Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
 
  27#include <linux/device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/pci_hotplug.h>
  30#include <linux/vmalloc.h>
  31#include <asm/dma.h>
  32#include <linux/aer.h>
  33#include <linux/bitfield.h>
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43#ifdef CONFIG_X86_32
  44int isa_dma_bridge_buggy;
  45EXPORT_SYMBOL(isa_dma_bridge_buggy);
  46#endif
  47
  48int pci_pci_problems;
  49EXPORT_SYMBOL(pci_pci_problems);
  50
  51unsigned int pci_pm_d3hot_delay;
  52
  53static void pci_pme_list_scan(struct work_struct *work);
  54
  55static LIST_HEAD(pci_pme_list);
  56static DEFINE_MUTEX(pci_pme_list_mutex);
  57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  58
  59struct pci_pme_device {
  60	struct list_head list;
  61	struct pci_dev *dev;
  62};
  63
  64#define PME_TIMEOUT 1000 /* How long between PME checks */
  65
  66/*
  67 * Following exit from Conventional Reset, devices must be ready within 1 sec
  68 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
  69 * Reset (PCIe r6.0 sec 5.8).
  70 */
  71#define PCI_RESET_WAIT 1000 /* msec */
  72
  73/*
  74 * Devices may extend the 1 sec period through Request Retry Status
  75 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
  76 * limit, but 60 sec ought to be enough for any device to become
  77 * responsive.
  78 */
  79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
  80
  81static void pci_dev_d3_sleep(struct pci_dev *dev)
  82{
  83	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  84	unsigned int upper;
  85
  86	if (delay_ms) {
  87		/* Use a 20% upper bound, 1ms minimum */
  88		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  89		usleep_range(delay_ms * USEC_PER_MSEC,
  90			     (delay_ms + upper) * USEC_PER_MSEC);
  91	}
  92}
  93
  94bool pci_reset_supported(struct pci_dev *dev)
  95{
  96	return dev->reset_methods[0] != 0;
  97}
  98
  99#ifdef CONFIG_PCI_DOMAINS
 100int pci_domains_supported = 1;
 101#endif
 102
 103#define DEFAULT_CARDBUS_IO_SIZE		(256)
 104#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
 105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
 106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
 107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
 108
 109#define DEFAULT_HOTPLUG_IO_SIZE		(256)
 110#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
 111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
 112/* hpiosize=nn can override this */
 113unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 114/*
 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 117 * pci=hpmemsize=nnM overrides both
 118 */
 119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 121
 122#define DEFAULT_HOTPLUG_BUS_SIZE	1
 123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 124
 125
 126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 129#elif defined CONFIG_PCIE_BUS_SAFE
 130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 133#elif defined CONFIG_PCIE_BUS_PEER2PEER
 134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 135#else
 136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 137#endif
 138
 139/*
 140 * The default CLS is used if arch didn't set CLS explicitly and not
 141 * all pci devices agree on the same value.  Arch can override either
 142 * the dfl or actual value as it sees fit.  Don't forget this is
 143 * measured in 32-bit words, not bytes.
 144 */
 145u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
 146u8 pci_cache_line_size __ro_after_init ;
 147
 148/*
 149 * If we set up a device for bus mastering, we need to check the latency
 150 * timer as certain BIOSes forget to set it properly.
 151 */
 152unsigned int pcibios_max_latency = 255;
 153
 154/* If set, the PCIe ARI capability will not be used. */
 155static bool pcie_ari_disabled;
 156
 157/* If set, the PCIe ATS capability will not be used. */
 158static bool pcie_ats_disabled;
 159
 160/* If set, the PCI config space of each device is printed during boot. */
 161bool pci_early_dump;
 162
 163bool pci_ats_disabled(void)
 164{
 165	return pcie_ats_disabled;
 166}
 167EXPORT_SYMBOL_GPL(pci_ats_disabled);
 168
 169/* Disable bridge_d3 for all PCIe ports */
 170static bool pci_bridge_d3_disable;
 171/* Force bridge_d3 for all PCIe ports */
 172static bool pci_bridge_d3_force;
 173
 174static int __init pcie_port_pm_setup(char *str)
 175{
 176	if (!strcmp(str, "off"))
 177		pci_bridge_d3_disable = true;
 178	else if (!strcmp(str, "force"))
 179		pci_bridge_d3_force = true;
 180	return 1;
 181}
 182__setup("pcie_port_pm=", pcie_port_pm_setup);
 183
 
 
 
 184/**
 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 186 * @bus: pointer to PCI bus structure to search
 187 *
 188 * Given a PCI bus, returns the highest PCI bus number present in the set
 189 * including the given PCI bus and its list of child PCI buses.
 190 */
 191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 192{
 193	struct pci_bus *tmp;
 194	unsigned char max, n;
 195
 196	max = bus->busn_res.end;
 197	list_for_each_entry(tmp, &bus->children, node) {
 198		n = pci_bus_max_busnr(tmp);
 199		if (n > max)
 200			max = n;
 201	}
 202	return max;
 203}
 204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 205
 206/**
 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 208 * @pdev: the PCI device
 209 *
 210 * Returns error bits set in PCI_STATUS and clears them.
 211 */
 212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 213{
 214	u16 status;
 215	int ret;
 216
 217	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 218	if (ret != PCIBIOS_SUCCESSFUL)
 219		return -EIO;
 220
 221	status &= PCI_STATUS_ERROR_BITS;
 222	if (status)
 223		pci_write_config_word(pdev, PCI_STATUS, status);
 224
 225	return status;
 226}
 227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 228
 229#ifdef CONFIG_HAS_IOMEM
 230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 231					    bool write_combine)
 232{
 233	struct resource *res = &pdev->resource[bar];
 234	resource_size_t start = res->start;
 235	resource_size_t size = resource_size(res);
 236
 237	/*
 238	 * Make sure the BAR is actually a memory resource, not an IO resource
 239	 */
 240	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 241		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 242		return NULL;
 243	}
 244
 245	if (write_combine)
 246		return ioremap_wc(start, size);
 247
 248	return ioremap(start, size);
 249}
 250
 251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 252{
 253	return __pci_ioremap_resource(pdev, bar, false);
 254}
 255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 256
 257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 258{
 259	return __pci_ioremap_resource(pdev, bar, true);
 260}
 261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 262#endif
 263
 264/**
 265 * pci_dev_str_match_path - test if a path string matches a device
 266 * @dev: the PCI device to test
 267 * @path: string to match the device against
 268 * @endptr: pointer to the string after the match
 269 *
 270 * Test if a string (typically from a kernel parameter) formatted as a
 271 * path of device/function addresses matches a PCI device. The string must
 272 * be of the form:
 273 *
 274 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 275 *
 276 * A path for a device can be obtained using 'lspci -t'.  Using a path
 277 * is more robust against bus renumbering than using only a single bus,
 278 * device and function address.
 279 *
 280 * Returns 1 if the string matches the device, 0 if it does not and
 281 * a negative error code if it fails to parse the string.
 282 */
 283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 284				  const char **endptr)
 285{
 286	int ret;
 287	unsigned int seg, bus, slot, func;
 288	char *wpath, *p;
 289	char end;
 290
 291	*endptr = strchrnul(path, ';');
 292
 293	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 294	if (!wpath)
 295		return -ENOMEM;
 296
 297	while (1) {
 298		p = strrchr(wpath, '/');
 299		if (!p)
 300			break;
 301		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 302		if (ret != 2) {
 303			ret = -EINVAL;
 304			goto free_and_exit;
 305		}
 306
 307		if (dev->devfn != PCI_DEVFN(slot, func)) {
 308			ret = 0;
 309			goto free_and_exit;
 310		}
 311
 312		/*
 313		 * Note: we don't need to get a reference to the upstream
 314		 * bridge because we hold a reference to the top level
 315		 * device which should hold a reference to the bridge,
 316		 * and so on.
 317		 */
 318		dev = pci_upstream_bridge(dev);
 319		if (!dev) {
 320			ret = 0;
 321			goto free_and_exit;
 322		}
 323
 324		*p = 0;
 325	}
 326
 327	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 328		     &func, &end);
 329	if (ret != 4) {
 330		seg = 0;
 331		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 332		if (ret != 3) {
 333			ret = -EINVAL;
 334			goto free_and_exit;
 335		}
 336	}
 337
 338	ret = (seg == pci_domain_nr(dev->bus) &&
 339	       bus == dev->bus->number &&
 340	       dev->devfn == PCI_DEVFN(slot, func));
 341
 342free_and_exit:
 343	kfree(wpath);
 344	return ret;
 345}
 346
 347/**
 348 * pci_dev_str_match - test if a string matches a device
 349 * @dev: the PCI device to test
 350 * @p: string to match the device against
 351 * @endptr: pointer to the string after the match
 352 *
 353 * Test if a string (typically from a kernel parameter) matches a specified
 354 * PCI device. The string may be of one of the following formats:
 355 *
 356 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 357 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 358 *
 359 * The first format specifies a PCI bus/device/function address which
 360 * may change if new hardware is inserted, if motherboard firmware changes,
 361 * or due to changes caused in kernel parameters. If the domain is
 362 * left unspecified, it is taken to be 0.  In order to be robust against
 363 * bus renumbering issues, a path of PCI device/function numbers may be used
 364 * to address the specific device.  The path for a device can be determined
 365 * through the use of 'lspci -t'.
 366 *
 367 * The second format matches devices using IDs in the configuration
 368 * space which may match multiple devices in the system. A value of 0
 369 * for any field will match all devices. (Note: this differs from
 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 371 * legacy reasons and convenience so users don't have to specify
 372 * FFFFFFFFs on the command line.)
 373 *
 374 * Returns 1 if the string matches the device, 0 if it does not and
 375 * a negative error code if the string cannot be parsed.
 376 */
 377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 378			     const char **endptr)
 379{
 380	int ret;
 381	int count;
 382	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 383
 384	if (strncmp(p, "pci:", 4) == 0) {
 385		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 386		p += 4;
 387		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 388			     &subsystem_vendor, &subsystem_device, &count);
 389		if (ret != 4) {
 390			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 391			if (ret != 2)
 392				return -EINVAL;
 393
 394			subsystem_vendor = 0;
 395			subsystem_device = 0;
 396		}
 397
 398		p += count;
 399
 400		if ((!vendor || vendor == dev->vendor) &&
 401		    (!device || device == dev->device) &&
 402		    (!subsystem_vendor ||
 403			    subsystem_vendor == dev->subsystem_vendor) &&
 404		    (!subsystem_device ||
 405			    subsystem_device == dev->subsystem_device))
 406			goto found;
 407	} else {
 408		/*
 409		 * PCI Bus, Device, Function IDs are specified
 410		 * (optionally, may include a path of devfns following it)
 411		 */
 412		ret = pci_dev_str_match_path(dev, p, &p);
 413		if (ret < 0)
 414			return ret;
 415		else if (ret)
 416			goto found;
 417	}
 418
 419	*endptr = p;
 420	return 0;
 421
 422found:
 423	*endptr = p;
 424	return 1;
 425}
 426
 427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 428				  u8 pos, int cap, int *ttl)
 429{
 430	u8 id;
 431	u16 ent;
 432
 433	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 434
 435	while ((*ttl)--) {
 436		if (pos < 0x40)
 437			break;
 438		pos &= ~3;
 439		pci_bus_read_config_word(bus, devfn, pos, &ent);
 440
 441		id = ent & 0xff;
 442		if (id == 0xff)
 443			break;
 444		if (id == cap)
 445			return pos;
 446		pos = (ent >> 8);
 447	}
 448	return 0;
 449}
 450
 451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 452			      u8 pos, int cap)
 453{
 454	int ttl = PCI_FIND_CAP_TTL;
 455
 456	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 457}
 458
 459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 460{
 461	return __pci_find_next_cap(dev->bus, dev->devfn,
 462				   pos + PCI_CAP_LIST_NEXT, cap);
 463}
 464EXPORT_SYMBOL_GPL(pci_find_next_capability);
 465
 466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 467				    unsigned int devfn, u8 hdr_type)
 468{
 469	u16 status;
 470
 471	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 472	if (!(status & PCI_STATUS_CAP_LIST))
 473		return 0;
 474
 475	switch (hdr_type) {
 476	case PCI_HEADER_TYPE_NORMAL:
 477	case PCI_HEADER_TYPE_BRIDGE:
 478		return PCI_CAPABILITY_LIST;
 479	case PCI_HEADER_TYPE_CARDBUS:
 480		return PCI_CB_CAPABILITY_LIST;
 481	}
 482
 483	return 0;
 484}
 485
 486/**
 487 * pci_find_capability - query for devices' capabilities
 488 * @dev: PCI device to query
 489 * @cap: capability code
 490 *
 491 * Tell if a device supports a given PCI capability.
 492 * Returns the address of the requested capability structure within the
 493 * device's PCI configuration space or 0 in case the device does not
 494 * support it.  Possible values for @cap include:
 495 *
 496 *  %PCI_CAP_ID_PM           Power Management
 497 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 498 *  %PCI_CAP_ID_VPD          Vital Product Data
 499 *  %PCI_CAP_ID_SLOTID       Slot Identification
 500 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 501 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 502 *  %PCI_CAP_ID_PCIX         PCI-X
 503 *  %PCI_CAP_ID_EXP          PCI Express
 504 */
 505u8 pci_find_capability(struct pci_dev *dev, int cap)
 506{
 507	u8 pos;
 508
 509	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 510	if (pos)
 511		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 512
 513	return pos;
 514}
 515EXPORT_SYMBOL(pci_find_capability);
 516
 517/**
 518 * pci_bus_find_capability - query for devices' capabilities
 519 * @bus: the PCI bus to query
 520 * @devfn: PCI device to query
 521 * @cap: capability code
 522 *
 523 * Like pci_find_capability() but works for PCI devices that do not have a
 524 * pci_dev structure set up yet.
 525 *
 526 * Returns the address of the requested capability structure within the
 527 * device's PCI configuration space or 0 in case the device does not
 528 * support it.
 529 */
 530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 531{
 532	u8 hdr_type, pos;
 533
 534	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 535
 536	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
 537	if (pos)
 538		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 539
 540	return pos;
 541}
 542EXPORT_SYMBOL(pci_bus_find_capability);
 543
 544/**
 545 * pci_find_next_ext_capability - Find an extended capability
 546 * @dev: PCI device to query
 547 * @start: address at which to start looking (0 to start at beginning of list)
 548 * @cap: capability code
 549 *
 550 * Returns the address of the next matching extended capability structure
 551 * within the device's PCI configuration space or 0 if the device does
 552 * not support it.  Some capabilities can occur several times, e.g., the
 553 * vendor-specific capability, and this provides a way to find them all.
 554 */
 555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 556{
 557	u32 header;
 558	int ttl;
 559	u16 pos = PCI_CFG_SPACE_SIZE;
 560
 561	/* minimum 8 bytes per capability */
 562	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 563
 564	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 565		return 0;
 566
 567	if (start)
 568		pos = start;
 569
 570	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 571		return 0;
 572
 573	/*
 574	 * If we have no capabilities, this is indicated by cap ID,
 575	 * cap version and next pointer all being 0.
 576	 */
 577	if (header == 0)
 578		return 0;
 579
 580	while (ttl-- > 0) {
 581		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 582			return pos;
 583
 584		pos = PCI_EXT_CAP_NEXT(header);
 585		if (pos < PCI_CFG_SPACE_SIZE)
 586			break;
 587
 588		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 589			break;
 590	}
 591
 592	return 0;
 593}
 594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 595
 596/**
 597 * pci_find_ext_capability - Find an extended capability
 598 * @dev: PCI device to query
 599 * @cap: capability code
 600 *
 601 * Returns the address of the requested extended capability structure
 602 * within the device's PCI configuration space or 0 if the device does
 603 * not support it.  Possible values for @cap include:
 604 *
 605 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 606 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 607 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 608 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 609 */
 610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 611{
 612	return pci_find_next_ext_capability(dev, 0, cap);
 613}
 614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 615
 616/**
 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 618 * @dev: PCI device to query
 619 *
 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 621 * Number.
 622 *
 623 * Returns the DSN, or zero if the capability does not exist.
 624 */
 625u64 pci_get_dsn(struct pci_dev *dev)
 626{
 627	u32 dword;
 628	u64 dsn;
 629	int pos;
 630
 631	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 632	if (!pos)
 633		return 0;
 634
 635	/*
 636	 * The Device Serial Number is two dwords offset 4 bytes from the
 637	 * capability position. The specification says that the first dword is
 638	 * the lower half, and the second dword is the upper half.
 639	 */
 640	pos += 4;
 641	pci_read_config_dword(dev, pos, &dword);
 642	dsn = (u64)dword;
 643	pci_read_config_dword(dev, pos + 4, &dword);
 644	dsn |= ((u64)dword) << 32;
 645
 646	return dsn;
 647}
 648EXPORT_SYMBOL_GPL(pci_get_dsn);
 649
 650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 651{
 652	int rc, ttl = PCI_FIND_CAP_TTL;
 653	u8 cap, mask;
 654
 655	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 656		mask = HT_3BIT_CAP_MASK;
 657	else
 658		mask = HT_5BIT_CAP_MASK;
 659
 660	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 661				      PCI_CAP_ID_HT, &ttl);
 662	while (pos) {
 663		rc = pci_read_config_byte(dev, pos + 3, &cap);
 664		if (rc != PCIBIOS_SUCCESSFUL)
 665			return 0;
 666
 667		if ((cap & mask) == ht_cap)
 668			return pos;
 669
 670		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 671					      pos + PCI_CAP_LIST_NEXT,
 672					      PCI_CAP_ID_HT, &ttl);
 673	}
 674
 675	return 0;
 676}
 677
 678/**
 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 680 * @dev: PCI device to query
 681 * @pos: Position from which to continue searching
 682 * @ht_cap: HyperTransport capability code
 683 *
 684 * To be used in conjunction with pci_find_ht_capability() to search for
 685 * all capabilities matching @ht_cap. @pos should always be a value returned
 686 * from pci_find_ht_capability().
 687 *
 688 * NB. To be 100% safe against broken PCI devices, the caller should take
 689 * steps to avoid an infinite loop.
 690 */
 691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 692{
 693	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 694}
 695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 696
 697/**
 698 * pci_find_ht_capability - query a device's HyperTransport capabilities
 699 * @dev: PCI device to query
 700 * @ht_cap: HyperTransport capability code
 701 *
 702 * Tell if a device supports a given HyperTransport capability.
 703 * Returns an address within the device's PCI configuration space
 704 * or 0 in case the device does not support the request capability.
 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 706 * which has a HyperTransport capability matching @ht_cap.
 707 */
 708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 709{
 710	u8 pos;
 711
 712	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 713	if (pos)
 714		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 715
 716	return pos;
 717}
 718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 719
 720/**
 721 * pci_find_vsec_capability - Find a vendor-specific extended capability
 722 * @dev: PCI device to query
 723 * @vendor: Vendor ID for which capability is defined
 724 * @cap: Vendor-specific capability ID
 725 *
 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 727 * VSEC ID @cap. If found, return the capability offset in
 728 * config space; otherwise return 0.
 729 */
 730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 731{
 732	u16 vsec = 0;
 733	u32 header;
 734	int ret;
 735
 736	if (vendor != dev->vendor)
 737		return 0;
 738
 739	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 740						     PCI_EXT_CAP_ID_VNDR))) {
 741		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
 742		if (ret != PCIBIOS_SUCCESSFUL)
 743			continue;
 744
 745		if (PCI_VNDR_HEADER_ID(header) == cap)
 746			return vsec;
 747	}
 748
 749	return 0;
 750}
 751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 752
 753/**
 754 * pci_find_dvsec_capability - Find DVSEC for vendor
 755 * @dev: PCI device to query
 756 * @vendor: Vendor ID to match for the DVSEC
 757 * @dvsec: Designated Vendor-specific capability ID
 758 *
 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 760 * offset in config space; otherwise return 0.
 761 */
 762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 763{
 764	int pos;
 765
 766	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 767	if (!pos)
 768		return 0;
 769
 770	while (pos) {
 771		u16 v, id;
 772
 773		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 774		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 775		if (vendor == v && dvsec == id)
 776			return pos;
 777
 778		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 779	}
 780
 781	return 0;
 782}
 783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 784
 785/**
 786 * pci_find_parent_resource - return resource region of parent bus of given
 787 *			      region
 788 * @dev: PCI device structure contains resources to be searched
 789 * @res: child resource record for which parent is sought
 790 *
 791 * For given resource region of given device, return the resource region of
 792 * parent bus the given region is contained in.
 793 */
 794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 795					  struct resource *res)
 796{
 797	const struct pci_bus *bus = dev->bus;
 798	struct resource *r;
 
 799
 800	pci_bus_for_each_resource(bus, r) {
 801		if (!r)
 802			continue;
 803		if (resource_contains(r, res)) {
 804
 805			/*
 806			 * If the window is prefetchable but the BAR is
 807			 * not, the allocator made a mistake.
 808			 */
 809			if (r->flags & IORESOURCE_PREFETCH &&
 810			    !(res->flags & IORESOURCE_PREFETCH))
 811				return NULL;
 812
 813			/*
 814			 * If we're below a transparent bridge, there may
 815			 * be both a positively-decoded aperture and a
 816			 * subtractively-decoded region that contain the BAR.
 817			 * We want the positively-decoded one, so this depends
 818			 * on pci_bus_for_each_resource() giving us those
 819			 * first.
 820			 */
 821			return r;
 822		}
 823	}
 824	return NULL;
 825}
 826EXPORT_SYMBOL(pci_find_parent_resource);
 827
 828/**
 829 * pci_find_resource - Return matching PCI device resource
 830 * @dev: PCI device to query
 831 * @res: Resource to look for
 832 *
 833 * Goes over standard PCI resources (BARs) and checks if the given resource
 834 * is partially or fully contained in any of them. In that case the
 835 * matching resource is returned, %NULL otherwise.
 836 */
 837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 838{
 839	int i;
 840
 841	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 842		struct resource *r = &dev->resource[i];
 843
 844		if (r->start && resource_contains(r, res))
 845			return r;
 846	}
 847
 848	return NULL;
 849}
 850EXPORT_SYMBOL(pci_find_resource);
 851
 852/**
 853 * pci_resource_name - Return the name of the PCI resource
 854 * @dev: PCI device to query
 855 * @i: index of the resource
 856 *
 857 * Return the standard PCI resource (BAR) name according to their index.
 858 */
 859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
 860{
 861	static const char * const bar_name[] = {
 862		"BAR 0",
 863		"BAR 1",
 864		"BAR 2",
 865		"BAR 3",
 866		"BAR 4",
 867		"BAR 5",
 868		"ROM",
 869#ifdef CONFIG_PCI_IOV
 870		"VF BAR 0",
 871		"VF BAR 1",
 872		"VF BAR 2",
 873		"VF BAR 3",
 874		"VF BAR 4",
 875		"VF BAR 5",
 876#endif
 877		"bridge window",	/* "io" included in %pR */
 878		"bridge window",	/* "mem" included in %pR */
 879		"bridge window",	/* "mem pref" included in %pR */
 880	};
 881	static const char * const cardbus_name[] = {
 882		"BAR 1",
 883		"unknown",
 884		"unknown",
 885		"unknown",
 886		"unknown",
 887		"unknown",
 888#ifdef CONFIG_PCI_IOV
 889		"unknown",
 890		"unknown",
 891		"unknown",
 892		"unknown",
 893		"unknown",
 894		"unknown",
 895#endif
 896		"CardBus bridge window 0",	/* I/O */
 897		"CardBus bridge window 1",	/* I/O */
 898		"CardBus bridge window 0",	/* mem */
 899		"CardBus bridge window 1",	/* mem */
 900	};
 901
 902	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
 903	    i < ARRAY_SIZE(cardbus_name))
 904		return cardbus_name[i];
 905
 906	if (i < ARRAY_SIZE(bar_name))
 907		return bar_name[i];
 908
 909	return "unknown";
 910}
 911
 912/**
 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 914 * @dev: the PCI device to operate on
 915 * @pos: config space offset of status word
 916 * @mask: mask of bit(s) to care about in status word
 917 *
 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 919 */
 920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 921{
 922	int i;
 923
 924	/* Wait for Transaction Pending bit clean */
 925	for (i = 0; i < 4; i++) {
 926		u16 status;
 927		if (i)
 928			msleep((1 << (i - 1)) * 100);
 929
 930		pci_read_config_word(dev, pos, &status);
 931		if (!(status & mask))
 932			return 1;
 933	}
 934
 935	return 0;
 936}
 937
 938static int pci_acs_enable;
 939
 940/**
 941 * pci_request_acs - ask for ACS to be enabled if supported
 942 */
 943void pci_request_acs(void)
 944{
 945	pci_acs_enable = 1;
 946}
 947
 948static const char *disable_acs_redir_param;
 949static const char *config_acs_param;
 950
 951struct pci_acs {
 952	u16 cap;
 953	u16 ctrl;
 954	u16 fw_ctrl;
 955};
 956
 957static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
 958			     const char *p, u16 mask, u16 flags)
 
 
 
 
 
 959{
 960	char *delimit;
 961	int ret = 0;
 
 
 
 962
 963	if (!p)
 964		return;
 965
 
 966	while (*p) {
 967		if (!mask) {
 968			/* Check for ACS flags */
 969			delimit = strstr(p, "@");
 970			if (delimit) {
 971				int end;
 972				u32 shift = 0;
 973
 974				end = delimit - p - 1;
 975
 976				while (end > -1) {
 977					if (*(p + end) == '0') {
 978						mask |= 1 << shift;
 979						shift++;
 980						end--;
 981					} else if (*(p + end) == '1') {
 982						mask |= 1 << shift;
 983						flags |= 1 << shift;
 984						shift++;
 985						end--;
 986					} else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
 987						shift++;
 988						end--;
 989					} else {
 990						pci_err(dev, "Invalid ACS flags... Ignoring\n");
 991						return;
 992					}
 993				}
 994				p = delimit + 1;
 995			} else {
 996				pci_err(dev, "ACS Flags missing\n");
 997				return;
 998			}
 999		}
1000
1001		if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002			    PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003			pci_err(dev, "Invalid ACS flags specified\n");
1004			return;
1005		}
1006
1007		ret = pci_dev_str_match(dev, p, &p);
1008		if (ret < 0) {
1009			pr_info_once("PCI: Can't parse ACS command line parameter\n");
 
 
1010			break;
1011		} else if (ret == 1) {
1012			/* Found a match */
1013			break;
1014		}
1015
1016		if (*p != ';' && *p != ',') {
1017			/* End of param or invalid format */
1018			break;
1019		}
1020		p++;
1021	}
1022
1023	if (ret != 1)
1024		return;
1025
1026	if (!pci_dev_specific_disable_acs_redir(dev))
1027		return;
1028
1029	pci_dbg(dev, "ACS mask  = %#06x\n", mask);
1030	pci_dbg(dev, "ACS flags = %#06x\n", flags);
 
 
 
 
 
1031
1032	/* If mask is 0 then we copy the bit from the firmware setting. */
1033	caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034	caps->ctrl |= flags;
1035
1036	pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
 
 
1037}
1038
1039/**
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1043 */
1044static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045{
 
 
 
 
 
 
 
 
 
 
 
1046	/* Source Validation */
1047	caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048
1049	/* P2P Request Redirect */
1050	caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051
1052	/* P2P Completion Redirect */
1053	caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054
1055	/* Upstream Forwarding */
1056	caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057
1058	/* Enable Translation Blocking for external devices and noats */
1059	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060		caps->ctrl |= (caps->cap & PCI_ACS_TB);
 
 
1061}
1062
1063/**
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1066 */
1067static void pci_enable_acs(struct pci_dev *dev)
1068{
1069	struct pci_acs caps;
1070	bool enable_acs = false;
1071	int pos;
1072
1073	/* If an iommu is present we start with kernel default caps */
1074	if (pci_acs_enable) {
1075		if (pci_dev_specific_enable_acs(dev))
1076			enable_acs = true;
1077	}
1078
1079	pos = dev->acs_cap;
1080	if (!pos)
1081		return;
1082
1083	pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085	caps.fw_ctrl = caps.ctrl;
1086
1087	if (enable_acs)
1088		pci_std_enable_acs(dev, &caps);
1089
 
1090	/*
1091	 * Always apply caps from the command line, even if there is no iommu.
1092	 * Trust that the admin has a reason to change the ACS settings.
 
 
 
1093	 */
1094	__pci_config_acs(dev, &caps, disable_acs_redir_param,
1095			 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096			 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097	__pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098
1099	pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100}
1101
1102/**
1103 * pcie_read_tlp_log - read TLP Header Log
1104 * @dev: PCIe device
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1107 *
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109 *
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1111 */
1112int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113		      struct pcie_tlp_log *tlp_log)
1114{
1115	int i, ret;
1116
1117	memset(tlp_log, 0, sizeof(*tlp_log));
1118
1119	for (i = 0; i < 4; i++) {
1120		ret = pci_read_config_dword(dev, where + i * 4,
1121					    &tlp_log->dw[i]);
1122		if (ret)
1123			return pcibios_err_to_errno(ret);
1124	}
1125
1126	return 0;
1127}
1128EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129
1130/**
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1133 *
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1136 */
1137static void pci_restore_bars(struct pci_dev *dev)
1138{
1139	int i;
1140
1141	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142		pci_update_resource(dev, i);
1143}
1144
1145static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146{
1147	if (pci_use_mid_pm())
1148		return true;
1149
1150	return acpi_pci_power_manageable(dev);
1151}
1152
1153static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154					       pci_power_t t)
1155{
1156	if (pci_use_mid_pm())
1157		return mid_pci_set_power_state(dev, t);
1158
1159	return acpi_pci_set_power_state(dev, t);
1160}
1161
1162static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163{
1164	if (pci_use_mid_pm())
1165		return mid_pci_get_power_state(dev);
1166
1167	return acpi_pci_get_power_state(dev);
1168}
1169
1170static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171{
1172	if (!pci_use_mid_pm())
1173		acpi_pci_refresh_power_state(dev);
1174}
1175
1176static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177{
1178	if (pci_use_mid_pm())
1179		return PCI_POWER_ERROR;
1180
1181	return acpi_pci_choose_state(dev);
1182}
1183
1184static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185{
1186	if (pci_use_mid_pm())
1187		return PCI_POWER_ERROR;
1188
1189	return acpi_pci_wakeup(dev, enable);
1190}
1191
1192static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193{
1194	if (pci_use_mid_pm())
1195		return false;
1196
1197	return acpi_pci_need_resume(dev);
1198}
1199
1200static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201{
1202	if (pci_use_mid_pm())
1203		return false;
1204
1205	return acpi_pci_bridge_d3(dev);
1206}
1207
1208/**
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1212 *
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold.  The platform firmware is therefore queried first
1215 * to detect accessibility of the register.  In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1219 */
1220void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221{
1222	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223		dev->current_state = PCI_D3cold;
1224	} else if (dev->pm_cap) {
1225		u16 pmcsr;
1226
1227		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229			dev->current_state = PCI_D3cold;
1230			return;
1231		}
1232		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233	} else {
1234		dev->current_state = state;
1235	}
1236}
1237
1238/**
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1241 *
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1244 */
1245void pci_refresh_power_state(struct pci_dev *dev)
1246{
1247	platform_pci_refresh_power_state(dev);
1248	pci_update_current_state(dev, dev->current_state);
1249}
1250
1251/**
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1255 */
1256int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257{
1258	int error;
1259
1260	error = platform_pci_set_power_state(dev, state);
1261	if (!error)
1262		pci_update_current_state(dev, state);
1263	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264		dev->current_state = PCI_D0;
1265
1266	return error;
1267}
1268EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269
1270static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271{
1272	pm_request_resume(&pci_dev->dev);
1273	return 0;
1274}
1275
1276/**
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1279 */
1280void pci_resume_bus(struct pci_bus *bus)
1281{
1282	if (bus)
1283		pci_walk_bus(bus, pci_resume_one, NULL);
1284}
1285
1286static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287{
1288	int delay = 1;
1289	bool retrain = false;
1290	struct pci_dev *root, *bridge;
1291
1292	root = pcie_find_root_port(dev);
1293
1294	if (pci_is_pcie(dev)) {
1295		bridge = pci_upstream_bridge(dev);
1296		if (bridge)
1297			retrain = true;
1298	}
1299
1300	/*
1301	 * The caller has already waited long enough after a reset that the
1302	 * device should respond to config requests, but it may respond
1303	 * with Request Retry Status (RRS) if it needs more time to
1304	 * initialize.
1305	 *
1306	 * If the device is below a Root Port with Configuration RRS
1307	 * Software Visibility enabled, reading the Vendor ID returns a
1308	 * special data value if the device responded with RRS.  Read the
1309	 * Vendor ID until we get non-RRS status.
1310	 *
1311	 * If there's no Root Port or Configuration RRS Software Visibility
1312	 * is not enabled, the device may still respond with RRS, but
1313	 * hardware may retry the config request.  If no retries receive
1314	 * Successful Completion, hardware generally synthesizes ~0
1315	 * (PCI_ERROR_RESPONSE) data to complete the read.  Reading Vendor
1316	 * ID for VFs and non-existent devices also returns ~0, so read the
1317	 * Command register until it returns something other than ~0.
1318	 */
1319	for (;;) {
1320		u32 id;
1321
1322		if (pci_dev_is_disconnected(dev)) {
1323			pci_dbg(dev, "disconnected; not waiting\n");
1324			return -ENOTTY;
1325		}
1326
1327		if (root && root->config_rrs_sv) {
1328			pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329			if (!pci_bus_rrs_vendor_id(id))
1330				break;
1331		} else {
1332			pci_read_config_dword(dev, PCI_COMMAND, &id);
1333			if (!PCI_POSSIBLE_ERROR(id))
1334				break;
1335		}
1336
1337		if (delay > timeout) {
1338			pci_warn(dev, "not ready %dms after %s; giving up\n",
1339				 delay - 1, reset_type);
1340			return -ENOTTY;
1341		}
1342
1343		if (delay > PCI_RESET_WAIT) {
1344			if (retrain) {
1345				retrain = false;
1346				if (pcie_failed_link_retrain(bridge) == 0) {
1347					delay = 1;
1348					continue;
1349				}
1350			}
1351			pci_info(dev, "not ready %dms after %s; waiting\n",
1352				 delay - 1, reset_type);
1353		}
1354
1355		msleep(delay);
1356		delay *= 2;
 
1357	}
1358
1359	if (delay > PCI_RESET_WAIT)
1360		pci_info(dev, "ready %dms after %s\n", delay - 1,
1361			 reset_type);
1362	else
1363		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364			reset_type);
1365
1366	return 0;
1367}
1368
1369/**
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1372 *
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1375 *
1376 * On failure, return a negative error code.  Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1379 */
1380int pci_power_up(struct pci_dev *dev)
1381{
1382	bool need_restore;
1383	pci_power_t state;
1384	u16 pmcsr;
1385
1386	platform_pci_set_power_state(dev, PCI_D0);
1387
1388	if (!dev->pm_cap) {
1389		state = platform_pci_get_power_state(dev);
1390		if (state == PCI_UNKNOWN)
1391			dev->current_state = PCI_D0;
1392		else
1393			dev->current_state = state;
1394
 
 
 
1395		return -EIO;
1396	}
1397
1398	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401			pci_power_name(dev->current_state));
1402		dev->current_state = PCI_D3cold;
1403		return -EIO;
1404	}
1405
1406	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407
1408	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410
1411	if (state == PCI_D0)
1412		goto end;
1413
1414	/*
1415	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416	 * PME_En, and sets PowerState to 0.
1417	 */
1418	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419
1420	/* Mandatory transition delays; see PCI PM 1.2. */
1421	if (state == PCI_D3hot)
1422		pci_dev_d3_sleep(dev);
1423	else if (state == PCI_D2)
1424		udelay(PCI_PM_D2_DELAY);
1425
1426end:
1427	dev->current_state = PCI_D0;
1428	if (need_restore)
1429		return 1;
1430
1431	return 0;
1432}
1433
1434/**
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1438 *
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1442 *
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1445 * function.
1446 */
1447static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448{
1449	u16 pmcsr;
1450	int ret;
1451
1452	ret = pci_power_up(dev);
1453	if (ret < 0) {
1454		if (dev->current_state == PCI_D0)
1455			return 0;
1456
1457		return ret;
1458	}
1459
1460	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462	if (dev->current_state != PCI_D0) {
1463		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464				     pci_power_name(dev->current_state));
1465	} else if (ret > 0) {
1466		/*
1467		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469		 * from D3hot to D0 _may_ perform an internal reset, thereby
1470		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471		 * For example, at least some versions of the 3c905B and the
1472		 * 3c556B exhibit this behaviour.
1473		 *
1474		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475		 * devices in a D3hot state at boot.  Consequently, we need to
1476		 * restore at least the BARs so that the device will be
1477		 * accessible to its driver.
1478		 */
1479		pci_restore_bars(dev);
1480	}
1481
1482	if (dev->bus->self)
1483		pcie_aspm_pm_state_change(dev->bus->self, locked);
1484
1485	return 0;
1486}
1487
1488/**
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1492 */
1493static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494{
1495	pci_power_t state = *(pci_power_t *)data;
1496
1497	dev->current_state = state;
1498	return 0;
1499}
1500
1501/**
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1505 */
1506void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507{
1508	if (bus)
1509		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510}
1511
1512static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513{
1514	if (!bus)
1515		return;
1516
1517	if (locked)
1518		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519	else
1520		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521}
1522
1523/**
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1528 *
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530 *
1531 * RETURN VALUE:
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1537 */
1538static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539{
1540	u16 pmcsr;
1541
1542	if (!dev->pm_cap)
1543		return -EIO;
1544
1545	/*
1546	 * Validate transition: We can enter D0 from any state, but if
1547	 * we're already in a low-power state, we can only go deeper.  E.g.,
1548	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549	 * we'd have to go from D3 to D0, then to D1.
1550	 */
1551	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553			pci_power_name(dev->current_state),
1554			pci_power_name(state));
1555		return -EINVAL;
1556	}
1557
1558	/* Check if this device supports the desired state */
1559	if ((state == PCI_D1 && !dev->d1_support)
1560	   || (state == PCI_D2 && !dev->d2_support))
1561		return -EIO;
1562
1563	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566			pci_power_name(dev->current_state),
1567			pci_power_name(state));
1568		dev->current_state = PCI_D3cold;
1569		return -EIO;
1570	}
1571
1572	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573	pmcsr |= state;
1574
1575	/* Enter specified state */
1576	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577
1578	/* Mandatory power management transition delays; see PCI PM 1.2. */
1579	if (state == PCI_D3hot)
1580		pci_dev_d3_sleep(dev);
1581	else if (state == PCI_D2)
1582		udelay(PCI_PM_D2_DELAY);
1583
1584	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586	if (dev->current_state != state)
1587		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588				     pci_power_name(dev->current_state),
1589				     pci_power_name(state));
1590
1591	if (dev->bus->self)
1592		pcie_aspm_pm_state_change(dev->bus->self, locked);
1593
1594	return 0;
1595}
1596
1597static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598{
1599	int error;
1600
1601	/* Bound the state we're entering */
1602	if (state > PCI_D3cold)
1603		state = PCI_D3cold;
1604	else if (state < PCI_D0)
1605		state = PCI_D0;
1606	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607
1608		/*
1609		 * If the device or the parent bridge do not support PCI
1610		 * PM, ignore the request if we're doing anything other
1611		 * than putting it into D0 (which would only happen on
1612		 * boot).
1613		 */
1614		return 0;
1615
1616	/* Check if we're already there */
1617	if (dev->current_state == state)
1618		return 0;
1619
1620	if (state == PCI_D0)
1621		return pci_set_full_power_state(dev, locked);
1622
1623	/*
1624	 * This device is quirked not to be put into D3, so don't put it in
1625	 * D3
1626	 */
1627	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628		return 0;
1629
1630	if (state == PCI_D3cold) {
1631		/*
1632		 * To put the device in D3cold, put it into D3hot in the native
1633		 * way, then put it into D3cold using platform ops.
1634		 */
1635		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636
1637		if (pci_platform_power_transition(dev, PCI_D3cold))
1638			return error;
1639
1640		/* Powering off a bridge may power off the whole hierarchy */
1641		if (dev->current_state == PCI_D3cold)
1642			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643	} else {
1644		error = pci_set_low_power_state(dev, state, locked);
1645
1646		if (pci_platform_power_transition(dev, state))
1647			return error;
1648	}
1649
1650	return 0;
1651}
1652
1653/**
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657 *
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1660 *
1661 * RETURN VALUE:
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1669 */
1670int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671{
1672	return __pci_set_power_state(dev, state, false);
1673}
1674EXPORT_SYMBOL(pci_set_power_state);
1675
1676int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677{
1678	lockdep_assert_held(&pci_bus_sem);
1679
1680	return __pci_set_power_state(dev, state, true);
1681}
1682EXPORT_SYMBOL(pci_set_power_state_locked);
1683
1684#define PCI_EXP_SAVE_REGS	7
1685
1686static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687						       u16 cap, bool extended)
1688{
1689	struct pci_cap_saved_state *tmp;
1690
1691	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693			return tmp;
1694	}
1695	return NULL;
1696}
1697
1698struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699{
1700	return _pci_find_saved_cap(dev, cap, false);
1701}
1702
1703struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704{
1705	return _pci_find_saved_cap(dev, cap, true);
1706}
1707
1708static int pci_save_pcie_state(struct pci_dev *dev)
1709{
1710	int i = 0;
1711	struct pci_cap_saved_state *save_state;
1712	u16 *cap;
1713
1714	if (!pci_is_pcie(dev))
1715		return 0;
1716
1717	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718	if (!save_state) {
1719		pci_err(dev, "buffer not found in %s\n", __func__);
1720		return -ENOMEM;
1721	}
1722
1723	cap = (u16 *)&save_state->cap.data[0];
1724	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1728	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731
1732	pci_save_aspm_l1ss_state(dev);
1733	pci_save_ltr_state(dev);
1734
1735	return 0;
1736}
1737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1738static void pci_restore_pcie_state(struct pci_dev *dev)
1739{
1740	int i = 0;
1741	struct pci_cap_saved_state *save_state;
1742	u16 *cap;
1743
1744	/*
1745	 * Restore max latencies (in the LTR capability) before enabling
1746	 * LTR itself in PCI_EXP_DEVCTL2.
1747	 */
1748	pci_restore_ltr_state(dev);
1749	pci_restore_aspm_l1ss_state(dev);
1750
1751	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752	if (!save_state)
1753		return;
1754
1755	/*
1756	 * Downstream ports reset the LTR enable bit when link goes down.
1757	 * Check and re-configure the bit here before restoring device.
1758	 * PCIe r5.0, sec 7.5.3.16.
1759	 */
1760	pci_bridge_reconfigure_ltr(dev);
1761
1762	cap = (u16 *)&save_state->cap.data[0];
1763	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770}
1771
1772static int pci_save_pcix_state(struct pci_dev *dev)
1773{
1774	int pos;
1775	struct pci_cap_saved_state *save_state;
1776
1777	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778	if (!pos)
1779		return 0;
1780
1781	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782	if (!save_state) {
1783		pci_err(dev, "buffer not found in %s\n", __func__);
1784		return -ENOMEM;
1785	}
1786
1787	pci_read_config_word(dev, pos + PCI_X_CMD,
1788			     (u16 *)save_state->cap.data);
1789
1790	return 0;
1791}
1792
1793static void pci_restore_pcix_state(struct pci_dev *dev)
1794{
1795	int i = 0, pos;
1796	struct pci_cap_saved_state *save_state;
1797	u16 *cap;
1798
1799	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801	if (!save_state || !pos)
1802		return;
1803	cap = (u16 *)&save_state->cap.data[0];
1804
1805	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806}
1807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808/**
1809 * pci_save_state - save the PCI configuration space of a device before
1810 *		    suspending
1811 * @dev: PCI device that we're dealing with
1812 */
1813int pci_save_state(struct pci_dev *dev)
1814{
1815	int i;
1816	/* XXX: 100% dword access ok here? */
1817	for (i = 0; i < 16; i++) {
1818		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819		pci_dbg(dev, "save config %#04x: %#010x\n",
1820			i * 4, dev->saved_config_space[i]);
1821	}
1822	dev->state_saved = true;
1823
1824	i = pci_save_pcie_state(dev);
1825	if (i != 0)
1826		return i;
1827
1828	i = pci_save_pcix_state(dev);
1829	if (i != 0)
1830		return i;
1831
 
1832	pci_save_dpc_state(dev);
1833	pci_save_aer_state(dev);
1834	pci_save_ptm_state(dev);
1835	pci_save_tph_state(dev);
1836	return pci_save_vc_state(dev);
1837}
1838EXPORT_SYMBOL(pci_save_state);
1839
1840static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1841				     u32 saved_val, int retry, bool force)
1842{
1843	u32 val;
1844
1845	pci_read_config_dword(pdev, offset, &val);
1846	if (!force && val == saved_val)
1847		return;
1848
1849	for (;;) {
1850		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1851			offset, val, saved_val);
1852		pci_write_config_dword(pdev, offset, saved_val);
1853		if (retry-- <= 0)
1854			return;
1855
1856		pci_read_config_dword(pdev, offset, &val);
1857		if (val == saved_val)
1858			return;
1859
1860		mdelay(1);
1861	}
1862}
1863
1864static void pci_restore_config_space_range(struct pci_dev *pdev,
1865					   int start, int end, int retry,
1866					   bool force)
1867{
1868	int index;
1869
1870	for (index = end; index >= start; index--)
1871		pci_restore_config_dword(pdev, 4 * index,
1872					 pdev->saved_config_space[index],
1873					 retry, force);
1874}
1875
1876static void pci_restore_config_space(struct pci_dev *pdev)
1877{
1878	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1879		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1880		/* Restore BARs before the command register. */
1881		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1882		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1883	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1884		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1885
1886		/*
1887		 * Force rewriting of prefetch registers to avoid S3 resume
1888		 * issues on Intel PCI bridges that occur when these
1889		 * registers are not explicitly written.
1890		 */
1891		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1892		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1893	} else {
1894		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1895	}
1896}
1897
1898static void pci_restore_rebar_state(struct pci_dev *pdev)
1899{
1900	unsigned int pos, nbars, i;
1901	u32 ctrl;
1902
1903	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1904	if (!pos)
1905		return;
1906
1907	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1908	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
1909
1910	for (i = 0; i < nbars; i++, pos += 8) {
1911		struct resource *res;
1912		int bar_idx, size;
1913
1914		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1916		res = pdev->resource + bar_idx;
1917		size = pci_rebar_bytes_to_size(resource_size(res));
1918		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1919		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1920		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1921	}
1922}
1923
1924/**
1925 * pci_restore_state - Restore the saved state of a PCI device
1926 * @dev: PCI device that we're dealing with
1927 */
1928void pci_restore_state(struct pci_dev *dev)
1929{
1930	if (!dev->state_saved)
1931		return;
1932
 
