Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_bit.h"
  20#include "xfs_trans_space.h"
  21#include "xfs_trans.h"
  22#include "xfs_buf_item.h"
  23#include "xfs_inode_item.h"
  24#include "xfs_iunlink_item.h"
  25#include "xfs_ialloc.h"
  26#include "xfs_bmap.h"
  27#include "xfs_bmap_util.h"
  28#include "xfs_errortag.h"
  29#include "xfs_error.h"
  30#include "xfs_quota.h"
  31#include "xfs_filestream.h"
  32#include "xfs_trace.h"
  33#include "xfs_icache.h"
  34#include "xfs_symlink.h"
  35#include "xfs_trans_priv.h"
  36#include "xfs_log.h"
  37#include "xfs_bmap_btree.h"
  38#include "xfs_reflink.h"
  39#include "xfs_ag.h"
  40#include "xfs_log_priv.h"
  41#include "xfs_health.h"
  42#include "xfs_pnfs.h"
  43#include "xfs_parent.h"
  44#include "xfs_xattr.h"
  45#include "xfs_inode_util.h"
  46#include "xfs_metafile.h"
  47
  48struct kmem_cache *xfs_inode_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50/*
  51 * These two are wrapper routines around the xfs_ilock() routine used to
  52 * centralize some grungy code.  They are used in places that wish to lock the
  53 * inode solely for reading the extents.  The reason these places can't just
  54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  55 * bringing in of the extents from disk for a file in b-tree format.  If the
  56 * inode is in b-tree format, then we need to lock the inode exclusively until
  57 * the extents are read in.  Locking it exclusively all the time would limit
  58 * our parallelism unnecessarily, though.  What we do instead is check to see
  59 * if the extents have been read in yet, and only lock the inode exclusively
  60 * if they have not.
  61 *
  62 * The functions return a value which should be given to the corresponding
  63 * xfs_iunlock() call.
  64 */
  65uint
  66xfs_ilock_data_map_shared(
  67	struct xfs_inode	*ip)
  68{
  69	uint			lock_mode = XFS_ILOCK_SHARED;
  70
  71	if (xfs_need_iread_extents(&ip->i_df))
 
  72		lock_mode = XFS_ILOCK_EXCL;
  73	xfs_ilock(ip, lock_mode);
  74	return lock_mode;
  75}
  76
  77uint
  78xfs_ilock_attr_map_shared(
  79	struct xfs_inode	*ip)
  80{
  81	uint			lock_mode = XFS_ILOCK_SHARED;
  82
  83	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
 
  84		lock_mode = XFS_ILOCK_EXCL;
  85	xfs_ilock(ip, lock_mode);
  86	return lock_mode;
  87}
  88
  89/*
  90 * You can't set both SHARED and EXCL for the same lock,
  91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
  92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
  93 * to set in lock_flags.
  94 */
  95static inline void
  96xfs_lock_flags_assert(
  97	uint		lock_flags)
  98{
  99	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 100		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 101	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 102		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 103	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 104		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 105	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 106	ASSERT(lock_flags != 0);
 107}
 108
 109/*
 110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 111 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 112 * various combinations of the locks to be obtained.
 113 *
 114 * The 3 locks should always be ordered so that the IO lock is obtained first,
 115 * the mmap lock second and the ilock last in order to prevent deadlock.
 116 *
 117 * Basic locking order:
 118 *
 119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 120 *
 121 * mmap_lock locking order:
 122 *
 123 * i_rwsem -> page lock -> mmap_lock
 124 * mmap_lock -> invalidate_lock -> page_lock
 125 *
 126 * The difference in mmap_lock locking order mean that we cannot hold the
 127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 128 * can fault in pages during copy in/out (for buffered IO) or require the
 129 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 131 * fault because page faults already hold the mmap_lock.
 132 *
 133 * Hence to serialise fully against both syscall and mmap based IO, we need to
 134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 135 * both taken in places where we need to invalidate the page cache in a race
 136 * free manner (e.g. truncate, hole punch and other extent manipulation
 137 * functions).
 138 */
 139void
 140xfs_ilock(
 141	xfs_inode_t		*ip,
 142	uint			lock_flags)
 143{
 144	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 145
 146	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 147
 148	if (lock_flags & XFS_IOLOCK_EXCL) {
 149		down_write_nested(&VFS_I(ip)->i_rwsem,
 150				  XFS_IOLOCK_DEP(lock_flags));
 151	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 152		down_read_nested(&VFS_I(ip)->i_rwsem,
 153				 XFS_IOLOCK_DEP(lock_flags));
 154	}
 155
 156	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 157		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 158				  XFS_MMAPLOCK_DEP(lock_flags));
 159	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 160		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 161				 XFS_MMAPLOCK_DEP(lock_flags));
 162	}
 163
 164	if (lock_flags & XFS_ILOCK_EXCL)
 165		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 166	else if (lock_flags & XFS_ILOCK_SHARED)
 167		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 168}
 169
 170/*
 171 * This is just like xfs_ilock(), except that the caller
 172 * is guaranteed not to sleep.  It returns 1 if it gets
 173 * the requested locks and 0 otherwise.  If the IO lock is
 174 * obtained but the inode lock cannot be, then the IO lock
 175 * is dropped before returning.
 176 *
 177 * ip -- the inode being locked
 178 * lock_flags -- this parameter indicates the inode's locks to be
 179 *       to be locked.  See the comment for xfs_ilock() for a list
 180 *	 of valid values.
 181 */
 182int
 183xfs_ilock_nowait(
 184	xfs_inode_t		*ip,
 185	uint			lock_flags)
 186{
 187	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 188
 189	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 190
 191	if (lock_flags & XFS_IOLOCK_EXCL) {
 192		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 193			goto out;
 194	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 195		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 196			goto out;
 197	}
 198
 199	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 200		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 201			goto out_undo_iolock;
 202	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 203		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 204			goto out_undo_iolock;
 205	}
 206
 207	if (lock_flags & XFS_ILOCK_EXCL) {
 208		if (!down_write_trylock(&ip->i_lock))
 209			goto out_undo_mmaplock;
 210	} else if (lock_flags & XFS_ILOCK_SHARED) {
 211		if (!down_read_trylock(&ip->i_lock))
 212			goto out_undo_mmaplock;
 213	}
 214	return 1;
 215
 216out_undo_mmaplock:
 217	if (lock_flags & XFS_MMAPLOCK_EXCL)
 218		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 219	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 220		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 221out_undo_iolock:
 222	if (lock_flags & XFS_IOLOCK_EXCL)
 223		up_write(&VFS_I(ip)->i_rwsem);
 224	else if (lock_flags & XFS_IOLOCK_SHARED)
 225		up_read(&VFS_I(ip)->i_rwsem);
 226out:
 227	return 0;
 228}
 229
 230/*
 231 * xfs_iunlock() is used to drop the inode locks acquired with
 232 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 234 * that we know which locks to drop.
 235 *
 236 * ip -- the inode being unlocked
 237 * lock_flags -- this parameter indicates the inode's locks to be
 238 *       to be unlocked.  See the comment for xfs_ilock() for a list
 239 *	 of valid values for this parameter.
 240 *
 241 */
 242void
 243xfs_iunlock(
 244	xfs_inode_t		*ip,
 245	uint			lock_flags)
 246{
 247	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249	if (lock_flags & XFS_IOLOCK_EXCL)
 250		up_write(&VFS_I(ip)->i_rwsem);
 251	else if (lock_flags & XFS_IOLOCK_SHARED)
 252		up_read(&VFS_I(ip)->i_rwsem);
 253
 254	if (lock_flags & XFS_MMAPLOCK_EXCL)
 255		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 256	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 257		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 258
 259	if (lock_flags & XFS_ILOCK_EXCL)
 260		up_write(&ip->i_lock);
 261	else if (lock_flags & XFS_ILOCK_SHARED)
 262		up_read(&ip->i_lock);
 263
 264	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 265}
 266
 267/*
 268 * give up write locks.  the i/o lock cannot be held nested
 269 * if it is being demoted.
 270 */
 271void
 272xfs_ilock_demote(
 273	xfs_inode_t		*ip,
 274	uint			lock_flags)
 275{
 276	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 277	ASSERT((lock_flags &
 278		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 279
 280	if (lock_flags & XFS_ILOCK_EXCL)
 281		downgrade_write(&ip->i_lock);
 282	if (lock_flags & XFS_MMAPLOCK_EXCL)
 283		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 284	if (lock_flags & XFS_IOLOCK_EXCL)
 285		downgrade_write(&VFS_I(ip)->i_rwsem);
 286
 287	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 288}
 289
 290void
 291xfs_assert_ilocked(
 292	struct xfs_inode	*ip,
 
 293	uint			lock_flags)
 294{
 295	/*
 296	 * Sometimes we assert the ILOCK is held exclusively, but we're in
 297	 * a workqueue, so lockdep doesn't know we're the owner.
 298	 */
 299	if (lock_flags & XFS_ILOCK_SHARED)
 300		rwsem_assert_held(&ip->i_lock);
 301	else if (lock_flags & XFS_ILOCK_EXCL)
 302		rwsem_assert_held_write_nolockdep(&ip->i_lock);
 303
 304	if (lock_flags & XFS_MMAPLOCK_SHARED)
 305		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
 306	else if (lock_flags & XFS_MMAPLOCK_EXCL)
 307		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 308
 309	if (lock_flags & XFS_IOLOCK_SHARED)
 310		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
 311	else if (lock_flags & XFS_IOLOCK_EXCL)
 312		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
 
 
 
 313}
 
 314
 315/*
 316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 319 * errors and warnings.
 320 */
 321#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 322static bool
 323xfs_lockdep_subclass_ok(
 324	int subclass)
 325{
 326	return subclass < MAX_LOCKDEP_SUBCLASSES;
 327}
 328#else
 329#define xfs_lockdep_subclass_ok(subclass)	(true)
 330#endif
 331
 332/*
 333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 334 * value. This can be called for any type of inode lock combination, including
 335 * parent locking. Care must be taken to ensure we don't overrun the subclass
 336 * storage fields in the class mask we build.
 337 */
 338static inline uint
 339xfs_lock_inumorder(
 340	uint	lock_mode,
 341	uint	subclass)
 342{
 343	uint	class = 0;
 344
 345	ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
 
 346	ASSERT(xfs_lockdep_subclass_ok(subclass));
 347
 348	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 349		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 350		class += subclass << XFS_IOLOCK_SHIFT;
 351	}
 352
 353	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 354		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 355		class += subclass << XFS_MMAPLOCK_SHIFT;
 356	}
 357
 358	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 359		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 360		class += subclass << XFS_ILOCK_SHIFT;
 361	}
 362
 363	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 364}
 365
 366/*
 367 * The following routine will lock n inodes in exclusive mode.  We assume the
 368 * caller calls us with the inodes in i_ino order.
 369 *
 370 * We need to detect deadlock where an inode that we lock is in the AIL and we
 371 * start waiting for another inode that is locked by a thread in a long running
 372 * transaction (such as truncate). This can result in deadlock since the long
 373 * running trans might need to wait for the inode we just locked in order to
 374 * push the tail and free space in the log.
 375 *
 376 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 378 * lock more than one at a time, lockdep will report false positives saying we
 379 * have violated locking orders.
 380 */
 381void
 382xfs_lock_inodes(
 383	struct xfs_inode	**ips,
 384	int			inodes,
 385	uint			lock_mode)
 386{
 387	int			attempts = 0;
 388	uint			i;
 389	int			j;
 390	bool			try_lock;
 391	struct xfs_log_item	*lp;
 392
 393	/*
 394	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 395	 * support an arbitrary depth of locking here, but absolute limits on
 396	 * inodes depend on the type of locking and the limits placed by
 397	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 398	 * the asserts.
 399	 */
 400	ASSERT(ips && inodes >= 2 && inodes <= 5);
 401	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 402			    XFS_ILOCK_EXCL));
 403	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 404			      XFS_ILOCK_SHARED)));
 405	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 406		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 407	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 408		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 409
 410	if (lock_mode & XFS_IOLOCK_EXCL) {
 411		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 412	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 413		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 414
 415again:
 416	try_lock = false;
 417	i = 0;
 
 418	for (; i < inodes; i++) {
 419		ASSERT(ips[i]);
 420
 421		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 422			continue;
 423
 424		/*
 425		 * If try_lock is not set yet, make sure all locked inodes are
 426		 * not in the AIL.  If any are, set try_lock to be used later.
 427		 */
 428		if (!try_lock) {
 429			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 430				lp = &ips[j]->i_itemp->ili_item;
 431				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 432					try_lock = true;
 433			}
 434		}
 435
 436		/*
 437		 * If any of the previous locks we have locked is in the AIL,
 438		 * we must TRY to get the second and subsequent locks. If
 439		 * we can't get any, we must release all we have
 440		 * and try again.
 441		 */
 442		if (!try_lock) {
 443			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 444			continue;
 445		}
 446
 447		/* try_lock means we have an inode locked that is in the AIL. */
 448		ASSERT(i != 0);
 449		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 450			continue;
 451
 452		/*
 453		 * Unlock all previous guys and try again.  xfs_iunlock will try
 454		 * to push the tail if the inode is in the AIL.
 455		 */
 456		attempts++;
 457		for (j = i - 1; j >= 0; j--) {
 458			/*
 459			 * Check to see if we've already unlocked this one.  Not
 460			 * the first one going back, and the inode ptr is the
 461			 * same.
 462			 */
 463			if (j != (i - 1) && ips[j] == ips[j + 1])
 464				continue;
 465
 466			xfs_iunlock(ips[j], lock_mode);
 467		}
 468
 469		if ((attempts % 5) == 0) {
 470			delay(1); /* Don't just spin the CPU */
 471		}
 
 
 472		goto again;
 473	}
 474}
 475
 476/*
 477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 478 * mmaplock must be double-locked separately since we use i_rwsem and
 479 * invalidate_lock for that. We now support taking one lock EXCL and the
 480 * other SHARED.
 
 
 481 */
 482void
 483xfs_lock_two_inodes(
 484	struct xfs_inode	*ip0,
 485	uint			ip0_mode,
 486	struct xfs_inode	*ip1,
 487	uint			ip1_mode)
 488{
 
 
 489	int			attempts = 0;
 490	struct xfs_log_item	*lp;
 491
 492	ASSERT(hweight32(ip0_mode) == 1);
 493	ASSERT(hweight32(ip1_mode) == 1);
 494	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 495	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 496	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 497	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 
 
 
 
 
 
 
 498	ASSERT(ip0->i_ino != ip1->i_ino);
 499
 500	if (ip0->i_ino > ip1->i_ino) {
 501		swap(ip0, ip1);
 502		swap(ip0_mode, ip1_mode);
 
 
 
 
 503	}
 504
 505 again:
 506	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 507
 508	/*
 509	 * If the first lock we have locked is in the AIL, we must TRY to get
 510	 * the second lock. If we can't get it, we must release the first one
 511	 * and try again.
 512	 */
 513	lp = &ip0->i_itemp->ili_item;
 514	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 515		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 516			xfs_iunlock(ip0, ip0_mode);
 517			if ((++attempts % 5) == 0)
 518				delay(1); /* Don't just spin the CPU */
 519			goto again;
 520		}
 521	} else {
 522		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 523	}
 524}
 525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526/*
 527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 528 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 529 * ci_name->name will point to a the actual name (caller must free) or
 530 * will be set to NULL if an exact match is found.
 531 */
 532int
 533xfs_lookup(
 534	struct xfs_inode	*dp,
 535	const struct xfs_name	*name,
 536	struct xfs_inode	**ipp,
 537	struct xfs_name		*ci_name)
 538{
 539	xfs_ino_t		inum;
 540	int			error;
 541
 542	trace_xfs_lookup(dp, name);
 543
 544	if (xfs_is_shutdown(dp->i_mount))
 545		return -EIO;
 546	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 547		return -EIO;
 548
 549	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 550	if (error)
 551		goto out_unlock;
 552
 553	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 554	if (error)
 555		goto out_free_name;
 556
 557	/*
 558	 * Fail if a directory entry in the regular directory tree points to
 559	 * a metadata file.
 560	 */
 561	if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
 562		xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
 563		error = -EFSCORRUPTED;
 564		goto out_irele;
 565	}
 566
 567	return 0;
 568
 569out_irele:
 570	xfs_irele(*ipp);
 571out_free_name:
 572	if (ci_name)
 573		kfree(ci_name->name);
 574out_unlock:
 575	*ipp = NULL;
 576	return error;
 577}
 578
 579/*
 580 * Initialise a newly allocated inode and return the in-core inode to the
 581 * caller locked exclusively.
 582 *
 583 * Caller is responsible for unlocking the inode manually upon return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584 */
 585int
 586xfs_icreate(
 587	struct xfs_trans	*tp,
 588	xfs_ino_t		ino,
 589	const struct xfs_icreate_args *args,
 590	struct xfs_inode	**ipp)
 591{
 592	struct xfs_mount	*mp = tp->t_mountp;
 593	struct xfs_inode	*ip = NULL;
 594	int			error;
 
 
 
 
 
 
 
 
 595
 596	/*
 597	 * Get the in-core inode with the lock held exclusively to prevent
 598	 * others from looking at until we're done.
 599	 */
 600	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 
 601	if (error)
 602		return error;
 
 
 
 
 
 603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604	ASSERT(ip != NULL);
 605	xfs_trans_ijoin(tp, ip, 0);
 606	xfs_inode_init(tp, args, ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608	/* now that we have an i_mode we can setup the inode structure */
 609	xfs_setup_inode(ip);
 610
 611	*ipp = ip;
 612	return 0;
 613}
 614
 615/* Return dquots for the ids that will be assigned to a new file. */
 
 
 
 
 
 
 
 
 
 616int
 617xfs_icreate_dqalloc(
 618	const struct xfs_icreate_args	*args,
 619	struct xfs_dquot		**udqpp,
 620	struct xfs_dquot		**gdqpp,
 621	struct xfs_dquot		**pdqpp)
 622{
 623	struct inode			*dir = VFS_I(args->pip);
 624	kuid_t				uid = GLOBAL_ROOT_UID;
 625	kgid_t				gid = GLOBAL_ROOT_GID;
 626	prid_t				prid = 0;
 627	unsigned int			flags = XFS_QMOPT_QUOTALL;
 628
 629	if (args->idmap) {
 630		/*
 631		 * The uid/gid computation code must match what the VFS uses to
 632		 * assign i_[ug]id.  INHERIT adjusts the gid computation for
 633		 * setgid/grpid systems.
 634		 */
 635		uid = mapped_fsuid(args->idmap, i_user_ns(dir));
 636		gid = mapped_fsgid(args->idmap, i_user_ns(dir));
 637		prid = xfs_get_initial_prid(args->pip);
 638		flags |= XFS_QMOPT_INHERIT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639	}
 640
 641	*udqpp = *gdqpp = *pdqpp = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643	return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
 644			gdqpp, pdqpp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645}
 646
 647int
 648xfs_create(
 649	const struct xfs_icreate_args *args,
 650	struct xfs_name		*name,
 651	struct xfs_inode	**ipp)
 
 
 652{
 653	struct xfs_inode	*dp = args->pip;
 654	struct xfs_dir_update	du = {
 655		.dp		= dp,
 656		.name		= name,
 657	};
 658	struct xfs_mount	*mp = dp->i_mount;
 
 659	struct xfs_trans	*tp = NULL;
 660	struct xfs_dquot	*udqp;
 661	struct xfs_dquot	*gdqp;
 662	struct xfs_dquot	*pdqp;
 
 
 
 663	struct xfs_trans_res	*tres;
 664	xfs_ino_t		ino;
 665	bool			unlock_dp_on_error = false;
 666	bool			is_dir = S_ISDIR(args->mode);
 667	uint			resblks;
 668	int			error;
 669
 670	trace_xfs_create(dp, name);
 671
 672	if (xfs_is_shutdown(mp))
 673		return -EIO;
 674	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 675		return -EIO;
 676
 677	/* Make sure that we have allocated dquot(s) on disk. */
 678	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
 
 
 
 
 
 
 
 679	if (error)
 680		return error;
 681
 682	if (is_dir) {
 683		resblks = xfs_mkdir_space_res(mp, name->len);
 684		tres = &M_RES(mp)->tr_mkdir;
 685	} else {
 686		resblks = xfs_create_space_res(mp, name->len);
 687		tres = &M_RES(mp)->tr_create;
 688	}
 689
 690	error = xfs_parent_start(mp, &du.ppargs);
 691	if (error)
 692		goto out_release_dquots;
 693
 694	/*
 695	 * Initially assume that the file does not exist and
 696	 * reserve the resources for that case.  If that is not
 697	 * the case we'll drop the one we have and get a more
 698	 * appropriate transaction later.
 699	 */
 700	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
 701			&tp);
 702	if (error == -ENOSPC) {
 703		/* flush outstanding delalloc blocks and retry */
 704		xfs_flush_inodes(mp);
 705		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
 706				resblks, &tp);
 707	}
 708	if (error)
 709		goto out_parent;
 710
 711	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
 712	unlock_dp_on_error = true;
 713
 714	/*
 
 
 
 
 
 
 
 
 715	 * A newly created regular or special file just has one directory
 716	 * entry pointing to them, but a directory also the "." entry
 717	 * pointing to itself.
 718	 */
 719	error = xfs_dialloc(&tp, args, &ino);
 720	if (!error)
 721		error = xfs_icreate(tp, ino, args, &du.ip);
 722	if (error)
 723		goto out_trans_cancel;
 724
 725	/*
 726	 * Now we join the directory inode to the transaction.  We do not do it
 727	 * earlier because xfs_dialloc might commit the previous transaction
 728	 * (and release all the locks).  An error from here on will result in
 729	 * the transaction cancel unlocking dp so don't do it explicitly in the
 730	 * error path.
 731	 */
 732	xfs_trans_ijoin(tp, dp, 0);
 
 733
 734	error = xfs_dir_create_child(tp, resblks, &du);
 735	if (error)
 
 
 
 736		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 737
 738	/*
 739	 * If this is a synchronous mount, make sure that the
 740	 * create transaction goes to disk before returning to
 741	 * the user.
 742	 */
 743	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
 744		xfs_trans_set_sync(tp);
 745
 746	/*
 747	 * Attach the dquot(s) to the inodes and modify them incore.
 748	 * These ids of the inode couldn't have changed since the new
 749	 * inode has been locked ever since it was created.
 750	 */
 751	xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
 752
 753	error = xfs_trans_commit(tp);
 754	if (error)
 755		goto out_release_inode;
 756
 757	xfs_qm_dqrele(udqp);
 758	xfs_qm_dqrele(gdqp);
 759	xfs_qm_dqrele(pdqp);
 760
 761	*ipp = du.ip;
 762	xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
 763	xfs_iunlock(dp, XFS_ILOCK_EXCL);
 764	xfs_parent_finish(mp, du.ppargs);
 765	return 0;
 766
 767 out_trans_cancel:
 768	xfs_trans_cancel(tp);
 769 out_release_inode:
 770	/*
 771	 * Wait until after the current transaction is aborted to finish the
 772	 * setup of the inode and release the inode.  This prevents recursive
 773	 * transactions and deadlocks from xfs_inactive.
 774	 */
 775	if (du.ip) {
 776		xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
 777		xfs_finish_inode_setup(du.ip);
 778		xfs_irele(du.ip);
 779	}
 780 out_parent:
 781	xfs_parent_finish(mp, du.ppargs);
 782 out_release_dquots:
 783	xfs_qm_dqrele(udqp);
 784	xfs_qm_dqrele(gdqp);
 785	xfs_qm_dqrele(pdqp);
 786
 787	if (unlock_dp_on_error)
 788		xfs_iunlock(dp, XFS_ILOCK_EXCL);
 789	return error;
 790}
 791
 792int
 793xfs_create_tmpfile(
 794	const struct xfs_icreate_args *args,
 
 795	struct xfs_inode	**ipp)
 796{
 797	struct xfs_inode	*dp = args->pip;
 798	struct xfs_mount	*mp = dp->i_mount;
 799	struct xfs_inode	*ip = NULL;
 800	struct xfs_trans	*tp = NULL;
 801	struct xfs_dquot	*udqp;
 802	struct xfs_dquot	*gdqp;
 803	struct xfs_dquot	*pdqp;
 
 
 804	struct xfs_trans_res	*tres;
 805	xfs_ino_t		ino;
 806	uint			resblks;
 807	int			error;
 808
 809	ASSERT(args->flags & XFS_ICREATE_TMPFILE);
 810
 811	if (xfs_is_shutdown(mp))
 812		return -EIO;
 813
 814	/* Make sure that we have allocated dquot(s) on disk. */
 815	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
 
 
 
 
 
 
 
 816	if (error)
 817		return error;
 818
 819	resblks = XFS_IALLOC_SPACE_RES(mp);
 820	tres = &M_RES(mp)->tr_create_tmpfile;
 821
 822	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
 823			&tp);
 
 
 
 
 824	if (error)
 825		goto out_release_dquots;
 826
 827	error = xfs_dialloc(&tp, args, &ino);
 828	if (!error)
 829		error = xfs_icreate(tp, ino, args, &ip);
 830	if (error)
 831		goto out_trans_cancel;
 832
 833	if (xfs_has_wsync(mp))
 834		xfs_trans_set_sync(tp);
 835
 836	/*
 837	 * Attach the dquot(s) to the inodes and modify them incore.
 838	 * These ids of the inode couldn't have changed since the new
 839	 * inode has been locked ever since it was created.
 840	 */
 841	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
 842
 843	error = xfs_iunlink(tp, ip);
 844	if (error)
 845		goto out_trans_cancel;
 846
 847	error = xfs_trans_commit(tp);
 848	if (error)
 849		goto out_release_inode;
 850
 851	xfs_qm_dqrele(udqp);
 852	xfs_qm_dqrele(gdqp);
 853	xfs_qm_dqrele(pdqp);
 854
 855	*ipp = ip;
 856	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 857	return 0;
 858
 859 out_trans_cancel:
 860	xfs_trans_cancel(tp);
 861 out_release_inode:
 862	/*
 863	 * Wait until after the current transaction is aborted to finish the
 864	 * setup of the inode and release the inode.  This prevents recursive
 865	 * transactions and deadlocks from xfs_inactive.
 866	 */
 867	if (ip) {
 868		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 869		xfs_finish_inode_setup(ip);
 870		xfs_irele(ip);
 871	}
 872 out_release_dquots:
 873	xfs_qm_dqrele(udqp);
 874	xfs_qm_dqrele(gdqp);
 875	xfs_qm_dqrele(pdqp);
 876
 877	return error;
 878}
 879
 880int
 881xfs_link(
 882	struct xfs_inode	*tdp,
 883	struct xfs_inode	*sip,
 884	struct xfs_name		*target_name)
 885{
 886	struct xfs_dir_update	du = {
 887		.dp		= tdp,
 888		.name		= target_name,
 889		.ip		= sip,
 890	};
 891	struct xfs_mount	*mp = tdp->i_mount;
 892	struct xfs_trans	*tp;
 893	int			error, nospace_error = 0;
 894	int			resblks;
 895
 896	trace_xfs_link(tdp, target_name);
 897
 898	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
 899
 900	if (xfs_is_shutdown(mp))
 901		return -EIO;
 902	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
 903		return -EIO;
 904
 905	error = xfs_qm_dqattach(sip);
 906	if (error)
 907		goto std_return;
 908
 909	error = xfs_qm_dqattach(tdp);
 910	if (error)
 911		goto std_return;
 912
 913	error = xfs_parent_start(mp, &du.ppargs);
 
