Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42#include <linux/dmi.h>
43#include <linux/units.h>
44#include <linux/unaligned.h>
45
46#include <acpi/cppc_acpi.h>
47
48struct cppc_pcc_data {
49 struct pcc_mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 bool pcc_channel_acquired;
52 unsigned int deadline_us;
53 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54
55 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
56 bool platform_owns_pcc; /* Ownership of PCC subspace */
57 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
58
59 /*
60 * Lock to provide controlled access to the PCC channel.
61 *
62 * For performance critical usecases(currently cppc_set_perf)
63 * We need to take read_lock and check if channel belongs to OSPM
64 * before reading or writing to PCC subspace
65 * We need to take write_lock before transferring the channel
66 * ownership to the platform via a Doorbell
67 * This allows us to batch a number of CPPC requests if they happen
68 * to originate in about the same time
69 *
70 * For non-performance critical usecases(init)
71 * Take write_lock for all purposes which gives exclusive access
72 */
73 struct rw_semaphore pcc_lock;
74
75 /* Wait queue for CPUs whose requests were batched */
76 wait_queue_head_t pcc_write_wait_q;
77 ktime_t last_cmd_cmpl_time;
78 ktime_t last_mpar_reset;
79 int mpar_count;
80 int refcount;
81};
82
83/* Array to represent the PCC channel per subspace ID */
84static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87
88/*
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
94 */
95static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
97/* pcc mapped address + header size + offset within PCC subspace */
98#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 0x8 + (offs))
100
101/* Check if a CPC register is in PCC */
102#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
103 (cpc)->cpc_entry.reg.space_id == \
104 ACPI_ADR_SPACE_PLATFORM_COMM)
105
106/* Check if a CPC register is in FFH */
107#define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
108 (cpc)->cpc_entry.reg.space_id == \
109 ACPI_ADR_SPACE_FIXED_HARDWARE)
110
111/* Check if a CPC register is in SystemMemory */
112#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
113 (cpc)->cpc_entry.reg.space_id == \
114 ACPI_ADR_SPACE_SYSTEM_MEMORY)
115
116/* Check if a CPC register is in SystemIo */
117#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
118 (cpc)->cpc_entry.reg.space_id == \
119 ACPI_ADR_SPACE_SYSTEM_IO)
120
121/* Evaluates to True if reg is a NULL register descriptor */
122#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
123 (reg)->address == 0 && \
124 (reg)->bit_width == 0 && \
125 (reg)->bit_offset == 0 && \
126 (reg)->access_width == 0)
127
128/* Evaluates to True if an optional cpc field is supported */
129#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
130 !!(cpc)->cpc_entry.int_value : \
131 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
132/*
133 * Arbitrary Retries in case the remote processor is slow to respond
134 * to PCC commands. Keeping it high enough to cover emulators where
135 * the processors run painfully slow.
136 */
137#define NUM_RETRIES 500ULL
138
139#define OVER_16BTS_MASK ~0xFFFFULL
140
141#define define_one_cppc_ro(_name) \
142static struct kobj_attribute _name = \
143__ATTR(_name, 0444, show_##_name, NULL)
144
145#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
146
147#define show_cppc_data(access_fn, struct_name, member_name) \
148 static ssize_t show_##member_name(struct kobject *kobj, \
149 struct kobj_attribute *attr, char *buf) \
150 { \
151 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
152 struct struct_name st_name = {0}; \
153 int ret; \
154 \
155 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
156 if (ret) \
157 return ret; \
158 \
159 return sysfs_emit(buf, "%llu\n", \
160 (u64)st_name.member_name); \
161 } \
162 define_one_cppc_ro(member_name)
163
164show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
165show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
166show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
167show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
168show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
169show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
170show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
171
172show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
173show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
174
175/* Check for valid access_width, otherwise, fallback to using bit_width */
176#define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
177
178/* Shift and apply the mask for CPC reads/writes */
179#define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) & \
180 GENMASK(((reg)->bit_width) - 1, 0))
181#define MASK_VAL_WRITE(reg, prev_val, val) \
182 ((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) | \
183 ((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset))) \
184
185static ssize_t show_feedback_ctrs(struct kobject *kobj,
186 struct kobj_attribute *attr, char *buf)
187{
188 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
189 struct cppc_perf_fb_ctrs fb_ctrs = {0};
190 int ret;
191
192 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
193 if (ret)
194 return ret;
195
196 return sysfs_emit(buf, "ref:%llu del:%llu\n",
197 fb_ctrs.reference, fb_ctrs.delivered);
198}
199define_one_cppc_ro(feedback_ctrs);
200
201static struct attribute *cppc_attrs[] = {
202 &feedback_ctrs.attr,
203 &reference_perf.attr,
204 &wraparound_time.attr,
205 &highest_perf.attr,
206 &lowest_perf.attr,
207 &lowest_nonlinear_perf.attr,
208 &guaranteed_perf.attr,
209 &nominal_perf.attr,
210 &nominal_freq.attr,
211 &lowest_freq.attr,
212 NULL
213};
214ATTRIBUTE_GROUPS(cppc);
215
216static const struct kobj_type cppc_ktype = {
217 .sysfs_ops = &kobj_sysfs_ops,
218 .default_groups = cppc_groups,
219};
220
221static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
222{
223 int ret, status;
224 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
225 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
226 pcc_ss_data->pcc_comm_addr;
227
228 if (!pcc_ss_data->platform_owns_pcc)
229 return 0;
230
231 /*
232 * Poll PCC status register every 3us(delay_us) for maximum of
233 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
234 */
235 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
236 status & PCC_CMD_COMPLETE_MASK, 3,
237 pcc_ss_data->deadline_us);
238
239 if (likely(!ret)) {
240 pcc_ss_data->platform_owns_pcc = false;
241 if (chk_err_bit && (status & PCC_ERROR_MASK))
242 ret = -EIO;
243 }
244
245 if (unlikely(ret))
246 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
247 pcc_ss_id, ret);
248
249 return ret;
250}
251
252/*
253 * This function transfers the ownership of the PCC to the platform
254 * So it must be called while holding write_lock(pcc_lock)
255 */
256static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
257{
258 int ret = -EIO, i;
259 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
260 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
261 pcc_ss_data->pcc_comm_addr;
262 unsigned int time_delta;
263
264 /*
265 * For CMD_WRITE we know for a fact the caller should have checked
266 * the channel before writing to PCC space
267 */
268 if (cmd == CMD_READ) {
269 /*
270 * If there are pending cpc_writes, then we stole the channel
271 * before write completion, so first send a WRITE command to
272 * platform
273 */
274 if (pcc_ss_data->pending_pcc_write_cmd)
275 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
276
277 ret = check_pcc_chan(pcc_ss_id, false);
278 if (ret)
279 goto end;
280 } else /* CMD_WRITE */
281 pcc_ss_data->pending_pcc_write_cmd = FALSE;
282
283 /*
284 * Handle the Minimum Request Turnaround Time(MRTT)
285 * "The minimum amount of time that OSPM must wait after the completion
286 * of a command before issuing the next command, in microseconds"
287 */
288 if (pcc_ss_data->pcc_mrtt) {
289 time_delta = ktime_us_delta(ktime_get(),
290 pcc_ss_data->last_cmd_cmpl_time);
291 if (pcc_ss_data->pcc_mrtt > time_delta)
292 udelay(pcc_ss_data->pcc_mrtt - time_delta);
293 }
294
295 /*
296 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
297 * "The maximum number of periodic requests that the subspace channel can
298 * support, reported in commands per minute. 0 indicates no limitation."
299 *
300 * This parameter should be ideally zero or large enough so that it can
301 * handle maximum number of requests that all the cores in the system can
302 * collectively generate. If it is not, we will follow the spec and just
303 * not send the request to the platform after hitting the MPAR limit in
304 * any 60s window
305 */
306 if (pcc_ss_data->pcc_mpar) {
307 if (pcc_ss_data->mpar_count == 0) {
308 time_delta = ktime_ms_delta(ktime_get(),
309 pcc_ss_data->last_mpar_reset);
310 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
311 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
312 pcc_ss_id);
313 ret = -EIO;
314 goto end;
315 }
316 pcc_ss_data->last_mpar_reset = ktime_get();
317 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
318 }
319 pcc_ss_data->mpar_count--;
320 }
321
322 /* Write to the shared comm region. */
323 writew_relaxed(cmd, &generic_comm_base->command);
324
325 /* Flip CMD COMPLETE bit */
326 writew_relaxed(0, &generic_comm_base->status);
327
328 pcc_ss_data->platform_owns_pcc = true;
329
330 /* Ring doorbell */
331 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
332 if (ret < 0) {
333 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
334 pcc_ss_id, cmd, ret);
335 goto end;
336 }
337
338 /* wait for completion and check for PCC error bit */
339 ret = check_pcc_chan(pcc_ss_id, true);
340
341 if (pcc_ss_data->pcc_mrtt)
342 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
343
344 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
345 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
346 else
347 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
348
349end:
350 if (cmd == CMD_WRITE) {
351 if (unlikely(ret)) {
352 for_each_possible_cpu(i) {
353 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
354
355 if (!desc)
356 continue;
357
358 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
359 desc->write_cmd_status = ret;
360 }
361 }
362 pcc_ss_data->pcc_write_cnt++;
363 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
364 }
365
366 return ret;
367}
368
369static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
370{
371 if (ret < 0)
372 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
373 *(u16 *)msg, ret);
374 else
375 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
376 *(u16 *)msg, ret);
377}
378
379static struct mbox_client cppc_mbox_cl = {
380 .tx_done = cppc_chan_tx_done,
381 .knows_txdone = true,
382};
383
384static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
385{
386 int result = -EFAULT;
387 acpi_status status = AE_OK;
388 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
389 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
390 struct acpi_buffer state = {0, NULL};
391 union acpi_object *psd = NULL;
392 struct acpi_psd_package *pdomain;
393
394 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
395 &buffer, ACPI_TYPE_PACKAGE);
396 if (status == AE_NOT_FOUND) /* _PSD is optional */
397 return 0;
398 if (ACPI_FAILURE(status))
399 return -ENODEV;
400
401 psd = buffer.pointer;
402 if (!psd || psd->package.count != 1) {
403 pr_debug("Invalid _PSD data\n");
404 goto end;
405 }
406
407 pdomain = &(cpc_ptr->domain_info);
408
409 state.length = sizeof(struct acpi_psd_package);
410 state.pointer = pdomain;
411
412 status = acpi_extract_package(&(psd->package.elements[0]),
413 &format, &state);
414 if (ACPI_FAILURE(status)) {
415 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
416 goto end;
417 }
418
419 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
420 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
421 goto end;
422 }
423
424 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
425 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
426 goto end;
427 }
428
429 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
430 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
431 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
432 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
433 goto end;
434 }
435
436 result = 0;
437end:
438 kfree(buffer.pointer);
439 return result;
440}
441
442bool acpi_cpc_valid(void)
443{
444 struct cpc_desc *cpc_ptr;
445 int cpu;
446
447 if (acpi_disabled)
448 return false;
449
450 for_each_present_cpu(cpu) {
451 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
452 if (!cpc_ptr)
453 return false;
454 }
455
456 return true;
457}
458EXPORT_SYMBOL_GPL(acpi_cpc_valid);
459
460bool cppc_allow_fast_switch(void)
461{
462 struct cpc_register_resource *desired_reg;
463 struct cpc_desc *cpc_ptr;
464 int cpu;
465
466 for_each_possible_cpu(cpu) {
467 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
468 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
469 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
470 !CPC_IN_SYSTEM_IO(desired_reg))
471 return false;
472 }
473
474 return true;
475}
476EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
477
478/**
479 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
480 * @cpu: Find all CPUs that share a domain with cpu.
481 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
482 *
483 * Return: 0 for success or negative value for err.
484 */
485int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
486{
487 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
488 struct acpi_psd_package *match_pdomain;
489 struct acpi_psd_package *pdomain;
490 int count_target, i;
491
492 /*
493 * Now that we have _PSD data from all CPUs, let's setup P-state
494 * domain info.
