Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrjola <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27
28#include <linux/spi/spi.h>
29
30#include "internals.h"
31
32#include <linux/platform_data/spi-omap2-mcspi.h>
33
34#define OMAP2_MCSPI_MAX_FREQ 48000000
35#define OMAP2_MCSPI_MAX_DIVIDER 4096
36#define OMAP2_MCSPI_MAX_FIFODEPTH 64
37#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
38#define SPI_AUTOSUSPEND_TIMEOUT 2000
39
40#define OMAP2_MCSPI_REVISION 0x00
41#define OMAP2_MCSPI_SYSSTATUS 0x14
42#define OMAP2_MCSPI_IRQSTATUS 0x18
43#define OMAP2_MCSPI_IRQENABLE 0x1c
44#define OMAP2_MCSPI_WAKEUPENABLE 0x20
45#define OMAP2_MCSPI_SYST 0x24
46#define OMAP2_MCSPI_MODULCTRL 0x28
47#define OMAP2_MCSPI_XFERLEVEL 0x7c
48
49/* per-channel banks, 0x14 bytes each, first is: */
50#define OMAP2_MCSPI_CHCONF0 0x2c
51#define OMAP2_MCSPI_CHSTAT0 0x30
52#define OMAP2_MCSPI_CHCTRL0 0x34
53#define OMAP2_MCSPI_TX0 0x38
54#define OMAP2_MCSPI_RX0 0x3c
55
56/* per-register bitmasks: */
57#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
58
59#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
60#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
61#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
62
63#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
64#define OMAP2_MCSPI_CHCONF_POL BIT(1)
65#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
66#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
67#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
68#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
69#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
70#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
71#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
72#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
73#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
74#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
75#define OMAP2_MCSPI_CHCONF_IS BIT(18)
76#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
77#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
78#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
79#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
80#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
81
82#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
83#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
84#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
85#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
86
87#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
88#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
89
90#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
91
92/* We have 2 DMA channels per CS, one for RX and one for TX */
93struct omap2_mcspi_dma {
94 struct dma_chan *dma_tx;
95 struct dma_chan *dma_rx;
96
97 struct completion dma_tx_completion;
98 struct completion dma_rx_completion;
99
100 char dma_rx_ch_name[14];
101 char dma_tx_ch_name[14];
102};
103
104/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
105 * cache operations; better heuristics consider wordsize and bitrate.
106 */
107#define DMA_MIN_BYTES 160
108
109
110/*
111 * Used for context save and restore, structure members to be updated whenever
112 * corresponding registers are modified.
113 */
114struct omap2_mcspi_regs {
115 u32 modulctrl;
116 u32 wakeupenable;
117 struct list_head cs;
118};
119
120struct omap2_mcspi {
121 struct completion txdone;
122 struct spi_controller *ctlr;
123 /* Virtual base address of the controller */
124 void __iomem *base;
125 unsigned long phys;
126 /* SPI1 has 4 channels, while SPI2 has 2 */
127 struct omap2_mcspi_dma *dma_channels;
128 struct device *dev;
129 struct omap2_mcspi_regs ctx;
130 struct clk *ref_clk;
131 int fifo_depth;
132 bool target_aborted;
133 unsigned int pin_dir:1;
134 size_t max_xfer_len;
135 u32 ref_clk_hz;
136 bool use_multi_mode;
137};
138
139struct omap2_mcspi_cs {
140 void __iomem *base;
141 unsigned long phys;
142 int word_len;
143 u16 mode;
144 struct list_head node;
145 /* Context save and restore shadow register */
146 u32 chconf0, chctrl0;
147};
148
149static inline void mcspi_write_reg(struct spi_controller *ctlr,
150 int idx, u32 val)
151{
152 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
153
154 writel_relaxed(val, mcspi->base + idx);
155}
156
157static inline u32 mcspi_read_reg(struct spi_controller *ctlr, int idx)
158{
159 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
160
161 return readl_relaxed(mcspi->base + idx);
162}
163
164static inline void mcspi_write_cs_reg(const struct spi_device *spi,
165 int idx, u32 val)
166{
167 struct omap2_mcspi_cs *cs = spi->controller_state;
168
169 writel_relaxed(val, cs->base + idx);
170}
171
172static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
173{
174 struct omap2_mcspi_cs *cs = spi->controller_state;
175
176 return readl_relaxed(cs->base + idx);
177}
178
179static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
180{
181 struct omap2_mcspi_cs *cs = spi->controller_state;
182
183 return cs->chconf0;
184}
185
186static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
187{
188 struct omap2_mcspi_cs *cs = spi->controller_state;
189
190 cs->chconf0 = val;
191 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
192 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
193}
194
195static inline int mcspi_bytes_per_word(int word_len)
196{
197 if (word_len <= 8)
198 return 1;
199 else if (word_len <= 16)
200 return 2;
201 else /* word_len <= 32 */
202 return 4;
203}
204
205static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
206 int is_read, int enable)
207{
208 u32 l, rw;
209
210 l = mcspi_cached_chconf0(spi);
211
212 if (is_read) /* 1 is read, 0 write */
213 rw = OMAP2_MCSPI_CHCONF_DMAR;
214 else
215 rw = OMAP2_MCSPI_CHCONF_DMAW;
216
217 if (enable)
218 l |= rw;
219 else
220 l &= ~rw;
221
222 mcspi_write_chconf0(spi, l);
223}
224
225static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
226{
227 struct omap2_mcspi_cs *cs = spi->controller_state;
228 u32 l;
229
230 l = cs->chctrl0;
231 if (enable)
232 l |= OMAP2_MCSPI_CHCTRL_EN;
233 else
234 l &= ~OMAP2_MCSPI_CHCTRL_EN;
235 cs->chctrl0 = l;
236 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
237 /* Flash post-writes */
238 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
239}
240
241static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
242{
243 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
244 u32 l;
245
246 /* The controller handles the inverted chip selects
247 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
248 * the inversion from the core spi_set_cs function.
249 */
250 if (spi->mode & SPI_CS_HIGH)
251 enable = !enable;
252
253 if (spi->controller_state) {
254 int err = pm_runtime_resume_and_get(mcspi->dev);
255 if (err < 0) {
256 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
257 return;
258 }
259
260 l = mcspi_cached_chconf0(spi);
261
262 /* Only enable chip select manually if single mode is used */
263 if (mcspi->use_multi_mode) {
264 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
265 } else {
266 if (enable)
267 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
268 else
269 l |= OMAP2_MCSPI_CHCONF_FORCE;
270 }
271
272 mcspi_write_chconf0(spi, l);
273
274 pm_runtime_mark_last_busy(mcspi->dev);
275 pm_runtime_put_autosuspend(mcspi->dev);
276 }
277}
278
279static void omap2_mcspi_set_mode(struct spi_controller *ctlr)
280{
281 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
282 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
283 u32 l;
284
285 /*
286 * Choose host or target mode
287 */
288 l = mcspi_read_reg(ctlr, OMAP2_MCSPI_MODULCTRL);
289 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
290 if (spi_controller_is_target(ctlr)) {
291 l |= (OMAP2_MCSPI_MODULCTRL_MS);
292 } else {
293 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
294
295 /* Enable single mode if needed */
296 if (mcspi->use_multi_mode)
297 l &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
298 else
299 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
300 }
301 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, l);
302
303 ctx->modulctrl = l;
304}
305
306static void omap2_mcspi_set_fifo(const struct spi_device *spi,
307 struct spi_transfer *t, int enable)
308{
309 struct spi_controller *ctlr = spi->controller;
310 struct omap2_mcspi_cs *cs = spi->controller_state;
311 struct omap2_mcspi *mcspi;
312 unsigned int wcnt;
313 int max_fifo_depth, bytes_per_word;
314 u32 chconf, xferlevel;
315
316 mcspi = spi_controller_get_devdata(ctlr);
317
318 chconf = mcspi_cached_chconf0(spi);
319 if (enable) {
320 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
321 if (t->len % bytes_per_word != 0)
322 goto disable_fifo;
323
324 if (t->rx_buf != NULL && t->tx_buf != NULL)
325 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
326 else
327 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
328
329 wcnt = t->len / bytes_per_word;
330 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
331 goto disable_fifo;
332
333 xferlevel = wcnt << 16;
334 if (t->rx_buf != NULL) {
335 chconf |= OMAP2_MCSPI_CHCONF_FFER;
336 xferlevel |= (bytes_per_word - 1) << 8;
337 }
338
339 if (t->tx_buf != NULL) {
340 chconf |= OMAP2_MCSPI_CHCONF_FFET;
341 xferlevel |= bytes_per_word - 1;
342 }
343
344 mcspi_write_reg(ctlr, OMAP2_MCSPI_XFERLEVEL, xferlevel);
345 mcspi_write_chconf0(spi, chconf);
346 mcspi->fifo_depth = max_fifo_depth;
347
348 return;
349 }
350
351disable_fifo:
352 if (t->rx_buf != NULL)
353 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
354
355 if (t->tx_buf != NULL)
356 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
357
358 mcspi_write_chconf0(spi, chconf);
359 mcspi->fifo_depth = 0;
360}
361
362static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
363{
364 unsigned long timeout;
365
366 timeout = jiffies + msecs_to_jiffies(1000);
367 while (!(readl_relaxed(reg) & bit)) {
368 if (time_after(jiffies, timeout)) {
369 if (!(readl_relaxed(reg) & bit))
370 return -ETIMEDOUT;
371 else
372 return 0;
373 }
374 cpu_relax();
375 }
376 return 0;
377}
378
379static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
380 struct completion *x)
381{
382 if (spi_controller_is_target(mcspi->ctlr)) {
383 if (wait_for_completion_interruptible(x) ||
384 mcspi->target_aborted)
385 return -EINTR;
386 } else {
387 wait_for_completion(x);
388 }
389
390 return 0;
391}
392
393static void omap2_mcspi_rx_callback(void *data)
394{
395 struct spi_device *spi = data;
396 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
397 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
398
399 /* We must disable the DMA RX request */
400 omap2_mcspi_set_dma_req(spi, 1, 0);
401
402 complete(&mcspi_dma->dma_rx_completion);
403}
404
405static void omap2_mcspi_tx_callback(void *data)
406{
407 struct spi_device *spi = data;
408 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
409 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
410
411 /* We must disable the DMA TX request */
412 omap2_mcspi_set_dma_req(spi, 0, 0);
413
414 complete(&mcspi_dma->dma_tx_completion);
415}
416
417static void omap2_mcspi_tx_dma(struct spi_device *spi,
418 struct spi_transfer *xfer,
419 struct dma_slave_config cfg)
420{
421 struct omap2_mcspi *mcspi;
422 struct omap2_mcspi_dma *mcspi_dma;
423 struct dma_async_tx_descriptor *tx;
424
425 mcspi = spi_controller_get_devdata(spi->controller);
426 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
427
428 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
429
430 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
431 xfer->tx_sg.nents,
432 DMA_MEM_TO_DEV,
433 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
434 if (tx) {
435 tx->callback = omap2_mcspi_tx_callback;
436 tx->callback_param = spi;
437 dmaengine_submit(tx);
438 } else {
439 /* FIXME: fall back to PIO? */
440 }
441 dma_async_issue_pending(mcspi_dma->dma_tx);
442 omap2_mcspi_set_dma_req(spi, 0, 1);
443}
444
445static unsigned
446omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
447 struct dma_slave_config cfg,
448 unsigned es)
449{
450 struct omap2_mcspi *mcspi;
451 struct omap2_mcspi_dma *mcspi_dma;
452 unsigned int count, transfer_reduction = 0;
453 struct scatterlist *sg_out[2];
454 int nb_sizes = 0, out_mapped_nents[2], ret, x;
455 size_t sizes[2];
456 u32 l;
457 int elements = 0;
458 int word_len, element_count;
459 struct omap2_mcspi_cs *cs = spi->controller_state;
460 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
461 struct dma_async_tx_descriptor *tx;
462
463 mcspi = spi_controller_get_devdata(spi->controller);
464 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
465 count = xfer->len;
466
467 /*
468 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
469 * it mentions reducing DMA transfer length by one element in host
470 * normal mode.