 
 
 
 
 914	if (error)
 915		goto std_return;
 916
 917	resblks = xfs_link_space_res(mp, target_name->len);
 918	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
 919			&tp, &nospace_error);
 920	if (error)
 921		goto out_parent;
 922
 923	/*
 924	 * We don't allow reservationless or quotaless hardlinking when parent
 925	 * pointers are enabled because we can't back out if the xattrs must
 926	 * grow.
 927	 */
 928	if (du.ppargs && nospace_error) {
 929		error = nospace_error;
 
 930		goto error_return;
 931	}
 932
 
 
 
 
 
 
 933	/*
 934	 * If we are using project inheritance, we only allow hard link
 935	 * creation in our tree when the project IDs are the same; else
 936	 * the tree quota mechanism could be circumvented.
 937	 */
 938	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
 939		     tdp->i_projid != sip->i_projid)) {
 940		/*
 941		 * Project quota setup skips special files which can
 942		 * leave inodes in a PROJINHERIT directory without a
 943		 * project ID set. We need to allow links to be made
 944		 * to these "project-less" inodes because userspace
 945		 * expects them to succeed after project ID setup,
 946		 * but everything else should be rejected.
 947		 */
 948		if (!special_file(VFS_I(sip)->i_mode) ||
 949		    sip->i_projid != 0) {
 950			error = -EXDEV;
 951			goto error_return;
 952		}
 953	}
 954
 955	error = xfs_dir_add_child(tp, resblks, &du);
 
 956	if (error)
 957		goto error_return;
 
 
 
 
 958
 959	/*
 960	 * If this is a synchronous mount, make sure that the
 961	 * link transaction goes to disk before returning to
 962	 * the user.
 963	 */
 964	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
 965		xfs_trans_set_sync(tp);
 966
 967	error = xfs_trans_commit(tp);
 968	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
 969	xfs_iunlock(sip, XFS_ILOCK_EXCL);
 970	xfs_parent_finish(mp, du.ppargs);
 971	return error;
 972
 973 error_return:
 974	xfs_trans_cancel(tp);
 975	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
 976	xfs_iunlock(sip, XFS_ILOCK_EXCL);
 977 out_parent:
 978	xfs_parent_finish(mp, du.ppargs);
 979 std_return:
 980	if (error == -ENOSPC && nospace_error)
 981		error = nospace_error;
 982	return error;
 983}
 984
 985/* Clear the reflink flag and the cowblocks tag if possible. */
 986static void
 987xfs_itruncate_clear_reflink_flags(
 988	struct xfs_inode	*ip)
 989{
 990	struct xfs_ifork	*dfork;
 991	struct xfs_ifork	*cfork;
 992
 993	if (!xfs_is_reflink_inode(ip))
 994		return;
 995	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
 996	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
 997	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
 998		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
 999	if (cfork->if_bytes == 0)
1000		xfs_inode_clear_cowblocks_tag(ip);
1001}
1002
1003/*
1004 * Free up the underlying blocks past new_size.  The new size must be smaller
1005 * than the current size.  This routine can be used both for the attribute and
1006 * data fork, and does not modify the inode size, which is left to the caller.
1007 *
1008 * The transaction passed to this routine must have made a permanent log
1009 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1010 * given transaction and start new ones, so make sure everything involved in
1011 * the transaction is tidy before calling here.  Some transaction will be
1012 * returned to the caller to be committed.  The incoming transaction must
1013 * already include the inode, and both inode locks must be held exclusively.
1014 * The inode must also be "held" within the transaction.  On return the inode
1015 * will be "held" within the returned transaction.  This routine does NOT
1016 * require any disk space to be reserved for it within the transaction.
1017 *
1018 * If we get an error, we must return with the inode locked and linked into the
1019 * current transaction. This keeps things simple for the higher level code,
1020 * because it always knows that the inode is locked and held in the transaction
1021 * that returns to it whether errors occur or not.  We don't mark the inode
1022 * dirty on error so that transactions can be easily aborted if possible.
1023 */
1024int
1025xfs_itruncate_extents_flags(
1026	struct xfs_trans	**tpp,
1027	struct xfs_inode	*ip,
1028	int			whichfork,
1029	xfs_fsize_t		new_size,
1030	int			flags)
1031{
1032	struct xfs_mount	*mp = ip->i_mount;
1033	struct xfs_trans	*tp = *tpp;
1034	xfs_fileoff_t		first_unmap_block;
 
 
1035	int			error = 0;
 
1036
1037	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1038	if (atomic_read(&VFS_I(ip)->i_count))
1039		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1040	ASSERT(new_size <= XFS_ISIZE(ip));
1041	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1042	ASSERT(ip->i_itemp != NULL);
1043	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1044	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1045
1046	trace_xfs_itruncate_extents_start(ip, new_size);
1047
1048	flags |= xfs_bmapi_aflag(whichfork);
1049
1050	/*
1051	 * Since it is possible for space to become allocated beyond
1052	 * the end of the file (in a crash where the space is allocated
1053	 * but the inode size is not yet updated), simply remove any
1054	 * blocks which show up between the new EOF and the maximum
1055	 * possible file size.
1056	 *
1057	 * We have to free all the blocks to the bmbt maximum offset, even if
1058	 * the page cache can't scale that far.
1059	 */
1060	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1061	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1062		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1063		return 0;
1064	}
1065
1066	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1067			XFS_MAX_FILEOFF);
1068	if (error)
1069		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071	if (whichfork == XFS_DATA_FORK) {
1072		/* Remove all pending CoW reservations. */
1073		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1074				first_unmap_block, XFS_MAX_FILEOFF, true);
1075		if (error)
1076			goto out;
1077
1078		xfs_itruncate_clear_reflink_flags(ip);
1079	}
1080
1081	/*
1082	 * Always re-log the inode so that our permanent transaction can keep
1083	 * on rolling it forward in the log.
1084	 */
1085	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086
1087	trace_xfs_itruncate_extents_end(ip, new_size);
1088
1089out:
1090	*tpp = tp;
1091	return error;
1092}
1093
1094/*
1095 * Mark all the buffers attached to this directory stale.  In theory we should
1096 * never be freeing a directory with any blocks at all, but this covers the
1097 * case where we've recovered a directory swap with a "temporary" directory
1098 * created by online repair and now need to dump it.
1099 */
1100STATIC void
1101xfs_inactive_dir(
1102	struct xfs_inode	*dp)
1103{
1104	struct xfs_iext_cursor	icur;
1105	struct xfs_bmbt_irec	got;
1106	struct xfs_mount	*mp = dp->i_mount;
1107	struct xfs_da_geometry	*geo = mp->m_dir_geo;
1108	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1109	xfs_fileoff_t		off;
1110
1111	/*
1112	 * Invalidate each directory block.  All directory blocks are of
1113	 * fsbcount length and alignment, so we only need to walk those same
1114	 * offsets.  We hold the only reference to this inode, so we must wait
1115	 * for the buffer locks.
1116	 */
1117	for_each_xfs_iext(ifp, &icur, &got) {
1118		for (off = round_up(got.br_startoff, geo->fsbcount);
1119		     off < got.br_startoff + got.br_blockcount;
1120		     off += geo->fsbcount) {
1121			struct xfs_buf	*bp = NULL;
1122			xfs_fsblock_t	fsbno;
1123			int		error;
1124
1125			fsbno = (off - got.br_startoff) + got.br_startblock;
1126			error = xfs_buf_incore(mp->m_ddev_targp,
1127					XFS_FSB_TO_DADDR(mp, fsbno),
1128					XFS_FSB_TO_BB(mp, geo->fsbcount),
1129					XBF_LIVESCAN, &bp);
1130			if (error)
1131				continue;
1132
1133			xfs_buf_stale(bp);
1134			xfs_buf_relse(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135		}
1136	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137}
1138
1139/*
1140 * xfs_inactive_truncate
1141 *
1142 * Called to perform a truncate when an inode becomes unlinked.
1143 */
1144STATIC int
1145xfs_inactive_truncate(
1146	struct xfs_inode *ip)
1147{
1148	struct xfs_mount	*mp = ip->i_mount;
1149	struct xfs_trans	*tp;
1150	int			error;
1151
1152	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1153	if (error) {
1154		ASSERT(xfs_is_shutdown(mp));
1155		return error;
1156	}
1157	xfs_ilock(ip, XFS_ILOCK_EXCL);
1158	xfs_trans_ijoin(tp, ip, 0);
1159
1160	/*
1161	 * Log the inode size first to prevent stale data exposure in the event
1162	 * of a system crash before the truncate completes. See the related
1163	 * comment in xfs_vn_setattr_size() for details.
1164	 */
1165	ip->i_disk_size = 0;
1166	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1167
1168	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1169	if (error)
1170		goto error_trans_cancel;
1171
1172	ASSERT(ip->i_df.if_nextents == 0);
1173
1174	error = xfs_trans_commit(tp);
1175	if (error)
1176		goto error_unlock;
1177
1178	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1179	return 0;
1180
1181error_trans_cancel:
1182	xfs_trans_cancel(tp);
1183error_unlock:
1184	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185	return error;
1186}
1187
1188/*
1189 * xfs_inactive_ifree()
1190 *
1191 * Perform the inode free when an inode is unlinked.
1192 */
1193STATIC int
1194xfs_inactive_ifree(
1195	struct xfs_inode *ip)
1196{
1197	struct xfs_mount	*mp = ip->i_mount;
1198	struct xfs_trans	*tp;
1199	int			error;
1200
1201	/*
1202	 * We try to use a per-AG reservation for any block needed by the finobt
1203	 * tree, but as the finobt feature predates the per-AG reservation
1204	 * support a degraded file system might not have enough space for the
1205	 * reservation at mount time.  In that case try to dip into the reserved
1206	 * pool and pray.
1207	 *
1208	 * Send a warning if the reservation does happen to fail, as the inode
1209	 * now remains allocated and sits on the unlinked list until the fs is
1210	 * repaired.
1211	 */
1212	if (unlikely(mp->m_finobt_nores)) {
1213		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1214				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1215				&tp);
1216	} else {
1217		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1218	}
1219	if (error) {
1220		if (error == -ENOSPC) {
1221			xfs_warn_ratelimited(mp,
1222			"Failed to remove inode(s) from unlinked list. "
1223			"Please free space, unmount and run xfs_repair.");
1224		} else {
1225			ASSERT(xfs_is_shutdown(mp));
1226		}
1227		return error;
1228	}
1229
1230	/*
1231	 * We do not hold the inode locked across the entire rolling transaction
1232	 * here. We only need to hold it for the first transaction that
1233	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1234	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1235	 * here breaks the relationship between cluster buffer invalidation and
1236	 * stale inode invalidation on cluster buffer item journal commit
1237	 * completion, and can result in leaving dirty stale inodes hanging
1238	 * around in memory.
1239	 *
1240	 * We have no need for serialising this inode operation against other
1241	 * operations - we freed the inode and hence reallocation is required
1242	 * and that will serialise on reallocating the space the deferops need
1243	 * to free. Hence we can unlock the inode on the first commit of
1244	 * the transaction rather than roll it right through the deferops. This
1245	 * avoids relogging the XFS_ISTALE inode.
1246	 *
1247	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1248	 * by asserting that the inode is still locked when it returns.
1249	 */
1250	xfs_ilock(ip, XFS_ILOCK_EXCL);
1251	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1252
1253	error = xfs_ifree(tp, ip);
1254	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1255	if (error) {
1256		/*
1257		 * If we fail to free the inode, shut down.  The cancel
1258		 * might do that, we need to make sure.  Otherwise the
1259		 * inode might be lost for a long time or forever.
1260		 */
1261		if (!xfs_is_shutdown(mp)) {
1262			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1263				__func__, error);
1264			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1265		}
1266		xfs_trans_cancel(tp);
 
1267		return error;
1268	}
1269
1270	/*
1271	 * Credit the quota account(s). The inode is gone.
1272	 */
1273	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1274
1275	return xfs_trans_commit(tp);
1276}
1277
1278/*
1279 * Returns true if we need to update the on-disk metadata before we can free
1280 * the memory used by this inode.  Updates include freeing post-eof
1281 * preallocations; freeing COW staging extents; and marking the inode free in
1282 * the inobt if it is on the unlinked list.
1283 */
1284bool
1285xfs_inode_needs_inactive(
1286	struct xfs_inode	*ip)
1287{
1288	struct xfs_mount	*mp = ip->i_mount;
1289	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1290
1291	/*
1292	 * If the inode is already free, then there can be nothing
1293	 * to clean up here.
1294	 */
1295	if (VFS_I(ip)->i_mode == 0)
1296		return false;
1297
1298	/*
1299	 * If this is a read-only mount, don't do this (would generate I/O)
1300	 * unless we're in log recovery and cleaning the iunlinked list.
1301	 */
1302	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1303		return false;
1304
1305	/* If the log isn't running, push inodes straight to reclaim. */
1306	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1307		return false;
1308
1309	/* Metadata inodes require explicit resource cleanup. */
1310	if (xfs_is_internal_inode(ip))
1311		return false;
1312
1313	/* Want to clean out the cow blocks if there are any. */
1314	if (cow_ifp && cow_ifp->if_bytes > 0)
1315		return true;
1316
1317	/* Unlinked files must be freed. */
1318	if (VFS_I(ip)->i_nlink == 0)
1319		return true;
1320
1321	/*
1322	 * This file isn't being freed, so check if there are post-eof blocks
1323	 * to free.
1324	 *
1325	 * Note: don't bother with iolock here since lockdep complains about
1326	 * acquiring it in reclaim context. We have the only reference to the
1327	 * inode at this point anyways.
1328	 */
1329	return xfs_can_free_eofblocks(ip);
1330}
1331
1332/*
1333 * Save health status somewhere, if we're dumping an inode with uncorrected
1334 * errors and online repair isn't running.
1335 */
1336static inline void
1337xfs_inactive_health(
1338	struct xfs_inode	*ip)
1339{
1340	struct xfs_mount	*mp = ip->i_mount;
1341	struct xfs_perag	*pag;
1342	unsigned int		sick;
1343	unsigned int		checked;
1344
1345	xfs_inode_measure_sickness(ip, &sick, &checked);
1346	if (!sick)
1347		return;
1348
1349	trace_xfs_inode_unfixed_corruption(ip, sick);
1350
1351	if (sick & XFS_SICK_INO_FORGET)
1352		return;
1353
1354	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1355	if (!pag) {
1356		/* There had better still be a perag structure! */
1357		ASSERT(0);
1358		return;
1359	}
1360
1361	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1362	xfs_perag_put(pag);
1363}
1364
1365/*
1366 * xfs_inactive
1367 *
1368 * This is called when the vnode reference count for the vnode
1369 * goes to zero.  If the file has been unlinked, then it must
1370 * now be truncated.  Also, we clear all of the read-ahead state
1371 * kept for the inode here since the file is now closed.
1372 */
1373int
1374xfs_inactive(
1375	xfs_inode_t	*ip)
1376{
1377	struct xfs_mount	*mp;
1378	int			error = 0;
1379	int			truncate = 0;
1380
1381	/*
1382	 * If the inode is already free, then there can be nothing
1383	 * to clean up here.
1384	 */
1385	if (VFS_I(ip)->i_mode == 0) {
1386		ASSERT(ip->i_df.if_broot_bytes == 0);
1387		goto out;
1388	}
1389
1390	mp = ip->i_mount;
1391	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1392
1393	xfs_inactive_health(ip);
1394
1395	/*
1396	 * If this is a read-only mount, don't do this (would generate I/O)
1397	 * unless we're in log recovery and cleaning the iunlinked list.
1398	 */
1399	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1400		goto out;
1401
1402	/* Metadata inodes require explicit resource cleanup. */
1403	if (xfs_is_internal_inode(ip))
1404		goto out;
1405
1406	/* Try to clean out the cow blocks if there are any. */
1407	if (xfs_inode_has_cow_data(ip)) {
1408		error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1409		if (error)
1410			goto out;
1411	}
1412
1413	if (VFS_I(ip)->i_nlink != 0) {
1414		/*
 
 
 
 
1415		 * Note: don't bother with iolock here since lockdep complains
1416		 * about acquiring it in reclaim context. We have the only
1417		 * reference to the inode at this point anyways.
1418		 */
1419		if (xfs_can_free_eofblocks(ip))
1420			error = xfs_free_eofblocks(ip);
1421
1422		goto out;
1423	}
1424
1425	if (S_ISREG(VFS_I(ip)->i_mode) &&
1426	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1427	     xfs_inode_has_filedata(ip)))
1428		truncate = 1;
1429
1430	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1431		/*
1432		 * If this inode is being inactivated during a quotacheck and
1433		 * has not yet been scanned by quotacheck, we /must/ remove
1434		 * the dquots from the inode before inactivation changes the
1435		 * block and inode counts.  Most probably this is a result of
1436		 * reloading the incore iunlinked list to purge unrecovered
1437		 * unlinked inodes.
1438		 */
1439		xfs_qm_dqdetach(ip);
1440	} else {
1441		error = xfs_qm_dqattach(ip);
1442		if (error)
1443			goto out;
1444	}
1445
1446	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1447		xfs_inactive_dir(ip);
1448		truncate = 1;
1449	}
1450
1451	if (S_ISLNK(VFS_I(ip)->i_mode))
1452		error = xfs_inactive_symlink(ip);
1453	else if (truncate)
1454		error = xfs_inactive_truncate(ip);
1455	if (error)
1456		goto out;
1457
1458	/*
1459	 * If there are attributes associated with the file then blow them away
1460	 * now.  The code calls a routine that recursively deconstructs the
1461	 * attribute fork. If also blows away the in-core attribute fork.
1462	 */
1463	if (xfs_inode_has_attr_fork(ip)) {
1464		error = xfs_attr_inactive(ip);
1465		if (error)
1466			goto out;
1467	}
1468
1469	ASSERT(ip->i_forkoff == 0);
 
 
1470
1471	/*
1472	 * Free the inode.
1473	 */
1474	error = xfs_inactive_ifree(ip);
 
 
1475
1476out:
1477	/*
1478	 * We're done making metadata updates for this inode, so we can release
1479	 * the attached dquots.
1480	 */
1481	xfs_qm_dqdetach(ip);
1482	return error;
1483}
1484
1485/*
1486 * Find an inode on the unlinked list. This does not take references to the
1487 * inode as we have existence guarantees by holding the AGI buffer lock and that
1488 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1489 * don't find the inode in cache, then let the caller handle the situation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490 */
1491struct xfs_inode *
1492xfs_iunlink_lookup(
1493	struct xfs_perag	*pag,
1494	xfs_agino_t		agino)
1495{
1496	struct xfs_inode	*ip;
1497
1498	rcu_read_lock();
1499	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1500	if (!ip) {
1501		/* Caller can handle inode not being in memory. */
1502		rcu_read_unlock();
1503		return NULL;
1504	}
 
 
 
 
 
 
 
 
 
1505
 
 
1506	/*
1507	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1508	 * let the caller handle the failure.
 
 
1509	 */
1510	if (WARN_ON_ONCE(!ip->i_ino)) {
1511		rcu_read_unlock();
1512		return NULL;
1513	}
1514	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1515	rcu_read_unlock();
1516	return ip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517}
1518
1519/*
1520 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1521 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1522 * to the unlinked list.
1523 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524int
1525xfs_iunlink_reload_next(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526	struct xfs_trans	*tp,
 
1527	struct xfs_buf		*agibp,
1528	xfs_agino_t		prev_agino,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529	xfs_agino_t		next_agino)
1530{
1531	struct xfs_perag	*pag = agibp->b_pag;
1532	struct xfs_mount	*mp = pag_mount(pag);
1533	struct xfs_inode	*next_ip = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534	int			error;
1535
1536	ASSERT(next_agino != NULLAGINO);
1537
1538#ifdef DEBUG
1539	rcu_read_lock();
1540	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1541	ASSERT(next_ip == NULL);
1542	rcu_read_unlock();
1543#endif
1544
1545	xfs_info_ratelimited(mp,
1546 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1547			next_agino, pag_agno(pag));
 
 
 
1548
1549	/*
1550	 * Use an untrusted lookup just to be cautious in case the AGI has been
1551	 * corrupted and now points at a free inode.  That shouldn't happen,
1552	 * but we'd rather shut down now since we're already running in a weird
1553	 * situation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554	 */
1555	error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1556			XFS_IGET_UNTRUSTED, 0, &next_ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1557	if (error) {
1558		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
 
1559		return error;
1560	}
1561
1562	/* If this is not an unlinked inode, something is very wrong. */
1563	if (VFS_I(next_ip)->i_nlink != 0) {
1564		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1565		error = -EFSCORRUPTED;
1566		goto rele;
1567	}
1568
1569	next_ip->i_prev_unlinked = prev_agino;
1570	trace_xfs_iunlink_reload_next(next_ip);
1571rele:
1572	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1573	if (xfs_is_quotacheck_running(mp) && next_ip)
1574		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1575	xfs_irele(next_ip);
1576	return error;
1577}
1578
1579/*
1580 * Look up the inode number specified and if it is not already marked XFS_ISTALE
1581 * mark it stale. We should only find clean inodes in this lookup that aren't
1582 * already stale.
 
 
 
 
 
1583 */
1584static void
1585xfs_ifree_mark_inode_stale(
1586	struct xfs_perag	*pag,
1587	struct xfs_inode	*free_ip,
1588	xfs_ino_t		inum)
 
 
 
 
 
 
1589{
1590	struct xfs_mount	*mp = pag_mount(pag);
1591	struct xfs_inode_log_item *iip;
1592	struct xfs_inode	*ip;
1593
1594retry:
1595	rcu_read_lock();
1596	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1597
1598	/* Inode not in memory, nothing to do */
1599	if (!ip) {
1600		rcu_read_unlock();
1601		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
1602	}
1603
1604	/*
1605	 * because this is an RCU protected lookup, we could find a recently
1606	 * freed or even reallocated inode during the lookup. We need to check
1607	 * under the i_flags_lock for a valid inode here. Skip it if it is not
1608	 * valid, the wrong inode or stale.
1609	 */
1610	spin_lock(&ip->i_flags_lock);
1611	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1612		goto out_iflags_unlock;
1613
1614	/*
1615	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1616	 * other inodes that we did not find in the list attached to the buffer
1617	 * and are not already marked stale. If we can't lock it, back off and
1618	 * retry.
1619	 */
1620	if (ip != free_ip) {
1621		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1622			spin_unlock(&ip->i_flags_lock);
1623			rcu_read_unlock();
1624			delay(1);
1625			goto retry;
 
 
 
 
 
 
1626		}
 
1627	}
1628	ip->i_flags |= XFS_ISTALE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
1630	/*
1631	 * If the inode is flushing, it is already attached to the buffer.  All
1632	 * we needed to do here is mark the inode stale so buffer IO completion
1633	 * will remove it from the AIL.
1634	 */
1635	iip = ip->i_itemp;
1636	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1637		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1638		ASSERT(iip->ili_last_fields);
1639		goto out_iunlock;
1640	}
1641
1642	/*
1643	 * Inodes not attached to the buffer can be released immediately.
1644	 * Everything else has to go through xfs_iflush_abort() on journal
1645	 * commit as the flock synchronises removal of the inode from the
1646	 * cluster buffer against inode reclaim.
1647	 */
1648	if (!iip || list_empty(&iip->ili_item.li_bio_list))
1649		goto out_iunlock;
 
1650
1651	__xfs_iflags_set(ip, XFS_IFLUSHING);
1652	spin_unlock(&ip->i_flags_lock);
1653	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
1654
1655	/* we have a dirty inode in memory that has not yet been flushed. */
1656	spin_lock(&iip->ili_lock);
1657	iip->ili_last_fields = iip->ili_fields;
1658	iip->ili_fields = 0;
1659	iip->ili_fsync_fields = 0;
1660	spin_unlock(&iip->ili_lock);
1661	ASSERT(iip->ili_last_fields);
 
 
1662
1663	if (ip != free_ip)
1664		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1665	return;
1666
1667out_iunlock:
1668	if (ip != free_ip)
1669		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1670out_iflags_unlock:
1671	spin_unlock(&ip->i_flags_lock);
1672	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673}
1674
1675/*
1676 * A big issue when freeing the inode cluster is that we _cannot_ skip any
1677 * inodes that are in memory - they all must be marked stale and attached to
1678 * the cluster buffer.
1679 */
1680static int
1681xfs_ifree_cluster(
1682	struct xfs_trans	*tp,
1683	struct xfs_perag	*pag,
1684	struct xfs_inode	*free_ip,
1685	struct xfs_icluster	*xic)
1686{
1687	struct xfs_mount	*mp = free_ip->i_mount;
1688	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1689	struct xfs_buf		*bp;
1690	xfs_daddr_t		blkno;
1691	xfs_ino_t		inum = xic->first_ino;
1692	int			nbufs;
1693	int			i, j;
1694	int			ioffset;
1695	int			error;
 
 
 
 
 
 
 
1696
 
 
1697	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1698
1699	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1700		/*
1701		 * The allocation bitmap tells us which inodes of the chunk were
1702		 * physically allocated. Skip the cluster if an inode falls into
1703		 * a sparse region.
1704		 */
1705		ioffset = inum - xic->first_ino;
1706		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1707			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1708			continue;
1709		}
1710
1711		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1712					 XFS_INO_TO_AGBNO(mp, inum));
1713
1714		/*
1715		 * We obtain and lock the backing buffer first in the process
1716		 * here to ensure dirty inodes attached to the buffer remain in
1717		 * the flushing state while we mark them stale.
1718		 *
1719		 * If we scan the in-memory inodes first, then buffer IO can
1720		 * complete before we get a lock on it, and hence we may fail
1721		 * to mark all the active inodes on the buffer stale.
1722		 */
1723		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1724				mp->m_bsize * igeo->blocks_per_cluster,
1725				XBF_UNMAPPED, &bp);
1726		if (error)
1727			return error;
 