 
 
 
 
 
1933	pci_restore_pcie_state(dev);
1934	pci_restore_pasid_state(dev);
1935	pci_restore_pri_state(dev);
1936	pci_restore_ats_state(dev);
1937	pci_restore_vc_state(dev);
1938	pci_restore_rebar_state(dev);
1939	pci_restore_dpc_state(dev);
1940	pci_restore_ptm_state(dev);
1941	pci_restore_tph_state(dev);
1942
1943	pci_aer_clear_status(dev);
1944	pci_restore_aer_state(dev);
1945
1946	pci_restore_config_space(dev);
1947
1948	pci_restore_pcix_state(dev);
1949	pci_restore_msi_state(dev);
1950
1951	/* Restore ACS and IOV configuration state */
1952	pci_enable_acs(dev);
1953	pci_restore_iov_state(dev);
1954
1955	dev->state_saved = false;
1956}
1957EXPORT_SYMBOL(pci_restore_state);
1958
1959struct pci_saved_state {
1960	u32 config_space[16];
1961	struct pci_cap_saved_data cap[];
1962};
1963
1964/**
1965 * pci_store_saved_state - Allocate and return an opaque struct containing
1966 *			   the device saved state.
1967 * @dev: PCI device that we're dealing with
1968 *
1969 * Return NULL if no state or error.
1970 */
1971struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1972{
1973	struct pci_saved_state *state;
1974	struct pci_cap_saved_state *tmp;
1975	struct pci_cap_saved_data *cap;
1976	size_t size;
1977
1978	if (!dev->state_saved)
1979		return NULL;
1980
1981	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1982
1983	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1984		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1985
1986	state = kzalloc(size, GFP_KERNEL);
1987	if (!state)
1988		return NULL;
1989
1990	memcpy(state->config_space, dev->saved_config_space,
1991	       sizeof(state->config_space));
1992
1993	cap = state->cap;
1994	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1995		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1996		memcpy(cap, &tmp->cap, len);
1997		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1998	}
1999	/* Empty cap_save terminates list */
2000
2001	return state;
2002}
2003EXPORT_SYMBOL_GPL(pci_store_saved_state);
2004
2005/**
2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007 * @dev: PCI device that we're dealing with
2008 * @state: Saved state returned from pci_store_saved_state()
2009 */
2010int pci_load_saved_state(struct pci_dev *dev,
2011			 struct pci_saved_state *state)
2012{
2013	struct pci_cap_saved_data *cap;
2014
2015	dev->state_saved = false;
2016
2017	if (!state)
2018		return 0;
2019
2020	memcpy(dev->saved_config_space, state->config_space,
2021	       sizeof(state->config_space));
2022
2023	cap = state->cap;
2024	while (cap->size) {
2025		struct pci_cap_saved_state *tmp;
2026
2027		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2028		if (!tmp || tmp->cap.size != cap->size)
2029			return -EINVAL;
2030
2031		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2032		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2033		       sizeof(struct pci_cap_saved_data) + cap->size);
2034	}
2035
2036	dev->state_saved = true;
2037	return 0;
2038}
2039EXPORT_SYMBOL_GPL(pci_load_saved_state);
2040
2041/**
2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043 *				   and free the memory allocated for it.
2044 * @dev: PCI device that we're dealing with
2045 * @state: Pointer to saved state returned from pci_store_saved_state()
2046 */
2047int pci_load_and_free_saved_state(struct pci_dev *dev,
2048				  struct pci_saved_state **state)
2049{
2050	int ret = pci_load_saved_state(dev, *state);
2051	kfree(*state);
2052	*state = NULL;
2053	return ret;
2054}
2055EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2056
2057int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2058{
2059	return pci_enable_resources(dev, bars);
2060}
2061
2062static int do_pci_enable_device(struct pci_dev *dev, int bars)
2063{
2064	int err;
2065	struct pci_dev *bridge;
2066	u16 cmd;
2067	u8 pin;
2068
2069	err = pci_set_power_state(dev, PCI_D0);
2070	if (err < 0 && err != -EIO)
2071		return err;
2072
2073	bridge = pci_upstream_bridge(dev);
2074	if (bridge)
2075		pcie_aspm_powersave_config_link(bridge);
2076
2077	err = pcibios_enable_device(dev, bars);
2078	if (err < 0)
2079		return err;
2080	pci_fixup_device(pci_fixup_enable, dev);
2081
2082	if (dev->msi_enabled || dev->msix_enabled)
2083		return 0;
2084
2085	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2086	if (pin) {
2087		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2088		if (cmd & PCI_COMMAND_INTX_DISABLE)
2089			pci_write_config_word(dev, PCI_COMMAND,
2090					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2091	}
2092
2093	return 0;
2094}
2095
2096/**
2097 * pci_reenable_device - Resume abandoned device
2098 * @dev: PCI device to be resumed
2099 *
2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101 * to be called by normal code, write proper resume handler and use it instead.
2102 */
2103int pci_reenable_device(struct pci_dev *dev)
2104{
2105	if (pci_is_enabled(dev))
2106		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2107	return 0;
2108}
2109EXPORT_SYMBOL(pci_reenable_device);
2110
2111static void pci_enable_bridge(struct pci_dev *dev)
2112{
2113	struct pci_dev *bridge;
2114	int retval;
2115
2116	bridge = pci_upstream_bridge(dev);
2117	if (bridge)
2118		pci_enable_bridge(bridge);
2119
2120	if (pci_is_enabled(dev)) {
2121		if (!dev->is_busmaster)
2122			pci_set_master(dev);
2123		return;
2124	}
2125
2126	retval = pci_enable_device(dev);
2127	if (retval)
2128		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2129			retval);
2130	pci_set_master(dev);
2131}
2132
2133static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2134{
2135	struct pci_dev *bridge;
2136	int err;
2137	int i, bars = 0;
2138
2139	/*
2140	 * Power state could be unknown at this point, either due to a fresh
2141	 * boot or a device removal call.  So get the current power state
2142	 * so that things like MSI message writing will behave as expected
2143	 * (e.g. if the device really is in D0 at enable time).
2144	 */
2145	pci_update_current_state(dev, dev->current_state);
2146
2147	if (atomic_inc_return(&dev->enable_cnt) > 1)
2148		return 0;		/* already enabled */
2149
2150	bridge = pci_upstream_bridge(dev);
2151	if (bridge)
2152		pci_enable_bridge(bridge);
2153
2154	/* only skip sriov related */
2155	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2156		if (dev->resource[i].flags & flags)
2157			bars |= (1 << i);
2158	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2159		if (dev->resource[i].flags & flags)
2160			bars |= (1 << i);
2161
2162	err = do_pci_enable_device(dev, bars);
2163	if (err < 0)
2164		atomic_dec(&dev->enable_cnt);
2165	return err;
2166}
2167
2168/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2169 * pci_enable_device_mem - Initialize a device for use with Memory space
2170 * @dev: PCI device to be initialized
2171 *
2172 * Initialize device before it's used by a driver. Ask low-level code
2173 * to enable Memory resources. Wake up the device if it was suspended.
2174 * Beware, this function can fail.
2175 */
2176int pci_enable_device_mem(struct pci_dev *dev)
2177{
2178	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2179}
2180EXPORT_SYMBOL(pci_enable_device_mem);
2181
2182/**
2183 * pci_enable_device - Initialize device before it's used by a driver.
2184 * @dev: PCI device to be initialized
2185 *
2186 * Initialize device before it's used by a driver. Ask low-level code
2187 * to enable I/O and memory. Wake up the device if it was suspended.
2188 * Beware, this function can fail.
2189 *
2190 * Note we don't actually enable the device many times if we call
2191 * this function repeatedly (we just increment the count).
2192 */
2193int pci_enable_device(struct pci_dev *dev)
2194{
2195	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2196}
2197EXPORT_SYMBOL(pci_enable_device);
2198
2199/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
2207int __weak pcibios_device_add(struct pci_dev *dev)
2208{
2209	return 0;
2210}
2211
2212/**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 *			    device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
2221void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223/**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
2231void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
 
 
 
 
 
 
 
 
 
 
 
2233static void do_pci_disable_device(struct pci_dev *dev)
2234{
2235	u16 pci_command;
2236
2237	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2238	if (pci_command & PCI_COMMAND_MASTER) {
2239		pci_command &= ~PCI_COMMAND_MASTER;
2240		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2241	}
2242
2243	pcibios_disable_device(dev);
2244}
2245
2246/**
2247 * pci_disable_enabled_device - Disable device without updating enable_cnt
2248 * @dev: PCI device to disable
2249 *
2250 * NOTE: This function is a backend of PCI power management routines and is
2251 * not supposed to be called drivers.
2252 */
2253void pci_disable_enabled_device(struct pci_dev *dev)
2254{
2255	if (pci_is_enabled(dev))
2256		do_pci_disable_device(dev);
2257}
2258
2259/**
2260 * pci_disable_device - Disable PCI device after use
2261 * @dev: PCI device to be disabled
2262 *
2263 * Signal to the system that the PCI device is not in use by the system
2264 * anymore.  This only involves disabling PCI bus-mastering, if active.
2265 *
2266 * Note we don't actually disable the device until all callers of
2267 * pci_enable_device() have called pci_disable_device().
2268 */
2269void pci_disable_device(struct pci_dev *dev)
2270{
 
 
 
 
 
 
2271	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2272		      "disabling already-disabled device");
2273
2274	if (atomic_dec_return(&dev->enable_cnt) != 0)
2275		return;
2276
2277	do_pci_disable_device(dev);
2278
2279	dev->is_busmaster = 0;
2280}
2281EXPORT_SYMBOL(pci_disable_device);
2282
2283/**
2284 * pcibios_set_pcie_reset_state - set reset state for device dev
2285 * @dev: the PCIe device reset
2286 * @state: Reset state to enter into
2287 *
2288 * Set the PCIe reset state for the device. This is the default
2289 * implementation. Architecture implementations can override this.
2290 */
2291int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2292					enum pcie_reset_state state)
2293{
2294	return -EINVAL;
2295}
2296
2297/**
2298 * pci_set_pcie_reset_state - set reset state for device dev
2299 * @dev: the PCIe device reset
2300 * @state: Reset state to enter into
2301 *
2302 * Sets the PCI reset state for the device.
2303 */
2304int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2305{
2306	return pcibios_set_pcie_reset_state(dev, state);
2307}
2308EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2309
2310#ifdef CONFIG_PCIEAER
2311void pcie_clear_device_status(struct pci_dev *dev)
2312{
2313	u16 sta;
2314
2315	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2316	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2317}
2318#endif
2319
2320/**
2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322 * @dev: PCIe root port or event collector.
2323 */
2324void pcie_clear_root_pme_status(struct pci_dev *dev)
2325{
2326	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2327}
2328
2329/**
2330 * pci_check_pme_status - Check if given device has generated PME.
2331 * @dev: Device to check.
2332 *
2333 * Check the PME status of the device and if set, clear it and clear PME enable
2334 * (if set).  Return 'true' if PME status and PME enable were both set or
2335 * 'false' otherwise.
2336 */
2337bool pci_check_pme_status(struct pci_dev *dev)
2338{
2339	int pmcsr_pos;
2340	u16 pmcsr;
2341	bool ret = false;
2342
2343	if (!dev->pm_cap)
2344		return false;
2345
2346	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2347	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2348	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2349		return false;
2350
2351	/* Clear PME status. */
2352	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2354		/* Disable PME to avoid interrupt flood. */
2355		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356		ret = true;
2357	}
2358
2359	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2360
2361	return ret;
2362}
2363
2364/**
2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366 * @dev: Device to handle.
2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2368 *
2369 * Check if @dev has generated PME and queue a resume request for it in that
2370 * case.
2371 */
2372static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2373{
2374	if (pme_poll_reset && dev->pme_poll)
2375		dev->pme_poll = false;
2376
2377	if (pci_check_pme_status(dev)) {
2378		pci_wakeup_event(dev);
2379		pm_request_resume(&dev->dev);
2380	}
2381	return 0;
2382}
2383
2384/**
2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386 * @bus: Top bus of the subtree to walk.
2387 */
2388void pci_pme_wakeup_bus(struct pci_bus *bus)
2389{
2390	if (bus)
2391		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2392}
2393
2394
2395/**
2396 * pci_pme_capable - check the capability of PCI device to generate PME#
2397 * @dev: PCI device to handle.
2398 * @state: PCI state from which device will issue PME#.
2399 */
2400bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2401{
2402	if (!dev->pm_cap)
2403		return false;
2404
2405	return !!(dev->pme_support & (1 << state));
2406}
2407EXPORT_SYMBOL(pci_pme_capable);
2408
2409static void pci_pme_list_scan(struct work_struct *work)
2410{
2411	struct pci_pme_device *pme_dev, *n;
2412
2413	mutex_lock(&pci_pme_list_mutex);
2414	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2415		struct pci_dev *pdev = pme_dev->dev;
2416
2417		if (pdev->pme_poll) {
2418			struct pci_dev *bridge = pdev->bus->self;
2419			struct device *dev = &pdev->dev;
2420			struct device *bdev = bridge ? &bridge->dev : NULL;
2421			int bref = 0;
2422
 
2423			/*
2424			 * If we have a bridge, it should be in an active/D0
2425			 * state or the configuration space of subordinate
2426			 * devices may not be accessible or stable over the
2427			 * course of the call.
2428			 */
2429			if (bdev) {
2430				bref = pm_runtime_get_if_active(bdev);
2431				if (!bref)
2432					continue;
2433
2434				if (bridge->current_state != PCI_D0)
2435					goto put_bridge;
2436			}
2437
2438			/*
2439			 * The device itself should be suspended but config
2440			 * space must be accessible, therefore it cannot be in
2441			 * D3cold.
2442			 */
2443			if (pm_runtime_suspended(dev) &&
2444			    pdev->current_state != PCI_D3cold)
2445				pci_pme_wakeup(pdev, NULL);
2446
2447put_bridge:
2448			if (bref > 0)
2449				pm_runtime_put(bdev);
2450		} else {
2451			list_del(&pme_dev->list);
2452			kfree(pme_dev);
2453		}
2454	}
2455	if (!list_empty(&pci_pme_list))
2456		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2457				   msecs_to_jiffies(PME_TIMEOUT));
2458	mutex_unlock(&pci_pme_list_mutex);
2459}
2460
2461static void __pci_pme_active(struct pci_dev *dev, bool enable)
2462{
2463	u16 pmcsr;
2464
2465	if (!dev->pme_support)
2466		return;
2467
2468	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2469	/* Clear PME_Status by writing 1 to it and enable PME# */
2470	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2471	if (!enable)
2472		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473
2474	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2475}
2476
2477/**
2478 * pci_pme_restore - Restore PME configuration after config space restore.
2479 * @dev: PCI device to update.
2480 */
2481void pci_pme_restore(struct pci_dev *dev)
2482{
2483	u16 pmcsr;
2484
2485	if (!dev->pme_support)
2486		return;
2487
2488	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2489	if (dev->wakeup_prepared) {
2490		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2491		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2492	} else {
2493		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2494		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2495	}
2496	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2497}
2498
2499/**
2500 * pci_pme_active - enable or disable PCI device's PME# function
2501 * @dev: PCI device to handle.
2502 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2503 *
2504 * The caller must verify that the device is capable of generating PME# before
2505 * calling this function with @enable equal to 'true'.
2506 */
2507void pci_pme_active(struct pci_dev *dev, bool enable)
2508{
2509	__pci_pme_active(dev, enable);
2510
2511	/*
2512	 * PCI (as opposed to PCIe) PME requires that the device have
2513	 * its PME# line hooked up correctly. Not all hardware vendors
2514	 * do this, so the PME never gets delivered and the device
2515	 * remains asleep. The easiest way around this is to
2516	 * periodically walk the list of suspended devices and check
2517	 * whether any have their PME flag set. The assumption is that
2518	 * we'll wake up often enough anyway that this won't be a huge
2519	 * hit, and the power savings from the devices will still be a
2520	 * win.
2521	 *
2522	 * Although PCIe uses in-band PME message instead of PME# line
2523	 * to report PME, PME does not work for some PCIe devices in
2524	 * reality.  For example, there are devices that set their PME
2525	 * status bits, but don't really bother to send a PME message;
2526	 * there are PCI Express Root Ports that don't bother to
2527	 * trigger interrupts when they receive PME messages from the
2528	 * devices below.  So PME poll is used for PCIe devices too.
2529	 */
2530
2531	if (dev->pme_poll) {
2532		struct pci_pme_device *pme_dev;
2533		if (enable) {
2534			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2535					  GFP_KERNEL);
2536			if (!pme_dev) {
2537				pci_warn(dev, "can't enable PME#\n");
2538				return;
2539			}
2540			pme_dev->dev = dev;
2541			mutex_lock(&pci_pme_list_mutex);
2542			list_add(&pme_dev->list, &pci_pme_list);
2543			if (list_is_singular(&pci_pme_list))
2544				queue_delayed_work(system_freezable_wq,
2545						   &pci_pme_work,
2546						   msecs_to_jiffies(PME_TIMEOUT));
2547			mutex_unlock(&pci_pme_list_mutex);
2548		} else {
2549			mutex_lock(&pci_pme_list_mutex);
2550			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2551				if (pme_dev->dev == dev) {
2552					list_del(&pme_dev->list);
2553					kfree(pme_dev);
2554					break;
2555				}
2556			}
2557			mutex_unlock(&pci_pme_list_mutex);
2558		}
2559	}
2560
2561	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2562}
2563EXPORT_SYMBOL(pci_pme_active);
2564
2565/**
2566 * __pci_enable_wake - enable PCI device as wakeup event source
2567 * @dev: PCI device affected
2568 * @state: PCI state from which device will issue wakeup events
2569 * @enable: True to enable event generation; false to disable
2570 *
2571 * This enables the device as a wakeup event source, or disables it.
2572 * When such events involves platform-specific hooks, those hooks are
2573 * called automatically by this routine.
2574 *
2575 * Devices with legacy power management (no standard PCI PM capabilities)
2576 * always require such platform hooks.
2577 *
2578 * RETURN VALUE:
2579 * 0 is returned on success
2580 * -EINVAL is returned if device is not supposed to wake up the system
2581 * Error code depending on the platform is returned if both the platform and
2582 * the native mechanism fail to enable the generation of wake-up events
2583 */
2584static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2585{
2586	int ret = 0;
2587
2588	/*
2589	 * Bridges that are not power-manageable directly only signal
2590	 * wakeup on behalf of subordinate devices which is set up
2591	 * elsewhere, so skip them. However, bridges that are
2592	 * power-manageable may signal wakeup for themselves (for example,
2593	 * on a hotplug event) and they need to be covered here.
2594	 */
2595	if (!pci_power_manageable(dev))
2596		return 0;
2597
2598	/* Don't do the same thing twice in a row for one device. */
2599	if (!!enable == !!dev->wakeup_prepared)
2600		return 0;
2601
2602	/*
2603	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605	 * enable.  To disable wake-up we call the platform first, for symmetry.
2606	 */
2607
2608	if (enable) {
2609		int error;
2610
2611		/*
2612		 * Enable PME signaling if the device can signal PME from
2613		 * D3cold regardless of whether or not it can signal PME from
2614		 * the current target state, because that will allow it to
2615		 * signal PME when the hierarchy above it goes into D3cold and
2616		 * the device itself ends up in D3cold as a result of that.
2617		 */
2618		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2619			pci_pme_active(dev, true);
2620		else
2621			ret = 1;
2622		error = platform_pci_set_wakeup(dev, true);
2623		if (ret)
2624			ret = error;
2625		if (!ret)
2626			dev->wakeup_prepared = true;
2627	} else {
2628		platform_pci_set_wakeup(dev, false);
2629		pci_pme_active(dev, false);
2630		dev->wakeup_prepared = false;
2631	}
2632
2633	return ret;
2634}
2635
2636/**
2637 * pci_enable_wake - change wakeup settings for a PCI device
2638 * @pci_dev: Target device
2639 * @state: PCI state from which device will issue wakeup events
2640 * @enable: Whether or not to enable event generation
2641 *
2642 * If @enable is set, check device_may_wakeup() for the device before calling
2643 * __pci_enable_wake() for it.
2644 */
2645int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2646{
2647	if (enable && !device_may_wakeup(&pci_dev->dev))
2648		return -EINVAL;
2649
2650	return __pci_enable_wake(pci_dev, state, enable);
2651}
2652EXPORT_SYMBOL(pci_enable_wake);
2653
2654/**
2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656 * @dev: PCI device to prepare
2657 * @enable: True to enable wake-up event generation; false to disable
2658 *
2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660 * and this function allows them to set that up cleanly - pci_enable_wake()
2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662 * ordering constraints.
2663 *
2664 * This function only returns error code if the device is not allowed to wake
2665 * up the system from sleep or it is not capable of generating PME# from both
2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2667 */
2668int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2669{
2670	return pci_pme_capable(dev, PCI_D3cold) ?
2671			pci_enable_wake(dev, PCI_D3cold, enable) :
2672			pci_enable_wake(dev, PCI_D3hot, enable);
2673}
2674EXPORT_SYMBOL(pci_wake_from_d3);
2675
2676/**
2677 * pci_target_state - find an appropriate low power state for a given PCI dev
2678 * @dev: PCI device
2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2680 *
2681 * Use underlying platform code to find a supported low power state for @dev.
2682 * If the platform can't manage @dev, return the deepest state from which it
2683 * can generate wake events, based on any available PME info.
2684 */
2685static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2686{
2687	if (platform_pci_power_manageable(dev)) {
2688		/*
2689		 * Call the platform to find the target state for the device.
2690		 */
2691		pci_power_t state = platform_pci_choose_state(dev);
2692
2693		switch (state) {
2694		case PCI_POWER_ERROR:
2695		case PCI_UNKNOWN:
2696			return PCI_D3hot;
2697
2698		case PCI_D1:
2699		case PCI_D2:
2700			if (pci_no_d1d2(dev))
2701				return PCI_D3hot;
2702		}
2703
2704		return state;
2705	}
2706
2707	/*
2708	 * If the device is in D3cold even though it's not power-manageable by
2709	 * the platform, it may have been powered down by non-standard means.
2710	 * Best to let it slumber.
2711	 */
2712	if (dev->current_state == PCI_D3cold)
2713		return PCI_D3cold;
2714	else if (!dev->pm_cap)
2715		return PCI_D0;
2716
2717	if (wakeup && dev->pme_support) {
2718		pci_power_t state = PCI_D3hot;
2719
2720		/*
2721		 * Find the deepest state from which the device can generate
2722		 * PME#.
2723		 */
2724		while (state && !(dev->pme_support & (1 << state)))
2725			state--;
2726
2727		if (state)
2728			return state;
2729		else if (dev->pme_support & 1)
2730			return PCI_D0;
2731	}
2732
2733	return PCI_D3hot;
2734}
2735
2736/**
2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738 *			  into a sleep state
2739 * @dev: Device to handle.
2740 *
2741 * Choose the power state appropriate for the device depending on whether
2742 * it can wake up the system and/or is power manageable by the platform
2743 * (PCI_D3hot is the default) and put the device into that state.
2744 */
2745int pci_prepare_to_sleep(struct pci_dev *dev)
2746{
2747	bool wakeup = device_may_wakeup(&dev->dev);
2748	pci_power_t target_state = pci_target_state(dev, wakeup);
2749	int error;
2750
2751	if (target_state == PCI_POWER_ERROR)
2752		return -EIO;
2753
2754	pci_enable_wake(dev, target_state, wakeup);
2755
2756	error = pci_set_power_state(dev, target_state);
2757
2758	if (error)
2759		pci_enable_wake(dev, target_state, false);
2760
2761	return error;
2762}
2763EXPORT_SYMBOL(pci_prepare_to_sleep);
2764
2765/**
2766 * pci_back_from_sleep - turn PCI device on during system-wide transition
2767 *			 into working state
2768 * @dev: Device to handle.
2769 *
2770 * Disable device's system wake-up capability and put it into D0.
2771 */
2772int pci_back_from_sleep(struct pci_dev *dev)
2773{
2774	int ret = pci_set_power_state(dev, PCI_D0);
2775
2776	if (ret)
2777		return ret;
2778
2779	pci_enable_wake(dev, PCI_D0, false);
2780	return 0;
2781}
2782EXPORT_SYMBOL(pci_back_from_sleep);
2783
2784/**
2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786 * @dev: PCI device being suspended.
2787 *
2788 * Prepare @dev to generate wake-up events at run time and put it into a low
2789 * power state.
2790 */
2791int pci_finish_runtime_suspend(struct pci_dev *dev)
2792{
2793	pci_power_t target_state;
2794	int error;
2795
2796	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2797	if (target_state == PCI_POWER_ERROR)
2798		return -EIO;
2799
2800	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2801
2802	error = pci_set_power_state(dev, target_state);
2803
2804	if (error)
2805		pci_enable_wake(dev, target_state, false);
2806
2807	return error;
2808}
2809
2810/**
2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812 * @dev: Device to check.
2813 *
2814 * Return true if the device itself is capable of generating wake-up events
2815 * (through the platform or using the native PCIe PME) or if the device supports
2816 * PME and one of its upstream bridges can generate wake-up events.
2817 */
2818bool pci_dev_run_wake(struct pci_dev *dev)
2819{
2820	struct pci_bus *bus = dev->bus;
2821
2822	if (!dev->pme_support)
2823		return false;
2824
2825	/* PME-capable in principle, but not from the target power state */
2826	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2827		return false;
2828
2829	if (device_can_wakeup(&dev->dev))
2830		return true;
2831
2832	while (bus->parent) {
2833		struct pci_dev *bridge = bus->self;
2834
2835		if (device_can_wakeup(&bridge->dev))
2836			return true;
2837
2838		bus = bus->parent;
2839	}
2840
2841	/* We have reached the root bus. */
2842	if (bus->bridge)
2843		return device_can_wakeup(bus->bridge);
2844
2845	return false;
2846}
2847EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2848
2849/**
2850 * pci_dev_need_resume - Check if it is necessary to resume the device.
2851 * @pci_dev: Device to check.
2852 *
2853 * Return 'true' if the device is not runtime-suspended or it has to be
2854 * reconfigured due to wakeup settings difference between system and runtime
2855 * suspend, or the current power state of it is not suitable for the upcoming
2856 * (system-wide) transition.
2857 */
2858bool pci_dev_need_resume(struct pci_dev *pci_dev)
2859{
2860	struct device *dev = &pci_dev->dev;
2861	pci_power_t target_state;
2862
2863	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2864		return true;
2865
2866	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2867
2868	/*
2869	 * If the earlier platform check has not triggered, D3cold is just power
2870	 * removal on top of D3hot, so no need to resume the device in that
2871	 * case.
2872	 */
2873	return target_state != pci_dev->current_state &&
2874		target_state != PCI_D3cold &&
2875		pci_dev->current_state != PCI_D3hot;
2876}
2877
2878/**
2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880 * @pci_dev: Device to check.
2881 *
2882 * If the device is suspended and it is not configured for system wakeup,
2883 * disable PME for it to prevent it from waking up the system unnecessarily.
2884 *
2885 * Note that if the device's power state is D3cold and the platform check in
2886 * pci_dev_need_resume() has not triggered, the device's configuration need not
2887 * be changed.
2888 */
2889void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2890{
2891	struct device *dev = &pci_dev->dev;
2892
2893	spin_lock_irq(&dev->power.lock);
2894
2895	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2896	    pci_dev->current_state < PCI_D3cold)
2897		__pci_pme_active(pci_dev, false);
2898
2899	spin_unlock_irq(&dev->power.lock);
2900}
2901
2902/**
2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904 * @pci_dev: Device to handle.
2905 *
2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907 * it might have been disabled during the prepare phase of system suspend if
2908 * the device was not configured for system wakeup.
2909 */
2910void pci_dev_complete_resume(struct pci_dev *pci_dev)
2911{
2912	struct device *dev = &pci_dev->dev;
2913
2914	if (!pci_dev_run_wake(pci_dev))
2915		return;
2916
2917	spin_lock_irq(&dev->power.lock);
2918
2919	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2920		__pci_pme_active(pci_dev, true);
2921
2922	spin_unlock_irq(&dev->power.lock);
2923}
2924
2925/**
2926 * pci_choose_state - Choose the power state of a PCI device.
2927 * @dev: Target PCI device.
2928 * @state: Target state for the whole system.
2929 *
2930 * Returns PCI power state suitable for @dev and @state.
2931 */
2932pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2933{
2934	if (state.event == PM_EVENT_ON)
2935		return PCI_D0;
2936
2937	return pci_target_state(dev, false);
2938}
2939EXPORT_SYMBOL(pci_choose_state);
2940
2941void pci_config_pm_runtime_get(struct pci_dev *pdev)
2942{
2943	struct device *dev = &pdev->dev;
2944	struct device *parent = dev->parent;
2945
2946	if (parent)
2947		pm_runtime_get_sync(parent);
2948	pm_runtime_get_noresume(dev);
2949	/*
2950	 * pdev->current_state is set to PCI_D3cold during suspending,
2951	 * so wait until suspending completes
2952	 */
2953	pm_runtime_barrier(dev);
2954	/*
2955	 * Only need to resume devices in D3cold, because config
2956	 * registers are still accessible for devices suspended but
2957	 * not in D3cold.
2958	 */
2959	if (pdev->current_state == PCI_D3cold)
2960		pm_runtime_resume(dev);
2961}
2962
2963void pci_config_pm_runtime_put(struct pci_dev *pdev)
2964{
2965	struct device *dev = &pdev->dev;
2966	struct device *parent = dev->parent;
2967
2968	pm_runtime_put(dev);
2969	if (parent)
2970		pm_runtime_put_sync(parent);
2971}
2972
2973static const struct dmi_system_id bridge_d3_blacklist[] = {
2974#ifdef CONFIG_X86
2975	{
2976		/*
2977		 * Gigabyte X299 root port is not marked as hotplug capable
2978		 * which allows Linux to power manage it.  However, this
2979		 * confuses the BIOS SMI handler so don't power manage root
2980		 * ports on that system.
2981		 */
2982		.ident = "X299 DESIGNARE EX-CF",
2983		.matches = {
2984			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2985			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2986		},
2987	},
2988	{
2989		/*
2990		 * Downstream device is not accessible after putting a root port
2991		 * into D3cold and back into D0 on Elo Continental Z2 board
2992		 */
2993		.ident = "Elo Continental Z2",
2994		.matches = {
2995			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2996			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2997			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2998		},
2999	},
3000	{
3001		/*
3002		 * Changing power state of root port dGPU is connected fails
3003		 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3004		 */
3005		.ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3006		.matches = {
3007			DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3008			DMI_MATCH(DMI_BOARD_NAME, "1972"),
3009			DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3010		},
3011	},
3012#endif
3013	{ }
3014};
3015
3016/**
3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018 * @bridge: Bridge to check
3019 *
3020 * This function checks if it is possible to move the bridge to D3.
3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3022 */
3023bool pci_bridge_d3_possible(struct pci_dev *bridge)
3024{
3025	if (!pci_is_pcie(bridge))
3026		return false;
3027
3028	switch (pci_pcie_type(bridge)) {
3029	case PCI_EXP_TYPE_ROOT_PORT:
3030	case PCI_EXP_TYPE_UPSTREAM:
3031	case PCI_EXP_TYPE_DOWNSTREAM:
3032		if (pci_bridge_d3_disable)
3033			return false;
3034
3035		/*
3036		 * Hotplug ports handled by firmware in System Management Mode
3037		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3038		 */
3039		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3040			return false;
3041
3042		if (pci_bridge_d3_force)
3043			return true;
3044
3045		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3046		if (bridge->is_thunderbolt)
3047			return true;
3048
3049		/* Platform might know better if the bridge supports D3 */
3050		if (platform_pci_bridge_d3(bridge))
3051			return true;
3052
3053		/*
3054		 * Hotplug ports handled natively by the OS were not validated
3055		 * by vendors for runtime D3 at least until 2018 because there
3056		 * was no OS support.
3057		 */
3058		if (bridge->is_hotplug_bridge)
3059			return false;
3060
3061		if (dmi_check_system(bridge_d3_blacklist))
3062			return false;
3063
3064		/*
3065		 * It should be safe to put PCIe ports from 2015 or newer
3066		 * to D3.
3067		 */
3068		if (dmi_get_bios_year() >= 2015)
3069			return true;
3070		break;
3071	}
3072
3073	return false;
3074}
3075
3076static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3077{
3078	bool *d3cold_ok = data;
3079
3080	if (/* The device needs to be allowed to go D3cold ... */
3081	    dev->no_d3cold || !dev->d3cold_allowed ||
3082
3083	    /* ... and if it is wakeup capable to do so from D3cold. */
3084	    (device_may_wakeup(&dev->dev) &&
3085	     !pci_pme_capable(dev, PCI_D3cold)) ||
3086
3087	    /* If it is a bridge it must be allowed to go to D3. */
3088	    !pci_power_manageable(dev))
3089
3090		*d3cold_ok = false;
3091
3092	return !*d3cold_ok;
3093}
3094
3095/*
3096 * pci_bridge_d3_update - Update bridge D3 capabilities
3097 * @dev: PCI device which is changed
3098 *
3099 * Update upstream bridge PM capabilities accordingly depending on if the
3100 * device PM configuration was changed or the device is being removed.  The
3101 * change is also propagated upstream.
3102 */
3103void pci_bridge_d3_update(struct pci_dev *dev)
3104{
3105	bool remove = !device_is_registered(&dev->dev);
3106	struct pci_dev *bridge;
3107	bool d3cold_ok = true;
3108
3109	bridge = pci_upstream_bridge(dev);
3110	if (!bridge || !pci_bridge_d3_possible(bridge))
3111		return;
3112
3113	/*
3114	 * If D3 is currently allowed for the bridge, removing one of its
3115	 * children won't change that.
3116	 */
3117	if (remove && bridge->bridge_d3)
3118		return;
3119
3120	/*
3121	 * If D3 is currently allowed for the bridge and a child is added or
3122	 * changed, disallowance of D3 can only be caused by that child, so
3123	 * we only need to check that single device, not any of its siblings.
3124	 *
3125	 * If D3 is currently not allowed for the bridge, checking the device
3126	 * first may allow us to skip checking its siblings.
3127	 */
3128	if (!remove)
3129		pci_dev_check_d3cold(dev, &d3cold_ok);
3130
3131	/*
3132	 * If D3 is currently not allowed for the bridge, this may be caused
3133	 * either by the device being changed/removed or any of its siblings,
3134	 * so we need to go through all children to find out if one of them
3135	 * continues to block D3.
3136	 */
3137	if (d3cold_ok && !bridge->bridge_d3)
3138		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3139			     &d3cold_ok);
3140
3141	if (bridge->bridge_d3 != d3cold_ok) {
3142		bridge->bridge_d3 = d3cold_ok;
3143		/* Propagate change to upstream bridges */
3144		pci_bridge_d3_update(bridge);
3145	}
3146}
3147
3148/**
3149 * pci_d3cold_enable - Enable D3cold for device
3150 * @dev: PCI device to handle
3151 *
3152 * This function can be used in drivers to enable D3cold from the device
3153 * they handle.  It also updates upstream PCI bridge PM capabilities
3154 * accordingly.
3155 */
3156void pci_d3cold_enable(struct pci_dev *dev)
3157{
3158	if (dev->no_d3cold) {
3159		dev->no_d3cold = false;
3160		pci_bridge_d3_update(dev);
3161	}
3162}
3163EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3164
3165/**
3166 * pci_d3cold_disable - Disable D3cold for device
3167 * @dev: PCI device to handle
3168 *
3169 * This function can be used in drivers to disable D3cold from the device
3170 * they handle.  It also updates upstream PCI bridge PM capabilities
3171 * accordingly.
3172 */
3173void pci_d3cold_disable(struct pci_dev *dev)
3174{
3175	if (!dev->no_d3cold) {
3176		dev->no_d3cold = true;
3177		pci_bridge_d3_update(dev);
3178	}
3179}
3180EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3181
3182/**
3183 * pci_pm_init - Initialize PM functions of given PCI device
3184 * @dev: PCI device to handle.
3185 */
3186void pci_pm_init(struct pci_dev *dev)
3187{
3188	int pm;
3189	u16 status;
3190	u16 pmc;
3191
3192	pm_runtime_forbid(&dev->dev);
3193	pm_runtime_set_active(&dev->dev);
3194	pm_runtime_enable(&dev->dev);
3195	device_enable_async_suspend(&dev->dev);
3196	dev->wakeup_prepared = false;
3197
3198	dev->pm_cap = 0;
3199	dev->pme_support = 0;
3200
3201	/* find PCI PM capability in list */
3202	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3203	if (!pm)
3204		return;
3205	/* Check device's ability to generate PME# */
3206	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3207
3208	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3209		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3210			pmc & PCI_PM_CAP_VER_MASK);
3211		return;
3212	}
3213
3214	dev->pm_cap = pm;
3215	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3216	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3217	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3218	dev->d3cold_allowed = true;
3219
3220	dev->d1_support = false;
3221	dev->d2_support = false;
3222	if (!pci_no_d1d2(dev)) {
3223		if (pmc & PCI_PM_CAP_D1)
3224			dev->d1_support = true;
3225		if (pmc & PCI_PM_CAP_D2)
3226			dev->d2_support = true;
3227
3228		if (dev->d1_support || dev->d2_support)
3229			pci_info(dev, "supports%s%s\n",
3230				   dev->d1_support ? " D1" : "",
3231				   dev->d2_support ? " D2" : "");
3232	}
3233
3234	pmc &= PCI_PM_CAP_PME_MASK;
3235	if (pmc) {
3236		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3237			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3238			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3239			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3240			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3241			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3242		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3243		dev->pme_poll = true;
3244		/*
3245		 * Make device's PM flags reflect the wake-up capability, but
3246		 * let the user space enable it to wake up the system as needed.
3247		 */
3248		device_set_wakeup_capable(&dev->dev, true);
3249		/* Disable the PME# generation functionality */
3250		pci_pme_active(dev, false);
3251	}
3252
3253	pci_read_config_word(dev, PCI_STATUS, &status);
3254	if (status & PCI_STATUS_IMM_READY)
3255		dev->imm_ready = 1;
3256}
3257
3258static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3259{
3260	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3261
3262	switch (prop) {
3263	case PCI_EA_P_MEM:
3264	case PCI_EA_P_VF_MEM:
3265		flags |= IORESOURCE_MEM;
3266		break;
3267	case PCI_EA_P_MEM_PREFETCH:
3268	case PCI_EA_P_VF_MEM_PREFETCH:
3269		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3270		break;
3271	case PCI_EA_P_IO:
3272		flags |= IORESOURCE_IO;
3273		break;
3274	default:
3275		return 0;
3276	}
3277
3278	return flags;
3279}
3280
3281static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3282					    u8 prop)
3283{
3284	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3285		return &dev->resource[bei];
3286#ifdef CONFIG_PCI_IOV
3287	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3288		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3289		return &dev->resource[PCI_IOV_RESOURCES +
3290				      bei - PCI_EA_BEI_VF_BAR0];
3291#endif
3292	else if (bei == PCI_EA_BEI_ROM)
3293		return &dev->resource[PCI_ROM_RESOURCE];
3294	else
3295		return NULL;
3296}
3297
3298/* Read an Enhanced Allocation (EA) entry */
3299static int pci_ea_read(struct pci_dev *dev, int offset)
3300{
3301	struct resource *res;
3302	const char *res_name;
3303	int ent_size, ent_offset = offset;
3304	resource_size_t start, end;
3305	unsigned long flags;
3306	u32 dw0, bei, base, max_offset;
3307	u8 prop;
3308	bool support_64 = (sizeof(resource_size_t) >= 8);
3309
3310	pci_read_config_dword(dev, ent_offset, &dw0);
3311	ent_offset += 4;
3312
3313	/* Entry size field indicates DWORDs after 1st */
3314	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3315
3316	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3317		goto out;
3318
3319	bei = FIELD_GET(PCI_EA_BEI, dw0);
3320	prop = FIELD_GET(PCI_EA_PP, dw0);
3321
3322	/*
3323	 * If the Property is in the reserved range, try the Secondary
3324	 * Property instead.
3325	 */
3326	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3327		prop = FIELD_GET(PCI_EA_SP, dw0);
3328	if (prop > PCI_EA_P_BRIDGE_IO)
3329		goto out;
3330
3331	res = pci_ea_get_resource(dev, bei, prop);
3332	res_name = pci_resource_name(dev, bei);
3333	if (!res) {
3334		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3335		goto out;
3336	}
3337
3338	flags = pci_ea_flags(dev, prop);
3339	if (!flags) {
3340		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3341		goto out;
3342	}
3343
3344	/* Read Base */
3345	pci_read_config_dword(dev, ent_offset, &base);
3346	start = (base & PCI_EA_FIELD_MASK);
3347	ent_offset += 4;
3348
3349	/* Read MaxOffset */
3350	pci_read_config_dword(dev, ent_offset, &max_offset);
3351	ent_offset += 4;
3352
3353	/* Read Base MSBs (if 64-bit entry) */
3354	if (base & PCI_EA_IS_64) {
3355		u32 base_upper;
3356
3357		pci_read_config_dword(dev, ent_offset, &base_upper);
3358		ent_offset += 4;
3359
3360		flags |= IORESOURCE_MEM_64;
3361
3362		/* entry starts above 32-bit boundary, can't use */
3363		if (!support_64 && base_upper)
3364			goto out;
3365
3366		if (support_64)
3367			start |= ((u64)base_upper << 32);
3368	}
3369
3370	end = start + (max_offset | 0x03);
3371
3372	/* Read MaxOffset MSBs (if 64-bit entry) */
3373	if (max_offset & PCI_EA_IS_64) {
3374		u32 max_offset_upper;
3375
3376		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3377		ent_offset += 4;
3378
3379		flags |= IORESOURCE_MEM_64;
3380
3381		/* entry too big, can't use */
3382		if (!support_64 && max_offset_upper)
3383			goto out;
3384
3385		if (support_64)
3386			end += ((u64)max_offset_upper << 32);
3387	}
3388
3389	if (end < start) {
3390		pci_err(dev, "EA Entry crosses address boundary\n");
3391		goto out;
3392	}
3393
3394	if (ent_size != ent_offset - offset) {
3395		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3396			ent_size, ent_offset - offset);
3397		goto out;
3398	}
3399
3400	res->name = pci_name(dev);
3401	res->start = start;
3402	res->end = end;
3403	res->flags = flags;
3404
3405	if (bei <= PCI_EA_BEI_BAR5)
3406		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407			 res_name, res, prop);
3408	else if (bei == PCI_EA_BEI_ROM)
3409		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410			 res_name, res, prop);
3411	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3412		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413			 res_name, res, prop);
3414	else
3415		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3416			   bei, res, prop);
3417
3418out:
3419	return offset + ent_size;
3420}
3421
3422/* Enhanced Allocation Initialization */
3423void pci_ea_init(struct pci_dev *dev)
3424{
3425	int ea;
3426	u8 num_ent;
3427	int offset;
3428	int i;
3429
3430	/* find PCI EA capability in list */
3431	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3432	if (!ea)
3433		return;
3434
3435	/* determine the number of entries */
3436	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3437					&num_ent);
3438	num_ent &= PCI_EA_NUM_ENT_MASK;
3439
3440	offset = ea + PCI_EA_FIRST_ENT;
3441
3442	/* Skip DWORD 2 for type 1 functions */
3443	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3444		offset += 4;
3445
3446	/* parse each EA entry */
3447	for (i = 0; i < num_ent; ++i)
3448		offset = pci_ea_read(dev, offset);
3449}
3450
3451static void pci_add_saved_cap(struct pci_dev *pci_dev,
3452	struct pci_cap_saved_state *new_cap)
3453{
3454	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3455}
3456
3457/**
3458 * _pci_add_cap_save_buffer - allocate buffer for saving given
3459 *			      capability registers
3460 * @dev: the PCI device
3461 * @cap: the capability to allocate the buffer for
3462 * @extended: Standard or Extended capability ID
3463 * @size: requested size of the buffer
3464 */
3465static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3466				    bool extended, unsigned int size)
3467{
3468	int pos;
3469	struct pci_cap_saved_state *save_state;
3470
3471	if (extended)
3472		pos = pci_find_ext_capability(dev, cap);
3473	else
3474		pos = pci_find_capability(dev, cap);
3475
3476	if (!pos)
3477		return 0;
3478
3479	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3480	if (!save_state)
3481		return -ENOMEM;
3482
3483	save_state->cap.cap_nr = cap;
3484	save_state->cap.cap_extended = extended;
3485	save_state->cap.size = size;
3486	pci_add_saved_cap(dev, save_state);
3487
3488	return 0;
3489}
3490
3491int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3492{
3493	return _pci_add_cap_save_buffer(dev, cap, false, size);
3494}
3495
3496int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3497{
3498	return _pci_add_cap_save_buffer(dev, cap, true, size);
3499}
3500
3501/**
3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503 * @dev: the PCI device
3504 */
3505void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3506{
3507	int error;
3508
3509	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3510					PCI_EXP_SAVE_REGS * sizeof(u16));
3511	if (error)
3512		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3513
3514	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3515	if (error)
3516		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3517
3518	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3519					    2 * sizeof(u16));
3520	if (error)
3521		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3522
3523	pci_allocate_vc_save_buffers(dev);
3524}
3525
3526void pci_free_cap_save_buffers(struct pci_dev *dev)
3527{
3528	struct pci_cap_saved_state *tmp;
3529	struct hlist_node *n;
3530
3531	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3532		kfree(tmp);
3533}
3534
3535/**
3536 * pci_configure_ari - enable or disable ARI forwarding
3537 * @dev: the PCI device
3538 *
3539 * If @dev and its upstream bridge both support ARI, enable ARI in the
3540 * bridge.  Otherwise, disable ARI in the bridge.
3541 */
3542void pci_configure_ari(struct pci_dev *dev)
3543{
3544	u32 cap;
3545	struct pci_dev *bridge;
3546
3547	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3548		return;
3549
3550	bridge = dev->bus->self;
3551	if (!bridge)
3552		return;
3553
3554	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3555	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3556		return;
3557
3558	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3559		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3560					 PCI_EXP_DEVCTL2_ARI);
3561		bridge->ari_enabled = 1;
3562	} else {
3563		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3564					   PCI_EXP_DEVCTL2_ARI);
3565		bridge->ari_enabled = 0;
3566	}
3567}
3568
3569static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3570{
3571	int pos;
3572	u16 cap, ctrl;
3573
3574	pos = pdev->acs_cap;
3575	if (!pos)
3576		return false;
3577
3578	/*
3579	 * Except for egress control, capabilities are either required
3580	 * or only required if controllable.  Features missing from the
3581	 * capability field can therefore be assumed as hard-wired enabled.
3582	 */
3583	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3584	acs_flags &= (cap | PCI_ACS_EC);
3585
3586	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3587	return (ctrl & acs_flags) == acs_flags;
3588}
3589
3590/**
3591 * pci_acs_enabled - test ACS against required flags for a given device
3592 * @pdev: device to test
3593 * @acs_flags: required PCI ACS flags
3594 *
3595 * Return true if the device supports the provided flags.  Automatically
3596 * filters out flags that are not implemented on multifunction devices.
3597 *
3598 * Note that this interface checks the effective ACS capabilities of the
3599 * device rather than the actual capabilities.  For instance, most single
3600 * function endpoints are not required to support ACS because they have no
3601 * opportunity for peer-to-peer access.  We therefore return 'true'
3602 * regardless of whether the device exposes an ACS capability.  This makes
3603 * it much easier for callers of this function to ignore the actual type
3604 * or topology of the device when testing ACS support.
3605 */
3606bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3607{
3608	int ret;
3609
3610	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3611	if (ret >= 0)
3612		return ret > 0;
3613
3614	/*
3615	 * Conventional PCI and PCI-X devices never support ACS, either
3616	 * effectively or actually.  The shared bus topology implies that
3617	 * any device on the bus can receive or snoop DMA.
3618	 */
3619	if (!pci_is_pcie(pdev))
3620		return false;
3621
3622	switch (pci_pcie_type(pdev)) {
3623	/*
3624	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625	 * but since their primary interface is PCI/X, we conservatively
3626	 * handle them as we would a non-PCIe device.
3627	 */
3628	case PCI_EXP_TYPE_PCIE_BRIDGE:
3629	/*
3630	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3631	 * applicable... must never implement an ACS Extended Capability...".
3632	 * This seems arbitrary, but we take a conservative interpretation
3633	 * of this statement.
3634	 */
3635	case PCI_EXP_TYPE_PCI_BRIDGE:
3636	case PCI_EXP_TYPE_RC_EC:
3637		return false;
3638	/*
3639	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640	 * implement ACS in order to indicate their peer-to-peer capabilities,
3641	 * regardless of whether they are single- or multi-function devices.
3642	 */
3643	case PCI_EXP_TYPE_DOWNSTREAM:
3644	case PCI_EXP_TYPE_ROOT_PORT:
3645		return pci_acs_flags_enabled(pdev, acs_flags);
3646	/*
3647	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648	 * implemented by the remaining PCIe types to indicate peer-to-peer
3649	 * capabilities, but only when they are part of a multifunction
3650	 * device.  The footnote for section 6.12 indicates the specific
3651	 * PCIe types included here.
3652	 */
3653	case PCI_EXP_TYPE_ENDPOINT:
3654	case PCI_EXP_TYPE_UPSTREAM:
3655	case PCI_EXP_TYPE_LEG_END:
3656	case PCI_EXP_TYPE_RC_END:
3657		if (!pdev->multifunction)
3658			break;
3659
3660		return pci_acs_flags_enabled(pdev, acs_flags);
3661	}
3662
3663	/*
3664	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665	 * to single function devices with the exception of downstream ports.
3666	 */
3667	return true;
3668}
3669
3670/**
3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672 * @start: starting downstream device
3673 * @end: ending upstream device or NULL to search to the root bus
3674 * @acs_flags: required flags
3675 *
3676 * Walk up a device tree from start to end testing PCI ACS support.  If
3677 * any step along the way does not support the required flags, return false.
3678 */
3679bool pci_acs_path_enabled(struct pci_dev *start,
3680			  struct pci_dev *end, u16 acs_flags)
3681{
3682	struct pci_dev *pdev, *parent = start;
3683
3684	do {
3685		pdev = parent;
3686
3687		if (!pci_acs_enabled(pdev, acs_flags))
3688			return false;
3689
3690		if (pci_is_root_bus(pdev->bus))
3691			return (end == NULL);
3692
3693		parent = pdev->bus->self;
3694	} while (pdev != end);
3695
3696	return true;
3697}
3698
3699/**
3700 * pci_acs_init - Initialize ACS if hardware supports it
3701 * @dev: the PCI device
3702 */
3703void pci_acs_init(struct pci_dev *dev)
3704{
3705	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3706
3707	/*
3708	 * Attempt to enable ACS regardless of capability because some Root
3709	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710	 * the standard ACS capability but still support ACS via those
3711	 * quirks.
3712	 */
3713	pci_enable_acs(dev);
3714}
3715
3716/**
3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3718 * @pdev: PCI device
3719 * @bar: BAR to find
3720 *
3721 * Helper to find the position of the ctrl register for a BAR.
3722 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723 * Returns -ENOENT if no ctrl register for the BAR could be found.
3724 */
3725static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3726{
3727	unsigned int pos, nbars, i;
3728	u32 ctrl;
3729
3730	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3731	if (!pos)
3732		return -ENOTSUPP;
3733
3734	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
3736
3737	for (i = 0; i < nbars; i++, pos += 8) {
3738		int bar_idx;
3739
3740		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742		if (bar_idx == bar)
3743			return pos;
3744	}
3745
3746	return -ENOENT;
3747}
3748
3749/**
3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3751 * @pdev: PCI device
3752 * @bar: BAR to query
3753 *
3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3756 */
3757u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3758{
3759	int pos;
3760	u32 cap;
3761
3762	pos = pci_rebar_find_pos(pdev, bar);
3763	if (pos < 0)
3764		return 0;
3765
3766	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3767	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3768
3769	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3771	    bar == 0 && cap == 0x700)
3772		return 0x3f00;
3773
3774	return cap;
3775}
3776EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3777
3778/**
3779 * pci_rebar_get_current_size - get the current size of a BAR
3780 * @pdev: PCI device
3781 * @bar: BAR to set size to
3782 *
3783 * Read the size of a BAR from the resizable BAR config.
3784 * Returns size if found or negative error code.
3785 */
3786int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3787{
3788	int pos;
3789	u32 ctrl;
3790
3791	pos = pci_rebar_find_pos(pdev, bar);
3792	if (pos < 0)
3793		return pos;
3794
3795	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3796	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3797}
3798
3799/**
3800 * pci_rebar_set_size - set a new size for a BAR
3801 * @pdev: PCI device
3802 * @bar: BAR to set size to
3803 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3804 *
3805 * Set the new size of a BAR as defined in the spec.
3806 * Returns zero if resizing was successful, error code otherwise.
3807 */
3808int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3809{
3810	int pos;
3811	u32 ctrl;
3812
3813	pos = pci_rebar_find_pos(pdev, bar);
3814	if (pos < 0)
3815		return pos;
3816
3817	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3818	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3819	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3820	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3821	return 0;
3822}
3823
3824/**
3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826 * @dev: the PCI device
3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3831 *
3832 * Return 0 if all upstream bridges support AtomicOp routing, egress
3833 * blocking is disabled on all upstream ports, and the root port supports
3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835 * AtomicOp completion), or negative otherwise.
3836 */
3837int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3838{
3839	struct pci_bus *bus = dev->bus;
3840	struct pci_dev *bridge;
3841	u32 cap, ctl2;
3842
3843	/*
3844	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845	 * in Device Control 2 is reserved in VFs and the PF value applies
3846	 * to all associated VFs.
3847	 */
3848	if (dev->is_virtfn)
3849		return -EINVAL;
3850
3851	if (!pci_is_pcie(dev))
3852		return -EINVAL;
3853
3854	/*
3855	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856	 * AtomicOp requesters.  For now, we only support endpoints as
3857	 * requesters and root ports as completers.  No endpoints as
3858	 * completers, and no peer-to-peer.
3859	 */
3860
3861	switch (pci_pcie_type(dev)) {
3862	case PCI_EXP_TYPE_ENDPOINT:
3863	case PCI_EXP_TYPE_LEG_END:
3864	case PCI_EXP_TYPE_RC_END:
3865		break;
3866	default:
3867		return -EINVAL;
3868	}
3869
3870	while (bus->parent) {
3871		bridge = bus->self;
3872
3873		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3874
3875		switch (pci_pcie_type(bridge)) {
3876		/* Ensure switch ports support AtomicOp routing */
3877		case PCI_EXP_TYPE_UPSTREAM:
3878		case PCI_EXP_TYPE_DOWNSTREAM:
3879			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3880				return -EINVAL;
3881			break;
3882
3883		/* Ensure root port supports all the sizes we care about */
3884		case PCI_EXP_TYPE_ROOT_PORT:
3885			if ((cap & cap_mask) != cap_mask)
3886				return -EINVAL;
3887			break;
3888		}
3889
3890		/* Ensure upstream ports don't block AtomicOps on egress */
3891		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3892			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3893						   &ctl2);
3894			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3895				return -EINVAL;
3896		}
3897
3898		bus = bus->parent;
3899	}
3900
3901	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3902				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3903	return 0;
3904}
3905EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3906
3907/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908 * pci_release_region - Release a PCI bar
3909 * @pdev: PCI device whose resources were previously reserved by
3910 *	  pci_request_region()
3911 * @bar: BAR to release
3912 *
3913 * Releases the PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_region().  Call this function only
3915 * after all use of the PCI regions has ceased.
3916 */
3917void pci_release_region(struct pci_dev *pdev, int bar)
3918{
3919	/*
3920	 * This is done for backwards compatibility, because the old PCI devres
3921	 * API had a mode in which the function became managed if it had been
3922	 * enabled with pcim_enable_device() instead of pci_enable_device().
3923	 */
3924	if (pci_is_managed(pdev)) {
3925		pcim_release_region(pdev, bar);
3926		return;
3927	}
3928
3929	if (pci_resource_len(pdev, bar) == 0)
3930		return;
3931	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932		release_region(pci_resource_start(pdev, bar),
3933				pci_resource_len(pdev, bar));
3934	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935		release_mem_region(pci_resource_start(pdev, bar),
3936				pci_resource_len(pdev, bar));
 