471 */
472 if (mcspi->fifo_depth == 0)
473 transfer_reduction = es;
474
475 word_len = cs->word_len;
476 l = mcspi_cached_chconf0(spi);
477
478 if (word_len <= 8)
479 element_count = count;
480 else if (word_len <= 16)
481 element_count = count >> 1;
482 else /* word_len <= 32 */
483 element_count = count >> 2;
484
485
486 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
487
488 /*
489 * Reduce DMA transfer length by one more if McSPI is
490 * configured in turbo mode.
491 */
492 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
493 transfer_reduction += es;
494
495 if (transfer_reduction) {
496 /* Split sgl into two. The second sgl won't be used. */
497 sizes[0] = count - transfer_reduction;
498 sizes[1] = transfer_reduction;
499 nb_sizes = 2;
500 } else {
501 /*
502 * Don't bother splitting the sgl. This essentially
503 * clones the original sgl.
504 */
505 sizes[0] = count;
506 nb_sizes = 1;
507 }
508
509 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
510 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
511
512 if (ret < 0) {
513 dev_err(&spi->dev, "sg_split failed\n");
514 return 0;
515 }
516
517 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
518 out_mapped_nents[0], DMA_DEV_TO_MEM,
519 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
520 if (tx) {
521 tx->callback = omap2_mcspi_rx_callback;
522 tx->callback_param = spi;
523 dmaengine_submit(tx);
524 } else {
525 /* FIXME: fall back to PIO? */
526 }
527
528 dma_async_issue_pending(mcspi_dma->dma_rx);
529 omap2_mcspi_set_dma_req(spi, 1, 1);
530
531 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
532 if (ret || mcspi->target_aborted) {
533 dmaengine_terminate_sync(mcspi_dma->dma_rx);
534 omap2_mcspi_set_dma_req(spi, 1, 0);
535 return 0;
536 }
537
538 for (x = 0; x < nb_sizes; x++)
539 kfree(sg_out[x]);
540
541 if (mcspi->fifo_depth > 0)
542 return count;
543
544 /*
545 * Due to the DMA transfer length reduction the missing bytes must
546 * be read manually to receive all of the expected data.
547 */
548 omap2_mcspi_set_enable(spi, 0);
549
550 elements = element_count - 1;
551
552 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
553 elements--;
554
555 if (!mcspi_wait_for_reg_bit(chstat_reg,
556 OMAP2_MCSPI_CHSTAT_RXS)) {
557 u32 w;
558
559 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
560 if (word_len <= 8)
561 ((u8 *)xfer->rx_buf)[elements++] = w;
562 else if (word_len <= 16)
563 ((u16 *)xfer->rx_buf)[elements++] = w;
564 else /* word_len <= 32 */
565 ((u32 *)xfer->rx_buf)[elements++] = w;
566 } else {
567 int bytes_per_word = mcspi_bytes_per_word(word_len);
568 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
569 count -= (bytes_per_word << 1);
570 omap2_mcspi_set_enable(spi, 1);
571 return count;
572 }
573 }
574 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
575 u32 w;
576
577 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
578 if (word_len <= 8)
579 ((u8 *)xfer->rx_buf)[elements] = w;
580 else if (word_len <= 16)
581 ((u16 *)xfer->rx_buf)[elements] = w;
582 else /* word_len <= 32 */
583 ((u32 *)xfer->rx_buf)[elements] = w;
584 } else {
585 dev_err(&spi->dev, "DMA RX last word empty\n");
586 count -= mcspi_bytes_per_word(word_len);
587 }
588 omap2_mcspi_set_enable(spi, 1);
589 return count;
590}
591
592static unsigned
593omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
594{
595 struct omap2_mcspi *mcspi;
596 struct omap2_mcspi_cs *cs = spi->controller_state;
597 struct omap2_mcspi_dma *mcspi_dma;
598 unsigned int count;
599 u8 *rx;
600 const u8 *tx;
601 struct dma_slave_config cfg;
602 enum dma_slave_buswidth width;
603 unsigned es;
604 void __iomem *chstat_reg;
605 void __iomem *irqstat_reg;
606 int wait_res;
607
608 mcspi = spi_controller_get_devdata(spi->controller);
609 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
610
611 if (cs->word_len <= 8) {
612 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
613 es = 1;
614 } else if (cs->word_len <= 16) {
615 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
616 es = 2;
617 } else {
618 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
619 es = 4;
620 }
621
622 count = xfer->len;
623
624 memset(&cfg, 0, sizeof(cfg));
625 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
626 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
627 cfg.src_addr_width = width;
628 cfg.dst_addr_width = width;
629 cfg.src_maxburst = 1;
630 cfg.dst_maxburst = 1;
631
632 rx = xfer->rx_buf;
633 tx = xfer->tx_buf;
634
635 mcspi->target_aborted = false;
636 reinit_completion(&mcspi_dma->dma_tx_completion);
637 reinit_completion(&mcspi_dma->dma_rx_completion);
638 reinit_completion(&mcspi->txdone);
639 if (tx) {
640 /* Enable EOW IRQ to know end of tx in target mode */
641 if (spi_controller_is_target(spi->controller))
642 mcspi_write_reg(spi->controller,
643 OMAP2_MCSPI_IRQENABLE,
644 OMAP2_MCSPI_IRQSTATUS_EOW);
645 omap2_mcspi_tx_dma(spi, xfer, cfg);
646 }
647
648 if (rx != NULL)
649 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
650
651 if (tx != NULL) {
652 int ret;
653
654 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
655 if (ret || mcspi->target_aborted) {
656 dmaengine_terminate_sync(mcspi_dma->dma_tx);
657 omap2_mcspi_set_dma_req(spi, 0, 0);
658 return 0;
659 }
660
661 if (spi_controller_is_target(mcspi->ctlr)) {
662 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
663 if (ret || mcspi->target_aborted)
664 return 0;
665 }
666
667 if (mcspi->fifo_depth > 0) {
668 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
669
670 if (mcspi_wait_for_reg_bit(irqstat_reg,
671 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
672 dev_err(&spi->dev, "EOW timed out\n");
673
674 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS,
675 OMAP2_MCSPI_IRQSTATUS_EOW);
676 }
677
678 /* for TX_ONLY mode, be sure all words have shifted out */
679 if (rx == NULL) {
680 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
681 if (mcspi->fifo_depth > 0) {
682 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
683 OMAP2_MCSPI_CHSTAT_TXFFE);
684 if (wait_res < 0)
685 dev_err(&spi->dev, "TXFFE timed out\n");
686 } else {
687 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
688 OMAP2_MCSPI_CHSTAT_TXS);
689 if (wait_res < 0)
690 dev_err(&spi->dev, "TXS timed out\n");
691 }
692 if (wait_res >= 0 &&
693 (mcspi_wait_for_reg_bit(chstat_reg,
694 OMAP2_MCSPI_CHSTAT_EOT) < 0))
695 dev_err(&spi->dev, "EOT timed out\n");
696 }
697 }
698 return count;
699}
700
701static unsigned
702omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
703{
704 struct omap2_mcspi_cs *cs = spi->controller_state;
705 unsigned int count, c;
706 u32 l;
707 void __iomem *base = cs->base;
708 void __iomem *tx_reg;
709 void __iomem *rx_reg;
710 void __iomem *chstat_reg;
711 int word_len;
712
713 count = xfer->len;
714 c = count;
715 word_len = cs->word_len;
716
717 l = mcspi_cached_chconf0(spi);
718
719 /* We store the pre-calculated register addresses on stack to speed
720 * up the transfer loop. */
721 tx_reg = base + OMAP2_MCSPI_TX0;
722 rx_reg = base + OMAP2_MCSPI_RX0;
723 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
724
725 if (c < (word_len>>3))
726 return 0;
727
728 if (word_len <= 8) {
729 u8 *rx;
730 const u8 *tx;
731
732 rx = xfer->rx_buf;
733 tx = xfer->tx_buf;
734
735 do {
736 c -= 1;
737 if (tx != NULL) {
738 if (mcspi_wait_for_reg_bit(chstat_reg,
739 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
740 dev_err(&spi->dev, "TXS timed out\n");
741 goto out;
742 }
743 dev_vdbg(&spi->dev, "write-%d %02x\n",
744 word_len, *tx);
745 writel_relaxed(*tx++, tx_reg);
746 }
747 if (rx != NULL) {
748 if (mcspi_wait_for_reg_bit(chstat_reg,
749 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
750 dev_err(&spi->dev, "RXS timed out\n");
751 goto out;
752 }
753
754 if (c == 1 && tx == NULL &&
755 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
756 omap2_mcspi_set_enable(spi, 0);
757 *rx++ = readl_relaxed(rx_reg);
758 dev_vdbg(&spi->dev, "read-%d %02x\n",
759 word_len, *(rx - 1));
760 if (mcspi_wait_for_reg_bit(chstat_reg,
761 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
762 dev_err(&spi->dev,
763 "RXS timed out\n");
764 goto out;
765 }
766 c = 0;
767 } else if (c == 0 && tx == NULL) {
768 omap2_mcspi_set_enable(spi, 0);
769 }
770
771 *rx++ = readl_relaxed(rx_reg);
772 dev_vdbg(&spi->dev, "read-%d %02x\n",
773 word_len, *(rx - 1));
774 }
775 /* Add word delay between each word */
776 spi_delay_exec(&xfer->word_delay, xfer);
777 } while (c);
778 } else if (word_len <= 16) {
779 u16 *rx;
780 const u16 *tx;
781
782 rx = xfer->rx_buf;
783 tx = xfer->tx_buf;
784 do {
785 c -= 2;
786 if (tx != NULL) {
787 if (mcspi_wait_for_reg_bit(chstat_reg,
788 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
789 dev_err(&spi->dev, "TXS timed out\n");
790 goto out;
791 }
792 dev_vdbg(&spi->dev, "write-%d %04x\n",
793 word_len, *tx);
794 writel_relaxed(*tx++, tx_reg);
795 }
796 if (rx != NULL) {
797 if (mcspi_wait_for_reg_bit(chstat_reg,
798 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
799 dev_err(&spi->dev, "RXS timed out\n");
800 goto out;
801 }
802
803 if (c == 2 && tx == NULL &&
804 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
805 omap2_mcspi_set_enable(spi, 0);
806 *rx++ = readl_relaxed(rx_reg);
807 dev_vdbg(&spi->dev, "read-%d %04x\n",
808 word_len, *(rx - 1));
809 if (mcspi_wait_for_reg_bit(chstat_reg,
810 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
811 dev_err(&spi->dev,
812 "RXS timed out\n");
813 goto out;
814 }
815 c = 0;
816 } else if (c == 0 && tx == NULL) {
817 omap2_mcspi_set_enable(spi, 0);
818 }
819
820 *rx++ = readl_relaxed(rx_reg);
821 dev_vdbg(&spi->dev, "read-%d %04x\n",
822 word_len, *(rx - 1));
823 }
824 /* Add word delay between each word */
825 spi_delay_exec(&xfer->word_delay, xfer);
826 } while (c >= 2);
827 } else if (word_len <= 32) {
828 u32 *rx;
829 const u32 *tx;
830
831 rx = xfer->rx_buf;
832 tx = xfer->tx_buf;
833 do {
834 c -= 4;
835 if (tx != NULL) {
836 if (mcspi_wait_for_reg_bit(chstat_reg,
837 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
838 dev_err(&spi->dev, "TXS timed out\n");
839 goto out;
840 }
841 dev_vdbg(&spi->dev, "write-%d %08x\n",
842 word_len, *tx);
843 writel_relaxed(*tx++, tx_reg);
844 }
845 if (rx != NULL) {
846 if (mcspi_wait_for_reg_bit(chstat_reg,
847 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
848 dev_err(&spi->dev, "RXS timed out\n");
849 goto out;
850 }
851
852 if (c == 4 && tx == NULL &&
853 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
854 omap2_mcspi_set_enable(spi, 0);
855 *rx++ = readl_relaxed(rx_reg);
856 dev_vdbg(&spi->dev, "read-%d %08x\n",
857 word_len, *(rx - 1));
858 if (mcspi_wait_for_reg_bit(chstat_reg,
859 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
860 dev_err(&spi->dev,
861 "RXS timed out\n");
862 goto out;
863 }
864 c = 0;
865 } else if (c == 0 && tx == NULL) {
866 omap2_mcspi_set_enable(spi, 0);
867 }
868
869 *rx++ = readl_relaxed(rx_reg);
870 dev_vdbg(&spi->dev, "read-%d %08x\n",
871 word_len, *(rx - 1));
872 }
873 /* Add word delay between each word */
874 spi_delay_exec(&xfer->word_delay, xfer);
875 } while (c >= 4);
876 }
877
878 /* for TX_ONLY mode, be sure all words have shifted out */
879 if (xfer->rx_buf == NULL) {
880 if (mcspi_wait_for_reg_bit(chstat_reg,
881 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
882 dev_err(&spi->dev, "TXS timed out\n");
883 } else if (mcspi_wait_for_reg_bit(chstat_reg,
884 OMAP2_MCSPI_CHSTAT_EOT) < 0)
885 dev_err(&spi->dev, "EOT timed out\n");
886
887 /* disable chan to purge rx datas received in TX_ONLY transfer,
888 * otherwise these rx datas will affect the direct following
889 * RX_ONLY transfer.