1728
1729		/*
1730		 * This buffer may not have been correctly initialised as we
1731		 * didn't read it from disk. That's not important because we are
1732		 * only using to mark the buffer as stale in the log, and to
1733		 * attach stale cached inodes on it.
1734		 *
1735		 * For the inode that triggered the cluster freeing, this
1736		 * attachment may occur in xfs_inode_item_precommit() after we
1737		 * have marked this buffer stale.  If this buffer was not in
1738		 * memory before xfs_ifree_cluster() started, it will not be
1739		 * marked XBF_DONE and this will cause problems later in
1740		 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1741		 * buffer to attached to the transaction.
1742		 *
1743		 * Hence we have to mark the buffer as XFS_DONE here. This is
1744		 * safe because we are also marking the buffer as XBF_STALE and
1745		 * XFS_BLI_STALE. That means it will never be dispatched for
1746		 * IO and it won't be unlocked until the cluster freeing has
1747		 * been committed to the journal and the buffer unpinned. If it
1748		 * is written, we want to know about it, and we want it to
1749		 * fail. We can acheive this by adding a write verifier to the
1750		 * buffer.
1751		 */
1752		bp->b_flags |= XBF_DONE;
1753		bp->b_ops = &xfs_inode_buf_ops;
1754
1755		/*
1756		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1757		 * too. This requires lookups, and will skip inodes that we've
1758		 * already marked XFS_ISTALE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1759		 */
1760		for (i = 0; i < igeo->inodes_per_cluster; i++)
1761			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762
1763		xfs_trans_stale_inode_buf(tp, bp);
1764		xfs_trans_binval(tp, bp);
1765	}
 
 
1766	return 0;
1767}
1768
1769/*
1770 * This is called to return an inode to the inode free list.  The inode should
1771 * already be truncated to 0 length and have no pages associated with it.  This
1772 * routine also assumes that the inode is already a part of the transaction.
1773 *
1774 * The on-disk copy of the inode will have been added to the list of unlinked
1775 * inodes in the AGI. We need to remove the inode from that list atomically with
1776 * respect to freeing it here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777 */
1778int
1779xfs_ifree(
1780	struct xfs_trans	*tp,
1781	struct xfs_inode	*ip)
1782{
1783	struct xfs_mount	*mp = ip->i_mount;
1784	struct xfs_perag	*pag;
1785	struct xfs_icluster	xic = { 0 };
1786	struct xfs_inode_log_item *iip = ip->i_itemp;
1787	int			error;
 
1788
1789	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1790	ASSERT(VFS_I(ip)->i_nlink == 0);
1791	ASSERT(ip->i_df.if_nextents == 0);
1792	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1793	ASSERT(ip->i_nblocks == 0);
 
1794
1795	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
 
 
 
 
1796
1797	error = xfs_inode_uninit(tp, pag, ip, &xic);
1798	if (error)
1799		goto out;
1800
1801	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1802		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
 
 
 
 
 
 
 
 
1803
1804	/* Don't attempt to replay owner changes for a deleted inode */
1805	spin_lock(&iip->ili_lock);
1806	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1807	spin_unlock(&iip->ili_lock);
 
 
 
 
 
1808
1809	if (xic.deleted)
1810		error = xfs_ifree_cluster(tp, pag, ip, &xic);
1811out:
1812	xfs_perag_put(pag);
1813	return error;
1814}
1815
1816/*
1817 * This is called to unpin an inode.  The caller must have the inode locked
1818 * in at least shared mode so that the buffer cannot be subsequently pinned
1819 * once someone is waiting for it to be unpinned.
1820 */
1821static void
1822xfs_iunpin(
1823	struct xfs_inode	*ip)
1824{
1825	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1826
1827	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1828
1829	/* Give the log a push to start the unpinning I/O */
1830	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1831
1832}
1833
1834static void
1835__xfs_iunpin_wait(
1836	struct xfs_inode	*ip)
1837{
1838	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1839	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1840
1841	xfs_iunpin(ip);
1842
1843	do {
1844		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1845		if (xfs_ipincount(ip))
1846			io_schedule();
1847	} while (xfs_ipincount(ip));
1848	finish_wait(wq, &wait.wq_entry);
1849}
1850
1851void
1852xfs_iunpin_wait(
1853	struct xfs_inode	*ip)
1854{
1855	if (xfs_ipincount(ip))
1856		__xfs_iunpin_wait(ip);
1857}
1858
1859/*
1860 * Removing an inode from the namespace involves removing the directory entry
1861 * and dropping the link count on the inode. Removing the directory entry can
1862 * result in locking an AGF (directory blocks were freed) and removing a link
1863 * count can result in placing the inode on an unlinked list which results in
1864 * locking an AGI.
1865 *
1866 * The big problem here is that we have an ordering constraint on AGF and AGI
1867 * locking - inode allocation locks the AGI, then can allocate a new extent for
1868 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1869 * removes the inode from the unlinked list, requiring that we lock the AGI
1870 * first, and then freeing the inode can result in an inode chunk being freed
1871 * and hence freeing disk space requiring that we lock an AGF.
1872 *
1873 * Hence the ordering that is imposed by other parts of the code is AGI before
1874 * AGF. This means we cannot remove the directory entry before we drop the inode
1875 * reference count and put it on the unlinked list as this results in a lock
1876 * order of AGF then AGI, and this can deadlock against inode allocation and
1877 * freeing. Therefore we must drop the link counts before we remove the
1878 * directory entry.
1879 *
1880 * This is still safe from a transactional point of view - it is not until we
1881 * get to xfs_defer_finish() that we have the possibility of multiple
1882 * transactions in this operation. Hence as long as we remove the directory
1883 * entry and drop the link count in the first transaction of the remove
1884 * operation, there are no transactional constraints on the ordering here.
1885 */
1886int
1887xfs_remove(
1888	struct xfs_inode	*dp,
1889	struct xfs_name		*name,
1890	struct xfs_inode	*ip)
1891{
1892	struct xfs_dir_update	du = {
1893		.dp		= dp,
1894		.name		= name,
1895		.ip		= ip,
1896	};
1897	struct xfs_mount	*mp = dp->i_mount;
1898	struct xfs_trans	*tp = NULL;
1899	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1900	int			dontcare;
1901	int                     error = 0;
1902	uint			resblks;
1903
1904	trace_xfs_remove(dp, name);
1905
1906	if (xfs_is_shutdown(mp))
1907		return -EIO;
1908	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1909		return -EIO;
1910
1911	error = xfs_qm_dqattach(dp);
1912	if (error)
1913		goto std_return;
1914
1915	error = xfs_qm_dqattach(ip);
1916	if (error)
1917		goto std_return;
1918
1919	error = xfs_parent_start(mp, &du.ppargs);
1920	if (error)
1921		goto std_return;
1922
1923	/*
1924	 * We try to get the real space reservation first, allowing for
1925	 * directory btree deletion(s) implying possible bmap insert(s).  If we
1926	 * can't get the space reservation then we use 0 instead, and avoid the
1927	 * bmap btree insert(s) in the directory code by, if the bmap insert
1928	 * tries to happen, instead trimming the LAST block from the directory.
1929	 *
1930	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1931	 * the directory code can handle a reservationless update and we don't
1932	 * want to prevent a user from trying to free space by deleting things.
1933	 */
1934	resblks = xfs_remove_space_res(mp, name->len);
1935	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1936			&tp, &dontcare);
 
 
1937	if (error) {
1938		ASSERT(error != -ENOSPC);
1939		goto out_parent;
1940	}
1941
1942	error = xfs_dir_remove_child(tp, resblks, &du);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943	if (error)
1944		goto out_trans_cancel;
1945
 
 
 
 
 
 
1946	/*
1947	 * If this is a synchronous mount, make sure that the
1948	 * remove transaction goes to disk before returning to
1949	 * the user.
1950	 */
1951	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1952		xfs_trans_set_sync(tp);
1953
1954	error = xfs_trans_commit(tp);
1955	if (error)
1956		goto out_unlock;
1957
1958	if (is_dir && xfs_inode_is_filestream(ip))
1959		xfs_filestream_deassociate(ip);
1960
1961	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1962	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1963	xfs_parent_finish(mp, du.ppargs);
1964	return 0;
1965
1966 out_trans_cancel:
1967	xfs_trans_cancel(tp);
1968 out_unlock:
1969	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1970	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1971 out_parent:
1972	xfs_parent_finish(mp, du.ppargs);
1973 std_return:
1974	return error;
1975}
1976
1977static inline void
1978xfs_iunlock_rename(
1979	struct xfs_inode	**i_tab,
1980	int			num_inodes)
1981{
1982	int			i;
1983
1984	for (i = num_inodes - 1; i >= 0; i--) {
1985		/* Skip duplicate inodes if src and target dps are the same */
1986		if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1987			continue;
1988		xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
1989	}
1990}
1991
1992/*
1993 * Enter all inodes for a rename transaction into a sorted array.
1994 */
1995#define __XFS_SORT_INODES	5
1996STATIC void
1997xfs_sort_for_rename(
1998	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
1999	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2000	struct xfs_inode	*ip1,	/* in: inode of old entry */
2001	struct xfs_inode	*ip2,	/* in: inode of new entry */
2002	struct xfs_inode	*wip,	/* in: whiteout inode */
2003	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2004	int			*num_inodes)  /* in/out: inodes in array */
2005{
2006	int			i;
2007
2008	ASSERT(*num_inodes == __XFS_SORT_INODES);
2009	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2010
2011	/*
2012	 * i_tab contains a list of pointers to inodes.  We initialize
2013	 * the table here & we'll sort it.  We will then use it to
2014	 * order the acquisition of the inode locks.
2015	 *
2016	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2017	 */
2018	i = 0;
2019	i_tab[i++] = dp1;
2020	i_tab[i++] = dp2;
2021	i_tab[i++] = ip1;
2022	if (ip2)
2023		i_tab[i++] = ip2;
2024	if (wip)
2025		i_tab[i++] = wip;
2026	*num_inodes = i;
2027
2028	xfs_sort_inodes(i_tab, *num_inodes);
 
 
 
 
 
 
 
 
 
 
 
 
2029}
2030
2031void
2032xfs_sort_inodes(
2033	struct xfs_inode	**i_tab,
2034	unsigned int		num_inodes)
2035{
2036	int			i, j;
 
 
 
 
 
2037
2038	ASSERT(num_inodes <= __XFS_SORT_INODES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039
2040	/*
2041	 * Sort the elements via bubble sort.  (Remember, there are at
2042	 * most 5 elements to sort, so this is adequate.)
 
2043	 */
2044	for (i = 0; i < num_inodes; i++) {
2045		for (j = 1; j < num_inodes; j++) {
2046			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2047				swap(i_tab[j], i_tab[j - 1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048		}
2049	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050}
2051
2052/*
2053 * xfs_rename_alloc_whiteout()
2054 *
2055 * Return a referenced, unlinked, unlocked inode that can be used as a
2056 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2057 * crash between allocating the inode and linking it into the rename transaction
2058 * recovery will free the inode and we won't leak it.
2059 */
2060static int
2061xfs_rename_alloc_whiteout(
2062	struct mnt_idmap	*idmap,
2063	struct xfs_name		*src_name,
2064	struct xfs_inode	*dp,
2065	struct xfs_inode	**wip)
2066{
2067	struct xfs_icreate_args	args = {
2068		.idmap		= idmap,
2069		.pip		= dp,
2070		.mode		= S_IFCHR | WHITEOUT_MODE,
2071		.flags		= XFS_ICREATE_TMPFILE,
2072	};
2073	struct xfs_inode	*tmpfile;
2074	struct qstr		name;
2075	int			error;
2076
2077	error = xfs_create_tmpfile(&args, &tmpfile);
2078	if (error)
2079		return error;
2080
2081	name.name = src_name->name;
2082	name.len = src_name->len;
2083	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2084	if (error) {
2085		xfs_finish_inode_setup(tmpfile);
2086		xfs_irele(tmpfile);
2087		return error;
2088	}
2089
2090	/*
2091	 * Prepare the tmpfile inode as if it were created through the VFS.
2092	 * Complete the inode setup and flag it as linkable.  nlink is already
2093	 * zero, so we can skip the drop_nlink.
2094	 */
2095	xfs_setup_iops(tmpfile);
2096	xfs_finish_inode_setup(tmpfile);
2097	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2098
2099	*wip = tmpfile;
2100	return 0;
2101}
2102
2103/*
2104 * xfs_rename
2105 */
2106int
2107xfs_rename(
2108	struct mnt_idmap	*idmap,
2109	struct xfs_inode	*src_dp,
2110	struct xfs_name		*src_name,
2111	struct xfs_inode	*src_ip,
2112	struct xfs_inode	*target_dp,
2113	struct xfs_name		*target_name,
2114	struct xfs_inode	*target_ip,
2115	unsigned int		flags)
2116{
2117	struct xfs_dir_update	du_src = {
2118		.dp		= src_dp,
2119		.name		= src_name,
2120		.ip		= src_ip,
2121	};
2122	struct xfs_dir_update	du_tgt = {
2123		.dp		= target_dp,
2124		.name		= target_name,
2125		.ip		= target_ip,
2126	};
2127	struct xfs_dir_update	du_wip = { };
2128	struct xfs_mount	*mp = src_dp->i_mount;
2129	struct xfs_trans	*tp;
 
2130	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2131	int			i;
2132	int			num_inodes = __XFS_SORT_INODES;
2133	bool			new_parent = (src_dp != target_dp);
2134	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2135	int			spaceres;
2136	bool			retried = false;
2137	int			error, nospace_error = 0;
2138
2139	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2140
2141	if ((flags & RENAME_EXCHANGE) && !target_ip)
2142		return -EINVAL;
2143
2144	/*
2145	 * If we are doing a whiteout operation, allocate the whiteout inode
2146	 * we will be placing at the target and ensure the type is set
2147	 * appropriately.
2148	 */
2149	if (flags & RENAME_WHITEOUT) {
2150		error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2151				&du_wip.ip);
2152		if (error)
2153			return error;
2154
2155		/* setup target dirent info as whiteout */
2156		src_name->type = XFS_DIR3_FT_CHRDEV;
2157	}
2158
2159	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2160			inodes, &num_inodes);
2161
2162	error = xfs_parent_start(mp, &du_src.ppargs);
2163	if (error)
2164		goto out_release_wip;
2165
2166	if (du_wip.ip) {
2167		error = xfs_parent_start(mp, &du_wip.ppargs);
2168		if (error)
2169			goto out_src_ppargs;
2170	}
2171
2172	if (target_ip) {
2173		error = xfs_parent_start(mp, &du_tgt.ppargs);
2174		if (error)
2175			goto out_wip_ppargs;
2176	}
2177
2178retry:
2179	nospace_error = 0;
2180	spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2181			target_name->len, du_wip.ip != NULL);
2182	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2183	if (error == -ENOSPC) {
2184		nospace_error = error;
2185		spaceres = 0;
2186		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2187				&tp);
2188	}
2189	if (error)
2190		goto out_tgt_ppargs;
2191
2192	/*
2193	 * We don't allow reservationless renaming when parent pointers are
2194	 * enabled because we can't back out if the xattrs must grow.
2195	 */
2196	if (du_src.ppargs && nospace_error) {
2197		error = nospace_error;
2198		xfs_trans_cancel(tp);
2199		goto out_tgt_ppargs;
2200	}
2201
2202	/*
2203	 * Attach the dquots to the inodes
2204	 */
2205	error = xfs_qm_vop_rename_dqattach(inodes);
2206	if (error) {
2207		xfs_trans_cancel(tp);
2208		goto out_tgt_ppargs;
2209	}
2210
2211	/*
2212	 * Lock all the participating inodes. Depending upon whether
2213	 * the target_name exists in the target directory, and
2214	 * whether the target directory is the same as the source
2215	 * directory, we can lock from 2 to 5 inodes.
2216	 */
2217	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2218
2219	/*
2220	 * Join all the inodes to the transaction.
 
 
2221	 */
2222	xfs_trans_ijoin(tp, src_dp, 0);
2223	if (new_parent)
2224		xfs_trans_ijoin(tp, target_dp, 0);
2225	xfs_trans_ijoin(tp, src_ip, 0);
2226	if (target_ip)
2227		xfs_trans_ijoin(tp, target_ip, 0);
2228	if (du_wip.ip)
2229		xfs_trans_ijoin(tp, du_wip.ip, 0);
2230
2231	/*
2232	 * If we are using project inheritance, we only allow renames
2233	 * into our tree when the project IDs are the same; else the
2234	 * tree quota mechanism would be circumvented.
2235	 */
2236	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2237		     target_dp->i_projid != src_ip->i_projid)) {
2238		error = -EXDEV;
2239		goto out_trans_cancel;
2240	}
2241
2242	/* RENAME_EXCHANGE is unique from here on. */
2243	if (flags & RENAME_EXCHANGE) {
2244		error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2245				spaceres);
2246		if (error)
2247			goto out_trans_cancel;
2248		goto out_commit;
2249	}
2250
2251	/*
2252	 * Try to reserve quota to handle an expansion of the target directory.
2253	 * We'll allow the rename to continue in reservationless mode if we hit
2254	 * a space usage constraint.  If we trigger reservationless mode, save
2255	 * the errno if there isn't any free space in the target directory.
2256	 */
2257	if (spaceres != 0) {
2258		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2259				0, false);
2260		if (error == -EDQUOT || error == -ENOSPC) {
2261			if (!retried) {
2262				xfs_trans_cancel(tp);
2263				xfs_iunlock_rename(inodes, num_inodes);
2264				xfs_blockgc_free_quota(target_dp, 0);
2265				retried = true;
2266				goto retry;
2267			}
2268
2269			nospace_error = error;
2270			spaceres = 0;
2271			error = 0;
2272		}
2273		if (error)
2274			goto out_trans_cancel;
2275	}
2276
2277	/*
2278	 * We don't allow quotaless renaming when parent pointers are enabled
2279	 * because we can't back out if the xattrs must grow.
2280	 */
2281	if (du_src.ppargs && nospace_error) {
2282		error = nospace_error;
2283		goto out_trans_cancel;
2284	}
2285
2286	/*
2287	 * Lock the AGI buffers we need to handle bumping the nlink of the
2288	 * whiteout inode off the unlinked list and to handle dropping the
2289	 * nlink of the target inode.  Per locking order rules, do this in
2290	 * increasing AG order and before directory block allocation tries to
2291	 * grab AGFs because we grab AGIs before AGFs.
2292	 *
2293	 * The (vfs) caller must ensure that if src is a directory then
2294	 * target_ip is either null or an empty directory.
2295	 */
2296	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2297		if (inodes[i] == du_wip.ip ||
2298		    (inodes[i] == target_ip &&
2299		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2300			struct xfs_perag	*pag;
2301			struct xfs_buf		*bp;
2302
2303			pag = xfs_perag_get(mp,
2304					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2305			error = xfs_read_agi(pag, tp, 0, &bp);
2306			xfs_perag_put(pag);
2307			if (error)
2308				goto out_trans_cancel;
2309		}
 
 
 
 
 
 
 
 
 
 
 
2310	}
2311
2312	error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2313			&du_wip);
2314	if (error)
2315		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
2316
2317	if (du_wip.ip) {
2318		/*
2319		 * Now we have a real link, clear the "I'm a tmpfile" state
2320		 * flag from the inode so it doesn't accidentally get misused in
2321		 * future.
2322		 */
2323		VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2324	}
2325
2326out_commit:
2327	/*
2328	 * If this is a synchronous mount, make sure that the rename
2329	 * transaction goes to disk before returning to the user.
2330	 */
2331	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2332		xfs_trans_set_sync(tp);
2333
2334	error = xfs_trans_commit(tp);
2335	nospace_error = 0;
2336	goto out_unlock;
 
 
 
 
2337
2338out_trans_cancel:
2339	xfs_trans_cancel(tp);
2340out_unlock:
2341	xfs_iunlock_rename(inodes, num_inodes);
2342out_tgt_ppargs:
2343	xfs_parent_finish(mp, du_tgt.ppargs);
2344out_wip_ppargs:
2345	xfs_parent_finish(mp, du_wip.ppargs);
2346out_src_ppargs:
2347	xfs_parent_finish(mp, du_src.ppargs);
2348out_release_wip:
2349	if (du_wip.ip)
2350		xfs_irele(du_wip.ip);
2351	if (error == -ENOSPC && nospace_error)
2352		error = nospace_error;
2353	return error;
2354}
2355
2356static int
2357xfs_iflush(
2358	struct xfs_inode	*ip,
2359	struct xfs_buf		*bp)
2360{
2361	struct xfs_inode_log_item *iip = ip->i_itemp;
2362	struct xfs_dinode	*dip;
2363	struct xfs_mount	*mp = ip->i_mount;
2364	int			error;
 
 
 
 
 
 
 
 
2365
2366	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2367	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2368	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2369	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2370	ASSERT(iip->ili_item.li_buf == bp);
2371
2372	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
 
 
 
 
 
2373
2374	/*
2375	 * We don't flush the inode if any of the following checks fail, but we
2376	 * do still update the log item and attach to the backing buffer as if
2377	 * the flush happened. This is a formality to facilitate predictable
2378	 * error handling as the caller will shutdown and fail the buffer.
2379	 */
2380	error = -EFSCORRUPTED;
2381	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2382			       mp, XFS_ERRTAG_IFLUSH_1)) {
2383		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2384			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2385			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2386		goto flush_out;
2387	}
2388	if (S_ISREG(VFS_I(ip)->i_mode)) {
2389		if (XFS_TEST_ERROR(
2390		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2391		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2392		    mp, XFS_ERRTAG_IFLUSH_3)) {
2393			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2394				"%s: Bad regular inode %llu, ptr "PTR_FMT,
2395				__func__, ip->i_ino, ip);
2396			goto flush_out;
2397		}
2398	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2399		if (XFS_TEST_ERROR(
2400		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2401		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2402		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2403		    mp, XFS_ERRTAG_IFLUSH_4)) {
2404			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2405				"%s: Bad directory inode %llu, ptr "PTR_FMT,
2406				__func__, ip->i_ino, ip);
2407			goto flush_out;
2408		}
2409	}
2410	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2411				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
2412		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2413			"%s: detected corrupt incore inode %llu, "
2414			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2415			__func__, ip->i_ino,
2416			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2417			ip->i_nblocks, ip);
2418		goto flush_out;
2419	}
2420	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2421				mp, XFS_ERRTAG_IFLUSH_6)) {
2422		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2423			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2424			__func__, ip->i_ino, ip->i_forkoff, ip);
2425		goto flush_out;
2426	}
2427
2428	/*
2429	 * Inode item log recovery for v2 inodes are dependent on the flushiter
2430	 * count for correct sequencing.  We bump the flush iteration count so
2431	 * we can detect flushes which postdate a log record during recovery.
2432	 * This is redundant as we now log every change and hence this can't
2433	 * happen but we need to still do it to ensure backwards compatibility
2434	 * with old kernels that predate logging all inode changes.
2435	 */
2436	if (!xfs_has_v3inodes(mp))
2437		ip->i_flushiter++;
 
 
 
 
 
 
 
 
 
2438
2439	/*
2440	 * If there are inline format data / attr forks attached to this inode,
2441	 * make sure they are not corrupt.
 
 
 
2442	 */
2443	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2444	    xfs_ifork_verify_local_data(ip))
2445		goto flush_out;
2446	if (xfs_inode_has_attr_fork(ip) &&
2447	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2448	    xfs_ifork_verify_local_attr(ip))
2449		goto flush_out;
2450
2451	/*
2452	 * Copy the dirty parts of the inode into the on-disk inode.  We always
2453	 * copy out the core of the inode, because if the inode is dirty at all
2454	 * the core must be.
2455	 */
2456	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2457
2458	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2459	if (!xfs_has_v3inodes(mp)) {
2460		if (ip->i_flushiter == DI_MAX_FLUSH)
2461			ip->i_flushiter = 0;
 
 
 
2462	}
2463
2464	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2465	if (xfs_inode_has_attr_fork(ip))
2466		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2467
2468	/*
2469	 * We've recorded everything logged in the inode, so we'd like to clear
2470	 * the ili_fields bits so we don't log and flush things unnecessarily.
2471	 * However, we can't stop logging all this information until the data
2472	 * we've copied into the disk buffer is written to disk.  If we did we
2473	 * might overwrite the copy of the inode in the log with all the data
2474	 * after re-logging only part of it, and in the face of a crash we
2475	 * wouldn't have all the data we need to recover.
2476	 *
2477	 * What we do is move the bits to the ili_last_fields field.  When
2478	 * logging the inode, these bits are moved back to the ili_fields field.
2479	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2480	 * we know that the information those bits represent is permanently on
2481	 * disk.  As long as the flush completes before the inode is logged
2482	 * again, then both ili_fields and ili_last_fields will be cleared.
2483	 */
2484	error = 0;
2485flush_out:
2486	spin_lock(&iip->ili_lock);
2487	iip->ili_last_fields = iip->ili_fields;
2488	iip->ili_fields = 0;
2489	iip->ili_fsync_fields = 0;
2490	set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2491	spin_unlock(&iip->ili_lock);
2492
2493	/*
2494	 * Store the current LSN of the inode so that we can tell whether the
2495	 * item has moved in the AIL from xfs_buf_inode_iodone().
2496	 */
2497	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2498				&iip->ili_item.li_lsn);
2499
2500	/* generate the checksum. */
2501	xfs_dinode_calc_crc(mp, dip);
2502	if (error)
2503		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
 
 
 
 
 
 
2504	return error;
2505}
2506
2507/*
2508 * Non-blocking flush of dirty inode metadata into the backing buffer.
2509 *
2510 * The caller must have a reference to the inode and hold the cluster buffer
2511 * locked. The function will walk across all the inodes on the cluster buffer it
2512 * can find and lock without blocking, and flush them to the cluster buffer.
2513 *
2514 * On successful flushing of at least one inode, the caller must write out the
2515 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2516 * the caller needs to release the buffer. On failure, the filesystem will be
2517 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2518 * will be returned.
2519 */
2520int
2521xfs_iflush_cluster(
 
2522	struct xfs_buf		*bp)
2523{
2524	struct xfs_mount	*mp = bp->b_mount;
2525	struct xfs_log_item	*lip, *n;
2526	struct xfs_inode	*ip;
2527	struct xfs_inode_log_item *iip;
 
 
 
 
2528	int			clcount = 0;
2529	int			error = 0;
2530
2531	/*
2532	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2533	 * will remove itself from the list.
2534	 */
2535	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2536		iip = (struct xfs_inode_log_item *)lip;
2537		ip = iip->ili_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
2538
2539		/*
2540		 * Quick and dirty check to avoid locks if possible.
 
