Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_bit.h"
  20#include "xfs_trans_space.h"
  21#include "xfs_trans.h"
  22#include "xfs_buf_item.h"
  23#include "xfs_inode_item.h"
  24#include "xfs_iunlink_item.h"
  25#include "xfs_ialloc.h"
  26#include "xfs_bmap.h"
  27#include "xfs_bmap_util.h"
  28#include "xfs_errortag.h"
  29#include "xfs_error.h"
  30#include "xfs_quota.h"
  31#include "xfs_filestream.h"
  32#include "xfs_trace.h"
  33#include "xfs_icache.h"
  34#include "xfs_symlink.h"
  35#include "xfs_trans_priv.h"
  36#include "xfs_log.h"
  37#include "xfs_bmap_btree.h"
  38#include "xfs_reflink.h"
  39#include "xfs_ag.h"
  40#include "xfs_log_priv.h"
  41#include "xfs_health.h"
  42#include "xfs_pnfs.h"
  43#include "xfs_parent.h"
  44#include "xfs_xattr.h"
  45#include "xfs_inode_util.h"
  46#include "xfs_metafile.h"
  47
  48struct kmem_cache *xfs_inode_cache;
  49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50/*
  51 * These two are wrapper routines around the xfs_ilock() routine used to
  52 * centralize some grungy code.  They are used in places that wish to lock the
  53 * inode solely for reading the extents.  The reason these places can't just
  54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  55 * bringing in of the extents from disk for a file in b-tree format.  If the
  56 * inode is in b-tree format, then we need to lock the inode exclusively until
  57 * the extents are read in.  Locking it exclusively all the time would limit
  58 * our parallelism unnecessarily, though.  What we do instead is check to see
  59 * if the extents have been read in yet, and only lock the inode exclusively
  60 * if they have not.
  61 *
  62 * The functions return a value which should be given to the corresponding
  63 * xfs_iunlock() call.
  64 */
  65uint
  66xfs_ilock_data_map_shared(
  67	struct xfs_inode	*ip)
  68{
  69	uint			lock_mode = XFS_ILOCK_SHARED;
  70
  71	if (xfs_need_iread_extents(&ip->i_df))
  72		lock_mode = XFS_ILOCK_EXCL;
  73	xfs_ilock(ip, lock_mode);
  74	return lock_mode;
  75}
  76
  77uint
  78xfs_ilock_attr_map_shared(
  79	struct xfs_inode	*ip)
  80{
  81	uint			lock_mode = XFS_ILOCK_SHARED;
  82
  83	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
  84		lock_mode = XFS_ILOCK_EXCL;
  85	xfs_ilock(ip, lock_mode);
  86	return lock_mode;
  87}
  88
  89/*
  90 * You can't set both SHARED and EXCL for the same lock,
  91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
  92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
  93 * to set in lock_flags.
  94 */
  95static inline void
  96xfs_lock_flags_assert(
  97	uint		lock_flags)
  98{
  99	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 100		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 101	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 102		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 103	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 104		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 105	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 106	ASSERT(lock_flags != 0);
 107}
 108
 109/*
 110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 111 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 112 * various combinations of the locks to be obtained.
 113 *
 114 * The 3 locks should always be ordered so that the IO lock is obtained first,
 115 * the mmap lock second and the ilock last in order to prevent deadlock.
 116 *
 117 * Basic locking order:
 118 *
 119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 120 *
 121 * mmap_lock locking order:
 122 *
 123 * i_rwsem -> page lock -> mmap_lock
 124 * mmap_lock -> invalidate_lock -> page_lock
 125 *
 126 * The difference in mmap_lock locking order mean that we cannot hold the
 127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 128 * can fault in pages during copy in/out (for buffered IO) or require the
 129 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 131 * fault because page faults already hold the mmap_lock.
 132 *
 133 * Hence to serialise fully against both syscall and mmap based IO, we need to
 134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 135 * both taken in places where we need to invalidate the page cache in a race
 136 * free manner (e.g. truncate, hole punch and other extent manipulation
 137 * functions).
 138 */
 139void
 140xfs_ilock(
 141	xfs_inode_t		*ip,
 142	uint			lock_flags)
 143{
 144	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 145
 146	xfs_lock_flags_assert(lock_flags);
 147
 148	if (lock_flags & XFS_IOLOCK_EXCL) {
 149		down_write_nested(&VFS_I(ip)->i_rwsem,
 150				  XFS_IOLOCK_DEP(lock_flags));
 151	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 152		down_read_nested(&VFS_I(ip)->i_rwsem,
 153				 XFS_IOLOCK_DEP(lock_flags));
 154	}
 155
 156	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 157		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 158				  XFS_MMAPLOCK_DEP(lock_flags));
 159	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 160		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 161				 XFS_MMAPLOCK_DEP(lock_flags));
 162	}
 163
 164	if (lock_flags & XFS_ILOCK_EXCL)
 165		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 166	else if (lock_flags & XFS_ILOCK_SHARED)
 167		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 168}
 169
 170/*
 171 * This is just like xfs_ilock(), except that the caller
 172 * is guaranteed not to sleep.  It returns 1 if it gets
 173 * the requested locks and 0 otherwise.  If the IO lock is
 174 * obtained but the inode lock cannot be, then the IO lock
 175 * is dropped before returning.
 176 *
 177 * ip -- the inode being locked
 178 * lock_flags -- this parameter indicates the inode's locks to be
 179 *       to be locked.  See the comment for xfs_ilock() for a list
 180 *	 of valid values.
 181 */
 182int
 183xfs_ilock_nowait(
 184	xfs_inode_t		*ip,
 185	uint			lock_flags)
 186{
 187	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 188
 189	xfs_lock_flags_assert(lock_flags);
 190
 191	if (lock_flags & XFS_IOLOCK_EXCL) {
 192		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 193			goto out;
 194	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 195		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 196			goto out;
 197	}
 198
 199	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 200		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 201			goto out_undo_iolock;
 202	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 203		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 204			goto out_undo_iolock;
 205	}
 206
 207	if (lock_flags & XFS_ILOCK_EXCL) {
 208		if (!down_write_trylock(&ip->i_lock))
 209			goto out_undo_mmaplock;
 210	} else if (lock_flags & XFS_ILOCK_SHARED) {
 211		if (!down_read_trylock(&ip->i_lock))
 212			goto out_undo_mmaplock;
 213	}
 214	return 1;
 215
 216out_undo_mmaplock:
 217	if (lock_flags & XFS_MMAPLOCK_EXCL)
 218		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 219	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 220		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 221out_undo_iolock:
 222	if (lock_flags & XFS_IOLOCK_EXCL)
 223		up_write(&VFS_I(ip)->i_rwsem);
 224	else if (lock_flags & XFS_IOLOCK_SHARED)
 225		up_read(&VFS_I(ip)->i_rwsem);
 226out:
 227	return 0;
 228}
 229
 230/*
 231 * xfs_iunlock() is used to drop the inode locks acquired with
 232 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 234 * that we know which locks to drop.
 235 *
 236 * ip -- the inode being unlocked
 237 * lock_flags -- this parameter indicates the inode's locks to be
 238 *       to be unlocked.  See the comment for xfs_ilock() for a list
 239 *	 of valid values for this parameter.
 240 *
 241 */
 242void
 243xfs_iunlock(
 244	xfs_inode_t		*ip,
 245	uint			lock_flags)
 246{
 247	xfs_lock_flags_assert(lock_flags);
 248
 249	if (lock_flags & XFS_IOLOCK_EXCL)
 250		up_write(&VFS_I(ip)->i_rwsem);
 251	else if (lock_flags & XFS_IOLOCK_SHARED)
 252		up_read(&VFS_I(ip)->i_rwsem);
 253
 254	if (lock_flags & XFS_MMAPLOCK_EXCL)
 255		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 256	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 257		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 258
 259	if (lock_flags & XFS_ILOCK_EXCL)
 260		up_write(&ip->i_lock);
 261	else if (lock_flags & XFS_ILOCK_SHARED)
 262		up_read(&ip->i_lock);
 263
 264	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 265}
 266
 267/*
 268 * give up write locks.  the i/o lock cannot be held nested
 269 * if it is being demoted.
 270 */
 271void
 272xfs_ilock_demote(
 273	xfs_inode_t		*ip,
 274	uint			lock_flags)
 275{
 276	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 277	ASSERT((lock_flags &
 278		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 279
 280	if (lock_flags & XFS_ILOCK_EXCL)
 281		downgrade_write(&ip->i_lock);
 282	if (lock_flags & XFS_MMAPLOCK_EXCL)
 283		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 284	if (lock_flags & XFS_IOLOCK_EXCL)
 285		downgrade_write(&VFS_I(ip)->i_rwsem);
 286
 287	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 288}
 289
 290void
 291xfs_assert_ilocked(
 292	struct xfs_inode	*ip,
 293	uint			lock_flags)
 
 294{
 
 
 
 
 
 
 295	/*
 296	 * Sometimes we assert the ILOCK is held exclusively, but we're in
 297	 * a workqueue, so lockdep doesn't know we're the owner.
 
 
 298	 */
 299	if (lock_flags & XFS_ILOCK_SHARED)
 300		rwsem_assert_held(&ip->i_lock);
 301	else if (lock_flags & XFS_ILOCK_EXCL)
 302		rwsem_assert_held_write_nolockdep(&ip->i_lock);
 303
 304	if (lock_flags & XFS_MMAPLOCK_SHARED)
 305		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
 306	else if (lock_flags & XFS_MMAPLOCK_EXCL)
 307		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 308
 309	if (lock_flags & XFS_IOLOCK_SHARED)
 310		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
 311	else if (lock_flags & XFS_IOLOCK_EXCL)
 312		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 313}
 
 314
 315/*
 316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 319 * errors and warnings.
 320 */
 321#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 322static bool
 323xfs_lockdep_subclass_ok(
 324	int subclass)
 325{
 326	return subclass < MAX_LOCKDEP_SUBCLASSES;
 327}
 328#else
 329#define xfs_lockdep_subclass_ok(subclass)	(true)
 330#endif
 331
 332/*
 333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 334 * value. This can be called for any type of inode lock combination, including
 335 * parent locking. Care must be taken to ensure we don't overrun the subclass
 336 * storage fields in the class mask we build.
 337 */
 338static inline uint
 339xfs_lock_inumorder(
 340	uint	lock_mode,
 341	uint	subclass)
 342{
 343	uint	class = 0;
 344
 345	ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
 
 346	ASSERT(xfs_lockdep_subclass_ok(subclass));
 347
 348	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 349		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 350		class += subclass << XFS_IOLOCK_SHIFT;
 351	}
 352
 353	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 354		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 355		class += subclass << XFS_MMAPLOCK_SHIFT;
 356	}
 357
 358	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 359		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 360		class += subclass << XFS_ILOCK_SHIFT;
 361	}
 362
 363	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 364}
 365
 366/*
 367 * The following routine will lock n inodes in exclusive mode.  We assume the
 368 * caller calls us with the inodes in i_ino order.
 369 *
 370 * We need to detect deadlock where an inode that we lock is in the AIL and we
 371 * start waiting for another inode that is locked by a thread in a long running
 372 * transaction (such as truncate). This can result in deadlock since the long
 373 * running trans might need to wait for the inode we just locked in order to
 374 * push the tail and free space in the log.
 375 *
 376 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 378 * lock more than one at a time, lockdep will report false positives saying we
 379 * have violated locking orders.
 380 */
 381void
 382xfs_lock_inodes(
 383	struct xfs_inode	**ips,
 384	int			inodes,
 385	uint			lock_mode)
 386{
 387	int			attempts = 0;
 388	uint			i;
 389	int			j;
 390	bool			try_lock;
 391	struct xfs_log_item	*lp;
 392
 393	/*
 394	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 395	 * support an arbitrary depth of locking here, but absolute limits on
 396	 * inodes depend on the type of locking and the limits placed by
 397	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 398	 * the asserts.
 399	 */
 400	ASSERT(ips && inodes >= 2 && inodes <= 5);
 401	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 402			    XFS_ILOCK_EXCL));
 403	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 404			      XFS_ILOCK_SHARED)));
 405	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 406		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 407	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 408		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 409
 410	if (lock_mode & XFS_IOLOCK_EXCL) {
 411		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 412	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 413		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 414
 415again:
 416	try_lock = false;
 417	i = 0;
 418	for (; i < inodes; i++) {
 419		ASSERT(ips[i]);
 420
 421		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 422			continue;
 423
 424		/*
 425		 * If try_lock is not set yet, make sure all locked inodes are
 426		 * not in the AIL.  If any are, set try_lock to be used later.
 427		 */
 428		if (!try_lock) {
 429			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 430				lp = &ips[j]->i_itemp->ili_item;
 431				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 432					try_lock = true;
 433			}
 434		}
 435
 436		/*
 437		 * If any of the previous locks we have locked is in the AIL,
 438		 * we must TRY to get the second and subsequent locks. If
 439		 * we can't get any, we must release all we have
 440		 * and try again.
 441		 */
 442		if (!try_lock) {
 443			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 444			continue;
 445		}
 446
 447		/* try_lock means we have an inode locked that is in the AIL. */
 448		ASSERT(i != 0);
 449		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 450			continue;
 451
 452		/*
 453		 * Unlock all previous guys and try again.  xfs_iunlock will try
 454		 * to push the tail if the inode is in the AIL.
 455		 */
 456		attempts++;
 457		for (j = i - 1; j >= 0; j--) {
 458			/*
 459			 * Check to see if we've already unlocked this one.  Not
 460			 * the first one going back, and the inode ptr is the
 461			 * same.
 462			 */
 463			if (j != (i - 1) && ips[j] == ips[j + 1])
 464				continue;
 465
 466			xfs_iunlock(ips[j], lock_mode);
 467		}
 468
 469		if ((attempts % 5) == 0) {
 470			delay(1); /* Don't just spin the CPU */
 471		}
 472		goto again;
 473	}
 474}
 475
 476/*
 477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 478 * mmaplock must be double-locked separately since we use i_rwsem and
 479 * invalidate_lock for that. We now support taking one lock EXCL and the
 480 * other SHARED.
 481 */
 482void
 483xfs_lock_two_inodes(
 484	struct xfs_inode	*ip0,
 485	uint			ip0_mode,
 486	struct xfs_inode	*ip1,
 487	uint			ip1_mode)
 488{
 489	int			attempts = 0;
 490	struct xfs_log_item	*lp;
 491
 492	ASSERT(hweight32(ip0_mode) == 1);
 493	ASSERT(hweight32(ip1_mode) == 1);
 494	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 495	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 496	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 497	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 498	ASSERT(ip0->i_ino != ip1->i_ino);
 499
 500	if (ip0->i_ino > ip1->i_ino) {
 501		swap(ip0, ip1);
 502		swap(ip0_mode, ip1_mode);
 503	}
 504
 505 again:
 506	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 507
 508	/*
 509	 * If the first lock we have locked is in the AIL, we must TRY to get
 510	 * the second lock. If we can't get it, we must release the first one
 511	 * and try again.
 512	 */
 513	lp = &ip0->i_itemp->ili_item;
 514	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 515		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 516			xfs_iunlock(ip0, ip0_mode);
 517			if ((++attempts % 5) == 0)
 518				delay(1); /* Don't just spin the CPU */
 519			goto again;
 520		}
 521	} else {
 522		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 523	}
 524}
 525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526/*
 527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 528 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 529 * ci_name->name will point to a the actual name (caller must free) or
 530 * will be set to NULL if an exact match is found.
 531 */
 532int
 533xfs_lookup(
 534	struct xfs_inode	*dp,
 535	const struct xfs_name	*name,
 536	struct xfs_inode	**ipp,
 537	struct xfs_name		*ci_name)
 538{
 539	xfs_ino_t		inum;
 540	int			error;
 541
 542	trace_xfs_lookup(dp, name);
 543
 544	if (xfs_is_shutdown(dp->i_mount))
 545		return -EIO;
 546	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 547		return -EIO;
 548
 549	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 550	if (error)
 551		goto out_unlock;
 552
 553	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 554	if (error)
 555		goto out_free_name;
 556
 557	/*
 558	 * Fail if a directory entry in the regular directory tree points to
 559	 * a metadata file.
 560	 */
 561	if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
 562		xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
 563		error = -EFSCORRUPTED;
 564		goto out_irele;
 565	}
 566
 567	return 0;
 568
 569out_irele:
 570	xfs_irele(*ipp);
 571out_free_name:
 572	if (ci_name)
 573		kfree(ci_name->name);
 574out_unlock:
 575	*ipp = NULL;
 576	return error;
 577}
 578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579/*
 580 * Initialise a newly allocated inode and return the in-core inode to the
 581 * caller locked exclusively.
 582 *
 583 * Caller is responsible for unlocking the inode manually upon return
 584 */
 585int
 586xfs_icreate(
 
 587	struct xfs_trans	*tp,
 
 588	xfs_ino_t		ino,
 589	const struct xfs_icreate_args *args,
 
 
 
 
 590	struct xfs_inode	**ipp)
 591{
 
 592	struct xfs_mount	*mp = tp->t_mountp;
 593	struct xfs_inode	*ip = NULL;
 
 594	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596	/*
 597	 * Get the in-core inode with the lock held exclusively to prevent
 598	 * others from looking at until we're done.
 599	 */
 600	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 601	if (error)
 602		return error;
 603
 604	ASSERT(ip != NULL);
 605	xfs_trans_ijoin(tp, ip, 0);
 606	xfs_inode_init(tp, args, ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608	/* now that we have an i_mode we can setup the inode structure */
 609	xfs_setup_inode(ip);
 610
 611	*ipp = ip;
 612	return 0;
 613}
 614
 615/* Return dquots for the ids that will be assigned to a new file. */
 616int
 617xfs_icreate_dqalloc(
 618	const struct xfs_icreate_args	*args,
 619	struct xfs_dquot		**udqpp,
 620	struct xfs_dquot		**gdqpp,
 621	struct xfs_dquot		**pdqpp)
 622{
 623	struct inode			*dir = VFS_I(args->pip);
 624	kuid_t				uid = GLOBAL_ROOT_UID;
 625	kgid_t				gid = GLOBAL_ROOT_GID;
 626	prid_t				prid = 0;
 627	unsigned int			flags = XFS_QMOPT_QUOTALL;
 628
 629	if (args->idmap) {
 630		/*
 631		 * The uid/gid computation code must match what the VFS uses to
 632		 * assign i_[ug]id.  INHERIT adjusts the gid computation for
 633		 * setgid/grpid systems.
 634		 */
 635		uid = mapped_fsuid(args->idmap, i_user_ns(dir));
 636		gid = mapped_fsgid(args->idmap, i_user_ns(dir));
 637		prid = xfs_get_initial_prid(args->pip);
 638		flags |= XFS_QMOPT_INHERIT;
 639	}
 640
 641	*udqpp = *gdqpp = *pdqpp = NULL;
 642
 643	return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
 644			gdqpp, pdqpp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645}
 646
 647int
 648xfs_create(
 649	const struct xfs_icreate_args *args,
 
 650	struct xfs_name		*name,
 651	struct xfs_inode	**ipp)
 
 
 
 652{
 653	struct xfs_inode	*dp = args->pip;
 654	struct xfs_dir_update	du = {
 655		.dp		= dp,
 656		.name		= name,
 657	};
 658	struct xfs_mount	*mp = dp->i_mount;
 
 659	struct xfs_trans	*tp = NULL;
 660	struct xfs_dquot	*udqp;
 661	struct xfs_dquot	*gdqp;
 662	struct xfs_dquot	*pdqp;
 
 
 
 663	struct xfs_trans_res	*tres;
 664	xfs_ino_t		ino;
 665	bool			unlock_dp_on_error = false;
 666	bool			is_dir = S_ISDIR(args->mode);
 667	uint			resblks;
 668	int			error;
 669
 670	trace_xfs_create(dp, name);
 671
 672	if (xfs_is_shutdown(mp))
 673		return -EIO;
 674	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 675		return -EIO;
 676
 677	/* Make sure that we have allocated dquot(s) on disk. */
 678	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
 
 
 
 
 
 
 
 679	if (error)
 680		return error;
 681
 682	if (is_dir) {
 683		resblks = xfs_mkdir_space_res(mp, name->len);
 684		tres = &M_RES(mp)->tr_mkdir;
 685	} else {
 686		resblks = xfs_create_space_res(mp, name->len);
 687		tres = &M_RES(mp)->tr_create;
 688	}
 689
 690	error = xfs_parent_start(mp, &du.ppargs);
 691	if (error)
 692		goto out_release_dquots;
 693
 694	/*
 695	 * Initially assume that the file does not exist and
 696	 * reserve the resources for that case.  If that is not
 697	 * the case we'll drop the one we have and get a more
 698	 * appropriate transaction later.
 699	 */
 700	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
 701			&tp);
 702	if (error == -ENOSPC) {
 703		/* flush outstanding delalloc blocks and retry */
 704		xfs_flush_inodes(mp);
 705		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
 706				resblks, &tp);
 707	}
 708	if (error)
 709		goto out_parent;
 710
 711	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
 712	unlock_dp_on_error = true;
 713
 714	/*
 715	 * A newly created regular or special file just has one directory
 716	 * entry pointing to them, but a directory also the "." entry
 717	 * pointing to itself.
 718	 */
 719	error = xfs_dialloc(&tp, args, &ino);
 720	if (!error)
 721		error = xfs_icreate(tp, ino, args, &du.ip);
 
 722	if (error)
 723		goto out_trans_cancel;
 724
 725	/*
 726	 * Now we join the directory inode to the transaction.  We do not do it
 727	 * earlier because xfs_dialloc might commit the previous transaction
 728	 * (and release all the locks).  An error from here on will result in
 729	 * the transaction cancel unlocking dp so don't do it explicitly in the
 730	 * error path.
 731	 */
 732	xfs_trans_ijoin(tp, dp, 0);
 
 733
 734	error = xfs_dir_create_child(tp, resblks, &du);
 735	if (error)
 
 
 736		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 737
 738	/*
 739	 * If this is a synchronous mount, make sure that the
 740	 * create transaction goes to disk before returning to
 741	 * the user.
 742	 */
 743	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
 744		xfs_trans_set_sync(tp);
 745
 746	/*
 747	 * Attach the dquot(s) to the inodes and modify them incore.
 748	 * These ids of the inode couldn't have changed since the new
 749	 * inode has been locked ever since it was created.
 750	 */
 751	xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
 752
 753	error = xfs_trans_commit(tp);
 754	if (error)
 755		goto out_release_inode;
 756
 757	xfs_qm_dqrele(udqp);
 758	xfs_qm_dqrele(gdqp);
 759	xfs_qm_dqrele(pdqp);
 760
 761	*ipp = du.ip;
 762	xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
 763	xfs_iunlock(dp, XFS_ILOCK_EXCL);
 764	xfs_parent_finish(mp, du.ppargs);
 765	return 0;
 766
 767 out_trans_cancel:
 768	xfs_trans_cancel(tp);
 769 out_release_inode:
 770	/*
 771	 * Wait until after the current transaction is aborted to finish the
 772	 * setup of the inode and release the inode.  This prevents recursive
 773	 * transactions and deadlocks from xfs_inactive.
 774	 */
 775	if (du.ip) {
 776		xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
 777		xfs_finish_inode_setup(du.ip);
 778		xfs_irele(du.ip);
 779	}
 780 out_parent:
 781	xfs_parent_finish(mp, du.ppargs);
 782 out_release_dquots:
 783	xfs_qm_dqrele(udqp);
 784	xfs_qm_dqrele(gdqp);
 785	xfs_qm_dqrele(pdqp);
 786
 787	if (unlock_dp_on_error)
 788		xfs_iunlock(dp, XFS_ILOCK_EXCL);
 789	return error;
 790}
 791
 792int
 793xfs_create_tmpfile(
 794	const struct xfs_icreate_args *args,
 
 
 795	struct xfs_inode	**ipp)
 796{
 797	struct xfs_inode	*dp = args->pip;
 798	struct xfs_mount	*mp = dp->i_mount;
 799	struct xfs_inode	*ip = NULL;
 800	struct xfs_trans	*tp = NULL;
 801	struct xfs_dquot	*udqp;
 802	struct xfs_dquot	*gdqp;
 803	struct xfs_dquot	*pdqp;
 
 
 804	struct xfs_trans_res	*tres;
 805	xfs_ino_t		ino;
 806	uint			resblks;
 807	int			error;
 808
 809	ASSERT(args->flags & XFS_ICREATE_TMPFILE);
 810
 811	if (xfs_is_shutdown(mp))
 812		return -EIO;
 813
 814	/* Make sure that we have allocated dquot(s) on disk. */
 815	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
 
 
 
 
 
 
 
 816	if (error)
 817		return error;
 818
 819	resblks = XFS_IALLOC_SPACE_RES(mp);
 820	tres = &M_RES(mp)->tr_create_tmpfile;
 821
 822	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
 823			&tp);
 824	if (error)
 825		goto out_release_dquots;
 826
 827	error = xfs_dialloc(&tp, args, &ino);
 828	if (!error)
 829		error = xfs_icreate(tp, ino, args, &ip);
 
