Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42#include <linux/dmi.h>
43#include <linux/units.h>
44#include <linux/unaligned.h>
45
46#include <acpi/cppc_acpi.h>
47
48struct cppc_pcc_data {
49 struct pcc_mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 bool pcc_channel_acquired;
52 unsigned int deadline_us;
53 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54
55 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
56 bool platform_owns_pcc; /* Ownership of PCC subspace */
57 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
58
59 /*
60 * Lock to provide controlled access to the PCC channel.
61 *
62 * For performance critical usecases(currently cppc_set_perf)
63 * We need to take read_lock and check if channel belongs to OSPM
64 * before reading or writing to PCC subspace
65 * We need to take write_lock before transferring the channel
66 * ownership to the platform via a Doorbell
67 * This allows us to batch a number of CPPC requests if they happen
68 * to originate in about the same time
69 *
70 * For non-performance critical usecases(init)
71 * Take write_lock for all purposes which gives exclusive access
72 */
73 struct rw_semaphore pcc_lock;
74
75 /* Wait queue for CPUs whose requests were batched */
76 wait_queue_head_t pcc_write_wait_q;
77 ktime_t last_cmd_cmpl_time;
78 ktime_t last_mpar_reset;
79 int mpar_count;
80 int refcount;
81};
82
83/* Array to represent the PCC channel per subspace ID */
84static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87
88/*
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
94 */
95static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
97/* pcc mapped address + header size + offset within PCC subspace */
98#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 0x8 + (offs))
100
101/* Check if a CPC register is in PCC */
102#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
103 (cpc)->cpc_entry.reg.space_id == \
104 ACPI_ADR_SPACE_PLATFORM_COMM)
105
106/* Check if a CPC register is in FFH */
107#define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
108 (cpc)->cpc_entry.reg.space_id == \
109 ACPI_ADR_SPACE_FIXED_HARDWARE)
110
111/* Check if a CPC register is in SystemMemory */
112#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
113 (cpc)->cpc_entry.reg.space_id == \
114 ACPI_ADR_SPACE_SYSTEM_MEMORY)
115
116/* Check if a CPC register is in SystemIo */
117#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
118 (cpc)->cpc_entry.reg.space_id == \
119 ACPI_ADR_SPACE_SYSTEM_IO)
120
121/* Evaluates to True if reg is a NULL register descriptor */
122#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
123 (reg)->address == 0 && \
124 (reg)->bit_width == 0 && \
125 (reg)->bit_offset == 0 && \
126 (reg)->access_width == 0)
127
128/* Evaluates to True if an optional cpc field is supported */
129#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
130 !!(cpc)->cpc_entry.int_value : \
131 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
132/*
133 * Arbitrary Retries in case the remote processor is slow to respond
134 * to PCC commands. Keeping it high enough to cover emulators where
135 * the processors run painfully slow.
136 */
137#define NUM_RETRIES 500ULL
138
139#define OVER_16BTS_MASK ~0xFFFFULL
140
141#define define_one_cppc_ro(_name) \
142static struct kobj_attribute _name = \
143__ATTR(_name, 0444, show_##_name, NULL)
144
145#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
146
147#define show_cppc_data(access_fn, struct_name, member_name) \
148 static ssize_t show_##member_name(struct kobject *kobj, \
149 struct kobj_attribute *attr, char *buf) \
150 { \
151 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
152 struct struct_name st_name = {0}; \
153 int ret; \
154 \
155 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
156 if (ret) \
157 return ret; \
158 \
159 return sysfs_emit(buf, "%llu\n", \
160 (u64)st_name.member_name); \
161 } \
162 define_one_cppc_ro(member_name)
163
164show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
165show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
166show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
167show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
168show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
169show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
170show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
171
172show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
173show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
174
175/* Check for valid access_width, otherwise, fallback to using bit_width */
176#define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
177
178/* Shift and apply the mask for CPC reads/writes */
179#define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) & \
180 GENMASK(((reg)->bit_width) - 1, 0))
181#define MASK_VAL_WRITE(reg, prev_val, val) \
182 ((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) | \
183 ((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset))) \
184
185static ssize_t show_feedback_ctrs(struct kobject *kobj,
186 struct kobj_attribute *attr, char *buf)
187{
188 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
189 struct cppc_perf_fb_ctrs fb_ctrs = {0};
190 int ret;
191
192 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
193 if (ret)
194 return ret;
195
196 return sysfs_emit(buf, "ref:%llu del:%llu\n",
197 fb_ctrs.reference, fb_ctrs.delivered);
198}
199define_one_cppc_ro(feedback_ctrs);
200
201static struct attribute *cppc_attrs[] = {
202 &feedback_ctrs.attr,
203 &reference_perf.attr,
204 &wraparound_time.attr,
205 &highest_perf.attr,
206 &lowest_perf.attr,
207 &lowest_nonlinear_perf.attr,
208 &guaranteed_perf.attr,
209 &nominal_perf.attr,
210 &nominal_freq.attr,
211 &lowest_freq.attr,
212 NULL
213};
214ATTRIBUTE_GROUPS(cppc);
215
216static const struct kobj_type cppc_ktype = {
217 .sysfs_ops = &kobj_sysfs_ops,
218 .default_groups = cppc_groups,
219};
220
221static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
222{
223 int ret, status;
224 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
225 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
226 pcc_ss_data->pcc_comm_addr;
227
228 if (!pcc_ss_data->platform_owns_pcc)
229 return 0;
230
231 /*
232 * Poll PCC status register every 3us(delay_us) for maximum of
233 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
234 */
235 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
236 status & PCC_CMD_COMPLETE_MASK, 3,
237 pcc_ss_data->deadline_us);
238
239 if (likely(!ret)) {
240 pcc_ss_data->platform_owns_pcc = false;
241 if (chk_err_bit && (status & PCC_ERROR_MASK))
242 ret = -EIO;
243 }
244
245 if (unlikely(ret))
246 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
247 pcc_ss_id, ret);
248
249 return ret;
250}
251
252/*
253 * This function transfers the ownership of the PCC to the platform
254 * So it must be called while holding write_lock(pcc_lock)
255 */
256static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
257{
258 int ret = -EIO, i;
259 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
260 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
261 pcc_ss_data->pcc_comm_addr;
262 unsigned int time_delta;
263
264 /*
265 * For CMD_WRITE we know for a fact the caller should have checked
266 * the channel before writing to PCC space
267 */
268 if (cmd == CMD_READ) {
269 /*
270 * If there are pending cpc_writes, then we stole the channel
271 * before write completion, so first send a WRITE command to
272 * platform
273 */
274 if (pcc_ss_data->pending_pcc_write_cmd)
275 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
276
277 ret = check_pcc_chan(pcc_ss_id, false);
278 if (ret)
279 goto end;
280 } else /* CMD_WRITE */
281 pcc_ss_data->pending_pcc_write_cmd = FALSE;
282
283 /*
284 * Handle the Minimum Request Turnaround Time(MRTT)
285 * "The minimum amount of time that OSPM must wait after the completion
286 * of a command before issuing the next command, in microseconds"
287 */
288 if (pcc_ss_data->pcc_mrtt) {
289 time_delta = ktime_us_delta(ktime_get(),
290 pcc_ss_data->last_cmd_cmpl_time);
291 if (pcc_ss_data->pcc_mrtt > time_delta)
292 udelay(pcc_ss_data->pcc_mrtt - time_delta);
293 }
294
295 /*
296 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
297 * "The maximum number of periodic requests that the subspace channel can
298 * support, reported in commands per minute. 0 indicates no limitation."
299 *
300 * This parameter should be ideally zero or large enough so that it can
301 * handle maximum number of requests that all the cores in the system can
302 * collectively generate. If it is not, we will follow the spec and just
303 * not send the request to the platform after hitting the MPAR limit in
304 * any 60s window
305 */
306 if (pcc_ss_data->pcc_mpar) {
307 if (pcc_ss_data->mpar_count == 0) {
308 time_delta = ktime_ms_delta(ktime_get(),
309 pcc_ss_data->last_mpar_reset);
310 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
311 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
312 pcc_ss_id);
313 ret = -EIO;
314 goto end;
315 }
316 pcc_ss_data->last_mpar_reset = ktime_get();
317 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
318 }
319 pcc_ss_data->mpar_count--;
320 }
321
322 /* Write to the shared comm region. */
323 writew_relaxed(cmd, &generic_comm_base->command);
324
325 /* Flip CMD COMPLETE bit */
326 writew_relaxed(0, &generic_comm_base->status);
327
328 pcc_ss_data->platform_owns_pcc = true;
329
330 /* Ring doorbell */
331 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
332 if (ret < 0) {
333 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
334 pcc_ss_id, cmd, ret);
335 goto end;
336 }
337
338 /* wait for completion and check for PCC error bit */
339 ret = check_pcc_chan(pcc_ss_id, true);
340
341 if (pcc_ss_data->pcc_mrtt)
342 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
343
344 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
345 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
346 else
347 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
348
349end:
350 if (cmd == CMD_WRITE) {
351 if (unlikely(ret)) {
352 for_each_possible_cpu(i) {
353 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
354
355 if (!desc)
356 continue;
357
358 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
359 desc->write_cmd_status = ret;
360 }
361 }
362 pcc_ss_data->pcc_write_cnt++;
363 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
364 }
365
366 return ret;
367}
368
369static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
370{
371 if (ret < 0)
372 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
373 *(u16 *)msg, ret);
374 else
375 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
376 *(u16 *)msg, ret);
377}
378
379static struct mbox_client cppc_mbox_cl = {
380 .tx_done = cppc_chan_tx_done,
381 .knows_txdone = true,
382};
383
384static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
385{
386 int result = -EFAULT;
387 acpi_status status = AE_OK;
388 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
389 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
390 struct acpi_buffer state = {0, NULL};
391 union acpi_object *psd = NULL;
392 struct acpi_psd_package *pdomain;
393
394 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
395 &buffer, ACPI_TYPE_PACKAGE);
396 if (status == AE_NOT_FOUND) /* _PSD is optional */
397 return 0;
398 if (ACPI_FAILURE(status))
399 return -ENODEV;
400
401 psd = buffer.pointer;
402 if (!psd || psd->package.count != 1) {
403 pr_debug("Invalid _PSD data\n");
404 goto end;
405 }
406
407 pdomain = &(cpc_ptr->domain_info);
408
409 state.length = sizeof(struct acpi_psd_package);
410 state.pointer = pdomain;
411
412 status = acpi_extract_package(&(psd->package.elements[0]),
413 &format, &state);
414 if (ACPI_FAILURE(status)) {
415 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
416 goto end;
417 }
418
419 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
420 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
421 goto end;
422 }
423
424 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
425 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
426 goto end;
427 }
428
429 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
430 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
431 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
432 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
433 goto end;
434 }
435
436 result = 0;
437end:
438 kfree(buffer.pointer);
439 return result;
440}
441
442bool acpi_cpc_valid(void)
443{
444 struct cpc_desc *cpc_ptr;
445 int cpu;
446
447 if (acpi_disabled)
448 return false;
449
450 for_each_present_cpu(cpu) {
451 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
452 if (!cpc_ptr)
453 return false;
454 }
455
456 return true;
457}
458EXPORT_SYMBOL_GPL(acpi_cpc_valid);
459
460bool cppc_allow_fast_switch(void)
461{
462 struct cpc_register_resource *desired_reg;
463 struct cpc_desc *cpc_ptr;
464 int cpu;
465
466 for_each_possible_cpu(cpu) {
467 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
468 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
469 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
470 !CPC_IN_SYSTEM_IO(desired_reg))
471 return false;
472 }
473
474 return true;
475}
476EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
477
478/**
479 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
480 * @cpu: Find all CPUs that share a domain with cpu.