495 */
496 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
497 if (!cpc_ptr)
498 return -EFAULT;
499
500 pdomain = &(cpc_ptr->domain_info);
501 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
502 if (pdomain->num_processors <= 1)
503 return 0;
504
505 /* Validate the Domain info */
506 count_target = pdomain->num_processors;
507 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
508 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
509 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
510 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
511 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
512 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
513
514 for_each_possible_cpu(i) {
515 if (i == cpu)
516 continue;
517
518 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
519 if (!match_cpc_ptr)
520 goto err_fault;
521
522 match_pdomain = &(match_cpc_ptr->domain_info);
523 if (match_pdomain->domain != pdomain->domain)
524 continue;
525
526 /* Here i and cpu are in the same domain */
527 if (match_pdomain->num_processors != count_target)
528 goto err_fault;
529
530 if (pdomain->coord_type != match_pdomain->coord_type)
531 goto err_fault;
532
533 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
534 }
535
536 return 0;
537
538err_fault:
539 /* Assume no coordination on any error parsing domain info */
540 cpumask_clear(cpu_data->shared_cpu_map);
541 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
542 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
543
544 return -EFAULT;
545}
546EXPORT_SYMBOL_GPL(acpi_get_psd_map);
547
548static int register_pcc_channel(int pcc_ss_idx)
549{
550 struct pcc_mbox_chan *pcc_chan;
551 u64 usecs_lat;
552
553 if (pcc_ss_idx >= 0) {
554 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
555
556 if (IS_ERR(pcc_chan)) {
557 pr_err("Failed to find PCC channel for subspace %d\n",
558 pcc_ss_idx);
559 return -ENODEV;
560 }
561
562 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
563 /*
564 * cppc_ss->latency is just a Nominal value. In reality
565 * the remote processor could be much slower to reply.
566 * So add an arbitrary amount of wait on top of Nominal.
567 */
568 usecs_lat = NUM_RETRIES * pcc_chan->latency;
569 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
570 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
571 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
572 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
573
574 pcc_data[pcc_ss_idx]->pcc_comm_addr =
575 acpi_os_ioremap(pcc_chan->shmem_base_addr,
576 pcc_chan->shmem_size);
577 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
578 pr_err("Failed to ioremap PCC comm region mem for %d\n",
579 pcc_ss_idx);
580 return -ENOMEM;
581 }
582
583 /* Set flag so that we don't come here for each CPU. */
584 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
585 }
586
587 return 0;
588}
589
590/**
591 * cpc_ffh_supported() - check if FFH reading supported
592 *
593 * Check if the architecture has support for functional fixed hardware
594 * read/write capability.
595 *
596 * Return: true for supported, false for not supported
597 */
598bool __weak cpc_ffh_supported(void)
599{
600 return false;
601}
602
603/**
604 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
605 *
606 * Check if the architectural support for CPPC is present even
607 * if the _OSC hasn't prescribed it
608 *
609 * Return: true for supported, false for not supported
610 */
611bool __weak cpc_supported_by_cpu(void)
612{
613 return false;
614}
615
616/**
617 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
618 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
619 *
620 * Check and allocate the cppc_pcc_data memory.
621 * In some processor configurations it is possible that same subspace
622 * is shared between multiple CPUs. This is seen especially in CPUs
623 * with hardware multi-threading support.
624 *
625 * Return: 0 for success, errno for failure
626 */
627static int pcc_data_alloc(int pcc_ss_id)
628{
629 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
630 return -EINVAL;
631
632 if (pcc_data[pcc_ss_id]) {
633 pcc_data[pcc_ss_id]->refcount++;
634 } else {
635 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
636 GFP_KERNEL);
637 if (!pcc_data[pcc_ss_id])
638 return -ENOMEM;
639 pcc_data[pcc_ss_id]->refcount++;
640 }
641
642 return 0;
643}
644
645/*
646 * An example CPC table looks like the following.
647 *
648 * Name (_CPC, Package() {
649 * 17, // NumEntries
650 * 1, // Revision
651 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
652 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
653 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
654 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
655 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
656 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
657 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
658 * ...
659 * ...
660 * ...
661 * }
662 * Each Register() encodes how to access that specific register.
663 * e.g. a sample PCC entry has the following encoding:
664 *
665 * Register (
666 * PCC, // AddressSpaceKeyword
667 * 8, // RegisterBitWidth
668 * 8, // RegisterBitOffset
669 * 0x30, // RegisterAddress
670 * 9, // AccessSize (subspace ID)
671 * )
672 */
673
674/**
675 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
676 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
677 *
678 * Return: 0 for success or negative value for err.
679 */
680int acpi_cppc_processor_probe(struct acpi_processor *pr)
681{
682 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
683 union acpi_object *out_obj, *cpc_obj;
684 struct cpc_desc *cpc_ptr;
685 struct cpc_reg *gas_t;
686 struct device *cpu_dev;
687 acpi_handle handle = pr->handle;
688 unsigned int num_ent, i, cpc_rev;
689 int pcc_subspace_id = -1;
690 acpi_status status;
691 int ret = -ENODATA;
692
693 if (!osc_sb_cppc2_support_acked) {
694 pr_debug("CPPC v2 _OSC not acked\n");
695 if (!cpc_supported_by_cpu()) {
696 pr_debug("CPPC is not supported by the CPU\n");
697 return -ENODEV;
698 }
699 }
700
701 /* Parse the ACPI _CPC table for this CPU. */
702 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
703 ACPI_TYPE_PACKAGE);
704 if (ACPI_FAILURE(status)) {
705 ret = -ENODEV;
706 goto out_buf_free;
707 }
708
709 out_obj = (union acpi_object *) output.pointer;
710
711 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
712 if (!cpc_ptr) {
713 ret = -ENOMEM;
714 goto out_buf_free;
715 }
716
717 /* First entry is NumEntries. */
718 cpc_obj = &out_obj->package.elements[0];
719 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
720 num_ent = cpc_obj->integer.value;
721 if (num_ent <= 1) {
722 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
723 num_ent, pr->id);
724 goto out_free;
725 }
726 } else {
727 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
728 cpc_obj->type, pr->id);
729 goto out_free;
730 }
731
732 /* Second entry should be revision. */
733 cpc_obj = &out_obj->package.elements[1];
734 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
735 cpc_rev = cpc_obj->integer.value;
736 } else {
737 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
738 cpc_obj->type, pr->id);
739 goto out_free;
740 }
741
742 if (cpc_rev < CPPC_V2_REV) {
743 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
744 pr->id);
745 goto out_free;
746 }
747
748 /*
749 * Disregard _CPC if the number of entries in the return pachage is not
750 * as expected, but support future revisions being proper supersets of
751 * the v3 and only causing more entries to be returned by _CPC.
752 */
753 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
754 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
755 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
756 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
757 num_ent, pr->id);
758 goto out_free;
759 }
760 if (cpc_rev > CPPC_V3_REV) {
761 num_ent = CPPC_V3_NUM_ENT;
762 cpc_rev = CPPC_V3_REV;
763 }
764
765 cpc_ptr->num_entries = num_ent;
766 cpc_ptr->version = cpc_rev;
767
768 /* Iterate through remaining entries in _CPC */
769 for (i = 2; i < num_ent; i++) {
770 cpc_obj = &out_obj->package.elements[i];
771
772 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
773 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
774 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
775 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
776 gas_t = (struct cpc_reg *)
777 cpc_obj->buffer.pointer;
778
779 /*
780 * The PCC Subspace index is encoded inside
781 * the CPC table entries. The same PCC index
782 * will be used for all the PCC entries,
783 * so extract it only once.
784 */
785 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
786 if (pcc_subspace_id < 0) {
787 pcc_subspace_id = gas_t->access_width;
788 if (pcc_data_alloc(pcc_subspace_id))
789 goto out_free;
790 } else if (pcc_subspace_id != gas_t->access_width) {
791 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
792 pr->id);
793 goto out_free;
794 }
795 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
796 if (gas_t->address) {
797 void __iomem *addr;
798 size_t access_width;
799
800 if (!osc_cpc_flexible_adr_space_confirmed) {
801 pr_debug("Flexible address space capability not supported\n");
802 if (!cpc_supported_by_cpu())
803 goto out_free;
804 }
805
806 access_width = GET_BIT_WIDTH(gas_t) / 8;
807 addr = ioremap(gas_t->address, access_width);
808 if (!addr)
809 goto out_free;
810 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
811 }
812 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
813 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
814 /*
815 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
816 * SystemIO doesn't implement 64-bit
817 * registers.
818 */
819 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
820 gas_t->access_width);
821 goto out_free;
822 }
823 if (gas_t->address & OVER_16BTS_MASK) {
824 /* SystemIO registers use 16-bit integer addresses */
825 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
826 gas_t->address);
827 goto out_free;
828 }
829 if (!osc_cpc_flexible_adr_space_confirmed) {
830 pr_debug("Flexible address space capability not supported\n");
831 if (!cpc_supported_by_cpu())
832 goto out_free;
833 }
834 } else {
835 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
836 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
837 pr_debug("Unsupported register type (%d) in _CPC\n",
838 gas_t->space_id);
839 goto out_free;
840 }
841 }
842
843 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
844 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
845 } else {
846 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
847 i, pr->id);
848 goto out_free;
849 }
850 }
851 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
852
853 /*
854 * Initialize the remaining cpc_regs as unsupported.
855 * Example: In case FW exposes CPPC v2, the below loop will initialize
856 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
857 */
858 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
859 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
860 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
861 }
862
863
864 /* Store CPU Logical ID */
865 cpc_ptr->cpu_id = pr->id;
866 raw_spin_lock_init(&cpc_ptr->rmw_lock);
867
868 /* Parse PSD data for this CPU */
869 ret = acpi_get_psd(cpc_ptr, handle);
870 if (ret)
871 goto out_free;
872
873 /* Register PCC channel once for all PCC subspace ID. */
874 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
875 ret = register_pcc_channel(pcc_subspace_id);
876 if (ret)
877 goto out_free;
878
879 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
880 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
881 }
882
883 /* Everything looks okay */
884 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
885
886 /* Add per logical CPU nodes for reading its feedback counters. */
887 cpu_dev = get_cpu_device(pr->id);
888 if (!cpu_dev) {
889 ret = -EINVAL;
890 goto out_free;
891 }
892
893 /* Plug PSD data into this CPU's CPC descriptor. */
894 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
895
896 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
897 "acpi_cppc");
898 if (ret) {
899 per_cpu(cpc_desc_ptr, pr->id) = NULL;
900 kobject_put(&cpc_ptr->kobj);
901 goto out_free;
902 }
903
904 kfree(output.pointer);
905 return 0;
906
907out_free:
908 /* Free all the mapped sys mem areas for this CPU */
909 for (i = 2; i < cpc_ptr->num_entries; i++) {
910 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
911
912 if (addr)
913 iounmap(addr);
914 }
915 kfree(cpc_ptr);
916
917out_buf_free:
918 kfree(output.pointer);
919 return ret;
920}
921EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
922
923/**
924 * acpi_cppc_processor_exit - Cleanup CPC structs.
925 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
926 *
927 * Return: Void
928 */
929void acpi_cppc_processor_exit(struct acpi_processor *pr)
930{
931 struct cpc_desc *cpc_ptr;
932 unsigned int i;
933 void __iomem *addr;
934 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
935
936 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
937 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
938 pcc_data[pcc_ss_id]->refcount--;
939 if (!pcc_data[pcc_ss_id]->refcount) {
940 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
941 kfree(pcc_data[pcc_ss_id]);
942 pcc_data[pcc_ss_id] = NULL;
943 }
944 }
945 }
946
947 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
948 if (!cpc_ptr)
949 return;
950
951 /* Free all the mapped sys mem areas for this CPU */
952 for (i = 2; i < cpc_ptr->num_entries; i++) {
953 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
954 if (addr)
955 iounmap(addr);
956 }
957
958 kobject_put(&cpc_ptr->kobj);
959 kfree(cpc_ptr);
960}
961EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
962
963/**
964 * cpc_read_ffh() - Read FFH register
965 * @cpunum: CPU number to read
966 * @reg: cppc register information
967 * @val: place holder for return value
968 *
969 * Read bit_width bits from a specified address and bit_offset
970 *
971 * Return: 0 for success and error code
972 */
973int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
974{
975 return -ENOTSUPP;
976}
977
978/**
979 * cpc_write_ffh() - Write FFH register
980 * @cpunum: CPU number to write
981 * @reg: cppc register information
982 * @val: value to write
983 *
984 * Write value of bit_width bits to a specified address and bit_offset
985 *
986 * Return: 0 for success and error code
987 */
988int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
989{
990 return -ENOTSUPP;
991}
992
993/*
994 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
995 * as fast as possible. We have already mapped the PCC subspace during init, so
996 * we can directly write to it.
997 */
998
999static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
1000{
1001 void __iomem *vaddr = NULL;
1002 int size;
1003 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1004 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1005
1006 if (reg_res->type == ACPI_TYPE_INTEGER) {
1007 *val = reg_res->cpc_entry.int_value;
1008 return 0;
1009 }
1010
1011 *val = 0;
1012 size = GET_BIT_WIDTH(reg);
1013
1014 if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1015 reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1016 u32 val_u32;
1017 acpi_status status;
1018
1019 status = acpi_os_read_port((acpi_io_address)reg->address,
1020 &val_u32, size);
1021 if (ACPI_FAILURE(status)) {
1022 pr_debug("Error: Failed to read SystemIO port %llx\n",
1023 reg->address);
1024 return -EFAULT;
1025 }
1026
1027 *val = val_u32;
1028 return 0;
1029 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1030 /*
1031 * For registers in PCC space, the register size is determined
1032 * by the bit width field; the access size is used to indicate
1033 * the PCC subspace id.