 
 
2541		 */
2542		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2543			continue;
2544		if (xfs_ipincount(ip))
 
2545			continue;
 
2546
2547		/*
2548		 * The inode is still attached to the buffer, which means it is
2549		 * dirty but reclaim might try to grab it. Check carefully for
2550		 * that, and grab the ilock while still holding the i_flags_lock
2551		 * to guarantee reclaim will not be able to reclaim this inode
2552		 * once we drop the i_flags_lock.
2553		 */
2554		spin_lock(&ip->i_flags_lock);
2555		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2556		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2557			spin_unlock(&ip->i_flags_lock);
2558			continue;
2559		}
 
2560
2561		/*
2562		 * ILOCK will pin the inode against reclaim and prevent
2563		 * concurrent transactions modifying the inode while we are
2564		 * flushing the inode. If we get the lock, set the flushing
2565		 * state before we drop the i_flags_lock.
2566		 */
2567		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2568			spin_unlock(&ip->i_flags_lock);
2569			continue;
2570		}
2571		__xfs_iflags_set(ip, XFS_IFLUSHING);
2572		spin_unlock(&ip->i_flags_lock);
2573
2574		/*
2575		 * Abort flushing this inode if we are shut down because the
2576		 * inode may not currently be in the AIL. This can occur when
2577		 * log I/O failure unpins the inode without inserting into the
2578		 * AIL, leaving a dirty/unpinned inode attached to the buffer
2579		 * that otherwise looks like it should be flushed.
2580		 */
2581		if (xlog_is_shutdown(mp->m_log)) {
2582			xfs_iunpin_wait(ip);
2583			xfs_iflush_abort(ip);
2584			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2585			error = -EIO;
2586			continue;
2587		}
2588
2589		/* don't block waiting on a log force to unpin dirty inodes */
2590		if (xfs_ipincount(ip)) {
2591			xfs_iflags_clear(ip, XFS_IFLUSHING);
2592			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2593			continue;
2594		}
2595
2596		if (!xfs_inode_clean(ip))
2597			error = xfs_iflush(ip, bp);
2598		else
2599			xfs_iflags_clear(ip, XFS_IFLUSHING);
2600		xfs_iunlock(ip, XFS_ILOCK_SHARED);
2601		if (error)
2602			break;
2603		clcount++;
2604	}
2605
2606	if (error) {
2607		/*
2608		 * Shutdown first so we kill the log before we release this
2609		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2610		 * of the log, failing it before the _log_ is shut down can
2611		 * result in the log tail being moved forward in the journal
2612		 * on disk because log writes can still be taking place. Hence
2613		 * unpinning the tail will allow the ICREATE intent to be
2614		 * removed from the log an recovery will fail with uninitialised
2615		 * inode cluster buffers.
2616		 */
2617		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2618		bp->b_flags |= XBF_ASYNC;
2619		xfs_buf_ioend_fail(bp);
2620		return error;
2621	}
2622
2623	if (!clcount)
2624		return -EAGAIN;
2625
2626	XFS_STATS_INC(mp, xs_icluster_flushcnt);
2627	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2628	return 0;
2629
2630}
2631
2632/* Release an inode. */
2633void
2634xfs_irele(
2635	struct xfs_inode	*ip)
2636{
2637	trace_xfs_irele(ip, _RET_IP_);
2638	iput(VFS_I(ip));
2639}
2640
2641/*
2642 * Ensure all commited transactions touching the inode are written to the log.
2643 */
2644int
2645xfs_log_force_inode(
2646	struct xfs_inode	*ip)
2647{
2648	xfs_csn_t		seq = 0;
2649
2650	xfs_ilock(ip, XFS_ILOCK_SHARED);
2651	if (xfs_ipincount(ip))
2652		seq = ip->i_itemp->ili_commit_seq;
2653	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2654
2655	if (!seq)
2656		return 0;
2657	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2658}
2659
2660/*
2661 * Grab the exclusive iolock for a data copy from src to dest, making sure to
2662 * abide vfs locking order (lowest pointer value goes first) and breaking the
2663 * layout leases before proceeding.  The loop is needed because we cannot call
2664 * the blocking break_layout() with the iolocks held, and therefore have to
2665 * back out both locks.
2666 */
2667static int
2668xfs_iolock_two_inodes_and_break_layout(
2669	struct inode		*src,
2670	struct inode		*dest)
2671{
2672	int			error;
2673
2674	if (src > dest)
2675		swap(src, dest);
2676
2677retry:
2678	/* Wait to break both inodes' layouts before we start locking. */
2679	error = break_layout(src, true);
2680	if (error)
2681		return error;
2682	if (src != dest) {
2683		error = break_layout(dest, true);
2684		if (error)
2685			return error;
2686	}
2687
2688	/* Lock one inode and make sure nobody got in and leased it. */
2689	inode_lock(src);
2690	error = break_layout(src, false);
2691	if (error) {
2692		inode_unlock(src);
2693		if (error == -EWOULDBLOCK)
2694			goto retry;
2695		return error;
 
 
 
 
 
 
 
 
2696	}
2697
2698	if (src == dest)
2699		return 0;
2700
2701	/* Lock the other inode and make sure nobody got in and leased it. */
2702	inode_lock_nested(dest, I_MUTEX_NONDIR2);
2703	error = break_layout(dest, false);
2704	if (error) {
2705		inode_unlock(src);
2706		inode_unlock(dest);
2707		if (error == -EWOULDBLOCK)
2708			goto retry;
2709		return error;
2710	}
2711
 
 
 
 
 
2712	return 0;
2713}
2714
2715static int
2716xfs_mmaplock_two_inodes_and_break_dax_layout(
2717	struct xfs_inode	*ip1,
2718	struct xfs_inode	*ip2)
2719{
2720	int			error;
2721	bool			retry;
2722	struct page		*page;
2723
2724	if (ip1->i_ino > ip2->i_ino)
2725		swap(ip1, ip2);
2726
2727again:
2728	retry = false;
2729	/* Lock the first inode */
2730	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2731	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2732	if (error || retry) {
2733		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2734		if (error == 0 && retry)
2735			goto again;
2736		return error;
2737	}
2738
2739	if (ip1 == ip2)
2740		return 0;
2741
2742	/* Nested lock the second inode */
2743	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2744	/*
2745	 * We cannot use xfs_break_dax_layouts() directly here because it may
2746	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2747	 * for this nested lock case.
2748	 */
2749	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2750	if (page && page_ref_count(page) != 1) {
2751		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2752		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2753		goto again;
2754	}
2755
2756	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757}
2758
2759/*
2760 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2761 * mmap activity.
 
 
 
 
 
2762 */
2763int
2764xfs_ilock2_io_mmap(
2765	struct xfs_inode	*ip1,
2766	struct xfs_inode	*ip2)
2767{
2768	int			ret;
2769
2770	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2771	if (ret)
2772		return ret;
2773
2774	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2775		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2776		if (ret) {
2777			inode_unlock(VFS_I(ip2));
2778			if (ip1 != ip2)
2779				inode_unlock(VFS_I(ip1));
2780			return ret;
2781		}
2782	} else
2783		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2784					    VFS_I(ip2)->i_mapping);
2785
2786	return 0;
2787}
2788
2789/* Unlock both inodes to allow IO and mmap activity. */
2790void
2791xfs_iunlock2_io_mmap(
2792	struct xfs_inode	*ip1,
2793	struct xfs_inode	*ip2)
2794{
2795	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2796		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2797		if (ip1 != ip2)
2798			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2799	} else
2800		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2801					      VFS_I(ip2)->i_mapping);
2802
2803	inode_unlock(VFS_I(ip2));
2804	if (ip1 != ip2)
2805		inode_unlock(VFS_I(ip1));
2806}
2807
2808/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2809void
2810xfs_iunlock2_remapping(
2811	struct xfs_inode	*ip1,
2812	struct xfs_inode	*ip2)
2813{
2814	xfs_iflags_clear(ip1, XFS_IREMAPPING);
2815
2816	if (ip1 != ip2)
2817		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2818	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2819
2820	if (ip1 != ip2)
2821		inode_unlock_shared(VFS_I(ip1));
2822	inode_unlock(VFS_I(ip2));
2823}
2824
2825/*
2826 * Reload the incore inode list for this inode.  Caller should ensure that
2827 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2828 * preventing other threads from executing.
2829 */
2830int
2831xfs_inode_reload_unlinked_bucket(
2832	struct xfs_trans	*tp,
2833	struct xfs_inode	*ip)
2834{
2835	struct xfs_mount	*mp = tp->t_mountp;
2836	struct xfs_buf		*agibp;
2837	struct xfs_agi		*agi;
2838	struct xfs_perag	*pag;
2839	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2840	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2841	xfs_agino_t		prev_agino, next_agino;
2842	unsigned int		bucket;
2843	bool			foundit = false;
2844	int			error;
2845
2846	/* Grab the first inode in the list */
2847	pag = xfs_perag_get(mp, agno);
2848	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2849	xfs_perag_put(pag);
2850	if (error)
2851		return error;
2852
2853	/*
2854	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2855	 * incore unlinked list pointers for this inode.  Check once more to
2856	 * see if we raced with anyone else to reload the unlinked list.
 
 
 
2857	 */
2858	if (!xfs_inode_unlinked_incomplete(ip)) {
2859		foundit = true;
2860		goto out_agibp;
2861	}
2862
2863	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2864	agi = agibp->b_addr;
2865
2866	trace_xfs_inode_reload_unlinked_bucket(ip);
2867
2868	xfs_info_ratelimited(mp,
2869 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
2870			agino, agno);
2871
2872	prev_agino = NULLAGINO;
2873	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2874	while (next_agino != NULLAGINO) {
2875		struct xfs_inode	*next_ip = NULL;
2876
2877		/* Found this caller's inode, set its backlink. */
2878		if (next_agino == agino) {
2879			next_ip = ip;
2880			next_ip->i_prev_unlinked = prev_agino;
2881			foundit = true;
2882			goto next_inode;
2883		}
2884
2885		/* Try in-memory lookup first. */
2886		next_ip = xfs_iunlink_lookup(pag, next_agino);
2887		if (next_ip)
2888			goto next_inode;
2889
2890		/* Inode not in memory, try reloading it. */
2891		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2892				next_agino);
2893		if (error)
2894			break;
2895
2896		/* Grab the reloaded inode. */
2897		next_ip = xfs_iunlink_lookup(pag, next_agino);
2898		if (!next_ip) {
2899			/* No incore inode at all?  We reloaded it... */
2900			ASSERT(next_ip != NULL);
2901			error = -EFSCORRUPTED;
2902			break;
2903		}
2904
2905next_inode:
2906		prev_agino = next_agino;
2907		next_agino = next_ip->i_next_unlinked;
 
 
 
 
 
 
 
 
 
 
 
2908	}
 
 
2909
2910out_agibp:
2911	xfs_trans_brelse(tp, agibp);
2912	/* Should have found this inode somewhere in the iunlinked bucket. */
2913	if (!error && !foundit)
2914		error = -EFSCORRUPTED;
2915	return error;
2916}
2917
2918/* Decide if this inode is missing its unlinked list and reload it. */
2919int
2920xfs_inode_reload_unlinked(
2921	struct xfs_inode	*ip)
2922{
2923	struct xfs_trans	*tp;
2924	int			error;
2925
2926	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
 
 
 
 
 
 
 
 
 
2927	if (error)
2928		return error;
2929
2930	xfs_ilock(ip, XFS_ILOCK_SHARED);
2931	if (xfs_inode_unlinked_incomplete(ip))
2932		error = xfs_inode_reload_unlinked_bucket(tp, ip);
2933	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2934	xfs_trans_cancel(tp);
2935
 
 
 
 
 
 
 
2936	return error;
2937}
2938
2939/* Has this inode fork been zapped by repair? */
 
 
 
2940bool
2941xfs_ifork_zapped(
2942	const struct xfs_inode	*ip,
2943	int			whichfork)
2944{
2945	unsigned int		datamask = 0;
 
2946
2947	switch (whichfork) {
2948	case XFS_DATA_FORK:
2949		switch (ip->i_vnode.i_mode & S_IFMT) {
2950		case S_IFDIR:
2951			datamask = XFS_SICK_INO_DIR_ZAPPED;
2952			break;
2953		case S_IFLNK:
2954			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2955			break;
2956		}
2957		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2958	case XFS_ATTR_FORK:
2959		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2960	default:
2961		return false;
2962	}
 
2963}
2964
2965/* Compute the number of data and realtime blocks used by a file. */
2966void
2967xfs_inode_count_blocks(
2968	struct xfs_trans	*tp,
2969	struct xfs_inode	*ip,
2970	xfs_filblks_t		*dblocks,
2971	xfs_filblks_t		*rblocks)
2972{
2973	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2974
2975	*rblocks = 0;
2976	if (XFS_IS_REALTIME_INODE(ip))
2977		xfs_bmap_count_leaves(ifp, rblocks);
2978	*dblocks = ip->i_nblocks - *rblocks;
2979}
2980
2981static void
2982xfs_wait_dax_page(
2983	struct inode		*inode)
2984{
2985	struct xfs_inode        *ip = XFS_I(inode);
 
2986
2987	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
2988	schedule();
2989	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
2990}
2991
2992int
2993xfs_break_dax_layouts(
2994	struct inode		*inode,
2995	bool			*retry)
2996{
2997	struct page		*page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2998
2999	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000
3001	page = dax_layout_busy_page(inode->i_mapping);
3002	if (!page)
3003		return 0;
 
 
 
3004
3005	*retry = true;
3006	return ___wait_var_event(&page->_refcount,
3007			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
3008			0, 0, xfs_wait_dax_page(inode));
3009}
3010
3011int
3012xfs_break_layouts(
3013	struct inode		*inode,
3014	uint			*iolock,
3015	enum layout_break_reason reason)
3016{
3017	bool			retry;
3018	int			error;
3019
3020	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021
3022	do {
3023		retry = false;
3024		switch (reason) {
3025		case BREAK_UNMAP:
3026			error = xfs_break_dax_layouts(inode, &retry);
3027			if (error || retry)
3028				break;
3029			fallthrough;
3030		case BREAK_WRITE:
3031			error = xfs_break_leased_layouts(inode, iolock, &retry);
3032			break;
3033		default:
3034			WARN_ON_ONCE(1);
3035			error = -EINVAL;
3036		}
3037	} while (error == 0 && retry);
3038
3039	return error;
3040}
 
 
 
 
 
3041
3042/* Returns the size of fundamental allocation unit for a file, in bytes. */
3043unsigned int
3044xfs_inode_alloc_unitsize(
3045	struct xfs_inode	*ip)
3046{
3047	unsigned int		blocks = 1;
3048
3049	if (XFS_IS_REALTIME_INODE(ip))
3050		blocks = ip->i_mount->m_sb.sb_rextsize;
 
3051
3052	return XFS_FSB_TO_B(ip->i_mount, blocks);
 
3053}
3054
3055/* Should we always be using copy on write for file writes? */
3056bool
3057xfs_is_always_cow_inode(
3058	const struct xfs_inode	*ip)
3059{
3060	return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
 
3061}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_sb.h"
  15#include "xfs_mount.h"
  16#include "xfs_defer.h"
  17#include "xfs_inode.h"
  18#include "xfs_dir2.h"
  19#include "xfs_attr.h"
 
  20#include "xfs_trans_space.h"
  21#include "xfs_trans.h"
  22#include "xfs_buf_item.h"
  23#include "xfs_inode_item.h"
 
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
 
 
 
 
 
 
 
 
  38
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define	XFS_ITRUNC_MAX_EXTENTS	2
  46
  47STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  49STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  50
  51/*
  52 * helper function to extract extent size hint from inode
  53 */
  54xfs_extlen_t
  55xfs_get_extsz_hint(
  56	struct xfs_inode	*ip)
  57{
  58	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  59		return ip->i_d.di_extsize;
  60	if (XFS_IS_REALTIME_INODE(ip))
  61		return ip->i_mount->m_sb.sb_rextsize;
  62	return 0;
  63}
  64
  65/*
  66 * Helper function to extract CoW extent size hint from inode.
  67 * Between the extent size hint and the CoW extent size hint, we
  68 * return the greater of the two.  If the value is zero (automatic),
  69 * use the default size.
  70 */
  71xfs_extlen_t
  72xfs_get_cowextsz_hint(
  73	struct xfs_inode	*ip)
  74{
  75	xfs_extlen_t		a, b;
  76
  77	a = 0;
  78	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  79		a = ip->i_d.di_cowextsize;
  80	b = xfs_get_extsz_hint(ip);
  81
  82	a = max(a, b);
  83	if (a == 0)
  84		return XFS_DEFAULT_COWEXTSZ_HINT;
  85	return a;
  86}
  87
  88/*
  89 * These two are wrapper routines around the xfs_ilock() routine used to
  90 * centralize some grungy code.  They are used in places that wish to lock the
  91 * inode solely for reading the extents.  The reason these places can't just
  92 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  93 * bringing in of the extents from disk for a file in b-tree format.  If the
  94 * inode is in b-tree format, then we need to lock the inode exclusively until
  95 * the extents are read in.  Locking it exclusively all the time would limit
  96 * our parallelism unnecessarily, though.  What we do instead is check to see
  97 * if the extents have been read in yet, and only lock the inode exclusively
  98 * if they have not.
  99 *
 100 * The functions return a value which should be given to the corresponding
 101 * xfs_iunlock() call.
 102 */
 103uint
 104xfs_ilock_data_map_shared(
 105	struct xfs_inode	*ip)
 106{
 107	uint			lock_mode = XFS_ILOCK_SHARED;
 108
 109	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 110	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 111		lock_mode = XFS_ILOCK_EXCL;
 112	xfs_ilock(ip, lock_mode);
 113	return lock_mode;
 114}
 115
 116uint
 117xfs_ilock_attr_map_shared(
 118	struct xfs_inode	*ip)
 119{
 120	uint			lock_mode = XFS_ILOCK_SHARED;
 121
 122	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 123	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 124		lock_mode = XFS_ILOCK_EXCL;
 125	xfs_ilock(ip, lock_mode);
 126	return lock_mode;
 127}
 128
 129/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 131 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 132 * various combinations of the locks to be obtained.
 133 *
 134 * The 3 locks should always be ordered so that the IO lock is obtained first,
 135 * the mmap lock second and the ilock last in order to prevent deadlock.
 136 *
 137 * Basic locking order:
 138 *
 139 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 140 *
 141 * mmap_sem locking order:
 142 *
 143 * i_rwsem -> page lock -> mmap_sem
 144 * mmap_sem -> i_mmap_lock -> page_lock
 145 *
 146 * The difference in mmap_sem locking order mean that we cannot hold the
 147 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 148 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 149 * in get_user_pages() to map the user pages into the kernel address space for
 150 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 151 * page faults already hold the mmap_sem.
 152 *
 153 * Hence to serialise fully against both syscall and mmap based IO, we need to
 154 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 155 * taken in places where we need to invalidate the page cache in a race
 156 * free manner (e.g. truncate, hole punch and other extent manipulation
 157 * functions).
 158 */
 159void
 160xfs_ilock(
 161	xfs_inode_t		*ip,
 162	uint			lock_flags)
 163{
 164	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 165
 166	/*
 167	 * You can't set both SHARED and EXCL for the same lock,
 168	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 169	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 170	 */
 171	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 172	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 173	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 174	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 175	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 176	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 177	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 178
 179	if (lock_flags & XFS_IOLOCK_EXCL) {
 180		down_write_nested(&VFS_I(ip)->i_rwsem,
 181				  XFS_IOLOCK_DEP(lock_flags));
 182	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 183		down_read_nested(&VFS_I(ip)->i_rwsem,
 184				 XFS_IOLOCK_DEP(lock_flags));
 185	}
 186
 187	if (lock_flags & XFS_MMAPLOCK_EXCL)
 188		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 189	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 190		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 
 
 
 191
 192	if (lock_flags & XFS_ILOCK_EXCL)
 193		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 194	else if (lock_flags & XFS_ILOCK_SHARED)
 195		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 196}
 197
 198/*
 199 * This is just like xfs_ilock(), except that the caller
 200 * is guaranteed not to sleep.  It returns 1 if it gets
 201 * the requested locks and 0 otherwise.  If the IO lock is
 202 * obtained but the inode lock cannot be, then the IO lock
 203 * is dropped before returning.
 204 *
 205 * ip -- the inode being locked
 206 * lock_flags -- this parameter indicates the inode's locks to be
 207 *       to be locked.  See the comment for xfs_ilock() for a list
 208 *	 of valid values.
 209 */
 210int
 211xfs_ilock_nowait(
 212	xfs_inode_t		*ip,
 213	uint			lock_flags)
 214{
 215	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 216
 217	/*
 218	 * You can't set both SHARED and EXCL for the same lock,
 219	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 220	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 221	 */
 222	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 223	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 224	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 225	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 226	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 227	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 228	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 229
 230	if (lock_flags & XFS_IOLOCK_EXCL) {
 231		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 232			goto out;
 233	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 234		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 235			goto out;
 236	}
 237
 238	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 239		if (!mrtryupdate(&ip->i_mmaplock))
 240			goto out_undo_iolock;
 241	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 242		if (!mrtryaccess(&ip->i_mmaplock))
 243			goto out_undo_iolock;
 244	}
 245
 246	if (lock_flags & XFS_ILOCK_EXCL) {
 247		if (!mrtryupdate(&ip->i_lock))
 248			goto out_undo_mmaplock;
 249	} else if (lock_flags & XFS_ILOCK_SHARED) {
 250		if (!mrtryaccess(&ip->i_lock))
 251			goto out_undo_mmaplock;
 252	}
 253	return 1;
 254
 255out_undo_mmaplock:
 256	if (lock_flags & XFS_MMAPLOCK_EXCL)
 257		mrunlock_excl(&ip->i_mmaplock);
 258	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 259		mrunlock_shared(&ip->i_mmaplock);
 260out_undo_iolock:
 261	if (lock_flags & XFS_IOLOCK_EXCL)
 262		up_write(&VFS_I(ip)->i_rwsem);
 263	else if (lock_flags & XFS_IOLOCK_SHARED)
 264		up_read(&VFS_I(ip)->i_rwsem);
 265out:
 266	return 0;
 267}
 268
 269/*
 270 * xfs_iunlock() is used to drop the inode locks acquired with
 271 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 272 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 273 * that we know which locks to drop.
 274 *
 275 * ip -- the inode being unlocked
 276 * lock_flags -- this parameter indicates the inode's locks to be
 277 *       to be unlocked.  See the comment for xfs_ilock() for a list
 278 *	 of valid values for this parameter.
 279 *
 280 */
 281void
 282xfs_iunlock(
 283	xfs_inode_t		*ip,
 284	uint			lock_flags)
 285{
 286	/*
 287	 * You can't set both SHARED and EXCL for the same lock,
 288	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 289	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 290	 */
 291	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 292	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 293	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 294	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 295	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 296	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 297	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 298	ASSERT(lock_flags != 0);
 299
 300	if (lock_flags & XFS_IOLOCK_EXCL)
 301		up_write(&VFS_I(ip)->i_rwsem);
 302	else if (lock_flags & XFS_IOLOCK_SHARED)
 303		up_read(&VFS_I(ip)->i_rwsem);
 304
 305	if (lock_flags & XFS_MMAPLOCK_EXCL)
 306		mrunlock_excl(&ip->i_mmaplock);
 307	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 308		mrunlock_shared(&ip->i_mmaplock);
 309
 310	if (lock_flags & XFS_ILOCK_EXCL)
 311		mrunlock_excl(&ip->i_lock);
 312	else if (lock_flags & XFS_ILOCK_SHARED)
 313		mrunlock_shared(&ip->i_lock);
 314
 315	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 316}
 317
 318/*
 319 * give up write locks.  the i/o lock cannot be held nested
 320 * if it is being demoted.
 321 */
 322void
 323xfs_ilock_demote(
 324	xfs_inode_t		*ip,
 325	uint			lock_flags)
 326{
 327	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 328	ASSERT((lock_flags &
 329		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 330
 331	if (lock_flags & XFS_ILOCK_EXCL)
 332		mrdemote(&ip->i_lock);
 333	if (lock_flags & XFS_MMAPLOCK_EXCL)
 334		mrdemote(&ip->i_mmaplock);
 335	if (lock_flags & XFS_IOLOCK_EXCL)
 336		downgrade_write(&VFS_I(ip)->i_rwsem);
 337
 338	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 339}
 340
 341#if defined(DEBUG) || defined(XFS_WARN)
 342int
 343xfs_isilocked(
 344	xfs_inode_t		*ip,
 345	uint			lock_flags)
 346{
 347	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 348		if (!(lock_flags & XFS_ILOCK_SHARED))
 349			return !!ip->i_lock.mr_writer;
 350		return rwsem_is_locked(&ip->i_lock.mr_lock);
 351	}
 352
 353	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 354		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 355			return !!ip->i_mmaplock.mr_writer;
 356		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 357	}
 358
 359	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 360		if (!(lock_flags & XFS_IOLOCK_SHARED))
 361			return !debug_locks ||
 362				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 363		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 364	}
 365
 366	ASSERT(0);
 367	return 0;
 368}
 369#endif
 370
 371/*
 372 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 373 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 374 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 375 * errors and warnings.
 376 */
 377#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 378static bool
 379xfs_lockdep_subclass_ok(
 380	int subclass)
 381{
 382	return subclass < MAX_LOCKDEP_SUBCLASSES;
 383}
 384#else
 385#define xfs_lockdep_subclass_ok(subclass)	(true)
 386#endif
 387
 388/*
 389 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 390 * value. This can be called for any type of inode lock combination, including
 391 * parent locking. Care must be taken to ensure we don't overrun the subclass
 392 * storage fields in the class mask we build.
 393 */
 394static inline int
 395xfs_lock_inumorder(int lock_mode, int subclass)
 
 
 396{
 397	int	class = 0;
 398
 399	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 400			      XFS_ILOCK_RTSUM)));
 401	ASSERT(xfs_lockdep_subclass_ok(subclass));
 402
 403	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 404		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 405		class += subclass << XFS_IOLOCK_SHIFT;
 406	}
 407
 408	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 409		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 410		class += subclass << XFS_MMAPLOCK_SHIFT;
 411	}
 412
 413	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 414		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 415		class += subclass << XFS_ILOCK_SHIFT;
 416	}
 417
 418	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 419}
 420
 421/*
 422 * The following routine will lock n inodes in exclusive mode.  We assume the
 423 * caller calls us with the inodes in i_ino order.
 424 *
 425 * We need to detect deadlock where an inode that we lock is in the AIL and we
 426 * start waiting for another inode that is locked by a thread in a long running
 427 * transaction (such as truncate). This can result in deadlock since the long
 428 * running trans might need to wait for the inode we just locked in order to
 429 * push the tail and free space in the log.
 430 *
 431 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 432 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 433 * lock more than one at a time, lockdep will report false positives saying we
 434 * have violated locking orders.
 435 */
 436static void
 437xfs_lock_inodes(
 438	struct xfs_inode	**ips,
 439	int			inodes,
 440	uint			lock_mode)
 441{
 442	int			attempts = 0, i, j, try_lock;
 
