Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrjola <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27
28#include <linux/spi/spi.h>
29
30#include "internals.h"
31
32#include <linux/platform_data/spi-omap2-mcspi.h>
33
34#define OMAP2_MCSPI_MAX_FREQ 48000000
35#define OMAP2_MCSPI_MAX_DIVIDER 4096
36#define OMAP2_MCSPI_MAX_FIFODEPTH 64
37#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
38#define SPI_AUTOSUSPEND_TIMEOUT 2000
39
40#define OMAP2_MCSPI_REVISION 0x00
41#define OMAP2_MCSPI_SYSSTATUS 0x14
42#define OMAP2_MCSPI_IRQSTATUS 0x18
43#define OMAP2_MCSPI_IRQENABLE 0x1c
44#define OMAP2_MCSPI_WAKEUPENABLE 0x20
45#define OMAP2_MCSPI_SYST 0x24
46#define OMAP2_MCSPI_MODULCTRL 0x28
47#define OMAP2_MCSPI_XFERLEVEL 0x7c
48
49/* per-channel banks, 0x14 bytes each, first is: */
50#define OMAP2_MCSPI_CHCONF0 0x2c
51#define OMAP2_MCSPI_CHSTAT0 0x30
52#define OMAP2_MCSPI_CHCTRL0 0x34
53#define OMAP2_MCSPI_TX0 0x38
54#define OMAP2_MCSPI_RX0 0x3c
55
56/* per-register bitmasks: */
57#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
58
59#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
60#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
61#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
62
63#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
64#define OMAP2_MCSPI_CHCONF_POL BIT(1)
65#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
66#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
67#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
68#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
69#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
70#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
71#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
72#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
73#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
74#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
75#define OMAP2_MCSPI_CHCONF_IS BIT(18)
76#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
77#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
78#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
79#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
80#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
81
82#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
83#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
84#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
85#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
86
87#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
88#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
89
90#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
91
92/* We have 2 DMA channels per CS, one for RX and one for TX */
93struct omap2_mcspi_dma {
94 struct dma_chan *dma_tx;
95 struct dma_chan *dma_rx;
96
97 struct completion dma_tx_completion;
98 struct completion dma_rx_completion;
99
100 char dma_rx_ch_name[14];
101 char dma_tx_ch_name[14];
102};
103
104/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
105 * cache operations; better heuristics consider wordsize and bitrate.
106 */
107#define DMA_MIN_BYTES 160
108
109
110/*
111 * Used for context save and restore, structure members to be updated whenever
112 * corresponding registers are modified.
113 */
114struct omap2_mcspi_regs {
115 u32 modulctrl;
116 u32 wakeupenable;
117 struct list_head cs;
118};
119
120struct omap2_mcspi {
121 struct completion txdone;
122 struct spi_controller *ctlr;
123 /* Virtual base address of the controller */
124 void __iomem *base;
125 unsigned long phys;
126 /* SPI1 has 4 channels, while SPI2 has 2 */
127 struct omap2_mcspi_dma *dma_channels;
128 struct device *dev;
129 struct omap2_mcspi_regs ctx;
130 struct clk *ref_clk;
131 int fifo_depth;
132 bool target_aborted;
133 unsigned int pin_dir:1;
134 size_t max_xfer_len;
135 u32 ref_clk_hz;
136 bool use_multi_mode;
137};
138
139struct omap2_mcspi_cs {
140 void __iomem *base;
141 unsigned long phys;
142 int word_len;
143 u16 mode;
144 struct list_head node;
145 /* Context save and restore shadow register */
146 u32 chconf0, chctrl0;
147};
148
149static inline void mcspi_write_reg(struct spi_controller *ctlr,
150 int idx, u32 val)
151{
152 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
153
154 writel_relaxed(val, mcspi->base + idx);
155}
156
157static inline u32 mcspi_read_reg(struct spi_controller *ctlr, int idx)
158{
159 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
160
161 return readl_relaxed(mcspi->base + idx);
162}
163
164static inline void mcspi_write_cs_reg(const struct spi_device *spi,
165 int idx, u32 val)
166{
167 struct omap2_mcspi_cs *cs = spi->controller_state;
168
169 writel_relaxed(val, cs->base + idx);
170}
171
172static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
173{
174 struct omap2_mcspi_cs *cs = spi->controller_state;
175
176 return readl_relaxed(cs->base + idx);
177}
178
179static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
180{
181 struct omap2_mcspi_cs *cs = spi->controller_state;
182
183 return cs->chconf0;
184}
185
186static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
187{
188 struct omap2_mcspi_cs *cs = spi->controller_state;
189
190 cs->chconf0 = val;
191 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
192 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
193}
194
195static inline int mcspi_bytes_per_word(int word_len)
196{
197 if (word_len <= 8)
198 return 1;
199 else if (word_len <= 16)
200 return 2;
201 else /* word_len <= 32 */
202 return 4;
203}
204
205static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
206 int is_read, int enable)
207{
208 u32 l, rw;
209
210 l = mcspi_cached_chconf0(spi);
211
212 if (is_read) /* 1 is read, 0 write */
213 rw = OMAP2_MCSPI_CHCONF_DMAR;
214 else
215 rw = OMAP2_MCSPI_CHCONF_DMAW;
216
217 if (enable)
218 l |= rw;
219 else
220 l &= ~rw;
221
222 mcspi_write_chconf0(spi, l);
223}
224
225static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
226{
227 struct omap2_mcspi_cs *cs = spi->controller_state;
228 u32 l;
229
230 l = cs->chctrl0;
231 if (enable)
232 l |= OMAP2_MCSPI_CHCTRL_EN;
233 else
234 l &= ~OMAP2_MCSPI_CHCTRL_EN;
235 cs->chctrl0 = l;
236 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
237 /* Flash post-writes */
238 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
239}
240
241static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
242{
243 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
244 u32 l;
245
246 /* The controller handles the inverted chip selects
247 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
248 * the inversion from the core spi_set_cs function.
249 */
250 if (spi->mode & SPI_CS_HIGH)
251 enable = !enable;
252
253 if (spi->controller_state) {
254 int err = pm_runtime_resume_and_get(mcspi->dev);
255 if (err < 0) {
256 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
257 return;
258 }
259
260 l = mcspi_cached_chconf0(spi);
261
262 /* Only enable chip select manually if single mode is used */
263 if (mcspi->use_multi_mode) {
264 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
265 } else {
266 if (enable)
267 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
268 else
269 l |= OMAP2_MCSPI_CHCONF_FORCE;
270 }
271
272 mcspi_write_chconf0(spi, l);
273
274 pm_runtime_mark_last_busy(mcspi->dev);
275 pm_runtime_put_autosuspend(mcspi->dev);
276 }
277}
278
279static void omap2_mcspi_set_mode(struct spi_controller *ctlr)
280{
281 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
282 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
283 u32 l;
284
285 /*
286 * Choose host or target mode
287 */
288 l = mcspi_read_reg(ctlr, OMAP2_MCSPI_MODULCTRL);
289 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
290 if (spi_controller_is_target(ctlr)) {
291 l |= (OMAP2_MCSPI_MODULCTRL_MS);
292 } else {
293 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
294
295 /* Enable single mode if needed */
296 if (mcspi->use_multi_mode)
297 l &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
298 else
299 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
300 }
301 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, l);
302
303 ctx->modulctrl = l;
304}
305
306static void omap2_mcspi_set_fifo(const struct spi_device *spi,
307 struct spi_transfer *t, int enable)
308{
309 struct spi_controller *ctlr = spi->controller;
310 struct omap2_mcspi_cs *cs = spi->controller_state;
311 struct omap2_mcspi *mcspi;
312 unsigned int wcnt;
313 int max_fifo_depth, bytes_per_word;
314 u32 chconf, xferlevel;
315
316 mcspi = spi_controller_get_devdata(ctlr);
317
318 chconf = mcspi_cached_chconf0(spi);
319 if (enable) {
320 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
321 if (t->len % bytes_per_word != 0)
322 goto disable_fifo;
323
324 if (t->rx_buf != NULL && t->tx_buf != NULL)
325 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
326 else
327 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
328
329 wcnt = t->len / bytes_per_word;
330 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
331 goto disable_fifo;
332
333 xferlevel = wcnt << 16;
334 if (t->rx_buf != NULL) {
335 chconf |= OMAP2_MCSPI_CHCONF_FFER;
336 xferlevel |= (bytes_per_word - 1) << 8;
337 }
338
339 if (t->tx_buf != NULL) {
340 chconf |= OMAP2_MCSPI_CHCONF_FFET;
341 xferlevel |= bytes_per_word - 1;
342 }
343
344 mcspi_write_reg(ctlr, OMAP2_MCSPI_XFERLEVEL, xferlevel);
345 mcspi_write_chconf0(spi, chconf);
346 mcspi->fifo_depth = max_fifo_depth;
347
348 return;
349 }
350
351disable_fifo:
352 if (t->rx_buf != NULL)
353 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
354
355 if (t->tx_buf != NULL)
356 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
357
358 mcspi_write_chconf0(spi, chconf);
359 mcspi->fifo_depth = 0;
360}
361
362static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
363{
364 unsigned long timeout;
365
366 timeout = jiffies + msecs_to_jiffies(1000);
367 while (!(readl_relaxed(reg) & bit)) {
368 if (time_after(jiffies, timeout)) {
369 if (!(readl_relaxed(reg) & bit))
370 return -ETIMEDOUT;
371 else
372 return 0;
373 }
374 cpu_relax();
375 }
376 return 0;
377}
378
379static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
380 struct completion *x)
381{
382 if (spi_controller_is_target(mcspi->ctlr)) {
383 if (wait_for_completion_interruptible(x) ||
384 mcspi->target_aborted)
385 return -EINTR;
386 } else {
387 wait_for_completion(x);
388 }
389
390 return 0;
391}
392
393static void omap2_mcspi_rx_callback(void *data)
394{
395 struct spi_device *spi = data;
396 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
397 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
398
399 /* We must disable the DMA RX request */
400 omap2_mcspi_set_dma_req(spi, 1, 0);
401
402 complete(&mcspi_dma->dma_rx_completion);
403}
404
405static void omap2_mcspi_tx_callback(void *data)
406{
407 struct spi_device *spi = data;
408 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
409 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
410
411 /* We must disable the DMA TX request */
412 omap2_mcspi_set_dma_req(spi, 0, 0);
413
414 complete(&mcspi_dma->dma_tx_completion);
415}
416
417static void omap2_mcspi_tx_dma(struct spi_device *spi,
418 struct spi_transfer *xfer,
419 struct dma_slave_config cfg)
420{
421 struct omap2_mcspi *mcspi;
422 struct omap2_mcspi_dma *mcspi_dma;
423 struct dma_async_tx_descriptor *tx;
424
425 mcspi = spi_controller_get_devdata(spi->controller);
426 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
427
428 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
429
430 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
431 xfer->tx_sg.nents,
432 DMA_MEM_TO_DEV,
433 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
434 if (tx) {
435 tx->callback = omap2_mcspi_tx_callback;
436 tx->callback_param = spi;
437 dmaengine_submit(tx);
438 } else {
439 /* FIXME: fall back to PIO? */
440 }
441 dma_async_issue_pending(mcspi_dma->dma_tx);
442 omap2_mcspi_set_dma_req(spi, 0, 1);
443}
444
445static unsigned
446omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
447 struct dma_slave_config cfg,
448 unsigned es)
449{
450 struct omap2_mcspi *mcspi;
451 struct omap2_mcspi_dma *mcspi_dma;
452 unsigned int count, transfer_reduction = 0;
453 struct scatterlist *sg_out[2];
454 int nb_sizes = 0, out_mapped_nents[2], ret, x;
455 size_t sizes[2];
456 u32 l;
457 int elements = 0;
458 int word_len, element_count;
459 struct omap2_mcspi_cs *cs = spi->controller_state;
460 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
461 struct dma_async_tx_descriptor *tx;
462
463 mcspi = spi_controller_get_devdata(spi->controller);
464 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
465 count = xfer->len;
466
467 /*
468 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
469 * it mentions reducing DMA transfer length by one element in host
470 * normal mode.