1034 */
1035 size = reg->bit_width;
1036 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1037 }
1038 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1039 vaddr = reg_res->sys_mem_vaddr;
1040 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1041 return cpc_read_ffh(cpu, reg, val);
1042 else
1043 return acpi_os_read_memory((acpi_physical_address)reg->address,
1044 val, size);
1045
1046 switch (size) {
1047 case 8:
1048 *val = readb_relaxed(vaddr);
1049 break;
1050 case 16:
1051 *val = readw_relaxed(vaddr);
1052 break;
1053 case 32:
1054 *val = readl_relaxed(vaddr);
1055 break;
1056 case 64:
1057 *val = readq_relaxed(vaddr);
1058 break;
1059 default:
1060 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1061 pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1062 size, reg->address);
1063 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1064 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1065 size, pcc_ss_id);
1066 }
1067 return -EFAULT;
1068 }
1069
1070 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1071 *val = MASK_VAL_READ(reg, *val);
1072
1073 return 0;
1074}
1075
1076static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1077{
1078 int ret_val = 0;
1079 int size;
1080 u64 prev_val;
1081 void __iomem *vaddr = NULL;
1082 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1083 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1084 struct cpc_desc *cpc_desc;
1085 unsigned long flags;
1086
1087 size = GET_BIT_WIDTH(reg);
1088
1089 if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1090 reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1091 acpi_status status;
1092
1093 status = acpi_os_write_port((acpi_io_address)reg->address,
1094 (u32)val, size);
1095 if (ACPI_FAILURE(status)) {
1096 pr_debug("Error: Failed to write SystemIO port %llx\n",
1097 reg->address);
1098 return -EFAULT;
1099 }
1100
1101 return 0;
1102 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1103 /*
1104 * For registers in PCC space, the register size is determined
1105 * by the bit width field; the access size is used to indicate
1106 * the PCC subspace id.
1107 */
1108 size = reg->bit_width;
1109 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1110 }
1111 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1112 vaddr = reg_res->sys_mem_vaddr;
1113 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1114 return cpc_write_ffh(cpu, reg, val);
1115 else
1116 return acpi_os_write_memory((acpi_physical_address)reg->address,
1117 val, size);
1118
1119 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1120 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1121 if (!cpc_desc) {
1122 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1123 return -ENODEV;
1124 }
1125
1126 raw_spin_lock_irqsave(&cpc_desc->rmw_lock, flags);
1127 switch (size) {
1128 case 8:
1129 prev_val = readb_relaxed(vaddr);
1130 break;
1131 case 16:
1132 prev_val = readw_relaxed(vaddr);
1133 break;
1134 case 32:
1135 prev_val = readl_relaxed(vaddr);
1136 break;
1137 case 64:
1138 prev_val = readq_relaxed(vaddr);
1139 break;
1140 default:
1141 raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1142 return -EFAULT;
1143 }
1144 val = MASK_VAL_WRITE(reg, prev_val, val);
1145 }
1146
1147 switch (size) {
1148 case 8:
1149 writeb_relaxed(val, vaddr);
1150 break;
1151 case 16:
1152 writew_relaxed(val, vaddr);
1153 break;
1154 case 32:
1155 writel_relaxed(val, vaddr);
1156 break;
1157 case 64:
1158 writeq_relaxed(val, vaddr);
1159 break;
1160 default:
1161 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1162 pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1163 size, reg->address);
1164 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1165 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1166 size, pcc_ss_id);
1167 }
1168 ret_val = -EFAULT;
1169 break;
1170 }
1171
1172 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1173 raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1174
1175 return ret_val;
1176}
1177
1178static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1179{
1180 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1181 struct cpc_register_resource *reg;
1182
1183 if (!cpc_desc) {
1184 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1185 return -ENODEV;
1186 }
1187
1188 reg = &cpc_desc->cpc_regs[reg_idx];
1189
1190 if (CPC_IN_PCC(reg)) {
1191 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1192 struct cppc_pcc_data *pcc_ss_data = NULL;
1193 int ret = 0;
1194
1195 if (pcc_ss_id < 0)
1196 return -EIO;
1197
1198 pcc_ss_data = pcc_data[pcc_ss_id];
1199
1200 down_write(&pcc_ss_data->pcc_lock);
1201
1202 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1203 cpc_read(cpunum, reg, perf);
1204 else
1205 ret = -EIO;
1206
1207 up_write(&pcc_ss_data->pcc_lock);
1208
1209 return ret;
1210 }
1211
1212 cpc_read(cpunum, reg, perf);
1213
1214 return 0;
1215}
1216
1217/**
1218 * cppc_get_desired_perf - Get the desired performance register value.
1219 * @cpunum: CPU from which to get desired performance.
1220 * @desired_perf: Return address.
1221 *
1222 * Return: 0 for success, -EIO otherwise.
1223 */
1224int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1225{
1226 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1227}
1228EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1229
1230/**
1231 * cppc_get_nominal_perf - Get the nominal performance register value.
1232 * @cpunum: CPU from which to get nominal performance.
1233 * @nominal_perf: Return address.
1234 *
1235 * Return: 0 for success, -EIO otherwise.
1236 */
1237int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1238{
1239 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1240}
1241
1242/**
1243 * cppc_get_highest_perf - Get the highest performance register value.
1244 * @cpunum: CPU from which to get highest performance.
1245 * @highest_perf: Return address.
1246 *
1247 * Return: 0 for success, -EIO otherwise.
1248 */
1249int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1250{
1251 return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1252}
1253EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1254
1255/**
1256 * cppc_get_epp_perf - Get the epp register value.
1257 * @cpunum: CPU from which to get epp preference value.
1258 * @epp_perf: Return address.
1259 *
1260 * Return: 0 for success, -EIO otherwise.
1261 */
1262int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1263{
1264 return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1265}
1266EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1267
1268/**
1269 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1270 * @cpunum: CPU from which to get capabilities info.
1271 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1272 *
1273 * Return: 0 for success with perf_caps populated else -ERRNO.
1274 */
1275int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1276{
1277 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1278 struct cpc_register_resource *highest_reg, *lowest_reg,
1279 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1280 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1281 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1282 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1283 struct cppc_pcc_data *pcc_ss_data = NULL;
1284 int ret = 0, regs_in_pcc = 0;
1285
1286 if (!cpc_desc) {
1287 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1288 return -ENODEV;
1289 }
1290
1291 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1292 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1293 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1294 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1295 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1296 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1297 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1298
1299 /* Are any of the regs PCC ?*/
1300 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1301 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1302 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1303 if (pcc_ss_id < 0) {
1304 pr_debug("Invalid pcc_ss_id\n");
1305 return -ENODEV;
1306 }
1307 pcc_ss_data = pcc_data[pcc_ss_id];
1308 regs_in_pcc = 1;
1309 down_write(&pcc_ss_data->pcc_lock);
1310 /* Ring doorbell once to update PCC subspace */
1311 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1312 ret = -EIO;
1313 goto out_err;
1314 }
1315 }
1316
1317 cpc_read(cpunum, highest_reg, &high);
1318 perf_caps->highest_perf = high;
1319
1320 cpc_read(cpunum, lowest_reg, &low);
1321 perf_caps->lowest_perf = low;
1322
1323 cpc_read(cpunum, nominal_reg, &nom);
1324 perf_caps->nominal_perf = nom;
1325
1326 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1327 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1328 perf_caps->guaranteed_perf = 0;
1329 } else {
1330 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1331 perf_caps->guaranteed_perf = guaranteed;
1332 }
1333
1334 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1335 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1336
1337 if (!high || !low || !nom || !min_nonlinear)
1338 ret = -EFAULT;
1339
1340 /* Read optional lowest and nominal frequencies if present */
1341 if (CPC_SUPPORTED(low_freq_reg))
1342 cpc_read(cpunum, low_freq_reg, &low_f);
1343
1344 if (CPC_SUPPORTED(nom_freq_reg))
1345 cpc_read(cpunum, nom_freq_reg, &nom_f);
1346
1347 perf_caps->lowest_freq = low_f;
1348 perf_caps->nominal_freq = nom_f;
1349
1350
1351out_err:
1352 if (regs_in_pcc)
1353 up_write(&pcc_ss_data->pcc_lock);
1354 return ret;
1355}
1356EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1357
1358/**
1359 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1360 *
1361 * CPPC has flexibility about how CPU performance counters are accessed.
1362 * One of the choices is PCC regions, which can have a high access latency. This
1363 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1364 *
1365 * Return: true if any of the counters are in PCC regions, false otherwise
1366 */
1367bool cppc_perf_ctrs_in_pcc(void)
1368{
1369 int cpu;
1370
1371 for_each_present_cpu(cpu) {
1372 struct cpc_register_resource *ref_perf_reg;
1373 struct cpc_desc *cpc_desc;
1374
1375 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1376
1377 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1378 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1379 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1380 return true;
1381
1382
1383 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1384
1385 /*
1386 * If reference perf register is not supported then we should
1387 * use the nominal perf value
1388 */
1389 if (!CPC_SUPPORTED(ref_perf_reg))
1390 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1391
1392 if (CPC_IN_PCC(ref_perf_reg))
1393 return true;
1394 }
1395
1396 return false;
1397}
1398EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1399
1400/**
1401 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1402 * @cpunum: CPU from which to read counters.
1403 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1404 *
1405 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1406 */
1407int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1408{
1409 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1410 struct cpc_register_resource *delivered_reg, *reference_reg,
1411 *ref_perf_reg, *ctr_wrap_reg;
1412 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1413 struct cppc_pcc_data *pcc_ss_data = NULL;
1414 u64 delivered, reference, ref_perf, ctr_wrap_time;
1415 int ret = 0, regs_in_pcc = 0;
1416
1417 if (!cpc_desc) {
1418 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1419 return -ENODEV;
1420 }
1421
1422 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1423 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1424 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1425 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1426
1427 /*
1428 * If reference perf register is not supported then we should
1429 * use the nominal perf value
1430 */
1431 if (!CPC_SUPPORTED(ref_perf_reg))
1432 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1433
1434 /* Are any of the regs PCC ?*/
1435 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1436 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1437 if (pcc_ss_id < 0) {
1438 pr_debug("Invalid pcc_ss_id\n");
1439 return -ENODEV;
1440 }
1441 pcc_ss_data = pcc_data[pcc_ss_id];
1442 down_write(&pcc_ss_data->pcc_lock);
1443 regs_in_pcc = 1;
1444 /* Ring doorbell once to update PCC subspace */
1445 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1446 ret = -EIO;
1447 goto out_err;
1448 }
1449 }
1450
1451 cpc_read(cpunum, delivered_reg, &delivered);
1452 cpc_read(cpunum, reference_reg, &reference);
1453 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1454
1455 /*
1456 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1457 * performance counters are assumed to never wrap during the lifetime of
1458 * platform
1459 */
1460 ctr_wrap_time = (u64)(~((u64)0));
1461 if (CPC_SUPPORTED(ctr_wrap_reg))
1462 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1463
1464 if (!delivered || !reference || !ref_perf) {
1465 ret = -EFAULT;
1466 goto out_err;
1467 }
1468
1469 perf_fb_ctrs->delivered = delivered;
1470 perf_fb_ctrs->reference = reference;
1471 perf_fb_ctrs->reference_perf = ref_perf;
1472 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1473out_err:
1474 if (regs_in_pcc)
1475 up_write(&pcc_ss_data->pcc_lock);
1476 return ret;
1477}
1478EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1479
1480/*
1481 * Set Energy Performance Preference Register value through
1482 * Performance Controls Interface
1483 */
1484int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1485{
1486 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1487 struct cpc_register_resource *epp_set_reg;
1488 struct cpc_register_resource *auto_sel_reg;
1489 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1490 struct cppc_pcc_data *pcc_ss_data = NULL;
1491 int ret;
1492
1493 if (!cpc_desc) {
1494 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1495 return -ENODEV;
1496 }
1497
1498 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1499 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1500
1501 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1502 if (pcc_ss_id < 0) {
1503 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1504 return -ENODEV;
1505 }
1506
1507 if (CPC_SUPPORTED(auto_sel_reg)) {
1508 ret = cpc_write(cpu, auto_sel_reg, enable);
1509 if (ret)
1510 return ret;
1511 }
1512
1513 if (CPC_SUPPORTED(epp_set_reg)) {
1514 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1515 if (ret)
1516 return ret;
1517 }
1518
1519 pcc_ss_data = pcc_data[pcc_ss_id];
1520
1521 down_write(&pcc_ss_data->pcc_lock);
1522 /* after writing CPC, transfer the ownership of PCC to platform */
1523 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1524 up_write(&pcc_ss_data->pcc_lock);
1525 } else if (osc_cpc_flexible_adr_space_confirmed &&
1526 CPC_SUPPORTED(epp_set_reg) && CPC_IN_FFH(epp_set_reg)) {
1527 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1528 } else {
1529 ret = -ENOTSUPP;
1530 pr_debug("_CPC in PCC and _CPC in FFH are not supported\n");
1531 }
1532
1533 return ret;
1534}
1535EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1536
1537/**
1538 * cppc_get_auto_sel_caps - Read autonomous selection register.
