched_curr(this_rq);
2378}
2379
2380/*
2381 * If we are not running and we are not going to reschedule soon, we should
2382 * try to push tasks away now
2383 */
2384static void task_woken_rt(struct rq *rq, struct task_struct *p)
2385{
2386	bool need_to_push = !task_on_cpu(rq, p) &&
2387			    !test_tsk_need_resched(rq->curr) &&
2388			    p->nr_cpus_allowed > 1 &&
2389			    (dl_task(rq->donor) || rt_task(rq->donor)) &&
2390			    (rq->curr->nr_cpus_allowed < 2 ||
2391			     rq->donor->prio <= p->prio);
2392
2393	if (need_to_push)
2394		push_rt_tasks(rq);
2395}
2396
2397/* Assumes rq->lock is held */
2398static void rq_online_rt(struct rq *rq)
2399{
2400	if (rq->rt.overloaded)
2401		rt_set_overload(rq);
2402
2403	__enable_runtime(rq);
2404
2405	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2406}
2407
2408/* Assumes rq->lock is held */
2409static void rq_offline_rt(struct rq *rq)
2410{
2411	if (rq->rt.overloaded)
2412		rt_clear_overload(rq);
2413
2414	__disable_runtime(rq);
2415
2416	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2417}
2418
2419/*
2420 * When switch from the rt queue, we bring ourselves to a position
2421 * that we might want to pull RT tasks from other runqueues.
2422 */
2423static void switched_from_rt(struct rq *rq, struct task_struct *p)
2424{
2425	/*
2426	 * If there are other RT tasks then we will reschedule
2427	 * and the scheduling of the other RT tasks will handle
2428	 * the balancing. But if we are the last RT task
2429	 * we may need to handle the pulling of RT tasks
2430	 * now.
2431	 */
2432	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2433		return;
2434
2435	rt_queue_pull_task(rq);
2436}
2437
2438void __init init_sched_rt_class(void)
2439{
2440	unsigned int i;
2441
2442	for_each_possible_cpu(i) {
2443		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2444					GFP_KERNEL, cpu_to_node(i));
2445	}
2446}
2447#endif /* CONFIG_SMP */
2448
2449/*
2450 * When switching a task to RT, we may overload the runqueue
2451 * with RT tasks. In this case we try to push them off to
2452 * other runqueues.
2453 */
2454static void switched_to_rt(struct rq *rq, struct task_struct *p)
2455{
2456	/*
2457	 * If we are running, update the avg_rt tracking, as the running time
2458	 * will now on be accounted into the latter.
2459	 */
2460	if (task_current(rq, p)) {
2461		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2462		return;
2463	}
2464
2465	/*
2466	 * If we are not running we may need to preempt the current
2467	 * running task. If that current running task is also an RT task
2468	 * then see if we can move to another run queue.
2469	 */
2470	if (task_on_rq_queued(p)) {
2471#ifdef CONFIG_SMP
2472		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2473			rt_queue_push_tasks(rq);
2474#endif /* CONFIG_SMP */
2475		if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
2476			resched_curr(rq);
2477	}
2478}
2479
2480/*
2481 * Priority of the task has changed. This may cause
2482 * us to initiate a push or pull.
2483 */
2484static void
2485prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2486{
2487	if (!task_on_rq_queued(p))
2488		return;
2489
2490	if (task_current_donor(rq, p)) {
2491#ifdef CONFIG_SMP
2492		/*
2493		 * If our priority decreases while running, we
2494		 * may need to pull tasks to this runqueue.
2495		 */
2496		if (oldprio < p->prio)
2497			rt_queue_pull_task(rq);
2498
2499		/*
2500		 * If there's a higher priority task waiting to run
2501		 * then reschedule.
2502		 */
2503		if (p->prio > rq->rt.highest_prio.curr)
2504			resched_curr(rq);
2505#else
2506		/* For UP simply resched on drop of prio */
2507		if (oldprio < p->prio)
2508			resched_curr(rq);
2509#endif /* CONFIG_SMP */
2510	} else {
2511		/*
2512		 * This task is not running, but if it is
2513		 * greater than the current running task
2514		 * then reschedule.
