Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4// Copyright 2020 NXP
   5//
   6// Freescale DSPI driver
   7// This file contains a driver for the Freescale DSPI
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/of.h>
  17#include <linux/platform_device.h>
  18#include <linux/pinctrl/consumer.h>
  19#include <linux/regmap.h>
  20#include <linux/spi/spi.h>
  21#include <linux/spi/spi-fsl-dspi.h>
  22
  23#define DRIVER_NAME			"fsl-dspi"
  24
  25#define SPI_MCR				0x00
  26#define SPI_MCR_HOST			BIT(31)
  27#define SPI_MCR_PCSIS(x)		((x) << 16)
  28#define SPI_MCR_CLR_TXF			BIT(11)
  29#define SPI_MCR_CLR_RXF			BIT(10)
  30#define SPI_MCR_XSPI			BIT(3)
  31#define SPI_MCR_DIS_TXF			BIT(13)
  32#define SPI_MCR_DIS_RXF			BIT(12)
  33#define SPI_MCR_HALT			BIT(0)
  34
  35#define SPI_TCR				0x08
  36#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
  37
  38#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
  39#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
  40#define SPI_CTAR_CPOL			BIT(26)
  41#define SPI_CTAR_CPHA			BIT(25)
  42#define SPI_CTAR_LSBFE			BIT(24)
  43#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
  44#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
  45#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
  46#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
  47#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
  48#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
  49#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
  50#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
  51#define SPI_CTAR_SCALE_BITS		0xf
  52
  53#define SPI_CTAR0_SLAVE			0x0c
  54
  55#define SPI_SR				0x2c
  56#define SPI_SR_TCFQF			BIT(31)
  57#define SPI_SR_TFUF			BIT(27)
  58#define SPI_SR_TFFF			BIT(25)
  59#define SPI_SR_CMDTCF			BIT(23)
  60#define SPI_SR_SPEF			BIT(21)
  61#define SPI_SR_RFOF			BIT(19)
  62#define SPI_SR_TFIWF			BIT(18)
  63#define SPI_SR_RFDF			BIT(17)
  64#define SPI_SR_CMDFFF			BIT(16)
  65#define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
  66					SPI_SR_TFUF | SPI_SR_TFFF | \
  67					SPI_SR_CMDTCF | SPI_SR_SPEF | \
  68					SPI_SR_RFOF | SPI_SR_TFIWF | \
  69					SPI_SR_RFDF | SPI_SR_CMDFFF)
  70
  71#define SPI_RSER_TFFFE			BIT(25)
  72#define SPI_RSER_TFFFD			BIT(24)
  73#define SPI_RSER_RFDFE			BIT(17)
  74#define SPI_RSER_RFDFD			BIT(16)
  75
  76#define SPI_RSER			0x30
  77#define SPI_RSER_TCFQE			BIT(31)
  78#define SPI_RSER_CMDTCFE		BIT(23)
  79
  80#define SPI_PUSHR			0x34
  81#define SPI_PUSHR_CMD_CONT		BIT(15)
  82#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
  83#define SPI_PUSHR_CMD_EOQ		BIT(11)
  84#define SPI_PUSHR_CMD_CTCNT		BIT(10)
  85#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
  86
  87#define SPI_PUSHR_SLAVE			0x34
  88
  89#define SPI_POPR			0x38
  90
  91#define SPI_TXFR0			0x3c
  92#define SPI_TXFR1			0x40
  93#define SPI_TXFR2			0x44
  94#define SPI_TXFR3			0x48
  95#define SPI_RXFR0			0x7c
  96#define SPI_RXFR1			0x80
  97#define SPI_RXFR2			0x84
  98#define SPI_RXFR3			0x88
  99
 100#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
 101#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
 102#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
 103
 104#define SPI_SREX			0x13c
 105
 106#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
 107#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 108
 109#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
 110
 111struct chip_data {
 112	u32			ctar_val;
 113};
 114
 115enum dspi_trans_mode {
 116	DSPI_XSPI_MODE,
 117	DSPI_DMA_MODE,
 118};
 119
 120struct fsl_dspi_devtype_data {
 121	enum dspi_trans_mode	trans_mode;
 122	u8			max_clock_factor;
 123	int			fifo_size;
 124};
 125
 126enum {
 127	LS1021A,
 128	LS1012A,
 129	LS1028A,
 130	LS1043A,
 131	LS1046A,
 132	LS2080A,
 133	LS2085A,
 134	LX2160A,
 135	MCF5441X,
 136	VF610,
 137};
 138
 139static const struct fsl_dspi_devtype_data devtype_data[] = {
 140	[VF610] = {
 141		.trans_mode		= DSPI_DMA_MODE,
 142		.max_clock_factor	= 2,
 143		.fifo_size		= 4,
 144	},
 145	[LS1021A] = {
 146		/* Has A-011218 DMA erratum */
 147		.trans_mode		= DSPI_XSPI_MODE,
 148		.max_clock_factor	= 8,
 149		.fifo_size		= 4,
 150	},
 151	[LS1012A] = {
 152		/* Has A-011218 DMA erratum */
 153		.trans_mode		= DSPI_XSPI_MODE,
 154		.max_clock_factor	= 8,
 155		.fifo_size		= 16,
 156	},
 157	[LS1028A] = {
 158		.trans_mode		= DSPI_XSPI_MODE,
 159		.max_clock_factor	= 8,
 160		.fifo_size		= 4,
 161	},
 162	[LS1043A] = {
 163		/* Has A-011218 DMA erratum */
 164		.trans_mode		= DSPI_XSPI_MODE,
 165		.max_clock_factor	= 8,
 166		.fifo_size		= 16,
 167	},
 168	[LS1046A] = {
 169		/* Has A-011218 DMA erratum */
 170		.trans_mode		= DSPI_XSPI_MODE,
 171		.max_clock_factor	= 8,
 172		.fifo_size		= 16,
 173	},
 174	[LS2080A] = {
 175		.trans_mode		= DSPI_XSPI_MODE,
 176		.max_clock_factor	= 8,
 177		.fifo_size		= 4,
 178	},
 179	[LS2085A] = {
 180		.trans_mode		= DSPI_XSPI_MODE,
 181		.max_clock_factor	= 8,
 182		.fifo_size		= 4,
 183	},
 184	[LX2160A] = {
 185		.trans_mode		= DSPI_XSPI_MODE,
 186		.max_clock_factor	= 8,
 187		.fifo_size		= 4,
 188	},
 189	[MCF5441X] = {
 190		.trans_mode		= DSPI_DMA_MODE,
 191		.max_clock_factor	= 8,
 192		.fifo_size		= 16,
 193	},
 194};
 195
 196struct fsl_dspi_dma {
 197	u32					*tx_dma_buf;
 198	struct dma_chan				*chan_tx;
 199	dma_addr_t				tx_dma_phys;
 200	struct completion			cmd_tx_complete;
 201	struct dma_async_tx_descriptor		*tx_desc;
 202
 203	u32					*rx_dma_buf;
 204	struct dma_chan				*chan_rx;
 205	dma_addr_t				rx_dma_phys;
 206	struct completion			cmd_rx_complete;
 207	struct dma_async_tx_descriptor		*rx_desc;
 208};
 209
 210struct fsl_dspi {
 211	struct spi_controller			*ctlr;
 212	struct platform_device			*pdev;
 213
 214	struct regmap				*regmap;
 215	struct regmap				*regmap_pushr;
 216	int					irq;
 217	struct clk				*clk;
 218
 219	struct spi_transfer			*cur_transfer;
 220	struct spi_message			*cur_msg;
 221	struct chip_data			*cur_chip;
 222	size_t					progress;
 223	size_t					len;
 224	const void				*tx;
 225	void					*rx;
 226	u16					tx_cmd;
 227	const struct fsl_dspi_devtype_data	*devtype_data;
 228
 229	struct completion			xfer_done;
 230
 231	struct fsl_dspi_dma			*dma;
 232
 233	int					oper_word_size;
 234	int					oper_bits_per_word;
 235
 236	int					words_in_flight;
 237
 238	/*
 239	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 240	 * individually (in XSPI mode)
 241	 */
 242	int					pushr_cmd;
 243	int					pushr_tx;
 244
 245	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 246	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 247};
 248
 249static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 250{
 251	switch (dspi->oper_word_size) {
 252	case 1:
 253		*txdata = *(u8 *)dspi->tx;
 254		break;
 255	case 2:
 256		*txdata = *(u16 *)dspi->tx;
 257		break;
 258	case 4:
 259		*txdata = *(u32 *)dspi->tx;
 260		break;
 261	}
 262	dspi->tx += dspi->oper_word_size;
 263}
 264
 265static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 266{
 267	switch (dspi->oper_word_size) {
 268	case 1:
 269		*(u8 *)dspi->rx = rxdata;
 270		break;
 271	case 2:
 272		*(u16 *)dspi->rx = rxdata;
 273		break;
 274	case 4:
 275		*(u32 *)dspi->rx = rxdata;
 276		break;
 277	}
 278	dspi->rx += dspi->oper_word_size;
 279}
 280
 281static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 282{
 283	*txdata = (__force u32)cpu_to_be32(*(u32 *)dspi->tx);
 284	dspi->tx += sizeof(u32);
 285}
 286
 287static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 288{
 289	*(u32 *)dspi->rx = be32_to_cpu((__force __be32)rxdata);
 290	dspi->rx += sizeof(u32);
 291}
 292
 293static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 294{
 295	*txdata = (__force u32)cpu_to_be16(*(u16 *)dspi->tx);
 296	dspi->tx += sizeof(u16);
 297}
 298
 299static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 300{
 301	*(u16 *)dspi->rx = be16_to_cpu((__force __be16)rxdata);
 302	dspi->rx += sizeof(u16);
 303}
 304
 305static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 306{
 307	u16 hi = *(u16 *)dspi->tx;
 308	u16 lo = *(u16 *)(dspi->tx + 2);
 309
 310	*txdata = (u32)hi << 16 | lo;
 311	dspi->tx += sizeof(u32);
 312}
 313
 314static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 315{
 316	u16 hi = rxdata & 0xffff;
 317	u16 lo = rxdata >> 16;
 318
 319	*(u16 *)dspi->rx = lo;
 320	*(u16 *)(dspi->rx + 2) = hi;
 321	dspi->rx += sizeof(u32);
 322}
 323
 324/*
 325 * Pop one word from the TX buffer for pushing into the
 326 * PUSHR register (TX FIFO)
 327 */
 328static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 329{
 330	u32 txdata = 0;
 331
 332	if (dspi->tx)
 333		dspi->host_to_dev(dspi, &txdata);
 334	dspi->len -= dspi->oper_word_size;
 335	return txdata;
 336}
 337
 338/* Prepare one TX FIFO entry (txdata plus cmd) */
 339static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 340{
 341	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 342
 343	if (spi_controller_is_target(dspi->ctlr))
 344		return data;
 345
 346	if (dspi->len > 0)
 347		cmd |= SPI_PUSHR_CMD_CONT;
 348	return cmd << 16 | data;
 349}
 350
 351/* Push one word to the RX buffer from the POPR register (RX FIFO) */
 352static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 353{
 354	if (!dspi->rx)
 355		return;
 356	dspi->dev_to_host(dspi, rxdata);
 357}
 358
 359static void dspi_tx_dma_callback(void *arg)
 360{
 361	struct fsl_dspi *dspi = arg;
 362	struct fsl_dspi_dma *dma = dspi->dma;
 363
 364	complete(&dma->cmd_tx_complete);
 365}
 366
 367static void dspi_rx_dma_callback(void *arg)
 368{
 369	struct fsl_dspi *dspi = arg;
 370	struct fsl_dspi_dma *dma = dspi->dma;
 371	int i;
 372
 373	if (dspi->rx) {
 374		for (i = 0; i < dspi->words_in_flight; i++)
 375			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 376	}
 377
 378	complete(&dma->cmd_rx_complete);
 379}
 380
 381static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 382{
 383	struct device *dev = &dspi->pdev->dev;
 384	struct fsl_dspi_dma *dma = dspi->dma;
 385	int time_left;
 386	int i;
 387
 388	for (i = 0; i < dspi->words_in_flight; i++)
 389		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 390
 391	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 392					dma->tx_dma_phys,
 393					dspi->words_in_flight *
 394					DMA_SLAVE_BUSWIDTH_4_BYTES,
 395					DMA_MEM_TO_DEV,
 396					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 397	if (!dma->tx_desc) {
 398		dev_err(dev, "Not able to get desc for DMA xfer\n");
 399		return -EIO;
 400	}
 401
 402	dma->tx_desc->callback = dspi_tx_dma_callback;
 403	dma->tx_desc->callback_param = dspi;
 404	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 405		dev_err(dev, "DMA submit failed\n");
 406		return -EINVAL;
 407	}
 408
 409	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 410					dma->rx_dma_phys,
 411					dspi->words_in_flight *
 412					DMA_SLAVE_BUSWIDTH_4_BYTES,
 413					DMA_DEV_TO_MEM,
 414					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 415	if (!dma->rx_desc) {
 416		dev_err(dev, "Not able to get desc for DMA xfer\n");
 417		return -EIO;
 418	}
 419
 420	dma->rx_desc->callback = dspi_rx_dma_callback;
 421	dma->rx_desc->callback_param = dspi;
 422	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 423		dev_err(dev, "DMA submit failed\n");
 424		return -EINVAL;
 425	}
 426
 427	reinit_completion(&dspi->dma->cmd_rx_complete);
 428	reinit_completion(&dspi->dma->cmd_tx_complete);
 429
 430	dma_async_issue_pending(dma->chan_rx);
 431	dma_async_issue_pending(dma->chan_tx);
 432
 433	if (spi_controller_is_target(dspi->ctlr)) {
 434		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 435		return 0;
 436	}
 437
 438	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 439						DMA_COMPLETION_TIMEOUT);
 440	if (time_left == 0) {
 441		dev_err(dev, "DMA tx timeout\n");
 442		dmaengine_terminate_all(dma->chan_tx);
 443		dmaengine_terminate_all(dma->chan_rx);
 444		return -ETIMEDOUT;
 445	}
 446
 447	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 448						DMA_COMPLETION_TIMEOUT);
 449	if (time_left == 0) {
 450		dev_err(dev, "DMA rx timeout\n");
 451		dmaengine_terminate_all(dma->chan_tx);
 452		dmaengine_terminate_all(dma->chan_rx);
 453		return -ETIMEDOUT;
 454	}
 455
 456	return 0;
 457}
 458
 459static void dspi_setup_accel(struct fsl_dspi *dspi);
 460
 461static int dspi_dma_xfer(struct fsl_dspi *dspi)
 462{
 463	struct spi_message *message = dspi->cur_msg;
 464	struct device *dev = &dspi->pdev->dev;
 465	int ret = 0;
 466
 467	/*
 468	 * dspi->len gets decremented by dspi_pop_tx_pushr in
 469	 * dspi_next_xfer_dma_submit
 470	 */
 471	while (dspi->len) {
 472		/* Figure out operational bits-per-word for this chunk */
 473		dspi_setup_accel(dspi);
 474
 475		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 476		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 477			dspi->words_in_flight = dspi->devtype_data->fifo_size;
 478
 479		message->actual_length += dspi->words_in_flight *
 480					  dspi->oper_word_size;
 481
 482		ret = dspi_next_xfer_dma_submit(dspi);
 483		if (ret) {
 484			dev_err(dev, "DMA transfer failed\n");
 485			break;
 486		}
 487	}
 488
 489	return ret;
 490}
 491
 492static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 493{
 494	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 495	struct device *dev = &dspi->pdev->dev;
 496	struct dma_slave_config cfg;
 497	struct fsl_dspi_dma *dma;
 498	int ret;
 499
 500	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 501	if (!dma)
 502		return -ENOMEM;
 503
 504	dma->chan_rx = dma_request_chan(dev, "rx");
 505	if (IS_ERR(dma->chan_rx))
 506		return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n");
 
