Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/device.h>
28#include <linux/pm_runtime.h>
29#include <linux/pci_hotplug.h>
30#include <linux/vmalloc.h>
31#include <asm/dma.h>
32#include <linux/aer.h>
33#include <linux/bitfield.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43#ifdef CONFIG_X86_32
44int isa_dma_bridge_buggy;
45EXPORT_SYMBOL(isa_dma_bridge_buggy);
46#endif
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3hot_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66/*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71#define PCI_RESET_WAIT 1000 /* msec */
72
73/*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
81static void pci_dev_d3_sleep(struct pci_dev *dev)
82{
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
91 }
92}
93
94bool pci_reset_supported(struct pci_dev *dev)
95{
96 return dev->reset_methods[0] != 0;
97}
98
99#ifdef CONFIG_PCI_DOMAINS
100int pci_domains_supported = 1;
101#endif
102
103#define DEFAULT_CARDBUS_IO_SIZE (256)
104#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109#define DEFAULT_HOTPLUG_IO_SIZE (256)
110#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112/* hpiosize=nn can override this */
113unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114/*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122#define DEFAULT_HOTPLUG_BUS_SIZE 1
123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129#elif defined CONFIG_PCIE_BUS_SAFE
130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133#elif defined CONFIG_PCIE_BUS_PEER2PEER
134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135#else
136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137#endif
138
139/*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146u8 pci_cache_line_size __ro_after_init ;
147
148/*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152unsigned int pcibios_max_latency = 255;
153
154/* If set, the PCIe ARI capability will not be used. */
155static bool pcie_ari_disabled;
156
157/* If set, the PCIe ATS capability will not be used. */
158static bool pcie_ats_disabled;
159
160/* If set, the PCI config space of each device is printed during boot. */
161bool pci_early_dump;
162
163bool pci_ats_disabled(void)
164{
165 return pcie_ats_disabled;
166}
167EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169/* Disable bridge_d3 for all PCIe ports */
170static bool pci_bridge_d3_disable;
171/* Force bridge_d3 for all PCIe ports */
172static bool pci_bridge_d3_force;
173
174static int __init pcie_port_pm_setup(char *str)
175{
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181}
182__setup("pcie_port_pm=", pcie_port_pm_setup);
183
184/**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192{
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203}
204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206/**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213{
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(pdev, PCI_STATUS, status);
224
225 return status;
226}
227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229#ifdef CONFIG_HAS_IOMEM
230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232{
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(start, size);
247
248 return ioremap(start, size);
249}
250
251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252{
253 return __pci_ioremap_resource(pdev, bar, false);
254}
255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258{
259 return __pci_ioremap_resource(pdev, bar, true);
260}
261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262#endif
263
264/**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285{
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342free_and_exit:
343 kfree(wpath);
344 return ret;
345}
346
347/**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379{
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, p, &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422found:
423 *endptr = p;
424 return 1;
425}
426
427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429{
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449}
450
451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453{
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457}
458
459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460{
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
463}
464EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468{
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484}
485
486/**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
505u8 pci_find_capability(struct pci_dev *dev, int cap)
506{
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512
513 return pos;
514}
515EXPORT_SYMBOL(pci_find_capability);
516
517/**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531{
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541}
542EXPORT_SYMBOL(pci_bus_find_capability);
543
544/**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556{
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593}
594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596/**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611{
612 return pci_find_next_ext_capability(dev, 0, cap);
613}
614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616/**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
625u64 pci_get_dsn(struct pci_dev *dev)
626{
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, pos, &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647}
648EXPORT_SYMBOL_GPL(pci_get_dsn);
649
650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651{
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
673 }
674
675 return 0;
676}
677
678/**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692{
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694}
695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697/**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709{
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717}
718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720/**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731{
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750}
751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753/**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763{
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782}
783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785/**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796{
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r, res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825}
826EXPORT_SYMBOL(pci_find_parent_resource);
827
828/**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838{
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r, res))
845 return r;
846 }
847
848 return NULL;
849}
850EXPORT_SYMBOL(pci_find_resource);
851
852/**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860{
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869#ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876#endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888#ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895#endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910}
911
912/**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921{
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep((1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936}
937
938static int pci_acs_enable;
939
940/**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
943void pci_request_acs(void)
944{
945 pci_acs_enable = 1;
946}
947
948static const char *disable_acs_redir_param;
949static const char *config_acs_param;
950
951struct pci_acs {
952 u16 cap;
953 u16 ctrl;
954 u16 fw_ctrl;
955};
956
957static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 const char *p, u16 mask, u16 flags)
959{
960 char *delimit;
961 int ret = 0;
962
963 if (!p)
964 return;
965
966 while (*p) {
967 if (!mask) {
968 /* Check for ACS flags */
969 delimit = strstr(p, "@");
970 if (delimit) {
971 int end;
972 u32 shift = 0;
973
974 end = delimit - p - 1;
975
976 while (end > -1) {
977 if (*(p + end) == '0') {
978 mask |= 1 << shift;
979 shift++;
980 end--;
981 } else if (*(p + end) == '1') {
982 mask |= 1 << shift;
983 flags |= 1 << shift;
984 shift++;
985 end--;
986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 shift++;
988 end--;
989 } else {
990 pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 return;
992 }
993 }
994 p = delimit + 1;
995 } else {
996 pci_err(dev, "ACS Flags missing\n");
997 return;
998 }
999 }
1000
1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 pci_err(dev, "Invalid ACS flags specified\n");
1004 return;
1005 }
1006
1007 ret = pci_dev_str_match(dev, p, &p);
1008 if (ret < 0) {
1009 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 break;
1011 } else if (ret == 1) {
1012 /* Found a match */
1013 break;
1014 }
1015
1016 if (*p != ';' && *p != ',') {
1017 /* End of param or invalid format */
1018 break;
1019 }
1020 p++;
1021 }
1022
1023 if (ret != 1)
1024 return;
1025
1026 if (!pci_dev_specific_disable_acs_redir(dev))
1027 return;
1028
1029 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1030 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031
1032 /* If mask is 0 then we copy the bit from the firmware setting. */
1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 caps->ctrl |= flags;
1035
1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037}
1038
1039/**
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1043 */
1044static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045{
1046 /* Source Validation */
1047 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048
1049 /* P2P Request Redirect */
1050 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051
1052 /* P2P Completion Redirect */
1053 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054
1055 /* Upstream Forwarding */
1056 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057
1058 /* Enable Translation Blocking for external devices and noats */
1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061}
1062
1063/**
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1066 */
1067static void pci_enable_acs(struct pci_dev *dev)
1068{
1069 struct pci_acs caps;
1070 bool enable_acs = false;
1071 int pos;
1072
1073 /* If an iommu is present we start with kernel default caps */
1074 if (pci_acs_enable) {
1075 if (pci_dev_specific_enable_acs(dev))
1076 enable_acs = true;
1077 }
1078
1079 pos = dev->acs_cap;
1080 if (!pos)
1081 return;
1082
1083 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085 caps.fw_ctrl = caps.ctrl;
1086
1087 if (enable_acs)
1088 pci_std_enable_acs(dev, &caps);
1089
1090 /*
1091 * Always apply caps from the command line, even if there is no iommu.
1092 * Trust that the admin has a reason to change the ACS settings.
1093 */
1094 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1095 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098
1099 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100}
1101
1102/**
1103 * pcie_read_tlp_log - read TLP Header Log
1104 * @dev: PCIe device
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1107 *
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109 *
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1111 */
1112int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113 struct pcie_tlp_log *tlp_log)
1114{
1115 int i, ret;
1116
1117 memset(tlp_log, 0, sizeof(*tlp_log));
1118
1119 for (i = 0; i < 4; i++) {
1120 ret = pci_read_config_dword(dev, where + i * 4,
1121 &tlp_log->dw[i]);
1122 if (ret)
1123 return pcibios_err_to_errno(ret);
1124 }
1125
1126 return 0;
1127}
1128EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129
1130/**
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1133 *
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1136 */
1137static void pci_restore_bars(struct pci_dev *dev)
1138{
1139 int i;
1140
1141 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142 pci_update_resource(dev, i);
1143}
1144
1145static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146{
1147 if (pci_use_mid_pm())
1148 return true;
1149
1150 return acpi_pci_power_manageable(dev);
1151}
1152
1153static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154 pci_power_t t)
1155{
1156 if (pci_use_mid_pm())
1157 return mid_pci_set_power_state(dev, t);
1158
1159 return acpi_pci_set_power_state(dev, t);
1160}
1161
1162static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163{
1164 if (pci_use_mid_pm())
1165 return mid_pci_get_power_state(dev);
1166
1167 return acpi_pci_get_power_state(dev);
1168}
1169
1170static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171{
1172 if (!pci_use_mid_pm())
1173 acpi_pci_refresh_power_state(dev);
1174}
1175
1176static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177{
1178 if (pci_use_mid_pm())
1179 return PCI_POWER_ERROR;
1180
1181 return acpi_pci_choose_state(dev);
1182}
1183
1184static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185{
1186 if (pci_use_mid_pm())
1187 return PCI_POWER_ERROR;
1188
1189 return acpi_pci_wakeup(dev, enable);
1190}
1191
1192static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193{
1194 if (pci_use_mid_pm())
1195 return false;
1196
1197 return acpi_pci_need_resume(dev);
1198}
1199
1200static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201{
1202 if (pci_use_mid_pm())
1203 return false;
1204
1205 return acpi_pci_bridge_d3(dev);
1206}
1207
1208/**
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1212 *
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold. The platform firmware is therefore queried first
1215 * to detect accessibility of the register. In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1219 */
1220void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221{
1222 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223 dev->current_state = PCI_D3cold;
1224 } else if (dev->pm_cap) {
1225 u16 pmcsr;
1226
1227 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229 dev->current_state = PCI_D3cold;
1230 return;
1231 }
1232 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233 } else {
1234 dev->current_state = state;
1235 }
1236}
1237
1238/**
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1241 *
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1244 */
1245void pci_refresh_power_state(struct pci_dev *dev)
1246{
1247 platform_pci_refresh_power_state(dev);
1248 pci_update_current_state(dev, dev->current_state);
1249}
1250
1251/**
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1255 */
1256int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257{
1258 int error;
1259
1260 error = platform_pci_set_power_state(dev, state);
1261 if (!error)
1262 pci_update_current_state(dev, state);
1263 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264 dev->current_state = PCI_D0;
1265
1266 return error;
1267}
1268EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269
1270static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271{
1272 pm_request_resume(&pci_dev->dev);
1273 return 0;
1274}
1275
1276/**
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1279 */
1280void pci_resume_bus(struct pci_bus *bus)
1281{
1282 if (bus)
1283 pci_walk_bus(bus, pci_resume_one, NULL);
1284}
1285
1286static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287{
1288 int delay = 1;
1289 bool retrain = false;
1290 struct pci_dev *root, *bridge;
1291
1292 root = pcie_find_root_port(dev);
1293
1294 if (pci_is_pcie(dev)) {
1295 bridge = pci_upstream_bridge(dev);
1296 if (bridge)
1297 retrain = true;
1298 }
1299
1300 /*
1301 * The caller has already waited long enough after a reset that the
1302 * device should respond to config requests, but it may respond
1303 * with Request Retry Status (RRS) if it needs more time to
1304 * initialize.
1305 *
1306 * If the device is below a Root Port with Configuration RRS
1307 * Software Visibility enabled, reading the Vendor ID returns a
1308 * special data value if the device responded with RRS. Read the
1309 * Vendor ID until we get non-RRS status.
1310 *
1311 * If there's no Root Port or Configuration RRS Software Visibility
1312 * is not enabled, the device may still respond with RRS, but
1313 * hardware may retry the config request. If no retries receive
1314 * Successful Completion, hardware generally synthesizes ~0
1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1316 * ID for VFs and non-existent devices also returns ~0, so read the
1317 * Command register until it returns something other than ~0.
1318 */
1319 for (;;) {
1320 u32 id;
1321
1322 if (pci_dev_is_disconnected(dev)) {
1323 pci_dbg(dev, "disconnected; not waiting\n");
1324 return -ENOTTY;
1325 }
1326
1327 if (root && root->config_rrs_sv) {
1328 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329 if (!pci_bus_rrs_vendor_id(id))
1330 break;
1331 } else {
1332 pci_read_config_dword(dev, PCI_COMMAND, &id);
1333 if (!PCI_POSSIBLE_ERROR(id))
1334 break;
1335 }
1336
1337 if (delay > timeout) {
1338 pci_warn(dev, "not ready %dms after %s; giving up\n",
1339 delay - 1, reset_type);
1340 return -ENOTTY;
1341 }
1342
1343 if (delay > PCI_RESET_WAIT) {
1344 if (retrain) {
1345 retrain = false;
1346 if (pcie_failed_link_retrain(bridge) == 0) {
1347 delay = 1;
1348 continue;
1349 }
1350 }
1351 pci_info(dev, "not ready %dms after %s; waiting\n",
1352 delay - 1, reset_type);
1353 }
1354
1355 msleep(delay);
1356 delay *= 2;
1357 }
1358
1359 if (delay > PCI_RESET_WAIT)
1360 pci_info(dev, "ready %dms after %s\n", delay - 1,
1361 reset_type);
1362 else
1363 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364 reset_type);
1365
1366 return 0;
1367}
1368
1369/**
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1372 *
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1375 *
1376 * On failure, return a negative error code. Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1379 */
1380int pci_power_up(struct pci_dev *dev)
1381{
1382 bool need_restore;
1383 pci_power_t state;
1384 u16 pmcsr;
1385
1386 platform_pci_set_power_state(dev, PCI_D0);
1387
1388 if (!dev->pm_cap) {
1389 state = platform_pci_get_power_state(dev);
1390 if (state == PCI_UNKNOWN)
1391 dev->current_state = PCI_D0;
1392 else
1393 dev->current_state = state;
1394
1395 return -EIO;
1396 }
1397
1398 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401 pci_power_name(dev->current_state));
1402 dev->current_state = PCI_D3cold;
1403 return -EIO;
1404 }
1405
1406 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407
1408 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410
1411 if (state == PCI_D0)
1412 goto end;
1413
1414 /*
1415 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 * PME_En, and sets PowerState to 0.
1417 */
1418 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419
1420 /* Mandatory transition delays; see PCI PM 1.2. */
1421 if (state == PCI_D3hot)
1422 pci_dev_d3_sleep(dev);
1423 else if (state == PCI_D2)
1424 udelay(PCI_PM_D2_DELAY);
1425
1426end:
1427 dev->current_state = PCI_D0;
1428 if (need_restore)
1429 return 1;
1430
1431 return 0;
1432}
1433
1434/**
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1438 *
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1442 *
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1445 * function.
1446 */
1447static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448{
1449 u16 pmcsr;
1450 int ret;
1451
1452 ret = pci_power_up(dev);
1453 if (ret < 0) {
1454 if (dev->current_state == PCI_D0)
1455 return 0;
1456
1457 return ret;
1458 }
1459
1460 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462 if (dev->current_state != PCI_D0) {
1463 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464 pci_power_name(dev->current_state));
1465 } else if (ret > 0) {
1466 /*
1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 * For example, at least some versions of the 3c905B and the
1472 * 3c556B exhibit this behaviour.
1473 *
1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 * devices in a D3hot state at boot. Consequently, we need to
1476 * restore at least the BARs so that the device will be
1477 * accessible to its driver.
1478 */
1479 pci_restore_bars(dev);
1480 }
1481
1482 if (dev->bus->self)
1483 pcie_aspm_pm_state_change(dev->bus->self, locked);
1484
1485 return 0;
1486}
1487
1488/**
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1492 */
1493static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494{
1495 pci_power_t state = *(pci_power_t *)data;
1496
1497 dev->current_state = state;
1498 return 0;
1499}
1500
1501/**
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1505 */
1506void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507{
1508 if (bus)
1509 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510}
1511
1512static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513{
1514 if (!bus)
1515 return;
1516
1517 if (locked)
1518 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519 else
1520 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521}
1522
1523/**
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1528 *
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530 *
1531 * RETURN VALUE:
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1537 */
1538static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539{
1540 u16 pmcsr;
1541
1542 if (!dev->pm_cap)
1543 return -EIO;
1544
1545 /*
1546 * Validate transition: We can enter D0 from any state, but if
1547 * we're already in a low-power state, we can only go deeper. E.g.,
1548 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 * we'd have to go from D3 to D0, then to D1.
1550 */
1551 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553 pci_power_name(dev->current_state),
1554 pci_power_name(state));
1555 return -EINVAL;
1556 }
1557
1558 /* Check if this device supports the desired state */
1559 if ((state == PCI_D1 && !dev->d1_support)
1560 || (state == PCI_D2 && !dev->d2_support))
1561 return -EIO;
1562
1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566 pci_power_name(dev->current_state),
1567 pci_power_name(state));
1568 dev->current_state = PCI_D3cold;
1569 return -EIO;
1570 }
1571
1572 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573 pmcsr |= state;
1574
1575 /* Enter specified state */
1576 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577
1578 /* Mandatory power management transition delays; see PCI PM 1.2. */
1579 if (state == PCI_D3hot)
1580 pci_dev_d3_sleep(dev);
1581 else if (state == PCI_D2)
1582 udelay(PCI_PM_D2_DELAY);
1583
1584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586 if (dev->current_state != state)
1587 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588 pci_power_name(dev->current_state),
1589 pci_power_name(state));
1590
1591 if (dev->bus->self)
1592 pcie_aspm_pm_state_change(dev->bus->self, locked);
1593
1594 return 0;
1595}
1596
1597static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598{
1599 int error;
1600
1601 /* Bound the state we're entering */
1602 if (state > PCI_D3cold)
1603 state = PCI_D3cold;
1604 else if (state < PCI_D0)
1605 state = PCI_D0;
1606 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607
1608 /*
1609 * If the device or the parent bridge do not support PCI
1610 * PM, ignore the request if we're doing anything other
1611 * than putting it into D0 (which would only happen on
1612 * boot).
1613 */
1614 return 0;
1615
1616 /* Check if we're already there */
1617 if (dev->current_state == state)
1618 return 0;
1619
1620 if (state == PCI_D0)
1621 return pci_set_full_power_state(dev, locked);
1622
1623 /*
1624 * This device is quirked not to be put into D3, so don't put it in
1625 * D3
1626 */
1627 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628 return 0;
1629
1630 if (state == PCI_D3cold) {
1631 /*
1632 * To put the device in D3cold, put it into D3hot in the native
1633 * way, then put it into D3cold using platform ops.
1634 */
1635 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636
1637 if (pci_platform_power_transition(dev, PCI_D3cold))
1638 return error;
1639
1640 /* Powering off a bridge may power off the whole hierarchy */
1641 if (dev->current_state == PCI_D3cold)
1642 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643 } else {
1644 error = pci_set_low_power_state(dev, state, locked);
1645
1646 if (pci_platform_power_transition(dev, state))
1647 return error;
1648 }
1649
1650 return 0;
1651}
1652
1653/**
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657 *
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1660 *
1661 * RETURN VALUE:
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1669 */
1670int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671{
1672 return __pci_set_power_state(dev, state, false);
1673}
1674EXPORT_SYMBOL(pci_set_power_state);
1675
1676int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677{
1678 lockdep_assert_held(&pci_bus_sem);
1679
1680 return __pci_set_power_state(dev, state, true);
1681}
1682EXPORT_SYMBOL(pci_set_power_state_locked);
1683
1684#define PCI_EXP_SAVE_REGS 7
1685
1686static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687 u16 cap, bool extended)
1688{
1689 struct pci_cap_saved_state *tmp;
1690
1691 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693 return tmp;
1694 }
1695 return NULL;
1696}
1697
1698struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699{
1700 return _pci_find_saved_cap(dev, cap, false);
1701}
1702
1703struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704{
1705 return _pci_find_saved_cap(dev, cap, true);
1706}
1707
1708static int pci_save_pcie_state(struct pci_dev *dev)
1709{
1710 int i = 0;
1711 struct pci_cap_saved_state *save_state;
1712 u16 *cap;
1713
1714 if (!pci_is_pcie(dev))
1715 return 0;
1716
1717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718 if (!save_state) {
1719 pci_err(dev, "buffer not found in %s\n", __func__);
1720 return -ENOMEM;
1721 }
1722
1723 cap = (u16 *)&save_state->cap.data[0];
1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1728 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731
1732 pci_save_aspm_l1ss_state(dev);
1733 pci_save_ltr_state(dev);
1734
1735 return 0;
1736}
1737
1738static void pci_restore_pcie_state(struct pci_dev *dev)
1739{
1740 int i = 0;
1741 struct pci_cap_saved_state *save_state;
1742 u16 *cap;
1743
1744 /*
1745 * Restore max latencies (in the LTR capability) before enabling
1746 * LTR itself in PCI_EXP_DEVCTL2.
1747 */
1748 pci_restore_ltr_state(dev);
1749 pci_restore_aspm_l1ss_state(dev);
1750
1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752 if (!save_state)
1753 return;
1754
1755 /*
1756 * Downstream ports reset the LTR enable bit when link goes down.
1757 * Check and re-configure the bit here before restoring device.
1758 * PCIe r5.0, sec 7.5.3.16.
1759 */
1760 pci_bridge_reconfigure_ltr(dev);
1761
1762 cap = (u16 *)&save_state->cap.data[0];
1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770}
1771
1772static int pci_save_pcix_state(struct pci_dev *dev)
1773{
1774 int pos;
1775 struct pci_cap_saved_state *save_state;
1776
1777 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778 if (!pos)
1779 return 0;
1780
1781 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782 if (!save_state) {
1783 pci_err(dev, "buffer not found in %s\n", __func__);
1784 return -ENOMEM;
1785 }
1786
1787 pci_read_config_word(dev, pos + PCI_X_CMD,
1788 (u16 *)save_state->cap.data);
1789
1790 return 0;
1791}
1792
1793static void pci_restore_pcix_state(struct pci_dev *dev)
1794{
1795 int i = 0, pos;
1796 struct pci_cap_saved_state *save_state;
1797 u16 *cap;
1798
1799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801 if (!save_state || !pos)
1802 return;
1803 cap = (u16 *)&save_state->cap.data[0];
1804
1805 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806}
1807
1808/**
1809 * pci_save_state - save the PCI configuration space of a device before
1810 * suspending
1811 * @dev: PCI device that we're dealing with
1812 */
1813int pci_save_state(struct pci_dev *dev)
1814{
1815 int i;
1816 /* XXX: 100% dword access ok here? */
1817 for (i = 0; i < 16; i++) {
1818 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819 pci_dbg(dev, "save config %#04x: %#010x\n",
1820 i * 4, dev->saved_config_space[i]);
1821 }
1822 dev->state_saved = true;
1823
1824 i = pci_save_pcie_state(dev);
1825 if (i != 0)
1826 return i;
1827
1828 i = pci_save_pcix_state(dev);
1829 if (i != 0)
1830 return i;
1831
1832 pci_save_dpc_state(dev);
1833 pci_save_aer_state(dev);
1834 pci_save_ptm_state(dev);
1835 pci_save_tph_state(dev);
1836 return pci_save_vc_state(dev);
1837}
1838EXPORT_SYMBOL(pci_save_state);
1839
1840static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1841 u32 saved_val, int retry, bool force)
1842{
1843 u32 val;
1844
1845 pci_read_config_dword(pdev, offset, &val);
1846 if (!force && val == saved_val)
1847 return;
1848
1849 for (;;) {
1850 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1851 offset, val, saved_val);
1852 pci_write_config_dword(pdev, offset, saved_val);
1853 if (retry-- <= 0)
1854 return;
1855
1856 pci_read_config_dword(pdev, offset, &val);
1857 if (val == saved_val)
1858 return;
1859
1860 mdelay(1);
1861 }
1862}
1863
1864static void pci_restore_config_space_range(struct pci_dev *pdev,
1865 int start, int end, int retry,
1866 bool force)
1867{
1868 int index;
1869
1870 for (index = end; index >= start; index--)
1871 pci_restore_config_dword(pdev, 4 * index,
1872 pdev->saved_config_space[index],
1873 retry, force);
1874}
1875
1876static void pci_restore_config_space(struct pci_dev *pdev)
1877{
1878 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1879 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1880 /* Restore BARs before the command register. */
1881 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1882 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1883 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1884 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1885
1886 /*
1887 * Force rewriting of prefetch registers to avoid S3 resume
1888 * issues on Intel PCI bridges that occur when these
1889 * registers are not explicitly written.