890 */
891 omap2_mcspi_set_enable(spi, 0);
892 }
893out:
894 omap2_mcspi_set_enable(spi, 1);
895 return count - c;
896}
897
898static u32 omap2_mcspi_calc_divisor(u32 speed_hz, u32 ref_clk_hz)
899{
900 u32 div;
901
902 for (div = 0; div < 15; div++)
903 if (speed_hz >= (ref_clk_hz >> div))
904 return div;
905
906 return 15;
907}
908
909/* called only when no transfer is active to this device */
910static int omap2_mcspi_setup_transfer(struct spi_device *spi,
911 struct spi_transfer *t)
912{
913 struct omap2_mcspi_cs *cs = spi->controller_state;
914 struct omap2_mcspi *mcspi;
915 u32 ref_clk_hz, l = 0, clkd = 0, div, extclk = 0, clkg = 0;
916 u8 word_len = spi->bits_per_word;
917 u32 speed_hz = spi->max_speed_hz;
918
919 mcspi = spi_controller_get_devdata(spi->controller);
920
921 if (t != NULL && t->bits_per_word)
922 word_len = t->bits_per_word;
923
924 cs->word_len = word_len;
925
926 if (t && t->speed_hz)
927 speed_hz = t->speed_hz;
928
929 ref_clk_hz = mcspi->ref_clk_hz;
930 speed_hz = min_t(u32, speed_hz, ref_clk_hz);
931 if (speed_hz < (ref_clk_hz / OMAP2_MCSPI_MAX_DIVIDER)) {
932 clkd = omap2_mcspi_calc_divisor(speed_hz, ref_clk_hz);
933 speed_hz = ref_clk_hz >> clkd;
934 clkg = 0;
935 } else {
936 div = (ref_clk_hz + speed_hz - 1) / speed_hz;
937 speed_hz = ref_clk_hz / div;
938 clkd = (div - 1) & 0xf;
939 extclk = (div - 1) >> 4;
940 clkg = OMAP2_MCSPI_CHCONF_CLKG;
941 }
942
943 l = mcspi_cached_chconf0(spi);
944
945 /* standard 4-wire host mode: SCK, MOSI/out, MISO/in, nCS
946 * REVISIT: this controller could support SPI_3WIRE mode.
947 */
948 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
949 l &= ~OMAP2_MCSPI_CHCONF_IS;
950 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
951 l |= OMAP2_MCSPI_CHCONF_DPE0;
952 } else {
953 l |= OMAP2_MCSPI_CHCONF_IS;
954 l |= OMAP2_MCSPI_CHCONF_DPE1;
955 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
956 }
957
958 /* wordlength */
959 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
960 l |= (word_len - 1) << 7;
961
962 /* set chipselect polarity; manage with FORCE */
963 if (!(spi->mode & SPI_CS_HIGH))
964 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
965 else
966 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
967
968 /* set clock divisor */
969 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
970 l |= clkd << 2;
971
972 /* set clock granularity */
973 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
974 l |= clkg;
975 if (clkg) {
976 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
977 cs->chctrl0 |= extclk << 8;
978 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
979 }
980
981 /* set SPI mode 0..3 */
982 if (spi->mode & SPI_CPOL)
983 l |= OMAP2_MCSPI_CHCONF_POL;
984 else
985 l &= ~OMAP2_MCSPI_CHCONF_POL;
986 if (spi->mode & SPI_CPHA)
987 l |= OMAP2_MCSPI_CHCONF_PHA;
988 else
989 l &= ~OMAP2_MCSPI_CHCONF_PHA;
990
991 mcspi_write_chconf0(spi, l);
992
993 cs->mode = spi->mode;
994
995 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
996 speed_hz,
997 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
998 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
999
1000 return 0;
1001}
1002
1003/*
1004 * Note that we currently allow DMA only if we get a channel
1005 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
1006 */
1007static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
1008 struct omap2_mcspi_dma *mcspi_dma)
1009{
1010 int ret = 0;
1011
1012 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
1013 mcspi_dma->dma_rx_ch_name);
1014 if (IS_ERR(mcspi_dma->dma_rx)) {
1015 ret = PTR_ERR(mcspi_dma->dma_rx);
1016 mcspi_dma->dma_rx = NULL;
1017 goto no_dma;
1018 }
1019
1020 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1021 mcspi_dma->dma_tx_ch_name);
1022 if (IS_ERR(mcspi_dma->dma_tx)) {
1023 ret = PTR_ERR(mcspi_dma->dma_tx);
1024 mcspi_dma->dma_tx = NULL;
1025 dma_release_channel(mcspi_dma->dma_rx);
1026 mcspi_dma->dma_rx = NULL;
1027 }
1028
1029 init_completion(&mcspi_dma->dma_rx_completion);
1030 init_completion(&mcspi_dma->dma_tx_completion);
1031
1032no_dma:
1033 return ret;
1034}
1035
1036static void omap2_mcspi_release_dma(struct spi_controller *ctlr)
1037{
1038 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1039 struct omap2_mcspi_dma *mcspi_dma;
1040 int i;
1041
1042 for (i = 0; i < ctlr->num_chipselect; i++) {
1043 mcspi_dma = &mcspi->dma_channels[i];
1044
1045 if (mcspi_dma->dma_rx) {
1046 dma_release_channel(mcspi_dma->dma_rx);
1047 mcspi_dma->dma_rx = NULL;
1048 }
1049 if (mcspi_dma->dma_tx) {
1050 dma_release_channel(mcspi_dma->dma_tx);
1051 mcspi_dma->dma_tx = NULL;
1052 }
1053 }
1054}
1055
1056static void omap2_mcspi_cleanup(struct spi_device *spi)
1057{
1058 struct omap2_mcspi_cs *cs;
1059
1060 if (spi->controller_state) {
1061 /* Unlink controller state from context save list */
1062 cs = spi->controller_state;
1063 list_del(&cs->node);
1064
1065 kfree(cs);
1066 }
1067}
1068
1069static int omap2_mcspi_setup(struct spi_device *spi)
1070{
1071 bool initial_setup = false;
1072 int ret;
1073 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1074 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1075 struct omap2_mcspi_cs *cs = spi->controller_state;
1076
1077 if (!cs) {
1078 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1079 if (!cs)
1080 return -ENOMEM;
1081 cs->base = mcspi->base + spi_get_chipselect(spi, 0) * 0x14;
1082 cs->phys = mcspi->phys + spi_get_chipselect(spi, 0) * 0x14;
1083 cs->mode = 0;
1084 cs->chconf0 = 0;
1085 cs->chctrl0 = 0;
1086 spi->controller_state = cs;
1087 /* Link this to context save list */
1088 list_add_tail(&cs->node, &ctx->cs);
1089 initial_setup = true;
1090 }
1091
1092 ret = pm_runtime_resume_and_get(mcspi->dev);
1093 if (ret < 0) {
1094 if (initial_setup)
1095 omap2_mcspi_cleanup(spi);
1096
1097 return ret;
1098 }
1099
1100 ret = omap2_mcspi_setup_transfer(spi, NULL);
1101 if (ret && initial_setup)
1102 omap2_mcspi_cleanup(spi);
1103
1104 pm_runtime_mark_last_busy(mcspi->dev);
1105 pm_runtime_put_autosuspend(mcspi->dev);
1106
1107 return ret;
1108}
1109
1110static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1111{
1112 struct omap2_mcspi *mcspi = data;
1113 u32 irqstat;
1114
1115 irqstat = mcspi_read_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS);
1116 if (!irqstat)
1117 return IRQ_NONE;
1118
1119 /* Disable IRQ and wakeup target xfer task */
1120 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQENABLE, 0);
1121 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1122 complete(&mcspi->txdone);
1123
1124 return IRQ_HANDLED;
1125}
1126
1127static int omap2_mcspi_target_abort(struct spi_controller *ctlr)
1128{
1129 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1130 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1131
1132 mcspi->target_aborted = true;
1133 complete(&mcspi_dma->dma_rx_completion);
1134 complete(&mcspi_dma->dma_tx_completion);
1135 complete(&mcspi->txdone);
1136
1137 return 0;
1138}
1139
1140static int omap2_mcspi_transfer_one(struct spi_controller *ctlr,
1141 struct spi_device *spi,
1142 struct spi_transfer *t)
1143{
1144
1145 /* We only enable one channel at a time -- the one whose message is
1146 * -- although this controller would gladly
1147 * arbitrate among multiple channels. This corresponds to "single
1148 * channel" host mode. As a side effect, we need to manage the
1149 * chipselect with the FORCE bit ... CS != channel enable.
1150 */
1151
1152 struct omap2_mcspi *mcspi;
1153 struct omap2_mcspi_dma *mcspi_dma;
1154 struct omap2_mcspi_cs *cs;
1155 struct omap2_mcspi_device_config *cd;
1156 int par_override = 0;
1157 int status = 0;
1158 u32 chconf;
1159
1160 mcspi = spi_controller_get_devdata(ctlr);
1161 mcspi_dma = mcspi->dma_channels + spi_get_chipselect(spi, 0);
1162 cs = spi->controller_state;
1163 cd = spi->controller_data;
1164
1165 /*
1166 * The target driver could have changed spi->mode in which case
1167 * it will be different from cs->mode (the current hardware setup).
1168 * If so, set par_override (even though its not a parity issue) so
1169 * omap2_mcspi_setup_transfer will be called to configure the hardware
1170 * with the correct mode on the first iteration of the loop below.
1171 */
1172 if (spi->mode != cs->mode)
1173 par_override = 1;
1174
1175 omap2_mcspi_set_enable(spi, 0);
1176
1177 if (spi_get_csgpiod(spi, 0))
1178 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1179
1180 if (par_override ||
1181 (t->speed_hz != spi->max_speed_hz) ||
1182 (t->bits_per_word != spi->bits_per_word)) {
1183 par_override = 1;
1184 status = omap2_mcspi_setup_transfer(spi, t);
1185 if (status < 0)
1186 goto out;
1187 if (t->speed_hz == spi->max_speed_hz &&
1188 t->bits_per_word == spi->bits_per_word)
1189 par_override = 0;
1190 }
1191
1192 chconf = mcspi_cached_chconf0(spi);
1193 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1194 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1195
1196 if (t->tx_buf == NULL)
1197 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1198 else if (t->rx_buf == NULL)
1199 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1200
1201 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1202 /* Turbo mode is for more than one word */
1203 if (t->len > ((cs->word_len + 7) >> 3))
1204 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1205 }
1206
1207 mcspi_write_chconf0(spi, chconf);
1208
1209 if (t->len) {
1210 unsigned count;
1211
1212 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1213 spi_xfer_is_dma_mapped(ctlr, spi, t))
1214 omap2_mcspi_set_fifo(spi, t, 1);
1215
1216 omap2_mcspi_set_enable(spi, 1);
1217
1218 /* RX_ONLY mode needs dummy data in TX reg */
1219 if (t->tx_buf == NULL)
1220 writel_relaxed(0, cs->base
1221 + OMAP2_MCSPI_TX0);
1222
1223 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1224 spi_xfer_is_dma_mapped(ctlr, spi, t))
1225 count = omap2_mcspi_txrx_dma(spi, t);
1226 else
1227 count = omap2_mcspi_txrx_pio(spi, t);
1228
1229 if (count != t->len) {
1230 status = -EIO;
1231 goto out;
1232 }
1233 }
1234
1235 omap2_mcspi_set_enable(spi, 0);
1236
1237 if (mcspi->fifo_depth > 0)
1238 omap2_mcspi_set_fifo(spi, t, 0);
1239
1240out:
1241 /* Restore defaults if they were overriden */
1242 if (par_override) {
1243 par_override = 0;
1244 status = omap2_mcspi_setup_transfer(spi, NULL);
1245 }
1246
1247 omap2_mcspi_set_enable(spi, 0);
1248
1249 if (spi_get_csgpiod(spi, 0))
1250 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1251
1252 if (mcspi->fifo_depth > 0 && t)
1253 omap2_mcspi_set_fifo(spi, t, 0);
1254
1255 return status;
1256}
1257
1258static int omap2_mcspi_prepare_message(struct spi_controller *ctlr,
1259 struct spi_message *msg)
1260{
1261 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1262 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1263 struct omap2_mcspi_cs *cs;
1264 struct spi_transfer *tr;
1265 u8 bits_per_word;
1266
1267 /*
1268 * The conditions are strict, it is mandatory to check each transfer of the list to see if
1269 * multi-mode is applicable.