 
 
 507
 508	dma->chan_tx = dma_request_chan(dev, "tx");
 509	if (IS_ERR(dma->chan_tx)) {
 510		ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n");
 
 511		goto err_tx_channel;
 512	}
 513
 514	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 515					     dma_bufsize, &dma->tx_dma_phys,
 516					     GFP_KERNEL);
 517	if (!dma->tx_dma_buf) {
 518		ret = -ENOMEM;
 519		goto err_tx_dma_buf;
 520	}
 521
 522	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 523					     dma_bufsize, &dma->rx_dma_phys,
 524					     GFP_KERNEL);
 525	if (!dma->rx_dma_buf) {
 526		ret = -ENOMEM;
 527		goto err_rx_dma_buf;
 528	}
 529
 530	memset(&cfg, 0, sizeof(cfg));
 531	cfg.src_addr = phy_addr + SPI_POPR;
 532	cfg.dst_addr = phy_addr + SPI_PUSHR;
 533	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 534	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 535	cfg.src_maxburst = 1;
 536	cfg.dst_maxburst = 1;
 537
 538	cfg.direction = DMA_DEV_TO_MEM;
 539	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 540	if (ret) {
 541		dev_err_probe(dev, ret, "can't configure rx dma channel\n");
 
 542		goto err_slave_config;
 543	}
 544
 545	cfg.direction = DMA_MEM_TO_DEV;
 546	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 547	if (ret) {
 548		dev_err_probe(dev, ret, "can't configure tx dma channel\n");
 