1890 */
1891 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1892 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1893 } else {
1894 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1895 }
1896}
1897
1898static void pci_restore_rebar_state(struct pci_dev *pdev)
1899{
1900 unsigned int pos, nbars, i;
1901 u32 ctrl;
1902
1903 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1904 if (!pos)
1905 return;
1906
1907 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1908 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1909
1910 for (i = 0; i < nbars; i++, pos += 8) {
1911 struct resource *res;
1912 int bar_idx, size;
1913
1914 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1916 res = pdev->resource + bar_idx;
1917 size = pci_rebar_bytes_to_size(resource_size(res));
1918 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1919 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1920 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1921 }
1922}
1923
1924/**
1925 * pci_restore_state - Restore the saved state of a PCI device
1926 * @dev: PCI device that we're dealing with
1927 */
1928void pci_restore_state(struct pci_dev *dev)
1929{
1930 if (!dev->state_saved)
1931 return;
1932
1933 pci_restore_pcie_state(dev);
1934 pci_restore_pasid_state(dev);
1935 pci_restore_pri_state(dev);
1936 pci_restore_ats_state(dev);
1937 pci_restore_vc_state(dev);
1938 pci_restore_rebar_state(dev);
1939 pci_restore_dpc_state(dev);
1940 pci_restore_ptm_state(dev);
1941 pci_restore_tph_state(dev);
1942
1943 pci_aer_clear_status(dev);
1944 pci_restore_aer_state(dev);
1945
1946 pci_restore_config_space(dev);
1947
1948 pci_restore_pcix_state(dev);
1949 pci_restore_msi_state(dev);
1950
1951 /* Restore ACS and IOV configuration state */
1952 pci_enable_acs(dev);
1953 pci_restore_iov_state(dev);
1954
1955 dev->state_saved = false;
1956}
1957EXPORT_SYMBOL(pci_restore_state);
1958
1959struct pci_saved_state {
1960 u32 config_space[16];
1961 struct pci_cap_saved_data cap[];
1962};
1963
1964/**
1965 * pci_store_saved_state - Allocate and return an opaque struct containing
1966 * the device saved state.
1967 * @dev: PCI device that we're dealing with
1968 *
1969 * Return NULL if no state or error.
1970 */
1971struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1972{
1973 struct pci_saved_state *state;
1974 struct pci_cap_saved_state *tmp;
1975 struct pci_cap_saved_data *cap;
1976 size_t size;
1977
1978 if (!dev->state_saved)
1979 return NULL;
1980
1981 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1982
1983 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1984 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1985
1986 state = kzalloc(size, GFP_KERNEL);
1987 if (!state)
1988 return NULL;
1989
1990 memcpy(state->config_space, dev->saved_config_space,
1991 sizeof(state->config_space));
1992
1993 cap = state->cap;
1994 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1995 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1996 memcpy(cap, &tmp->cap, len);
1997 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1998 }
1999 /* Empty cap_save terminates list */
2000
2001 return state;
2002}
2003EXPORT_SYMBOL_GPL(pci_store_saved_state);
2004
2005/**
2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007 * @dev: PCI device that we're dealing with
2008 * @state: Saved state returned from pci_store_saved_state()
2009 */
2010int pci_load_saved_state(struct pci_dev *dev,
2011 struct pci_saved_state *state)
2012{
2013 struct pci_cap_saved_data *cap;
2014
2015 dev->state_saved = false;
2016
2017 if (!state)
2018 return 0;
2019
2020 memcpy(dev->saved_config_space, state->config_space,
2021 sizeof(state->config_space));
2022
2023 cap = state->cap;
2024 while (cap->size) {
2025 struct pci_cap_saved_state *tmp;
2026
2027 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2028 if (!tmp || tmp->cap.size != cap->size)
2029 return -EINVAL;
2030
2031 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2032 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2033 sizeof(struct pci_cap_saved_data) + cap->size);
2034 }
2035
2036 dev->state_saved = true;
2037 return 0;
2038}
2039EXPORT_SYMBOL_GPL(pci_load_saved_state);
2040
2041/**
2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043 * and free the memory allocated for it.
2044 * @dev: PCI device that we're dealing with
2045 * @state: Pointer to saved state returned from pci_store_saved_state()
2046 */
2047int pci_load_and_free_saved_state(struct pci_dev *dev,
2048 struct pci_saved_state **state)
2049{
2050 int ret = pci_load_saved_state(dev, *state);
2051 kfree(*state);
2052 *state = NULL;
2053 return ret;
2054}
2055EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2056
2057int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2058{
2059 return pci_enable_resources(dev, bars);
2060}
2061
2062static int do_pci_enable_device(struct pci_dev *dev, int bars)
2063{
2064 int err;
2065 struct pci_dev *bridge;
2066 u16 cmd;
2067 u8 pin;
2068
2069 err = pci_set_power_state(dev, PCI_D0);
2070 if (err < 0 && err != -EIO)
2071 return err;
2072
2073 bridge = pci_upstream_bridge(dev);
2074 if (bridge)
2075 pcie_aspm_powersave_config_link(bridge);
2076
2077 err = pcibios_enable_device(dev, bars);
2078 if (err < 0)
2079 return err;
2080 pci_fixup_device(pci_fixup_enable, dev);
2081
2082 if (dev->msi_enabled || dev->msix_enabled)
2083 return 0;
2084
2085 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2086 if (pin) {
2087 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2088 if (cmd & PCI_COMMAND_INTX_DISABLE)
2089 pci_write_config_word(dev, PCI_COMMAND,
2090 cmd & ~PCI_COMMAND_INTX_DISABLE);
2091 }
2092
2093 return 0;
2094}
2095
2096/**
2097 * pci_reenable_device - Resume abandoned device
2098 * @dev: PCI device to be resumed
2099 *
2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101 * to be called by normal code, write proper resume handler and use it instead.
2102 */
2103int pci_reenable_device(struct pci_dev *dev)
2104{
2105 if (pci_is_enabled(dev))
2106 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2107 return 0;
2108}
2109EXPORT_SYMBOL(pci_reenable_device);
2110
2111static void pci_enable_bridge(struct pci_dev *dev)
2112{
2113 struct pci_dev *bridge;
2114 int retval;
2115
2116 bridge = pci_upstream_bridge(dev);
2117 if (bridge)
2118 pci_enable_bridge(bridge);
2119
2120 if (pci_is_enabled(dev)) {
2121 if (!dev->is_busmaster)
2122 pci_set_master(dev);
2123 return;
2124 }
2125
2126 retval = pci_enable_device(dev);
2127 if (retval)
2128 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2129 retval);
2130 pci_set_master(dev);
2131}
2132
2133static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2134{
2135 struct pci_dev *bridge;
2136 int err;
2137 int i, bars = 0;
2138
2139 /*
2140 * Power state could be unknown at this point, either due to a fresh
2141 * boot or a device removal call. So get the current power state
2142 * so that things like MSI message writing will behave as expected
2143 * (e.g. if the device really is in D0 at enable time).
2144 */
2145 pci_update_current_state(dev, dev->current_state);
2146
2147 if (atomic_inc_return(&dev->enable_cnt) > 1)
2148 return 0; /* already enabled */
2149
2150 bridge = pci_upstream_bridge(dev);
2151 if (bridge)
2152 pci_enable_bridge(bridge);
2153
2154 /* only skip sriov related */
2155 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2156 if (dev->resource[i].flags & flags)
2157 bars |= (1 << i);
2158 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2159 if (dev->resource[i].flags & flags)
2160 bars |= (1 << i);
2161
2162 err = do_pci_enable_device(dev, bars);
2163 if (err < 0)
2164 atomic_dec(&dev->enable_cnt);
2165 return err;
2166}
2167
2168/**
2169 * pci_enable_device_mem - Initialize a device for use with Memory space
2170 * @dev: PCI device to be initialized
2171 *
2172 * Initialize device before it's used by a driver. Ask low-level code
2173 * to enable Memory resources. Wake up the device if it was suspended.
2174 * Beware, this function can fail.
2175 */
2176int pci_enable_device_mem(struct pci_dev *dev)
2177{
2178 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2179}
2180EXPORT_SYMBOL(pci_enable_device_mem);
2181
2182/**
2183 * pci_enable_device - Initialize device before it's used by a driver.
2184 * @dev: PCI device to be initialized
2185 *
2186 * Initialize device before it's used by a driver. Ask low-level code
2187 * to enable I/O and memory. Wake up the device if it was suspended.
2188 * Beware, this function can fail.
2189 *
2190 * Note we don't actually enable the device many times if we call
2191 * this function repeatedly (we just increment the count).
2192 */
2193int pci_enable_device(struct pci_dev *dev)
2194{
2195 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2196}
2197EXPORT_SYMBOL(pci_enable_device);
2198
2199/*
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
2207int __weak pcibios_device_add(struct pci_dev *dev)
2208{
2209 return 0;
2210}
2211
2212/**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 * device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
2221void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223/**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
2231void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
2233static void do_pci_disable_device(struct pci_dev *dev)
2234{
2235 u16 pci_command;
2236
2237 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2238 if (pci_command & PCI_COMMAND_MASTER) {
2239 pci_command &= ~PCI_COMMAND_MASTER;
2240 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2241 }
2242
2243 pcibios_disable_device(dev);
2244}
2245
2246/**
2247 * pci_disable_enabled_device - Disable device without updating enable_cnt
2248 * @dev: PCI device to disable
2249 *
2250 * NOTE: This function is a backend of PCI power management routines and is
2251 * not supposed to be called drivers.
2252 */
2253void pci_disable_enabled_device(struct pci_dev *dev)
2254{
2255 if (pci_is_enabled(dev))
2256 do_pci_disable_device(dev);
2257}
2258
2259/**
2260 * pci_disable_device - Disable PCI device after use
2261 * @dev: PCI device to be disabled
2262 *
2263 * Signal to the system that the PCI device is not in use by the system
2264 * anymore. This only involves disabling PCI bus-mastering, if active.
2265 *
2266 * Note we don't actually disable the device until all callers of
2267 * pci_enable_device() have called pci_disable_device().
2268 */
2269void pci_disable_device(struct pci_dev *dev)
2270{
2271 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2272 "disabling already-disabled device");
2273
2274 if (atomic_dec_return(&dev->enable_cnt) != 0)
2275 return;
2276
2277 do_pci_disable_device(dev);
2278
2279 dev->is_busmaster = 0;
2280}
2281EXPORT_SYMBOL(pci_disable_device);
2282
2283/**
2284 * pcibios_set_pcie_reset_state - set reset state for device dev
2285 * @dev: the PCIe device reset
2286 * @state: Reset state to enter into
2287 *
2288 * Set the PCIe reset state for the device. This is the default
2289 * implementation. Architecture implementations can override this.
2290 */
2291int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2292 enum pcie_reset_state state)
2293{
2294 return -EINVAL;
2295}
2296
2297/**
2298 * pci_set_pcie_reset_state - set reset state for device dev
2299 * @dev: the PCIe device reset
2300 * @state: Reset state to enter into
2301 *
2302 * Sets the PCI reset state for the device.
2303 */
2304int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2305{
2306 return pcibios_set_pcie_reset_state(dev, state);
2307}
2308EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2309
2310#ifdef CONFIG_PCIEAER
2311void pcie_clear_device_status(struct pci_dev *dev)
2312{
2313 u16 sta;
2314
2315 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2316 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2317}
2318#endif
2319
2320/**
2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322 * @dev: PCIe root port or event collector.
2323 */
2324void pcie_clear_root_pme_status(struct pci_dev *dev)
2325{
2326 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2327}
2328
2329/**
2330 * pci_check_pme_status - Check if given device has generated PME.
2331 * @dev: Device to check.
2332 *
2333 * Check the PME status of the device and if set, clear it and clear PME enable
2334 * (if set). Return 'true' if PME status and PME enable were both set or
2335 * 'false' otherwise.
2336 */
2337bool pci_check_pme_status(struct pci_dev *dev)
2338{
2339 int pmcsr_pos;
2340 u16 pmcsr;
2341 bool ret = false;
2342
2343 if (!dev->pm_cap)
2344 return false;
2345
2346 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2347 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2348 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2349 return false;
2350
2351 /* Clear PME status. */
2352 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2354 /* Disable PME to avoid interrupt flood. */
2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356 ret = true;
2357 }
2358
2359 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2360
2361 return ret;
2362}
2363
2364/**
2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366 * @dev: Device to handle.
2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2368 *
2369 * Check if @dev has generated PME and queue a resume request for it in that
2370 * case.
2371 */
2372static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2373{
2374 if (pme_poll_reset && dev->pme_poll)
2375 dev->pme_poll = false;
2376
2377 if (pci_check_pme_status(dev)) {
2378 pci_wakeup_event(dev);
2379 pm_request_resume(&dev->dev);
2380 }
2381 return 0;
2382}
2383
2384/**
2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386 * @bus: Top bus of the subtree to walk.
2387 */
2388void pci_pme_wakeup_bus(struct pci_bus *bus)
2389{
2390 if (bus)
2391 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2392}
2393
2394
2395/**
2396 * pci_pme_capable - check the capability of PCI device to generate PME#
2397 * @dev: PCI device to handle.
2398 * @state: PCI state from which device will issue PME#.
2399 */
2400bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2401{
2402 if (!dev->pm_cap)
2403 return false;
2404
2405 return !!(dev->pme_support & (1 << state));
2406}
2407EXPORT_SYMBOL(pci_pme_capable);
2408
2409static void pci_pme_list_scan(struct work_struct *work)
2410{
2411 struct pci_pme_device *pme_dev, *n;
2412
2413 mutex_lock(&pci_pme_list_mutex);
2414 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2415 struct pci_dev *pdev = pme_dev->dev;
2416
2417 if (pdev->pme_poll) {
2418 struct pci_dev *bridge = pdev->bus->self;
2419 struct device *dev = &pdev->dev;
2420 struct device *bdev = bridge ? &bridge->dev : NULL;
2421 int bref = 0;
2422
2423 /*
2424 * If we have a bridge, it should be in an active/D0
2425 * state or the configuration space of subordinate
2426 * devices may not be accessible or stable over the
2427 * course of the call.
2428 */
2429 if (bdev) {
2430 bref = pm_runtime_get_if_active(bdev);
2431 if (!bref)
2432 continue;
2433
2434 if (bridge->current_state != PCI_D0)
2435 goto put_bridge;
2436 }
2437
2438 /*
2439 * The device itself should be suspended but config
2440 * space must be accessible, therefore it cannot be in
2441 * D3cold.
2442 */
2443 if (pm_runtime_suspended(dev) &&
2444 pdev->current_state != PCI_D3cold)
2445 pci_pme_wakeup(pdev, NULL);
2446
2447put_bridge:
2448 if (bref > 0)
2449 pm_runtime_put(bdev);
2450 } else {
2451 list_del(&pme_dev->list);
2452 kfree(pme_dev);
2453 }
2454 }
2455 if (!list_empty(&pci_pme_list))
2456 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2457 msecs_to_jiffies(PME_TIMEOUT));
2458 mutex_unlock(&pci_pme_list_mutex);
2459}
2460
2461static void __pci_pme_active(struct pci_dev *dev, bool enable)
2462{
2463 u16 pmcsr;
2464
2465 if (!dev->pme_support)
2466 return;
2467
2468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2469 /* Clear PME_Status by writing 1 to it and enable PME# */
2470 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2471 if (!enable)
2472 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473
2474 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2475}
2476
2477/**
2478 * pci_pme_restore - Restore PME configuration after config space restore.
2479 * @dev: PCI device to update.
2480 */
2481void pci_pme_restore(struct pci_dev *dev)
2482{
2483 u16 pmcsr;
2484
2485 if (!dev->pme_support)
2486 return;
2487
2488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2489 if (dev->wakeup_prepared) {
2490 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2491 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2492 } else {
2493 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2494 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2495 }
2496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2497}
2498
2499/**
2500 * pci_pme_active - enable or disable PCI device's PME# function
2501 * @dev: PCI device to handle.
2502 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2503 *
2504 * The caller must verify that the device is capable of generating PME# before
2505 * calling this function with @enable equal to 'true'.
2506 */
2507void pci_pme_active(struct pci_dev *dev, bool enable)
2508{
2509 __pci_pme_active(dev, enable);
2510
2511 /*
2512 * PCI (as opposed to PCIe) PME requires that the device have
2513 * its PME# line hooked up correctly. Not all hardware vendors
2514 * do this, so the PME never gets delivered and the device
2515 * remains asleep. The easiest way around this is to
2516 * periodically walk the list of suspended devices and check
2517 * whether any have their PME flag set. The assumption is that
2518 * we'll wake up often enough anyway that this won't be a huge
2519 * hit, and the power savings from the devices will still be a
2520 * win.
2521 *
2522 * Although PCIe uses in-band PME message instead of PME# line
2523 * to report PME, PME does not work for some PCIe devices in
2524 * reality. For example, there are devices that set their PME
2525 * status bits, but don't really bother to send a PME message;
2526 * there are PCI Express Root Ports that don't bother to
2527 * trigger interrupts when they receive PME messages from the
2528 * devices below. So PME poll is used for PCIe devices too.
2529 */
2530
2531 if (dev->pme_poll) {
2532 struct pci_pme_device *pme_dev;
2533 if (enable) {
2534 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2535 GFP_KERNEL);
2536 if (!pme_dev) {
2537 pci_warn(dev, "can't enable PME#\n");
2538 return;
2539 }
2540 pme_dev->dev = dev;
2541 mutex_lock(&pci_pme_list_mutex);
2542 list_add(&pme_dev->list, &pci_pme_list);
2543 if (list_is_singular(&pci_pme_list))
2544 queue_delayed_work(system_freezable_wq,
2545 &pci_pme_work,
2546 msecs_to_jiffies(PME_TIMEOUT));
2547 mutex_unlock(&pci_pme_list_mutex);
2548 } else {
2549 mutex_lock(&pci_pme_list_mutex);
2550 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2551 if (pme_dev->dev == dev) {
2552 list_del(&pme_dev->list);
2553 kfree(pme_dev);
2554 break;
2555 }
2556 }
2557 mutex_unlock(&pci_pme_list_mutex);
2558 }
2559 }
2560
2561 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2562}
2563EXPORT_SYMBOL(pci_pme_active);
2564
2565/**
2566 * __pci_enable_wake - enable PCI device as wakeup event source
2567 * @dev: PCI device affected
2568 * @state: PCI state from which device will issue wakeup events
2569 * @enable: True to enable event generation; false to disable
2570 *
2571 * This enables the device as a wakeup event source, or disables it.
2572 * When such events involves platform-specific hooks, those hooks are
2573 * called automatically by this routine.
2574 *
2575 * Devices with legacy power management (no standard PCI PM capabilities)
2576 * always require such platform hooks.
2577 *
2578 * RETURN VALUE:
2579 * 0 is returned on success
2580 * -EINVAL is returned if device is not supposed to wake up the system
2581 * Error code depending on the platform is returned if both the platform and
2582 * the native mechanism fail to enable the generation of wake-up events
2583 */
2584static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2585{
2586 int ret = 0;
2587
2588 /*
2589 * Bridges that are not power-manageable directly only signal
2590 * wakeup on behalf of subordinate devices which is set up
2591 * elsewhere, so skip them. However, bridges that are
2592 * power-manageable may signal wakeup for themselves (for example,
2593 * on a hotplug event) and they need to be covered here.
2594 */
2595 if (!pci_power_manageable(dev))
2596 return 0;
2597
2598 /* Don't do the same thing twice in a row for one device. */
2599 if (!!enable == !!dev->wakeup_prepared)
2600 return 0;
2601
2602 /*
2603 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605 * enable. To disable wake-up we call the platform first, for symmetry.
2606 */
2607
2608 if (enable) {
2609 int error;
2610
2611 /*
2612 * Enable PME signaling if the device can signal PME from
2613 * D3cold regardless of whether or not it can signal PME from
2614 * the current target state, because that will allow it to
2615 * signal PME when the hierarchy above it goes into D3cold and
2616 * the device itself ends up in D3cold as a result of that.
2617 */
2618 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2619 pci_pme_active(dev, true);
2620 else
2621 ret = 1;
2622 error = platform_pci_set_wakeup(dev, true);
2623 if (ret)
2624 ret = error;
2625 if (!ret)
2626 dev->wakeup_prepared = true;
2627 } else {
2628 platform_pci_set_wakeup(dev, false);
2629 pci_pme_active(dev, false);
2630 dev->wakeup_prepared = false;
2631 }
2632
2633 return ret;
2634}
2635
2636/**
2637 * pci_enable_wake - change wakeup settings for a PCI device
2638 * @pci_dev: Target device
2639 * @state: PCI state from which device will issue wakeup events
2640 * @enable: Whether or not to enable event generation
2641 *
2642 * If @enable is set, check device_may_wakeup() for the device before calling
2643 * __pci_enable_wake() for it.
2644 */
2645int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2646{
2647 if (enable && !device_may_wakeup(&pci_dev->dev))
2648 return -EINVAL;
2649
2650 return __pci_enable_wake(pci_dev, state, enable);
2651}
2652EXPORT_SYMBOL(pci_enable_wake);
2653
2654/**
2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656 * @dev: PCI device to prepare
2657 * @enable: True to enable wake-up event generation; false to disable
2658 *
2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660 * and this function allows them to set that up cleanly - pci_enable_wake()
2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662 * ordering constraints.
2663 *
2664 * This function only returns error code if the device is not allowed to wake
2665 * up the system from sleep or it is not capable of generating PME# from both
2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2667 */
2668int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2669{
2670 return pci_pme_capable(dev, PCI_D3cold) ?
2671 pci_enable_wake(dev, PCI_D3cold, enable) :
2672 pci_enable_wake(dev, PCI_D3hot, enable);
2673}
2674EXPORT_SYMBOL(pci_wake_from_d3);
2675
2676/**
2677 * pci_target_state - find an appropriate low power state for a given PCI dev
2678 * @dev: PCI device
2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2680 *
2681 * Use underlying platform code to find a supported low power state for @dev.
2682 * If the platform can't manage @dev, return the deepest state from which it
2683 * can generate wake events, based on any available PME info.