1539 * @cpunum : CPU from which to read register.
1540 * @perf_caps : struct where autonomous selection register value is updated.
1541 */
1542int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1543{
1544 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1545 struct cpc_register_resource *auto_sel_reg;
1546 u64 auto_sel;
1547
1548 if (!cpc_desc) {
1549 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1550 return -ENODEV;
1551 }
1552
1553 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1554
1555 if (!CPC_SUPPORTED(auto_sel_reg))
1556 pr_warn_once("Autonomous mode is not unsupported!\n");
1557
1558 if (CPC_IN_PCC(auto_sel_reg)) {
1559 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1560 struct cppc_pcc_data *pcc_ss_data = NULL;
1561 int ret = 0;
1562
1563 if (pcc_ss_id < 0)
1564 return -ENODEV;
1565
1566 pcc_ss_data = pcc_data[pcc_ss_id];
1567
1568 down_write(&pcc_ss_data->pcc_lock);
1569
1570 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1571 cpc_read(cpunum, auto_sel_reg, &auto_sel);
1572 perf_caps->auto_sel = (bool)auto_sel;
1573 } else {
1574 ret = -EIO;
1575 }
1576
1577 up_write(&pcc_ss_data->pcc_lock);
1578
1579 return ret;
1580 }
1581
1582 return 0;
1583}
1584EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1585
1586/**
1587 * cppc_set_auto_sel - Write autonomous selection register.
1588 * @cpu : CPU to which to write register.
1589 * @enable : the desired value of autonomous selection resiter to be updated.
1590 */
1591int cppc_set_auto_sel(int cpu, bool enable)
1592{
1593 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1594 struct cpc_register_resource *auto_sel_reg;
1595 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1596 struct cppc_pcc_data *pcc_ss_data = NULL;
1597 int ret = -EINVAL;
1598
1599 if (!cpc_desc) {
1600 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1601 return -ENODEV;
1602 }
1603
1604 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1605
1606 if (CPC_IN_PCC(auto_sel_reg)) {
1607 if (pcc_ss_id < 0) {
1608 pr_debug("Invalid pcc_ss_id\n");
1609 return -ENODEV;
1610 }
1611
1612 if (CPC_SUPPORTED(auto_sel_reg)) {
1613 ret = cpc_write(cpu, auto_sel_reg, enable);
1614 if (ret)
1615 return ret;
1616 }
1617
1618 pcc_ss_data = pcc_data[pcc_ss_id];
1619
1620 down_write(&pcc_ss_data->pcc_lock);
1621 /* after writing CPC, transfer the ownership of PCC to platform */
1622 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1623 up_write(&pcc_ss_data->pcc_lock);
1624 } else {
1625 ret = -ENOTSUPP;
1626 pr_debug("_CPC in PCC is not supported\n");
1627 }
1628
1629 return ret;
1630}
1631EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1632
1633/**
1634 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1635 * Continuous Performance Control package EnableRegister field.
1636 * @cpu: CPU for which to enable CPPC register.
1637 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1638 *
1639 * Return: 0 for success, -ERRNO or -EIO otherwise.
1640 */
1641int cppc_set_enable(int cpu, bool enable)
1642{
1643 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1644 struct cpc_register_resource *enable_reg;
1645 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1646 struct cppc_pcc_data *pcc_ss_data = NULL;
1647 int ret = -EINVAL;
1648
1649 if (!cpc_desc) {
1650 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1651 return -EINVAL;
1652 }
1653
1654 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1655
1656 if (CPC_IN_PCC(enable_reg)) {
1657
1658 if (pcc_ss_id < 0)
1659 return -EIO;
1660
1661 ret = cpc_write(cpu, enable_reg, enable);
1662 if (ret)
1663 return ret;
1664
1665 pcc_ss_data = pcc_data[pcc_ss_id];
1666
1667 down_write(&pcc_ss_data->pcc_lock);
1668 /* after writing CPC, transfer the ownership of PCC to platfrom */
1669 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1670 up_write(&pcc_ss_data->pcc_lock);
1671 return ret;
1672 }
1673
1674 return cpc_write(cpu, enable_reg, enable);
1675}
1676EXPORT_SYMBOL_GPL(cppc_set_enable);
1677
1678/**
1679 * cppc_set_perf - Set a CPU's performance controls.
1680 * @cpu: CPU for which to set performance controls.
1681 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1682 *
1683 * Return: 0 for success, -ERRNO otherwise.
1684 */
1685int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1686{
1687 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1688 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1689 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1690 struct cppc_pcc_data *pcc_ss_data = NULL;
1691 int ret = 0;
1692
1693 if (!cpc_desc) {
1694 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1695 return -ENODEV;
1696 }
1697
1698 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1699 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1700 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1701
1702 /*
1703 * This is Phase-I where we want to write to CPC registers
1704 * -> We want all CPUs to be able to execute this phase in parallel
1705 *
1706 * Since read_lock can be acquired by multiple CPUs simultaneously we
1707 * achieve that goal here
1708 */
1709 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1710 if (pcc_ss_id < 0) {
1711 pr_debug("Invalid pcc_ss_id\n");
1712 return -ENODEV;
1713 }
1714 pcc_ss_data = pcc_data[pcc_ss_id];
1715 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1716 if (pcc_ss_data->platform_owns_pcc) {
1717 ret = check_pcc_chan(pcc_ss_id, false);
1718 if (ret) {
1719 up_read(&pcc_ss_data->pcc_lock);
1720 return ret;
1721 }
1722 }
1723 /*
1724 * Update the pending_write to make sure a PCC CMD_READ will not
1725 * arrive and steal the channel during the switch to write lock
1726 */
1727 pcc_ss_data->pending_pcc_write_cmd = true;
1728 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1729 cpc_desc->write_cmd_status = 0;
1730 }
1731
1732 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1733
1734 /*
1735 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1736 * value to min and max perf, but they don't mean to set the zero value,
1737 * they just don't want to write to those registers.
1738 */
1739 if (perf_ctrls->min_perf)
1740 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1741 if (perf_ctrls->max_perf)
1742 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1743
1744 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1745 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1746 /*
1747 * This is Phase-II where we transfer the ownership of PCC to Platform
1748 *
1749 * Short Summary: Basically if we think of a group of cppc_set_perf
1750 * requests that happened in short overlapping interval. The last CPU to
1751 * come out of Phase-I will enter Phase-II and ring the doorbell.
1752 *
1753 * We have the following requirements for Phase-II:
1754 * 1. We want to execute Phase-II only when there are no CPUs
1755 * currently executing in Phase-I
1756 * 2. Once we start Phase-II we want to avoid all other CPUs from
1757 * entering Phase-I.
1758 * 3. We want only one CPU among all those who went through Phase-I
1759 * to run phase-II
1760 *
1761 * If write_trylock fails to get the lock and doesn't transfer the
1762 * PCC ownership to the platform, then one of the following will be TRUE
1763 * 1. There is at-least one CPU in Phase-I which will later execute
1764 * write_trylock, so the CPUs in Phase-I will be responsible for
1765 * executing the Phase-II.
1766 * 2. Some other CPU has beaten this CPU to successfully execute the
1767 * write_trylock and has already acquired the write_lock. We know for a
1768 * fact it (other CPU acquiring the write_lock) couldn't have happened
1769 * before this CPU's Phase-I as we held the read_lock.
1770 * 3. Some other CPU executing pcc CMD_READ has stolen the
1771 * down_write, in which case, send_pcc_cmd will check for pending
1772 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1773 * So this CPU can be certain that its request will be delivered
1774 * So in all cases, this CPU knows that its request will be delivered
1775 * by another CPU and can return
1776 *
1777 * After getting the down_write we still need to check for
1778 * pending_pcc_write_cmd to take care of the following scenario
1779 * The thread running this code could be scheduled out between
1780 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1781 * could have delivered the request to Platform by triggering the
1782 * doorbell and transferred the ownership of PCC to platform. So this
1783 * avoids triggering an unnecessary doorbell and more importantly before
1784 * triggering the doorbell it makes sure that the PCC channel ownership
1785 * is still with OSPM.
1786 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1787 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1788 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1789 * case during a CMD_READ and if there are pending writes it delivers
1790 * the write command before servicing the read command
1791 */
1792 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1793 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1794 /* Update only if there are pending write commands */
1795 if (pcc_ss_data->pending_pcc_write_cmd)
1796 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1797 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1798 } else
1799 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1800 wait_event(pcc_ss_data->pcc_write_wait_q,
1801 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1802
1803 /* send_pcc_cmd updates the status in case of failure */
1804 ret = cpc_desc->write_cmd_status;
1805 }
1806 return ret;
1807}
1808EXPORT_SYMBOL_GPL(cppc_set_perf);
1809
1810/**
1811 * cppc_get_transition_latency - returns frequency transition latency in ns
1812 * @cpu_num: CPU number for per_cpu().
1813 *
1814 * ACPI CPPC does not explicitly specify how a platform can specify the
1815 * transition latency for performance change requests. The closest we have
1816 * is the timing information from the PCCT tables which provides the info
1817 * on the number and frequency of PCC commands the platform can handle.
1818 *
1819 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1820 * then assume there is no latency.
1821 */
1822unsigned int cppc_get_transition_latency(int cpu_num)
1823{
1824 /*
1825 * Expected transition latency is based on the PCCT timing values
1826 * Below are definition from ACPI spec:
1827 * pcc_nominal- Expected latency to process a command, in microseconds
1828 * pcc_mpar - The maximum number of periodic requests that the subspace
1829 * channel can support, reported in commands per minute. 0
1830 * indicates no limitation.
1831 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1832 * completion of a command before issuing the next command,
1833 * in microseconds.
1834 */
1835 unsigned int latency_ns = 0;
1836 struct cpc_desc *cpc_desc;
1837 struct cpc_register_resource *desired_reg;
1838 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1839 struct cppc_pcc_data *pcc_ss_data;
1840
1841 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1842 if (!cpc_desc)
1843 return CPUFREQ_ETERNAL;
1844
1845 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1846 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1847 return 0;
1848 else if (!CPC_IN_PCC(desired_reg))
1849 return CPUFREQ_ETERNAL;
1850
1851 if (pcc_ss_id < 0)
1852 return CPUFREQ_ETERNAL;
1853
1854 pcc_ss_data = pcc_data[pcc_ss_id];
1855 if (pcc_ss_data->pcc_mpar)
1856 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1857
1858 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1859 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1860
1861 return latency_ns;
1862}
1863EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1864
1865/* Minimum struct length needed for the DMI processor entry we want */
1866#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
1867
1868/* Offset in the DMI processor structure for the max frequency */
1869#define DMI_PROCESSOR_MAX_SPEED 0x14
1870
1871/* Callback function used to retrieve the max frequency from DMI */
1872static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1873{
1874 const u8 *dmi_data = (const u8 *)dm;
1875 u16 *mhz = (u16 *)private;
1876
1877 if (dm->type == DMI_ENTRY_PROCESSOR &&
1878 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1879 u16 val = (u16)get_unaligned((const u16 *)
1880 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
1881 *mhz = umax(val, *mhz);
1882 }
1883}
1884
1885/* Look up the max frequency in DMI */
1886static u64 cppc_get_dmi_max_khz(void)
1887{
1888 u16 mhz = 0;
1889
1890 dmi_walk(cppc_find_dmi_mhz, &mhz);
1891
1892 /*
1893 * Real stupid fallback value, just in case there is no
1894 * actual value set.
1895 */
1896 mhz = mhz ? mhz : 1;
1897
1898 return KHZ_PER_MHZ * mhz;
1899}
1900
1901/*
1902 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1903 * use them to convert perf to freq and vice versa. The conversion is
1904 * extrapolated as an affine function passing by the 2 points:
1905 * - (Low perf, Low freq)
1906 * - (Nominal perf, Nominal freq)
1907 */
1908unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1909{
1910 s64 retval, offset = 0;
1911 static u64 max_khz;
1912 u64 mul, div;
1913
1914 if (caps->lowest_freq && caps->nominal_freq) {
1915 /* Avoid special case when nominal_freq is equal to lowest_freq */
1916 if (caps->lowest_freq == caps->nominal_freq) {
1917 mul = caps->nominal_freq;
1918 div = caps->nominal_perf;
1919 } else {
1920 mul = caps->nominal_freq - caps->lowest_freq;
1921 div = caps->nominal_perf - caps->lowest_perf;
1922 }
1923 mul *= KHZ_PER_MHZ;
1924 offset = caps->nominal_freq * KHZ_PER_MHZ -
1925 div64_u64(caps->nominal_perf * mul, div);
1926 } else {
1927 if (!max_khz)
1928 max_khz = cppc_get_dmi_max_khz();
1929 mul = max_khz;
1930 div = caps->highest_perf;
1931 }
1932
1933 retval = offset + div64_u64(perf * mul, div);
1934 if (retval >= 0)
1935 return retval;
1936 return 0;
1937}
1938EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1939
1940unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1941{
1942 s64 retval, offset = 0;
1943 static u64 max_khz;
1944 u64 mul, div;
1945
1946 if (caps->lowest_freq && caps->nominal_freq) {
1947 /* Avoid special case when nominal_freq is equal to lowest_freq */
1948 if (caps->lowest_freq == caps->nominal_freq) {
1949 mul = caps->nominal_perf;
1950 div = caps->nominal_freq;
1951 } else {
1952 mul = caps->nominal_perf - caps->lowest_perf;
1953 div = caps->nominal_freq - caps->lowest_freq;
1954 }
1955 /*
1956 * We don't need to convert to kHz for computing offset and can
1957 * directly use nominal_freq and lowest_freq as the div64_u64
1958 * will remove the frequency unit.