 549		goto err_slave_config;
 550	}
 551
 552	dspi->dma = dma;
 553	init_completion(&dma->cmd_tx_complete);
 554	init_completion(&dma->cmd_rx_complete);
 555
 556	return 0;
 557
 558err_slave_config:
 559	dma_free_coherent(dma->chan_rx->device->dev,
 560			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 561err_rx_dma_buf:
 562	dma_free_coherent(dma->chan_tx->device->dev,
 563			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 564err_tx_dma_buf:
 565	dma_release_channel(dma->chan_tx);
 566err_tx_channel:
 567	dma_release_channel(dma->chan_rx);
 568
 569	devm_kfree(dev, dma);
 570	dspi->dma = NULL;
 571
 572	return ret;
 573}
 574
 575static void dspi_release_dma(struct fsl_dspi *dspi)
 576{
 577	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 578	struct fsl_dspi_dma *dma = dspi->dma;
 579
 580	if (!dma)
 581		return;
 582
 583	if (dma->chan_tx) {
 584		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
 585				  dma->tx_dma_buf, dma->tx_dma_phys);
 586		dma_release_channel(dma->chan_tx);
 587	}
 588
 589	if (dma->chan_rx) {
 590		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
 591				  dma->rx_dma_buf, dma->rx_dma_phys);
 592		dma_release_channel(dma->chan_rx);
 593	}
 594}
 595
 596static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 597			   unsigned long clkrate)
 598{
 599	/* Valid baud rate pre-scaler values */
 600	int pbr_tbl[4] = {2, 3, 5, 7};
 601	int brs[16] = {	2,	4,	6,	8,
 602			16,	32,	64,	128,
 603			256,	512,	1024,	2048,
 604			4096,	8192,	16384,	32768 };
 605	int scale_needed, scale, minscale = INT_MAX;
 606	int i, j;
 607
 608	scale_needed = clkrate / speed_hz;
 609	if (clkrate % speed_hz)
 610		scale_needed++;
 611
 612	for (i = 0; i < ARRAY_SIZE(brs); i++)
 613		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 614			scale = brs[i] * pbr_tbl[j];
 615			if (scale >= scale_needed) {
 616				if (scale < minscale) {
 617					minscale = scale;
 618					*br = i;
 619					*pbr = j;
 620				}
 621				break;
 622			}
 623		}
 624
 625	if (minscale == INT_MAX) {
 626		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 627			speed_hz, clkrate);
 628		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 629		*br =  ARRAY_SIZE(brs) - 1;
 630	}
 631}
 632
 633static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 634			   unsigned long clkrate)
 635{
 636	int scale_needed, scale, minscale = INT_MAX;
 637	int pscale_tbl[4] = {1, 3, 5, 7};
 638	u32 remainder;
 639	int i, j;
 640
 641	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 642				   &remainder);
 643	if (remainder)
 644		scale_needed++;
 645
 646	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 647		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 648			scale = pscale_tbl[i] * (2 << j);
 649			if (scale >= scale_needed) {
 650				if (scale < minscale) {
 651					minscale = scale;
 652					*psc = i;
 653					*sc = j;
 654				}
 655				break;
 656			}
 657		}
 658
 659	if (minscale == INT_MAX) {
 660		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 661			delay_ns, clkrate);
 662		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 663		*sc = SPI_CTAR_SCALE_BITS;
 664	}
 665}
 666
 667static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 668{
 669	/*
 670	 * The only time when the PCS doesn't need continuation after this word
 671	 * is when it's last. We need to look ahead, because we actually call
 672	 * dspi_pop_tx (the function that decrements dspi->len) _after_
 673	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 674	 * word is enough. If there's more to transmit than that,
 675	 * dspi_xspi_write will know to split the FIFO writes in 2, and
 676	 * generate a new PUSHR command with the final word that will have PCS
 677	 * deasserted (not continued) here.
 678	 */
 679	if (dspi->len > dspi->oper_word_size)
 680		cmd |= SPI_PUSHR_CMD_CONT;
 681	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 682}
 683
 684static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 685{
 686	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 687}
 688
 689static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 690{
 691	int num_bytes = num_words * dspi->oper_word_size;
 692	u16 tx_cmd = dspi->tx_cmd;
 693
 694	/*
 695	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 696	 * and cs_change does not want the PCS to stay on), then we need a new
 697	 * PUSHR command, since this one (for the body of the buffer)
 698	 * necessarily has the CONT bit set.
 699	 * So send one word less during this go, to force a split and a command
 700	 * with a single word next time, when CONT will be unset.
 701	 */
 702	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 703		tx_cmd |= SPI_PUSHR_CMD_EOQ;
 704
 705	/* Update CTARE */
 706	regmap_write(dspi->regmap, SPI_CTARE(0),
 707		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 708		     SPI_CTARE_DTCP(num_words));
 709
 710	/*
 711	 * Write the CMD FIFO entry first, and then the two
 712	 * corresponding TX FIFO entries (or one...).
 713	 */
 714	dspi_pushr_cmd_write(dspi, tx_cmd);
 715
 716	/* Fill TX FIFO with as many transfers as possible */
 717	while (num_words--) {
 718		u32 data = dspi_pop_tx(dspi);
 719
 720		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 721		if (dspi->oper_bits_per_word > 16)
 722			dspi_pushr_txdata_write(dspi, data >> 16);
 723	}
 724}
 725
 726static u32 dspi_popr_read(struct fsl_dspi *dspi)
 727{
 728	u32 rxdata = 0;
 729
 730	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 731	return rxdata;
 732}
 733
 734static void dspi_fifo_read(struct fsl_dspi *dspi)
 735{
 736	int num_fifo_entries = dspi->words_in_flight;
 737
 738	/* Read one FIFO entry and push to rx buffer */
 739	while (num_fifo_entries--)
 740		dspi_push_rx(dspi, dspi_popr_read(dspi));
 741}
 742
 743static void dspi_setup_accel(struct fsl_dspi *dspi)
 744{
 745	struct spi_transfer *xfer = dspi->cur_transfer;
 746	bool odd = !!(dspi->len & 1);
 747
 748	/* No accel for frames not multiple of 8 bits at the moment */
 749	if (xfer->bits_per_word % 8)
 750		goto no_accel;
 751
 752	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 753		dspi->oper_bits_per_word = 16;
 754	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 755		dspi->oper_bits_per_word = 8;
 756	} else {
 757		/* Start off with maximum supported by hardware */
 758		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 759			dspi->oper_bits_per_word = 32;
 760		else
 761			dspi->oper_bits_per_word = 16;
 762
 763		/*
 764		 * And go down only if the buffer can't be sent with
 765		 * words this big
 766		 */
 767		do {
 768			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 769				break;
 770
 771			dspi->oper_bits_per_word /= 2;
 772		} while (dspi->oper_bits_per_word > 8);
 773	}
 774
 775	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 776		dspi->dev_to_host = dspi_8on32_dev_to_host;
 777		dspi->host_to_dev = dspi_8on32_host_to_dev;
 778	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 779		dspi->dev_to_host = dspi_8on16_dev_to_host;
 780		dspi->host_to_dev = dspi_8on16_host_to_dev;
 781	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 782		dspi->dev_to_host = dspi_16on32_dev_to_host;
 783		dspi->host_to_dev = dspi_16on32_host_to_dev;
 784	} else {
 785no_accel:
 786		dspi->dev_to_host = dspi_native_dev_to_host;
 787		dspi->host_to_dev = dspi_native_host_to_dev;
 788		dspi->oper_bits_per_word = xfer->bits_per_word;
 789	}
 790
 791	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 792
 793	/*
 794	 * Update CTAR here (code is common for XSPI and DMA modes).
 795	 * We will update CTARE in the portion specific to XSPI, when we
 796	 * also know the preload value (DTCP).
 797	 */
 798	regmap_write(dspi->regmap, SPI_CTAR(0),
 799		     dspi->cur_chip->ctar_val |
 800		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 801}
 802
 803static void dspi_fifo_write(struct fsl_dspi *dspi)
 804{
 805	int num_fifo_entries = dspi->devtype_data->fifo_size;
 806	struct spi_transfer *xfer = dspi->cur_transfer;
 807	struct spi_message *msg = dspi->cur_msg;
 808	int num_words, num_bytes;
 809
 810	dspi_setup_accel(dspi);
 811
 812	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 813	if (dspi->oper_word_size == 4)
 814		num_fifo_entries /= 2;
 815
 816	/*
 817	 * Integer division intentionally trims off odd (or non-multiple of 4)
 818	 * numbers of bytes at the end of the buffer, which will be sent next
 819	 * time using a smaller oper_word_size.
 820	 */
 821	num_words = dspi->len / dspi->oper_word_size;
 822	if (num_words > num_fifo_entries)
 823		num_words = num_fifo_entries;
 824
 825	/* Update total number of bytes that were transferred */
 826	num_bytes = num_words * dspi->oper_word_size;
 827	msg->actual_length += num_bytes;
 828	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 829
 830	/*
 831	 * Update shared variable for use in the next interrupt (both in
 832	 * dspi_fifo_read and in dspi_fifo_write).
 833	 */
 834	dspi->words_in_flight = num_words;
 835
 836	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 837
 838	dspi_xspi_fifo_write(dspi, num_words);
 839	/*
 840	 * Everything after this point is in a potential race with the next
 841	 * interrupt, so we must never use dspi->words_in_flight again since it
 842	 * might already be modified by the next dspi_fifo_write.
 843	 */
 844
 845	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 846				dspi->progress, !dspi->irq);
 847}
 848
 849static int dspi_rxtx(struct fsl_dspi *dspi)
 850{
 851	dspi_fifo_read(dspi);
 852
 853	if (!dspi->len)
 854		/* Success! */
 855		return 0;
 856
 857	dspi_fifo_write(dspi);
 858
 859	return -EINPROGRESS;
 860}
 861
 862static int dspi_poll(struct fsl_dspi *dspi)
 863{
 864	int tries = 1000;
 865	u32 spi_sr;
 866
 867	do {
 868		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 869		regmap_write(dspi->regmap, SPI_SR, spi_sr);
 870
 871		if (spi_sr & SPI_SR_CMDTCF)
 872			break;
 873	} while (--tries);
 874
 875	if (!tries)
 876		return -ETIMEDOUT;
 877
 878	return dspi_rxtx(dspi);
 879}
 880
 881static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 882{
 883	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 884	u32 spi_sr;
 885
 886	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 887	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 888
 889	if (!(spi_sr & SPI_SR_CMDTCF))
 890		return IRQ_NONE;
 891
 892	if (dspi_rxtx(dspi) == 0)
 893		complete(&dspi->xfer_done);
 894
 895	return IRQ_HANDLED;
 896}
 897
 898static void dspi_assert_cs(struct spi_device *spi, bool *cs)
 899{
 900	if (!spi_get_csgpiod(spi, 0) || *cs)
 901		return;
 902
 903	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
 904	*cs = true;
 905}
 906
 907static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
 908{
 909	if (!spi_get_csgpiod(spi, 0) || !*cs)
 910		return;
 911
 912	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
 913	*cs = false;
 914}
 915
 916static int dspi_transfer_one_message(struct spi_controller *ctlr,
 917				     struct spi_message *message)
 918{
 919	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 920	struct spi_device *spi = message->spi;
 921	struct spi_transfer *transfer;
 922	bool cs = false;
 923	int status = 0;
 924
 925	message->actual_length = 0;
 926
 927	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 928		dspi->cur_transfer = transfer;
 929		dspi->cur_msg = message;
 930		dspi->cur_chip = spi_get_ctldata(spi);
 931
 932		dspi_assert_cs(spi, &cs);
 933
 934		/* Prepare command word for CMD FIFO */
 935		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
 936		if (!spi_get_csgpiod(spi, 0))
 937			dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0));
 938
 939		if (list_is_last(&dspi->cur_transfer->transfer_list,
 940				 &dspi->cur_msg->transfers)) {
 941			/* Leave PCS activated after last transfer when
 942			 * cs_change is set.
 943			 */
 944			if (transfer->cs_change)
 945				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 946		} else {
 947			/* Keep PCS active between transfers in same message
 948			 * when cs_change is not set, and de-activate PCS
 949			 * between transfers in the same message when
 950			 * cs_change is set.
 951			 */
 952			if (!transfer->cs_change)
 953				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 954		}
 955
 956		dspi->tx = transfer->tx_buf;
 957		dspi->rx = transfer->rx_buf;
 958		dspi->len = transfer->len;
 959		dspi->progress = 0;
 960
 961		regmap_update_bits(dspi->regmap, SPI_MCR,
 962				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 963				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 964
 965		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 966				       dspi->progress, !dspi->irq);
 967
 968		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 969			status = dspi_dma_xfer(dspi);
 970		} else {
 971			dspi_fifo_write(dspi);
 972
 973			if (dspi->irq) {
 974				wait_for_completion(&dspi->xfer_done);
 975				reinit_completion(&dspi->xfer_done);
 976			} else {
 977				do {
 978					status = dspi_poll(dspi);
 979				} while (status == -EINPROGRESS);
 980			}
 981		}
 982		if (status)
 983			break;
 984
 985		spi_transfer_delay_exec(transfer);
 986
 987		if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
 988			dspi_deassert_cs(spi, &cs);
 989	}
 990
 991	message->status = status;
 992	spi_finalize_current_message(ctlr);
 993
 994	return status;
 995}
 996
 997static int dspi_setup(struct spi_device *spi)
 998{
 999	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1000	u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
1001	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1002	u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
1003	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1004	struct fsl_dspi_platform_data *pdata;
1005	unsigned char pasc = 0, asc = 0;
1006	struct gpio_desc *gpio_cs;
1007	struct chip_data *chip;
1008	unsigned long clkrate;
1009	bool cs = true;
1010	int val;
1011
1012	/* Only alloc on first setup */
1013	chip = spi_get_ctldata(spi);
1014	if (chip == NULL) {
1015		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1016		if (!chip)
1017			return -ENOMEM;
1018	}
1019
1020	pdata = dev_get_platdata(&dspi->pdev->dev);
1021
1022	if (!pdata) {
1023		val = spi_delay_to_ns(&spi->cs_setup, NULL);
1024		cs_sck_delay = val >= 0 ? val : 0;
1025		if (!cs_sck_delay)
1026			of_property_read_u32(spi->dev.of_node,
1027					     "fsl,spi-cs-sck-delay",
1028					     &cs_sck_delay);
1029
1030		val = spi_delay_to_ns(&spi->cs_hold, NULL);
1031		sck_cs_delay =  val >= 0 ? val : 0;
1032		if (!sck_cs_delay)
1033			of_property_read_u32(spi->dev.of_node,
1034					     "fsl,spi-sck-cs-delay",
1035					     &sck_cs_delay);
1036	} else {
1037		cs_sck_delay = pdata->cs_sck_delay;
1038		sck_cs_delay = pdata->sck_cs_delay;
1039	}
1040
1041	/* Since tCSC and tASC apply to continuous transfers too, avoid SCK
1042	 * glitches of half a cycle by never allowing tCSC + tASC to go below
1043	 * half a SCK period.
1044	 */
1045	if (cs_sck_delay < quarter_period_ns)
1046		cs_sck_delay = quarter_period_ns;
1047	if (sck_cs_delay < quarter_period_ns)
1048		sck_cs_delay = quarter_period_ns;
1049
1050	dev_dbg(&spi->dev,
1051		"DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
1052		cs_sck_delay, sck_cs_delay);
1053
1054	clkrate = clk_get_rate(dspi->clk);
1055	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1056
1057	/* Set PCS to SCK delay scale values */
1058	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1059
1060	/* Set After SCK delay scale values */
1061	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1062
1063	chip->ctar_val = 0;
1064	if (spi->mode & SPI_CPOL)
1065		chip->ctar_val |= SPI_CTAR_CPOL;
1066	if (spi->mode & SPI_CPHA)
1067		chip->ctar_val |= SPI_CTAR_CPHA;
1068
1069	if (!spi_controller_is_target(dspi->ctlr)) {
1070		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1071				  SPI_CTAR_CSSCK(cssck) |
1072				  SPI_CTAR_PASC(pasc) |
1073				  SPI_CTAR_ASC(asc) |
1074				  SPI_CTAR_PBR(pbr) |
1075				  SPI_CTAR_BR(br);
1076
1077		if (spi->mode & SPI_LSB_FIRST)
1078			chip->ctar_val |= SPI_CTAR_LSBFE;
1079	}
1080
1081	gpio_cs = spi_get_csgpiod(spi, 0);
1082	if (gpio_cs)
1083		gpiod_direction_output(gpio_cs, false);
1084
1085	dspi_deassert_cs(spi, &cs);
1086
1087	spi_set_ctldata(spi, chip);
1088
1089	return 0;
1090}
1091
1092static void dspi_cleanup(struct spi_device *spi)
1093{
1094	struct chip_data *chip = spi_get_ctldata(spi);
1095
1096	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1097		spi->controller->bus_num, spi_get_chipselect(spi, 0));
1098
1099	kfree(chip);
1100}
1101
1102static const struct of_device_id fsl_dspi_dt_ids[] = {
1103	{
1104		.compatible = "fsl,vf610-dspi",
1105		.data = &devtype_data[VF610],
1106	}, {
1107		.compatible = "fsl,ls1021a-v1.0-dspi",
1108		.data = &devtype_data[LS1021A],
1109	}, {
1110		.compatible = "fsl,ls1012a-dspi",
1111		.data = &devtype_data[LS1012A],
1112	}, {
1113		.compatible = "fsl,ls1028a-dspi",
1114		.data = &devtype_data[LS1028A],
1115	}, {
1116		.compatible = "fsl,ls1043a-dspi",
1117		.data = &devtype_data[LS1043A],
1118	}, {
1119		.compatible = "fsl,ls1046a-dspi",
1120		.data = &devtype_data[LS1046A],
1121	}, {
1122		.compatible = "fsl,ls2080a-dspi",
1123		.data = &devtype_data[LS2080A],
1124	}, {
1125		.compatible = "fsl,ls2085a-dspi",
1126		.data = &devtype_data[LS2085A],
1127	}, {
1128		.compatible = "fsl,lx2160a-dspi",
1129		.data = &devtype_data[LX2160A],
1130	},
1131	{ /* sentinel */ }
1132};
1133MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1134
1135#ifdef CONFIG_PM_SLEEP
1136static int dspi_suspend(struct device *dev)
1137{
1138	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1139
1140	if (dspi->irq)
1141		disable_irq(dspi->irq);
1142	spi_controller_suspend(dspi->ctlr);
1143	clk_disable_unprepare(dspi->clk);
1144
1145	pinctrl_pm_select_sleep_state(dev);
1146
1147	return 0;
1148}
1149
1150static int dspi_resume(struct device *dev)
1151{
1152	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1153	int ret;
1154
1155	pinctrl_pm_select_default_state(dev);
1156
1157	ret = clk_prepare_enable(dspi->clk);
1158	if (ret)
1159		return ret;
1160	spi_controller_resume(dspi->ctlr);
1161	if (dspi->irq)
1162		enable_irq(dspi->irq);
1163
1164	return 0;
1165}
1166#endif /* CONFIG_PM_SLEEP */
1167
1168static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1169
1170static const struct regmap_range dspi_volatile_ranges[] = {
1171	regmap_reg_range(SPI_MCR, SPI_TCR),
1172	regmap_reg_range(SPI_SR, SPI_SR),
1173	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1174};
1175
1176static const struct regmap_access_table dspi_volatile_table = {
1177	.yes_ranges	= dspi_volatile_ranges,
1178	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1179};
1180
1181static const struct regmap_config dspi_regmap_config = {
1182	.reg_bits	= 32,
1183	.val_bits	= 32,
1184	.reg_stride	= 4,
1185	.max_register	= 0x88,
1186	.volatile_table	= &dspi_volatile_table,
1187};
1188
1189static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1190	regmap_reg_range(SPI_MCR, SPI_TCR),
1191	regmap_reg_range(SPI_SR, SPI_SR),
1192	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1193	regmap_reg_range(SPI_SREX, SPI_SREX),
1194};
1195
1196static const struct regmap_access_table dspi_xspi_volatile_table = {
1197	.yes_ranges	= dspi_xspi_volatile_ranges,
1198	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1199};
1200
1201static const struct regmap_config dspi_xspi_regmap_config[] = {
1202	{
1203		.reg_bits	= 32,
1204		.val_bits	= 32,
1205		.reg_stride	= 4,
1206		.max_register	= 0x13c,
1207		.volatile_table	= &dspi_xspi_volatile_table,
1208	},
1209	{
1210		.name		= "pushr",
1211		.reg_bits	= 16,
1212		.val_bits	= 16,
1213		.reg_stride	= 2,
1214		.max_register	= 0x2,
1215	},
1216};
1217
1218static int dspi_init(struct fsl_dspi *dspi)
1219{
1220	unsigned int mcr;
1221
1222	/* Set idle states for all chip select signals to high */
1223	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1224
1225	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1226		mcr |= SPI_MCR_XSPI;
1227	if (!spi_controller_is_target(dspi->ctlr))
1228		mcr |= SPI_MCR_HOST;
1229
1230	regmap_write(dspi->regmap, SPI_MCR, mcr);
1231	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1232
1233	switch (dspi->devtype_data->trans_mode) {
1234	case DSPI_XSPI_MODE:
1235		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1236		break;
1237	case DSPI_DMA_MODE:
1238		regmap_write(dspi->regmap, SPI_RSER,
1239			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1240			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1241		break;
1242	default:
1243		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1244			dspi->devtype_data->trans_mode);
1245		return -EINVAL;
1246	}
1247
1248	return 0;
1249}
1250
1251static int dspi_target_abort(struct spi_controller *host)
1252{
1253	struct fsl_dspi *dspi = spi_controller_get_devdata(host);
1254
1255	/*
1256	 * Terminate all pending DMA transactions for the SPI working
1257	 * in TARGET mode.
1258	 */
1259	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1260		dmaengine_terminate_sync(dspi->dma->chan_rx);
1261		dmaengine_terminate_sync(dspi->dma->chan_tx);
1262	}
1263
1264	/* Clear the internal DSPI RX and TX FIFO buffers */
1265	regmap_update_bits(dspi->regmap, SPI_MCR,
1266			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1267			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1268
1269	return 0;
1270}
1271
1272static int dspi_probe(struct platform_device *pdev)
1273{
1274	struct device_node *np = pdev->dev.of_node;
1275	const struct regmap_config *regmap_config;
1276	struct fsl_dspi_platform_data *pdata;
1277	struct spi_controller *ctlr;
1278	int ret, cs_num, bus_num = -1;
1279	struct fsl_dspi *dspi;
1280	struct resource *res;
1281	void __iomem *base;
1282	bool big_endian;
1283
1284	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1285	if (!dspi)
1286		return -ENOMEM;
1287
1288	ctlr = spi_alloc_host(&pdev->dev, 0);
1289	if (!ctlr)
1290		return -ENOMEM;
1291
1292	spi_controller_set_devdata(ctlr, dspi);
1293	platform_set_drvdata(pdev, dspi);
1294
1295	dspi->pdev = pdev;
1296	dspi->ctlr = ctlr;
1297
1298	ctlr->setup = dspi_setup;
1299	ctlr->transfer_one_message = dspi_transfer_one_message;
1300	ctlr->dev.of_node = pdev->dev.of_node;
1301
1302	ctlr->cleanup = dspi_cleanup;
1303	ctlr->target_abort = dspi_target_abort;
1304	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1305	ctlr->use_gpio_descriptors = true;
1306
1307	pdata = dev_get_platdata(&pdev->dev);
1308	if (pdata) {
1309		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1310		ctlr->bus_num = pdata->bus_num;
1311
1312		/* Only Coldfire uses platform data */
1313		dspi->devtype_data = &devtype_data[MCF5441X];
1314		big_endian = true;
1315	} else {
1316
1317		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1318		if (ret < 0) {
1319			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1320			goto out_ctlr_put;
1321		}
1322		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1323
1324		of_property_read_u32(np, "bus-num", &bus_num);
1325		ctlr->bus_num = bus_num;
1326
1327		if (of_property_read_bool(np, "spi-slave"))
1328			ctlr->target = true;
1329
1330		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1331		if (!dspi->devtype_data) {
1332			dev_err(&pdev->dev, "can't get devtype_data\n");
1333			ret = -EFAULT;
1334			goto out_ctlr_put;
1335		}
1336
1337		big_endian = of_device_is_big_endian(np);
1338	}
1339	if (big_endian) {
1340		dspi->pushr_cmd = 0;
1341		dspi->pushr_tx = 2;
1342	} else {
1343		dspi->pushr_cmd = 2;
1344		dspi->pushr_tx = 0;
1345	}
1346
1347	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1348		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1349	else
1350		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1351
1352	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1353	if (IS_ERR(base)) {
1354		ret = PTR_ERR(base);
1355		goto out_ctlr_put;
1356	}
1357
1358	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1359		regmap_config = &dspi_xspi_regmap_config[0];
1360	else
1361		regmap_config = &dspi_regmap_config;
1362	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1363	if (IS_ERR(dspi->regmap)) {
1364		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1365				PTR_ERR(dspi->regmap));
1366		ret = PTR_ERR(dspi->regmap);
1367		goto out_ctlr_put;
1368	}
1369
1370	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1371		dspi->regmap_pushr = devm_regmap_init_mmio(
1372			&pdev->dev, base + SPI_PUSHR,
1373			&dspi_xspi_regmap_config[1]);
1374		if (IS_ERR(dspi->regmap_pushr)) {
1375			dev_err(&pdev->dev,
1376				"failed to init pushr regmap: %ld\n",
1377				PTR_ERR(dspi->regmap_pushr));
1378			ret = PTR_ERR(dspi->regmap_pushr);
1379			goto out_ctlr_put;
1380		}
1381	}
1382
1383	dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi");
1384	if (IS_ERR(dspi->clk)) {
1385		ret = PTR_ERR(dspi->clk);
1386		dev_err(&pdev->dev, "unable to get clock\n");
1387		goto out_ctlr_put;
1388	}
 