1270 */
1271 mcspi->use_multi_mode = true;
1272 list_for_each_entry(tr, &msg->transfers, transfer_list) {
1273 if (!tr->bits_per_word)
1274 bits_per_word = msg->spi->bits_per_word;
1275 else
1276 bits_per_word = tr->bits_per_word;
1277
1278 /*
1279 * Check if this transfer contains only one word;
1280 */
1281 if (bits_per_word < 8 && tr->len == 1) {
1282 /* multi-mode is applicable, only one word (1..7 bits) */
1283 } else if (bits_per_word >= 8 && tr->len == bits_per_word / 8) {
1284 /* multi-mode is applicable, only one word (8..32 bits) */
1285 } else {
1286 /* multi-mode is not applicable: more than one word in the transfer */
1287 mcspi->use_multi_mode = false;
1288 }
1289
1290 /* Check if transfer asks to change the CS status after the transfer */
1291 if (!tr->cs_change)
1292 mcspi->use_multi_mode = false;
1293
1294 /*
1295 * If at least one message is not compatible, switch back to single mode
1296 *
1297 * The bits_per_word of certain transfer can be different, but it will have no
1298 * impact on the signal itself.
1299 */
1300 if (!mcspi->use_multi_mode)
1301 break;
1302 }
1303
1304 omap2_mcspi_set_mode(ctlr);
1305
1306 /* In single mode only a single channel can have the FORCE bit enabled
1307 * in its chconf0 register.
1308 * Scan all channels and disable them except the current one.
1309 * A FORCE can remain from a last transfer having cs_change enabled
1310 *
1311 * In multi mode all FORCE bits must be disabled.
1312 */
1313 list_for_each_entry(cs, &ctx->cs, node) {
1314 if (msg->spi->controller_state == cs && !mcspi->use_multi_mode) {
1315 continue;
1316 }
1317
1318 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1319 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1320 writel_relaxed(cs->chconf0,
1321 cs->base + OMAP2_MCSPI_CHCONF0);
1322 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1323 }
1324 }
1325
1326 return 0;
1327}
1328
1329static bool omap2_mcspi_can_dma(struct spi_controller *ctlr,
1330 struct spi_device *spi,
1331 struct spi_transfer *xfer)
1332{
1333 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1334 struct omap2_mcspi_dma *mcspi_dma =
1335 &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1336
1337 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1338 return false;
1339
1340 if (spi_controller_is_target(ctlr))
1341 return true;
1342
1343 ctlr->dma_rx = mcspi_dma->dma_rx;
1344 ctlr->dma_tx = mcspi_dma->dma_tx;
1345
1346 return (xfer->len >= DMA_MIN_BYTES);
1347}
1348
1349static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1350{
1351 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1352 struct omap2_mcspi_dma *mcspi_dma =
1353 &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1354
1355 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1356 return mcspi->max_xfer_len;
1357
1358 return SIZE_MAX;
1359}
1360
1361static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1362{
1363 struct spi_controller *ctlr = mcspi->ctlr;
1364 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1365 int ret = 0;
1366
1367 ret = pm_runtime_resume_and_get(mcspi->dev);
1368 if (ret < 0)
1369 return ret;
1370
1371 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE,
1372 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1373 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1374
1375 omap2_mcspi_set_mode(ctlr);
1376 pm_runtime_mark_last_busy(mcspi->dev);
1377 pm_runtime_put_autosuspend(mcspi->dev);
1378 return 0;
1379}
1380
1381static int omap_mcspi_runtime_suspend(struct device *dev)
1382{
1383 int error;
1384
1385 error = pinctrl_pm_select_idle_state(dev);
1386 if (error)
1387 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1388
1389 return 0;
1390}
1391
1392/*
1393 * When SPI wake up from off-mode, CS is in activate state. If it was in
1394 * inactive state when driver was suspend, then force it to inactive state at
1395 * wake up.
1396 */
1397static int omap_mcspi_runtime_resume(struct device *dev)
1398{
1399 struct spi_controller *ctlr = dev_get_drvdata(dev);
1400 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1401 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1402 struct omap2_mcspi_cs *cs;
1403 int error;
1404
1405 error = pinctrl_pm_select_default_state(dev);
1406 if (error)
1407 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1408
1409 /* McSPI: context restore */
1410 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1411 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1412
1413 list_for_each_entry(cs, &ctx->cs, node) {
1414 /*
1415 * We need to toggle CS state for OMAP take this
1416 * change in account.
1417 */
1418 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1419 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1420 writel_relaxed(cs->chconf0,
1421 cs->base + OMAP2_MCSPI_CHCONF0);
1422 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1423 writel_relaxed(cs->chconf0,
1424 cs->base + OMAP2_MCSPI_CHCONF0);
1425 } else {
1426 writel_relaxed(cs->chconf0,
1427 cs->base + OMAP2_MCSPI_CHCONF0);
1428 }
1429 }
1430
1431 return 0;
1432}
1433
1434static struct omap2_mcspi_platform_config omap2_pdata = {
1435 .regs_offset = 0,
1436};
1437
1438static struct omap2_mcspi_platform_config omap4_pdata = {
1439 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1440};
1441
1442static struct omap2_mcspi_platform_config am654_pdata = {
1443 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1444 .max_xfer_len = SZ_4K - 1,
1445};
1446
1447static const struct of_device_id omap_mcspi_of_match[] = {
1448 {
1449 .compatible = "ti,omap2-mcspi",
1450 .data = &omap2_pdata,
1451 },
1452 {
1453 .compatible = "ti,omap4-mcspi",
1454 .data = &omap4_pdata,
1455 },
1456 {
1457 .compatible = "ti,am654-mcspi",
1458 .data = &am654_pdata,
1459 },
1460 { },
1461};
1462MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1463
1464static int omap2_mcspi_probe(struct platform_device *pdev)
1465{
1466 struct spi_controller *ctlr;
1467 const struct omap2_mcspi_platform_config *pdata;
1468 struct omap2_mcspi *mcspi;
1469 struct resource *r;
1470 int status = 0, i;
1471 u32 regs_offset = 0;
1472 struct device_node *node = pdev->dev.of_node;
1473 const struct of_device_id *match;
1474
1475 if (of_property_read_bool(node, "spi-slave"))
1476 ctlr = spi_alloc_target(&pdev->dev, sizeof(*mcspi));
1477 else
1478 ctlr = spi_alloc_host(&pdev->dev, sizeof(*mcspi));
1479 if (!ctlr)
1480 return -ENOMEM;
1481
1482 /* the spi->mode bits understood by this driver: */
1483 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1484 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1485 ctlr->setup = omap2_mcspi_setup;
1486 ctlr->auto_runtime_pm = true;
1487 ctlr->prepare_message = omap2_mcspi_prepare_message;
1488 ctlr->can_dma = omap2_mcspi_can_dma;
1489 ctlr->transfer_one = omap2_mcspi_transfer_one;
1490 ctlr->set_cs = omap2_mcspi_set_cs;
1491 ctlr->cleanup = omap2_mcspi_cleanup;
1492 ctlr->target_abort = omap2_mcspi_target_abort;
1493 ctlr->dev.of_node = node;
1494 ctlr->use_gpio_descriptors = true;
1495
1496 platform_set_drvdata(pdev, ctlr);
1497
1498 mcspi = spi_controller_get_devdata(ctlr);
1499 mcspi->ctlr = ctlr;
1500
1501 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1502 if (match) {
1503 u32 num_cs = 1; /* default number of chipselect */
1504 pdata = match->data;
1505
1506 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1507 ctlr->num_chipselect = num_cs;
1508 if (of_property_read_bool(node, "ti,pindir-d0-out-d1-in"))
1509 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1510 } else {
1511 pdata = dev_get_platdata(&pdev->dev);
1512 ctlr->num_chipselect = pdata->num_cs;
1513 mcspi->pin_dir = pdata->pin_dir;
1514 }
1515 regs_offset = pdata->regs_offset;
1516 if (pdata->max_xfer_len) {
1517 mcspi->max_xfer_len = pdata->max_xfer_len;
1518 ctlr->max_transfer_size = omap2_mcspi_max_xfer_size;
1519 }
1520
1521 mcspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1522 if (IS_ERR(mcspi->base)) {
1523 status = PTR_ERR(mcspi->base);
1524 goto free_ctlr;
1525 }
1526 mcspi->phys = r->start + regs_offset;
1527 mcspi->base += regs_offset;
1528
1529 mcspi->dev = &pdev->dev;
1530
1531 INIT_LIST_HEAD(&mcspi->ctx.cs);
1532
1533 mcspi->dma_channels = devm_kcalloc(&pdev->dev, ctlr->num_chipselect,
1534 sizeof(struct omap2_mcspi_dma),
1535 GFP_KERNEL);
1536 if (mcspi->dma_channels == NULL) {
1537 status = -ENOMEM;
1538 goto free_ctlr;
1539 }
1540
1541 for (i = 0; i < ctlr->num_chipselect; i++) {
1542 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1543 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1544
1545 status = omap2_mcspi_request_dma(mcspi,
1546 &mcspi->dma_channels[i]);
1547 if (status == -EPROBE_DEFER)
1548 goto free_ctlr;
1549 }
1550
1551 status = platform_get_irq(pdev, 0);
1552 if (status < 0)
1553 goto free_ctlr;
1554 init_completion(&mcspi->txdone);
1555 status = devm_request_irq(&pdev->dev, status,
1556 omap2_mcspi_irq_handler, 0, pdev->name,
1557 mcspi);
1558 if (status) {
1559 dev_err(&pdev->dev, "Cannot request IRQ");
1560 goto free_ctlr;
1561 }
1562
1563 mcspi->ref_clk = devm_clk_get_optional_enabled(&pdev->dev, NULL);
1564 if (IS_ERR(mcspi->ref_clk)) {
1565 status = PTR_ERR(mcspi->ref_clk);
1566 dev_err_probe(&pdev->dev, status, "Failed to get ref_clk");
1567 goto free_ctlr;
1568 }
1569 if (mcspi->ref_clk)
1570 mcspi->ref_clk_hz = clk_get_rate(mcspi->ref_clk);
1571 else
1572 mcspi->ref_clk_hz = OMAP2_MCSPI_MAX_FREQ;
1573 ctlr->max_speed_hz = mcspi->ref_clk_hz;
1574 ctlr->min_speed_hz = mcspi->ref_clk_hz >> 15;
1575
1576 pm_runtime_use_autosuspend(&pdev->dev);
1577 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1578 pm_runtime_enable(&pdev->dev);
1579
1580 status = omap2_mcspi_controller_setup(mcspi);
1581 if (status < 0)
1582 goto disable_pm;
1583
1584 status = devm_spi_register_controller(&pdev->dev, ctlr);
1585 if (status < 0)
1586 goto disable_pm;
1587
1588 return status;
1589
1590disable_pm:
1591 pm_runtime_dont_use_autosuspend(&pdev->dev);
1592 pm_runtime_put_sync(&pdev->dev);
1593 pm_runtime_disable(&pdev->dev);
1594free_ctlr:
1595 omap2_mcspi_release_dma(ctlr);
1596 spi_controller_put(ctlr);
1597 return status;
1598}
1599
1600static void omap2_mcspi_remove(struct platform_device *pdev)
1601{
1602 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1603 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1604
1605 omap2_mcspi_release_dma(ctlr);
1606
1607 pm_runtime_dont_use_autosuspend(mcspi->dev);
1608 pm_runtime_put_sync(mcspi->dev);
1609 pm_runtime_disable(&pdev->dev);
1610}
1611
1612/* work with hotplug and coldplug */
1613MODULE_ALIAS("platform:omap2_mcspi");
1614
1615static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1616{
1617 struct spi_controller *ctlr = dev_get_drvdata(dev);
1618 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1619 int error;
1620
1621 error = pinctrl_pm_select_sleep_state(dev);
1622 if (error)
1623 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1624 __func__, error);
1625
1626 error = spi_controller_suspend(ctlr);
1627 if (error)
1628 dev_warn(mcspi->dev, "%s: controller suspend failed: %i\n",
1629 __func__, error);
1630
1631 return pm_runtime_force_suspend(dev);
1632}
1633
1634static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1635{
1636 struct spi_controller *ctlr = dev_get_drvdata(dev);
1637 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1638 int error;
1639
1640 error = spi_controller_resume(ctlr);
1641 if (error)
1642 dev_warn(mcspi->dev, "%s: controller resume failed: %i\n",
1643 __func__, error);
1644
1645 return pm_runtime_force_resume(dev);
1646}
1647
1648static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1649 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1650 omap2_mcspi_resume)
1651 .runtime_suspend = omap_mcspi_runtime_suspend,
1652 .runtime_resume = omap_mcspi_runtime_resume,
1653};
1654
1655static struct platform_driver omap2_mcspi_driver = {
1656 .driver = {
1657 .name = "omap2_mcspi",
1658 .pm = &omap2_mcspi_pm_ops,
1659 .of_match_table = omap_mcspi_of_match,
1660 },
1661 .probe = omap2_mcspi_probe,
1662 .remove = omap2_mcspi_remove,
1663};
1664
1665module_platform_driver(omap2_mcspi_driver);
1666MODULE_DESCRIPTION("OMAP2 McSPI controller driver");
1667MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrjola <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27