471 */
472 if (mcspi->fifo_depth == 0)
473 transfer_reduction = es;
474
475 word_len = cs->word_len;
476 l = mcspi_cached_chconf0(spi);
477
478 if (word_len <= 8)
479 element_count = count;
480 else if (word_len <= 16)
481 element_count = count >> 1;
482 else /* word_len <= 32 */
483 element_count = count >> 2;
484
485
486 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
487
488 /*
489 * Reduce DMA transfer length by one more if McSPI is
490 * configured in turbo mode.
491 */
492 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
493 transfer_reduction += es;
494
495 if (transfer_reduction) {
496 /* Split sgl into two. The second sgl won't be used. */
497 sizes[0] = count - transfer_reduction;
498 sizes[1] = transfer_reduction;
499 nb_sizes = 2;
500 } else {
501 /*
502 * Don't bother splitting the sgl. This essentially
503 * clones the original sgl.
504 */
505 sizes[0] = count;
506 nb_sizes = 1;
507 }
508
509 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
510 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
511
512 if (ret < 0) {
513 dev_err(&spi->dev, "sg_split failed\n");
514 return 0;
515 }
516
517 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
518 out_mapped_nents[0], DMA_DEV_TO_MEM,
519 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
520 if (tx) {
521 tx->callback = omap2_mcspi_rx_callback;
522 tx->callback_param = spi;
523 dmaengine_submit(tx);
524 } else {
525 /* FIXME: fall back to PIO? */
526 }
527
528 dma_async_issue_pending(mcspi_dma->dma_rx);
529 omap2_mcspi_set_dma_req(spi, 1, 1);
530
531 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
532 if (ret || mcspi->target_aborted) {
533 dmaengine_terminate_sync(mcspi_dma->dma_rx);
534 omap2_mcspi_set_dma_req(spi, 1, 0);
535 return 0;
536 }
537
538 for (x = 0; x < nb_sizes; x++)
539 kfree(sg_out[x]);
540
541 if (mcspi->fifo_depth > 0)
542 return count;
543
544 /*
545 * Due to the DMA transfer length reduction the missing bytes must
546 * be read manually to receive all of the expected data.
547 */
548 omap2_mcspi_set_enable(spi, 0);
549
550 elements = element_count - 1;
551
552 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
553 elements--;
554
555 if (!mcspi_wait_for_reg_bit(chstat_reg,
556 OMAP2_MCSPI_CHSTAT_RXS)) {
557 u32 w;
558
559 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
560 if (word_len <= 8)
561 ((u8 *)xfer->rx_buf)[elements++] = w;
562 else if (word_len <= 16)
563 ((u16 *)xfer->rx_buf)[elements++] = w;
564 else /* word_len <= 32 */
565 ((u32 *)xfer->rx_buf)[elements++] = w;
566 } else {
567 int bytes_per_word = mcspi_bytes_per_word(word_len);
568 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
569 count -= (bytes_per_word << 1);
570 omap2_mcspi_set_enable(spi, 1);
571 return count;
572 }
573 }
574 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
575 u32 w;
576
577 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
578 if (word_len <= 8)
579 ((u8 *)xfer->rx_buf)[elements] = w;
580 else if (word_len <= 16)
581 ((u16 *)xfer->rx_buf)[elements] = w;
582 else /* word_len <= 32 */
583 ((u32 *)xfer->rx_buf)[elements] = w;
584 } else {
585 dev_err(&spi->dev, "DMA RX last word empty\n");
586 count -= mcspi_bytes_per_word(word_len);
587 }
588 omap2_mcspi_set_enable(spi, 1);
589 return count;
590}
591
592static unsigned
593omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
594{
595 struct omap2_mcspi *mcspi;
596 struct omap2_mcspi_cs *cs = spi->controller_state;
597 struct omap2_mcspi_dma *mcspi_dma;
598 unsigned int count;
599 u8 *rx;
600 const u8 *tx;
601 struct dma_slave_config cfg;
602 enum dma_slave_buswidth width;
603 unsigned es;
604 void __iomem *chstat_reg;
605 void __iomem *irqstat_reg;
606 int wait_res;
607
608 mcspi = spi_controller_get_devdata(spi->controller);
609 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
610
611 if (cs->word_len <= 8) {
612 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
613 es = 1;
614 } else if (cs->word_len <= 16) {
615 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
616 es = 2;
617 } else {
618 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
619 es = 4;
620 }
621
622 count = xfer->len;
623
624 memset(&cfg, 0, sizeof(cfg));
625 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
626 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
627 cfg.src_addr_width = width;
628 cfg.dst_addr_width = width;
629 cfg.src_maxburst = 1;
630 cfg.dst_maxburst = 1;
631
632 rx = xfer->rx_buf;
633 tx = xfer->tx_buf;
634
635 mcspi->target_aborted = false;
636 reinit_completion(&mcspi_dma->dma_tx_completion);
637 reinit_completion(&mcspi_dma->dma_rx_completion);
638 reinit_completion(&mcspi->txdone);
639 if (tx) {
640 /* Enable EOW IRQ to know end of tx in target mode */
641 if (spi_controller_is_target(spi->controller))
642 mcspi_write_reg(spi->controller,
643 OMAP2_MCSPI_IRQENABLE,
644 OMAP2_MCSPI_IRQSTATUS_EOW);
645 omap2_mcspi_tx_dma(spi, xfer, cfg);
646 }
647
648 if (rx != NULL)
649 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
650
651 if (tx != NULL) {
652 int ret;
653
654 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
655 if (ret || mcspi->target_aborted) {
656 dmaengine_terminate_sync(mcspi_dma->dma_tx);
657 omap2_mcspi_set_dma_req(spi, 0, 0);
658 return 0;
659 }
660
661 if (spi_controller_is_target(mcspi->ctlr)) {
662 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
663 if (ret || mcspi->target_aborted)
664 return 0;
665 }
666
667 if (mcspi->fifo_depth > 0) {
668 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
669
670 if (mcspi_wait_for_reg_bit(irqstat_reg,
671 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
672 dev_err(&spi->dev, "EOW timed out\n");
673
674 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS,
675 OMAP2_MCSPI_IRQSTATUS_EOW);
676 }
677
678 /* for TX_ONLY mode, be sure all words have shifted out */
679 if (rx == NULL) {
680 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
681 if (mcspi->fifo_depth > 0) {
682 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
683 OMAP2_MCSPI_CHSTAT_TXFFE);
684 if (wait_res < 0)
685 dev_err(&spi->dev, "TXFFE timed out\n");
686 } else {
687 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
688 OMAP2_MCSPI_CHSTAT_TXS);
689 if (wait_res < 0)
690 dev_err(&spi->dev, "TXS timed out\n");
691 }
692 if (wait_res >= 0 &&
693 (mcspi_wait_for_reg_bit(chstat_reg,
694 OMAP2_MCSPI_CHSTAT_EOT) < 0))
695 dev_err(&spi->dev, "EOT timed out\n");
696 }
697 }
698 return count;
699}
700
701static unsigned
702omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
703{
704 struct omap2_mcspi_cs *cs = spi->controller_state;
705 unsigned int count, c;
706 u32 l;
707 void __iomem *base = cs->base;
708 void __iomem *tx_reg;
709 void __iomem *rx_reg;
710 void __iomem *chstat_reg;
711 int word_len;
712
713 count = xfer->len;
714 c = count;
715 word_len = cs->word_len;
716
717 l = mcspi_cached_chconf0(spi);
718
719 /* We store the pre-calculated register addresses on stack to speed
720 * up the transfer loop. */
721 tx_reg = base + OMAP2_MCSPI_TX0;
722 rx_reg = base + OMAP2_MCSPI_RX0;
723 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
724
725 if (c < (word_len>>3))
726 return 0;
727
728 if (word_len <= 8) {
729 u8 *rx;
730 const u8 *tx;
731
732 rx = xfer->rx_buf;
733 tx = xfer->tx_buf;
734
735 do {
736 c -= 1;
737 if (tx != NULL) {
738 if (mcspi_wait_for_reg_bit(chstat_reg,
739 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
740 dev_err(&spi->dev, "TXS timed out\n");
741 goto out;
742 }
743 dev_vdbg(&spi->dev, "write-%d %02x\n",
744 word_len, *tx);
745 writel_relaxed(*tx++, tx_reg);
746 }
747 if (rx != NULL) {
748 if (mcspi_wait_for_reg_bit(chstat_reg,
749 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
750 dev_err(&spi->dev, "RXS timed out\n");
751 goto out;
752 }
753
754 if (c == 1 && tx == NULL &&
755 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
756 omap2_mcspi_set_enable(spi, 0);
757 *rx++ = readl_relaxed(rx_reg);
758 dev_vdbg(&spi->dev, "read-%d %02x\n",
759 word_len, *(rx - 1));
760 if (mcspi_wait_for_reg_bit(chstat_reg,
761 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
762 dev_err(&spi->dev,
763 "RXS timed out\n");
764 goto out;
765 }
766 c = 0;
767 } else if (c == 0 && tx == NULL) {
768 omap2_mcspi_set_enable(spi, 0);
769 }
770
771 *rx++ = readl_relaxed(rx_reg);
772 dev_vdbg(&spi->dev, "read-%d %02x\n",
773 word_len, *(rx - 1));
774 }
775 /* Add word delay between each word */
776 spi_delay_exec(&xfer->word_delay, xfer);
777 } while (c);
778 } else if (word_len <= 16) {
779 u16 *rx;
780 const u16 *tx;
781
782 rx = xfer->rx_buf;
783 tx = xfer->tx_buf;
784 do {
785 c -= 2;
786 if (tx != NULL) {
787 if (mcspi_wait_for_reg_bit(chstat_reg,
788 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
789 dev_err(&spi->dev, "TXS timed out\n");
790 goto out;
791 }
792 dev_vdbg(&spi->dev, "write-%d %04x\n",
793 word_len, *tx);
794 writel_relaxed(*tx++, tx_reg);
795 }
796 if (rx != NULL) {
797 if (mcspi_wait_for_reg_bit(chstat_reg,
798 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
799 dev_err(&spi->dev, "RXS timed out\n");
800 goto out;
801 }
802
803 if (c == 2 && tx == NULL &&
804 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
805 omap2_mcspi_set_enable(spi, 0);
806 *rx++ = readl_relaxed(rx_reg);
807 dev_vdbg(&spi->dev, "read-%d %04x\n",
808 word_len, *(rx - 1));
809 if (mcspi_wait_for_reg_bit(chstat_reg,
810 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
811 dev_err(&spi->dev,
812 "RXS timed out\n");
813 goto out;
814 }
815 c = 0;
816 } else if (c == 0 && tx == NULL) {
817 omap2_mcspi_set_enable(spi, 0);
818 }
819
820 *rx++ = readl_relaxed(rx_reg);
821 dev_vdbg(&spi->dev, "read-%d %04x\n",
822 word_len, *(rx - 1));
823 }
824 /* Add word delay between each word */
825 spi_delay_exec(&xfer->word_delay, xfer);
826 } while (c >= 2);
827 } else if (word_len <= 32) {
828 u32 *rx;
829 const u32 *tx;
830
831 rx = xfer->rx_buf;
832 tx = xfer->tx_buf;
833 do {
834 c -= 4;
835 if (tx != NULL) {
836 if (mcspi_wait_for_reg_bit(chstat_reg,
837 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
838 dev_err(&spi->dev, "TXS timed out\n");
839 goto out;
840 }
841 dev_vdbg(&spi->dev, "write-%d %08x\n",
842 word_len, *tx);
843 writel_relaxed(*tx++, tx_reg);
844 }
845 if (rx != NULL) {
846 if (mcspi_wait_for_reg_bit(chstat_reg,
847 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
848 dev_err(&spi->dev, "RXS timed out\n");
849 goto out;
850 }
851
852 if (c == 4 && tx == NULL &&
853 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
854 omap2_mcspi_set_enable(spi, 0);
855 *rx++ = readl_relaxed(rx_reg);
856 dev_vdbg(&spi->dev, "read-%d %08x\n",
857 word_len, *(rx - 1));
858 if (mcspi_wait_for_reg_bit(chstat_reg,
859 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
860 dev_err(&spi->dev,
861 "RXS timed out\n");
862 goto out;
863 }
864 c = 0;
865 } else if (c == 0 && tx == NULL) {
866 omap2_mcspi_set_enable(spi, 0);
867 }
868
869 *rx++ = readl_relaxed(rx_reg);
870 dev_vdbg(&spi->dev, "read-%d %08x\n",
871 word_len, *(rx - 1));
872 }
873 /* Add word delay between each word */
874 spi_delay_exec(&xfer->word_delay, xfer);
875 } while (c >= 4);
876 }
877
878 /* for TX_ONLY mode, be sure all words have shifted out */
879 if (xfer->rx_buf == NULL) {
880 if (mcspi_wait_for_reg_bit(chstat_reg,
881 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
882 dev_err(&spi->dev, "TXS timed out\n");
883 } else if (mcspi_wait_for_reg_bit(chstat_reg,
884 OMAP2_MCSPI_CHSTAT_EOT) < 0)
885 dev_err(&spi->dev, "EOT timed out\n");
886
887 /* disable chan to purge rx datas received in TX_ONLY transfer,
888 * otherwise these rx datas will affect the direct following
889 * RX_ONLY transfer.