 
 
1389
1390	ret = dspi_init(dspi);
1391	if (ret)
1392		goto out_ctlr_put;
1393
1394	dspi->irq = platform_get_irq(pdev, 0);
1395	if (dspi->irq <= 0) {
1396		dev_info(&pdev->dev,
1397			 "can't get platform irq, using poll mode\n");
1398		dspi->irq = 0;
1399		goto poll_mode;
1400	}
1401
1402	init_completion(&dspi->xfer_done);
1403
1404	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1405				   IRQF_SHARED, pdev->name, dspi);
1406	if (ret < 0) {
1407		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1408		goto out_ctlr_put;
1409	}
1410
1411poll_mode:
1412
1413	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1414		ret = dspi_request_dma(dspi, res->start);
1415		if (ret < 0) {
1416			dev_err(&pdev->dev, "can't get dma channels\n");
1417			goto out_free_irq;
1418		}
1419	}
1420
1421	ctlr->max_speed_hz =
1422		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1423
1424	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1425		ctlr->ptp_sts_supported = true;
1426
1427	ret = spi_register_controller(ctlr);
1428	if (ret != 0) {
1429		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1430		goto out_release_dma;
1431	}
1432
1433	return ret;
1434
1435out_release_dma:
1436	dspi_release_dma(dspi);
1437out_free_irq:
1438	if (dspi->irq)
1439		free_irq(dspi->irq, dspi);
 
 
1440out_ctlr_put:
1441	spi_controller_put(ctlr);
1442
1443	return ret;
1444}
1445
1446static void dspi_remove(struct platform_device *pdev)
1447{
1448	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1449
1450	/* Disconnect from the SPI framework */
1451	spi_unregister_controller(dspi->ctlr);
1452
1453	/* Disable RX and TX */
1454	regmap_update_bits(dspi->regmap, SPI_MCR,
1455			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1456			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1457
1458	/* Stop Running */
1459	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1460
1461	dspi_release_dma(dspi);
1462	if (dspi->irq)
1463		free_irq(dspi->irq, dspi);
 
 
 