 
 
 
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Returns: 0 on success, negative error code on failure.
3948 *
3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950 * being reserved by owner @res_name.  Do not access any
3951 * address inside the PCI regions unless this call returns
3952 * successfully.
3953 *
3954 * If @exclusive is set, then the region is marked so that userspace
3955 * is explicitly not allowed to map the resource via /dev/mem or
3956 * sysfs MMIO access.
3957 *
3958 * Returns 0 on success, or %EBUSY on error.  A warning
3959 * message is also printed on failure.
3960 */
3961static int __pci_request_region(struct pci_dev *pdev, int bar,
3962				const char *res_name, int exclusive)
3963{
3964	if (pci_is_managed(pdev)) {
3965		if (exclusive == IORESOURCE_EXCLUSIVE)
3966			return pcim_request_region_exclusive(pdev, bar, res_name);
3967
3968		return pcim_request_region(pdev, bar, res_name);
3969	}
3970
3971	if (pci_resource_len(pdev, bar) == 0)
3972		return 0;
3973
3974	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975		if (!request_region(pci_resource_start(pdev, bar),
3976			    pci_resource_len(pdev, bar), res_name))
3977			goto err_out;
3978	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979		if (!__request_mem_region(pci_resource_start(pdev, bar),
3980					pci_resource_len(pdev, bar), res_name,
3981					exclusive))
3982			goto err_out;
3983	}
3984
 
 
 
 
3985	return 0;
3986
3987err_out:
3988	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3989		 &pdev->resource[bar]);
3990	return -EBUSY;
3991}
3992
3993/**
3994 * pci_request_region - Reserve PCI I/O and memory resource
3995 * @pdev: PCI device whose resources are to be reserved
3996 * @bar: BAR to be reserved
3997 * @res_name: Name to be associated with resource
3998 *
3999 * Returns: 0 on success, negative error code on failure.
4000 *
4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002 * being reserved by owner @res_name.  Do not access any
4003 * address inside the PCI regions unless this call returns
4004 * successfully.
4005 *
4006 * Returns 0 on success, or %EBUSY on error.  A warning
4007 * message is also printed on failure.
4008 *
4009 * NOTE:
4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011 * when pcim_enable_device() has been called in advance. This hybrid feature is
4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4013 */
4014int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4015{
4016	return __pci_request_region(pdev, bar, res_name, 0);
4017}
4018EXPORT_SYMBOL(pci_request_region);
4019
4020/**
4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022 * @pdev: PCI device whose resources were previously reserved
4023 * @bars: Bitmask of BARs to be released
4024 *
4025 * Release selected PCI I/O and memory resources previously reserved.
4026 * Call this function only after all use of the PCI regions has ceased.
4027 */
4028void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4029{
4030	int i;
4031
4032	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4033		if (bars & (1 << i))
4034			pci_release_region(pdev, i);
4035}
4036EXPORT_SYMBOL(pci_release_selected_regions);
4037
4038static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4039					  const char *res_name, int excl)
4040{
4041	int i;
4042
4043	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4044		if (bars & (1 << i))
4045			if (__pci_request_region(pdev, i, res_name, excl))
4046				goto err_out;
4047	return 0;
4048
4049err_out:
4050	while (--i >= 0)
4051		if (bars & (1 << i))
4052			pci_release_region(pdev, i);
4053
4054	return -EBUSY;
4055}
4056
4057
4058/**
4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources are to be reserved
4061 * @bars: Bitmask of BARs to be requested
4062 * @res_name: Name to be associated with resource
4063 *
4064 * Returns: 0 on success, negative error code on failure.
4065 *
4066 * NOTE:
4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068 * when pcim_enable_device() has been called in advance. This hybrid feature is
4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070 */
4071int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4072				 const char *res_name)
4073{
4074	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4075}
4076EXPORT_SYMBOL(pci_request_selected_regions);
4077
4078/**
4079 * pci_request_selected_regions_exclusive - Request regions exclusively
4080 * @pdev: PCI device to request regions from
4081 * @bars: bit mask of BARs to request
4082 * @res_name: name to be associated with the requests
4083 *
4084 * Returns: 0 on success, negative error code on failure.
4085 *
4086 * NOTE:
4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088 * when pcim_enable_device() has been called in advance. This hybrid feature is
4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4090 */
4091int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092					   const char *res_name)
4093{
4094	return __pci_request_selected_regions(pdev, bars, res_name,
4095			IORESOURCE_EXCLUSIVE);
4096}
4097EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098
4099/**
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 *	  pci_request_regions()
4103 *
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions().  Call this function only
4106 * after all use of the PCI regions has ceased.
4107 */
 
4108void pci_release_regions(struct pci_dev *pdev)
4109{
4110	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4111}
4112EXPORT_SYMBOL(pci_release_regions);
4113
4114/**
4115 * pci_request_regions - Reserve PCI I/O and memory resources
4116 * @pdev: PCI device whose resources are to be reserved
4117 * @res_name: Name to be associated with resource.
4118 *
4119 * Mark all PCI regions associated with PCI device @pdev as
4120 * being reserved by owner @res_name.  Do not access any
4121 * address inside the PCI regions unless this call returns
4122 * successfully.
4123 *
4124 * Returns 0 on success, or %EBUSY on error.  A warning
4125 * message is also printed on failure.
4126 *
4127 * NOTE:
4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129 * when pcim_enable_device() has been called in advance. This hybrid feature is
4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4131 */
4132int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4133{
4134	return pci_request_selected_regions(pdev,
4135			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4136}
4137EXPORT_SYMBOL(pci_request_regions);
4138
4139/**
4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @res_name: Name to be associated with resource.
4143 *
4144 * Returns: 0 on success, negative error code on failure.
4145 *
4146 * Mark all PCI regions associated with PCI device @pdev as being reserved
4147 * by owner @res_name.  Do not access any address inside the PCI regions
4148 * unless this call returns successfully.
4149 *
4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151 * and the sysfs MMIO access will not be allowed.
4152 *
4153 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4154 * printed on failure.
4155 *
4156 * NOTE:
4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158 * when pcim_enable_device() has been called in advance. This hybrid feature is
4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4160 */
4161int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4162{
4163	return pci_request_selected_regions_exclusive(pdev,
4164				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4165}
4166EXPORT_SYMBOL(pci_request_regions_exclusive);
4167
4168/*
4169 * Record the PCI IO range (expressed as CPU physical address + size).
4170 * Return a negative value if an error has occurred, zero otherwise
4171 */
4172int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4173			resource_size_t	size)
4174{
4175	int ret = 0;
4176#ifdef PCI_IOBASE
4177	struct logic_pio_hwaddr *range;
4178
4179	if (!size || addr + size < addr)
4180		return -EINVAL;
4181
4182	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4183	if (!range)
4184		return -ENOMEM;
4185
4186	range->fwnode = fwnode;
4187	range->size = size;
4188	range->hw_start = addr;
4189	range->flags = LOGIC_PIO_CPU_MMIO;
4190
4191	ret = logic_pio_register_range(range);
4192	if (ret)
4193		kfree(range);
4194
4195	/* Ignore duplicates due to deferred probing */
4196	if (ret == -EEXIST)
4197		ret = 0;
4198#endif
4199
4200	return ret;
4201}
4202
4203phys_addr_t pci_pio_to_address(unsigned long pio)
4204{
 
 
4205#ifdef PCI_IOBASE
4206	if (pio < MMIO_UPPER_LIMIT)
4207		return logic_pio_to_hwaddr(pio);
 
 
4208#endif
4209
4210	return (phys_addr_t) OF_BAD_ADDR;
4211}
4212EXPORT_SYMBOL_GPL(pci_pio_to_address);
4213
4214unsigned long __weak pci_address_to_pio(phys_addr_t address)
4215{
4216#ifdef PCI_IOBASE
4217	return logic_pio_trans_cpuaddr(address);
4218#else
4219	if (address > IO_SPACE_LIMIT)
4220		return (unsigned long)-1;
4221
4222	return (unsigned long) address;
4223#endif
4224}
4225
4226/**
4227 * pci_remap_iospace - Remap the memory mapped I/O space
4228 * @res: Resource describing the I/O space
4229 * @phys_addr: physical address of range to be mapped
4230 *
4231 * Remap the memory mapped I/O space described by the @res and the CPU
4232 * physical address @phys_addr into virtual address space.  Only
4233 * architectures that have memory mapped IO functions defined (and the
4234 * PCI_IOBASE value defined) should call this function.
4235 */
4236#ifndef pci_remap_iospace
4237int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4238{
4239#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241
4242	if (!(res->flags & IORESOURCE_IO))
4243		return -EINVAL;
4244
4245	if (res->end > IO_SPACE_LIMIT)
4246		return -EINVAL;
4247
4248	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4249			       pgprot_device(PAGE_KERNEL));
4250#else
4251	/*
4252	 * This architecture does not have memory mapped I/O space,
4253	 * so this function should never be called
4254	 */
4255	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4256	return -ENODEV;
4257#endif
4258}
4259EXPORT_SYMBOL(pci_remap_iospace);
4260#endif
4261
4262/**
4263 * pci_unmap_iospace - Unmap the memory mapped I/O space
4264 * @res: resource to be unmapped
4265 *
4266 * Unmap the CPU virtual address @res from virtual address space.  Only
4267 * architectures that have memory mapped IO functions defined (and the
4268 * PCI_IOBASE value defined) should call this function.
4269 */
4270void pci_unmap_iospace(struct resource *res)
4271{
4272#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4274
4275	vunmap_range(vaddr, vaddr + resource_size(res));
4276#endif
4277}
4278EXPORT_SYMBOL(pci_unmap_iospace);
4279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4280static void __pci_set_master(struct pci_dev *dev, bool enable)
4281{
4282	u16 old_cmd, cmd;
4283
4284	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285	if (enable)
4286		cmd = old_cmd | PCI_COMMAND_MASTER;
4287	else
4288		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4289	if (cmd != old_cmd) {
4290		pci_dbg(dev, "%s bus mastering\n",
4291			enable ? "enabling" : "disabling");
4292		pci_write_config_word(dev, PCI_COMMAND, cmd);
4293	}
4294	dev->is_busmaster = enable;
4295}
4296
4297/**
4298 * pcibios_setup - process "pci=" kernel boot arguments
4299 * @str: string used to pass in "pci=" kernel boot arguments
4300 *
4301 * Process kernel boot arguments.  This is the default implementation.
4302 * Architecture specific implementations can override this as necessary.
4303 */
4304char * __weak __init pcibios_setup(char *str)
4305{
4306	return str;
4307}
4308
4309/**
4310 * pcibios_set_master - enable PCI bus-mastering for device dev
4311 * @dev: the PCI device to enable
4312 *
4313 * Enables PCI bus-mastering for the device.  This is the default
4314 * implementation.  Architecture specific implementations can override
4315 * this if necessary.
4316 */
4317void __weak pcibios_set_master(struct pci_dev *dev)
4318{
4319	u8 lat;
4320
4321	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322	if (pci_is_pcie(dev))
4323		return;
4324
4325	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326	if (lat < 16)
4327		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4328	else if (lat > pcibios_max_latency)
4329		lat = pcibios_max_latency;
4330	else
4331		return;
4332
4333	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4334}
4335
4336/**
4337 * pci_set_master - enables bus-mastering for device dev
4338 * @dev: the PCI device to enable
4339 *
4340 * Enables bus-mastering on the device and calls pcibios_set_master()
4341 * to do the needed arch specific settings.
4342 */
4343void pci_set_master(struct pci_dev *dev)
4344{
4345	__pci_set_master(dev, true);
4346	pcibios_set_master(dev);
4347}
4348EXPORT_SYMBOL(pci_set_master);
4349
4350/**
4351 * pci_clear_master - disables bus-mastering for device dev
4352 * @dev: the PCI device to disable
4353 */
4354void pci_clear_master(struct pci_dev *dev)
4355{
4356	__pci_set_master(dev, false);
4357}
4358EXPORT_SYMBOL(pci_clear_master);
4359
4360/**
4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362 * @dev: the PCI device for which MWI is to be enabled
4363 *
4364 * Helper function for pci_set_mwi.
4365 * Originally copied from drivers/net/acenic.c.
4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_set_cacheline_size(struct pci_dev *dev)
4371{
4372	u8 cacheline_size;
4373
4374	if (!pci_cache_line_size)
4375		return -EINVAL;
4376
4377	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378	   equal to or multiple of the right value. */
4379	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4380	if (cacheline_size >= pci_cache_line_size &&
4381	    (cacheline_size % pci_cache_line_size) == 0)
4382		return 0;
4383
4384	/* Write the correct value. */
4385	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386	/* Read it back. */
4387	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4388	if (cacheline_size == pci_cache_line_size)
4389		return 0;
4390
4391	pci_dbg(dev, "cache line size of %d is not supported\n",
4392		   pci_cache_line_size << 2);
4393
4394	return -EINVAL;
4395}
4396EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397
4398/**
4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400 * @dev: the PCI device for which MWI is enabled
4401 *
4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403 *
4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405 */
4406int pci_set_mwi(struct pci_dev *dev)
4407{
4408#ifdef PCI_DISABLE_MWI
4409	return 0;
4410#else
4411	int rc;
4412	u16 cmd;
4413
4414	rc = pci_set_cacheline_size(dev);
4415	if (rc)
4416		return rc;
4417
4418	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4419	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4420		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4421		cmd |= PCI_COMMAND_INVALIDATE;
4422		pci_write_config_word(dev, PCI_COMMAND, cmd);
4423	}
4424	return 0;
4425#endif
4426}
4427EXPORT_SYMBOL(pci_set_mwi);
4428
4429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431 * @dev: the PCI device for which MWI is enabled
4432 *
4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434 * Callers are not required to check the return value.
4435 *
4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4437 */
4438int pci_try_set_mwi(struct pci_dev *dev)
4439{
4440#ifdef PCI_DISABLE_MWI
4441	return 0;
4442#else
4443	return pci_set_mwi(dev);
4444#endif
4445}
4446EXPORT_SYMBOL(pci_try_set_mwi);
4447
4448/**
4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450 * @dev: the PCI device to disable
4451 *
4452 * Disables PCI Memory-Write-Invalidate transaction on the device
4453 */
4454void pci_clear_mwi(struct pci_dev *dev)
4455{
4456#ifndef PCI_DISABLE_MWI
4457	u16 cmd;
4458
4459	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4460	if (cmd & PCI_COMMAND_INVALIDATE) {
4461		cmd &= ~PCI_COMMAND_INVALIDATE;
4462		pci_write_config_word(dev, PCI_COMMAND, cmd);
4463	}
4464#endif
4465}
4466EXPORT_SYMBOL(pci_clear_mwi);
4467
4468/**
4469 * pci_disable_parity - disable parity checking for device
4470 * @dev: the PCI device to operate on
4471 *
4472 * Disable parity checking for device @dev
4473 */
4474void pci_disable_parity(struct pci_dev *dev)
4475{
4476	u16 cmd;
4477
4478	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479	if (cmd & PCI_COMMAND_PARITY) {
4480		cmd &= ~PCI_COMMAND_PARITY;
4481		pci_write_config_word(dev, PCI_COMMAND, cmd);
4482	}
4483}
4484
4485/**
4486 * pci_intx - enables/disables PCI INTx for device dev
4487 * @pdev: the PCI device to operate on
4488 * @enable: boolean: whether to enable or disable PCI INTx
4489 *
4490 * Enables/disables PCI INTx for device @pdev
4491 */
4492void pci_intx(struct pci_dev *pdev, int enable)
4493{
4494	u16 pci_command, new;
4495
4496	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4497
4498	if (enable)
4499		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4500	else
4501		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4502
4503	if (new == pci_command)
4504		return;
 
 
4505
4506	pci_write_config_word(pdev, PCI_COMMAND, new);
 
 
 
 
 
4507}
4508EXPORT_SYMBOL_GPL(pci_intx);
4509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4510/**
4511 * pci_wait_for_pending_transaction - wait for pending transaction
4512 * @dev: the PCI device to operate on
4513 *
4514 * Return 0 if transaction is pending 1 otherwise.
4515 */
4516int pci_wait_for_pending_transaction(struct pci_dev *dev)
4517{
4518	if (!pci_is_pcie(dev))
4519		return 1;
4520
4521	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4522				    PCI_EXP_DEVSTA_TRPND);
4523}
4524EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4525
4526/**
4527 * pcie_flr - initiate a PCIe function level reset
4528 * @dev: device to reset
4529 *
4530 * Initiate a function level reset unconditionally on @dev without
4531 * checking any flags and DEVCAP
4532 */
4533int pcie_flr(struct pci_dev *dev)
4534{
4535	if (!pci_wait_for_pending_transaction(dev))
4536		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4537
4538	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4539
4540	if (dev->imm_ready)
4541		return 0;
4542
4543	/*
4544	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4545	 * 100ms, but may silently discard requests while the FLR is in
4546	 * progress.  Wait 100ms before trying to access the device.
4547	 */
4548	msleep(100);
4549
4550	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4551}
4552EXPORT_SYMBOL_GPL(pcie_flr);
4553
4554/**
4555 * pcie_reset_flr - initiate a PCIe function level reset
4556 * @dev: device to reset
4557 * @probe: if true, return 0 if device can be reset this way
4558 *
4559 * Initiate a function level reset on @dev.
4560 */
4561int pcie_reset_flr(struct pci_dev *dev, bool probe)
4562{
4563	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4564		return -ENOTTY;
4565
4566	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4567		return -ENOTTY;
4568
4569	if (probe)
4570		return 0;
4571
4572	return pcie_flr(dev);
4573}
4574EXPORT_SYMBOL_GPL(pcie_reset_flr);
4575
4576static int pci_af_flr(struct pci_dev *dev, bool probe)
4577{
4578	int pos;
4579	u8 cap;
4580
4581	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4582	if (!pos)
4583		return -ENOTTY;
4584
4585	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4586		return -ENOTTY;
4587
4588	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4589	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4590		return -ENOTTY;
4591
4592	if (probe)
4593		return 0;
4594
4595	/*
4596	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4597	 * is used, so we use the control offset rather than status and shift
4598	 * the test bit to match.
4599	 */
4600	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4601				 PCI_AF_STATUS_TP << 8))
4602		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4603
4604	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4605
4606	if (dev->imm_ready)
4607		return 0;
4608
4609	/*
4610	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4611	 * updated 27 July 2006; a device must complete an FLR within
4612	 * 100ms, but may silently discard requests while the FLR is in
4613	 * progress.  Wait 100ms before trying to access the device.
4614	 */
4615	msleep(100);
4616
4617	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4618}
4619
4620/**
4621 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4622 * @dev: Device to reset.
4623 * @probe: if true, return 0 if the device can be reset this way.
4624 *
4625 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4626 * unset, it will be reinitialized internally when going from PCI_D3hot to
4627 * PCI_D0.  If that's the case and the device is not in a low-power state
4628 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4629 *
4630 * NOTE: This causes the caller to sleep for twice the device power transition
4631 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4632 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4633 * Moreover, only devices in D0 can be reset by this function.
4634 */
4635static int pci_pm_reset(struct pci_dev *dev, bool probe)
4636{
4637	u16 csr;
4638
4639	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4640		return -ENOTTY;
4641
4642	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4643	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4644		return -ENOTTY;
4645
4646	if (probe)
4647		return 0;
4648
4649	if (dev->current_state != PCI_D0)
4650		return -EINVAL;
4651
4652	csr &= ~PCI_PM_CTRL_STATE_MASK;
4653	csr |= PCI_D3hot;
4654	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4655	pci_dev_d3_sleep(dev);
4656
4657	csr &= ~PCI_PM_CTRL_STATE_MASK;
4658	csr |= PCI_D0;
4659	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4660	pci_dev_d3_sleep(dev);
4661
4662	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4663}
4664
4665/**
4666 * pcie_wait_for_link_status - Wait for link status change
4667 * @pdev: Device whose link to wait for.
4668 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4669 * @active: Waiting for active or inactive?
4670 *
4671 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4672 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4673 */
4674static int pcie_wait_for_link_status(struct pci_dev *pdev,
4675				     bool use_lt, bool active)
4676{
4677	u16 lnksta_mask, lnksta_match;
4678	unsigned long end_jiffies;
4679	u16 lnksta;
4680
4681	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4682	lnksta_match = active ? lnksta_mask : 0;
4683
4684	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4685	do {
4686		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4687		if ((lnksta & lnksta_mask) == lnksta_match)
4688			return 0;
4689		msleep(1);
4690	} while (time_before(jiffies, end_jiffies));
4691
4692	return -ETIMEDOUT;
4693}
4694
4695/**
4696 * pcie_retrain_link - Request a link retrain and wait for it to complete
4697 * @pdev: Device whose link to retrain.
4698 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4699 *
4700 * Retrain completion status is retrieved from the Link Status Register
4701 * according to @use_lt.  It is not verified whether the use of the DLLLA
4702 * bit is valid.
4703 *
4704 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4705 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4706 */
4707int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4708{
4709	int rc;
4710
4711	/*
4712	 * Ensure the updated LNKCTL parameters are used during link
4713	 * training by checking that there is no ongoing link training that
4714	 * may have started before link parameters were changed, so as to
4715	 * avoid LTSSM race as recommended in Implementation Note at the end
4716	 * of PCIe r6.1 sec 7.5.3.7.
4717	 */
4718	rc = pcie_wait_for_link_status(pdev, true, false);
4719	if (rc)
4720		return rc;
4721
4722	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4723	if (pdev->clear_retrain_link) {
4724		/*
4725		 * Due to an erratum in some devices the Retrain Link bit
4726		 * needs to be cleared again manually to allow the link
4727		 * training to succeed.
4728		 */
4729		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4730	}
4731
4732	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4733
4734	/*
4735	 * Clear LBMS after a manual retrain so that the bit can be used
4736	 * to track link speed or width changes made by hardware itself
4737	 * in attempt to correct unreliable link operation.
4738	 */
4739	pcie_reset_lbms_count(pdev);
4740	return rc;
4741}
4742
4743/**
4744 * pcie_wait_for_link_delay - Wait until link is active or inactive
4745 * @pdev: Bridge device
4746 * @active: waiting for active or inactive?
4747 * @delay: Delay to wait after link has become active (in ms)
4748 *
4749 * Use this to wait till link becomes active or inactive.
4750 */
4751static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4752				     int delay)
4753{
4754	int rc;
 
 
4755
4756	/*
4757	 * Some controllers might not implement link active reporting. In this
4758	 * case, we wait for 1000 ms + any delay requested by the caller.
4759	 */
4760	if (!pdev->link_active_reporting) {
4761		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4762		return true;
4763	}
4764
4765	/*
4766	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4767	 * after which we should expect an link active if the reset was
4768	 * successful. If so, software must wait a minimum 100ms before sending
4769	 * configuration requests to devices downstream this port.
4770	 *
4771	 * If the link fails to activate, either the device was physically
4772	 * removed or the link is permanently failed.
4773	 */
4774	if (active)
4775		msleep(20);
4776	rc = pcie_wait_for_link_status(pdev, false, active);
4777	if (active) {
4778		if (rc)
4779			rc = pcie_failed_link_retrain(pdev);
4780		if (rc)
4781			return false;
4782
4783		msleep(delay);
4784		return true;
4785	}
 
 
4786
4787	if (rc)
4788		return false;
4789
4790	return true;
4791}
4792
4793/**
4794 * pcie_wait_for_link - Wait until link is active or inactive
4795 * @pdev: Bridge device
4796 * @active: waiting for active or inactive?
4797 *
4798 * Use this to wait till link becomes active or inactive.
4799 */
4800bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4801{
4802	return pcie_wait_for_link_delay(pdev, active, 100);
4803}
4804
4805/*
4806 * Find maximum D3cold delay required by all the devices on the bus.  The
4807 * spec says 100 ms, but firmware can lower it and we allow drivers to
4808 * increase it as well.
4809 *
4810 * Called with @pci_bus_sem locked for reading.
4811 */
4812static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4813{
4814	const struct pci_dev *pdev;
4815	int min_delay = 100;
4816	int max_delay = 0;
4817
4818	list_for_each_entry(pdev, &bus->devices, bus_list) {
4819		if (pdev->d3cold_delay < min_delay)
4820			min_delay = pdev->d3cold_delay;
4821		if (pdev->d3cold_delay > max_delay)
4822			max_delay = pdev->d3cold_delay;
4823	}
4824
4825	return max(min_delay, max_delay);
4826}
4827
4828/**
4829 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4830 * @dev: PCI bridge
4831 * @reset_type: reset type in human-readable form
4832 *
4833 * Handle necessary delays before access to the devices on the secondary
4834 * side of the bridge are permitted after D3cold to D0 transition
4835 * or Conventional Reset.
4836 *
4837 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4838 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4839 * 4.3.2.
4840 *
4841 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4842 * failed to become accessible.
4843 */
4844int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4845{
4846	struct pci_dev *child __free(pci_dev_put) = NULL;
4847	int delay;
4848
4849	if (pci_dev_is_disconnected(dev))
4850		return 0;
4851
4852	if (!pci_is_bridge(dev))
4853		return 0;
4854
4855	down_read(&pci_bus_sem);
4856
4857	/*
4858	 * We only deal with devices that are present currently on the bus.
4859	 * For any hot-added devices the access delay is handled in pciehp
4860	 * board_added(). In case of ACPI hotplug the firmware is expected
4861	 * to configure the devices before OS is notified.
4862	 */
4863	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4864		up_read(&pci_bus_sem);
4865		return 0;
4866	}
4867
4868	/* Take d3cold_delay requirements into account */
4869	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4870	if (!delay) {
4871		up_read(&pci_bus_sem);
4872		return 0;
4873	}
4874
4875	child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4876					     struct pci_dev, bus_list));
4877	up_read(&pci_bus_sem);
4878
4879	/*
4880	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4881	 * accessing the device after reset (that is 1000 ms + 100 ms).
 
 
4882	 */
4883	if (!pci_is_pcie(dev)) {
4884		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4885		msleep(1000 + delay);
4886		return 0;
4887	}
4888
4889	/*
4890	 * For PCIe downstream and root ports that do not support speeds
4891	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4892	 * speeds (gen3) we need to wait first for the data link layer to
4893	 * become active.
4894	 *
4895	 * However, 100 ms is the minimum and the PCIe spec says the
4896	 * software must allow at least 1s before it can determine that the
4897	 * device that did not respond is a broken device. Also device can
4898	 * take longer than that to respond if it indicates so through Request
4899	 * Retry Status completions.
 
 
4900	 *
4901	 * Therefore we wait for 100 ms and check for the device presence
4902	 * until the timeout expires.
4903	 */
4904	if (!pcie_downstream_port(dev))
4905		return 0;
4906
4907	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4908		u16 status;
4909
4910		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4911		msleep(delay);
4912
4913		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4914			return 0;
4915
4916		/*
4917		 * If the port supports active link reporting we now check
4918		 * whether the link is active and if not bail out early with
4919		 * the assumption that the device is not present anymore.
4920		 */
4921		if (!dev->link_active_reporting)
4922			return -ENOTTY;
4923
4924		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4925		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4926			return -ENOTTY;
4927
4928		return pci_dev_wait(child, reset_type,
4929				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4930	}
4931
4932	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4933		delay);
4934	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4935		/* Did not train, no need to wait any further */
4936		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4937		return -ENOTTY;
4938	}
4939
4940	return pci_dev_wait(child, reset_type,
4941			    PCIE_RESET_READY_POLL_MS - delay);
4942}
4943
4944void pci_reset_secondary_bus(struct pci_dev *dev)
4945{
4946	u16 ctrl;
4947
4948	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4949	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4950	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4951
4952	/*
4953	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4954	 * this to 2ms to ensure that we meet the minimum requirement.
4955	 */
4956	msleep(2);
4957
4958	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4959	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
 
 
 
 
 
 
 
 
 