890 */
891 omap2_mcspi_set_enable(spi, 0);
892 }
893out:
894 omap2_mcspi_set_enable(spi, 1);
895 return count - c;
896}
897
898static u32 omap2_mcspi_calc_divisor(u32 speed_hz, u32 ref_clk_hz)
899{
900 u32 div;
901
902 for (div = 0; div < 15; div++)
903 if (speed_hz >= (ref_clk_hz >> div))
904 return div;
905
906 return 15;
907}
908
909/* called only when no transfer is active to this device */
910static int omap2_mcspi_setup_transfer(struct spi_device *spi,
911 struct spi_transfer *t)
912{
913 struct omap2_mcspi_cs *cs = spi->controller_state;
914 struct omap2_mcspi *mcspi;
915 u32 ref_clk_hz, l = 0, clkd = 0, div, extclk = 0, clkg = 0;
916 u8 word_len = spi->bits_per_word;
917 u32 speed_hz = spi->max_speed_hz;
918
919 mcspi = spi_controller_get_devdata(spi->controller);
920
921 if (t != NULL && t->bits_per_word)
922 word_len = t->bits_per_word;
923
924 cs->word_len = word_len;
925
926 if (t && t->speed_hz)
927 speed_hz = t->speed_hz;
928
929 ref_clk_hz = mcspi->ref_clk_hz;
930 speed_hz = min_t(u32, speed_hz, ref_clk_hz);
931 if (speed_hz < (ref_clk_hz / OMAP2_MCSPI_MAX_DIVIDER)) {
932 clkd = omap2_mcspi_calc_divisor(speed_hz, ref_clk_hz);
933 speed_hz = ref_clk_hz >> clkd;
934 clkg = 0;
935 } else {
936 div = (ref_clk_hz + speed_hz - 1) / speed_hz;
937 speed_hz = ref_clk_hz / div;
938 clkd = (div - 1) & 0xf;
939 extclk = (div - 1) >> 4;
940 clkg = OMAP2_MCSPI_CHCONF_CLKG;
941 }
942
943 l = mcspi_cached_chconf0(spi);
944
945 /* standard 4-wire host mode: SCK, MOSI/out, MISO/in, nCS
946 * REVISIT: this controller could support SPI_3WIRE mode.
947 */
948 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
949 l &= ~OMAP2_MCSPI_CHCONF_IS;
950 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
951 l |= OMAP2_MCSPI_CHCONF_DPE0;
952 } else {
953 l |= OMAP2_MCSPI_CHCONF_IS;
954 l |= OMAP2_MCSPI_CHCONF_DPE1;
955 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
956 }
957
958 /* wordlength */
959 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
960 l |= (word_len - 1) << 7;
961
962 /* set chipselect polarity; manage with FORCE */
963 if (!(spi->mode & SPI_CS_HIGH))
964 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
965 else
966 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
967
968 /* set clock divisor */
969 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
970 l |= clkd << 2;
971
972 /* set clock granularity */
973 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
974 l |= clkg;
975 if (clkg) {
976 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
977 cs->chctrl0 |= extclk << 8;
978 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
979 }
980
981 /* set SPI mode 0..3 */
982 if (spi->mode & SPI_CPOL)
983 l |= OMAP2_MCSPI_CHCONF_POL;
984 else
985 l &= ~OMAP2_MCSPI_CHCONF_POL;
986 if (spi->mode & SPI_CPHA)
987 l |= OMAP2_MCSPI_CHCONF_PHA;
988 else
989 l &= ~OMAP2_MCSPI_CHCONF_PHA;
990
991 mcspi_write_chconf0(spi, l);
992
993 cs->mode = spi->mode;
994
995 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
996 speed_hz,
997 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
998 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
999
1000 return 0;
1001}
1002
1003/*
1004 * Note that we currently allow DMA only if we get a channel
1005 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
1006 */
1007static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
1008 struct omap2_mcspi_dma *mcspi_dma)
1009{
1010 int ret = 0;
1011
1012 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
1013 mcspi_dma->dma_rx_ch_name);
1014 if (IS_ERR(mcspi_dma->dma_rx)) {
1015 ret = PTR_ERR(mcspi_dma->dma_rx);
1016 mcspi_dma->dma_rx = NULL;
1017 goto no_dma;
1018 }
1019
1020 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1021 mcspi_dma->dma_tx_ch_name);
1022 if (IS_ERR(mcspi_dma->dma_tx)) {
1023 ret = PTR_ERR(mcspi_dma->dma_tx);
1024 mcspi_dma->dma_tx = NULL;
1025 dma_release_channel(mcspi_dma->dma_rx);
1026 mcspi_dma->dma_rx = NULL;
1027 }
1028
1029 init_completion(&mcspi_dma->dma_rx_completion);
1030 init_completion(&mcspi_dma->dma_tx_completion);
1031
1032no_dma:
1033 return ret;
1034}
1035
1036static void omap2_mcspi_release_dma(struct spi_controller *ctlr)
1037{
1038 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1039 struct omap2_mcspi_dma *mcspi_dma;
1040 int i;
1041
1042 for (i = 0; i < ctlr->num_chipselect; i++) {
1043 mcspi_dma = &mcspi->dma_channels[i];
1044
1045 if (mcspi_dma->dma_rx) {
1046 dma_release_channel(mcspi_dma->dma_rx);
1047 mcspi_dma->dma_rx = NULL;
1048 }
1049 if (mcspi_dma->dma_tx) {
1050 dma_release_channel(mcspi_dma->dma_tx);
1051 mcspi_dma->dma_tx = NULL;
1052 }
1053 }
1054}
1055
1056static void omap2_mcspi_cleanup(struct spi_device *spi)
1057{
1058 struct omap2_mcspi_cs *cs;
1059
1060 if (spi->controller_state) {
1061 /* Unlink controller state from context save list */
1062 cs = spi->controller_state;
1063 list_del(&cs->node);
1064
1065 kfree(cs);
1066 }
1067}
1068
1069static int omap2_mcspi_setup(struct spi_device *spi)
1070{
1071 bool initial_setup = false;
1072 int ret;
1073 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1074 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1075 struct omap2_mcspi_cs *cs = spi->controller_state;
1076
1077 if (!cs) {
1078 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1079 if (!cs)
1080 return -ENOMEM;
1081 cs->base = mcspi->base + spi_get_chipselect(spi, 0) * 0x14;
1082 cs->phys = mcspi->phys + spi_get_chipselect(spi, 0) * 0x14;
1083 cs->mode = 0;
1084 cs->chconf0 = 0;
1085 cs->chctrl0 = 0;
1086 spi->controller_state = cs;
1087 /* Link this to context save list */
1088 list_add_tail(&cs->node, &ctx->cs);
1089 initial_setup = true;
1090 }
1091
1092 ret = pm_runtime_resume_and_get(mcspi->dev);
1093 if (ret < 0) {
1094 if (initial_setup)
1095 omap2_mcspi_cleanup(spi);
1096
1097 return ret;
1098 }
1099
1100 ret = omap2_mcspi_setup_transfer(spi, NULL);
1101 if (ret && initial_setup)
1102 omap2_mcspi_cleanup(spi);
1103
1104 pm_runtime_mark_last_busy(mcspi->dev);
1105 pm_runtime_put_autosuspend(mcspi->dev);
1106
1107 return ret;
1108}
1109
1110static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1111{
1112 struct omap2_mcspi *mcspi = data;
1113 u32 irqstat;
1114
1115 irqstat = mcspi_read_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS);
1116 if (!irqstat)
1117 return IRQ_NONE;
1118
1119 /* Disable IRQ and wakeup target xfer task */
1120 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQENABLE, 0);
1121 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1122 complete(&mcspi->txdone);
1123
1124 return IRQ_HANDLED;
1125}
1126
1127static int omap2_mcspi_target_abort(struct spi_controller *ctlr)
1128{
1129 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1130 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1131
1132 mcspi->target_aborted = true;
1133 complete(&mcspi_dma->dma_rx_completion);
1134 complete(&mcspi_dma->dma_tx_completion);
1135 complete(&mcspi->txdone);
1136
1137 return 0;
1138}
1139
1140static int omap2_mcspi_transfer_one(struct spi_controller *ctlr,
1141 struct spi_device *spi,
1142 struct spi_transfer *t)
1143{
1144
1145 /* We only enable one channel at a time -- the one whose message is
1146 * -- although this controller would gladly
1147 * arbitrate among multiple channels. This corresponds to "single
1148 * channel" host mode. As a side effect, we need to manage the
1149 * chipselect with the FORCE bit ... CS != channel enable.
1150 */
1151
1152 struct omap2_mcspi *mcspi;
1153 struct omap2_mcspi_dma *mcspi_dma;
1154 struct omap2_mcspi_cs *cs;
1155 struct omap2_mcspi_device_config *cd;
1156 int par_override = 0;
1157 int status = 0;
1158 u32 chconf;
1159
1160 mcspi = spi_controller_get_devdata(ctlr);
1161 mcspi_dma = mcspi->dma_channels + spi_get_chipselect(spi, 0);
1162 cs = spi->controller_state;
1163 cd = spi->controller_data;
1164
1165 /*
1166 * The target driver could have changed spi->mode in which case
1167 * it will be different from cs->mode (the current hardware setup).
1168 * If so, set par_override (even though its not a parity issue) so
1169 * omap2_mcspi_setup_transfer will be called to configure the hardware
1170 * with the correct mode on the first iteration of the loop below.