1464}
1465
1466static void dspi_shutdown(struct platform_device *pdev)
1467{
1468	dspi_remove(pdev);
1469}
1470
1471static struct platform_driver fsl_dspi_driver = {
1472	.driver.name		= DRIVER_NAME,
1473	.driver.of_match_table	= fsl_dspi_dt_ids,
 
1474	.driver.pm		= &dspi_pm,
1475	.probe			= dspi_probe,
1476	.remove			= dspi_remove,
1477	.shutdown		= dspi_shutdown,
1478};
1479module_platform_driver(fsl_dspi_driver);
1480
1481MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1482MODULE_LICENSE("GPL");
1483MODULE_ALIAS("platform:" DRIVER_NAME);
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4// Copyright 2020 NXP
   5//
   6// Freescale DSPI driver
   7// This file contains a driver for the Freescale DSPI
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/of_device.h>
 
  17#include <linux/pinctrl/consumer.h>
  18#include <linux/regmap.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-fsl-dspi.h>
  21
  22#define DRIVER_NAME			"fsl-dspi"
  23
  24#define SPI_MCR				0x00
  25#define SPI_MCR_MASTER			BIT(31)
  26#define SPI_MCR_PCSIS(x)		((x) << 16)
  27#define SPI_MCR_CLR_TXF			BIT(11)
  28#define SPI_MCR_CLR_RXF			BIT(10)
  29#define SPI_MCR_XSPI			BIT(3)
  30#define SPI_MCR_DIS_TXF			BIT(13)
  31#define SPI_MCR_DIS_RXF			BIT(12)
  32#define SPI_MCR_HALT			BIT(0)
  33
  34#define SPI_TCR				0x08
  35#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
  36
  37#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
  38#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
  39#define SPI_CTAR_CPOL			BIT(26)
  40#define SPI_CTAR_CPHA			BIT(25)
  41#define SPI_CTAR_LSBFE			BIT(24)
  42#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
  43#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
  44#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
  45#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
  46#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
  47#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
  48#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
  49#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
  50#define SPI_CTAR_SCALE_BITS		0xf
  51
  52#define SPI_CTAR0_SLAVE			0x0c
  53
  54#define SPI_SR				0x2c
  55#define SPI_SR_TCFQF			BIT(31)
  56#define SPI_SR_TFUF			BIT(27)
  57#define SPI_SR_TFFF			BIT(25)
  58#define SPI_SR_CMDTCF			BIT(23)
  59#define SPI_SR_SPEF			BIT(21)
  60#define SPI_SR_RFOF			BIT(19)
  61#define SPI_SR_TFIWF			BIT(18)
  62#define SPI_SR_RFDF			BIT(17)
  63#define SPI_SR_CMDFFF			BIT(16)
  64#define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
  65					SPI_SR_TFUF | SPI_SR_TFFF | \
  66					SPI_SR_CMDTCF | SPI_SR_SPEF | \
  67					SPI_SR_RFOF | SPI_SR_TFIWF | \
  68					SPI_SR_RFDF | SPI_SR_CMDFFF)
  69
  70#define SPI_RSER_TFFFE			BIT(25)
  71#define SPI_RSER_TFFFD			BIT(24)
  72#define SPI_RSER_RFDFE			BIT(17)
  73#define SPI_RSER_RFDFD			BIT(16)
  74
  75#define SPI_RSER			0x30
  76#define SPI_RSER_TCFQE			BIT(31)
  77#define SPI_RSER_CMDTCFE		BIT(23)
  78
  79#define SPI_PUSHR			0x34
  80#define SPI_PUSHR_CMD_CONT		BIT(15)
  81#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
  82#define SPI_PUSHR_CMD_EOQ		BIT(11)
  83#define SPI_PUSHR_CMD_CTCNT		BIT(10)
  84#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
  85
  86#define SPI_PUSHR_SLAVE			0x34
  87
  88#define SPI_POPR			0x38
  89
  90#define SPI_TXFR0			0x3c
  91#define SPI_TXFR1			0x40
  92#define SPI_TXFR2			0x44
  93#define SPI_TXFR3			0x48
  94#define SPI_RXFR0			0x7c
  95#define SPI_RXFR1			0x80
  96#define SPI_RXFR2			0x84
  97#define SPI_RXFR3			0x88
  98
  99#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
 100#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
 101#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
 102
 103#define SPI_SREX			0x13c
 104
 105#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
 106#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 107
 108#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
 109
 110struct chip_data {
 111	u32			ctar_val;
 112};
 113
 114enum dspi_trans_mode {
 115	DSPI_XSPI_MODE,
 116	DSPI_DMA_MODE,
 117};
 118
 119struct fsl_dspi_devtype_data {
 120	enum dspi_trans_mode	trans_mode;
 121	u8			max_clock_factor;
 122	int			fifo_size;
 123};
 124
 125enum {
 126	LS1021A,
 127	LS1012A,
 128	LS1028A,
 129	LS1043A,
 130	LS1046A,
 131	LS2080A,
 132	LS2085A,
 133	LX2160A,
 134	MCF5441X,
 135	VF610,
 136};
 137
 138static const struct fsl_dspi_devtype_data devtype_data[] = {
 139	[VF610] = {
 140		.trans_mode		= DSPI_DMA_MODE,
 141		.max_clock_factor	= 2,
 142		.fifo_size		= 4,
 143	},
 144	[LS1021A] = {
 145		/* Has A-011218 DMA erratum */
 146		.trans_mode		= DSPI_XSPI_MODE,
 147		.max_clock_factor	= 8,
 148		.fifo_size		= 4,
 149	},
 150	[LS1012A] = {
 151		/* Has A-011218 DMA erratum */
 152		.trans_mode		= DSPI_XSPI_MODE,
 153		.max_clock_factor	= 8,
 154		.fifo_size		= 16,
 155	},
 156	[LS1028A] = {
 157		.trans_mode		= DSPI_XSPI_MODE,
 158		.max_clock_factor	= 8,
 159		.fifo_size		= 4,
 160	},
 161	[LS1043A] = {
 162		/* Has A-011218 DMA erratum */
 163		.trans_mode		= DSPI_XSPI_MODE,
 164		.max_clock_factor	= 8,
 165		.fifo_size		= 16,
 166	},
 167	[LS1046A] = {
 168		/* Has A-011218 DMA erratum */
 169		.trans_mode		= DSPI_XSPI_MODE,
 170		.max_clock_factor	= 8,
 171		.fifo_size		= 16,
 172	},
 173	[LS2080A] = {
 174		.trans_mode		= DSPI_XSPI_MODE,
 175		.max_clock_factor	= 8,
 176		.fifo_size		= 4,
 177	},
 178	[LS2085A] = {
 179		.trans_mode		= DSPI_XSPI_MODE,
 180		.max_clock_factor	= 8,
 181		.fifo_size		= 4,
 182	},
 183	[LX2160A] = {
 184		.trans_mode		= DSPI_XSPI_MODE,
 185		.max_clock_factor	= 8,
 186		.fifo_size		= 4,
 187	},
 188	[MCF5441X] = {
 189		.trans_mode		= DSPI_DMA_MODE,
 190		.max_clock_factor	= 8,
 191		.fifo_size		= 16,
 192	},
 193};
 194
 195struct fsl_dspi_dma {
 196	u32					*tx_dma_buf;
 197	struct dma_chan				*chan_tx;
 198	dma_addr_t				tx_dma_phys;
 199	struct completion			cmd_tx_complete;
 200	struct dma_async_tx_descriptor		*tx_desc;
 201
 202	u32					*rx_dma_buf;
 203	struct dma_chan				*chan_rx;
 204	dma_addr_t				rx_dma_phys;
 205	struct completion			cmd_rx_complete;
 206	struct dma_async_tx_descriptor		*rx_desc;
 207};
 208
 209struct fsl_dspi {
 210	struct spi_controller			*ctlr;
 211	struct platform_device			*pdev;
 212
 213	struct regmap				*regmap;
 214	struct regmap				*regmap_pushr;
 215	int					irq;
 216	struct clk				*clk;
 217
 218	struct spi_transfer			*cur_transfer;
 219	struct spi_message			*cur_msg;
 220	struct chip_data			*cur_chip;
 221	size_t					progress;
 222	size_t					len;
 223	const void				*tx;
 224	void					*rx;
 225	u16					tx_cmd;
 226	const struct fsl_dspi_devtype_data	*devtype_data;
 227
 228	struct completion			xfer_done;
 229
 230	struct fsl_dspi_dma			*dma;
 231
 232	int					oper_word_size;
 233	int					oper_bits_per_word;
 234
 235	int					words_in_flight;
 236
 237	/*
 238	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 239	 * individually (in XSPI mode)
 240	 */
 241	int					pushr_cmd;
 242	int					pushr_tx;
 243
 244	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 245	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 246};
 247
 248static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 249{
 250	switch (dspi->oper_word_size) {
 251	case 1:
 252		*txdata = *(u8 *)dspi->tx;
 253		break;
 254	case 2:
 255		*txdata = *(u16 *)dspi->tx;
 256		break;
 257	case 4:
 258		*txdata = *(u32 *)dspi->tx;
 259		break;
 260	}
 261	dspi->tx += dspi->oper_word_size;
 262}
 263
 264static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 265{
 266	switch (dspi->oper_word_size) {
 267	case 1:
 268		*(u8 *)dspi->rx = rxdata;
 269		break;
 270	case 2:
 271		*(u16 *)dspi->rx = rxdata;
 272		break;
 273	case 4:
 274		*(u32 *)dspi->rx = rxdata;
 275		break;
 276	}
 277	dspi->rx += dspi->oper_word_size;
 278}
 279
 280static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 281{
 282	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
 283	dspi->tx += sizeof(u32);
 284}
 285
 286static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 287{
 288	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
 289	dspi->rx += sizeof(u32);
 290}
 291
 292static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 293{
 294	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
 295	dspi->tx += sizeof(u16);
 296}
 297
 298static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 299{
 300	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
 301	dspi->rx += sizeof(u16);
 302}
 303
 304static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 305{
 306	u16 hi = *(u16 *)dspi->tx;
 307	u16 lo = *(u16 *)(dspi->tx + 2);
 308
 309	*txdata = (u32)hi << 16 | lo;
 310	dspi->tx += sizeof(u32);
 311}
 312
 313static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 314{
 315	u16 hi = rxdata & 0xffff;
 316	u16 lo = rxdata >> 16;
 317
 318	*(u16 *)dspi->rx = lo;
 319	*(u16 *)(dspi->rx + 2) = hi;
 320	dspi->rx += sizeof(u32);
 321}
 322
 323/*
 324 * Pop one word from the TX buffer for pushing into the
 325 * PUSHR register (TX FIFO)
 326 */
 327static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 328{
 329	u32 txdata = 0;
 330
 331	if (dspi->tx)
 332		dspi->host_to_dev(dspi, &txdata);
 333	dspi->len -= dspi->oper_word_size;
 334	return txdata;
 335}
 336
 337/* Prepare one TX FIFO entry (txdata plus cmd) */
 338static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 339{
 340	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 341
 342	if (spi_controller_is_slave(dspi->ctlr))
 343		return data;
 344
 345	if (dspi->len > 0)
 346		cmd |= SPI_PUSHR_CMD_CONT;
 347	return cmd << 16 | data;
 348}
 349
 350/* Push one word to the RX buffer from the POPR register (RX FIFO) */
 351static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 352{
 353	if (!dspi->rx)
 354		return;
 355	dspi->dev_to_host(dspi, rxdata);
 356}
 357
 358static void dspi_tx_dma_callback(void *arg)
 359{
 360	struct fsl_dspi *dspi = arg;
 361	struct fsl_dspi_dma *dma = dspi->dma;
 362
 363	complete(&dma->cmd_tx_complete);
 364}
 365
 366static void dspi_rx_dma_callback(void *arg)
 367{
 368	struct fsl_dspi *dspi = arg;
 369	struct fsl_dspi_dma *dma = dspi->dma;
 370	int i;
 371
 372	if (dspi->rx) {
 373		for (i = 0; i < dspi->words_in_flight; i++)
 374			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 375	}
 376
 377	complete(&dma->cmd_rx_complete);
 378}
 379
 380static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 381{
 382	struct device *dev = &dspi->pdev->dev;
 383	struct fsl_dspi_dma *dma = dspi->dma;
 384	int time_left;
 385	int i;
 386
 387	for (i = 0; i < dspi->words_in_flight; i++)
 388		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 389
 390	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 391					dma->tx_dma_phys,
 392					dspi->words_in_flight *
 393					DMA_SLAVE_BUSWIDTH_4_BYTES,
 394					DMA_MEM_TO_DEV,
 395					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 396	if (!dma->tx_desc) {
 397		dev_err(dev, "Not able to get desc for DMA xfer\n");
 398		return -EIO;
 399	}
 400
 401	dma->tx_desc->callback = dspi_tx_dma_callback;
 402	dma->tx_desc->callback_param = dspi;
 403	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 404		dev_err(dev, "DMA submit failed\n");
 405		return -EINVAL;
 406	}
 407
 408	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 409					dma->rx_dma_phys,
 410					dspi->words_in_flight *
 411					DMA_SLAVE_BUSWIDTH_4_BYTES,
 412					DMA_DEV_TO_MEM,
 413					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 414	if (!dma->rx_desc) {
 415		dev_err(dev, "Not able to get desc for DMA xfer\n");
 416		return -EIO;
 417	}
 418
 419	dma->rx_desc->callback = dspi_rx_dma_callback;
 420	dma->rx_desc->callback_param = dspi;
 421	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 422		dev_err(dev, "DMA submit failed\n");
 423		return -EINVAL;
 424	}
 425
 426	reinit_completion(&dspi->dma->cmd_rx_complete);
 427	reinit_completion(&dspi->dma->cmd_tx_complete);
 428
 429	dma_async_issue_pending(dma->chan_rx);
 430	dma_async_issue_pending(dma->chan_tx);
 431
 432	if (spi_controller_is_slave(dspi->ctlr)) {
 433		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 434		return 0;
 435	}
 436
 437	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 438						DMA_COMPLETION_TIMEOUT);
 439	if (time_left == 0) {
 440		dev_err(dev, "DMA tx timeout\n");
 441		dmaengine_terminate_all(dma->chan_tx);
 442		dmaengine_terminate_all(dma->chan_rx);
 443		return -ETIMEDOUT;
 444	}
 445
 446	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 447						DMA_COMPLETION_TIMEOUT);
 448	if (time_left == 0) {
 449		dev_err(dev, "DMA rx timeout\n");
 450		dmaengine_terminate_all(dma->chan_tx);
 451		dmaengine_terminate_all(dma->chan_rx);
 452		return -ETIMEDOUT;
 453	}
 454
 455	return 0;
 456}
 457
 458static void dspi_setup_accel(struct fsl_dspi *dspi);
 459
 460static int dspi_dma_xfer(struct fsl_dspi *dspi)
 461{
 462	struct spi_message *message = dspi->cur_msg;
 463	struct device *dev = &dspi->pdev->dev;
 464	int ret = 0;
 465
 466	/*
 467	 * dspi->len gets decremented by dspi_pop_tx_pushr in
 468	 * dspi_next_xfer_dma_submit
 469	 */
 470	while (dspi->len) {
 471		/* Figure out operational bits-per-word for this chunk */
 472		dspi_setup_accel(dspi);
 473
 474		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 475		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 476			dspi->words_in_flight = dspi->devtype_data->fifo_size;
 477
 478		message->actual_length += dspi->words_in_flight *
 479					  dspi->oper_word_size;
 480
 481		ret = dspi_next_xfer_dma_submit(dspi);
 482		if (ret) {
 483			dev_err(dev, "DMA transfer failed\n");
 484			break;
 485		}
 486	}
 487
 488	return ret;
 489}
 490
 491static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 492{
 493	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 494	struct device *dev = &dspi->pdev->dev;
 495	struct dma_slave_config cfg;
 496	struct fsl_dspi_dma *dma;
 497	int ret;
 498
 499	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 500	if (!dma)
 501		return -ENOMEM;
 502
 503	dma->chan_rx = dma_request_chan(dev, "rx");
 504	if (IS_ERR(dma->chan_rx)) {
 505		dev_err(dev, "rx dma channel not available\n");
 506		ret = PTR_ERR(dma->chan_rx);
 507		return ret;
 508	}
 509
 510	dma->chan_tx = dma_request_chan(dev, "tx");
 511	if (IS_ERR(dma->chan_tx)) {
 512		dev_err(dev, "tx dma channel not available\n");
 513		ret = PTR_ERR(dma->chan_tx);
 514		goto err_tx_channel;
 515	}
 516
 517	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 518					     dma_bufsize, &dma->tx_dma_phys,