4960}
4961
4962void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4963{
4964	pci_reset_secondary_bus(dev);
4965}
4966
4967/**
4968 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4969 * @dev: Bridge device
4970 *
4971 * Use the bridge control register to assert reset on the secondary bus.
4972 * Devices on the secondary bus are left in power-on state.
4973 */
4974int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4975{
4976	if (!dev->block_cfg_access)
4977		pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4978			      __builtin_return_address(0));
4979	pcibios_reset_secondary_bus(dev);
4980
4981	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4982}
4983EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4984
4985static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4986{
4987	struct pci_dev *pdev;
4988
4989	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4990	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4991		return -ENOTTY;
4992
4993	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4994		if (pdev != dev)
4995			return -ENOTTY;
4996
4997	if (probe)
4998		return 0;
4999
5000	return pci_bridge_secondary_bus_reset(dev->bus->self);
5001}
5002
5003static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5004{
5005	int rc = -ENOTTY;
5006
5007	if (!hotplug || !try_module_get(hotplug->owner))
5008		return rc;
5009
5010	if (hotplug->ops->reset_slot)
5011		rc = hotplug->ops->reset_slot(hotplug, probe);
5012
5013	module_put(hotplug->owner);
5014
5015	return rc;
5016}
5017
5018static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5019{
5020	if (dev->multifunction || dev->subordinate || !dev->slot ||
5021	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5022		return -ENOTTY;
5023
5024	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5025}
5026
5027static u16 cxl_port_dvsec(struct pci_dev *dev)
5028{
5029	return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5030					 PCI_DVSEC_CXL_PORT);
5031}
5032
5033static bool cxl_sbr_masked(struct pci_dev *dev)
5034{
5035	u16 dvsec, reg;
5036	int rc;
5037
5038	dvsec = cxl_port_dvsec(dev);
5039	if (!dvsec)
5040		return false;
5041
5042	rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5043	if (rc || PCI_POSSIBLE_ERROR(reg))
5044		return false;
5045
5046	/*
5047	 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5048	 * bit in Bridge Control has no effect.  When 1, the Port generates
5049	 * hot reset when the SBR bit is set to 1.
5050	 */
5051	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5052		return false;
5053
5054	return true;
5055}
5056
5057static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5058{
5059	struct pci_dev *bridge = pci_upstream_bridge(dev);
5060	int rc;
5061
5062	/*
5063	 * If "dev" is below a CXL port that has SBR control masked, SBR
5064	 * won't do anything, so return error.
5065	 */
5066	if (bridge && cxl_sbr_masked(bridge)) {
5067		if (probe)
5068			return 0;
5069
5070		return -ENOTTY;
5071	}
5072
5073	rc = pci_dev_reset_slot_function(dev, probe);
5074	if (rc != -ENOTTY)
5075		return rc;
5076	return pci_parent_bus_reset(dev, probe);
5077}
5078
5079static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5080{
5081	struct pci_dev *bridge;
5082	u16 dvsec, reg, val;
5083	int rc;
5084
5085	bridge = pci_upstream_bridge(dev);
5086	if (!bridge)
5087		return -ENOTTY;
5088
5089	dvsec = cxl_port_dvsec(bridge);
5090	if (!dvsec)
5091		return -ENOTTY;
5092
5093	if (probe)
5094		return 0;
5095
5096	rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5097	if (rc)
5098		return -ENOTTY;
5099
5100	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5101		val = reg;
5102	} else {
5103		val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5104		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5105				      val);
5106	}
5107
5108	rc = pci_reset_bus_function(dev, probe);
5109
5110	if (reg != val)
5111		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5112				      reg);
5113
5114	return rc;
5115}
5116
5117void pci_dev_lock(struct pci_dev *dev)
5118{
5119	/* block PM suspend, driver probe, etc. */
5120	device_lock(&dev->dev);
5121	pci_cfg_access_lock(dev);
5122}
5123EXPORT_SYMBOL_GPL(pci_dev_lock);
5124
5125/* Return 1 on successful lock, 0 on contention */
5126int pci_dev_trylock(struct pci_dev *dev)
5127{
5128	if (device_trylock(&dev->dev)) {
5129		if (pci_cfg_access_trylock(dev))
5130			return 1;
5131		device_unlock(&dev->dev);
5132	}
5133
5134	return 0;
5135}
5136EXPORT_SYMBOL_GPL(pci_dev_trylock);
5137
5138void pci_dev_unlock(struct pci_dev *dev)
5139{
5140	pci_cfg_access_unlock(dev);
5141	device_unlock(&dev->dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_unlock);
5144
5145static void pci_dev_save_and_disable(struct pci_dev *dev)
5146{
5147	const struct pci_error_handlers *err_handler =
5148			dev->driver ? dev->driver->err_handler : NULL;
5149
5150	/*
5151	 * dev->driver->err_handler->reset_prepare() is protected against
5152	 * races with ->remove() by the device lock, which must be held by
5153	 * the caller.
5154	 */
5155	if (err_handler && err_handler->reset_prepare)
5156		err_handler->reset_prepare(dev);
5157	else if (dev->driver)
5158		pci_warn(dev, "resetting");
5159
5160	/*
5161	 * Wake-up device prior to save.  PM registers default to D0 after
5162	 * reset and a simple register restore doesn't reliably return
5163	 * to a non-D0 state anyway.
5164	 */
5165	pci_set_power_state(dev, PCI_D0);
5166
5167	pci_save_state(dev);
5168	/*
5169	 * Disable the device by clearing the Command register, except for
5170	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5171	 * BARs, but also prevents the device from being Bus Master, preventing
5172	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5173	 * compliant devices, INTx-disable prevents legacy interrupts.
5174	 */
5175	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5176}
5177
5178static void pci_dev_restore(struct pci_dev *dev)
5179{
5180	const struct pci_error_handlers *err_handler =
5181			dev->driver ? dev->driver->err_handler : NULL;
5182
5183	pci_restore_state(dev);
5184
5185	/*
5186	 * dev->driver->err_handler->reset_done() is protected against
5187	 * races with ->remove() by the device lock, which must be held by
5188	 * the caller.
5189	 */
5190	if (err_handler && err_handler->reset_done)
5191		err_handler->reset_done(dev);
5192	else if (dev->driver)
5193		pci_warn(dev, "reset done");
5194}
5195
5196/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5197static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5198	{ },
5199	{ pci_dev_specific_reset, .name = "device_specific" },
5200	{ pci_dev_acpi_reset, .name = "acpi" },
5201	{ pcie_reset_flr, .name = "flr" },
5202	{ pci_af_flr, .name = "af_flr" },
5203	{ pci_pm_reset, .name = "pm" },
5204	{ pci_reset_bus_function, .name = "bus" },
5205	{ cxl_reset_bus_function, .name = "cxl_bus" },
5206};
5207
5208static ssize_t reset_method_show(struct device *dev,
5209				 struct device_attribute *attr, char *buf)
5210{
5211	struct pci_dev *pdev = to_pci_dev(dev);
5212	ssize_t len = 0;
5213	int i, m;
5214
5215	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5216		m = pdev->reset_methods[i];
5217		if (!m)
5218			break;
5219
5220		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5221				     pci_reset_fn_methods[m].name);
5222	}
5223
5224	if (len)
5225		len += sysfs_emit_at(buf, len, "\n");
5226
5227	return len;
5228}
5229
5230static int reset_method_lookup(const char *name)
5231{
5232	int m;
5233
5234	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5235		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5236			return m;
5237	}
5238
5239	return 0;	/* not found */
5240}
5241
5242static ssize_t reset_method_store(struct device *dev,
5243				  struct device_attribute *attr,
5244				  const char *buf, size_t count)
5245{
5246	struct pci_dev *pdev = to_pci_dev(dev);
5247	char *options, *tmp_options, *name;
5248	int m, n;
5249	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5250
5251	if (sysfs_streq(buf, "")) {
5252		pdev->reset_methods[0] = 0;
5253		pci_warn(pdev, "All device reset methods disabled by user");
5254		return count;
5255	}
5256
5257	if (sysfs_streq(buf, "default")) {
5258		pci_init_reset_methods(pdev);
5259		return count;
5260	}
5261
5262	options = kstrndup(buf, count, GFP_KERNEL);
5263	if (!options)
5264		return -ENOMEM;
5265
5266	n = 0;
5267	tmp_options = options;
5268	while ((name = strsep(&tmp_options, " ")) != NULL) {
5269		if (sysfs_streq(name, ""))
5270			continue;
5271
5272		name = strim(name);
5273
5274		m = reset_method_lookup(name);
5275		if (!m) {
5276			pci_err(pdev, "Invalid reset method '%s'", name);
5277			goto error;
5278		}
5279
5280		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5281			pci_err(pdev, "Unsupported reset method '%s'", name);
5282			goto error;
5283		}
5284
5285		if (n == PCI_NUM_RESET_METHODS - 1) {
5286			pci_err(pdev, "Too many reset methods\n");
5287			goto error;
5288		}
5289
5290		reset_methods[n++] = m;
5291	}
5292
5293	reset_methods[n] = 0;
5294
5295	/* Warn if dev-specific supported but not highest priority */
5296	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5297	    reset_methods[0] != 1)
5298		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5299	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5300	kfree(options);
5301	return count;
5302
5303error:
5304	/* Leave previous methods unchanged */
5305	kfree(options);
5306	return -EINVAL;
5307}
5308static DEVICE_ATTR_RW(reset_method);
5309
5310static struct attribute *pci_dev_reset_method_attrs[] = {
5311	&dev_attr_reset_method.attr,
5312	NULL,
5313};
5314
5315static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5316						    struct attribute *a, int n)
5317{
5318	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5319
5320	if (!pci_reset_supported(pdev))
5321		return 0;
5322
5323	return a->mode;
5324}
5325
5326const struct attribute_group pci_dev_reset_method_attr_group = {
5327	.attrs = pci_dev_reset_method_attrs,
5328	.is_visible = pci_dev_reset_method_attr_is_visible,
5329};
5330
5331/**
5332 * __pci_reset_function_locked - reset a PCI device function while holding
5333 * the @dev mutex lock.
5334 * @dev: PCI device to reset
5335 *
5336 * Some devices allow an individual function to be reset without affecting
5337 * other functions in the same device.  The PCI device must be responsive
5338 * to PCI config space in order to use this function.
5339 *
5340 * The device function is presumed to be unused and the caller is holding
5341 * the device mutex lock when this function is called.
5342 *
5343 * Resetting the device will make the contents of PCI configuration space
5344 * random, so any caller of this must be prepared to reinitialise the
5345 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5346 * etc.
5347 *
5348 * Returns 0 if the device function was successfully reset or negative if the
5349 * device doesn't support resetting a single function.
5350 */
5351int __pci_reset_function_locked(struct pci_dev *dev)
5352{
5353	int i, m, rc;
5354
5355	might_sleep();
5356
5357	/*
5358	 * A reset method returns -ENOTTY if it doesn't support this device and
5359	 * we should try the next method.
5360	 *
5361	 * If it returns 0 (success), we're finished.  If it returns any other
5362	 * error, we're also finished: this indicates that further reset
5363	 * mechanisms might be broken on the device.
5364	 */
5365	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5366		m = dev->reset_methods[i];
5367		if (!m)
5368			return -ENOTTY;
5369
5370		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5371		if (!rc)
5372			return 0;
5373		if (rc != -ENOTTY)
5374			return rc;
5375	}
5376
5377	return -ENOTTY;
5378}
5379EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5380
5381/**
5382 * pci_init_reset_methods - check whether device can be safely reset
5383 * and store supported reset mechanisms.
5384 * @dev: PCI device to check for reset mechanisms
5385 *
5386 * Some devices allow an individual function to be reset without affecting
5387 * other functions in the same device.  The PCI device must be in D0-D3hot
5388 * state.
5389 *
5390 * Stores reset mechanisms supported by device in reset_methods byte array
5391 * which is a member of struct pci_dev.
5392 */
5393void pci_init_reset_methods(struct pci_dev *dev)
5394{
5395	int m, i, rc;
5396
5397	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5398
5399	might_sleep();
5400
5401	i = 0;
5402	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5403		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5404		if (!rc)
5405			dev->reset_methods[i++] = m;
5406		else if (rc != -ENOTTY)
5407			break;
5408	}
5409
5410	dev->reset_methods[i] = 0;
5411}
5412
5413/**
5414 * pci_reset_function - quiesce and reset a PCI device function
5415 * @dev: PCI device to reset
5416 *
5417 * Some devices allow an individual function to be reset without affecting
5418 * other functions in the same device.  The PCI device must be responsive
5419 * to PCI config space in order to use this function.
5420 *
5421 * This function does not just reset the PCI portion of a device, but
5422 * clears all the state associated with the device.  This function differs
5423 * from __pci_reset_function_locked() in that it saves and restores device state
5424 * over the reset and takes the PCI device lock.
5425 *
5426 * Returns 0 if the device function was successfully reset or negative if the
5427 * device doesn't support resetting a single function.
5428 */
5429int pci_reset_function(struct pci_dev *dev)
5430{
5431	struct pci_dev *bridge;
5432	int rc;
5433
5434	if (!pci_reset_supported(dev))
5435		return -ENOTTY;
5436
5437	/*
5438	 * If there's no upstream bridge, no locking is needed since there is
5439	 * no upstream bridge configuration to hold consistent.
5440	 */
5441	bridge = pci_upstream_bridge(dev);
5442	if (bridge)
5443		pci_dev_lock(bridge);
5444
5445	pci_dev_lock(dev);
5446	pci_dev_save_and_disable(dev);
5447
5448	rc = __pci_reset_function_locked(dev);
5449
5450	pci_dev_restore(dev);
5451	pci_dev_unlock(dev);
5452
5453	if (bridge)
5454		pci_dev_unlock(bridge);
5455
5456	return rc;
5457}
5458EXPORT_SYMBOL_GPL(pci_reset_function);
5459
5460/**
5461 * pci_reset_function_locked - quiesce and reset a PCI device function
5462 * @dev: PCI device to reset
5463 *
5464 * Some devices allow an individual function to be reset without affecting
5465 * other functions in the same device.  The PCI device must be responsive
5466 * to PCI config space in order to use this function.
5467 *
5468 * This function does not just reset the PCI portion of a device, but
5469 * clears all the state associated with the device.  This function differs
5470 * from __pci_reset_function_locked() in that it saves and restores device state
5471 * over the reset.  It also differs from pci_reset_function() in that it
5472 * requires the PCI device lock to be held.
5473 *
5474 * Returns 0 if the device function was successfully reset or negative if the
5475 * device doesn't support resetting a single function.
5476 */
5477int pci_reset_function_locked(struct pci_dev *dev)
5478{
5479	int rc;
5480
5481	if (!pci_reset_supported(dev))
5482		return -ENOTTY;
5483
5484	pci_dev_save_and_disable(dev);
5485
5486	rc = __pci_reset_function_locked(dev);
5487
5488	pci_dev_restore(dev);
5489
5490	return rc;
5491}
5492EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5493
5494/**
5495 * pci_try_reset_function - quiesce and reset a PCI device function
5496 * @dev: PCI device to reset
5497 *
5498 * Same as above, except return -EAGAIN if unable to lock device.
5499 */
5500int pci_try_reset_function(struct pci_dev *dev)
5501{
5502	int rc;
5503
5504	if (!pci_reset_supported(dev))
5505		return -ENOTTY;
5506
5507	if (!pci_dev_trylock(dev))
5508		return -EAGAIN;
5509
5510	pci_dev_save_and_disable(dev);
5511	rc = __pci_reset_function_locked(dev);
5512	pci_dev_restore(dev);
5513	pci_dev_unlock(dev);
5514
5515	return rc;
5516}
5517EXPORT_SYMBOL_GPL(pci_try_reset_function);
5518
5519/* Do any devices on or below this bus prevent a bus reset? */
5520static bool pci_bus_resettable(struct pci_bus *bus)
5521{
5522	struct pci_dev *dev;
5523
5524
5525	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5526		return false;
5527
5528	list_for_each_entry(dev, &bus->devices, bus_list) {
5529		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5530		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5531			return false;
5532	}
5533
5534	return true;
5535}
5536
5537/* Lock devices from the top of the tree down */
5538static void pci_bus_lock(struct pci_bus *bus)
5539{
5540	struct pci_dev *dev;
5541
5542	pci_dev_lock(bus->self);
5543	list_for_each_entry(dev, &bus->devices, bus_list) {
 
5544		if (dev->subordinate)
5545			pci_bus_lock(dev->subordinate);
5546		else
5547			pci_dev_lock(dev);
5548	}
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554	struct pci_dev *dev;
5555
5556	list_for_each_entry(dev, &bus->devices, bus_list) {
5557		if (dev->subordinate)
5558			pci_bus_unlock(dev->subordinate);
5559		else
5560			pci_dev_unlock(dev);
5561	}
5562	pci_dev_unlock(bus->self);
5563}
5564
5565/* Return 1 on successful lock, 0 on contention */
5566static int pci_bus_trylock(struct pci_bus *bus)
5567{
5568	struct pci_dev *dev;
5569
5570	if (!pci_dev_trylock(bus->self))
5571		return 0;
5572
5573	list_for_each_entry(dev, &bus->devices, bus_list) {
 
 
5574		if (dev->subordinate) {
5575			if (!pci_bus_trylock(dev->subordinate))
 
5576				goto unlock;
5577		} else if (!pci_dev_trylock(dev))
5578			goto unlock;
5579	}
5580	return 1;
5581
5582unlock:
5583	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5584		if (dev->subordinate)
5585			pci_bus_unlock(dev->subordinate);
5586		else
5587			pci_dev_unlock(dev);
5588	}
5589	pci_dev_unlock(bus->self);
5590	return 0;
5591}
5592
5593/* Do any devices on or below this slot prevent a bus reset? */
5594static bool pci_slot_resettable(struct pci_slot *slot)
5595{
5596	struct pci_dev *dev;
5597
5598	if (slot->bus->self &&
5599	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5600		return false;
5601
5602	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5603		if (!dev->slot || dev->slot != slot)
5604			continue;
5605		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5606		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5607			return false;
5608	}
5609
5610	return true;
5611}
5612
5613/* Lock devices from the top of the tree down */
5614static void pci_slot_lock(struct pci_slot *slot)
5615{
5616	struct pci_dev *dev;
5617
5618	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5619		if (!dev->slot || dev->slot != slot)
5620			continue;
 
5621		if (dev->subordinate)
5622			pci_bus_lock(dev->subordinate);
5623		else
5624			pci_dev_lock(dev);
5625	}
5626}
5627
5628/* Unlock devices from the bottom of the tree up */
5629static void pci_slot_unlock(struct pci_slot *slot)
5630{
5631	struct pci_dev *dev;
5632
5633	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5634		if (!dev->slot || dev->slot != slot)
5635			continue;
5636		if (dev->subordinate)
5637			pci_bus_unlock(dev->subordinate);
5638		pci_dev_unlock(dev);
5639	}
5640}
5641
5642/* Return 1 on successful lock, 0 on contention */
5643static int pci_slot_trylock(struct pci_slot *slot)
5644{
5645	struct pci_dev *dev;
5646
5647	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5648		if (!dev->slot || dev->slot != slot)
5649			continue;
 
 
5650		if (dev->subordinate) {
5651			if (!pci_bus_trylock(dev->subordinate)) {
5652				pci_dev_unlock(dev);
5653				goto unlock;
5654			}
5655		} else if (!pci_dev_trylock(dev))
5656			goto unlock;
5657	}
5658	return 1;
5659
5660unlock:
5661	list_for_each_entry_continue_reverse(dev,
5662					     &slot->bus->devices, bus_list) {
5663		if (!dev->slot || dev->slot != slot)
5664			continue;
5665		if (dev->subordinate)
5666			pci_bus_unlock(dev->subordinate);
5667		else
5668			pci_dev_unlock(dev);
5669	}
5670	return 0;
5671}
5672
5673/*
5674 * Save and disable devices from the top of the tree down while holding
5675 * the @dev mutex lock for the entire tree.
5676 */
5677static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5678{
5679	struct pci_dev *dev;
5680
5681	list_for_each_entry(dev, &bus->devices, bus_list) {
5682		pci_dev_save_and_disable(dev);
5683		if (dev->subordinate)
5684			pci_bus_save_and_disable_locked(dev->subordinate);
5685	}
5686}
5687
5688/*
5689 * Restore devices from top of the tree down while holding @dev mutex lock
5690 * for the entire tree.  Parent bridges need to be restored before we can
5691 * get to subordinate devices.
5692 */
5693static void pci_bus_restore_locked(struct pci_bus *bus)
5694{
5695	struct pci_dev *dev;
5696
5697	list_for_each_entry(dev, &bus->devices, bus_list) {
5698		pci_dev_restore(dev);
5699		if (dev->subordinate) {
5700			pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5701			pci_bus_restore_locked(dev->subordinate);
5702		}
5703	}
5704}
5705
5706/*
5707 * Save and disable devices from the top of the tree down while holding
5708 * the @dev mutex lock for the entire tree.
5709 */
5710static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5711{
5712	struct pci_dev *dev;
5713
5714	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5715		if (!dev->slot || dev->slot != slot)
5716			continue;
5717		pci_dev_save_and_disable(dev);
5718		if (dev->subordinate)
5719			pci_bus_save_and_disable_locked(dev->subordinate);
5720	}
5721}
5722
5723/*
5724 * Restore devices from top of the tree down while holding @dev mutex lock
5725 * for the entire tree.  Parent bridges need to be restored before we can
5726 * get to subordinate devices.
5727 */
5728static void pci_slot_restore_locked(struct pci_slot *slot)
5729{
5730	struct pci_dev *dev;
5731
5732	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733		if (!dev->slot || dev->slot != slot)
5734			continue;
5735		pci_dev_restore(dev);
5736		if (dev->subordinate) {
5737			pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5738			pci_bus_restore_locked(dev->subordinate);
5739		}
5740	}
5741}
5742
5743static int pci_slot_reset(struct pci_slot *slot, bool probe)
5744{
5745	int rc;
5746
5747	if (!slot || !pci_slot_resettable(slot))
5748		return -ENOTTY;
5749
5750	if (!probe)
5751		pci_slot_lock(slot);
5752
5753	might_sleep();
5754
5755	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5756
5757	if (!probe)
5758		pci_slot_unlock(slot);
5759
5760	return rc;
5761}
5762
5763/**
5764 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5765 * @slot: PCI slot to probe
5766 *
5767 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5768 */
5769int pci_probe_reset_slot(struct pci_slot *slot)
5770{
5771	return pci_slot_reset(slot, PCI_RESET_PROBE);
5772}
5773EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5774
5775/**
5776 * __pci_reset_slot - Try to reset a PCI slot
5777 * @slot: PCI slot to reset
5778 *
5779 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5780 * independent of other slots.  For instance, some slots may support slot power
5781 * control.  In the case of a 1:1 bus to slot architecture, this function may
5782 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5783 * Generally a slot reset should be attempted before a bus reset.  All of the
5784 * function of the slot and any subordinate buses behind the slot are reset
5785 * through this function.  PCI config space of all devices in the slot and
5786 * behind the slot is saved before and restored after reset.
5787 *
5788 * Same as above except return -EAGAIN if the slot cannot be locked
5789 */
5790static int __pci_reset_slot(struct pci_slot *slot)
5791{
5792	int rc;
5793
5794	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5795	if (rc)
5796		return rc;
5797
5798	if (pci_slot_trylock(slot)) {
5799		pci_slot_save_and_disable_locked(slot);
5800		might_sleep();
5801		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5802		pci_slot_restore_locked(slot);
5803		pci_slot_unlock(slot);
5804	} else
5805		rc = -EAGAIN;
5806
5807	return rc;
5808}
5809
5810static int pci_bus_reset(struct pci_bus *bus, bool probe)
5811{
5812	int ret;
5813
5814	if (!bus->self || !pci_bus_resettable(bus))
5815		return -ENOTTY;
5816
5817	if (probe)
5818		return 0;
5819
5820	pci_bus_lock(bus);
5821
5822	might_sleep();
5823
5824	ret = pci_bridge_secondary_bus_reset(bus->self);
5825
5826	pci_bus_unlock(bus);
5827
5828	return ret;
5829}
5830
5831/**
5832 * pci_bus_error_reset - reset the bridge's subordinate bus
5833 * @bridge: The parent device that connects to the bus to reset
5834 *
5835 * This function will first try to reset the slots on this bus if the method is
5836 * available. If slot reset fails or is not available, this will fall back to a
5837 * secondary bus reset.
5838 */
5839int pci_bus_error_reset(struct pci_dev *bridge)
5840{
5841	struct pci_bus *bus = bridge->subordinate;
5842	struct pci_slot *slot;
5843
5844	if (!bus)
5845		return -ENOTTY;
5846
5847	mutex_lock(&pci_slot_mutex);
5848	if (list_empty(&bus->slots))
5849		goto bus_reset;
5850
5851	list_for_each_entry(slot, &bus->slots, list)
5852		if (pci_probe_reset_slot(slot))
5853			goto bus_reset;
5854
5855	list_for_each_entry(slot, &bus->slots, list)
5856		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5857			goto bus_reset;
5858
5859	mutex_unlock(&pci_slot_mutex);
5860	return 0;
5861bus_reset:
5862	mutex_unlock(&pci_slot_mutex);
5863	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5864}
5865
5866/**
5867 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5868 * @bus: PCI bus to probe
5869 *
5870 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5871 */
5872int pci_probe_reset_bus(struct pci_bus *bus)
5873{
5874	return pci_bus_reset(bus, PCI_RESET_PROBE);
5875}
5876EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5877
5878/**
5879 * __pci_reset_bus - Try to reset a PCI bus
5880 * @bus: top level PCI bus to reset
5881 *
5882 * Same as above except return -EAGAIN if the bus cannot be locked
5883 */
5884int __pci_reset_bus(struct pci_bus *bus)
5885{
5886	int rc;
5887
5888	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5889	if (rc)
5890		return rc;
5891
5892	if (pci_bus_trylock(bus)) {
5893		pci_bus_save_and_disable_locked(bus);
5894		might_sleep();
5895		rc = pci_bridge_secondary_bus_reset(bus->self);
5896		pci_bus_restore_locked(bus);
5897		pci_bus_unlock(bus);
5898	} else
5899		rc = -EAGAIN;
5900
5901	return rc;
5902}
5903
5904/**
5905 * pci_reset_bus - Try to reset a PCI bus
5906 * @pdev: top level PCI device to reset via slot/bus
5907 *
5908 * Same as above except return -EAGAIN if the bus cannot be locked
5909 */
5910int pci_reset_bus(struct pci_dev *pdev)
5911{
5912	return (!pci_probe_reset_slot(pdev->slot)) ?
5913	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5914}
5915EXPORT_SYMBOL_GPL(pci_reset_bus);
5916
5917/**
5918 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5919 * @dev: PCI device to query
5920 *
5921 * Returns mmrbc: maximum designed memory read count in bytes or
5922 * appropriate error value.
5923 */
5924int pcix_get_max_mmrbc(struct pci_dev *dev)
5925{
5926	int cap;
5927	u32 stat;
5928
5929	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5930	if (!cap)
5931		return -EINVAL;
5932
5933	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5934		return -EINVAL;
5935
5936	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5937}
5938EXPORT_SYMBOL(pcix_get_max_mmrbc);
5939
5940/**
5941 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5942 * @dev: PCI device to query
5943 *
5944 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5945 * value.
5946 */
5947int pcix_get_mmrbc(struct pci_dev *dev)
5948{
5949	int cap;
5950	u16 cmd;
5951
5952	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5953	if (!cap)
5954		return -EINVAL;
5955
5956	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5957		return -EINVAL;
5958
5959	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5960}
5961EXPORT_SYMBOL(pcix_get_mmrbc);
5962
5963/**
5964 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5965 * @dev: PCI device to query
5966 * @mmrbc: maximum memory read count in bytes
5967 *    valid values are 512, 1024, 2048, 4096
5968 *
5969 * If possible sets maximum memory read byte count, some bridges have errata
5970 * that prevent this.
5971 */
5972int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5973{
5974	int cap;
5975	u32 stat, v, o;
5976	u16 cmd;
5977
5978	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5979		return -EINVAL;
5980
5981	v = ffs(mmrbc) - 10;
5982
5983	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5984	if (!cap)
5985		return -EINVAL;
5986
5987	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5988		return -EINVAL;
5989
5990	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5991		return -E2BIG;
5992
5993	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5994		return -EINVAL;
5995
5996	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5997	if (o != v) {
5998		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5999			return -EIO;
6000
6001		cmd &= ~PCI_X_CMD_MAX_READ;
6002		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6003		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6004			return -EIO;
6005	}
6006	return 0;
6007}
6008EXPORT_SYMBOL(pcix_set_mmrbc);
6009
6010/**
6011 * pcie_get_readrq - get PCI Express read request size
6012 * @dev: PCI device to query
6013 *
6014 * Returns maximum memory read request in bytes or appropriate error value.
6015 */
6016int pcie_get_readrq(struct pci_dev *dev)
6017{
6018	u16 ctl;
6019
6020	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6021
6022	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6023}
6024EXPORT_SYMBOL(pcie_get_readrq);
6025
6026/**
6027 * pcie_set_readrq - set PCI Express maximum memory read request
6028 * @dev: PCI device to query
6029 * @rq: maximum memory read count in bytes
6030 *    valid values are 128, 256, 512, 1024, 2048, 4096
6031 *
6032 * If possible sets maximum memory read request in bytes
6033 */
6034int pcie_set_readrq(struct pci_dev *dev, int rq)
6035{
6036	u16 v;
6037	int ret;
6038	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6039
6040	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6041		return -EINVAL;
6042
6043	/*
6044	 * If using the "performance" PCIe config, we clamp the read rq
6045	 * size to the max packet size to keep the host bridge from
6046	 * generating requests larger than we can cope with.
6047	 */
6048	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6049		int mps = pcie_get_mps(dev);
6050
6051		if (mps < rq)
6052			rq = mps;
6053	}
6054
6055	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6056
6057	if (bridge->no_inc_mrrs) {
6058		int max_mrrs = pcie_get_readrq(dev);
6059
6060		if (rq > max_mrrs) {
6061			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6062			return -EINVAL;
6063		}
6064	}
6065
6066	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6067						  PCI_EXP_DEVCTL_READRQ, v);
6068
6069	return pcibios_err_to_errno(ret);
6070}
6071EXPORT_SYMBOL(pcie_set_readrq);
6072
6073/**
6074 * pcie_get_mps - get PCI Express maximum payload size
6075 * @dev: PCI device to query
6076 *
6077 * Returns maximum payload size in bytes
6078 */
6079int pcie_get_mps(struct pci_dev *dev)
6080{
6081	u16 ctl;
6082
6083	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6084
6085	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6086}
6087EXPORT_SYMBOL(pcie_get_mps);
6088
6089/**
6090 * pcie_set_mps - set PCI Express maximum payload size
6091 * @dev: PCI device to query
6092 * @mps: maximum payload size in bytes
6093 *    valid values are 128, 256, 512, 1024, 2048, 4096
6094 *
6095 * If possible sets maximum payload size
6096 */
6097int pcie_set_mps(struct pci_dev *dev, int mps)
6098{
6099	u16 v;
6100	int ret;
6101
6102	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6103		return -EINVAL;
6104
6105	v = ffs(mps) - 8;
6106	if (v > dev->pcie_mpss)
6107		return -EINVAL;
6108	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6109
6110	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6111						  PCI_EXP_DEVCTL_PAYLOAD, v);
6112
6113	return pcibios_err_to_errno(ret);
6114}
6115EXPORT_SYMBOL(pcie_set_mps);
6116
6117static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6118{
6119	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6120}
6121
6122int pcie_link_speed_mbps(struct pci_dev *pdev)
6123{
6124	u16 lnksta;
6125	int err;
6126
6127	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6128	if (err)
6129		return err;
6130
6131	return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6132}
6133EXPORT_SYMBOL(pcie_link_speed_mbps);
6134
6135/**
6136 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6137 *			      device and its bandwidth limitation
6138 * @dev: PCI device to query
6139 * @limiting_dev: storage for device causing the bandwidth limitation
6140 * @speed: storage for speed of limiting device
6141 * @width: storage for width of limiting device
6142 *
6143 * Walk up the PCI device chain and find the point where the minimum
6144 * bandwidth is available.  Return the bandwidth available there and (if
6145 * limiting_dev, speed, and width pointers are supplied) information about
6146 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6147 * raw bandwidth.
6148 */
6149u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6150			     enum pci_bus_speed *speed,
6151			     enum pcie_link_width *width)
6152{
6153	u16 lnksta;
6154	enum pci_bus_speed next_speed;
6155	enum pcie_link_width next_width;
6156	u32 bw, next_bw;
6157
6158	if (speed)
6159		*speed = PCI_SPEED_UNKNOWN;
6160	if (width)
6161		*width = PCIE_LNK_WIDTH_UNKNOWN;
6162
6163	bw = 0;
6164
6165	while (dev) {
6166		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6167
6168		next_speed = to_pcie_link_speed(lnksta);
6169		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
 
6170
6171		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6172
6173		/* Check if current device limits the total bandwidth */
6174		if (!bw || next_bw <= bw) {
6175			bw = next_bw;
6176
6177			if (limiting_dev)
6178				*limiting_dev = dev;
6179			if (speed)
6180				*speed = next_speed;
6181			if (width)
6182				*width = next_width;
6183		}
6184
6185		dev = pci_upstream_bridge(dev);
6186	}
6187
6188	return bw;
6189}
6190EXPORT_SYMBOL(pcie_bandwidth_available);
6191
6192/**
6193 * pcie_get_supported_speeds - query Supported Link Speed Vector
6194 * @dev: PCI device to query
6195 *
6196 * Query @dev supported link speeds.
6197 *
6198 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6199 * supported link speeds using the Supported Link Speeds Vector in the Link
6200 * Capabilities 2 Register (when available).
6201 *
6202 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6203 *
6204 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6205 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6206 * speeds were defined.
6207 *
6208 * For @dev without Supported Link Speed Vector, the field is synthesized
6209 * from the Max Link Speed field in the Link Capabilities Register.
6210 *
6211 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6212 */
6213u8 pcie_get_supported_speeds(struct pci_dev *dev)
6214{
6215	u32 lnkcap2, lnkcap;
6216	u8 speeds;
6217
6218	/*
6219	 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6220	 * Speeds Vector to allow using SLS Vector bit defines directly.
 
 
 
 
 
6221	 */
6222	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6223	speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6224
6225	/* Ignore speeds higher than Max Link Speed */
6226	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6227	speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6228
6229	/* PCIe r3.0-compliant */
6230	if (speeds)
6231		return speeds;
6232
6233	/* Synthesize from the Max Link Speed field */
6234	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6235		speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6236	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6237		speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6238
6239	return speeds;
6240}
6241
6242/**
6243 * pcie_get_speed_cap - query for the PCI device's link speed capability
6244 * @dev: PCI device to query
6245 *
6246 * Query the PCI device speed capability.
6247 *
6248 * Return: the maximum link speed supported by the device.
6249 */
6250enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6251{
6252	return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6253}
6254EXPORT_SYMBOL(pcie_get_speed_cap);
6255
6256/**
6257 * pcie_get_width_cap - query for the PCI device's link width capability
6258 * @dev: PCI device to query
6259 *
6260 * Query the PCI device width capability.  Return the maximum link width
6261 * supported by the device.
6262 */
6263enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6264{
6265	u32 lnkcap;
6266
6267	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6268	if (lnkcap)
6269		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6270
6271	return PCIE_LNK_WIDTH_UNKNOWN;
6272}
6273EXPORT_SYMBOL(pcie_get_width_cap);
6274
6275/**
6276 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6277 * @dev: PCI device
6278 * @speed: storage for link speed
6279 * @width: storage for link width
6280 *
6281 * Calculate a PCI device's link bandwidth by querying for its link speed
6282 * and width, multiplying them, and applying encoding overhead.  The result
6283 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6284 */
6285static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6286				  enum pci_bus_speed *speed,
6287				  enum pcie_link_width *width)
6288{
6289	*speed = pcie_get_speed_cap(dev);
6290	*width = pcie_get_width_cap(dev);
6291
6292	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6293		return 0;
6294
6295	return *width * PCIE_SPEED2MBS_ENC(*speed);
6296}
6297
6298/**
6299 * __pcie_print_link_status - Report the PCI device's link speed and width
6300 * @dev: PCI device to query
6301 * @verbose: Print info even when enough bandwidth is available
6302 *
6303 * If the available bandwidth at the device is less than the device is
6304 * capable of, report the device's maximum possible bandwidth and the
6305 * upstream link that limits its performance.  If @verbose, always print
6306 * the available bandwidth, even if the device isn't constrained.
6307 */
6308void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6309{
6310	enum pcie_link_width width, width_cap;
6311	enum pci_bus_speed speed, speed_cap;
6312	struct pci_dev *limiting_dev = NULL;
6313	u32 bw_avail, bw_cap;
6314
6315	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6316	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6317
6318	if (bw_avail >= bw_cap && verbose)
6319		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6320			 bw_cap / 1000, bw_cap % 1000,
6321			 pci_speed_string(speed_cap), width_cap);
6322	else if (bw_avail < bw_cap)
6323		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6324			 bw_avail / 1000, bw_avail % 1000,
6325			 pci_speed_string(speed), width,
6326			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6327			 bw_cap / 1000, bw_cap % 1000,
6328			 pci_speed_string(speed_cap), width_cap);
6329}
6330
6331/**
6332 * pcie_print_link_status - Report the PCI device's link speed and width
6333 * @dev: PCI device to query
6334 *
6335 * Report the available bandwidth at the device.
6336 */
6337void pcie_print_link_status(struct pci_dev *dev)
6338{
6339	__pcie_print_link_status(dev, true);
6340}
6341EXPORT_SYMBOL(pcie_print_link_status);
6342
6343/**
6344 * pci_select_bars - Make BAR mask from the type of resource
6345 * @dev: the PCI device for which BAR mask is made
6346 * @flags: resource type mask to be selected
6347 *
6348 * This helper routine makes bar mask from the type of resource.
6349 */
6350int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6351{
6352	int i, bars = 0;
6353	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6354		if (pci_resource_flags(dev, i) & flags)
6355			bars |= (1 << i);
6356	return bars;
6357}
6358EXPORT_SYMBOL(pci_select_bars);
6359
6360/* Some architectures require additional programming to enable VGA */
6361static arch_set_vga_state_t arch_set_vga_state;
6362
6363void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6364{
6365	arch_set_vga_state = func;	/* NULL disables */
6366}
6367
6368static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6369				  unsigned int command_bits, u32 flags)
6370{
6371	if (arch_set_vga_state)
6372		return arch_set_vga_state(dev, decode, command_bits,
6373						flags);
6374	return 0;
6375}
6376
6377/**
6378 * pci_set_vga_state - set VGA decode state on device and parents if requested
6379 * @dev: the PCI device
6380 * @decode: true = enable decoding, false = disable decoding
6381 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6382 * @flags: traverse ancestors and change bridges
6383 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6384 */
6385int pci_set_vga_state(struct pci_dev *dev, bool decode,
6386		      unsigned int command_bits, u32 flags)
6387{
6388	struct pci_bus *bus;
6389	struct pci_dev *bridge;
6390	u16 cmd;
6391	int rc;
6392
6393	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6394
6395	/* ARCH specific VGA enables */
6396	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6397	if (rc)
6398		return rc;
6399
6400	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6401		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6402		if (decode)
6403			cmd |= command_bits;
6404		else
6405			cmd &= ~command_bits;
6406		pci_write_config_word(dev, PCI_COMMAND, cmd);
6407	}
6408
6409	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6410		return 0;
6411
6412	bus = dev->bus;
6413	while (bus) {
6414		bridge = bus->self;
6415		if (bridge) {
6416			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6417					     &cmd);
6418			if (decode)
6419				cmd |= PCI_BRIDGE_CTL_VGA;
6420			else
6421				cmd &= ~PCI_BRIDGE_CTL_VGA;
6422			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6423					      cmd);
6424		}
6425		bus = bus->parent;
6426	}
6427	return 0;
6428}
6429
6430#ifdef CONFIG_ACPI
6431bool pci_pr3_present(struct pci_dev *pdev)
6432{
6433	struct acpi_device *adev;
6434
6435	if (acpi_disabled)
6436		return false;
6437
6438	adev = ACPI_COMPANION(&pdev->dev);
6439	if (!adev)
6440		return false;
6441
6442	return adev->power.flags.power_resources &&
6443		acpi_has_method(adev->handle, "_PR3");
6444}
6445EXPORT_SYMBOL_GPL(pci_pr3_present);
6446#endif
6447
6448/**
6449 * pci_add_dma_alias - Add a DMA devfn alias for a device
6450 * @dev: the PCI device for which alias is added
6451 * @devfn_from: alias slot and function
6452 * @nr_devfns: number of subsequent devfns to alias
6453 *
6454 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6455 * which is used to program permissible bus-devfn source addresses for DMA
6456 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6457 * and are useful for devices generating DMA requests beyond or different
6458 * from their logical bus-devfn.  Examples include device quirks where the
6459 * device simply uses the wrong devfn, as well as non-transparent bridges
6460 * where the alias may be a proxy for devices in another domain.
6461 *
6462 * IOMMU group creation is performed during device discovery or addition,
6463 * prior to any potential DMA mapping and therefore prior to driver probing
6464 * (especially for userspace assigned devices where IOMMU group definition
6465 * cannot be left as a userspace activity).  DMA aliases should therefore
6466 * be configured via quirks, such as the PCI fixup header quirk.
6467 */
6468void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6469		       unsigned int nr_devfns)
6470{
6471	int devfn_to;
6472
6473	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6474	devfn_to = devfn_from + nr_devfns - 1;
6475
6476	if (!dev->dma_alias_mask)
6477		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6478	if (!dev->dma_alias_mask) {
6479		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6480		return;
6481	}
6482
6483	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6484
6485	if (nr_devfns == 1)
6486		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6487				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6488	else if (nr_devfns > 1)
6489		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6490				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6491				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6492}
6493
6494bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6495{
6496	return (dev1->dma_alias_mask &&
6497		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6498	       (dev2->dma_alias_mask &&
6499		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6500	       pci_real_dma_dev(dev1) == dev2 ||
6501	       pci_real_dma_dev(dev2) == dev1;
6502}
6503
6504bool pci_device_is_present(struct pci_dev *pdev)
6505{
6506	u32 v;
6507
6508	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6509	pdev = pci_physfn(pdev);
6510	if (pci_dev_is_disconnected(pdev))
6511		return false;
6512	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6513}
6514EXPORT_SYMBOL_GPL(pci_device_is_present);
6515
6516void pci_ignore_hotplug(struct pci_dev *dev)
6517{
6518	struct pci_dev *bridge = dev->bus->self;
6519
6520	dev->ignore_hotplug = 1;
6521	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6522	if (bridge)
6523		bridge->ignore_hotplug = 1;
6524}
6525EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6526
6527/**
6528 * pci_real_dma_dev - Get PCI DMA device for PCI device
6529 * @dev: the PCI device that may have a PCI DMA alias
6530 *
6531 * Permits the platform to provide architecture-specific functionality to
6532 * devices needing to alias DMA to another PCI device on another PCI bus. If
6533 * the PCI device is on the same bus, it is recommended to use
6534 * pci_add_dma_alias(). This is the default implementation. Architecture
6535 * implementations can override this.
6536 */
6537struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6538{
6539	return dev;
6540}
6541
6542resource_size_t __weak pcibios_default_alignment(void)
6543{
6544	return 0;
6545}
6546
6547/*
6548 * Arches that don't want to expose struct resource to userland as-is in
6549 * sysfs and /proc can implement their own pci_resource_to_user().
6550 */
6551void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6552				 const struct resource *rsrc,
6553				 resource_size_t *start, resource_size_t *end)
6554{
6555	*start = rsrc->start;
6556	*end = rsrc->end;
6557}
6558
6559static char *resource_alignment_param;
6560static DEFINE_SPINLOCK(resource_alignment_lock);
6561
6562/**
6563 * pci_specified_resource_alignment - get resource alignment specified by user.
6564 * @dev: the PCI device to get
6565 * @resize: whether or not to change resources' size when reassigning alignment
6566 *
6567 * RETURNS: Resource alignment if it is specified.
6568 *          Zero if it is not specified.
6569 */
6570static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6571							bool *resize)
6572{
6573	int align_order, count;
6574	resource_size_t align = pcibios_default_alignment();
6575	const char *p;
6576	int ret;
6577
6578	spin_lock(&resource_alignment_lock);
6579	p = resource_alignment_param;
6580	if (!p || !*p)
6581		goto out;
6582	if (pci_has_flag(PCI_PROBE_ONLY)) {
6583		align = 0;
6584		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6585		goto out;
6586	}
6587
6588	while (*p) {
6589		count = 0;
6590		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6591		    p[count] == '@') {
6592			p += count + 1;
6593			if (align_order > 63) {
6594				pr_err("PCI: Invalid requested alignment (order %d)\n",
6595				       align_order);
6596				align_order = PAGE_SHIFT;
6597			}
6598		} else {
6599			align_order = PAGE_SHIFT;
6600		}
6601
6602		ret = pci_dev_str_match(dev, p, &p);
6603		if (ret == 1) {
6604			*resize = true;
6605			align = 1ULL << align_order;
6606			break;
6607		} else if (ret < 0) {
6608			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6609			       p);
6610			break;
6611		}
6612
6613		if (*p != ';' && *p != ',') {
6614			/* End of param or invalid format */
6615			break;
6616		}
6617		p++;
6618	}
6619out:
6620	spin_unlock(&resource_alignment_lock);
6621	return align;
6622}
6623
6624static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6625					   resource_size_t align, bool resize)
6626{
6627	struct resource *r = &dev->resource[bar];
6628	const char *r_name = pci_resource_name(dev, bar);
6629	resource_size_t size;
6630
6631	if (!(r->flags & IORESOURCE_MEM))
6632		return;
6633
6634	if (r->flags & IORESOURCE_PCI_FIXED) {
6635		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6636			 r_name, r, (unsigned long long)align);
6637		return;
6638	}
6639
6640	size = resource_size(r);
6641	if (size >= align)
6642		return;
6643
6644	/*
6645	 * Increase the alignment of the resource.  There are two ways we
6646	 * can do this:
6647	 *
6648	 * 1) Increase the size of the resource.  BARs are aligned on their
6649	 *    size, so when we reallocate space for this resource, we'll
6650	 *    allocate it with the larger alignment.  This also prevents
6651	 *    assignment of any other BARs inside the alignment region, so
6652	 *    if we're requesting page alignment, this means no other BARs
6653	 *    will share the page.
6654	 *
6655	 *    The disadvantage is that this makes the resource larger than
6656	 *    the hardware BAR, which may break drivers that compute things
6657	 *    based on the resource size, e.g., to find registers at a
6658	 *    fixed offset before the end of the BAR.
6659	 *
6660	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6661	 *    set r->start to the desired alignment.  By itself this
6662	 *    doesn't prevent other BARs being put inside the alignment
6663	 *    region, but if we realign *every* resource of every device in
6664	 *    the system, none of them will share an alignment region.
6665	 *
6666	 * When the user has requested alignment for only some devices via
6667	 * the "pci=resource_alignment" argument, "resize" is true and we
6668	 * use the first method.  Otherwise we assume we're aligning all
6669	 * devices and we use the second.
6670	 */
6671
6672	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6673		 r_name, r, (unsigned long long)align);
6674
6675	if (resize) {
6676		r->start = 0;
6677		r->end = align - 1;
6678	} else {
6679		r->flags &= ~IORESOURCE_SIZEALIGN;
6680		r->flags |= IORESOURCE_STARTALIGN;
6681		resource_set_range(r, align, size);
 