1171 */
1172 if (spi->mode != cs->mode)
1173 par_override = 1;
1174
1175 omap2_mcspi_set_enable(spi, 0);
1176
1177 if (spi_get_csgpiod(spi, 0))
1178 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1179
1180 if (par_override ||
1181 (t->speed_hz != spi->max_speed_hz) ||
1182 (t->bits_per_word != spi->bits_per_word)) {
1183 par_override = 1;
1184 status = omap2_mcspi_setup_transfer(spi, t);
1185 if (status < 0)
1186 goto out;
1187 if (t->speed_hz == spi->max_speed_hz &&
1188 t->bits_per_word == spi->bits_per_word)
1189 par_override = 0;
1190 }
1191
1192 chconf = mcspi_cached_chconf0(spi);
1193 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1194 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1195
1196 if (t->tx_buf == NULL)
1197 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1198 else if (t->rx_buf == NULL)
1199 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1200
1201 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1202 /* Turbo mode is for more than one word */
1203 if (t->len > ((cs->word_len + 7) >> 3))
1204 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1205 }
1206
1207 mcspi_write_chconf0(spi, chconf);
1208
1209 if (t->len) {
1210 unsigned count;
1211
1212 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1213 spi_xfer_is_dma_mapped(ctlr, spi, t))
1214 omap2_mcspi_set_fifo(spi, t, 1);
1215
1216 omap2_mcspi_set_enable(spi, 1);
1217
1218 /* RX_ONLY mode needs dummy data in TX reg */
1219 if (t->tx_buf == NULL)
1220 writel_relaxed(0, cs->base
1221 + OMAP2_MCSPI_TX0);
1222
1223 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1224 spi_xfer_is_dma_mapped(ctlr, spi, t))
1225 count = omap2_mcspi_txrx_dma(spi, t);
1226 else
1227 count = omap2_mcspi_txrx_pio(spi, t);
1228
1229 if (count != t->len) {
1230 status = -EIO;
1231 goto out;
1232 }
1233 }
1234
1235 omap2_mcspi_set_enable(spi, 0);
1236
1237 if (mcspi->fifo_depth > 0)
1238 omap2_mcspi_set_fifo(spi, t, 0);
1239
1240out:
1241 /* Restore defaults if they were overriden */
1242 if (par_override) {
1243 par_override = 0;
1244 status = omap2_mcspi_setup_transfer(spi, NULL);
1245 }
1246
1247 omap2_mcspi_set_enable(spi, 0);
1248
1249 if (spi_get_csgpiod(spi, 0))
1250 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1251
1252 if (mcspi->fifo_depth > 0 && t)
1253 omap2_mcspi_set_fifo(spi, t, 0);
1254
1255 return status;
1256}
1257
1258static int omap2_mcspi_prepare_message(struct spi_controller *ctlr,
1259 struct spi_message *msg)
1260{
1261 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1262 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1263 struct omap2_mcspi_cs *cs;
1264 struct spi_transfer *tr;
1265 u8 bits_per_word;
1266
1267 /*
1268 * The conditions are strict, it is mandatory to check each transfer of the list to see if
1269 * multi-mode is applicable.
1270 */
1271 mcspi->use_multi_mode = true;
1272 list_for_each_entry(tr, &msg->transfers, transfer_list) {
1273 if (!tr->bits_per_word)
1274 bits_per_word = msg->spi->bits_per_word;
1275 else
1276 bits_per_word = tr->bits_per_word;
1277
1278 /*
1279 * Check if this transfer contains only one word;
1280 */
1281 if (bits_per_word < 8 && tr->len == 1) {
1282 /* multi-mode is applicable, only one word (1..7 bits) */
1283 } else if (bits_per_word >= 8 && tr->len == bits_per_word / 8) {
1284 /* multi-mode is applicable, only one word (8..32 bits) */
1285 } else {
1286 /* multi-mode is not applicable: more than one word in the transfer */
1287 mcspi->use_multi_mode = false;
1288 }
1289
1290 /* Check if transfer asks to change the CS status after the transfer */
1291 if (!tr->cs_change)
1292 mcspi->use_multi_mode = false;
1293
1294 /*
1295 * If at least one message is not compatible, switch back to single mode
1296 *
1297 * The bits_per_word of certain transfer can be different, but it will have no
1298 * impact on the signal itself.
1299 */
1300 if (!mcspi->use_multi_mode)
1301 break;
1302 }
1303
1304 omap2_mcspi_set_mode(ctlr);
1305
1306 /* In single mode only a single channel can have the FORCE bit enabled
1307 * in its chconf0 register.
1308 * Scan all channels and disable them except the current one.
1309 * A FORCE can remain from a last transfer having cs_change enabled
1310 *
1311 * In multi mode all FORCE bits must be disabled.
1312 */
1313 list_for_each_entry(cs, &ctx->cs, node) {
1314 if (msg->spi->controller_state == cs && !mcspi->use_multi_mode) {
1315 continue;
1316 }
1317
1318 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1319 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1320 writel_relaxed(cs->chconf0,
1321 cs->base + OMAP2_MCSPI_CHCONF0);
1322 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1323 }
1324 }
1325
1326 return 0;
1327}
1328
1329static bool omap2_mcspi_can_dma(struct spi_controller *ctlr,
1330 struct spi_device *spi,
1331 struct spi_transfer *xfer)
1332{
1333 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1334 struct omap2_mcspi_dma *mcspi_dma =
1335 &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1336
1337 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1338 return false;
1339
1340 if (spi_controller_is_target(ctlr))
1341 return true;
1342
1343 ctlr->dma_rx = mcspi_dma->dma_rx;
1344 ctlr->dma_tx = mcspi_dma->dma_tx;
1345
1346 return (xfer->len >= DMA_MIN_BYTES);
1347}
1348
1349static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1350{
1351 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1352 struct omap2_mcspi_dma *mcspi_dma =
1353 &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1354
1355 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1356 return mcspi->max_xfer_len;
1357
1358 return SIZE_MAX;
1359}
1360
1361static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1362{
1363 struct spi_controller *ctlr = mcspi->ctlr;
1364 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1365 int ret = 0;
1366
1367 ret = pm_runtime_resume_and_get(mcspi->dev);
1368 if (ret < 0)
1369 return ret;
1370
1371 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE,
1372 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1373 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1374
1375 omap2_mcspi_set_mode(ctlr);
1376 pm_runtime_mark_last_busy(mcspi->dev);
1377 pm_runtime_put_autosuspend(mcspi->dev);
1378 return 0;
1379}
1380
1381static int omap_mcspi_runtime_suspend(struct device *dev)
1382{
1383 int error;
1384
1385 error = pinctrl_pm_select_idle_state(dev);
1386 if (error)
1387 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1388
1389 return 0;
1390}
1391
1392/*
1393 * When SPI wake up from off-mode, CS is in activate state. If it was in
1394 * inactive state when driver was suspend, then force it to inactive state at
1395 * wake up.
1396 */
1397static int omap_mcspi_runtime_resume(struct device *dev)
1398{
1399 struct spi_controller *ctlr = dev_get_drvdata(dev);
1400 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1401 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1402 struct omap2_mcspi_cs *cs;
1403 int error;
1404
1405 error = pinctrl_pm_select_default_state(dev);
1406 if (error)
1407 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1408
1409 /* McSPI: context restore */
1410 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1411 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1412
1413 list_for_each_entry(cs, &ctx->cs, node) {
1414 /*
1415 * We need to toggle CS state for OMAP take this
1416 * change in account.
1417 */
1418 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1419 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1420 writel_relaxed(cs->chconf0,
1421 cs->base + OMAP2_MCSPI_CHCONF0);
1422 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1423 writel_relaxed(cs->chconf0,
1424 cs->base + OMAP2_MCSPI_CHCONF0);
1425 } else {
1426 writel_relaxed(cs->chconf0,
1427 cs->base + OMAP2_MCSPI_CHCONF0);
1428 }
1429 }
1430
1431 return 0;
1432}
1433
1434static struct omap2_mcspi_platform_config omap2_pdata = {
1435 .regs_offset = 0,
1436};
1437
1438static struct omap2_mcspi_platform_config omap4_pdata = {
1439 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1440};
1441
1442static struct omap2_mcspi_platform_config am654_pdata = {
1443 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1444 .max_xfer_len = SZ_4K - 1,
1445};
1446
1447static const struct of_device_id omap_mcspi_of_match[] = {
1448 {
1449 .compatible = "ti,omap2-mcspi",
1450 .data = &omap2_pdata,
1451 },
1452 {
1453 .compatible = "ti,omap4-mcspi",
1454 .data = &omap4_pdata,
1455 },
1456 {
1457 .compatible = "ti,am654-mcspi",
1458 .data = &am654_pdata,
1459 },
1460 { },
1461};
1462MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1463
1464static int omap2_mcspi_probe(struct platform_device *pdev)
1465{
1466 struct spi_controller *ctlr;
1467 const struct omap2_mcspi_platform_config *pdata;
1468 struct omap2_mcspi *mcspi;
1469 struct resource *r;
1470 int status = 0, i;
1471 u32 regs_offset = 0;
1472 struct device_node *node = pdev->dev.of_node;
1473 const struct of_device_id *match;
1474
1475 if (of_property_read_bool(node, "spi-slave"))
1476 ctlr = spi_alloc_target(&pdev->dev, sizeof(*mcspi));
1477 else
1478 ctlr = spi_alloc_host(&pdev->dev, sizeof(*mcspi));
1479 if (!ctlr)
1480 return -ENOMEM;
1481
1482 /* the spi->mode bits understood by this driver: */
1483 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1484 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1485 ctlr->setup = omap2_mcspi_setup;
1486 ctlr->auto_runtime_pm = true;
1487 ctlr->prepare_message = omap2_mcspi_prepare_message;
1488 ctlr->can_dma = omap2_mcspi_can_dma;
1489 ctlr->transfer_one = omap2_mcspi_transfer_one;
1490 ctlr->set_cs = omap2_mcspi_set_cs;
1491 ctlr->cleanup = omap2_mcspi_cleanup;
1492 ctlr->target_abort = omap2_mcspi_target_abort;
1493 ctlr->dev.of_node = node;
1494 ctlr->use_gpio_descriptors = true;
1495
1496 platform_set_drvdata(pdev, ctlr);
1497
1498 mcspi = spi_controller_get_devdata(ctlr);
1499 mcspi->ctlr = ctlr;
1500
1501 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1502 if (match) {
1503 u32 num_cs = 1; /* default number of chipselect */
1504 pdata = match->data;
1505
1506 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1507 ctlr->num_chipselect = num_cs;
1508 if (of_property_read_bool(node, "ti,pindir-d0-out-d1-in"))
1509 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1510 } else {
1511 pdata = dev_get_platdata(&pdev->dev);
1512 ctlr->num_chipselect = pdata->num_cs;
1513 mcspi->pin_dir = pdata->pin_dir;
1514 }
1515 regs_offset = pdata->regs_offset;
1516 if (pdata->max_xfer_len) {
1517 mcspi->max_xfer_len = pdata->max_xfer_len;
1518 ctlr->max_transfer_size = omap2_mcspi_max_xfer_size;
1519 }
1520
1521 mcspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1522 if (IS_ERR(mcspi->base)) {
1523 status = PTR_ERR(mcspi->base);
1524 goto free_ctlr;
1525 }
1526 mcspi->phys = r->start + regs_offset;
1527 mcspi->base += regs_offset;
1528
1529 mcspi->dev = &pdev->dev;
1530
1531 INIT_LIST_HEAD(&mcspi->ctx.cs);
1532
1533 mcspi->dma_channels = devm_kcalloc(&pdev->dev, ctlr->num_chipselect,
1534 sizeof(struct omap2_mcspi_dma),
1535 GFP_KERNEL);
1536 if (mcspi->dma_channels == NULL) {
1537 status = -ENOMEM;
1538 goto free_ctlr;
1539 }
1540
1541 for (i = 0; i < ctlr->num_chipselect; i++) {
1542 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1543 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1544
1545 status = omap2_mcspi_request_dma(mcspi,
1546 &mcspi->dma_channels[i]);
1547 if (status == -EPROBE_DEFER)
1548 goto free_ctlr;
1549 }
1550
1551 status = platform_get_irq(pdev, 0);
1552 if (status < 0)
1553 goto free_ctlr;
1554 init_completion(&mcspi->txdone);
1555 status = devm_request_irq(&pdev->dev, status,
1556 omap2_mcspi_irq_handler, 0, pdev->name,
1557 mcspi);
1558 if (status) {
1559 dev_err(&pdev->dev, "Cannot request IRQ");
1560 goto free_ctlr;
1561 }
1562
1563 mcspi->ref_clk = devm_clk_get_optional_enabled(&pdev->dev, NULL);
1564 if (IS_ERR(mcspi->ref_clk)) {
1565 status = PTR_ERR(mcspi->ref_clk);
1566 dev_err_probe(&pdev->dev, status, "Failed to get ref_clk");
1567 goto free_ctlr;
1568 }
1569 if (mcspi->ref_clk)
1570 mcspi->ref_clk_hz = clk_get_rate(mcspi->ref_clk);
1571 else
1572 mcspi->ref_clk_hz = OMAP2_MCSPI_MAX_FREQ;
1573 ctlr->max_speed_hz = mcspi->ref_clk_hz;
1574 ctlr->min_speed_hz = mcspi->ref_clk_hz >> 15;
1575
1576 pm_runtime_use_autosuspend(&pdev->dev);
1577 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1578 pm_runtime_enable(&pdev->dev);
1579
1580 status = omap2_mcspi_controller_setup(mcspi);
1581 if (status < 0)