2684 */
2685static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2686{
2687 if (platform_pci_power_manageable(dev)) {
2688 /*
2689 * Call the platform to find the target state for the device.
2690 */
2691 pci_power_t state = platform_pci_choose_state(dev);
2692
2693 switch (state) {
2694 case PCI_POWER_ERROR:
2695 case PCI_UNKNOWN:
2696 return PCI_D3hot;
2697
2698 case PCI_D1:
2699 case PCI_D2:
2700 if (pci_no_d1d2(dev))
2701 return PCI_D3hot;
2702 }
2703
2704 return state;
2705 }
2706
2707 /*
2708 * If the device is in D3cold even though it's not power-manageable by
2709 * the platform, it may have been powered down by non-standard means.
2710 * Best to let it slumber.
2711 */
2712 if (dev->current_state == PCI_D3cold)
2713 return PCI_D3cold;
2714 else if (!dev->pm_cap)
2715 return PCI_D0;
2716
2717 if (wakeup && dev->pme_support) {
2718 pci_power_t state = PCI_D3hot;
2719
2720 /*
2721 * Find the deepest state from which the device can generate
2722 * PME#.
2723 */
2724 while (state && !(dev->pme_support & (1 << state)))
2725 state--;
2726
2727 if (state)
2728 return state;
2729 else if (dev->pme_support & 1)
2730 return PCI_D0;
2731 }
2732
2733 return PCI_D3hot;
2734}
2735
2736/**
2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738 * into a sleep state
2739 * @dev: Device to handle.
2740 *
2741 * Choose the power state appropriate for the device depending on whether
2742 * it can wake up the system and/or is power manageable by the platform
2743 * (PCI_D3hot is the default) and put the device into that state.
2744 */
2745int pci_prepare_to_sleep(struct pci_dev *dev)
2746{
2747 bool wakeup = device_may_wakeup(&dev->dev);
2748 pci_power_t target_state = pci_target_state(dev, wakeup);
2749 int error;
2750
2751 if (target_state == PCI_POWER_ERROR)
2752 return -EIO;
2753
2754 pci_enable_wake(dev, target_state, wakeup);
2755
2756 error = pci_set_power_state(dev, target_state);
2757
2758 if (error)
2759 pci_enable_wake(dev, target_state, false);
2760
2761 return error;
2762}
2763EXPORT_SYMBOL(pci_prepare_to_sleep);
2764
2765/**
2766 * pci_back_from_sleep - turn PCI device on during system-wide transition
2767 * into working state
2768 * @dev: Device to handle.
2769 *
2770 * Disable device's system wake-up capability and put it into D0.
2771 */
2772int pci_back_from_sleep(struct pci_dev *dev)
2773{
2774 int ret = pci_set_power_state(dev, PCI_D0);
2775
2776 if (ret)
2777 return ret;
2778
2779 pci_enable_wake(dev, PCI_D0, false);
2780 return 0;
2781}
2782EXPORT_SYMBOL(pci_back_from_sleep);
2783
2784/**
2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786 * @dev: PCI device being suspended.
2787 *
2788 * Prepare @dev to generate wake-up events at run time and put it into a low
2789 * power state.
2790 */
2791int pci_finish_runtime_suspend(struct pci_dev *dev)
2792{
2793 pci_power_t target_state;
2794 int error;
2795
2796 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2797 if (target_state == PCI_POWER_ERROR)
2798 return -EIO;
2799
2800 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2801
2802 error = pci_set_power_state(dev, target_state);
2803
2804 if (error)
2805 pci_enable_wake(dev, target_state, false);
2806
2807 return error;
2808}
2809
2810/**
2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812 * @dev: Device to check.
2813 *
2814 * Return true if the device itself is capable of generating wake-up events
2815 * (through the platform or using the native PCIe PME) or if the device supports
2816 * PME and one of its upstream bridges can generate wake-up events.
2817 */
2818bool pci_dev_run_wake(struct pci_dev *dev)
2819{
2820 struct pci_bus *bus = dev->bus;
2821
2822 if (!dev->pme_support)
2823 return false;
2824
2825 /* PME-capable in principle, but not from the target power state */
2826 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2827 return false;
2828
2829 if (device_can_wakeup(&dev->dev))
2830 return true;
2831
2832 while (bus->parent) {
2833 struct pci_dev *bridge = bus->self;
2834
2835 if (device_can_wakeup(&bridge->dev))
2836 return true;
2837
2838 bus = bus->parent;
2839 }
2840
2841 /* We have reached the root bus. */
2842 if (bus->bridge)
2843 return device_can_wakeup(bus->bridge);
2844
2845 return false;
2846}
2847EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2848
2849/**
2850 * pci_dev_need_resume - Check if it is necessary to resume the device.
2851 * @pci_dev: Device to check.
2852 *
2853 * Return 'true' if the device is not runtime-suspended or it has to be
2854 * reconfigured due to wakeup settings difference between system and runtime
2855 * suspend, or the current power state of it is not suitable for the upcoming
2856 * (system-wide) transition.
2857 */
2858bool pci_dev_need_resume(struct pci_dev *pci_dev)
2859{
2860 struct device *dev = &pci_dev->dev;
2861 pci_power_t target_state;
2862
2863 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2864 return true;
2865
2866 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2867
2868 /*
2869 * If the earlier platform check has not triggered, D3cold is just power
2870 * removal on top of D3hot, so no need to resume the device in that
2871 * case.
2872 */
2873 return target_state != pci_dev->current_state &&
2874 target_state != PCI_D3cold &&
2875 pci_dev->current_state != PCI_D3hot;
2876}
2877
2878/**
2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880 * @pci_dev: Device to check.
2881 *
2882 * If the device is suspended and it is not configured for system wakeup,
2883 * disable PME for it to prevent it from waking up the system unnecessarily.
2884 *
2885 * Note that if the device's power state is D3cold and the platform check in
2886 * pci_dev_need_resume() has not triggered, the device's configuration need not
2887 * be changed.
2888 */
2889void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2890{
2891 struct device *dev = &pci_dev->dev;
2892
2893 spin_lock_irq(&dev->power.lock);
2894
2895 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2896 pci_dev->current_state < PCI_D3cold)
2897 __pci_pme_active(pci_dev, false);
2898
2899 spin_unlock_irq(&dev->power.lock);
2900}
2901
2902/**
2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904 * @pci_dev: Device to handle.
2905 *
2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907 * it might have been disabled during the prepare phase of system suspend if
2908 * the device was not configured for system wakeup.
2909 */
2910void pci_dev_complete_resume(struct pci_dev *pci_dev)
2911{
2912 struct device *dev = &pci_dev->dev;
2913
2914 if (!pci_dev_run_wake(pci_dev))
2915 return;
2916
2917 spin_lock_irq(&dev->power.lock);
2918
2919 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2920 __pci_pme_active(pci_dev, true);
2921
2922 spin_unlock_irq(&dev->power.lock);
2923}
2924
2925/**
2926 * pci_choose_state - Choose the power state of a PCI device.
2927 * @dev: Target PCI device.
2928 * @state: Target state for the whole system.
2929 *
2930 * Returns PCI power state suitable for @dev and @state.
2931 */
2932pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2933{
2934 if (state.event == PM_EVENT_ON)
2935 return PCI_D0;
2936
2937 return pci_target_state(dev, false);
2938}
2939EXPORT_SYMBOL(pci_choose_state);
2940
2941void pci_config_pm_runtime_get(struct pci_dev *pdev)
2942{
2943 struct device *dev = &pdev->dev;
2944 struct device *parent = dev->parent;
2945
2946 if (parent)
2947 pm_runtime_get_sync(parent);
2948 pm_runtime_get_noresume(dev);
2949 /*
2950 * pdev->current_state is set to PCI_D3cold during suspending,
2951 * so wait until suspending completes
2952 */
2953 pm_runtime_barrier(dev);
2954 /*
2955 * Only need to resume devices in D3cold, because config
2956 * registers are still accessible for devices suspended but
2957 * not in D3cold.
2958 */
2959 if (pdev->current_state == PCI_D3cold)
2960 pm_runtime_resume(dev);
2961}
2962
2963void pci_config_pm_runtime_put(struct pci_dev *pdev)
2964{
2965 struct device *dev = &pdev->dev;
2966 struct device *parent = dev->parent;
2967
2968 pm_runtime_put(dev);
2969 if (parent)
2970 pm_runtime_put_sync(parent);
2971}
2972
2973static const struct dmi_system_id bridge_d3_blacklist[] = {
2974#ifdef CONFIG_X86
2975 {
2976 /*
2977 * Gigabyte X299 root port is not marked as hotplug capable
2978 * which allows Linux to power manage it. However, this
2979 * confuses the BIOS SMI handler so don't power manage root
2980 * ports on that system.
2981 */
2982 .ident = "X299 DESIGNARE EX-CF",
2983 .matches = {
2984 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2985 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2986 },
2987 },
2988 {
2989 /*
2990 * Downstream device is not accessible after putting a root port
2991 * into D3cold and back into D0 on Elo Continental Z2 board
2992 */
2993 .ident = "Elo Continental Z2",
2994 .matches = {
2995 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2996 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2997 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2998 },
2999 },
3000 {
3001 /*
3002 * Changing power state of root port dGPU is connected fails
3003 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3004 */
3005 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3006 .matches = {
3007 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3008 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3009 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3010 },
3011 },
3012#endif
3013 { }
3014};
3015
3016/**
3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018 * @bridge: Bridge to check
3019 *
3020 * This function checks if it is possible to move the bridge to D3.
3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3022 */
3023bool pci_bridge_d3_possible(struct pci_dev *bridge)
3024{
3025 if (!pci_is_pcie(bridge))
3026 return false;
3027
3028 switch (pci_pcie_type(bridge)) {
3029 case PCI_EXP_TYPE_ROOT_PORT:
3030 case PCI_EXP_TYPE_UPSTREAM:
3031 case PCI_EXP_TYPE_DOWNSTREAM:
3032 if (pci_bridge_d3_disable)
3033 return false;
3034
3035 /*
3036 * Hotplug ports handled by firmware in System Management Mode
3037 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3038 */
3039 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3040 return false;
3041
3042 if (pci_bridge_d3_force)
3043 return true;
3044
3045 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3046 if (bridge->is_thunderbolt)
3047 return true;
3048
3049 /* Platform might know better if the bridge supports D3 */
3050 if (platform_pci_bridge_d3(bridge))
3051 return true;
3052
3053 /*
3054 * Hotplug ports handled natively by the OS were not validated
3055 * by vendors for runtime D3 at least until 2018 because there
3056 * was no OS support.
3057 */
3058 if (bridge->is_hotplug_bridge)
3059 return false;
3060
3061 if (dmi_check_system(bridge_d3_blacklist))
3062 return false;
3063
3064 /*
3065 * It should be safe to put PCIe ports from 2015 or newer
3066 * to D3.
3067 */
3068 if (dmi_get_bios_year() >= 2015)
3069 return true;
3070 break;
3071 }
3072
3073 return false;
3074}
3075
3076static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3077{
3078 bool *d3cold_ok = data;
3079
3080 if (/* The device needs to be allowed to go D3cold ... */
3081 dev->no_d3cold || !dev->d3cold_allowed ||
3082
3083 /* ... and if it is wakeup capable to do so from D3cold. */
3084 (device_may_wakeup(&dev->dev) &&
3085 !pci_pme_capable(dev, PCI_D3cold)) ||
3086
3087 /* If it is a bridge it must be allowed to go to D3. */
3088 !pci_power_manageable(dev))
3089
3090 *d3cold_ok = false;
3091
3092 return !*d3cold_ok;
3093}
3094
3095/*
3096 * pci_bridge_d3_update - Update bridge D3 capabilities
3097 * @dev: PCI device which is changed
3098 *
3099 * Update upstream bridge PM capabilities accordingly depending on if the
3100 * device PM configuration was changed or the device is being removed. The
3101 * change is also propagated upstream.
3102 */
3103void pci_bridge_d3_update(struct pci_dev *dev)
3104{
3105 bool remove = !device_is_registered(&dev->dev);
3106 struct pci_dev *bridge;
3107 bool d3cold_ok = true;
3108
3109 bridge = pci_upstream_bridge(dev);
3110 if (!bridge || !pci_bridge_d3_possible(bridge))
3111 return;
3112
3113 /*
3114 * If D3 is currently allowed for the bridge, removing one of its
3115 * children won't change that.
3116 */
3117 if (remove && bridge->bridge_d3)
3118 return;
3119
3120 /*
3121 * If D3 is currently allowed for the bridge and a child is added or
3122 * changed, disallowance of D3 can only be caused by that child, so
3123 * we only need to check that single device, not any of its siblings.
3124 *
3125 * If D3 is currently not allowed for the bridge, checking the device
3126 * first may allow us to skip checking its siblings.
3127 */
3128 if (!remove)
3129 pci_dev_check_d3cold(dev, &d3cold_ok);
3130
3131 /*
3132 * If D3 is currently not allowed for the bridge, this may be caused
3133 * either by the device being changed/removed or any of its siblings,
3134 * so we need to go through all children to find out if one of them
3135 * continues to block D3.
3136 */
3137 if (d3cold_ok && !bridge->bridge_d3)
3138 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3139 &d3cold_ok);
3140
3141 if (bridge->bridge_d3 != d3cold_ok) {
3142 bridge->bridge_d3 = d3cold_ok;
3143 /* Propagate change to upstream bridges */
3144 pci_bridge_d3_update(bridge);
3145 }
3146}
3147
3148/**
3149 * pci_d3cold_enable - Enable D3cold for device
3150 * @dev: PCI device to handle
3151 *
3152 * This function can be used in drivers to enable D3cold from the device
3153 * they handle. It also updates upstream PCI bridge PM capabilities
3154 * accordingly.
3155 */
3156void pci_d3cold_enable(struct pci_dev *dev)
3157{
3158 if (dev->no_d3cold) {
3159 dev->no_d3cold = false;
3160 pci_bridge_d3_update(dev);
3161 }
3162}
3163EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3164
3165/**
3166 * pci_d3cold_disable - Disable D3cold for device
3167 * @dev: PCI device to handle
3168 *
3169 * This function can be used in drivers to disable D3cold from the device
3170 * they handle. It also updates upstream PCI bridge PM capabilities
3171 * accordingly.
3172 */
3173void pci_d3cold_disable(struct pci_dev *dev)
3174{
3175 if (!dev->no_d3cold) {
3176 dev->no_d3cold = true;
3177 pci_bridge_d3_update(dev);
3178 }
3179}
3180EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3181
3182/**
3183 * pci_pm_init - Initialize PM functions of given PCI device
3184 * @dev: PCI device to handle.
3185 */
3186void pci_pm_init(struct pci_dev *dev)
3187{
3188 int pm;
3189 u16 status;
3190 u16 pmc;
3191
3192 pm_runtime_forbid(&dev->dev);
3193 pm_runtime_set_active(&dev->dev);
3194 pm_runtime_enable(&dev->dev);
3195 device_enable_async_suspend(&dev->dev);
3196 dev->wakeup_prepared = false;
3197
3198 dev->pm_cap = 0;
3199 dev->pme_support = 0;
3200
3201 /* find PCI PM capability in list */
3202 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3203 if (!pm)
3204 return;
3205 /* Check device's ability to generate PME# */
3206 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3207
3208 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3209 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3210 pmc & PCI_PM_CAP_VER_MASK);
3211 return;
3212 }
3213
3214 dev->pm_cap = pm;
3215 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3216 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3217 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3218 dev->d3cold_allowed = true;
3219
3220 dev->d1_support = false;
3221 dev->d2_support = false;
3222 if (!pci_no_d1d2(dev)) {
3223 if (pmc & PCI_PM_CAP_D1)
3224 dev->d1_support = true;
3225 if (pmc & PCI_PM_CAP_D2)
3226 dev->d2_support = true;
3227
3228 if (dev->d1_support || dev->d2_support)
3229 pci_info(dev, "supports%s%s\n",
3230 dev->d1_support ? " D1" : "",
3231 dev->d2_support ? " D2" : "");
3232 }
3233
3234 pmc &= PCI_PM_CAP_PME_MASK;
3235 if (pmc) {
3236 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3237 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3238 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3239 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3240 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3241 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3242 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3243 dev->pme_poll = true;
3244 /*
3245 * Make device's PM flags reflect the wake-up capability, but
3246 * let the user space enable it to wake up the system as needed.
3247 */
3248 device_set_wakeup_capable(&dev->dev, true);
3249 /* Disable the PME# generation functionality */
3250 pci_pme_active(dev, false);
3251 }
3252
3253 pci_read_config_word(dev, PCI_STATUS, &status);
3254 if (status & PCI_STATUS_IMM_READY)
3255 dev->imm_ready = 1;
3256}
3257
3258static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3259{
3260 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3261
3262 switch (prop) {
3263 case PCI_EA_P_MEM:
3264 case PCI_EA_P_VF_MEM:
3265 flags |= IORESOURCE_MEM;
3266 break;
3267 case PCI_EA_P_MEM_PREFETCH:
3268 case PCI_EA_P_VF_MEM_PREFETCH:
3269 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3270 break;
3271 case PCI_EA_P_IO:
3272 flags |= IORESOURCE_IO;
3273 break;
3274 default:
3275 return 0;
3276 }
3277
3278 return flags;
3279}
3280
3281static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3282 u8 prop)
3283{
3284 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3285 return &dev->resource[bei];
3286#ifdef CONFIG_PCI_IOV
3287 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3288 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3289 return &dev->resource[PCI_IOV_RESOURCES +
3290 bei - PCI_EA_BEI_VF_BAR0];
3291#endif
3292 else if (bei == PCI_EA_BEI_ROM)
3293 return &dev->resource[PCI_ROM_RESOURCE];
3294 else
3295 return NULL;
3296}
3297
3298/* Read an Enhanced Allocation (EA) entry */
3299static int pci_ea_read(struct pci_dev *dev, int offset)
3300{
3301 struct resource *res;
3302 const char *res_name;
3303 int ent_size, ent_offset = offset;
3304 resource_size_t start, end;
3305 unsigned long flags;
3306 u32 dw0, bei, base, max_offset;
3307 u8 prop;
3308 bool support_64 = (sizeof(resource_size_t) >= 8);
3309
3310 pci_read_config_dword(dev, ent_offset, &dw0);
3311 ent_offset += 4;
3312
3313 /* Entry size field indicates DWORDs after 1st */
3314 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3315
3316 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3317 goto out;
3318
3319 bei = FIELD_GET(PCI_EA_BEI, dw0);
3320 prop = FIELD_GET(PCI_EA_PP, dw0);
3321
3322 /*
3323 * If the Property is in the reserved range, try the Secondary
3324 * Property instead.
3325 */
3326 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3327 prop = FIELD_GET(PCI_EA_SP, dw0);
3328 if (prop > PCI_EA_P_BRIDGE_IO)
3329 goto out;
3330
3331 res = pci_ea_get_resource(dev, bei, prop);
3332 res_name = pci_resource_name(dev, bei);
3333 if (!res) {
3334 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3335 goto out;
3336 }
3337
3338 flags = pci_ea_flags(dev, prop);
3339 if (!flags) {
3340 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3341 goto out;
3342 }
3343
3344 /* Read Base */
3345 pci_read_config_dword(dev, ent_offset, &base);
3346 start = (base & PCI_EA_FIELD_MASK);
3347 ent_offset += 4;
3348
3349 /* Read MaxOffset */
3350 pci_read_config_dword(dev, ent_offset, &max_offset);
3351 ent_offset += 4;
3352
3353 /* Read Base MSBs (if 64-bit entry) */
3354 if (base & PCI_EA_IS_64) {
3355 u32 base_upper;
3356
3357 pci_read_config_dword(dev, ent_offset, &base_upper);
3358 ent_offset += 4;
3359
3360 flags |= IORESOURCE_MEM_64;
3361
3362 /* entry starts above 32-bit boundary, can't use */
3363 if (!support_64 && base_upper)
3364 goto out;
3365
3366 if (support_64)
3367 start |= ((u64)base_upper << 32);
3368 }
3369
3370 end = start + (max_offset | 0x03);
3371
3372 /* Read MaxOffset MSBs (if 64-bit entry) */
3373 if (max_offset & PCI_EA_IS_64) {
3374 u32 max_offset_upper;
3375
3376 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3377 ent_offset += 4;
3378
3379 flags |= IORESOURCE_MEM_64;
3380
3381 /* entry too big, can't use */
3382 if (!support_64 && max_offset_upper)
3383 goto out;
3384
3385 if (support_64)
3386 end += ((u64)max_offset_upper << 32);
3387 }
3388
3389 if (end < start) {
3390 pci_err(dev, "EA Entry crosses address boundary\n");
3391 goto out;
3392 }
3393
3394 if (ent_size != ent_offset - offset) {
3395 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3396 ent_size, ent_offset - offset);
3397 goto out;
3398 }
3399
3400 res->name = pci_name(dev);
3401 res->start = start;
3402 res->end = end;
3403 res->flags = flags;
3404
3405 if (bei <= PCI_EA_BEI_BAR5)
3406 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407 res_name, res, prop);
3408 else if (bei == PCI_EA_BEI_ROM)
3409 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410 res_name, res, prop);
3411 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3412 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413 res_name, res, prop);
3414 else
3415 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3416 bei, res, prop);
3417
3418out:
3419 return offset + ent_size;
3420}
3421
3422/* Enhanced Allocation Initialization */
3423void pci_ea_init(struct pci_dev *dev)
3424{
3425 int ea;
3426 u8 num_ent;
3427 int offset;
3428 int i;
3429
3430 /* find PCI EA capability in list */
3431 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3432 if (!ea)
3433 return;
3434
3435 /* determine the number of entries */
3436 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3437 &num_ent);
3438 num_ent &= PCI_EA_NUM_ENT_MASK;
3439
3440 offset = ea + PCI_EA_FIRST_ENT;
3441
3442 /* Skip DWORD 2 for type 1 functions */
3443 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3444 offset += 4;
3445
3446 /* parse each EA entry */
3447 for (i = 0; i < num_ent; ++i)
3448 offset = pci_ea_read(dev, offset);
3449}
3450
3451static void pci_add_saved_cap(struct pci_dev *pci_dev,
3452 struct pci_cap_saved_state *new_cap)
3453{
3454 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3455}
3456
3457/**
3458 * _pci_add_cap_save_buffer - allocate buffer for saving given
3459 * capability registers
3460 * @dev: the PCI device
3461 * @cap: the capability to allocate the buffer for
3462 * @extended: Standard or Extended capability ID
3463 * @size: requested size of the buffer
3464 */
3465static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3466 bool extended, unsigned int size)
3467{
3468 int pos;
3469 struct pci_cap_saved_state *save_state;
3470
3471 if (extended)
3472 pos = pci_find_ext_capability(dev, cap);
3473 else
3474 pos = pci_find_capability(dev, cap);
3475
3476 if (!pos)
3477 return 0;
3478
3479 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3480 if (!save_state)
3481 return -ENOMEM;
3482
3483 save_state->cap.cap_nr = cap;
3484 save_state->cap.cap_extended = extended;
3485 save_state->cap.size = size;
3486 pci_add_saved_cap(dev, save_state);
3487
3488 return 0;
3489}
3490
3491int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3492{
3493 return _pci_add_cap_save_buffer(dev, cap, false, size);
3494}
3495
3496int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3497{
3498 return _pci_add_cap_save_buffer(dev, cap, true, size);
3499}
3500
3501/**
3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503 * @dev: the PCI device
3504 */
3505void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3506{
3507 int error;
3508
3509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3510 PCI_EXP_SAVE_REGS * sizeof(u16));
3511 if (error)
3512 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3513
3514 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3515 if (error)
3516 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3517
3518 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3519 2 * sizeof(u16));
3520 if (error)
3521 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3522
3523 pci_allocate_vc_save_buffers(dev);
3524}
3525
3526void pci_free_cap_save_buffers(struct pci_dev *dev)
3527{
3528 struct pci_cap_saved_state *tmp;
3529 struct hlist_node *n;
3530
3531 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3532 kfree(tmp);
3533}
3534
3535/**
3536 * pci_configure_ari - enable or disable ARI forwarding
3537 * @dev: the PCI device
3538 *
3539 * If @dev and its upstream bridge both support ARI, enable ARI in the
3540 * bridge. Otherwise, disable ARI in the bridge.