481 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
482 *
483 * Return: 0 for success or negative value for err.
484 */
485int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
486{
487 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
488 struct acpi_psd_package *match_pdomain;
489 struct acpi_psd_package *pdomain;
490 int count_target, i;
491
492 /*
493 * Now that we have _PSD data from all CPUs, let's setup P-state
494 * domain info.
495 */
496 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
497 if (!cpc_ptr)
498 return -EFAULT;
499
500 pdomain = &(cpc_ptr->domain_info);
501 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
502 if (pdomain->num_processors <= 1)
503 return 0;
504
505 /* Validate the Domain info */
506 count_target = pdomain->num_processors;
507 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
508 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
509 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
510 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
511 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
512 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
513
514 for_each_possible_cpu(i) {
515 if (i == cpu)
516 continue;
517
518 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
519 if (!match_cpc_ptr)
520 goto err_fault;
521
522 match_pdomain = &(match_cpc_ptr->domain_info);
523 if (match_pdomain->domain != pdomain->domain)
524 continue;
525
526 /* Here i and cpu are in the same domain */
527 if (match_pdomain->num_processors != count_target)
528 goto err_fault;
529
530 if (pdomain->coord_type != match_pdomain->coord_type)
531 goto err_fault;
532
533 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
534 }
535
536 return 0;
537
538err_fault:
539 /* Assume no coordination on any error parsing domain info */
540 cpumask_clear(cpu_data->shared_cpu_map);
541 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
542 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
543
544 return -EFAULT;
545}
546EXPORT_SYMBOL_GPL(acpi_get_psd_map);
547
548static int register_pcc_channel(int pcc_ss_idx)
549{
550 struct pcc_mbox_chan *pcc_chan;
551 u64 usecs_lat;
552
553 if (pcc_ss_idx >= 0) {
554 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
555
556 if (IS_ERR(pcc_chan)) {
557 pr_err("Failed to find PCC channel for subspace %d\n",
558 pcc_ss_idx);
559 return -ENODEV;
560 }
561
562 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
563 /*
564 * cppc_ss->latency is just a Nominal value. In reality
565 * the remote processor could be much slower to reply.
566 * So add an arbitrary amount of wait on top of Nominal.
567 */
568 usecs_lat = NUM_RETRIES * pcc_chan->latency;
569 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
570 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
571 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
572 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
573
574 pcc_data[pcc_ss_idx]->pcc_comm_addr =
575 acpi_os_ioremap(pcc_chan->shmem_base_addr,
576 pcc_chan->shmem_size);
577 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
578 pr_err("Failed to ioremap PCC comm region mem for %d\n",
579 pcc_ss_idx);
580 return -ENOMEM;
581 }
582
583 /* Set flag so that we don't come here for each CPU. */
584 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
585 }
586
587 return 0;
588}
589
590/**
591 * cpc_ffh_supported() - check if FFH reading supported
592 *
593 * Check if the architecture has support for functional fixed hardware
594 * read/write capability.
595 *
596 * Return: true for supported, false for not supported
597 */
598bool __weak cpc_ffh_supported(void)
599{
600 return false;
601}
602
603/**
604 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
605 *
606 * Check if the architectural support for CPPC is present even
607 * if the _OSC hasn't prescribed it
608 *
609 * Return: true for supported, false for not supported
610 */
611bool __weak cpc_supported_by_cpu(void)
612{
613 return false;
614}
615
616/**
617 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
618 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
619 *
620 * Check and allocate the cppc_pcc_data memory.
621 * In some processor configurations it is possible that same subspace
622 * is shared between multiple CPUs. This is seen especially in CPUs
623 * with hardware multi-threading support.
624 *
625 * Return: 0 for success, errno for failure
626 */
627static int pcc_data_alloc(int pcc_ss_id)
628{
629 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
630 return -EINVAL;
631
632 if (pcc_data[pcc_ss_id]) {
633 pcc_data[pcc_ss_id]->refcount++;
634 } else {
635 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
636 GFP_KERNEL);
637 if (!pcc_data[pcc_ss_id])
638 return -ENOMEM;
639 pcc_data[pcc_ss_id]->refcount++;
640 }
641
642 return 0;
643}
644
645/*
646 * An example CPC table looks like the following.
647 *
648 * Name (_CPC, Package() {
649 * 17, // NumEntries
650 * 1, // Revision
651 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
652 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
653 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
654 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
655 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
656 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
657 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
658 * ...
659 * ...
660 * ...
661 * }
662 * Each Register() encodes how to access that specific register.
663 * e.g. a sample PCC entry has the following encoding:
664 *
665 * Register (
666 * PCC, // AddressSpaceKeyword
667 * 8, // RegisterBitWidth
668 * 8, // RegisterBitOffset
669 * 0x30, // RegisterAddress
670 * 9, // AccessSize (subspace ID)
671 * )
672 */
673
674/**
675 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
676 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
677 *
678 * Return: 0 for success or negative value for err.
679 */
680int acpi_cppc_processor_probe(struct acpi_processor *pr)
681{
682 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
683 union acpi_object *out_obj, *cpc_obj;
684 struct cpc_desc *cpc_ptr;
685 struct cpc_reg *gas_t;
686 struct device *cpu_dev;
687 acpi_handle handle = pr->handle;
688 unsigned int num_ent, i, cpc_rev;
689 int pcc_subspace_id = -1;
690 acpi_status status;
691 int ret = -ENODATA;
692
693 if (!osc_sb_cppc2_support_acked) {
694 pr_debug("CPPC v2 _OSC not acked\n");
695 if (!cpc_supported_by_cpu()) {
696 pr_debug("CPPC is not supported by the CPU\n");
697 return -ENODEV;
698 }
699 }
700
701 /* Parse the ACPI _CPC table for this CPU. */
702 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
703 ACPI_TYPE_PACKAGE);
704 if (ACPI_FAILURE(status)) {
705 ret = -ENODEV;
706 goto out_buf_free;
707 }
708
709 out_obj = (union acpi_object *) output.pointer;
710
711 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
712 if (!cpc_ptr) {
713 ret = -ENOMEM;
714 goto out_buf_free;
715 }
716
717 /* First entry is NumEntries. */
718 cpc_obj = &out_obj->package.elements[0];
719 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
720 num_ent = cpc_obj->integer.value;
721 if (num_ent <= 1) {
722 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
723 num_ent, pr->id);
724 goto out_free;
725 }
726 } else {
727 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
728 cpc_obj->type, pr->id);
729 goto out_free;
730 }
731
732 /* Second entry should be revision. */
733 cpc_obj = &out_obj->package.elements[1];
734 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
735 cpc_rev = cpc_obj->integer.value;
736 } else {
737 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
738 cpc_obj->type, pr->id);
739 goto out_free;
740 }
741
742 if (cpc_rev < CPPC_V2_REV) {
743 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
744 pr->id);
745 goto out_free;
746 }
747
748 /*
749 * Disregard _CPC if the number of entries in the return pachage is not
750 * as expected, but support future revisions being proper supersets of
751 * the v3 and only causing more entries to be returned by _CPC.
752 */
753 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
754 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
755 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
756 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
757 num_ent, pr->id);
758 goto out_free;
759 }
760 if (cpc_rev > CPPC_V3_REV) {
761 num_ent = CPPC_V3_NUM_ENT;
762 cpc_rev = CPPC_V3_REV;
763 }
764
765 cpc_ptr->num_entries = num_ent;
766 cpc_ptr->version = cpc_rev;
767
768 /* Iterate through remaining entries in _CPC */
769 for (i = 2; i < num_ent; i++) {
770 cpc_obj = &out_obj->package.elements[i];
771
772 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
773 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
774 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
775 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
776 gas_t = (struct cpc_reg *)
777 cpc_obj->buffer.pointer;
778
779 /*
780 * The PCC Subspace index is encoded inside
781 * the CPC table entries. The same PCC index
782 * will be used for all the PCC entries,
783 * so extract it only once.
784 */
785 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
786 if (pcc_subspace_id < 0) {
787 pcc_subspace_id = gas_t->access_width;
788 if (pcc_data_alloc(pcc_subspace_id))
789 goto out_free;
790 } else if (pcc_subspace_id != gas_t->access_width) {
791 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
792 pr->id);
793 goto out_free;
794 }
795 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
796 if (gas_t->address) {
797 void __iomem *addr;
798 size_t access_width;
799
800 if (!osc_cpc_flexible_adr_space_confirmed) {
801 pr_debug("Flexible address space capability not supported\n");
802 if (!cpc_supported_by_cpu())
803 goto out_free;
804 }
805
806 access_width = GET_BIT_WIDTH(gas_t) / 8;
807 addr = ioremap(gas_t->address, access_width);
808 if (!addr)
809 goto out_free;
810 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
811 }
812 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
813 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
814 /*
815 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
816 * SystemIO doesn't implement 64-bit
817 * registers.
818 */
819 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
820 gas_t->access_width);
821 goto out_free;
822 }
823 if (gas_t->address & OVER_16BTS_MASK) {
824 /* SystemIO registers use 16-bit integer addresses */
825 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
826 gas_t->address);
827 goto out_free;
828 }
829 if (!osc_cpc_flexible_adr_space_confirmed) {
830 pr_debug("Flexible address space capability not supported\n");
831 if (!cpc_supported_by_cpu())
832 goto out_free;
833 }
834 } else {
835 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
836 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
837 pr_debug("Unsupported register type (%d) in _CPC\n",
838 gas_t->space_id);
839 goto out_free;
840 }
841 }
842
843 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
844 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
845 } else {
846 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
847 i, pr->id);
848 goto out_free;
849 }
850 }
851 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
852
853 /*
854 * Initialize the remaining cpc_regs as unsupported.