 830	if (error)
 831		goto out_trans_cancel;
 832
 833	if (xfs_has_wsync(mp))
 834		xfs_trans_set_sync(tp);
 835
 836	/*
 837	 * Attach the dquot(s) to the inodes and modify them incore.
 838	 * These ids of the inode couldn't have changed since the new
 839	 * inode has been locked ever since it was created.
 840	 */
 841	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
 842
 843	error = xfs_iunlink(tp, ip);
 844	if (error)
 845		goto out_trans_cancel;
 846
 847	error = xfs_trans_commit(tp);
 848	if (error)
 849		goto out_release_inode;
 850
 851	xfs_qm_dqrele(udqp);
 852	xfs_qm_dqrele(gdqp);
 853	xfs_qm_dqrele(pdqp);
 854
 855	*ipp = ip;
 856	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 857	return 0;
 858
 859 out_trans_cancel:
 860	xfs_trans_cancel(tp);
 861 out_release_inode:
 862	/*
 863	 * Wait until after the current transaction is aborted to finish the
 864	 * setup of the inode and release the inode.  This prevents recursive
 865	 * transactions and deadlocks from xfs_inactive.
 866	 */
 867	if (ip) {
 868		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 869		xfs_finish_inode_setup(ip);
 870		xfs_irele(ip);
 871	}
 872 out_release_dquots:
 873	xfs_qm_dqrele(udqp);
 874	xfs_qm_dqrele(gdqp);
 875	xfs_qm_dqrele(pdqp);
 876
 877	return error;
 878}
 879
 880int
 881xfs_link(
 882	struct xfs_inode	*tdp,
 883	struct xfs_inode	*sip,
 884	struct xfs_name		*target_name)
 885{
 886	struct xfs_dir_update	du = {
 887		.dp		= tdp,
 888		.name		= target_name,
 889		.ip		= sip,
 890	};
 891	struct xfs_mount	*mp = tdp->i_mount;
 892	struct xfs_trans	*tp;
 893	int			error, nospace_error = 0;
 894	int			resblks;
 895
 896	trace_xfs_link(tdp, target_name);
 897
 898	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
 899
 900	if (xfs_is_shutdown(mp))
 901		return -EIO;
 902	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
 903		return -EIO;
 904
 905	error = xfs_qm_dqattach(sip);
 906	if (error)
 907		goto std_return;
 908
 909	error = xfs_qm_dqattach(tdp);
 910	if (error)
 911		goto std_return;
 912
 913	error = xfs_parent_start(mp, &du.ppargs);
 914	if (error)
 915		goto std_return;
 916
 917	resblks = xfs_link_space_res(mp, target_name->len);
 918	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
 919			&tp, &nospace_error);
 920	if (error)
 921		goto out_parent;
 922
 923	/*
 924	 * We don't allow reservationless or quotaless hardlinking when parent
 925	 * pointers are enabled because we can't back out if the xattrs must
 926	 * grow.
 927	 */
 928	if (du.ppargs && nospace_error) {
 929		error = nospace_error;
 930		goto error_return;
 931	}
 932
 933	/*
 934	 * If we are using project inheritance, we only allow hard link
 935	 * creation in our tree when the project IDs are the same; else
 936	 * the tree quota mechanism could be circumvented.
 937	 */
 938	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
 939		     tdp->i_projid != sip->i_projid)) {
 940		/*
 941		 * Project quota setup skips special files which can
 942		 * leave inodes in a PROJINHERIT directory without a
 943		 * project ID set. We need to allow links to be made
 944		 * to these "project-less" inodes because userspace
 945		 * expects them to succeed after project ID setup,
 946		 * but everything else should be rejected.
 947		 */
 948		if (!special_file(VFS_I(sip)->i_mode) ||
 949		    sip->i_projid != 0) {
 950			error = -EXDEV;
 951			goto error_return;
 952		}
 953	}
 954
 955	error = xfs_dir_add_child(tp, resblks, &du);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956	if (error)
 957		goto error_return;
 
 
 
 
 958
 959	/*
 960	 * If this is a synchronous mount, make sure that the
 961	 * link transaction goes to disk before returning to
 962	 * the user.
 963	 */
 964	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
 965		xfs_trans_set_sync(tp);
 966
 967	error = xfs_trans_commit(tp);
 968	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
 969	xfs_iunlock(sip, XFS_ILOCK_EXCL);
 970	xfs_parent_finish(mp, du.ppargs);
 971	return error;
 972
 973 error_return:
 974	xfs_trans_cancel(tp);
 975	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
 976	xfs_iunlock(sip, XFS_ILOCK_EXCL);
 977 out_parent:
 978	xfs_parent_finish(mp, du.ppargs);
 979 std_return:
 980	if (error == -ENOSPC && nospace_error)
 981		error = nospace_error;
 982	return error;
 983}
 984
 985/* Clear the reflink flag and the cowblocks tag if possible. */
 986static void
 987xfs_itruncate_clear_reflink_flags(
 988	struct xfs_inode	*ip)
 989{
 990	struct xfs_ifork	*dfork;
 991	struct xfs_ifork	*cfork;
 992
 993	if (!xfs_is_reflink_inode(ip))
 994		return;
 995	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
 996	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
 997	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
 998		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
 999	if (cfork->if_bytes == 0)
1000		xfs_inode_clear_cowblocks_tag(ip);
1001}
1002
1003/*
1004 * Free up the underlying blocks past new_size.  The new size must be smaller
1005 * than the current size.  This routine can be used both for the attribute and
1006 * data fork, and does not modify the inode size, which is left to the caller.
1007 *
1008 * The transaction passed to this routine must have made a permanent log
1009 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1010 * given transaction and start new ones, so make sure everything involved in
1011 * the transaction is tidy before calling here.  Some transaction will be
1012 * returned to the caller to be committed.  The incoming transaction must
1013 * already include the inode, and both inode locks must be held exclusively.
1014 * The inode must also be "held" within the transaction.  On return the inode
1015 * will be "held" within the returned transaction.  This routine does NOT
1016 * require any disk space to be reserved for it within the transaction.
1017 *
1018 * If we get an error, we must return with the inode locked and linked into the
1019 * current transaction. This keeps things simple for the higher level code,
1020 * because it always knows that the inode is locked and held in the transaction
1021 * that returns to it whether errors occur or not.  We don't mark the inode
1022 * dirty on error so that transactions can be easily aborted if possible.
1023 */
1024int
1025xfs_itruncate_extents_flags(
1026	struct xfs_trans	**tpp,
1027	struct xfs_inode	*ip,
1028	int			whichfork,
1029	xfs_fsize_t		new_size,
1030	int			flags)
1031{
1032	struct xfs_mount	*mp = ip->i_mount;
1033	struct xfs_trans	*tp = *tpp;
1034	xfs_fileoff_t		first_unmap_block;
1035	int			error = 0;
1036
1037	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1038	if (atomic_read(&VFS_I(ip)->i_count))
1039		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1040	ASSERT(new_size <= XFS_ISIZE(ip));
1041	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1042	ASSERT(ip->i_itemp != NULL);
1043	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1044	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1045
1046	trace_xfs_itruncate_extents_start(ip, new_size);
1047
1048	flags |= xfs_bmapi_aflag(whichfork);
1049
1050	/*
1051	 * Since it is possible for space to become allocated beyond
1052	 * the end of the file (in a crash where the space is allocated
1053	 * but the inode size is not yet updated), simply remove any
1054	 * blocks which show up between the new EOF and the maximum
1055	 * possible file size.
1056	 *
1057	 * We have to free all the blocks to the bmbt maximum offset, even if
1058	 * the page cache can't scale that far.
1059	 */
1060	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1061	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1062		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1063		return 0;
1064	}
1065
1066	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1067			XFS_MAX_FILEOFF);
1068	if (error)
1069		goto out;
1070
1071	if (whichfork == XFS_DATA_FORK) {
1072		/* Remove all pending CoW reservations. */
1073		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1074				first_unmap_block, XFS_MAX_FILEOFF, true);
1075		if (error)
1076			goto out;
1077
1078		xfs_itruncate_clear_reflink_flags(ip);
1079	}
1080
1081	/*
1082	 * Always re-log the inode so that our permanent transaction can keep
1083	 * on rolling it forward in the log.
1084	 */
1085	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086
1087	trace_xfs_itruncate_extents_end(ip, new_size);
1088
1089out:
1090	*tpp = tp;
1091	return error;
1092}
1093
1094/*
1095 * Mark all the buffers attached to this directory stale.  In theory we should
1096 * never be freeing a directory with any blocks at all, but this covers the
1097 * case where we've recovered a directory swap with a "temporary" directory
1098 * created by online repair and now need to dump it.
1099 */
1100STATIC void
1101xfs_inactive_dir(
1102	struct xfs_inode	*dp)
1103{
1104	struct xfs_iext_cursor	icur;
1105	struct xfs_bmbt_irec	got;
1106	struct xfs_mount	*mp = dp->i_mount;
1107	struct xfs_da_geometry	*geo = mp->m_dir_geo;
1108	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1109	xfs_fileoff_t		off;
1110
1111	/*
1112	 * Invalidate each directory block.  All directory blocks are of
1113	 * fsbcount length and alignment, so we only need to walk those same
1114	 * offsets.  We hold the only reference to this inode, so we must wait
1115	 * for the buffer locks.
1116	 */
1117	for_each_xfs_iext(ifp, &icur, &got) {
1118		for (off = round_up(got.br_startoff, geo->fsbcount);
1119		     off < got.br_startoff + got.br_blockcount;
1120		     off += geo->fsbcount) {
1121			struct xfs_buf	*bp = NULL;
1122			xfs_fsblock_t	fsbno;
1123			int		error;
1124
1125			fsbno = (off - got.br_startoff) + got.br_startblock;
1126			error = xfs_buf_incore(mp->m_ddev_targp,
1127					XFS_FSB_TO_DADDR(mp, fsbno),
1128					XFS_FSB_TO_BB(mp, geo->fsbcount),
1129					XBF_LIVESCAN, &bp);
1130			if (error)
1131				continue;
1132
1133			xfs_buf_stale(bp);
1134			xfs_buf_relse(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135		}
1136	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137}
1138
1139/*
1140 * xfs_inactive_truncate
1141 *
1142 * Called to perform a truncate when an inode becomes unlinked.
1143 */
1144STATIC int
1145xfs_inactive_truncate(
1146	struct xfs_inode *ip)
1147{
1148	struct xfs_mount	*mp = ip->i_mount;
1149	struct xfs_trans	*tp;
1150	int			error;
1151
1152	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1153	if (error) {
1154		ASSERT(xfs_is_shutdown(mp));
1155		return error;
1156	}
1157	xfs_ilock(ip, XFS_ILOCK_EXCL);
1158	xfs_trans_ijoin(tp, ip, 0);
1159
1160	/*
1161	 * Log the inode size first to prevent stale data exposure in the event
1162	 * of a system crash before the truncate completes. See the related
1163	 * comment in xfs_vn_setattr_size() for details.
1164	 */
1165	ip->i_disk_size = 0;
1166	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1167
1168	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1169	if (error)
1170		goto error_trans_cancel;
1171
1172	ASSERT(ip->i_df.if_nextents == 0);
1173
1174	error = xfs_trans_commit(tp);
1175	if (error)
1176		goto error_unlock;
1177
1178	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1179	return 0;
1180
1181error_trans_cancel:
1182	xfs_trans_cancel(tp);
1183error_unlock:
1184	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185	return error;
1186}
1187
1188/*
1189 * xfs_inactive_ifree()
1190 *
1191 * Perform the inode free when an inode is unlinked.
1192 */
1193STATIC int
1194xfs_inactive_ifree(
1195	struct xfs_inode *ip)
1196{
1197	struct xfs_mount	*mp = ip->i_mount;
1198	struct xfs_trans	*tp;
1199	int			error;
1200
1201	/*
1202	 * We try to use a per-AG reservation for any block needed by the finobt
1203	 * tree, but as the finobt feature predates the per-AG reservation
1204	 * support a degraded file system might not have enough space for the
1205	 * reservation at mount time.  In that case try to dip into the reserved
1206	 * pool and pray.
1207	 *
1208	 * Send a warning if the reservation does happen to fail, as the inode
1209	 * now remains allocated and sits on the unlinked list until the fs is
1210	 * repaired.
1211	 */
1212	if (unlikely(mp->m_finobt_nores)) {
1213		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1214				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1215				&tp);
1216	} else {
1217		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1218	}
1219	if (error) {
1220		if (error == -ENOSPC) {
1221			xfs_warn_ratelimited(mp,
1222			"Failed to remove inode(s) from unlinked list. "
1223			"Please free space, unmount and run xfs_repair.");
1224		} else {
1225			ASSERT(xfs_is_shutdown(mp));
1226		}
1227		return error;
1228	}
1229
1230	/*
1231	 * We do not hold the inode locked across the entire rolling transaction
1232	 * here. We only need to hold it for the first transaction that
1233	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1234	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1235	 * here breaks the relationship between cluster buffer invalidation and
1236	 * stale inode invalidation on cluster buffer item journal commit
1237	 * completion, and can result in leaving dirty stale inodes hanging
1238	 * around in memory.
1239	 *
1240	 * We have no need for serialising this inode operation against other
1241	 * operations - we freed the inode and hence reallocation is required
1242	 * and that will serialise on reallocating the space the deferops need
1243	 * to free. Hence we can unlock the inode on the first commit of
1244	 * the transaction rather than roll it right through the deferops. This
1245	 * avoids relogging the XFS_ISTALE inode.
1246	 *
1247	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1248	 * by asserting that the inode is still locked when it returns.
1249	 */
1250	xfs_ilock(ip, XFS_ILOCK_EXCL);
1251	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1252
1253	error = xfs_ifree(tp, ip);
1254	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1255	if (error) {
1256		/*
1257		 * If we fail to free the inode, shut down.  The cancel
1258		 * might do that, we need to make sure.  Otherwise the
1259		 * inode might be lost for a long time or forever.
1260		 */
1261		if (!xfs_is_shutdown(mp)) {
1262			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1263				__func__, error);
1264			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1265		}
1266		xfs_trans_cancel(tp);
1267		return error;
1268	}
1269
1270	/*
1271	 * Credit the quota account(s). The inode is gone.
1272	 */
1273	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1274
1275	return xfs_trans_commit(tp);
1276}
1277
1278/*
1279 * Returns true if we need to update the on-disk metadata before we can free
1280 * the memory used by this inode.  Updates include freeing post-eof
1281 * preallocations; freeing COW staging extents; and marking the inode free in
1282 * the inobt if it is on the unlinked list.
1283 */
1284bool
1285xfs_inode_needs_inactive(
1286	struct xfs_inode	*ip)
1287{
1288	struct xfs_mount	*mp = ip->i_mount;
1289	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1290
1291	/*
1292	 * If the inode is already free, then there can be nothing
1293	 * to clean up here.
1294	 */
1295	if (VFS_I(ip)->i_mode == 0)
1296		return false;
1297
1298	/*
1299	 * If this is a read-only mount, don't do this (would generate I/O)
1300	 * unless we're in log recovery and cleaning the iunlinked list.
1301	 */
1302	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1303		return false;
1304
1305	/* If the log isn't running, push inodes straight to reclaim. */
1306	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1307		return false;
1308
1309	/* Metadata inodes require explicit resource cleanup. */
1310	if (xfs_is_internal_inode(ip))
1311		return false;
1312
1313	/* Want to clean out the cow blocks if there are any. */
1314	if (cow_ifp && cow_ifp->if_bytes > 0)
1315		return true;
1316
1317	/* Unlinked files must be freed. */
1318	if (VFS_I(ip)->i_nlink == 0)
1319		return true;
1320
1321	/*
1322	 * This file isn't being freed, so check if there are post-eof blocks
1323	 * to free.
 
 
1324	 *
1325	 * Note: don't bother with iolock here since lockdep complains about
1326	 * acquiring it in reclaim context. We have the only reference to the
1327	 * inode at this point anyways.
1328	 */
1329	return xfs_can_free_eofblocks(ip);
1330}
1331
1332/*
1333 * Save health status somewhere, if we're dumping an inode with uncorrected
1334 * errors and online repair isn't running.
1335 */
1336static inline void
1337xfs_inactive_health(
1338	struct xfs_inode	*ip)
1339{
1340	struct xfs_mount	*mp = ip->i_mount;
1341	struct xfs_perag	*pag;
1342	unsigned int		sick;
1343	unsigned int		checked;
1344
1345	xfs_inode_measure_sickness(ip, &sick, &checked);
1346	if (!sick)
1347		return;
1348
1349	trace_xfs_inode_unfixed_corruption(ip, sick);
1350
1351	if (sick & XFS_SICK_INO_FORGET)
1352		return;
1353
1354	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1355	if (!pag) {
1356		/* There had better still be a perag structure! */
1357		ASSERT(0);
1358		return;
1359	}
1360
1361	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1362	xfs_perag_put(pag);
1363}
1364
1365/*
1366 * xfs_inactive
1367 *
1368 * This is called when the vnode reference count for the vnode
1369 * goes to zero.  If the file has been unlinked, then it must
1370 * now be truncated.  Also, we clear all of the read-ahead state
1371 * kept for the inode here since the file is now closed.
1372 */
1373int
1374xfs_inactive(
1375	xfs_inode_t	*ip)
1376{
1377	struct xfs_mount	*mp;
1378	int			error = 0;
1379	int			truncate = 0;
1380
1381	/*
1382	 * If the inode is already free, then there can be nothing
1383	 * to clean up here.
1384	 */
1385	if (VFS_I(ip)->i_mode == 0) {
1386		ASSERT(ip->i_df.if_broot_bytes == 0);
1387		goto out;
1388	}
1389
1390	mp = ip->i_mount;
1391	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1392
1393	xfs_inactive_health(ip);
1394
1395	/*
1396	 * If this is a read-only mount, don't do this (would generate I/O)
1397	 * unless we're in log recovery and cleaning the iunlinked list.
1398	 */
1399	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1400		goto out;
1401
1402	/* Metadata inodes require explicit resource cleanup. */
1403	if (xfs_is_internal_inode(ip))
1404		goto out;
1405
1406	/* Try to clean out the cow blocks if there are any. */
1407	if (xfs_inode_has_cow_data(ip)) {
1408		error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1409		if (error)
1410			goto out;
1411	}
1412
1413	if (VFS_I(ip)->i_nlink != 0) {
1414		/*
 
 
 
 
1415		 * Note: don't bother with iolock here since lockdep complains
1416		 * about acquiring it in reclaim context. We have the only
1417		 * reference to the inode at this point anyways.
1418		 */
1419		if (xfs_can_free_eofblocks(ip))
1420			error = xfs_free_eofblocks(ip);
1421
1422		goto out;
1423	}
1424
1425	if (S_ISREG(VFS_I(ip)->i_mode) &&
1426	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1427	     xfs_inode_has_filedata(ip)))
1428		truncate = 1;
1429
1430	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1431		/*
1432		 * If this inode is being inactivated during a quotacheck and
1433		 * has not yet been scanned by quotacheck, we /must/ remove
1434		 * the dquots from the inode before inactivation changes the
1435		 * block and inode counts.  Most probably this is a result of
1436		 * reloading the incore iunlinked list to purge unrecovered
1437		 * unlinked inodes.
1438		 */
1439		xfs_qm_dqdetach(ip);
1440	} else {
1441		error = xfs_qm_dqattach(ip);
1442		if (error)
1443			goto out;
1444	}
1445
1446	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1447		xfs_inactive_dir(ip);
1448		truncate = 1;
1449	}
1450
1451	if (S_ISLNK(VFS_I(ip)->i_mode))
1452		error = xfs_inactive_symlink(ip);
1453	else if (truncate)
1454		error = xfs_inactive_truncate(ip);
1455	if (error)
1456		goto out;
1457
1458	/*
1459	 * If there are attributes associated with the file then blow them away
1460	 * now.  The code calls a routine that recursively deconstructs the
1461	 * attribute fork. If also blows away the in-core attribute fork.
1462	 */
1463	if (xfs_inode_has_attr_fork(ip)) {
1464		error = xfs_attr_inactive(ip);
1465		if (error)
1466			goto out;
1467	}
1468
1469	ASSERT(ip->i_forkoff == 0);
1470
1471	/*
1472	 * Free the inode.
1473	 */
1474	error = xfs_inactive_ifree(ip);
1475
1476out:
1477	/*
1478	 * We're done making metadata updates for this inode, so we can release
1479	 * the attached dquots.
1480	 */
1481	xfs_qm_dqdetach(ip);
1482	return error;
1483}
1484
1485/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486 * Find an inode on the unlinked list. This does not take references to the
1487 * inode as we have existence guarantees by holding the AGI buffer lock and that
1488 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1489 * don't find the inode in cache, then let the caller handle the situation.
1490 */
1491struct xfs_inode *
1492xfs_iunlink_lookup(
1493	struct xfs_perag	*pag,
1494	xfs_agino_t		agino)
1495{
1496	struct xfs_inode	*ip;
1497
1498	rcu_read_lock();
1499	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1500	if (!ip) {
1501		/* Caller can handle inode not being in memory. */
1502		rcu_read_unlock();
1503		return NULL;
1504	}
1505
1506	/*
1507	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1508	 * let the caller handle the failure.
1509	 */
1510	if (WARN_ON_ONCE(!ip->i_ino)) {
1511		rcu_read_unlock();
1512		return NULL;
1513	}
1514	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1515	rcu_read_unlock();
1516	return ip;
1517}
1518
1519/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1521 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1522 * to the unlinked list.
1523 */
1524int
1525xfs_iunlink_reload_next(
1526	struct xfs_trans	*tp,
1527	struct xfs_buf		*agibp,
1528	xfs_agino_t		prev_agino,
1529	xfs_agino_t		next_agino)
1530{
1531	struct xfs_perag	*pag = agibp->b_pag;
1532	struct xfs_mount	*mp = pag_mount(pag);
1533	struct xfs_inode	*next_ip = NULL;
 
1534	int			error;
1535
1536	ASSERT(next_agino != NULLAGINO);
1537
1538#ifdef DEBUG
1539	rcu_read_lock();
1540	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1541	ASSERT(next_ip == NULL);
1542	rcu_read_unlock();
1543#endif
1544
1545	xfs_info_ratelimited(mp,
1546 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1547			next_agino, pag_agno(pag));
1548
1549	/*
1550	 * Use an untrusted lookup just to be cautious in case the AGI has been
1551	 * corrupted and now points at a free inode.  That shouldn't happen,
1552	 * but we'd rather shut down now since we're already running in a weird
1553	 * situation.
1554	 */
1555	error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1556			XFS_IGET_UNTRUSTED, 0, &next_ip);
1557	if (error) {
1558		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1559		return error;
1560	}
1561
1562	/* If this is not an unlinked inode, something is very wrong. */
1563	if (VFS_I(next_ip)->i_nlink != 0) {
1564		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1565		error = -EFSCORRUPTED;
1566		goto rele;
1567	}
1568
1569	next_ip->i_prev_unlinked = prev_agino;
1570	trace_xfs_iunlink_reload_next(next_ip);
1571rele:
1572	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1573	if (xfs_is_quotacheck_running(mp) && next_ip)
1574		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1575	xfs_irele(next_ip);
1576	return error;
1577}
1578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1579/*
1580 * Look up the inode number specified and if it is not already marked XFS_ISTALE
1581 * mark it stale. We should only find clean inodes in this lookup that aren't
1582 * already stale.
1583 */
1584static void
1585xfs_ifree_mark_inode_stale(
1586	struct xfs_perag	*pag,
1587	struct xfs_inode	*free_ip,
1588	xfs_ino_t		inum)
1589{
1590	struct xfs_mount	*mp = pag_mount(pag);
1591	struct xfs_inode_log_item *iip;
1592	struct xfs_inode	*ip;
1593
1594retry:
1595	rcu_read_lock();
1596	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1597
1598	/* Inode not in memory, nothing to do */
1599	if (!ip) {
1600		rcu_read_unlock();
1601		return;
1602	}
1603
1604	/*
1605	 * because this is an RCU protected lookup, we could find a recently
1606	 * freed or even reallocated inode during the lookup. We need to check
1607	 * under the i_flags_lock for a valid inode here. Skip it if it is not
1608	 * valid, the wrong inode or stale.
1609	 */
1610	spin_lock(&ip->i_flags_lock);
1611	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1612		goto out_iflags_unlock;
1613
1614	/*
1615	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1616	 * other inodes that we did not find in the list attached to the buffer
1617	 * and are not already marked stale. If we can't lock it, back off and
1618	 * retry.
1619	 */
1620	if (ip != free_ip) {
1621		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1622			spin_unlock(&ip->i_flags_lock);
1623			rcu_read_unlock();
1624			delay(1);
1625			goto retry;
1626		}
1627	}
1628	ip->i_flags |= XFS_ISTALE;
1629
1630	/*
1631	 * If the inode is flushing, it is already attached to the buffer.  All
1632	 * we needed to do here is mark the inode stale so buffer IO completion
1633	 * will remove it from the AIL.
1634	 */
1635	iip = ip->i_itemp;
1636	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1637		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1638		ASSERT(iip->ili_last_fields);
1639		goto out_iunlock;
1640	}
1641
1642	/*
1643	 * Inodes not attached to the buffer can be released immediately.
1644	 * Everything else has to go through xfs_iflush_abort() on journal
1645	 * commit as the flock synchronises removal of the inode from the
1646	 * cluster buffer against inode reclaim.
1647	 */
1648	if (!iip || list_empty(&iip->ili_item.li_bio_list))
1649		goto out_iunlock;
1650
1651	__xfs_iflags_set(ip, XFS_IFLUSHING);
1652	spin_unlock(&ip->i_flags_lock);
1653	rcu_read_unlock();
1654
1655	/* we have a dirty inode in memory that has not yet been flushed. */
1656	spin_lock(&iip->ili_lock);
1657	iip->ili_last_fields = iip->ili_fields;
1658	iip->ili_fields = 0;
1659	iip->ili_fsync_fields = 0;
1660	spin_unlock(&iip->ili_lock);
1661	ASSERT(iip->ili_last_fields);
1662
1663	if (ip != free_ip)
1664		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1665	return;
1666
1667out_iunlock:
1668	if (ip != free_ip)
1669		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1670out_iflags_unlock:
1671	spin_unlock(&ip->i_flags_lock);
1672	rcu_read_unlock();
1673}
1674
1675/*
1676 * A big issue when freeing the inode cluster is that we _cannot_ skip any
1677 * inodes that are in memory - they all must be marked stale and attached to
1678 * the cluster buffer.
1679 */
1680static int
1681xfs_ifree_cluster(
1682	struct xfs_trans	*tp,
1683	struct xfs_perag	*pag,
1684	struct xfs_inode	*free_ip,
1685	struct xfs_icluster	*xic)
1686{
1687	struct xfs_mount	*mp = free_ip->i_mount;
1688	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1689	struct xfs_buf		*bp;
1690	xfs_daddr_t		blkno;
1691	xfs_ino_t		inum = xic->first_ino;
1692	int			nbufs;
1693	int			i, j;
1694	int			ioffset;
1695	int			error;
1696
1697	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1698
1699	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1700		/*
1701		 * The allocation bitmap tells us which inodes of the chunk were
1702		 * physically allocated. Skip the cluster if an inode falls into
1703		 * a sparse region.
1704		 */
1705		ioffset = inum - xic->first_ino;
1706		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1707			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1708			continue;
1709		}
1710
1711		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1712					 XFS_INO_TO_AGBNO(mp, inum));
1713
1714		/*
1715		 * We obtain and lock the backing buffer first in the process
1716		 * here to ensure dirty inodes attached to the buffer remain in
1717		 * the flushing state while we mark them stale.
1718		 *
1719		 * If we scan the in-memory inodes first, then buffer IO can
1720		 * complete before we get a lock on it, and hence we may fail
1721		 * to mark all the active inodes on the buffer stale.
1722		 */
1723		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1724				mp->m_bsize * igeo->blocks_per_cluster,
1725				XBF_UNMAPPED, &bp);
1726		if (error)
1727			return error;
1728
1729		/*
1730		 * This buffer may not have been correctly initialised as we
1731		 * didn't read it from disk. That's not important because we are
1732		 * only using to mark the buffer as stale in the log, and to
1733		 * attach stale cached inodes on it.
1734		 *
1735		 * For the inode that triggered the cluster freeing, this
1736		 * attachment may occur in xfs_inode_item_precommit() after we
1737		 * have marked this buffer stale.  If this buffer was not in
1738		 * memory before xfs_ifree_cluster() started, it will not be
1739		 * marked XBF_DONE and this will cause problems later in
1740		 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1741		 * buffer to attached to the transaction.
1742		 *
1743		 * Hence we have to mark the buffer as XFS_DONE here. This is
1744		 * safe because we are also marking the buffer as XBF_STALE and
1745		 * XFS_BLI_STALE. That means it will never be dispatched for
1746		 * IO and it won't be unlocked until the cluster freeing has
1747		 * been committed to the journal and the buffer unpinned. If it
1748		 * is written, we want to know about it, and we want it to
1749		 * fail. We can acheive this by adding a write verifier to the
1750		 * buffer.
1751		 */
1752		bp->b_flags |= XBF_DONE;
1753		bp->b_ops = &xfs_inode_buf_ops;
1754
1755		/*
1756		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1757		 * too. This requires lookups, and will skip inodes that we've
1758		 * already marked XFS_ISTALE.
1759		 */
1760		for (i = 0; i < igeo->inodes_per_cluster; i++)
1761			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1762
1763		xfs_trans_stale_inode_buf(tp, bp);
1764		xfs_trans_binval(tp, bp);
1765	}
1766	return 0;
1767}
1768
1769/*
1770 * This is called to return an inode to the inode free list.  The inode should
1771 * already be truncated to 0 length and have no pages associated with it.  This
1772 * routine also assumes that the inode is already a part of the transaction.
1773 *
1774 * The on-disk copy of the inode will have been added to the list of unlinked
1775 * inodes in the AGI. We need to remove the inode from that list atomically with
1776 * respect to freeing it here.
1777 */
1778int
1779xfs_ifree(
1780	struct xfs_trans	*tp,
1781	struct xfs_inode	*ip)
1782{
1783	struct xfs_mount	*mp = ip->i_mount;
1784	struct xfs_perag	*pag;
1785	struct xfs_icluster	xic = { 0 };
1786	struct xfs_inode_log_item *iip = ip->i_itemp;
1787	int			error;
1788
1789	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1790	ASSERT(VFS_I(ip)->i_nlink == 0);
1791	ASSERT(ip->i_df.if_nextents == 0);
1792	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1793	ASSERT(ip->i_nblocks == 0);
1794
1795	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1796
1797	error = xfs_inode_uninit(tp, pag, ip, &xic);
 