 519					     GFP_KERNEL);
 520	if (!dma->tx_dma_buf) {
 521		ret = -ENOMEM;
 522		goto err_tx_dma_buf;
 523	}
 524
 525	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 526					     dma_bufsize, &dma->rx_dma_phys,
 527					     GFP_KERNEL);
 528	if (!dma->rx_dma_buf) {
 529		ret = -ENOMEM;
 530		goto err_rx_dma_buf;
 531	}
 532
 533	memset(&cfg, 0, sizeof(cfg));
 534	cfg.src_addr = phy_addr + SPI_POPR;
 535	cfg.dst_addr = phy_addr + SPI_PUSHR;
 536	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 537	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 538	cfg.src_maxburst = 1;
 539	cfg.dst_maxburst = 1;
 540
 541	cfg.direction = DMA_DEV_TO_MEM;
 542	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 543	if (ret) {
 544		dev_err(dev, "can't configure rx dma channel\n");
 545		ret = -EINVAL;
 546		goto err_slave_config;
 547	}
 548
 549	cfg.direction = DMA_MEM_TO_DEV;
 550	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 551	if (ret) {
 552		dev_err(dev, "can't configure tx dma channel\n");
 553		ret = -EINVAL;
 554		goto err_slave_config;
 555	}
 556
 557	dspi->dma = dma;
 558	init_completion(&dma->cmd_tx_complete);
 559	init_completion(&dma->cmd_rx_complete);
 560
 561	return 0;
 562
 563err_slave_config:
 564	dma_free_coherent(dma->chan_rx->device->dev,
 565			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 566err_rx_dma_buf:
 567	dma_free_coherent(dma->chan_tx->device->dev,
 568			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 569err_tx_dma_buf:
 570	dma_release_channel(dma->chan_tx);
 571err_tx_channel:
 572	dma_release_channel(dma->chan_rx);
 573
 574	devm_kfree(dev, dma);
 575	dspi->dma = NULL;
 576
 577	return ret;
 578}
 579
 580static void dspi_release_dma(struct fsl_dspi *dspi)
 581{
 582	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 583	struct fsl_dspi_dma *dma = dspi->dma;
 584
 585	if (!dma)
 586		return;
 587
 588	if (dma->chan_tx) {
 589		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
 590				  dma->tx_dma_buf, dma->tx_dma_phys);
 591		dma_release_channel(dma->chan_tx);
 592	}
 593
 594	if (dma->chan_rx) {
 595		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
 596				  dma->rx_dma_buf, dma->rx_dma_phys);
 597		dma_release_channel(dma->chan_rx);
 598	}
 599}
 600
 601static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 602			   unsigned long clkrate)
 603{
 604	/* Valid baud rate pre-scaler values */
 605	int pbr_tbl[4] = {2, 3, 5, 7};
 606	int brs[16] = {	2,	4,	6,	8,
 607			16,	32,	64,	128,
 608			256,	512,	1024,	2048,
 609			4096,	8192,	16384,	32768 };
 610	int scale_needed, scale, minscale = INT_MAX;
 611	int i, j;
 612
 613	scale_needed = clkrate / speed_hz;
 614	if (clkrate % speed_hz)
 615		scale_needed++;
 616
 617	for (i = 0; i < ARRAY_SIZE(brs); i++)
 618		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 619			scale = brs[i] * pbr_tbl[j];
 620			if (scale >= scale_needed) {
 621				if (scale < minscale) {
 622					minscale = scale;
 623					*br = i;
 624					*pbr = j;
 625				}
 626				break;
 627			}
 628		}
 629
 630	if (minscale == INT_MAX) {
 631		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 632			speed_hz, clkrate);
 633		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 634		*br =  ARRAY_SIZE(brs) - 1;
 635	}
 636}
 637
 638static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 639			   unsigned long clkrate)
 640{
 641	int scale_needed, scale, minscale = INT_MAX;
 642	int pscale_tbl[4] = {1, 3, 5, 7};
 643	u32 remainder;
 644	int i, j;
 645
 646	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 647				   &remainder);
 648	if (remainder)
 649		scale_needed++;
 650
 651	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 652		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 653			scale = pscale_tbl[i] * (2 << j);
 654			if (scale >= scale_needed) {
 655				if (scale < minscale) {
 656					minscale = scale;
 657					*psc = i;
 658					*sc = j;
 659				}
 660				break;
 661			}
 662		}
 663
 664	if (minscale == INT_MAX) {
 665		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 666			delay_ns, clkrate);
 667		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 668		*sc = SPI_CTAR_SCALE_BITS;
 669	}
 670}
 671
 672static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 673{
 674	/*
 675	 * The only time when the PCS doesn't need continuation after this word
 676	 * is when it's last. We need to look ahead, because we actually call
 677	 * dspi_pop_tx (the function that decrements dspi->len) _after_
 678	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 679	 * word is enough. If there's more to transmit than that,
 680	 * dspi_xspi_write will know to split the FIFO writes in 2, and
 681	 * generate a new PUSHR command with the final word that will have PCS
 682	 * deasserted (not continued) here.
 683	 */
 684	if (dspi->len > dspi->oper_word_size)
 685		cmd |= SPI_PUSHR_CMD_CONT;
 686	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 687}
 688
 689static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 690{
 691	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 692}
 693
 694static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 695{
 696	int num_bytes = num_words * dspi->oper_word_size;
 697	u16 tx_cmd = dspi->tx_cmd;
 698
 699	/*
 700	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 701	 * and cs_change does not want the PCS to stay on), then we need a new
 702	 * PUSHR command, since this one (for the body of the buffer)
 703	 * necessarily has the CONT bit set.
 704	 * So send one word less during this go, to force a split and a command
 705	 * with a single word next time, when CONT will be unset.
 706	 */
 707	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 708		tx_cmd |= SPI_PUSHR_CMD_EOQ;
 709
 710	/* Update CTARE */
 711	regmap_write(dspi->regmap, SPI_CTARE(0),
 712		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 713		     SPI_CTARE_DTCP(num_words));
 714
 715	/*
 716	 * Write the CMD FIFO entry first, and then the two
 717	 * corresponding TX FIFO entries (or one...).
 718	 */
 719	dspi_pushr_cmd_write(dspi, tx_cmd);
 720
 721	/* Fill TX FIFO with as many transfers as possible */
 722	while (num_words--) {
 723		u32 data = dspi_pop_tx(dspi);
 724
 725		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 726		if (dspi->oper_bits_per_word > 16)
 727			dspi_pushr_txdata_write(dspi, data >> 16);
 728	}
 729}
 730
 731static u32 dspi_popr_read(struct fsl_dspi *dspi)
 732{
 733	u32 rxdata = 0;
 734
 735	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 736	return rxdata;
 737}
 738
 739static void dspi_fifo_read(struct fsl_dspi *dspi)
 740{
 741	int num_fifo_entries = dspi->words_in_flight;
 742
 743	/* Read one FIFO entry and push to rx buffer */
 744	while (num_fifo_entries--)
 745		dspi_push_rx(dspi, dspi_popr_read(dspi));
 746}
 747
 748static void dspi_setup_accel(struct fsl_dspi *dspi)
 749{
 750	struct spi_transfer *xfer = dspi->cur_transfer;
 751	bool odd = !!(dspi->len & 1);
 752
 753	/* No accel for frames not multiple of 8 bits at the moment */
 754	if (xfer->bits_per_word % 8)
 755		goto no_accel;
 756
 757	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 758		dspi->oper_bits_per_word = 16;
 759	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 760		dspi->oper_bits_per_word = 8;
 761	} else {
 762		/* Start off with maximum supported by hardware */
 763		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 764			dspi->oper_bits_per_word = 32;
 765		else
 766			dspi->oper_bits_per_word = 16;
 767
 768		/*
 769		 * And go down only if the buffer can't be sent with
 770		 * words this big
 771		 */
 772		do {
 773			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 774				break;
 775
 776			dspi->oper_bits_per_word /= 2;
 777		} while (dspi->oper_bits_per_word > 8);
 778	}
 779
 780	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 781		dspi->dev_to_host = dspi_8on32_dev_to_host;
 782		dspi->host_to_dev = dspi_8on32_host_to_dev;
 783	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 784		dspi->dev_to_host = dspi_8on16_dev_to_host;
 785		dspi->host_to_dev = dspi_8on16_host_to_dev;
 786	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 787		dspi->dev_to_host = dspi_16on32_dev_to_host;
 788		dspi->host_to_dev = dspi_16on32_host_to_dev;
 789	} else {
 790no_accel:
 791		dspi->dev_to_host = dspi_native_dev_to_host;
 792		dspi->host_to_dev = dspi_native_host_to_dev;
 793		dspi->oper_bits_per_word = xfer->bits_per_word;
 794	}
 795
 796	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 797
 798	/*
 799	 * Update CTAR here (code is common for XSPI and DMA modes).
 800	 * We will update CTARE in the portion specific to XSPI, when we
 801	 * also know the preload value (DTCP).
 802	 */
 803	regmap_write(dspi->regmap, SPI_CTAR(0),
 804		     dspi->cur_chip->ctar_val |
 805		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 806}
 807
 808static void dspi_fifo_write(struct fsl_dspi *dspi)
 809{
 810	int num_fifo_entries = dspi->devtype_data->fifo_size;
 811	struct spi_transfer *xfer = dspi->cur_transfer;
 812	struct spi_message *msg = dspi->cur_msg;
 813	int num_words, num_bytes;
 814
 815	dspi_setup_accel(dspi);
 816
 817	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 818	if (dspi->oper_word_size == 4)
 819		num_fifo_entries /= 2;
 820
 821	/*
 822	 * Integer division intentionally trims off odd (or non-multiple of 4)
 823	 * numbers of bytes at the end of the buffer, which will be sent next
 824	 * time using a smaller oper_word_size.
 825	 */
 826	num_words = dspi->len / dspi->oper_word_size;
 827	if (num_words > num_fifo_entries)
 828		num_words = num_fifo_entries;
 829
 830	/* Update total number of bytes that were transferred */
 831	num_bytes = num_words * dspi->oper_word_size;
 832	msg->actual_length += num_bytes;
 833	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 834
 835	/*
 836	 * Update shared variable for use in the next interrupt (both in
 837	 * dspi_fifo_read and in dspi_fifo_write).
 838	 */
 839	dspi->words_in_flight = num_words;
 840
 841	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 842
 843	dspi_xspi_fifo_write(dspi, num_words);
 844	/*
 845	 * Everything after this point is in a potential race with the next
 846	 * interrupt, so we must never use dspi->words_in_flight again since it
 847	 * might already be modified by the next dspi_fifo_write.
 848	 */
 849
 850	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 851				dspi->progress, !dspi->irq);
 852}
 853
 854static int dspi_rxtx(struct fsl_dspi *dspi)
 855{
 856	dspi_fifo_read(dspi);
 857
 858	if (!dspi->len)
 859		/* Success! */
 860		return 0;
 861
 862	dspi_fifo_write(dspi);
 863
 864	return -EINPROGRESS;
 865}
 866
 867static int dspi_poll(struct fsl_dspi *dspi)
 868{
 869	int tries = 1000;
 870	u32 spi_sr;
 871
 872	do {
 873		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 874		regmap_write(dspi->regmap, SPI_SR, spi_sr);
 875
 876		if (spi_sr & SPI_SR_CMDTCF)
 877			break;
 878	} while (--tries);
 879
 880	if (!tries)
 881		return -ETIMEDOUT;
 882
 883	return dspi_rxtx(dspi);
 884}
 885
 886static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 887{
 888	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 889	u32 spi_sr;
 890
 891	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 892	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 893
 894	if (!(spi_sr & SPI_SR_CMDTCF))
 895		return IRQ_NONE;
 896
 897	if (dspi_rxtx(dspi) == 0)
 898		complete(&dspi->xfer_done);
 899
 900	return IRQ_HANDLED;
 901}
 902
 903static void dspi_assert_cs(struct spi_device *spi, bool *cs)
 904{
 905	if (!spi->cs_gpiod || *cs)
 906		return;
 907
 908	gpiod_set_value_cansleep(spi->cs_gpiod, true);
 909	*cs = true;
 910}
 911
 912static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
 913{
 914	if (!spi->cs_gpiod || !*cs)
 915		return;
 916
 917	gpiod_set_value_cansleep(spi->cs_gpiod, false);
 918	*cs = false;
 919}
 920
 921static int dspi_transfer_one_message(struct spi_controller *ctlr,
 922				     struct spi_message *message)
 923{
 924	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 925	struct spi_device *spi = message->spi;
 926	struct spi_transfer *transfer;
 927	bool cs = false;
 928	int status = 0;
 929
 930	message->actual_length = 0;
 931
 932	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 933		dspi->cur_transfer = transfer;
 934		dspi->cur_msg = message;
 935		dspi->cur_chip = spi_get_ctldata(spi);
 936
 937		dspi_assert_cs(spi, &cs);
 938
 939		/* Prepare command word for CMD FIFO */
 940		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
 941		if (!spi->cs_gpiod)
 942			dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi->chip_select);
 943
 944		if (list_is_last(&dspi->cur_transfer->transfer_list,
 945				 &dspi->cur_msg->transfers)) {
 946			/* Leave PCS activated after last transfer when
 947			 * cs_change is set.
 948			 */
 949			if (transfer->cs_change)
 950				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 951		} else {
 952			/* Keep PCS active between transfers in same message
 953			 * when cs_change is not set, and de-activate PCS
 954			 * between transfers in the same message when
 955			 * cs_change is set.
 956			 */
 957			if (!transfer->cs_change)
 958				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 959		}
 960
 961		dspi->tx = transfer->tx_buf;
 962		dspi->rx = transfer->rx_buf;
 963		dspi->len = transfer->len;
 964		dspi->progress = 0;
 965
 966		regmap_update_bits(dspi->regmap, SPI_MCR,
 967				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 968				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 969
 970		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 971				       dspi->progress, !dspi->irq);
 972
 973		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 974			status = dspi_dma_xfer(dspi);
 975		} else {
 976			dspi_fifo_write(dspi);
 977
 978			if (dspi->irq) {
 979				wait_for_completion(&dspi->xfer_done);
 980				reinit_completion(&dspi->xfer_done);
 981			} else {
 982				do {
 983					status = dspi_poll(dspi);
 984				} while (status == -EINPROGRESS);
 985			}
 986		}
 987		if (status)
 988			break;
 989
 990		spi_transfer_delay_exec(transfer);
 991
 992		if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
 993			dspi_deassert_cs(spi, &cs);
 994	}
 995
 996	message->status = status;
 997	spi_finalize_current_message(ctlr);
 998
 999	return status;
1000}
1001
1002static int dspi_setup(struct spi_device *spi)
1003{
1004	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
 