6682	}
6683	r->flags |= IORESOURCE_UNSET;
6684}
6685
6686/*
6687 * This function disables memory decoding and releases memory resources
6688 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6689 * It also rounds up size to specified alignment.
6690 * Later on, the kernel will assign page-aligned memory resource back
6691 * to the device.
6692 */
6693void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6694{
6695	int i;
6696	struct resource *r;
6697	resource_size_t align;
6698	u16 command;
6699	bool resize = false;
6700
6701	/*
6702	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6703	 * 3.4.1.11.  Their resources are allocated from the space
6704	 * described by the VF BARx register in the PF's SR-IOV capability.
6705	 * We can't influence their alignment here.
6706	 */
6707	if (dev->is_virtfn)
6708		return;
6709
6710	/* check if specified PCI is target device to reassign */
6711	align = pci_specified_resource_alignment(dev, &resize);
6712	if (!align)
6713		return;
6714
6715	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6716	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6717		pci_warn(dev, "Can't reassign resources to host bridge\n");
6718		return;
6719	}
6720
6721	pci_read_config_word(dev, PCI_COMMAND, &command);
6722	command &= ~PCI_COMMAND_MEMORY;
6723	pci_write_config_word(dev, PCI_COMMAND, command);
6724
6725	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6726		pci_request_resource_alignment(dev, i, align, resize);
6727
6728	/*
6729	 * Need to disable bridge's resource window,
6730	 * to enable the kernel to reassign new resource
6731	 * window later on.
6732	 */
6733	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6734		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6735			r = &dev->resource[i];
6736			if (!(r->flags & IORESOURCE_MEM))
6737				continue;
6738			r->flags |= IORESOURCE_UNSET;
6739			r->end = resource_size(r) - 1;
6740			r->start = 0;
6741		}
6742		pci_disable_bridge_window(dev);
6743	}
6744}
6745
6746static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6747{
6748	size_t count = 0;
6749
6750	spin_lock(&resource_alignment_lock);
6751	if (resource_alignment_param)
6752		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6753	spin_unlock(&resource_alignment_lock);
6754
6755	return count;
6756}
6757
6758static ssize_t resource_alignment_store(const struct bus_type *bus,
6759					const char *buf, size_t count)
6760{
6761	char *param, *old, *end;
6762
6763	if (count >= (PAGE_SIZE - 1))
6764		return -EINVAL;
6765
6766	param = kstrndup(buf, count, GFP_KERNEL);
6767	if (!param)
6768		return -ENOMEM;
6769
6770	end = strchr(param, '\n');
6771	if (end)
6772		*end = '\0';
6773
6774	spin_lock(&resource_alignment_lock);
6775	old = resource_alignment_param;
6776	if (strlen(param)) {
6777		resource_alignment_param = param;
6778	} else {
6779		kfree(param);
6780		resource_alignment_param = NULL;
6781	}
6782	spin_unlock(&resource_alignment_lock);
6783
6784	kfree(old);
6785
6786	return count;
6787}
6788
6789static BUS_ATTR_RW(resource_alignment);
6790
6791static int __init pci_resource_alignment_sysfs_init(void)
6792{
6793	return bus_create_file(&pci_bus_type,
6794					&bus_attr_resource_alignment);
6795}
6796late_initcall(pci_resource_alignment_sysfs_init);
6797
6798static void pci_no_domains(void)
6799{
6800#ifdef CONFIG_PCI_DOMAINS
6801	pci_domains_supported = 0;
6802#endif
6803}
6804
6805#ifdef CONFIG_PCI_DOMAINS_GENERIC
6806static DEFINE_IDA(pci_domain_nr_static_ida);
6807static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6808
6809static void of_pci_reserve_static_domain_nr(void)
6810{
6811	struct device_node *np;
6812	int domain_nr;
6813
6814	for_each_node_by_type(np, "pci") {
6815		domain_nr = of_get_pci_domain_nr(np);
6816		if (domain_nr < 0)
6817			continue;
6818		/*
6819		 * Permanently allocate domain_nr in dynamic_ida
6820		 * to prevent it from dynamic allocation.
6821		 */
6822		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6823				domain_nr, domain_nr, GFP_KERNEL);
6824	}
6825}
6826
6827static int of_pci_bus_find_domain_nr(struct device *parent)
6828{
6829	static bool static_domains_reserved = false;
6830	int domain_nr;
6831
6832	/* On the first call scan device tree for static allocations. */
6833	if (!static_domains_reserved) {
6834		of_pci_reserve_static_domain_nr();
6835		static_domains_reserved = true;
6836	}
6837
6838	if (parent) {
6839		/*
6840		 * If domain is in DT, allocate it in static IDA.  This
6841		 * prevents duplicate static allocations in case of errors
6842		 * in DT.
6843		 */
6844		domain_nr = of_get_pci_domain_nr(parent->of_node);
6845		if (domain_nr >= 0)
6846			return ida_alloc_range(&pci_domain_nr_static_ida,
6847					       domain_nr, domain_nr,
6848					       GFP_KERNEL);
6849	}
6850
6851	/*
6852	 * If domain was not specified in DT, choose a free ID from dynamic
6853	 * allocations. All domain numbers from DT are permanently in
6854	 * dynamic allocations to prevent assigning them to other DT nodes
6855	 * without static domain.
6856	 */
6857	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6858}
6859
6860static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6861{
6862	if (domain_nr < 0)
6863		return;
6864
6865	/* Release domain from IDA where it was allocated. */
6866	if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6867		ida_free(&pci_domain_nr_static_ida, domain_nr);
6868	else
6869		ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6870}
6871
6872int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6873{
6874	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6875			       acpi_pci_bus_find_domain_nr(bus);
6876}
6877
6878void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6879{
6880	if (!acpi_disabled)
6881		return;
6882	of_pci_bus_release_domain_nr(parent, domain_nr);
6883}
6884#endif
6885
6886/**
6887 * pci_ext_cfg_avail - can we access extended PCI config space?
6888 *
6889 * Returns 1 if we can access PCI extended config space (offsets
6890 * greater than 0xff). This is the default implementation. Architecture
6891 * implementations can override this.
6892 */
6893int __weak pci_ext_cfg_avail(void)
6894{
6895	return 1;
6896}
6897
6898void __weak pci_fixup_cardbus(struct pci_bus *bus)
6899{
6900}
6901EXPORT_SYMBOL(pci_fixup_cardbus);
6902
6903static int __init pci_setup(char *str)
6904{
6905	while (str) {
6906		char *k = strchr(str, ',');
6907		if (k)
6908			*k++ = 0;
6909		if (*str && (str = pcibios_setup(str)) && *str) {
6910			if (!strcmp(str, "nomsi")) {
6911				pci_no_msi();
6912			} else if (!strncmp(str, "noats", 5)) {
6913				pr_info("PCIe: ATS is disabled\n");
6914				pcie_ats_disabled = true;
6915			} else if (!strcmp(str, "noaer")) {
6916				pci_no_aer();
6917			} else if (!strcmp(str, "earlydump")) {
6918				pci_early_dump = true;
6919			} else if (!strncmp(str, "realloc=", 8)) {
6920				pci_realloc_get_opt(str + 8);
6921			} else if (!strncmp(str, "realloc", 7)) {
6922				pci_realloc_get_opt("on");
6923			} else if (!strcmp(str, "nodomains")) {
6924				pci_no_domains();
6925			} else if (!strncmp(str, "noari", 5)) {
6926				pcie_ari_disabled = true;
6927			} else if (!strncmp(str, "notph", 5)) {
6928				pci_no_tph();
6929			} else if (!strncmp(str, "cbiosize=", 9)) {
6930				pci_cardbus_io_size = memparse(str + 9, &str);
6931			} else if (!strncmp(str, "cbmemsize=", 10)) {
6932				pci_cardbus_mem_size = memparse(str + 10, &str);
6933			} else if (!strncmp(str, "resource_alignment=", 19)) {
6934				resource_alignment_param = str + 19;
6935			} else if (!strncmp(str, "ecrc=", 5)) {
6936				pcie_ecrc_get_policy(str + 5);
6937			} else if (!strncmp(str, "hpiosize=", 9)) {
6938				pci_hotplug_io_size = memparse(str + 9, &str);
6939			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6940				pci_hotplug_mmio_size = memparse(str + 11, &str);
6941			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6942				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6943			} else if (!strncmp(str, "hpmemsize=", 10)) {
6944				pci_hotplug_mmio_size = memparse(str + 10, &str);
6945				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6946			} else if (!strncmp(str, "hpbussize=", 10)) {
6947				pci_hotplug_bus_size =
6948					simple_strtoul(str + 10, &str, 0);
6949				if (pci_hotplug_bus_size > 0xff)
6950					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6951			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6952				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6953			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6954				pcie_bus_config = PCIE_BUS_SAFE;
6955			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6956				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6957			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6958				pcie_bus_config = PCIE_BUS_PEER2PEER;
6959			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6960				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6961			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6962				disable_acs_redir_param = str + 18;
6963			} else if (!strncmp(str, "config_acs=", 11)) {
6964				config_acs_param = str + 11;
6965			} else {
6966				pr_err("PCI: Unknown option `%s'\n", str);
6967			}
6968		}
6969		str = k;
6970	}
6971	return 0;
6972}
6973early_param("pci", pci_setup);
6974
6975/*
6976 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6977 * in pci_setup(), above, to point to data in the __initdata section which
6978 * will be freed after the init sequence is complete. We can't allocate memory
6979 * in pci_setup() because some architectures do not have any memory allocation
6980 * service available during an early_param() call. So we allocate memory and
6981 * copy the variable here before the init section is freed.
6982 *
6983 */
6984static int __init pci_realloc_setup_params(void)
6985{
6986	resource_alignment_param = kstrdup(resource_alignment_param,
6987					   GFP_KERNEL);
6988	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6989	config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6990
6991	return 0;
6992}
6993pure_initcall(pci_realloc_setup_params);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44#ifdef CONFIG_X86_32
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47#endif
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3hot_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67static void pci_dev_d3_sleep(struct pci_dev *dev)
  68{
  69	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  70	unsigned int upper;
  71
  72	if (delay_ms) {
  73		/* Use a 20% upper bound, 1ms minimum */
  74		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  75		usleep_range(delay_ms * USEC_PER_MSEC,
  76			     (delay_ms + upper) * USEC_PER_MSEC);
  77	}
  78}
  79
  80bool pci_reset_supported(struct pci_dev *dev)
  81{
  82	return dev->reset_methods[0] != 0;
  83}
  84
  85#ifdef CONFIG_PCI_DOMAINS
  86int pci_domains_supported = 1;
  87#endif
  88
  89#define DEFAULT_CARDBUS_IO_SIZE		(256)
  90#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  91/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  92unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  93unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  94
  95#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  96#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
  97#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
  98/* hpiosize=nn can override this */
  99unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 100/*
 101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 103 * pci=hpmemsize=nnM overrides both
 104 */
 105unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 106unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 107
 108#define DEFAULT_HOTPLUG_BUS_SIZE	1
 109unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 110
 111
 112/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 113#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 115#elif defined CONFIG_PCIE_BUS_SAFE
 116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 117#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 119#elif defined CONFIG_PCIE_BUS_PEER2PEER
 120enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 121#else
 122enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 123#endif
 124
 125/*
 126 * The default CLS is used if arch didn't set CLS explicitly and not
 127 * all pci devices agree on the same value.  Arch can override either
 128 * the dfl or actual value as it sees fit.  Don't forget this is
 129 * measured in 32-bit words, not bytes.
 130 */
 131u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 132u8 pci_cache_line_size;
 133
 134/*
 135 * If we set up a device for bus mastering, we need to check the latency
 136 * timer as certain BIOSes forget to set it properly.
 137 */
 138unsigned int pcibios_max_latency = 255;
 139
 140/* If set, the PCIe ARI capability will not be used. */
 141static bool pcie_ari_disabled;
 142
 143/* If set, the PCIe ATS capability will not be used. */
 144static bool pcie_ats_disabled;
 145
 146/* If set, the PCI config space of each device is printed during boot. */
 147bool pci_early_dump;
 148
 149bool pci_ats_disabled(void)
 150{
 151	return pcie_ats_disabled;
 152}
 153EXPORT_SYMBOL_GPL(pci_ats_disabled);
 154
 155/* Disable bridge_d3 for all PCIe ports */
 156static bool pci_bridge_d3_disable;
 157/* Force bridge_d3 for all PCIe ports */
 158static bool pci_bridge_d3_force;
 159
 160static int __init pcie_port_pm_setup(char *str)
 161{
 162	if (!strcmp(str, "off"))
 163		pci_bridge_d3_disable = true;
 164	else if (!strcmp(str, "force"))
 165		pci_bridge_d3_force = true;
 166	return 1;
 167}
 168__setup("pcie_port_pm=", pcie_port_pm_setup);
 169
 170/* Time to wait after a reset for device to become responsive */
 171#define PCIE_RESET_READY_POLL_MS 60000
 172
 173/**
 174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 175 * @bus: pointer to PCI bus structure to search
 176 *
 177 * Given a PCI bus, returns the highest PCI bus number present in the set
 178 * including the given PCI bus and its list of child PCI buses.
 179 */
 180unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 181{
 182	struct pci_bus *tmp;
 183	unsigned char max, n;
 184
 185	max = bus->busn_res.end;
 186	list_for_each_entry(tmp, &bus->children, node) {
 187		n = pci_bus_max_busnr(tmp);
 188		if (n > max)
 189			max = n;
 190	}
 191	return max;
 192}
 193EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 194
 195/**
 196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 197 * @pdev: the PCI device
 198 *
 199 * Returns error bits set in PCI_STATUS and clears them.
 200 */
 201int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 202{
 203	u16 status;
 204	int ret;
 205
 206	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 207	if (ret != PCIBIOS_SUCCESSFUL)
 208		return -EIO;
 209
 210	status &= PCI_STATUS_ERROR_BITS;
 211	if (status)
 212		pci_write_config_word(pdev, PCI_STATUS, status);
 213
 214	return status;
 215}
 216EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 217
 218#ifdef CONFIG_HAS_IOMEM
 219static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 220					    bool write_combine)
 221{
 222	struct resource *res = &pdev->resource[bar];
 223	resource_size_t start = res->start;
 224	resource_size_t size = resource_size(res);
 225
 226	/*
 227	 * Make sure the BAR is actually a memory resource, not an IO resource
 228	 */
 229	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 230		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 231		return NULL;
 232	}
 233
 234	if (write_combine)
 235		return ioremap_wc(start, size);
 236
 237	return ioremap(start, size);
 238}
 239
 240void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 241{
 242	return __pci_ioremap_resource(pdev, bar, false);
 243}
 244EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 245
 246void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 247{
 248	return __pci_ioremap_resource(pdev, bar, true);
 249}
 250EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 251#endif
 252
 253/**
 254 * pci_dev_str_match_path - test if a path string matches a device
 255 * @dev: the PCI device to test
 256 * @path: string to match the device against
 257 * @endptr: pointer to the string after the match
 258 *
 259 * Test if a string (typically from a kernel parameter) formatted as a
 260 * path of device/function addresses matches a PCI device. The string must
 261 * be of the form:
 262 *
 263 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 264 *
 265 * A path for a device can be obtained using 'lspci -t'.  Using a path
 266 * is more robust against bus renumbering than using only a single bus,
 267 * device and function address.
 268 *
 269 * Returns 1 if the string matches the device, 0 if it does not and
 270 * a negative error code if it fails to parse the string.
 271 */
 272static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 273				  const char **endptr)
 274{
 275	int ret;
 276	unsigned int seg, bus, slot, func;
 277	char *wpath, *p;
 278	char end;
 279
 280	*endptr = strchrnul(path, ';');
 281
 282	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 283	if (!wpath)
 284		return -ENOMEM;
 285
 286	while (1) {
 287		p = strrchr(wpath, '/');
 288		if (!p)
 289			break;
 290		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 291		if (ret != 2) {
 292			ret = -EINVAL;
 293			goto free_and_exit;
 294		}
 295
 296		if (dev->devfn != PCI_DEVFN(slot, func)) {
 297			ret = 0;
 298			goto free_and_exit;
 299		}
 300
 301		/*
 302		 * Note: we don't need to get a reference to the upstream
 303		 * bridge because we hold a reference to the top level
 304		 * device which should hold a reference to the bridge,
 305		 * and so on.
 306		 */
 307		dev = pci_upstream_bridge(dev);
 308		if (!dev) {
 309			ret = 0;
 310			goto free_and_exit;
 311		}
 312
 313		*p = 0;
 314	}
 315
 316	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 317		     &func, &end);
 318	if (ret != 4) {
 319		seg = 0;
 320		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 321		if (ret != 3) {
 322			ret = -EINVAL;
 323			goto free_and_exit;
 324		}
 325	}
 326
 327	ret = (seg == pci_domain_nr(dev->bus) &&
 328	       bus == dev->bus->number &&
 329	       dev->devfn == PCI_DEVFN(slot, func));
 330
 331free_and_exit:
 332	kfree(wpath);
 333	return ret;
 334}
 335
 336/**
 337 * pci_dev_str_match - test if a string matches a device
 338 * @dev: the PCI device to test
 339 * @p: string to match the device against
 340 * @endptr: pointer to the string after the match
 341 *
 342 * Test if a string (typically from a kernel parameter) matches a specified
 343 * PCI device. The string may be of one of the following formats:
 344 *
 345 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 346 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 347 *
 348 * The first format specifies a PCI bus/device/function address which
 349 * may change if new hardware is inserted, if motherboard firmware changes,
 350 * or due to changes caused in kernel parameters. If the domain is
 351 * left unspecified, it is taken to be 0.  In order to be robust against
 352 * bus renumbering issues, a path of PCI device/function numbers may be used
 353 * to address the specific device.  The path for a device can be determined
 354 * through the use of 'lspci -t'.
 355 *
 356 * The second format matches devices using IDs in the configuration
 357 * space which may match multiple devices in the system. A value of 0
 358 * for any field will match all devices. (Note: this differs from
 359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 360 * legacy reasons and convenience so users don't have to specify
 361 * FFFFFFFFs on the command line.)
 362 *
 363 * Returns 1 if the string matches the device, 0 if it does not and
 364 * a negative error code if the string cannot be parsed.
 365 */
 366static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 367			     const char **endptr)
 368{
 369	int ret;
 370	int count;
 371	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 372
 373	if (strncmp(p, "pci:", 4) == 0) {
 374		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 375		p += 4;
 376		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 377			     &subsystem_vendor, &subsystem_device, &count);
 378		if (ret != 4) {
 379			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 380			if (ret != 2)
 381				return -EINVAL;
 382
 383			subsystem_vendor = 0;
 384			subsystem_device = 0;
 385		}
 386
 387		p += count;
 388
 389		if ((!vendor || vendor == dev->vendor) &&
 390		    (!device || device == dev->device) &&
 391		    (!subsystem_vendor ||
 392			    subsystem_vendor == dev->subsystem_vendor) &&
 393		    (!subsystem_device ||
 394			    subsystem_device == dev->subsystem_device))
 395			goto found;
 396	} else {
 397		/*
 398		 * PCI Bus, Device, Function IDs are specified
 399		 * (optionally, may include a path of devfns following it)
 400		 */
 401		ret = pci_dev_str_match_path(dev, p, &p);
 402		if (ret < 0)
 403			return ret;
 404		else if (ret)
 405			goto found;
 406	}
 407
 408	*endptr = p;
 409	return 0;
 410
 411found:
 412	*endptr = p;
 413	return 1;
 414}
 415
 416static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 417				  u8 pos, int cap, int *ttl)
 418{
 419	u8 id;
 420	u16 ent;
 421
 422	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 423
 424	while ((*ttl)--) {
 425		if (pos < 0x40)
 426			break;
 427		pos &= ~3;
 428		pci_bus_read_config_word(bus, devfn, pos, &ent);
 429
 430		id = ent & 0xff;
 431		if (id == 0xff)
 432			break;
 433		if (id == cap)
 434			return pos;
 435		pos = (ent >> 8);
 436	}
 437	return 0;
 438}
 439
 440static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 441			      u8 pos, int cap)
 442{
 443	int ttl = PCI_FIND_CAP_TTL;
 444
 445	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 446}
 447
 448u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 449{
 450	return __pci_find_next_cap(dev->bus, dev->devfn,
 451				   pos + PCI_CAP_LIST_NEXT, cap);
 452}
 453EXPORT_SYMBOL_GPL(pci_find_next_capability);
 454
 455static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 456				    unsigned int devfn, u8 hdr_type)
 457{
 458	u16 status;
 459
 460	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 461	if (!(status & PCI_STATUS_CAP_LIST))
 462		return 0;
 463
 464	switch (hdr_type) {
 465	case PCI_HEADER_TYPE_NORMAL:
 466	case PCI_HEADER_TYPE_BRIDGE:
 467		return PCI_CAPABILITY_LIST;
 468	case PCI_HEADER_TYPE_CARDBUS:
 469		return PCI_CB_CAPABILITY_LIST;
 470	}
 471
 472	return 0;
 473}
 474
 475/**
 476 * pci_find_capability - query for devices' capabilities
 477 * @dev: PCI device to query
 478 * @cap: capability code
 479 *
 480 * Tell if a device supports a given PCI capability.
 481 * Returns the address of the requested capability structure within the
 482 * device's PCI configuration space or 0 in case the device does not
 483 * support it.  Possible values for @cap include:
 484 *
 485 *  %PCI_CAP_ID_PM           Power Management
 486 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 487 *  %PCI_CAP_ID_VPD          Vital Product Data
 488 *  %PCI_CAP_ID_SLOTID       Slot Identification
 489 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 490 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 491 *  %PCI_CAP_ID_PCIX         PCI-X
 492 *  %PCI_CAP_ID_EXP          PCI Express
 493 */
 494u8 pci_find_capability(struct pci_dev *dev, int cap)
 495{
 496	u8 pos;
 497
 498	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 499	if (pos)
 500		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 501
 502	return pos;
 503}
 504EXPORT_SYMBOL(pci_find_capability);
 505
 506/**
 507 * pci_bus_find_capability - query for devices' capabilities
 508 * @bus: the PCI bus to query
 509 * @devfn: PCI device to query
 510 * @cap: capability code
 511 *
 512 * Like pci_find_capability() but works for PCI devices that do not have a
 513 * pci_dev structure set up yet.
 514 *
 515 * Returns the address of the requested capability structure within the
 516 * device's PCI configuration space or 0 in case the device does not
 517 * support it.
 518 */
 519u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 520{
 521	u8 hdr_type, pos;
 522
 523	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 524
 525	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 526	if (pos)
 527		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 528
 529	return pos;
 530}
 531EXPORT_SYMBOL(pci_bus_find_capability);
 532
 533/**
 534 * pci_find_next_ext_capability - Find an extended capability
 535 * @dev: PCI device to query
 536 * @start: address at which to start looking (0 to start at beginning of list)
 537 * @cap: capability code
 538 *
 539 * Returns the address of the next matching extended capability structure
 540 * within the device's PCI configuration space or 0 if the device does
 541 * not support it.  Some capabilities can occur several times, e.g., the
 542 * vendor-specific capability, and this provides a way to find them all.
 543 */
 544u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 545{
 546	u32 header;
 547	int ttl;
 548	u16 pos = PCI_CFG_SPACE_SIZE;
 549
 550	/* minimum 8 bytes per capability */
 551	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 552
 553	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 554		return 0;
 555
 556	if (start)
 557		pos = start;
 558
 559	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 560		return 0;
 561
 562	/*
 563	 * If we have no capabilities, this is indicated by cap ID,
 564	 * cap version and next pointer all being 0.
 565	 */
 566	if (header == 0)
 567		return 0;
 568
 569	while (ttl-- > 0) {
 570		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 571			return pos;
 572
 573		pos = PCI_EXT_CAP_NEXT(header);
 574		if (pos < PCI_CFG_SPACE_SIZE)
 575			break;
 576
 577		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 578			break;
 579	}
 580
 581	return 0;
 582}
 583EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 584
 585/**
 586 * pci_find_ext_capability - Find an extended capability
 587 * @dev: PCI device to query
 588 * @cap: capability code
 589 *
 590 * Returns the address of the requested extended capability structure
 591 * within the device's PCI configuration space or 0 if the device does
 592 * not support it.  Possible values for @cap include:
 593 *
 594 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 595 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 596 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 597 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 598 */
 599u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 600{
 601	return pci_find_next_ext_capability(dev, 0, cap);
 602}
 603EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 604
 605/**
 606 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 607 * @dev: PCI device to query
 608 *
 609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 610 * Number.
 611 *
 612 * Returns the DSN, or zero if the capability does not exist.
 613 */
 614u64 pci_get_dsn(struct pci_dev *dev)
 615{
 616	u32 dword;
 617	u64 dsn;
 618	int pos;
 619
 620	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 621	if (!pos)
 622		return 0;
 623
 624	/*
 625	 * The Device Serial Number is two dwords offset 4 bytes from the
 626	 * capability position. The specification says that the first dword is
 627	 * the lower half, and the second dword is the upper half.
 628	 */
 629	pos += 4;
 630	pci_read_config_dword(dev, pos, &dword);
 631	dsn = (u64)dword;
 632	pci_read_config_dword(dev, pos + 4, &dword);
 633	dsn |= ((u64)dword) << 32;
 634
 635	return dsn;
 636}
 637EXPORT_SYMBOL_GPL(pci_get_dsn);
 638
 639static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 640{
 641	int rc, ttl = PCI_FIND_CAP_TTL;
 642	u8 cap, mask;
 643
 644	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 645		mask = HT_3BIT_CAP_MASK;
 646	else
 647		mask = HT_5BIT_CAP_MASK;
 648
 649	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 650				      PCI_CAP_ID_HT, &ttl);
 651	while (pos) {
 652		rc = pci_read_config_byte(dev, pos + 3, &cap);
 653		if (rc != PCIBIOS_SUCCESSFUL)
 654			return 0;
 655
 656		if ((cap & mask) == ht_cap)
 657			return pos;
 658
 659		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 660					      pos + PCI_CAP_LIST_NEXT,
 661					      PCI_CAP_ID_HT, &ttl);
 662	}
 663
 664	return 0;
 665}
 666
 667/**
 668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 669 * @dev: PCI device to query
 670 * @pos: Position from which to continue searching
 671 * @ht_cap: HyperTransport capability code
 672 *
 673 * To be used in conjunction with pci_find_ht_capability() to search for
 674 * all capabilities matching @ht_cap. @pos should always be a value returned
 675 * from pci_find_ht_capability().
 676 *
 677 * NB. To be 100% safe against broken PCI devices, the caller should take
 678 * steps to avoid an infinite loop.
 679 */
 680u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 681{
 682	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 683}
 684EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 685
 686/**
 687 * pci_find_ht_capability - query a device's HyperTransport capabilities
 688 * @dev: PCI device to query
 689 * @ht_cap: HyperTransport capability code
 690 *
 691 * Tell if a device supports a given HyperTransport capability.
 692 * Returns an address within the device's PCI configuration space
 693 * or 0 in case the device does not support the request capability.
 694 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 695 * which has a HyperTransport capability matching @ht_cap.
 696 */
 697u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 698{
 699	u8 pos;
 700
 701	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 702	if (pos)
 703		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 704
 705	return pos;
 706}
 707EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 708
 709/**
 710 * pci_find_vsec_capability - Find a vendor-specific extended capability
 711 * @dev: PCI device to query
 712 * @vendor: Vendor ID for which capability is defined
 713 * @cap: Vendor-specific capability ID
 714 *
 715 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 716 * VSEC ID @cap. If found, return the capability offset in
 717 * config space; otherwise return 0.
 718 */
 719u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 720{
 721	u16 vsec = 0;
 722	u32 header;
 
 723
 724	if (vendor != dev->vendor)
 725		return 0;
 726
 727	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 728						     PCI_EXT_CAP_ID_VNDR))) {
 729		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 730					  &header) == PCIBIOS_SUCCESSFUL &&
 731		    PCI_VNDR_HEADER_ID(header) == cap)
 
 
 732			return vsec;
 733	}
 734
 735	return 0;
 736}
 737EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 738
 739/**
 740 * pci_find_dvsec_capability - Find DVSEC for vendor
 741 * @dev: PCI device to query
 742 * @vendor: Vendor ID to match for the DVSEC
 743 * @dvsec: Designated Vendor-specific capability ID
 744 *
 745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 746 * offset in config space; otherwise return 0.
 747 */
 748u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 749{
 750	int pos;
 751
 752	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 753	if (!pos)
 754		return 0;
 755
 756	while (pos) {
 757		u16 v, id;
 758
 759		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 760		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 761		if (vendor == v && dvsec == id)
 762			return pos;
 763
 764		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 765	}
 766
 767	return 0;
 768}
 769EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 770
 771/**
 772 * pci_find_parent_resource - return resource region of parent bus of given
 773 *			      region
 774 * @dev: PCI device structure contains resources to be searched
 775 * @res: child resource record for which parent is sought
 776 *
 777 * For given resource region of given device, return the resource region of
 778 * parent bus the given region is contained in.
 779 */
 780struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 781					  struct resource *res)
 782{
 783	const struct pci_bus *bus = dev->bus;
 784	struct resource *r;
 785	int i;
 786
 787	pci_bus_for_each_resource(bus, r, i) {
 788		if (!r)
 789			continue;
 790		if (resource_contains(r, res)) {
 791
 792			/*
 793			 * If the window is prefetchable but the BAR is
 794			 * not, the allocator made a mistake.
 795			 */
 796			if (r->flags & IORESOURCE_PREFETCH &&
 797			    !(res->flags & IORESOURCE_PREFETCH))
 798				return NULL;
 799
 800			/*
 801			 * If we're below a transparent bridge, there may
 802			 * be both a positively-decoded aperture and a
 803			 * subtractively-decoded region that contain the BAR.
 804			 * We want the positively-decoded one, so this depends
 805			 * on pci_bus_for_each_resource() giving us those
 806			 * first.
 807			 */
 808			return r;
 809		}
 810	}
 811	return NULL;
 812}
 813EXPORT_SYMBOL(pci_find_parent_resource);
 814
 815/**
 816 * pci_find_resource - Return matching PCI device resource
 817 * @dev: PCI device to query
 818 * @res: Resource to look for
 819 *
 820 * Goes over standard PCI resources (BARs) and checks if the given resource
 821 * is partially or fully contained in any of them. In that case the
 822 * matching resource is returned, %NULL otherwise.
 823 */
 824struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 825{
 826	int i;
 827
 828	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 829		struct resource *r = &dev->resource[i];
 830
 831		if (r->start && resource_contains(r, res))
 832			return r;
 833	}
 834
 835	return NULL;
 836}
 837EXPORT_SYMBOL(pci_find_resource);
 838
 839/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 841 * @dev: the PCI device to operate on
 842 * @pos: config space offset of status word
 843 * @mask: mask of bit(s) to care about in status word
 844 *
 845 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 846 */
 847int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 848{
 849	int i;
 850
 851	/* Wait for Transaction Pending bit clean */
 852	for (i = 0; i < 4; i++) {
 853		u16 status;
 854		if (i)
 855			msleep((1 << (i - 1)) * 100);
 856
 857		pci_read_config_word(dev, pos, &status);
 858		if (!(status & mask))
 859			return 1;
 860	}
 861
 862	return 0;
 863}
 864
 865static int pci_acs_enable;
 866
 867/**
 868 * pci_request_acs - ask for ACS to be enabled if supported
 869 */
 870void pci_request_acs(void)
 871{
 872	pci_acs_enable = 1;
 873}
 874
 875static const char *disable_acs_redir_param;
 
 
 
 
 
 
 
 876
 877/**
 878 * pci_disable_acs_redir - disable ACS redirect capabilities
 879 * @dev: the PCI device
 880 *
 881 * For only devices specified in the disable_acs_redir parameter.
 882 */
 883static void pci_disable_acs_redir(struct pci_dev *dev)
 884{
 
 885	int ret = 0;
 886	const char *p;
 887	int pos;
 888	u16 ctrl;
 889
 890	if (!disable_acs_redir_param)
 891		return;
 892
 893	p = disable_acs_redir_param;
 894	while (*p) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895		ret = pci_dev_str_match(dev, p, &p);
 896		if (ret < 0) {
 897			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 898				     disable_acs_redir_param);
 899
 900			break;
 901		} else if (ret == 1) {
 902			/* Found a match */
 903			break;
 904		}
 905
 906		if (*p != ';' && *p != ',') {
 907			/* End of param or invalid format */
 908			break;
 909		}
 910		p++;
 911	}
 912
 913	if (ret != 1)
 914		return;
 915
 916	if (!pci_dev_specific_disable_acs_redir(dev))
 917		return;
 918
 919	pos = dev->acs_cap;
 920	if (!pos) {
 921		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 922		return;
 923	}
 924
 925	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 926
 927	/* P2P Request & Completion Redirect */
 928	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 
 929
 930	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 931
 932	pci_info(dev, "disabled ACS redirect\n");
 933}
 934
 935/**
 936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 937 * @dev: the PCI device
 
 938 */
 939static void pci_std_enable_acs(struct pci_dev *dev)
 940{
 941	int pos;
 942	u16 cap;
 943	u16 ctrl;
 944
 945	pos = dev->acs_cap;
 946	if (!pos)
 947		return;
 948
 949	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 950	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 951
 952	/* Source Validation */
 953	ctrl |= (cap & PCI_ACS_SV);
 954
 955	/* P2P Request Redirect */
 956	ctrl |= (cap & PCI_ACS_RR);
 957
 958	/* P2P Completion Redirect */
 959	ctrl |= (cap & PCI_ACS_CR);
 960
 961	/* Upstream Forwarding */
 962	ctrl |= (cap & PCI_ACS_UF);
 963
 964	/* Enable Translation Blocking for external devices and noats */
 965	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
 966		ctrl |= (cap & PCI_ACS_TB);
 967
 968	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 969}
 970
 971/**
 972 * pci_enable_acs - enable ACS if hardware support it
 973 * @dev: the PCI device
 974 */
 975static void pci_enable_acs(struct pci_dev *dev)
 976{
 977	if (!pci_acs_enable)
 978		goto disable_acs_redir;
 
 
 
 
 
 
 
 
 
 
 
 979
 980	if (!pci_dev_specific_enable_acs(dev))
 981		goto disable_acs_redir;
 
 982
 983	pci_std_enable_acs(dev);
 
 984
 985disable_acs_redir:
 986	/*
 987	 * Note: pci_disable_acs_redir() must be called even if ACS was not
 988	 * enabled by the kernel because it may have been enabled by
 989	 * platform firmware.  So if we are told to disable it, we should
 990	 * always disable it after setting the kernel's default
 991	 * preferences.
 992	 */
 993	pci_disable_acs_redir(dev);
 
 
 
 
 
 994}
 995
 996/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 998 * @dev: PCI device to have its BARs restored
 999 *
1000 * Restore the BAR values for a given device, so as to make it
1001 * accessible by its driver.
1002 */
1003static void pci_restore_bars(struct pci_dev *dev)
1004{
1005	int i;
1006
1007	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008		pci_update_resource(dev, i);
1009}
1010
1011static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1012{
1013	if (pci_use_mid_pm())
1014		return true;
1015
1016	return acpi_pci_power_manageable(dev);
1017}
1018
1019static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020					       pci_power_t t)
1021{
1022	if (pci_use_mid_pm())
1023		return mid_pci_set_power_state(dev, t);
1024
1025	return acpi_pci_set_power_state(dev, t);
1026}
1027
1028static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029{
1030	if (pci_use_mid_pm())
1031		return mid_pci_get_power_state(dev);
1032
1033	return acpi_pci_get_power_state(dev);
1034}
1035
1036static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037{
1038	if (!pci_use_mid_pm())
1039		acpi_pci_refresh_power_state(dev);
1040}
1041
1042static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043{
1044	if (pci_use_mid_pm())
1045		return PCI_POWER_ERROR;
1046
1047	return acpi_pci_choose_state(dev);
1048}
1049
1050static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051{
1052	if (pci_use_mid_pm())
1053		return PCI_POWER_ERROR;
1054
1055	return acpi_pci_wakeup(dev, enable);
1056}
1057
1058static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059{
1060	if (pci_use_mid_pm())
1061		return false;
1062
1063	return acpi_pci_need_resume(dev);
1064}
1065
1066static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1067{
1068	if (pci_use_mid_pm())
1069		return false;
1070
1071	return acpi_pci_bridge_d3(dev);
1072}
1073
1074/**
1075 * pci_update_current_state - Read power state of given device and cache it
1076 * @dev: PCI device to handle.
1077 * @state: State to cache in case the device doesn't have the PM capability
1078 *
1079 * The power state is read from the PMCSR register, which however is
1080 * inaccessible in D3cold.  The platform firmware is therefore queried first
1081 * to detect accessibility of the register.  In case the platform firmware
1082 * reports an incorrect state or the device isn't power manageable by the
1083 * platform at all, we try to detect D3cold by testing accessibility of the
1084 * vendor ID in config space.
1085 */
1086void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087{
1088	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1089		dev->current_state = PCI_D3cold;
1090	} else if (dev->pm_cap) {
1091		u16 pmcsr;
1092
1093		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095			dev->current_state = PCI_D3cold;
1096			return;
1097		}
1098		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099	} else {
1100		dev->current_state = state;
1101	}
1102}
1103
1104/**
1105 * pci_refresh_power_state - Refresh the given device's power state data
1106 * @dev: Target PCI device.
1107 *
1108 * Ask the platform to refresh the devices power state information and invoke
1109 * pci_update_current_state() to update its current PCI power state.
1110 */
1111void pci_refresh_power_state(struct pci_dev *dev)
1112{
1113	platform_pci_refresh_power_state(dev);
1114	pci_update_current_state(dev, dev->current_state);
1115}
1116
1117/**
1118 * pci_platform_power_transition - Use platform to change device power state
1119 * @dev: PCI device to handle.
1120 * @state: State to put the device into.
1121 */
1122int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123{
1124	int error;
1125
1126	error = platform_pci_set_power_state(dev, state);
1127	if (!error)
1128		pci_update_current_state(dev, state);
1129	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1130		dev->current_state = PCI_D0;
1131
1132	return error;
1133}
1134EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135
1136static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1137{
1138	pm_request_resume(&pci_dev->dev);
1139	return 0;
1140}
1141
1142/**
1143 * pci_resume_bus - Walk given bus and runtime resume devices on it
1144 * @bus: Top bus of the subtree to walk.
1145 */
1146void pci_resume_bus(struct pci_bus *bus)
1147{
1148	if (bus)
1149		pci_walk_bus(bus, pci_resume_one, NULL);
1150}
1151
1152static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153{
1154	int delay = 1;
1155	u32 id;
 
 
 
 
 
 
 
 
 
1156
1157	/*
1158	 * After reset, the device should not silently discard config
1159	 * requests, but it may still indicate that it needs more time by
1160	 * responding to them with CRS completions.  The Root Port will
1161	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162	 * the read (except when CRS SV is enabled and the read was for the
1163	 * Vendor ID; in that case it synthesizes 0x0001 data).
 
 
 
1164	 *
1165	 * Wait for the device to return a non-CRS completion.  Read the
1166	 * Command register instead of Vendor ID so we don't have to
1167	 * contend with the CRS SV value.
 
 
 
 
1168	 */
1169	pci_read_config_dword(dev, PCI_COMMAND, &id);
1170	while (PCI_POSSIBLE_ERROR(id)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171		if (delay > timeout) {
1172			pci_warn(dev, "not ready %dms after %s; giving up\n",
1173				 delay - 1, reset_type);
1174			return -ENOTTY;
1175		}
1176
1177		if (delay > 1000)
 
 
 
 
 
 
 
1178			pci_info(dev, "not ready %dms after %s; waiting\n",
1179				 delay - 1, reset_type);
 
1180
1181		msleep(delay);
1182		delay *= 2;
1183		pci_read_config_dword(dev, PCI_COMMAND, &id);
1184	}
1185
1186	if (delay > 1000)
1187		pci_info(dev, "ready %dms after %s\n", delay - 1,
1188			 reset_type);
 
 
 
1189
1190	return 0;
1191}
1192
1193/**
1194 * pci_power_up - Put the given device into D0
1195 * @dev: PCI device to power up
1196 *
1197 * On success, return 0 or 1, depending on whether or not it is necessary to
1198 * restore the device's BARs subsequently (1 is returned in that case).
 
 
 
 
1199 */
1200int pci_power_up(struct pci_dev *dev)
1201{
1202	bool need_restore;
1203	pci_power_t state;
1204	u16 pmcsr;
1205
1206	platform_pci_set_power_state(dev, PCI_D0);
1207
1208	if (!dev->pm_cap) {
1209		state = platform_pci_get_power_state(dev);
1210		if (state == PCI_UNKNOWN)
1211			dev->current_state = PCI_D0;
1212		else
1213			dev->current_state = state;
1214
1215		if (state == PCI_D0)
1216			return 0;
1217
1218		return -EIO;
1219	}
1220
1221	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224			pci_power_name(dev->current_state));
1225		dev->current_state = PCI_D3cold;
1226		return -EIO;
1227	}
1228
1229	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230
1231	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233
1234	if (state == PCI_D0)
1235		goto end;
1236
1237	/*
1238	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239	 * PME_En, and sets PowerState to 0.
1240	 */
1241	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242
1243	/* Mandatory transition delays; see PCI PM 1.2. */
1244	if (state == PCI_D3hot)
1245		pci_dev_d3_sleep(dev);
1246	else if (state == PCI_D2)
1247		udelay(PCI_PM_D2_DELAY);
1248
1249end:
1250	dev->current_state = PCI_D0;
1251	if (need_restore)
1252		return 1;
1253
1254	return 0;
1255}
1256
1257/**
1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259 * @dev: PCI device to power up
 
1260 *
1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262 * to confirm the state change, restore its BARs if they might be lost and
1263 * reconfigure ASPM in acordance with the new power state.
1264 *
1265 * If pci_restore_state() is going to be called right after a power state change
1266 * to D0, it is more efficient to use pci_power_up() directly instead of this
1267 * function.
1268 */
1269static int pci_set_full_power_state(struct pci_dev *dev)
1270{
1271	u16 pmcsr;
1272	int ret;
1273
1274	ret = pci_power_up(dev);
1275	if (ret < 0)
 
 
 
1276		return ret;
 
1277
1278	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280	if (dev->current_state != PCI_D0) {
1281		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282				     pci_power_name(dev->current_state));
1283	} else if (ret > 0) {
1284		/*
1285		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287		 * from D3hot to D0 _may_ perform an internal reset, thereby
1288		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289		 * For example, at least some versions of the 3c905B and the
1290		 * 3c556B exhibit this behaviour.
1291		 *
1292		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293		 * devices in a D3hot state at boot.  Consequently, we need to
1294		 * restore at least the BARs so that the device will be
1295		 * accessible to its driver.
1296		 */
1297		pci_restore_bars(dev);
1298	}
1299
 
 
 
1300	return 0;
1301}
1302
1303/**
1304 * __pci_dev_set_current_state - Set current state of a PCI device
1305 * @dev: Device to handle
1306 * @data: pointer to state to be set
1307 */
1308static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309{
1310	pci_power_t state = *(pci_power_t *)data;
1311
1312	dev->current_state = state;
1313	return 0;
1314}
1315
1316/**
1317 * pci_bus_set_current_state - Walk given bus and set current state of devices
1318 * @bus: Top bus of the subtree to walk.
1319 * @state: state to be set
1320 */
1321void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322{
1323	if (bus)
1324		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325}
1326
 
 
 
 
 
 
 
 
 
 
 
1327/**
1328 * pci_set_low_power_state - Put a PCI device into a low-power state.
1329 * @dev: PCI device to handle.
1330 * @state: PCI power state (D1, D2, D3hot) to put the device into.
 
1331 *
1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333 *
1334 * RETURN VALUE:
1335 * -EINVAL if the requested state is invalid.
1336 * -EIO if device does not support PCI PM or its PM capabilities register has a
1337 * wrong version, or device doesn't support the requested state.
1338 * 0 if device already is in the requested state.
1339 * 0 if device's power state has been successfully changed.
1340 */
1341static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342{
1343	u16 pmcsr;
1344
1345	if (!dev->pm_cap)
1346		return -EIO;
1347
1348	/*
1349	 * Validate transition: We can enter D0 from any state, but if
1350	 * we're already in a low-power state, we can only go deeper.  E.g.,
1351	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352	 * we'd have to go from D3 to D0, then to D1.
1353	 */
1354	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356			pci_power_name(dev->current_state),
1357			pci_power_name(state));
1358		return -EINVAL;
1359	}
1360
1361	/* Check if this device supports the desired state */
1362	if ((state == PCI_D1 && !dev->d1_support)
1363	   || (state == PCI_D2 && !dev->d2_support))
1364		return -EIO;
1365
1366	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369			pci_power_name(dev->current_state),
1370			pci_power_name(state));
1371		dev->current_state = PCI_D3cold;
1372		return -EIO;
1373	}
1374
1375	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376	pmcsr |= state;
1377
1378	/* Enter specified state */
1379	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380
1381	/* Mandatory power management transition delays; see PCI PM 1.2. */
1382	if (state == PCI_D3hot)
1383		pci_dev_d3_sleep(dev);
1384	else if (state == PCI_D2)
1385		udelay(PCI_PM_D2_DELAY);
1386
1387	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389	if (dev->current_state != state)
1390		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391				     pci_power_name(dev->current_state),
1392				     pci_power_name(state));
1393
 
 
 
1394	return 0;
1395}
1396
1397/**
1398 * pci_set_power_state - Set the power state of a PCI device
1399 * @dev: PCI device to handle.
1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401 *
1402 * Transition a device to a new power state, using the platform firmware and/or
1403 * the device's PCI PM registers.
1404 *
1405 * RETURN VALUE:
1406 * -EINVAL if the requested state is invalid.
1407 * -EIO if device does not support PCI PM or its PM capabilities register has a
1408 * wrong version, or device doesn't support the requested state.
1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410 * 0 if device already is in the requested state.
1411 * 0 if the transition is to D3 but D3 is not supported.
1412 * 0 if device's power state has been successfully changed.
1413 */
1414int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415{
1416	int error;
1417
1418	/* Bound the state we're entering */
1419	if (state > PCI_D3cold)
1420		state = PCI_D3cold;
1421	else if (state < PCI_D0)
1422		state = PCI_D0;
1423	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424
1425		/*
1426		 * If the device or the parent bridge do not support PCI
1427		 * PM, ignore the request if we're doing anything other
1428		 * than putting it into D0 (which would only happen on
1429		 * boot).
1430		 */
1431		return 0;
1432
1433	/* Check if we're already there */
1434	if (dev->current_state == state)
1435		return 0;
1436
1437	if (state == PCI_D0)
1438		return pci_set_full_power_state(dev);
1439
1440	/*
1441	 * This device is quirked not to be put into D3, so don't put it in
1442	 * D3
1443	 */
1444	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445		return 0;
1446
1447	if (state == PCI_D3cold) {
1448		/*
1449		 * To put the device in D3cold, put it into D3hot in the native
1450		 * way, then put it into D3cold using platform ops.
1451		 */
1452		error = pci_set_low_power_state(dev, PCI_D3hot);
1453
1454		if (pci_platform_power_transition(dev, PCI_D3cold))
1455			return error;
1456
1457		/* Powering off a bridge may power off the whole hierarchy */
1458		if (dev->current_state == PCI_D3cold)
1459			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460	} else {
1461		error = pci_set_low_power_state(dev, state);
1462
1463		if (pci_platform_power_transition(dev, state))
1464			return error;
1465	}
1466
1467	return 0;
1468}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469EXPORT_SYMBOL(pci_set_power_state);
1470
 
 
 
 
 
 
 
 
1471#define PCI_EXP_SAVE_REGS	7
1472
1473static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474						       u16 cap, bool extended)
1475{
1476	struct pci_cap_saved_state *tmp;
1477
1478	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480			return tmp;
1481	}
1482	return NULL;
1483}
1484
1485struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486{
1487	return _pci_find_saved_cap(dev, cap, false);
1488}
1489
1490struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491{
1492	return _pci_find_saved_cap(dev, cap, true);
1493}
1494
1495static int pci_save_pcie_state(struct pci_dev *dev)
1496{
1497	int i = 0;
1498	struct pci_cap_saved_state *save_state;
1499	u16 *cap;
1500
1501	if (!pci_is_pcie(dev))
1502		return 0;
1503
1504	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505	if (!save_state) {
1506		pci_err(dev, "buffer not found in %s\n", __func__);
1507		return -ENOMEM;
1508	}
1509
1510	cap = (u16 *)&save_state->cap.data[0];
1511	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1515	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518
 
 
 
1519	return 0;
1520}
1521
1522void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523{
1524#ifdef CONFIG_PCIEASPM
1525	struct pci_dev *bridge;
1526	u32 ctl;
1527
1528	bridge = pci_upstream_bridge(dev);
1529	if (bridge && bridge->ltr_path) {
1530		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532			pci_dbg(bridge, "re-enabling LTR\n");
1533			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534						 PCI_EXP_DEVCTL2_LTR_EN);
1535		}
1536	}
1537#endif
1538}
1539
1540static void pci_restore_pcie_state(struct pci_dev *dev)
1541{
1542	int i = 0;
1543	struct pci_cap_saved_state *save_state;
1544	u16 *cap;
1545
 
 
 
 
 
 
 
1546	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547	if (!save_state)
1548		return;
1549
1550	/*
1551	 * Downstream ports reset the LTR enable bit when link goes down.
1552	 * Check and re-configure the bit here before restoring device.
1553	 * PCIe r5.0, sec 7.5.3.16.
1554	 */
1555	pci_bridge_reconfigure_ltr(dev);
1556
1557	cap = (u16 *)&save_state->cap.data[0];
1558	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565}
1566
1567static int pci_save_pcix_state(struct pci_dev *dev)
1568{
1569	int pos;
1570	struct pci_cap_saved_state *save_state;
1571
1572	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573	if (!pos)
1574		return 0;
1575
1576	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577	if (!save_state) {
1578		pci_err(dev, "buffer not found in %s\n", __func__);
1579		return -ENOMEM;
1580	}
1581
1582	pci_read_config_word(dev, pos + PCI_X_CMD,
1583			     (u16 *)save_state->cap.data);
1584
1585	return 0;
1586}
1587
1588static void pci_restore_pcix_state(struct pci_dev *dev)
1589{
1590	int i = 0, pos;
1591	struct pci_cap_saved_state *save_state;
1592	u16 *cap;
1593
1594	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596	if (!save_state || !pos)
1597		return;
1598	cap = (u16 *)&save_state->cap.data[0];
1599
1600	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601}
1602
1603static void pci_save_ltr_state(struct pci_dev *dev)
1604{
1605	int ltr;
1606	struct pci_cap_saved_state *save_state;
1607	u32 *cap;
1608
1609	if (!pci_is_pcie(dev))
1610		return;
1611
1612	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613	if (!ltr)
1614		return;
1615
1616	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617	if (!save_state) {
1618		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619		return;
1620	}
1621
1622	/* Some broken devices only support dword access to LTR */
1623	cap = &save_state->cap.data[0];
1624	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625}
1626
1627static void pci_restore_ltr_state(struct pci_dev *dev)
1628{
1629	struct pci_cap_saved_state *save_state;
1630	int ltr;
1631	u32 *cap;
1632
1633	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635	if (!save_state || !ltr)
1636		return;
1637
1638	/* Some broken devices only support dword access to LTR */
1639	cap = &save_state->cap.data[0];
1640	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641}
1642
1643/**
1644 * pci_save_state - save the PCI configuration space of a device before
1645 *		    suspending
1646 * @dev: PCI device that we're dealing with
1647 */
1648int pci_save_state(struct pci_dev *dev)
1649{
1650	int i;
1651	/* XXX: 100% dword access ok here? */
1652	for (i = 0; i < 16; i++) {
1653		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655			i * 4, dev->saved_config_space[i]);
1656	}
1657	dev->state_saved = true;
1658
1659	i = pci_save_pcie_state(dev);
1660	if (i != 0)
1661		return i;
1662
1663	i = pci_save_pcix_state(dev);
1664	if (i != 0)
1665		return i;
1666
1667	pci_save_ltr_state(dev);
1668	pci_save_dpc_state(dev);
1669	pci_save_aer_state(dev);
1670	pci_save_ptm_state(dev);
 