 
 
 
 
 
1798	if (error)
1799		goto out;
1800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1802		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1803
1804	/* Don't attempt to replay owner changes for a deleted inode */
1805	spin_lock(&iip->ili_lock);
1806	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1807	spin_unlock(&iip->ili_lock);
1808
 
 
 
 
 
 
 
1809	if (xic.deleted)
1810		error = xfs_ifree_cluster(tp, pag, ip, &xic);
1811out:
1812	xfs_perag_put(pag);
1813	return error;
1814}
1815
1816/*
1817 * This is called to unpin an inode.  The caller must have the inode locked
1818 * in at least shared mode so that the buffer cannot be subsequently pinned
1819 * once someone is waiting for it to be unpinned.
1820 */
1821static void
1822xfs_iunpin(
1823	struct xfs_inode	*ip)
1824{
1825	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1826
1827	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1828
1829	/* Give the log a push to start the unpinning I/O */
1830	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1831
1832}
1833
1834static void
1835__xfs_iunpin_wait(
1836	struct xfs_inode	*ip)
1837{
1838	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1839	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1840
1841	xfs_iunpin(ip);
1842
1843	do {
1844		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1845		if (xfs_ipincount(ip))
1846			io_schedule();
1847	} while (xfs_ipincount(ip));
1848	finish_wait(wq, &wait.wq_entry);
1849}
1850
1851void
1852xfs_iunpin_wait(
1853	struct xfs_inode	*ip)
1854{
1855	if (xfs_ipincount(ip))
1856		__xfs_iunpin_wait(ip);
1857}
1858
1859/*
1860 * Removing an inode from the namespace involves removing the directory entry
1861 * and dropping the link count on the inode. Removing the directory entry can
1862 * result in locking an AGF (directory blocks were freed) and removing a link
1863 * count can result in placing the inode on an unlinked list which results in
1864 * locking an AGI.
1865 *
1866 * The big problem here is that we have an ordering constraint on AGF and AGI
1867 * locking - inode allocation locks the AGI, then can allocate a new extent for
1868 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1869 * removes the inode from the unlinked list, requiring that we lock the AGI
1870 * first, and then freeing the inode can result in an inode chunk being freed
1871 * and hence freeing disk space requiring that we lock an AGF.
1872 *
1873 * Hence the ordering that is imposed by other parts of the code is AGI before
1874 * AGF. This means we cannot remove the directory entry before we drop the inode
1875 * reference count and put it on the unlinked list as this results in a lock
1876 * order of AGF then AGI, and this can deadlock against inode allocation and
1877 * freeing. Therefore we must drop the link counts before we remove the
1878 * directory entry.
1879 *
1880 * This is still safe from a transactional point of view - it is not until we
1881 * get to xfs_defer_finish() that we have the possibility of multiple
1882 * transactions in this operation. Hence as long as we remove the directory
1883 * entry and drop the link count in the first transaction of the remove
1884 * operation, there are no transactional constraints on the ordering here.
1885 */
1886int
1887xfs_remove(
1888	struct xfs_inode	*dp,
1889	struct xfs_name		*name,
1890	struct xfs_inode	*ip)
1891{
1892	struct xfs_dir_update	du = {
1893		.dp		= dp,
1894		.name		= name,
1895		.ip		= ip,
1896	};
1897	struct xfs_mount	*mp = dp->i_mount;
1898	struct xfs_trans	*tp = NULL;
1899	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1900	int			dontcare;
1901	int                     error = 0;
1902	uint			resblks;
1903
1904	trace_xfs_remove(dp, name);
1905
1906	if (xfs_is_shutdown(mp))
1907		return -EIO;
1908	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1909		return -EIO;
1910
1911	error = xfs_qm_dqattach(dp);
1912	if (error)
1913		goto std_return;
1914
1915	error = xfs_qm_dqattach(ip);
1916	if (error)
1917		goto std_return;
1918
1919	error = xfs_parent_start(mp, &du.ppargs);
1920	if (error)
1921		goto std_return;
1922
1923	/*
1924	 * We try to get the real space reservation first, allowing for
1925	 * directory btree deletion(s) implying possible bmap insert(s).  If we
1926	 * can't get the space reservation then we use 0 instead, and avoid the
1927	 * bmap btree insert(s) in the directory code by, if the bmap insert
1928	 * tries to happen, instead trimming the LAST block from the directory.
1929	 *
1930	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1931	 * the directory code can handle a reservationless update and we don't
1932	 * want to prevent a user from trying to free space by deleting things.
1933	 */
1934	resblks = xfs_remove_space_res(mp, name->len);
1935	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1936			&tp, &dontcare);
1937	if (error) {
1938		ASSERT(error != -ENOSPC);
1939		goto out_parent;
1940	}
1941
1942	error = xfs_dir_remove_child(tp, resblks, &du);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943	if (error)
1944		goto out_trans_cancel;
1945
 
 
 
 
 
 
1946	/*
1947	 * If this is a synchronous mount, make sure that the
1948	 * remove transaction goes to disk before returning to
1949	 * the user.
1950	 */
1951	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1952		xfs_trans_set_sync(tp);
1953
1954	error = xfs_trans_commit(tp);
1955	if (error)
1956		goto out_unlock;
1957
1958	if (is_dir && xfs_inode_is_filestream(ip))
1959		xfs_filestream_deassociate(ip);
1960
1961	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1962	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1963	xfs_parent_finish(mp, du.ppargs);
1964	return 0;
1965
1966 out_trans_cancel:
1967	xfs_trans_cancel(tp);
1968 out_unlock:
1969	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1970	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1971 out_parent:
1972	xfs_parent_finish(mp, du.ppargs);
1973 std_return:
1974	return error;
1975}
1976
1977static inline void
1978xfs_iunlock_rename(
1979	struct xfs_inode	**i_tab,
1980	int			num_inodes)
1981{
1982	int			i;
1983
1984	for (i = num_inodes - 1; i >= 0; i--) {
1985		/* Skip duplicate inodes if src and target dps are the same */
1986		if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1987			continue;
1988		xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
1989	}
1990}
1991
1992/*
1993 * Enter all inodes for a rename transaction into a sorted array.
1994 */
1995#define __XFS_SORT_INODES	5
1996STATIC void
1997xfs_sort_for_rename(
1998	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
1999	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2000	struct xfs_inode	*ip1,	/* in: inode of old entry */
2001	struct xfs_inode	*ip2,	/* in: inode of new entry */
2002	struct xfs_inode	*wip,	/* in: whiteout inode */
2003	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2004	int			*num_inodes)  /* in/out: inodes in array */
2005{
2006	int			i;
2007
2008	ASSERT(*num_inodes == __XFS_SORT_INODES);
2009	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2010
2011	/*
2012	 * i_tab contains a list of pointers to inodes.  We initialize
2013	 * the table here & we'll sort it.  We will then use it to
2014	 * order the acquisition of the inode locks.
2015	 *
2016	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2017	 */
2018	i = 0;
2019	i_tab[i++] = dp1;
2020	i_tab[i++] = dp2;
2021	i_tab[i++] = ip1;
2022	if (ip2)
2023		i_tab[i++] = ip2;
2024	if (wip)
2025		i_tab[i++] = wip;
2026	*num_inodes = i;
2027
2028	xfs_sort_inodes(i_tab, *num_inodes);
 
 
 
 
 
 
 
 
 
 
 
 
2029}
2030
2031void
2032xfs_sort_inodes(
2033	struct xfs_inode	**i_tab,
2034	unsigned int		num_inodes)
2035{
2036	int			i, j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2037
2038	ASSERT(num_inodes <= __XFS_SORT_INODES);
 
 
 
 
 
 
 
 
2039
2040	/*
2041	 * Sort the elements via bubble sort.  (Remember, there are at
2042	 * most 5 elements to sort, so this is adequate.)
 
2043	 */
2044	for (i = 0; i < num_inodes; i++) {
2045		for (j = 1; j < num_inodes; j++) {
2046			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2047				swap(i_tab[j], i_tab[j - 1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048		}
2049	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050}
2051
2052/*
2053 * xfs_rename_alloc_whiteout()
2054 *
2055 * Return a referenced, unlinked, unlocked inode that can be used as a
2056 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2057 * crash between allocating the inode and linking it into the rename transaction
2058 * recovery will free the inode and we won't leak it.
2059 */
2060static int
2061xfs_rename_alloc_whiteout(
2062	struct mnt_idmap	*idmap,
2063	struct xfs_name		*src_name,
2064	struct xfs_inode	*dp,
2065	struct xfs_inode	**wip)
2066{
2067	struct xfs_icreate_args	args = {
2068		.idmap		= idmap,
2069		.pip		= dp,
2070		.mode		= S_IFCHR | WHITEOUT_MODE,
2071		.flags		= XFS_ICREATE_TMPFILE,
2072	};
2073	struct xfs_inode	*tmpfile;
2074	struct qstr		name;
2075	int			error;
2076
2077	error = xfs_create_tmpfile(&args, &tmpfile);
 
2078	if (error)
2079		return error;
2080
2081	name.name = src_name->name;
2082	name.len = src_name->len;
2083	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2084	if (error) {
2085		xfs_finish_inode_setup(tmpfile);
2086		xfs_irele(tmpfile);
2087		return error;
2088	}
2089
2090	/*
2091	 * Prepare the tmpfile inode as if it were created through the VFS.
2092	 * Complete the inode setup and flag it as linkable.  nlink is already
2093	 * zero, so we can skip the drop_nlink.
2094	 */
2095	xfs_setup_iops(tmpfile);
2096	xfs_finish_inode_setup(tmpfile);
2097	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2098
2099	*wip = tmpfile;
2100	return 0;
2101}
2102
2103/*
2104 * xfs_rename
2105 */
2106int
2107xfs_rename(
2108	struct mnt_idmap	*idmap,
2109	struct xfs_inode	*src_dp,
2110	struct xfs_name		*src_name,
2111	struct xfs_inode	*src_ip,
2112	struct xfs_inode	*target_dp,
2113	struct xfs_name		*target_name,
2114	struct xfs_inode	*target_ip,
2115	unsigned int		flags)
2116{
2117	struct xfs_dir_update	du_src = {
2118		.dp		= src_dp,
2119		.name		= src_name,
2120		.ip		= src_ip,
2121	};
2122	struct xfs_dir_update	du_tgt = {
2123		.dp		= target_dp,
2124		.name		= target_name,
2125		.ip		= target_ip,
2126	};
2127	struct xfs_dir_update	du_wip = { };
2128	struct xfs_mount	*mp = src_dp->i_mount;
2129	struct xfs_trans	*tp;
 
2130	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2131	int			i;
2132	int			num_inodes = __XFS_SORT_INODES;
2133	bool			new_parent = (src_dp != target_dp);
2134	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2135	int			spaceres;
2136	bool			retried = false;
2137	int			error, nospace_error = 0;
2138
2139	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2140
2141	if ((flags & RENAME_EXCHANGE) && !target_ip)
2142		return -EINVAL;
2143
2144	/*
2145	 * If we are doing a whiteout operation, allocate the whiteout inode
2146	 * we will be placing at the target and ensure the type is set
2147	 * appropriately.
2148	 */
2149	if (flags & RENAME_WHITEOUT) {
2150		error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2151				&du_wip.ip);
2152		if (error)
2153			return error;
2154
2155		/* setup target dirent info as whiteout */
2156		src_name->type = XFS_DIR3_FT_CHRDEV;
2157	}
2158
2159	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2160			inodes, &num_inodes);
2161
2162	error = xfs_parent_start(mp, &du_src.ppargs);
2163	if (error)
2164		goto out_release_wip;
2165
2166	if (du_wip.ip) {
2167		error = xfs_parent_start(mp, &du_wip.ppargs);
2168		if (error)
2169			goto out_src_ppargs;
2170	}
2171
2172	if (target_ip) {
2173		error = xfs_parent_start(mp, &du_tgt.ppargs);
2174		if (error)
2175			goto out_wip_ppargs;
2176	}
2177
2178retry:
2179	nospace_error = 0;
2180	spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2181			target_name->len, du_wip.ip != NULL);
2182	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2183	if (error == -ENOSPC) {
2184		nospace_error = error;
2185		spaceres = 0;
2186		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2187				&tp);
2188	}
2189	if (error)
2190		goto out_tgt_ppargs;
2191
2192	/*
2193	 * We don't allow reservationless renaming when parent pointers are
2194	 * enabled because we can't back out if the xattrs must grow.
2195	 */
2196	if (du_src.ppargs && nospace_error) {
2197		error = nospace_error;
2198		xfs_trans_cancel(tp);
2199		goto out_tgt_ppargs;
2200	}
2201
2202	/*
2203	 * Attach the dquots to the inodes
2204	 */
2205	error = xfs_qm_vop_rename_dqattach(inodes);
2206	if (error) {
2207		xfs_trans_cancel(tp);
2208		goto out_tgt_ppargs;
2209	}
2210
2211	/*
2212	 * Lock all the participating inodes. Depending upon whether
2213	 * the target_name exists in the target directory, and
2214	 * whether the target directory is the same as the source
2215	 * directory, we can lock from 2 to 5 inodes.
2216	 */
2217	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2218
2219	/*
2220	 * Join all the inodes to the transaction.
 
 
2221	 */
2222	xfs_trans_ijoin(tp, src_dp, 0);
2223	if (new_parent)
2224		xfs_trans_ijoin(tp, target_dp, 0);
2225	xfs_trans_ijoin(tp, src_ip, 0);
2226	if (target_ip)
2227		xfs_trans_ijoin(tp, target_ip, 0);
2228	if (du_wip.ip)
2229		xfs_trans_ijoin(tp, du_wip.ip, 0);
2230
2231	/*
2232	 * If we are using project inheritance, we only allow renames
2233	 * into our tree when the project IDs are the same; else the
2234	 * tree quota mechanism would be circumvented.
2235	 */
2236	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2237		     target_dp->i_projid != src_ip->i_projid)) {
2238		error = -EXDEV;
2239		goto out_trans_cancel;
2240	}
2241
2242	/* RENAME_EXCHANGE is unique from here on. */
2243	if (flags & RENAME_EXCHANGE) {
2244		error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2245				spaceres);
2246		if (error)
2247			goto out_trans_cancel;
2248		goto out_commit;
2249	}
2250
2251	/*
2252	 * Try to reserve quota to handle an expansion of the target directory.
2253	 * We'll allow the rename to continue in reservationless mode if we hit
2254	 * a space usage constraint.  If we trigger reservationless mode, save
2255	 * the errno if there isn't any free space in the target directory.
2256	 */
2257	if (spaceres != 0) {
2258		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2259				0, false);
2260		if (error == -EDQUOT || error == -ENOSPC) {
2261			if (!retried) {
2262				xfs_trans_cancel(tp);
2263				xfs_iunlock_rename(inodes, num_inodes);
2264				xfs_blockgc_free_quota(target_dp, 0);
2265				retried = true;
2266				goto retry;
2267			}
2268
2269			nospace_error = error;
2270			spaceres = 0;
2271			error = 0;
2272		}
2273		if (error)
2274			goto out_trans_cancel;
2275	}
2276
2277	/*
2278	 * We don't allow quotaless renaming when parent pointers are enabled
2279	 * because we can't back out if the xattrs must grow.
2280	 */
2281	if (du_src.ppargs && nospace_error) {
2282		error = nospace_error;
2283		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284	}
2285
2286	/*
2287	 * Lock the AGI buffers we need to handle bumping the nlink of the
2288	 * whiteout inode off the unlinked list and to handle dropping the
2289	 * nlink of the target inode.  Per locking order rules, do this in
2290	 * increasing AG order and before directory block allocation tries to
2291	 * grab AGFs because we grab AGIs before AGFs.
2292	 *
2293	 * The (vfs) caller must ensure that if src is a directory then
2294	 * target_ip is either null or an empty directory.
2295	 */
2296	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2297		if (inodes[i] == du_wip.ip ||
2298		    (inodes[i] == target_ip &&
2299		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2300			struct xfs_perag	*pag;
2301			struct xfs_buf		*bp;
2302
2303			pag = xfs_perag_get(mp,
2304					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2305			error = xfs_read_agi(pag, tp, 0, &bp);
2306			xfs_perag_put(pag);
2307			if (error)
2308				goto out_trans_cancel;
2309		}
2310	}
2311
2312	error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2313			&du_wip);
2314	if (error)
2315		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316
2317	if (du_wip.ip) {
 
 
 
2318		/*
2319		 * Now we have a real link, clear the "I'm a tmpfile" state
2320		 * flag from the inode so it doesn't accidentally get misused in
2321		 * future.
2322		 */
2323		VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
 
 
 
 
2324	}
2325
2326out_commit:
2327	/*
2328	 * If this is a synchronous mount, make sure that the rename
2329	 * transaction goes to disk before returning to the user.
 
 
 