3541 */
3542void pci_configure_ari(struct pci_dev *dev)
3543{
3544 u32 cap;
3545 struct pci_dev *bridge;
3546
3547 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3548 return;
3549
3550 bridge = dev->bus->self;
3551 if (!bridge)
3552 return;
3553
3554 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3555 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3556 return;
3557
3558 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3559 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3560 PCI_EXP_DEVCTL2_ARI);
3561 bridge->ari_enabled = 1;
3562 } else {
3563 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3564 PCI_EXP_DEVCTL2_ARI);
3565 bridge->ari_enabled = 0;
3566 }
3567}
3568
3569static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3570{
3571 int pos;
3572 u16 cap, ctrl;
3573
3574 pos = pdev->acs_cap;
3575 if (!pos)
3576 return false;
3577
3578 /*
3579 * Except for egress control, capabilities are either required
3580 * or only required if controllable. Features missing from the
3581 * capability field can therefore be assumed as hard-wired enabled.
3582 */
3583 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3584 acs_flags &= (cap | PCI_ACS_EC);
3585
3586 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3587 return (ctrl & acs_flags) == acs_flags;
3588}
3589
3590/**
3591 * pci_acs_enabled - test ACS against required flags for a given device
3592 * @pdev: device to test
3593 * @acs_flags: required PCI ACS flags
3594 *
3595 * Return true if the device supports the provided flags. Automatically
3596 * filters out flags that are not implemented on multifunction devices.
3597 *
3598 * Note that this interface checks the effective ACS capabilities of the
3599 * device rather than the actual capabilities. For instance, most single
3600 * function endpoints are not required to support ACS because they have no
3601 * opportunity for peer-to-peer access. We therefore return 'true'
3602 * regardless of whether the device exposes an ACS capability. This makes
3603 * it much easier for callers of this function to ignore the actual type
3604 * or topology of the device when testing ACS support.
3605 */
3606bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3607{
3608 int ret;
3609
3610 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3611 if (ret >= 0)
3612 return ret > 0;
3613
3614 /*
3615 * Conventional PCI and PCI-X devices never support ACS, either
3616 * effectively or actually. The shared bus topology implies that
3617 * any device on the bus can receive or snoop DMA.
3618 */
3619 if (!pci_is_pcie(pdev))
3620 return false;
3621
3622 switch (pci_pcie_type(pdev)) {
3623 /*
3624 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625 * but since their primary interface is PCI/X, we conservatively
3626 * handle them as we would a non-PCIe device.
3627 */
3628 case PCI_EXP_TYPE_PCIE_BRIDGE:
3629 /*
3630 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3631 * applicable... must never implement an ACS Extended Capability...".
3632 * This seems arbitrary, but we take a conservative interpretation
3633 * of this statement.
3634 */
3635 case PCI_EXP_TYPE_PCI_BRIDGE:
3636 case PCI_EXP_TYPE_RC_EC:
3637 return false;
3638 /*
3639 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640 * implement ACS in order to indicate their peer-to-peer capabilities,
3641 * regardless of whether they are single- or multi-function devices.
3642 */
3643 case PCI_EXP_TYPE_DOWNSTREAM:
3644 case PCI_EXP_TYPE_ROOT_PORT:
3645 return pci_acs_flags_enabled(pdev, acs_flags);
3646 /*
3647 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648 * implemented by the remaining PCIe types to indicate peer-to-peer
3649 * capabilities, but only when they are part of a multifunction
3650 * device. The footnote for section 6.12 indicates the specific
3651 * PCIe types included here.
3652 */
3653 case PCI_EXP_TYPE_ENDPOINT:
3654 case PCI_EXP_TYPE_UPSTREAM:
3655 case PCI_EXP_TYPE_LEG_END:
3656 case PCI_EXP_TYPE_RC_END:
3657 if (!pdev->multifunction)
3658 break;
3659
3660 return pci_acs_flags_enabled(pdev, acs_flags);
3661 }
3662
3663 /*
3664 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665 * to single function devices with the exception of downstream ports.
3666 */
3667 return true;
3668}
3669
3670/**
3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672 * @start: starting downstream device
3673 * @end: ending upstream device or NULL to search to the root bus
3674 * @acs_flags: required flags
3675 *
3676 * Walk up a device tree from start to end testing PCI ACS support. If
3677 * any step along the way does not support the required flags, return false.
3678 */
3679bool pci_acs_path_enabled(struct pci_dev *start,
3680 struct pci_dev *end, u16 acs_flags)
3681{
3682 struct pci_dev *pdev, *parent = start;
3683
3684 do {
3685 pdev = parent;
3686
3687 if (!pci_acs_enabled(pdev, acs_flags))
3688 return false;
3689
3690 if (pci_is_root_bus(pdev->bus))
3691 return (end == NULL);
3692
3693 parent = pdev->bus->self;
3694 } while (pdev != end);
3695
3696 return true;
3697}
3698
3699/**
3700 * pci_acs_init - Initialize ACS if hardware supports it
3701 * @dev: the PCI device
3702 */
3703void pci_acs_init(struct pci_dev *dev)
3704{
3705 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3706
3707 /*
3708 * Attempt to enable ACS regardless of capability because some Root
3709 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710 * the standard ACS capability but still support ACS via those
3711 * quirks.
3712 */
3713 pci_enable_acs(dev);
3714}
3715
3716/**
3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3718 * @pdev: PCI device
3719 * @bar: BAR to find
3720 *
3721 * Helper to find the position of the ctrl register for a BAR.
3722 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723 * Returns -ENOENT if no ctrl register for the BAR could be found.
3724 */
3725static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3726{
3727 unsigned int pos, nbars, i;
3728 u32 ctrl;
3729
3730 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3731 if (!pos)
3732 return -ENOTSUPP;
3733
3734 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3736
3737 for (i = 0; i < nbars; i++, pos += 8) {
3738 int bar_idx;
3739
3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742 if (bar_idx == bar)
3743 return pos;
3744 }
3745
3746 return -ENOENT;
3747}
3748
3749/**
3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3751 * @pdev: PCI device
3752 * @bar: BAR to query
3753 *
3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3756 */
3757u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3758{
3759 int pos;
3760 u32 cap;
3761
3762 pos = pci_rebar_find_pos(pdev, bar);
3763 if (pos < 0)
3764 return 0;
3765
3766 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3767 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3768
3769 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3771 bar == 0 && cap == 0x700)
3772 return 0x3f00;
3773
3774 return cap;
3775}
3776EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3777
3778/**
3779 * pci_rebar_get_current_size - get the current size of a BAR
3780 * @pdev: PCI device
3781 * @bar: BAR to set size to
3782 *
3783 * Read the size of a BAR from the resizable BAR config.
3784 * Returns size if found or negative error code.
3785 */
3786int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3787{
3788 int pos;
3789 u32 ctrl;
3790
3791 pos = pci_rebar_find_pos(pdev, bar);
3792 if (pos < 0)
3793 return pos;
3794
3795 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3796 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3797}
3798
3799/**
3800 * pci_rebar_set_size - set a new size for a BAR
3801 * @pdev: PCI device
3802 * @bar: BAR to set size to
3803 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3804 *
3805 * Set the new size of a BAR as defined in the spec.
3806 * Returns zero if resizing was successful, error code otherwise.
3807 */
3808int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3809{
3810 int pos;
3811 u32 ctrl;
3812
3813 pos = pci_rebar_find_pos(pdev, bar);
3814 if (pos < 0)
3815 return pos;
3816
3817 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3818 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3819 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3820 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3821 return 0;
3822}
3823
3824/**
3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826 * @dev: the PCI device
3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3831 *
3832 * Return 0 if all upstream bridges support AtomicOp routing, egress
3833 * blocking is disabled on all upstream ports, and the root port supports
3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835 * AtomicOp completion), or negative otherwise.
3836 */
3837int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3838{
3839 struct pci_bus *bus = dev->bus;
3840 struct pci_dev *bridge;
3841 u32 cap, ctl2;
3842
3843 /*
3844 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845 * in Device Control 2 is reserved in VFs and the PF value applies
3846 * to all associated VFs.
3847 */
3848 if (dev->is_virtfn)
3849 return -EINVAL;
3850
3851 if (!pci_is_pcie(dev))
3852 return -EINVAL;
3853
3854 /*
3855 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856 * AtomicOp requesters. For now, we only support endpoints as
3857 * requesters and root ports as completers. No endpoints as
3858 * completers, and no peer-to-peer.
3859 */
3860
3861 switch (pci_pcie_type(dev)) {
3862 case PCI_EXP_TYPE_ENDPOINT:
3863 case PCI_EXP_TYPE_LEG_END:
3864 case PCI_EXP_TYPE_RC_END:
3865 break;
3866 default:
3867 return -EINVAL;
3868 }
3869
3870 while (bus->parent) {
3871 bridge = bus->self;
3872
3873 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3874
3875 switch (pci_pcie_type(bridge)) {
3876 /* Ensure switch ports support AtomicOp routing */
3877 case PCI_EXP_TYPE_UPSTREAM:
3878 case PCI_EXP_TYPE_DOWNSTREAM:
3879 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3880 return -EINVAL;
3881 break;
3882
3883 /* Ensure root port supports all the sizes we care about */
3884 case PCI_EXP_TYPE_ROOT_PORT:
3885 if ((cap & cap_mask) != cap_mask)
3886 return -EINVAL;
3887 break;
3888 }
3889
3890 /* Ensure upstream ports don't block AtomicOps on egress */
3891 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3892 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3893 &ctl2);
3894 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3895 return -EINVAL;
3896 }
3897
3898 bus = bus->parent;
3899 }
3900
3901 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3902 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3903 return 0;
3904}
3905EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3906
3907/**
3908 * pci_release_region - Release a PCI bar
3909 * @pdev: PCI device whose resources were previously reserved by
3910 * pci_request_region()
3911 * @bar: BAR to release
3912 *
3913 * Releases the PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_region(). Call this function only
3915 * after all use of the PCI regions has ceased.
3916 */
3917void pci_release_region(struct pci_dev *pdev, int bar)
3918{
3919 /*
3920 * This is done for backwards compatibility, because the old PCI devres
3921 * API had a mode in which the function became managed if it had been
3922 * enabled with pcim_enable_device() instead of pci_enable_device().
3923 */
3924 if (pci_is_managed(pdev)) {
3925 pcim_release_region(pdev, bar);
3926 return;
3927 }
3928
3929 if (pci_resource_len(pdev, bar) == 0)
3930 return;
3931 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932 release_region(pci_resource_start(pdev, bar),
3933 pci_resource_len(pdev, bar));
3934 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935 release_mem_region(pci_resource_start(pdev, bar),
3936 pci_resource_len(pdev, bar));
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Returns: 0 on success, negative error code on failure.
3948 *
3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950 * being reserved by owner @res_name. Do not access any
3951 * address inside the PCI regions unless this call returns
3952 * successfully.
3953 *
3954 * If @exclusive is set, then the region is marked so that userspace
3955 * is explicitly not allowed to map the resource via /dev/mem or
3956 * sysfs MMIO access.
3957 *
3958 * Returns 0 on success, or %EBUSY on error. A warning
3959 * message is also printed on failure.
3960 */
3961static int __pci_request_region(struct pci_dev *pdev, int bar,
3962 const char *res_name, int exclusive)
3963{
3964 if (pci_is_managed(pdev)) {
3965 if (exclusive == IORESOURCE_EXCLUSIVE)
3966 return pcim_request_region_exclusive(pdev, bar, res_name);
3967
3968 return pcim_request_region(pdev, bar, res_name);
3969 }
3970
3971 if (pci_resource_len(pdev, bar) == 0)
3972 return 0;
3973
3974 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975 if (!request_region(pci_resource_start(pdev, bar),
3976 pci_resource_len(pdev, bar), res_name))
3977 goto err_out;
3978 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979 if (!__request_mem_region(pci_resource_start(pdev, bar),
3980 pci_resource_len(pdev, bar), res_name,
3981 exclusive))
3982 goto err_out;
3983 }
3984
3985 return 0;
3986
3987err_out:
3988 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3989 &pdev->resource[bar]);
3990 return -EBUSY;
3991}
3992
3993/**
3994 * pci_request_region - Reserve PCI I/O and memory resource
3995 * @pdev: PCI device whose resources are to be reserved
3996 * @bar: BAR to be reserved
3997 * @res_name: Name to be associated with resource
3998 *
3999 * Returns: 0 on success, negative error code on failure.
4000 *
4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002 * being reserved by owner @res_name. Do not access any
4003 * address inside the PCI regions unless this call returns
4004 * successfully.
4005 *
4006 * Returns 0 on success, or %EBUSY on error. A warning
4007 * message is also printed on failure.
4008 *
4009 * NOTE:
4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011 * when pcim_enable_device() has been called in advance. This hybrid feature is
4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4013 */
4014int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4015{
4016 return __pci_request_region(pdev, bar, res_name, 0);
4017}
4018EXPORT_SYMBOL(pci_request_region);
4019
4020/**
4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022 * @pdev: PCI device whose resources were previously reserved
4023 * @bars: Bitmask of BARs to be released
4024 *
4025 * Release selected PCI I/O and memory resources previously reserved.
4026 * Call this function only after all use of the PCI regions has ceased.
4027 */
4028void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4029{
4030 int i;
4031
4032 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4033 if (bars & (1 << i))
4034 pci_release_region(pdev, i);
4035}
4036EXPORT_SYMBOL(pci_release_selected_regions);
4037
4038static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4039 const char *res_name, int excl)
4040{
4041 int i;
4042
4043 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4044 if (bars & (1 << i))
4045 if (__pci_request_region(pdev, i, res_name, excl))
4046 goto err_out;
4047 return 0;
4048
4049err_out:
4050 while (--i >= 0)
4051 if (bars & (1 << i))
4052 pci_release_region(pdev, i);
4053
4054 return -EBUSY;
4055}
4056
4057
4058/**
4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources are to be reserved
4061 * @bars: Bitmask of BARs to be requested
4062 * @res_name: Name to be associated with resource
4063 *
4064 * Returns: 0 on success, negative error code on failure.
4065 *
4066 * NOTE:
4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068 * when pcim_enable_device() has been called in advance. This hybrid feature is
4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070 */
4071int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4072 const char *res_name)
4073{
4074 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4075}
4076EXPORT_SYMBOL(pci_request_selected_regions);
4077
4078/**
4079 * pci_request_selected_regions_exclusive - Request regions exclusively
4080 * @pdev: PCI device to request regions from
4081 * @bars: bit mask of BARs to request
4082 * @res_name: name to be associated with the requests
4083 *
4084 * Returns: 0 on success, negative error code on failure.
4085 *
4086 * NOTE:
4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088 * when pcim_enable_device() has been called in advance. This hybrid feature is
4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4090 */
4091int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 const char *res_name)
4093{
4094 return __pci_request_selected_regions(pdev, bars, res_name,
4095 IORESOURCE_EXCLUSIVE);
4096}
4097EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098
4099/**
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 * pci_request_regions()
4103 *
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions(). Call this function only
4106 * after all use of the PCI regions has ceased.
4107 */
4108void pci_release_regions(struct pci_dev *pdev)
4109{
4110 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4111}
4112EXPORT_SYMBOL(pci_release_regions);
4113
4114/**
4115 * pci_request_regions - Reserve PCI I/O and memory resources
4116 * @pdev: PCI device whose resources are to be reserved
4117 * @res_name: Name to be associated with resource.
4118 *
4119 * Mark all PCI regions associated with PCI device @pdev as
4120 * being reserved by owner @res_name. Do not access any
4121 * address inside the PCI regions unless this call returns
4122 * successfully.
4123 *
4124 * Returns 0 on success, or %EBUSY on error. A warning
4125 * message is also printed on failure.
4126 *
4127 * NOTE:
4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129 * when pcim_enable_device() has been called in advance. This hybrid feature is
4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4131 */
4132int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4133{
4134 return pci_request_selected_regions(pdev,
4135 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4136}
4137EXPORT_SYMBOL(pci_request_regions);
4138
4139/**
4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @res_name: Name to be associated with resource.
4143 *
4144 * Returns: 0 on success, negative error code on failure.
4145 *
4146 * Mark all PCI regions associated with PCI device @pdev as being reserved
4147 * by owner @res_name. Do not access any address inside the PCI regions
4148 * unless this call returns successfully.
4149 *
4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151 * and the sysfs MMIO access will not be allowed.
4152 *
4153 * Returns 0 on success, or %EBUSY on error. A warning message is also
4154 * printed on failure.
4155 *
4156 * NOTE:
4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158 * when pcim_enable_device() has been called in advance. This hybrid feature is
4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4160 */
4161int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4162{
4163 return pci_request_selected_regions_exclusive(pdev,
4164 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4165}
4166EXPORT_SYMBOL(pci_request_regions_exclusive);
4167
4168/*
4169 * Record the PCI IO range (expressed as CPU physical address + size).
4170 * Return a negative value if an error has occurred, zero otherwise
4171 */
4172int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4173 resource_size_t size)
4174{
4175 int ret = 0;
4176#ifdef PCI_IOBASE
4177 struct logic_pio_hwaddr *range;
4178
4179 if (!size || addr + size < addr)
4180 return -EINVAL;
4181
4182 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4183 if (!range)
4184 return -ENOMEM;
4185
4186 range->fwnode = fwnode;
4187 range->size = size;
4188 range->hw_start = addr;
4189 range->flags = LOGIC_PIO_CPU_MMIO;
4190
4191 ret = logic_pio_register_range(range);
4192 if (ret)
4193 kfree(range);
4194
4195 /* Ignore duplicates due to deferred probing */
4196 if (ret == -EEXIST)
4197 ret = 0;
4198#endif
4199
4200 return ret;
4201}
4202
4203phys_addr_t pci_pio_to_address(unsigned long pio)
4204{
4205#ifdef PCI_IOBASE
4206 if (pio < MMIO_UPPER_LIMIT)
4207 return logic_pio_to_hwaddr(pio);
4208#endif
4209
4210 return (phys_addr_t) OF_BAD_ADDR;
4211}
4212EXPORT_SYMBOL_GPL(pci_pio_to_address);
4213
4214unsigned long __weak pci_address_to_pio(phys_addr_t address)
4215{
4216#ifdef PCI_IOBASE
4217 return logic_pio_trans_cpuaddr(address);
4218#else
4219 if (address > IO_SPACE_LIMIT)
4220 return (unsigned long)-1;
4221
4222 return (unsigned long) address;
4223#endif
4224}
4225
4226/**
4227 * pci_remap_iospace - Remap the memory mapped I/O space
4228 * @res: Resource describing the I/O space
4229 * @phys_addr: physical address of range to be mapped
4230 *
4231 * Remap the memory mapped I/O space described by the @res and the CPU
4232 * physical address @phys_addr into virtual address space. Only
4233 * architectures that have memory mapped IO functions defined (and the
4234 * PCI_IOBASE value defined) should call this function.
4235 */
4236#ifndef pci_remap_iospace
4237int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4238{
4239#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241
4242 if (!(res->flags & IORESOURCE_IO))
4243 return -EINVAL;
4244
4245 if (res->end > IO_SPACE_LIMIT)
4246 return -EINVAL;
4247
4248 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4249 pgprot_device(PAGE_KERNEL));
4250#else
4251 /*
4252 * This architecture does not have memory mapped I/O space,
4253 * so this function should never be called
4254 */
4255 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4256 return -ENODEV;
4257#endif
4258}
4259EXPORT_SYMBOL(pci_remap_iospace);
4260#endif
4261
4262/**
4263 * pci_unmap_iospace - Unmap the memory mapped I/O space
4264 * @res: resource to be unmapped
4265 *
4266 * Unmap the CPU virtual address @res from virtual address space. Only
4267 * architectures that have memory mapped IO functions defined (and the
4268 * PCI_IOBASE value defined) should call this function.
4269 */
4270void pci_unmap_iospace(struct resource *res)
4271{
4272#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4274
4275 vunmap_range(vaddr, vaddr + resource_size(res));
4276#endif
4277}
4278EXPORT_SYMBOL(pci_unmap_iospace);
4279
4280static void __pci_set_master(struct pci_dev *dev, bool enable)
4281{
4282 u16 old_cmd, cmd;
4283
4284 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285 if (enable)
4286 cmd = old_cmd | PCI_COMMAND_MASTER;
4287 else
4288 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4289 if (cmd != old_cmd) {
4290 pci_dbg(dev, "%s bus mastering\n",
4291 enable ? "enabling" : "disabling");
4292 pci_write_config_word(dev, PCI_COMMAND, cmd);
4293 }
4294 dev->is_busmaster = enable;
4295}
4296
4297/**
4298 * pcibios_setup - process "pci=" kernel boot arguments
4299 * @str: string used to pass in "pci=" kernel boot arguments
4300 *
4301 * Process kernel boot arguments. This is the default implementation.
4302 * Architecture specific implementations can override this as necessary.
4303 */
4304char * __weak __init pcibios_setup(char *str)
4305{
4306 return str;
4307}
4308
4309/**
4310 * pcibios_set_master - enable PCI bus-mastering for device dev
4311 * @dev: the PCI device to enable
4312 *
4313 * Enables PCI bus-mastering for the device. This is the default
4314 * implementation. Architecture specific implementations can override
4315 * this if necessary.
4316 */
4317void __weak pcibios_set_master(struct pci_dev *dev)
4318{
4319 u8 lat;
4320
4321 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322 if (pci_is_pcie(dev))
4323 return;
4324
4325 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326 if (lat < 16)
4327 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4328 else if (lat > pcibios_max_latency)
4329 lat = pcibios_max_latency;
4330 else
4331 return;
4332
4333 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4334}
4335
4336/**
4337 * pci_set_master - enables bus-mastering for device dev
4338 * @dev: the PCI device to enable
4339 *
4340 * Enables bus-mastering on the device and calls pcibios_set_master()
4341 * to do the needed arch specific settings.
4342 */
4343void pci_set_master(struct pci_dev *dev)
4344{
4345 __pci_set_master(dev, true);
4346 pcibios_set_master(dev);
4347}
4348EXPORT_SYMBOL(pci_set_master);
4349
4350/**
4351 * pci_clear_master - disables bus-mastering for device dev
4352 * @dev: the PCI device to disable
4353 */
4354void pci_clear_master(struct pci_dev *dev)
4355{
4356 __pci_set_master(dev, false);
4357}
4358EXPORT_SYMBOL(pci_clear_master);
4359
4360/**
4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362 * @dev: the PCI device for which MWI is to be enabled
4363 *
4364 * Helper function for pci_set_mwi.