1582 goto disable_pm;
1583
1584 status = devm_spi_register_controller(&pdev->dev, ctlr);
1585 if (status < 0)
1586 goto disable_pm;
1587
1588 return status;
1589
1590disable_pm:
1591 pm_runtime_dont_use_autosuspend(&pdev->dev);
1592 pm_runtime_put_sync(&pdev->dev);
1593 pm_runtime_disable(&pdev->dev);
1594free_ctlr:
1595 omap2_mcspi_release_dma(ctlr);
1596 spi_controller_put(ctlr);
1597 return status;
1598}
1599
1600static void omap2_mcspi_remove(struct platform_device *pdev)
1601{
1602 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1603 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1604
1605 omap2_mcspi_release_dma(ctlr);
1606
1607 pm_runtime_dont_use_autosuspend(mcspi->dev);
1608 pm_runtime_put_sync(mcspi->dev);
1609 pm_runtime_disable(&pdev->dev);
1610}
1611
1612/* work with hotplug and coldplug */
1613MODULE_ALIAS("platform:omap2_mcspi");
1614
1615static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1616{
1617 struct spi_controller *ctlr = dev_get_drvdata(dev);
1618 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1619 int error;
1620
1621 error = pinctrl_pm_select_sleep_state(dev);
1622 if (error)
1623 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1624 __func__, error);
1625
1626 error = spi_controller_suspend(ctlr);
1627 if (error)
1628 dev_warn(mcspi->dev, "%s: controller suspend failed: %i\n",
1629 __func__, error);
1630
1631 return pm_runtime_force_suspend(dev);
1632}
1633
1634static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1635{
1636 struct spi_controller *ctlr = dev_get_drvdata(dev);
1637 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1638 int error;
1639
1640 error = spi_controller_resume(ctlr);
1641 if (error)
1642 dev_warn(mcspi->dev, "%s: controller resume failed: %i\n",
1643 __func__, error);
1644
1645 return pm_runtime_force_resume(dev);
1646}
1647
1648static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1649 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1650 omap2_mcspi_resume)
1651 .runtime_suspend = omap_mcspi_runtime_suspend,
1652 .runtime_resume = omap_mcspi_runtime_resume,
1653};
1654
1655static struct platform_driver omap2_mcspi_driver = {
1656 .driver = {
1657 .name = "omap2_mcspi",
1658 .pm = &omap2_mcspi_pm_ops,
1659 .of_match_table = omap_mcspi_of_match,
1660 },
1661 .probe = omap2_mcspi_probe,
1662 .remove = omap2_mcspi_remove,
1663};
1664
1665module_platform_driver(omap2_mcspi_driver);
1666MODULE_DESCRIPTION("OMAP2 McSPI controller driver");
1667MODULE_LICENSE("GPL");
1/*
2 * OMAP2 McSPI controller driver
3 *
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24#include <linux/kernel.h>
25#include <linux/interrupt.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/delay.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmaengine.h>
31#include <linux/omap-dma.h>
32#include <linux/platform_device.h>
33#include <linux/err.h>
34#include <linux/clk.h>
35#include <linux/io.h>
36#include <linux/slab.h>
37#include <linux/pm_runtime.h>
38#include <linux/of.h>
39#include <linux/of_device.h>
40#include <linux/gcd.h>
41
42#include <linux/spi/spi.h>
43
44#include <linux/platform_data/spi-omap2-mcspi.h>
45
46#define OMAP2_MCSPI_MAX_FREQ 48000000
47#define OMAP2_MCSPI_MAX_DIVIDER 4096
48#define OMAP2_MCSPI_MAX_FIFODEPTH 64
49#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
50#define SPI_AUTOSUSPEND_TIMEOUT 2000
51
52#define OMAP2_MCSPI_REVISION 0x00
53#define OMAP2_MCSPI_SYSSTATUS 0x14
54#define OMAP2_MCSPI_IRQSTATUS 0x18
55#define OMAP2_MCSPI_IRQENABLE 0x1c
56#define OMAP2_MCSPI_WAKEUPENABLE 0x20
57#define OMAP2_MCSPI_SYST 0x24
58#define OMAP2_MCSPI_MODULCTRL 0x28
59#define OMAP2_MCSPI_XFERLEVEL 0x7c
60
61/* per-channel banks, 0x14 bytes each, first is: */
62#define OMAP2_MCSPI_CHCONF0 0x2c
63#define OMAP2_MCSPI_CHSTAT0 0x30
64#define OMAP2_MCSPI_CHCTRL0 0x34
65#define OMAP2_MCSPI_TX0 0x38
66#define OMAP2_MCSPI_RX0 0x3c
67
68/* per-register bitmasks: */
69#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
70
71#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
72#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
73#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
74
75#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
76#define OMAP2_MCSPI_CHCONF_POL BIT(1)
77#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
78#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
79#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
80#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
81#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
82#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
83#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
84#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
85#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
86#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
87#define OMAP2_MCSPI_CHCONF_IS BIT(18)
88#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
89#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
90#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
91#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
92#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
93
94#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
95#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
96#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
97#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
98
99#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
100#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
101
102#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
103
104/* We have 2 DMA channels per CS, one for RX and one for TX */
105struct omap2_mcspi_dma {
106 struct dma_chan *dma_tx;
107 struct dma_chan *dma_rx;
108
109 int dma_tx_sync_dev;
110 int dma_rx_sync_dev;
111
112 struct completion dma_tx_completion;
113 struct completion dma_rx_completion;
114
115 char dma_rx_ch_name[14];
116 char dma_tx_ch_name[14];
117};
118
119/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
120 * cache operations; better heuristics consider wordsize and bitrate.
121 */
122#define DMA_MIN_BYTES 160
123
124
125/*
126 * Used for context save and restore, structure members to be updated whenever
127 * corresponding registers are modified.
128 */
129struct omap2_mcspi_regs {
130 u32 modulctrl;
131 u32 wakeupenable;
132 struct list_head cs;
133};
134
135struct omap2_mcspi {
136 struct spi_master *master;
137 /* Virtual base address of the controller */
138 void __iomem *base;
139 unsigned long phys;
140 /* SPI1 has 4 channels, while SPI2 has 2 */
141 struct omap2_mcspi_dma *dma_channels;
142 struct device *dev;
143 struct omap2_mcspi_regs ctx;
144 int fifo_depth;
145 unsigned int pin_dir:1;
146};
147
148struct omap2_mcspi_cs {
149 void __iomem *base;
150 unsigned long phys;
151 int word_len;
152 struct list_head node;
153 /* Context save and restore shadow register */
154 u32 chconf0, chctrl0;
155};
156
157static inline void mcspi_write_reg(struct spi_master *master,
158 int idx, u32 val)
159{
160 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
161
162 writel_relaxed(val, mcspi->base + idx);
163}
164
165static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
166{
167 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
168
169 return readl_relaxed(mcspi->base + idx);
170}
171
172static inline void mcspi_write_cs_reg(const struct spi_device *spi,
173 int idx, u32 val)
174{
175 struct omap2_mcspi_cs *cs = spi->controller_state;
176
177 writel_relaxed(val, cs->base + idx);
178}
179
180static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
181{
182 struct omap2_mcspi_cs *cs = spi->controller_state;
183
184 return readl_relaxed(cs->base + idx);
185}
186
187static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
188{
189 struct omap2_mcspi_cs *cs = spi->controller_state;
190
191 return cs->chconf0;
192}
193
194static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
195{
196 struct omap2_mcspi_cs *cs = spi->controller_state;
197
198 cs->chconf0 = val;
199 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
200 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
201}
202
203static inline int mcspi_bytes_per_word(int word_len)
204{
205 if (word_len <= 8)
206 return 1;
207 else if (word_len <= 16)
208 return 2;
209 else /* word_len <= 32 */
210 return 4;
211}
212
213static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
214 int is_read, int enable)
215{
216 u32 l, rw;
217
218 l = mcspi_cached_chconf0(spi);
219
220 if (is_read) /* 1 is read, 0 write */
221 rw = OMAP2_MCSPI_CHCONF_DMAR;
222 else
223 rw = OMAP2_MCSPI_CHCONF_DMAW;
224
225 if (enable)
226 l |= rw;
227 else
228 l &= ~rw;
229
230 mcspi_write_chconf0(spi, l);
231}
232
233static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
234{
235 struct omap2_mcspi_cs *cs = spi->controller_state;
236 u32 l;
237
238 l = cs->chctrl0;
239 if (enable)
240 l |= OMAP2_MCSPI_CHCTRL_EN;
241 else
242 l &= ~OMAP2_MCSPI_CHCTRL_EN;
243 cs->chctrl0 = l;
244 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
245 /* Flash post-writes */
246 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
247}
248
249static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
250{
251 u32 l;
252
253 l = mcspi_cached_chconf0(spi);
254 if (cs_active)
255 l |= OMAP2_MCSPI_CHCONF_FORCE;
256 else
257 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
258
259 mcspi_write_chconf0(spi, l);
260}
261
262static void omap2_mcspi_set_master_mode(struct spi_master *master)
263{
264 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
265 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
266 u32 l;
267
268 /*
269 * Setup when switching from (reset default) slave mode
270 * to single-channel master mode
271 */
272 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
273 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
274 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
275 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
276
277 ctx->modulctrl = l;
278}
279
280static void omap2_mcspi_set_fifo(const struct spi_device *spi,
281 struct spi_transfer *t, int enable)
282{
283 struct spi_master *master = spi->master;
284 struct omap2_mcspi_cs *cs = spi->controller_state;
285 struct omap2_mcspi *mcspi;
286 unsigned int wcnt;
287 int max_fifo_depth, fifo_depth, bytes_per_word;
288 u32 chconf, xferlevel;
289
290 mcspi = spi_master_get_devdata(master);
291
292 chconf = mcspi_cached_chconf0(spi);
293 if (enable) {
294 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
295 if (t->len % bytes_per_word != 0)
296 goto disable_fifo;
297
298 if (t->rx_buf != NULL && t->tx_buf != NULL)
299 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
300 else
301 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
302
303 fifo_depth = gcd(t->len, max_fifo_depth);
304 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
305 goto disable_fifo;
306
307 wcnt = t->len / bytes_per_word;
308 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
309 goto disable_fifo;
310
311 xferlevel = wcnt << 16;
312 if (t->rx_buf != NULL) {
313 chconf |= OMAP2_MCSPI_CHCONF_FFER;
314 xferlevel |= (fifo_depth - 1) << 8;
315 }
316 if (t->tx_buf != NULL) {
317 chconf |= OMAP2_MCSPI_CHCONF_FFET;
318 xferlevel |= fifo_depth - 1;
319 }
320
321 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
322 mcspi_write_chconf0(spi, chconf);
323 mcspi->fifo_depth = fifo_depth;
324
325 return;
326 }
327
328disable_fifo:
329 if (t->rx_buf != NULL)
330 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
331 else
332 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
333
334 mcspi_write_chconf0(spi, chconf);
335 mcspi->fifo_depth = 0;
336}
337
338static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
339{
340 struct spi_master *spi_cntrl = mcspi->master;
341 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
342 struct omap2_mcspi_cs *cs;
343
344 /* McSPI: context restore */
345 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
346 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
347
348 list_for_each_entry(cs, &ctx->cs, node)
349 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
350}
351
352static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
353{
354 unsigned long timeout;
355
356 timeout = jiffies + msecs_to_jiffies(1000);
357 while (!(readl_relaxed(reg) & bit)) {
358 if (time_after(jiffies, timeout)) {
359 if (!(readl_relaxed(reg) & bit))
360 return -ETIMEDOUT;
361 else
362 return 0;
363 }
364 cpu_relax();
365 }
366 return 0;
367}
368
369static void omap2_mcspi_rx_callback(void *data)
370{