2330	 */
2331	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2332		xfs_trans_set_sync(tp);
2333
2334	error = xfs_trans_commit(tp);
2335	nospace_error = 0;
2336	goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337
2338out_trans_cancel:
2339	xfs_trans_cancel(tp);
2340out_unlock:
2341	xfs_iunlock_rename(inodes, num_inodes);
2342out_tgt_ppargs:
2343	xfs_parent_finish(mp, du_tgt.ppargs);
2344out_wip_ppargs:
2345	xfs_parent_finish(mp, du_wip.ppargs);
2346out_src_ppargs:
2347	xfs_parent_finish(mp, du_src.ppargs);
2348out_release_wip:
2349	if (du_wip.ip)
2350		xfs_irele(du_wip.ip);
2351	if (error == -ENOSPC && nospace_error)
2352		error = nospace_error;
2353	return error;
2354}
2355
2356static int
2357xfs_iflush(
2358	struct xfs_inode	*ip,
2359	struct xfs_buf		*bp)
2360{
2361	struct xfs_inode_log_item *iip = ip->i_itemp;
2362	struct xfs_dinode	*dip;
2363	struct xfs_mount	*mp = ip->i_mount;
2364	int			error;
2365
2366	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2367	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2368	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2369	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2370	ASSERT(iip->ili_item.li_buf == bp);
2371
2372	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2373
2374	/*
2375	 * We don't flush the inode if any of the following checks fail, but we
2376	 * do still update the log item and attach to the backing buffer as if
2377	 * the flush happened. This is a formality to facilitate predictable
2378	 * error handling as the caller will shutdown and fail the buffer.
2379	 */
2380	error = -EFSCORRUPTED;
2381	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2382			       mp, XFS_ERRTAG_IFLUSH_1)) {
2383		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2384			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2385			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2386		goto flush_out;
2387	}
2388	if (S_ISREG(VFS_I(ip)->i_mode)) {
2389		if (XFS_TEST_ERROR(
2390		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2391		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2392		    mp, XFS_ERRTAG_IFLUSH_3)) {
2393			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2394				"%s: Bad regular inode %llu, ptr "PTR_FMT,
2395				__func__, ip->i_ino, ip);
2396			goto flush_out;
2397		}
2398	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2399		if (XFS_TEST_ERROR(
2400		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2401		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2402		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2403		    mp, XFS_ERRTAG_IFLUSH_4)) {
2404			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2405				"%s: Bad directory inode %llu, ptr "PTR_FMT,
2406				__func__, ip->i_ino, ip);
2407			goto flush_out;
2408		}
2409	}
2410	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2411				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
2412		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2413			"%s: detected corrupt incore inode %llu, "
2414			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2415			__func__, ip->i_ino,
2416			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2417			ip->i_nblocks, ip);
2418		goto flush_out;
2419	}
2420	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2421				mp, XFS_ERRTAG_IFLUSH_6)) {
2422		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2423			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2424			__func__, ip->i_ino, ip->i_forkoff, ip);
2425		goto flush_out;
2426	}
2427
2428	/*
2429	 * Inode item log recovery for v2 inodes are dependent on the flushiter
2430	 * count for correct sequencing.  We bump the flush iteration count so
2431	 * we can detect flushes which postdate a log record during recovery.
2432	 * This is redundant as we now log every change and hence this can't
2433	 * happen but we need to still do it to ensure backwards compatibility
2434	 * with old kernels that predate logging all inode changes.
2435	 */
2436	if (!xfs_has_v3inodes(mp))
2437		ip->i_flushiter++;
2438
2439	/*
2440	 * If there are inline format data / attr forks attached to this inode,
2441	 * make sure they are not corrupt.
2442	 */
2443	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2444	    xfs_ifork_verify_local_data(ip))
2445		goto flush_out;
2446	if (xfs_inode_has_attr_fork(ip) &&
2447	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2448	    xfs_ifork_verify_local_attr(ip))
2449		goto flush_out;
2450
2451	/*
2452	 * Copy the dirty parts of the inode into the on-disk inode.  We always
2453	 * copy out the core of the inode, because if the inode is dirty at all
2454	 * the core must be.
2455	 */
2456	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2457
2458	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2459	if (!xfs_has_v3inodes(mp)) {
2460		if (ip->i_flushiter == DI_MAX_FLUSH)
2461			ip->i_flushiter = 0;
2462	}
2463
2464	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2465	if (xfs_inode_has_attr_fork(ip))
2466		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2467
2468	/*
2469	 * We've recorded everything logged in the inode, so we'd like to clear
2470	 * the ili_fields bits so we don't log and flush things unnecessarily.
2471	 * However, we can't stop logging all this information until the data
2472	 * we've copied into the disk buffer is written to disk.  If we did we
2473	 * might overwrite the copy of the inode in the log with all the data
2474	 * after re-logging only part of it, and in the face of a crash we
2475	 * wouldn't have all the data we need to recover.
2476	 *
2477	 * What we do is move the bits to the ili_last_fields field.  When
2478	 * logging the inode, these bits are moved back to the ili_fields field.
2479	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2480	 * we know that the information those bits represent is permanently on
2481	 * disk.  As long as the flush completes before the inode is logged
2482	 * again, then both ili_fields and ili_last_fields will be cleared.
2483	 */
2484	error = 0;
2485flush_out:
2486	spin_lock(&iip->ili_lock);
2487	iip->ili_last_fields = iip->ili_fields;
2488	iip->ili_fields = 0;
2489	iip->ili_fsync_fields = 0;
2490	set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2491	spin_unlock(&iip->ili_lock);
2492
2493	/*
2494	 * Store the current LSN of the inode so that we can tell whether the
2495	 * item has moved in the AIL from xfs_buf_inode_iodone().
2496	 */
2497	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2498				&iip->ili_item.li_lsn);
2499
2500	/* generate the checksum. */
2501	xfs_dinode_calc_crc(mp, dip);
2502	if (error)
2503		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2504	return error;
2505}
2506
2507/*
2508 * Non-blocking flush of dirty inode metadata into the backing buffer.
2509 *
2510 * The caller must have a reference to the inode and hold the cluster buffer
2511 * locked. The function will walk across all the inodes on the cluster buffer it
2512 * can find and lock without blocking, and flush them to the cluster buffer.
2513 *
2514 * On successful flushing of at least one inode, the caller must write out the
2515 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2516 * the caller needs to release the buffer. On failure, the filesystem will be
2517 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2518 * will be returned.
2519 */
2520int
2521xfs_iflush_cluster(
2522	struct xfs_buf		*bp)
2523{
2524	struct xfs_mount	*mp = bp->b_mount;
2525	struct xfs_log_item	*lip, *n;
2526	struct xfs_inode	*ip;
2527	struct xfs_inode_log_item *iip;
2528	int			clcount = 0;
2529	int			error = 0;
2530
2531	/*
2532	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2533	 * will remove itself from the list.
2534	 */
2535	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2536		iip = (struct xfs_inode_log_item *)lip;
2537		ip = iip->ili_inode;
2538
2539		/*
2540		 * Quick and dirty check to avoid locks if possible.
2541		 */
2542		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2543			continue;
2544		if (xfs_ipincount(ip))
2545			continue;
2546
2547		/*
2548		 * The inode is still attached to the buffer, which means it is
2549		 * dirty but reclaim might try to grab it. Check carefully for
2550		 * that, and grab the ilock while still holding the i_flags_lock
2551		 * to guarantee reclaim will not be able to reclaim this inode
2552		 * once we drop the i_flags_lock.
2553		 */
2554		spin_lock(&ip->i_flags_lock);
2555		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2556		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2557			spin_unlock(&ip->i_flags_lock);
2558			continue;
2559		}
2560
2561		/*
2562		 * ILOCK will pin the inode against reclaim and prevent
2563		 * concurrent transactions modifying the inode while we are
2564		 * flushing the inode. If we get the lock, set the flushing
2565		 * state before we drop the i_flags_lock.
2566		 */
2567		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2568			spin_unlock(&ip->i_flags_lock);
2569			continue;
2570		}
2571		__xfs_iflags_set(ip, XFS_IFLUSHING);
2572		spin_unlock(&ip->i_flags_lock);
2573
2574		/*
2575		 * Abort flushing this inode if we are shut down because the
2576		 * inode may not currently be in the AIL. This can occur when
2577		 * log I/O failure unpins the inode without inserting into the
2578		 * AIL, leaving a dirty/unpinned inode attached to the buffer
2579		 * that otherwise looks like it should be flushed.
2580		 */
2581		if (xlog_is_shutdown(mp->m_log)) {
2582			xfs_iunpin_wait(ip);
2583			xfs_iflush_abort(ip);
2584			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2585			error = -EIO;
2586			continue;
2587		}
2588
2589		/* don't block waiting on a log force to unpin dirty inodes */
2590		if (xfs_ipincount(ip)) {
2591			xfs_iflags_clear(ip, XFS_IFLUSHING);
2592			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2593			continue;
2594		}
2595
2596		if (!xfs_inode_clean(ip))
2597			error = xfs_iflush(ip, bp);
2598		else
2599			xfs_iflags_clear(ip, XFS_IFLUSHING);
2600		xfs_iunlock(ip, XFS_ILOCK_SHARED);
2601		if (error)
2602			break;
2603		clcount++;
2604	}
2605
2606	if (error) {
2607		/*
2608		 * Shutdown first so we kill the log before we release this
2609		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2610		 * of the log, failing it before the _log_ is shut down can
2611		 * result in the log tail being moved forward in the journal
2612		 * on disk because log writes can still be taking place. Hence
2613		 * unpinning the tail will allow the ICREATE intent to be
2614		 * removed from the log an recovery will fail with uninitialised
2615		 * inode cluster buffers.
2616		 */
2617		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2618		bp->b_flags |= XBF_ASYNC;
2619		xfs_buf_ioend_fail(bp);
2620		return error;
2621	}
2622
2623	if (!clcount)
2624		return -EAGAIN;
2625
2626	XFS_STATS_INC(mp, xs_icluster_flushcnt);
2627	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2628	return 0;
2629
2630}
2631
2632/* Release an inode. */
2633void
2634xfs_irele(
2635	struct xfs_inode	*ip)
2636{
2637	trace_xfs_irele(ip, _RET_IP_);
2638	iput(VFS_I(ip));
2639}
2640
2641/*
2642 * Ensure all commited transactions touching the inode are written to the log.
2643 */
2644int
2645xfs_log_force_inode(
2646	struct xfs_inode	*ip)
2647{
2648	xfs_csn_t		seq = 0;
2649
2650	xfs_ilock(ip, XFS_ILOCK_SHARED);
2651	if (xfs_ipincount(ip))
2652		seq = ip->i_itemp->ili_commit_seq;
2653	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2654
2655	if (!seq)
2656		return 0;
2657	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2658}
2659
2660/*
2661 * Grab the exclusive iolock for a data copy from src to dest, making sure to
2662 * abide vfs locking order (lowest pointer value goes first) and breaking the
2663 * layout leases before proceeding.  The loop is needed because we cannot call
2664 * the blocking break_layout() with the iolocks held, and therefore have to
2665 * back out both locks.
2666 */
2667static int
2668xfs_iolock_two_inodes_and_break_layout(
2669	struct inode		*src,
2670	struct inode		*dest)
2671{
2672	int			error;
2673
2674	if (src > dest)
2675		swap(src, dest);
2676
2677retry:
2678	/* Wait to break both inodes' layouts before we start locking. */
2679	error = break_layout(src, true);
2680	if (error)
2681		return error;
2682	if (src != dest) {
2683		error = break_layout(dest, true);
2684		if (error)
2685			return error;
2686	}
2687
2688	/* Lock one inode and make sure nobody got in and leased it. */
2689	inode_lock(src);
2690	error = break_layout(src, false);
2691	if (error) {
2692		inode_unlock(src);
2693		if (error == -EWOULDBLOCK)
2694			goto retry;
2695		return error;
2696	}
2697
2698	if (src == dest)
2699		return 0;
2700
2701	/* Lock the other inode and make sure nobody got in and leased it. */
2702	inode_lock_nested(dest, I_MUTEX_NONDIR2);
2703	error = break_layout(dest, false);
2704	if (error) {
2705		inode_unlock(src);
2706		inode_unlock(dest);
2707		if (error == -EWOULDBLOCK)
2708			goto retry;
2709		return error;
2710	}
2711
2712	return 0;
2713}
2714
2715static int
2716xfs_mmaplock_two_inodes_and_break_dax_layout(
2717	struct xfs_inode	*ip1,
2718	struct xfs_inode	*ip2)
2719{
2720	int			error;
2721	bool			retry;
2722	struct page		*page;
2723
2724	if (ip1->i_ino > ip2->i_ino)
2725		swap(ip1, ip2);
2726
2727again:
2728	retry = false;
2729	/* Lock the first inode */
2730	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2731	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2732	if (error || retry) {
2733		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2734		if (error == 0 && retry)
2735			goto again;
2736		return error;
2737	}
2738
2739	if (ip1 == ip2)
2740		return 0;
2741
2742	/* Nested lock the second inode */
2743	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2744	/*
2745	 * We cannot use xfs_break_dax_layouts() directly here because it may
2746	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2747	 * for this nested lock case.
2748	 */
2749	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2750	if (page && page_ref_count(page) != 1) {
2751		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2752		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2753		goto again;
2754	}
2755
2756	return 0;
2757}
2758
2759/*
2760 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2761 * mmap activity.
2762 */
2763int
2764xfs_ilock2_io_mmap(
2765	struct xfs_inode	*ip1,
2766	struct xfs_inode	*ip2)
2767{
2768	int			ret;
2769
2770	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2771	if (ret)
2772		return ret;
2773
2774	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2775		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2776		if (ret) {
2777			inode_unlock(VFS_I(ip2));
2778			if (ip1 != ip2)
2779				inode_unlock(VFS_I(ip1));
2780			return ret;
2781		}
2782	} else
2783		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2784					    VFS_I(ip2)->i_mapping);
2785
2786	return 0;
2787}
2788
2789/* Unlock both inodes to allow IO and mmap activity. */
2790void
2791xfs_iunlock2_io_mmap(
2792	struct xfs_inode	*ip1,
2793	struct xfs_inode	*ip2)
2794{
2795	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2796		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2797		if (ip1 != ip2)
2798			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2799	} else
2800		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2801					      VFS_I(ip2)->i_mapping);
2802
2803	inode_unlock(VFS_I(ip2));
2804	if (ip1 != ip2)
2805		inode_unlock(VFS_I(ip1));
2806}
2807
2808/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2809void
2810xfs_iunlock2_remapping(
2811	struct xfs_inode	*ip1,
2812	struct xfs_inode	*ip2)
2813{
2814	xfs_iflags_clear(ip1, XFS_IREMAPPING);
2815
2816	if (ip1 != ip2)
2817		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2818	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2819
2820	if (ip1 != ip2)
2821		inode_unlock_shared(VFS_I(ip1));
2822	inode_unlock(VFS_I(ip2));
2823}
2824
2825/*
2826 * Reload the incore inode list for this inode.  Caller should ensure that
2827 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2828 * preventing other threads from executing.
2829 */
2830int
2831xfs_inode_reload_unlinked_bucket(
2832	struct xfs_trans	*tp,
2833	struct xfs_inode	*ip)
2834{
2835	struct xfs_mount	*mp = tp->t_mountp;
2836	struct xfs_buf		*agibp;
2837	struct xfs_agi		*agi;
2838	struct xfs_perag	*pag;
2839	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2840	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2841	xfs_agino_t		prev_agino, next_agino;
2842	unsigned int		bucket;
2843	bool			foundit = false;
2844	int			error;
2845
2846	/* Grab the first inode in the list */
2847	pag = xfs_perag_get(mp, agno);
2848	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2849	xfs_perag_put(pag);
2850	if (error)
2851		return error;
2852
2853	/*
2854	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2855	 * incore unlinked list pointers for this inode.  Check once more to
2856	 * see if we raced with anyone else to reload the unlinked list.
2857	 */
2858	if (!xfs_inode_unlinked_incomplete(ip)) {
2859		foundit = true;
2860		goto out_agibp;
2861	}
2862
2863	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2864	agi = agibp->b_addr;
2865
2866	trace_xfs_inode_reload_unlinked_bucket(ip);
2867
2868	xfs_info_ratelimited(mp,
2869 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
2870			agino, agno);
2871
2872	prev_agino = NULLAGINO;
2873	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2874	while (next_agino != NULLAGINO) {
2875		struct xfs_inode	*next_ip = NULL;
2876
2877		/* Found this caller's inode, set its backlink. */
2878		if (next_agino == agino) {
2879			next_ip = ip;
2880			next_ip->i_prev_unlinked = prev_agino;
2881			foundit = true;
2882			goto next_inode;
2883		}
2884
2885		/* Try in-memory lookup first. */
2886		next_ip = xfs_iunlink_lookup(pag, next_agino);
2887		if (next_ip)
2888			goto next_inode;
2889
2890		/* Inode not in memory, try reloading it. */
2891		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2892				next_agino);
2893		if (error)
2894			break;
2895
2896		/* Grab the reloaded inode. */
2897		next_ip = xfs_iunlink_lookup(pag, next_agino);
2898		if (!next_ip) {
2899			/* No incore inode at all?  We reloaded it... */
2900			ASSERT(next_ip != NULL);
2901			error = -EFSCORRUPTED;
2902			break;
2903		}
2904
2905next_inode:
2906		prev_agino = next_agino;
2907		next_agino = next_ip->i_next_unlinked;
2908	}
2909
2910out_agibp:
2911	xfs_trans_brelse(tp, agibp);
2912	/* Should have found this inode somewhere in the iunlinked bucket. */
2913	if (!error && !foundit)
2914		error = -EFSCORRUPTED;
2915	return error;
2916}
2917
2918/* Decide if this inode is missing its unlinked list and reload it. */
2919int
2920xfs_inode_reload_unlinked(
2921	struct xfs_inode	*ip)
2922{
2923	struct xfs_trans	*tp;
2924	int			error;
2925
2926	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
2927	if (error)
2928		return error;
2929
2930	xfs_ilock(ip, XFS_ILOCK_SHARED);
2931	if (xfs_inode_unlinked_incomplete(ip))
2932		error = xfs_inode_reload_unlinked_bucket(tp, ip);
2933	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2934	xfs_trans_cancel(tp);
2935
2936	return error;
2937}
2938
2939/* Has this inode fork been zapped by repair? */
2940bool
2941xfs_ifork_zapped(
2942	const struct xfs_inode	*ip,
2943	int			whichfork)
2944{
2945	unsigned int		datamask = 0;
2946
2947	switch (whichfork) {
2948	case XFS_DATA_FORK:
2949		switch (ip->i_vnode.i_mode & S_IFMT) {
2950		case S_IFDIR:
2951			datamask = XFS_SICK_INO_DIR_ZAPPED;
2952			break;
2953		case S_IFLNK:
2954			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2955			break;
2956		}
2957		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2958	case XFS_ATTR_FORK:
2959		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2960	default:
2961		return false;
2962	}
2963}
2964
2965/* Compute the number of data and realtime blocks used by a file. */
2966void
2967xfs_inode_count_blocks(
2968	struct xfs_trans	*tp,
2969	struct xfs_inode	*ip,
2970	xfs_filblks_t		*dblocks,
2971	xfs_filblks_t		*rblocks)
2972{
2973	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2974
2975	*rblocks = 0;
2976	if (XFS_IS_REALTIME_INODE(ip))
2977		xfs_bmap_count_leaves(ifp, rblocks);
2978	*dblocks = ip->i_nblocks - *rblocks;
2979}
2980
2981static void
2982xfs_wait_dax_page(
2983	struct inode		*inode)
2984{
2985	struct xfs_inode        *ip = XFS_I(inode);
2986
2987	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
2988	schedule();
2989	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
2990}
2991
2992int
2993xfs_break_dax_layouts(
2994	struct inode		*inode,
2995	bool			*retry)
2996{
2997	struct page		*page;
2998
2999	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
3000
3001	page = dax_layout_busy_page(inode->i_mapping);
3002	if (!page)
3003		return 0;
3004
3005	*retry = true;
3006	return ___wait_var_event(&page->_refcount,
3007			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
3008			0, 0, xfs_wait_dax_page(inode));
3009}
3010
3011int
3012xfs_break_layouts(
3013	struct inode		*inode,
3014	uint			*iolock,
3015	enum layout_break_reason reason)
3016{
3017	bool			retry;
3018	int			error;
3019
3020	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3021
3022	do {
3023		retry = false;
3024		switch (reason) {
3025		case BREAK_UNMAP:
3026			error = xfs_break_dax_layouts(inode, &retry);
3027			if (error || retry)
3028				break;
3029			fallthrough;
3030		case BREAK_WRITE:
3031			error = xfs_break_leased_layouts(inode, iolock, &retry);
3032			break;
3033		default:
3034			WARN_ON_ONCE(1);
3035			error = -EINVAL;
3036		}
3037	} while (error == 0 && retry);
3038
3039	return error;
3040}
3041
3042/* Returns the size of fundamental allocation unit for a file, in bytes. */
3043unsigned int
3044xfs_inode_alloc_unitsize(
3045	struct xfs_inode	*ip)
3046{
3047	unsigned int		blocks = 1;
3048
3049	if (XFS_IS_REALTIME_INODE(ip))
3050		blocks = ip->i_mount->m_sb.sb_rextsize;
3051
3052	return XFS_FSB_TO_B(ip->i_mount, blocks);
3053}
3054
3055/* Should we always be using copy on write for file writes? */
3056bool
3057xfs_is_always_cow_inode(
3058	const struct xfs_inode	*ip)
3059{
3060	return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
3061}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
 
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_iunlink_item.h"
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
  38#include "xfs_ag.h"
  39#include "xfs_log_priv.h"
  40#include "xfs_health.h"
 
 
 
 
 