1671	return pci_save_vc_state(dev);
1672}
1673EXPORT_SYMBOL(pci_save_state);
1674
1675static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1676				     u32 saved_val, int retry, bool force)
1677{
1678	u32 val;
1679
1680	pci_read_config_dword(pdev, offset, &val);
1681	if (!force && val == saved_val)
1682		return;
1683
1684	for (;;) {
1685		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1686			offset, val, saved_val);
1687		pci_write_config_dword(pdev, offset, saved_val);
1688		if (retry-- <= 0)
1689			return;
1690
1691		pci_read_config_dword(pdev, offset, &val);
1692		if (val == saved_val)
1693			return;
1694
1695		mdelay(1);
1696	}
1697}
1698
1699static void pci_restore_config_space_range(struct pci_dev *pdev,
1700					   int start, int end, int retry,
1701					   bool force)
1702{
1703	int index;
1704
1705	for (index = end; index >= start; index--)
1706		pci_restore_config_dword(pdev, 4 * index,
1707					 pdev->saved_config_space[index],
1708					 retry, force);
1709}
1710
1711static void pci_restore_config_space(struct pci_dev *pdev)
1712{
1713	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1714		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1715		/* Restore BARs before the command register. */
1716		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720
1721		/*
1722		 * Force rewriting of prefetch registers to avoid S3 resume
1723		 * issues on Intel PCI bridges that occur when these
1724		 * registers are not explicitly written.
1725		 */
1726		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1728	} else {
1729		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730	}
1731}
1732
1733static void pci_restore_rebar_state(struct pci_dev *pdev)
1734{
1735	unsigned int pos, nbars, i;
1736	u32 ctrl;
1737
1738	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739	if (!pos)
1740		return;
1741
1742	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744		    PCI_REBAR_CTRL_NBAR_SHIFT;
1745
1746	for (i = 0; i < nbars; i++, pos += 8) {
1747		struct resource *res;
1748		int bar_idx, size;
1749
1750		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752		res = pdev->resource + bar_idx;
1753		size = pci_rebar_bytes_to_size(resource_size(res));
1754		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1755		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1756		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757	}
1758}
1759
1760/**
1761 * pci_restore_state - Restore the saved state of a PCI device
1762 * @dev: PCI device that we're dealing with
1763 */
1764void pci_restore_state(struct pci_dev *dev)
1765{
1766	if (!dev->state_saved)
1767		return;
1768
1769	/*
1770	 * Restore max latencies (in the LTR capability) before enabling
1771	 * LTR itself (in the PCIe capability).
1772	 */
1773	pci_restore_ltr_state(dev);
1774
1775	pci_restore_pcie_state(dev);
1776	pci_restore_pasid_state(dev);
1777	pci_restore_pri_state(dev);
1778	pci_restore_ats_state(dev);
1779	pci_restore_vc_state(dev);
1780	pci_restore_rebar_state(dev);
1781	pci_restore_dpc_state(dev);
1782	pci_restore_ptm_state(dev);
 
1783
1784	pci_aer_clear_status(dev);
1785	pci_restore_aer_state(dev);
1786
1787	pci_restore_config_space(dev);
1788
1789	pci_restore_pcix_state(dev);
1790	pci_restore_msi_state(dev);
1791
1792	/* Restore ACS and IOV configuration state */
1793	pci_enable_acs(dev);
1794	pci_restore_iov_state(dev);
1795
1796	dev->state_saved = false;
1797}
1798EXPORT_SYMBOL(pci_restore_state);
1799
1800struct pci_saved_state {
1801	u32 config_space[16];
1802	struct pci_cap_saved_data cap[];
1803};
1804
1805/**
1806 * pci_store_saved_state - Allocate and return an opaque struct containing
1807 *			   the device saved state.
1808 * @dev: PCI device that we're dealing with
1809 *
1810 * Return NULL if no state or error.
1811 */
1812struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813{
1814	struct pci_saved_state *state;
1815	struct pci_cap_saved_state *tmp;
1816	struct pci_cap_saved_data *cap;
1817	size_t size;
1818
1819	if (!dev->state_saved)
1820		return NULL;
1821
1822	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823
1824	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1825		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826
1827	state = kzalloc(size, GFP_KERNEL);
1828	if (!state)
1829		return NULL;
1830
1831	memcpy(state->config_space, dev->saved_config_space,
1832	       sizeof(state->config_space));
1833
1834	cap = state->cap;
1835	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1836		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837		memcpy(cap, &tmp->cap, len);
1838		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839	}
1840	/* Empty cap_save terminates list */
1841
1842	return state;
1843}
1844EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845
1846/**
1847 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848 * @dev: PCI device that we're dealing with
1849 * @state: Saved state returned from pci_store_saved_state()
1850 */
1851int pci_load_saved_state(struct pci_dev *dev,
1852			 struct pci_saved_state *state)
1853{
1854	struct pci_cap_saved_data *cap;
1855
1856	dev->state_saved = false;
1857
1858	if (!state)
1859		return 0;
1860
1861	memcpy(dev->saved_config_space, state->config_space,
1862	       sizeof(state->config_space));
1863
1864	cap = state->cap;
1865	while (cap->size) {
1866		struct pci_cap_saved_state *tmp;
1867
1868		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1869		if (!tmp || tmp->cap.size != cap->size)
1870			return -EINVAL;
1871
1872		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874		       sizeof(struct pci_cap_saved_data) + cap->size);
1875	}
1876
1877	dev->state_saved = true;
1878	return 0;
1879}
1880EXPORT_SYMBOL_GPL(pci_load_saved_state);
1881
1882/**
1883 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884 *				   and free the memory allocated for it.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Pointer to saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_and_free_saved_state(struct pci_dev *dev,
1889				  struct pci_saved_state **state)
1890{
1891	int ret = pci_load_saved_state(dev, *state);
1892	kfree(*state);
1893	*state = NULL;
1894	return ret;
1895}
1896EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897
1898int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899{
1900	return pci_enable_resources(dev, bars);
1901}
1902
1903static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904{
1905	int err;
1906	struct pci_dev *bridge;
1907	u16 cmd;
1908	u8 pin;
1909
1910	err = pci_set_power_state(dev, PCI_D0);
1911	if (err < 0 && err != -EIO)
1912		return err;
1913
1914	bridge = pci_upstream_bridge(dev);
1915	if (bridge)
1916		pcie_aspm_powersave_config_link(bridge);
1917
1918	err = pcibios_enable_device(dev, bars);
1919	if (err < 0)
1920		return err;
1921	pci_fixup_device(pci_fixup_enable, dev);
1922
1923	if (dev->msi_enabled || dev->msix_enabled)
1924		return 0;
1925
1926	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927	if (pin) {
1928		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929		if (cmd & PCI_COMMAND_INTX_DISABLE)
1930			pci_write_config_word(dev, PCI_COMMAND,
1931					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1932	}
1933
1934	return 0;
1935}
1936
1937/**
1938 * pci_reenable_device - Resume abandoned device
1939 * @dev: PCI device to be resumed
1940 *
1941 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942 * to be called by normal code, write proper resume handler and use it instead.
1943 */
1944int pci_reenable_device(struct pci_dev *dev)
1945{
1946	if (pci_is_enabled(dev))
1947		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948	return 0;
1949}
1950EXPORT_SYMBOL(pci_reenable_device);
1951
1952static void pci_enable_bridge(struct pci_dev *dev)
1953{
1954	struct pci_dev *bridge;
1955	int retval;
1956
1957	bridge = pci_upstream_bridge(dev);
1958	if (bridge)
1959		pci_enable_bridge(bridge);
1960
1961	if (pci_is_enabled(dev)) {
1962		if (!dev->is_busmaster)
1963			pci_set_master(dev);
1964		return;
1965	}
1966
1967	retval = pci_enable_device(dev);
1968	if (retval)
1969		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1970			retval);
1971	pci_set_master(dev);
1972}
1973
1974static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1975{
1976	struct pci_dev *bridge;
1977	int err;
1978	int i, bars = 0;
1979
1980	/*
1981	 * Power state could be unknown at this point, either due to a fresh
1982	 * boot or a device removal call.  So get the current power state
1983	 * so that things like MSI message writing will behave as expected
1984	 * (e.g. if the device really is in D0 at enable time).
1985	 */
1986	pci_update_current_state(dev, dev->current_state);
1987
1988	if (atomic_inc_return(&dev->enable_cnt) > 1)
1989		return 0;		/* already enabled */
1990
1991	bridge = pci_upstream_bridge(dev);
1992	if (bridge)
1993		pci_enable_bridge(bridge);
1994
1995	/* only skip sriov related */
1996	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997		if (dev->resource[i].flags & flags)
1998			bars |= (1 << i);
1999	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2000		if (dev->resource[i].flags & flags)
2001			bars |= (1 << i);
2002
2003	err = do_pci_enable_device(dev, bars);
2004	if (err < 0)
2005		atomic_dec(&dev->enable_cnt);
2006	return err;
2007}
2008
2009/**
2010 * pci_enable_device_io - Initialize a device for use with IO space
2011 * @dev: PCI device to be initialized
2012 *
2013 * Initialize device before it's used by a driver. Ask low-level code
2014 * to enable I/O resources. Wake up the device if it was suspended.
2015 * Beware, this function can fail.
2016 */
2017int pci_enable_device_io(struct pci_dev *dev)
2018{
2019	return pci_enable_device_flags(dev, IORESOURCE_IO);
2020}
2021EXPORT_SYMBOL(pci_enable_device_io);
2022
2023/**
2024 * pci_enable_device_mem - Initialize a device for use with Memory space
2025 * @dev: PCI device to be initialized
2026 *
2027 * Initialize device before it's used by a driver. Ask low-level code
2028 * to enable Memory resources. Wake up the device if it was suspended.
2029 * Beware, this function can fail.
2030 */
2031int pci_enable_device_mem(struct pci_dev *dev)
2032{
2033	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2034}
2035EXPORT_SYMBOL(pci_enable_device_mem);
2036
2037/**
2038 * pci_enable_device - Initialize device before it's used by a driver.
2039 * @dev: PCI device to be initialized
2040 *
2041 * Initialize device before it's used by a driver. Ask low-level code
2042 * to enable I/O and memory. Wake up the device if it was suspended.
2043 * Beware, this function can fail.
2044 *
2045 * Note we don't actually enable the device many times if we call
2046 * this function repeatedly (we just increment the count).
2047 */
2048int pci_enable_device(struct pci_dev *dev)
2049{
2050	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2051}
2052EXPORT_SYMBOL(pci_enable_device);
2053
2054/*
2055 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2056 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2057 * there's no need to track it separately.  pci_devres is initialized
2058 * when a device is enabled using managed PCI device enable interface.
2059 */
2060struct pci_devres {
2061	unsigned int enabled:1;
2062	unsigned int pinned:1;
2063	unsigned int orig_intx:1;
2064	unsigned int restore_intx:1;
2065	unsigned int mwi:1;
2066	u32 region_mask;
2067};
2068
2069static void pcim_release(struct device *gendev, void *res)
2070{
2071	struct pci_dev *dev = to_pci_dev(gendev);
2072	struct pci_devres *this = res;
2073	int i;
2074
2075	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076		if (this->region_mask & (1 << i))
2077			pci_release_region(dev, i);
2078
2079	if (this->mwi)
2080		pci_clear_mwi(dev);
2081
2082	if (this->restore_intx)
2083		pci_intx(dev, this->orig_intx);
2084
2085	if (this->enabled && !this->pinned)
2086		pci_disable_device(dev);
2087}
2088
2089static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2090{
2091	struct pci_devres *dr, *new_dr;
2092
2093	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094	if (dr)
2095		return dr;
2096
2097	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098	if (!new_dr)
2099		return NULL;
2100	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101}
2102
2103static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2104{
2105	if (pci_is_managed(pdev))
2106		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107	return NULL;
2108}
2109
2110/**
2111 * pcim_enable_device - Managed pci_enable_device()
2112 * @pdev: PCI device to be initialized
2113 *
2114 * Managed pci_enable_device().
2115 */
2116int pcim_enable_device(struct pci_dev *pdev)
2117{
2118	struct pci_devres *dr;
2119	int rc;
2120
2121	dr = get_pci_dr(pdev);
2122	if (unlikely(!dr))
2123		return -ENOMEM;
2124	if (dr->enabled)
2125		return 0;
2126
2127	rc = pci_enable_device(pdev);
2128	if (!rc) {
2129		pdev->is_managed = 1;
2130		dr->enabled = 1;
2131	}
2132	return rc;
2133}
2134EXPORT_SYMBOL(pcim_enable_device);
2135
2136/**
2137 * pcim_pin_device - Pin managed PCI device
2138 * @pdev: PCI device to pin
2139 *
2140 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2141 * driver detach.  @pdev must have been enabled with
2142 * pcim_enable_device().
2143 */
2144void pcim_pin_device(struct pci_dev *pdev)
2145{
2146	struct pci_devres *dr;
2147
2148	dr = find_pci_dr(pdev);
2149	WARN_ON(!dr || !dr->enabled);
2150	if (dr)
2151		dr->pinned = 1;
2152}
2153EXPORT_SYMBOL(pcim_pin_device);
2154
2155/*
2156 * pcibios_device_add - provide arch specific hooks when adding device dev
2157 * @dev: the PCI device being added
2158 *
2159 * Permits the platform to provide architecture specific functionality when
2160 * devices are added. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
2163int __weak pcibios_device_add(struct pci_dev *dev)
2164{
2165	return 0;
2166}
2167
2168/**
2169 * pcibios_release_device - provide arch specific hooks when releasing
2170 *			    device dev
2171 * @dev: the PCI device being released
2172 *
2173 * Permits the platform to provide architecture specific functionality when
2174 * devices are released. This is the default implementation. Architecture
2175 * implementations can override this.
2176 */
2177void __weak pcibios_release_device(struct pci_dev *dev) {}
2178
2179/**
2180 * pcibios_disable_device - disable arch specific PCI resources for device dev
2181 * @dev: the PCI device to disable
2182 *
2183 * Disables architecture specific PCI resources for the device. This
2184 * is the default implementation. Architecture implementations can
2185 * override this.
2186 */
2187void __weak pcibios_disable_device(struct pci_dev *dev) {}
2188
2189/**
2190 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191 * @irq: ISA IRQ to penalize
2192 * @active: IRQ active or not
2193 *
2194 * Permits the platform to provide architecture-specific functionality when
2195 * penalizing ISA IRQs. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
2198void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199
2200static void do_pci_disable_device(struct pci_dev *dev)
2201{
2202	u16 pci_command;
2203
2204	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205	if (pci_command & PCI_COMMAND_MASTER) {
2206		pci_command &= ~PCI_COMMAND_MASTER;
2207		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208	}
2209
2210	pcibios_disable_device(dev);
2211}
2212
2213/**
2214 * pci_disable_enabled_device - Disable device without updating enable_cnt
2215 * @dev: PCI device to disable
2216 *
2217 * NOTE: This function is a backend of PCI power management routines and is
2218 * not supposed to be called drivers.
2219 */
2220void pci_disable_enabled_device(struct pci_dev *dev)
2221{
2222	if (pci_is_enabled(dev))
2223		do_pci_disable_device(dev);
2224}
2225
2226/**
2227 * pci_disable_device - Disable PCI device after use
2228 * @dev: PCI device to be disabled
2229 *
2230 * Signal to the system that the PCI device is not in use by the system
2231 * anymore.  This only involves disabling PCI bus-mastering, if active.
2232 *
2233 * Note we don't actually disable the device until all callers of
2234 * pci_enable_device() have called pci_disable_device().
2235 */
2236void pci_disable_device(struct pci_dev *dev)
2237{
2238	struct pci_devres *dr;
2239
2240	dr = find_pci_dr(dev);
2241	if (dr)
2242		dr->enabled = 0;
2243
2244	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245		      "disabling already-disabled device");
2246
2247	if (atomic_dec_return(&dev->enable_cnt) != 0)
2248		return;
2249
2250	do_pci_disable_device(dev);
2251
2252	dev->is_busmaster = 0;
2253}
2254EXPORT_SYMBOL(pci_disable_device);
2255
2256/**
2257 * pcibios_set_pcie_reset_state - set reset state for device dev
2258 * @dev: the PCIe device reset
2259 * @state: Reset state to enter into
2260 *
2261 * Set the PCIe reset state for the device. This is the default
2262 * implementation. Architecture implementations can override this.
2263 */
2264int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265					enum pcie_reset_state state)
2266{
2267	return -EINVAL;
2268}
2269
2270/**
2271 * pci_set_pcie_reset_state - set reset state for device dev
2272 * @dev: the PCIe device reset
2273 * @state: Reset state to enter into
2274 *
2275 * Sets the PCI reset state for the device.
2276 */
2277int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278{
2279	return pcibios_set_pcie_reset_state(dev, state);
2280}
2281EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2282
2283#ifdef CONFIG_PCIEAER
2284void pcie_clear_device_status(struct pci_dev *dev)
2285{
2286	u16 sta;
2287
2288	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290}
2291#endif
2292
2293/**
2294 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295 * @dev: PCIe root port or event collector.
2296 */
2297void pcie_clear_root_pme_status(struct pci_dev *dev)
2298{
2299	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300}
2301
2302/**
2303 * pci_check_pme_status - Check if given device has generated PME.
2304 * @dev: Device to check.
2305 *
2306 * Check the PME status of the device and if set, clear it and clear PME enable
2307 * (if set).  Return 'true' if PME status and PME enable were both set or
2308 * 'false' otherwise.
2309 */
2310bool pci_check_pme_status(struct pci_dev *dev)
2311{
2312	int pmcsr_pos;
2313	u16 pmcsr;
2314	bool ret = false;
2315
2316	if (!dev->pm_cap)
2317		return false;
2318
2319	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322		return false;
2323
2324	/* Clear PME status. */
2325	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327		/* Disable PME to avoid interrupt flood. */
2328		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329		ret = true;
2330	}
2331
2332	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333
2334	return ret;
2335}
2336
2337/**
2338 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339 * @dev: Device to handle.
2340 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2341 *
2342 * Check if @dev has generated PME and queue a resume request for it in that
2343 * case.
2344 */
2345static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2346{
2347	if (pme_poll_reset && dev->pme_poll)
2348		dev->pme_poll = false;
2349
2350	if (pci_check_pme_status(dev)) {
2351		pci_wakeup_event(dev);
2352		pm_request_resume(&dev->dev);
2353	}
2354	return 0;
2355}
2356
2357/**
2358 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359 * @bus: Top bus of the subtree to walk.
2360 */
2361void pci_pme_wakeup_bus(struct pci_bus *bus)
2362{
2363	if (bus)
2364		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2365}
2366
2367
2368/**
2369 * pci_pme_capable - check the capability of PCI device to generate PME#
2370 * @dev: PCI device to handle.
2371 * @state: PCI state from which device will issue PME#.
2372 */
2373bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2374{
2375	if (!dev->pm_cap)
2376		return false;
2377
2378	return !!(dev->pme_support & (1 << state));
2379}
2380EXPORT_SYMBOL(pci_pme_capable);
2381
2382static void pci_pme_list_scan(struct work_struct *work)
2383{
2384	struct pci_pme_device *pme_dev, *n;
2385
2386	mutex_lock(&pci_pme_list_mutex);
2387	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388		if (pme_dev->dev->pme_poll) {
2389			struct pci_dev *bridge;
 
 
 
 
 
2390
2391			bridge = pme_dev->dev->bus->self;
2392			/*
2393			 * If bridge is in low power state, the
2394			 * configuration space of subordinate devices
2395			 * may be not accessible
 
2396			 */
2397			if (bridge && bridge->current_state != PCI_D0)
2398				continue;
 
 
 
 
 
 
 
2399			/*
2400			 * If the device is in D3cold it should not be
2401			 * polled either.
 
2402			 */
2403			if (pme_dev->dev->current_state == PCI_D3cold)
2404				continue;
2405
2406			pci_pme_wakeup(pme_dev->dev, NULL);
 
 
 
2407		} else {
2408			list_del(&pme_dev->list);
2409			kfree(pme_dev);
2410		}
2411	}
2412	if (!list_empty(&pci_pme_list))
2413		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414				   msecs_to_jiffies(PME_TIMEOUT));
2415	mutex_unlock(&pci_pme_list_mutex);
2416}
2417
2418static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419{
2420	u16 pmcsr;
2421
2422	if (!dev->pme_support)
2423		return;
2424
2425	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2426	/* Clear PME_Status by writing 1 to it and enable PME# */
2427	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428	if (!enable)
2429		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430
2431	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432}
2433
2434/**
2435 * pci_pme_restore - Restore PME configuration after config space restore.
2436 * @dev: PCI device to update.
2437 */
2438void pci_pme_restore(struct pci_dev *dev)
2439{
2440	u16 pmcsr;
2441
2442	if (!dev->pme_support)
2443		return;
2444
2445	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446	if (dev->wakeup_prepared) {
2447		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2448		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2449	} else {
2450		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452	}
2453	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454}
2455
2456/**
2457 * pci_pme_active - enable or disable PCI device's PME# function
2458 * @dev: PCI device to handle.
2459 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460 *
2461 * The caller must verify that the device is capable of generating PME# before
2462 * calling this function with @enable equal to 'true'.
2463 */
2464void pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466	__pci_pme_active(dev, enable);
2467
2468	/*
2469	 * PCI (as opposed to PCIe) PME requires that the device have
2470	 * its PME# line hooked up correctly. Not all hardware vendors
2471	 * do this, so the PME never gets delivered and the device
2472	 * remains asleep. The easiest way around this is to
2473	 * periodically walk the list of suspended devices and check
2474	 * whether any have their PME flag set. The assumption is that
2475	 * we'll wake up often enough anyway that this won't be a huge
2476	 * hit, and the power savings from the devices will still be a
2477	 * win.
2478	 *
2479	 * Although PCIe uses in-band PME message instead of PME# line
2480	 * to report PME, PME does not work for some PCIe devices in
2481	 * reality.  For example, there are devices that set their PME
2482	 * status bits, but don't really bother to send a PME message;
2483	 * there are PCI Express Root Ports that don't bother to
2484	 * trigger interrupts when they receive PME messages from the
2485	 * devices below.  So PME poll is used for PCIe devices too.
2486	 */
2487
2488	if (dev->pme_poll) {
2489		struct pci_pme_device *pme_dev;
2490		if (enable) {
2491			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492					  GFP_KERNEL);
2493			if (!pme_dev) {
2494				pci_warn(dev, "can't enable PME#\n");
2495				return;
2496			}
2497			pme_dev->dev = dev;
2498			mutex_lock(&pci_pme_list_mutex);
2499			list_add(&pme_dev->list, &pci_pme_list);
2500			if (list_is_singular(&pci_pme_list))
2501				queue_delayed_work(system_freezable_wq,
2502						   &pci_pme_work,
2503						   msecs_to_jiffies(PME_TIMEOUT));
2504			mutex_unlock(&pci_pme_list_mutex);
2505		} else {
2506			mutex_lock(&pci_pme_list_mutex);
2507			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508				if (pme_dev->dev == dev) {
2509					list_del(&pme_dev->list);
2510					kfree(pme_dev);
2511					break;
2512				}
2513			}
2514			mutex_unlock(&pci_pme_list_mutex);
2515		}
2516	}
2517
2518	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2519}
2520EXPORT_SYMBOL(pci_pme_active);
2521
2522/**
2523 * __pci_enable_wake - enable PCI device as wakeup event source
2524 * @dev: PCI device affected
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: True to enable event generation; false to disable
2527 *
2528 * This enables the device as a wakeup event source, or disables it.
2529 * When such events involves platform-specific hooks, those hooks are
2530 * called automatically by this routine.
2531 *
2532 * Devices with legacy power management (no standard PCI PM capabilities)
2533 * always require such platform hooks.
2534 *
2535 * RETURN VALUE:
2536 * 0 is returned on success
2537 * -EINVAL is returned if device is not supposed to wake up the system
2538 * Error code depending on the platform is returned if both the platform and
2539 * the native mechanism fail to enable the generation of wake-up events
2540 */
2541static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2542{
2543	int ret = 0;
2544
2545	/*
2546	 * Bridges that are not power-manageable directly only signal
2547	 * wakeup on behalf of subordinate devices which is set up
2548	 * elsewhere, so skip them. However, bridges that are
2549	 * power-manageable may signal wakeup for themselves (for example,
2550	 * on a hotplug event) and they need to be covered here.
2551	 */
2552	if (!pci_power_manageable(dev))
2553		return 0;
2554
2555	/* Don't do the same thing twice in a row for one device. */
2556	if (!!enable == !!dev->wakeup_prepared)
2557		return 0;
2558
2559	/*
2560	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562	 * enable.  To disable wake-up we call the platform first, for symmetry.
2563	 */
2564
2565	if (enable) {
2566		int error;
2567
2568		/*
2569		 * Enable PME signaling if the device can signal PME from
2570		 * D3cold regardless of whether or not it can signal PME from
2571		 * the current target state, because that will allow it to
2572		 * signal PME when the hierarchy above it goes into D3cold and
2573		 * the device itself ends up in D3cold as a result of that.
2574		 */
2575		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2576			pci_pme_active(dev, true);
2577		else
2578			ret = 1;
2579		error = platform_pci_set_wakeup(dev, true);
2580		if (ret)
2581			ret = error;
2582		if (!ret)
2583			dev->wakeup_prepared = true;
2584	} else {
2585		platform_pci_set_wakeup(dev, false);
2586		pci_pme_active(dev, false);
2587		dev->wakeup_prepared = false;
2588	}
2589
2590	return ret;
2591}
2592
2593/**
2594 * pci_enable_wake - change wakeup settings for a PCI device
2595 * @pci_dev: Target device
2596 * @state: PCI state from which device will issue wakeup events
2597 * @enable: Whether or not to enable event generation
2598 *
2599 * If @enable is set, check device_may_wakeup() for the device before calling
2600 * __pci_enable_wake() for it.
2601 */
2602int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603{
2604	if (enable && !device_may_wakeup(&pci_dev->dev))
2605		return -EINVAL;
2606
2607	return __pci_enable_wake(pci_dev, state, enable);
2608}
2609EXPORT_SYMBOL(pci_enable_wake);
2610
2611/**
2612 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613 * @dev: PCI device to prepare
2614 * @enable: True to enable wake-up event generation; false to disable
2615 *
2616 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617 * and this function allows them to set that up cleanly - pci_enable_wake()
2618 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619 * ordering constraints.
2620 *
2621 * This function only returns error code if the device is not allowed to wake
2622 * up the system from sleep or it is not capable of generating PME# from both
2623 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2624 */
2625int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626{
2627	return pci_pme_capable(dev, PCI_D3cold) ?
2628			pci_enable_wake(dev, PCI_D3cold, enable) :
2629			pci_enable_wake(dev, PCI_D3hot, enable);
2630}
2631EXPORT_SYMBOL(pci_wake_from_d3);
2632
2633/**
2634 * pci_target_state - find an appropriate low power state for a given PCI dev
2635 * @dev: PCI device
2636 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2637 *
2638 * Use underlying platform code to find a supported low power state for @dev.
2639 * If the platform can't manage @dev, return the deepest state from which it
2640 * can generate wake events, based on any available PME info.
2641 */
2642static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2643{
2644	if (platform_pci_power_manageable(dev)) {
2645		/*
2646		 * Call the platform to find the target state for the device.
2647		 */
2648		pci_power_t state = platform_pci_choose_state(dev);
2649
2650		switch (state) {
2651		case PCI_POWER_ERROR:
2652		case PCI_UNKNOWN:
2653			return PCI_D3hot;
2654
2655		case PCI_D1:
2656		case PCI_D2:
2657			if (pci_no_d1d2(dev))
2658				return PCI_D3hot;
2659		}
2660
2661		return state;
2662	}
2663
2664	/*
2665	 * If the device is in D3cold even though it's not power-manageable by
2666	 * the platform, it may have been powered down by non-standard means.
2667	 * Best to let it slumber.
2668	 */
2669	if (dev->current_state == PCI_D3cold)
2670		return PCI_D3cold;
2671	else if (!dev->pm_cap)
2672		return PCI_D0;
2673
2674	if (wakeup && dev->pme_support) {
2675		pci_power_t state = PCI_D3hot;
2676
2677		/*
2678		 * Find the deepest state from which the device can generate
2679		 * PME#.
2680		 */
2681		while (state && !(dev->pme_support & (1 << state)))
2682			state--;
2683
2684		if (state)
2685			return state;
2686		else if (dev->pme_support & 1)
2687			return PCI_D0;
2688	}
2689
2690	return PCI_D3hot;
2691}
2692
2693/**
2694 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695 *			  into a sleep state
2696 * @dev: Device to handle.
2697 *
2698 * Choose the power state appropriate for the device depending on whether
2699 * it can wake up the system and/or is power manageable by the platform
2700 * (PCI_D3hot is the default) and put the device into that state.
2701 */
2702int pci_prepare_to_sleep(struct pci_dev *dev)
2703{
2704	bool wakeup = device_may_wakeup(&dev->dev);
2705	pci_power_t target_state = pci_target_state(dev, wakeup);
2706	int error;
2707
2708	if (target_state == PCI_POWER_ERROR)
2709		return -EIO;
2710
2711	pci_enable_wake(dev, target_state, wakeup);
2712
2713	error = pci_set_power_state(dev, target_state);
2714
2715	if (error)
2716		pci_enable_wake(dev, target_state, false);
2717
2718	return error;
2719}
2720EXPORT_SYMBOL(pci_prepare_to_sleep);
2721
2722/**
2723 * pci_back_from_sleep - turn PCI device on during system-wide transition
2724 *			 into working state
2725 * @dev: Device to handle.
2726 *
2727 * Disable device's system wake-up capability and put it into D0.
2728 */
2729int pci_back_from_sleep(struct pci_dev *dev)
2730{
2731	int ret = pci_set_power_state(dev, PCI_D0);
2732
2733	if (ret)
2734		return ret;
2735
2736	pci_enable_wake(dev, PCI_D0, false);
2737	return 0;
2738}
2739EXPORT_SYMBOL(pci_back_from_sleep);
2740
2741/**
2742 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743 * @dev: PCI device being suspended.
2744 *
2745 * Prepare @dev to generate wake-up events at run time and put it into a low
2746 * power state.
2747 */
2748int pci_finish_runtime_suspend(struct pci_dev *dev)
2749{
2750	pci_power_t target_state;
2751	int error;
2752
2753	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2754	if (target_state == PCI_POWER_ERROR)
2755		return -EIO;
2756
2757	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2758
2759	error = pci_set_power_state(dev, target_state);
2760
2761	if (error)
2762		pci_enable_wake(dev, target_state, false);
2763
2764	return error;
2765}
2766
2767/**
2768 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769 * @dev: Device to check.
2770 *
2771 * Return true if the device itself is capable of generating wake-up events
2772 * (through the platform or using the native PCIe PME) or if the device supports
2773 * PME and one of its upstream bridges can generate wake-up events.
2774 */
2775bool pci_dev_run_wake(struct pci_dev *dev)
2776{
2777	struct pci_bus *bus = dev->bus;
2778
2779	if (!dev->pme_support)
2780		return false;
2781
2782	/* PME-capable in principle, but not from the target power state */
2783	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2784		return false;
2785
2786	if (device_can_wakeup(&dev->dev))
2787		return true;
2788
2789	while (bus->parent) {
2790		struct pci_dev *bridge = bus->self;
2791
2792		if (device_can_wakeup(&bridge->dev))
2793			return true;
2794
2795		bus = bus->parent;
2796	}
2797
2798	/* We have reached the root bus. */
2799	if (bus->bridge)
2800		return device_can_wakeup(bus->bridge);
2801
2802	return false;
2803}
2804EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805
2806/**
2807 * pci_dev_need_resume - Check if it is necessary to resume the device.
2808 * @pci_dev: Device to check.
2809 *
2810 * Return 'true' if the device is not runtime-suspended or it has to be
2811 * reconfigured due to wakeup settings difference between system and runtime
2812 * suspend, or the current power state of it is not suitable for the upcoming
2813 * (system-wide) transition.
2814 */
2815bool pci_dev_need_resume(struct pci_dev *pci_dev)
2816{
2817	struct device *dev = &pci_dev->dev;
2818	pci_power_t target_state;
2819
2820	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2821		return true;
2822
2823	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2824
2825	/*
2826	 * If the earlier platform check has not triggered, D3cold is just power
2827	 * removal on top of D3hot, so no need to resume the device in that
2828	 * case.
2829	 */
2830	return target_state != pci_dev->current_state &&
2831		target_state != PCI_D3cold &&
2832		pci_dev->current_state != PCI_D3hot;
2833}
2834
2835/**
2836 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837 * @pci_dev: Device to check.
2838 *
2839 * If the device is suspended and it is not configured for system wakeup,
2840 * disable PME for it to prevent it from waking up the system unnecessarily.
2841 *
2842 * Note that if the device's power state is D3cold and the platform check in
2843 * pci_dev_need_resume() has not triggered, the device's configuration need not
2844 * be changed.
2845 */
2846void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847{
2848	struct device *dev = &pci_dev->dev;
2849
2850	spin_lock_irq(&dev->power.lock);
2851
2852	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853	    pci_dev->current_state < PCI_D3cold)
2854		__pci_pme_active(pci_dev, false);
2855
2856	spin_unlock_irq(&dev->power.lock);
2857}
2858
2859/**
2860 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861 * @pci_dev: Device to handle.
2862 *
2863 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864 * it might have been disabled during the prepare phase of system suspend if
2865 * the device was not configured for system wakeup.
2866 */
2867void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868{
2869	struct device *dev = &pci_dev->dev;
2870
2871	if (!pci_dev_run_wake(pci_dev))
2872		return;
2873
2874	spin_lock_irq(&dev->power.lock);
2875
2876	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877		__pci_pme_active(pci_dev, true);
2878
2879	spin_unlock_irq(&dev->power.lock);
2880}
2881
2882/**
2883 * pci_choose_state - Choose the power state of a PCI device.
2884 * @dev: Target PCI device.
2885 * @state: Target state for the whole system.
2886 *
2887 * Returns PCI power state suitable for @dev and @state.
2888 */
2889pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890{
2891	if (state.event == PM_EVENT_ON)
2892		return PCI_D0;
2893
2894	return pci_target_state(dev, false);
2895}
2896EXPORT_SYMBOL(pci_choose_state);
2897
2898void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899{
2900	struct device *dev = &pdev->dev;
2901	struct device *parent = dev->parent;
2902
2903	if (parent)
2904		pm_runtime_get_sync(parent);
2905	pm_runtime_get_noresume(dev);
2906	/*
2907	 * pdev->current_state is set to PCI_D3cold during suspending,
2908	 * so wait until suspending completes
2909	 */
2910	pm_runtime_barrier(dev);
2911	/*
2912	 * Only need to resume devices in D3cold, because config
2913	 * registers are still accessible for devices suspended but
2914	 * not in D3cold.
2915	 */
2916	if (pdev->current_state == PCI_D3cold)
2917		pm_runtime_resume(dev);
2918}
2919
2920void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921{
2922	struct device *dev = &pdev->dev;
2923	struct device *parent = dev->parent;
2924
2925	pm_runtime_put(dev);
2926	if (parent)
2927		pm_runtime_put_sync(parent);
2928}
2929
2930static const struct dmi_system_id bridge_d3_blacklist[] = {
2931#ifdef CONFIG_X86
2932	{
2933		/*
2934		 * Gigabyte X299 root port is not marked as hotplug capable
2935		 * which allows Linux to power manage it.  However, this
2936		 * confuses the BIOS SMI handler so don't power manage root
2937		 * ports on that system.
2938		 */
2939		.ident = "X299 DESIGNARE EX-CF",
2940		.matches = {
2941			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943		},
2944	},
2945	{
2946		/*
2947		 * Downstream device is not accessible after putting a root port
2948		 * into D3cold and back into D0 on Elo i2.
2949		 */
2950		.ident = "Elo i2",
2951		.matches = {
2952			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
 
 
 
 
 
 
 
 
 
 
 
 
2955		},
2956	},
2957#endif
2958	{ }
2959};
2960
2961/**
2962 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963 * @bridge: Bridge to check
2964 *
2965 * This function checks if it is possible to move the bridge to D3.
2966 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2967 */
2968bool pci_bridge_d3_possible(struct pci_dev *bridge)
2969{
2970	if (!pci_is_pcie(bridge))
2971		return false;
2972
2973	switch (pci_pcie_type(bridge)) {
2974	case PCI_EXP_TYPE_ROOT_PORT:
2975	case PCI_EXP_TYPE_UPSTREAM:
2976	case PCI_EXP_TYPE_DOWNSTREAM:
2977		if (pci_bridge_d3_disable)
2978			return false;
2979
2980		/*
2981		 * Hotplug ports handled by firmware in System Management Mode
2982		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2983		 */
2984		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2985			return false;
2986
2987		if (pci_bridge_d3_force)
2988			return true;
2989
2990		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2991		if (bridge->is_thunderbolt)
2992			return true;
2993
2994		/* Platform might know better if the bridge supports D3 */
2995		if (platform_pci_bridge_d3(bridge))
2996			return true;
2997
2998		/*
2999		 * Hotplug ports handled natively by the OS were not validated
3000		 * by vendors for runtime D3 at least until 2018 because there
3001		 * was no OS support.
3002		 */
3003		if (bridge->is_hotplug_bridge)
3004			return false;
3005
3006		if (dmi_check_system(bridge_d3_blacklist))
3007			return false;
3008
3009		/*
3010		 * It should be safe to put PCIe ports from 2015 or newer
3011		 * to D3.
3012		 */
3013		if (dmi_get_bios_year() >= 2015)
3014			return true;
3015		break;
3016	}
3017
3018	return false;
3019}
3020
3021static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022{
3023	bool *d3cold_ok = data;
3024
3025	if (/* The device needs to be allowed to go D3cold ... */
3026	    dev->no_d3cold || !dev->d3cold_allowed ||
3027
3028	    /* ... and if it is wakeup capable to do so from D3cold. */
3029	    (device_may_wakeup(&dev->dev) &&
3030	     !pci_pme_capable(dev, PCI_D3cold)) ||
3031
3032	    /* If it is a bridge it must be allowed to go to D3. */
3033	    !pci_power_manageable(dev))
3034
3035		*d3cold_ok = false;
3036
3037	return !*d3cold_ok;
3038}
3039
3040/*
3041 * pci_bridge_d3_update - Update bridge D3 capabilities
3042 * @dev: PCI device which is changed
3043 *
3044 * Update upstream bridge PM capabilities accordingly depending on if the
3045 * device PM configuration was changed or the device is being removed.  The
3046 * change is also propagated upstream.
3047 */
3048void pci_bridge_d3_update(struct pci_dev *dev)
3049{
3050	bool remove = !device_is_registered(&dev->dev);
3051	struct pci_dev *bridge;
3052	bool d3cold_ok = true;
3053
3054	bridge = pci_upstream_bridge(dev);
3055	if (!bridge || !pci_bridge_d3_possible(bridge))
3056		return;
3057
3058	/*
3059	 * If D3 is currently allowed for the bridge, removing one of its
3060	 * children won't change that.
3061	 */
3062	if (remove && bridge->bridge_d3)
3063		return;
3064
3065	/*
3066	 * If D3 is currently allowed for the bridge and a child is added or
3067	 * changed, disallowance of D3 can only be caused by that child, so
3068	 * we only need to check that single device, not any of its siblings.
3069	 *
3070	 * If D3 is currently not allowed for the bridge, checking the device
3071	 * first may allow us to skip checking its siblings.
3072	 */
3073	if (!remove)
3074		pci_dev_check_d3cold(dev, &d3cold_ok);
3075
3076	/*
3077	 * If D3 is currently not allowed for the bridge, this may be caused
3078	 * either by the device being changed/removed or any of its siblings,
3079	 * so we need to go through all children to find out if one of them
3080	 * continues to block D3.
3081	 */
3082	if (d3cold_ok && !bridge->bridge_d3)
3083		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084			     &d3cold_ok);
3085
3086	if (bridge->bridge_d3 != d3cold_ok) {
3087		bridge->bridge_d3 = d3cold_ok;
3088		/* Propagate change to upstream bridges */
3089		pci_bridge_d3_update(bridge);
3090	}
3091}
3092
3093/**
3094 * pci_d3cold_enable - Enable D3cold for device
3095 * @dev: PCI device to handle
3096 *
3097 * This function can be used in drivers to enable D3cold from the device
3098 * they handle.  It also updates upstream PCI bridge PM capabilities
3099 * accordingly.
3100 */
3101void pci_d3cold_enable(struct pci_dev *dev)
3102{
3103	if (dev->no_d3cold) {
3104		dev->no_d3cold = false;
3105		pci_bridge_d3_update(dev);
3106	}
3107}
3108EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109
3110/**
3111 * pci_d3cold_disable - Disable D3cold for device
3112 * @dev: PCI device to handle
3113 *
3114 * This function can be used in drivers to disable D3cold from the device
3115 * they handle.  It also updates upstream PCI bridge PM capabilities
3116 * accordingly.
3117 */
3118void pci_d3cold_disable(struct pci_dev *dev)
3119{
3120	if (!dev->no_d3cold) {
3121		dev->no_d3cold = true;
3122		pci_bridge_d3_update(dev);
3123	}
3124}
3125EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126
3127/**
3128 * pci_pm_init - Initialize PM functions of given PCI device
3129 * @dev: PCI device to handle.
3130 */
3131void pci_pm_init(struct pci_dev *dev)
3132{
3133	int pm;
3134	u16 status;
3135	u16 pmc;
3136
3137	pm_runtime_forbid(&dev->dev);
3138	pm_runtime_set_active(&dev->dev);
3139	pm_runtime_enable(&dev->dev);
3140	device_enable_async_suspend(&dev->dev);
3141	dev->wakeup_prepared = false;
3142
3143	dev->pm_cap = 0;
3144	dev->pme_support = 0;
3145
3146	/* find PCI PM capability in list */
3147	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148	if (!pm)
3149		return;
3150	/* Check device's ability to generate PME# */
3151	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3152
3153	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3154		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3155			pmc & PCI_PM_CAP_VER_MASK);
3156		return;
3157	}
3158
3159	dev->pm_cap = pm;
3160	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3161	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3162	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3163	dev->d3cold_allowed = true;
3164
3165	dev->d1_support = false;
3166	dev->d2_support = false;
3167	if (!pci_no_d1d2(dev)) {
3168		if (pmc & PCI_PM_CAP_D1)
3169			dev->d1_support = true;
3170		if (pmc & PCI_PM_CAP_D2)
3171			dev->d2_support = true;
3172
3173		if (dev->d1_support || dev->d2_support)
3174			pci_info(dev, "supports%s%s\n",
3175				   dev->d1_support ? " D1" : "",
3176				   dev->d2_support ? " D2" : "");
3177	}
3178
3179	pmc &= PCI_PM_CAP_PME_MASK;
3180	if (pmc) {
3181		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3182			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3185			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3186			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3187		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3188		dev->pme_poll = true;
3189		/*
3190		 * Make device's PM flags reflect the wake-up capability, but
3191		 * let the user space enable it to wake up the system as needed.
3192		 */
3193		device_set_wakeup_capable(&dev->dev, true);
3194		/* Disable the PME# generation functionality */
3195		pci_pme_active(dev, false);
3196	}
3197
3198	pci_read_config_word(dev, PCI_STATUS, &status);
3199	if (status & PCI_STATUS_IMM_READY)
3200		dev->imm_ready = 1;
3201}
3202
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
3205	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206
3207	switch (prop) {
3208	case PCI_EA_P_MEM:
3209	case PCI_EA_P_VF_MEM:
3210		flags |= IORESOURCE_MEM;
3211		break;
3212	case PCI_EA_P_MEM_PREFETCH:
3213	case PCI_EA_P_VF_MEM_PREFETCH:
3214		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215		break;
3216	case PCI_EA_P_IO:
3217		flags |= IORESOURCE_IO;
3218		break;
3219	default:
3220		return 0;
3221	}
3222
3223	return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227					    u8 prop)
3228{
3229	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230		return &dev->resource[bei];
3231#ifdef CONFIG_PCI_IOV
3232	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234		return &dev->resource[PCI_IOV_RESOURCES +
3235				      bei - PCI_EA_BEI_VF_BAR0];
3236#endif
3237	else if (bei == PCI_EA_BEI_ROM)
3238		return &dev->resource[PCI_ROM_RESOURCE];
3239	else
3240		return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246	struct resource *res;
 
3247	int ent_size, ent_offset = offset;
3248	resource_size_t start, end;
3249	unsigned long flags;
3250	u32 dw0, bei, base, max_offset;
3251	u8 prop;
3252	bool support_64 = (sizeof(resource_size_t) >= 8);
3253
3254	pci_read_config_dword(dev, ent_offset, &dw0);
3255	ent_offset += 4;
3256
3257	/* Entry size field indicates DWORDs after 1st */
3258	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259
3260	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261		goto out;
3262
3263	bei = (dw0 & PCI_EA_BEI) >> 4;
3264	prop = (dw0 & PCI_EA_PP) >> 8;
3265
3266	/*
3267	 * If the Property is in the reserved range, try the Secondary
3268	 * Property instead.
3269	 */
3270	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3271		prop = (dw0 & PCI_EA_SP) >> 16;
3272	if (prop > PCI_EA_P_BRIDGE_IO)
3273		goto out;
3274
3275	res = pci_ea_get_resource(dev, bei, prop);
 