371 struct spi_device *spi = data;
372 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
373 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
374
375 /* We must disable the DMA RX request */
376 omap2_mcspi_set_dma_req(spi, 1, 0);
377
378 complete(&mcspi_dma->dma_rx_completion);
379}
380
381static void omap2_mcspi_tx_callback(void *data)
382{
383 struct spi_device *spi = data;
384 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
385 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
386
387 /* We must disable the DMA TX request */
388 omap2_mcspi_set_dma_req(spi, 0, 0);
389
390 complete(&mcspi_dma->dma_tx_completion);
391}
392
393static void omap2_mcspi_tx_dma(struct spi_device *spi,
394 struct spi_transfer *xfer,
395 struct dma_slave_config cfg)
396{
397 struct omap2_mcspi *mcspi;
398 struct omap2_mcspi_dma *mcspi_dma;
399 unsigned int count;
400
401 mcspi = spi_master_get_devdata(spi->master);
402 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
403 count = xfer->len;
404
405 if (mcspi_dma->dma_tx) {
406 struct dma_async_tx_descriptor *tx;
407 struct scatterlist sg;
408
409 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
410
411 sg_init_table(&sg, 1);
412 sg_dma_address(&sg) = xfer->tx_dma;
413 sg_dma_len(&sg) = xfer->len;
414
415 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
416 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
417 if (tx) {
418 tx->callback = omap2_mcspi_tx_callback;
419 tx->callback_param = spi;
420 dmaengine_submit(tx);
421 } else {
422 /* FIXME: fall back to PIO? */
423 }
424 }
425 dma_async_issue_pending(mcspi_dma->dma_tx);
426 omap2_mcspi_set_dma_req(spi, 0, 1);
427
428}
429
430static unsigned
431omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
432 struct dma_slave_config cfg,
433 unsigned es)
434{
435 struct omap2_mcspi *mcspi;
436 struct omap2_mcspi_dma *mcspi_dma;
437 unsigned int count, dma_count;
438 u32 l;
439 int elements = 0;
440 int word_len, element_count;
441 struct omap2_mcspi_cs *cs = spi->controller_state;
442 mcspi = spi_master_get_devdata(spi->master);
443 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
444 count = xfer->len;
445 dma_count = xfer->len;
446
447 if (mcspi->fifo_depth == 0)
448 dma_count -= es;
449
450 word_len = cs->word_len;
451 l = mcspi_cached_chconf0(spi);
452
453 if (word_len <= 8)
454 element_count = count;
455 else if (word_len <= 16)
456 element_count = count >> 1;
457 else /* word_len <= 32 */
458 element_count = count >> 2;
459
460 if (mcspi_dma->dma_rx) {
461 struct dma_async_tx_descriptor *tx;
462 struct scatterlist sg;
463
464 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
465
466 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
467 dma_count -= es;
468
469 sg_init_table(&sg, 1);
470 sg_dma_address(&sg) = xfer->rx_dma;
471 sg_dma_len(&sg) = dma_count;
472
473 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
474 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
475 DMA_CTRL_ACK);
476 if (tx) {
477 tx->callback = omap2_mcspi_rx_callback;
478 tx->callback_param = spi;
479 dmaengine_submit(tx);
480 } else {
481 /* FIXME: fall back to PIO? */
482 }
483 }
484
485 dma_async_issue_pending(mcspi_dma->dma_rx);
486 omap2_mcspi_set_dma_req(spi, 1, 1);
487
488 wait_for_completion(&mcspi_dma->dma_rx_completion);
489 dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
490 DMA_FROM_DEVICE);
491
492 if (mcspi->fifo_depth > 0)
493 return count;
494
495 omap2_mcspi_set_enable(spi, 0);
496
497 elements = element_count - 1;
498
499 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
500 elements--;
501
502 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
503 & OMAP2_MCSPI_CHSTAT_RXS)) {
504 u32 w;
505
506 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
507 if (word_len <= 8)
508 ((u8 *)xfer->rx_buf)[elements++] = w;
509 else if (word_len <= 16)
510 ((u16 *)xfer->rx_buf)[elements++] = w;
511 else /* word_len <= 32 */
512 ((u32 *)xfer->rx_buf)[elements++] = w;
513 } else {
514 int bytes_per_word = mcspi_bytes_per_word(word_len);
515 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
516 count -= (bytes_per_word << 1);
517 omap2_mcspi_set_enable(spi, 1);
518 return count;
519 }
520 }
521 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
522 & OMAP2_MCSPI_CHSTAT_RXS)) {
523 u32 w;
524
525 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
526 if (word_len <= 8)
527 ((u8 *)xfer->rx_buf)[elements] = w;
528 else if (word_len <= 16)
529 ((u16 *)xfer->rx_buf)[elements] = w;
530 else /* word_len <= 32 */
531 ((u32 *)xfer->rx_buf)[elements] = w;
532 } else {
533 dev_err(&spi->dev, "DMA RX last word empty\n");
534 count -= mcspi_bytes_per_word(word_len);
535 }
536 omap2_mcspi_set_enable(spi, 1);
537 return count;
538}
539
540static unsigned
541omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
542{
543 struct omap2_mcspi *mcspi;
544 struct omap2_mcspi_cs *cs = spi->controller_state;
545 struct omap2_mcspi_dma *mcspi_dma;
546 unsigned int count;
547 u32 l;
548 u8 *rx;
549 const u8 *tx;
550 struct dma_slave_config cfg;
551 enum dma_slave_buswidth width;
552 unsigned es;
553 u32 burst;
554 void __iomem *chstat_reg;
555 void __iomem *irqstat_reg;
556 int wait_res;
557
558 mcspi = spi_master_get_devdata(spi->master);
559 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
560 l = mcspi_cached_chconf0(spi);
561
562
563 if (cs->word_len <= 8) {
564 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
565 es = 1;
566 } else if (cs->word_len <= 16) {
567 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
568 es = 2;
569 } else {
570 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
571 es = 4;
572 }
573
574 count = xfer->len;
575 burst = 1;
576
577 if (mcspi->fifo_depth > 0) {
578 if (count > mcspi->fifo_depth)
579 burst = mcspi->fifo_depth / es;
580 else
581 burst = count / es;
582 }
583
584 memset(&cfg, 0, sizeof(cfg));
585 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
586 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
587 cfg.src_addr_width = width;
588 cfg.dst_addr_width = width;
589 cfg.src_maxburst = burst;
590 cfg.dst_maxburst = burst;
591
592 rx = xfer->rx_buf;
593 tx = xfer->tx_buf;
594
595 if (tx != NULL)
596 omap2_mcspi_tx_dma(spi, xfer, cfg);
597
598 if (rx != NULL)
599 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
600
601 if (tx != NULL) {
602 wait_for_completion(&mcspi_dma->dma_tx_completion);
603 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
604 DMA_TO_DEVICE);
605
606 if (mcspi->fifo_depth > 0) {
607 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
608
609 if (mcspi_wait_for_reg_bit(irqstat_reg,
610 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
611 dev_err(&spi->dev, "EOW timed out\n");
612
613 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
614 OMAP2_MCSPI_IRQSTATUS_EOW);
615 }
616
617 /* for TX_ONLY mode, be sure all words have shifted out */
618 if (rx == NULL) {
619 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
620 if (mcspi->fifo_depth > 0) {
621 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
622 OMAP2_MCSPI_CHSTAT_TXFFE);
623 if (wait_res < 0)
624 dev_err(&spi->dev, "TXFFE timed out\n");
625 } else {
626 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
627 OMAP2_MCSPI_CHSTAT_TXS);
628 if (wait_res < 0)
629 dev_err(&spi->dev, "TXS timed out\n");
630 }
631 if (wait_res >= 0 &&
632 (mcspi_wait_for_reg_bit(chstat_reg,
633 OMAP2_MCSPI_CHSTAT_EOT) < 0))
634 dev_err(&spi->dev, "EOT timed out\n");
635 }
636 }
637 return count;
638}
639
640static unsigned
641omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
642{
643 struct omap2_mcspi *mcspi;
644 struct omap2_mcspi_cs *cs = spi->controller_state;
645 unsigned int count, c;
646 u32 l;
647 void __iomem *base = cs->base;
648 void __iomem *tx_reg;
649 void __iomem *rx_reg;
650 void __iomem *chstat_reg;
651 int word_len;
652
653 mcspi = spi_master_get_devdata(spi->master);
654 count = xfer->len;
655 c = count;
656 word_len = cs->word_len;
657
658 l = mcspi_cached_chconf0(spi);
659
660 /* We store the pre-calculated register addresses on stack to speed
661 * up the transfer loop. */
662 tx_reg = base + OMAP2_MCSPI_TX0;
663 rx_reg = base + OMAP2_MCSPI_RX0;
664 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
665
666 if (c < (word_len>>3))
667 return 0;
668
669 if (word_len <= 8) {
670 u8 *rx;
671 const u8 *tx;
672
673 rx = xfer->rx_buf;
674 tx = xfer->tx_buf;
675
676 do {
677 c -= 1;
678 if (tx != NULL) {
679 if (mcspi_wait_for_reg_bit(chstat_reg,
680 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
681 dev_err(&spi->dev, "TXS timed out\n");
682 goto out;
683 }
684 dev_vdbg(&spi->dev, "write-%d %02x\n",
685 word_len, *tx);
686 writel_relaxed(*tx++, tx_reg);
687 }
688 if (rx != NULL) {
689 if (mcspi_wait_for_reg_bit(chstat_reg,
690 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
691 dev_err(&spi->dev, "RXS timed out\n");
692 goto out;
693 }
694
695 if (c == 1 && tx == NULL &&
696 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
697 omap2_mcspi_set_enable(spi, 0);
698 *rx++ = readl_relaxed(rx_reg);
699 dev_vdbg(&spi->dev, "read-%d %02x\n",
700 word_len, *(rx - 1));
701 if (mcspi_wait_for_reg_bit(chstat_reg,
702 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
703 dev_err(&spi->dev,
704 "RXS timed out\n");
705 goto out;
706 }
707 c = 0;
708 } else if (c == 0 && tx == NULL) {
709 omap2_mcspi_set_enable(spi, 0);
710 }
711
712 *rx++ = readl_relaxed(rx_reg);
713 dev_vdbg(&spi->dev, "read-%d %02x\n",
714 word_len, *(rx - 1));
715 }
716 } while (c);
717 } else if (word_len <= 16) {
718 u16 *rx;
719 const u16 *tx;
720
721 rx = xfer->rx_buf;
722 tx = xfer->tx_buf;
723 do {
724 c -= 2;
725 if (tx != NULL) {
726 if (mcspi_wait_for_reg_bit(chstat_reg,
727 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
728 dev_err(&spi->dev, "TXS timed out\n");
729 goto out;
730 }
731 dev_vdbg(&spi->dev, "write-%d %04x\n",
732 word_len, *tx);
733 writel_relaxed(*tx++, tx_reg);
734 }
735 if (rx != NULL) {
736 if (mcspi_wait_for_reg_bit(chstat_reg,
737 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
738 dev_err(&spi->dev, "RXS timed out\n");
739 goto out;
740 }
741
742 if (c == 2 && tx == NULL &&
743 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
744 omap2_mcspi_set_enable(spi, 0);
745 *rx++ = readl_relaxed(rx_reg);
746 dev_vdbg(&spi->dev, "read-%d %04x\n",
747 word_len, *(rx - 1));
748 if (mcspi_wait_for_reg_bit(chstat_reg,
749 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
750 dev_err(&spi->dev,
751 "RXS timed out\n");
752 goto out;
753 }
754 c = 0;
755 } else if (c == 0 && tx == NULL) {
756 omap2_mcspi_set_enable(spi, 0);
757 }
758
759 *rx++ = readl_relaxed(rx_reg);
760 dev_vdbg(&spi->dev, "read-%d %04x\n",
761 word_len, *(rx - 1));
762 }
763 } while (c >= 2);
764 } else if (word_len <= 32) {
765 u32 *rx;
766 const u32 *tx;
767
768 rx = xfer->rx_buf;
769 tx = xfer->tx_buf;
770 do {
771 c -= 4;
772 if (tx != NULL) {
773 if (mcspi_wait_for_reg_bit(chstat_reg,
774 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
775 dev_err(&spi->dev, "TXS timed out\n");
776 goto out;
777 }
778 dev_vdbg(&spi->dev, "write-%d %08x\n",
779 word_len, *tx);
780 writel_relaxed(*tx++, tx_reg);
781 }
782 if (rx != NULL) {
783 if (mcspi_wait_for_reg_bit(chstat_reg,
784 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
785 dev_err(&spi->dev, "RXS timed out\n");
786 goto out;
787 }
788
789 if (c == 4 && tx == NULL &&
790 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
791 omap2_mcspi_set_enable(spi, 0);
792 *rx++ = readl_relaxed(rx_reg);
793 dev_vdbg(&spi->dev, "read-%d %08x\n",
794 word_len, *(rx - 1));
795 if (mcspi_wait_for_reg_bit(chstat_reg,
796 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
797 dev_err(&spi->dev,
798 "RXS timed out\n");
799 goto out;
800 }
801 c = 0;
802 } else if (c == 0 && tx == NULL) {
803 omap2_mcspi_set_enable(spi, 0);
804 }
805
806 *rx++ = readl_relaxed(rx_reg);
807 dev_vdbg(&spi->dev, "read-%d %08x\n",
808 word_len, *(rx - 1));
809 }
810 } while (c >= 4);
811 }
812
813 /* for TX_ONLY mode, be sure all words have shifted out */
814 if (xfer->rx_buf == NULL) {
815 if (mcspi_wait_for_reg_bit(chstat_reg,
816 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
817 dev_err(&spi->dev, "TXS timed out\n");
818 } else if (mcspi_wait_for_reg_bit(chstat_reg,
819 OMAP2_MCSPI_CHSTAT_EOT) < 0)
820 dev_err(&spi->dev, "EOT timed out\n");
821
822 /* disable chan to purge rx datas received in TX_ONLY transfer,
823 * otherwise these rx datas will affect the direct following
824 * RX_ONLY transfer.