2515		 */
2516		if (p->prio < rq->donor->prio)
2517			resched_curr(rq);
2518	}
2519}
2520
2521#ifdef CONFIG_POSIX_TIMERS
2522static void watchdog(struct rq *rq, struct task_struct *p)
2523{
2524	unsigned long soft, hard;
2525
2526	/* max may change after cur was read, this will be fixed next tick */
2527	soft = task_rlimit(p, RLIMIT_RTTIME);
2528	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2529
2530	if (soft != RLIM_INFINITY) {
2531		unsigned long next;
2532
2533		if (p->rt.watchdog_stamp != jiffies) {
2534			p->rt.timeout++;
2535			p->rt.watchdog_stamp = jiffies;
2536		}
2537
2538		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2539		if (p->rt.timeout > next) {
2540			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2541						    p->se.sum_exec_runtime);
2542		}
2543	}
2544}
2545#else
2546static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2547#endif
2548
2549/*
2550 * scheduler tick hitting a task of our scheduling class.
2551 *
2552 * NOTE: This function can be called remotely by the tick offload that
2553 * goes along full dynticks. Therefore no local assumption can be made
2554 * and everything must be accessed through the @rq and @curr passed in
2555 * parameters.
2556 */
2557static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2558{
2559	struct sched_rt_entity *rt_se = &p->rt;
2560
2561	update_curr_rt(rq);
2562	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2563
2564	watchdog(rq, p);
2565
2566	/*
2567	 * RR tasks need a special form of time-slice management.
2568	 * FIFO tasks have no timeslices.
2569	 */
2570	if (p->policy != SCHED_RR)
2571		return;
2572
2573	if (--p->rt.time_slice)
2574		return;
2575
2576	p->rt.time_slice = sched_rr_timeslice;
2577
2578	/*
2579	 * Requeue to the end of queue if we (and all of our ancestors) are not
2580	 * the only element on the queue
2581	 */
2582	for_each_sched_rt_entity(rt_se) {
2583		if (rt_se->run_list.prev != rt_se->run_list.next) {
2584			requeue_task_rt(rq, p, 0);
2585			resched_curr(rq);
2586			return;
2587		}
2588	}
2589}
2590
2591static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2592{
2593	/*
2594	 * Time slice is 0 for SCHED_FIFO tasks
2595	 */
2596	if (task->policy == SCHED_RR)
2597		return sched_rr_timeslice;
2598	else
2599		return 0;
2600}
2601
2602#ifdef CONFIG_SCHED_CORE
2603static int task_is_throttled_rt(struct task_struct *p, int cpu)
2604{
2605	struct rt_rq *rt_rq;
2606
2607#ifdef CONFIG_RT_GROUP_SCHED
2608	rt_rq = task_group(p)->rt_rq[cpu];
2609#else
2610	rt_rq = &cpu_rq(cpu)->rt;
2611#endif
2612
2613	return rt_rq_throttled(rt_rq);
2614}
2615#endif
2616
2617DEFINE_SCHED_CLASS(rt) = {
2618
2619	.enqueue_task		= enqueue_task_rt,
2620	.dequeue_task		= dequeue_task_rt,
2621	.yield_task		= yield_task_rt,
2622
2623	.wakeup_preempt		= wakeup_preempt_rt,
2624
2625	.pick_task		= pick_task_rt,
2626	.put_prev_task		= put_prev_task_rt,
2627	.set_next_task          = set_next_task_rt,
2628
2629#ifdef CONFIG_SMP
2630	.balance		= balance_rt,
2631	.select_task_rq		= select_task_rq_rt,
2632	.set_cpus_allowed       = set_cpus_allowed_common,
2633	.rq_online              = rq_online_rt,
2634	.rq_offline             = rq_offline_rt,
2635	.task_woken		= task_woken_rt,
2636	.switched_from		= switched_from_rt,
2637	.find_lock_rq		= find_lock_lowest_rq,
2638#endif
2639
2640	.task_tick		= task_tick_rt,
2641
2642	.get_rr_interval	= get_rr_interval_rt,
2643
2644	.prio_changed		= prio_changed_rt,
2645	.switched_to		= switched_to_rt,
2646
2647	.update_curr		= update_curr_rt,
2648
2649#ifdef CONFIG_SCHED_CORE
2650	.task_is_throttled	= task_is_throttled_rt,
2651#endif
2652
2653#ifdef CONFIG_UCLAMP_TASK
2654	.uclamp_enabled		= 1,
2655#endif
2656};
2657
2658#ifdef CONFIG_RT_GROUP_SCHED
2659/*
2660 * Ensure that the real time constraints are schedulable.