28#include <linux/spi/spi.h>
29
30#include <linux/platform_data/spi-omap2-mcspi.h>
31
32#define OMAP2_MCSPI_MAX_FREQ 48000000
33#define OMAP2_MCSPI_MAX_DIVIDER 4096
34#define OMAP2_MCSPI_MAX_FIFODEPTH 64
35#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
36#define SPI_AUTOSUSPEND_TIMEOUT 2000
37
38#define OMAP2_MCSPI_REVISION 0x00
39#define OMAP2_MCSPI_SYSSTATUS 0x14
40#define OMAP2_MCSPI_IRQSTATUS 0x18
41#define OMAP2_MCSPI_IRQENABLE 0x1c
42#define OMAP2_MCSPI_WAKEUPENABLE 0x20
43#define OMAP2_MCSPI_SYST 0x24
44#define OMAP2_MCSPI_MODULCTRL 0x28
45#define OMAP2_MCSPI_XFERLEVEL 0x7c
46
47/* per-channel banks, 0x14 bytes each, first is: */
48#define OMAP2_MCSPI_CHCONF0 0x2c
49#define OMAP2_MCSPI_CHSTAT0 0x30
50#define OMAP2_MCSPI_CHCTRL0 0x34
51#define OMAP2_MCSPI_TX0 0x38
52#define OMAP2_MCSPI_RX0 0x3c
53
54/* per-register bitmasks: */
55#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
56
57#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
58#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
59#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
60
61#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
62#define OMAP2_MCSPI_CHCONF_POL BIT(1)
63#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
64#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
65#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
66#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
67#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
68#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
69#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
70#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
71#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
72#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
73#define OMAP2_MCSPI_CHCONF_IS BIT(18)
74#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
75#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
76#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
77#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
78#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
79
80#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
81#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
82#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
83#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
84
85#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
86#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
87
88#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
89
90/* We have 2 DMA channels per CS, one for RX and one for TX */
91struct omap2_mcspi_dma {
92 struct dma_chan *dma_tx;
93 struct dma_chan *dma_rx;
94
95 struct completion dma_tx_completion;
96 struct completion dma_rx_completion;
97
98 char dma_rx_ch_name[14];
99 char dma_tx_ch_name[14];
100};
101
102/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
103 * cache operations; better heuristics consider wordsize and bitrate.
104 */
105#define DMA_MIN_BYTES 160
106
107
108/*
109 * Used for context save and restore, structure members to be updated whenever
110 * corresponding registers are modified.
111 */
112struct omap2_mcspi_regs {
113 u32 modulctrl;
114 u32 wakeupenable;
115 struct list_head cs;
116};
117
118struct omap2_mcspi {
119 struct completion txdone;
120 struct spi_master *master;
121 /* Virtual base address of the controller */
122 void __iomem *base;
123 unsigned long phys;
124 /* SPI1 has 4 channels, while SPI2 has 2 */
125 struct omap2_mcspi_dma *dma_channels;
126 struct device *dev;
127 struct omap2_mcspi_regs ctx;
128 int fifo_depth;
129 bool slave_aborted;
130 unsigned int pin_dir:1;
131 size_t max_xfer_len;
132};
133
134struct omap2_mcspi_cs {
135 void __iomem *base;
136 unsigned long phys;
137 int word_len;
138 u16 mode;
139 struct list_head node;
140 /* Context save and restore shadow register */
141 u32 chconf0, chctrl0;
142};
143
144static inline void mcspi_write_reg(struct spi_master *master,
145 int idx, u32 val)
146{
147 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
148
149 writel_relaxed(val, mcspi->base + idx);
150}
151
152static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
153{
154 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
155
156 return readl_relaxed(mcspi->base + idx);
157}
158
159static inline void mcspi_write_cs_reg(const struct spi_device *spi,
160 int idx, u32 val)
161{
162 struct omap2_mcspi_cs *cs = spi->controller_state;
163
164 writel_relaxed(val, cs->base + idx);
165}
166
167static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
168{
169 struct omap2_mcspi_cs *cs = spi->controller_state;
170
171 return readl_relaxed(cs->base + idx);
172}
173
174static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
175{
176 struct omap2_mcspi_cs *cs = spi->controller_state;
177
178 return cs->chconf0;
179}
180
181static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
182{
183 struct omap2_mcspi_cs *cs = spi->controller_state;
184
185 cs->chconf0 = val;
186 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
187 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
188}
189
190static inline int mcspi_bytes_per_word(int word_len)
191{
192 if (word_len <= 8)
193 return 1;
194 else if (word_len <= 16)
195 return 2;
196 else /* word_len <= 32 */
197 return 4;
198}
199
200static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
201 int is_read, int enable)
202{
203 u32 l, rw;
204
205 l = mcspi_cached_chconf0(spi);
206
207 if (is_read) /* 1 is read, 0 write */
208 rw = OMAP2_MCSPI_CHCONF_DMAR;
209 else
210 rw = OMAP2_MCSPI_CHCONF_DMAW;
211
212 if (enable)
213 l |= rw;
214 else
215 l &= ~rw;
216
217 mcspi_write_chconf0(spi, l);
218}
219
220static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
221{
222 struct omap2_mcspi_cs *cs = spi->controller_state;
223 u32 l;
224
225 l = cs->chctrl0;
226 if (enable)
227 l |= OMAP2_MCSPI_CHCTRL_EN;
228 else
229 l &= ~OMAP2_MCSPI_CHCTRL_EN;
230 cs->chctrl0 = l;
231 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
232 /* Flash post-writes */
233 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
234}
235
236static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
237{
238 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
239 u32 l;
240
241 /* The controller handles the inverted chip selects
242 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
243 * the inversion from the core spi_set_cs function.
244 */
245 if (spi->mode & SPI_CS_HIGH)
246 enable = !enable;
247
248 if (spi->controller_state) {
249 int err = pm_runtime_resume_and_get(mcspi->dev);
250 if (err < 0) {
251 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
252 return;
253 }
254
255 l = mcspi_cached_chconf0(spi);
256
257 if (enable)
258 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
259 else
260 l |= OMAP2_MCSPI_CHCONF_FORCE;
261
262 mcspi_write_chconf0(spi, l);
263
264 pm_runtime_mark_last_busy(mcspi->dev);
265 pm_runtime_put_autosuspend(mcspi->dev);
266 }
267}
268
269static void omap2_mcspi_set_mode(struct spi_master *master)
270{
271 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
272 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
273 u32 l;
274
275 /*
276 * Choose master or slave mode
277 */
278 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
279 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
280 if (spi_controller_is_slave(master)) {
281 l |= (OMAP2_MCSPI_MODULCTRL_MS);
282 } else {
283 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
284 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
285 }
286 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
287
288 ctx->modulctrl = l;
289}
290
291static void omap2_mcspi_set_fifo(const struct spi_device *spi,
292 struct spi_transfer *t, int enable)
293{
294 struct spi_master *master = spi->master;
295 struct omap2_mcspi_cs *cs = spi->controller_state;
296 struct omap2_mcspi *mcspi;
297 unsigned int wcnt;
298 int max_fifo_depth, bytes_per_word;
299 u32 chconf, xferlevel;
300
301 mcspi = spi_master_get_devdata(master);
302
303 chconf = mcspi_cached_chconf0(spi);
304 if (enable) {
305 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
306 if (t->len % bytes_per_word != 0)
307 goto disable_fifo;
308
309 if (t->rx_buf != NULL && t->tx_buf != NULL)
310 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
311 else
312 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
313
314 wcnt = t->len / bytes_per_word;
315 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
316 goto disable_fifo;
317
318 xferlevel = wcnt << 16;
319 if (t->rx_buf != NULL) {
320 chconf |= OMAP2_MCSPI_CHCONF_FFER;
321 xferlevel |= (bytes_per_word - 1) << 8;
322 }
323
324 if (t->tx_buf != NULL) {
325 chconf |= OMAP2_MCSPI_CHCONF_FFET;
326 xferlevel |= bytes_per_word - 1;
327 }
328
329 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
330 mcspi_write_chconf0(spi, chconf);
331 mcspi->fifo_depth = max_fifo_depth;
332
333 return;
334 }
335
336disable_fifo:
337 if (t->rx_buf != NULL)
338 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
339
340 if (t->tx_buf != NULL)
341 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
342
343 mcspi_write_chconf0(spi, chconf);
344 mcspi->fifo_depth = 0;
345}
346
347static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
348{
349 unsigned long timeout;
350
351 timeout = jiffies + msecs_to_jiffies(1000);
352 while (!(readl_relaxed(reg) & bit)) {
353 if (time_after(jiffies, timeout)) {
354 if (!(readl_relaxed(reg) & bit))
355 return -ETIMEDOUT;
356 else
357 return 0;
358 }
359 cpu_relax();
360 }
361 return 0;
362}
363
364static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
365 struct completion *x)
366{
367 if (spi_controller_is_slave(mcspi->master)) {
368 if (wait_for_completion_interruptible(x) ||
369 mcspi->slave_aborted)
370 return -EINTR;
371 } else {
372 wait_for_completion(x);
373 }
374
375 return 0;
376}
377
378static void omap2_mcspi_rx_callback(void *data)
379{
380 struct spi_device *spi = data;
381 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
382 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
383
384 /* We must disable the DMA RX request */
385 omap2_mcspi_set_dma_req(spi, 1, 0);
386
387 complete(&mcspi_dma->dma_rx_completion);
388}
389
390static void omap2_mcspi_tx_callback(void *data)
391{
392 struct spi_device *spi = data;
393 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
394 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
395
396 /* We must disable the DMA TX request */
397 omap2_mcspi_set_dma_req(spi, 0, 0);
398
399 complete(&mcspi_dma->dma_tx_completion);
400}
401
402static void omap2_mcspi_tx_dma(struct spi_device *spi,
403 struct spi_transfer *xfer,
404 struct dma_slave_config cfg)
405{
406 struct omap2_mcspi *mcspi;
407 struct omap2_mcspi_dma *mcspi_dma;
408 struct dma_async_tx_descriptor *tx;
409
410 mcspi = spi_master_get_devdata(spi->master);
411 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
412
413 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
414
415 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
416 xfer->tx_sg.nents,
417 DMA_MEM_TO_DEV,
418 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
419 if (tx) {
420 tx->callback = omap2_mcspi_tx_callback;
421 tx->callback_param = spi;
422 dmaengine_submit(tx);
423 } else {
424 /* FIXME: fall back to PIO? */
425 }
426 dma_async_issue_pending(mcspi_dma->dma_tx);
427 omap2_mcspi_set_dma_req(spi, 0, 1);
428}
429
430static unsigned
431omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
432 struct dma_slave_config cfg,
433 unsigned es)
434{
435 struct omap2_mcspi *mcspi;
436 struct omap2_mcspi_dma *mcspi_dma;
437 unsigned int count, transfer_reduction = 0;
438 struct scatterlist *sg_out[2];
439 int nb_sizes = 0, out_mapped_nents[2], ret, x;
440 size_t sizes[2];
441 u32 l;
442 int elements = 0;
443 int word_len, element_count;
444 struct omap2_mcspi_cs *cs = spi->controller_state;
445 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
446 struct dma_async_tx_descriptor *tx;
447
448 mcspi = spi_master_get_devdata(spi->master);
449 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
450 count = xfer->len;
451
452 /*
453 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
454 * it mentions reducing DMA transfer length by one element in master
455 * normal mode.