825 */
826 omap2_mcspi_set_enable(spi, 0);
827 }
828out:
829 omap2_mcspi_set_enable(spi, 1);
830 return count - c;
831}
832
833static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
834{
835 u32 div;
836
837 for (div = 0; div < 15; div++)
838 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
839 return div;
840
841 return 15;
842}
843
844/* called only when no transfer is active to this device */
845static int omap2_mcspi_setup_transfer(struct spi_device *spi,
846 struct spi_transfer *t)
847{
848 struct omap2_mcspi_cs *cs = spi->controller_state;
849 struct omap2_mcspi *mcspi;
850 struct spi_master *spi_cntrl;
851 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
852 u8 word_len = spi->bits_per_word;
853 u32 speed_hz = spi->max_speed_hz;
854
855 mcspi = spi_master_get_devdata(spi->master);
856 spi_cntrl = mcspi->master;
857
858 if (t != NULL && t->bits_per_word)
859 word_len = t->bits_per_word;
860
861 cs->word_len = word_len;
862
863 if (t && t->speed_hz)
864 speed_hz = t->speed_hz;
865
866 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
867 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
868 clkd = omap2_mcspi_calc_divisor(speed_hz);
869 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
870 clkg = 0;
871 } else {
872 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
873 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
874 clkd = (div - 1) & 0xf;
875 extclk = (div - 1) >> 4;
876 clkg = OMAP2_MCSPI_CHCONF_CLKG;
877 }
878
879 l = mcspi_cached_chconf0(spi);
880
881 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
882 * REVISIT: this controller could support SPI_3WIRE mode.
883 */
884 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
885 l &= ~OMAP2_MCSPI_CHCONF_IS;
886 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
887 l |= OMAP2_MCSPI_CHCONF_DPE0;
888 } else {
889 l |= OMAP2_MCSPI_CHCONF_IS;
890 l |= OMAP2_MCSPI_CHCONF_DPE1;
891 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
892 }
893
894 /* wordlength */
895 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
896 l |= (word_len - 1) << 7;
897
898 /* set chipselect polarity; manage with FORCE */
899 if (!(spi->mode & SPI_CS_HIGH))
900 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
901 else
902 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
903
904 /* set clock divisor */
905 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
906 l |= clkd << 2;
907
908 /* set clock granularity */
909 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
910 l |= clkg;
911 if (clkg) {
912 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
913 cs->chctrl0 |= extclk << 8;
914 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
915 }
916
917 /* set SPI mode 0..3 */
918 if (spi->mode & SPI_CPOL)
919 l |= OMAP2_MCSPI_CHCONF_POL;
920 else
921 l &= ~OMAP2_MCSPI_CHCONF_POL;
922 if (spi->mode & SPI_CPHA)
923 l |= OMAP2_MCSPI_CHCONF_PHA;
924 else
925 l &= ~OMAP2_MCSPI_CHCONF_PHA;
926
927 mcspi_write_chconf0(spi, l);
928
929 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
930 speed_hz,
931 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
932 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
933
934 return 0;
935}
936
937/*
938 * Note that we currently allow DMA only if we get a channel
939 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
940 */
941static int omap2_mcspi_request_dma(struct spi_device *spi)
942{
943 struct spi_master *master = spi->master;
944 struct omap2_mcspi *mcspi;
945 struct omap2_mcspi_dma *mcspi_dma;
946 dma_cap_mask_t mask;
947 unsigned sig;
948
949 mcspi = spi_master_get_devdata(master);
950 mcspi_dma = mcspi->dma_channels + spi->chip_select;
951
952 init_completion(&mcspi_dma->dma_rx_completion);
953 init_completion(&mcspi_dma->dma_tx_completion);
954
955 dma_cap_zero(mask);
956 dma_cap_set(DMA_SLAVE, mask);
957 sig = mcspi_dma->dma_rx_sync_dev;
958
959 mcspi_dma->dma_rx =
960 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
961 &sig, &master->dev,
962 mcspi_dma->dma_rx_ch_name);
963 if (!mcspi_dma->dma_rx)
964 goto no_dma;
965
966 sig = mcspi_dma->dma_tx_sync_dev;
967 mcspi_dma->dma_tx =
968 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
969 &sig, &master->dev,
970 mcspi_dma->dma_tx_ch_name);
971
972 if (!mcspi_dma->dma_tx) {
973 dma_release_channel(mcspi_dma->dma_rx);
974 mcspi_dma->dma_rx = NULL;
975 goto no_dma;
976 }
977
978 return 0;
979
980no_dma:
981 dev_warn(&spi->dev, "not using DMA for McSPI\n");
982 return -EAGAIN;
983}
984
985static int omap2_mcspi_setup(struct spi_device *spi)
986{
987 int ret;
988 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
989 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
990 struct omap2_mcspi_dma *mcspi_dma;
991 struct omap2_mcspi_cs *cs = spi->controller_state;
992
993 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
994
995 if (!cs) {
996 cs = kzalloc(sizeof *cs, GFP_KERNEL);
997 if (!cs)
998 return -ENOMEM;
999 cs->base = mcspi->base + spi->chip_select * 0x14;
1000 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1001 cs->chconf0 = 0;
1002 cs->chctrl0 = 0;
1003 spi->controller_state = cs;
1004 /* Link this to context save list */
1005 list_add_tail(&cs->node, &ctx->cs);
1006 }
1007
1008 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1009 ret = omap2_mcspi_request_dma(spi);
1010 if (ret < 0 && ret != -EAGAIN)
1011 return ret;
1012 }
1013
1014 ret = pm_runtime_get_sync(mcspi->dev);
1015 if (ret < 0)
1016 return ret;
1017
1018 ret = omap2_mcspi_setup_transfer(spi, NULL);
1019 pm_runtime_mark_last_busy(mcspi->dev);
1020 pm_runtime_put_autosuspend(mcspi->dev);
1021
1022 return ret;
1023}
1024
1025static void omap2_mcspi_cleanup(struct spi_device *spi)
1026{
1027 struct omap2_mcspi *mcspi;
1028 struct omap2_mcspi_dma *mcspi_dma;
1029 struct omap2_mcspi_cs *cs;
1030
1031 mcspi = spi_master_get_devdata(spi->master);
1032
1033 if (spi->controller_state) {
1034 /* Unlink controller state from context save list */
1035 cs = spi->controller_state;
1036 list_del(&cs->node);
1037
1038 kfree(cs);
1039 }
1040
1041 if (spi->chip_select < spi->master->num_chipselect) {
1042 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1043
1044 if (mcspi_dma->dma_rx) {
1045 dma_release_channel(mcspi_dma->dma_rx);
1046 mcspi_dma->dma_rx = NULL;
1047 }
1048 if (mcspi_dma->dma_tx) {
1049 dma_release_channel(mcspi_dma->dma_tx);
1050 mcspi_dma->dma_tx = NULL;
1051 }
1052 }
1053}
1054
1055static void omap2_mcspi_work(struct omap2_mcspi *mcspi, struct spi_message *m)
1056{
1057
1058 /* We only enable one channel at a time -- the one whose message is
1059 * -- although this controller would gladly
1060 * arbitrate among multiple channels. This corresponds to "single
1061 * channel" master mode. As a side effect, we need to manage the
1062 * chipselect with the FORCE bit ... CS != channel enable.