  41
  42struct kmem_cache *xfs_inode_cache;
  43
  44STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  45STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  46	struct xfs_inode *);
  47
  48/*
  49 * helper function to extract extent size hint from inode
  50 */
  51xfs_extlen_t
  52xfs_get_extsz_hint(
  53	struct xfs_inode	*ip)
  54{
  55	/*
  56	 * No point in aligning allocations if we need to COW to actually
  57	 * write to them.
  58	 */
  59	if (xfs_is_always_cow_inode(ip))
  60		return 0;
  61	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  62		return ip->i_extsize;
  63	if (XFS_IS_REALTIME_INODE(ip))
  64		return ip->i_mount->m_sb.sb_rextsize;
  65	return 0;
  66}
  67
  68/*
  69 * Helper function to extract CoW extent size hint from inode.
  70 * Between the extent size hint and the CoW extent size hint, we
  71 * return the greater of the two.  If the value is zero (automatic),
  72 * use the default size.
  73 */
  74xfs_extlen_t
  75xfs_get_cowextsz_hint(
  76	struct xfs_inode	*ip)
  77{
  78	xfs_extlen_t		a, b;
  79
  80	a = 0;
  81	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  82		a = ip->i_cowextsize;
  83	b = xfs_get_extsz_hint(ip);
  84
  85	a = max(a, b);
  86	if (a == 0)
  87		return XFS_DEFAULT_COWEXTSZ_HINT;
  88	return a;
  89}
  90
  91/*
  92 * These two are wrapper routines around the xfs_ilock() routine used to
  93 * centralize some grungy code.  They are used in places that wish to lock the
  94 * inode solely for reading the extents.  The reason these places can't just
  95 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  96 * bringing in of the extents from disk for a file in b-tree format.  If the
  97 * inode is in b-tree format, then we need to lock the inode exclusively until
  98 * the extents are read in.  Locking it exclusively all the time would limit
  99 * our parallelism unnecessarily, though.  What we do instead is check to see
 100 * if the extents have been read in yet, and only lock the inode exclusively
 101 * if they have not.
 102 *
 103 * The functions return a value which should be given to the corresponding
 104 * xfs_iunlock() call.
 105 */
 106uint
 107xfs_ilock_data_map_shared(
 108	struct xfs_inode	*ip)
 109{
 110	uint			lock_mode = XFS_ILOCK_SHARED;
 111
 112	if (xfs_need_iread_extents(&ip->i_df))
 113		lock_mode = XFS_ILOCK_EXCL;
 114	xfs_ilock(ip, lock_mode);
 115	return lock_mode;
 116}
 117
 118uint
 119xfs_ilock_attr_map_shared(
 120	struct xfs_inode	*ip)
 121{
 122	uint			lock_mode = XFS_ILOCK_SHARED;
 123
 124	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
 125		lock_mode = XFS_ILOCK_EXCL;
 126	xfs_ilock(ip, lock_mode);
 127	return lock_mode;
 128}
 129
 130/*
 131 * You can't set both SHARED and EXCL for the same lock,
 132 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
 133 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
 134 * to set in lock_flags.
 135 */
 136static inline void
 137xfs_lock_flags_assert(
 138	uint		lock_flags)
 139{
 140	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 141		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 142	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 143		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 144	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 145		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 146	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 147	ASSERT(lock_flags != 0);
 148}
 149
 150/*
 151 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 152 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 153 * various combinations of the locks to be obtained.
 154 *
 155 * The 3 locks should always be ordered so that the IO lock is obtained first,
 156 * the mmap lock second and the ilock last in order to prevent deadlock.
 157 *
 158 * Basic locking order:
 159 *
 160 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 161 *
 162 * mmap_lock locking order:
 163 *
 164 * i_rwsem -> page lock -> mmap_lock
 165 * mmap_lock -> invalidate_lock -> page_lock
 166 *
 167 * The difference in mmap_lock locking order mean that we cannot hold the
 168 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 169 * can fault in pages during copy in/out (for buffered IO) or require the
 170 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 171 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 172 * fault because page faults already hold the mmap_lock.
 173 *
 174 * Hence to serialise fully against both syscall and mmap based IO, we need to
 175 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 176 * both taken in places where we need to invalidate the page cache in a race
 177 * free manner (e.g. truncate, hole punch and other extent manipulation
 178 * functions).
 179 */
 180void
 181xfs_ilock(
 182	xfs_inode_t		*ip,
 183	uint			lock_flags)
 184{
 185	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 186
 187	xfs_lock_flags_assert(lock_flags);
 188
 189	if (lock_flags & XFS_IOLOCK_EXCL) {
 190		down_write_nested(&VFS_I(ip)->i_rwsem,
 191				  XFS_IOLOCK_DEP(lock_flags));
 192	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 193		down_read_nested(&VFS_I(ip)->i_rwsem,
 194				 XFS_IOLOCK_DEP(lock_flags));
 195	}
 196
 197	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 198		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 199				  XFS_MMAPLOCK_DEP(lock_flags));
 200	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 201		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 202				 XFS_MMAPLOCK_DEP(lock_flags));
 203	}
 204
 205	if (lock_flags & XFS_ILOCK_EXCL)
 206		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 207	else if (lock_flags & XFS_ILOCK_SHARED)
 208		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 209}
 210
 211/*
 212 * This is just like xfs_ilock(), except that the caller
 213 * is guaranteed not to sleep.  It returns 1 if it gets
 214 * the requested locks and 0 otherwise.  If the IO lock is
 215 * obtained but the inode lock cannot be, then the IO lock
 216 * is dropped before returning.
 217 *
 218 * ip -- the inode being locked
 219 * lock_flags -- this parameter indicates the inode's locks to be
 220 *       to be locked.  See the comment for xfs_ilock() for a list
 221 *	 of valid values.
 222 */
 223int
 224xfs_ilock_nowait(
 225	xfs_inode_t		*ip,
 226	uint			lock_flags)
 227{
 228	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 229
 230	xfs_lock_flags_assert(lock_flags);
 231
 232	if (lock_flags & XFS_IOLOCK_EXCL) {
 233		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 234			goto out;
 235	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 236		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 237			goto out;
 238	}
 239
 240	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 241		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 242			goto out_undo_iolock;
 243	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 244		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 245			goto out_undo_iolock;
 246	}
 247
 248	if (lock_flags & XFS_ILOCK_EXCL) {
 249		if (!mrtryupdate(&ip->i_lock))
 250			goto out_undo_mmaplock;
 251	} else if (lock_flags & XFS_ILOCK_SHARED) {
 252		if (!mrtryaccess(&ip->i_lock))
 253			goto out_undo_mmaplock;
 254	}
 255	return 1;
 256
 257out_undo_mmaplock:
 258	if (lock_flags & XFS_MMAPLOCK_EXCL)
 259		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 260	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 261		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 262out_undo_iolock:
 263	if (lock_flags & XFS_IOLOCK_EXCL)
 264		up_write(&VFS_I(ip)->i_rwsem);
 265	else if (lock_flags & XFS_IOLOCK_SHARED)
 266		up_read(&VFS_I(ip)->i_rwsem);
 267out:
 268	return 0;
 269}
 270
 271/*
 272 * xfs_iunlock() is used to drop the inode locks acquired with
 273 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 274 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 275 * that we know which locks to drop.
 276 *
 277 * ip -- the inode being unlocked
 278 * lock_flags -- this parameter indicates the inode's locks to be
 279 *       to be unlocked.  See the comment for xfs_ilock() for a list
 280 *	 of valid values for this parameter.
 281 *
 282 */
 283void
 284xfs_iunlock(
 285	xfs_inode_t		*ip,
 286	uint			lock_flags)
 287{
 288	xfs_lock_flags_assert(lock_flags);
 289
 290	if (lock_flags & XFS_IOLOCK_EXCL)
 291		up_write(&VFS_I(ip)->i_rwsem);
 292	else if (lock_flags & XFS_IOLOCK_SHARED)
 293		up_read(&VFS_I(ip)->i_rwsem);
 294
 295	if (lock_flags & XFS_MMAPLOCK_EXCL)
 296		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 297	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 298		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 299
 300	if (lock_flags & XFS_ILOCK_EXCL)
 301		mrunlock_excl(&ip->i_lock);
 302	else if (lock_flags & XFS_ILOCK_SHARED)
 303		mrunlock_shared(&ip->i_lock);
 304
 305	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 306}
 307
 308/*
 309 * give up write locks.  the i/o lock cannot be held nested
 310 * if it is being demoted.
 311 */
 312void
 313xfs_ilock_demote(
 314	xfs_inode_t		*ip,
 315	uint			lock_flags)
 316{
 317	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 318	ASSERT((lock_flags &
 319		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 320
 321	if (lock_flags & XFS_ILOCK_EXCL)
 322		mrdemote(&ip->i_lock);
 323	if (lock_flags & XFS_MMAPLOCK_EXCL)
 324		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 325	if (lock_flags & XFS_IOLOCK_EXCL)
 326		downgrade_write(&VFS_I(ip)->i_rwsem);
 327
 328	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 329}
 330
 331#if defined(DEBUG) || defined(XFS_WARN)
 332static inline bool
 333__xfs_rwsem_islocked(
 334	struct rw_semaphore	*rwsem,
 335	bool			shared)
 336{
 337	if (!debug_locks)
 338		return rwsem_is_locked(rwsem);
 339
 340	if (!shared)
 341		return lockdep_is_held_type(rwsem, 0);
 342
 343	/*
 344	 * We are checking that the lock is held at least in shared
 345	 * mode but don't care that it might be held exclusively
 346	 * (i.e. shared | excl). Hence we check if the lock is held
 347	 * in any mode rather than an explicit shared mode.
 348	 */
 349	return lockdep_is_held_type(rwsem, -1);
 350}
 351
 352bool
 353xfs_isilocked(
 354	struct xfs_inode	*ip,
 355	uint			lock_flags)
 356{
 357	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 358		if (!(lock_flags & XFS_ILOCK_SHARED))
 359			return !!ip->i_lock.mr_writer;
 360		return rwsem_is_locked(&ip->i_lock.mr_lock);
 361	}
 362
 363	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 364		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
 365				(lock_flags & XFS_MMAPLOCK_SHARED));
 366	}
 367
 368	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
 369		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
 370				(lock_flags & XFS_IOLOCK_SHARED));
 371	}
 372
 373	ASSERT(0);
 374	return false;
 375}
 376#endif
 377
 378/*
 379 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 380 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 381 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 382 * errors and warnings.
 383 */
 384#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 385static bool
 386xfs_lockdep_subclass_ok(
 387	int subclass)
 388{
 389	return subclass < MAX_LOCKDEP_SUBCLASSES;
 390}
 391#else
 392#define xfs_lockdep_subclass_ok(subclass)	(true)
 393#endif
 394
 395/*
 396 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 397 * value. This can be called for any type of inode lock combination, including
 398 * parent locking. Care must be taken to ensure we don't overrun the subclass
 399 * storage fields in the class mask we build.
 400 */
 401static inline uint
 402xfs_lock_inumorder(
 403	uint	lock_mode,
 404	uint	subclass)
 405{
 406	uint	class = 0;
 407
 408	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 409			      XFS_ILOCK_RTSUM)));
 410	ASSERT(xfs_lockdep_subclass_ok(subclass));
 411
 412	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 413		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 414		class += subclass << XFS_IOLOCK_SHIFT;
 415	}
 416
 417	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 418		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 419		class += subclass << XFS_MMAPLOCK_SHIFT;
 420	}
 421
 422	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 423		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 424		class += subclass << XFS_ILOCK_SHIFT;
 425	}
 426
 427	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 428}
 429
 430/*
 431 * The following routine will lock n inodes in exclusive mode.  We assume the
 432 * caller calls us with the inodes in i_ino order.
 433 *
 434 * We need to detect deadlock where an inode that we lock is in the AIL and we
 435 * start waiting for another inode that is locked by a thread in a long running
 436 * transaction (such as truncate). This can result in deadlock since the long
 437 * running trans might need to wait for the inode we just locked in order to
 438 * push the tail and free space in the log.
 439 *
 440 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 441 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 442 * lock more than one at a time, lockdep will report false positives saying we
 443 * have violated locking orders.
 444 */
 445static void
 446xfs_lock_inodes(
 447	struct xfs_inode	**ips,
 448	int			inodes,
 449	uint			lock_mode)
 450{
 451	int			attempts = 0;
 452	uint			i;
 453	int			j;
 454	bool			try_lock;
 455	struct xfs_log_item	*lp;
 456
 457	/*
 458	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 459	 * support an arbitrary depth of locking here, but absolute limits on
 460	 * inodes depend on the type of locking and the limits placed by
 461	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 462	 * the asserts.
 463	 */
 464	ASSERT(ips && inodes >= 2 && inodes <= 5);
 465	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 466			    XFS_ILOCK_EXCL));
 467	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 468			      XFS_ILOCK_SHARED)));
 469	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 470		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 471	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 472		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 473
 474	if (lock_mode & XFS_IOLOCK_EXCL) {
 475		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 476	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 477		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 478
 479again:
 480	try_lock = false;
 481	i = 0;
 482	for (; i < inodes; i++) {
 483		ASSERT(ips[i]);
 484
 485		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 486			continue;
 487
 488		/*
 489		 * If try_lock is not set yet, make sure all locked inodes are
 490		 * not in the AIL.  If any are, set try_lock to be used later.
 491		 */
 492		if (!try_lock) {
 493			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 494				lp = &ips[j]->i_itemp->ili_item;
 495				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 496					try_lock = true;
 497			}
 498		}
 499
 500		/*
 501		 * If any of the previous locks we have locked is in the AIL,
 502		 * we must TRY to get the second and subsequent locks. If
 503		 * we can't get any, we must release all we have
 504		 * and try again.
 505		 */
 506		if (!try_lock) {
 507			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 508			continue;
 509		}
 510
 511		/* try_lock means we have an inode locked that is in the AIL. */
 512		ASSERT(i != 0);
 513		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 514			continue;
 515
 516		/*
 517		 * Unlock all previous guys and try again.  xfs_iunlock will try
 518		 * to push the tail if the inode is in the AIL.
 519		 */
 520		attempts++;
 521		for (j = i - 1; j >= 0; j--) {
 522			/*
 523			 * Check to see if we've already unlocked this one.  Not
 524			 * the first one going back, and the inode ptr is the
 525			 * same.
 526			 */
 527			if (j != (i - 1) && ips[j] == ips[j + 1])
 528				continue;
 529
 530			xfs_iunlock(ips[j], lock_mode);
 531		}
 532
 533		if ((attempts % 5) == 0) {
 534			delay(1); /* Don't just spin the CPU */
 535		}
 536		goto again;
 537	}
 538}
 539
 540/*
 541 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 542 * mmaplock must be double-locked separately since we use i_rwsem and
 543 * invalidate_lock for that. We now support taking one lock EXCL and the
 544 * other SHARED.
 545 */
 546void
 547xfs_lock_two_inodes(
 548	struct xfs_inode	*ip0,
 549	uint			ip0_mode,
 550	struct xfs_inode	*ip1,
 551	uint			ip1_mode)
 552{
 553	int			attempts = 0;
 554	struct xfs_log_item	*lp;
 555
 556	ASSERT(hweight32(ip0_mode) == 1);
 557	ASSERT(hweight32(ip1_mode) == 1);
 558	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 559	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 560	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 562	ASSERT(ip0->i_ino != ip1->i_ino);
 563
 564	if (ip0->i_ino > ip1->i_ino) {
 565		swap(ip0, ip1);
 566		swap(ip0_mode, ip1_mode);
 567	}
 568
 569 again:
 570	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 571
 572	/*
 573	 * If the first lock we have locked is in the AIL, we must TRY to get
 574	 * the second lock. If we can't get it, we must release the first one
 575	 * and try again.
 576	 */
 577	lp = &ip0->i_itemp->ili_item;
 578	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 579		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 580			xfs_iunlock(ip0, ip0_mode);
 581			if ((++attempts % 5) == 0)
 582				delay(1); /* Don't just spin the CPU */
 583			goto again;
 584		}
 585	} else {
 586		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 587	}
 588}
 589
 590uint
 591xfs_ip2xflags(
 592	struct xfs_inode	*ip)
 593{
 594	uint			flags = 0;
 595
 596	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 597		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 598			flags |= FS_XFLAG_REALTIME;
 599		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 600			flags |= FS_XFLAG_PREALLOC;
 601		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 602			flags |= FS_XFLAG_IMMUTABLE;
 603		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 604			flags |= FS_XFLAG_APPEND;
 605		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 606			flags |= FS_XFLAG_SYNC;
 607		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 608			flags |= FS_XFLAG_NOATIME;
 609		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 610			flags |= FS_XFLAG_NODUMP;
 611		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 612			flags |= FS_XFLAG_RTINHERIT;
 613		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 614			flags |= FS_XFLAG_PROJINHERIT;
 615		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 616			flags |= FS_XFLAG_NOSYMLINKS;
 617		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 618			flags |= FS_XFLAG_EXTSIZE;
 619		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 620			flags |= FS_XFLAG_EXTSZINHERIT;
 621		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 622			flags |= FS_XFLAG_NODEFRAG;
 623		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 624			flags |= FS_XFLAG_FILESTREAM;
 625	}
 626
 627	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 628		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 629			flags |= FS_XFLAG_DAX;
 630		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 631			flags |= FS_XFLAG_COWEXTSIZE;
 632	}
 633
 634	if (xfs_inode_has_attr_fork(ip))
 635		flags |= FS_XFLAG_HASATTR;
 636	return flags;
 637}
 638
 639/*
 640 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 641 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 642 * ci_name->name will point to a the actual name (caller must free) or
 643 * will be set to NULL if an exact match is found.
 644 */
 645int
 646xfs_lookup(
 647	struct xfs_inode	*dp,
 648	const struct xfs_name	*name,
 649	struct xfs_inode	**ipp,
 650	struct xfs_name		*ci_name)
 651{
 652	xfs_ino_t		inum;
 653	int			error;
 654
 655	trace_xfs_lookup(dp, name);
 656
 657	if (xfs_is_shutdown(dp->i_mount))
 658		return -EIO;
 659	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 660		return -EIO;
 661
 662	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 663	if (error)
 664		goto out_unlock;
 665
 666	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 667	if (error)
 668		goto out_free_name;
 669
 
 
 
 
 
 
 
 
 
 
 670	return 0;
 671
 
 
 672out_free_name:
 673	if (ci_name)
 674		kmem_free(ci_name->name);
 675out_unlock:
 676	*ipp = NULL;
 677	return error;
 678}
 679
 680/* Propagate di_flags from a parent inode to a child inode. */
 681static void
 682xfs_inode_inherit_flags(
 683	struct xfs_inode	*ip,
 684	const struct xfs_inode	*pip)
 685{
 686	unsigned int		di_flags = 0;
 687	xfs_failaddr_t		failaddr;
 688	umode_t			mode = VFS_I(ip)->i_mode;
 689
 690	if (S_ISDIR(mode)) {
 691		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 692			di_flags |= XFS_DIFLAG_RTINHERIT;
 693		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 694			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 695			ip->i_extsize = pip->i_extsize;
 696		}
 697		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 698			di_flags |= XFS_DIFLAG_PROJINHERIT;
 699	} else if (S_ISREG(mode)) {
 700		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 701		    xfs_has_realtime(ip->i_mount))
 702			di_flags |= XFS_DIFLAG_REALTIME;
 703		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 704			di_flags |= XFS_DIFLAG_EXTSIZE;
 705			ip->i_extsize = pip->i_extsize;
 706		}
 707	}
 708	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 709	    xfs_inherit_noatime)
 710		di_flags |= XFS_DIFLAG_NOATIME;
 711	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 712	    xfs_inherit_nodump)
 713		di_flags |= XFS_DIFLAG_NODUMP;
 714	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 715	    xfs_inherit_sync)
 716		di_flags |= XFS_DIFLAG_SYNC;
 717	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 718	    xfs_inherit_nosymlinks)
 719		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 720	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 721	    xfs_inherit_nodefrag)
 722		di_flags |= XFS_DIFLAG_NODEFRAG;
 723	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 724		di_flags |= XFS_DIFLAG_FILESTREAM;
 725
 726	ip->i_diflags |= di_flags;
 727
 728	/*
 729	 * Inode verifiers on older kernels only check that the extent size
 730	 * hint is an integer multiple of the rt extent size on realtime files.
 731	 * They did not check the hint alignment on a directory with both
 732	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 733	 * propagated from a directory into a new realtime file, new file
 734	 * allocations will fail due to math errors in the rt allocator and/or
 735	 * trip the verifiers.  Validate the hint settings in the new file so
 736	 * that we don't let broken hints propagate.
 737	 */
 738	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 739			VFS_I(ip)->i_mode, ip->i_diflags);
 740	if (failaddr) {
 741		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 742				   XFS_DIFLAG_EXTSZINHERIT);
 743		ip->i_extsize = 0;
 744	}
 745}
 746
 747/* Propagate di_flags2 from a parent inode to a child inode. */
 748static void
 749xfs_inode_inherit_flags2(
 750	struct xfs_inode	*ip,
 751	const struct xfs_inode	*pip)
 752{
 753	xfs_failaddr_t		failaddr;
 754
 755	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 756		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 757		ip->i_cowextsize = pip->i_cowextsize;
 758	}
 759	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 760		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 761
 762	/* Don't let invalid cowextsize hints propagate. */
 763	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 764			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 765	if (failaddr) {
 766		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 767		ip->i_cowextsize = 0;
 768	}
 769}
 770
 771/*
 772 * Initialise a newly allocated inode and return the in-core inode to the
 773 * caller locked exclusively.
 
 
 774 */
 775int
 776xfs_init_new_inode(
 777	struct mnt_idmap	*idmap,
 778	struct xfs_trans	*tp,
 779	struct xfs_inode	*pip,
 780	xfs_ino_t		ino,
 781	umode_t			mode,
 782	xfs_nlink_t		nlink,
 783	dev_t			rdev,
 784	prid_t			prid,
 785	bool			init_xattrs,
 786	struct xfs_inode	**ipp)
 787{
 788	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 789	struct xfs_mount	*mp = tp->t_mountp;
 790	struct xfs_inode	*ip;
 791	unsigned int		flags;
 792	int			error;
 793	struct timespec64	tv;
 794	struct inode		*inode;
 795
 796	/*
 797	 * Protect against obviously corrupt allocation btree records. Later
 798	 * xfs_iget checks will catch re-allocation of other active in-memory
 799	 * and on-disk inodes. If we don't catch reallocating the parent inode
 800	 * here we will deadlock in xfs_iget() so we have to do these checks
 801	 * first.
 802	 */
 803	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 804		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 805		return -EFSCORRUPTED;
 806	}
 807
 808	/*
 809	 * Get the in-core inode with the lock held exclusively to prevent
 810	 * others from looking at until we're done.
 811	 */
 812	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 813	if (error)
 814		return error;
 815
 816	ASSERT(ip != NULL);
 817	inode = VFS_I(ip);
 818	set_nlink(inode, nlink);
 819	inode->i_rdev = rdev;
 820	ip->i_projid = prid;
 821
 822	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
 823		inode_fsuid_set(inode, idmap);
 824		inode->i_gid = dir->i_gid;
 825		inode->i_mode = mode;
 826	} else {
 827		inode_init_owner(idmap, inode, dir, mode);
 828	}
 829
 830	/*
 831	 * If the group ID of the new file does not match the effective group
 832	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 833	 * (and only if the irix_sgid_inherit compatibility variable is set).
 834	 */
 835	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
 836	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
 837		inode->i_mode &= ~S_ISGID;
 838
 839	ip->i_disk_size = 0;
 840	ip->i_df.if_nextents = 0;
 841	ASSERT(ip->i_nblocks == 0);
 842
 843	tv = inode_set_ctime_current(inode);
 844	inode_set_mtime_to_ts(inode, tv);
 845	inode_set_atime_to_ts(inode, tv);
 846
 847	ip->i_extsize = 0;
 848	ip->i_diflags = 0;
 849
 850	if (xfs_has_v3inodes(mp)) {
 851		inode_set_iversion(inode, 1);
 852		ip->i_cowextsize = 0;
 853		ip->i_crtime = tv;
 854	}
 855
 856	flags = XFS_ILOG_CORE;
 857	switch (mode & S_IFMT) {
 858	case S_IFIFO:
 859	case S_IFCHR:
 860	case S_IFBLK:
 861	case S_IFSOCK:
 862		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 863		flags |= XFS_ILOG_DEV;
 864		break;
 865	case S_IFREG:
 866	case S_IFDIR:
 867		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 868			xfs_inode_inherit_flags(ip, pip);
 869		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 870			xfs_inode_inherit_flags2(ip, pip);
 871		fallthrough;
 872	case S_IFLNK:
 873		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 874		ip->i_df.if_bytes = 0;
 875		ip->i_df.if_data = NULL;
 876		break;
 877	default:
 878		ASSERT(0);
 879	}
 880
 881	/*
 882	 * If we need to create attributes immediately after allocating the
 883	 * inode, initialise an empty attribute fork right now. We use the
 884	 * default fork offset for attributes here as we don't know exactly what
 885	 * size or how many attributes we might be adding. We can do this
 886	 * safely here because we know the data fork is completely empty and
 887	 * this saves us from needing to run a separate transaction to set the
 888	 * fork offset in the immediate future.
 889	 */
 890	if (init_xattrs && xfs_has_attr(mp)) {
 891		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 892		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
 893	}
 894
 895	/*
 896	 * Log the new values stuffed into the inode.
 897	 */
 898	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 899	xfs_trans_log_inode(tp, ip, flags);
 900
 901	/* now that we have an i_mode we can setup the inode structure */
 902	xfs_setup_inode(ip);
 903
 904	*ipp = ip;
 905	return 0;
 906}
 907
 908/*
 909 * Decrement the link count on an inode & log the change.  If this causes the
 910 * link count to go to zero, move the inode to AGI unlinked list so that it can
 911 * be freed when the last active reference goes away via xfs_inactive().
 912 */
 913static int			/* error */
 914xfs_droplink(
 915	xfs_trans_t *tp,
 916	xfs_inode_t *ip)
 917{
 918	if (VFS_I(ip)->i_nlink == 0) {
 919		xfs_alert(ip->i_mount,
 920			  "%s: Attempt to drop inode (%llu) with nlink zero.",
 921			  __func__, ip->i_ino);
 922		return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 923	}
 924
 925	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 926
 927	drop_nlink(VFS_I(ip));
 928	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 929
 930	if (VFS_I(ip)->i_nlink)
 931		return 0;
 932
 933	return xfs_iunlink(tp, ip);
 934}
 935
 936/*
 937 * Increment the link count on an inode & log the change.
 938 */
 939static void
 940xfs_bumplink(
 941	xfs_trans_t *tp,
 942	xfs_inode_t *ip)
 943{
 944	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 945
 946	inc_nlink(VFS_I(ip));
 947	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 948}
 949
 950int
 951xfs_create(
 952	struct mnt_idmap	*idmap,
 953	xfs_inode_t		*dp,
 954	struct xfs_name		*name,
 955	umode_t			mode,
 956	dev_t			rdev,
 957	bool			init_xattrs,
 958	xfs_inode_t		**ipp)
 959{
 960	int			is_dir = S_ISDIR(mode);
 
 
 
 
 961	struct xfs_mount	*mp = dp->i_mount;
 962	struct xfs_inode	*ip = NULL;
 963	struct xfs_trans	*tp = NULL;
 964	int			error;
 965	bool                    unlock_dp_on_error = false;
 966	prid_t			prid;
 967	struct xfs_dquot	*udqp = NULL;
 968	struct xfs_dquot	*gdqp = NULL;
 969	struct xfs_dquot	*pdqp = NULL;
 970	struct xfs_trans_res	*tres;
 
 
 
 971	uint			resblks;
 972	xfs_ino_t		ino;
 973
 974	trace_xfs_create(dp, name);
 975
 976	if (xfs_is_shutdown(mp))
 977		return -EIO;
 978	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 979		return -EIO;
 980
 981	prid = xfs_get_initial_prid(dp);
 982
 983	/*
 984	 * Make sure that we have allocated dquot(s) on disk.
 985	 */
 986	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
 987			mapped_fsgid(idmap, &init_user_ns), prid,
 988			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 989			&udqp, &gdqp, &pdqp);
 990	if (error)
 991		return error;
 992
 993	if (is_dir) {
 994		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 995		tres = &M_RES(mp)->tr_mkdir;
 996	} else {
 997		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 998		tres = &M_RES(mp)->tr_create;
 999	}
1000
 
 
 
 
1001	/*
1002	 * Initially assume that the file does not exist and
1003	 * reserve the resources for that case.  If that is not
1004	 * the case we'll drop the one we have and get a more
1005	 * appropriate transaction later.
1006	 */
1007	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1008			&tp);
1009	if (error == -ENOSPC) {
1010		/* flush outstanding delalloc blocks and retry */
1011		xfs_flush_inodes(mp);
1012		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1013				resblks, &tp);
1014	}
1015	if (error)
1016		goto out_release_dquots;
1017
1018	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1019	unlock_dp_on_error = true;
1020
1021	/*
1022	 * A newly created regular or special file just has one directory
1023	 * entry pointing to them, but a directory also the "." entry
1024	 * pointing to itself.
1025	 */
1026	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1027	if (!error)
1028		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1029				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1030	if (error)
1031		goto out_trans_cancel;
1032
1033	/*
1034	 * Now we join the directory inode to the transaction.  We do not do it
1035	 * earlier because xfs_dialloc might commit the previous transaction
1036	 * (and release all the locks).  An error from here on will result in
1037	 * the transaction cancel unlocking dp so don't do it explicitly in the
1038	 * error path.
1039	 */
1040	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1041	unlock_dp_on_error = false;
1042
1043	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1044					resblks - XFS_IALLOC_SPACE_RES(mp));
1045	if (error) {
1046		ASSERT(error != -ENOSPC);
1047		goto out_trans_cancel;
1048	}
1049	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1050	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1051
1052	if (is_dir) {
1053		error = xfs_dir_init(tp, ip, dp);
1054		if (error)
1055			goto out_trans_cancel;
1056
1057		xfs_bumplink(tp, dp);
1058	}
1059
1060	/*
1061	 * If this is a synchronous mount, make sure that the
1062	 * create transaction goes to disk before returning to
1063	 * the user.
1064	 */
1065	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1066		xfs_trans_set_sync(tp);
1067
1068	/*
1069	 * Attach the dquot(s) to the inodes and modify them incore.
1070	 * These ids of the inode couldn't have changed since the new
1071	 * inode has been locked ever since it was created.
1072	 */
1073	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1074
1075	error = xfs_trans_commit(tp);
1076	if (error)
1077		goto out_release_inode;
1078
1079	xfs_qm_dqrele(udqp);
1080	xfs_qm_dqrele(gdqp);
1081	xfs_qm_dqrele(pdqp);
1082
1083	*ipp = ip;
 
 
 
1084	return 0;
1085
1086 out_trans_cancel:
1087	xfs_trans_cancel(tp);
1088 out_release_inode:
1089	/*
1090	 * Wait until after the current transaction is aborted to finish the
1091	 * setup of the inode and release the inode.  This prevents recursive
1092	 * transactions and deadlocks from xfs_inactive.
1093	 */
1094	if (ip) {
1095		xfs_finish_inode_setup(ip);
1096		xfs_irele(ip);
 
1097	}
 
 
1098 out_release_dquots:
1099	xfs_qm_dqrele(udqp);
1100	xfs_qm_dqrele(gdqp);
1101	xfs_qm_dqrele(pdqp);
1102
1103	if (unlock_dp_on_error)
1104		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1105	return error;
1106}
1107
1108int
1109xfs_create_tmpfile(
1110	struct mnt_idmap	*idmap,
1111	struct xfs_inode	*dp,
1112	umode_t			mode,
1113	struct xfs_inode	**ipp)
1114{
 
1115	struct xfs_mount	*mp = dp->i_mount;
1116	struct xfs_inode	*ip = NULL;
1117	struct xfs_trans	*tp = NULL;
1118	int			error;
1119	prid_t                  prid;
1120	struct xfs_dquot	*udqp = NULL;
1121	struct xfs_dquot	*gdqp = NULL;
1122	struct xfs_dquot	*pdqp = NULL;
1123	struct xfs_trans_res	*tres;
 
1124	uint			resblks;
1125	xfs_ino_t		ino;
 
 
1126
1127	if (xfs_is_shutdown(mp))
1128		return -EIO;
1129
1130	prid = xfs_get_initial_prid(dp);
1131
1132	/*
1133	 * Make sure that we have allocated dquot(s) on disk.
1134	 */
1135	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1136			mapped_fsgid(idmap, &init_user_ns), prid,
1137			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1138			&udqp, &gdqp, &pdqp);
1139	if (error)
1140		return error;
1141
1142	resblks = XFS_IALLOC_SPACE_RES(mp);
1143	tres = &M_RES(mp)->tr_create_tmpfile;
1144
1145	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1146			&tp);
1147	if (error)
1148		goto out_release_dquots;
1149
1150	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1151	if (!error)
1152		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1153				0, 0, prid, false, &ip);
1154	if (error)
1155		goto out_trans_cancel;
1156
1157	if (xfs_has_wsync(mp))
1158		xfs_trans_set_sync(tp);
1159
1160	/*
1161	 * Attach the dquot(s) to the inodes and modify them incore.
1162	 * These ids of the inode couldn't have changed since the new
1163	 * inode has been locked ever since it was created.
1164	 */
1165	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1166
1167	error = xfs_iunlink(tp, ip);
1168	if (error)
1169		goto out_trans_cancel;
1170
1171	error = xfs_trans_commit(tp);
1172	if (error)
1173		goto out_release_inode;
1174
1175	xfs_qm_dqrele(udqp);
1176	xfs_qm_dqrele(gdqp);
1177	xfs_qm_dqrele(pdqp);
1178
1179	*ipp = ip;
 
1180	return 0;
1181
1182 out_trans_cancel:
1183	xfs_trans_cancel(tp);
1184 out_release_inode:
1185	/*
1186	 * Wait until after the current transaction is aborted to finish the
1187	 * setup of the inode and release the inode.  This prevents recursive
1188	 * transactions and deadlocks from xfs_inactive.
1189	 */
1190	if (ip) {
 