 
 
 443	struct xfs_log_item	*lp;
 444
 445	/*
 446	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 447	 * support an arbitrary depth of locking here, but absolute limits on
 448	 * inodes depend on the the type of locking and the limits placed by
 449	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 450	 * the asserts.
 451	 */
 452	ASSERT(ips && inodes >= 2 && inodes <= 5);
 453	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 454			    XFS_ILOCK_EXCL));
 455	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 456			      XFS_ILOCK_SHARED)));
 457	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462	if (lock_mode & XFS_IOLOCK_EXCL) {
 463		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467	try_lock = 0;
 
 468	i = 0;
 469again:
 470	for (; i < inodes; i++) {
 471		ASSERT(ips[i]);
 472
 473		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 474			continue;
 475
 476		/*
 477		 * If try_lock is not set yet, make sure all locked inodes are
 478		 * not in the AIL.  If any are, set try_lock to be used later.
 479		 */
 480		if (!try_lock) {
 481			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482				lp = &ips[j]->i_itemp->ili_item;
 483				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 484					try_lock++;
 485			}
 486		}
 487
 488		/*
 489		 * If any of the previous locks we have locked is in the AIL,
 490		 * we must TRY to get the second and subsequent locks. If
 491		 * we can't get any, we must release all we have
 492		 * and try again.
 493		 */
 494		if (!try_lock) {
 495			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496			continue;
 497		}
 498
 499		/* try_lock means we have an inode locked that is in the AIL. */
 500		ASSERT(i != 0);
 501		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502			continue;
 503
 504		/*
 505		 * Unlock all previous guys and try again.  xfs_iunlock will try
 506		 * to push the tail if the inode is in the AIL.
 507		 */
 508		attempts++;
 509		for (j = i - 1; j >= 0; j--) {
 510			/*
 511			 * Check to see if we've already unlocked this one.  Not
 512			 * the first one going back, and the inode ptr is the
 513			 * same.
 514			 */
 515			if (j != (i - 1) && ips[j] == ips[j + 1])
 516				continue;
 517
 518			xfs_iunlock(ips[j], lock_mode);
 519		}
 520
 521		if ((attempts % 5) == 0) {
 522			delay(1); /* Don't just spin the CPU */
 523		}
 524		i = 0;
 525		try_lock = 0;
 526		goto again;
 527	}
 528}
 529
 530/*
 531 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 532 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 533 * more than one at a time, lockdep will report false positives saying we have
 534 * violated locking orders.  The iolock must be double-locked separately since
 535 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 536 * SHARED.
 537 */
 538void
 539xfs_lock_two_inodes(
 540	struct xfs_inode	*ip0,
 541	uint			ip0_mode,
 542	struct xfs_inode	*ip1,
 543	uint			ip1_mode)
 544{
 545	struct xfs_inode	*temp;
 546	uint			mode_temp;
 547	int			attempts = 0;
 548	struct xfs_log_item	*lp;
 549
 550	ASSERT(hweight32(ip0_mode) == 1);
 551	ASSERT(hweight32(ip1_mode) == 1);
 552	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 553	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 554	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 555	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 556	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 557	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 558	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 559	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 560	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562
 563	ASSERT(ip0->i_ino != ip1->i_ino);
 564
 565	if (ip0->i_ino > ip1->i_ino) {
 566		temp = ip0;
 567		ip0 = ip1;
 568		ip1 = temp;
 569		mode_temp = ip0_mode;
 570		ip0_mode = ip1_mode;
 571		ip1_mode = mode_temp;
 572	}
 573
 574 again:
 575	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 576
 577	/*
 578	 * If the first lock we have locked is in the AIL, we must TRY to get
 579	 * the second lock. If we can't get it, we must release the first one
 580	 * and try again.
 581	 */
 582	lp = &ip0->i_itemp->ili_item;
 583	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 584		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 585			xfs_iunlock(ip0, ip0_mode);
 586			if ((++attempts % 5) == 0)
 587				delay(1); /* Don't just spin the CPU */
 588			goto again;
 589		}
 590	} else {
 591		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 592	}
 593}
 594
 595void
 596__xfs_iflock(
 597	struct xfs_inode	*ip)
 598{
 599	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602	do {
 603		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 604		if (xfs_isiflocked(ip))
 605			io_schedule();
 606	} while (!xfs_iflock_nowait(ip));
 607
 608	finish_wait(wq, &wait.wq_entry);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613	uint16_t		di_flags,
 614	uint64_t		di_flags2,
 615	bool			has_attr)
 616{
 617	uint			flags = 0;
 618
 619	if (di_flags & XFS_DIFLAG_ANY) {
 620		if (di_flags & XFS_DIFLAG_REALTIME)
 621			flags |= FS_XFLAG_REALTIME;
 622		if (di_flags & XFS_DIFLAG_PREALLOC)
 623			flags |= FS_XFLAG_PREALLOC;
 624		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625			flags |= FS_XFLAG_IMMUTABLE;
 626		if (di_flags & XFS_DIFLAG_APPEND)
 627			flags |= FS_XFLAG_APPEND;
 628		if (di_flags & XFS_DIFLAG_SYNC)
 629			flags |= FS_XFLAG_SYNC;
 630		if (di_flags & XFS_DIFLAG_NOATIME)
 631			flags |= FS_XFLAG_NOATIME;
 632		if (di_flags & XFS_DIFLAG_NODUMP)
 633			flags |= FS_XFLAG_NODUMP;
 634		if (di_flags & XFS_DIFLAG_RTINHERIT)
 635			flags |= FS_XFLAG_RTINHERIT;
 636		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637			flags |= FS_XFLAG_PROJINHERIT;
 638		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639			flags |= FS_XFLAG_NOSYMLINKS;
 640		if (di_flags & XFS_DIFLAG_EXTSIZE)
 641			flags |= FS_XFLAG_EXTSIZE;
 642		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643			flags |= FS_XFLAG_EXTSZINHERIT;
 644		if (di_flags & XFS_DIFLAG_NODEFRAG)
 645			flags |= FS_XFLAG_NODEFRAG;
 646		if (di_flags & XFS_DIFLAG_FILESTREAM)
 647			flags |= FS_XFLAG_FILESTREAM;
 648	}
 649
 650	if (di_flags2 & XFS_DIFLAG2_ANY) {
 651		if (di_flags2 & XFS_DIFLAG2_DAX)
 652			flags |= FS_XFLAG_DAX;
 653		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 654			flags |= FS_XFLAG_COWEXTSIZE;
 655	}
 656
 657	if (has_attr)
 658		flags |= FS_XFLAG_HASATTR;
 659
 660	return flags;
 661}
 662
 663uint
 664xfs_ip2xflags(
 665	struct xfs_inode	*ip)
 666{
 667	struct xfs_icdinode	*dic = &ip->i_d;
 668
 669	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 670}
 671
 672/*
 673 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 674 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 675 * ci_name->name will point to a the actual name (caller must free) or
 676 * will be set to NULL if an exact match is found.
 677 */
 678int
 679xfs_lookup(
 680	xfs_inode_t		*dp,
 681	struct xfs_name		*name,
 682	xfs_inode_t		**ipp,
 683	struct xfs_name		*ci_name)
 684{
 685	xfs_ino_t		inum;
 686	int			error;
 687
 688	trace_xfs_lookup(dp, name);
 689
 690	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 
 
 691		return -EIO;
 692
 693	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 694	if (error)
 695		goto out_unlock;
 696
 697	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 698	if (error)
 699		goto out_free_name;
 700
 
 
 
 
 
 
 
 
 
 
 701	return 0;
 702
 
 
 703out_free_name:
 704	if (ci_name)
 705		kmem_free(ci_name->name);
 706out_unlock:
 707	*ipp = NULL;
 708	return error;
 709}
 710
 711/*
 712 * Allocate an inode on disk and return a copy of its in-core version.
 713 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 714 * appropriately within the inode.  The uid and gid for the inode are
 715 * set according to the contents of the given cred structure.
 716 *
 717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 718 * has a free inode available, call xfs_iget() to obtain the in-core
 719 * version of the allocated inode.  Finally, fill in the inode and
 720 * log its initial contents.  In this case, ialloc_context would be
 721 * set to NULL.
 722 *
 723 * If xfs_dialloc() does not have an available inode, it will replenish
 724 * its supply by doing an allocation. Since we can only do one
 725 * allocation within a transaction without deadlocks, we must commit
 726 * the current transaction before returning the inode itself.
 727 * In this case, therefore, we will set ialloc_context and return.
 728 * The caller should then commit the current transaction, start a new
 729 * transaction, and call xfs_ialloc() again to actually get the inode.
 730 *
 731 * To ensure that some other process does not grab the inode that
 732 * was allocated during the first call to xfs_ialloc(), this routine
 733 * also returns the [locked] bp pointing to the head of the freelist
 734 * as ialloc_context.  The caller should hold this buffer across
 735 * the commit and pass it back into this routine on the second call.
 736 *
 737 * If we are allocating quota inodes, we do not have a parent inode
 738 * to attach to or associate with (i.e. pip == NULL) because they
 739 * are not linked into the directory structure - they are attached
 740 * directly to the superblock - and so have no parent.
 741 */
 742static int
 743xfs_ialloc(
 744	xfs_trans_t	*tp,
 745	xfs_inode_t	*pip,
 746	umode_t		mode,
 747	xfs_nlink_t	nlink,
 748	dev_t		rdev,
 749	prid_t		prid,
 750	xfs_buf_t	**ialloc_context,
 751	xfs_inode_t	**ipp)
 752{
 753	struct xfs_mount *mp = tp->t_mountp;
 754	xfs_ino_t	ino;
 755	xfs_inode_t	*ip;
 756	uint		flags;
 757	int		error;
 758	struct timespec64 tv;
 759	struct inode	*inode;
 760
 761	/*
 762	 * Call the space management code to pick
 763	 * the on-disk inode to be allocated.
 764	 */
 765	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 766			    ialloc_context, &ino);
 767	if (error)
 768		return error;
 769	if (*ialloc_context || ino == NULLFSINO) {
 770		*ipp = NULL;
 771		return 0;
 772	}
 773	ASSERT(*ialloc_context == NULL);
 774
 775	/*
 776	 * Protect against obviously corrupt allocation btree records. Later
 777	 * xfs_iget checks will catch re-allocation of other active in-memory
 778	 * and on-disk inodes. If we don't catch reallocating the parent inode
 779	 * here we will deadlock in xfs_iget() so we have to do these checks
 780	 * first.
 781	 */
 782	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 783		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 784		return -EFSCORRUPTED;
 785	}
 786
 787	/*
 788	 * Get the in-core inode with the lock held exclusively.
 789	 * This is because we're setting fields here we need
 790	 * to prevent others from looking at until we're done.
 791	 */
 792	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 793			 XFS_ILOCK_EXCL, &ip);
 794	if (error)
 795		return error;
 796	ASSERT(ip != NULL);
 797	inode = VFS_I(ip);
 798
 799	/*
 800	 * We always convert v1 inodes to v2 now - we only support filesystems
 801	 * with >= v2 inode capability, so there is no reason for ever leaving
 802	 * an inode in v1 format.
 803	 */
 804	if (ip->i_d.di_version == 1)
 805		ip->i_d.di_version = 2;
 806
 807	inode->i_mode = mode;
 808	set_nlink(inode, nlink);
 809	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 810	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 811	inode->i_rdev = rdev;
 812	xfs_set_projid(ip, prid);
 813
 814	if (pip && XFS_INHERIT_GID(pip)) {
 815		ip->i_d.di_gid = pip->i_d.di_gid;
 816		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 817			inode->i_mode |= S_ISGID;
 818	}
 819
 820	/*
 821	 * If the group ID of the new file does not match the effective group
 822	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 823	 * (and only if the irix_sgid_inherit compatibility variable is set).
 824	 */
 825	if ((irix_sgid_inherit) &&
 826	    (inode->i_mode & S_ISGID) &&
 827	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 828		inode->i_mode &= ~S_ISGID;
 829
 830	ip->i_d.di_size = 0;
 831	ip->i_d.di_nextents = 0;
 832	ASSERT(ip->i_d.di_nblocks == 0);
 833
 834	tv = current_time(inode);
 835	inode->i_mtime = tv;
 836	inode->i_atime = tv;
 837	inode->i_ctime = tv;
 838
 839	ip->i_d.di_extsize = 0;
 840	ip->i_d.di_dmevmask = 0;
 841	ip->i_d.di_dmstate = 0;
 842	ip->i_d.di_flags = 0;
 843
 844	if (ip->i_d.di_version == 3) {
 845		inode_set_iversion(inode, 1);
 846		ip->i_d.di_flags2 = 0;
 847		ip->i_d.di_cowextsize = 0;
 848		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
 849		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
 850	}
 851
 852
 853	flags = XFS_ILOG_CORE;
 854	switch (mode & S_IFMT) {
 855	case S_IFIFO:
 856	case S_IFCHR:
 857	case S_IFBLK:
 858	case S_IFSOCK:
 859		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 860		ip->i_df.if_flags = 0;
 861		flags |= XFS_ILOG_DEV;
 862		break;
 863	case S_IFREG:
 864	case S_IFDIR:
 865		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 866			uint		di_flags = 0;
 867
 868			if (S_ISDIR(mode)) {
 869				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 870					di_flags |= XFS_DIFLAG_RTINHERIT;
 871				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 872					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 873					ip->i_d.di_extsize = pip->i_d.di_extsize;
 874				}
 875				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 876					di_flags |= XFS_DIFLAG_PROJINHERIT;
 877			} else if (S_ISREG(mode)) {
 878				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 879					di_flags |= XFS_DIFLAG_REALTIME;
 880				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 881					di_flags |= XFS_DIFLAG_EXTSIZE;
 882					ip->i_d.di_extsize = pip->i_d.di_extsize;
 883				}
 884			}
 885			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 886			    xfs_inherit_noatime)
 887				di_flags |= XFS_DIFLAG_NOATIME;
 888			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 889			    xfs_inherit_nodump)
 890				di_flags |= XFS_DIFLAG_NODUMP;
 891			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 892			    xfs_inherit_sync)
 893				di_flags |= XFS_DIFLAG_SYNC;
 894			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 895			    xfs_inherit_nosymlinks)
 896				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 897			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 898			    xfs_inherit_nodefrag)
 899				di_flags |= XFS_DIFLAG_NODEFRAG;
 900			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 901				di_flags |= XFS_DIFLAG_FILESTREAM;
 902
 903			ip->i_d.di_flags |= di_flags;
 904		}
 905		if (pip &&
 906		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
 907		    pip->i_d.di_version == 3 &&
 908		    ip->i_d.di_version == 3) {
 909			uint64_t	di_flags2 = 0;
 910
 911			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 912				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 913				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 914			}
 915			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 916				di_flags2 |= XFS_DIFLAG2_DAX;
 917
 918			ip->i_d.di_flags2 |= di_flags2;
 919		}
 920		/* FALLTHROUGH */
 921	case S_IFLNK:
 922		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 923		ip->i_df.if_flags = XFS_IFEXTENTS;
 924		ip->i_df.if_bytes = 0;
 925		ip->i_df.if_u1.if_root = NULL;
 926		break;
 927	default:
 928		ASSERT(0);
 929	}
 930	/*
 931	 * Attribute fork settings for new inode.
 932	 */
 933	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 934	ip->i_d.di_anextents = 0;
 935
 936	/*
 937	 * Log the new values stuffed into the inode.
 938	 */
 939	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 940	xfs_trans_log_inode(tp, ip, flags);
 941
 942	/* now that we have an i_mode we can setup the inode structure */
 943	xfs_setup_inode(ip);
 944
 945	*ipp = ip;
 946	return 0;
 947}
 948
 949/*
 950 * Allocates a new inode from disk and return a pointer to the
 951 * incore copy. This routine will internally commit the current
 952 * transaction and allocate a new one if the Space Manager needed
 953 * to do an allocation to replenish the inode free-list.
 954 *
 955 * This routine is designed to be called from xfs_create and
 956 * xfs_create_dir.
 957 *
 958 */
 959int
 960xfs_dir_ialloc(
 961	xfs_trans_t	**tpp,		/* input: current transaction;
 962					   output: may be a new transaction. */
 963	xfs_inode_t	*dp,		/* directory within whose allocate
 964					   the inode. */
 965	umode_t		mode,
 966	xfs_nlink_t	nlink,
 967	dev_t		rdev,
 968	prid_t		prid,		/* project id */
 969	xfs_inode_t	**ipp)		/* pointer to inode; it will be
 970					   locked. */
 971{
 972	xfs_trans_t	*tp;
 973	xfs_inode_t	*ip;
 974	xfs_buf_t	*ialloc_context = NULL;
 975	int		code;
 976	void		*dqinfo;
 977	uint		tflags;
 978
 979	tp = *tpp;
 980	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 981
 982	/*
 983	 * xfs_ialloc will return a pointer to an incore inode if
 984	 * the Space Manager has an available inode on the free
 985	 * list. Otherwise, it will do an allocation and replenish
 986	 * the freelist.  Since we can only do one allocation per
 987	 * transaction without deadlocks, we will need to commit the
 988	 * current transaction and start a new one.  We will then
 989	 * need to call xfs_ialloc again to get the inode.
 990	 *
 991	 * If xfs_ialloc did an allocation to replenish the freelist,
 992	 * it returns the bp containing the head of the freelist as
 993	 * ialloc_context. We will hold a lock on it across the
 994	 * transaction commit so that no other process can steal
 995	 * the inode(s) that we've just allocated.
 996	 */
 997	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
 998			&ip);
 999
1000	/*
1001	 * Return an error if we were unable to allocate a new inode.
1002	 * This should only happen if we run out of space on disk or
1003	 * encounter a disk error.
1004	 */
1005	if (code) {
1006		*ipp = NULL;
1007		return code;
1008	}
1009	if (!ialloc_context && !ip) {
1010		*ipp = NULL;
1011		return -ENOSPC;
1012	}
1013
1014	/*
1015	 * If the AGI buffer is non-NULL, then we were unable to get an
1016	 * inode in one operation.  We need to commit the current
1017	 * transaction and call xfs_ialloc() again.  It is guaranteed
1018	 * to succeed the second time.
1019	 */
1020	if (ialloc_context) {
1021		/*
1022		 * Normally, xfs_trans_commit releases all the locks.
1023		 * We call bhold to hang on to the ialloc_context across
1024		 * the commit.  Holding this buffer prevents any other
1025		 * processes from doing any allocations in this
1026		 * allocation group.
1027		 */
1028		xfs_trans_bhold(tp, ialloc_context);
1029
1030		/*
1031		 * We want the quota changes to be associated with the next
1032		 * transaction, NOT this one. So, detach the dqinfo from this
1033		 * and attach it to the next transaction.
1034		 */
1035		dqinfo = NULL;
1036		tflags = 0;
1037		if (tp->t_dqinfo) {
1038			dqinfo = (void *)tp->t_dqinfo;
1039			tp->t_dqinfo = NULL;
1040			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042		}
1043
1044		code = xfs_trans_roll(&tp);
1045
1046		/*
1047		 * Re-attach the quota info that we detached from prev trx.
1048		 */
1049		if (dqinfo) {
1050			tp->t_dqinfo = dqinfo;
1051			tp->t_flags |= tflags;
1052		}
1053
1054		if (code) {
1055			xfs_buf_relse(ialloc_context);
1056			*tpp = tp;
1057			*ipp = NULL;
1058			return code;
1059		}
1060		xfs_trans_bjoin(tp, ialloc_context);
1061
1062		/*
1063		 * Call ialloc again. Since we've locked out all
1064		 * other allocations in this allocation group,
1065		 * this call should always succeed.
1066		 */
1067		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1068				  &ialloc_context, &ip);
1069
1070		/*
1071		 * If we get an error at this point, return to the caller
1072		 * so that the current transaction can be aborted.
1073		 */
1074		if (code) {
1075			*tpp = tp;
1076			*ipp = NULL;
1077			return code;
1078		}
1079		ASSERT(!ialloc_context && ip);
1080
1081	}
1082
1083	*ipp = ip;
1084	*tpp = tp;
1085
1086	return 0;
1087}
1088
1089/*
1090 * Decrement the link count on an inode & log the change.  If this causes the
1091 * link count to go to zero, move the inode to AGI unlinked list so that it can
1092 * be freed when the last active reference goes away via xfs_inactive().
1093 */
1094static int			/* error */
1095xfs_droplink(
1096	xfs_trans_t *tp,
1097	xfs_inode_t *ip)
1098{
1099	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1100
1101	drop_nlink(VFS_I(ip));
1102	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1103
1104	if (VFS_I(ip)->i_nlink)
1105		return 0;
1106
1107	return xfs_iunlink(tp, ip);
1108}
1109
1110/*
1111 * Increment the link count on an inode & log the change.
1112 */
1113static void
1114xfs_bumplink(
1115	xfs_trans_t *tp,
1116	xfs_inode_t *ip)
1117{
1118	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119
1120	ASSERT(ip->i_d.di_version > 1);
1121	inc_nlink(VFS_I(ip));
1122	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1123}
1124
1125int
1126xfs_create(
1127	xfs_inode_t		*dp,
1128	struct xfs_name		*name,
1129	umode_t			mode,
1130	dev_t			rdev,
1131	xfs_inode_t		**ipp)
1132{
1133	int			is_dir = S_ISDIR(mode);
 
 
 
 
1134	struct xfs_mount	*mp = dp->i_mount;
1135	struct xfs_inode	*ip = NULL;
1136	struct xfs_trans	*tp = NULL;
1137	int			error;
1138	bool                    unlock_dp_on_error = false;
1139	prid_t			prid;
1140	struct xfs_dquot	*udqp = NULL;
1141	struct xfs_dquot	*gdqp = NULL;
1142	struct xfs_dquot	*pdqp = NULL;
1143	struct xfs_trans_res	*tres;
 
 
 
1144	uint			resblks;
 
1145
1146	trace_xfs_create(dp, name);
1147
1148	if (XFS_FORCED_SHUTDOWN(mp))
 
 
1149		return -EIO;
1150
1151	prid = xfs_get_initial_prid(dp);
1152
1153	/*
1154	 * Make sure that we have allocated dquot(s) on disk.
1155	 */
1156	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1157					xfs_kgid_to_gid(current_fsgid()), prid,
1158					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1159					&udqp, &gdqp, &pdqp);
1160	if (error)
1161		return error;
1162
1163	if (is_dir) {
1164		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1165		tres = &M_RES(mp)->tr_mkdir;
1166	} else {
1167		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1168		tres = &M_RES(mp)->tr_create;
1169	}
1170
 
 
 
 
1171	/*
1172	 * Initially assume that the file does not exist and
1173	 * reserve the resources for that case.  If that is not
1174	 * the case we'll drop the one we have and get a more
1175	 * appropriate transaction later.
1176	 */
1177	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1178	if (error == -ENOSPC) {
1179		/* flush outstanding delalloc blocks and retry */
1180		xfs_flush_inodes(mp);
1181		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1182	}
1183	if (error)
1184		goto out_release_inode;
1185
1186	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1187	unlock_dp_on_error = true;
1188
1189	/*
1190	 * Reserve disk quota and the inode.
1191	 */
1192	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1193						pdqp, resblks, 1, 0);
1194	if (error)
1195		goto out_trans_cancel;
1196
1197	/*
1198	 * A newly created regular or special file just has one directory
1199	 * entry pointing to them, but a directory also the "." entry
1200	 * pointing to itself.
1201	 */
1202	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
 
 
1203	if (error)
1204		goto out_trans_cancel;
1205
1206	/*
1207	 * Now we join the directory inode to the transaction.  We do not do it
1208	 * earlier because xfs_dir_ialloc might commit the previous transaction
1209	 * (and release all the locks).  An error from here on will result in
1210	 * the transaction cancel unlocking dp so don't do it explicitly in the
1211	 * error path.
1212	 */
1213	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1214	unlock_dp_on_error = false;
1215
1216	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1217				   resblks ?
1218					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1219	if (error) {
1220		ASSERT(error != -ENOSPC);
1221		goto out_trans_cancel;
1222	}
1223	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1224	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1225
1226	if (is_dir) {
1227		error = xfs_dir_init(tp, ip, dp);
1228		if (error)
1229			goto out_trans_cancel;
1230
1231		xfs_bumplink(tp, dp);
1232	}
1233
1234	/*
1235	 * If this is a synchronous mount, make sure that the
1236	 * create transaction goes to disk before returning to
1237	 * the user.
1238	 */
1239	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1240		xfs_trans_set_sync(tp);
1241
1242	/*
1243	 * Attach the dquot(s) to the inodes and modify them incore.
1244	 * These ids of the inode couldn't have changed since the new
1245	 * inode has been locked ever since it was created.
1246	 */
1247	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1248
1249	error = xfs_trans_commit(tp);
1250	if (error)
1251		goto out_release_inode;
1252
1253	xfs_qm_dqrele(udqp);
1254	xfs_qm_dqrele(gdqp);
1255	xfs_qm_dqrele(pdqp);
1256
1257	*ipp = ip;
 
 
 
1258	return 0;
1259
1260 out_trans_cancel:
1261	xfs_trans_cancel(tp);
1262 out_release_inode:
1263	/*
1264	 * Wait until after the current transaction is aborted to finish the
1265	 * setup of the inode and release the inode.  This prevents recursive
1266	 * transactions and deadlocks from xfs_inactive.
1267	 */
1268	if (ip) {
1269		xfs_finish_inode_setup(ip);
1270		xfs_irele(ip);
1271	}
1272
 
 
 
1273	xfs_qm_dqrele(udqp);
1274	xfs_qm_dqrele(gdqp);
1275	xfs_qm_dqrele(pdqp);
1276
1277	if (unlock_dp_on_error)
1278		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1279	return error;
1280}
1281
1282int
1283xfs_create_tmpfile(
1284	struct xfs_inode	*dp,
1285	umode_t			mode,
1286	struct xfs_inode	**ipp)
1287{
 
1288	struct xfs_mount	*mp = dp->i_mount;
1289	struct xfs_inode	*ip = NULL;
1290	struct xfs_trans	*tp = NULL;
1291	int			error;
1292	prid_t                  prid;
1293	struct xfs_dquot	*udqp = NULL;
1294	struct xfs_dquot	*gdqp = NULL;
1295	struct xfs_dquot	*pdqp = NULL;
1296	struct xfs_trans_res	*tres;
 
1297	uint			resblks;
 