2661 */
2662static DEFINE_MUTEX(rt_constraints_mutex);
2663
2664static inline int tg_has_rt_tasks(struct task_group *tg)
2665{
2666	struct task_struct *task;
2667	struct css_task_iter it;
2668	int ret = 0;
2669
2670	/*
2671	 * Autogroups do not have RT tasks; see autogroup_create().
2672	 */
2673	if (task_group_is_autogroup(tg))
2674		return 0;
2675
2676	css_task_iter_start(&tg->css, 0, &it);
2677	while (!ret && (task = css_task_iter_next(&it)))
2678		ret |= rt_task(task);
2679	css_task_iter_end(&it);
2680
2681	return ret;
2682}
2683
2684struct rt_schedulable_data {
2685	struct task_group *tg;
2686	u64 rt_period;
2687	u64 rt_runtime;
2688};
2689
2690static int tg_rt_schedulable(struct task_group *tg, void *data)
2691{
2692	struct rt_schedulable_data *d = data;
2693	struct task_group *child;
2694	unsigned long total, sum = 0;
2695	u64 period, runtime;
2696
2697	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2698	runtime = tg->rt_bandwidth.rt_runtime;
2699
2700	if (tg == d->tg) {
2701		period = d->rt_period;
2702		runtime = d->rt_runtime;
2703	}
2704
2705	/*
2706	 * Cannot have more runtime than the period.
2707	 */
2708	if (runtime > period && runtime != RUNTIME_INF)
2709		return -EINVAL;
2710
2711	/*
2712	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2713	 */
2714	if (rt_bandwidth_enabled() && !runtime &&
2715	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2716		return -EBUSY;
2717
2718	total = to_ratio(period, runtime);
2719
2720	/*
2721	 * Nobody can have more than the global setting allows.
2722	 */
2723	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2724		return -EINVAL;
2725
2726	/*
2727	 * The sum of our children's runtime should not exceed our own.
2728	 */
2729	list_for_each_entry_rcu(child, &tg->children, siblings) {
2730		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2731		runtime = child->rt_bandwidth.rt_runtime;
2732
2733		if (child == d->tg) {
2734			period = d->rt_period;
2735			runtime = d->rt_runtime;
2736		}
2737
2738		sum += to_ratio(period, runtime);
2739	}
2740
2741	if (sum > total)
2742		return -EINVAL;
2743
2744	return 0;
2745}
2746
2747static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2748{
2749	int ret;
2750
2751	struct rt_schedulable_data data = {
2752		.tg = tg,
2753		.rt_period = period,
2754		.rt_runtime = runtime,
2755	};
2756
2757	rcu_read_lock();
2758	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2759	rcu_read_unlock();
2760
2761	return ret;
2762}
2763
2764static int tg_set_rt_bandwidth(struct task_group *tg,
2765		u64 rt_period, u64 rt_runtime)
2766{
2767	int i, err = 0;
2768
2769	/*
2770	 * Disallowing the root group RT runtime is BAD, it would disallow the
2771	 * kernel creating (and or operating) RT threads.
2772	 */
2773	if (tg == &root_task_group && rt_runtime == 0)
2774		return -EINVAL;
2775
2776	/* No period doesn't make any sense. */
2777	if (rt_period == 0)
2778		return -EINVAL;
2779
2780	/*
2781	 * Bound quota to defend quota against overflow during bandwidth shift.