855 * Example: In case FW exposes CPPC v2, the below loop will initialize
856 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
857 */
858 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
859 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
860 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
861 }
862
863
864 /* Store CPU Logical ID */
865 cpc_ptr->cpu_id = pr->id;
866 raw_spin_lock_init(&cpc_ptr->rmw_lock);
867
868 /* Parse PSD data for this CPU */
869 ret = acpi_get_psd(cpc_ptr, handle);
870 if (ret)
871 goto out_free;
872
873 /* Register PCC channel once for all PCC subspace ID. */
874 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
875 ret = register_pcc_channel(pcc_subspace_id);
876 if (ret)
877 goto out_free;
878
879 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
880 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
881 }
882
883 /* Everything looks okay */
884 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
885
886 /* Add per logical CPU nodes for reading its feedback counters. */
887 cpu_dev = get_cpu_device(pr->id);
888 if (!cpu_dev) {
889 ret = -EINVAL;
890 goto out_free;
891 }
892
893 /* Plug PSD data into this CPU's CPC descriptor. */
894 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
895
896 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
897 "acpi_cppc");
898 if (ret) {
899 per_cpu(cpc_desc_ptr, pr->id) = NULL;
900 kobject_put(&cpc_ptr->kobj);
901 goto out_free;
902 }
903
904 kfree(output.pointer);
905 return 0;
906
907out_free:
908 /* Free all the mapped sys mem areas for this CPU */
909 for (i = 2; i < cpc_ptr->num_entries; i++) {
910 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
911
912 if (addr)
913 iounmap(addr);
914 }
915 kfree(cpc_ptr);
916
917out_buf_free:
918 kfree(output.pointer);
919 return ret;
920}
921EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
922
923/**
924 * acpi_cppc_processor_exit - Cleanup CPC structs.
925 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
926 *
927 * Return: Void
928 */
929void acpi_cppc_processor_exit(struct acpi_processor *pr)
930{
931 struct cpc_desc *cpc_ptr;
932 unsigned int i;
933 void __iomem *addr;
934 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
935
936 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
937 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
938 pcc_data[pcc_ss_id]->refcount--;
939 if (!pcc_data[pcc_ss_id]->refcount) {
940 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
941 kfree(pcc_data[pcc_ss_id]);
942 pcc_data[pcc_ss_id] = NULL;
943 }
944 }
945 }
946
947 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
948 if (!cpc_ptr)
949 return;
950
951 /* Free all the mapped sys mem areas for this CPU */
952 for (i = 2; i < cpc_ptr->num_entries; i++) {
953 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
954 if (addr)
955 iounmap(addr);
956 }
957
958 kobject_put(&cpc_ptr->kobj);
959 kfree(cpc_ptr);
960}
961EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
962
963/**
964 * cpc_read_ffh() - Read FFH register
965 * @cpunum: CPU number to read
966 * @reg: cppc register information
967 * @val: place holder for return value
968 *
969 * Read bit_width bits from a specified address and bit_offset
970 *
971 * Return: 0 for success and error code
972 */
973int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
974{
975 return -ENOTSUPP;
976}
977
978/**
979 * cpc_write_ffh() - Write FFH register
980 * @cpunum: CPU number to write
981 * @reg: cppc register information
982 * @val: value to write
983 *
984 * Write value of bit_width bits to a specified address and bit_offset
985 *
986 * Return: 0 for success and error code
987 */
988int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
989{
990 return -ENOTSUPP;
991}
992
993/*
994 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
995 * as fast as possible. We have already mapped the PCC subspace during init, so
996 * we can directly write to it.
997 */
998
999static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
1000{
1001 void __iomem *vaddr = NULL;
1002 int size;
1003 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1004 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1005
1006 if (reg_res->type == ACPI_TYPE_INTEGER) {
1007 *val = reg_res->cpc_entry.int_value;
1008 return 0;
1009 }
1010
1011 *val = 0;
1012 size = GET_BIT_WIDTH(reg);
1013
1014 if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1015 reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1016 u32 val_u32;
1017 acpi_status status;
1018
1019 status = acpi_os_read_port((acpi_io_address)reg->address,
1020 &val_u32, size);
1021 if (ACPI_FAILURE(status)) {
1022 pr_debug("Error: Failed to read SystemIO port %llx\n",
1023 reg->address);
1024 return -EFAULT;
1025 }
1026
1027 *val = val_u32;
1028 return 0;
1029 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1030 /*
1031 * For registers in PCC space, the register size is determined
1032 * by the bit width field; the access size is used to indicate
1033 * the PCC subspace id.
1034 */
1035 size = reg->bit_width;
1036 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1037 }
1038 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1039 vaddr = reg_res->sys_mem_vaddr;
1040 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1041 return cpc_read_ffh(cpu, reg, val);
1042 else
1043 return acpi_os_read_memory((acpi_physical_address)reg->address,
1044 val, size);
1045
1046 switch (size) {
1047 case 8:
1048 *val = readb_relaxed(vaddr);
1049 break;
1050 case 16:
1051 *val = readw_relaxed(vaddr);
1052 break;
1053 case 32:
1054 *val = readl_relaxed(vaddr);
1055 break;
1056 case 64:
1057 *val = readq_relaxed(vaddr);
1058 break;
1059 default:
1060 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1061 pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1062 size, reg->address);
1063 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1064 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1065 size, pcc_ss_id);
1066 }
1067 return -EFAULT;
1068 }
1069
1070 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1071 *val = MASK_VAL_READ(reg, *val);
1072
1073 return 0;
1074}
1075
1076static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1077{
1078 int ret_val = 0;
1079 int size;
1080 u64 prev_val;
1081 void __iomem *vaddr = NULL;
1082 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1083 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1084 struct cpc_desc *cpc_desc;
1085 unsigned long flags;
1086
1087 size = GET_BIT_WIDTH(reg);
1088
1089 if (IS_ENABLED(CONFIG_HAS_IOPORT) &&
1090 reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1091 acpi_status status;
1092
1093 status = acpi_os_write_port((acpi_io_address)reg->address,
1094 (u32)val, size);
1095 if (ACPI_FAILURE(status)) {
1096 pr_debug("Error: Failed to write SystemIO port %llx\n",
1097 reg->address);
1098 return -EFAULT;
1099 }
1100
1101 return 0;
1102 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1103 /*
1104 * For registers in PCC space, the register size is determined
1105 * by the bit width field; the access size is used to indicate
1106 * the PCC subspace id.
1107 */
1108 size = reg->bit_width;
1109 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1110 }
1111 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1112 vaddr = reg_res->sys_mem_vaddr;
1113 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1114 return cpc_write_ffh(cpu, reg, val);
1115 else
1116 return acpi_os_write_memory((acpi_physical_address)reg->address,
1117 val, size);
1118
1119 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1120 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1121 if (!cpc_desc) {
1122 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1123 return -ENODEV;
1124 }
1125
1126 raw_spin_lock_irqsave(&cpc_desc->rmw_lock, flags);
1127 switch (size) {
1128 case 8:
1129 prev_val = readb_relaxed(vaddr);
1130 break;
1131 case 16:
1132 prev_val = readw_relaxed(vaddr);
1133 break;
1134 case 32:
1135 prev_val = readl_relaxed(vaddr);
1136 break;
1137 case 64:
1138 prev_val = readq_relaxed(vaddr);
1139 break;
1140 default:
1141 raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1142 return -EFAULT;
1143 }
1144 val = MASK_VAL_WRITE(reg, prev_val, val);
1145 }
1146
1147 switch (size) {
1148 case 8:
1149 writeb_relaxed(val, vaddr);
1150 break;
1151 case 16:
1152 writew_relaxed(val, vaddr);
1153 break;
1154 case 32:
1155 writel_relaxed(val, vaddr);
1156 break;
1157 case 64:
1158 writeq_relaxed(val, vaddr);
1159 break;
1160 default:
1161 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1162 pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1163 size, reg->address);
1164 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1165 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1166 size, pcc_ss_id);
1167 }
1168 ret_val = -EFAULT;
1169 break;
1170 }
1171
1172 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1173 raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1174
1175 return ret_val;
1176}
1177
1178static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1179{
1180 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1181 struct cpc_register_resource *reg;
1182
1183 if (!cpc_desc) {
1184 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1185 return -ENODEV;
1186 }
1187
1188 reg = &cpc_desc->cpc_regs[reg_idx];
1189
1190 if (CPC_IN_PCC(reg)) {
1191 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1192 struct cppc_pcc_data *pcc_ss_data = NULL;
1193 int ret = 0;
1194
1195 if (pcc_ss_id < 0)
1196 return -EIO;
1197
1198 pcc_ss_data = pcc_data[pcc_ss_id];
1199
1200 down_write(&pcc_ss_data->pcc_lock);
1201
1202 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1203 cpc_read(cpunum, reg, perf);
1204 else
1205 ret = -EIO;
1206
1207 up_write(&pcc_ss_data->pcc_lock);
1208
1209 return ret;
1210 }
1211
1212 cpc_read(cpunum, reg, perf);
1213
1214 return 0;
1215}
1216
1217/**
1218 * cppc_get_desired_perf - Get the desired performance register value.
1219 * @cpunum: CPU from which to get desired performance.
1220 * @desired_perf: Return address.
1221 *
1222 * Return: 0 for success, -EIO otherwise.
1223 */
1224int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1225{
1226 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1227}
1228EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1229
1230/**
1231 * cppc_get_nominal_perf - Get the nominal performance register value.
1232 * @cpunum: CPU from which to get nominal performance.
1233 * @nominal_perf: Return address.
1234 *
1235 * Return: 0 for success, -EIO otherwise.
1236 */
1237int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1238{
1239 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1240}
1241
1242/**
1243 * cppc_get_highest_perf - Get the highest performance register value.
1244 * @cpunum: CPU from which to get highest performance.
1245 * @highest_perf: Return address.
1246 *
1247 * Return: 0 for success, -EIO otherwise.
1248 */
1249int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1250{
1251 return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1252}
1253EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1254
1255/**
1256 * cppc_get_epp_perf - Get the epp register value.
1257 * @cpunum: CPU from which to get epp preference value.
1258 * @epp_perf: Return address.
1259 *
1260 * Return: 0 for success, -EIO otherwise.
1261 */
1262int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1263{
1264 return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1265}
1266EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1267
1268/**
1269 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1270 * @cpunum: CPU from which to get capabilities info.
1271 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1272 *
1273 * Return: 0 for success with perf_caps populated else -ERRNO.