3276	if (!res) {
3277		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278		goto out;
3279	}
3280
3281	flags = pci_ea_flags(dev, prop);
3282	if (!flags) {
3283		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3284		goto out;
3285	}
3286
3287	/* Read Base */
3288	pci_read_config_dword(dev, ent_offset, &base);
3289	start = (base & PCI_EA_FIELD_MASK);
3290	ent_offset += 4;
3291
3292	/* Read MaxOffset */
3293	pci_read_config_dword(dev, ent_offset, &max_offset);
3294	ent_offset += 4;
3295
3296	/* Read Base MSBs (if 64-bit entry) */
3297	if (base & PCI_EA_IS_64) {
3298		u32 base_upper;
3299
3300		pci_read_config_dword(dev, ent_offset, &base_upper);
3301		ent_offset += 4;
3302
3303		flags |= IORESOURCE_MEM_64;
3304
3305		/* entry starts above 32-bit boundary, can't use */
3306		if (!support_64 && base_upper)
3307			goto out;
3308
3309		if (support_64)
3310			start |= ((u64)base_upper << 32);
3311	}
3312
3313	end = start + (max_offset | 0x03);
3314
3315	/* Read MaxOffset MSBs (if 64-bit entry) */
3316	if (max_offset & PCI_EA_IS_64) {
3317		u32 max_offset_upper;
3318
3319		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320		ent_offset += 4;
3321
3322		flags |= IORESOURCE_MEM_64;
3323
3324		/* entry too big, can't use */
3325		if (!support_64 && max_offset_upper)
3326			goto out;
3327
3328		if (support_64)
3329			end += ((u64)max_offset_upper << 32);
3330	}
3331
3332	if (end < start) {
3333		pci_err(dev, "EA Entry crosses address boundary\n");
3334		goto out;
3335	}
3336
3337	if (ent_size != ent_offset - offset) {
3338		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3339			ent_size, ent_offset - offset);
3340		goto out;
3341	}
3342
3343	res->name = pci_name(dev);
3344	res->start = start;
3345	res->end = end;
3346	res->flags = flags;
3347
3348	if (bei <= PCI_EA_BEI_BAR5)
3349		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3350			   bei, res, prop);
3351	else if (bei == PCI_EA_BEI_ROM)
3352		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3353			   res, prop);
3354	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3355		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3356			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357	else
3358		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359			   bei, res, prop);
3360
3361out:
3362	return offset + ent_size;
3363}
3364
3365/* Enhanced Allocation Initialization */
3366void pci_ea_init(struct pci_dev *dev)
3367{
3368	int ea;
3369	u8 num_ent;
3370	int offset;
3371	int i;
3372
3373	/* find PCI EA capability in list */
3374	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375	if (!ea)
3376		return;
3377
3378	/* determine the number of entries */
3379	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380					&num_ent);
3381	num_ent &= PCI_EA_NUM_ENT_MASK;
3382
3383	offset = ea + PCI_EA_FIRST_ENT;
3384
3385	/* Skip DWORD 2 for type 1 functions */
3386	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387		offset += 4;
3388
3389	/* parse each EA entry */
3390	for (i = 0; i < num_ent; ++i)
3391		offset = pci_ea_read(dev, offset);
3392}
3393
3394static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395	struct pci_cap_saved_state *new_cap)
3396{
3397	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398}
3399
3400/**
3401 * _pci_add_cap_save_buffer - allocate buffer for saving given
3402 *			      capability registers
3403 * @dev: the PCI device
3404 * @cap: the capability to allocate the buffer for
3405 * @extended: Standard or Extended capability ID
3406 * @size: requested size of the buffer
3407 */
3408static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409				    bool extended, unsigned int size)
3410{
3411	int pos;
3412	struct pci_cap_saved_state *save_state;
3413
3414	if (extended)
3415		pos = pci_find_ext_capability(dev, cap);
3416	else
3417		pos = pci_find_capability(dev, cap);
3418
3419	if (!pos)
3420		return 0;
3421
3422	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423	if (!save_state)
3424		return -ENOMEM;
3425
3426	save_state->cap.cap_nr = cap;
3427	save_state->cap.cap_extended = extended;
3428	save_state->cap.size = size;
3429	pci_add_saved_cap(dev, save_state);
3430
3431	return 0;
3432}
3433
3434int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435{
3436	return _pci_add_cap_save_buffer(dev, cap, false, size);
3437}
3438
3439int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440{
3441	return _pci_add_cap_save_buffer(dev, cap, true, size);
3442}
3443
3444/**
3445 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446 * @dev: the PCI device
3447 */
3448void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449{
3450	int error;
3451
3452	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453					PCI_EXP_SAVE_REGS * sizeof(u16));
3454	if (error)
3455		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3456
3457	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458	if (error)
3459		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3460
3461	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462					    2 * sizeof(u16));
3463	if (error)
3464		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465
3466	pci_allocate_vc_save_buffers(dev);
3467}
3468
3469void pci_free_cap_save_buffers(struct pci_dev *dev)
3470{
3471	struct pci_cap_saved_state *tmp;
3472	struct hlist_node *n;
3473
3474	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475		kfree(tmp);
3476}
3477
3478/**
3479 * pci_configure_ari - enable or disable ARI forwarding
3480 * @dev: the PCI device
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge.  Otherwise, disable ARI in the bridge.
3484 */
3485void pci_configure_ari(struct pci_dev *dev)
3486{
3487	u32 cap;
3488	struct pci_dev *bridge;
3489
3490	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491		return;
3492
3493	bridge = dev->bus->self;
3494	if (!bridge)
3495		return;
3496
3497	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499		return;
3500
3501	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503					 PCI_EXP_DEVCTL2_ARI);
3504		bridge->ari_enabled = 1;
3505	} else {
3506		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507					   PCI_EXP_DEVCTL2_ARI);
3508		bridge->ari_enabled = 0;
3509	}
3510}
3511
3512static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513{
3514	int pos;
3515	u16 cap, ctrl;
3516
3517	pos = pdev->acs_cap;
3518	if (!pos)
3519		return false;
3520
3521	/*
3522	 * Except for egress control, capabilities are either required
3523	 * or only required if controllable.  Features missing from the
3524	 * capability field can therefore be assumed as hard-wired enabled.
3525	 */
3526	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527	acs_flags &= (cap | PCI_ACS_EC);
3528
3529	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530	return (ctrl & acs_flags) == acs_flags;
3531}
3532
3533/**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags.  Automatically
3539 * filters out flags that are not implemented on multifunction devices.
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities.  For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access.  We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability.  This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
3548 */
3549bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550{
3551	int ret;
3552
3553	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554	if (ret >= 0)
3555		return ret > 0;
3556
3557	/*
3558	 * Conventional PCI and PCI-X devices never support ACS, either
3559	 * effectively or actually.  The shared bus topology implies that
3560	 * any device on the bus can receive or snoop DMA.
3561	 */
3562	if (!pci_is_pcie(pdev))
3563		return false;
3564
3565	switch (pci_pcie_type(pdev)) {
3566	/*
3567	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568	 * but since their primary interface is PCI/X, we conservatively
3569	 * handle them as we would a non-PCIe device.
3570	 */
3571	case PCI_EXP_TYPE_PCIE_BRIDGE:
3572	/*
3573	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3574	 * applicable... must never implement an ACS Extended Capability...".
3575	 * This seems arbitrary, but we take a conservative interpretation
3576	 * of this statement.
3577	 */
3578	case PCI_EXP_TYPE_PCI_BRIDGE:
3579	case PCI_EXP_TYPE_RC_EC:
3580		return false;
3581	/*
3582	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583	 * implement ACS in order to indicate their peer-to-peer capabilities,
3584	 * regardless of whether they are single- or multi-function devices.
3585	 */
3586	case PCI_EXP_TYPE_DOWNSTREAM:
3587	case PCI_EXP_TYPE_ROOT_PORT:
3588		return pci_acs_flags_enabled(pdev, acs_flags);
3589	/*
3590	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591	 * implemented by the remaining PCIe types to indicate peer-to-peer
3592	 * capabilities, but only when they are part of a multifunction
3593	 * device.  The footnote for section 6.12 indicates the specific
3594	 * PCIe types included here.
3595	 */
3596	case PCI_EXP_TYPE_ENDPOINT:
3597	case PCI_EXP_TYPE_UPSTREAM:
3598	case PCI_EXP_TYPE_LEG_END:
3599	case PCI_EXP_TYPE_RC_END:
3600		if (!pdev->multifunction)
3601			break;
3602
3603		return pci_acs_flags_enabled(pdev, acs_flags);
3604	}
3605
3606	/*
3607	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608	 * to single function devices with the exception of downstream ports.
3609	 */
3610	return true;
3611}
3612
3613/**
3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support.  If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622bool pci_acs_path_enabled(struct pci_dev *start,
3623			  struct pci_dev *end, u16 acs_flags)
3624{
3625	struct pci_dev *pdev, *parent = start;
3626
3627	do {
3628		pdev = parent;
3629
3630		if (!pci_acs_enabled(pdev, acs_flags))
3631			return false;
3632
3633		if (pci_is_root_bus(pdev->bus))
3634			return (end == NULL);
3635
3636		parent = pdev->bus->self;
3637	} while (pdev != end);
3638
3639	return true;
3640}
3641
3642/**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646void pci_acs_init(struct pci_dev *dev)
3647{
3648	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
3650	/*
3651	 * Attempt to enable ACS regardless of capability because some Root
3652	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653	 * the standard ACS capability but still support ACS via those
3654	 * quirks.
3655	 */
3656	pci_enable_acs(dev);
3657}
3658
3659/**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669{
3670	unsigned int pos, nbars, i;
3671	u32 ctrl;
3672
3673	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674	if (!pos)
3675		return -ENOTSUPP;
3676
3677	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679		    PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681	for (i = 0; i < nbars; i++, pos += 8) {
3682		int bar_idx;
3683
3684		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686		if (bar_idx == bar)
3687			return pos;
3688	}
3689
3690	return -ENOENT;
3691}
3692
3693/**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702{
3703	int pos;
3704	u32 cap;
3705
3706	pos = pci_rebar_find_pos(pdev, bar);
3707	if (pos < 0)
3708		return 0;
3709
3710	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711	cap &= PCI_REBAR_CAP_SIZES;
3712
3713	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715	    bar == 0 && cap == 0x7000)
3716		cap = 0x3f000;
3717
3718	return cap >> 4;
3719}
3720EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721
3722/**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731{
3732	int pos;
3733	u32 ctrl;
3734
3735	pos = pci_rebar_find_pos(pdev, bar);
3736	if (pos < 0)
3737		return pos;
3738
3739	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741}
3742
3743/**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753{
3754	int pos;
3755	u32 ctrl;
3756
3757	pos = pci_rebar_find_pos(pdev, bar);
3758	if (pos < 0)
3759		return pos;
3760
3761	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765	return 0;
3766}
3767
3768/**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782{
3783	struct pci_bus *bus = dev->bus;
3784	struct pci_dev *bridge;
3785	u32 cap, ctl2;
3786
3787	/*
3788	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789	 * in Device Control 2 is reserved in VFs and the PF value applies
3790	 * to all associated VFs.
3791	 */
3792	if (dev->is_virtfn)
3793		return -EINVAL;
3794
3795	if (!pci_is_pcie(dev))
3796		return -EINVAL;
3797
3798	/*
3799	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800	 * AtomicOp requesters.  For now, we only support endpoints as
3801	 * requesters and root ports as completers.  No endpoints as
3802	 * completers, and no peer-to-peer.
3803	 */
3804
3805	switch (pci_pcie_type(dev)) {
3806	case PCI_EXP_TYPE_ENDPOINT:
3807	case PCI_EXP_TYPE_LEG_END:
3808	case PCI_EXP_TYPE_RC_END:
3809		break;
3810	default:
3811		return -EINVAL;
3812	}
3813
3814	while (bus->parent) {
3815		bridge = bus->self;
3816
3817		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819		switch (pci_pcie_type(bridge)) {
3820		/* Ensure switch ports support AtomicOp routing */
3821		case PCI_EXP_TYPE_UPSTREAM:
3822		case PCI_EXP_TYPE_DOWNSTREAM:
3823			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824				return -EINVAL;
3825			break;
3826
3827		/* Ensure root port supports all the sizes we care about */
3828		case PCI_EXP_TYPE_ROOT_PORT:
3829			if ((cap & cap_mask) != cap_mask)
3830				return -EINVAL;
3831			break;
3832		}
3833
3834		/* Ensure upstream ports don't block AtomicOps on egress */
3835		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837						   &ctl2);
3838			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839				return -EINVAL;
3840		}
3841
3842		bus = bus->parent;
3843	}
3844
3845	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847	return 0;
3848}
3849EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
3851/**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge.  This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
3861 */
3862u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863{
3864	int slot;
3865
3866	if (pci_ari_enabled(dev->bus))
3867		slot = 0;
3868	else
3869		slot = PCI_SLOT(dev->devfn);
3870
3871	return (((pin - 1) + slot) % 4) + 1;
3872}
3873
3874int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875{
3876	u8 pin;
3877
3878	pin = dev->pin;
3879	if (!pin)
3880		return -1;
3881
3882	while (!pci_is_root_bus(dev->bus)) {
3883		pin = pci_swizzle_interrupt_pin(dev, pin);
3884		dev = dev->bus->self;
3885	}
3886	*bridge = dev;
3887	return pin;
3888}
3889
3890/**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899{
3900	u8 pin = *pinp;
3901
3902	while (!pci_is_root_bus(dev->bus)) {
3903		pin = pci_swizzle_interrupt_pin(dev, pin);
3904		dev = dev->bus->self;
3905	}
3906	*pinp = pin;
3907	return PCI_SLOT(dev->devfn);
3908}
3909EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910
3911/**
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 *	  pci_request_region()
3915 * @bar: BAR to release
3916 *
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region().  Call this function only
3919 * after all use of the PCI regions has ceased.
3920 */
3921void pci_release_region(struct pci_dev *pdev, int bar)
3922{
3923	struct pci_devres *dr;
 
 
 
 
 
 
 
 
3924
3925	if (pci_resource_len(pdev, bar) == 0)
3926		return;
3927	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928		release_region(pci_resource_start(pdev, bar),
3929				pci_resource_len(pdev, bar));
3930	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931		release_mem_region(pci_resource_start(pdev, bar),
3932				pci_resource_len(pdev, bar));
3933
3934	dr = find_pci_dr(pdev);
3935	if (dr)
3936		dr->region_mask &= ~(1 << bar);
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
 
 
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name.  Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error.  A warning
3957 * message is also printed on failure.
3958 */
3959static int __pci_request_region(struct pci_dev *pdev, int bar,
3960				const char *res_name, int exclusive)
3961{
3962	struct pci_devres *dr;
 
 
 
 
 
3963
3964	if (pci_resource_len(pdev, bar) == 0)
3965		return 0;
3966
3967	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968		if (!request_region(pci_resource_start(pdev, bar),
3969			    pci_resource_len(pdev, bar), res_name))
3970			goto err_out;
3971	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972		if (!__request_mem_region(pci_resource_start(pdev, bar),
3973					pci_resource_len(pdev, bar), res_name,
3974					exclusive))
3975			goto err_out;
3976	}
3977
3978	dr = find_pci_dr(pdev);
3979	if (dr)
3980		dr->region_mask |= 1 << bar;
3981
3982	return 0;
3983
3984err_out:
3985	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986		 &pdev->resource[bar]);
3987	return -EBUSY;
3988}
3989
3990/**
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
3995 *
 
 
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name.  Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
4000 *
4001 * Returns 0 on success, or %EBUSY on error.  A warning
4002 * message is also printed on failure.
 
 
 
 
 
4003 */
4004int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005{
4006	return __pci_request_region(pdev, bar, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_region);
4009
4010/**
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019{
4020	int i;
4021
4022	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023		if (bars & (1 << i))
4024			pci_release_region(pdev, i);
4025}
4026EXPORT_SYMBOL(pci_release_selected_regions);
4027
4028static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029					  const char *res_name, int excl)
4030{
4031	int i;
4032
4033	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034		if (bars & (1 << i))
4035			if (__pci_request_region(pdev, i, res_name, excl))
4036				goto err_out;
4037	return 0;
4038
4039err_out:
4040	while (--i >= 0)
4041		if (bars & (1 << i))
4042			pci_release_region(pdev, i);
4043
4044	return -EBUSY;
4045}
4046
4047
4048/**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
 
 
 
 
 
 
 
4053 */
4054int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055				 const char *res_name)
4056{
4057	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058}
4059EXPORT_SYMBOL(pci_request_selected_regions);
4060
 
 
 
 
 
 
 
 
 
 
 
 
 
4061int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062					   const char *res_name)
4063{
4064	return __pci_request_selected_regions(pdev, bars, res_name,
4065			IORESOURCE_EXCLUSIVE);
4066}
4067EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068
4069/**
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 *	  pci_request_regions()
4073 *
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions().  Call this function only
4076 * after all use of the PCI regions has ceased.
4077 */
4078
4079void pci_release_regions(struct pci_dev *pdev)
4080{
4081	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082}
4083EXPORT_SYMBOL(pci_release_regions);
4084
4085/**
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
4089 *
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name.  Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
4094 *
4095 * Returns 0 on success, or %EBUSY on error.  A warning
4096 * message is also printed on failure.
 
 
 
 
 
4097 */
4098int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099{
4100	return pci_request_selected_regions(pdev,
4101			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102}
4103EXPORT_SYMBOL(pci_request_regions);
4104
4105/**
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
4109 *
 
 
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name.  Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
4113 *
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
4116 *
4117 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4118 * printed on failure.
 
 
 
 
 
4119 */
4120int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121{
4122	return pci_request_selected_regions_exclusive(pdev,
4123				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124}
4125EXPORT_SYMBOL(pci_request_regions_exclusive);
4126
4127/*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
4129 * Return a negative value if an error has occurred, zero otherwise
4130 */
4131int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132			resource_size_t	size)
4133{
4134	int ret = 0;
4135#ifdef PCI_IOBASE
4136	struct logic_pio_hwaddr *range;
4137
4138	if (!size || addr + size < addr)
4139		return -EINVAL;
4140
4141	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142	if (!range)
4143		return -ENOMEM;
4144
4145	range->fwnode = fwnode;
4146	range->size = size;
4147	range->hw_start = addr;
4148	range->flags = LOGIC_PIO_CPU_MMIO;
4149
4150	ret = logic_pio_register_range(range);
4151	if (ret)
4152		kfree(range);
4153
4154	/* Ignore duplicates due to deferred probing */
4155	if (ret == -EEXIST)
4156		ret = 0;
4157#endif
4158
4159	return ret;
4160}
4161
4162phys_addr_t pci_pio_to_address(unsigned long pio)
4163{
4164	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166#ifdef PCI_IOBASE
4167	if (pio >= MMIO_UPPER_LIMIT)
4168		return address;
4169
4170	address = logic_pio_to_hwaddr(pio);
4171#endif
4172
4173	return address;
4174}
4175EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176
4177unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178{
4179#ifdef PCI_IOBASE
4180	return logic_pio_trans_cpuaddr(address);
4181#else
4182	if (address > IO_SPACE_LIMIT)
4183		return (unsigned long)-1;
4184
4185	return (unsigned long) address;
4186#endif
4187}
4188
4189/**
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
4193 *
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space.  Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
4198 */
4199#ifndef pci_remap_iospace
4200int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4201{
4202#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204
4205	if (!(res->flags & IORESOURCE_IO))
4206		return -EINVAL;
4207
4208	if (res->end > IO_SPACE_LIMIT)
4209		return -EINVAL;
4210
4211	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212				  pgprot_device(PAGE_KERNEL));
4213#else
4214	/*
4215	 * This architecture does not have memory mapped I/O space,
4216	 * so this function should never be called
4217	 */
4218	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219	return -ENODEV;
4220#endif
4221}
4222EXPORT_SYMBOL(pci_remap_iospace);
4223#endif
4224
4225/**
4226 * pci_unmap_iospace - Unmap the memory mapped I/O space
4227 * @res: resource to be unmapped
4228 *
4229 * Unmap the CPU virtual address @res from virtual address space.  Only
4230 * architectures that have memory mapped IO functions defined (and the
4231 * PCI_IOBASE value defined) should call this function.
4232 */
4233void pci_unmap_iospace(struct resource *res)
4234{
4235#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237
4238	vunmap_range(vaddr, vaddr + resource_size(res));
4239#endif
4240}
4241EXPORT_SYMBOL(pci_unmap_iospace);
4242
4243static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244{
4245	struct resource **res = ptr;
4246
4247	pci_unmap_iospace(*res);
4248}
4249
4250/**
4251 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252 * @dev: Generic device to remap IO address for
4253 * @res: Resource describing the I/O space
4254 * @phys_addr: physical address of range to be mapped
4255 *
4256 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4257 * detach.
4258 */
4259int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260			   phys_addr_t phys_addr)
4261{
4262	const struct resource **ptr;
4263	int error;
4264
4265	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266	if (!ptr)
4267		return -ENOMEM;
4268
4269	error = pci_remap_iospace(res, phys_addr);
4270	if (error) {
4271		devres_free(ptr);
4272	} else	{
4273		*ptr = res;
4274		devres_add(dev, ptr);
4275	}
4276
4277	return error;
4278}
4279EXPORT_SYMBOL(devm_pci_remap_iospace);
4280
4281/**
4282 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283 * @dev: Generic device to remap IO address for
4284 * @offset: Resource address to map
4285 * @size: Size of map
4286 *
4287 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4288 * detach.
4289 */
4290void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291				      resource_size_t offset,
4292				      resource_size_t size)
4293{
4294	void __iomem **ptr, *addr;
4295
4296	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297	if (!ptr)
4298		return NULL;
4299
4300	addr = pci_remap_cfgspace(offset, size);
4301	if (addr) {
4302		*ptr = addr;
4303		devres_add(dev, ptr);
4304	} else
4305		devres_free(ptr);
4306
4307	return addr;
4308}
4309EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310
4311/**
4312 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313 * @dev: generic device to handle the resource for
4314 * @res: configuration space resource to be handled
4315 *
4316 * Checks that a resource is a valid memory region, requests the memory
4317 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318 * proper PCI configuration space memory attributes are guaranteed.
4319 *
4320 * All operations are managed and will be undone on driver detach.
4321 *
4322 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4323 * on failure. Usage example::
4324 *
4325 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327 *	if (IS_ERR(base))
4328 *		return PTR_ERR(base);
4329 */
4330void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331					  struct resource *res)
4332{
4333	resource_size_t size;
4334	const char *name;
4335	void __iomem *dest_ptr;
4336
4337	BUG_ON(!dev);
4338
4339	if (!res || resource_type(res) != IORESOURCE_MEM) {
4340		dev_err(dev, "invalid resource\n");
4341		return IOMEM_ERR_PTR(-EINVAL);
4342	}
4343
4344	size = resource_size(res);
4345
4346	if (res->name)
4347		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348				      res->name);
4349	else
4350		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351	if (!name)
4352		return IOMEM_ERR_PTR(-ENOMEM);
4353
4354	if (!devm_request_mem_region(dev, res->start, size, name)) {
4355		dev_err(dev, "can't request region for resource %pR\n", res);
4356		return IOMEM_ERR_PTR(-EBUSY);
4357	}
4358
4359	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360	if (!dest_ptr) {
4361		dev_err(dev, "ioremap failed for resource %pR\n", res);
4362		devm_release_mem_region(dev, res->start, size);
4363		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364	}
4365
4366	return dest_ptr;
4367}
4368EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369
4370static void __pci_set_master(struct pci_dev *dev, bool enable)
4371{
4372	u16 old_cmd, cmd;
4373
4374	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375	if (enable)
4376		cmd = old_cmd | PCI_COMMAND_MASTER;
4377	else
4378		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379	if (cmd != old_cmd) {
4380		pci_dbg(dev, "%s bus mastering\n",
4381			enable ? "enabling" : "disabling");
4382		pci_write_config_word(dev, PCI_COMMAND, cmd);
4383	}
4384	dev->is_busmaster = enable;
4385}
4386
4387/**
4388 * pcibios_setup - process "pci=" kernel boot arguments
4389 * @str: string used to pass in "pci=" kernel boot arguments
4390 *
4391 * Process kernel boot arguments.  This is the default implementation.
4392 * Architecture specific implementations can override this as necessary.
4393 */
4394char * __weak __init pcibios_setup(char *str)
4395{
4396	return str;
4397}
4398
4399/**
4400 * pcibios_set_master - enable PCI bus-mastering for device dev
4401 * @dev: the PCI device to enable
4402 *
4403 * Enables PCI bus-mastering for the device.  This is the default
4404 * implementation.  Architecture specific implementations can override
4405 * this if necessary.
4406 */
4407void __weak pcibios_set_master(struct pci_dev *dev)
4408{
4409	u8 lat;
4410
4411	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412	if (pci_is_pcie(dev))
4413		return;
4414
4415	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416	if (lat < 16)
4417		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418	else if (lat > pcibios_max_latency)
4419		lat = pcibios_max_latency;
4420	else
4421		return;
4422
4423	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424}
4425
4426/**
4427 * pci_set_master - enables bus-mastering for device dev
4428 * @dev: the PCI device to enable
4429 *
4430 * Enables bus-mastering on the device and calls pcibios_set_master()
4431 * to do the needed arch specific settings.
4432 */
4433void pci_set_master(struct pci_dev *dev)
4434{
4435	__pci_set_master(dev, true);
4436	pcibios_set_master(dev);
4437}
4438EXPORT_SYMBOL(pci_set_master);
4439
4440/**
4441 * pci_clear_master - disables bus-mastering for device dev
4442 * @dev: the PCI device to disable
4443 */
4444void pci_clear_master(struct pci_dev *dev)
4445{
4446	__pci_set_master(dev, false);
4447}
4448EXPORT_SYMBOL(pci_clear_master);
4449
4450/**
4451 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452 * @dev: the PCI device for which MWI is to be enabled
4453 *
4454 * Helper function for pci_set_mwi.
4455 * Originally copied from drivers/net/acenic.c.
4456 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457 *
4458 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459 */
4460int pci_set_cacheline_size(struct pci_dev *dev)
4461{
4462	u8 cacheline_size;
4463
4464	if (!pci_cache_line_size)
4465		return -EINVAL;
4466
4467	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468	   equal to or multiple of the right value. */
4469	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470	if (cacheline_size >= pci_cache_line_size &&
4471	    (cacheline_size % pci_cache_line_size) == 0)
4472		return 0;
4473
4474	/* Write the correct value. */
4475	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476	/* Read it back. */
4477	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478	if (cacheline_size == pci_cache_line_size)
4479		return 0;
4480
4481	pci_dbg(dev, "cache line size of %d is not supported\n",
4482		   pci_cache_line_size << 2);
4483
4484	return -EINVAL;
4485}
4486EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487
4488/**
4489 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490 * @dev: the PCI device for which MWI is enabled
4491 *
4492 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4493 *
4494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495 */
4496int pci_set_mwi(struct pci_dev *dev)
4497{
4498#ifdef PCI_DISABLE_MWI
4499	return 0;
4500#else
4501	int rc;
4502	u16 cmd;
4503
4504	rc = pci_set_cacheline_size(dev);
4505	if (rc)
4506		return rc;
4507
4508	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4510		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4511		cmd |= PCI_COMMAND_INVALIDATE;
4512		pci_write_config_word(dev, PCI_COMMAND, cmd);
4513	}
4514	return 0;
4515#endif
4516}
4517EXPORT_SYMBOL(pci_set_mwi);
4518
4519/**
4520 * pcim_set_mwi - a device-managed pci_set_mwi()
4521 * @dev: the PCI device for which MWI is enabled
4522 *
4523 * Managed pci_set_mwi().
4524 *
4525 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 */
4527int pcim_set_mwi(struct pci_dev *dev)
4528{
4529	struct pci_devres *dr;
4530
4531	dr = find_pci_dr(dev);
4532	if (!dr)
4533		return -ENOMEM;
4534
4535	dr->mwi = 1;
4536	return pci_set_mwi(dev);
4537}
4538EXPORT_SYMBOL(pcim_set_mwi);
4539
4540/**
4541 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542 * @dev: the PCI device for which MWI is enabled
4543 *
4544 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545 * Callers are not required to check the return value.
4546 *
4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548 */
4549int pci_try_set_mwi(struct pci_dev *dev)
4550{
4551#ifdef PCI_DISABLE_MWI
4552	return 0;
4553#else
4554	return pci_set_mwi(dev);
4555#endif
4556}
4557EXPORT_SYMBOL(pci_try_set_mwi);
4558
4559/**
4560 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561 * @dev: the PCI device to disable
4562 *
4563 * Disables PCI Memory-Write-Invalidate transaction on the device
4564 */
4565void pci_clear_mwi(struct pci_dev *dev)
4566{
4567#ifndef PCI_DISABLE_MWI
4568	u16 cmd;
4569
4570	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571	if (cmd & PCI_COMMAND_INVALIDATE) {
4572		cmd &= ~PCI_COMMAND_INVALIDATE;
4573		pci_write_config_word(dev, PCI_COMMAND, cmd);
4574	}
4575#endif
4576}
4577EXPORT_SYMBOL(pci_clear_mwi);
4578
4579/**
4580 * pci_disable_parity - disable parity checking for device
4581 * @dev: the PCI device to operate on
4582 *
4583 * Disable parity checking for device @dev
4584 */
4585void pci_disable_parity(struct pci_dev *dev)
4586{
4587	u16 cmd;
4588
4589	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590	if (cmd & PCI_COMMAND_PARITY) {
4591		cmd &= ~PCI_COMMAND_PARITY;
4592		pci_write_config_word(dev, PCI_COMMAND, cmd);
4593	}
4594}
4595
4596/**
4597 * pci_intx - enables/disables PCI INTx for device dev
4598 * @pdev: the PCI device to operate on
4599 * @enable: boolean: whether to enable or disable PCI INTx
4600 *
4601 * Enables/disables PCI INTx for device @pdev
4602 */
4603void pci_intx(struct pci_dev *pdev, int enable)
4604{
4605	u16 pci_command, new;
4606
4607	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608
4609	if (enable)
4610		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4611	else
4612		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4613
4614	if (new != pci_command) {
4615		struct pci_devres *dr;
4616
4617		pci_write_config_word(pdev, PCI_COMMAND, new);
4618
4619		dr = find_pci_dr(pdev);
4620		if (dr && !dr->restore_intx) {
4621			dr->restore_intx = 1;
4622			dr->orig_intx = !enable;
4623		}
4624	}
4625}
4626EXPORT_SYMBOL_GPL(pci_intx);
4627
4628static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629{
4630	struct pci_bus *bus = dev->bus;
4631	bool mask_updated = true;
4632	u32 cmd_status_dword;
4633	u16 origcmd, newcmd;
4634	unsigned long flags;
4635	bool irq_pending;
4636
4637	/*
4638	 * We do a single dword read to retrieve both command and status.
4639	 * Document assumptions that make this possible.
4640	 */
4641	BUILD_BUG_ON(PCI_COMMAND % 4);
4642	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643
4644	raw_spin_lock_irqsave(&pci_lock, flags);
4645
4646	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647
4648	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649
4650	/*
4651	 * Check interrupt status register to see whether our device
4652	 * triggered the interrupt (when masking) or the next IRQ is
4653	 * already pending (when unmasking).
4654	 */
4655	if (mask != irq_pending) {
4656		mask_updated = false;
4657		goto done;
4658	}
4659
4660	origcmd = cmd_status_dword;
4661	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662	if (mask)
4663		newcmd |= PCI_COMMAND_INTX_DISABLE;
4664	if (newcmd != origcmd)
4665		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666
4667done:
4668	raw_spin_unlock_irqrestore(&pci_lock, flags);
4669
4670	return mask_updated;
4671}
4672
4673/**
4674 * pci_check_and_mask_intx - mask INTx on pending interrupt
4675 * @dev: the PCI device to operate on
4676 *
4677 * Check if the device dev has its INTx line asserted, mask it and return
4678 * true in that case. False is returned if no interrupt was pending.
4679 */
4680bool pci_check_and_mask_intx(struct pci_dev *dev)
4681{
4682	return pci_check_and_set_intx_mask(dev, true);
4683}
4684EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685
4686/**
4687 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4688 * @dev: the PCI device to operate on
4689 *
4690 * Check if the device dev has its INTx line asserted, unmask it if not and
4691 * return true. False is returned and the mask remains active if there was
4692 * still an interrupt pending.
4693 */
4694bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695{
4696	return pci_check_and_set_intx_mask(dev, false);
4697}
4698EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699
4700/**
4701 * pci_wait_for_pending_transaction - wait for pending transaction
4702 * @dev: the PCI device to operate on
4703 *
4704 * Return 0 if transaction is pending 1 otherwise.
4705 */
4706int pci_wait_for_pending_transaction(struct pci_dev *dev)
4707{
4708	if (!pci_is_pcie(dev))
4709		return 1;
4710
4711	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712				    PCI_EXP_DEVSTA_TRPND);
4713}
4714EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715
4716/**
4717 * pcie_flr - initiate a PCIe function level reset
4718 * @dev: device to reset
4719 *
4720 * Initiate a function level reset unconditionally on @dev without
4721 * checking any flags and DEVCAP
4722 */
4723int pcie_flr(struct pci_dev *dev)
4724{
4725	if (!pci_wait_for_pending_transaction(dev))
4726		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4727
4728	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4729
4730	if (dev->imm_ready)
4731		return 0;
4732
4733	/*
4734	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735	 * 100ms, but may silently discard requests while the FLR is in
4736	 * progress.  Wait 100ms before trying to access the device.
4737	 */
4738	msleep(100);
4739
4740	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4741}
4742EXPORT_SYMBOL_GPL(pcie_flr);
4743
4744/**
4745 * pcie_reset_flr - initiate a PCIe function level reset
4746 * @dev: device to reset
4747 * @probe: if true, return 0 if device can be reset this way
4748 *
4749 * Initiate a function level reset on @dev.
4750 */
4751int pcie_reset_flr(struct pci_dev *dev, bool probe)
4752{
4753	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754		return -ENOTTY;
4755
4756	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757		return -ENOTTY;
4758
4759	if (probe)
4760		return 0;
4761
4762	return pcie_flr(dev);
4763}
4764EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765
4766static int pci_af_flr(struct pci_dev *dev, bool probe)
4767{
4768	int pos;
4769	u8 cap;
4770
4771	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772	if (!pos)
4773		return -ENOTTY;
4774
4775	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776		return -ENOTTY;
4777
4778	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4779	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780		return -ENOTTY;
4781
4782	if (probe)
4783		return 0;
4784
4785	/*
4786	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4787	 * is used, so we use the control offset rather than status and shift
4788	 * the test bit to match.
4789	 */
4790	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4791				 PCI_AF_STATUS_TP << 8))
4792		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4793
4794	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4795
4796	if (dev->imm_ready)
4797		return 0;
4798
4799	/*
4800	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801	 * updated 27 July 2006; a device must complete an FLR within
4802	 * 100ms, but may silently discard requests while the FLR is in
4803	 * progress.  Wait 100ms before trying to access the device.
4804	 */
4805	msleep(100);
4806
4807	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808}
4809
4810/**
4811 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812 * @dev: Device to reset.
4813 * @probe: if true, return 0 if the device can be reset this way.
4814 *
4815 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816 * unset, it will be reinitialized internally when going from PCI_D3hot to
4817 * PCI_D0.  If that's the case and the device is not in a low-power state
4818 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819 *
4820 * NOTE: This causes the caller to sleep for twice the device power transition
4821 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4822 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4823 * Moreover, only devices in D0 can be reset by this function.
4824 */
4825static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826{
4827	u16 csr;
4828
4829	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4830		return -ENOTTY;
4831
4832	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834		return -ENOTTY;
4835
4836	if (probe)
4837		return 0;
4838
4839	if (dev->current_state != PCI_D0)
4840		return -EINVAL;
4841
4842	csr &= ~PCI_PM_CTRL_STATE_MASK;
4843	csr |= PCI_D3hot;
4844	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4845	pci_dev_d3_sleep(dev);
4846
4847	csr &= ~PCI_PM_CTRL_STATE_MASK;
4848	csr |= PCI_D0;
4849	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4850	pci_dev_d3_sleep(dev);
4851
4852	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853}
4854
4855/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4856 * pcie_wait_for_link_delay - Wait until link is active or inactive
4857 * @pdev: Bridge device
4858 * @active: waiting for active or inactive?
4859 * @delay: Delay to wait after link has become active (in ms)
4860 *
4861 * Use this to wait till link becomes active or inactive.
4862 */
4863static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864				     int delay)
4865{
4866	int timeout = 1000;
4867	bool ret;
4868	u16 lnk_status;
4869
4870	/*
4871	 * Some controllers might not implement link active reporting. In this
4872	 * case, we wait for 1000 ms + any delay requested by the caller.
4873	 */
4874	if (!pdev->link_active_reporting) {
4875		msleep(timeout + delay);
4876		return true;
4877	}
4878
4879	/*
4880	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881	 * after which we should expect an link active if the reset was
4882	 * successful. If so, software must wait a minimum 100ms before sending
4883	 * configuration requests to devices downstream this port.
4884	 *
4885	 * If the link fails to activate, either the device was physically
4886	 * removed or the link is permanently failed.
4887	 */
4888	if (active)
4889		msleep(20);
4890	for (;;) {
4891		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893		if (ret == active)
4894			break;
4895		if (timeout <= 0)
4896			break;
4897		msleep(10);
4898		timeout -= 10;
4899	}
4900	if (active && ret)
4901		msleep(delay);
4902
4903	return ret == active;
 
 
 
4904}
4905
4906/**
4907 * pcie_wait_for_link - Wait until link is active or inactive
4908 * @pdev: Bridge device
4909 * @active: waiting for active or inactive?
4910 *
4911 * Use this to wait till link becomes active or inactive.
4912 */
4913bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914{
4915	return pcie_wait_for_link_delay(pdev, active, 100);
4916}
4917
4918/*
4919 * Find maximum D3cold delay required by all the devices on the bus.  The
4920 * spec says 100 ms, but firmware can lower it and we allow drivers to
4921 * increase it as well.
4922 *
4923 * Called with @pci_bus_sem locked for reading.
4924 */
4925static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926{
4927	const struct pci_dev *pdev;
4928	int min_delay = 100;
4929	int max_delay = 0;
4930
4931	list_for_each_entry(pdev, &bus->devices, bus_list) {
4932		if (pdev->d3cold_delay < min_delay)
4933			min_delay = pdev->d3cold_delay;
4934		if (pdev->d3cold_delay > max_delay)
4935			max_delay = pdev->d3cold_delay;
4936	}
4937
4938	return max(min_delay, max_delay);
4939}
4940
4941/**
4942 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943 * @dev: PCI bridge
 
4944 *
4945 * Handle necessary delays before access to the devices on the secondary
4946 * side of the bridge are permitted after D3cold to D0 transition.
 
4947 *
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950 * 4.3.2.
 
 
 
4951 */
4952void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953{
4954	struct pci_dev *child;
4955	int delay;
4956
4957	if (pci_dev_is_disconnected(dev))
4958		return;
4959
4960	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961		return;
4962
4963	down_read(&pci_bus_sem);
4964
4965	/*
4966	 * We only deal with devices that are present currently on the bus.
4967	 * For any hot-added devices the access delay is handled in pciehp
4968	 * board_added(). In case of ACPI hotplug the firmware is expected
4969	 * to configure the devices before OS is notified.
4970	 */
4971	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972		up_read(&pci_bus_sem);
4973		return;
4974	}
4975
4976	/* Take d3cold_delay requirements into account */
4977	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978	if (!delay) {
4979		up_read(&pci_bus_sem);
4980		return;
4981	}
4982
4983	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984				 bus_list);
4985	up_read(&pci_bus_sem);
4986
4987	/*
4988	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990	 * practice this should not be needed because we don't do power
4991	 * management for them (see pci_bridge_d3_possible()).
4992	 */
4993	if (!pci_is_pcie(dev)) {
4994		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995		msleep(1000 + delay);
4996		return;
4997	}
4998
4999	/*
5000	 * For PCIe downstream and root ports that do not support speeds
5001	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002	 * speeds (gen3) we need to wait first for the data link layer to
5003	 * become active.
5004	 *
5005	 * However, 100 ms is the minimum and the PCIe spec says the
5006	 * software must allow at least 1s before it can determine that the
5007	 * device that did not respond is a broken device. There is
5008	 * evidence that 100 ms is not always enough, for example certain
5009	 * Titan Ridge xHCI controller does not always respond to
5010	 * configuration requests if we only wait for 100 ms (see
5011	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012	 *
5013	 * Therefore we wait for 100 ms and check for the device presence.
5014	 * If it is still not present give it an additional 100 ms.
5015	 */
5016	if (!pcie_downstream_port(dev))
5017		return;
5018
5019	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
 
 
5020		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021		msleep(delay);
5022	} else {
5023		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024			delay);
5025		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5026			/* Did not train, no need to wait any further */
5027			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5028			return;
5029		}
 
 
 
 
 
 
 
 
 
 
5030	}
5031
5032	if (!pci_device_is_present(child)) {
5033		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034		msleep(delay);
 
 
 
5035	}
 
 
 
5036}
5037
5038void pci_reset_secondary_bus(struct pci_dev *dev)
5039{
5040	u16 ctrl;
5041
5042	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5045
5046	/*
5047	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5048	 * this to 2ms to ensure that we meet the minimum requirement.
5049	 */
5050	msleep(2);
5051
5052	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5054
5055	/*
5056	 * Trhfa for conventional PCI is 2^25 clock cycles.
5057	 * Assuming a minimum 33MHz clock this results in a 1s
5058	 * delay before we can consider subordinate devices to
5059	 * be re-initialized.  PCIe has some ways to shorten this,
5060	 * but we don't make use of them yet.
5061	 */
5062	ssleep(1);
5063}
5064
5065void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066{
5067	pci_reset_secondary_bus(dev);
5068}
5069
5070/**
5071 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5072 * @dev: Bridge device
5073 *
5074 * Use the bridge control register to assert reset on the secondary bus.
5075 * Devices on the secondary bus are left in power-on state.
5076 */
5077int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5078{
 
 
 
5079	pcibios_reset_secondary_bus(dev);
5080
5081	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5082}
5083EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5084
5085static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5086{
5087	struct pci_dev *pdev;
5088
5089	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5091		return -ENOTTY;
5092
5093	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094		if (pdev != dev)
5095			return -ENOTTY;
5096
5097	if (probe)
5098		return 0;
5099
5100	return pci_bridge_secondary_bus_reset(dev->bus->self);
5101}
5102
5103static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5104{
5105	int rc = -ENOTTY;
5106
5107	if (!hotplug || !try_module_get(hotplug->owner))
5108		return rc;
5109
5110	if (hotplug->ops->reset_slot)
5111		rc = hotplug->ops->reset_slot(hotplug, probe);
5112
5113	module_put(hotplug->owner);
5114
5115	return rc;
5116}
5117
5118static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5119{
5120	if (dev->multifunction || dev->subordinate || !dev->slot ||
5121	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5122		return -ENOTTY;
5123
5124	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125}
5126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5127static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5128{
 
5129	int rc;
5130
 
 
 
 
 
 
 
 
 
 
 
5131	rc = pci_dev_reset_slot_function(dev, probe);
5132	if (rc != -ENOTTY)
5133		return rc;
5134	return pci_parent_bus_reset(dev, probe);
5135}
5136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5137void pci_dev_lock(struct pci_dev *dev)
5138{
5139	/* block PM suspend, driver probe, etc. */
5140	device_lock(&dev->dev);
5141	pci_cfg_access_lock(dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_lock);
5144
5145/* Return 1 on successful lock, 0 on contention */
5146int pci_dev_trylock(struct pci_dev *dev)
5147{
5148	if (device_trylock(&dev->dev)) {
5149		if (pci_cfg_access_trylock(dev))
5150			return 1;
5151		device_unlock(&dev->dev);
5152	}
5153
5154	return 0;
5155}
5156EXPORT_SYMBOL_GPL(pci_dev_trylock);
5157
5158void pci_dev_unlock(struct pci_dev *dev)
5159{
5160	pci_cfg_access_unlock(dev);
5161	device_unlock(&dev->dev);
5162}
5163EXPORT_SYMBOL_GPL(pci_dev_unlock);
5164
5165static void pci_dev_save_and_disable(struct pci_dev *dev)
5166{
5167	const struct pci_error_handlers *err_handler =
5168			dev->driver ? dev->driver->err_handler : NULL;
5169
5170	/*
5171	 * dev->driver->err_handler->reset_prepare() is protected against
5172	 * races with ->remove() by the device lock, which must be held by
5173	 * the caller.
5174	 */
5175	if (err_handler && err_handler->reset_prepare)
5176		err_handler->reset_prepare(dev);
 
 
5177
5178	/*
5179	 * Wake-up device prior to save.  PM registers default to D0 after
5180	 * reset and a simple register restore doesn't reliably return
5181	 * to a non-D0 state anyway.
5182	 */
5183	pci_set_power_state(dev, PCI_D0);
5184
5185	pci_save_state(dev);
5186	/*
5187	 * Disable the device by clearing the Command register, except for
5188	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5189	 * BARs, but also prevents the device from being Bus Master, preventing
5190	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5191	 * compliant devices, INTx-disable prevents legacy interrupts.
5192	 */
5193	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194}
5195
5196static void pci_dev_restore(struct pci_dev *dev)
5197{
5198	const struct pci_error_handlers *err_handler =
5199			dev->driver ? dev->driver->err_handler : NULL;
5200
5201	pci_restore_state(dev);
5202
5203	/*
5204	 * dev->driver->err_handler->reset_done() is protected against
5205	 * races with ->remove() by the device lock, which must be held by
5206	 * the caller.
5207	 */
5208	if (err_handler && err_handler->reset_done)
5209		err_handler->reset_done(dev);
 
 
5210}
5211
5212/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214	{ },
5215	{ pci_dev_specific_reset, .name = "device_specific" },
5216	{ pci_dev_acpi_reset, .name = "acpi" },
5217	{ pcie_reset_flr, .name = "flr" },
5218	{ pci_af_flr, .name = "af_flr" },
5219	{ pci_pm_reset, .name = "pm" },
5220	{ pci_reset_bus_function, .name = "bus" },
 
5221};
5222
5223static ssize_t reset_method_show(struct device *dev,
5224				 struct device_attribute *attr, char *buf)
5225{
5226	struct pci_dev *pdev = to_pci_dev(dev);
5227	ssize_t len = 0;
5228	int i, m;
5229
5230	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231		m = pdev->reset_methods[i];
5232		if (!m)
5233			break;
5234
5235		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236				     pci_reset_fn_methods[m].name);
5237	}
5238
5239	if (len)
5240		len += sysfs_emit_at(buf, len, "\n");
5241
5242	return len;
5243}
5244
5245static int reset_method_lookup(const char *name)
5246{
5247	int m;
5248
5249	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251			return m;
5252	}
5253
5254	return 0;	/* not found */
5255}
5256
5257static ssize_t reset_method_store(struct device *dev,
5258				  struct device_attribute *attr,
5259				  const char *buf, size_t count)
5260{
5261	struct pci_dev *pdev = to_pci_dev(dev);
5262	char *options, *name;
5263	int m, n;
5264	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265
5266	if (sysfs_streq(buf, "")) {
5267		pdev->reset_methods[0] = 0;
5268		pci_warn(pdev, "All device reset methods disabled by user");
5269		return count;
5270	}
5271
5272	if (sysfs_streq(buf, "default")) {
5273		pci_init_reset_methods(pdev);
5274		return count;
5275	}
5276
5277	options = kstrndup(buf, count, GFP_KERNEL);
5278	if (!options)
5279		return -ENOMEM;
5280
5281	n = 0;
5282	while ((name = strsep(&options, " ")) != NULL) {
 