4365 * Originally copied from drivers/net/acenic.c.
4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_set_cacheline_size(struct pci_dev *dev)
4371{
4372 u8 cacheline_size;
4373
4374 if (!pci_cache_line_size)
4375 return -EINVAL;
4376
4377 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378 equal to or multiple of the right value. */
4379 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4380 if (cacheline_size >= pci_cache_line_size &&
4381 (cacheline_size % pci_cache_line_size) == 0)
4382 return 0;
4383
4384 /* Write the correct value. */
4385 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386 /* Read it back. */
4387 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4388 if (cacheline_size == pci_cache_line_size)
4389 return 0;
4390
4391 pci_dbg(dev, "cache line size of %d is not supported\n",
4392 pci_cache_line_size << 2);
4393
4394 return -EINVAL;
4395}
4396EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397
4398/**
4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400 * @dev: the PCI device for which MWI is enabled
4401 *
4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403 *
4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405 */
4406int pci_set_mwi(struct pci_dev *dev)
4407{
4408#ifdef PCI_DISABLE_MWI
4409 return 0;
4410#else
4411 int rc;
4412 u16 cmd;
4413
4414 rc = pci_set_cacheline_size(dev);
4415 if (rc)
4416 return rc;
4417
4418 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4419 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4420 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4421 cmd |= PCI_COMMAND_INVALIDATE;
4422 pci_write_config_word(dev, PCI_COMMAND, cmd);
4423 }
4424 return 0;
4425#endif
4426}
4427EXPORT_SYMBOL(pci_set_mwi);
4428
4429/**
4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431 * @dev: the PCI device for which MWI is enabled
4432 *
4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434 * Callers are not required to check the return value.
4435 *
4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4437 */
4438int pci_try_set_mwi(struct pci_dev *dev)
4439{
4440#ifdef PCI_DISABLE_MWI
4441 return 0;
4442#else
4443 return pci_set_mwi(dev);
4444#endif
4445}
4446EXPORT_SYMBOL(pci_try_set_mwi);
4447
4448/**
4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450 * @dev: the PCI device to disable
4451 *
4452 * Disables PCI Memory-Write-Invalidate transaction on the device
4453 */
4454void pci_clear_mwi(struct pci_dev *dev)
4455{
4456#ifndef PCI_DISABLE_MWI
4457 u16 cmd;
4458
4459 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4460 if (cmd & PCI_COMMAND_INVALIDATE) {
4461 cmd &= ~PCI_COMMAND_INVALIDATE;
4462 pci_write_config_word(dev, PCI_COMMAND, cmd);
4463 }
4464#endif
4465}
4466EXPORT_SYMBOL(pci_clear_mwi);
4467
4468/**
4469 * pci_disable_parity - disable parity checking for device
4470 * @dev: the PCI device to operate on
4471 *
4472 * Disable parity checking for device @dev
4473 */
4474void pci_disable_parity(struct pci_dev *dev)
4475{
4476 u16 cmd;
4477
4478 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479 if (cmd & PCI_COMMAND_PARITY) {
4480 cmd &= ~PCI_COMMAND_PARITY;
4481 pci_write_config_word(dev, PCI_COMMAND, cmd);
4482 }
4483}
4484
4485/**
4486 * pci_intx - enables/disables PCI INTx for device dev
4487 * @pdev: the PCI device to operate on
4488 * @enable: boolean: whether to enable or disable PCI INTx
4489 *
4490 * Enables/disables PCI INTx for device @pdev
4491 */
4492void pci_intx(struct pci_dev *pdev, int enable)
4493{
4494 u16 pci_command, new;
4495
4496 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4497
4498 if (enable)
4499 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4500 else
4501 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4502
4503 if (new == pci_command)
4504 return;
4505
4506 pci_write_config_word(pdev, PCI_COMMAND, new);
4507}
4508EXPORT_SYMBOL_GPL(pci_intx);
4509
4510/**
4511 * pci_wait_for_pending_transaction - wait for pending transaction
4512 * @dev: the PCI device to operate on
4513 *
4514 * Return 0 if transaction is pending 1 otherwise.
4515 */
4516int pci_wait_for_pending_transaction(struct pci_dev *dev)
4517{
4518 if (!pci_is_pcie(dev))
4519 return 1;
4520
4521 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4522 PCI_EXP_DEVSTA_TRPND);
4523}
4524EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4525
4526/**
4527 * pcie_flr - initiate a PCIe function level reset
4528 * @dev: device to reset
4529 *
4530 * Initiate a function level reset unconditionally on @dev without
4531 * checking any flags and DEVCAP
4532 */
4533int pcie_flr(struct pci_dev *dev)
4534{
4535 if (!pci_wait_for_pending_transaction(dev))
4536 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4537
4538 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4539
4540 if (dev->imm_ready)
4541 return 0;
4542
4543 /*
4544 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4545 * 100ms, but may silently discard requests while the FLR is in
4546 * progress. Wait 100ms before trying to access the device.
4547 */
4548 msleep(100);
4549
4550 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4551}
4552EXPORT_SYMBOL_GPL(pcie_flr);
4553
4554/**
4555 * pcie_reset_flr - initiate a PCIe function level reset
4556 * @dev: device to reset
4557 * @probe: if true, return 0 if device can be reset this way
4558 *
4559 * Initiate a function level reset on @dev.
4560 */
4561int pcie_reset_flr(struct pci_dev *dev, bool probe)
4562{
4563 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4564 return -ENOTTY;
4565
4566 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4567 return -ENOTTY;
4568
4569 if (probe)
4570 return 0;
4571
4572 return pcie_flr(dev);
4573}
4574EXPORT_SYMBOL_GPL(pcie_reset_flr);
4575
4576static int pci_af_flr(struct pci_dev *dev, bool probe)
4577{
4578 int pos;
4579 u8 cap;
4580
4581 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4582 if (!pos)
4583 return -ENOTTY;
4584
4585 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4586 return -ENOTTY;
4587
4588 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4589 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4590 return -ENOTTY;
4591
4592 if (probe)
4593 return 0;
4594
4595 /*
4596 * Wait for Transaction Pending bit to clear. A word-aligned test
4597 * is used, so we use the control offset rather than status and shift
4598 * the test bit to match.
4599 */
4600 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4601 PCI_AF_STATUS_TP << 8))
4602 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4603
4604 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4605
4606 if (dev->imm_ready)
4607 return 0;
4608
4609 /*
4610 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4611 * updated 27 July 2006; a device must complete an FLR within
4612 * 100ms, but may silently discard requests while the FLR is in
4613 * progress. Wait 100ms before trying to access the device.
4614 */
4615 msleep(100);
4616
4617 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4618}
4619
4620/**
4621 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4622 * @dev: Device to reset.
4623 * @probe: if true, return 0 if the device can be reset this way.
4624 *
4625 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4626 * unset, it will be reinitialized internally when going from PCI_D3hot to
4627 * PCI_D0. If that's the case and the device is not in a low-power state
4628 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4629 *
4630 * NOTE: This causes the caller to sleep for twice the device power transition
4631 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4632 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4633 * Moreover, only devices in D0 can be reset by this function.
4634 */
4635static int pci_pm_reset(struct pci_dev *dev, bool probe)
4636{
4637 u16 csr;
4638
4639 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4640 return -ENOTTY;
4641
4642 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4643 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4644 return -ENOTTY;
4645
4646 if (probe)
4647 return 0;
4648
4649 if (dev->current_state != PCI_D0)
4650 return -EINVAL;
4651
4652 csr &= ~PCI_PM_CTRL_STATE_MASK;
4653 csr |= PCI_D3hot;
4654 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4655 pci_dev_d3_sleep(dev);
4656
4657 csr &= ~PCI_PM_CTRL_STATE_MASK;
4658 csr |= PCI_D0;
4659 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4660 pci_dev_d3_sleep(dev);
4661
4662 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4663}
4664
4665/**
4666 * pcie_wait_for_link_status - Wait for link status change
4667 * @pdev: Device whose link to wait for.
4668 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4669 * @active: Waiting for active or inactive?
4670 *
4671 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4672 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4673 */
4674static int pcie_wait_for_link_status(struct pci_dev *pdev,
4675 bool use_lt, bool active)
4676{
4677 u16 lnksta_mask, lnksta_match;
4678 unsigned long end_jiffies;
4679 u16 lnksta;
4680
4681 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4682 lnksta_match = active ? lnksta_mask : 0;
4683
4684 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4685 do {
4686 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4687 if ((lnksta & lnksta_mask) == lnksta_match)
4688 return 0;
4689 msleep(1);
4690 } while (time_before(jiffies, end_jiffies));
4691
4692 return -ETIMEDOUT;
4693}
4694
4695/**
4696 * pcie_retrain_link - Request a link retrain and wait for it to complete
4697 * @pdev: Device whose link to retrain.
4698 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4699 *
4700 * Retrain completion status is retrieved from the Link Status Register
4701 * according to @use_lt. It is not verified whether the use of the DLLLA
4702 * bit is valid.
4703 *
4704 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4705 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4706 */
4707int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4708{
4709 int rc;
4710
4711 /*
4712 * Ensure the updated LNKCTL parameters are used during link
4713 * training by checking that there is no ongoing link training that
4714 * may have started before link parameters were changed, so as to
4715 * avoid LTSSM race as recommended in Implementation Note at the end
4716 * of PCIe r6.1 sec 7.5.3.7.
4717 */
4718 rc = pcie_wait_for_link_status(pdev, true, false);
4719 if (rc)
4720 return rc;
4721
4722 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4723 if (pdev->clear_retrain_link) {
4724 /*
4725 * Due to an erratum in some devices the Retrain Link bit
4726 * needs to be cleared again manually to allow the link
4727 * training to succeed.
4728 */
4729 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4730 }
4731
4732 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4733
4734 /*
4735 * Clear LBMS after a manual retrain so that the bit can be used
4736 * to track link speed or width changes made by hardware itself
4737 * in attempt to correct unreliable link operation.
4738 */
4739 pcie_reset_lbms_count(pdev);
4740 return rc;
4741}
4742
4743/**
4744 * pcie_wait_for_link_delay - Wait until link is active or inactive
4745 * @pdev: Bridge device
4746 * @active: waiting for active or inactive?
4747 * @delay: Delay to wait after link has become active (in ms)
4748 *
4749 * Use this to wait till link becomes active or inactive.
4750 */
4751static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4752 int delay)
4753{
4754 int rc;
4755
4756 /*
4757 * Some controllers might not implement link active reporting. In this
4758 * case, we wait for 1000 ms + any delay requested by the caller.
4759 */
4760 if (!pdev->link_active_reporting) {
4761 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4762 return true;
4763 }
4764
4765 /*
4766 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4767 * after which we should expect an link active if the reset was
4768 * successful. If so, software must wait a minimum 100ms before sending
4769 * configuration requests to devices downstream this port.
4770 *
4771 * If the link fails to activate, either the device was physically
4772 * removed or the link is permanently failed.
4773 */
4774 if (active)
4775 msleep(20);
4776 rc = pcie_wait_for_link_status(pdev, false, active);
4777 if (active) {
4778 if (rc)
4779 rc = pcie_failed_link_retrain(pdev);
4780 if (rc)
4781 return false;
4782
4783 msleep(delay);
4784 return true;
4785 }
4786
4787 if (rc)
4788 return false;
4789
4790 return true;
4791}
4792
4793/**
4794 * pcie_wait_for_link - Wait until link is active or inactive
4795 * @pdev: Bridge device
4796 * @active: waiting for active or inactive?
4797 *
4798 * Use this to wait till link becomes active or inactive.
4799 */
4800bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4801{
4802 return pcie_wait_for_link_delay(pdev, active, 100);
4803}
4804
4805/*
4806 * Find maximum D3cold delay required by all the devices on the bus. The
4807 * spec says 100 ms, but firmware can lower it and we allow drivers to
4808 * increase it as well.
4809 *
4810 * Called with @pci_bus_sem locked for reading.
4811 */
4812static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4813{
4814 const struct pci_dev *pdev;
4815 int min_delay = 100;
4816 int max_delay = 0;
4817
4818 list_for_each_entry(pdev, &bus->devices, bus_list) {
4819 if (pdev->d3cold_delay < min_delay)
4820 min_delay = pdev->d3cold_delay;
4821 if (pdev->d3cold_delay > max_delay)
4822 max_delay = pdev->d3cold_delay;
4823 }
4824
4825 return max(min_delay, max_delay);
4826}
4827
4828/**
4829 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4830 * @dev: PCI bridge
4831 * @reset_type: reset type in human-readable form
4832 *
4833 * Handle necessary delays before access to the devices on the secondary
4834 * side of the bridge are permitted after D3cold to D0 transition
4835 * or Conventional Reset.
4836 *
4837 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4838 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4839 * 4.3.2.
4840 *
4841 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4842 * failed to become accessible.
4843 */
4844int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4845{
4846 struct pci_dev *child __free(pci_dev_put) = NULL;
4847 int delay;
4848
4849 if (pci_dev_is_disconnected(dev))
4850 return 0;
4851
4852 if (!pci_is_bridge(dev))
4853 return 0;
4854
4855 down_read(&pci_bus_sem);
4856
4857 /*
4858 * We only deal with devices that are present currently on the bus.
4859 * For any hot-added devices the access delay is handled in pciehp
4860 * board_added(). In case of ACPI hotplug the firmware is expected
4861 * to configure the devices before OS is notified.
4862 */
4863 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4864 up_read(&pci_bus_sem);
4865 return 0;
4866 }
4867
4868 /* Take d3cold_delay requirements into account */
4869 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4870 if (!delay) {
4871 up_read(&pci_bus_sem);
4872 return 0;
4873 }
4874
4875 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4876 struct pci_dev, bus_list));
4877 up_read(&pci_bus_sem);
4878
4879 /*
4880 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4881 * accessing the device after reset (that is 1000 ms + 100 ms).
4882 */
4883 if (!pci_is_pcie(dev)) {
4884 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4885 msleep(1000 + delay);
4886 return 0;
4887 }
4888
4889 /*
4890 * For PCIe downstream and root ports that do not support speeds
4891 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4892 * speeds (gen3) we need to wait first for the data link layer to
4893 * become active.
4894 *
4895 * However, 100 ms is the minimum and the PCIe spec says the
4896 * software must allow at least 1s before it can determine that the
4897 * device that did not respond is a broken device. Also device can
4898 * take longer than that to respond if it indicates so through Request
4899 * Retry Status completions.
4900 *
4901 * Therefore we wait for 100 ms and check for the device presence
4902 * until the timeout expires.
4903 */
4904 if (!pcie_downstream_port(dev))
4905 return 0;
4906
4907 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4908 u16 status;
4909
4910 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4911 msleep(delay);
4912
4913 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4914 return 0;
4915
4916 /*
4917 * If the port supports active link reporting we now check
4918 * whether the link is active and if not bail out early with
4919 * the assumption that the device is not present anymore.
4920 */
4921 if (!dev->link_active_reporting)
4922 return -ENOTTY;
4923
4924 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4925 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4926 return -ENOTTY;
4927
4928 return pci_dev_wait(child, reset_type,
4929 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4930 }
4931
4932 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4933 delay);
4934 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4935 /* Did not train, no need to wait any further */
4936 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4937 return -ENOTTY;
4938 }
4939
4940 return pci_dev_wait(child, reset_type,
4941 PCIE_RESET_READY_POLL_MS - delay);
4942}
4943
4944void pci_reset_secondary_bus(struct pci_dev *dev)
4945{
4946 u16 ctrl;
4947
4948 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4949 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4950 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4951
4952 /*
4953 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4954 * this to 2ms to ensure that we meet the minimum requirement.
4955 */
4956 msleep(2);
4957
4958 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4959 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4960}
4961
4962void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4963{
4964 pci_reset_secondary_bus(dev);
4965}
4966
4967/**
4968 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4969 * @dev: Bridge device
4970 *
4971 * Use the bridge control register to assert reset on the secondary bus.
4972 * Devices on the secondary bus are left in power-on state.
4973 */
4974int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4975{
4976 if (!dev->block_cfg_access)
4977 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4978 __builtin_return_address(0));
4979 pcibios_reset_secondary_bus(dev);
4980
4981 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4982}
4983EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4984
4985static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4986{
4987 struct pci_dev *pdev;
4988
4989 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4990 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4991 return -ENOTTY;
4992
4993 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4994 if (pdev != dev)
4995 return -ENOTTY;
4996
4997 if (probe)
4998 return 0;
4999
5000 return pci_bridge_secondary_bus_reset(dev->bus->self);
5001}
5002
5003static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5004{
5005 int rc = -ENOTTY;
5006
5007 if (!hotplug || !try_module_get(hotplug->owner))
5008 return rc;
5009
5010 if (hotplug->ops->reset_slot)
5011 rc = hotplug->ops->reset_slot(hotplug, probe);
5012
5013 module_put(hotplug->owner);
5014
5015 return rc;
5016}
5017
5018static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5019{
5020 if (dev->multifunction || dev->subordinate || !dev->slot ||
5021 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5022 return -ENOTTY;
5023
5024 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5025}
5026
5027static u16 cxl_port_dvsec(struct pci_dev *dev)
5028{
5029 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5030 PCI_DVSEC_CXL_PORT);
5031}
5032
5033static bool cxl_sbr_masked(struct pci_dev *dev)
5034{
5035 u16 dvsec, reg;
5036 int rc;
5037
5038 dvsec = cxl_port_dvsec(dev);
5039 if (!dvsec)
5040 return false;
5041
5042 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5043 if (rc || PCI_POSSIBLE_ERROR(reg))
5044 return false;
5045
5046 /*
5047 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5048 * bit in Bridge Control has no effect. When 1, the Port generates
5049 * hot reset when the SBR bit is set to 1.
5050 */
5051 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5052 return false;
5053
5054 return true;
5055}
5056
5057static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5058{
5059 struct pci_dev *bridge = pci_upstream_bridge(dev);
5060 int rc;
5061
5062 /*
5063 * If "dev" is below a CXL port that has SBR control masked, SBR
5064 * won't do anything, so return error.
5065 */
5066 if (bridge && cxl_sbr_masked(bridge)) {
5067 if (probe)
5068 return 0;
5069
5070 return -ENOTTY;
5071 }
5072
5073 rc = pci_dev_reset_slot_function(dev, probe);
5074 if (rc != -ENOTTY)
5075 return rc;
5076 return pci_parent_bus_reset(dev, probe);
5077}
5078
5079static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5080{
5081 struct pci_dev *bridge;
5082 u16 dvsec, reg, val;
5083 int rc;
5084
5085 bridge = pci_upstream_bridge(dev);
5086 if (!bridge)
5087 return -ENOTTY;
5088
5089 dvsec = cxl_port_dvsec(bridge);
5090 if (!dvsec)
5091 return -ENOTTY;
5092
5093 if (probe)
5094 return 0;
5095
5096 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5097 if (rc)
5098 return -ENOTTY;
5099
5100 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5101 val = reg;
5102 } else {
5103 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5104 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5105 val);
5106 }
5107
5108 rc = pci_reset_bus_function(dev, probe);
5109
5110 if (reg != val)
5111 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5112 reg);
5113
5114 return rc;
5115}
5116
5117void pci_dev_lock(struct pci_dev *dev)
5118{
5119 /* block PM suspend, driver probe, etc. */
5120 device_lock(&dev->dev);
5121 pci_cfg_access_lock(dev);
5122}
5123EXPORT_SYMBOL_GPL(pci_dev_lock);
5124
5125/* Return 1 on successful lock, 0 on contention */
5126int pci_dev_trylock(struct pci_dev *dev)
5127{
5128 if (device_trylock(&dev->dev)) {
5129 if (pci_cfg_access_trylock(dev))
5130 return 1;
5131 device_unlock(&dev->dev);
5132 }
5133
5134 return 0;
5135}
5136EXPORT_SYMBOL_GPL(pci_dev_trylock);
5137
5138void pci_dev_unlock(struct pci_dev *dev)
5139{
5140 pci_cfg_access_unlock(dev);
5141 device_unlock(&dev->dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_unlock);
5144
5145static void pci_dev_save_and_disable(struct pci_dev *dev)
5146{
5147 const struct pci_error_handlers *err_handler =
5148 dev->driver ? dev->driver->err_handler : NULL;
5149
5150 /*
5151 * dev->driver->err_handler->reset_prepare() is protected against
5152 * races with ->remove() by the device lock, which must be held by
5153 * the caller.
5154 */
5155 if (err_handler && err_handler->reset_prepare)
5156 err_handler->reset_prepare(dev);
5157 else if (dev->driver)
5158 pci_warn(dev, "resetting");
5159
5160 /*
5161 * Wake-up device prior to save. PM registers default to D0 after
5162 * reset and a simple register restore doesn't reliably return
5163 * to a non-D0 state anyway.
5164 */
5165 pci_set_power_state(dev, PCI_D0);
5166
5167 pci_save_state(dev);
5168 /*
5169 * Disable the device by clearing the Command register, except for
5170 * INTx-disable which is set. This not only disables MMIO and I/O port
5171 * BARs, but also prevents the device from being Bus Master, preventing
5172 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5173 * compliant devices, INTx-disable prevents legacy interrupts.
5174 */
5175 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5176}
5177
5178static void pci_dev_restore(struct pci_dev *dev)
5179{
5180 const struct pci_error_handlers *err_handler =
5181 dev->driver ? dev->driver->err_handler : NULL;
5182
5183 pci_restore_state(dev);
5184
5185 /*
5186 * dev->driver->err_handler->reset_done() is protected against
5187 * races with ->remove() by the device lock, which must be held by
5188 * the caller.