1274 */
1275int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1276{
1277 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1278 struct cpc_register_resource *highest_reg, *lowest_reg,
1279 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1280 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1281 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1282 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1283 struct cppc_pcc_data *pcc_ss_data = NULL;
1284 int ret = 0, regs_in_pcc = 0;
1285
1286 if (!cpc_desc) {
1287 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1288 return -ENODEV;
1289 }
1290
1291 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1292 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1293 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1294 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1295 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1296 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1297 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1298
1299 /* Are any of the regs PCC ?*/
1300 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1301 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1302 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1303 if (pcc_ss_id < 0) {
1304 pr_debug("Invalid pcc_ss_id\n");
1305 return -ENODEV;
1306 }
1307 pcc_ss_data = pcc_data[pcc_ss_id];
1308 regs_in_pcc = 1;
1309 down_write(&pcc_ss_data->pcc_lock);
1310 /* Ring doorbell once to update PCC subspace */
1311 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1312 ret = -EIO;
1313 goto out_err;
1314 }
1315 }
1316
1317 cpc_read(cpunum, highest_reg, &high);
1318 perf_caps->highest_perf = high;
1319
1320 cpc_read(cpunum, lowest_reg, &low);
1321 perf_caps->lowest_perf = low;
1322
1323 cpc_read(cpunum, nominal_reg, &nom);
1324 perf_caps->nominal_perf = nom;
1325
1326 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1327 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1328 perf_caps->guaranteed_perf = 0;
1329 } else {
1330 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1331 perf_caps->guaranteed_perf = guaranteed;
1332 }
1333
1334 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1335 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1336
1337 if (!high || !low || !nom || !min_nonlinear)
1338 ret = -EFAULT;
1339
1340 /* Read optional lowest and nominal frequencies if present */
1341 if (CPC_SUPPORTED(low_freq_reg))
1342 cpc_read(cpunum, low_freq_reg, &low_f);
1343
1344 if (CPC_SUPPORTED(nom_freq_reg))
1345 cpc_read(cpunum, nom_freq_reg, &nom_f);
1346
1347 perf_caps->lowest_freq = low_f;
1348 perf_caps->nominal_freq = nom_f;
1349
1350
1351out_err:
1352 if (regs_in_pcc)
1353 up_write(&pcc_ss_data->pcc_lock);
1354 return ret;
1355}
1356EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1357
1358/**
1359 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1360 *
1361 * CPPC has flexibility about how CPU performance counters are accessed.
1362 * One of the choices is PCC regions, which can have a high access latency. This
1363 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1364 *
1365 * Return: true if any of the counters are in PCC regions, false otherwise
1366 */
1367bool cppc_perf_ctrs_in_pcc(void)
1368{
1369 int cpu;
1370
1371 for_each_present_cpu(cpu) {
1372 struct cpc_register_resource *ref_perf_reg;
1373 struct cpc_desc *cpc_desc;
1374
1375 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1376
1377 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1378 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1379 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1380 return true;
1381
1382
1383 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1384
1385 /*
1386 * If reference perf register is not supported then we should
1387 * use the nominal perf value
1388 */
1389 if (!CPC_SUPPORTED(ref_perf_reg))
1390 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1391
1392 if (CPC_IN_PCC(ref_perf_reg))
1393 return true;
1394 }
1395
1396 return false;
1397}
1398EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1399
1400/**
1401 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1402 * @cpunum: CPU from which to read counters.
1403 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1404 *
1405 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1406 */
1407int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1408{
1409 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1410 struct cpc_register_resource *delivered_reg, *reference_reg,
1411 *ref_perf_reg, *ctr_wrap_reg;
1412 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1413 struct cppc_pcc_data *pcc_ss_data = NULL;
1414 u64 delivered, reference, ref_perf, ctr_wrap_time;
1415 int ret = 0, regs_in_pcc = 0;
1416
1417 if (!cpc_desc) {
1418 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1419 return -ENODEV;
1420 }
1421
1422 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1423 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1424 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1425 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1426
1427 /*
1428 * If reference perf register is not supported then we should
1429 * use the nominal perf value
1430 */
1431 if (!CPC_SUPPORTED(ref_perf_reg))
1432 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1433
1434 /* Are any of the regs PCC ?*/
1435 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1436 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1437 if (pcc_ss_id < 0) {
1438 pr_debug("Invalid pcc_ss_id\n");
1439 return -ENODEV;
1440 }
1441 pcc_ss_data = pcc_data[pcc_ss_id];
1442 down_write(&pcc_ss_data->pcc_lock);
1443 regs_in_pcc = 1;
1444 /* Ring doorbell once to update PCC subspace */
1445 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1446 ret = -EIO;
1447 goto out_err;
1448 }
1449 }
1450
1451 cpc_read(cpunum, delivered_reg, &delivered);
1452 cpc_read(cpunum, reference_reg, &reference);
1453 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1454
1455 /*
1456 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1457 * performance counters are assumed to never wrap during the lifetime of
1458 * platform
1459 */
1460 ctr_wrap_time = (u64)(~((u64)0));
1461 if (CPC_SUPPORTED(ctr_wrap_reg))
1462 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1463
1464 if (!delivered || !reference || !ref_perf) {
1465 ret = -EFAULT;
1466 goto out_err;
1467 }
1468
1469 perf_fb_ctrs->delivered = delivered;
1470 perf_fb_ctrs->reference = reference;
1471 perf_fb_ctrs->reference_perf = ref_perf;
1472 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1473out_err:
1474 if (regs_in_pcc)
1475 up_write(&pcc_ss_data->pcc_lock);
1476 return ret;
1477}
1478EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1479
1480/*
1481 * Set Energy Performance Preference Register value through
1482 * Performance Controls Interface
1483 */
1484int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1485{
1486 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1487 struct cpc_register_resource *epp_set_reg;
1488 struct cpc_register_resource *auto_sel_reg;
1489 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1490 struct cppc_pcc_data *pcc_ss_data = NULL;
1491 int ret;
1492
1493 if (!cpc_desc) {
1494 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1495 return -ENODEV;
1496 }
1497
1498 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1499 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1500
1501 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1502 if (pcc_ss_id < 0) {
1503 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1504 return -ENODEV;
1505 }
1506
1507 if (CPC_SUPPORTED(auto_sel_reg)) {
1508 ret = cpc_write(cpu, auto_sel_reg, enable);
1509 if (ret)
1510 return ret;
1511 }
1512
1513 if (CPC_SUPPORTED(epp_set_reg)) {
1514 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1515 if (ret)
1516 return ret;
1517 }
1518
1519 pcc_ss_data = pcc_data[pcc_ss_id];
1520
1521 down_write(&pcc_ss_data->pcc_lock);
1522 /* after writing CPC, transfer the ownership of PCC to platform */
1523 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1524 up_write(&pcc_ss_data->pcc_lock);
1525 } else if (osc_cpc_flexible_adr_space_confirmed &&
1526 CPC_SUPPORTED(epp_set_reg) && CPC_IN_FFH(epp_set_reg)) {
1527 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1528 } else {
1529 ret = -ENOTSUPP;
1530 pr_debug("_CPC in PCC and _CPC in FFH are not supported\n");
1531 }
1532
1533 return ret;
1534}
1535EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1536
1537/**
1538 * cppc_get_auto_sel_caps - Read autonomous selection register.
1539 * @cpunum : CPU from which to read register.
1540 * @perf_caps : struct where autonomous selection register value is updated.
1541 */
1542int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1543{
1544 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1545 struct cpc_register_resource *auto_sel_reg;
1546 u64 auto_sel;
1547
1548 if (!cpc_desc) {
1549 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1550 return -ENODEV;
1551 }
1552
1553 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1554
1555 if (!CPC_SUPPORTED(auto_sel_reg))
1556 pr_warn_once("Autonomous mode is not unsupported!\n");
1557
1558 if (CPC_IN_PCC(auto_sel_reg)) {
1559 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1560 struct cppc_pcc_data *pcc_ss_data = NULL;
1561 int ret = 0;
1562
1563 if (pcc_ss_id < 0)
1564 return -ENODEV;
1565
1566 pcc_ss_data = pcc_data[pcc_ss_id];
1567
1568 down_write(&pcc_ss_data->pcc_lock);
1569
1570 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1571 cpc_read(cpunum, auto_sel_reg, &auto_sel);
1572 perf_caps->auto_sel = (bool)auto_sel;
1573 } else {
1574 ret = -EIO;
1575 }
1576
1577 up_write(&pcc_ss_data->pcc_lock);
1578
1579 return ret;
1580 }
1581
1582 return 0;
1583}
1584EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1585
1586/**
1587 * cppc_set_auto_sel - Write autonomous selection register.
1588 * @cpu : CPU to which to write register.
1589 * @enable : the desired value of autonomous selection resiter to be updated.
1590 */
1591int cppc_set_auto_sel(int cpu, bool enable)
1592{
1593 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1594 struct cpc_register_resource *auto_sel_reg;
1595 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1596 struct cppc_pcc_data *pcc_ss_data = NULL;
1597 int ret = -EINVAL;
1598
1599 if (!cpc_desc) {
1600 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1601 return -ENODEV;
1602 }
1603
1604 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1605
1606 if (CPC_IN_PCC(auto_sel_reg)) {
1607 if (pcc_ss_id < 0) {
1608 pr_debug("Invalid pcc_ss_id\n");
1609 return -ENODEV;
1610 }
1611
1612 if (CPC_SUPPORTED(auto_sel_reg)) {
1613 ret = cpc_write(cpu, auto_sel_reg, enable);
1614 if (ret)
1615 return ret;
1616 }
1617
1618 pcc_ss_data = pcc_data[pcc_ss_id];
1619
1620 down_write(&pcc_ss_data->pcc_lock);
1621 /* after writing CPC, transfer the ownership of PCC to platform */
1622 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1623 up_write(&pcc_ss_data->pcc_lock);
1624 } else {
1625 ret = -ENOTSUPP;
1626 pr_debug("_CPC in PCC is not supported\n");
1627 }
1628
1629 return ret;
1630}
1631EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1632
1633/**
1634 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1635 * Continuous Performance Control package EnableRegister field.
1636 * @cpu: CPU for which to enable CPPC register.
1637 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1638 *
1639 * Return: 0 for success, -ERRNO or -EIO otherwise.
1640 */
1641int cppc_set_enable(int cpu, bool enable)
1642{
1643 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1644 struct cpc_register_resource *enable_reg;
1645 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1646 struct cppc_pcc_data *pcc_ss_data = NULL;
1647 int ret = -EINVAL;
1648
1649 if (!cpc_desc) {
1650 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1651 return -EINVAL;
1652 }
1653
1654 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1655
1656 if (CPC_IN_PCC(enable_reg)) {
1657
1658 if (pcc_ss_id < 0)
1659 return -EIO;
1660
1661 ret = cpc_write(cpu, enable_reg, enable);
1662 if (ret)
1663 return ret;
1664
1665 pcc_ss_data = pcc_data[pcc_ss_id];
1666
1667 down_write(&pcc_ss_data->pcc_lock);
1668 /* after writing CPC, transfer the ownership of PCC to platfrom */
1669 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1670 up_write(&pcc_ss_data->pcc_lock);
1671 return ret;
1672 }
1673
1674 return cpc_write(cpu, enable_reg, enable);
1675}
1676EXPORT_SYMBOL_GPL(cppc_set_enable);
1677
1678/**
1679 * cppc_set_perf - Set a CPU's performance controls.
1680 * @cpu: CPU for which to set performance controls.
1681 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1682 *
1683 * Return: 0 for success, -ERRNO otherwise.