456 */
457 if (mcspi->fifo_depth == 0)
458 transfer_reduction = es;
459
460 word_len = cs->word_len;
461 l = mcspi_cached_chconf0(spi);
462
463 if (word_len <= 8)
464 element_count = count;
465 else if (word_len <= 16)
466 element_count = count >> 1;
467 else /* word_len <= 32 */
468 element_count = count >> 2;
469
470
471 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
472
473 /*
474 * Reduce DMA transfer length by one more if McSPI is
475 * configured in turbo mode.
476 */
477 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
478 transfer_reduction += es;
479
480 if (transfer_reduction) {
481 /* Split sgl into two. The second sgl won't be used. */
482 sizes[0] = count - transfer_reduction;
483 sizes[1] = transfer_reduction;
484 nb_sizes = 2;
485 } else {
486 /*
487 * Don't bother splitting the sgl. This essentially
488 * clones the original sgl.
489 */
490 sizes[0] = count;
491 nb_sizes = 1;
492 }
493
494 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
495 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
496
497 if (ret < 0) {
498 dev_err(&spi->dev, "sg_split failed\n");
499 return 0;
500 }
501
502 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
503 out_mapped_nents[0], DMA_DEV_TO_MEM,
504 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
505 if (tx) {
506 tx->callback = omap2_mcspi_rx_callback;
507 tx->callback_param = spi;
508 dmaengine_submit(tx);
509 } else {
510 /* FIXME: fall back to PIO? */
511 }
512
513 dma_async_issue_pending(mcspi_dma->dma_rx);
514 omap2_mcspi_set_dma_req(spi, 1, 1);
515
516 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
517 if (ret || mcspi->slave_aborted) {
518 dmaengine_terminate_sync(mcspi_dma->dma_rx);
519 omap2_mcspi_set_dma_req(spi, 1, 0);
520 return 0;
521 }
522
523 for (x = 0; x < nb_sizes; x++)
524 kfree(sg_out[x]);
525
526 if (mcspi->fifo_depth > 0)
527 return count;
528
529 /*
530 * Due to the DMA transfer length reduction the missing bytes must
531 * be read manually to receive all of the expected data.
532 */
533 omap2_mcspi_set_enable(spi, 0);
534
535 elements = element_count - 1;
536
537 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
538 elements--;
539
540 if (!mcspi_wait_for_reg_bit(chstat_reg,
541 OMAP2_MCSPI_CHSTAT_RXS)) {
542 u32 w;
543
544 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
545 if (word_len <= 8)
546 ((u8 *)xfer->rx_buf)[elements++] = w;
547 else if (word_len <= 16)
548 ((u16 *)xfer->rx_buf)[elements++] = w;
549 else /* word_len <= 32 */
550 ((u32 *)xfer->rx_buf)[elements++] = w;
551 } else {
552 int bytes_per_word = mcspi_bytes_per_word(word_len);
553 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
554 count -= (bytes_per_word << 1);
555 omap2_mcspi_set_enable(spi, 1);
556 return count;
557 }
558 }
559 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
560 u32 w;
561
562 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
563 if (word_len <= 8)
564 ((u8 *)xfer->rx_buf)[elements] = w;
565 else if (word_len <= 16)
566 ((u16 *)xfer->rx_buf)[elements] = w;
567 else /* word_len <= 32 */
568 ((u32 *)xfer->rx_buf)[elements] = w;
569 } else {
570 dev_err(&spi->dev, "DMA RX last word empty\n");
571 count -= mcspi_bytes_per_word(word_len);
572 }
573 omap2_mcspi_set_enable(spi, 1);
574 return count;
575}
576
577static unsigned
578omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
579{
580 struct omap2_mcspi *mcspi;
581 struct omap2_mcspi_cs *cs = spi->controller_state;
582 struct omap2_mcspi_dma *mcspi_dma;
583 unsigned int count;
584 u8 *rx;
585 const u8 *tx;
586 struct dma_slave_config cfg;
587 enum dma_slave_buswidth width;
588 unsigned es;
589 void __iomem *chstat_reg;
590 void __iomem *irqstat_reg;
591 int wait_res;
592
593 mcspi = spi_master_get_devdata(spi->master);
594 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
595
596 if (cs->word_len <= 8) {
597 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
598 es = 1;
599 } else if (cs->word_len <= 16) {
600 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
601 es = 2;
602 } else {
603 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
604 es = 4;
605 }
606
607 count = xfer->len;
608
609 memset(&cfg, 0, sizeof(cfg));
610 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
611 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
612 cfg.src_addr_width = width;
613 cfg.dst_addr_width = width;
614 cfg.src_maxburst = 1;
615 cfg.dst_maxburst = 1;
616
617 rx = xfer->rx_buf;
618 tx = xfer->tx_buf;
619
620 mcspi->slave_aborted = false;
621 reinit_completion(&mcspi_dma->dma_tx_completion);
622 reinit_completion(&mcspi_dma->dma_rx_completion);
623 reinit_completion(&mcspi->txdone);
624 if (tx) {
625 /* Enable EOW IRQ to know end of tx in slave mode */
626 if (spi_controller_is_slave(spi->master))
627 mcspi_write_reg(spi->master,
628 OMAP2_MCSPI_IRQENABLE,
629 OMAP2_MCSPI_IRQSTATUS_EOW);
630 omap2_mcspi_tx_dma(spi, xfer, cfg);
631 }
632
633 if (rx != NULL)
634 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
635
636 if (tx != NULL) {
637 int ret;
638
639 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
640 if (ret || mcspi->slave_aborted) {
641 dmaengine_terminate_sync(mcspi_dma->dma_tx);
642 omap2_mcspi_set_dma_req(spi, 0, 0);
643 return 0;
644 }
645
646 if (spi_controller_is_slave(mcspi->master)) {
647 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
648 if (ret || mcspi->slave_aborted)
649 return 0;
650 }
651
652 if (mcspi->fifo_depth > 0) {
653 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
654
655 if (mcspi_wait_for_reg_bit(irqstat_reg,
656 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
657 dev_err(&spi->dev, "EOW timed out\n");
658
659 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
660 OMAP2_MCSPI_IRQSTATUS_EOW);
661 }
662
663 /* for TX_ONLY mode, be sure all words have shifted out */
664 if (rx == NULL) {
665 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
666 if (mcspi->fifo_depth > 0) {
667 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
668 OMAP2_MCSPI_CHSTAT_TXFFE);
669 if (wait_res < 0)
670 dev_err(&spi->dev, "TXFFE timed out\n");
671 } else {
672 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
673 OMAP2_MCSPI_CHSTAT_TXS);
674 if (wait_res < 0)
675 dev_err(&spi->dev, "TXS timed out\n");
676 }
677 if (wait_res >= 0 &&
678 (mcspi_wait_for_reg_bit(chstat_reg,
679 OMAP2_MCSPI_CHSTAT_EOT) < 0))
680 dev_err(&spi->dev, "EOT timed out\n");
681 }
682 }
683 return count;
684}
685
686static unsigned
687omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
688{
689 struct omap2_mcspi_cs *cs = spi->controller_state;
690 unsigned int count, c;
691 u32 l;
692 void __iomem *base = cs->base;
693 void __iomem *tx_reg;
694 void __iomem *rx_reg;
695 void __iomem *chstat_reg;
696 int word_len;
697
698 count = xfer->len;
699 c = count;
700 word_len = cs->word_len;
701
702 l = mcspi_cached_chconf0(spi);
703
704 /* We store the pre-calculated register addresses on stack to speed
705 * up the transfer loop. */
706 tx_reg = base + OMAP2_MCSPI_TX0;
707 rx_reg = base + OMAP2_MCSPI_RX0;
708 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
709
710 if (c < (word_len>>3))
711 return 0;
712
713 if (word_len <= 8) {
714 u8 *rx;
715 const u8 *tx;
716
717 rx = xfer->rx_buf;
718 tx = xfer->tx_buf;
719
720 do {
721 c -= 1;
722 if (tx != NULL) {
723 if (mcspi_wait_for_reg_bit(chstat_reg,
724 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
725 dev_err(&spi->dev, "TXS timed out\n");
726 goto out;
727 }
728 dev_vdbg(&spi->dev, "write-%d %02x\n",
729 word_len, *tx);
730 writel_relaxed(*tx++, tx_reg);
731 }
732 if (rx != NULL) {
733 if (mcspi_wait_for_reg_bit(chstat_reg,
734 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
735 dev_err(&spi->dev, "RXS timed out\n");
736 goto out;
737 }
738
739 if (c == 1 && tx == NULL &&
740 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
741 omap2_mcspi_set_enable(spi, 0);
742 *rx++ = readl_relaxed(rx_reg);
743 dev_vdbg(&spi->dev, "read-%d %02x\n",
744 word_len, *(rx - 1));
745 if (mcspi_wait_for_reg_bit(chstat_reg,
746 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
747 dev_err(&spi->dev,
748 "RXS timed out\n");
749 goto out;
750 }
751 c = 0;
752 } else if (c == 0 && tx == NULL) {
753 omap2_mcspi_set_enable(spi, 0);
754 }
755
756 *rx++ = readl_relaxed(rx_reg);
757 dev_vdbg(&spi->dev, "read-%d %02x\n",
758 word_len, *(rx - 1));
759 }
760 /* Add word delay between each word */
761 spi_delay_exec(&xfer->word_delay, xfer);
762 } while (c);
763 } else if (word_len <= 16) {
764 u16 *rx;
765 const u16 *tx;
766
767 rx = xfer->rx_buf;
768 tx = xfer->tx_buf;
769 do {
770 c -= 2;
771 if (tx != NULL) {
772 if (mcspi_wait_for_reg_bit(chstat_reg,
773 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
774 dev_err(&spi->dev, "TXS timed out\n");
775 goto out;
776 }
777 dev_vdbg(&spi->dev, "write-%d %04x\n",
778 word_len, *tx);
779 writel_relaxed(*tx++, tx_reg);
780 }
781 if (rx != NULL) {
782 if (mcspi_wait_for_reg_bit(chstat_reg,
783 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
784 dev_err(&spi->dev, "RXS timed out\n");
785 goto out;
786 }
787
788 if (c == 2 && tx == NULL &&
789 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
790 omap2_mcspi_set_enable(spi, 0);
791 *rx++ = readl_relaxed(rx_reg);
792 dev_vdbg(&spi->dev, "read-%d %04x\n",
793 word_len, *(rx - 1));
794 if (mcspi_wait_for_reg_bit(chstat_reg,
795 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
796 dev_err(&spi->dev,
797 "RXS timed out\n");
798 goto out;
799 }
800 c = 0;
801 } else if (c == 0 && tx == NULL) {
802 omap2_mcspi_set_enable(spi, 0);
803 }
804
805 *rx++ = readl_relaxed(rx_reg);
806 dev_vdbg(&spi->dev, "read-%d %04x\n",
807 word_len, *(rx - 1));
808 }
809 /* Add word delay between each word */
810 spi_delay_exec(&xfer->word_delay, xfer);
811 } while (c >= 2);
812 } else if (word_len <= 32) {
813 u32 *rx;
814 const u32 *tx;
815
816 rx = xfer->rx_buf;
817 tx = xfer->tx_buf;
818 do {
819 c -= 4;
820 if (tx != NULL) {
821 if (mcspi_wait_for_reg_bit(chstat_reg,
822 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
823 dev_err(&spi->dev, "TXS timed out\n");
824 goto out;
825 }
826 dev_vdbg(&spi->dev, "write-%d %08x\n",
827 word_len, *tx);
828 writel_relaxed(*tx++, tx_reg);
829 }
830 if (rx != NULL) {
831 if (mcspi_wait_for_reg_bit(chstat_reg,
832 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
833 dev_err(&spi->dev, "RXS timed out\n");
834 goto out;
835 }
836
837 if (c == 4 && tx == NULL &&
838 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
839 omap2_mcspi_set_enable(spi, 0);
840 *rx++ = readl_relaxed(rx_reg);
841 dev_vdbg(&spi->dev, "read-%d %08x\n",
842 word_len, *(rx - 1));
843 if (mcspi_wait_for_reg_bit(chstat_reg,
844 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
845 dev_err(&spi->dev,
846 "RXS timed out\n");
847 goto out;
848 }
849 c = 0;
850 } else if (c == 0 && tx == NULL) {
851 omap2_mcspi_set_enable(spi, 0);
852 }
853
854 *rx++ = readl_relaxed(rx_reg);
855 dev_vdbg(&spi->dev, "read-%d %08x\n",
856 word_len, *(rx - 1));
857 }
858 /* Add word delay between each word */
859 spi_delay_exec(&xfer->word_delay, xfer);
860 } while (c >= 4);
861 }
862
863 /* for TX_ONLY mode, be sure all words have shifted out */
864 if (xfer->rx_buf == NULL) {
865 if (mcspi_wait_for_reg_bit(chstat_reg,
866 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
867 dev_err(&spi->dev, "TXS timed out\n");
868 } else if (mcspi_wait_for_reg_bit(chstat_reg,
869 OMAP2_MCSPI_CHSTAT_EOT) < 0)
870 dev_err(&spi->dev, "EOT timed out\n");
871
872 /* disable chan to purge rx datas received in TX_ONLY transfer,
873 * otherwise these rx datas will affect the direct following
874 * RX_ONLY transfer.