1063 */
1064
1065 struct spi_device *spi;
1066 struct spi_transfer *t = NULL;
1067 struct spi_master *master;
1068 struct omap2_mcspi_dma *mcspi_dma;
1069 int cs_active = 0;
1070 struct omap2_mcspi_cs *cs;
1071 struct omap2_mcspi_device_config *cd;
1072 int par_override = 0;
1073 int status = 0;
1074 u32 chconf;
1075
1076 spi = m->spi;
1077 master = spi->master;
1078 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1079 cs = spi->controller_state;
1080 cd = spi->controller_data;
1081
1082 omap2_mcspi_set_enable(spi, 0);
1083 list_for_each_entry(t, &m->transfers, transfer_list) {
1084 if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
1085 status = -EINVAL;
1086 break;
1087 }
1088 if (par_override ||
1089 (t->speed_hz != spi->max_speed_hz) ||
1090 (t->bits_per_word != spi->bits_per_word)) {
1091 par_override = 1;
1092 status = omap2_mcspi_setup_transfer(spi, t);
1093 if (status < 0)
1094 break;
1095 if (t->speed_hz == spi->max_speed_hz &&
1096 t->bits_per_word == spi->bits_per_word)
1097 par_override = 0;
1098 }
1099 if (cd && cd->cs_per_word) {
1100 chconf = mcspi->ctx.modulctrl;
1101 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1102 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1103 mcspi->ctx.modulctrl =
1104 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1105 }
1106
1107
1108 if (!cs_active) {
1109 omap2_mcspi_force_cs(spi, 1);
1110 cs_active = 1;
1111 }
1112
1113 chconf = mcspi_cached_chconf0(spi);
1114 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1115 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1116
1117 if (t->tx_buf == NULL)
1118 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1119 else if (t->rx_buf == NULL)
1120 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1121
1122 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1123 /* Turbo mode is for more than one word */
1124 if (t->len > ((cs->word_len + 7) >> 3))
1125 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1126 }
1127
1128 mcspi_write_chconf0(spi, chconf);
1129
1130 if (t->len) {
1131 unsigned count;
1132
1133 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1134 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
1135 omap2_mcspi_set_fifo(spi, t, 1);
1136
1137 omap2_mcspi_set_enable(spi, 1);
1138
1139 /* RX_ONLY mode needs dummy data in TX reg */
1140 if (t->tx_buf == NULL)
1141 writel_relaxed(0, cs->base
1142 + OMAP2_MCSPI_TX0);
1143
1144 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1145 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
1146 count = omap2_mcspi_txrx_dma(spi, t);
1147 else
1148 count = omap2_mcspi_txrx_pio(spi, t);
1149 m->actual_length += count;
1150
1151 if (count != t->len) {
1152 status = -EIO;
1153 break;
1154 }
1155 }
1156
1157 if (t->delay_usecs)
1158 udelay(t->delay_usecs);
1159
1160 /* ignore the "leave it on after last xfer" hint */
1161 if (t->cs_change) {
1162 omap2_mcspi_force_cs(spi, 0);
1163 cs_active = 0;
1164 }
1165
1166 omap2_mcspi_set_enable(spi, 0);
1167
1168 if (mcspi->fifo_depth > 0)
1169 omap2_mcspi_set_fifo(spi, t, 0);
1170 }
1171 /* Restore defaults if they were overriden */
1172 if (par_override) {
1173 par_override = 0;
1174 status = omap2_mcspi_setup_transfer(spi, NULL);
1175 }
1176
1177 if (cs_active)
1178 omap2_mcspi_force_cs(spi, 0);
1179
1180 if (cd && cd->cs_per_word) {
1181 chconf = mcspi->ctx.modulctrl;
1182 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1183 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1184 mcspi->ctx.modulctrl =
1185 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1186 }
1187
1188 omap2_mcspi_set_enable(spi, 0);
1189
1190 if (mcspi->fifo_depth > 0 && t)
1191 omap2_mcspi_set_fifo(spi, t, 0);
1192
1193 m->status = status;
1194}
1195
1196static int omap2_mcspi_transfer_one_message(struct spi_master *master,
1197 struct spi_message *m)
1198{
1199 struct spi_device *spi;
1200 struct omap2_mcspi *mcspi;
1201 struct omap2_mcspi_dma *mcspi_dma;
1202 struct spi_transfer *t;
1203
1204 spi = m->spi;
1205 mcspi = spi_master_get_devdata(master);
1206 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1207 m->actual_length = 0;
1208 m->status = 0;
1209
1210 list_for_each_entry(t, &m->transfers, transfer_list) {
1211 const void *tx_buf = t->tx_buf;
1212 void *rx_buf = t->rx_buf;
1213 unsigned len = t->len;
1214
1215 if ((len && !(rx_buf || tx_buf))) {
1216 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1217 t->speed_hz,
1218 len,
1219 tx_buf ? "tx" : "",
1220 rx_buf ? "rx" : "",
1221 t->bits_per_word);
1222 return -EINVAL;
1223 }
1224
1225 if (m->is_dma_mapped || len < DMA_MIN_BYTES)
1226 continue;
1227
1228 if (mcspi_dma->dma_tx && tx_buf != NULL) {
1229 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1230 len, DMA_TO_DEVICE);
1231 if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1232 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1233 'T', len);
1234 return -EINVAL;
1235 }
1236 }
1237 if (mcspi_dma->dma_rx && rx_buf != NULL) {
1238 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1239 DMA_FROM_DEVICE);
1240 if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1241 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1242 'R', len);
1243 if (tx_buf != NULL)
1244 dma_unmap_single(mcspi->dev, t->tx_dma,
1245 len, DMA_TO_DEVICE);
1246 return -EINVAL;
1247 }
1248 }
1249 }
1250
1251 omap2_mcspi_work(mcspi, m);
1252 spi_finalize_current_message(master);
1253 return 0;
1254}
1255
1256static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1257{
1258 struct spi_master *master = mcspi->master;
1259 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1260 int ret = 0;
1261
1262 ret = pm_runtime_get_sync(mcspi->dev);
1263 if (ret < 0)
1264 return ret;
1265
1266 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1267 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1268 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1269
1270 omap2_mcspi_set_master_mode(master);
1271 pm_runtime_mark_last_busy(mcspi->dev);
1272 pm_runtime_put_autosuspend(mcspi->dev);
1273 return 0;
1274}
1275
1276static int omap_mcspi_runtime_resume(struct device *dev)
1277{
1278 struct omap2_mcspi *mcspi;
1279 struct spi_master *master;
1280
1281 master = dev_get_drvdata(dev);
1282 mcspi = spi_master_get_devdata(master);
1283 omap2_mcspi_restore_ctx(mcspi);
1284
1285 return 0;
1286}
1287
1288static struct omap2_mcspi_platform_config omap2_pdata = {
1289 .regs_offset = 0,
1290};
1291
1292static struct omap2_mcspi_platform_config omap4_pdata = {
1293 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1294};
1295
1296static const struct of_device_id omap_mcspi_of_match[] = {
1297 {
1298 .compatible = "ti,omap2-mcspi",
1299 .data = &omap2_pdata,
1300 },
1301 {
1302 .compatible = "ti,omap4-mcspi",
1303 .data = &omap4_pdata,
1304 },
1305 { },
1306};
1307MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1308
1309static int omap2_mcspi_probe(struct platform_device *pdev)
1310{
1311 struct spi_master *master;
1312 const struct omap2_mcspi_platform_config *pdata;
1313 struct omap2_mcspi *mcspi;
1314 struct resource *r;
1315 int status = 0, i;
1316 u32 regs_offset = 0;
1317 static int bus_num = 1;
1318 struct device_node *node = pdev->dev.of_node;
1319 const struct of_device_id *match;
1320
1321 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1322 if (master == NULL) {
1323 dev_dbg(&pdev->dev, "master allocation failed\n");
1324 return -ENOMEM;
1325 }
1326
1327 /* the spi->mode bits understood by this driver: */
1328 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1329 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1330 master->setup = omap2_mcspi_setup;
1331 master->auto_runtime_pm = true;
1332 master->transfer_one_message = omap2_mcspi_transfer_one_message;
1333 master->cleanup = omap2_mcspi_cleanup;
1334 master->dev.of_node = node;
1335 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1336 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1337
1338 platform_set_drvdata(pdev, master);
1339
1340 mcspi = spi_master_get_devdata(master);
1341 mcspi->master = master;
1342
1343 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1344 if (match) {
1345 u32 num_cs = 1; /* default number of chipselect */
1346 pdata = match->data;
1347
1348 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1349 master->num_chipselect = num_cs;
1350 master->bus_num = bus_num++;
1351 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1352 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1353 } else {
1354 pdata = dev_get_platdata(&pdev->dev);
1355 master->num_chipselect = pdata->num_cs;
1356 if (pdev->id != -1)
1357 master->bus_num = pdev->id;
1358 mcspi->pin_dir = pdata->pin_dir;
1359 }
1360 regs_offset = pdata->regs_offset;
1361
1362 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1363 if (r == NULL) {
1364 status = -ENODEV;
1365 goto free_master;
1366 }
1367
1368 r->start += regs_offset;
1369 r->end += regs_offset;
1370 mcspi->phys = r->start;
1371
1372 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1373 if (IS_ERR(mcspi->base)) {
1374 status = PTR_ERR(mcspi->base);
1375 goto free_master;
1376 }
1377
1378 mcspi->dev = &pdev->dev;
1379
1380 INIT_LIST_HEAD(&mcspi->ctx.cs);
1381
1382 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1383 sizeof(struct omap2_mcspi_dma),
1384 GFP_KERNEL);
1385 if (mcspi->dma_channels == NULL) {
1386 status = -ENOMEM;
1387 goto free_master;
1388 }
1389
1390 for (i = 0; i < master->num_chipselect; i++) {
1391 char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
1392 char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
1393 struct resource *dma_res;
1394
1395 sprintf(dma_rx_ch_name, "rx%d", i);
1396 if (!pdev->dev.of_node) {
1397 dma_res =
1398 platform_get_resource_byname(pdev,
1399 IORESOURCE_DMA,
1400 dma_rx_ch_name);
1401 if (!dma_res) {
1402 dev_dbg(&pdev->dev,
1403 "cannot get DMA RX channel\n");
1404 status = -ENODEV;
1405 break;
1406 }
1407
1408 mcspi->dma_channels[i].dma_rx_sync_dev =
1409 dma_res->start;
1410 }
1411 sprintf(dma_tx_ch_name, "tx%d", i);
1412 if (!pdev->dev.of_node) {
1413 dma_res =
1414 platform_get_resource_byname(pdev,
1415 IORESOURCE_DMA,
1416 dma_tx_ch_name);
1417 if (!dma_res) {
1418 dev_dbg(&pdev->dev,
1419 "cannot get DMA TX channel\n");
1420 status = -ENODEV;
1421 break;
1422 }
1423
1424 mcspi->dma_channels[i].dma_tx_sync_dev =
1425 dma_res->start;
1426 }
1427 }
1428
1429 if (status < 0)
1430 goto free_master;
1431
1432 pm_runtime_use_autosuspend(&pdev->dev);
1433 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1434 pm_runtime_enable(&pdev->dev);
1435
1436 status = omap2_mcspi_master_setup(mcspi);
1437 if (status < 0)
1438 goto disable_pm;
1439
1440 status = devm_spi_register_master(&pdev->dev, master);
1441 if (status < 0)
1442 goto disable_pm;
1443
1444 return status;
1445
1446disable_pm:
1447 pm_runtime_disable(&pdev->dev);
1448free_master:
1449 spi_master_put(master);
1450 return status;
1451}
1452
1453static int omap2_mcspi_remove(struct platform_device *pdev)
1454{
1455 struct spi_master *master = platform_get_drvdata(pdev);
1456 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1457
1458 pm_runtime_put_sync(mcspi->dev);
1459 pm_runtime_disable(&pdev->dev);
1460
1461 return 0;
1462}
1463
1464/* work with hotplug and coldplug */
1465MODULE_ALIAS("platform:omap2_mcspi");
1466
1467#ifdef CONFIG_SUSPEND
1468/*
1469 * When SPI wake up from off-mode, CS is in activate state. If it was in
1470 * unactive state when driver was suspend, then force it to unactive state at
1471 * wake up.
1472 */
1473static int omap2_mcspi_resume(struct device *dev)
1474{
1475 struct spi_master *master = dev_get_drvdata(dev);
1476 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1477 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1478 struct omap2_mcspi_cs *cs;
1479
1480 pm_runtime_get_sync(mcspi->dev);
1481 list_for_each_entry(cs, &ctx->cs, node) {
1482 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1483 /*
1484 * We need to toggle CS state for OMAP take this
1485 * change in account.
1486 */
1487 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1488 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1489 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1490 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1491 }
1492 }
1493 pm_runtime_mark_last_busy(mcspi->dev);
1494 pm_runtime_put_autosuspend(mcspi->dev);
1495 return 0;
1496}
1497#else
1498#define omap2_mcspi_resume NULL
1499#endif
1500
1501static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1502 .resume = omap2_mcspi_resume,
1503 .runtime_resume = omap_mcspi_runtime_resume,
1504};
1505
1506static struct platform_driver omap2_mcspi_driver = {
1507 .driver = {
1508 .name = "omap2_mcspi",
1509 .owner = THIS_MODULE,
1510 .pm = &omap2_mcspi_pm_ops,
1511 .of_match_table = omap_mcspi_of_match,
1512 },
1513 .probe = omap2_mcspi_probe,
1514 .remove = omap2_mcspi_remove,
1515};
1516
1517module_platform_driver(omap2_mcspi_driver);
1518MODULE_LICENSE("GPL");