1684 */
1685int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1686{
1687 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1688 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1689 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1690 struct cppc_pcc_data *pcc_ss_data = NULL;
1691 int ret = 0;
1692
1693 if (!cpc_desc) {
1694 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1695 return -ENODEV;
1696 }
1697
1698 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1699 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1700 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1701
1702 /*
1703 * This is Phase-I where we want to write to CPC registers
1704 * -> We want all CPUs to be able to execute this phase in parallel
1705 *
1706 * Since read_lock can be acquired by multiple CPUs simultaneously we
1707 * achieve that goal here
1708 */
1709 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1710 if (pcc_ss_id < 0) {
1711 pr_debug("Invalid pcc_ss_id\n");
1712 return -ENODEV;
1713 }
1714 pcc_ss_data = pcc_data[pcc_ss_id];
1715 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1716 if (pcc_ss_data->platform_owns_pcc) {
1717 ret = check_pcc_chan(pcc_ss_id, false);
1718 if (ret) {
1719 up_read(&pcc_ss_data->pcc_lock);
1720 return ret;
1721 }
1722 }
1723 /*
1724 * Update the pending_write to make sure a PCC CMD_READ will not
1725 * arrive and steal the channel during the switch to write lock
1726 */
1727 pcc_ss_data->pending_pcc_write_cmd = true;
1728 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1729 cpc_desc->write_cmd_status = 0;
1730 }
1731
1732 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1733
1734 /*
1735 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1736 * value to min and max perf, but they don't mean to set the zero value,
1737 * they just don't want to write to those registers.
1738 */
1739 if (perf_ctrls->min_perf)
1740 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1741 if (perf_ctrls->max_perf)
1742 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1743
1744 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1745 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1746 /*
1747 * This is Phase-II where we transfer the ownership of PCC to Platform
1748 *
1749 * Short Summary: Basically if we think of a group of cppc_set_perf
1750 * requests that happened in short overlapping interval. The last CPU to
1751 * come out of Phase-I will enter Phase-II and ring the doorbell.
1752 *
1753 * We have the following requirements for Phase-II:
1754 * 1. We want to execute Phase-II only when there are no CPUs
1755 * currently executing in Phase-I
1756 * 2. Once we start Phase-II we want to avoid all other CPUs from
1757 * entering Phase-I.
1758 * 3. We want only one CPU among all those who went through Phase-I
1759 * to run phase-II
1760 *
1761 * If write_trylock fails to get the lock and doesn't transfer the
1762 * PCC ownership to the platform, then one of the following will be TRUE
1763 * 1. There is at-least one CPU in Phase-I which will later execute
1764 * write_trylock, so the CPUs in Phase-I will be responsible for
1765 * executing the Phase-II.
1766 * 2. Some other CPU has beaten this CPU to successfully execute the
1767 * write_trylock and has already acquired the write_lock. We know for a
1768 * fact it (other CPU acquiring the write_lock) couldn't have happened
1769 * before this CPU's Phase-I as we held the read_lock.
1770 * 3. Some other CPU executing pcc CMD_READ has stolen the
1771 * down_write, in which case, send_pcc_cmd will check for pending
1772 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1773 * So this CPU can be certain that its request will be delivered
1774 * So in all cases, this CPU knows that its request will be delivered
1775 * by another CPU and can return
1776 *
1777 * After getting the down_write we still need to check for
1778 * pending_pcc_write_cmd to take care of the following scenario
1779 * The thread running this code could be scheduled out between
1780 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1781 * could have delivered the request to Platform by triggering the
1782 * doorbell and transferred the ownership of PCC to platform. So this
1783 * avoids triggering an unnecessary doorbell and more importantly before
1784 * triggering the doorbell it makes sure that the PCC channel ownership
1785 * is still with OSPM.
1786 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1787 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1788 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1789 * case during a CMD_READ and if there are pending writes it delivers
1790 * the write command before servicing the read command
1791 */
1792 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1793 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1794 /* Update only if there are pending write commands */
1795 if (pcc_ss_data->pending_pcc_write_cmd)
1796 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1797 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1798 } else
1799 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1800 wait_event(pcc_ss_data->pcc_write_wait_q,
1801 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1802
1803 /* send_pcc_cmd updates the status in case of failure */
1804 ret = cpc_desc->write_cmd_status;
1805 }
1806 return ret;
1807}
1808EXPORT_SYMBOL_GPL(cppc_set_perf);
1809
1810/**
1811 * cppc_get_transition_latency - returns frequency transition latency in ns
1812 * @cpu_num: CPU number for per_cpu().
1813 *
1814 * ACPI CPPC does not explicitly specify how a platform can specify the
1815 * transition latency for performance change requests. The closest we have
1816 * is the timing information from the PCCT tables which provides the info
1817 * on the number and frequency of PCC commands the platform can handle.
1818 *
1819 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1820 * then assume there is no latency.
1821 */
1822unsigned int cppc_get_transition_latency(int cpu_num)
1823{
1824 /*
1825 * Expected transition latency is based on the PCCT timing values
1826 * Below are definition from ACPI spec:
1827 * pcc_nominal- Expected latency to process a command, in microseconds
1828 * pcc_mpar - The maximum number of periodic requests that the subspace
1829 * channel can support, reported in commands per minute. 0
1830 * indicates no limitation.
1831 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1832 * completion of a command before issuing the next command,
1833 * in microseconds.
1834 */
1835 unsigned int latency_ns = 0;
1836 struct cpc_desc *cpc_desc;
1837 struct cpc_register_resource *desired_reg;
1838 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1839 struct cppc_pcc_data *pcc_ss_data;
1840
1841 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1842 if (!cpc_desc)
1843 return CPUFREQ_ETERNAL;
1844
1845 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1846 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1847 return 0;
1848 else if (!CPC_IN_PCC(desired_reg))
1849 return CPUFREQ_ETERNAL;
1850
1851 if (pcc_ss_id < 0)
1852 return CPUFREQ_ETERNAL;
1853
1854 pcc_ss_data = pcc_data[pcc_ss_id];
1855 if (pcc_ss_data->pcc_mpar)
1856 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1857
1858 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1859 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1860
1861 return latency_ns;
1862}
1863EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1864
1865/* Minimum struct length needed for the DMI processor entry we want */
1866#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
1867
1868/* Offset in the DMI processor structure for the max frequency */
1869#define DMI_PROCESSOR_MAX_SPEED 0x14
1870
1871/* Callback function used to retrieve the max frequency from DMI */
1872static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1873{
1874 const u8 *dmi_data = (const u8 *)dm;
1875 u16 *mhz = (u16 *)private;
1876
1877 if (dm->type == DMI_ENTRY_PROCESSOR &&
1878 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1879 u16 val = (u16)get_unaligned((const u16 *)
1880 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
1881 *mhz = umax(val, *mhz);
1882 }
1883}
1884
1885/* Look up the max frequency in DMI */
1886static u64 cppc_get_dmi_max_khz(void)
1887{
1888 u16 mhz = 0;
1889
1890 dmi_walk(cppc_find_dmi_mhz, &mhz);
1891
1892 /*
1893 * Real stupid fallback value, just in case there is no
1894 * actual value set.
1895 */
1896 mhz = mhz ? mhz : 1;
1897
1898 return KHZ_PER_MHZ * mhz;
1899}
1900
1901/*
1902 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1903 * use them to convert perf to freq and vice versa. The conversion is
1904 * extrapolated as an affine function passing by the 2 points:
1905 * - (Low perf, Low freq)
1906 * - (Nominal perf, Nominal freq)
1907 */
1908unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1909{
1910 s64 retval, offset = 0;
1911 static u64 max_khz;
1912 u64 mul, div;
1913
1914 if (caps->lowest_freq && caps->nominal_freq) {
1915 /* Avoid special case when nominal_freq is equal to lowest_freq */
1916 if (caps->lowest_freq == caps->nominal_freq) {
1917 mul = caps->nominal_freq;
1918 div = caps->nominal_perf;
1919 } else {
1920 mul = caps->nominal_freq - caps->lowest_freq;
1921 div = caps->nominal_perf - caps->lowest_perf;
1922 }
1923 mul *= KHZ_PER_MHZ;
1924 offset = caps->nominal_freq * KHZ_PER_MHZ -
1925 div64_u64(caps->nominal_perf * mul, div);
1926 } else {
1927 if (!max_khz)
1928 max_khz = cppc_get_dmi_max_khz();
1929 mul = max_khz;
1930 div = caps->highest_perf;
1931 }
1932
1933 retval = offset + div64_u64(perf * mul, div);
1934 if (retval >= 0)
1935 return retval;
1936 return 0;
1937}
1938EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1939
1940unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1941{
1942 s64 retval, offset = 0;
1943 static u64 max_khz;
1944 u64 mul, div;
1945
1946 if (caps->lowest_freq && caps->nominal_freq) {
1947 /* Avoid special case when nominal_freq is equal to lowest_freq */
1948 if (caps->lowest_freq == caps->nominal_freq) {
1949 mul = caps->nominal_perf;
1950 div = caps->nominal_freq;
1951 } else {
1952 mul = caps->nominal_perf - caps->lowest_perf;
1953 div = caps->nominal_freq - caps->lowest_freq;
1954 }
1955 /*
1956 * We don't need to convert to kHz for computing offset and can
1957 * directly use nominal_freq and lowest_freq as the div64_u64
1958 * will remove the frequency unit.
1959 */
1960 offset = caps->nominal_perf -
1961 div64_u64(caps->nominal_freq * mul, div);
1962 /* But we need it for computing the perf level. */
1963 div *= KHZ_PER_MHZ;
1964 } else {
1965 if (!max_khz)
1966 max_khz = cppc_get_dmi_max_khz();
1967 mul = caps->highest_perf;
1968 div = max_khz;
1969 }
1970
1971 retval = offset + div64_u64(freq * mul, div);
1972 if (retval >= 0)
1973 return retval;
1974 return 0;
1975}
1976EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1/*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3 *
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
17 *
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
21 *
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
23 *
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
26 *
27 * - Platform conveys its decision back to OS
28 *
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
33 *
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
36 */
37
38#define pr_fmt(fmt) "ACPI CPPC: " fmt
39
40#include <linux/cpufreq.h>
41#include <linux/delay.h>
42#include <linux/ktime.h>
43#include <linux/rwsem.h>
44#include <linux/wait.h>
45
46#include <acpi/cppc_acpi.h>
47
48struct cppc_pcc_data {
49 struct mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 int pcc_subspace_idx;
52 bool pcc_channel_acquired;
53 ktime_t deadline;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
59
60 /*
61 * Lock to provide controlled access to the PCC channel.
62 *
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
70 *
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
73 */
74 struct rw_semaphore pcc_lock;
75
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
78};
79
80/* Structure to represent the single PCC channel */
81static struct cppc_pcc_data pcc_data = {
82 .pcc_subspace_idx = -1,
83 .platform_owns_pcc = true,
84};
85
86/*
87 * The cpc_desc structure contains the ACPI register details
88 * as described in the per CPU _CPC tables. The details
89 * include the type of register (e.g. PCC, System IO, FFH etc.)