875 */
876 omap2_mcspi_set_enable(spi, 0);
877 }
878out:
879 omap2_mcspi_set_enable(spi, 1);
880 return count - c;
881}
882
883static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
884{
885 u32 div;
886
887 for (div = 0; div < 15; div++)
888 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
889 return div;
890
891 return 15;
892}
893
894/* called only when no transfer is active to this device */
895static int omap2_mcspi_setup_transfer(struct spi_device *spi,
896 struct spi_transfer *t)
897{
898 struct omap2_mcspi_cs *cs = spi->controller_state;
899 struct omap2_mcspi *mcspi;
900 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
901 u8 word_len = spi->bits_per_word;
902 u32 speed_hz = spi->max_speed_hz;
903
904 mcspi = spi_master_get_devdata(spi->master);
905
906 if (t != NULL && t->bits_per_word)
907 word_len = t->bits_per_word;
908
909 cs->word_len = word_len;
910
911 if (t && t->speed_hz)
912 speed_hz = t->speed_hz;
913
914 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
915 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
916 clkd = omap2_mcspi_calc_divisor(speed_hz);
917 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
918 clkg = 0;
919 } else {
920 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
921 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
922 clkd = (div - 1) & 0xf;
923 extclk = (div - 1) >> 4;
924 clkg = OMAP2_MCSPI_CHCONF_CLKG;
925 }
926
927 l = mcspi_cached_chconf0(spi);
928
929 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
930 * REVISIT: this controller could support SPI_3WIRE mode.
931 */
932 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
933 l &= ~OMAP2_MCSPI_CHCONF_IS;
934 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
935 l |= OMAP2_MCSPI_CHCONF_DPE0;
936 } else {
937 l |= OMAP2_MCSPI_CHCONF_IS;
938 l |= OMAP2_MCSPI_CHCONF_DPE1;
939 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
940 }
941
942 /* wordlength */
943 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
944 l |= (word_len - 1) << 7;
945
946 /* set chipselect polarity; manage with FORCE */
947 if (!(spi->mode & SPI_CS_HIGH))
948 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
949 else
950 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
951
952 /* set clock divisor */
953 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
954 l |= clkd << 2;
955
956 /* set clock granularity */
957 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
958 l |= clkg;
959 if (clkg) {
960 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
961 cs->chctrl0 |= extclk << 8;
962 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
963 }
964
965 /* set SPI mode 0..3 */
966 if (spi->mode & SPI_CPOL)
967 l |= OMAP2_MCSPI_CHCONF_POL;
968 else
969 l &= ~OMAP2_MCSPI_CHCONF_POL;
970 if (spi->mode & SPI_CPHA)
971 l |= OMAP2_MCSPI_CHCONF_PHA;
972 else
973 l &= ~OMAP2_MCSPI_CHCONF_PHA;
974
975 mcspi_write_chconf0(spi, l);
976
977 cs->mode = spi->mode;
978
979 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
980 speed_hz,
981 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
982 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
983
984 return 0;
985}
986
987/*
988 * Note that we currently allow DMA only if we get a channel
989 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
990 */
991static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
992 struct omap2_mcspi_dma *mcspi_dma)
993{
994 int ret = 0;
995
996 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
997 mcspi_dma->dma_rx_ch_name);
998 if (IS_ERR(mcspi_dma->dma_rx)) {
999 ret = PTR_ERR(mcspi_dma->dma_rx);
1000 mcspi_dma->dma_rx = NULL;
1001 goto no_dma;
1002 }
1003
1004 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1005 mcspi_dma->dma_tx_ch_name);
1006 if (IS_ERR(mcspi_dma->dma_tx)) {
1007 ret = PTR_ERR(mcspi_dma->dma_tx);
1008 mcspi_dma->dma_tx = NULL;
1009 dma_release_channel(mcspi_dma->dma_rx);
1010 mcspi_dma->dma_rx = NULL;
1011 }
1012
1013 init_completion(&mcspi_dma->dma_rx_completion);
1014 init_completion(&mcspi_dma->dma_tx_completion);
1015
1016no_dma:
1017 return ret;
1018}
1019
1020static void omap2_mcspi_release_dma(struct spi_master *master)
1021{
1022 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1023 struct omap2_mcspi_dma *mcspi_dma;
1024 int i;
1025
1026 for (i = 0; i < master->num_chipselect; i++) {
1027 mcspi_dma = &mcspi->dma_channels[i];
1028
1029 if (mcspi_dma->dma_rx) {
1030 dma_release_channel(mcspi_dma->dma_rx);
1031 mcspi_dma->dma_rx = NULL;
1032 }
1033 if (mcspi_dma->dma_tx) {
1034 dma_release_channel(mcspi_dma->dma_tx);
1035 mcspi_dma->dma_tx = NULL;
1036 }
1037 }
1038}
1039
1040static void omap2_mcspi_cleanup(struct spi_device *spi)
1041{
1042 struct omap2_mcspi_cs *cs;
1043
1044 if (spi->controller_state) {
1045 /* Unlink controller state from context save list */
1046 cs = spi->controller_state;
1047 list_del(&cs->node);
1048
1049 kfree(cs);
1050 }
1051}
1052
1053static int omap2_mcspi_setup(struct spi_device *spi)
1054{
1055 bool initial_setup = false;
1056 int ret;
1057 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1058 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1059 struct omap2_mcspi_cs *cs = spi->controller_state;
1060
1061 if (!cs) {
1062 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1063 if (!cs)
1064 return -ENOMEM;
1065 cs->base = mcspi->base + spi->chip_select * 0x14;
1066 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1067 cs->mode = 0;
1068 cs->chconf0 = 0;
1069 cs->chctrl0 = 0;
1070 spi->controller_state = cs;
1071 /* Link this to context save list */
1072 list_add_tail(&cs->node, &ctx->cs);
1073 initial_setup = true;
1074 }
1075
1076 ret = pm_runtime_resume_and_get(mcspi->dev);
1077 if (ret < 0) {
1078 if (initial_setup)
1079 omap2_mcspi_cleanup(spi);
1080
1081 return ret;
1082 }
1083
1084 ret = omap2_mcspi_setup_transfer(spi, NULL);
1085 if (ret && initial_setup)
1086 omap2_mcspi_cleanup(spi);
1087
1088 pm_runtime_mark_last_busy(mcspi->dev);
1089 pm_runtime_put_autosuspend(mcspi->dev);
1090
1091 return ret;
1092}
1093
1094static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1095{
1096 struct omap2_mcspi *mcspi = data;
1097 u32 irqstat;
1098
1099 irqstat = mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS);
1100 if (!irqstat)
1101 return IRQ_NONE;
1102
1103 /* Disable IRQ and wakeup slave xfer task */
1104 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0);
1105 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1106 complete(&mcspi->txdone);
1107
1108 return IRQ_HANDLED;
1109}
1110
1111static int omap2_mcspi_slave_abort(struct spi_master *master)
1112{
1113 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1114 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1115
1116 mcspi->slave_aborted = true;
1117 complete(&mcspi_dma->dma_rx_completion);
1118 complete(&mcspi_dma->dma_tx_completion);
1119 complete(&mcspi->txdone);
1120
1121 return 0;
1122}
1123
1124static int omap2_mcspi_transfer_one(struct spi_master *master,
1125 struct spi_device *spi,
1126 struct spi_transfer *t)
1127{
1128
1129 /* We only enable one channel at a time -- the one whose message is
1130 * -- although this controller would gladly
1131 * arbitrate among multiple channels. This corresponds to "single
1132 * channel" master mode. As a side effect, we need to manage the
1133 * chipselect with the FORCE bit ... CS != channel enable.
1134 */
1135
1136 struct omap2_mcspi *mcspi;
1137 struct omap2_mcspi_dma *mcspi_dma;
1138 struct omap2_mcspi_cs *cs;
1139 struct omap2_mcspi_device_config *cd;
1140 int par_override = 0;
1141 int status = 0;
1142 u32 chconf;
1143
1144 mcspi = spi_master_get_devdata(master);
1145 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1146 cs = spi->controller_state;
1147 cd = spi->controller_data;
1148
1149 /*
1150 * The slave driver could have changed spi->mode in which case
1151 * it will be different from cs->mode (the current hardware setup).
1152 * If so, set par_override (even though its not a parity issue) so
1153 * omap2_mcspi_setup_transfer will be called to configure the hardware
1154 * with the correct mode on the first iteration of the loop below.