1298
1299	if (XFS_FORCED_SHUTDOWN(mp))
 
 
1300		return -EIO;
1301
1302	prid = xfs_get_initial_prid(dp);
1303
1304	/*
1305	 * Make sure that we have allocated dquot(s) on disk.
1306	 */
1307	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1308				xfs_kgid_to_gid(current_fsgid()), prid,
1309				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1310				&udqp, &gdqp, &pdqp);
1311	if (error)
1312		return error;
1313
1314	resblks = XFS_IALLOC_SPACE_RES(mp);
1315	tres = &M_RES(mp)->tr_create_tmpfile;
1316
1317	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1318	if (error)
1319		goto out_release_inode;
1320
1321	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1322						pdqp, resblks, 1, 0);
1323	if (error)
1324		goto out_trans_cancel;
1325
1326	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
 
 
1327	if (error)
1328		goto out_trans_cancel;
1329
1330	if (mp->m_flags & XFS_MOUNT_WSYNC)
1331		xfs_trans_set_sync(tp);
1332
1333	/*
1334	 * Attach the dquot(s) to the inodes and modify them incore.
1335	 * These ids of the inode couldn't have changed since the new
1336	 * inode has been locked ever since it was created.
1337	 */
1338	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1339
1340	error = xfs_iunlink(tp, ip);
1341	if (error)
1342		goto out_trans_cancel;
1343
1344	error = xfs_trans_commit(tp);
1345	if (error)
1346		goto out_release_inode;
1347
1348	xfs_qm_dqrele(udqp);
1349	xfs_qm_dqrele(gdqp);
1350	xfs_qm_dqrele(pdqp);
1351
1352	*ipp = ip;
 
1353	return 0;
1354
1355 out_trans_cancel:
1356	xfs_trans_cancel(tp);
1357 out_release_inode:
1358	/*
1359	 * Wait until after the current transaction is aborted to finish the
1360	 * setup of the inode and release the inode.  This prevents recursive
1361	 * transactions and deadlocks from xfs_inactive.
1362	 */
1363	if (ip) {
 
1364		xfs_finish_inode_setup(ip);
1365		xfs_irele(ip);
1366	}
1367
1368	xfs_qm_dqrele(udqp);
1369	xfs_qm_dqrele(gdqp);
1370	xfs_qm_dqrele(pdqp);
1371
1372	return error;
1373}
1374
1375int
1376xfs_link(
1377	xfs_inode_t		*tdp,
1378	xfs_inode_t		*sip,
1379	struct xfs_name		*target_name)
1380{
1381	xfs_mount_t		*mp = tdp->i_mount;
1382	xfs_trans_t		*tp;
1383	int			error;
 
 
 
 
 
1384	int			resblks;
1385
1386	trace_xfs_link(tdp, target_name);
1387
1388	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1389
1390	if (XFS_FORCED_SHUTDOWN(mp))
 
 
1391		return -EIO;
1392
1393	error = xfs_qm_dqattach(sip);
1394	if (error)
1395		goto std_return;
1396
1397	error = xfs_qm_dqattach(tdp);
1398	if (error)
1399		goto std_return;
1400
1401	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1402	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1403	if (error == -ENOSPC) {
1404		resblks = 0;
1405		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1406	}
1407	if (error)
1408		goto std_return;
1409
1410	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1411
1412	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1413	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
 
1414
1415	/*
1416	 * If we are using project inheritance, we only allow hard link
1417	 * creation in our tree when the project IDs are the same; else
1418	 * the tree quota mechanism could be circumvented.
1419	 */
1420	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1421		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1422		error = -EXDEV;
1423		goto error_return;
1424	}
1425
1426	if (!resblks) {
1427		error = xfs_dir_canenter(tp, tdp, target_name);
1428		if (error)
1429			goto error_return;
1430	}
1431
1432	/*
1433	 * Handle initial link state of O_TMPFILE inode
 
 
1434	 */
1435	if (VFS_I(sip)->i_nlink == 0) {
1436		error = xfs_iunlink_remove(tp, sip);
1437		if (error)
 
 
 
 
 
 
 
 
 
 
1438			goto error_return;
 
1439	}
1440
1441	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1442				   resblks);
1443	if (error)
1444		goto error_return;
1445	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1446	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1447
1448	xfs_bumplink(tp, sip);
1449
1450	/*
1451	 * If this is a synchronous mount, make sure that the
1452	 * link transaction goes to disk before returning to
1453	 * the user.
1454	 */
1455	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1456		xfs_trans_set_sync(tp);
1457
1458	return xfs_trans_commit(tp);
 
 
 
 
1459
1460 error_return:
1461	xfs_trans_cancel(tp);
 
 
 
 
1462 std_return:
 
 
1463	return error;
1464}
1465
1466/* Clear the reflink flag and the cowblocks tag if possible. */
1467static void
1468xfs_itruncate_clear_reflink_flags(
1469	struct xfs_inode	*ip)
1470{
1471	struct xfs_ifork	*dfork;
1472	struct xfs_ifork	*cfork;
1473
1474	if (!xfs_is_reflink_inode(ip))
1475		return;
1476	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1477	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1478	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1479		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1480	if (cfork->if_bytes == 0)
1481		xfs_inode_clear_cowblocks_tag(ip);
1482}
1483
1484/*
1485 * Free up the underlying blocks past new_size.  The new size must be smaller
1486 * than the current size.  This routine can be used both for the attribute and
1487 * data fork, and does not modify the inode size, which is left to the caller.
1488 *
1489 * The transaction passed to this routine must have made a permanent log
1490 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1491 * given transaction and start new ones, so make sure everything involved in
1492 * the transaction is tidy before calling here.  Some transaction will be
1493 * returned to the caller to be committed.  The incoming transaction must
1494 * already include the inode, and both inode locks must be held exclusively.
1495 * The inode must also be "held" within the transaction.  On return the inode
1496 * will be "held" within the returned transaction.  This routine does NOT
1497 * require any disk space to be reserved for it within the transaction.
1498 *
1499 * If we get an error, we must return with the inode locked and linked into the
1500 * current transaction. This keeps things simple for the higher level code,
1501 * because it always knows that the inode is locked and held in the transaction
1502 * that returns to it whether errors occur or not.  We don't mark the inode
1503 * dirty on error so that transactions can be easily aborted if possible.
1504 */
1505int
1506xfs_itruncate_extents_flags(
1507	struct xfs_trans	**tpp,
1508	struct xfs_inode	*ip,
1509	int			whichfork,
1510	xfs_fsize_t		new_size,
1511	int			flags)
1512{
1513	struct xfs_mount	*mp = ip->i_mount;
1514	struct xfs_trans	*tp = *tpp;
1515	xfs_fileoff_t		first_unmap_block;
1516	xfs_fileoff_t		last_block;
1517	xfs_filblks_t		unmap_len;
1518	int			error = 0;
1519	int			done = 0;
1520
1521	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1522	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1523	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1524	ASSERT(new_size <= XFS_ISIZE(ip));
1525	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1526	ASSERT(ip->i_itemp != NULL);
1527	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1528	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1529
1530	trace_xfs_itruncate_extents_start(ip, new_size);
1531
1532	flags |= xfs_bmapi_aflag(whichfork);
1533
1534	/*
1535	 * Since it is possible for space to become allocated beyond
1536	 * the end of the file (in a crash where the space is allocated
1537	 * but the inode size is not yet updated), simply remove any
1538	 * blocks which show up between the new EOF and the maximum
1539	 * possible file size.  If the first block to be removed is
1540	 * beyond the maximum file size (ie it is the same as last_block),
1541	 * then there is nothing to do.
 
1542	 */
1543	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1544	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1545	if (first_unmap_block == last_block)
1546		return 0;
 
1547
1548	ASSERT(first_unmap_block < last_block);
1549	unmap_len = last_block - first_unmap_block + 1;
1550	while (!done) {
1551		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1552		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1553				    XFS_ITRUNC_MAX_EXTENTS, &done);
1554		if (error)
1555			goto out;
1556
1557		/*
1558		 * Duplicate the transaction that has the permanent
1559		 * reservation and commit the old transaction.
1560		 */
1561		error = xfs_defer_finish(&tp);
1562		if (error)
1563			goto out;
1564
1565		error = xfs_trans_roll_inode(&tp, ip);
1566		if (error)
1567			goto out;
1568	}
1569
1570	if (whichfork == XFS_DATA_FORK) {
1571		/* Remove all pending CoW reservations. */
1572		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1573				first_unmap_block, last_block, true);
1574		if (error)
1575			goto out;
1576
1577		xfs_itruncate_clear_reflink_flags(ip);
1578	}
1579
1580	/*
1581	 * Always re-log the inode so that our permanent transaction can keep
1582	 * on rolling it forward in the log.
1583	 */
1584	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585
1586	trace_xfs_itruncate_extents_end(ip, new_size);
1587
1588out:
1589	*tpp = tp;
1590	return error;
1591}
1592
1593int
1594xfs_release(
1595	xfs_inode_t	*ip)
 
 
 
 
 
 
1596{
1597	xfs_mount_t	*mp = ip->i_mount;
1598	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599
1600	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1601		return 0;
1602
1603	/* If this is a read-only mount, don't do this (would generate I/O) */
1604	if (mp->m_flags & XFS_MOUNT_RDONLY)
1605		return 0;
1606
1607	if (!XFS_FORCED_SHUTDOWN(mp)) {
1608		int truncated;
1609
1610		/*
1611		 * If we previously truncated this file and removed old data
1612		 * in the process, we want to initiate "early" writeout on
1613		 * the last close.  This is an attempt to combat the notorious
1614		 * NULL files problem which is particularly noticeable from a
1615		 * truncate down, buffered (re-)write (delalloc), followed by
1616		 * a crash.  What we are effectively doing here is
1617		 * significantly reducing the time window where we'd otherwise
1618		 * be exposed to that problem.
1619		 */
1620		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1621		if (truncated) {
1622			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1623			if (ip->i_delayed_blks > 0) {
1624				error = filemap_flush(VFS_I(ip)->i_mapping);
1625				if (error)
1626					return error;
1627			}
1628		}
1629	}
1630
1631	if (VFS_I(ip)->i_nlink == 0)
1632		return 0;
1633
1634	if (xfs_can_free_eofblocks(ip, false)) {
1635
1636		/*
1637		 * Check if the inode is being opened, written and closed
1638		 * frequently and we have delayed allocation blocks outstanding
1639		 * (e.g. streaming writes from the NFS server), truncating the
1640		 * blocks past EOF will cause fragmentation to occur.
1641		 *
1642		 * In this case don't do the truncation, but we have to be
1643		 * careful how we detect this case. Blocks beyond EOF show up as
1644		 * i_delayed_blks even when the inode is clean, so we need to
1645		 * truncate them away first before checking for a dirty release.
1646		 * Hence on the first dirty close we will still remove the
1647		 * speculative allocation, but after that we will leave it in
1648		 * place.
1649		 */
1650		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651			return 0;
1652		/*
1653		 * If we can't get the iolock just skip truncating the blocks
1654		 * past EOF because we could deadlock with the mmap_sem
1655		 * otherwise. We'll get another chance to drop them once the
1656		 * last reference to the inode is dropped, so we'll never leak
1657		 * blocks permanently.
1658		 */
1659		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1660			error = xfs_free_eofblocks(ip);
1661			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1662			if (error)
1663				return error;
1664		}
1665
1666		/* delalloc blocks after truncation means it really is dirty */
1667		if (ip->i_delayed_blks)
1668			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1669	}
1670	return 0;
1671}
1672
1673/*
1674 * xfs_inactive_truncate
1675 *
1676 * Called to perform a truncate when an inode becomes unlinked.
1677 */
1678STATIC int
1679xfs_inactive_truncate(
1680	struct xfs_inode *ip)
1681{
1682	struct xfs_mount	*mp = ip->i_mount;
1683	struct xfs_trans	*tp;
1684	int			error;
1685
1686	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1687	if (error) {
1688		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1689		return error;
1690	}
1691	xfs_ilock(ip, XFS_ILOCK_EXCL);
1692	xfs_trans_ijoin(tp, ip, 0);
1693
1694	/*
1695	 * Log the inode size first to prevent stale data exposure in the event
1696	 * of a system crash before the truncate completes. See the related
1697	 * comment in xfs_vn_setattr_size() for details.
1698	 */
1699	ip->i_d.di_size = 0;
1700	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1701
1702	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1703	if (error)
1704		goto error_trans_cancel;
1705
1706	ASSERT(ip->i_d.di_nextents == 0);
1707
1708	error = xfs_trans_commit(tp);
1709	if (error)
1710		goto error_unlock;
1711
1712	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713	return 0;
1714
1715error_trans_cancel:
1716	xfs_trans_cancel(tp);
1717error_unlock:
1718	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1719	return error;
1720}
1721
1722/*
1723 * xfs_inactive_ifree()
1724 *
1725 * Perform the inode free when an inode is unlinked.
1726 */
1727STATIC int
1728xfs_inactive_ifree(
1729	struct xfs_inode *ip)
1730{
1731	struct xfs_mount	*mp = ip->i_mount;
1732	struct xfs_trans	*tp;
1733	int			error;
1734
1735	/*
1736	 * We try to use a per-AG reservation for any block needed by the finobt
1737	 * tree, but as the finobt feature predates the per-AG reservation
1738	 * support a degraded file system might not have enough space for the
1739	 * reservation at mount time.  In that case try to dip into the reserved
1740	 * pool and pray.
1741	 *
1742	 * Send a warning if the reservation does happen to fail, as the inode
1743	 * now remains allocated and sits on the unlinked list until the fs is
1744	 * repaired.
1745	 */
1746	if (unlikely(mp->m_finobt_nores)) {
1747		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1748				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1749				&tp);
1750	} else {
1751		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1752	}
1753	if (error) {
1754		if (error == -ENOSPC) {
1755			xfs_warn_ratelimited(mp,
1756			"Failed to remove inode(s) from unlinked list. "
1757			"Please free space, unmount and run xfs_repair.");
1758		} else {
1759			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1760		}
1761		return error;
1762	}
1763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764	xfs_ilock(ip, XFS_ILOCK_EXCL);
1765	xfs_trans_ijoin(tp, ip, 0);
1766
1767	error = xfs_ifree(tp, ip);
 
1768	if (error) {
1769		/*
1770		 * If we fail to free the inode, shut down.  The cancel
1771		 * might do that, we need to make sure.  Otherwise the
1772		 * inode might be lost for a long time or forever.
1773		 */
1774		if (!XFS_FORCED_SHUTDOWN(mp)) {
1775			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1776				__func__, error);
1777			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1778		}
1779		xfs_trans_cancel(tp);
1780		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781		return error;
1782	}
1783
1784	/*
1785	 * Credit the quota account(s). The inode is gone.
1786	 */
1787	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789	/*
1790	 * Just ignore errors at this point.  There is nothing we can do except
1791	 * to try to keep going. Make sure it's not a silent error.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1792	 */
1793	error = xfs_trans_commit(tp);
1794	if (error)
1795		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1796			__func__, error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797
1798	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799	return 0;
1800}
1801
1802/*
1803 * xfs_inactive
1804 *
1805 * This is called when the vnode reference count for the vnode
1806 * goes to zero.  If the file has been unlinked, then it must
1807 * now be truncated.  Also, we clear all of the read-ahead state
1808 * kept for the inode here since the file is now closed.
1809 */
1810void
1811xfs_inactive(
1812	xfs_inode_t	*ip)
1813{
1814	struct xfs_mount	*mp;
1815	int			error;
1816	int			truncate = 0;
1817
1818	/*
1819	 * If the inode is already free, then there can be nothing
1820	 * to clean up here.
1821	 */
1822	if (VFS_I(ip)->i_mode == 0) {
1823		ASSERT(ip->i_df.if_broot_bytes == 0);
1824		return;
1825	}
1826
1827	mp = ip->i_mount;
1828	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1829
1830	/* If this is a read-only mount, don't do this (would generate I/O) */
1831	if (mp->m_flags & XFS_MOUNT_RDONLY)
1832		return;
 
 
 
 
 
 
 
 
 
1833
1834	/* Try to clean out the cow blocks if there are any. */
1835	if (xfs_inode_has_cow_data(ip))
1836		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
 
 
 
1837
1838	if (VFS_I(ip)->i_nlink != 0) {
1839		/*
1840		 * force is true because we are evicting an inode from the
1841		 * cache. Post-eof blocks must be freed, lest we end up with
1842		 * broken free space accounting.
1843		 *
1844		 * Note: don't bother with iolock here since lockdep complains
1845		 * about acquiring it in reclaim context. We have the only
1846		 * reference to the inode at this point anyways.
1847		 */
1848		if (xfs_can_free_eofblocks(ip, true))
1849			xfs_free_eofblocks(ip);
1850
1851		return;
1852	}
1853
1854	if (S_ISREG(VFS_I(ip)->i_mode) &&
1855	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1856	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1857		truncate = 1;
1858
1859	error = xfs_qm_dqattach(ip);
1860	if (error)
1861		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862
1863	if (S_ISLNK(VFS_I(ip)->i_mode))
1864		error = xfs_inactive_symlink(ip);
1865	else if (truncate)
1866		error = xfs_inactive_truncate(ip);
1867	if (error)
1868		return;
1869
1870	/*
1871	 * If there are attributes associated with the file then blow them away
1872	 * now.  The code calls a routine that recursively deconstructs the
1873	 * attribute fork. If also blows away the in-core attribute fork.
1874	 */
1875	if (XFS_IFORK_Q(ip)) {
1876		error = xfs_attr_inactive(ip);
1877		if (error)
1878			return;
1879	}
1880
1881	ASSERT(!ip->i_afp);
1882	ASSERT(ip->i_d.di_anextents == 0);
1883	ASSERT(ip->i_d.di_forkoff == 0);
1884
1885	/*
1886	 * Free the inode.
1887	 */
1888	error = xfs_inactive_ifree(ip);
1889	if (error)
1890		return;
1891
 
1892	/*
1893	 * Release the dquots held by inode, if any.
 
1894	 */
1895	xfs_qm_dqdetach(ip);
 
1896}
1897
1898/*
1899 * In-Core Unlinked List Lookups
1900 * =============================
1901 *
1902 * Every inode is supposed to be reachable from some other piece of metadata
1903 * with the exception of the root directory.  Inodes with a connection to a
1904 * file descriptor but not linked from anywhere in the on-disk directory tree
1905 * are collectively known as unlinked inodes, though the filesystem itself
1906 * maintains links to these inodes so that on-disk metadata are consistent.
1907 *
1908 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1909 * header contains a number of buckets that point to an inode, and each inode
1910 * record has a pointer to the next inode in the hash chain.  This
1911 * singly-linked list causes scaling problems in the iunlink remove function
1912 * because we must walk that list to find the inode that points to the inode
1913 * being removed from the unlinked hash bucket list.
1914 *
1915 * What if we modelled the unlinked list as a collection of records capturing
1916 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1917 * have a fast way to look up unlinked list predecessors, which avoids the
1918 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1919 * rhashtable.
1920 *
1921 * Because this is a backref cache, we ignore operational failures since the
1922 * iunlink code can fall back to the slow bucket walk.  The only errors that
1923 * should bubble out are for obviously incorrect situations.
1924 *
1925 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1926 * access or have otherwise provided for concurrency control.
1927 */
1928
1929/* Capture a "X.next_unlinked = Y" relationship. */
1930struct xfs_iunlink {
1931	struct rhash_head	iu_rhash_head;
1932	xfs_agino_t		iu_agino;		/* X */
1933	xfs_agino_t		iu_next_unlinked;	/* Y */
1934};
1935
1936/* Unlinked list predecessor lookup hashtable construction */
1937static int
1938xfs_iunlink_obj_cmpfn(
1939	struct rhashtable_compare_arg	*arg,
1940	const void			*obj)
1941{
1942	const xfs_agino_t		*key = arg->key;
1943	const struct xfs_iunlink	*iu = obj;
1944
1945	if (iu->iu_next_unlinked != *key)
1946		return 1;
1947	return 0;
1948}
1949
1950static const struct rhashtable_params xfs_iunlink_hash_params = {
1951	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1952	.key_len		= sizeof(xfs_agino_t),
1953	.key_offset		= offsetof(struct xfs_iunlink,
1954					   iu_next_unlinked),
1955	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1956	.automatic_shrinking	= true,
1957	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1958};
1959
1960/*
1961 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1962 * relation is found.
1963 */
1964static xfs_agino_t
1965xfs_iunlink_lookup_backref(
1966	struct xfs_perag	*pag,
1967	xfs_agino_t		agino)
1968{
1969	struct xfs_iunlink	*iu;
1970
1971	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1972			xfs_iunlink_hash_params);
1973	return iu ? iu->iu_agino : NULLAGINO;
1974}
1975
1976/*
1977 * Take ownership of an iunlink cache entry and insert it into the hash table.
1978 * If successful, the entry will be owned by the cache; if not, it is freed.
1979 * Either way, the caller does not own @iu after this call.
1980 */
1981static int
1982xfs_iunlink_insert_backref(
1983	struct xfs_perag	*pag,
1984	struct xfs_iunlink	*iu)
1985{
1986	int			error;
1987
1988	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1989			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1990	/*
1991	 * Fail loudly if there already was an entry because that's a sign of
1992	 * corruption of in-memory data.  Also fail loudly if we see an error
1993	 * code we didn't anticipate from the rhashtable code.  Currently we
1994	 * only anticipate ENOMEM.
1995	 */
1996	if (error) {
1997		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1998		kmem_free(iu);
1999	}
2000	/*
2001	 * Absorb any runtime errors that aren't a result of corruption because
2002	 * this is a cache and we can always fall back to bucket list scanning.
2003	 */
2004	if (error != 0 && error != -EEXIST)
2005		error = 0;
2006	return error;
2007}
2008
2009/* Remember that @prev_agino.next_unlinked = @this_agino. */
2010static int
2011xfs_iunlink_add_backref(
2012	struct xfs_perag	*pag,
2013	xfs_agino_t		prev_agino,
2014	xfs_agino_t		this_agino)
2015{
2016	struct xfs_iunlink	*iu;
2017
2018	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2019		return 0;
2020
2021	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2022	iu->iu_agino = prev_agino;
2023	iu->iu_next_unlinked = this_agino;
2024
2025	return xfs_iunlink_insert_backref(pag, iu);
2026}
2027
2028/*
2029 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2030 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2031 * wasn't any such entry then we don't bother.
2032 */
2033static int
2034xfs_iunlink_change_backref(
2035	struct xfs_perag	*pag,
2036	xfs_agino_t		agino,
2037	xfs_agino_t		next_unlinked)
2038{
2039	struct xfs_iunlink	*iu;
2040	int			error;
2041
2042	/* Look up the old entry; if there wasn't one then exit. */
2043	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2044			xfs_iunlink_hash_params);
2045	if (!iu)
2046		return 0;
2047
2048	/*
2049	 * Remove the entry.  This shouldn't ever return an error, but if we
2050	 * couldn't remove the old entry we don't want to add it again to the
2051	 * hash table, and if the entry disappeared on us then someone's
2052	 * violated the locking rules and we need to fail loudly.  Either way
2053	 * we cannot remove the inode because internal state is or would have
2054	 * been corrupt.
2055	 */
2056	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2057			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2058	if (error)
2059		return error;
2060
2061	/* If there is no new next entry just free our item and return. */
2062	if (next_unlinked == NULLAGINO) {
2063		kmem_free(iu);
2064		return 0;
2065	}
2066
2067	/* Update the entry and re-add it to the hash table. */
2068	iu->iu_next_unlinked = next_unlinked;
2069	return xfs_iunlink_insert_backref(pag, iu);
2070}
2071
2072/* Set up the in-core predecessor structures. */
2073int
2074xfs_iunlink_init(
2075	struct xfs_perag	*pag)
2076{
2077	return rhashtable_init(&pag->pagi_unlinked_hash,
2078			&xfs_iunlink_hash_params);
2079}
2080
2081/* Free the in-core predecessor structures. */
2082static void
2083xfs_iunlink_free_item(
2084	void			*ptr,
2085	void			*arg)
2086{
2087	struct xfs_iunlink	*iu = ptr;
2088	bool			*freed_anything = arg;
2089
2090	*freed_anything = true;
2091	kmem_free(iu);
2092}
2093
2094void
2095xfs_iunlink_destroy(
2096	struct xfs_perag	*pag)
2097{
2098	bool			freed_anything = false;
2099
2100	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2101			xfs_iunlink_free_item, &freed_anything);
2102
2103	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2104}
2105
2106/*
2107 * Point the AGI unlinked bucket at an inode and log the results.  The caller
2108 * is responsible for validating the old value.
2109 */
2110STATIC int
2111xfs_iunlink_update_bucket(
2112	struct xfs_trans	*tp,
2113	xfs_agnumber_t		agno,
2114	struct xfs_buf		*agibp,
2115	unsigned int		bucket_index,
2116	xfs_agino_t		new_agino)
2117{
2118	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agibp);
2119	xfs_agino_t		old_value;
2120	int			offset;
2121
2122	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2123
2124	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2125	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2126			old_value, new_agino);
2127
2128	/*
2129	 * We should never find the head of the list already set to the value
2130	 * passed in because either we're adding or removing ourselves from the
2131	 * head of the list.
2132	 */
2133	if (old_value == new_agino)
2134		return -EFSCORRUPTED;
2135
2136	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2137	offset = offsetof(struct xfs_agi, agi_unlinked) +
2138			(sizeof(xfs_agino_t) * bucket_index);
2139	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2140	return 0;
2141}
2142
2143/* Set an on-disk inode's next_unlinked pointer. */
2144STATIC void
2145xfs_iunlink_update_dinode(
2146	struct xfs_trans	*tp,
2147	xfs_agnumber_t		agno,
2148	xfs_agino_t		agino,
2149	struct xfs_buf		*ibp,
2150	struct xfs_dinode	*dip,
2151	struct xfs_imap		*imap,
2152	xfs_agino_t		next_agino)
2153{
2154	struct xfs_mount	*mp = tp->t_mountp;
2155	int			offset;
2156
2157	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2158
2159	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2160			be32_to_cpu(dip->di_next_unlinked), next_agino);
2161
2162	dip->di_next_unlinked = cpu_to_be32(next_agino);
2163	offset = imap->im_boffset +
2164			offsetof(struct xfs_dinode, di_next_unlinked);
2165
2166	/* need to recalc the inode CRC if appropriate */
2167	xfs_dinode_calc_crc(mp, dip);
2168	xfs_trans_inode_buf(tp, ibp);
2169	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2170	xfs_inobp_check(mp, ibp);
2171}
2172
2173/* Set an in-core inode's unlinked pointer and return the old value. */
2174STATIC int
2175xfs_iunlink_update_inode(
2176	struct xfs_trans	*tp,
2177	struct xfs_inode	*ip,
2178	xfs_agnumber_t		agno,
2179	xfs_agino_t		next_agino,
2180	xfs_agino_t		*old_next_agino)
2181{
2182	struct xfs_mount	*mp = tp->t_mountp;
2183	struct xfs_dinode	*dip;
2184	struct xfs_buf		*ibp;
2185	xfs_agino_t		old_value;
2186	int			error;
2187
2188	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2189
2190	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2191	if (error)
2192		return error;
 