90 * and destination addresses which lets us READ/WRITE CPU performance
91 * information using the appropriate I/O methods.
92 */
93static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95/* pcc mapped address + header size + offset within PCC subspace */
96#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97
98/* Check if a CPC regsiter is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103/* Evalutes to True if reg is a NULL register descriptor */
104#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110/* Evalutes to True if an optional cpc field is supported */
111#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114/*
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
118 */
119#define NUM_RETRIES 500
120
121struct cppc_attr {
122 struct attribute attr;
123 ssize_t (*show)(struct kobject *kobj,
124 struct attribute *attr, char *buf);
125 ssize_t (*store)(struct kobject *kobj,
126 struct attribute *attr, const char *c, ssize_t count);
127};
128
129#define define_one_cppc_ro(_name) \
130static struct cppc_attr _name = \
131__ATTR(_name, 0444, show_##_name, NULL)
132
133#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135static ssize_t show_feedback_ctrs(struct kobject *kobj,
136 struct attribute *attr, char *buf)
137{
138 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139 struct cppc_perf_fb_ctrs fb_ctrs = {0};
140
141 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
142
143 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144 fb_ctrs.reference, fb_ctrs.delivered);
145}
146define_one_cppc_ro(feedback_ctrs);
147
148static ssize_t show_reference_perf(struct kobject *kobj,
149 struct attribute *attr, char *buf)
150{
151 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152 struct cppc_perf_fb_ctrs fb_ctrs = {0};
153
154 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
155
156 return scnprintf(buf, PAGE_SIZE, "%llu\n",
157 fb_ctrs.reference_perf);
158}
159define_one_cppc_ro(reference_perf);
160
161static ssize_t show_wraparound_time(struct kobject *kobj,
162 struct attribute *attr, char *buf)
163{
164 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165 struct cppc_perf_fb_ctrs fb_ctrs = {0};
166
167 cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
168
169 return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
170
171}
172define_one_cppc_ro(wraparound_time);
173
174static struct attribute *cppc_attrs[] = {
175 &feedback_ctrs.attr,
176 &reference_perf.attr,
177 &wraparound_time.attr,
178 NULL
179};
180
181static struct kobj_type cppc_ktype = {
182 .sysfs_ops = &kobj_sysfs_ops,
183 .default_attrs = cppc_attrs,
184};
185
186static int check_pcc_chan(bool chk_err_bit)
187{
188 int ret = -EIO, status = 0;
189 struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
190 ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
191
192 if (!pcc_data.platform_owns_pcc)
193 return 0;
194
195 /* Retry in case the remote processor was too slow to catch up. */
196 while (!ktime_after(ktime_get(), next_deadline)) {
197 /*
198 * Per spec, prior to boot the PCC space wil be initialized by
199 * platform and should have set the command completion bit when
200 * PCC can be used by OSPM
201 */
202 status = readw_relaxed(&generic_comm_base->status);
203 if (status & PCC_CMD_COMPLETE_MASK) {
204 ret = 0;
205 if (chk_err_bit && (status & PCC_ERROR_MASK))
206 ret = -EIO;
207 break;
208 }
209 /*
210 * Reducing the bus traffic in case this loop takes longer than
211 * a few retries.
212 */
213 udelay(3);
214 }
215
216 if (likely(!ret))
217 pcc_data.platform_owns_pcc = false;
218 else
219 pr_err("PCC check channel failed. Status=%x\n", status);
220
221 return ret;
222}
223
224/*
225 * This function transfers the ownership of the PCC to the platform
226 * So it must be called while holding write_lock(pcc_lock)
227 */
228static int send_pcc_cmd(u16 cmd)
229{
230 int ret = -EIO, i;
231 struct acpi_pcct_shared_memory *generic_comm_base =
232 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
233 static ktime_t last_cmd_cmpl_time, last_mpar_reset;
234 static int mpar_count;
235 unsigned int time_delta;
236
237 /*
238 * For CMD_WRITE we know for a fact the caller should have checked
239 * the channel before writing to PCC space
240 */
241 if (cmd == CMD_READ) {
242 /*
243 * If there are pending cpc_writes, then we stole the channel
244 * before write completion, so first send a WRITE command to
245 * platform
246 */
247 if (pcc_data.pending_pcc_write_cmd)
248 send_pcc_cmd(CMD_WRITE);
249
250 ret = check_pcc_chan(false);
251 if (ret)
252 goto end;
253 } else /* CMD_WRITE */
254 pcc_data.pending_pcc_write_cmd = FALSE;
255
256 /*
257 * Handle the Minimum Request Turnaround Time(MRTT)
258 * "The minimum amount of time that OSPM must wait after the completion
259 * of a command before issuing the next command, in microseconds"
260 */
261 if (pcc_data.pcc_mrtt) {
262 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
263 if (pcc_data.pcc_mrtt > time_delta)
264 udelay(pcc_data.pcc_mrtt - time_delta);
265 }
266
267 /*
268 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
269 * "The maximum number of periodic requests that the subspace channel can
270 * support, reported in commands per minute. 0 indicates no limitation."
271 *
272 * This parameter should be ideally zero or large enough so that it can
273 * handle maximum number of requests that all the cores in the system can
274 * collectively generate. If it is not, we will follow the spec and just
275 * not send the request to the platform after hitting the MPAR limit in
276 * any 60s window
277 */
278 if (pcc_data.pcc_mpar) {
279 if (mpar_count == 0) {
280 time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
281 if (time_delta < 60 * MSEC_PER_SEC) {
282 pr_debug("PCC cmd not sent due to MPAR limit");
283 ret = -EIO;
284 goto end;
285 }
286 last_mpar_reset = ktime_get();
287 mpar_count = pcc_data.pcc_mpar;
288 }
289 mpar_count--;
290 }
291
292 /* Write to the shared comm region. */
293 writew_relaxed(cmd, &generic_comm_base->command);
294
295 /* Flip CMD COMPLETE bit */
296 writew_relaxed(0, &generic_comm_base->status);
297
298 pcc_data.platform_owns_pcc = true;
299
300 /* Ring doorbell */
301 ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
302 if (ret < 0) {
303 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
304 cmd, ret);
305 goto end;
306 }
307
308 /* wait for completion and check for PCC errro bit */
309 ret = check_pcc_chan(true);
310
311 if (pcc_data.pcc_mrtt)
312 last_cmd_cmpl_time = ktime_get();
313
314 if (pcc_data.pcc_channel->mbox->txdone_irq)
315 mbox_chan_txdone(pcc_data.pcc_channel, ret);
316 else
317 mbox_client_txdone(pcc_data.pcc_channel, ret);
318
319end:
320 if (cmd == CMD_WRITE) {
321 if (unlikely(ret)) {
322 for_each_possible_cpu(i) {
323 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324 if (!desc)
325 continue;
326
327 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
328 desc->write_cmd_status = ret;
329 }
330 }
331 pcc_data.pcc_write_cnt++;
332 wake_up_all(&pcc_data.pcc_write_wait_q);
333 }
334
335 return ret;
336}
337
338static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
339{
340 if (ret < 0)
341 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
342 *(u16 *)msg, ret);
343 else
344 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
345 *(u16 *)msg, ret);
346}
347
348struct mbox_client cppc_mbox_cl = {
349 .tx_done = cppc_chan_tx_done,
350 .knows_txdone = true,
351};
352
353static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
354{
355 int result = -EFAULT;
356 acpi_status status = AE_OK;
357 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
358 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
359 struct acpi_buffer state = {0, NULL};
360 union acpi_object *psd = NULL;
361 struct acpi_psd_package *pdomain;
362
363 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
364 ACPI_TYPE_PACKAGE);
365 if (ACPI_FAILURE(status))
366 return -ENODEV;
367
368 psd = buffer.pointer;
369 if (!psd || psd->package.count != 1) {
370 pr_debug("Invalid _PSD data\n");
371 goto end;
372 }
373
374 pdomain = &(cpc_ptr->domain_info);
375
376 state.length = sizeof(struct acpi_psd_package);
377 state.pointer = pdomain;
378
379 status = acpi_extract_package(&(psd->package.elements[0]),
380 &format, &state);
381 if (ACPI_FAILURE(status)) {
382 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
383 goto end;
384 }
385
386 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
387 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
388 goto end;
389 }
390
391 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
392 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
393 goto end;
394 }
395
396 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
397 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
398 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
399 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
400 goto end;
401 }
402
403 result = 0;
404end:
405 kfree(buffer.pointer);
406 return result;
407}
408
409/**
410 * acpi_get_psd_map - Map the CPUs in a common freq domain.
411 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
412 *
413 * Return: 0 for success or negative value for err.
414 */
415int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
416{
417 int count_target;
418 int retval = 0;
419 unsigned int i, j;
420 cpumask_var_t covered_cpus;
421 struct cppc_cpudata *pr, *match_pr;
422 struct acpi_psd_package *pdomain;
423 struct acpi_psd_package *match_pdomain;
424 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
425
426 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
427 return -ENOMEM;
428
429 /*
430 * Now that we have _PSD data from all CPUs, lets setup P-state
431 * domain info.