1191		xfs_finish_inode_setup(ip);
1192		xfs_irele(ip);
1193	}
1194 out_release_dquots:
1195	xfs_qm_dqrele(udqp);
1196	xfs_qm_dqrele(gdqp);
1197	xfs_qm_dqrele(pdqp);
1198
1199	return error;
1200}
1201
1202int
1203xfs_link(
1204	xfs_inode_t		*tdp,
1205	xfs_inode_t		*sip,
1206	struct xfs_name		*target_name)
1207{
1208	xfs_mount_t		*mp = tdp->i_mount;
1209	xfs_trans_t		*tp;
 
 
 
 
 
1210	int			error, nospace_error = 0;
1211	int			resblks;
1212
1213	trace_xfs_link(tdp, target_name);
1214
1215	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1216
1217	if (xfs_is_shutdown(mp))
1218		return -EIO;
1219	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1220		return -EIO;
1221
1222	error = xfs_qm_dqattach(sip);
1223	if (error)
1224		goto std_return;
1225
1226	error = xfs_qm_dqattach(tdp);
1227	if (error)
1228		goto std_return;
1229
1230	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
 
 
 
 
1231	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1232			&tp, &nospace_error);
1233	if (error)
1234		goto std_return;
 
 
 
 
 
 
 
 
 
 
1235
1236	/*
1237	 * If we are using project inheritance, we only allow hard link
1238	 * creation in our tree when the project IDs are the same; else
1239	 * the tree quota mechanism could be circumvented.
1240	 */
1241	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1242		     tdp->i_projid != sip->i_projid)) {
1243		error = -EXDEV;
1244		goto error_return;
1245	}
1246
1247	if (!resblks) {
1248		error = xfs_dir_canenter(tp, tdp, target_name);
1249		if (error)
 
 
 
 
1250			goto error_return;
 
1251	}
1252
1253	/*
1254	 * Handle initial link state of O_TMPFILE inode
1255	 */
1256	if (VFS_I(sip)->i_nlink == 0) {
1257		struct xfs_perag	*pag;
1258
1259		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1260		error = xfs_iunlink_remove(tp, pag, sip);
1261		xfs_perag_put(pag);
1262		if (error)
1263			goto error_return;
1264	}
1265
1266	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1267				   resblks);
1268	if (error)
1269		goto error_return;
1270	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1271	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1272
1273	xfs_bumplink(tp, sip);
1274
1275	/*
1276	 * If this is a synchronous mount, make sure that the
1277	 * link transaction goes to disk before returning to
1278	 * the user.
1279	 */
1280	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1281		xfs_trans_set_sync(tp);
1282
1283	return xfs_trans_commit(tp);
 
 
 
 
1284
1285 error_return:
1286	xfs_trans_cancel(tp);
 
 
 
 
1287 std_return:
1288	if (error == -ENOSPC && nospace_error)
1289		error = nospace_error;
1290	return error;
1291}
1292
1293/* Clear the reflink flag and the cowblocks tag if possible. */
1294static void
1295xfs_itruncate_clear_reflink_flags(
1296	struct xfs_inode	*ip)
1297{
1298	struct xfs_ifork	*dfork;
1299	struct xfs_ifork	*cfork;
1300
1301	if (!xfs_is_reflink_inode(ip))
1302		return;
1303	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1304	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1305	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1306		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1307	if (cfork->if_bytes == 0)
1308		xfs_inode_clear_cowblocks_tag(ip);
1309}
1310
1311/*
1312 * Free up the underlying blocks past new_size.  The new size must be smaller
1313 * than the current size.  This routine can be used both for the attribute and
1314 * data fork, and does not modify the inode size, which is left to the caller.
1315 *
1316 * The transaction passed to this routine must have made a permanent log
1317 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1318 * given transaction and start new ones, so make sure everything involved in
1319 * the transaction is tidy before calling here.  Some transaction will be
1320 * returned to the caller to be committed.  The incoming transaction must
1321 * already include the inode, and both inode locks must be held exclusively.
1322 * The inode must also be "held" within the transaction.  On return the inode
1323 * will be "held" within the returned transaction.  This routine does NOT
1324 * require any disk space to be reserved for it within the transaction.
1325 *
1326 * If we get an error, we must return with the inode locked and linked into the
1327 * current transaction. This keeps things simple for the higher level code,
1328 * because it always knows that the inode is locked and held in the transaction
1329 * that returns to it whether errors occur or not.  We don't mark the inode
1330 * dirty on error so that transactions can be easily aborted if possible.
1331 */
1332int
1333xfs_itruncate_extents_flags(
1334	struct xfs_trans	**tpp,
1335	struct xfs_inode	*ip,
1336	int			whichfork,
1337	xfs_fsize_t		new_size,
1338	int			flags)
1339{
1340	struct xfs_mount	*mp = ip->i_mount;
1341	struct xfs_trans	*tp = *tpp;
1342	xfs_fileoff_t		first_unmap_block;
1343	int			error = 0;
1344
1345	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1346	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1347	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1348	ASSERT(new_size <= XFS_ISIZE(ip));
1349	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1350	ASSERT(ip->i_itemp != NULL);
1351	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1352	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1353
1354	trace_xfs_itruncate_extents_start(ip, new_size);
1355
1356	flags |= xfs_bmapi_aflag(whichfork);
1357
1358	/*
1359	 * Since it is possible for space to become allocated beyond
1360	 * the end of the file (in a crash where the space is allocated
1361	 * but the inode size is not yet updated), simply remove any
1362	 * blocks which show up between the new EOF and the maximum
1363	 * possible file size.
1364	 *
1365	 * We have to free all the blocks to the bmbt maximum offset, even if
1366	 * the page cache can't scale that far.
1367	 */
1368	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1369	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1370		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1371		return 0;
1372	}
1373
1374	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1375			XFS_MAX_FILEOFF);
1376	if (error)
1377		goto out;
1378
1379	if (whichfork == XFS_DATA_FORK) {
1380		/* Remove all pending CoW reservations. */
1381		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1382				first_unmap_block, XFS_MAX_FILEOFF, true);
1383		if (error)
1384			goto out;
1385
1386		xfs_itruncate_clear_reflink_flags(ip);
1387	}
1388
1389	/*
1390	 * Always re-log the inode so that our permanent transaction can keep
1391	 * on rolling it forward in the log.
1392	 */
1393	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1394
1395	trace_xfs_itruncate_extents_end(ip, new_size);
1396
1397out:
1398	*tpp = tp;
1399	return error;
1400}
1401
1402int
1403xfs_release(
1404	xfs_inode_t	*ip)
 
 
 
 
 
 
1405{
1406	xfs_mount_t	*mp = ip->i_mount;
1407	int		error = 0;
1408
1409	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1410		return 0;
1411
1412	/* If this is a read-only mount, don't do this (would generate I/O) */
1413	if (xfs_is_readonly(mp))
1414		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415
1416	if (!xfs_is_shutdown(mp)) {
1417		int truncated;
1418
1419		/*
1420		 * If we previously truncated this file and removed old data
1421		 * in the process, we want to initiate "early" writeout on
1422		 * the last close.  This is an attempt to combat the notorious
1423		 * NULL files problem which is particularly noticeable from a
1424		 * truncate down, buffered (re-)write (delalloc), followed by
1425		 * a crash.  What we are effectively doing here is
1426		 * significantly reducing the time window where we'd otherwise
1427		 * be exposed to that problem.
1428		 */
1429		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1430		if (truncated) {
1431			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1432			if (ip->i_delayed_blks > 0) {
1433				error = filemap_flush(VFS_I(ip)->i_mapping);
1434				if (error)
1435					return error;
1436			}
1437		}
1438	}
1439
1440	if (VFS_I(ip)->i_nlink == 0)
1441		return 0;
1442
1443	/*
1444	 * If we can't get the iolock just skip truncating the blocks past EOF
1445	 * because we could deadlock with the mmap_lock otherwise. We'll get
1446	 * another chance to drop them once the last reference to the inode is
1447	 * dropped, so we'll never leak blocks permanently.
1448	 */
1449	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1450		return 0;
1451
1452	if (xfs_can_free_eofblocks(ip, false)) {
1453		/*
1454		 * Check if the inode is being opened, written and closed
1455		 * frequently and we have delayed allocation blocks outstanding
1456		 * (e.g. streaming writes from the NFS server), truncating the
1457		 * blocks past EOF will cause fragmentation to occur.
1458		 *
1459		 * In this case don't do the truncation, but we have to be
1460		 * careful how we detect this case. Blocks beyond EOF show up as
1461		 * i_delayed_blks even when the inode is clean, so we need to
1462		 * truncate them away first before checking for a dirty release.
1463		 * Hence on the first dirty close we will still remove the
1464		 * speculative allocation, but after that we will leave it in
1465		 * place.
1466		 */
1467		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1468			goto out_unlock;
1469
1470		error = xfs_free_eofblocks(ip);
1471		if (error)
1472			goto out_unlock;
1473
1474		/* delalloc blocks after truncation means it really is dirty */
1475		if (ip->i_delayed_blks)
1476			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1477	}
1478
1479out_unlock:
1480	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1481	return error;
1482}
1483
1484/*
1485 * xfs_inactive_truncate
1486 *
1487 * Called to perform a truncate when an inode becomes unlinked.
1488 */
1489STATIC int
1490xfs_inactive_truncate(
1491	struct xfs_inode *ip)
1492{
1493	struct xfs_mount	*mp = ip->i_mount;
1494	struct xfs_trans	*tp;
1495	int			error;
1496
1497	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1498	if (error) {
1499		ASSERT(xfs_is_shutdown(mp));
1500		return error;
1501	}
1502	xfs_ilock(ip, XFS_ILOCK_EXCL);
1503	xfs_trans_ijoin(tp, ip, 0);
1504
1505	/*
1506	 * Log the inode size first to prevent stale data exposure in the event
1507	 * of a system crash before the truncate completes. See the related
1508	 * comment in xfs_vn_setattr_size() for details.
1509	 */
1510	ip->i_disk_size = 0;
1511	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1512
1513	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1514	if (error)
1515		goto error_trans_cancel;
1516
1517	ASSERT(ip->i_df.if_nextents == 0);
1518
1519	error = xfs_trans_commit(tp);
1520	if (error)
1521		goto error_unlock;
1522
1523	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1524	return 0;
1525
1526error_trans_cancel:
1527	xfs_trans_cancel(tp);
1528error_unlock:
1529	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1530	return error;
1531}
1532
1533/*
1534 * xfs_inactive_ifree()
1535 *
1536 * Perform the inode free when an inode is unlinked.
1537 */
1538STATIC int
1539xfs_inactive_ifree(
1540	struct xfs_inode *ip)
1541{
1542	struct xfs_mount	*mp = ip->i_mount;
1543	struct xfs_trans	*tp;
1544	int			error;
1545
1546	/*
1547	 * We try to use a per-AG reservation for any block needed by the finobt
1548	 * tree, but as the finobt feature predates the per-AG reservation
1549	 * support a degraded file system might not have enough space for the
1550	 * reservation at mount time.  In that case try to dip into the reserved
1551	 * pool and pray.
1552	 *
1553	 * Send a warning if the reservation does happen to fail, as the inode
1554	 * now remains allocated and sits on the unlinked list until the fs is
1555	 * repaired.
1556	 */
1557	if (unlikely(mp->m_finobt_nores)) {
1558		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1559				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1560				&tp);
1561	} else {
1562		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1563	}
1564	if (error) {
1565		if (error == -ENOSPC) {
1566			xfs_warn_ratelimited(mp,
1567			"Failed to remove inode(s) from unlinked list. "
1568			"Please free space, unmount and run xfs_repair.");
1569		} else {
1570			ASSERT(xfs_is_shutdown(mp));
1571		}
1572		return error;
1573	}
1574
1575	/*
1576	 * We do not hold the inode locked across the entire rolling transaction
1577	 * here. We only need to hold it for the first transaction that
1578	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1579	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1580	 * here breaks the relationship between cluster buffer invalidation and
1581	 * stale inode invalidation on cluster buffer item journal commit
1582	 * completion, and can result in leaving dirty stale inodes hanging
1583	 * around in memory.
1584	 *
1585	 * We have no need for serialising this inode operation against other
1586	 * operations - we freed the inode and hence reallocation is required
1587	 * and that will serialise on reallocating the space the deferops need
1588	 * to free. Hence we can unlock the inode on the first commit of
1589	 * the transaction rather than roll it right through the deferops. This
1590	 * avoids relogging the XFS_ISTALE inode.
1591	 *
1592	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1593	 * by asserting that the inode is still locked when it returns.
1594	 */
1595	xfs_ilock(ip, XFS_ILOCK_EXCL);
1596	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1597
1598	error = xfs_ifree(tp, ip);
1599	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1600	if (error) {
1601		/*
1602		 * If we fail to free the inode, shut down.  The cancel
1603		 * might do that, we need to make sure.  Otherwise the
1604		 * inode might be lost for a long time or forever.
1605		 */
1606		if (!xfs_is_shutdown(mp)) {
1607			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1608				__func__, error);
1609			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1610		}
1611		xfs_trans_cancel(tp);
1612		return error;
1613	}
1614
1615	/*
1616	 * Credit the quota account(s). The inode is gone.
1617	 */
1618	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1619
1620	return xfs_trans_commit(tp);
1621}
1622
1623/*
1624 * Returns true if we need to update the on-disk metadata before we can free
1625 * the memory used by this inode.  Updates include freeing post-eof
1626 * preallocations; freeing COW staging extents; and marking the inode free in
1627 * the inobt if it is on the unlinked list.
1628 */
1629bool
1630xfs_inode_needs_inactive(
1631	struct xfs_inode	*ip)
1632{
1633	struct xfs_mount	*mp = ip->i_mount;
1634	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1635
1636	/*
1637	 * If the inode is already free, then there can be nothing
1638	 * to clean up here.
1639	 */
1640	if (VFS_I(ip)->i_mode == 0)
1641		return false;
1642
1643	/*
1644	 * If this is a read-only mount, don't do this (would generate I/O)
1645	 * unless we're in log recovery and cleaning the iunlinked list.
1646	 */
1647	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1648		return false;
1649
1650	/* If the log isn't running, push inodes straight to reclaim. */
1651	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1652		return false;
1653
1654	/* Metadata inodes require explicit resource cleanup. */
1655	if (xfs_is_metadata_inode(ip))
1656		return false;
1657
1658	/* Want to clean out the cow blocks if there are any. */
1659	if (cow_ifp && cow_ifp->if_bytes > 0)
1660		return true;
1661
1662	/* Unlinked files must be freed. */
1663	if (VFS_I(ip)->i_nlink == 0)
1664		return true;
1665
1666	/*
1667	 * This file isn't being freed, so check if there are post-eof blocks
1668	 * to free.  @force is true because we are evicting an inode from the
1669	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1670	 * free space accounting.
1671	 *
1672	 * Note: don't bother with iolock here since lockdep complains about
1673	 * acquiring it in reclaim context. We have the only reference to the
1674	 * inode at this point anyways.
1675	 */
1676	return xfs_can_free_eofblocks(ip, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677}
1678
1679/*
1680 * xfs_inactive
1681 *
1682 * This is called when the vnode reference count for the vnode
1683 * goes to zero.  If the file has been unlinked, then it must
1684 * now be truncated.  Also, we clear all of the read-ahead state
1685 * kept for the inode here since the file is now closed.
1686 */
1687int
1688xfs_inactive(
1689	xfs_inode_t	*ip)
1690{
1691	struct xfs_mount	*mp;
1692	int			error = 0;
1693	int			truncate = 0;
1694
1695	/*
1696	 * If the inode is already free, then there can be nothing
1697	 * to clean up here.
1698	 */
1699	if (VFS_I(ip)->i_mode == 0) {
1700		ASSERT(ip->i_df.if_broot_bytes == 0);
1701		goto out;
1702	}
1703
1704	mp = ip->i_mount;
1705	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1706
 
 
1707	/*
1708	 * If this is a read-only mount, don't do this (would generate I/O)
1709	 * unless we're in log recovery and cleaning the iunlinked list.
1710	 */
1711	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1712		goto out;
1713
1714	/* Metadata inodes require explicit resource cleanup. */
1715	if (xfs_is_metadata_inode(ip))
1716		goto out;
1717
1718	/* Try to clean out the cow blocks if there are any. */
1719	if (xfs_inode_has_cow_data(ip))
1720		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
 
 
 
1721
1722	if (VFS_I(ip)->i_nlink != 0) {
1723		/*
1724		 * force is true because we are evicting an inode from the
1725		 * cache. Post-eof blocks must be freed, lest we end up with
1726		 * broken free space accounting.
1727		 *
1728		 * Note: don't bother with iolock here since lockdep complains
1729		 * about acquiring it in reclaim context. We have the only
1730		 * reference to the inode at this point anyways.
1731		 */
1732		if (xfs_can_free_eofblocks(ip, true))
1733			error = xfs_free_eofblocks(ip);
1734
1735		goto out;
1736	}
1737
1738	if (S_ISREG(VFS_I(ip)->i_mode) &&
1739	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1740	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1741		truncate = 1;
1742
1743	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1744		/*
1745		 * If this inode is being inactivated during a quotacheck and
1746		 * has not yet been scanned by quotacheck, we /must/ remove
1747		 * the dquots from the inode before inactivation changes the
1748		 * block and inode counts.  Most probably this is a result of
1749		 * reloading the incore iunlinked list to purge unrecovered
1750		 * unlinked inodes.
1751		 */
1752		xfs_qm_dqdetach(ip);
1753	} else {
1754		error = xfs_qm_dqattach(ip);
1755		if (error)
1756			goto out;
1757	}
1758
 
 
 
 
 
1759	if (S_ISLNK(VFS_I(ip)->i_mode))
1760		error = xfs_inactive_symlink(ip);
1761	else if (truncate)
1762		error = xfs_inactive_truncate(ip);
1763	if (error)
1764		goto out;
1765
1766	/*
1767	 * If there are attributes associated with the file then blow them away
1768	 * now.  The code calls a routine that recursively deconstructs the
1769	 * attribute fork. If also blows away the in-core attribute fork.
1770	 */
1771	if (xfs_inode_has_attr_fork(ip)) {
1772		error = xfs_attr_inactive(ip);
1773		if (error)
1774			goto out;
1775	}
1776
1777	ASSERT(ip->i_forkoff == 0);
1778
1779	/*
1780	 * Free the inode.
1781	 */
1782	error = xfs_inactive_ifree(ip);
1783
1784out:
1785	/*
1786	 * We're done making metadata updates for this inode, so we can release
1787	 * the attached dquots.
1788	 */
1789	xfs_qm_dqdetach(ip);
1790	return error;
1791}
1792
1793/*
1794 * In-Core Unlinked List Lookups
1795 * =============================
1796 *
1797 * Every inode is supposed to be reachable from some other piece of metadata
1798 * with the exception of the root directory.  Inodes with a connection to a
1799 * file descriptor but not linked from anywhere in the on-disk directory tree
1800 * are collectively known as unlinked inodes, though the filesystem itself
1801 * maintains links to these inodes so that on-disk metadata are consistent.
1802 *
1803 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1804 * header contains a number of buckets that point to an inode, and each inode
1805 * record has a pointer to the next inode in the hash chain.  This
1806 * singly-linked list causes scaling problems in the iunlink remove function
1807 * because we must walk that list to find the inode that points to the inode
1808 * being removed from the unlinked hash bucket list.
1809 *
1810 * Hence we keep an in-memory double linked list to link each inode on an
1811 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1812 * based lists would require having 64 list heads in the perag, one for each
1813 * list. This is expensive in terms of memory (think millions of AGs) and cache
1814 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1815 * must be referenced at the VFS level to keep them on the list and hence we
1816 * have an existence guarantee for inodes on the unlinked list.
1817 *
1818 * Given we have an existence guarantee, we can use lockless inode cache lookups
1819 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1820 * for the double linked unlinked list, and we don't need any extra locking to
1821 * keep the list safe as all manipulations are done under the AGI buffer lock.
1822 * Keeping the list up to date does not require memory allocation, just finding
1823 * the XFS inode and updating the next/prev unlinked list aginos.
1824 */
1825
1826/*
1827 * Find an inode on the unlinked list. This does not take references to the
1828 * inode as we have existence guarantees by holding the AGI buffer lock and that
1829 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1830 * don't find the inode in cache, then let the caller handle the situation.
1831 */
1832static struct xfs_inode *
1833xfs_iunlink_lookup(
1834	struct xfs_perag	*pag,
1835	xfs_agino_t		agino)
1836{
1837	struct xfs_inode	*ip;
1838
1839	rcu_read_lock();
1840	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1841	if (!ip) {
1842		/* Caller can handle inode not being in memory. */
1843		rcu_read_unlock();
1844		return NULL;
1845	}
1846
1847	/*
1848	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1849	 * let the caller handle the failure.
1850	 */
1851	if (WARN_ON_ONCE(!ip->i_ino)) {
1852		rcu_read_unlock();
1853		return NULL;
1854	}
1855	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1856	rcu_read_unlock();
1857	return ip;
1858}
1859
1860/*
1861 * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1862 * is not in cache.
1863 */
1864static int
1865xfs_iunlink_update_backref(
1866	struct xfs_perag	*pag,
1867	xfs_agino_t		prev_agino,
1868	xfs_agino_t		next_agino)
1869{
1870	struct xfs_inode	*ip;
1871
1872	/* No update necessary if we are at the end of the list. */
1873	if (next_agino == NULLAGINO)
1874		return 0;
1875
1876	ip = xfs_iunlink_lookup(pag, next_agino);
1877	if (!ip)
1878		return -ENOLINK;
1879
1880	ip->i_prev_unlinked = prev_agino;
1881	return 0;
1882}
1883
1884/*
1885 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1886 * is responsible for validating the old value.
1887 */
1888STATIC int
1889xfs_iunlink_update_bucket(
1890	struct xfs_trans	*tp,
1891	struct xfs_perag	*pag,
1892	struct xfs_buf		*agibp,
1893	unsigned int		bucket_index,
1894	xfs_agino_t		new_agino)
1895{
1896	struct xfs_agi		*agi = agibp->b_addr;
1897	xfs_agino_t		old_value;
1898	int			offset;
1899
1900	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1901
1902	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1903	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1904			old_value, new_agino);
1905
1906	/*
1907	 * We should never find the head of the list already set to the value
1908	 * passed in because either we're adding or removing ourselves from the
1909	 * head of the list.
1910	 */
1911	if (old_value == new_agino) {
1912		xfs_buf_mark_corrupt(agibp);
1913		return -EFSCORRUPTED;
1914	}
1915
1916	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1917	offset = offsetof(struct xfs_agi, agi_unlinked) +
1918			(sizeof(xfs_agino_t) * bucket_index);
1919	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1920	return 0;
1921}
1922
1923/*
1924 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1925 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1926 * to the unlinked list.
1927 */
1928STATIC int
1929xfs_iunlink_reload_next(
1930	struct xfs_trans	*tp,
1931	struct xfs_buf		*agibp,
1932	xfs_agino_t		prev_agino,
1933	xfs_agino_t		next_agino)
1934{
1935	struct xfs_perag	*pag = agibp->b_pag;
1936	struct xfs_mount	*mp = pag->pag_mount;
1937	struct xfs_inode	*next_ip = NULL;
1938	xfs_ino_t		ino;
1939	int			error;
1940
1941	ASSERT(next_agino != NULLAGINO);
1942
1943#ifdef DEBUG
1944	rcu_read_lock();
1945	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1946	ASSERT(next_ip == NULL);
1947	rcu_read_unlock();
1948#endif
1949
1950	xfs_info_ratelimited(mp,
1951 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1952			next_agino, pag->pag_agno);
1953
1954	/*
1955	 * Use an untrusted lookup just to be cautious in case the AGI has been
1956	 * corrupted and now points at a free inode.  That shouldn't happen,
1957	 * but we'd rather shut down now since we're already running in a weird
1958	 * situation.
1959	 */
1960	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
1961	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
1962	if (error)
 
1963		return error;
 
1964
1965	/* If this is not an unlinked inode, something is very wrong. */
1966	if (VFS_I(next_ip)->i_nlink != 0) {
 