1959 */
1960 offset = caps->nominal_perf -
1961 div64_u64(caps->nominal_freq * mul, div);
1962 /* But we need it for computing the perf level. */
1963 div *= KHZ_PER_MHZ;
1964 } else {
1965 if (!max_khz)
1966 max_khz = cppc_get_dmi_max_khz();
1967 mul = caps->highest_perf;
1968 div = max_khz;
1969 }
1970
1971 retval = offset + div64_u64(freq * mul, div);
1972 if (retval >= 0)
1973 return retval;
1974 return 0;
1975}
1976EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42#include <linux/dmi.h>
43#include <linux/units.h>
44#include <asm/unaligned.h>
45
46#include <acpi/cppc_acpi.h>
47
48struct cppc_pcc_data {
49 struct pcc_mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 bool pcc_channel_acquired;
52 unsigned int deadline_us;
53 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54
55 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
56 bool platform_owns_pcc; /* Ownership of PCC subspace */
57 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
58
59 /*
60 * Lock to provide controlled access to the PCC channel.
61 *
62 * For performance critical usecases(currently cppc_set_perf)
63 * We need to take read_lock and check if channel belongs to OSPM
64 * before reading or writing to PCC subspace
65 * We need to take write_lock before transferring the channel
66 * ownership to the platform via a Doorbell
67 * This allows us to batch a number of CPPC requests if they happen
68 * to originate in about the same time
69 *
70 * For non-performance critical usecases(init)
71 * Take write_lock for all purposes which gives exclusive access
72 */
73 struct rw_semaphore pcc_lock;
74
75 /* Wait queue for CPUs whose requests were batched */
76 wait_queue_head_t pcc_write_wait_q;
77 ktime_t last_cmd_cmpl_time;
78 ktime_t last_mpar_reset;
79 int mpar_count;
80 int refcount;
81};
82
83/* Array to represent the PCC channel per subspace ID */
84static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87
88/*
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
94 */
95static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
97/* pcc mapped address + header size + offset within PCC subspace */
98#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 0x8 + (offs))
100
101/* Check if a CPC register is in PCC */
102#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
103 (cpc)->cpc_entry.reg.space_id == \
104 ACPI_ADR_SPACE_PLATFORM_COMM)
105
106/* Check if a CPC register is in SystemMemory */
107#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
108 (cpc)->cpc_entry.reg.space_id == \
109 ACPI_ADR_SPACE_SYSTEM_MEMORY)
110
111/* Check if a CPC register is in SystemIo */
112#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
113 (cpc)->cpc_entry.reg.space_id == \
114 ACPI_ADR_SPACE_SYSTEM_IO)
115
116/* Evaluates to True if reg is a NULL register descriptor */
117#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118 (reg)->address == 0 && \
119 (reg)->bit_width == 0 && \
120 (reg)->bit_offset == 0 && \
121 (reg)->access_width == 0)
122
123/* Evaluates to True if an optional cpc field is supported */
124#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
125 !!(cpc)->cpc_entry.int_value : \
126 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
127/*
128 * Arbitrary Retries in case the remote processor is slow to respond
129 * to PCC commands. Keeping it high enough to cover emulators where
130 * the processors run painfully slow.
131 */
132#define NUM_RETRIES 500ULL
133
134#define OVER_16BTS_MASK ~0xFFFFULL
135
136#define define_one_cppc_ro(_name) \
137static struct kobj_attribute _name = \
138__ATTR(_name, 0444, show_##_name, NULL)
139
140#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141
142#define show_cppc_data(access_fn, struct_name, member_name) \
143 static ssize_t show_##member_name(struct kobject *kobj, \
144 struct kobj_attribute *attr, char *buf) \
145 { \
146 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
147 struct struct_name st_name = {0}; \
148 int ret; \
149 \
150 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
151 if (ret) \
152 return ret; \
153 \
154 return sysfs_emit(buf, "%llu\n", \
155 (u64)st_name.member_name); \
156 } \
157 define_one_cppc_ro(member_name)
158
159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
163show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
164show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
165
166show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
167show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
168
169static ssize_t show_feedback_ctrs(struct kobject *kobj,
170 struct kobj_attribute *attr, char *buf)
171{
172 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
173 struct cppc_perf_fb_ctrs fb_ctrs = {0};
174 int ret;
175
176 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
177 if (ret)
178 return ret;
179
180 return sysfs_emit(buf, "ref:%llu del:%llu\n",
181 fb_ctrs.reference, fb_ctrs.delivered);
182}
183define_one_cppc_ro(feedback_ctrs);
184
185static struct attribute *cppc_attrs[] = {
186 &feedback_ctrs.attr,
187 &reference_perf.attr,
188 &wraparound_time.attr,
189 &highest_perf.attr,
190 &lowest_perf.attr,
191 &lowest_nonlinear_perf.attr,
192 &nominal_perf.attr,
193 &nominal_freq.attr,
194 &lowest_freq.attr,
195 NULL
196};
197ATTRIBUTE_GROUPS(cppc);
198
199static const struct kobj_type cppc_ktype = {
200 .sysfs_ops = &kobj_sysfs_ops,
201 .default_groups = cppc_groups,
202};
203
204static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
205{
206 int ret, status;
207 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
208 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
209 pcc_ss_data->pcc_comm_addr;
210
211 if (!pcc_ss_data->platform_owns_pcc)
212 return 0;
213
214 /*
215 * Poll PCC status register every 3us(delay_us) for maximum of
216 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
217 */
218 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
219 status & PCC_CMD_COMPLETE_MASK, 3,
220 pcc_ss_data->deadline_us);
221
222 if (likely(!ret)) {
223 pcc_ss_data->platform_owns_pcc = false;
224 if (chk_err_bit && (status & PCC_ERROR_MASK))
225 ret = -EIO;
226 }
227
228 if (unlikely(ret))
229 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
230 pcc_ss_id, ret);
231
232 return ret;
233}
234
235/*
236 * This function transfers the ownership of the PCC to the platform
237 * So it must be called while holding write_lock(pcc_lock)
238 */
239static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
240{
241 int ret = -EIO, i;
242 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
243 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
244 pcc_ss_data->pcc_comm_addr;
245 unsigned int time_delta;
246
247 /*
248 * For CMD_WRITE we know for a fact the caller should have checked
249 * the channel before writing to PCC space
250 */
251 if (cmd == CMD_READ) {
252 /*
253 * If there are pending cpc_writes, then we stole the channel
254 * before write completion, so first send a WRITE command to
255 * platform
256 */
257 if (pcc_ss_data->pending_pcc_write_cmd)
258 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
259
260 ret = check_pcc_chan(pcc_ss_id, false);
261 if (ret)
262 goto end;
263 } else /* CMD_WRITE */
264 pcc_ss_data->pending_pcc_write_cmd = FALSE;
265
266 /*
267 * Handle the Minimum Request Turnaround Time(MRTT)
268 * "The minimum amount of time that OSPM must wait after the completion
269 * of a command before issuing the next command, in microseconds"
270 */
271 if (pcc_ss_data->pcc_mrtt) {
272 time_delta = ktime_us_delta(ktime_get(),
273 pcc_ss_data->last_cmd_cmpl_time);
274 if (pcc_ss_data->pcc_mrtt > time_delta)
275 udelay(pcc_ss_data->pcc_mrtt - time_delta);
276 }
277
278 /*
279 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
280 * "The maximum number of periodic requests that the subspace channel can
281 * support, reported in commands per minute. 0 indicates no limitation."
282 *
283 * This parameter should be ideally zero or large enough so that it can
284 * handle maximum number of requests that all the cores in the system can
285 * collectively generate. If it is not, we will follow the spec and just
286 * not send the request to the platform after hitting the MPAR limit in
287 * any 60s window
288 */
289 if (pcc_ss_data->pcc_mpar) {
290 if (pcc_ss_data->mpar_count == 0) {
291 time_delta = ktime_ms_delta(ktime_get(),
292 pcc_ss_data->last_mpar_reset);
293 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
294 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
295 pcc_ss_id);
296 ret = -EIO;
297 goto end;
298 }
299 pcc_ss_data->last_mpar_reset = ktime_get();
300 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
301 }
302 pcc_ss_data->mpar_count--;
303 }
304
305 /* Write to the shared comm region. */
306 writew_relaxed(cmd, &generic_comm_base->command);
307
308 /* Flip CMD COMPLETE bit */
309 writew_relaxed(0, &generic_comm_base->status);
310
311 pcc_ss_data->platform_owns_pcc = true;
312
313 /* Ring doorbell */
314 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
315 if (ret < 0) {
316 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
317 pcc_ss_id, cmd, ret);
318 goto end;
319 }
320
321 /* wait for completion and check for PCC error bit */
322 ret = check_pcc_chan(pcc_ss_id, true);
323
324 if (pcc_ss_data->pcc_mrtt)
325 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
326
327 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
328 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
329 else
330 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
331
332end:
333 if (cmd == CMD_WRITE) {
334 if (unlikely(ret)) {
335 for_each_possible_cpu(i) {
336 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
337
338 if (!desc)
339 continue;
340
341 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
342 desc->write_cmd_status = ret;
343 }
344 }
345 pcc_ss_data->pcc_write_cnt++;
346 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
347 }
348
349 return ret;
350}
351
352static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
353{
354 if (ret < 0)
355 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
356 *(u16 *)msg, ret);
357 else
358 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
359 *(u16 *)msg, ret);
360}
361
362static struct mbox_client cppc_mbox_cl = {
363 .tx_done = cppc_chan_tx_done,
364 .knows_txdone = true,
365};
366
367static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
368{
369 int result = -EFAULT;
370 acpi_status status = AE_OK;
371 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
372 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
373 struct acpi_buffer state = {0, NULL};
374 union acpi_object *psd = NULL;
375 struct acpi_psd_package *pdomain;
376
377 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
378 &buffer, ACPI_TYPE_PACKAGE);
379 if (status == AE_NOT_FOUND) /* _PSD is optional */
380 return 0;
381 if (ACPI_FAILURE(status))
382 return -ENODEV;
383
384 psd = buffer.pointer;
385 if (!psd || psd->package.count != 1) {
386 pr_debug("Invalid _PSD data\n");
387 goto end;
388 }
389
390 pdomain = &(cpc_ptr->domain_info);
391
392 state.length = sizeof(struct acpi_psd_package);
393 state.pointer = pdomain;
394
395 status = acpi_extract_package(&(psd->package.elements[0]),
396 &format, &state);
397 if (ACPI_FAILURE(status)) {
398 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
399 goto end;
400 }
401
402 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
403 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
404 goto end;
405 }
406
407 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
408 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
409 goto end;
410 }
411
412 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
413 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
414 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
415 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
416 goto end;
417 }
418
419 result = 0;
420end:
421 kfree(buffer.pointer);
422 return result;
423}
424
425bool acpi_cpc_valid(void)
426{
427 struct cpc_desc *cpc_ptr;
428 int cpu;
429
430 if (acpi_disabled)
431 return false;
432
433 for_each_present_cpu(cpu) {
434 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
435 if (!cpc_ptr)
436 return false;
437 }
438
439 return true;
440}
441EXPORT_SYMBOL_GPL(acpi_cpc_valid);
442
443bool cppc_allow_fast_switch(void)
444{
445 struct cpc_register_resource *desired_reg;
446 struct cpc_desc *cpc_ptr;
447 int cpu;
448
449 for_each_possible_cpu(cpu) {
450 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
451 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
452 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
453 !CPC_IN_SYSTEM_IO(desired_reg))
454 return false;
455 }
456
457 return true;
458}
459EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
460
461/**
462 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
463 * @cpu: Find all CPUs that share a domain with cpu.
464 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
465 *
466 * Return: 0 for success or negative value for err.
467 */
468int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
469{
470 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
471 struct acpi_psd_package *match_pdomain;
472 struct acpi_psd_package *pdomain;
473 int count_target, i;
474
475 /*
476 * Now that we have _PSD data from all CPUs, let's setup P-state
477 * domain info.