432 */
433 for_each_possible_cpu(i) {
434 pr = all_cpu_data[i];
435 if (!pr)
436 continue;
437
438 if (cpumask_test_cpu(i, covered_cpus))
439 continue;
440
441 cpc_ptr = per_cpu(cpc_desc_ptr, i);
442 if (!cpc_ptr) {
443 retval = -EFAULT;
444 goto err_ret;
445 }
446
447 pdomain = &(cpc_ptr->domain_info);
448 cpumask_set_cpu(i, pr->shared_cpu_map);
449 cpumask_set_cpu(i, covered_cpus);
450 if (pdomain->num_processors <= 1)
451 continue;
452
453 /* Validate the Domain info */
454 count_target = pdomain->num_processors;
455 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
456 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
457 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
458 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
459 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
460 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
461
462 for_each_possible_cpu(j) {
463 if (i == j)
464 continue;
465
466 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
467 if (!match_cpc_ptr) {
468 retval = -EFAULT;
469 goto err_ret;
470 }
471
472 match_pdomain = &(match_cpc_ptr->domain_info);
473 if (match_pdomain->domain != pdomain->domain)
474 continue;
475
476 /* Here i and j are in the same domain */
477 if (match_pdomain->num_processors != count_target) {
478 retval = -EFAULT;
479 goto err_ret;
480 }
481
482 if (pdomain->coord_type != match_pdomain->coord_type) {
483 retval = -EFAULT;
484 goto err_ret;
485 }
486
487 cpumask_set_cpu(j, covered_cpus);
488 cpumask_set_cpu(j, pr->shared_cpu_map);
489 }
490
491 for_each_possible_cpu(j) {
492 if (i == j)
493 continue;
494
495 match_pr = all_cpu_data[j];
496 if (!match_pr)
497 continue;
498
499 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
500 if (!match_cpc_ptr) {
501 retval = -EFAULT;
502 goto err_ret;
503 }
504
505 match_pdomain = &(match_cpc_ptr->domain_info);
506 if (match_pdomain->domain != pdomain->domain)
507 continue;
508
509 match_pr->shared_type = pr->shared_type;
510 cpumask_copy(match_pr->shared_cpu_map,
511 pr->shared_cpu_map);
512 }
513 }
514
515err_ret:
516 for_each_possible_cpu(i) {
517 pr = all_cpu_data[i];
518 if (!pr)
519 continue;
520
521 /* Assume no coordination on any error parsing domain info */
522 if (retval) {
523 cpumask_clear(pr->shared_cpu_map);
524 cpumask_set_cpu(i, pr->shared_cpu_map);
525 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
526 }
527 }
528
529 free_cpumask_var(covered_cpus);
530 return retval;
531}
532EXPORT_SYMBOL_GPL(acpi_get_psd_map);
533
534static int register_pcc_channel(int pcc_subspace_idx)
535{
536 struct acpi_pcct_hw_reduced *cppc_ss;
537 u64 usecs_lat;
538
539 if (pcc_subspace_idx >= 0) {
540 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
541 pcc_subspace_idx);
542
543 if (IS_ERR(pcc_data.pcc_channel)) {
544 pr_err("Failed to find PCC communication channel\n");
545 return -ENODEV;
546 }
547
548 /*
549 * The PCC mailbox controller driver should
550 * have parsed the PCCT (global table of all
551 * PCC channels) and stored pointers to the
552 * subspace communication region in con_priv.
553 */
554 cppc_ss = (pcc_data.pcc_channel)->con_priv;
555
556 if (!cppc_ss) {
557 pr_err("No PCC subspace found for CPPC\n");
558 return -ENODEV;
559 }
560
561 /*
562 * cppc_ss->latency is just a Nominal value. In reality
563 * the remote processor could be much slower to reply.
564 * So add an arbitrary amount of wait on top of Nominal.
565 */
566 usecs_lat = NUM_RETRIES * cppc_ss->latency;
567 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
568 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
569 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
570 pcc_data.pcc_nominal = cppc_ss->latency;
571
572 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
573 if (!pcc_data.pcc_comm_addr) {
574 pr_err("Failed to ioremap PCC comm region mem\n");
575 return -ENOMEM;
576 }
577
578 /* Set flag so that we dont come here for each CPU. */
579 pcc_data.pcc_channel_acquired = true;
580 }
581
582 return 0;
583}
584
585/**
586 * cpc_ffh_supported() - check if FFH reading supported
587 *
588 * Check if the architecture has support for functional fixed hardware
589 * read/write capability.
590 *
591 * Return: true for supported, false for not supported
592 */
593bool __weak cpc_ffh_supported(void)
594{
595 return false;
596}
597
598/*
599 * An example CPC table looks like the following.
600 *
601 * Name(_CPC, Package()
602 * {
603 * 17,
604 * NumEntries
605 * 1,
606 * // Revision
607 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
608 * // Highest Performance
609 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
610 * // Nominal Performance
611 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
612 * // Lowest Nonlinear Performance
613 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
614 * // Lowest Performance
615 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
616 * // Guaranteed Performance Register
617 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
618 * // Desired Performance Register
619 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
620 * ..
621 * ..
622 * ..
623 *
624 * }
625 * Each Register() encodes how to access that specific register.
626 * e.g. a sample PCC entry has the following encoding:
627 *
628 * Register (
629 * PCC,
630 * AddressSpaceKeyword
631 * 8,
632 * //RegisterBitWidth
633 * 8,
634 * //RegisterBitOffset
635 * 0x30,
636 * //RegisterAddress
637 * 9
638 * //AccessSize (subspace ID)
639 * 0
640 * )
641 * }
642 */
643
644/**
645 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
646 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
647 *
648 * Return: 0 for success or negative value for err.
649 */
650int acpi_cppc_processor_probe(struct acpi_processor *pr)
651{
652 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
653 union acpi_object *out_obj, *cpc_obj;
654 struct cpc_desc *cpc_ptr;
655 struct cpc_reg *gas_t;
656 struct device *cpu_dev;
657 acpi_handle handle = pr->handle;
658 unsigned int num_ent, i, cpc_rev;
659 acpi_status status;
660 int ret = -EFAULT;
661
662 /* Parse the ACPI _CPC table for this cpu. */
663 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
664 ACPI_TYPE_PACKAGE);
665 if (ACPI_FAILURE(status)) {
666 ret = -ENODEV;
667 goto out_buf_free;
668 }
669
670 out_obj = (union acpi_object *) output.pointer;
671
672 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
673 if (!cpc_ptr) {
674 ret = -ENOMEM;
675 goto out_buf_free;
676 }
677
678 /* First entry is NumEntries. */
679 cpc_obj = &out_obj->package.elements[0];
680 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
681 num_ent = cpc_obj->integer.value;
682 } else {
683 pr_debug("Unexpected entry type(%d) for NumEntries\n",
684 cpc_obj->type);
685 goto out_free;
686 }
687
688 /* Only support CPPCv2. Bail otherwise. */
689 if (num_ent != CPPC_NUM_ENT) {
690 pr_debug("Firmware exports %d entries. Expected: %d\n",
691 num_ent, CPPC_NUM_ENT);
692 goto out_free;
693 }
694
695 cpc_ptr->num_entries = num_ent;
696
697 /* Second entry should be revision. */
698 cpc_obj = &out_obj->package.elements[1];
699 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
700 cpc_rev = cpc_obj->integer.value;
701 } else {
702 pr_debug("Unexpected entry type(%d) for Revision\n",
703 cpc_obj->type);
704 goto out_free;
705 }
706
707 if (cpc_rev != CPPC_REV) {
708 pr_debug("Firmware exports revision:%d. Expected:%d\n",
709 cpc_rev, CPPC_REV);
710 goto out_free;
711 }
712
713 /* Iterate through remaining entries in _CPC */
714 for (i = 2; i < num_ent; i++) {
715 cpc_obj = &out_obj->package.elements[i];
716
717 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
718 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
719 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
720 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
721 gas_t = (struct cpc_reg *)
722 cpc_obj->buffer.pointer;
723
724 /*
725 * The PCC Subspace index is encoded inside
726 * the CPC table entries. The same PCC index
727 * will be used for all the PCC entries,
728 * so extract it only once.
729 */
730 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
731 if (pcc_data.pcc_subspace_idx < 0)
732 pcc_data.pcc_subspace_idx = gas_t->access_width;
733 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
734 pr_debug("Mismatched PCC ids.\n");
735 goto out_free;
736 }
737 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
738 if (gas_t->address) {
739 void __iomem *addr;
740
741 addr = ioremap(gas_t->address, gas_t->bit_width/8);
742 if (!addr)
743 goto out_free;
744 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
745 }
746 } else {
747 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
748 /* Support only PCC ,SYS MEM and FFH type regs */
749 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
750 goto out_free;
751 }
752 }
753
754 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
755 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
756 } else {
757 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
758 goto out_free;
759 }
760 }
761 /* Store CPU Logical ID */
762 cpc_ptr->cpu_id = pr->id;
763
764 /* Parse PSD data for this CPU */
765 ret = acpi_get_psd(cpc_ptr, handle);
766 if (ret)
767 goto out_free;
768
769 /* Register PCC channel once for all CPUs. */
770 if (!pcc_data.pcc_channel_acquired) {
771 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
772 if (ret)
773 goto out_free;
774
775 init_rwsem(&pcc_data.pcc_lock);
776 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
777 }
778
779 /* Everything looks okay */
780 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
781
782 /* Add per logical CPU nodes for reading its feedback counters. */
783 cpu_dev = get_cpu_device(pr->id);
784 if (!cpu_dev) {
785 ret = -EINVAL;
786 goto out_free;
787 }
788
789 /* Plug PSD data into this CPUs CPC descriptor. */
790 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
791
792 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
793 "acpi_cppc");
794 if (ret) {
795 per_cpu(cpc_desc_ptr, pr->id) = NULL;
796 goto out_free;
797 }
798
799 kfree(output.pointer);
800 return 0;
801
802out_free:
803 /* Free all the mapped sys mem areas for this CPU */
804 for (i = 2; i < cpc_ptr->num_entries; i++) {
805 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
806
807 if (addr)
808 iounmap(addr);
809 }
810 kfree(cpc_ptr);
811
812out_buf_free:
813 kfree(output.pointer);
814 return ret;
815}
816EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
817
818/**
819 * acpi_cppc_processor_exit - Cleanup CPC structs.
820 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
821 *
822 * Return: Void
823 */
824void acpi_cppc_processor_exit(struct acpi_processor *pr)
825{
826 struct cpc_desc *cpc_ptr;
827 unsigned int i;
828 void __iomem *addr;
829
830 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
831 if (!cpc_ptr)
832 return;
833
834 /* Free all the mapped sys mem areas for this CPU */
835 for (i = 2; i < cpc_ptr->num_entries; i++) {
836 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
837 if (addr)
838 iounmap(addr);
839 }
840
841 kobject_put(&cpc_ptr->kobj);
842 kfree(cpc_ptr);
843}
844EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
845
846/**
847 * cpc_read_ffh() - Read FFH register
848 * @cpunum: cpu number to read
849 * @reg: cppc register information
850 * @val: place holder for return value
851 *
852 * Read bit_width bits from a specified address and bit_offset
853 *
854 * Return: 0 for success and error code
855 */
856int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
857{
858 return -ENOTSUPP;
859}
860
861/**
862 * cpc_write_ffh() - Write FFH register
863 * @cpunum: cpu number to write
864 * @reg: cppc register information
865 * @val: value to write
866 *
867 * Write value of bit_width bits to a specified address and bit_offset
868 *
869 * Return: 0 for success and error code
870 */
871int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
872{
873 return -ENOTSUPP;
874}
875
876/*
877 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
878 * as fast as possible. We have already mapped the PCC subspace during init, so
879 * we can directly write to it.