1155 */
1156 if (spi->mode != cs->mode)
1157 par_override = 1;
1158
1159 omap2_mcspi_set_enable(spi, 0);
1160
1161 if (spi->cs_gpiod)
1162 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1163
1164 if (par_override ||
1165 (t->speed_hz != spi->max_speed_hz) ||
1166 (t->bits_per_word != spi->bits_per_word)) {
1167 par_override = 1;
1168 status = omap2_mcspi_setup_transfer(spi, t);
1169 if (status < 0)
1170 goto out;
1171 if (t->speed_hz == spi->max_speed_hz &&
1172 t->bits_per_word == spi->bits_per_word)
1173 par_override = 0;
1174 }
1175 if (cd && cd->cs_per_word) {
1176 chconf = mcspi->ctx.modulctrl;
1177 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1178 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1179 mcspi->ctx.modulctrl =
1180 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1181 }
1182
1183 chconf = mcspi_cached_chconf0(spi);
1184 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1185 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1186
1187 if (t->tx_buf == NULL)
1188 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1189 else if (t->rx_buf == NULL)
1190 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1191
1192 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1193 /* Turbo mode is for more than one word */
1194 if (t->len > ((cs->word_len + 7) >> 3))
1195 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1196 }
1197
1198 mcspi_write_chconf0(spi, chconf);
1199
1200 if (t->len) {
1201 unsigned count;
1202
1203 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1204 master->cur_msg_mapped &&
1205 master->can_dma(master, spi, t))
1206 omap2_mcspi_set_fifo(spi, t, 1);
1207
1208 omap2_mcspi_set_enable(spi, 1);
1209
1210 /* RX_ONLY mode needs dummy data in TX reg */
1211 if (t->tx_buf == NULL)
1212 writel_relaxed(0, cs->base
1213 + OMAP2_MCSPI_TX0);
1214
1215 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1216 master->cur_msg_mapped &&
1217 master->can_dma(master, spi, t))
1218 count = omap2_mcspi_txrx_dma(spi, t);
1219 else
1220 count = omap2_mcspi_txrx_pio(spi, t);
1221
1222 if (count != t->len) {
1223 status = -EIO;
1224 goto out;
1225 }
1226 }
1227
1228 omap2_mcspi_set_enable(spi, 0);
1229
1230 if (mcspi->fifo_depth > 0)
1231 omap2_mcspi_set_fifo(spi, t, 0);
1232
1233out:
1234 /* Restore defaults if they were overriden */
1235 if (par_override) {
1236 par_override = 0;
1237 status = omap2_mcspi_setup_transfer(spi, NULL);
1238 }
1239
1240 if (cd && cd->cs_per_word) {
1241 chconf = mcspi->ctx.modulctrl;
1242 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1243 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1244 mcspi->ctx.modulctrl =
1245 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1246 }
1247
1248 omap2_mcspi_set_enable(spi, 0);
1249
1250 if (spi->cs_gpiod)
1251 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1252
1253 if (mcspi->fifo_depth > 0 && t)
1254 omap2_mcspi_set_fifo(spi, t, 0);
1255
1256 return status;
1257}
1258
1259static int omap2_mcspi_prepare_message(struct spi_master *master,
1260 struct spi_message *msg)
1261{
1262 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1263 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1264 struct omap2_mcspi_cs *cs;
1265
1266 /* Only a single channel can have the FORCE bit enabled
1267 * in its chconf0 register.
1268 * Scan all channels and disable them except the current one.
1269 * A FORCE can remain from a last transfer having cs_change enabled
1270 */
1271 list_for_each_entry(cs, &ctx->cs, node) {
1272 if (msg->spi->controller_state == cs)
1273 continue;
1274
1275 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1276 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1277 writel_relaxed(cs->chconf0,
1278 cs->base + OMAP2_MCSPI_CHCONF0);
1279 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1280 }
1281 }
1282
1283 return 0;
1284}
1285
1286static bool omap2_mcspi_can_dma(struct spi_master *master,
1287 struct spi_device *spi,
1288 struct spi_transfer *xfer)
1289{
1290 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1291 struct omap2_mcspi_dma *mcspi_dma =
1292 &mcspi->dma_channels[spi->chip_select];
1293
1294 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1295 return false;
1296
1297 if (spi_controller_is_slave(master))
1298 return true;
1299
1300 master->dma_rx = mcspi_dma->dma_rx;
1301 master->dma_tx = mcspi_dma->dma_tx;
1302
1303 return (xfer->len >= DMA_MIN_BYTES);
1304}
1305
1306static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1307{
1308 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1309 struct omap2_mcspi_dma *mcspi_dma =
1310 &mcspi->dma_channels[spi->chip_select];
1311
1312 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1313 return mcspi->max_xfer_len;
1314
1315 return SIZE_MAX;
1316}
1317
1318static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1319{
1320 struct spi_master *master = mcspi->master;
1321 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1322 int ret = 0;
1323
1324 ret = pm_runtime_resume_and_get(mcspi->dev);
1325 if (ret < 0)
1326 return ret;
1327
1328 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1329 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1330 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1331
1332 omap2_mcspi_set_mode(master);
1333 pm_runtime_mark_last_busy(mcspi->dev);
1334 pm_runtime_put_autosuspend(mcspi->dev);
1335 return 0;
1336}
1337
1338static int omap_mcspi_runtime_suspend(struct device *dev)
1339{
1340 int error;
1341
1342 error = pinctrl_pm_select_idle_state(dev);
1343 if (error)
1344 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1345
1346 return 0;
1347}
1348
1349/*
1350 * When SPI wake up from off-mode, CS is in activate state. If it was in
1351 * inactive state when driver was suspend, then force it to inactive state at
1352 * wake up.
1353 */
1354static int omap_mcspi_runtime_resume(struct device *dev)
1355{
1356 struct spi_master *master = dev_get_drvdata(dev);
1357 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1358 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1359 struct omap2_mcspi_cs *cs;
1360 int error;
1361
1362 error = pinctrl_pm_select_default_state(dev);
1363 if (error)
1364 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1365
1366 /* McSPI: context restore */
1367 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1368 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1369
1370 list_for_each_entry(cs, &ctx->cs, node) {
1371 /*
1372 * We need to toggle CS state for OMAP take this
1373 * change in account.
1374 */
1375 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1376 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1377 writel_relaxed(cs->chconf0,
1378 cs->base + OMAP2_MCSPI_CHCONF0);
1379 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1380 writel_relaxed(cs->chconf0,
1381 cs->base + OMAP2_MCSPI_CHCONF0);
1382 } else {
1383 writel_relaxed(cs->chconf0,
1384 cs->base + OMAP2_MCSPI_CHCONF0);
1385 }
1386 }
1387
1388 return 0;
1389}
1390
1391static struct omap2_mcspi_platform_config omap2_pdata = {
1392 .regs_offset = 0,
1393};
1394
1395static struct omap2_mcspi_platform_config omap4_pdata = {
1396 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1397};
1398
1399static struct omap2_mcspi_platform_config am654_pdata = {
1400 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1401 .max_xfer_len = SZ_4K - 1,
1402};
1403
1404static const struct of_device_id omap_mcspi_of_match[] = {
1405 {
1406 .compatible = "ti,omap2-mcspi",
1407 .data = &omap2_pdata,
1408 },
1409 {
1410 .compatible = "ti,omap4-mcspi",
1411 .data = &omap4_pdata,
1412 },
1413 {
1414 .compatible = "ti,am654-mcspi",
1415 .data = &am654_pdata,
1416 },
1417 { },
1418};
1419MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1420
1421static int omap2_mcspi_probe(struct platform_device *pdev)
1422{
1423 struct spi_master *master;
1424 const struct omap2_mcspi_platform_config *pdata;
1425 struct omap2_mcspi *mcspi;
1426 struct resource *r;
1427 int status = 0, i;
1428 u32 regs_offset = 0;
1429 struct device_node *node = pdev->dev.of_node;
1430 const struct of_device_id *match;
1431
1432 if (of_property_read_bool(node, "spi-slave"))
1433 master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi));
1434 else
1435 master = spi_alloc_master(&pdev->dev, sizeof(*mcspi));
1436 if (!master)
1437 return -ENOMEM;
1438
1439 /* the spi->mode bits understood by this driver: */
1440 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1441 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1442 master->setup = omap2_mcspi_setup;
1443 master->auto_runtime_pm = true;
1444 master->prepare_message = omap2_mcspi_prepare_message;
1445 master->can_dma = omap2_mcspi_can_dma;
1446 master->transfer_one = omap2_mcspi_transfer_one;
1447 master->set_cs = omap2_mcspi_set_cs;
1448 master->cleanup = omap2_mcspi_cleanup;
1449 master->slave_abort = omap2_mcspi_slave_abort;
1450 master->dev.of_node = node;
1451 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1452 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1453 master->use_gpio_descriptors = true;
1454
1455 platform_set_drvdata(pdev, master);
1456
1457 mcspi = spi_master_get_devdata(master);
1458 mcspi->master = master;
1459
1460 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1461 if (match) {
1462 u32 num_cs = 1; /* default number of chipselect */
1463 pdata = match->data;
1464
1465 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1466 master->num_chipselect = num_cs;
1467 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1468 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1469 } else {
1470 pdata = dev_get_platdata(&pdev->dev);
1471 master->num_chipselect = pdata->num_cs;
1472 mcspi->pin_dir = pdata->pin_dir;
1473 }
1474 regs_offset = pdata->regs_offset;
1475 if (pdata->max_xfer_len) {
1476 mcspi->max_xfer_len = pdata->max_xfer_len;
1477 master->max_transfer_size = omap2_mcspi_max_xfer_size;
1478 }
1479
1480 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1481 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1482 if (IS_ERR(mcspi->base)) {
1483 status = PTR_ERR(mcspi->base);
1484 goto free_master;
1485 }
1486 mcspi->phys = r->start + regs_offset;
1487 mcspi->base += regs_offset;
1488
1489 mcspi->dev = &pdev->dev;
1490
1491 INIT_LIST_HEAD(&mcspi->ctx.cs);
1492
1493 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1494 sizeof(struct omap2_mcspi_dma),
1495 GFP_KERNEL);
1496 if (mcspi->dma_channels == NULL) {
1497 status = -ENOMEM;
1498 goto free_master;
1499 }
1500
1501 for (i = 0; i < master->num_chipselect; i++) {
1502 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1503 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1504
1505 status = omap2_mcspi_request_dma(mcspi,
1506 &mcspi->dma_channels[i]);
1507 if (status == -EPROBE_DEFER)
1508 goto free_master;
1509 }
1510
1511 status = platform_get_irq(pdev, 0);
1512 if (status < 0) {
1513 dev_err_probe(&pdev->dev, status, "no irq resource found\n");
1514 goto free_master;
1515 }
1516 init_completion(&mcspi->txdone);
1517 status = devm_request_irq(&pdev->dev, status,
1518 omap2_mcspi_irq_handler, 0, pdev->name,
1519 mcspi);
1520 if (status) {
1521 dev_err(&pdev->dev, "Cannot request IRQ");
1522 goto free_master;
1523 }
1524
1525 pm_runtime_use_autosuspend(&pdev->dev);
1526 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1527 pm_runtime_enable(&pdev->dev);
1528
1529 status = omap2_mcspi_controller_setup(mcspi);
1530 if (status < 0)
1531 goto disable_pm;
1532
1533 status = devm_spi_register_controller(&pdev->dev, master);
1534 if (status < 0)
1535 goto disable_pm;
1536
1537 return status;
1538
1539disable_pm:
1540 pm_runtime_dont_use_autosuspend(&pdev->dev);
1541 pm_runtime_put_sync(&pdev->dev);
1542 pm_runtime_disable(&pdev->dev);
1543free_master:
1544 omap2_mcspi_release_dma(master);
1545 spi_master_put(master);
1546 return status;
1547}
1548
1549static int omap2_mcspi_remove(struct platform_device *pdev)
1550{
1551 struct spi_master *master = platform_get_drvdata(pdev);
1552 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1553
1554 omap2_mcspi_release_dma(master);
1555
1556 pm_runtime_dont_use_autosuspend(mcspi->dev);
1557 pm_runtime_put_sync(mcspi->dev);
1558 pm_runtime_disable(&pdev->dev);
1559
1560 return 0;
1561}
1562
1563/* work with hotplug and coldplug */
1564MODULE_ALIAS("platform:omap2_mcspi");
1565
1566static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1567{
1568 struct spi_master *master = dev_get_drvdata(dev);
1569 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1570 int error;
1571
1572 error = pinctrl_pm_select_sleep_state(dev);
1573 if (error)
1574 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1575 __func__, error);
1576
1577 error = spi_master_suspend(master);
1578 if (error)
1579 dev_warn(mcspi->dev, "%s: master suspend failed: %i\n",
1580 __func__, error);
1581
1582 return pm_runtime_force_suspend(dev);
1583}
1584
1585static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1586{
1587 struct spi_master *master = dev_get_drvdata(dev);
1588 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1589 int error;
1590
1591 error = spi_master_resume(master);
1592 if (error)
1593 dev_warn(mcspi->dev, "%s: master resume failed: %i\n",
1594 __func__, error);
1595
1596 return pm_runtime_force_resume(dev);
1597}
1598
1599static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1600 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1601 omap2_mcspi_resume)
1602 .runtime_suspend = omap_mcspi_runtime_suspend,
1603 .runtime_resume = omap_mcspi_runtime_resume,
1604};
1605
1606static struct platform_driver omap2_mcspi_driver = {
1607 .driver = {
1608 .name = "omap2_mcspi",
1609 .pm = &omap2_mcspi_pm_ops,
1610 .of_match_table = omap_mcspi_of_match,
1611 },
1612 .probe = omap2_mcspi_probe,
1613 .remove = omap2_mcspi_remove,
1614};
1615
1616module_platform_driver(omap2_mcspi_driver);
1617MODULE_LICENSE("GPL");