5283		if (sysfs_streq(name, ""))
5284			continue;
5285
5286		name = strim(name);
5287
5288		m = reset_method_lookup(name);
5289		if (!m) {
5290			pci_err(pdev, "Invalid reset method '%s'", name);
5291			goto error;
5292		}
5293
5294		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5295			pci_err(pdev, "Unsupported reset method '%s'", name);
5296			goto error;
5297		}
5298
5299		if (n == PCI_NUM_RESET_METHODS - 1) {
5300			pci_err(pdev, "Too many reset methods\n");
5301			goto error;
5302		}
5303
5304		reset_methods[n++] = m;
5305	}
5306
5307	reset_methods[n] = 0;
5308
5309	/* Warn if dev-specific supported but not highest priority */
5310	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5311	    reset_methods[0] != 1)
5312		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314	kfree(options);
5315	return count;
5316
5317error:
5318	/* Leave previous methods unchanged */
5319	kfree(options);
5320	return -EINVAL;
5321}
5322static DEVICE_ATTR_RW(reset_method);
5323
5324static struct attribute *pci_dev_reset_method_attrs[] = {
5325	&dev_attr_reset_method.attr,
5326	NULL,
5327};
5328
5329static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330						    struct attribute *a, int n)
5331{
5332	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333
5334	if (!pci_reset_supported(pdev))
5335		return 0;
5336
5337	return a->mode;
5338}
5339
5340const struct attribute_group pci_dev_reset_method_attr_group = {
5341	.attrs = pci_dev_reset_method_attrs,
5342	.is_visible = pci_dev_reset_method_attr_is_visible,
5343};
5344
5345/**
5346 * __pci_reset_function_locked - reset a PCI device function while holding
5347 * the @dev mutex lock.
5348 * @dev: PCI device to reset
5349 *
5350 * Some devices allow an individual function to be reset without affecting
5351 * other functions in the same device.  The PCI device must be responsive
5352 * to PCI config space in order to use this function.
5353 *
5354 * The device function is presumed to be unused and the caller is holding
5355 * the device mutex lock when this function is called.
5356 *
5357 * Resetting the device will make the contents of PCI configuration space
5358 * random, so any caller of this must be prepared to reinitialise the
5359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360 * etc.
5361 *
5362 * Returns 0 if the device function was successfully reset or negative if the
5363 * device doesn't support resetting a single function.
5364 */
5365int __pci_reset_function_locked(struct pci_dev *dev)
5366{
5367	int i, m, rc;
5368
5369	might_sleep();
5370
5371	/*
5372	 * A reset method returns -ENOTTY if it doesn't support this device and
5373	 * we should try the next method.
5374	 *
5375	 * If it returns 0 (success), we're finished.  If it returns any other
5376	 * error, we're also finished: this indicates that further reset
5377	 * mechanisms might be broken on the device.
5378	 */
5379	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380		m = dev->reset_methods[i];
5381		if (!m)
5382			return -ENOTTY;
5383
5384		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5385		if (!rc)
5386			return 0;
5387		if (rc != -ENOTTY)
5388			return rc;
5389	}
5390
5391	return -ENOTTY;
5392}
5393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394
5395/**
5396 * pci_init_reset_methods - check whether device can be safely reset
5397 * and store supported reset mechanisms.
5398 * @dev: PCI device to check for reset mechanisms
5399 *
5400 * Some devices allow an individual function to be reset without affecting
5401 * other functions in the same device.  The PCI device must be in D0-D3hot
5402 * state.
5403 *
5404 * Stores reset mechanisms supported by device in reset_methods byte array
5405 * which is a member of struct pci_dev.
5406 */
5407void pci_init_reset_methods(struct pci_dev *dev)
5408{
5409	int m, i, rc;
5410
5411	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412
5413	might_sleep();
5414
5415	i = 0;
5416	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5417		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5418		if (!rc)
5419			dev->reset_methods[i++] = m;
5420		else if (rc != -ENOTTY)
5421			break;
5422	}
5423
5424	dev->reset_methods[i] = 0;
5425}
5426
5427/**
5428 * pci_reset_function - quiesce and reset a PCI device function
5429 * @dev: PCI device to reset
5430 *
5431 * Some devices allow an individual function to be reset without affecting
5432 * other functions in the same device.  The PCI device must be responsive
5433 * to PCI config space in order to use this function.
5434 *
5435 * This function does not just reset the PCI portion of a device, but
5436 * clears all the state associated with the device.  This function differs
5437 * from __pci_reset_function_locked() in that it saves and restores device state
5438 * over the reset and takes the PCI device lock.
5439 *
5440 * Returns 0 if the device function was successfully reset or negative if the
5441 * device doesn't support resetting a single function.
5442 */
5443int pci_reset_function(struct pci_dev *dev)
5444{
 
5445	int rc;
5446
5447	if (!pci_reset_supported(dev))
5448		return -ENOTTY;
5449
 
 
 
 
 
 
 
 
5450	pci_dev_lock(dev);
5451	pci_dev_save_and_disable(dev);
5452
5453	rc = __pci_reset_function_locked(dev);
5454
5455	pci_dev_restore(dev);
5456	pci_dev_unlock(dev);
5457
 
 
 
5458	return rc;
5459}
5460EXPORT_SYMBOL_GPL(pci_reset_function);
5461
5462/**
5463 * pci_reset_function_locked - quiesce and reset a PCI device function
5464 * @dev: PCI device to reset
5465 *
5466 * Some devices allow an individual function to be reset without affecting
5467 * other functions in the same device.  The PCI device must be responsive
5468 * to PCI config space in order to use this function.
5469 *
5470 * This function does not just reset the PCI portion of a device, but
5471 * clears all the state associated with the device.  This function differs
5472 * from __pci_reset_function_locked() in that it saves and restores device state
5473 * over the reset.  It also differs from pci_reset_function() in that it
5474 * requires the PCI device lock to be held.
5475 *
5476 * Returns 0 if the device function was successfully reset or negative if the
5477 * device doesn't support resetting a single function.
5478 */
5479int pci_reset_function_locked(struct pci_dev *dev)
5480{
5481	int rc;
5482
5483	if (!pci_reset_supported(dev))
5484		return -ENOTTY;
5485
5486	pci_dev_save_and_disable(dev);
5487
5488	rc = __pci_reset_function_locked(dev);
5489
5490	pci_dev_restore(dev);
5491
5492	return rc;
5493}
5494EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495
5496/**
5497 * pci_try_reset_function - quiesce and reset a PCI device function
5498 * @dev: PCI device to reset
5499 *
5500 * Same as above, except return -EAGAIN if unable to lock device.
5501 */
5502int pci_try_reset_function(struct pci_dev *dev)
5503{
5504	int rc;
5505
5506	if (!pci_reset_supported(dev))
5507		return -ENOTTY;
5508
5509	if (!pci_dev_trylock(dev))
5510		return -EAGAIN;
5511
5512	pci_dev_save_and_disable(dev);
5513	rc = __pci_reset_function_locked(dev);
5514	pci_dev_restore(dev);
5515	pci_dev_unlock(dev);
5516
5517	return rc;
5518}
5519EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520
5521/* Do any devices on or below this bus prevent a bus reset? */
5522static bool pci_bus_resetable(struct pci_bus *bus)
5523{
5524	struct pci_dev *dev;
5525
5526
5527	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528		return false;
5529
5530	list_for_each_entry(dev, &bus->devices, bus_list) {
5531		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533			return false;
5534	}
5535
5536	return true;
5537}
5538
5539/* Lock devices from the top of the tree down */
5540static void pci_bus_lock(struct pci_bus *bus)
5541{
5542	struct pci_dev *dev;
5543
 
5544	list_for_each_entry(dev, &bus->devices, bus_list) {
5545		pci_dev_lock(dev);
5546		if (dev->subordinate)
5547			pci_bus_lock(dev->subordinate);
 
 
5548	}
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554	struct pci_dev *dev;
5555
5556	list_for_each_entry(dev, &bus->devices, bus_list) {
5557		if (dev->subordinate)
5558			pci_bus_unlock(dev->subordinate);
5559		pci_dev_unlock(dev);
 
5560	}
 
5561}
5562
5563/* Return 1 on successful lock, 0 on contention */
5564static int pci_bus_trylock(struct pci_bus *bus)
5565{
5566	struct pci_dev *dev;
5567
 
 
 
5568	list_for_each_entry(dev, &bus->devices, bus_list) {
5569		if (!pci_dev_trylock(dev))
5570			goto unlock;
5571		if (dev->subordinate) {
5572			if (!pci_bus_trylock(dev->subordinate)) {
5573				pci_dev_unlock(dev);
5574				goto unlock;
5575			}
5576		}
5577	}
5578	return 1;
5579
5580unlock:
5581	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582		if (dev->subordinate)
5583			pci_bus_unlock(dev->subordinate);
5584		pci_dev_unlock(dev);
 
5585	}
 
5586	return 0;
5587}
5588
5589/* Do any devices on or below this slot prevent a bus reset? */
5590static bool pci_slot_resetable(struct pci_slot *slot)
5591{
5592	struct pci_dev *dev;
5593
5594	if (slot->bus->self &&
5595	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596		return false;
5597
5598	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599		if (!dev->slot || dev->slot != slot)
5600			continue;
5601		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603			return false;
5604	}
5605
5606	return true;
5607}
5608
5609/* Lock devices from the top of the tree down */
5610static void pci_slot_lock(struct pci_slot *slot)
5611{
5612	struct pci_dev *dev;
5613
5614	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615		if (!dev->slot || dev->slot != slot)
5616			continue;
5617		pci_dev_lock(dev);
5618		if (dev->subordinate)
5619			pci_bus_lock(dev->subordinate);
 
 
5620	}
5621}
5622
5623/* Unlock devices from the bottom of the tree up */
5624static void pci_slot_unlock(struct pci_slot *slot)
5625{
5626	struct pci_dev *dev;
5627
5628	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629		if (!dev->slot || dev->slot != slot)
5630			continue;
5631		if (dev->subordinate)
5632			pci_bus_unlock(dev->subordinate);
5633		pci_dev_unlock(dev);
5634	}
5635}
5636
5637/* Return 1 on successful lock, 0 on contention */
5638static int pci_slot_trylock(struct pci_slot *slot)
5639{
5640	struct pci_dev *dev;
5641
5642	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643		if (!dev->slot || dev->slot != slot)
5644			continue;
5645		if (!pci_dev_trylock(dev))
5646			goto unlock;
5647		if (dev->subordinate) {
5648			if (!pci_bus_trylock(dev->subordinate)) {
5649				pci_dev_unlock(dev);
5650				goto unlock;
5651			}
5652		}
 
5653	}
5654	return 1;
5655
5656unlock:
5657	list_for_each_entry_continue_reverse(dev,
5658					     &slot->bus->devices, bus_list) {
5659		if (!dev->slot || dev->slot != slot)
5660			continue;
5661		if (dev->subordinate)
5662			pci_bus_unlock(dev->subordinate);
5663		pci_dev_unlock(dev);
 
5664	}
5665	return 0;
5666}
5667
5668/*
5669 * Save and disable devices from the top of the tree down while holding
5670 * the @dev mutex lock for the entire tree.
5671 */
5672static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5673{
5674	struct pci_dev *dev;
5675
5676	list_for_each_entry(dev, &bus->devices, bus_list) {
5677		pci_dev_save_and_disable(dev);
5678		if (dev->subordinate)
5679			pci_bus_save_and_disable_locked(dev->subordinate);
5680	}
5681}
5682
5683/*
5684 * Restore devices from top of the tree down while holding @dev mutex lock
5685 * for the entire tree.  Parent bridges need to be restored before we can
5686 * get to subordinate devices.
5687 */
5688static void pci_bus_restore_locked(struct pci_bus *bus)
5689{
5690	struct pci_dev *dev;
5691
5692	list_for_each_entry(dev, &bus->devices, bus_list) {
5693		pci_dev_restore(dev);
5694		if (dev->subordinate)
 
5695			pci_bus_restore_locked(dev->subordinate);
 
5696	}
5697}
5698
5699/*
5700 * Save and disable devices from the top of the tree down while holding
5701 * the @dev mutex lock for the entire tree.
5702 */
5703static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5704{
5705	struct pci_dev *dev;
5706
5707	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708		if (!dev->slot || dev->slot != slot)
5709			continue;
5710		pci_dev_save_and_disable(dev);
5711		if (dev->subordinate)
5712			pci_bus_save_and_disable_locked(dev->subordinate);
5713	}
5714}
5715
5716/*
5717 * Restore devices from top of the tree down while holding @dev mutex lock
5718 * for the entire tree.  Parent bridges need to be restored before we can
5719 * get to subordinate devices.
5720 */
5721static void pci_slot_restore_locked(struct pci_slot *slot)
5722{
5723	struct pci_dev *dev;
5724
5725	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726		if (!dev->slot || dev->slot != slot)
5727			continue;
5728		pci_dev_restore(dev);
5729		if (dev->subordinate)
 
5730			pci_bus_restore_locked(dev->subordinate);
 
5731	}
5732}
5733
5734static int pci_slot_reset(struct pci_slot *slot, bool probe)
5735{
5736	int rc;
5737
5738	if (!slot || !pci_slot_resetable(slot))
5739		return -ENOTTY;
5740
5741	if (!probe)
5742		pci_slot_lock(slot);
5743
5744	might_sleep();
5745
5746	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747
5748	if (!probe)
5749		pci_slot_unlock(slot);
5750
5751	return rc;
5752}
5753
5754/**
5755 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756 * @slot: PCI slot to probe
5757 *
5758 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759 */
5760int pci_probe_reset_slot(struct pci_slot *slot)
5761{
5762	return pci_slot_reset(slot, PCI_RESET_PROBE);
5763}
5764EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765
5766/**
5767 * __pci_reset_slot - Try to reset a PCI slot
5768 * @slot: PCI slot to reset
5769 *
5770 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771 * independent of other slots.  For instance, some slots may support slot power
5772 * control.  In the case of a 1:1 bus to slot architecture, this function may
5773 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774 * Generally a slot reset should be attempted before a bus reset.  All of the
5775 * function of the slot and any subordinate buses behind the slot are reset
5776 * through this function.  PCI config space of all devices in the slot and
5777 * behind the slot is saved before and restored after reset.
5778 *
5779 * Same as above except return -EAGAIN if the slot cannot be locked
5780 */
5781static int __pci_reset_slot(struct pci_slot *slot)
5782{
5783	int rc;
5784
5785	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5786	if (rc)
5787		return rc;
5788
5789	if (pci_slot_trylock(slot)) {
5790		pci_slot_save_and_disable_locked(slot);
5791		might_sleep();
5792		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5793		pci_slot_restore_locked(slot);
5794		pci_slot_unlock(slot);
5795	} else
5796		rc = -EAGAIN;
5797
5798	return rc;
5799}
5800
5801static int pci_bus_reset(struct pci_bus *bus, bool probe)
5802{
5803	int ret;
5804
5805	if (!bus->self || !pci_bus_resetable(bus))
5806		return -ENOTTY;
5807
5808	if (probe)
5809		return 0;
5810
5811	pci_bus_lock(bus);
5812
5813	might_sleep();
5814
5815	ret = pci_bridge_secondary_bus_reset(bus->self);
5816
5817	pci_bus_unlock(bus);
5818
5819	return ret;
5820}
5821
5822/**
5823 * pci_bus_error_reset - reset the bridge's subordinate bus
5824 * @bridge: The parent device that connects to the bus to reset
5825 *
5826 * This function will first try to reset the slots on this bus if the method is
5827 * available. If slot reset fails or is not available, this will fall back to a
5828 * secondary bus reset.
5829 */
5830int pci_bus_error_reset(struct pci_dev *bridge)
5831{
5832	struct pci_bus *bus = bridge->subordinate;
5833	struct pci_slot *slot;
5834
5835	if (!bus)
5836		return -ENOTTY;
5837
5838	mutex_lock(&pci_slot_mutex);
5839	if (list_empty(&bus->slots))
5840		goto bus_reset;
5841
5842	list_for_each_entry(slot, &bus->slots, list)
5843		if (pci_probe_reset_slot(slot))
5844			goto bus_reset;
5845
5846	list_for_each_entry(slot, &bus->slots, list)
5847		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5848			goto bus_reset;
5849
5850	mutex_unlock(&pci_slot_mutex);
5851	return 0;
5852bus_reset:
5853	mutex_unlock(&pci_slot_mutex);
5854	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5855}
5856
5857/**
5858 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859 * @bus: PCI bus to probe
5860 *
5861 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862 */
5863int pci_probe_reset_bus(struct pci_bus *bus)
5864{
5865	return pci_bus_reset(bus, PCI_RESET_PROBE);
5866}
5867EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868
5869/**
5870 * __pci_reset_bus - Try to reset a PCI bus
5871 * @bus: top level PCI bus to reset
5872 *
5873 * Same as above except return -EAGAIN if the bus cannot be locked
5874 */
5875static int __pci_reset_bus(struct pci_bus *bus)
5876{
5877	int rc;
5878
5879	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5880	if (rc)
5881		return rc;
5882
5883	if (pci_bus_trylock(bus)) {
5884		pci_bus_save_and_disable_locked(bus);
5885		might_sleep();
5886		rc = pci_bridge_secondary_bus_reset(bus->self);
5887		pci_bus_restore_locked(bus);
5888		pci_bus_unlock(bus);
5889	} else
5890		rc = -EAGAIN;
5891
5892	return rc;
5893}
5894
5895/**
5896 * pci_reset_bus - Try to reset a PCI bus
5897 * @pdev: top level PCI device to reset via slot/bus
5898 *
5899 * Same as above except return -EAGAIN if the bus cannot be locked
5900 */
5901int pci_reset_bus(struct pci_dev *pdev)
5902{
5903	return (!pci_probe_reset_slot(pdev->slot)) ?
5904	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5905}
5906EXPORT_SYMBOL_GPL(pci_reset_bus);
5907
5908/**
5909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum designed memory read count in bytes or
5913 * appropriate error value.
5914 */
5915int pcix_get_max_mmrbc(struct pci_dev *dev)
5916{
5917	int cap;
5918	u32 stat;
5919
5920	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921	if (!cap)
5922		return -EINVAL;
5923
5924	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5925		return -EINVAL;
5926
5927	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5928}
5929EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930
5931/**
5932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 *
5935 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936 * value.
5937 */
5938int pcix_get_mmrbc(struct pci_dev *dev)
5939{
5940	int cap;
5941	u16 cmd;
5942
5943	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944	if (!cap)
5945		return -EINVAL;
5946
5947	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948		return -EINVAL;
5949
5950	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5951}
5952EXPORT_SYMBOL(pcix_get_mmrbc);
5953
5954/**
5955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956 * @dev: PCI device to query
5957 * @mmrbc: maximum memory read count in bytes
5958 *    valid values are 512, 1024, 2048, 4096
5959 *
5960 * If possible sets maximum memory read byte count, some bridges have errata
5961 * that prevent this.
5962 */
5963int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964{
5965	int cap;
5966	u32 stat, v, o;
5967	u16 cmd;
5968
5969	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5970		return -EINVAL;
5971
5972	v = ffs(mmrbc) - 10;
5973
5974	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975	if (!cap)
5976		return -EINVAL;
5977
5978	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979		return -EINVAL;
5980
5981	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982		return -E2BIG;
5983
5984	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985		return -EINVAL;
5986
5987	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988	if (o != v) {
5989		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5990			return -EIO;
5991
5992		cmd &= ~PCI_X_CMD_MAX_READ;
5993		cmd |= v << 2;
5994		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995			return -EIO;
5996	}
5997	return 0;
5998}
5999EXPORT_SYMBOL(pcix_set_mmrbc);
6000
6001/**
6002 * pcie_get_readrq - get PCI Express read request size
6003 * @dev: PCI device to query
6004 *
6005 * Returns maximum memory read request in bytes or appropriate error value.
6006 */
6007int pcie_get_readrq(struct pci_dev *dev)
6008{
6009	u16 ctl;
6010
6011	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6012
6013	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6014}
6015EXPORT_SYMBOL(pcie_get_readrq);
6016
6017/**
6018 * pcie_set_readrq - set PCI Express maximum memory read request
6019 * @dev: PCI device to query
6020 * @rq: maximum memory read count in bytes
6021 *    valid values are 128, 256, 512, 1024, 2048, 4096
6022 *
6023 * If possible sets maximum memory read request in bytes
6024 */
6025int pcie_set_readrq(struct pci_dev *dev, int rq)
6026{
6027	u16 v;
6028	int ret;
 
6029
6030	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031		return -EINVAL;
6032
6033	/*
6034	 * If using the "performance" PCIe config, we clamp the read rq
6035	 * size to the max packet size to keep the host bridge from
6036	 * generating requests larger than we can cope with.
6037	 */
6038	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039		int mps = pcie_get_mps(dev);
6040
6041		if (mps < rq)
6042			rq = mps;
6043	}
6044
6045	v = (ffs(rq) - 8) << 12;
 
 
 
 
 
 
 
 
 
6046
6047	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6048						  PCI_EXP_DEVCTL_READRQ, v);
6049
6050	return pcibios_err_to_errno(ret);
6051}
6052EXPORT_SYMBOL(pcie_set_readrq);
6053
6054/**
6055 * pcie_get_mps - get PCI Express maximum payload size
6056 * @dev: PCI device to query
6057 *
6058 * Returns maximum payload size in bytes
6059 */
6060int pcie_get_mps(struct pci_dev *dev)
6061{
6062	u16 ctl;
6063
6064	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6065
6066	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6067}
6068EXPORT_SYMBOL(pcie_get_mps);
6069
6070/**
6071 * pcie_set_mps - set PCI Express maximum payload size
6072 * @dev: PCI device to query
6073 * @mps: maximum payload size in bytes
6074 *    valid values are 128, 256, 512, 1024, 2048, 4096
6075 *
6076 * If possible sets maximum payload size
6077 */
6078int pcie_set_mps(struct pci_dev *dev, int mps)
6079{
6080	u16 v;
6081	int ret;
6082
6083	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6084		return -EINVAL;
6085
6086	v = ffs(mps) - 8;
6087	if (v > dev->pcie_mpss)
6088		return -EINVAL;
6089	v <<= 5;
6090
6091	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6092						  PCI_EXP_DEVCTL_PAYLOAD, v);
6093
6094	return pcibios_err_to_errno(ret);
6095}
6096EXPORT_SYMBOL(pcie_set_mps);
6097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6098/**
6099 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100 *			      device and its bandwidth limitation
6101 * @dev: PCI device to query
6102 * @limiting_dev: storage for device causing the bandwidth limitation
6103 * @speed: storage for speed of limiting device
6104 * @width: storage for width of limiting device
6105 *
6106 * Walk up the PCI device chain and find the point where the minimum
6107 * bandwidth is available.  Return the bandwidth available there and (if
6108 * limiting_dev, speed, and width pointers are supplied) information about
6109 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6110 * raw bandwidth.
6111 */
6112u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113			     enum pci_bus_speed *speed,
6114			     enum pcie_link_width *width)
6115{
6116	u16 lnksta;
6117	enum pci_bus_speed next_speed;
6118	enum pcie_link_width next_width;
6119	u32 bw, next_bw;
6120
6121	if (speed)
6122		*speed = PCI_SPEED_UNKNOWN;
6123	if (width)
6124		*width = PCIE_LNK_WIDTH_UNKNOWN;
6125
6126	bw = 0;
6127
6128	while (dev) {
6129		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130
6131		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133			PCI_EXP_LNKSTA_NLW_SHIFT;
6134
6135		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136
6137		/* Check if current device limits the total bandwidth */
6138		if (!bw || next_bw <= bw) {
6139			bw = next_bw;
6140
6141			if (limiting_dev)
6142				*limiting_dev = dev;
6143			if (speed)
6144				*speed = next_speed;
6145			if (width)
6146				*width = next_width;
6147		}
6148
6149		dev = pci_upstream_bridge(dev);
6150	}
6151
6152	return bw;
6153}
6154EXPORT_SYMBOL(pcie_bandwidth_available);
6155
6156/**
6157 * pcie_get_speed_cap - query for the PCI device's link speed capability
6158 * @dev: PCI device to query
6159 *
6160 * Query the PCI device speed capability.  Return the maximum link speed
6161 * supported by the device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6162 */
6163enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164{
6165	u32 lnkcap2, lnkcap;
 
6166
6167	/*
6168	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6169	 * implementation note there recommends using the Supported Link
6170	 * Speeds Vector in Link Capabilities 2 when supported.
6171	 *
6172	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173	 * should use the Supported Link Speeds field in Link Capabilities,
6174	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6175	 */
6176	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
 
 
 
 
 
6177
6178	/* PCIe r3.0-compliant */
6179	if (lnkcap2)
6180		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6181
6182	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6183	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184		return PCIE_SPEED_5_0GT;
6185	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186		return PCIE_SPEED_2_5GT;
6187
6188	return PCI_SPEED_UNKNOWN;
 
 
 
 
 
 
 
 
 
 
 
 
 
6189}
6190EXPORT_SYMBOL(pcie_get_speed_cap);
6191
6192/**
6193 * pcie_get_width_cap - query for the PCI device's link width capability
6194 * @dev: PCI device to query
6195 *
6196 * Query the PCI device width capability.  Return the maximum link width
6197 * supported by the device.
6198 */
6199enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200{
6201	u32 lnkcap;
6202
6203	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204	if (lnkcap)
6205		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206
6207	return PCIE_LNK_WIDTH_UNKNOWN;
6208}
6209EXPORT_SYMBOL(pcie_get_width_cap);
6210
6211/**
6212 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213 * @dev: PCI device
6214 * @speed: storage for link speed
6215 * @width: storage for link width
6216 *
6217 * Calculate a PCI device's link bandwidth by querying for its link speed
6218 * and width, multiplying them, and applying encoding overhead.  The result
6219 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220 */
6221u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222			   enum pcie_link_width *width)
 
6223{
6224	*speed = pcie_get_speed_cap(dev);
6225	*width = pcie_get_width_cap(dev);
6226
6227	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228		return 0;
6229
6230	return *width * PCIE_SPEED2MBS_ENC(*speed);
6231}
6232
6233/**
6234 * __pcie_print_link_status - Report the PCI device's link speed and width
6235 * @dev: PCI device to query
6236 * @verbose: Print info even when enough bandwidth is available
6237 *
6238 * If the available bandwidth at the device is less than the device is
6239 * capable of, report the device's maximum possible bandwidth and the
6240 * upstream link that limits its performance.  If @verbose, always print
6241 * the available bandwidth, even if the device isn't constrained.
6242 */
6243void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6244{
6245	enum pcie_link_width width, width_cap;
6246	enum pci_bus_speed speed, speed_cap;
6247	struct pci_dev *limiting_dev = NULL;
6248	u32 bw_avail, bw_cap;
6249
6250	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252
6253	if (bw_avail >= bw_cap && verbose)
6254		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6255			 bw_cap / 1000, bw_cap % 1000,
6256			 pci_speed_string(speed_cap), width_cap);
6257	else if (bw_avail < bw_cap)
6258		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6259			 bw_avail / 1000, bw_avail % 1000,
6260			 pci_speed_string(speed), width,
6261			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262			 bw_cap / 1000, bw_cap % 1000,
6263			 pci_speed_string(speed_cap), width_cap);
6264}
6265
6266/**
6267 * pcie_print_link_status - Report the PCI device's link speed and width
6268 * @dev: PCI device to query
6269 *
6270 * Report the available bandwidth at the device.
6271 */
6272void pcie_print_link_status(struct pci_dev *dev)
6273{
6274	__pcie_print_link_status(dev, true);
6275}
6276EXPORT_SYMBOL(pcie_print_link_status);
6277
6278/**
6279 * pci_select_bars - Make BAR mask from the type of resource
6280 * @dev: the PCI device for which BAR mask is made
6281 * @flags: resource type mask to be selected
6282 *
6283 * This helper routine makes bar mask from the type of resource.
6284 */
6285int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286{
6287	int i, bars = 0;
6288	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289		if (pci_resource_flags(dev, i) & flags)
6290			bars |= (1 << i);
6291	return bars;
6292}
6293EXPORT_SYMBOL(pci_select_bars);
6294
6295/* Some architectures require additional programming to enable VGA */
6296static arch_set_vga_state_t arch_set_vga_state;
6297
6298void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299{
6300	arch_set_vga_state = func;	/* NULL disables */
6301}
6302
6303static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6304				  unsigned int command_bits, u32 flags)
6305{
6306	if (arch_set_vga_state)
6307		return arch_set_vga_state(dev, decode, command_bits,
6308						flags);
6309	return 0;
6310}
6311
6312/**
6313 * pci_set_vga_state - set VGA decode state on device and parents if requested
6314 * @dev: the PCI device
6315 * @decode: true = enable decoding, false = disable decoding
6316 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6317 * @flags: traverse ancestors and change bridges
6318 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6319 */
6320int pci_set_vga_state(struct pci_dev *dev, bool decode,
6321		      unsigned int command_bits, u32 flags)
6322{
6323	struct pci_bus *bus;
6324	struct pci_dev *bridge;
6325	u16 cmd;
6326	int rc;
6327
6328	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6329
6330	/* ARCH specific VGA enables */
6331	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6332	if (rc)
6333		return rc;
6334
6335	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6337		if (decode)
6338			cmd |= command_bits;
6339		else
6340			cmd &= ~command_bits;
6341		pci_write_config_word(dev, PCI_COMMAND, cmd);
6342	}
6343
6344	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6345		return 0;
6346
6347	bus = dev->bus;
6348	while (bus) {
6349		bridge = bus->self;
6350		if (bridge) {
6351			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352					     &cmd);
6353			if (decode)
6354				cmd |= PCI_BRIDGE_CTL_VGA;
6355			else
6356				cmd &= ~PCI_BRIDGE_CTL_VGA;
6357			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358					      cmd);
6359		}
6360		bus = bus->parent;
6361	}
6362	return 0;
6363}
6364
6365#ifdef CONFIG_ACPI
6366bool pci_pr3_present(struct pci_dev *pdev)
6367{
6368	struct acpi_device *adev;
6369
6370	if (acpi_disabled)
6371		return false;
6372
6373	adev = ACPI_COMPANION(&pdev->dev);
6374	if (!adev)
6375		return false;
6376
6377	return adev->power.flags.power_resources &&
6378		acpi_has_method(adev->handle, "_PR3");
6379}
6380EXPORT_SYMBOL_GPL(pci_pr3_present);
6381#endif
6382
6383/**
6384 * pci_add_dma_alias - Add a DMA devfn alias for a device
6385 * @dev: the PCI device for which alias is added
6386 * @devfn_from: alias slot and function
6387 * @nr_devfns: number of subsequent devfns to alias
6388 *
6389 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390 * which is used to program permissible bus-devfn source addresses for DMA
6391 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6392 * and are useful for devices generating DMA requests beyond or different
6393 * from their logical bus-devfn.  Examples include device quirks where the
6394 * device simply uses the wrong devfn, as well as non-transparent bridges
6395 * where the alias may be a proxy for devices in another domain.
6396 *
6397 * IOMMU group creation is performed during device discovery or addition,
6398 * prior to any potential DMA mapping and therefore prior to driver probing
6399 * (especially for userspace assigned devices where IOMMU group definition
6400 * cannot be left as a userspace activity).  DMA aliases should therefore
6401 * be configured via quirks, such as the PCI fixup header quirk.
6402 */
6403void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404		       unsigned int nr_devfns)
6405{
6406	int devfn_to;
6407
6408	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6409	devfn_to = devfn_from + nr_devfns - 1;
6410
6411	if (!dev->dma_alias_mask)
6412		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6413	if (!dev->dma_alias_mask) {
6414		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6415		return;
6416	}
6417
6418	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419
6420	if (nr_devfns == 1)
6421		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423	else if (nr_devfns > 1)
6424		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6427}
6428
6429bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430{
6431	return (dev1->dma_alias_mask &&
6432		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433	       (dev2->dma_alias_mask &&
6434		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435	       pci_real_dma_dev(dev1) == dev2 ||
6436	       pci_real_dma_dev(dev2) == dev1;
6437}
6438
6439bool pci_device_is_present(struct pci_dev *pdev)
6440{
6441	u32 v;
6442
6443	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444	pdev = pci_physfn(pdev);
6445	if (pci_dev_is_disconnected(pdev))
6446		return false;
6447	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448}
6449EXPORT_SYMBOL_GPL(pci_device_is_present);
6450
6451void pci_ignore_hotplug(struct pci_dev *dev)
6452{
6453	struct pci_dev *bridge = dev->bus->self;
6454
6455	dev->ignore_hotplug = 1;
6456	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6457	if (bridge)
6458		bridge->ignore_hotplug = 1;
6459}
6460EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461
6462/**
6463 * pci_real_dma_dev - Get PCI DMA device for PCI device
6464 * @dev: the PCI device that may have a PCI DMA alias
6465 *
6466 * Permits the platform to provide architecture-specific functionality to
6467 * devices needing to alias DMA to another PCI device on another PCI bus. If
6468 * the PCI device is on the same bus, it is recommended to use
6469 * pci_add_dma_alias(). This is the default implementation. Architecture
6470 * implementations can override this.
6471 */
6472struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473{
6474	return dev;
6475}
6476
6477resource_size_t __weak pcibios_default_alignment(void)
6478{
6479	return 0;
6480}
6481
6482/*
6483 * Arches that don't want to expose struct resource to userland as-is in
6484 * sysfs and /proc can implement their own pci_resource_to_user().
6485 */
6486void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487				 const struct resource *rsrc,
6488				 resource_size_t *start, resource_size_t *end)
6489{
6490	*start = rsrc->start;
6491	*end = rsrc->end;
6492}
6493
6494static char *resource_alignment_param;
6495static DEFINE_SPINLOCK(resource_alignment_lock);
6496
6497/**
6498 * pci_specified_resource_alignment - get resource alignment specified by user.
6499 * @dev: the PCI device to get
6500 * @resize: whether or not to change resources' size when reassigning alignment
6501 *
6502 * RETURNS: Resource alignment if it is specified.
6503 *          Zero if it is not specified.
6504 */
6505static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506							bool *resize)
6507{
6508	int align_order, count;
6509	resource_size_t align = pcibios_default_alignment();
6510	const char *p;
6511	int ret;
6512
6513	spin_lock(&resource_alignment_lock);
6514	p = resource_alignment_param;
6515	if (!p || !*p)
6516		goto out;
6517	if (pci_has_flag(PCI_PROBE_ONLY)) {
6518		align = 0;
6519		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520		goto out;
6521	}
6522
6523	while (*p) {
6524		count = 0;
6525		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6526		    p[count] == '@') {
6527			p += count + 1;
6528			if (align_order > 63) {
6529				pr_err("PCI: Invalid requested alignment (order %d)\n",
6530				       align_order);
6531				align_order = PAGE_SHIFT;
6532			}
6533		} else {
6534			align_order = PAGE_SHIFT;
6535		}
6536
6537		ret = pci_dev_str_match(dev, p, &p);
6538		if (ret == 1) {
6539			*resize = true;
6540			align = 1ULL << align_order;
6541			break;
6542		} else if (ret < 0) {
6543			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544			       p);
6545			break;
6546		}
6547
6548		if (*p != ';' && *p != ',') {
6549			/* End of param or invalid format */
6550			break;
6551		}
6552		p++;
6553	}
6554out:
6555	spin_unlock(&resource_alignment_lock);
6556	return align;
6557}
6558
6559static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6560					   resource_size_t align, bool resize)
6561{
6562	struct resource *r = &dev->resource[bar];
 
6563	resource_size_t size;
6564
6565	if (!(r->flags & IORESOURCE_MEM))
6566		return;
6567
6568	if (r->flags & IORESOURCE_PCI_FIXED) {
6569		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6570			 bar, r, (unsigned long long)align);
6571		return;
6572	}
6573
6574	size = resource_size(r);
6575	if (size >= align)
6576		return;
6577
6578	/*
6579	 * Increase the alignment of the resource.  There are two ways we
6580	 * can do this:
6581	 *
6582	 * 1) Increase the size of the resource.  BARs are aligned on their
6583	 *    size, so when we reallocate space for this resource, we'll
6584	 *    allocate it with the larger alignment.  This also prevents
6585	 *    assignment of any other BARs inside the alignment region, so
6586	 *    if we're requesting page alignment, this means no other BARs
6587	 *    will share the page.
6588	 *
6589	 *    The disadvantage is that this makes the resource larger than
6590	 *    the hardware BAR, which may break drivers that compute things
6591	 *    based on the resource size, e.g., to find registers at a
6592	 *    fixed offset before the end of the BAR.
6593	 *
6594	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595	 *    set r->start to the desired alignment.  By itself this
6596	 *    doesn't prevent other BARs being put inside the alignment
6597	 *    region, but if we realign *every* resource of every device in
6598	 *    the system, none of them will share an alignment region.
6599	 *
6600	 * When the user has requested alignment for only some devices via
6601	 * the "pci=resource_alignment" argument, "resize" is true and we
6602	 * use the first method.  Otherwise we assume we're aligning all
6603	 * devices and we use the second.
6604	 */
6605
6606	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6607		 bar, r, (unsigned long long)align);
6608
6609	if (resize) {
6610		r->start = 0;
6611		r->end = align - 1;
6612	} else {
6613		r->flags &= ~IORESOURCE_SIZEALIGN;
6614		r->flags |= IORESOURCE_STARTALIGN;
6615		r->start = align;
6616		r->end = r->start + size - 1;
6617	}
6618	r->flags |= IORESOURCE_UNSET;
6619}
6620
6621/*
6622 * This function disables memory decoding and releases memory resources
6623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624 * It also rounds up size to specified alignment.
6625 * Later on, the kernel will assign page-aligned memory resource back
6626 * to the device.
6627 */
6628void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629{
6630	int i;
6631	struct resource *r;
6632	resource_size_t align;
6633	u16 command;
6634	bool resize = false;
6635
6636	/*
6637	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638	 * 3.4.1.11.  Their resources are allocated from the space
6639	 * described by the VF BARx register in the PF's SR-IOV capability.
6640	 * We can't influence their alignment here.
6641	 */
6642	if (dev->is_virtfn)
6643		return;
6644
6645	/* check if specified PCI is target device to reassign */
6646	align = pci_specified_resource_alignment(dev, &resize);
6647	if (!align)
6648		return;
6649
6650	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6652		pci_warn(dev, "Can't reassign resources to host bridge\n");
6653		return;
6654	}
6655
6656	pci_read_config_word(dev, PCI_COMMAND, &command);
6657	command &= ~PCI_COMMAND_MEMORY;
6658	pci_write_config_word(dev, PCI_COMMAND, command);
6659
6660	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6661		pci_request_resource_alignment(dev, i, align, resize);
6662
6663	/*
6664	 * Need to disable bridge's resource window,
6665	 * to enable the kernel to reassign new resource
6666	 * window later on.
6667	 */
6668	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6669		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670			r = &dev->resource[i];
6671			if (!(r->flags & IORESOURCE_MEM))
6672				continue;
6673			r->flags |= IORESOURCE_UNSET;
6674			r->end = resource_size(r) - 1;
6675			r->start = 0;
6676		}
6677		pci_disable_bridge_window(dev);
6678	}
6679}
6680
6681static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6682{
6683	size_t count = 0;
6684
6685	spin_lock(&resource_alignment_lock);
6686	if (resource_alignment_param)
6687		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6688	spin_unlock(&resource_alignment_lock);
6689
6690	return count;
6691}
6692
6693static ssize_t resource_alignment_store(struct bus_type *bus,
6694					const char *buf, size_t count)
6695{
6696	char *param, *old, *end;
6697
6698	if (count >= (PAGE_SIZE - 1))
6699		return -EINVAL;
6700
6701	param = kstrndup(buf, count, GFP_KERNEL);
6702	if (!param)
6703		return -ENOMEM;
6704
6705	end = strchr(param, '\n');
6706	if (end)
6707		*end = '\0';
6708
6709	spin_lock(&resource_alignment_lock);
6710	old = resource_alignment_param;
6711	if (strlen(param)) {
6712		resource_alignment_param = param;
6713	} else {
6714		kfree(param);
6715		resource_alignment_param = NULL;
6716	}
6717	spin_unlock(&resource_alignment_lock);
6718
6719	kfree(old);
6720
6721	return count;
6722}
6723
6724static BUS_ATTR_RW(resource_alignment);
6725
6726static int __init pci_resource_alignment_sysfs_init(void)
6727{
6728	return bus_create_file(&pci_bus_type,
6729					&bus_attr_resource_alignment);
6730}
6731late_initcall(pci_resource_alignment_sysfs_init);
6732
6733static void pci_no_domains(void)
6734{
6735#ifdef CONFIG_PCI_DOMAINS
6736	pci_domains_supported = 0;
6737#endif
6738}
6739
6740#ifdef CONFIG_PCI_DOMAINS_GENERIC
6741static DEFINE_IDA(pci_domain_nr_static_ida);
6742static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6743
6744static void of_pci_reserve_static_domain_nr(void)
6745{
6746	struct device_node *np;
6747	int domain_nr;
6748
6749	for_each_node_by_type(np, "pci") {
6750		domain_nr = of_get_pci_domain_nr(np);
6751		if (domain_nr < 0)
6752			continue;
6753		/*
6754		 * Permanently allocate domain_nr in dynamic_ida
6755		 * to prevent it from dynamic allocation.
6756		 */
6757		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758				domain_nr, domain_nr, GFP_KERNEL);
6759	}
6760}
6761
6762static int of_pci_bus_find_domain_nr(struct device *parent)
6763{
6764	static bool static_domains_reserved = false;
6765	int domain_nr;
6766
6767	/* On the first call scan device tree for static allocations. */
6768	if (!static_domains_reserved) {
6769		of_pci_reserve_static_domain_nr();
6770		static_domains_reserved = true;
6771	}
6772
6773	if (parent) {
6774		/*
6775		 * If domain is in DT, allocate it in static IDA.  This
6776		 * prevents duplicate static allocations in case of errors
6777		 * in DT.
6778		 */
6779		domain_nr = of_get_pci_domain_nr(parent->of_node);
6780		if (domain_nr >= 0)
6781			return ida_alloc_range(&pci_domain_nr_static_ida,
6782					       domain_nr, domain_nr,
6783					       GFP_KERNEL);
6784	}
6785
6786	/*
6787	 * If domain was not specified in DT, choose a free ID from dynamic
6788	 * allocations. All domain numbers from DT are permanently in
6789	 * dynamic allocations to prevent assigning them to other DT nodes
6790	 * without static domain.
6791	 */
6792	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793}
6794
6795static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796{
6797	if (bus->domain_nr < 0)
6798		return;
6799
6800	/* Release domain from IDA where it was allocated. */
6801	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803	else
6804		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6805}
6806
6807int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808{
6809	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810			       acpi_pci_bus_find_domain_nr(bus);
6811}
6812
6813void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814{
6815	if (!acpi_disabled)
6816		return;
6817	of_pci_bus_release_domain_nr(bus, parent);
6818}
6819#endif
6820
6821/**
6822 * pci_ext_cfg_avail - can we access extended PCI config space?
6823 *
6824 * Returns 1 if we can access PCI extended config space (offsets
6825 * greater than 0xff). This is the default implementation. Architecture
6826 * implementations can override this.
6827 */
6828int __weak pci_ext_cfg_avail(void)
6829{
6830	return 1;
6831}
6832
6833void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834{
6835}
6836EXPORT_SYMBOL(pci_fixup_cardbus);
6837
6838static int __init pci_setup(char *str)
6839{
6840	while (str) {
6841		char *k = strchr(str, ',');
6842		if (k)
6843			*k++ = 0;
6844		if (*str && (str = pcibios_setup(str)) && *str) {
6845			if (!strcmp(str, "nomsi")) {
6846				pci_no_msi();
6847			} else if (!strncmp(str, "noats", 5)) {
6848				pr_info("PCIe: ATS is disabled\n");
6849				pcie_ats_disabled = true;
6850			} else if (!strcmp(str, "noaer")) {
6851				pci_no_aer();
6852			} else if (!strcmp(str, "earlydump")) {
6853				pci_early_dump = true;
6854			} else if (!strncmp(str, "realloc=", 8)) {
6855				pci_realloc_get_opt(str + 8);
6856			} else if (!strncmp(str, "realloc", 7)) {
6857				pci_realloc_get_opt("on");
6858			} else if (!strcmp(str, "nodomains")) {
6859				pci_no_domains();
6860			} else if (!strncmp(str, "noari", 5)) {
6861				pcie_ari_disabled = true;
 
 
6862			} else if (!strncmp(str, "cbiosize=", 9)) {
6863				pci_cardbus_io_size = memparse(str + 9, &str);
6864			} else if (!strncmp(str, "cbmemsize=", 10)) {
6865				pci_cardbus_mem_size = memparse(str + 10, &str);
6866			} else if (!strncmp(str, "resource_alignment=", 19)) {
6867				resource_alignment_param = str + 19;
6868			} else if (!strncmp(str, "ecrc=", 5)) {
6869				pcie_ecrc_get_policy(str + 5);
6870			} else if (!strncmp(str, "hpiosize=", 9)) {
6871				pci_hotplug_io_size = memparse(str + 9, &str);
6872			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6873				pci_hotplug_mmio_size = memparse(str + 11, &str);
6874			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6876			} else if (!strncmp(str, "hpmemsize=", 10)) {
6877				pci_hotplug_mmio_size = memparse(str + 10, &str);
6878				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6879			} else if (!strncmp(str, "hpbussize=", 10)) {
6880				pci_hotplug_bus_size =
6881					simple_strtoul(str + 10, &str, 0);
6882				if (pci_hotplug_bus_size > 0xff)
6883					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6884			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6886			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887				pcie_bus_config = PCIE_BUS_SAFE;
6888			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6890			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891				pcie_bus_config = PCIE_BUS_PEER2PEER;
6892			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6893				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6894			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6895				disable_acs_redir_param = str + 18;
 
 
6896			} else {
6897				pr_err("PCI: Unknown option `%s'\n", str);
6898			}
6899		}
6900		str = k;
6901	}
6902	return 0;
6903}
6904early_param("pci", pci_setup);
6905
6906/*
6907 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908 * in pci_setup(), above, to point to data in the __initdata section which
6909 * will be freed after the init sequence is complete. We can't allocate memory
6910 * in pci_setup() because some architectures do not have any memory allocation
6911 * service available during an early_param() call. So we allocate memory and
6912 * copy the variable here before the init section is freed.
6913 *
6914 */
6915static int __init pci_realloc_setup_params(void)
6916{
6917	resource_alignment_param = kstrdup(resource_alignment_param,
6918					   GFP_KERNEL);
6919	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
 
6920
6921	return 0;
6922}
6923pure_initcall(pci_realloc_setup_params);