1005	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 
1006	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1007	struct fsl_dspi_platform_data *pdata;
1008	unsigned char pasc = 0, asc = 0;
 
1009	struct chip_data *chip;
1010	unsigned long clkrate;
1011	bool cs = true;
 
1012
1013	/* Only alloc on first setup */
1014	chip = spi_get_ctldata(spi);
1015	if (chip == NULL) {
1016		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1017		if (!chip)
1018			return -ENOMEM;
1019	}
1020
1021	pdata = dev_get_platdata(&dspi->pdev->dev);
1022
1023	if (!pdata) {
1024		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
1025				     &cs_sck_delay);
1026
1027		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1028				     &sck_cs_delay);
 
 
 
 
 
 
 
 
1029	} else {
1030		cs_sck_delay = pdata->cs_sck_delay;
1031		sck_cs_delay = pdata->sck_cs_delay;
1032	}
1033
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	clkrate = clk_get_rate(dspi->clk);
1035	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1036
1037	/* Set PCS to SCK delay scale values */
1038	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1039
1040	/* Set After SCK delay scale values */
1041	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1042
1043	chip->ctar_val = 0;
1044	if (spi->mode & SPI_CPOL)
1045		chip->ctar_val |= SPI_CTAR_CPOL;
1046	if (spi->mode & SPI_CPHA)
1047		chip->ctar_val |= SPI_CTAR_CPHA;
1048
1049	if (!spi_controller_is_slave(dspi->ctlr)) {
1050		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1051				  SPI_CTAR_CSSCK(cssck) |
1052				  SPI_CTAR_PASC(pasc) |
1053				  SPI_CTAR_ASC(asc) |
1054				  SPI_CTAR_PBR(pbr) |
1055				  SPI_CTAR_BR(br);
1056
1057		if (spi->mode & SPI_LSB_FIRST)
1058			chip->ctar_val |= SPI_CTAR_LSBFE;
1059	}
1060
1061	gpiod_direction_output(spi->cs_gpiod, false);
 
 
 