478 */
479 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
480 if (!cpc_ptr)
481 return -EFAULT;
482
483 pdomain = &(cpc_ptr->domain_info);
484 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
485 if (pdomain->num_processors <= 1)
486 return 0;
487
488 /* Validate the Domain info */
489 count_target = pdomain->num_processors;
490 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
491 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
492 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
493 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
494 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
495 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
496
497 for_each_possible_cpu(i) {
498 if (i == cpu)
499 continue;
500
501 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
502 if (!match_cpc_ptr)
503 goto err_fault;
504
505 match_pdomain = &(match_cpc_ptr->domain_info);
506 if (match_pdomain->domain != pdomain->domain)
507 continue;
508
509 /* Here i and cpu are in the same domain */
510 if (match_pdomain->num_processors != count_target)
511 goto err_fault;
512
513 if (pdomain->coord_type != match_pdomain->coord_type)
514 goto err_fault;
515
516 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
517 }
518
519 return 0;
520
521err_fault:
522 /* Assume no coordination on any error parsing domain info */
523 cpumask_clear(cpu_data->shared_cpu_map);
524 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
525 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
526
527 return -EFAULT;
528}
529EXPORT_SYMBOL_GPL(acpi_get_psd_map);
530
531static int register_pcc_channel(int pcc_ss_idx)
532{
533 struct pcc_mbox_chan *pcc_chan;
534 u64 usecs_lat;
535
536 if (pcc_ss_idx >= 0) {
537 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
538
539 if (IS_ERR(pcc_chan)) {
540 pr_err("Failed to find PCC channel for subspace %d\n",
541 pcc_ss_idx);
542 return -ENODEV;
543 }
544
545 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
546 /*
547 * cppc_ss->latency is just a Nominal value. In reality
548 * the remote processor could be much slower to reply.
549 * So add an arbitrary amount of wait on top of Nominal.
550 */
551 usecs_lat = NUM_RETRIES * pcc_chan->latency;
552 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
553 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
554 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
555 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
556
557 pcc_data[pcc_ss_idx]->pcc_comm_addr =
558 acpi_os_ioremap(pcc_chan->shmem_base_addr,
559 pcc_chan->shmem_size);
560 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
561 pr_err("Failed to ioremap PCC comm region mem for %d\n",
562 pcc_ss_idx);
563 return -ENOMEM;
564 }
565
566 /* Set flag so that we don't come here for each CPU. */
567 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
568 }
569
570 return 0;
571}
572
573/**
574 * cpc_ffh_supported() - check if FFH reading supported
575 *
576 * Check if the architecture has support for functional fixed hardware
577 * read/write capability.
578 *
579 * Return: true for supported, false for not supported
580 */
581bool __weak cpc_ffh_supported(void)
582{
583 return false;
584}
585
586/**
587 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
588 *
589 * Check if the architectural support for CPPC is present even
590 * if the _OSC hasn't prescribed it
591 *
592 * Return: true for supported, false for not supported
593 */
594bool __weak cpc_supported_by_cpu(void)
595{
596 return false;
597}
598
599/**
600 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
601 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
602 *
603 * Check and allocate the cppc_pcc_data memory.
604 * In some processor configurations it is possible that same subspace
605 * is shared between multiple CPUs. This is seen especially in CPUs
606 * with hardware multi-threading support.
607 *
608 * Return: 0 for success, errno for failure
609 */
610static int pcc_data_alloc(int pcc_ss_id)
611{
612 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
613 return -EINVAL;
614
615 if (pcc_data[pcc_ss_id]) {
616 pcc_data[pcc_ss_id]->refcount++;
617 } else {
618 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
619 GFP_KERNEL);
620 if (!pcc_data[pcc_ss_id])
621 return -ENOMEM;
622 pcc_data[pcc_ss_id]->refcount++;
623 }
624
625 return 0;
626}
627
628/*
629 * An example CPC table looks like the following.
630 *
631 * Name (_CPC, Package() {
632 * 17, // NumEntries
633 * 1, // Revision
634 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
635 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
636 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
637 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
638 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
639 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
640 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
641 * ...
642 * ...
643 * ...
644 * }
645 * Each Register() encodes how to access that specific register.
646 * e.g. a sample PCC entry has the following encoding:
647 *
648 * Register (
649 * PCC, // AddressSpaceKeyword
650 * 8, // RegisterBitWidth
651 * 8, // RegisterBitOffset
652 * 0x30, // RegisterAddress
653 * 9, // AccessSize (subspace ID)
654 * )
655 */
656
657#ifndef arch_init_invariance_cppc
658static inline void arch_init_invariance_cppc(void) { }
659#endif
660
661/**
662 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
663 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
664 *
665 * Return: 0 for success or negative value for err.
666 */
667int acpi_cppc_processor_probe(struct acpi_processor *pr)
668{
669 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
670 union acpi_object *out_obj, *cpc_obj;
671 struct cpc_desc *cpc_ptr;
672 struct cpc_reg *gas_t;
673 struct device *cpu_dev;
674 acpi_handle handle = pr->handle;
675 unsigned int num_ent, i, cpc_rev;
676 int pcc_subspace_id = -1;
677 acpi_status status;
678 int ret = -ENODATA;
679
680 if (!osc_sb_cppc2_support_acked) {
681 pr_debug("CPPC v2 _OSC not acked\n");
682 if (!cpc_supported_by_cpu())
683 return -ENODEV;
684 }
685
686 /* Parse the ACPI _CPC table for this CPU. */
687 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
688 ACPI_TYPE_PACKAGE);
689 if (ACPI_FAILURE(status)) {
690 ret = -ENODEV;
691 goto out_buf_free;
692 }
693
694 out_obj = (union acpi_object *) output.pointer;
695
696 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
697 if (!cpc_ptr) {
698 ret = -ENOMEM;
699 goto out_buf_free;
700 }
701
702 /* First entry is NumEntries. */
703 cpc_obj = &out_obj->package.elements[0];
704 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
705 num_ent = cpc_obj->integer.value;
706 if (num_ent <= 1) {
707 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
708 num_ent, pr->id);
709 goto out_free;
710 }
711 } else {
712 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
713 cpc_obj->type, pr->id);
714 goto out_free;
715 }
716
717 /* Second entry should be revision. */
718 cpc_obj = &out_obj->package.elements[1];
719 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
720 cpc_rev = cpc_obj->integer.value;
721 } else {
722 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
723 cpc_obj->type, pr->id);
724 goto out_free;
725 }
726
727 if (cpc_rev < CPPC_V2_REV) {
728 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
729 pr->id);
730 goto out_free;
731 }
732
733 /*
734 * Disregard _CPC if the number of entries in the return pachage is not
735 * as expected, but support future revisions being proper supersets of
736 * the v3 and only causing more entries to be returned by _CPC.
737 */
738 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
739 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
740 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
741 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
742 num_ent, pr->id);
743 goto out_free;
744 }
745 if (cpc_rev > CPPC_V3_REV) {
746 num_ent = CPPC_V3_NUM_ENT;
747 cpc_rev = CPPC_V3_REV;
748 }
749
750 cpc_ptr->num_entries = num_ent;
751 cpc_ptr->version = cpc_rev;
752
753 /* Iterate through remaining entries in _CPC */
754 for (i = 2; i < num_ent; i++) {
755 cpc_obj = &out_obj->package.elements[i];
756
757 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
758 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
759 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
760 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
761 gas_t = (struct cpc_reg *)
762 cpc_obj->buffer.pointer;
763
764 /*
765 * The PCC Subspace index is encoded inside
766 * the CPC table entries. The same PCC index
767 * will be used for all the PCC entries,
768 * so extract it only once.
769 */
770 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
771 if (pcc_subspace_id < 0) {
772 pcc_subspace_id = gas_t->access_width;
773 if (pcc_data_alloc(pcc_subspace_id))
774 goto out_free;
775 } else if (pcc_subspace_id != gas_t->access_width) {
776 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
777 pr->id);
778 goto out_free;
779 }
780 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
781 if (gas_t->address) {
782 void __iomem *addr;
783
784 if (!osc_cpc_flexible_adr_space_confirmed) {
785 pr_debug("Flexible address space capability not supported\n");
786 if (!cpc_supported_by_cpu())
787 goto out_free;
788 }
789
790 addr = ioremap(gas_t->address, gas_t->bit_width/8);
791 if (!addr)
792 goto out_free;
793 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
794 }
795 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
796 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
797 /*
798 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
799 * SystemIO doesn't implement 64-bit
800 * registers.
801 */
802 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
803 gas_t->access_width);
804 goto out_free;
805 }
806 if (gas_t->address & OVER_16BTS_MASK) {
807 /* SystemIO registers use 16-bit integer addresses */
808 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
809 gas_t->address);
810 goto out_free;
811 }
812 if (!osc_cpc_flexible_adr_space_confirmed) {
813 pr_debug("Flexible address space capability not supported\n");
814 if (!cpc_supported_by_cpu())
815 goto out_free;
816 }
817 } else {
818 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
819 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
820 pr_debug("Unsupported register type (%d) in _CPC\n",
821 gas_t->space_id);
822 goto out_free;
823 }
824 }
825
826 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
827 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
828 } else {
829 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
830 i, pr->id);
831 goto out_free;
832 }
833 }
834 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
835
836 /*
837 * Initialize the remaining cpc_regs as unsupported.
838 * Example: In case FW exposes CPPC v2, the below loop will initialize
839 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
840 */
841 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
842 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
843 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
844 }
845
846
847 /* Store CPU Logical ID */
848 cpc_ptr->cpu_id = pr->id;
849
850 /* Parse PSD data for this CPU */
851 ret = acpi_get_psd(cpc_ptr, handle);
852 if (ret)
853 goto out_free;
854
855 /* Register PCC channel once for all PCC subspace ID. */
856 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
857 ret = register_pcc_channel(pcc_subspace_id);
858 if (ret)
859 goto out_free;
860
861 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
862 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
863 }
864
865 /* Everything looks okay */
866 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
867
868 /* Add per logical CPU nodes for reading its feedback counters. */
869 cpu_dev = get_cpu_device(pr->id);
870 if (!cpu_dev) {
871 ret = -EINVAL;
872 goto out_free;
873 }
874
875 /* Plug PSD data into this CPU's CPC descriptor. */
876 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
877
878 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
879 "acpi_cppc");
880 if (ret) {
881 per_cpu(cpc_desc_ptr, pr->id) = NULL;
882 kobject_put(&cpc_ptr->kobj);
883 goto out_free;
884 }
885
886 arch_init_invariance_cppc();
887
888 kfree(output.pointer);
889 return 0;
890
891out_free:
892 /* Free all the mapped sys mem areas for this CPU */
893 for (i = 2; i < cpc_ptr->num_entries; i++) {
894 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
895
896 if (addr)
897 iounmap(addr);
898 }
899 kfree(cpc_ptr);
900
901out_buf_free:
902 kfree(output.pointer);
903 return ret;
904}
905EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
906
907/**
908 * acpi_cppc_processor_exit - Cleanup CPC structs.
909 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
910 *
911 * Return: Void
912 */
913void acpi_cppc_processor_exit(struct acpi_processor *pr)
914{
915 struct cpc_desc *cpc_ptr;
916 unsigned int i;
917 void __iomem *addr;
918 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
919
920 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
921 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
922 pcc_data[pcc_ss_id]->refcount--;
923 if (!pcc_data[pcc_ss_id]->refcount) {
924 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
925 kfree(pcc_data[pcc_ss_id]);
926 pcc_data[pcc_ss_id] = NULL;
927 }
928 }
929 }
930
931 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
932 if (!cpc_ptr)
933 return;
934
935 /* Free all the mapped sys mem areas for this CPU */
936 for (i = 2; i < cpc_ptr->num_entries; i++) {
937 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
938 if (addr)
939 iounmap(addr);
940 }
941
942 kobject_put(&cpc_ptr->kobj);
943 kfree(cpc_ptr);
944}
945EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
946
947/**
948 * cpc_read_ffh() - Read FFH register
949 * @cpunum: CPU number to read
950 * @reg: cppc register information
951 * @val: place holder for return value
952 *
953 * Read bit_width bits from a specified address and bit_offset
954 *
955 * Return: 0 for success and error code
956 */
957int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
958{
959 return -ENOTSUPP;
960}
961
962/**
963 * cpc_write_ffh() - Write FFH register
964 * @cpunum: CPU number to write
965 * @reg: cppc register information
966 * @val: value to write
967 *
968 * Write value of bit_width bits to a specified address and bit_offset
969 *
970 * Return: 0 for success and error code
971 */
972int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
973{
974 return -ENOTSUPP;
975}
976
977/*
978 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
979 * as fast as possible. We have already mapped the PCC subspace during init, so
980 * we can directly write to it.