1967		error = -EFSCORRUPTED;
1968		goto rele;
1969	}
1970
1971	next_ip->i_prev_unlinked = prev_agino;
1972	trace_xfs_iunlink_reload_next(next_ip);
1973rele:
1974	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1975	if (xfs_is_quotacheck_running(mp) && next_ip)
1976		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1977	xfs_irele(next_ip);
1978	return error;
1979}
1980
1981static int
1982xfs_iunlink_insert_inode(
1983	struct xfs_trans	*tp,
1984	struct xfs_perag	*pag,
1985	struct xfs_buf		*agibp,
1986	struct xfs_inode	*ip)
1987{
1988	struct xfs_mount	*mp = tp->t_mountp;
1989	struct xfs_agi		*agi = agibp->b_addr;
1990	xfs_agino_t		next_agino;
1991	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1992	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1993	int			error;
1994
1995	/*
1996	 * Get the index into the agi hash table for the list this inode will
1997	 * go on.  Make sure the pointer isn't garbage and that this inode
1998	 * isn't already on the list.
1999	 */
2000	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2001	if (next_agino == agino ||
2002	    !xfs_verify_agino_or_null(pag, next_agino)) {
2003		xfs_buf_mark_corrupt(agibp);
2004		return -EFSCORRUPTED;
2005	}
2006
2007	/*
2008	 * Update the prev pointer in the next inode to point back to this
2009	 * inode.
2010	 */
2011	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2012	if (error == -ENOLINK)
2013		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2014	if (error)
2015		return error;
2016
2017	if (next_agino != NULLAGINO) {
2018		/*
2019		 * There is already another inode in the bucket, so point this
2020		 * inode to the current head of the list.
2021		 */
2022		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2023		if (error)
2024			return error;
2025		ip->i_next_unlinked = next_agino;
2026	}
2027
2028	/* Point the head of the list to point to this inode. */
2029	ip->i_prev_unlinked = NULLAGINO;
2030	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2031}
2032
2033/*
2034 * This is called when the inode's link count has gone to 0 or we are creating
2035 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2036 *
2037 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2038 * list when the inode is freed.
2039 */
2040STATIC int
2041xfs_iunlink(
2042	struct xfs_trans	*tp,
2043	struct xfs_inode	*ip)
2044{
2045	struct xfs_mount	*mp = tp->t_mountp;
2046	struct xfs_perag	*pag;
2047	struct xfs_buf		*agibp;
2048	int			error;
2049
2050	ASSERT(VFS_I(ip)->i_nlink == 0);
2051	ASSERT(VFS_I(ip)->i_mode != 0);
2052	trace_xfs_iunlink(ip);
2053
2054	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2055
2056	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2057	error = xfs_read_agi(pag, tp, &agibp);
2058	if (error)
2059		goto out;
2060
2061	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2062out:
2063	xfs_perag_put(pag);
2064	return error;
2065}
2066
2067static int
2068xfs_iunlink_remove_inode(
2069	struct xfs_trans	*tp,
2070	struct xfs_perag	*pag,
2071	struct xfs_buf		*agibp,
2072	struct xfs_inode	*ip)
2073{
2074	struct xfs_mount	*mp = tp->t_mountp;
2075	struct xfs_agi		*agi = agibp->b_addr;
2076	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2077	xfs_agino_t		head_agino;
2078	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2079	int			error;
2080
2081	trace_xfs_iunlink_remove(ip);
2082
2083	/*
2084	 * Get the index into the agi hash table for the list this inode will
2085	 * go on.  Make sure the head pointer isn't garbage.
2086	 */
2087	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2088	if (!xfs_verify_agino(pag, head_agino)) {
2089		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2090				agi, sizeof(*agi));
2091		return -EFSCORRUPTED;
2092	}
2093
2094	/*
2095	 * Set our inode's next_unlinked pointer to NULL and then return
2096	 * the old pointer value so that we can update whatever was previous
2097	 * to us in the list to point to whatever was next in the list.
2098	 */
2099	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2100	if (error)
2101		return error;
2102
2103	/*
2104	 * Update the prev pointer in the next inode to point back to previous
2105	 * inode in the chain.
2106	 */
2107	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2108			ip->i_next_unlinked);
2109	if (error == -ENOLINK)
2110		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2111				ip->i_next_unlinked);
2112	if (error)
2113		return error;
2114
2115	if (head_agino != agino) {
2116		struct xfs_inode	*prev_ip;
2117
2118		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2119		if (!prev_ip)
2120			return -EFSCORRUPTED;
2121
2122		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2123				ip->i_next_unlinked);
2124		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2125	} else {
2126		/* Point the head of the list to the next unlinked inode. */
2127		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2128				ip->i_next_unlinked);
2129	}
2130
2131	ip->i_next_unlinked = NULLAGINO;
2132	ip->i_prev_unlinked = 0;
2133	return error;
2134}
2135
2136/*
2137 * Pull the on-disk inode from the AGI unlinked list.
2138 */
2139STATIC int
2140xfs_iunlink_remove(
2141	struct xfs_trans	*tp,
2142	struct xfs_perag	*pag,
2143	struct xfs_inode	*ip)
2144{
2145	struct xfs_buf		*agibp;
2146	int			error;
2147
2148	trace_xfs_iunlink_remove(ip);
2149
2150	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2151	error = xfs_read_agi(pag, tp, &agibp);
2152	if (error)
2153		return error;
2154
2155	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2156}
2157
2158/*
2159 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2160 * mark it stale. We should only find clean inodes in this lookup that aren't
2161 * already stale.
2162 */
2163static void
2164xfs_ifree_mark_inode_stale(
2165	struct xfs_perag	*pag,
2166	struct xfs_inode	*free_ip,
2167	xfs_ino_t		inum)
2168{
2169	struct xfs_mount	*mp = pag->pag_mount;
2170	struct xfs_inode_log_item *iip;
2171	struct xfs_inode	*ip;
2172
2173retry:
2174	rcu_read_lock();
2175	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2176
2177	/* Inode not in memory, nothing to do */
2178	if (!ip) {
2179		rcu_read_unlock();
2180		return;
2181	}
2182
2183	/*
2184	 * because this is an RCU protected lookup, we could find a recently
2185	 * freed or even reallocated inode during the lookup. We need to check
2186	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2187	 * valid, the wrong inode or stale.
2188	 */
2189	spin_lock(&ip->i_flags_lock);
2190	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2191		goto out_iflags_unlock;
2192
2193	/*
2194	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2195	 * other inodes that we did not find in the list attached to the buffer
2196	 * and are not already marked stale. If we can't lock it, back off and
2197	 * retry.
2198	 */
2199	if (ip != free_ip) {
2200		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2201			spin_unlock(&ip->i_flags_lock);
2202			rcu_read_unlock();
2203			delay(1);
2204			goto retry;
2205		}
2206	}
2207	ip->i_flags |= XFS_ISTALE;
2208
2209	/*
2210	 * If the inode is flushing, it is already attached to the buffer.  All
2211	 * we needed to do here is mark the inode stale so buffer IO completion
2212	 * will remove it from the AIL.
2213	 */
2214	iip = ip->i_itemp;
2215	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2216		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2217		ASSERT(iip->ili_last_fields);
2218		goto out_iunlock;
2219	}
2220
2221	/*
2222	 * Inodes not attached to the buffer can be released immediately.
2223	 * Everything else has to go through xfs_iflush_abort() on journal
2224	 * commit as the flock synchronises removal of the inode from the
2225	 * cluster buffer against inode reclaim.
2226	 */
2227	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2228		goto out_iunlock;
2229
2230	__xfs_iflags_set(ip, XFS_IFLUSHING);
2231	spin_unlock(&ip->i_flags_lock);
2232	rcu_read_unlock();
2233
2234	/* we have a dirty inode in memory that has not yet been flushed. */
2235	spin_lock(&iip->ili_lock);
2236	iip->ili_last_fields = iip->ili_fields;
2237	iip->ili_fields = 0;
2238	iip->ili_fsync_fields = 0;
2239	spin_unlock(&iip->ili_lock);
2240	ASSERT(iip->ili_last_fields);
2241
2242	if (ip != free_ip)
2243		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2244	return;
2245
2246out_iunlock:
2247	if (ip != free_ip)
2248		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2249out_iflags_unlock:
2250	spin_unlock(&ip->i_flags_lock);
2251	rcu_read_unlock();
2252}
2253
2254/*
2255 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2256 * inodes that are in memory - they all must be marked stale and attached to
2257 * the cluster buffer.
2258 */
2259static int
2260xfs_ifree_cluster(
2261	struct xfs_trans	*tp,
2262	struct xfs_perag	*pag,
2263	struct xfs_inode	*free_ip,
2264	struct xfs_icluster	*xic)
2265{
2266	struct xfs_mount	*mp = free_ip->i_mount;
2267	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2268	struct xfs_buf		*bp;
2269	xfs_daddr_t		blkno;
2270	xfs_ino_t		inum = xic->first_ino;
2271	int			nbufs;
2272	int			i, j;
2273	int			ioffset;
2274	int			error;
2275
2276	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2277
2278	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2279		/*
2280		 * The allocation bitmap tells us which inodes of the chunk were
2281		 * physically allocated. Skip the cluster if an inode falls into
2282		 * a sparse region.
2283		 */
2284		ioffset = inum - xic->first_ino;
2285		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2286			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2287			continue;
2288		}
2289
2290		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2291					 XFS_INO_TO_AGBNO(mp, inum));
2292
2293		/*
2294		 * We obtain and lock the backing buffer first in the process
2295		 * here to ensure dirty inodes attached to the buffer remain in
2296		 * the flushing state while we mark them stale.
2297		 *
2298		 * If we scan the in-memory inodes first, then buffer IO can
2299		 * complete before we get a lock on it, and hence we may fail
2300		 * to mark all the active inodes on the buffer stale.
2301		 */
2302		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2303				mp->m_bsize * igeo->blocks_per_cluster,
2304				XBF_UNMAPPED, &bp);
2305		if (error)
2306			return error;
2307
2308		/*
2309		 * This buffer may not have been correctly initialised as we
2310		 * didn't read it from disk. That's not important because we are
2311		 * only using to mark the buffer as stale in the log, and to
2312		 * attach stale cached inodes on it. That means it will never be
2313		 * dispatched for IO. If it is, we want to know about it, and we
2314		 * want it to fail. We can acheive this by adding a write
2315		 * verifier to the buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316		 */
 
2317		bp->b_ops = &xfs_inode_buf_ops;
2318
2319		/*
2320		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2321		 * too. This requires lookups, and will skip inodes that we've
2322		 * already marked XFS_ISTALE.
2323		 */
2324		for (i = 0; i < igeo->inodes_per_cluster; i++)
2325			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2326
2327		xfs_trans_stale_inode_buf(tp, bp);
2328		xfs_trans_binval(tp, bp);
2329	}
2330	return 0;
2331}
2332
2333/*
2334 * This is called to return an inode to the inode free list.  The inode should
2335 * already be truncated to 0 length and have no pages associated with it.  This
2336 * routine also assumes that the inode is already a part of the transaction.
2337 *
2338 * The on-disk copy of the inode will have been added to the list of unlinked
2339 * inodes in the AGI. We need to remove the inode from that list atomically with
2340 * respect to freeing it here.
2341 */
2342int
2343xfs_ifree(
2344	struct xfs_trans	*tp,
2345	struct xfs_inode	*ip)
2346{
2347	struct xfs_mount	*mp = ip->i_mount;
2348	struct xfs_perag	*pag;
2349	struct xfs_icluster	xic = { 0 };
2350	struct xfs_inode_log_item *iip = ip->i_itemp;
2351	int			error;
2352
2353	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2354	ASSERT(VFS_I(ip)->i_nlink == 0);
2355	ASSERT(ip->i_df.if_nextents == 0);
2356	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2357	ASSERT(ip->i_nblocks == 0);
2358
2359	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2360
2361	/*
2362	 * Free the inode first so that we guarantee that the AGI lock is going
2363	 * to be taken before we remove the inode from the unlinked list. This
2364	 * makes the AGI lock -> unlinked list modification order the same as
2365	 * used in O_TMPFILE creation.
2366	 */
2367	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2368	if (error)
2369		goto out;
2370
2371	error = xfs_iunlink_remove(tp, pag, ip);
2372	if (error)
2373		goto out;
2374
2375	/*
2376	 * Free any local-format data sitting around before we reset the
2377	 * data fork to extents format.  Note that the attr fork data has
2378	 * already been freed by xfs_attr_inactive.
2379	 */
2380	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2381		kmem_free(ip->i_df.if_data);
2382		ip->i_df.if_data = NULL;
2383		ip->i_df.if_bytes = 0;
2384	}
2385
2386	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2387	ip->i_diflags = 0;
2388	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2389	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2390	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2391	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2392		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2393
2394	/* Don't attempt to replay owner changes for a deleted inode */
2395	spin_lock(&iip->ili_lock);
2396	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2397	spin_unlock(&iip->ili_lock);
2398
2399	/*
2400	 * Bump the generation count so no one will be confused
2401	 * by reincarnations of this inode.
2402	 */
2403	VFS_I(ip)->i_generation++;
2404	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2405
2406	if (xic.deleted)
2407		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2408out:
2409	xfs_perag_put(pag);
2410	return error;
2411}
2412
2413/*
2414 * This is called to unpin an inode.  The caller must have the inode locked
2415 * in at least shared mode so that the buffer cannot be subsequently pinned
2416 * once someone is waiting for it to be unpinned.
2417 */
2418static void
2419xfs_iunpin(
2420	struct xfs_inode	*ip)
2421{
2422	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2423
2424	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2425
2426	/* Give the log a push to start the unpinning I/O */
2427	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2428
2429}
2430
2431static void
2432__xfs_iunpin_wait(
2433	struct xfs_inode	*ip)
2434{
2435	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2436	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2437
2438	xfs_iunpin(ip);
2439
2440	do {
2441		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2442		if (xfs_ipincount(ip))
2443			io_schedule();
2444	} while (xfs_ipincount(ip));
2445	finish_wait(wq, &wait.wq_entry);
2446}
2447
2448void
2449xfs_iunpin_wait(
2450	struct xfs_inode	*ip)
2451{
2452	if (xfs_ipincount(ip))
2453		__xfs_iunpin_wait(ip);
2454}
2455
2456/*
2457 * Removing an inode from the namespace involves removing the directory entry
2458 * and dropping the link count on the inode. Removing the directory entry can
2459 * result in locking an AGF (directory blocks were freed) and removing a link
2460 * count can result in placing the inode on an unlinked list which results in
2461 * locking an AGI.
2462 *
2463 * The big problem here is that we have an ordering constraint on AGF and AGI
2464 * locking - inode allocation locks the AGI, then can allocate a new extent for
2465 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2466 * removes the inode from the unlinked list, requiring that we lock the AGI
2467 * first, and then freeing the inode can result in an inode chunk being freed
2468 * and hence freeing disk space requiring that we lock an AGF.
2469 *
2470 * Hence the ordering that is imposed by other parts of the code is AGI before
2471 * AGF. This means we cannot remove the directory entry before we drop the inode
2472 * reference count and put it on the unlinked list as this results in a lock
2473 * order of AGF then AGI, and this can deadlock against inode allocation and
2474 * freeing. Therefore we must drop the link counts before we remove the
2475 * directory entry.
2476 *
2477 * This is still safe from a transactional point of view - it is not until we
2478 * get to xfs_defer_finish() that we have the possibility of multiple
2479 * transactions in this operation. Hence as long as we remove the directory
2480 * entry and drop the link count in the first transaction of the remove
2481 * operation, there are no transactional constraints on the ordering here.
2482 */
2483int
2484xfs_remove(
2485	xfs_inode_t             *dp,
2486	struct xfs_name		*name,
2487	xfs_inode_t		*ip)
2488{
2489	xfs_mount_t		*mp = dp->i_mount;
2490	xfs_trans_t             *tp = NULL;
 
 
 
 
 
2491	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2492	int			dontcare;
2493	int                     error = 0;
2494	uint			resblks;
2495
2496	trace_xfs_remove(dp, name);
2497
2498	if (xfs_is_shutdown(mp))
2499		return -EIO;
2500	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2501		return -EIO;
2502
2503	error = xfs_qm_dqattach(dp);
2504	if (error)
2505		goto std_return;
2506
2507	error = xfs_qm_dqattach(ip);
2508	if (error)
2509		goto std_return;
2510
 
 
 
 
2511	/*
2512	 * We try to get the real space reservation first, allowing for
2513	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2514	 * can't get the space reservation then we use 0 instead, and avoid the
2515	 * bmap btree insert(s) in the directory code by, if the bmap insert
2516	 * tries to happen, instead trimming the LAST block from the directory.
2517	 *
2518	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2519	 * the directory code can handle a reservationless update and we don't
2520	 * want to prevent a user from trying to free space by deleting things.
2521	 */
2522	resblks = XFS_REMOVE_SPACE_RES(mp);
2523	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2524			&tp, &dontcare);
2525	if (error) {
2526		ASSERT(error != -ENOSPC);
2527		goto std_return;
2528	}
2529
2530	/*
2531	 * If we're removing a directory perform some additional validation.
2532	 */
2533	if (is_dir) {
2534		ASSERT(VFS_I(ip)->i_nlink >= 2);
2535		if (VFS_I(ip)->i_nlink != 2) {
2536			error = -ENOTEMPTY;
2537			goto out_trans_cancel;
2538		}
2539		if (!xfs_dir_isempty(ip)) {
2540			error = -ENOTEMPTY;
2541			goto out_trans_cancel;
2542		}
2543
2544		/* Drop the link from ip's "..".  */
2545		error = xfs_droplink(tp, dp);
2546		if (error)
2547			goto out_trans_cancel;
2548
2549		/* Drop the "." link from ip to self.  */
2550		error = xfs_droplink(tp, ip);
2551		if (error)
2552			goto out_trans_cancel;
2553
2554		/*
2555		 * Point the unlinked child directory's ".." entry to the root
2556		 * directory to eliminate back-references to inodes that may
2557		 * get freed before the child directory is closed.  If the fs
2558		 * gets shrunk, this can lead to dirent inode validation errors.
2559		 */
2560		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2561			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2562					tp->t_mountp->m_sb.sb_rootino, 0);
2563			if (error)
2564				goto out_trans_cancel;
2565		}
2566	} else {
2567		/*
2568		 * When removing a non-directory we need to log the parent
2569		 * inode here.  For a directory this is done implicitly
2570		 * by the xfs_droplink call for the ".." entry.
2571		 */
2572		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2573	}
2574	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2575
2576	/* Drop the link from dp to ip. */
2577	error = xfs_droplink(tp, ip);
2578	if (error)
2579		goto out_trans_cancel;
2580
2581	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2582	if (error) {
2583		ASSERT(error != -ENOENT);
2584		goto out_trans_cancel;
2585	}
2586
2587	/*
2588	 * If this is a synchronous mount, make sure that the
2589	 * remove transaction goes to disk before returning to
2590	 * the user.
2591	 */
2592	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2593		xfs_trans_set_sync(tp);
2594
2595	error = xfs_trans_commit(tp);
2596	if (error)
2597		goto std_return;
2598
2599	if (is_dir && xfs_inode_is_filestream(ip))
2600		xfs_filestream_deassociate(ip);
2601
 
 
 
2602	return 0;
2603
2604 out_trans_cancel:
2605	xfs_trans_cancel(tp);
 
 
 
 
 
2606 std_return:
2607	return error;
2608}
2609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610/*
2611 * Enter all inodes for a rename transaction into a sorted array.
2612 */
2613#define __XFS_SORT_INODES	5
2614STATIC void
2615xfs_sort_for_rename(
2616	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2617	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2618	struct xfs_inode	*ip1,	/* in: inode of old entry */
2619	struct xfs_inode	*ip2,	/* in: inode of new entry */
2620	struct xfs_inode	*wip,	/* in: whiteout inode */
2621	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2622	int			*num_inodes)  /* in/out: inodes in array */
2623{
2624	int			i, j;
2625
2626	ASSERT(*num_inodes == __XFS_SORT_INODES);
2627	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2628
2629	/*
2630	 * i_tab contains a list of pointers to inodes.  We initialize
2631	 * the table here & we'll sort it.  We will then use it to
2632	 * order the acquisition of the inode locks.
2633	 *
2634	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2635	 */
2636	i = 0;
2637	i_tab[i++] = dp1;
2638	i_tab[i++] = dp2;
2639	i_tab[i++] = ip1;
2640	if (ip2)
2641		i_tab[i++] = ip2;
2642	if (wip)
2643		i_tab[i++] = wip;
2644	*num_inodes = i;
2645
2646	/*
2647	 * Sort the elements via bubble sort.  (Remember, there are at
2648	 * most 5 elements to sort, so this is adequate.)
2649	 */
2650	for (i = 0; i < *num_inodes; i++) {
2651		for (j = 1; j < *num_inodes; j++) {
2652			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2653				struct xfs_inode *temp = i_tab[j];
2654				i_tab[j] = i_tab[j-1];
2655				i_tab[j-1] = temp;
2656			}
2657		}
2658	}
2659}
2660
2661static int
2662xfs_finish_rename(
2663	struct xfs_trans	*tp)
 
2664{
2665	/*
2666	 * If this is a synchronous mount, make sure that the rename transaction
2667	 * goes to disk before returning to the user.
2668	 */
2669	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2670		xfs_trans_set_sync(tp);
2671
2672	return xfs_trans_commit(tp);
2673}
2674
2675/*
2676 * xfs_cross_rename()
2677 *
2678 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2679 */
2680STATIC int
2681xfs_cross_rename(
2682	struct xfs_trans	*tp,
2683	struct xfs_inode	*dp1,
2684	struct xfs_name		*name1,
2685	struct xfs_inode	*ip1,
2686	struct xfs_inode	*dp2,
2687	struct xfs_name		*name2,
2688	struct xfs_inode	*ip2,
2689	int			spaceres)
2690{
2691	int		error = 0;
2692	int		ip1_flags = 0;
2693	int		ip2_flags = 0;
2694	int		dp2_flags = 0;
2695
2696	/* Swap inode number for dirent in first parent */
2697	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2698	if (error)
2699		goto out_trans_abort;
2700
2701	/* Swap inode number for dirent in second parent */
2702	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2703	if (error)
2704		goto out_trans_abort;
2705
2706	/*
2707	 * If we're renaming one or more directories across different parents,
2708	 * update the respective ".." entries (and link counts) to match the new
2709	 * parents.
2710	 */
2711	if (dp1 != dp2) {
2712		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2713
2714		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2715			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2716						dp1->i_ino, spaceres);
2717			if (error)
2718				goto out_trans_abort;
2719
2720			/* transfer ip2 ".." reference to dp1 */
2721			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2722				error = xfs_droplink(tp, dp2);
2723				if (error)
2724					goto out_trans_abort;
2725				xfs_bumplink(tp, dp1);
2726			}
2727
2728			/*
2729			 * Although ip1 isn't changed here, userspace needs
2730			 * to be warned about the change, so that applications
2731			 * relying on it (like backup ones), will properly
2732			 * notify the change
2733			 */
2734			ip1_flags |= XFS_ICHGTIME_CHG;
2735			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2736		}
2737
2738		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2739			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2740						dp2->i_ino, spaceres);
2741			if (error)
2742				goto out_trans_abort;
2743
2744			/* transfer ip1 ".." reference to dp2 */
2745			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2746				error = xfs_droplink(tp, dp1);
2747				if (error)
2748					goto out_trans_abort;
2749				xfs_bumplink(tp, dp2);
2750			}
2751
2752			/*
2753			 * Although ip2 isn't changed here, userspace needs
2754			 * to be warned about the change, so that applications
2755			 * relying on it (like backup ones), will properly
2756			 * notify the change
2757			 */
2758			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2759			ip2_flags |= XFS_ICHGTIME_CHG;
2760		}
2761	}
2762
2763	if (ip1_flags) {
2764		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2765		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2766	}
2767	if (ip2_flags) {
2768		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2769		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2770	}
2771	if (dp2_flags) {
2772		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2773		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2774	}
2775	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2776	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2777	return xfs_finish_rename(tp);
2778
2779out_trans_abort:
2780	xfs_trans_cancel(tp);
2781	return error;
2782}
2783
2784/*
2785 * xfs_rename_alloc_whiteout()
2786 *
2787 * Return a referenced, unlinked, unlocked inode that can be used as a
2788 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2789 * crash between allocating the inode and linking it into the rename transaction
2790 * recovery will free the inode and we won't leak it.
2791 */
2792static int
2793xfs_rename_alloc_whiteout(
2794	struct mnt_idmap	*idmap,
2795	struct xfs_name		*src_name,
2796	struct xfs_inode	*dp,
2797	struct xfs_inode	**wip)
2798{
 
 
 
 
 
 
2799	struct xfs_inode	*tmpfile;
2800	struct qstr		name;
2801	int			error;
2802
2803	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2804				   &tmpfile);
2805	if (error)
2806		return error;
2807
2808	name.name = src_name->name;
2809	name.len = src_name->len;
2810	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2811	if (error) {
2812		xfs_finish_inode_setup(tmpfile);
2813		xfs_irele(tmpfile);
2814		return error;
2815	}
2816
2817	/*
2818	 * Prepare the tmpfile inode as if it were created through the VFS.
2819	 * Complete the inode setup and flag it as linkable.  nlink is already
2820	 * zero, so we can skip the drop_nlink.
2821	 */
2822	xfs_setup_iops(tmpfile);
2823	xfs_finish_inode_setup(tmpfile);
2824	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2825
2826	*wip = tmpfile;
2827	return 0;
2828}
2829
2830/*
2831 * xfs_rename
2832 */
2833int
2834xfs_rename(
2835	struct mnt_idmap	*idmap,
2836	struct xfs_inode	*src_dp,
2837	struct xfs_name		*src_name,
2838	struct xfs_inode	*src_ip,
2839	struct xfs_inode	*target_dp,
2840	struct xfs_name		*target_name,
2841	struct xfs_inode	*target_ip,
2842	unsigned int		flags)
2843{
 
 
 
 
 
 
 
 
 
 
 
2844	struct xfs_mount	*mp = src_dp->i_mount;
2845	struct xfs_trans	*tp;
2846	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2847	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2848	int			i;
2849	int			num_inodes = __XFS_SORT_INODES;
2850	bool			new_parent = (src_dp != target_dp);
2851	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2852	int			spaceres;
2853	bool			retried = false;
2854	int			error, nospace_error = 0;
2855
2856	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2857
2858	if ((flags & RENAME_EXCHANGE) && !target_ip)
2859		return -EINVAL;
2860
2861	/*
2862	 * If we are doing a whiteout operation, allocate the whiteout inode
2863	 * we will be placing at the target and ensure the type is set
2864	 * appropriately.
2865	 */
2866	if (flags & RENAME_WHITEOUT) {
2867		error = xfs_rename_alloc_whiteout(idmap, src_name,
2868						  target_dp, &wip);
2869		if (error)
2870			return error;
2871
2872		/* setup target dirent info as whiteout */
2873		src_name->type = XFS_DIR3_FT_CHRDEV;
2874	}
2875
2876	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2877				inodes, &num_inodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2878
2879retry:
2880	nospace_error = 0;
2881	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
 
2882	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2883	if (error == -ENOSPC) {
2884		nospace_error = error;
2885		spaceres = 0;
2886		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2887				&tp);
2888	}
2889	if (error)
2890		goto out_release_wip;
 
 
 
 
 
 
 
 
 
 
2891
2892	/*
2893	 * Attach the dquots to the inodes
2894	 */
2895	error = xfs_qm_vop_rename_dqattach(inodes);
2896	if (error)
2897		goto out_trans_cancel;
 