5189 */
5190 if (err_handler && err_handler->reset_done)
5191 err_handler->reset_done(dev);
5192 else if (dev->driver)
5193 pci_warn(dev, "reset done");
5194}
5195
5196/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5197static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5198 { },
5199 { pci_dev_specific_reset, .name = "device_specific" },
5200 { pci_dev_acpi_reset, .name = "acpi" },
5201 { pcie_reset_flr, .name = "flr" },
5202 { pci_af_flr, .name = "af_flr" },
5203 { pci_pm_reset, .name = "pm" },
5204 { pci_reset_bus_function, .name = "bus" },
5205 { cxl_reset_bus_function, .name = "cxl_bus" },
5206};
5207
5208static ssize_t reset_method_show(struct device *dev,
5209 struct device_attribute *attr, char *buf)
5210{
5211 struct pci_dev *pdev = to_pci_dev(dev);
5212 ssize_t len = 0;
5213 int i, m;
5214
5215 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5216 m = pdev->reset_methods[i];
5217 if (!m)
5218 break;
5219
5220 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5221 pci_reset_fn_methods[m].name);
5222 }
5223
5224 if (len)
5225 len += sysfs_emit_at(buf, len, "\n");
5226
5227 return len;
5228}
5229
5230static int reset_method_lookup(const char *name)
5231{
5232 int m;
5233
5234 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5235 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5236 return m;
5237 }
5238
5239 return 0; /* not found */
5240}
5241
5242static ssize_t reset_method_store(struct device *dev,
5243 struct device_attribute *attr,
5244 const char *buf, size_t count)
5245{
5246 struct pci_dev *pdev = to_pci_dev(dev);
5247 char *options, *tmp_options, *name;
5248 int m, n;
5249 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5250
5251 if (sysfs_streq(buf, "")) {
5252 pdev->reset_methods[0] = 0;
5253 pci_warn(pdev, "All device reset methods disabled by user");
5254 return count;
5255 }
5256
5257 if (sysfs_streq(buf, "default")) {
5258 pci_init_reset_methods(pdev);
5259 return count;
5260 }
5261
5262 options = kstrndup(buf, count, GFP_KERNEL);
5263 if (!options)
5264 return -ENOMEM;
5265
5266 n = 0;
5267 tmp_options = options;
5268 while ((name = strsep(&tmp_options, " ")) != NULL) {
5269 if (sysfs_streq(name, ""))
5270 continue;
5271
5272 name = strim(name);
5273
5274 m = reset_method_lookup(name);
5275 if (!m) {
5276 pci_err(pdev, "Invalid reset method '%s'", name);
5277 goto error;
5278 }
5279
5280 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5281 pci_err(pdev, "Unsupported reset method '%s'", name);
5282 goto error;
5283 }
5284
5285 if (n == PCI_NUM_RESET_METHODS - 1) {
5286 pci_err(pdev, "Too many reset methods\n");
5287 goto error;
5288 }
5289
5290 reset_methods[n++] = m;
5291 }
5292
5293 reset_methods[n] = 0;
5294
5295 /* Warn if dev-specific supported but not highest priority */
5296 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5297 reset_methods[0] != 1)
5298 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5299 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5300 kfree(options);
5301 return count;
5302
5303error:
5304 /* Leave previous methods unchanged */
5305 kfree(options);
5306 return -EINVAL;
5307}
5308static DEVICE_ATTR_RW(reset_method);
5309
5310static struct attribute *pci_dev_reset_method_attrs[] = {
5311 &dev_attr_reset_method.attr,
5312 NULL,
5313};
5314
5315static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5316 struct attribute *a, int n)
5317{
5318 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5319
5320 if (!pci_reset_supported(pdev))
5321 return 0;
5322
5323 return a->mode;
5324}
5325
5326const struct attribute_group pci_dev_reset_method_attr_group = {
5327 .attrs = pci_dev_reset_method_attrs,
5328 .is_visible = pci_dev_reset_method_attr_is_visible,
5329};
5330
5331/**
5332 * __pci_reset_function_locked - reset a PCI device function while holding
5333 * the @dev mutex lock.
5334 * @dev: PCI device to reset
5335 *
5336 * Some devices allow an individual function to be reset without affecting
5337 * other functions in the same device. The PCI device must be responsive
5338 * to PCI config space in order to use this function.
5339 *
5340 * The device function is presumed to be unused and the caller is holding
5341 * the device mutex lock when this function is called.
5342 *
5343 * Resetting the device will make the contents of PCI configuration space
5344 * random, so any caller of this must be prepared to reinitialise the
5345 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5346 * etc.
5347 *
5348 * Returns 0 if the device function was successfully reset or negative if the
5349 * device doesn't support resetting a single function.
5350 */
5351int __pci_reset_function_locked(struct pci_dev *dev)
5352{
5353 int i, m, rc;
5354
5355 might_sleep();
5356
5357 /*
5358 * A reset method returns -ENOTTY if it doesn't support this device and
5359 * we should try the next method.
5360 *
5361 * If it returns 0 (success), we're finished. If it returns any other
5362 * error, we're also finished: this indicates that further reset
5363 * mechanisms might be broken on the device.
5364 */
5365 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5366 m = dev->reset_methods[i];
5367 if (!m)
5368 return -ENOTTY;
5369
5370 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5371 if (!rc)
5372 return 0;
5373 if (rc != -ENOTTY)
5374 return rc;
5375 }
5376
5377 return -ENOTTY;
5378}
5379EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5380
5381/**
5382 * pci_init_reset_methods - check whether device can be safely reset
5383 * and store supported reset mechanisms.
5384 * @dev: PCI device to check for reset mechanisms
5385 *
5386 * Some devices allow an individual function to be reset without affecting
5387 * other functions in the same device. The PCI device must be in D0-D3hot
5388 * state.
5389 *
5390 * Stores reset mechanisms supported by device in reset_methods byte array
5391 * which is a member of struct pci_dev.
5392 */
5393void pci_init_reset_methods(struct pci_dev *dev)
5394{
5395 int m, i, rc;
5396
5397 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5398
5399 might_sleep();
5400
5401 i = 0;
5402 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5403 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5404 if (!rc)
5405 dev->reset_methods[i++] = m;
5406 else if (rc != -ENOTTY)
5407 break;
5408 }
5409
5410 dev->reset_methods[i] = 0;
5411}
5412
5413/**
5414 * pci_reset_function - quiesce and reset a PCI device function
5415 * @dev: PCI device to reset
5416 *
5417 * Some devices allow an individual function to be reset without affecting
5418 * other functions in the same device. The PCI device must be responsive
5419 * to PCI config space in order to use this function.
5420 *
5421 * This function does not just reset the PCI portion of a device, but
5422 * clears all the state associated with the device. This function differs
5423 * from __pci_reset_function_locked() in that it saves and restores device state
5424 * over the reset and takes the PCI device lock.
5425 *
5426 * Returns 0 if the device function was successfully reset or negative if the
5427 * device doesn't support resetting a single function.
5428 */
5429int pci_reset_function(struct pci_dev *dev)
5430{
5431 struct pci_dev *bridge;
5432 int rc;
5433
5434 if (!pci_reset_supported(dev))
5435 return -ENOTTY;
5436
5437 /*
5438 * If there's no upstream bridge, no locking is needed since there is
5439 * no upstream bridge configuration to hold consistent.
5440 */
5441 bridge = pci_upstream_bridge(dev);
5442 if (bridge)
5443 pci_dev_lock(bridge);
5444
5445 pci_dev_lock(dev);
5446 pci_dev_save_and_disable(dev);
5447
5448 rc = __pci_reset_function_locked(dev);
5449
5450 pci_dev_restore(dev);
5451 pci_dev_unlock(dev);
5452
5453 if (bridge)
5454 pci_dev_unlock(bridge);
5455
5456 return rc;
5457}
5458EXPORT_SYMBOL_GPL(pci_reset_function);
5459
5460/**
5461 * pci_reset_function_locked - quiesce and reset a PCI device function
5462 * @dev: PCI device to reset
5463 *
5464 * Some devices allow an individual function to be reset without affecting
5465 * other functions in the same device. The PCI device must be responsive
5466 * to PCI config space in order to use this function.
5467 *
5468 * This function does not just reset the PCI portion of a device, but
5469 * clears all the state associated with the device. This function differs
5470 * from __pci_reset_function_locked() in that it saves and restores device state
5471 * over the reset. It also differs from pci_reset_function() in that it
5472 * requires the PCI device lock to be held.
5473 *
5474 * Returns 0 if the device function was successfully reset or negative if the
5475 * device doesn't support resetting a single function.
5476 */
5477int pci_reset_function_locked(struct pci_dev *dev)
5478{
5479 int rc;
5480
5481 if (!pci_reset_supported(dev))
5482 return -ENOTTY;
5483
5484 pci_dev_save_and_disable(dev);
5485
5486 rc = __pci_reset_function_locked(dev);
5487
5488 pci_dev_restore(dev);
5489
5490 return rc;
5491}
5492EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5493
5494/**
5495 * pci_try_reset_function - quiesce and reset a PCI device function
5496 * @dev: PCI device to reset
5497 *
5498 * Same as above, except return -EAGAIN if unable to lock device.
5499 */
5500int pci_try_reset_function(struct pci_dev *dev)
5501{
5502 int rc;
5503
5504 if (!pci_reset_supported(dev))
5505 return -ENOTTY;
5506
5507 if (!pci_dev_trylock(dev))
5508 return -EAGAIN;
5509
5510 pci_dev_save_and_disable(dev);
5511 rc = __pci_reset_function_locked(dev);
5512 pci_dev_restore(dev);
5513 pci_dev_unlock(dev);
5514
5515 return rc;
5516}
5517EXPORT_SYMBOL_GPL(pci_try_reset_function);
5518
5519/* Do any devices on or below this bus prevent a bus reset? */
5520static bool pci_bus_resettable(struct pci_bus *bus)
5521{
5522 struct pci_dev *dev;
5523
5524
5525 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5526 return false;
5527
5528 list_for_each_entry(dev, &bus->devices, bus_list) {
5529 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5530 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5531 return false;
5532 }
5533
5534 return true;
5535}
5536
5537/* Lock devices from the top of the tree down */
5538static void pci_bus_lock(struct pci_bus *bus)
5539{
5540 struct pci_dev *dev;
5541
5542 pci_dev_lock(bus->self);
5543 list_for_each_entry(dev, &bus->devices, bus_list) {
5544 if (dev->subordinate)
5545 pci_bus_lock(dev->subordinate);
5546 else
5547 pci_dev_lock(dev);
5548 }
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554 struct pci_dev *dev;
5555
5556 list_for_each_entry(dev, &bus->devices, bus_list) {
5557 if (dev->subordinate)
5558 pci_bus_unlock(dev->subordinate);
5559 else
5560 pci_dev_unlock(dev);
5561 }
5562 pci_dev_unlock(bus->self);
5563}
5564
5565/* Return 1 on successful lock, 0 on contention */
5566static int pci_bus_trylock(struct pci_bus *bus)
5567{
5568 struct pci_dev *dev;
5569
5570 if (!pci_dev_trylock(bus->self))
5571 return 0;
5572
5573 list_for_each_entry(dev, &bus->devices, bus_list) {
5574 if (dev->subordinate) {
5575 if (!pci_bus_trylock(dev->subordinate))
5576 goto unlock;
5577 } else if (!pci_dev_trylock(dev))
5578 goto unlock;
5579 }
5580 return 1;
5581
5582unlock:
5583 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5584 if (dev->subordinate)
5585 pci_bus_unlock(dev->subordinate);
5586 else
5587 pci_dev_unlock(dev);
5588 }
5589 pci_dev_unlock(bus->self);
5590 return 0;
5591}
5592
5593/* Do any devices on or below this slot prevent a bus reset? */
5594static bool pci_slot_resettable(struct pci_slot *slot)
5595{
5596 struct pci_dev *dev;
5597
5598 if (slot->bus->self &&
5599 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5600 return false;
5601
5602 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5603 if (!dev->slot || dev->slot != slot)
5604 continue;
5605 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5606 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5607 return false;
5608 }
5609
5610 return true;
5611}
5612
5613/* Lock devices from the top of the tree down */
5614static void pci_slot_lock(struct pci_slot *slot)
5615{
5616 struct pci_dev *dev;
5617
5618 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5619 if (!dev->slot || dev->slot != slot)
5620 continue;
5621 if (dev->subordinate)
5622 pci_bus_lock(dev->subordinate);
5623 else
5624 pci_dev_lock(dev);
5625 }
5626}
5627
5628/* Unlock devices from the bottom of the tree up */
5629static void pci_slot_unlock(struct pci_slot *slot)
5630{
5631 struct pci_dev *dev;
5632
5633 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5634 if (!dev->slot || dev->slot != slot)
5635 continue;
5636 if (dev->subordinate)
5637 pci_bus_unlock(dev->subordinate);
5638 pci_dev_unlock(dev);
5639 }
5640}
5641
5642/* Return 1 on successful lock, 0 on contention */
5643static int pci_slot_trylock(struct pci_slot *slot)
5644{
5645 struct pci_dev *dev;
5646
5647 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5648 if (!dev->slot || dev->slot != slot)
5649 continue;
5650 if (dev->subordinate) {
5651 if (!pci_bus_trylock(dev->subordinate)) {
5652 pci_dev_unlock(dev);
5653 goto unlock;
5654 }
5655 } else if (!pci_dev_trylock(dev))
5656 goto unlock;
5657 }
5658 return 1;
5659
5660unlock:
5661 list_for_each_entry_continue_reverse(dev,
5662 &slot->bus->devices, bus_list) {
5663 if (!dev->slot || dev->slot != slot)
5664 continue;
5665 if (dev->subordinate)
5666 pci_bus_unlock(dev->subordinate);
5667 else
5668 pci_dev_unlock(dev);
5669 }
5670 return 0;
5671}
5672
5673/*
5674 * Save and disable devices from the top of the tree down while holding
5675 * the @dev mutex lock for the entire tree.
5676 */
5677static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5678{
5679 struct pci_dev *dev;
5680
5681 list_for_each_entry(dev, &bus->devices, bus_list) {
5682 pci_dev_save_and_disable(dev);
5683 if (dev->subordinate)
5684 pci_bus_save_and_disable_locked(dev->subordinate);
5685 }
5686}
5687
5688/*
5689 * Restore devices from top of the tree down while holding @dev mutex lock
5690 * for the entire tree. Parent bridges need to be restored before we can
5691 * get to subordinate devices.
5692 */
5693static void pci_bus_restore_locked(struct pci_bus *bus)
5694{
5695 struct pci_dev *dev;
5696
5697 list_for_each_entry(dev, &bus->devices, bus_list) {
5698 pci_dev_restore(dev);
5699 if (dev->subordinate) {
5700 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5701 pci_bus_restore_locked(dev->subordinate);
5702 }
5703 }
5704}
5705
5706/*
5707 * Save and disable devices from the top of the tree down while holding
5708 * the @dev mutex lock for the entire tree.
5709 */
5710static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5711{
5712 struct pci_dev *dev;
5713
5714 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5715 if (!dev->slot || dev->slot != slot)
5716 continue;
5717 pci_dev_save_and_disable(dev);
5718 if (dev->subordinate)
5719 pci_bus_save_and_disable_locked(dev->subordinate);
5720 }
5721}
5722
5723/*
5724 * Restore devices from top of the tree down while holding @dev mutex lock
5725 * for the entire tree. Parent bridges need to be restored before we can
5726 * get to subordinate devices.
5727 */
5728static void pci_slot_restore_locked(struct pci_slot *slot)
5729{
5730 struct pci_dev *dev;
5731
5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 if (!dev->slot || dev->slot != slot)
5734 continue;
5735 pci_dev_restore(dev);
5736 if (dev->subordinate) {
5737 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5738 pci_bus_restore_locked(dev->subordinate);
5739 }
5740 }
5741}
5742
5743static int pci_slot_reset(struct pci_slot *slot, bool probe)
5744{
5745 int rc;
5746
5747 if (!slot || !pci_slot_resettable(slot))
5748 return -ENOTTY;
5749
5750 if (!probe)
5751 pci_slot_lock(slot);
5752
5753 might_sleep();
5754
5755 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5756
5757 if (!probe)
5758 pci_slot_unlock(slot);
5759
5760 return rc;
5761}
5762
5763/**
5764 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5765 * @slot: PCI slot to probe
5766 *
5767 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5768 */
5769int pci_probe_reset_slot(struct pci_slot *slot)
5770{
5771 return pci_slot_reset(slot, PCI_RESET_PROBE);
5772}
5773EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5774
5775/**
5776 * __pci_reset_slot - Try to reset a PCI slot
5777 * @slot: PCI slot to reset
5778 *
5779 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5780 * independent of other slots. For instance, some slots may support slot power
5781 * control. In the case of a 1:1 bus to slot architecture, this function may
5782 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5783 * Generally a slot reset should be attempted before a bus reset. All of the
5784 * function of the slot and any subordinate buses behind the slot are reset
5785 * through this function. PCI config space of all devices in the slot and
5786 * behind the slot is saved before and restored after reset.
5787 *
5788 * Same as above except return -EAGAIN if the slot cannot be locked
5789 */
5790static int __pci_reset_slot(struct pci_slot *slot)
5791{
5792 int rc;
5793
5794 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5795 if (rc)
5796 return rc;
5797
5798 if (pci_slot_trylock(slot)) {
5799 pci_slot_save_and_disable_locked(slot);
5800 might_sleep();
5801 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5802 pci_slot_restore_locked(slot);
5803 pci_slot_unlock(slot);
5804 } else
5805 rc = -EAGAIN;
5806
5807 return rc;
5808}
5809
5810static int pci_bus_reset(struct pci_bus *bus, bool probe)
5811{
5812 int ret;
5813
5814 if (!bus->self || !pci_bus_resettable(bus))
5815 return -ENOTTY;
5816
5817 if (probe)
5818 return 0;
5819
5820 pci_bus_lock(bus);
5821
5822 might_sleep();
5823
5824 ret = pci_bridge_secondary_bus_reset(bus->self);
5825
5826 pci_bus_unlock(bus);
5827
5828 return ret;
5829}
5830
5831/**
5832 * pci_bus_error_reset - reset the bridge's subordinate bus
5833 * @bridge: The parent device that connects to the bus to reset
5834 *
5835 * This function will first try to reset the slots on this bus if the method is
5836 * available. If slot reset fails or is not available, this will fall back to a
5837 * secondary bus reset.
5838 */
5839int pci_bus_error_reset(struct pci_dev *bridge)
5840{
5841 struct pci_bus *bus = bridge->subordinate;
5842 struct pci_slot *slot;
5843
5844 if (!bus)
5845 return -ENOTTY;
5846
5847 mutex_lock(&pci_slot_mutex);
5848 if (list_empty(&bus->slots))
5849 goto bus_reset;
5850
5851 list_for_each_entry(slot, &bus->slots, list)
5852 if (pci_probe_reset_slot(slot))
5853 goto bus_reset;
5854
5855 list_for_each_entry(slot, &bus->slots, list)
5856 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5857 goto bus_reset;
5858
5859 mutex_unlock(&pci_slot_mutex);
5860 return 0;
5861bus_reset:
5862 mutex_unlock(&pci_slot_mutex);
5863 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5864}
5865
5866/**
5867 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5868 * @bus: PCI bus to probe
5869 *
5870 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5871 */
5872int pci_probe_reset_bus(struct pci_bus *bus)
5873{
5874 return pci_bus_reset(bus, PCI_RESET_PROBE);
5875}
5876EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5877
5878/**
5879 * __pci_reset_bus - Try to reset a PCI bus
5880 * @bus: top level PCI bus to reset
5881 *
5882 * Same as above except return -EAGAIN if the bus cannot be locked
5883 */
5884int __pci_reset_bus(struct pci_bus *bus)
5885{
5886 int rc;
5887
5888 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5889 if (rc)
5890 return rc;
5891
5892 if (pci_bus_trylock(bus)) {
5893 pci_bus_save_and_disable_locked(bus);
5894 might_sleep();
5895 rc = pci_bridge_secondary_bus_reset(bus->self);
5896 pci_bus_restore_locked(bus);
5897 pci_bus_unlock(bus);
5898 } else
5899 rc = -EAGAIN;
5900
5901 return rc;
5902}
5903
5904/**
5905 * pci_reset_bus - Try to reset a PCI bus
5906 * @pdev: top level PCI device to reset via slot/bus
5907 *
5908 * Same as above except return -EAGAIN if the bus cannot be locked
5909 */
5910int pci_reset_bus(struct pci_dev *pdev)
5911{
5912 return (!pci_probe_reset_slot(pdev->slot)) ?
5913 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5914}
5915EXPORT_SYMBOL_GPL(pci_reset_bus);
5916
5917/**
5918 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5919 * @dev: PCI device to query
5920 *
5921 * Returns mmrbc: maximum designed memory read count in bytes or
5922 * appropriate error value.
5923 */
5924int pcix_get_max_mmrbc(struct pci_dev *dev)
5925{
5926 int cap;
5927 u32 stat;
5928
5929 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5930 if (!cap)
5931 return -EINVAL;
5932
5933 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5934 return -EINVAL;
5935
5936 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5937}
5938EXPORT_SYMBOL(pcix_get_max_mmrbc);
5939
5940/**
5941 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5942 * @dev: PCI device to query
5943 *
5944 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5945 * value.
5946 */
5947int pcix_get_mmrbc(struct pci_dev *dev)
5948{
5949 int cap;
5950 u16 cmd;
5951
5952 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5953 if (!cap)
5954 return -EINVAL;
5955
5956 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5957 return -EINVAL;
5958
5959 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5960}
5961EXPORT_SYMBOL(pcix_get_mmrbc);
5962
5963/**
5964 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5965 * @dev: PCI device to query
5966 * @mmrbc: maximum memory read count in bytes
5967 * valid values are 512, 1024, 2048, 4096
5968 *
5969 * If possible sets maximum memory read byte count, some bridges have errata
5970 * that prevent this.
5971 */
5972int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5973{
5974 int cap;
5975 u32 stat, v, o;
5976 u16 cmd;
5977
5978 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5979 return -EINVAL;
5980
5981 v = ffs(mmrbc) - 10;
5982
5983 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5984 if (!cap)
5985 return -EINVAL;
5986
5987 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5988 return -EINVAL;
5989
5990 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5991 return -E2BIG;
5992
5993 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5994 return -EINVAL;
5995
5996 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5997 if (o != v) {
5998 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5999 return -EIO;
6000
6001 cmd &= ~PCI_X_CMD_MAX_READ;
6002 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6003 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6004 return -EIO;
6005 }
6006 return 0;
6007}
6008EXPORT_SYMBOL(pcix_set_mmrbc);
6009
6010/**
6011 * pcie_get_readrq - get PCI Express read request size
6012 * @dev: PCI device to query
6013 *
6014 * Returns maximum memory read request in bytes or appropriate error value.
6015 */
6016int pcie_get_readrq(struct pci_dev *dev)
6017{
6018 u16 ctl;
6019
6020 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6021
6022 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6023}
6024EXPORT_SYMBOL(pcie_get_readrq);
6025
6026/**
6027 * pcie_set_readrq - set PCI Express maximum memory read request
6028 * @dev: PCI device to query
6029 * @rq: maximum memory read count in bytes
6030 * valid values are 128, 256, 512, 1024, 2048, 4096
6031 *
6032 * If possible sets maximum memory read request in bytes
6033 */
6034int pcie_set_readrq(struct pci_dev *dev, int rq)
6035{
6036 u16 v;
6037 int ret;
6038 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6039
6040 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6041 return -EINVAL;
6042
6043 /*
6044 * If using the "performance" PCIe config, we clamp the read rq
6045 * size to the max packet size to keep the host bridge from
6046 * generating requests larger than we can cope with.