981 */
982
983static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
984{
985 void __iomem *vaddr = NULL;
986 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
987 struct cpc_reg *reg = ®_res->cpc_entry.reg;
988
989 if (reg_res->type == ACPI_TYPE_INTEGER) {
990 *val = reg_res->cpc_entry.int_value;
991 return 0;
992 }
993
994 *val = 0;
995
996 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
997 u32 width = 8 << (reg->access_width - 1);
998 u32 val_u32;
999 acpi_status status;
1000
1001 status = acpi_os_read_port((acpi_io_address)reg->address,
1002 &val_u32, width);
1003 if (ACPI_FAILURE(status)) {
1004 pr_debug("Error: Failed to read SystemIO port %llx\n",
1005 reg->address);
1006 return -EFAULT;
1007 }
1008
1009 *val = val_u32;
1010 return 0;
1011 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1012 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1013 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1014 vaddr = reg_res->sys_mem_vaddr;
1015 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1016 return cpc_read_ffh(cpu, reg, val);
1017 else
1018 return acpi_os_read_memory((acpi_physical_address)reg->address,
1019 val, reg->bit_width);
1020
1021 switch (reg->bit_width) {
1022 case 8:
1023 *val = readb_relaxed(vaddr);
1024 break;
1025 case 16:
1026 *val = readw_relaxed(vaddr);
1027 break;
1028 case 32:
1029 *val = readl_relaxed(vaddr);
1030 break;
1031 case 64:
1032 *val = readq_relaxed(vaddr);
1033 break;
1034 default:
1035 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1036 reg->bit_width, pcc_ss_id);
1037 return -EFAULT;
1038 }
1039
1040 return 0;
1041}
1042
1043static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1044{
1045 int ret_val = 0;
1046 void __iomem *vaddr = NULL;
1047 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1048 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1049
1050 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1051 u32 width = 8 << (reg->access_width - 1);
1052 acpi_status status;
1053
1054 status = acpi_os_write_port((acpi_io_address)reg->address,
1055 (u32)val, width);
1056 if (ACPI_FAILURE(status)) {
1057 pr_debug("Error: Failed to write SystemIO port %llx\n",
1058 reg->address);
1059 return -EFAULT;
1060 }
1061
1062 return 0;
1063 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1064 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1065 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1066 vaddr = reg_res->sys_mem_vaddr;
1067 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1068 return cpc_write_ffh(cpu, reg, val);
1069 else
1070 return acpi_os_write_memory((acpi_physical_address)reg->address,
1071 val, reg->bit_width);
1072
1073 switch (reg->bit_width) {
1074 case 8:
1075 writeb_relaxed(val, vaddr);
1076 break;
1077 case 16:
1078 writew_relaxed(val, vaddr);
1079 break;
1080 case 32:
1081 writel_relaxed(val, vaddr);
1082 break;
1083 case 64:
1084 writeq_relaxed(val, vaddr);
1085 break;
1086 default:
1087 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1088 reg->bit_width, pcc_ss_id);
1089 ret_val = -EFAULT;
1090 break;
1091 }
1092
1093 return ret_val;
1094}
1095
1096static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1097{
1098 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1099 struct cpc_register_resource *reg;
1100
1101 if (!cpc_desc) {
1102 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1103 return -ENODEV;
1104 }
1105
1106 reg = &cpc_desc->cpc_regs[reg_idx];
1107
1108 if (CPC_IN_PCC(reg)) {
1109 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1110 struct cppc_pcc_data *pcc_ss_data = NULL;
1111 int ret = 0;
1112
1113 if (pcc_ss_id < 0)
1114 return -EIO;
1115
1116 pcc_ss_data = pcc_data[pcc_ss_id];
1117
1118 down_write(&pcc_ss_data->pcc_lock);
1119
1120 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1121 cpc_read(cpunum, reg, perf);
1122 else
1123 ret = -EIO;
1124
1125 up_write(&pcc_ss_data->pcc_lock);
1126
1127 return ret;
1128 }
1129
1130 cpc_read(cpunum, reg, perf);
1131
1132 return 0;
1133}
1134
1135/**
1136 * cppc_get_desired_perf - Get the desired performance register value.
1137 * @cpunum: CPU from which to get desired performance.
1138 * @desired_perf: Return address.
1139 *
1140 * Return: 0 for success, -EIO otherwise.
1141 */
1142int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1143{
1144 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1145}
1146EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1147
1148/**
1149 * cppc_get_nominal_perf - Get the nominal performance register value.
1150 * @cpunum: CPU from which to get nominal performance.
1151 * @nominal_perf: Return address.
1152 *
1153 * Return: 0 for success, -EIO otherwise.
1154 */
1155int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1156{
1157 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1158}
1159
1160/**
1161 * cppc_get_epp_perf - Get the epp register value.
1162 * @cpunum: CPU from which to get epp preference value.
1163 * @epp_perf: Return address.
1164 *
1165 * Return: 0 for success, -EIO otherwise.
1166 */
1167int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1168{
1169 return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1170}
1171EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1172
1173/**
1174 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1175 * @cpunum: CPU from which to get capabilities info.
1176 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1177 *
1178 * Return: 0 for success with perf_caps populated else -ERRNO.
1179 */
1180int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1181{
1182 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1183 struct cpc_register_resource *highest_reg, *lowest_reg,
1184 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1185 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1186 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1187 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1188 struct cppc_pcc_data *pcc_ss_data = NULL;
1189 int ret = 0, regs_in_pcc = 0;
1190
1191 if (!cpc_desc) {
1192 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1193 return -ENODEV;
1194 }
1195
1196 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1197 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1198 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1199 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1200 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1201 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1202 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1203
1204 /* Are any of the regs PCC ?*/
1205 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1206 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1207 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1208 if (pcc_ss_id < 0) {
1209 pr_debug("Invalid pcc_ss_id\n");
1210 return -ENODEV;
1211 }
1212 pcc_ss_data = pcc_data[pcc_ss_id];
1213 regs_in_pcc = 1;
1214 down_write(&pcc_ss_data->pcc_lock);
1215 /* Ring doorbell once to update PCC subspace */
1216 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1217 ret = -EIO;
1218 goto out_err;
1219 }
1220 }
1221
1222 cpc_read(cpunum, highest_reg, &high);
1223 perf_caps->highest_perf = high;
1224
1225 cpc_read(cpunum, lowest_reg, &low);
1226 perf_caps->lowest_perf = low;
1227
1228 cpc_read(cpunum, nominal_reg, &nom);
1229 perf_caps->nominal_perf = nom;
1230
1231 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1232 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1233 perf_caps->guaranteed_perf = 0;
1234 } else {
1235 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1236 perf_caps->guaranteed_perf = guaranteed;
1237 }
1238
1239 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1240 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1241
1242 if (!high || !low || !nom || !min_nonlinear)
1243 ret = -EFAULT;
1244
1245 /* Read optional lowest and nominal frequencies if present */
1246 if (CPC_SUPPORTED(low_freq_reg))
1247 cpc_read(cpunum, low_freq_reg, &low_f);
1248
1249 if (CPC_SUPPORTED(nom_freq_reg))
1250 cpc_read(cpunum, nom_freq_reg, &nom_f);
1251
1252 perf_caps->lowest_freq = low_f;
1253 perf_caps->nominal_freq = nom_f;
1254
1255
1256out_err:
1257 if (regs_in_pcc)
1258 up_write(&pcc_ss_data->pcc_lock);
1259 return ret;
1260}
1261EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1262
1263/**
1264 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1265 *
1266 * CPPC has flexibility about how CPU performance counters are accessed.
1267 * One of the choices is PCC regions, which can have a high access latency. This
1268 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1269 *
1270 * Return: true if any of the counters are in PCC regions, false otherwise
1271 */
1272bool cppc_perf_ctrs_in_pcc(void)
1273{
1274 int cpu;
1275
1276 for_each_present_cpu(cpu) {
1277 struct cpc_register_resource *ref_perf_reg;
1278 struct cpc_desc *cpc_desc;
1279
1280 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1281
1282 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1283 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1284 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1285 return true;
1286
1287
1288 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1289
1290 /*
1291 * If reference perf register is not supported then we should
1292 * use the nominal perf value
1293 */
1294 if (!CPC_SUPPORTED(ref_perf_reg))
1295 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1296
1297 if (CPC_IN_PCC(ref_perf_reg))
1298 return true;
1299 }
1300
1301 return false;
1302}
1303EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1304
1305/**
1306 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1307 * @cpunum: CPU from which to read counters.
1308 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1309 *
1310 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1311 */
1312int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1313{
1314 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1315 struct cpc_register_resource *delivered_reg, *reference_reg,
1316 *ref_perf_reg, *ctr_wrap_reg;
1317 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1318 struct cppc_pcc_data *pcc_ss_data = NULL;
1319 u64 delivered, reference, ref_perf, ctr_wrap_time;
1320 int ret = 0, regs_in_pcc = 0;
1321
1322 if (!cpc_desc) {
1323 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1324 return -ENODEV;
1325 }
1326
1327 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1328 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1329 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1330 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1331
1332 /*
1333 * If reference perf register is not supported then we should
1334 * use the nominal perf value
1335 */
1336 if (!CPC_SUPPORTED(ref_perf_reg))
1337 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1338
1339 /* Are any of the regs PCC ?*/
1340 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1341 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1342 if (pcc_ss_id < 0) {
1343 pr_debug("Invalid pcc_ss_id\n");
1344 return -ENODEV;
1345 }
1346 pcc_ss_data = pcc_data[pcc_ss_id];
1347 down_write(&pcc_ss_data->pcc_lock);
1348 regs_in_pcc = 1;
1349 /* Ring doorbell once to update PCC subspace */
1350 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1351 ret = -EIO;
1352 goto out_err;
1353 }
1354 }
1355
1356 cpc_read(cpunum, delivered_reg, &delivered);
1357 cpc_read(cpunum, reference_reg, &reference);
1358 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1359
1360 /*
1361 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1362 * performance counters are assumed to never wrap during the lifetime of
1363 * platform
1364 */
1365 ctr_wrap_time = (u64)(~((u64)0));
1366 if (CPC_SUPPORTED(ctr_wrap_reg))
1367 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1368
1369 if (!delivered || !reference || !ref_perf) {
1370 ret = -EFAULT;
1371 goto out_err;
1372 }
1373
1374 perf_fb_ctrs->delivered = delivered;
1375 perf_fb_ctrs->reference = reference;
1376 perf_fb_ctrs->reference_perf = ref_perf;
1377 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1378out_err:
1379 if (regs_in_pcc)
1380 up_write(&pcc_ss_data->pcc_lock);
1381 return ret;
1382}
1383EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1384
1385/*
1386 * Set Energy Performance Preference Register value through
1387 * Performance Controls Interface
1388 */
1389int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1390{
1391 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1392 struct cpc_register_resource *epp_set_reg;
1393 struct cpc_register_resource *auto_sel_reg;
1394 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1395 struct cppc_pcc_data *pcc_ss_data = NULL;
1396 int ret;
1397
1398 if (!cpc_desc) {
1399 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1400 return -ENODEV;
1401 }
1402
1403 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1404 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1405
1406 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1407 if (pcc_ss_id < 0) {
1408 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1409 return -ENODEV;
1410 }
1411
1412 if (CPC_SUPPORTED(auto_sel_reg)) {
1413 ret = cpc_write(cpu, auto_sel_reg, enable);
1414 if (ret)
1415 return ret;
1416 }
1417
1418 if (CPC_SUPPORTED(epp_set_reg)) {
1419 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1420 if (ret)
1421 return ret;
1422 }
1423
1424 pcc_ss_data = pcc_data[pcc_ss_id];
1425
1426 down_write(&pcc_ss_data->pcc_lock);
1427 /* after writing CPC, transfer the ownership of PCC to platform */
1428 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1429 up_write(&pcc_ss_data->pcc_lock);
1430 } else {
1431 ret = -ENOTSUPP;
1432 pr_debug("_CPC in PCC is not supported\n");
1433 }
1434
1435 return ret;
1436}
1437EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1438
1439/**
1440 * cppc_get_auto_sel_caps - Read autonomous selection register.
1441 * @cpunum : CPU from which to read register.
1442 * @perf_caps : struct where autonomous selection register value is updated.
1443 */
1444int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1445{
1446 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1447 struct cpc_register_resource *auto_sel_reg;
1448 u64 auto_sel;
1449
1450 if (!cpc_desc) {
1451 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1452 return -ENODEV;
1453 }
1454
1455 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1456
1457 if (!CPC_SUPPORTED(auto_sel_reg))
1458 pr_warn_once("Autonomous mode is not unsupported!\n");
1459
1460 if (CPC_IN_PCC(auto_sel_reg)) {
1461 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1462 struct cppc_pcc_data *pcc_ss_data = NULL;
1463 int ret = 0;
1464
1465 if (pcc_ss_id < 0)
1466 return -ENODEV;
1467
1468 pcc_ss_data = pcc_data[pcc_ss_id];
1469
1470 down_write(&pcc_ss_data->pcc_lock);
1471
1472 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1473 cpc_read(cpunum, auto_sel_reg, &auto_sel);
1474 perf_caps->auto_sel = (bool)auto_sel;
1475 } else {
1476 ret = -EIO;
1477 }
1478
1479 up_write(&pcc_ss_data->pcc_lock);
1480
1481 return ret;
1482 }
1483
1484 return 0;
1485}
1486EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1487
1488/**
1489 * cppc_set_auto_sel - Write autonomous selection register.