880 */
881
882static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
883{
884 int ret_val = 0;
885 void __iomem *vaddr = 0;
886 struct cpc_reg *reg = ®_res->cpc_entry.reg;
887
888 if (reg_res->type == ACPI_TYPE_INTEGER) {
889 *val = reg_res->cpc_entry.int_value;
890 return ret_val;
891 }
892
893 *val = 0;
894 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
895 vaddr = GET_PCC_VADDR(reg->address);
896 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
897 vaddr = reg_res->sys_mem_vaddr;
898 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
899 return cpc_read_ffh(cpu, reg, val);
900 else
901 return acpi_os_read_memory((acpi_physical_address)reg->address,
902 val, reg->bit_width);
903
904 switch (reg->bit_width) {
905 case 8:
906 *val = readb_relaxed(vaddr);
907 break;
908 case 16:
909 *val = readw_relaxed(vaddr);
910 break;
911 case 32:
912 *val = readl_relaxed(vaddr);
913 break;
914 case 64:
915 *val = readq_relaxed(vaddr);
916 break;
917 default:
918 pr_debug("Error: Cannot read %u bit width from PCC\n",
919 reg->bit_width);
920 ret_val = -EFAULT;
921 }
922
923 return ret_val;
924}
925
926static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
927{
928 int ret_val = 0;
929 void __iomem *vaddr = 0;
930 struct cpc_reg *reg = ®_res->cpc_entry.reg;
931
932 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
933 vaddr = GET_PCC_VADDR(reg->address);
934 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
935 vaddr = reg_res->sys_mem_vaddr;
936 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
937 return cpc_write_ffh(cpu, reg, val);
938 else
939 return acpi_os_write_memory((acpi_physical_address)reg->address,
940 val, reg->bit_width);
941
942 switch (reg->bit_width) {
943 case 8:
944 writeb_relaxed(val, vaddr);
945 break;
946 case 16:
947 writew_relaxed(val, vaddr);
948 break;
949 case 32:
950 writel_relaxed(val, vaddr);
951 break;
952 case 64:
953 writeq_relaxed(val, vaddr);
954 break;
955 default:
956 pr_debug("Error: Cannot write %u bit width to PCC\n",
957 reg->bit_width);
958 ret_val = -EFAULT;
959 break;
960 }
961
962 return ret_val;
963}
964
965/**
966 * cppc_get_perf_caps - Get a CPUs performance capabilities.
967 * @cpunum: CPU from which to get capabilities info.
968 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
969 *
970 * Return: 0 for success with perf_caps populated else -ERRNO.
971 */
972int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
973{
974 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
975 struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
976 *nom_perf;
977 u64 high, low, nom;
978 int ret = 0, regs_in_pcc = 0;
979
980 if (!cpc_desc) {
981 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
982 return -ENODEV;
983 }
984
985 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
986 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
987 ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
988 nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
989
990 /* Are any of the regs PCC ?*/
991 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
992 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
993 regs_in_pcc = 1;
994 down_write(&pcc_data.pcc_lock);
995 /* Ring doorbell once to update PCC subspace */
996 if (send_pcc_cmd(CMD_READ) < 0) {
997 ret = -EIO;
998 goto out_err;
999 }
1000 }
1001
1002 cpc_read(cpunum, highest_reg, &high);
1003 perf_caps->highest_perf = high;
1004
1005 cpc_read(cpunum, lowest_reg, &low);
1006 perf_caps->lowest_perf = low;
1007
1008 cpc_read(cpunum, nom_perf, &nom);
1009 perf_caps->nominal_perf = nom;
1010
1011 if (!high || !low || !nom)
1012 ret = -EFAULT;
1013
1014out_err:
1015 if (regs_in_pcc)
1016 up_write(&pcc_data.pcc_lock);
1017 return ret;
1018}
1019EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1020
1021/**
1022 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1023 * @cpunum: CPU from which to read counters.
1024 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1025 *
1026 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1027 */
1028int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1029{
1030 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1031 struct cpc_register_resource *delivered_reg, *reference_reg,
1032 *ref_perf_reg, *ctr_wrap_reg;
1033 u64 delivered, reference, ref_perf, ctr_wrap_time;
1034 int ret = 0, regs_in_pcc = 0;
1035
1036 if (!cpc_desc) {
1037 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1038 return -ENODEV;
1039 }
1040
1041 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1042 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1043 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1044 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1045
1046 /*
1047 * If refernce perf register is not supported then we should
1048 * use the nominal perf value
1049 */
1050 if (!CPC_SUPPORTED(ref_perf_reg))
1051 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1052
1053 /* Are any of the regs PCC ?*/
1054 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1055 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1056 down_write(&pcc_data.pcc_lock);
1057 regs_in_pcc = 1;
1058 /* Ring doorbell once to update PCC subspace */
1059 if (send_pcc_cmd(CMD_READ) < 0) {
1060 ret = -EIO;
1061 goto out_err;
1062 }
1063 }
1064
1065 cpc_read(cpunum, delivered_reg, &delivered);
1066 cpc_read(cpunum, reference_reg, &reference);
1067 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1068
1069 /*
1070 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1071 * performance counters are assumed to never wrap during the lifetime of
1072 * platform
1073 */
1074 ctr_wrap_time = (u64)(~((u64)0));
1075 if (CPC_SUPPORTED(ctr_wrap_reg))
1076 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1077
1078 if (!delivered || !reference || !ref_perf) {
1079 ret = -EFAULT;
1080 goto out_err;
1081 }
1082
1083 perf_fb_ctrs->delivered = delivered;
1084 perf_fb_ctrs->reference = reference;
1085 perf_fb_ctrs->reference_perf = ref_perf;
1086 perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1087out_err:
1088 if (regs_in_pcc)
1089 up_write(&pcc_data.pcc_lock);
1090 return ret;
1091}
1092EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1093
1094/**
1095 * cppc_set_perf - Set a CPUs performance controls.
1096 * @cpu: CPU for which to set performance controls.
1097 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1098 *
1099 * Return: 0 for success, -ERRNO otherwise.
1100 */
1101int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1102{
1103 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1104 struct cpc_register_resource *desired_reg;
1105 int ret = 0;
1106
1107 if (!cpc_desc) {
1108 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1109 return -ENODEV;
1110 }
1111
1112 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1113
1114 /*
1115 * This is Phase-I where we want to write to CPC registers
1116 * -> We want all CPUs to be able to execute this phase in parallel
1117 *
1118 * Since read_lock can be acquired by multiple CPUs simultaneously we
1119 * achieve that goal here
1120 */
1121 if (CPC_IN_PCC(desired_reg)) {
1122 down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
1123 if (pcc_data.platform_owns_pcc) {
1124 ret = check_pcc_chan(false);
1125 if (ret) {
1126 up_read(&pcc_data.pcc_lock);
1127 return ret;
1128 }
1129 }
1130 /*
1131 * Update the pending_write to make sure a PCC CMD_READ will not
1132 * arrive and steal the channel during the switch to write lock
1133 */
1134 pcc_data.pending_pcc_write_cmd = true;
1135 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1136 cpc_desc->write_cmd_status = 0;
1137 }
1138
1139 /*
1140 * Skip writing MIN/MAX until Linux knows how to come up with
1141 * useful values.
1142 */
1143 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1144
1145 if (CPC_IN_PCC(desired_reg))
1146 up_read(&pcc_data.pcc_lock); /* END Phase-I */
1147 /*
1148 * This is Phase-II where we transfer the ownership of PCC to Platform
1149 *
1150 * Short Summary: Basically if we think of a group of cppc_set_perf
1151 * requests that happened in short overlapping interval. The last CPU to
1152 * come out of Phase-I will enter Phase-II and ring the doorbell.
1153 *
1154 * We have the following requirements for Phase-II:
1155 * 1. We want to execute Phase-II only when there are no CPUs
1156 * currently executing in Phase-I
1157 * 2. Once we start Phase-II we want to avoid all other CPUs from
1158 * entering Phase-I.
1159 * 3. We want only one CPU among all those who went through Phase-I
1160 * to run phase-II
1161 *
1162 * If write_trylock fails to get the lock and doesn't transfer the
1163 * PCC ownership to the platform, then one of the following will be TRUE
1164 * 1. There is at-least one CPU in Phase-I which will later execute
1165 * write_trylock, so the CPUs in Phase-I will be responsible for
1166 * executing the Phase-II.
1167 * 2. Some other CPU has beaten this CPU to successfully execute the
1168 * write_trylock and has already acquired the write_lock. We know for a
1169 * fact it(other CPU acquiring the write_lock) couldn't have happened
1170 * before this CPU's Phase-I as we held the read_lock.
1171 * 3. Some other CPU executing pcc CMD_READ has stolen the
1172 * down_write, in which case, send_pcc_cmd will check for pending
1173 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1174 * So this CPU can be certain that its request will be delivered
1175 * So in all cases, this CPU knows that its request will be delivered
1176 * by another CPU and can return
1177 *
1178 * After getting the down_write we still need to check for
1179 * pending_pcc_write_cmd to take care of the following scenario
1180 * The thread running this code could be scheduled out between
1181 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1182 * could have delivered the request to Platform by triggering the
1183 * doorbell and transferred the ownership of PCC to platform. So this
1184 * avoids triggering an unnecessary doorbell and more importantly before
1185 * triggering the doorbell it makes sure that the PCC channel ownership
1186 * is still with OSPM.
1187 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1188 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1189 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1190 * case during a CMD_READ and if there are pending writes it delivers
1191 * the write command before servicing the read command
1192 */
1193 if (CPC_IN_PCC(desired_reg)) {
1194 if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
1195 /* Update only if there are pending write commands */
1196 if (pcc_data.pending_pcc_write_cmd)
1197 send_pcc_cmd(CMD_WRITE);
1198 up_write(&pcc_data.pcc_lock); /* END Phase-II */
1199 } else
1200 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1201 wait_event(pcc_data.pcc_write_wait_q,
1202 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1203
1204 /* send_pcc_cmd updates the status in case of failure */
1205 ret = cpc_desc->write_cmd_status;
1206 }
1207 return ret;
1208}
1209EXPORT_SYMBOL_GPL(cppc_set_perf);
1210
1211/**
1212 * cppc_get_transition_latency - returns frequency transition latency in ns
1213 *
1214 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1215 * transition latency for perfromance change requests. The closest we have
1216 * is the timing information from the PCCT tables which provides the info
1217 * on the number and frequency of PCC commands the platform can handle.
1218 */
1219unsigned int cppc_get_transition_latency(int cpu_num)
1220{
1221 /*
1222 * Expected transition latency is based on the PCCT timing values
1223 * Below are definition from ACPI spec:
1224 * pcc_nominal- Expected latency to process a command, in microseconds
1225 * pcc_mpar - The maximum number of periodic requests that the subspace
1226 * channel can support, reported in commands per minute. 0
1227 * indicates no limitation.
1228 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1229 * completion of a command before issuing the next command,
1230 * in microseconds.
1231 */
1232 unsigned int latency_ns = 0;
1233 struct cpc_desc *cpc_desc;
1234 struct cpc_register_resource *desired_reg;
1235
1236 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1237 if (!cpc_desc)
1238 return CPUFREQ_ETERNAL;
1239
1240 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1241 if (!CPC_IN_PCC(desired_reg))
1242 return CPUFREQ_ETERNAL;
1243
1244 if (pcc_data.pcc_mpar)
1245 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1246
1247 latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1248 latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1249
1250 return latency_ns;
1251}
1252EXPORT_SYMBOL_GPL(cppc_get_transition_latency);