6047 */
6048 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6049 int mps = pcie_get_mps(dev);
6050
6051 if (mps < rq)
6052 rq = mps;
6053 }
6054
6055 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6056
6057 if (bridge->no_inc_mrrs) {
6058 int max_mrrs = pcie_get_readrq(dev);
6059
6060 if (rq > max_mrrs) {
6061 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6062 return -EINVAL;
6063 }
6064 }
6065
6066 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6067 PCI_EXP_DEVCTL_READRQ, v);
6068
6069 return pcibios_err_to_errno(ret);
6070}
6071EXPORT_SYMBOL(pcie_set_readrq);
6072
6073/**
6074 * pcie_get_mps - get PCI Express maximum payload size
6075 * @dev: PCI device to query
6076 *
6077 * Returns maximum payload size in bytes
6078 */
6079int pcie_get_mps(struct pci_dev *dev)
6080{
6081 u16 ctl;
6082
6083 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6084
6085 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6086}
6087EXPORT_SYMBOL(pcie_get_mps);
6088
6089/**
6090 * pcie_set_mps - set PCI Express maximum payload size
6091 * @dev: PCI device to query
6092 * @mps: maximum payload size in bytes
6093 * valid values are 128, 256, 512, 1024, 2048, 4096
6094 *
6095 * If possible sets maximum payload size
6096 */
6097int pcie_set_mps(struct pci_dev *dev, int mps)
6098{
6099 u16 v;
6100 int ret;
6101
6102 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6103 return -EINVAL;
6104
6105 v = ffs(mps) - 8;
6106 if (v > dev->pcie_mpss)
6107 return -EINVAL;
6108 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6109
6110 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6111 PCI_EXP_DEVCTL_PAYLOAD, v);
6112
6113 return pcibios_err_to_errno(ret);
6114}
6115EXPORT_SYMBOL(pcie_set_mps);
6116
6117static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6118{
6119 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6120}
6121
6122int pcie_link_speed_mbps(struct pci_dev *pdev)
6123{
6124 u16 lnksta;
6125 int err;
6126
6127 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6128 if (err)
6129 return err;
6130
6131 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6132}
6133EXPORT_SYMBOL(pcie_link_speed_mbps);
6134
6135/**
6136 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6137 * device and its bandwidth limitation
6138 * @dev: PCI device to query
6139 * @limiting_dev: storage for device causing the bandwidth limitation
6140 * @speed: storage for speed of limiting device
6141 * @width: storage for width of limiting device
6142 *
6143 * Walk up the PCI device chain and find the point where the minimum
6144 * bandwidth is available. Return the bandwidth available there and (if
6145 * limiting_dev, speed, and width pointers are supplied) information about
6146 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6147 * raw bandwidth.
6148 */
6149u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6150 enum pci_bus_speed *speed,
6151 enum pcie_link_width *width)
6152{
6153 u16 lnksta;
6154 enum pci_bus_speed next_speed;
6155 enum pcie_link_width next_width;
6156 u32 bw, next_bw;
6157
6158 if (speed)
6159 *speed = PCI_SPEED_UNKNOWN;
6160 if (width)
6161 *width = PCIE_LNK_WIDTH_UNKNOWN;
6162
6163 bw = 0;
6164
6165 while (dev) {
6166 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6167
6168 next_speed = to_pcie_link_speed(lnksta);
6169 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6170
6171 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6172
6173 /* Check if current device limits the total bandwidth */
6174 if (!bw || next_bw <= bw) {
6175 bw = next_bw;
6176
6177 if (limiting_dev)
6178 *limiting_dev = dev;
6179 if (speed)
6180 *speed = next_speed;
6181 if (width)
6182 *width = next_width;
6183 }
6184
6185 dev = pci_upstream_bridge(dev);
6186 }
6187
6188 return bw;
6189}
6190EXPORT_SYMBOL(pcie_bandwidth_available);
6191
6192/**
6193 * pcie_get_supported_speeds - query Supported Link Speed Vector
6194 * @dev: PCI device to query
6195 *
6196 * Query @dev supported link speeds.
6197 *
6198 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6199 * supported link speeds using the Supported Link Speeds Vector in the Link
6200 * Capabilities 2 Register (when available).
6201 *
6202 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6203 *
6204 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6205 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6206 * speeds were defined.
6207 *
6208 * For @dev without Supported Link Speed Vector, the field is synthesized
6209 * from the Max Link Speed field in the Link Capabilities Register.
6210 *
6211 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6212 */
6213u8 pcie_get_supported_speeds(struct pci_dev *dev)
6214{
6215 u32 lnkcap2, lnkcap;
6216 u8 speeds;
6217
6218 /*
6219 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6220 * Speeds Vector to allow using SLS Vector bit defines directly.
6221 */
6222 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6223 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6224
6225 /* Ignore speeds higher than Max Link Speed */
6226 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6227 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6228
6229 /* PCIe r3.0-compliant */
6230 if (speeds)
6231 return speeds;
6232
6233 /* Synthesize from the Max Link Speed field */
6234 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6235 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6236 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6237 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6238
6239 return speeds;
6240}
6241
6242/**
6243 * pcie_get_speed_cap - query for the PCI device's link speed capability
6244 * @dev: PCI device to query
6245 *
6246 * Query the PCI device speed capability.
6247 *
6248 * Return: the maximum link speed supported by the device.
6249 */
6250enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6251{
6252 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6253}
6254EXPORT_SYMBOL(pcie_get_speed_cap);
6255
6256/**
6257 * pcie_get_width_cap - query for the PCI device's link width capability
6258 * @dev: PCI device to query
6259 *
6260 * Query the PCI device width capability. Return the maximum link width
6261 * supported by the device.
6262 */
6263enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6264{
6265 u32 lnkcap;
6266
6267 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6268 if (lnkcap)
6269 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6270
6271 return PCIE_LNK_WIDTH_UNKNOWN;
6272}
6273EXPORT_SYMBOL(pcie_get_width_cap);
6274
6275/**
6276 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6277 * @dev: PCI device
6278 * @speed: storage for link speed
6279 * @width: storage for link width
6280 *
6281 * Calculate a PCI device's link bandwidth by querying for its link speed
6282 * and width, multiplying them, and applying encoding overhead. The result
6283 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6284 */
6285static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6286 enum pci_bus_speed *speed,
6287 enum pcie_link_width *width)
6288{
6289 *speed = pcie_get_speed_cap(dev);
6290 *width = pcie_get_width_cap(dev);
6291
6292 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6293 return 0;
6294
6295 return *width * PCIE_SPEED2MBS_ENC(*speed);
6296}
6297
6298/**
6299 * __pcie_print_link_status - Report the PCI device's link speed and width
6300 * @dev: PCI device to query
6301 * @verbose: Print info even when enough bandwidth is available
6302 *
6303 * If the available bandwidth at the device is less than the device is
6304 * capable of, report the device's maximum possible bandwidth and the
6305 * upstream link that limits its performance. If @verbose, always print
6306 * the available bandwidth, even if the device isn't constrained.
6307 */
6308void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6309{
6310 enum pcie_link_width width, width_cap;
6311 enum pci_bus_speed speed, speed_cap;
6312 struct pci_dev *limiting_dev = NULL;
6313 u32 bw_avail, bw_cap;
6314
6315 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6316 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6317
6318 if (bw_avail >= bw_cap && verbose)
6319 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6320 bw_cap / 1000, bw_cap % 1000,
6321 pci_speed_string(speed_cap), width_cap);
6322 else if (bw_avail < bw_cap)
6323 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6324 bw_avail / 1000, bw_avail % 1000,
6325 pci_speed_string(speed), width,
6326 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6327 bw_cap / 1000, bw_cap % 1000,
6328 pci_speed_string(speed_cap), width_cap);
6329}
6330
6331/**
6332 * pcie_print_link_status - Report the PCI device's link speed and width
6333 * @dev: PCI device to query
6334 *
6335 * Report the available bandwidth at the device.
6336 */
6337void pcie_print_link_status(struct pci_dev *dev)
6338{
6339 __pcie_print_link_status(dev, true);
6340}
6341EXPORT_SYMBOL(pcie_print_link_status);
6342
6343/**
6344 * pci_select_bars - Make BAR mask from the type of resource
6345 * @dev: the PCI device for which BAR mask is made
6346 * @flags: resource type mask to be selected
6347 *
6348 * This helper routine makes bar mask from the type of resource.
6349 */
6350int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6351{
6352 int i, bars = 0;
6353 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6354 if (pci_resource_flags(dev, i) & flags)
6355 bars |= (1 << i);
6356 return bars;
6357}
6358EXPORT_SYMBOL(pci_select_bars);
6359
6360/* Some architectures require additional programming to enable VGA */
6361static arch_set_vga_state_t arch_set_vga_state;
6362
6363void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6364{
6365 arch_set_vga_state = func; /* NULL disables */
6366}
6367
6368static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6369 unsigned int command_bits, u32 flags)
6370{
6371 if (arch_set_vga_state)
6372 return arch_set_vga_state(dev, decode, command_bits,
6373 flags);
6374 return 0;
6375}
6376
6377/**
6378 * pci_set_vga_state - set VGA decode state on device and parents if requested
6379 * @dev: the PCI device
6380 * @decode: true = enable decoding, false = disable decoding
6381 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6382 * @flags: traverse ancestors and change bridges
6383 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6384 */
6385int pci_set_vga_state(struct pci_dev *dev, bool decode,
6386 unsigned int command_bits, u32 flags)
6387{
6388 struct pci_bus *bus;
6389 struct pci_dev *bridge;
6390 u16 cmd;
6391 int rc;
6392
6393 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6394
6395 /* ARCH specific VGA enables */
6396 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6397 if (rc)
6398 return rc;
6399
6400 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6401 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6402 if (decode)
6403 cmd |= command_bits;
6404 else
6405 cmd &= ~command_bits;
6406 pci_write_config_word(dev, PCI_COMMAND, cmd);
6407 }
6408
6409 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6410 return 0;
6411
6412 bus = dev->bus;
6413 while (bus) {
6414 bridge = bus->self;
6415 if (bridge) {
6416 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6417 &cmd);
6418 if (decode)
6419 cmd |= PCI_BRIDGE_CTL_VGA;
6420 else
6421 cmd &= ~PCI_BRIDGE_CTL_VGA;
6422 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6423 cmd);
6424 }
6425 bus = bus->parent;
6426 }
6427 return 0;
6428}
6429
6430#ifdef CONFIG_ACPI
6431bool pci_pr3_present(struct pci_dev *pdev)
6432{
6433 struct acpi_device *adev;
6434
6435 if (acpi_disabled)
6436 return false;
6437
6438 adev = ACPI_COMPANION(&pdev->dev);
6439 if (!adev)
6440 return false;
6441
6442 return adev->power.flags.power_resources &&
6443 acpi_has_method(adev->handle, "_PR3");
6444}
6445EXPORT_SYMBOL_GPL(pci_pr3_present);
6446#endif
6447
6448/**
6449 * pci_add_dma_alias - Add a DMA devfn alias for a device
6450 * @dev: the PCI device for which alias is added
6451 * @devfn_from: alias slot and function
6452 * @nr_devfns: number of subsequent devfns to alias
6453 *
6454 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6455 * which is used to program permissible bus-devfn source addresses for DMA
6456 * requests in an IOMMU. These aliases factor into IOMMU group creation
6457 * and are useful for devices generating DMA requests beyond or different
6458 * from their logical bus-devfn. Examples include device quirks where the
6459 * device simply uses the wrong devfn, as well as non-transparent bridges
6460 * where the alias may be a proxy for devices in another domain.
6461 *
6462 * IOMMU group creation is performed during device discovery or addition,
6463 * prior to any potential DMA mapping and therefore prior to driver probing
6464 * (especially for userspace assigned devices where IOMMU group definition
6465 * cannot be left as a userspace activity). DMA aliases should therefore
6466 * be configured via quirks, such as the PCI fixup header quirk.
6467 */
6468void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6469 unsigned int nr_devfns)
6470{
6471 int devfn_to;
6472
6473 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6474 devfn_to = devfn_from + nr_devfns - 1;
6475
6476 if (!dev->dma_alias_mask)
6477 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6478 if (!dev->dma_alias_mask) {
6479 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6480 return;
6481 }
6482
6483 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6484
6485 if (nr_devfns == 1)
6486 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6487 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6488 else if (nr_devfns > 1)
6489 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6490 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6491 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6492}
6493
6494bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6495{
6496 return (dev1->dma_alias_mask &&
6497 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6498 (dev2->dma_alias_mask &&
6499 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6500 pci_real_dma_dev(dev1) == dev2 ||
6501 pci_real_dma_dev(dev2) == dev1;
6502}
6503
6504bool pci_device_is_present(struct pci_dev *pdev)
6505{
6506 u32 v;
6507
6508 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6509 pdev = pci_physfn(pdev);
6510 if (pci_dev_is_disconnected(pdev))
6511 return false;
6512 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6513}
6514EXPORT_SYMBOL_GPL(pci_device_is_present);
6515
6516void pci_ignore_hotplug(struct pci_dev *dev)
6517{
6518 struct pci_dev *bridge = dev->bus->self;
6519
6520 dev->ignore_hotplug = 1;
6521 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6522 if (bridge)
6523 bridge->ignore_hotplug = 1;
6524}
6525EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6526
6527/**
6528 * pci_real_dma_dev - Get PCI DMA device for PCI device
6529 * @dev: the PCI device that may have a PCI DMA alias
6530 *
6531 * Permits the platform to provide architecture-specific functionality to
6532 * devices needing to alias DMA to another PCI device on another PCI bus. If
6533 * the PCI device is on the same bus, it is recommended to use
6534 * pci_add_dma_alias(). This is the default implementation. Architecture
6535 * implementations can override this.
6536 */
6537struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6538{
6539 return dev;
6540}
6541
6542resource_size_t __weak pcibios_default_alignment(void)
6543{
6544 return 0;
6545}
6546
6547/*
6548 * Arches that don't want to expose struct resource to userland as-is in
6549 * sysfs and /proc can implement their own pci_resource_to_user().
6550 */
6551void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6552 const struct resource *rsrc,
6553 resource_size_t *start, resource_size_t *end)
6554{
6555 *start = rsrc->start;
6556 *end = rsrc->end;
6557}
6558
6559static char *resource_alignment_param;
6560static DEFINE_SPINLOCK(resource_alignment_lock);
6561
6562/**
6563 * pci_specified_resource_alignment - get resource alignment specified by user.
6564 * @dev: the PCI device to get
6565 * @resize: whether or not to change resources' size when reassigning alignment
6566 *
6567 * RETURNS: Resource alignment if it is specified.
6568 * Zero if it is not specified.
6569 */
6570static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6571 bool *resize)
6572{
6573 int align_order, count;
6574 resource_size_t align = pcibios_default_alignment();
6575 const char *p;
6576 int ret;
6577
6578 spin_lock(&resource_alignment_lock);
6579 p = resource_alignment_param;
6580 if (!p || !*p)
6581 goto out;
6582 if (pci_has_flag(PCI_PROBE_ONLY)) {
6583 align = 0;
6584 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6585 goto out;
6586 }
6587
6588 while (*p) {
6589 count = 0;
6590 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6591 p[count] == '@') {
6592 p += count + 1;
6593 if (align_order > 63) {
6594 pr_err("PCI: Invalid requested alignment (order %d)\n",
6595 align_order);
6596 align_order = PAGE_SHIFT;
6597 }
6598 } else {
6599 align_order = PAGE_SHIFT;
6600 }
6601
6602 ret = pci_dev_str_match(dev, p, &p);
6603 if (ret == 1) {
6604 *resize = true;
6605 align = 1ULL << align_order;
6606 break;
6607 } else if (ret < 0) {
6608 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6609 p);
6610 break;
6611 }
6612
6613 if (*p != ';' && *p != ',') {
6614 /* End of param or invalid format */
6615 break;
6616 }
6617 p++;
6618 }
6619out:
6620 spin_unlock(&resource_alignment_lock);
6621 return align;
6622}
6623
6624static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6625 resource_size_t align, bool resize)
6626{
6627 struct resource *r = &dev->resource[bar];
6628 const char *r_name = pci_resource_name(dev, bar);
6629 resource_size_t size;
6630
6631 if (!(r->flags & IORESOURCE_MEM))
6632 return;
6633
6634 if (r->flags & IORESOURCE_PCI_FIXED) {
6635 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6636 r_name, r, (unsigned long long)align);
6637 return;
6638 }
6639
6640 size = resource_size(r);
6641 if (size >= align)
6642 return;
6643
6644 /*
6645 * Increase the alignment of the resource. There are two ways we
6646 * can do this:
6647 *
6648 * 1) Increase the size of the resource. BARs are aligned on their
6649 * size, so when we reallocate space for this resource, we'll
6650 * allocate it with the larger alignment. This also prevents
6651 * assignment of any other BARs inside the alignment region, so
6652 * if we're requesting page alignment, this means no other BARs
6653 * will share the page.
6654 *
6655 * The disadvantage is that this makes the resource larger than
6656 * the hardware BAR, which may break drivers that compute things
6657 * based on the resource size, e.g., to find registers at a
6658 * fixed offset before the end of the BAR.
6659 *
6660 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6661 * set r->start to the desired alignment. By itself this
6662 * doesn't prevent other BARs being put inside the alignment
6663 * region, but if we realign *every* resource of every device in
6664 * the system, none of them will share an alignment region.
6665 *
6666 * When the user has requested alignment for only some devices via
6667 * the "pci=resource_alignment" argument, "resize" is true and we
6668 * use the first method. Otherwise we assume we're aligning all
6669 * devices and we use the second.
6670 */
6671
6672 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6673 r_name, r, (unsigned long long)align);
6674
6675 if (resize) {
6676 r->start = 0;
6677 r->end = align - 1;
6678 } else {
6679 r->flags &= ~IORESOURCE_SIZEALIGN;
6680 r->flags |= IORESOURCE_STARTALIGN;
6681 resource_set_range(r, align, size);
6682 }
6683 r->flags |= IORESOURCE_UNSET;
6684}
6685
6686/*
6687 * This function disables memory decoding and releases memory resources
6688 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6689 * It also rounds up size to specified alignment.
6690 * Later on, the kernel will assign page-aligned memory resource back
6691 * to the device.
6692 */
6693void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6694{
6695 int i;
6696 struct resource *r;
6697 resource_size_t align;
6698 u16 command;
6699 bool resize = false;
6700
6701 /*
6702 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6703 * 3.4.1.11. Their resources are allocated from the space
6704 * described by the VF BARx register in the PF's SR-IOV capability.
6705 * We can't influence their alignment here.
6706 */
6707 if (dev->is_virtfn)
6708 return;
6709
6710 /* check if specified PCI is target device to reassign */
6711 align = pci_specified_resource_alignment(dev, &resize);
6712 if (!align)
6713 return;
6714
6715 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6716 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6717 pci_warn(dev, "Can't reassign resources to host bridge\n");
6718 return;
6719 }
6720
6721 pci_read_config_word(dev, PCI_COMMAND, &command);
6722 command &= ~PCI_COMMAND_MEMORY;
6723 pci_write_config_word(dev, PCI_COMMAND, command);
6724
6725 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6726 pci_request_resource_alignment(dev, i, align, resize);
6727
6728 /*
6729 * Need to disable bridge's resource window,
6730 * to enable the kernel to reassign new resource
6731 * window later on.
6732 */
6733 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6734 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6735 r = &dev->resource[i];
6736 if (!(r->flags & IORESOURCE_MEM))
6737 continue;
6738 r->flags |= IORESOURCE_UNSET;
6739 r->end = resource_size(r) - 1;
6740 r->start = 0;
6741 }
6742 pci_disable_bridge_window(dev);
6743 }
6744}
6745
6746static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6747{
6748 size_t count = 0;
6749
6750 spin_lock(&resource_alignment_lock);
6751 if (resource_alignment_param)
6752 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6753 spin_unlock(&resource_alignment_lock);
6754
6755 return count;
6756}
6757
6758static ssize_t resource_alignment_store(const struct bus_type *bus,
6759 const char *buf, size_t count)
6760{
6761 char *param, *old, *end;
6762
6763 if (count >= (PAGE_SIZE - 1))
6764 return -EINVAL;
6765
6766 param = kstrndup(buf, count, GFP_KERNEL);
6767 if (!param)
6768 return -ENOMEM;
6769
6770 end = strchr(param, '\n');
6771 if (end)
6772 *end = '\0';
6773
6774 spin_lock(&resource_alignment_lock);
6775 old = resource_alignment_param;
6776 if (strlen(param)) {
6777 resource_alignment_param = param;
6778 } else {
6779 kfree(param);
6780 resource_alignment_param = NULL;
6781 }
6782 spin_unlock(&resource_alignment_lock);
6783
6784 kfree(old);
6785
6786 return count;
6787}
6788
6789static BUS_ATTR_RW(resource_alignment);
6790
6791static int __init pci_resource_alignment_sysfs_init(void)
6792{
6793 return bus_create_file(&pci_bus_type,
6794 &bus_attr_resource_alignment);
6795}
6796late_initcall(pci_resource_alignment_sysfs_init);
6797
6798static void pci_no_domains(void)
6799{
6800#ifdef CONFIG_PCI_DOMAINS
6801 pci_domains_supported = 0;
6802#endif
6803}
6804
6805#ifdef CONFIG_PCI_DOMAINS_GENERIC
6806static DEFINE_IDA(pci_domain_nr_static_ida);
6807static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6808
6809static void of_pci_reserve_static_domain_nr(void)
6810{
6811 struct device_node *np;
6812 int domain_nr;
6813
6814 for_each_node_by_type(np, "pci") {
6815 domain_nr = of_get_pci_domain_nr(np);
6816 if (domain_nr < 0)
6817 continue;
6818 /*
6819 * Permanently allocate domain_nr in dynamic_ida
6820 * to prevent it from dynamic allocation.
6821 */
6822 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6823 domain_nr, domain_nr, GFP_KERNEL);
6824 }
6825}
6826
6827static int of_pci_bus_find_domain_nr(struct device *parent)
6828{
6829 static bool static_domains_reserved = false;
6830 int domain_nr;
6831
6832 /* On the first call scan device tree for static allocations. */
6833 if (!static_domains_reserved) {
6834 of_pci_reserve_static_domain_nr();
6835 static_domains_reserved = true;
6836 }
6837
6838 if (parent) {
6839 /*
6840 * If domain is in DT, allocate it in static IDA. This
6841 * prevents duplicate static allocations in case of errors
6842 * in DT.
6843 */
6844 domain_nr = of_get_pci_domain_nr(parent->of_node);
6845 if (domain_nr >= 0)
6846 return ida_alloc_range(&pci_domain_nr_static_ida,
6847 domain_nr, domain_nr,
6848 GFP_KERNEL);
6849 }
6850
6851 /*
6852 * If domain was not specified in DT, choose a free ID from dynamic
6853 * allocations. All domain numbers from DT are permanently in
6854 * dynamic allocations to prevent assigning them to other DT nodes
6855 * without static domain.
6856 */
6857 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6858}
6859
6860static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6861{
6862 if (domain_nr < 0)
6863 return;
6864
6865 /* Release domain from IDA where it was allocated. */
6866 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6867 ida_free(&pci_domain_nr_static_ida, domain_nr);
6868 else
6869 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6870}
6871
6872int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6873{
6874 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6875 acpi_pci_bus_find_domain_nr(bus);
6876}
6877
6878void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6879{
6880 if (!acpi_disabled)
6881 return;
6882 of_pci_bus_release_domain_nr(parent, domain_nr);
6883}
6884#endif
6885
6886/**
6887 * pci_ext_cfg_avail - can we access extended PCI config space?
6888 *
6889 * Returns 1 if we can access PCI extended config space (offsets
6890 * greater than 0xff). This is the default implementation. Architecture
6891 * implementations can override this.