1490 * @cpu : CPU to which to write register.
1491 * @enable : the desired value of autonomous selection resiter to be updated.
1492 */
1493int cppc_set_auto_sel(int cpu, bool enable)
1494{
1495 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1496 struct cpc_register_resource *auto_sel_reg;
1497 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1498 struct cppc_pcc_data *pcc_ss_data = NULL;
1499 int ret = -EINVAL;
1500
1501 if (!cpc_desc) {
1502 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1503 return -ENODEV;
1504 }
1505
1506 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1507
1508 if (CPC_IN_PCC(auto_sel_reg)) {
1509 if (pcc_ss_id < 0) {
1510 pr_debug("Invalid pcc_ss_id\n");
1511 return -ENODEV;
1512 }
1513
1514 if (CPC_SUPPORTED(auto_sel_reg)) {
1515 ret = cpc_write(cpu, auto_sel_reg, enable);
1516 if (ret)
1517 return ret;
1518 }
1519
1520 pcc_ss_data = pcc_data[pcc_ss_id];
1521
1522 down_write(&pcc_ss_data->pcc_lock);
1523 /* after writing CPC, transfer the ownership of PCC to platform */
1524 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1525 up_write(&pcc_ss_data->pcc_lock);
1526 } else {
1527 ret = -ENOTSUPP;
1528 pr_debug("_CPC in PCC is not supported\n");
1529 }
1530
1531 return ret;
1532}
1533EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1534
1535/**
1536 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1537 * Continuous Performance Control package EnableRegister field.
1538 * @cpu: CPU for which to enable CPPC register.
1539 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1540 *
1541 * Return: 0 for success, -ERRNO or -EIO otherwise.
1542 */
1543int cppc_set_enable(int cpu, bool enable)
1544{
1545 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1546 struct cpc_register_resource *enable_reg;
1547 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1548 struct cppc_pcc_data *pcc_ss_data = NULL;
1549 int ret = -EINVAL;
1550
1551 if (!cpc_desc) {
1552 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1553 return -EINVAL;
1554 }
1555
1556 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1557
1558 if (CPC_IN_PCC(enable_reg)) {
1559
1560 if (pcc_ss_id < 0)
1561 return -EIO;
1562
1563 ret = cpc_write(cpu, enable_reg, enable);
1564 if (ret)
1565 return ret;
1566
1567 pcc_ss_data = pcc_data[pcc_ss_id];
1568
1569 down_write(&pcc_ss_data->pcc_lock);
1570 /* after writing CPC, transfer the ownership of PCC to platfrom */
1571 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1572 up_write(&pcc_ss_data->pcc_lock);
1573 return ret;
1574 }
1575
1576 return cpc_write(cpu, enable_reg, enable);
1577}
1578EXPORT_SYMBOL_GPL(cppc_set_enable);
1579
1580/**
1581 * cppc_set_perf - Set a CPU's performance controls.
1582 * @cpu: CPU for which to set performance controls.
1583 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1584 *
1585 * Return: 0 for success, -ERRNO otherwise.
1586 */
1587int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1588{
1589 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1590 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1591 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1592 struct cppc_pcc_data *pcc_ss_data = NULL;
1593 int ret = 0;
1594
1595 if (!cpc_desc) {
1596 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1597 return -ENODEV;
1598 }
1599
1600 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1601 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1602 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1603
1604 /*
1605 * This is Phase-I where we want to write to CPC registers
1606 * -> We want all CPUs to be able to execute this phase in parallel
1607 *
1608 * Since read_lock can be acquired by multiple CPUs simultaneously we
1609 * achieve that goal here
1610 */
1611 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1612 if (pcc_ss_id < 0) {
1613 pr_debug("Invalid pcc_ss_id\n");
1614 return -ENODEV;
1615 }
1616 pcc_ss_data = pcc_data[pcc_ss_id];
1617 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1618 if (pcc_ss_data->platform_owns_pcc) {
1619 ret = check_pcc_chan(pcc_ss_id, false);
1620 if (ret) {
1621 up_read(&pcc_ss_data->pcc_lock);
1622 return ret;
1623 }
1624 }
1625 /*
1626 * Update the pending_write to make sure a PCC CMD_READ will not
1627 * arrive and steal the channel during the switch to write lock
1628 */
1629 pcc_ss_data->pending_pcc_write_cmd = true;
1630 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1631 cpc_desc->write_cmd_status = 0;
1632 }
1633
1634 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1635
1636 /*
1637 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1638 * value to min and max perf, but they don't mean to set the zero value,
1639 * they just don't want to write to those registers.
1640 */
1641 if (perf_ctrls->min_perf)
1642 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1643 if (perf_ctrls->max_perf)
1644 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1645
1646 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1647 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1648 /*
1649 * This is Phase-II where we transfer the ownership of PCC to Platform
1650 *
1651 * Short Summary: Basically if we think of a group of cppc_set_perf
1652 * requests that happened in short overlapping interval. The last CPU to
1653 * come out of Phase-I will enter Phase-II and ring the doorbell.
1654 *
1655 * We have the following requirements for Phase-II:
1656 * 1. We want to execute Phase-II only when there are no CPUs
1657 * currently executing in Phase-I
1658 * 2. Once we start Phase-II we want to avoid all other CPUs from
1659 * entering Phase-I.
1660 * 3. We want only one CPU among all those who went through Phase-I
1661 * to run phase-II
1662 *
1663 * If write_trylock fails to get the lock and doesn't transfer the
1664 * PCC ownership to the platform, then one of the following will be TRUE
1665 * 1. There is at-least one CPU in Phase-I which will later execute
1666 * write_trylock, so the CPUs in Phase-I will be responsible for
1667 * executing the Phase-II.
1668 * 2. Some other CPU has beaten this CPU to successfully execute the
1669 * write_trylock and has already acquired the write_lock. We know for a
1670 * fact it (other CPU acquiring the write_lock) couldn't have happened
1671 * before this CPU's Phase-I as we held the read_lock.
1672 * 3. Some other CPU executing pcc CMD_READ has stolen the
1673 * down_write, in which case, send_pcc_cmd will check for pending
1674 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1675 * So this CPU can be certain that its request will be delivered
1676 * So in all cases, this CPU knows that its request will be delivered
1677 * by another CPU and can return
1678 *
1679 * After getting the down_write we still need to check for
1680 * pending_pcc_write_cmd to take care of the following scenario
1681 * The thread running this code could be scheduled out between
1682 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1683 * could have delivered the request to Platform by triggering the
1684 * doorbell and transferred the ownership of PCC to platform. So this
1685 * avoids triggering an unnecessary doorbell and more importantly before
1686 * triggering the doorbell it makes sure that the PCC channel ownership
1687 * is still with OSPM.
1688 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1689 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1690 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1691 * case during a CMD_READ and if there are pending writes it delivers
1692 * the write command before servicing the read command
1693 */
1694 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1695 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1696 /* Update only if there are pending write commands */
1697 if (pcc_ss_data->pending_pcc_write_cmd)
1698 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1699 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1700 } else
1701 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1702 wait_event(pcc_ss_data->pcc_write_wait_q,
1703 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1704
1705 /* send_pcc_cmd updates the status in case of failure */
1706 ret = cpc_desc->write_cmd_status;
1707 }
1708 return ret;
1709}
1710EXPORT_SYMBOL_GPL(cppc_set_perf);
1711
1712/**
1713 * cppc_get_transition_latency - returns frequency transition latency in ns
1714 * @cpu_num: CPU number for per_cpu().
1715 *
1716 * ACPI CPPC does not explicitly specify how a platform can specify the
1717 * transition latency for performance change requests. The closest we have
1718 * is the timing information from the PCCT tables which provides the info
1719 * on the number and frequency of PCC commands the platform can handle.
1720 *
1721 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1722 * then assume there is no latency.
1723 */
1724unsigned int cppc_get_transition_latency(int cpu_num)
1725{
1726 /*
1727 * Expected transition latency is based on the PCCT timing values
1728 * Below are definition from ACPI spec:
1729 * pcc_nominal- Expected latency to process a command, in microseconds
1730 * pcc_mpar - The maximum number of periodic requests that the subspace
1731 * channel can support, reported in commands per minute. 0
1732 * indicates no limitation.
1733 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1734 * completion of a command before issuing the next command,
1735 * in microseconds.
1736 */
1737 unsigned int latency_ns = 0;
1738 struct cpc_desc *cpc_desc;
1739 struct cpc_register_resource *desired_reg;
1740 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1741 struct cppc_pcc_data *pcc_ss_data;
1742
1743 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1744 if (!cpc_desc)
1745 return CPUFREQ_ETERNAL;
1746
1747 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1748 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1749 return 0;
1750 else if (!CPC_IN_PCC(desired_reg))
1751 return CPUFREQ_ETERNAL;
1752
1753 if (pcc_ss_id < 0)
1754 return CPUFREQ_ETERNAL;
1755
1756 pcc_ss_data = pcc_data[pcc_ss_id];
1757 if (pcc_ss_data->pcc_mpar)
1758 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1759
1760 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1761 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1762
1763 return latency_ns;
1764}
1765EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1766
1767/* Minimum struct length needed for the DMI processor entry we want */
1768#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
1769
1770/* Offset in the DMI processor structure for the max frequency */
1771#define DMI_PROCESSOR_MAX_SPEED 0x14
1772
1773/* Callback function used to retrieve the max frequency from DMI */
1774static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1775{
1776 const u8 *dmi_data = (const u8 *)dm;
1777 u16 *mhz = (u16 *)private;
1778
1779 if (dm->type == DMI_ENTRY_PROCESSOR &&
1780 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1781 u16 val = (u16)get_unaligned((const u16 *)
1782 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
1783 *mhz = val > *mhz ? val : *mhz;
1784 }
1785}
1786
1787/* Look up the max frequency in DMI */
1788static u64 cppc_get_dmi_max_khz(void)
1789{
1790 u16 mhz = 0;
1791
1792 dmi_walk(cppc_find_dmi_mhz, &mhz);
1793
1794 /*
1795 * Real stupid fallback value, just in case there is no
1796 * actual value set.
1797 */
1798 mhz = mhz ? mhz : 1;
1799
1800 return KHZ_PER_MHZ * mhz;
1801}
1802
1803/*
1804 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1805 * use them to convert perf to freq and vice versa. The conversion is
1806 * extrapolated as an affine function passing by the 2 points:
1807 * - (Low perf, Low freq)
1808 * - (Nominal perf, Nominal freq)
1809 */
1810unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1811{
1812 s64 retval, offset = 0;
1813 static u64 max_khz;
1814 u64 mul, div;
1815
1816 if (caps->lowest_freq && caps->nominal_freq) {
1817 mul = caps->nominal_freq - caps->lowest_freq;
1818 mul *= KHZ_PER_MHZ;
1819 div = caps->nominal_perf - caps->lowest_perf;
1820 offset = caps->nominal_freq * KHZ_PER_MHZ -
1821 div64_u64(caps->nominal_perf * mul, div);
1822 } else {
1823 if (!max_khz)
1824 max_khz = cppc_get_dmi_max_khz();
1825 mul = max_khz;
1826 div = caps->highest_perf;
1827 }
1828
1829 retval = offset + div64_u64(perf * mul, div);
1830 if (retval >= 0)
1831 return retval;
1832 return 0;
1833}
1834EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1835
1836unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1837{
1838 s64 retval, offset = 0;
1839 static u64 max_khz;
1840 u64 mul, div;
1841
1842 if (caps->lowest_freq && caps->nominal_freq) {
1843 mul = caps->nominal_perf - caps->lowest_perf;
1844 div = caps->nominal_freq - caps->lowest_freq;
1845 /*
1846 * We don't need to convert to kHz for computing offset and can
1847 * directly use nominal_freq and lowest_freq as the div64_u64
1848 * will remove the frequency unit.
1849 */
1850 offset = caps->nominal_perf -
1851 div64_u64(caps->nominal_freq * mul, div);
1852 /* But we need it for computing the perf level. */
1853 div *= KHZ_PER_MHZ;
1854 } else {
1855 if (!max_khz)
1856 max_khz = cppc_get_dmi_max_khz();
1857 mul = caps->highest_perf;
1858 div = max_khz;
1859 }
1860
1861 retval = offset + div64_u64(freq * mul, div);
1862 if (retval >= 0)
1863 return retval;
1864 return 0;
1865}
1866EXPORT_SYMBOL_GPL(cppc_khz_to_perf);