2782	 */
2783	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2784		return -EINVAL;
2785
2786	mutex_lock(&rt_constraints_mutex);
2787	err = __rt_schedulable(tg, rt_period, rt_runtime);
2788	if (err)
2789		goto unlock;
2790
2791	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2792	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2793	tg->rt_bandwidth.rt_runtime = rt_runtime;
2794
2795	for_each_possible_cpu(i) {
2796		struct rt_rq *rt_rq = tg->rt_rq[i];
2797
2798		raw_spin_lock(&rt_rq->rt_runtime_lock);
2799		rt_rq->rt_runtime = rt_runtime;
2800		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2801	}
2802	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2803unlock:
2804	mutex_unlock(&rt_constraints_mutex);
2805
2806	return err;
2807}
2808
2809int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2810{
2811	u64 rt_runtime, rt_period;
2812
2813	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2814	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2815	if (rt_runtime_us < 0)
2816		rt_runtime = RUNTIME_INF;
2817	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2818		return -EINVAL;
2819
2820	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2821}
2822
2823long sched_group_rt_runtime(struct task_group *tg)
2824{
2825	u64 rt_runtime_us;
2826
2827	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2828		return -1;
2829
2830	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2831	do_div(rt_runtime_us, NSEC_PER_USEC);
2832	return rt_runtime_us;
2833}
2834
2835int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2836{
2837	u64 rt_runtime, rt_period;
2838
2839	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2840		return -EINVAL;
2841
2842	rt_period = rt_period_us * NSEC_PER_USEC;
2843	rt_runtime = tg->rt_bandwidth.rt_runtime;
2844
2845	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2846}
2847
2848long sched_group_rt_period(struct task_group *tg)
2849{
2850	u64 rt_period_us;
2851
2852	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2853	do_div(rt_period_us, NSEC_PER_USEC);
2854	return rt_period_us;
2855}
2856
2857#ifdef CONFIG_SYSCTL
2858static int sched_rt_global_constraints(void)
2859{
2860	int ret = 0;
2861
2862	mutex_lock(&rt_constraints_mutex);
2863	ret = __rt_schedulable(NULL, 0, 0);
2864	mutex_unlock(&rt_constraints_mutex);
2865
2866	return ret;
2867}
2868#endif /* CONFIG_SYSCTL */
2869
2870int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2871{
2872	/* Don't accept real-time tasks when there is no way for them to run */
2873	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2874		return 0;
2875
2876	return 1;
2877}
2878
2879#else /* !CONFIG_RT_GROUP_SCHED */
2880
2881#ifdef CONFIG_SYSCTL
2882static int sched_rt_global_constraints(void)
2883{
2884	return 0;
2885}
2886#endif /* CONFIG_SYSCTL */
2887#endif /* CONFIG_RT_GROUP_SCHED */
2888
2889#ifdef CONFIG_SYSCTL
2890static int sched_rt_global_validate(void)
2891{
2892	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2893		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2894		 ((u64)sysctl_sched_rt_runtime *
2895			NSEC_PER_USEC > max_rt_runtime)))
2896		return -EINVAL;
2897
2898	return 0;
2899}
2900
2901static void sched_rt_do_global(void)
2902{
2903}
2904
2905static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2906		size_t *lenp, loff_t *ppos)
2907{
2908	int old_period, old_runtime;
2909	static DEFINE_MUTEX(mutex);
2910	int ret;
2911
2912	mutex_lock(&mutex);
2913	old_period = sysctl_sched_rt_period;
2914	old_runtime = sysctl_sched_rt_runtime;
2915
2916	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2917
2918	if (!ret && write) {
2919		ret = sched_rt_global_validate();
2920		if (ret)
2921			goto undo;
2922
2923		ret = sched_dl_global_validate();
2924		if (ret)
2925			goto undo;
2926
2927		ret = sched_rt_global_constraints();
2928		if (ret)
2929			goto undo;
2930
2931		sched_rt_do_global();
2932		sched_dl_do_global();
2933	}
2934	if (0) {
2935undo:
2936		sysctl_sched_rt_period = old_period;
2937		sysctl_sched_rt_runtime = old_runtime;
2938	}
2939	mutex_unlock(&mutex);
2940
2941	return ret;
2942}
2943
2944static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2945		size_t *lenp, loff_t *ppos)
2946{
2947	int ret;
2948	static DEFINE_MUTEX(mutex);
2949
2950	mutex_lock(&mutex);
2951	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2952	/*
2953	 * Make sure that internally we keep jiffies.
2954	 * Also, writing zero resets the time-slice to default:
2955	 */
2956	if (!ret && write) {
2957		sched_rr_timeslice =
2958			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2959			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2960
2961		if (sysctl_sched_rr_timeslice <= 0)
2962			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2963	}
2964	mutex_unlock(&mutex);
2965
2966	return ret;
2967}
2968#endif /* CONFIG_SYSCTL */
2969
2970#ifdef CONFIG_SCHED_DEBUG
2971void print_rt_stats(struct seq_file *m, int cpu)
2972{
2973	rt_rq_iter_t iter;
2974	struct rt_rq *rt_rq;
2975
2976	rcu_read_lock();
2977	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2978		print_rt_rq(m, cpu, rt_rq);
2979	rcu_read_unlock();
2980}
2981#endif /* CONFIG_SCHED_DEBUG */