 
 
2193
2194	/* Make sure the old pointer isn't garbage. */
2195	old_value = be32_to_cpu(dip->di_next_unlinked);
2196	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2197		error = -EFSCORRUPTED;
2198		goto out;
2199	}
2200
2201	/*
2202	 * Since we're updating a linked list, we should never find that the
2203	 * current pointer is the same as the new value, unless we're
2204	 * terminating the list.
2205	 */
2206	*old_next_agino = old_value;
2207	if (old_value == next_agino) {
2208		if (next_agino != NULLAGINO)
2209			error = -EFSCORRUPTED;
2210		goto out;
2211	}
2212
2213	/* Ok, update the new pointer. */
2214	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2215			ibp, dip, &ip->i_imap, next_agino);
2216	return 0;
2217out:
2218	xfs_trans_brelse(tp, ibp);
2219	return error;
2220}
2221
2222/*
2223 * This is called when the inode's link count has gone to 0 or we are creating
2224 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2225 *
2226 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2227 * list when the inode is freed.
2228 */
2229STATIC int
2230xfs_iunlink(
2231	struct xfs_trans	*tp,
2232	struct xfs_inode	*ip)
2233{
2234	struct xfs_mount	*mp = tp->t_mountp;
2235	struct xfs_agi		*agi;
2236	struct xfs_buf		*agibp;
2237	xfs_agino_t		next_agino;
2238	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2239	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2240	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2241	int			error;
2242
2243	ASSERT(VFS_I(ip)->i_nlink == 0);
2244	ASSERT(VFS_I(ip)->i_mode != 0);
2245	trace_xfs_iunlink(ip);
2246
2247	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2248	error = xfs_read_agi(mp, tp, agno, &agibp);
2249	if (error)
2250		return error;
2251	agi = XFS_BUF_TO_AGI(agibp);
2252
2253	/*
2254	 * Get the index into the agi hash table for the list this inode will
2255	 * go on.  Make sure the pointer isn't garbage and that this inode
2256	 * isn't already on the list.
2257	 */
2258	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2259	if (next_agino == agino ||
2260	    !xfs_verify_agino_or_null(mp, agno, next_agino))
2261		return -EFSCORRUPTED;
2262
2263	if (next_agino != NULLAGINO) {
2264		struct xfs_perag	*pag;
2265		xfs_agino_t		old_agino;
2266
2267		/*
2268		 * There is already another inode in the bucket, so point this
2269		 * inode to the current head of the list.
2270		 */
2271		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2272				&old_agino);
2273		if (error)
2274			return error;
2275		ASSERT(old_agino == NULLAGINO);
2276
2277		/*
2278		 * agino has been unlinked, add a backref from the next inode
2279		 * back to agino.
2280		 */
2281		pag = xfs_perag_get(mp, agno);
2282		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2283		xfs_perag_put(pag);
2284		if (error)
2285			return error;
2286	}
2287
2288	/* Point the head of the list to point to this inode. */
2289	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2290}
2291
2292/* Return the imap, dinode pointer, and buffer for an inode. */
2293STATIC int
2294xfs_iunlink_map_ino(
2295	struct xfs_trans	*tp,
2296	xfs_agnumber_t		agno,
2297	xfs_agino_t		agino,
2298	struct xfs_imap		*imap,
2299	struct xfs_dinode	**dipp,
2300	struct xfs_buf		**bpp)
2301{
2302	struct xfs_mount	*mp = tp->t_mountp;
2303	int			error;
2304
2305	imap->im_blkno = 0;
2306	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2307	if (error) {
2308		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2309				__func__, error);
2310		return error;
2311	}
2312
2313	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2314	if (error) {
2315		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2316				__func__, error);
2317		return error;
2318	}
2319
2320	return 0;
 
 
 
 
 
 
 
2321}
2322
2323/*
2324 * Walk the unlinked chain from @head_agino until we find the inode that
2325 * points to @target_agino.  Return the inode number, map, dinode pointer,
2326 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2327 *
2328 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2329 * @agino, @imap, @dipp, and @bpp are all output parameters.
2330 *
2331 * Do not call this function if @target_agino is the head of the list.
2332 */
2333STATIC int
2334xfs_iunlink_map_prev(
2335	struct xfs_trans	*tp,
2336	xfs_agnumber_t		agno,
2337	xfs_agino_t		head_agino,
2338	xfs_agino_t		target_agino,
2339	xfs_agino_t		*agino,
2340	struct xfs_imap		*imap,
2341	struct xfs_dinode	**dipp,
2342	struct xfs_buf		**bpp,
2343	struct xfs_perag	*pag)
2344{
2345	struct xfs_mount	*mp = tp->t_mountp;
2346	xfs_agino_t		next_agino;
2347	int			error;
2348
2349	ASSERT(head_agino != target_agino);
2350	*bpp = NULL;
 
2351
2352	/* See if our backref cache can find it faster. */
2353	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2354	if (*agino != NULLAGINO) {
2355		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2356		if (error)
2357			return error;
2358
2359		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2360			return 0;
2361
2362		/*
2363		 * If we get here the cache contents were corrupt, so drop the
2364		 * buffer and fall back to walking the bucket list.
2365		 */
2366		xfs_trans_brelse(tp, *bpp);
2367		*bpp = NULL;
2368		WARN_ON_ONCE(1);
2369	}
2370
2371	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2372
2373	/* Otherwise, walk the entire bucket until we find it. */
2374	next_agino = head_agino;
2375	while (next_agino != target_agino) {
2376		xfs_agino_t	unlinked_agino;
2377
2378		if (*bpp)
2379			xfs_trans_brelse(tp, *bpp);
2380
2381		*agino = next_agino;
2382		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2383				bpp);
2384		if (error)
2385			return error;
2386
2387		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2388		/*
2389		 * Make sure this pointer is valid and isn't an obvious
2390		 * infinite loop.
2391		 */
2392		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2393		    next_agino == unlinked_agino) {
2394			XFS_CORRUPTION_ERROR(__func__,
2395					XFS_ERRLEVEL_LOW, mp,
2396					*dipp, sizeof(**dipp));
2397			error = -EFSCORRUPTED;
2398			return error;
2399		}
2400		next_agino = unlinked_agino;
2401	}
2402
2403	return 0;
2404}
2405
2406/*
2407 * Pull the on-disk inode from the AGI unlinked list.
2408 */
2409STATIC int
2410xfs_iunlink_remove(
2411	struct xfs_trans	*tp,
2412	struct xfs_inode	*ip)
2413{
2414	struct xfs_mount	*mp = tp->t_mountp;
2415	struct xfs_agi		*agi;
2416	struct xfs_buf		*agibp;
2417	struct xfs_buf		*last_ibp;
2418	struct xfs_dinode	*last_dip = NULL;
2419	struct xfs_perag	*pag = NULL;
2420	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2421	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2422	xfs_agino_t		next_agino;
2423	xfs_agino_t		head_agino;
2424	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2425	int			error;
2426
2427	trace_xfs_iunlink_remove(ip);
2428
2429	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2430	error = xfs_read_agi(mp, tp, agno, &agibp);
2431	if (error)
2432		return error;
2433	agi = XFS_BUF_TO_AGI(agibp);
2434
2435	/*
2436	 * Get the index into the agi hash table for the list this inode will
2437	 * go on.  Make sure the head pointer isn't garbage.
 
2438	 */
2439	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2440	if (!xfs_verify_agino(mp, agno, head_agino)) {
2441		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2442				agi, sizeof(*agi));
2443		return -EFSCORRUPTED;
2444	}
2445
2446	/*
2447	 * Set our inode's next_unlinked pointer to NULL and then return
2448	 * the old pointer value so that we can update whatever was previous
2449	 * to us in the list to point to whatever was next in the list.
 
2450	 */
2451	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2452	if (error)
2453		return error;
2454
2455	/*
2456	 * If there was a backref pointing from the next inode back to this
2457	 * one, remove it because we've removed this inode from the list.
2458	 *
2459	 * Later, if this inode was in the middle of the list we'll update
2460	 * this inode's backref to point from the next inode.
2461	 */
2462	if (next_agino != NULLAGINO) {
2463		pag = xfs_perag_get(mp, agno);
2464		error = xfs_iunlink_change_backref(pag, next_agino,
2465				NULLAGINO);
2466		if (error)
2467			goto out;
2468	}
2469
2470	if (head_agino == agino) {
2471		/* Point the head of the list to the next unlinked inode. */
2472		error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2473				next_agino);
2474		if (error)
2475			goto out;
2476	} else {
2477		struct xfs_imap	imap;
2478		xfs_agino_t	prev_agino;
2479
2480		if (!pag)
2481			pag = xfs_perag_get(mp, agno);
 
2482
2483		/* We need to search the list for the inode being freed. */
2484		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2485				&prev_agino, &imap, &last_dip, &last_ibp,
2486				pag);
2487		if (error)
2488			goto out;
2489
2490		/* Point the previous inode on the list to the next inode. */
2491		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2492				last_dip, &imap, next_agino);
2493
2494		/*
2495		 * Now we deal with the backref for this inode.  If this inode
2496		 * pointed at a real inode, change the backref that pointed to
2497		 * us to point to our old next.  If this inode was the end of
2498		 * the list, delete the backref that pointed to us.  Note that
2499		 * change_backref takes care of deleting the backref if
2500		 * next_agino is NULLAGINO.
2501		 */
2502		error = xfs_iunlink_change_backref(pag, agino, next_agino);
2503		if (error)
2504			goto out;
2505	}
2506
2507out:
2508	if (pag)
2509		xfs_perag_put(pag);
2510	return error;
2511}
2512
2513/*
2514 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2515 * inodes that are in memory - they all must be marked stale and attached to
2516 * the cluster buffer.
2517 */
2518STATIC int
2519xfs_ifree_cluster(
2520	xfs_inode_t		*free_ip,
2521	xfs_trans_t		*tp,
 
2522	struct xfs_icluster	*xic)
2523{
2524	xfs_mount_t		*mp = free_ip->i_mount;
 
 
 
 
2525	int			nbufs;
2526	int			i, j;
2527	int			ioffset;
2528	xfs_daddr_t		blkno;
2529	xfs_buf_t		*bp;
2530	xfs_inode_t		*ip;
2531	xfs_inode_log_item_t	*iip;
2532	struct xfs_log_item	*lip;
2533	struct xfs_perag	*pag;
2534	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2535	xfs_ino_t		inum;
2536
2537	inum = xic->first_ino;
2538	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2539	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2540
2541	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2542		/*
2543		 * The allocation bitmap tells us which inodes of the chunk were
2544		 * physically allocated. Skip the cluster if an inode falls into
2545		 * a sparse region.
2546		 */
2547		ioffset = inum - xic->first_ino;
2548		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2549			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2550			continue;
2551		}
2552
2553		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2554					 XFS_INO_TO_AGBNO(mp, inum));
2555
2556		/*
2557		 * We obtain and lock the backing buffer first in the process
2558		 * here, as we have to ensure that any dirty inode that we
2559		 * can't get the flush lock on is attached to the buffer.
 
2560		 * If we scan the in-memory inodes first, then buffer IO can
2561		 * complete before we get a lock on it, and hence we may fail
2562		 * to mark all the active inodes on the buffer stale.
2563		 */
2564		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2565					mp->m_bsize * igeo->blocks_per_cluster,
2566					XBF_UNMAPPED);
2567
2568		if (!bp)
2569			return -ENOMEM;
2570
2571		/*
2572		 * This buffer may not have been correctly initialised as we
2573		 * didn't read it from disk. That's not important because we are
2574		 * only using to mark the buffer as stale in the log, and to
2575		 * attach stale cached inodes on it. That means it will never be
2576		 * dispatched for IO. If it is, we want to know about it, and we
2577		 * want it to fail. We can acheive this by adding a write
2578		 * verifier to the buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579		 */
 
2580		bp->b_ops = &xfs_inode_buf_ops;
2581
2582		/*
2583		 * Walk the inodes already attached to the buffer and mark them
2584		 * stale. These will all have the flush locks held, so an
2585		 * in-memory inode walk can't lock them. By marking them all
2586		 * stale first, we will not attempt to lock them in the loop
2587		 * below as the XFS_ISTALE flag will be set.
2588		 */
2589		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2590			if (lip->li_type == XFS_LI_INODE) {
2591				iip = (xfs_inode_log_item_t *)lip;
2592				ASSERT(iip->ili_logged == 1);
2593				lip->li_cb = xfs_istale_done;
2594				xfs_trans_ail_copy_lsn(mp->m_ail,
2595							&iip->ili_flush_lsn,
2596							&iip->ili_item.li_lsn);
2597				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2598			}
2599		}
2600
2601
2602		/*
2603		 * For each inode in memory attempt to add it to the inode
2604		 * buffer and set it up for being staled on buffer IO
2605		 * completion.  This is safe as we've locked out tail pushing
2606		 * and flushing by locking the buffer.
2607		 *
2608		 * We have already marked every inode that was part of a
2609		 * transaction stale above, which means there is no point in
2610		 * even trying to lock them.
2611		 */
2612		for (i = 0; i < igeo->inodes_per_cluster; i++) {
2613retry:
2614			rcu_read_lock();
2615			ip = radix_tree_lookup(&pag->pag_ici_root,
2616					XFS_INO_TO_AGINO(mp, (inum + i)));
2617
2618			/* Inode not in memory, nothing to do */
2619			if (!ip) {
2620				rcu_read_unlock();
2621				continue;
2622			}
2623
2624			/*
2625			 * because this is an RCU protected lookup, we could
2626			 * find a recently freed or even reallocated inode
2627			 * during the lookup. We need to check under the
2628			 * i_flags_lock for a valid inode here. Skip it if it
2629			 * is not valid, the wrong inode or stale.
2630			 */
2631			spin_lock(&ip->i_flags_lock);
2632			if (ip->i_ino != inum + i ||
2633			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2634				spin_unlock(&ip->i_flags_lock);
2635				rcu_read_unlock();
2636				continue;
2637			}
2638			spin_unlock(&ip->i_flags_lock);
2639
2640			/*
2641			 * Don't try to lock/unlock the current inode, but we
2642			 * _cannot_ skip the other inodes that we did not find
2643			 * in the list attached to the buffer and are not
2644			 * already marked stale. If we can't lock it, back off
2645			 * and retry.
2646			 */
2647			if (ip != free_ip) {
2648				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2649					rcu_read_unlock();
2650					delay(1);
2651					goto retry;
2652				}
2653
2654				/*
2655				 * Check the inode number again in case we're
2656				 * racing with freeing in xfs_reclaim_inode().
2657				 * See the comments in that function for more
2658				 * information as to why the initial check is
2659				 * not sufficient.
2660				 */
2661				if (ip->i_ino != inum + i) {
2662					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2663					rcu_read_unlock();
2664					continue;
2665				}
2666			}
2667			rcu_read_unlock();
2668
2669			xfs_iflock(ip);
2670			xfs_iflags_set(ip, XFS_ISTALE);
2671
2672			/*
2673			 * we don't need to attach clean inodes or those only
2674			 * with unlogged changes (which we throw away, anyway).
2675			 */
2676			iip = ip->i_itemp;
2677			if (!iip || xfs_inode_clean(ip)) {
2678				ASSERT(ip != free_ip);
2679				xfs_ifunlock(ip);
2680				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2681				continue;
2682			}
2683
2684			iip->ili_last_fields = iip->ili_fields;
2685			iip->ili_fields = 0;
2686			iip->ili_fsync_fields = 0;
2687			iip->ili_logged = 1;
2688			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2689						&iip->ili_item.li_lsn);
2690
2691			xfs_buf_attach_iodone(bp, xfs_istale_done,
2692						  &iip->ili_item);
2693
2694			if (ip != free_ip)
2695				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2696		}
2697
2698		xfs_trans_stale_inode_buf(tp, bp);
2699		xfs_trans_binval(tp, bp);
2700	}
2701
2702	xfs_perag_put(pag);
2703	return 0;
2704}
2705
2706/*
2707 * Free any local-format buffers sitting around before we reset to
2708 * extents format.
2709 */
2710static inline void
2711xfs_ifree_local_data(
2712	struct xfs_inode	*ip,
2713	int			whichfork)
2714{
2715	struct xfs_ifork	*ifp;
2716
2717	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2718		return;
2719
2720	ifp = XFS_IFORK_PTR(ip, whichfork);
2721	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2722}
2723
2724/*
2725 * This is called to return an inode to the inode free list.
2726 * The inode should already be truncated to 0 length and have
2727 * no pages associated with it.  This routine also assumes that
2728 * the inode is already a part of the transaction.
2729 *
2730 * The on-disk copy of the inode will have been added to the list
2731 * of unlinked inodes in the AGI. We need to remove the inode from
2732 * that list atomically with respect to freeing it here.
2733 */
2734int
2735xfs_ifree(
2736	struct xfs_trans	*tp,
2737	struct xfs_inode	*ip)
2738{
 
 
 
 
2739	int			error;
2740	struct xfs_icluster	xic = { 0 };
2741
2742	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2743	ASSERT(VFS_I(ip)->i_nlink == 0);
2744	ASSERT(ip->i_d.di_nextents == 0);
2745	ASSERT(ip->i_d.di_anextents == 0);
2746	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2747	ASSERT(ip->i_d.di_nblocks == 0);
2748
2749	/*
2750	 * Pull the on-disk inode from the AGI unlinked list.
2751	 */
2752	error = xfs_iunlink_remove(tp, ip);
2753	if (error)
2754		return error;
2755
2756	error = xfs_difree(tp, ip->i_ino, &xic);
2757	if (error)
2758		return error;
2759
2760	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2761	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2762
2763	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2764	ip->i_d.di_flags = 0;
2765	ip->i_d.di_flags2 = 0;
2766	ip->i_d.di_dmevmask = 0;
2767	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2768	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2769	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2770
2771	/* Don't attempt to replay owner changes for a deleted inode */
2772	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2773
2774	/*
2775	 * Bump the generation count so no one will be confused
2776	 * by reincarnations of this inode.
2777	 */
2778	VFS_I(ip)->i_generation++;
2779	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2780
2781	if (xic.deleted)
2782		error = xfs_ifree_cluster(ip, tp, &xic);
2783
 
2784	return error;
2785}
2786
2787/*
2788 * This is called to unpin an inode.  The caller must have the inode locked
2789 * in at least shared mode so that the buffer cannot be subsequently pinned
2790 * once someone is waiting for it to be unpinned.
2791 */
2792static void
2793xfs_iunpin(
2794	struct xfs_inode	*ip)
2795{
2796	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2797
2798	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2799
2800	/* Give the log a push to start the unpinning I/O */
2801	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2802
2803}
2804
2805static void
2806__xfs_iunpin_wait(
2807	struct xfs_inode	*ip)
2808{
2809	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2810	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2811
2812	xfs_iunpin(ip);
2813
2814	do {
2815		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2816		if (xfs_ipincount(ip))
2817			io_schedule();
2818	} while (xfs_ipincount(ip));
2819	finish_wait(wq, &wait.wq_entry);
2820}
2821
2822void
2823xfs_iunpin_wait(
2824	struct xfs_inode	*ip)
2825{
2826	if (xfs_ipincount(ip))
2827		__xfs_iunpin_wait(ip);
2828}
2829
2830/*
2831 * Removing an inode from the namespace involves removing the directory entry
2832 * and dropping the link count on the inode. Removing the directory entry can
2833 * result in locking an AGF (directory blocks were freed) and removing a link
2834 * count can result in placing the inode on an unlinked list which results in
2835 * locking an AGI.
2836 *
2837 * The big problem here is that we have an ordering constraint on AGF and AGI
2838 * locking - inode allocation locks the AGI, then can allocate a new extent for
2839 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2840 * removes the inode from the unlinked list, requiring that we lock the AGI
2841 * first, and then freeing the inode can result in an inode chunk being freed
2842 * and hence freeing disk space requiring that we lock an AGF.
2843 *
2844 * Hence the ordering that is imposed by other parts of the code is AGI before
2845 * AGF. This means we cannot remove the directory entry before we drop the inode
2846 * reference count and put it on the unlinked list as this results in a lock
2847 * order of AGF then AGI, and this can deadlock against inode allocation and
2848 * freeing. Therefore we must drop the link counts before we remove the
2849 * directory entry.
2850 *
2851 * This is still safe from a transactional point of view - it is not until we
2852 * get to xfs_defer_finish() that we have the possibility of multiple
2853 * transactions in this operation. Hence as long as we remove the directory
2854 * entry and drop the link count in the first transaction of the remove
2855 * operation, there are no transactional constraints on the ordering here.
2856 */
2857int
2858xfs_remove(
2859	xfs_inode_t             *dp,
2860	struct xfs_name		*name,
2861	xfs_inode_t		*ip)
2862{
2863	xfs_mount_t		*mp = dp->i_mount;
2864	xfs_trans_t             *tp = NULL;
 
 
 
 
 
2865	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
 
2866	int                     error = 0;
2867	uint			resblks;
2868
2869	trace_xfs_remove(dp, name);
2870
2871	if (XFS_FORCED_SHUTDOWN(mp))
 
 
2872		return -EIO;
2873
2874	error = xfs_qm_dqattach(dp);
2875	if (error)
2876		goto std_return;
2877
2878	error = xfs_qm_dqattach(ip);
2879	if (error)
2880		goto std_return;
2881
 
 
 
 
2882	/*
2883	 * We try to get the real space reservation first,
2884	 * allowing for directory btree deletion(s) implying
2885	 * possible bmap insert(s).  If we can't get the space
2886	 * reservation then we use 0 instead, and avoid the bmap
2887	 * btree insert(s) in the directory code by, if the bmap
2888	 * insert tries to happen, instead trimming the LAST
2889	 * block from the directory.
2890	 */
2891	resblks = XFS_REMOVE_SPACE_RES(mp);
2892	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2893	if (error == -ENOSPC) {
2894		resblks = 0;
2895		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2896				&tp);
2897	}
2898	if (error) {
2899		ASSERT(error != -ENOSPC);
2900		goto std_return;
2901	}
2902
2903	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2904
2905	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2906	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2907
2908	/*
2909	 * If we're removing a directory perform some additional validation.
2910	 */
2911	if (is_dir) {
2912		ASSERT(VFS_I(ip)->i_nlink >= 2);
2913		if (VFS_I(ip)->i_nlink != 2) {
2914			error = -ENOTEMPTY;
2915			goto out_trans_cancel;
2916		}
2917		if (!xfs_dir_isempty(ip)) {
2918			error = -ENOTEMPTY;
2919			goto out_trans_cancel;
2920		}
2921
2922		/* Drop the link from ip's "..".  */
2923		error = xfs_droplink(tp, dp);
2924		if (error)
2925			goto out_trans_cancel;
2926
2927		/* Drop the "." link from ip to self.  */
2928		error = xfs_droplink(tp, ip);
2929		if (error)
2930			goto out_trans_cancel;
2931	} else {
2932		/*
2933		 * When removing a non-directory we need to log the parent
2934		 * inode here.  For a directory this is done implicitly
2935		 * by the xfs_droplink call for the ".." entry.
2936		 */
2937		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2938	}
2939	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2940
2941	/* Drop the link from dp to ip. */
2942	error = xfs_droplink(tp, ip);
2943	if (error)
2944		goto out_trans_cancel;
2945
2946	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2947	if (error) {
2948		ASSERT(error != -ENOENT);
2949		goto out_trans_cancel;
2950	}
2951
2952	/*
2953	 * If this is a synchronous mount, make sure that the
2954	 * remove transaction goes to disk before returning to
2955	 * the user.
2956	 */
2957	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2958		xfs_trans_set_sync(tp);
2959
2960	error = xfs_trans_commit(tp);
2961	if (error)
2962		goto std_return;
2963
2964	if (is_dir && xfs_inode_is_filestream(ip))
2965		xfs_filestream_deassociate(ip);
2966
 
 
 
2967	return 0;
2968
2969 out_trans_cancel:
2970	xfs_trans_cancel(tp);
 
 
 
 
 
2971 std_return:
2972	return error;
2973}
2974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2975/*
2976 * Enter all inodes for a rename transaction into a sorted array.
2977 */
2978#define __XFS_SORT_INODES	5
2979STATIC void
2980xfs_sort_for_rename(
2981	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2982	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2983	struct xfs_inode	*ip1,	/* in: inode of old entry */
2984	struct xfs_inode	*ip2,	/* in: inode of new entry */
2985	struct xfs_inode	*wip,	/* in: whiteout inode */
2986	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2987	int			*num_inodes)  /* in/out: inodes in array */
2988{
2989	int			i, j;
2990
2991	ASSERT(*num_inodes == __XFS_SORT_INODES);
2992	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2993
2994	/*
2995	 * i_tab contains a list of pointers to inodes.  We initialize
2996	 * the table here & we'll sort it.  We will then use it to
2997	 * order the acquisition of the inode locks.
2998	 *
2999	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
3000	 */
3001	i = 0;
3002	i_tab[i++] = dp1;
3003	i_tab[i++] = dp2;
3004	i_tab[i++] = ip1;
3005	if (ip2)
3006		i_tab[i++] = ip2;
3007	if (wip)
3008		i_tab[i++] = wip;
3009	*num_inodes = i;
3010
3011	/*
3012	 * Sort the elements via bubble sort.  (Remember, there are at
3013	 * most 5 elements to sort, so this is adequate.)
3014	 */
3015	for (i = 0; i < *num_inodes; i++) {
3016		for (j = 1; j < *num_inodes; j++) {
3017			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3018				struct xfs_inode *temp = i_tab[j];
3019				i_tab[j] = i_tab[j-1];
3020				i_tab[j-1] = temp;
3021			}
3022		}
3023	}
3024}
3025
3026static int
3027xfs_finish_rename(
3028	struct xfs_trans	*tp)
 