 
2898
2899	/*
2900	 * Lock all the participating inodes. Depending upon whether
2901	 * the target_name exists in the target directory, and
2902	 * whether the target directory is the same as the source
2903	 * directory, we can lock from 2 to 5 inodes.
2904	 */
2905	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2906
2907	/*
2908	 * Join all the inodes to the transaction. From this point on,
2909	 * we can rely on either trans_commit or trans_cancel to unlock
2910	 * them.
2911	 */
2912	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2913	if (new_parent)
2914		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2915	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2916	if (target_ip)
2917		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2918	if (wip)
2919		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2920
2921	/*
2922	 * If we are using project inheritance, we only allow renames
2923	 * into our tree when the project IDs are the same; else the
2924	 * tree quota mechanism would be circumvented.
2925	 */
2926	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2927		     target_dp->i_projid != src_ip->i_projid)) {
2928		error = -EXDEV;
2929		goto out_trans_cancel;
2930	}
2931
2932	/* RENAME_EXCHANGE is unique from here on. */
2933	if (flags & RENAME_EXCHANGE)
2934		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2935					target_dp, target_name, target_ip,
2936					spaceres);
 
 
 
2937
2938	/*
2939	 * Try to reserve quota to handle an expansion of the target directory.
2940	 * We'll allow the rename to continue in reservationless mode if we hit
2941	 * a space usage constraint.  If we trigger reservationless mode, save
2942	 * the errno if there isn't any free space in the target directory.
2943	 */
2944	if (spaceres != 0) {
2945		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2946				0, false);
2947		if (error == -EDQUOT || error == -ENOSPC) {
2948			if (!retried) {
2949				xfs_trans_cancel(tp);
 
2950				xfs_blockgc_free_quota(target_dp, 0);
2951				retried = true;
2952				goto retry;
2953			}
2954
2955			nospace_error = error;
2956			spaceres = 0;
2957			error = 0;
2958		}
2959		if (error)
2960			goto out_trans_cancel;
2961	}
2962
2963	/*
2964	 * Check for expected errors before we dirty the transaction
2965	 * so we can return an error without a transaction abort.
2966	 */
2967	if (target_ip == NULL) {
2968		/*
2969		 * If there's no space reservation, check the entry will
2970		 * fit before actually inserting it.
2971		 */
2972		if (!spaceres) {
2973			error = xfs_dir_canenter(tp, target_dp, target_name);
2974			if (error)
2975				goto out_trans_cancel;
2976		}
2977	} else {
2978		/*
2979		 * If target exists and it's a directory, check that whether
2980		 * it can be destroyed.
2981		 */
2982		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2983		    (!xfs_dir_isempty(target_ip) ||
2984		     (VFS_I(target_ip)->i_nlink > 2))) {
2985			error = -EEXIST;
2986			goto out_trans_cancel;
2987		}
2988	}
2989
2990	/*
2991	 * Lock the AGI buffers we need to handle bumping the nlink of the
2992	 * whiteout inode off the unlinked list and to handle dropping the
2993	 * nlink of the target inode.  Per locking order rules, do this in
2994	 * increasing AG order and before directory block allocation tries to
2995	 * grab AGFs because we grab AGIs before AGFs.
2996	 *
2997	 * The (vfs) caller must ensure that if src is a directory then
2998	 * target_ip is either null or an empty directory.
2999	 */
3000	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3001		if (inodes[i] == wip ||
3002		    (inodes[i] == target_ip &&
3003		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3004			struct xfs_perag	*pag;
3005			struct xfs_buf		*bp;
3006
3007			pag = xfs_perag_get(mp,
3008					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3009			error = xfs_read_agi(pag, tp, &bp);
3010			xfs_perag_put(pag);
3011			if (error)
3012				goto out_trans_cancel;
3013		}
3014	}
3015
3016	/*
3017	 * Directory entry creation below may acquire the AGF. Remove
3018	 * the whiteout from the unlinked list first to preserve correct
3019	 * AGI/AGF locking order. This dirties the transaction so failures
3020	 * after this point will abort and log recovery will clean up the
3021	 * mess.
3022	 *
3023	 * For whiteouts, we need to bump the link count on the whiteout
3024	 * inode. After this point, we have a real link, clear the tmpfile
3025	 * state flag from the inode so it doesn't accidentally get misused
3026	 * in future.
3027	 */
3028	if (wip) {
3029		struct xfs_perag	*pag;
3030
3031		ASSERT(VFS_I(wip)->i_nlink == 0);
3032
3033		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3034		error = xfs_iunlink_remove(tp, pag, wip);
3035		xfs_perag_put(pag);
3036		if (error)
3037			goto out_trans_cancel;
3038
3039		xfs_bumplink(tp, wip);
3040		VFS_I(wip)->i_state &= ~I_LINKABLE;
3041	}
3042
3043	/*
3044	 * Set up the target.
3045	 */
3046	if (target_ip == NULL) {
3047		/*
3048		 * If target does not exist and the rename crosses
3049		 * directories, adjust the target directory link count
3050		 * to account for the ".." reference from the new entry.
3051		 */
3052		error = xfs_dir_createname(tp, target_dp, target_name,
3053					   src_ip->i_ino, spaceres);
3054		if (error)
3055			goto out_trans_cancel;
3056
3057		xfs_trans_ichgtime(tp, target_dp,
3058					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3059
3060		if (new_parent && src_is_directory) {
3061			xfs_bumplink(tp, target_dp);
3062		}
3063	} else { /* target_ip != NULL */
3064		/*
3065		 * Link the source inode under the target name.
3066		 * If the source inode is a directory and we are moving
3067		 * it across directories, its ".." entry will be
3068		 * inconsistent until we replace that down below.
3069		 *
3070		 * In case there is already an entry with the same
3071		 * name at the destination directory, remove it first.
3072		 */
3073		error = xfs_dir_replace(tp, target_dp, target_name,
3074					src_ip->i_ino, spaceres);
3075		if (error)
3076			goto out_trans_cancel;
3077
3078		xfs_trans_ichgtime(tp, target_dp,
3079					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3080
3081		/*
3082		 * Decrement the link count on the target since the target
3083		 * dir no longer points to it.
3084		 */
3085		error = xfs_droplink(tp, target_ip);
3086		if (error)
3087			goto out_trans_cancel;
3088
3089		if (src_is_directory) {
3090			/*
3091			 * Drop the link from the old "." entry.
3092			 */
3093			error = xfs_droplink(tp, target_ip);
3094			if (error)
3095				goto out_trans_cancel;
3096		}
3097	} /* target_ip != NULL */
3098
3099	/*
3100	 * Remove the source.
3101	 */
3102	if (new_parent && src_is_directory) {
3103		/*
3104		 * Rewrite the ".." entry to point to the new
3105		 * directory.
 
3106		 */
3107		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3108					target_dp->i_ino, spaceres);
3109		ASSERT(error != -EEXIST);
3110		if (error)
3111			goto out_trans_cancel;
3112	}
3113
 
3114	/*
3115	 * We always want to hit the ctime on the source inode.
3116	 *
3117	 * This isn't strictly required by the standards since the source
3118	 * inode isn't really being changed, but old unix file systems did
3119	 * it and some incremental backup programs won't work without it.
3120	 */
3121	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3122	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3123
3124	/*
3125	 * Adjust the link count on src_dp.  This is necessary when
3126	 * renaming a directory, either within one parent when
3127	 * the target existed, or across two parent directories.
3128	 */
3129	if (src_is_directory && (new_parent || target_ip != NULL)) {
3130
3131		/*
3132		 * Decrement link count on src_directory since the
3133		 * entry that's moved no longer points to it.
3134		 */
3135		error = xfs_droplink(tp, src_dp);
3136		if (error)
3137			goto out_trans_cancel;
3138	}
3139
3140	/*
3141	 * For whiteouts, we only need to update the source dirent with the
3142	 * inode number of the whiteout inode rather than removing it
3143	 * altogether.
3144	 */
3145	if (wip)
3146		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3147					spaceres);
3148	else
3149		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3150					   spaceres);
3151
3152	if (error)
3153		goto out_trans_cancel;
3154
3155	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3156	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3157	if (new_parent)
3158		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3159
3160	error = xfs_finish_rename(tp);
3161	if (wip)
3162		xfs_irele(wip);
3163	return error;
3164
3165out_trans_cancel:
3166	xfs_trans_cancel(tp);
 
 
 
 
 
 
 
 
3167out_release_wip:
3168	if (wip)
3169		xfs_irele(wip);
3170	if (error == -ENOSPC && nospace_error)
3171		error = nospace_error;
3172	return error;
3173}
3174
3175static int
3176xfs_iflush(
3177	struct xfs_inode	*ip,
3178	struct xfs_buf		*bp)
3179{
3180	struct xfs_inode_log_item *iip = ip->i_itemp;
3181	struct xfs_dinode	*dip;
3182	struct xfs_mount	*mp = ip->i_mount;
3183	int			error;
3184
3185	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3186	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3187	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3188	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3189	ASSERT(iip->ili_item.li_buf == bp);
3190
3191	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3192
3193	/*
3194	 * We don't flush the inode if any of the following checks fail, but we
3195	 * do still update the log item and attach to the backing buffer as if
3196	 * the flush happened. This is a formality to facilitate predictable
3197	 * error handling as the caller will shutdown and fail the buffer.
3198	 */
3199	error = -EFSCORRUPTED;
3200	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3201			       mp, XFS_ERRTAG_IFLUSH_1)) {
3202		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3203			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3204			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3205		goto flush_out;
3206	}
3207	if (S_ISREG(VFS_I(ip)->i_mode)) {
3208		if (XFS_TEST_ERROR(
3209		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3210		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3211		    mp, XFS_ERRTAG_IFLUSH_3)) {
3212			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3213				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3214				__func__, ip->i_ino, ip);
3215			goto flush_out;
3216		}
3217	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3218		if (XFS_TEST_ERROR(
3219		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3220		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3221		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3222		    mp, XFS_ERRTAG_IFLUSH_4)) {
3223			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3224				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3225				__func__, ip->i_ino, ip);
3226			goto flush_out;
3227		}
3228	}
3229	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3230				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3231		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3232			"%s: detected corrupt incore inode %llu, "
3233			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3234			__func__, ip->i_ino,
3235			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3236			ip->i_nblocks, ip);
3237		goto flush_out;
3238	}
3239	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3240				mp, XFS_ERRTAG_IFLUSH_6)) {
3241		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3242			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3243			__func__, ip->i_ino, ip->i_forkoff, ip);
3244		goto flush_out;
3245	}
3246
3247	/*
3248	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3249	 * count for correct sequencing.  We bump the flush iteration count so
3250	 * we can detect flushes which postdate a log record during recovery.
3251	 * This is redundant as we now log every change and hence this can't
3252	 * happen but we need to still do it to ensure backwards compatibility
3253	 * with old kernels that predate logging all inode changes.
3254	 */
3255	if (!xfs_has_v3inodes(mp))
3256		ip->i_flushiter++;
3257
3258	/*
3259	 * If there are inline format data / attr forks attached to this inode,
3260	 * make sure they are not corrupt.
3261	 */
3262	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3263	    xfs_ifork_verify_local_data(ip))
3264		goto flush_out;
3265	if (xfs_inode_has_attr_fork(ip) &&
3266	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3267	    xfs_ifork_verify_local_attr(ip))
3268		goto flush_out;
3269
3270	/*
3271	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3272	 * copy out the core of the inode, because if the inode is dirty at all
3273	 * the core must be.
3274	 */
3275	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3276
3277	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3278	if (!xfs_has_v3inodes(mp)) {
3279		if (ip->i_flushiter == DI_MAX_FLUSH)
3280			ip->i_flushiter = 0;
3281	}
3282
3283	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3284	if (xfs_inode_has_attr_fork(ip))
3285		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3286
3287	/*
3288	 * We've recorded everything logged in the inode, so we'd like to clear
3289	 * the ili_fields bits so we don't log and flush things unnecessarily.
3290	 * However, we can't stop logging all this information until the data
3291	 * we've copied into the disk buffer is written to disk.  If we did we
3292	 * might overwrite the copy of the inode in the log with all the data
3293	 * after re-logging only part of it, and in the face of a crash we
3294	 * wouldn't have all the data we need to recover.
3295	 *
3296	 * What we do is move the bits to the ili_last_fields field.  When
3297	 * logging the inode, these bits are moved back to the ili_fields field.
3298	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3299	 * we know that the information those bits represent is permanently on
3300	 * disk.  As long as the flush completes before the inode is logged
3301	 * again, then both ili_fields and ili_last_fields will be cleared.
3302	 */
3303	error = 0;
3304flush_out:
3305	spin_lock(&iip->ili_lock);
3306	iip->ili_last_fields = iip->ili_fields;
3307	iip->ili_fields = 0;
3308	iip->ili_fsync_fields = 0;
 
3309	spin_unlock(&iip->ili_lock);
3310
3311	/*
3312	 * Store the current LSN of the inode so that we can tell whether the
3313	 * item has moved in the AIL from xfs_buf_inode_iodone().
3314	 */
3315	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3316				&iip->ili_item.li_lsn);
3317
3318	/* generate the checksum. */
3319	xfs_dinode_calc_crc(mp, dip);
 
 
3320	return error;
3321}
3322
3323/*
3324 * Non-blocking flush of dirty inode metadata into the backing buffer.
3325 *
3326 * The caller must have a reference to the inode and hold the cluster buffer
3327 * locked. The function will walk across all the inodes on the cluster buffer it
3328 * can find and lock without blocking, and flush them to the cluster buffer.
3329 *
3330 * On successful flushing of at least one inode, the caller must write out the
3331 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3332 * the caller needs to release the buffer. On failure, the filesystem will be
3333 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3334 * will be returned.
3335 */
3336int
3337xfs_iflush_cluster(
3338	struct xfs_buf		*bp)
3339{
3340	struct xfs_mount	*mp = bp->b_mount;
3341	struct xfs_log_item	*lip, *n;
3342	struct xfs_inode	*ip;
3343	struct xfs_inode_log_item *iip;
3344	int			clcount = 0;
3345	int			error = 0;
3346
3347	/*
3348	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3349	 * will remove itself from the list.
3350	 */
3351	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3352		iip = (struct xfs_inode_log_item *)lip;
3353		ip = iip->ili_inode;
3354
3355		/*
3356		 * Quick and dirty check to avoid locks if possible.
3357		 */
3358		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3359			continue;
3360		if (xfs_ipincount(ip))
3361			continue;
3362
3363		/*
3364		 * The inode is still attached to the buffer, which means it is
3365		 * dirty but reclaim might try to grab it. Check carefully for
3366		 * that, and grab the ilock while still holding the i_flags_lock
3367		 * to guarantee reclaim will not be able to reclaim this inode
3368		 * once we drop the i_flags_lock.
3369		 */
3370		spin_lock(&ip->i_flags_lock);
3371		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3372		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3373			spin_unlock(&ip->i_flags_lock);
3374			continue;
3375		}
3376
3377		/*
3378		 * ILOCK will pin the inode against reclaim and prevent
3379		 * concurrent transactions modifying the inode while we are
3380		 * flushing the inode. If we get the lock, set the flushing
3381		 * state before we drop the i_flags_lock.
3382		 */
3383		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3384			spin_unlock(&ip->i_flags_lock);
3385			continue;
3386		}
3387		__xfs_iflags_set(ip, XFS_IFLUSHING);
3388		spin_unlock(&ip->i_flags_lock);
3389
3390		/*
3391		 * Abort flushing this inode if we are shut down because the
3392		 * inode may not currently be in the AIL. This can occur when
3393		 * log I/O failure unpins the inode without inserting into the
3394		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3395		 * that otherwise looks like it should be flushed.
3396		 */
3397		if (xlog_is_shutdown(mp->m_log)) {
3398			xfs_iunpin_wait(ip);
3399			xfs_iflush_abort(ip);
3400			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3401			error = -EIO;
3402			continue;
3403		}
3404
3405		/* don't block waiting on a log force to unpin dirty inodes */
3406		if (xfs_ipincount(ip)) {
3407			xfs_iflags_clear(ip, XFS_IFLUSHING);
3408			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3409			continue;
3410		}
3411
3412		if (!xfs_inode_clean(ip))
3413			error = xfs_iflush(ip, bp);
3414		else
3415			xfs_iflags_clear(ip, XFS_IFLUSHING);
3416		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3417		if (error)
3418			break;
3419		clcount++;
3420	}
3421
3422	if (error) {
3423		/*
3424		 * Shutdown first so we kill the log before we release this
3425		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3426		 * of the log, failing it before the _log_ is shut down can
3427		 * result in the log tail being moved forward in the journal
3428		 * on disk because log writes can still be taking place. Hence
3429		 * unpinning the tail will allow the ICREATE intent to be
3430		 * removed from the log an recovery will fail with uninitialised
3431		 * inode cluster buffers.
3432		 */
3433		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3434		bp->b_flags |= XBF_ASYNC;
3435		xfs_buf_ioend_fail(bp);
3436		return error;
3437	}
3438
3439	if (!clcount)
3440		return -EAGAIN;
3441
3442	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3443	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3444	return 0;
3445
3446}
3447
3448/* Release an inode. */
3449void
3450xfs_irele(
3451	struct xfs_inode	*ip)
3452{
3453	trace_xfs_irele(ip, _RET_IP_);
3454	iput(VFS_I(ip));
3455}
3456
3457/*
3458 * Ensure all commited transactions touching the inode are written to the log.
3459 */
3460int
3461xfs_log_force_inode(
3462	struct xfs_inode	*ip)
3463{
3464	xfs_csn_t		seq = 0;
3465
3466	xfs_ilock(ip, XFS_ILOCK_SHARED);
3467	if (xfs_ipincount(ip))
3468		seq = ip->i_itemp->ili_commit_seq;
3469	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3470
3471	if (!seq)
3472		return 0;
3473	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3474}
3475
3476/*
3477 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3478 * abide vfs locking order (lowest pointer value goes first) and breaking the
3479 * layout leases before proceeding.  The loop is needed because we cannot call
3480 * the blocking break_layout() with the iolocks held, and therefore have to
3481 * back out both locks.
3482 */
3483static int
3484xfs_iolock_two_inodes_and_break_layout(
3485	struct inode		*src,
3486	struct inode		*dest)
3487{
3488	int			error;
3489
3490	if (src > dest)
3491		swap(src, dest);
3492
3493retry:
3494	/* Wait to break both inodes' layouts before we start locking. */
3495	error = break_layout(src, true);
3496	if (error)
3497		return error;
3498	if (src != dest) {
3499		error = break_layout(dest, true);
3500		if (error)
3501			return error;
3502	}
3503
3504	/* Lock one inode and make sure nobody got in and leased it. */
3505	inode_lock(src);
3506	error = break_layout(src, false);
3507	if (error) {
3508		inode_unlock(src);
3509		if (error == -EWOULDBLOCK)
3510			goto retry;
3511		return error;
3512	}
3513
3514	if (src == dest)
3515		return 0;
3516
3517	/* Lock the other inode and make sure nobody got in and leased it. */
3518	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3519	error = break_layout(dest, false);
3520	if (error) {
3521		inode_unlock(src);
3522		inode_unlock(dest);
3523		if (error == -EWOULDBLOCK)
3524			goto retry;
3525		return error;
3526	}
3527
3528	return 0;
3529}
3530
3531static int
3532xfs_mmaplock_two_inodes_and_break_dax_layout(
3533	struct xfs_inode	*ip1,
3534	struct xfs_inode	*ip2)
3535{
3536	int			error;
3537	bool			retry;
3538	struct page		*page;
3539
3540	if (ip1->i_ino > ip2->i_ino)
3541		swap(ip1, ip2);
3542
3543again:
3544	retry = false;
3545	/* Lock the first inode */
3546	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3547	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3548	if (error || retry) {
3549		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3550		if (error == 0 && retry)
3551			goto again;
3552		return error;
3553	}
3554
3555	if (ip1 == ip2)
3556		return 0;
3557
3558	/* Nested lock the second inode */
3559	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3560	/*
3561	 * We cannot use xfs_break_dax_layouts() directly here because it may
3562	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3563	 * for this nested lock case.
3564	 */
3565	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3566	if (page && page_ref_count(page) != 1) {
3567		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3568		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3569		goto again;
3570	}
3571
3572	return 0;
3573}
3574
3575/*
3576 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3577 * mmap activity.
3578 */
3579int
3580xfs_ilock2_io_mmap(
3581	struct xfs_inode	*ip1,
3582	struct xfs_inode	*ip2)
3583{
3584	int			ret;
3585
3586	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3587	if (ret)
3588		return ret;
3589
3590	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3591		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3592		if (ret) {
3593			inode_unlock(VFS_I(ip2));
3594			if (ip1 != ip2)
3595				inode_unlock(VFS_I(ip1));
3596			return ret;
3597		}
3598	} else
3599		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3600					    VFS_I(ip2)->i_mapping);
3601
3602	return 0;
3603}
3604
3605/* Unlock both inodes to allow IO and mmap activity. */
3606void
3607xfs_iunlock2_io_mmap(
3608	struct xfs_inode	*ip1,
3609	struct xfs_inode	*ip2)
3610{
3611	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3612		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3613		if (ip1 != ip2)
3614			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3615	} else
3616		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3617					      VFS_I(ip2)->i_mapping);
3618
3619	inode_unlock(VFS_I(ip2));
3620	if (ip1 != ip2)
3621		inode_unlock(VFS_I(ip1));
3622}
3623
3624/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3625void
3626xfs_iunlock2_remapping(
3627	struct xfs_inode	*ip1,
3628	struct xfs_inode	*ip2)
3629{
3630	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3631
3632	if (ip1 != ip2)
3633		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3634	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3635
3636	if (ip1 != ip2)
3637		inode_unlock_shared(VFS_I(ip1));
3638	inode_unlock(VFS_I(ip2));
3639}
3640
3641/*
3642 * Reload the incore inode list for this inode.  Caller should ensure that
3643 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3644 * preventing other threads from executing.
3645 */
3646int
3647xfs_inode_reload_unlinked_bucket(
3648	struct xfs_trans	*tp,
3649	struct xfs_inode	*ip)
3650{
3651	struct xfs_mount	*mp = tp->t_mountp;
3652	struct xfs_buf		*agibp;
3653	struct xfs_agi		*agi;
3654	struct xfs_perag	*pag;
3655	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3656	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3657	xfs_agino_t		prev_agino, next_agino;
3658	unsigned int		bucket;
3659	bool			foundit = false;
3660	int			error;
3661
3662	/* Grab the first inode in the list */
3663	pag = xfs_perag_get(mp, agno);
3664	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3665	xfs_perag_put(pag);
3666	if (error)
3667		return error;
3668
3669	/*
3670	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3671	 * incore unlinked list pointers for this inode.  Check once more to
3672	 * see if we raced with anyone else to reload the unlinked list.
3673	 */
3674	if (!xfs_inode_unlinked_incomplete(ip)) {
3675		foundit = true;
3676		goto out_agibp;
3677	}
3678
3679	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3680	agi = agibp->b_addr;
3681
3682	trace_xfs_inode_reload_unlinked_bucket(ip);
3683
3684	xfs_info_ratelimited(mp,
3685 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3686			agino, agno);
3687
3688	prev_agino = NULLAGINO;
3689	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3690	while (next_agino != NULLAGINO) {
3691		struct xfs_inode	*next_ip = NULL;
3692
3693		/* Found this caller's inode, set its backlink. */
3694		if (next_agino == agino) {
3695			next_ip = ip;
3696			next_ip->i_prev_unlinked = prev_agino;
3697			foundit = true;
3698			goto next_inode;
3699		}
3700
3701		/* Try in-memory lookup first. */
3702		next_ip = xfs_iunlink_lookup(pag, next_agino);
3703		if (next_ip)
3704			goto next_inode;
3705
3706		/* Inode not in memory, try reloading it. */
3707		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3708				next_agino);
3709		if (error)
3710			break;
3711
3712		/* Grab the reloaded inode. */
3713		next_ip = xfs_iunlink_lookup(pag, next_agino);
3714		if (!next_ip) {
3715			/* No incore inode at all?  We reloaded it... */
3716			ASSERT(next_ip != NULL);
3717			error = -EFSCORRUPTED;
3718			break;
3719		}
3720
3721next_inode:
3722		prev_agino = next_agino;
3723		next_agino = next_ip->i_next_unlinked;
3724	}
3725
3726out_agibp:
3727	xfs_trans_brelse(tp, agibp);
3728	/* Should have found this inode somewhere in the iunlinked bucket. */
3729	if (!error && !foundit)
3730		error = -EFSCORRUPTED;
3731	return error;
3732}
3733
3734/* Decide if this inode is missing its unlinked list and reload it. */
3735int
3736xfs_inode_reload_unlinked(
3737	struct xfs_inode	*ip)
3738{
3739	struct xfs_trans	*tp;
3740	int			error;
3741
3742	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3743	if (error)
3744		return error;
3745
3746	xfs_ilock(ip, XFS_ILOCK_SHARED);
3747	if (xfs_inode_unlinked_incomplete(ip))
3748		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3749	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3750	xfs_trans_cancel(tp);
3751
3752	return error;
3753}
3754
3755/* Has this inode fork been zapped by repair? */
3756bool
3757xfs_ifork_zapped(
3758	const struct xfs_inode	*ip,
3759	int			whichfork)
3760{
3761	unsigned int		datamask = 0;
3762
3763	switch (whichfork) {
3764	case XFS_DATA_FORK:
3765		switch (ip->i_vnode.i_mode & S_IFMT) {
3766		case S_IFDIR:
3767			datamask = XFS_SICK_INO_DIR_ZAPPED;
3768			break;
3769		case S_IFLNK:
3770			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3771			break;
3772		}
3773		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3774	case XFS_ATTR_FORK:
3775		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3776	default:
3777		return false;
3778	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3779}