1062	dspi_deassert_cs(spi, &cs);
1063
1064	spi_set_ctldata(spi, chip);
1065
1066	return 0;
1067}
1068
1069static void dspi_cleanup(struct spi_device *spi)
1070{
1071	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1072
1073	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1074		spi->controller->bus_num, spi->chip_select);
1075
1076	kfree(chip);
1077}
1078
1079static const struct of_device_id fsl_dspi_dt_ids[] = {
1080	{
1081		.compatible = "fsl,vf610-dspi",
1082		.data = &devtype_data[VF610],
1083	}, {
1084		.compatible = "fsl,ls1021a-v1.0-dspi",
1085		.data = &devtype_data[LS1021A],
1086	}, {
1087		.compatible = "fsl,ls1012a-dspi",
1088		.data = &devtype_data[LS1012A],
1089	}, {
1090		.compatible = "fsl,ls1028a-dspi",
1091		.data = &devtype_data[LS1028A],
1092	}, {
1093		.compatible = "fsl,ls1043a-dspi",
1094		.data = &devtype_data[LS1043A],
1095	}, {
1096		.compatible = "fsl,ls1046a-dspi",
1097		.data = &devtype_data[LS1046A],
1098	}, {
1099		.compatible = "fsl,ls2080a-dspi",
1100		.data = &devtype_data[LS2080A],
1101	}, {
1102		.compatible = "fsl,ls2085a-dspi",
1103		.data = &devtype_data[LS2085A],
1104	}, {
1105		.compatible = "fsl,lx2160a-dspi",
1106		.data = &devtype_data[LX2160A],
1107	},
1108	{ /* sentinel */ }
1109};
1110MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1111
1112#ifdef CONFIG_PM_SLEEP
1113static int dspi_suspend(struct device *dev)
1114{
1115	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1116
1117	if (dspi->irq)
1118		disable_irq(dspi->irq);
1119	spi_controller_suspend(dspi->ctlr);
1120	clk_disable_unprepare(dspi->clk);
1121
1122	pinctrl_pm_select_sleep_state(dev);
1123
1124	return 0;
1125}
1126
1127static int dspi_resume(struct device *dev)
1128{
1129	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1130	int ret;
1131
1132	pinctrl_pm_select_default_state(dev);
1133
1134	ret = clk_prepare_enable(dspi->clk);
1135	if (ret)
1136		return ret;
1137	spi_controller_resume(dspi->ctlr);
1138	if (dspi->irq)
1139		enable_irq(dspi->irq);
1140
1141	return 0;
1142}
1143#endif /* CONFIG_PM_SLEEP */
1144
1145static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1146
1147static const struct regmap_range dspi_volatile_ranges[] = {
1148	regmap_reg_range(SPI_MCR, SPI_TCR),
1149	regmap_reg_range(SPI_SR, SPI_SR),
1150	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1151};
1152
1153static const struct regmap_access_table dspi_volatile_table = {
1154	.yes_ranges	= dspi_volatile_ranges,
1155	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1156};
1157
1158static const struct regmap_config dspi_regmap_config = {
1159	.reg_bits	= 32,
1160	.val_bits	= 32,
1161	.reg_stride	= 4,
1162	.max_register	= 0x88,
1163	.volatile_table	= &dspi_volatile_table,
1164};
1165
1166static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1167	regmap_reg_range(SPI_MCR, SPI_TCR),
1168	regmap_reg_range(SPI_SR, SPI_SR),
1169	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1170	regmap_reg_range(SPI_SREX, SPI_SREX),
1171};
1172
1173static const struct regmap_access_table dspi_xspi_volatile_table = {
1174	.yes_ranges	= dspi_xspi_volatile_ranges,
1175	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1176};
1177
1178static const struct regmap_config dspi_xspi_regmap_config[] = {
1179	{
1180		.reg_bits	= 32,
1181		.val_bits	= 32,
1182		.reg_stride	= 4,
1183		.max_register	= 0x13c,
1184		.volatile_table	= &dspi_xspi_volatile_table,
1185	},
1186	{
1187		.name		= "pushr",
1188		.reg_bits	= 16,
1189		.val_bits	= 16,
1190		.reg_stride	= 2,
1191		.max_register	= 0x2,
1192	},
1193};
1194
1195static int dspi_init(struct fsl_dspi *dspi)
1196{
1197	unsigned int mcr;
1198
1199	/* Set idle states for all chip select signals to high */
1200	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1201
1202	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1203		mcr |= SPI_MCR_XSPI;
1204	if (!spi_controller_is_slave(dspi->ctlr))
1205		mcr |= SPI_MCR_MASTER;
1206
1207	regmap_write(dspi->regmap, SPI_MCR, mcr);
1208	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1209
1210	switch (dspi->devtype_data->trans_mode) {
1211	case DSPI_XSPI_MODE:
1212		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1213		break;
1214	case DSPI_DMA_MODE:
1215		regmap_write(dspi->regmap, SPI_RSER,
1216			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1217			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1218		break;
1219	default:
1220		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1221			dspi->devtype_data->trans_mode);
1222		return -EINVAL;
1223	}
1224
1225	return 0;
1226}
1227
1228static int dspi_slave_abort(struct spi_master *master)
1229{
1230	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1231
1232	/*
1233	 * Terminate all pending DMA transactions for the SPI working
1234	 * in SLAVE mode.
1235	 */
1236	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1237		dmaengine_terminate_sync(dspi->dma->chan_rx);
1238		dmaengine_terminate_sync(dspi->dma->chan_tx);
1239	}
1240
1241	/* Clear the internal DSPI RX and TX FIFO buffers */
1242	regmap_update_bits(dspi->regmap, SPI_MCR,
1243			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1244			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1245
1246	return 0;
1247}
1248
1249static int dspi_probe(struct platform_device *pdev)
1250{
1251	struct device_node *np = pdev->dev.of_node;
1252	const struct regmap_config *regmap_config;
1253	struct fsl_dspi_platform_data *pdata;
1254	struct spi_controller *ctlr;
1255	int ret, cs_num, bus_num = -1;
1256	struct fsl_dspi *dspi;
1257	struct resource *res;
1258	void __iomem *base;
1259	bool big_endian;
1260
1261	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1262	if (!dspi)
1263		return -ENOMEM;
1264
1265	ctlr = spi_alloc_master(&pdev->dev, 0);
1266	if (!ctlr)
1267		return -ENOMEM;
1268
1269	spi_controller_set_devdata(ctlr, dspi);
1270	platform_set_drvdata(pdev, dspi);
1271
1272	dspi->pdev = pdev;
1273	dspi->ctlr = ctlr;
1274
1275	ctlr->setup = dspi_setup;
1276	ctlr->transfer_one_message = dspi_transfer_one_message;
1277	ctlr->dev.of_node = pdev->dev.of_node;
1278
1279	ctlr->cleanup = dspi_cleanup;
1280	ctlr->slave_abort = dspi_slave_abort;
1281	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1282	ctlr->use_gpio_descriptors = true;
1283
1284	pdata = dev_get_platdata(&pdev->dev);
1285	if (pdata) {
1286		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1287		ctlr->bus_num = pdata->bus_num;
1288
1289		/* Only Coldfire uses platform data */
1290		dspi->devtype_data = &devtype_data[MCF5441X];
1291		big_endian = true;
1292	} else {
1293
1294		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1295		if (ret < 0) {
1296			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1297			goto out_ctlr_put;
1298		}
1299		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1300
1301		of_property_read_u32(np, "bus-num", &bus_num);
1302		ctlr->bus_num = bus_num;
1303
1304		if (of_property_read_bool(np, "spi-slave"))
1305			ctlr->slave = true;
1306
1307		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1308		if (!dspi->devtype_data) {
1309			dev_err(&pdev->dev, "can't get devtype_data\n");
1310			ret = -EFAULT;
1311			goto out_ctlr_put;
1312		}
1313
1314		big_endian = of_device_is_big_endian(np);
1315	}
1316	if (big_endian) {
1317		dspi->pushr_cmd = 0;
1318		dspi->pushr_tx = 2;
1319	} else {
1320		dspi->pushr_cmd = 2;
1321		dspi->pushr_tx = 0;
1322	}
1323
1324	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1325		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1326	else
1327		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1328
1329	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1330	if (IS_ERR(base)) {
1331		ret = PTR_ERR(base);
1332		goto out_ctlr_put;
1333	}
1334
1335	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1336		regmap_config = &dspi_xspi_regmap_config[0];
1337	else
1338		regmap_config = &dspi_regmap_config;
1339	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1340	if (IS_ERR(dspi->regmap)) {
1341		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1342				PTR_ERR(dspi->regmap));
1343		ret = PTR_ERR(dspi->regmap);
1344		goto out_ctlr_put;
1345	}
1346
1347	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1348		dspi->regmap_pushr = devm_regmap_init_mmio(
1349			&pdev->dev, base + SPI_PUSHR,
1350			&dspi_xspi_regmap_config[1]);
1351		if (IS_ERR(dspi->regmap_pushr)) {
1352			dev_err(&pdev->dev,
1353				"failed to init pushr regmap: %ld\n",
1354				PTR_ERR(dspi->regmap_pushr));
1355			ret = PTR_ERR(dspi->regmap_pushr);
1356			goto out_ctlr_put;
1357		}
1358	}
1359
1360	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1361	if (IS_ERR(dspi->clk)) {
1362		ret = PTR_ERR(dspi->clk);
1363		dev_err(&pdev->dev, "unable to get clock\n");
1364		goto out_ctlr_put;
1365	}
1366	ret = clk_prepare_enable(dspi->clk);
1367	if (ret)
1368		goto out_ctlr_put;
1369
1370	ret = dspi_init(dspi);
1371	if (ret)
1372		goto out_clk_put;
1373
1374	dspi->irq = platform_get_irq(pdev, 0);
1375	if (dspi->irq <= 0) {
1376		dev_info(&pdev->dev,
1377			 "can't get platform irq, using poll mode\n");
1378		dspi->irq = 0;
1379		goto poll_mode;
1380	}
1381
1382	init_completion(&dspi->xfer_done);
1383
1384	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1385				   IRQF_SHARED, pdev->name, dspi);
1386	if (ret < 0) {
1387		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1388		goto out_clk_put;
1389	}
1390
1391poll_mode:
1392
1393	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1394		ret = dspi_request_dma(dspi, res->start);
1395		if (ret < 0) {
1396			dev_err(&pdev->dev, "can't get dma channels\n");
1397			goto out_free_irq;
1398		}
1399	}
1400
1401	ctlr->max_speed_hz =
1402		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1403
1404	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1405		ctlr->ptp_sts_supported = true;
1406
1407	ret = spi_register_controller(ctlr);
1408	if (ret != 0) {
1409		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1410		goto out_release_dma;
1411	}
1412
1413	return ret;
1414
1415out_release_dma:
1416	dspi_release_dma(dspi);
1417out_free_irq:
1418	if (dspi->irq)
1419		free_irq(dspi->irq, dspi);
1420out_clk_put:
1421	clk_disable_unprepare(dspi->clk);
1422out_ctlr_put:
1423	spi_controller_put(ctlr);
1424
1425	return ret;
1426}
1427
1428static int dspi_remove(struct platform_device *pdev)
1429{
1430	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1431
1432	/* Disconnect from the SPI framework */
1433	spi_unregister_controller(dspi->ctlr);
1434
1435	/* Disable RX and TX */
1436	regmap_update_bits(dspi->regmap, SPI_MCR,
1437			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1438			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1439
1440	/* Stop Running */
1441	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1442
1443	dspi_release_dma(dspi);
1444	if (dspi->irq)
1445		free_irq(dspi->irq, dspi);
1446	clk_disable_unprepare(dspi->clk);
1447
1448	return 0;
1449}
1450
1451static void dspi_shutdown(struct platform_device *pdev)
1452{
1453	dspi_remove(pdev);
1454}
1455
1456static struct platform_driver fsl_dspi_driver = {
1457	.driver.name		= DRIVER_NAME,
1458	.driver.of_match_table	= fsl_dspi_dt_ids,
1459	.driver.owner		= THIS_MODULE,
1460	.driver.pm		= &dspi_pm,
1461	.probe			= dspi_probe,
1462	.remove			= dspi_remove,
1463	.shutdown		= dspi_shutdown,
1464};
1465module_platform_driver(fsl_dspi_driver);
1466
1467MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1468MODULE_LICENSE("GPL");
1469MODULE_ALIAS("platform:" DRIVER_NAME);