3029{
3030	/*
3031	 * If this is a synchronous mount, make sure that the rename transaction
3032	 * goes to disk before returning to the user.
3033	 */
3034	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3035		xfs_trans_set_sync(tp);
3036
3037	return xfs_trans_commit(tp);
3038}
3039
3040/*
3041 * xfs_cross_rename()
3042 *
3043 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3044 */
3045STATIC int
3046xfs_cross_rename(
3047	struct xfs_trans	*tp,
3048	struct xfs_inode	*dp1,
3049	struct xfs_name		*name1,
3050	struct xfs_inode	*ip1,
3051	struct xfs_inode	*dp2,
3052	struct xfs_name		*name2,
3053	struct xfs_inode	*ip2,
3054	int			spaceres)
3055{
3056	int		error = 0;
3057	int		ip1_flags = 0;
3058	int		ip2_flags = 0;
3059	int		dp2_flags = 0;
3060
3061	/* Swap inode number for dirent in first parent */
3062	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3063	if (error)
3064		goto out_trans_abort;
3065
3066	/* Swap inode number for dirent in second parent */
3067	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3068	if (error)
3069		goto out_trans_abort;
3070
3071	/*
3072	 * If we're renaming one or more directories across different parents,
3073	 * update the respective ".." entries (and link counts) to match the new
3074	 * parents.
3075	 */
3076	if (dp1 != dp2) {
3077		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3078
3079		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3080			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3081						dp1->i_ino, spaceres);
3082			if (error)
3083				goto out_trans_abort;
3084
3085			/* transfer ip2 ".." reference to dp1 */
3086			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3087				error = xfs_droplink(tp, dp2);
3088				if (error)
3089					goto out_trans_abort;
3090				xfs_bumplink(tp, dp1);
3091			}
3092
3093			/*
3094			 * Although ip1 isn't changed here, userspace needs
3095			 * to be warned about the change, so that applications
3096			 * relying on it (like backup ones), will properly
3097			 * notify the change
3098			 */
3099			ip1_flags |= XFS_ICHGTIME_CHG;
3100			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3101		}
3102
3103		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3104			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3105						dp2->i_ino, spaceres);
3106			if (error)
3107				goto out_trans_abort;
3108
3109			/* transfer ip1 ".." reference to dp2 */
3110			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3111				error = xfs_droplink(tp, dp1);
3112				if (error)
3113					goto out_trans_abort;
3114				xfs_bumplink(tp, dp2);
3115			}
3116
3117			/*
3118			 * Although ip2 isn't changed here, userspace needs
3119			 * to be warned about the change, so that applications
3120			 * relying on it (like backup ones), will properly
3121			 * notify the change
3122			 */
3123			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3124			ip2_flags |= XFS_ICHGTIME_CHG;
3125		}
3126	}
3127
3128	if (ip1_flags) {
3129		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3130		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3131	}
3132	if (ip2_flags) {
3133		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3134		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3135	}
3136	if (dp2_flags) {
3137		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3138		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3139	}
3140	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3141	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3142	return xfs_finish_rename(tp);
3143
3144out_trans_abort:
3145	xfs_trans_cancel(tp);
3146	return error;
3147}
3148
3149/*
3150 * xfs_rename_alloc_whiteout()
3151 *
3152 * Return a referenced, unlinked, unlocked inode that that can be used as a
3153 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3154 * crash between allocating the inode and linking it into the rename transaction
3155 * recovery will free the inode and we won't leak it.
3156 */
3157static int
3158xfs_rename_alloc_whiteout(
 
 
3159	struct xfs_inode	*dp,
3160	struct xfs_inode	**wip)
3161{
 
 
 
 
 
 
3162	struct xfs_inode	*tmpfile;
 
3163	int			error;
3164
3165	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3166	if (error)
3167		return error;
3168
 
 
 
 
 
 
 
 
 
3169	/*
3170	 * Prepare the tmpfile inode as if it were created through the VFS.
3171	 * Complete the inode setup and flag it as linkable.  nlink is already
3172	 * zero, so we can skip the drop_nlink.
3173	 */
3174	xfs_setup_iops(tmpfile);
3175	xfs_finish_inode_setup(tmpfile);
3176	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3177
3178	*wip = tmpfile;
3179	return 0;
3180}
3181
3182/*
3183 * xfs_rename
3184 */
3185int
3186xfs_rename(
 
3187	struct xfs_inode	*src_dp,
3188	struct xfs_name		*src_name,
3189	struct xfs_inode	*src_ip,
3190	struct xfs_inode	*target_dp,
3191	struct xfs_name		*target_name,
3192	struct xfs_inode	*target_ip,
3193	unsigned int		flags)
3194{
 
 
 
 
 
 
 
 
 
 
 
3195	struct xfs_mount	*mp = src_dp->i_mount;
3196	struct xfs_trans	*tp;
3197	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3198	struct xfs_inode	*inodes[__XFS_SORT_INODES];
 
3199	int			num_inodes = __XFS_SORT_INODES;
3200	bool			new_parent = (src_dp != target_dp);
3201	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3202	int			spaceres;
3203	int			error;
 
3204
3205	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3206
3207	if ((flags & RENAME_EXCHANGE) && !target_ip)
3208		return -EINVAL;
3209
3210	/*
3211	 * If we are doing a whiteout operation, allocate the whiteout inode
3212	 * we will be placing at the target and ensure the type is set
3213	 * appropriately.
3214	 */
3215	if (flags & RENAME_WHITEOUT) {
3216		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3217		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3218		if (error)
3219			return error;
3220
3221		/* setup target dirent info as whiteout */
3222		src_name->type = XFS_DIR3_FT_CHRDEV;
3223	}
3224
3225	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3226				inodes, &num_inodes);
3227
3228	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3230	if (error == -ENOSPC) {
 
3231		spaceres = 0;
3232		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3233				&tp);
3234	}
3235	if (error)
3236		goto out_release_wip;
 
 
 
 
 
 
 
 
 
 
3237
3238	/*
3239	 * Attach the dquots to the inodes
3240	 */
3241	error = xfs_qm_vop_rename_dqattach(inodes);
3242	if (error)
3243		goto out_trans_cancel;
 
 
3244
3245	/*
3246	 * Lock all the participating inodes. Depending upon whether
3247	 * the target_name exists in the target directory, and
3248	 * whether the target directory is the same as the source
3249	 * directory, we can lock from 2 to 4 inodes.
3250	 */
3251	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3252
3253	/*
3254	 * Join all the inodes to the transaction. From this point on,
3255	 * we can rely on either trans_commit or trans_cancel to unlock
3256	 * them.
3257	 */
3258	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3259	if (new_parent)
3260		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3261	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3262	if (target_ip)
3263		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3264	if (wip)
3265		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3266
3267	/*
3268	 * If we are using project inheritance, we only allow renames
3269	 * into our tree when the project IDs are the same; else the
3270	 * tree quota mechanism would be circumvented.
3271	 */
3272	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3273		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3274		error = -EXDEV;
3275		goto out_trans_cancel;
3276	}
3277
3278	/* RENAME_EXCHANGE is unique from here on. */
3279	if (flags & RENAME_EXCHANGE)
3280		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3281					target_dp, target_name, target_ip,
3282					spaceres);
 
 
 
3283
3284	/*
3285	 * Check for expected errors before we dirty the transaction
3286	 * so we can return an error without a transaction abort.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287	 */
3288	if (target_ip == NULL) {
3289		/*
3290		 * If there's no space reservation, check the entry will
3291		 * fit before actually inserting it.
3292		 */
3293		if (!spaceres) {
3294			error = xfs_dir_canenter(tp, target_dp, target_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3295			if (error)
3296				goto out_trans_cancel;
3297		}
3298	} else {
3299		/*
3300		 * If target exists and it's a directory, check that whether
3301		 * it can be destroyed.
3302		 */
3303		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3304		    (!xfs_dir_isempty(target_ip) ||
3305		     (VFS_I(target_ip)->i_nlink > 2))) {
3306			error = -EEXIST;
3307			goto out_trans_cancel;
3308		}
3309	}
3310
3311	/*
3312	 * Directory entry creation below may acquire the AGF. Remove
3313	 * the whiteout from the unlinked list first to preserve correct
3314	 * AGI/AGF locking order. This dirties the transaction so failures
3315	 * after this point will abort and log recovery will clean up the
3316	 * mess.
3317	 *
3318	 * For whiteouts, we need to bump the link count on the whiteout
3319	 * inode. After this point, we have a real link, clear the tmpfile
3320	 * state flag from the inode so it doesn't accidentally get misused
3321	 * in future.
3322	 */
3323	if (wip) {
3324		ASSERT(VFS_I(wip)->i_nlink == 0);
3325		error = xfs_iunlink_remove(tp, wip);
3326		if (error)
3327			goto out_trans_cancel;
3328
3329		xfs_bumplink(tp, wip);
3330		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3331		VFS_I(wip)->i_state &= ~I_LINKABLE;
 
 
 
 
3332	}
3333
 
3334	/*
3335	 * Set up the target.
 
3336	 */
3337	if (target_ip == NULL) {
3338		/*
3339		 * If target does not exist and the rename crosses
3340		 * directories, adjust the target directory link count
3341		 * to account for the ".." reference from the new entry.
3342		 */
3343		error = xfs_dir_createname(tp, target_dp, target_name,
3344					   src_ip->i_ino, spaceres);
3345		if (error)
3346			goto out_trans_cancel;
3347
3348		xfs_trans_ichgtime(tp, target_dp,
3349					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3350
3351		if (new_parent && src_is_directory) {
3352			xfs_bumplink(tp, target_dp);
3353		}
3354	} else { /* target_ip != NULL */
3355		/*
3356		 * Link the source inode under the target name.
3357		 * If the source inode is a directory and we are moving
3358		 * it across directories, its ".." entry will be
3359		 * inconsistent until we replace that down below.
3360		 *
3361		 * In case there is already an entry with the same
3362		 * name at the destination directory, remove it first.
3363		 */
3364		error = xfs_dir_replace(tp, target_dp, target_name,
3365					src_ip->i_ino, spaceres);
3366		if (error)
3367			goto out_trans_cancel;
3368
3369		xfs_trans_ichgtime(tp, target_dp,
3370					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 
 
 
3371
3372		/*
3373		 * Decrement the link count on the target since the target
3374		 * dir no longer points to it.
3375		 */
3376		error = xfs_droplink(tp, target_ip);
3377		if (error)
3378			goto out_trans_cancel;
3379
3380		if (src_is_directory) {
3381			/*
3382			 * Drop the link from the old "." entry.
3383			 */
3384			error = xfs_droplink(tp, target_ip);
3385			if (error)
3386				goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3387		}
3388	} /* target_ip != NULL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3389
3390	/*
3391	 * Remove the source.
 
 
 
 
 
3392	 */
3393	if (new_parent && src_is_directory) {
3394		/*
3395		 * Rewrite the ".." entry to point to the new
3396		 * directory.
3397		 */
3398		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3399					target_dp->i_ino, spaceres);
3400		ASSERT(error != -EEXIST);
3401		if (error)
3402			goto out_trans_cancel;
3403	}
3404
3405	/*
3406	 * We always want to hit the ctime on the source inode.
3407	 *
3408	 * This isn't strictly required by the standards since the source
3409	 * inode isn't really being changed, but old unix file systems did
3410	 * it and some incremental backup programs won't work without it.
3411	 */
3412	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3413	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
 
 
 
 
 
3414
3415	/*
3416	 * Adjust the link count on src_dp.  This is necessary when
3417	 * renaming a directory, either within one parent when
3418	 * the target existed, or across two parent directories.
3419	 */
3420	if (src_is_directory && (new_parent || target_ip != NULL)) {
3421
3422		/*
3423		 * Decrement link count on src_directory since the
3424		 * entry that's moved no longer points to it.
3425		 */
3426		error = xfs_droplink(tp, src_dp);
3427		if (error)
3428			goto out_trans_cancel;
3429	}
3430
 
 
 
 
3431	/*
3432	 * For whiteouts, we only need to update the source dirent with the
3433	 * inode number of the whiteout inode rather than removing it
3434	 * altogether.
3435	 */
3436	if (wip) {
3437		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3438					spaceres);
3439	} else
3440		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3441					   spaceres);
3442	if (error)
3443		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
3444
3445	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3446	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3447	if (new_parent)
3448		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
 
 
3449
3450	error = xfs_finish_rename(tp);
3451	if (wip)
3452		xfs_irele(wip);
3453	return error;
3454
3455out_trans_cancel:
3456	xfs_trans_cancel(tp);
3457out_release_wip:
3458	if (wip)
3459		xfs_irele(wip);
3460	return error;
3461}
3462
3463STATIC int
 
 
 
 
 
 
 
 
 
 
 
 
 
3464xfs_iflush_cluster(
3465	struct xfs_inode	*ip,
3466	struct xfs_buf		*bp)
3467{
3468	struct xfs_mount	*mp = ip->i_mount;
3469	struct xfs_perag	*pag;
3470	unsigned long		first_index, mask;
3471	int			cilist_size;
3472	struct xfs_inode	**cilist;
3473	struct xfs_inode	*cip;
3474	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3475	int			nr_found;
3476	int			clcount = 0;
3477	int			i;
3478
3479	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3480
3481	cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3482	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3483	if (!cilist)
3484		goto out_put;
3485
3486	mask = ~(igeo->inodes_per_cluster - 1);
3487	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3488	rcu_read_lock();
3489	/* really need a gang lookup range call here */
3490	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3491					first_index, igeo->inodes_per_cluster);
3492	if (nr_found == 0)
3493		goto out_free;
3494
3495	for (i = 0; i < nr_found; i++) {
3496		cip = cilist[i];
3497		if (cip == ip)
3498			continue;
3499
3500		/*
3501		 * because this is an RCU protected lookup, we could find a
3502		 * recently freed or even reallocated inode during the lookup.
3503		 * We need to check under the i_flags_lock for a valid inode
3504		 * here. Skip it if it is not valid or the wrong inode.
3505		 */
3506		spin_lock(&cip->i_flags_lock);
3507		if (!cip->i_ino ||
3508		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3509			spin_unlock(&cip->i_flags_lock);
3510			continue;
3511		}
3512
3513		/*
3514		 * Once we fall off the end of the cluster, no point checking
3515		 * any more inodes in the list because they will also all be
3516		 * outside the cluster.
3517		 */
3518		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3519			spin_unlock(&cip->i_flags_lock);
3520			break;
 
 
 
 
3521		}
3522		spin_unlock(&cip->i_flags_lock);
3523
3524		/*
3525		 * Do an un-protected check to see if the inode is dirty and
3526		 * is a candidate for flushing.  These checks will be repeated
3527		 * later after the appropriate locks are acquired.
 
3528		 */
3529		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
 
3530			continue;
 
 
 
3531
3532		/*
3533		 * Try to get locks.  If any are unavailable or it is pinned,
3534		 * then this inode cannot be flushed and is skipped.
3535		 */
3536
3537		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3538			continue;
3539		if (!xfs_iflock_nowait(cip)) {
3540			xfs_iunlock(cip, XFS_ILOCK_SHARED);
 
 
 
3541			continue;
3542		}
3543		if (xfs_ipincount(cip)) {
3544			xfs_ifunlock(cip);
3545			xfs_iunlock(cip, XFS_ILOCK_SHARED);
 
 
3546			continue;
3547		}
3548
 
 
 
 
 
 
 
 
 
3549
 
3550		/*
3551		 * Check the inode number again, just to be certain we are not
3552		 * racing with freeing in xfs_reclaim_inode(). See the comments
3553		 * in that function for more information as to why the initial
3554		 * check is not sufficient.
3555		 */
3556		if (!cip->i_ino) {
3557			xfs_ifunlock(cip);
3558			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3559			continue;
3560		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561
3562		/*
3563		 * arriving here means that this inode can be flushed.  First
3564		 * re-check that it's dirty before flushing.
3565		 */
3566		if (!xfs_inode_clean(cip)) {
3567			int	error;
3568			error = xfs_iflush_int(cip, bp);
3569			if (error) {
3570				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3571				goto cluster_corrupt_out;
3572			}
3573			clcount++;
3574		} else {
3575			xfs_ifunlock(cip);
3576		}
3577		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3578	}
3579
3580	if (clcount) {
3581		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3582		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
 
 
 
 
 
 
 
 
 
3583	}
3584
3585out_free:
3586	rcu_read_unlock();
3587	kmem_free(cilist);
3588out_put:
3589	xfs_perag_put(pag);
3590	return 0;
 
 
 
 
 
 
 
 
 
 
3591
 
 
3592
3593cluster_corrupt_out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3594	/*
3595	 * Corruption detected in the clustering loop.  Invalidate the
3596	 * inode buffer and shut down the filesystem.
3597	 */
3598	rcu_read_unlock();
 
 
 
 
 
 
3599
3600	/*
3601	 * We'll always have an inode attached to the buffer for completion
3602	 * process by the time we are called from xfs_iflush(). Hence we have
3603	 * always need to do IO completion processing to abort the inodes
3604	 * attached to the buffer.  handle them just like the shutdown case in
3605	 * xfs_buf_submit().
3606	 */
3607	ASSERT(bp->b_iodone);
3608	bp->b_flags |= XBF_ASYNC;
3609	bp->b_flags &= ~XBF_DONE;
3610	xfs_buf_stale(bp);
3611	xfs_buf_ioerror(bp, -EIO);
3612	xfs_buf_ioend(bp);
3613
3614	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3615
3616	/* abort the corrupt inode, as it was not attached to the buffer */
3617	xfs_iflush_abort(cip, false);
3618	kmem_free(cilist);
3619	xfs_perag_put(pag);
3620	return -EFSCORRUPTED;
3621}
3622
3623/*
3624 * Flush dirty inode metadata into the backing buffer.
3625 *
3626 * The caller must have the inode lock and the inode flush lock held.  The
3627 * inode lock will still be held upon return to the caller, and the inode
3628 * flush lock will be released after the inode has reached the disk.
3629 *
3630 * The caller must write out the buffer returned in *bpp and release it.
3631 */
3632int
3633xfs_iflush(
3634	struct xfs_inode	*ip,
3635	struct xfs_buf		**bpp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3636{
3637	struct xfs_mount	*mp = ip->i_mount;
3638	struct xfs_buf		*bp = NULL;
3639	struct xfs_dinode	*dip;
3640	int			error;
 
 
 
3641
3642	XFS_STATS_INC(mp, xs_iflush_count);
 
 
 
3643
3644	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3645	ASSERT(xfs_isiflocked(ip));
3646	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3647	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
 
 
 
3648
3649	*bpp = NULL;
 
 
3650
3651	xfs_iunpin_wait(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3652
3653	/*
3654	 * For stale inodes we cannot rely on the backing buffer remaining
3655	 * stale in cache for the remaining life of the stale inode and so
3656	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3657	 * inodes below. We have to check this after ensuring the inode is
3658	 * unpinned so that it is safe to reclaim the stale inode after the
3659	 * flush call.
3660	 */
3661	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3662		xfs_ifunlock(ip);
3663		return 0;
3664	}
3665
3666	/*
3667	 * This may have been unpinned because the filesystem is shutting
3668	 * down forcibly. If that's the case we must not write this inode
3669	 * to disk, because the log record didn't make it to disk.
3670	 *
3671	 * We also have to remove the log item from the AIL in this case,
3672	 * as we wait for an empty AIL as part of the unmount process.
3673	 */
3674	if (XFS_FORCED_SHUTDOWN(mp)) {
3675		error = -EIO;
3676		goto abort_out;
3677	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3678
3679	/*
3680	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3681	 * operation here, so we may get  an EAGAIN error. In that case, we
3682	 * simply want to return with the inode still dirty.
3683	 *
3684	 * If we get any other error, we effectively have a corruption situation
3685	 * and we cannot flush the inode, so we treat it the same as failing
3686	 * xfs_iflush_int().
3687	 */
3688	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3689			       0);
3690	if (error == -EAGAIN) {
3691		xfs_ifunlock(ip);
3692		return error;
3693	}
3694	if (error)
3695		goto corrupt_out;
3696
3697	/*
3698	 * First flush out the inode that xfs_iflush was called with.
3699	 */
3700	error = xfs_iflush_int(ip, bp);
3701	if (error)
3702		goto corrupt_out;
 
3703
3704	/*
3705	 * If the buffer is pinned then push on the log now so we won't
3706	 * get stuck waiting in the write for too long.
3707	 */
3708	if (xfs_buf_ispinned(bp))
3709		xfs_log_force(mp, 0);
 
3710
3711	/*
3712	 * inode clustering: try to gather other inodes into this write
3713	 *
3714	 * Note: Any error during clustering will result in the filesystem
3715	 * being shut down and completion callbacks run on the cluster buffer.
3716	 * As we have already flushed and attached this inode to the buffer,
3717	 * it has already been aborted and released by xfs_iflush_cluster() and
3718	 * so we have no further error handling to do here.
3719	 */
3720	error = xfs_iflush_cluster(ip, bp);
3721	if (error)
3722		return error;
3723
3724	*bpp = bp;
3725	return 0;
 
 
 
3726
3727corrupt_out:
3728	if (bp)
3729		xfs_buf_relse(bp);
3730	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3731abort_out:
3732	/* abort the corrupt inode, as it was not attached to the buffer */
3733	xfs_iflush_abort(ip, false);
3734	return error;
3735}
3736
3737/*
3738 * If there are inline format data / attr forks attached to this inode,
3739 * make sure they're not corrupt.
3740 */
3741bool
3742xfs_inode_verify_forks(
3743	struct xfs_inode	*ip)
 
3744{
3745	struct xfs_ifork	*ifp;
3746	xfs_failaddr_t		fa;
3747
3748	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3749	if (fa) {
3750		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3751		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3752				ifp->if_u1.if_data, ifp->if_bytes, fa);
3753		return false;
3754	}
3755
3756	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3757	if (fa) {
3758		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3759		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3760				ifp ? ifp->if_u1.if_data : NULL,
3761				ifp ? ifp->if_bytes : 0, fa);
3762		return false;
3763	}
3764	return true;
3765}
3766
3767STATIC int
3768xfs_iflush_int(
 
 
3769	struct xfs_inode	*ip,
3770	struct xfs_buf		*bp)
 
3771{
3772	struct xfs_inode_log_item *iip = ip->i_itemp;
3773	struct xfs_dinode	*dip;
3774	struct xfs_mount	*mp = ip->i_mount;
 
 
 
 
3775
3776	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3777	ASSERT(xfs_isiflocked(ip));
3778	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3779	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3780	ASSERT(iip != NULL && iip->ili_fields != 0);
3781	ASSERT(ip->i_d.di_version > 1);
3782
3783	/* set *dip = inode's place in the buffer */
3784	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
 
3785
3786	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3787			       mp, XFS_ERRTAG_IFLUSH_1)) {
3788		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3789			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3790			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3791		goto corrupt_out;
3792	}
3793	if (S_ISREG(VFS_I(ip)->i_mode)) {
3794		if (XFS_TEST_ERROR(
3795		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3796		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3797		    mp, XFS_ERRTAG_IFLUSH_3)) {
3798			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3799				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3800				__func__, ip->i_ino, ip);
3801			goto corrupt_out;
3802		}
3803	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3804		if (XFS_TEST_ERROR(
3805		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3806		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3807		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3808		    mp, XFS_ERRTAG_IFLUSH_4)) {
3809			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3810				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3811				__func__, ip->i_ino, ip);
3812			goto corrupt_out;
3813		}
3814	}
3815	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3816				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3817		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3818			"%s: detected corrupt incore inode %Lu, "
3819			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3820			__func__, ip->i_ino,
3821			ip->i_d.di_nextents + ip->i_d.di_anextents,
3822			ip->i_d.di_nblocks, ip);
3823		goto corrupt_out;
3824	}
3825	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3826				mp, XFS_ERRTAG_IFLUSH_6)) {
3827		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3828			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3829			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3830		goto corrupt_out;
3831	}
3832
3833	/*
3834	 * Inode item log recovery for v2 inodes are dependent on the
3835	 * di_flushiter count for correct sequencing. We bump the flush
3836	 * iteration count so we can detect flushes which postdate a log record
3837	 * during recovery. This is redundant as we now log every change and
3838	 * hence this can't happen but we need to still do it to ensure
3839	 * backwards compatibility with old kernels that predate logging all
3840	 * inode changes.
3841	 */
3842	if (ip->i_d.di_version < 3)
3843		ip->i_d.di_flushiter++;
3844
3845	/* Check the inline fork data before we write out. */
3846	if (!xfs_inode_verify_forks(ip))
3847		goto corrupt_out;
3848
3849	/*
3850	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3851	 * copy out the core of the inode, because if the inode is dirty at all
3852	 * the core must be.
3853	 */
3854	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3855
3856	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3857	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3858		ip->i_d.di_flushiter = 0;
 
 
3859
3860	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3861	if (XFS_IFORK_Q(ip))
3862		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3863	xfs_inobp_check(mp, bp);
 
 
 
 
3864
3865	/*
3866	 * We've recorded everything logged in the inode, so we'd like to clear
3867	 * the ili_fields bits so we don't log and flush things unnecessarily.
3868	 * However, we can't stop logging all this information until the data
3869	 * we've copied into the disk buffer is written to disk.  If we did we
3870	 * might overwrite the copy of the inode in the log with all the data
3871	 * after re-logging only part of it, and in the face of a crash we
3872	 * wouldn't have all the data we need to recover.
3873	 *
3874	 * What we do is move the bits to the ili_last_fields field.  When
3875	 * logging the inode, these bits are moved back to the ili_fields field.
3876	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3877	 * know that the information those bits represent is permanently on
3878	 * disk.  As long as the flush completes before the inode is logged
3879	 * again, then both ili_fields and ili_last_fields will be cleared.
3880	 *
3881	 * We can play with the ili_fields bits here, because the inode lock
3882	 * must be held exclusively in order to set bits there and the flush
3883	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3884	 * done routine can tell whether or not to look in the AIL.  Also, store
3885	 * the current LSN of the inode so that we can tell whether the item has
3886	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3887	 * need the AIL lock, because it is a 64 bit value that cannot be read
3888	 * atomically.
3889	 */
3890	iip->ili_last_fields = iip->ili_fields;
3891	iip->ili_fields = 0;
3892	iip->ili_fsync_fields = 0;
3893	iip->ili_logged = 1;
3894
3895	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3896				&iip->ili_item.li_lsn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3897
3898	/*
3899	 * Attach the function xfs_iflush_done to the inode's
3900	 * buffer.  This will remove the inode from the AIL
3901	 * and unlock the inode's flush lock when the inode is
3902	 * completely written to disk.
3903	 */
3904	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3905
3906	/* generate the checksum. */
3907	xfs_dinode_calc_crc(mp, dip);
 
 
 
 
3908
3909	ASSERT(!list_empty(&bp->b_li_list));
3910	ASSERT(bp->b_iodone != NULL);
3911	return 0;
3912
3913corrupt_out:
3914	return -EFSCORRUPTED;
3915}
3916
3917/* Release an inode. */
3918void
3919xfs_irele(
3920	struct xfs_inode	*ip)
3921{
3922	trace_xfs_irele(ip, _RET_IP_);
3923	iput(VFS_I(ip));
3924}