6892 */
6893int __weak pci_ext_cfg_avail(void)
6894{
6895 return 1;
6896}
6897
6898void __weak pci_fixup_cardbus(struct pci_bus *bus)
6899{
6900}
6901EXPORT_SYMBOL(pci_fixup_cardbus);
6902
6903static int __init pci_setup(char *str)
6904{
6905 while (str) {
6906 char *k = strchr(str, ',');
6907 if (k)
6908 *k++ = 0;
6909 if (*str && (str = pcibios_setup(str)) && *str) {
6910 if (!strcmp(str, "nomsi")) {
6911 pci_no_msi();
6912 } else if (!strncmp(str, "noats", 5)) {
6913 pr_info("PCIe: ATS is disabled\n");
6914 pcie_ats_disabled = true;
6915 } else if (!strcmp(str, "noaer")) {
6916 pci_no_aer();
6917 } else if (!strcmp(str, "earlydump")) {
6918 pci_early_dump = true;
6919 } else if (!strncmp(str, "realloc=", 8)) {
6920 pci_realloc_get_opt(str + 8);
6921 } else if (!strncmp(str, "realloc", 7)) {
6922 pci_realloc_get_opt("on");
6923 } else if (!strcmp(str, "nodomains")) {
6924 pci_no_domains();
6925 } else if (!strncmp(str, "noari", 5)) {
6926 pcie_ari_disabled = true;
6927 } else if (!strncmp(str, "notph", 5)) {
6928 pci_no_tph();
6929 } else if (!strncmp(str, "cbiosize=", 9)) {
6930 pci_cardbus_io_size = memparse(str + 9, &str);
6931 } else if (!strncmp(str, "cbmemsize=", 10)) {
6932 pci_cardbus_mem_size = memparse(str + 10, &str);
6933 } else if (!strncmp(str, "resource_alignment=", 19)) {
6934 resource_alignment_param = str + 19;
6935 } else if (!strncmp(str, "ecrc=", 5)) {
6936 pcie_ecrc_get_policy(str + 5);
6937 } else if (!strncmp(str, "hpiosize=", 9)) {
6938 pci_hotplug_io_size = memparse(str + 9, &str);
6939 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6940 pci_hotplug_mmio_size = memparse(str + 11, &str);
6941 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6942 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6943 } else if (!strncmp(str, "hpmemsize=", 10)) {
6944 pci_hotplug_mmio_size = memparse(str + 10, &str);
6945 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6946 } else if (!strncmp(str, "hpbussize=", 10)) {
6947 pci_hotplug_bus_size =
6948 simple_strtoul(str + 10, &str, 0);
6949 if (pci_hotplug_bus_size > 0xff)
6950 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6951 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6952 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6953 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6954 pcie_bus_config = PCIE_BUS_SAFE;
6955 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6956 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6957 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6958 pcie_bus_config = PCIE_BUS_PEER2PEER;
6959 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6960 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6961 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6962 disable_acs_redir_param = str + 18;
6963 } else if (!strncmp(str, "config_acs=", 11)) {
6964 config_acs_param = str + 11;
6965 } else {
6966 pr_err("PCI: Unknown option `%s'\n", str);
6967 }
6968 }
6969 str = k;
6970 }
6971 return 0;
6972}
6973early_param("pci", pci_setup);
6974
6975/*
6976 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6977 * in pci_setup(), above, to point to data in the __initdata section which
6978 * will be freed after the init sequence is complete. We can't allocate memory
6979 * in pci_setup() because some architectures do not have any memory allocation
6980 * service available during an early_param() call. So we allocate memory and
6981 * copy the variable here before the init section is freed.
6982 *
6983 */
6984static int __init pci_realloc_setup_params(void)
6985{
6986 resource_alignment_param = kstrdup(resource_alignment_param,
6987 GFP_KERNEL);
6988 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6989 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6990
6991 return 0;
6992}
6993pure_initcall(pci_realloc_setup_params);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include <linux/bitfield.h>
35#include "pci.h"
36
37DEFINE_MUTEX(pci_slot_mutex);
38
39const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41};
42EXPORT_SYMBOL_GPL(pci_power_names);
43
44#ifdef CONFIG_X86_32
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47#endif
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
52unsigned int pci_pm_d3hot_delay;
53
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
67static void pci_dev_d3_sleep(struct pci_dev *dev)
68{
69 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
70 unsigned int upper;
71
72 if (delay_ms) {
73 /* Use a 20% upper bound, 1ms minimum */
74 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
75 usleep_range(delay_ms * USEC_PER_MSEC,
76 (delay_ms + upper) * USEC_PER_MSEC);
77 }
78}
79
80bool pci_reset_supported(struct pci_dev *dev)
81{
82 return dev->reset_methods[0] != 0;
83}
84
85#ifdef CONFIG_PCI_DOMAINS
86int pci_domains_supported = 1;
87#endif
88
89#define DEFAULT_CARDBUS_IO_SIZE (256)
90#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
91/* pci=cbmemsize=nnM,cbiosize=nn can override this */
92unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
93unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
94
95#define DEFAULT_HOTPLUG_IO_SIZE (256)
96#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
97#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
98/* hpiosize=nn can override this */
99unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
100/*
101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
103 * pci=hpmemsize=nnM overrides both
104 */
105unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
106unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
107
108#define DEFAULT_HOTPLUG_BUS_SIZE 1
109unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
110
111
112/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
113#ifdef CONFIG_PCIE_BUS_TUNE_OFF
114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
115#elif defined CONFIG_PCIE_BUS_SAFE
116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
117#elif defined CONFIG_PCIE_BUS_PERFORMANCE
118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
119#elif defined CONFIG_PCIE_BUS_PEER2PEER
120enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
121#else
122enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
123#endif
124
125/*
126 * The default CLS is used if arch didn't set CLS explicitly and not
127 * all pci devices agree on the same value. Arch can override either
128 * the dfl or actual value as it sees fit. Don't forget this is
129 * measured in 32-bit words, not bytes.
130 */
131u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
132u8 pci_cache_line_size;
133
134/*
135 * If we set up a device for bus mastering, we need to check the latency
136 * timer as certain BIOSes forget to set it properly.
137 */
138unsigned int pcibios_max_latency = 255;
139
140/* If set, the PCIe ARI capability will not be used. */
141static bool pcie_ari_disabled;
142
143/* If set, the PCIe ATS capability will not be used. */
144static bool pcie_ats_disabled;
145
146/* If set, the PCI config space of each device is printed during boot. */
147bool pci_early_dump;
148
149bool pci_ats_disabled(void)
150{
151 return pcie_ats_disabled;
152}
153EXPORT_SYMBOL_GPL(pci_ats_disabled);
154
155/* Disable bridge_d3 for all PCIe ports */
156static bool pci_bridge_d3_disable;
157/* Force bridge_d3 for all PCIe ports */
158static bool pci_bridge_d3_force;
159
160static int __init pcie_port_pm_setup(char *str)
161{
162 if (!strcmp(str, "off"))
163 pci_bridge_d3_disable = true;
164 else if (!strcmp(str, "force"))
165 pci_bridge_d3_force = true;
166 return 1;
167}
168__setup("pcie_port_pm=", pcie_port_pm_setup);
169
170/* Time to wait after a reset for device to become responsive */
171#define PCIE_RESET_READY_POLL_MS 60000
172
173/**
174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
175 * @bus: pointer to PCI bus structure to search
176 *
177 * Given a PCI bus, returns the highest PCI bus number present in the set
178 * including the given PCI bus and its list of child PCI buses.
179 */
180unsigned char pci_bus_max_busnr(struct pci_bus *bus)
181{
182 struct pci_bus *tmp;
183 unsigned char max, n;
184
185 max = bus->busn_res.end;
186 list_for_each_entry(tmp, &bus->children, node) {
187 n = pci_bus_max_busnr(tmp);
188 if (n > max)
189 max = n;
190 }
191 return max;
192}
193EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
194
195/**
196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
197 * @pdev: the PCI device
198 *
199 * Returns error bits set in PCI_STATUS and clears them.
200 */
201int pci_status_get_and_clear_errors(struct pci_dev *pdev)
202{
203 u16 status;
204 int ret;
205
206 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
207 if (ret != PCIBIOS_SUCCESSFUL)
208 return -EIO;
209
210 status &= PCI_STATUS_ERROR_BITS;
211 if (status)
212 pci_write_config_word(pdev, PCI_STATUS, status);
213
214 return status;
215}
216EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
217
218#ifdef CONFIG_HAS_IOMEM
219static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
220 bool write_combine)
221{
222 struct resource *res = &pdev->resource[bar];
223 resource_size_t start = res->start;
224 resource_size_t size = resource_size(res);
225
226 /*
227 * Make sure the BAR is actually a memory resource, not an IO resource
228 */
229 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
230 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
231 return NULL;
232 }
233
234 if (write_combine)
235 return ioremap_wc(start, size);
236
237 return ioremap(start, size);
238}
239
240void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
241{
242 return __pci_ioremap_resource(pdev, bar, false);
243}
244EXPORT_SYMBOL_GPL(pci_ioremap_bar);
245
246void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
247{
248 return __pci_ioremap_resource(pdev, bar, true);
249}
250EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
251#endif
252
253/**
254 * pci_dev_str_match_path - test if a path string matches a device
255 * @dev: the PCI device to test
256 * @path: string to match the device against
257 * @endptr: pointer to the string after the match
258 *
259 * Test if a string (typically from a kernel parameter) formatted as a
260 * path of device/function addresses matches a PCI device. The string must
261 * be of the form:
262 *
263 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
264 *
265 * A path for a device can be obtained using 'lspci -t'. Using a path
266 * is more robust against bus renumbering than using only a single bus,
267 * device and function address.
268 *
269 * Returns 1 if the string matches the device, 0 if it does not and
270 * a negative error code if it fails to parse the string.
271 */
272static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
273 const char **endptr)
274{
275 int ret;
276 unsigned int seg, bus, slot, func;
277 char *wpath, *p;
278 char end;
279
280 *endptr = strchrnul(path, ';');
281
282 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
283 if (!wpath)
284 return -ENOMEM;
285
286 while (1) {
287 p = strrchr(wpath, '/');
288 if (!p)
289 break;
290 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
291 if (ret != 2) {
292 ret = -EINVAL;
293 goto free_and_exit;
294 }
295
296 if (dev->devfn != PCI_DEVFN(slot, func)) {
297 ret = 0;
298 goto free_and_exit;
299 }
300
301 /*
302 * Note: we don't need to get a reference to the upstream
303 * bridge because we hold a reference to the top level
304 * device which should hold a reference to the bridge,
305 * and so on.
306 */
307 dev = pci_upstream_bridge(dev);
308 if (!dev) {
309 ret = 0;
310 goto free_and_exit;
311 }
312
313 *p = 0;
314 }
315
316 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
317 &func, &end);
318 if (ret != 4) {
319 seg = 0;
320 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
321 if (ret != 3) {
322 ret = -EINVAL;
323 goto free_and_exit;
324 }
325 }
326
327 ret = (seg == pci_domain_nr(dev->bus) &&
328 bus == dev->bus->number &&
329 dev->devfn == PCI_DEVFN(slot, func));
330
331free_and_exit:
332 kfree(wpath);
333 return ret;
334}
335
336/**
337 * pci_dev_str_match - test if a string matches a device
338 * @dev: the PCI device to test
339 * @p: string to match the device against
340 * @endptr: pointer to the string after the match
341 *
342 * Test if a string (typically from a kernel parameter) matches a specified
343 * PCI device. The string may be of one of the following formats:
344 *
345 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
346 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
347 *
348 * The first format specifies a PCI bus/device/function address which
349 * may change if new hardware is inserted, if motherboard firmware changes,
350 * or due to changes caused in kernel parameters. If the domain is
351 * left unspecified, it is taken to be 0. In order to be robust against
352 * bus renumbering issues, a path of PCI device/function numbers may be used
353 * to address the specific device. The path for a device can be determined
354 * through the use of 'lspci -t'.
355 *
356 * The second format matches devices using IDs in the configuration
357 * space which may match multiple devices in the system. A value of 0
358 * for any field will match all devices. (Note: this differs from
359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
360 * legacy reasons and convenience so users don't have to specify
361 * FFFFFFFFs on the command line.)
362 *
363 * Returns 1 if the string matches the device, 0 if it does not and
364 * a negative error code if the string cannot be parsed.
365 */
366static int pci_dev_str_match(struct pci_dev *dev, const char *p,
367 const char **endptr)
368{
369 int ret;
370 int count;
371 unsigned short vendor, device, subsystem_vendor, subsystem_device;
372
373 if (strncmp(p, "pci:", 4) == 0) {
374 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
375 p += 4;
376 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
377 &subsystem_vendor, &subsystem_device, &count);
378 if (ret != 4) {
379 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
380 if (ret != 2)
381 return -EINVAL;
382
383 subsystem_vendor = 0;
384 subsystem_device = 0;
385 }
386
387 p += count;
388
389 if ((!vendor || vendor == dev->vendor) &&
390 (!device || device == dev->device) &&
391 (!subsystem_vendor ||
392 subsystem_vendor == dev->subsystem_vendor) &&
393 (!subsystem_device ||
394 subsystem_device == dev->subsystem_device))
395 goto found;
396 } else {
397 /*
398 * PCI Bus, Device, Function IDs are specified
399 * (optionally, may include a path of devfns following it)
400 */
401 ret = pci_dev_str_match_path(dev, p, &p);
402 if (ret < 0)
403 return ret;
404 else if (ret)
405 goto found;
406 }
407
408 *endptr = p;
409 return 0;
410
411found:
412 *endptr = p;
413 return 1;
414}
415
416static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
417 u8 pos, int cap, int *ttl)
418{
419 u8 id;
420 u16 ent;
421
422 pci_bus_read_config_byte(bus, devfn, pos, &pos);
423
424 while ((*ttl)--) {
425 if (pos < 0x40)
426 break;
427 pos &= ~3;
428 pci_bus_read_config_word(bus, devfn, pos, &ent);
429
430 id = ent & 0xff;
431 if (id == 0xff)
432 break;
433 if (id == cap)
434 return pos;
435 pos = (ent >> 8);
436 }
437 return 0;
438}
439
440static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
441 u8 pos, int cap)
442{
443 int ttl = PCI_FIND_CAP_TTL;
444
445 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
446}
447
448u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
449{
450 return __pci_find_next_cap(dev->bus, dev->devfn,
451 pos + PCI_CAP_LIST_NEXT, cap);
452}
453EXPORT_SYMBOL_GPL(pci_find_next_capability);
454
455static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
456 unsigned int devfn, u8 hdr_type)
457{
458 u16 status;
459
460 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
461 if (!(status & PCI_STATUS_CAP_LIST))
462 return 0;
463
464 switch (hdr_type) {
465 case PCI_HEADER_TYPE_NORMAL:
466 case PCI_HEADER_TYPE_BRIDGE:
467 return PCI_CAPABILITY_LIST;
468 case PCI_HEADER_TYPE_CARDBUS:
469 return PCI_CB_CAPABILITY_LIST;
470 }
471
472 return 0;
473}
474
475/**
476 * pci_find_capability - query for devices' capabilities
477 * @dev: PCI device to query
478 * @cap: capability code
479 *
480 * Tell if a device supports a given PCI capability.
481 * Returns the address of the requested capability structure within the
482 * device's PCI configuration space or 0 in case the device does not
483 * support it. Possible values for @cap include:
484 *
485 * %PCI_CAP_ID_PM Power Management
486 * %PCI_CAP_ID_AGP Accelerated Graphics Port
487 * %PCI_CAP_ID_VPD Vital Product Data
488 * %PCI_CAP_ID_SLOTID Slot Identification
489 * %PCI_CAP_ID_MSI Message Signalled Interrupts
490 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
491 * %PCI_CAP_ID_PCIX PCI-X
492 * %PCI_CAP_ID_EXP PCI Express
493 */
494u8 pci_find_capability(struct pci_dev *dev, int cap)
495{
496 u8 pos;
497
498 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
499 if (pos)
500 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
501
502 return pos;
503}
504EXPORT_SYMBOL(pci_find_capability);
505
506/**
507 * pci_bus_find_capability - query for devices' capabilities
508 * @bus: the PCI bus to query
509 * @devfn: PCI device to query
510 * @cap: capability code
511 *
512 * Like pci_find_capability() but works for PCI devices that do not have a
513 * pci_dev structure set up yet.
514 *
515 * Returns the address of the requested capability structure within the
516 * device's PCI configuration space or 0 in case the device does not
517 * support it.
518 */
519u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
520{
521 u8 hdr_type, pos;
522
523 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
524
525 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
526 if (pos)
527 pos = __pci_find_next_cap(bus, devfn, pos, cap);
528
529 return pos;
530}
531EXPORT_SYMBOL(pci_bus_find_capability);
532
533/**
534 * pci_find_next_ext_capability - Find an extended capability
535 * @dev: PCI device to query
536 * @start: address at which to start looking (0 to start at beginning of list)
537 * @cap: capability code
538 *
539 * Returns the address of the next matching extended capability structure
540 * within the device's PCI configuration space or 0 if the device does
541 * not support it. Some capabilities can occur several times, e.g., the
542 * vendor-specific capability, and this provides a way to find them all.
543 */
544u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
545{
546 u32 header;
547 int ttl;
548 u16 pos = PCI_CFG_SPACE_SIZE;
549
550 /* minimum 8 bytes per capability */
551 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
552
553 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
554 return 0;
555
556 if (start)
557 pos = start;
558
559 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
560 return 0;
561
562 /*
563 * If we have no capabilities, this is indicated by cap ID,
564 * cap version and next pointer all being 0.
565 */
566 if (header == 0)
567 return 0;
568
569 while (ttl-- > 0) {
570 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
571 return pos;
572
573 pos = PCI_EXT_CAP_NEXT(header);
574 if (pos < PCI_CFG_SPACE_SIZE)
575 break;
576
577 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
578 break;
579 }
580
581 return 0;
582}
583EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
584
585/**
586 * pci_find_ext_capability - Find an extended capability
587 * @dev: PCI device to query
588 * @cap: capability code
589 *
590 * Returns the address of the requested extended capability structure
591 * within the device's PCI configuration space or 0 if the device does
592 * not support it. Possible values for @cap include:
593 *
594 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
595 * %PCI_EXT_CAP_ID_VC Virtual Channel
596 * %PCI_EXT_CAP_ID_DSN Device Serial Number
597 * %PCI_EXT_CAP_ID_PWR Power Budgeting
598 */
599u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
600{
601 return pci_find_next_ext_capability(dev, 0, cap);
602}
603EXPORT_SYMBOL_GPL(pci_find_ext_capability);
604
605/**
606 * pci_get_dsn - Read and return the 8-byte Device Serial Number
607 * @dev: PCI device to query
608 *
609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
610 * Number.
611 *
612 * Returns the DSN, or zero if the capability does not exist.
613 */
614u64 pci_get_dsn(struct pci_dev *dev)
615{
616 u32 dword;
617 u64 dsn;
618 int pos;
619
620 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
621 if (!pos)
622 return 0;
623
624 /*
625 * The Device Serial Number is two dwords offset 4 bytes from the
626 * capability position. The specification says that the first dword is
627 * the lower half, and the second dword is the upper half.
628 */
629 pos += 4;
630 pci_read_config_dword(dev, pos, &dword);
631 dsn = (u64)dword;
632 pci_read_config_dword(dev, pos + 4, &dword);
633 dsn |= ((u64)dword) << 32;
634
635 return dsn;
636}
637EXPORT_SYMBOL_GPL(pci_get_dsn);
638
639static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
640{
641 int rc, ttl = PCI_FIND_CAP_TTL;
642 u8 cap, mask;
643
644 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
645 mask = HT_3BIT_CAP_MASK;
646 else
647 mask = HT_5BIT_CAP_MASK;
648
649 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
650 PCI_CAP_ID_HT, &ttl);
651 while (pos) {
652 rc = pci_read_config_byte(dev, pos + 3, &cap);
653 if (rc != PCIBIOS_SUCCESSFUL)
654 return 0;
655
656 if ((cap & mask) == ht_cap)
657 return pos;
658
659 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
660 pos + PCI_CAP_LIST_NEXT,
661 PCI_CAP_ID_HT, &ttl);
662 }
663
664 return 0;
665}
666
667/**
668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
669 * @dev: PCI device to query
670 * @pos: Position from which to continue searching
671 * @ht_cap: HyperTransport capability code
672 *
673 * To be used in conjunction with pci_find_ht_capability() to search for
674 * all capabilities matching @ht_cap. @pos should always be a value returned
675 * from pci_find_ht_capability().
676 *
677 * NB. To be 100% safe against broken PCI devices, the caller should take
678 * steps to avoid an infinite loop.
679 */
680u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
681{
682 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
683}
684EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
685
686/**
687 * pci_find_ht_capability - query a device's HyperTransport capabilities
688 * @dev: PCI device to query
689 * @ht_cap: HyperTransport capability code
690 *
691 * Tell if a device supports a given HyperTransport capability.
692 * Returns an address within the device's PCI configuration space
693 * or 0 in case the device does not support the request capability.
694 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
695 * which has a HyperTransport capability matching @ht_cap.
696 */
697u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
698{
699 u8 pos;
700
701 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
702 if (pos)
703 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
704
705 return pos;
706}
707EXPORT_SYMBOL_GPL(pci_find_ht_capability);
708
709/**
710 * pci_find_vsec_capability - Find a vendor-specific extended capability
711 * @dev: PCI device to query
712 * @vendor: Vendor ID for which capability is defined
713 * @cap: Vendor-specific capability ID
714 *
715 * If @dev has Vendor ID @vendor, search for a VSEC capability with
716 * VSEC ID @cap. If found, return the capability offset in
717 * config space; otherwise return 0.
718 */
719u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
720{
721 u16 vsec = 0;
722 u32 header;
723
724 if (vendor != dev->vendor)
725 return 0;
726
727 while ((vsec = pci_find_next_ext_capability(dev, vsec,
728 PCI_EXT_CAP_ID_VNDR))) {
729 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
730 &header) == PCIBIOS_SUCCESSFUL &&
731 PCI_VNDR_HEADER_ID(header) == cap)
732 return vsec;
733 }
734
735 return 0;
736}
737EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
738
739/**
740 * pci_find_dvsec_capability - Find DVSEC for vendor
741 * @dev: PCI device to query
742 * @vendor: Vendor ID to match for the DVSEC
743 * @dvsec: Designated Vendor-specific capability ID
744 *
745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
746 * offset in config space; otherwise return 0.
747 */
748u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
749{
750 int pos;
751
752 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
753 if (!pos)
754 return 0;
755
756 while (pos) {
757 u16 v, id;
758
759 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
760 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
761 if (vendor == v && dvsec == id)
762 return pos;
763
764 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
765 }
766
767 return 0;
768}
769EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
770
771/**
772 * pci_find_parent_resource - return resource region of parent bus of given
773 * region
774 * @dev: PCI device structure contains resources to be searched
775 * @res: child resource record for which parent is sought
776 *
777 * For given resource region of given device, return the resource region of
778 * parent bus the given region is contained in.
779 */
780struct resource *pci_find_parent_resource(const struct pci_dev *dev,
781 struct resource *res)
782{
783 const struct pci_bus *bus = dev->bus;
784 struct resource *r;
785 int i;
786
787 pci_bus_for_each_resource(bus, r, i) {
788 if (!r)
789 continue;
790 if (resource_contains(r, res)) {
791
792 /*
793 * If the window is prefetchable but the BAR is
794 * not, the allocator made a mistake.
795 */
796 if (r->flags & IORESOURCE_PREFETCH &&
797 !(res->flags & IORESOURCE_PREFETCH))
798 return NULL;
799
800 /*
801 * If we're below a transparent bridge, there may
802 * be both a positively-decoded aperture and a
803 * subtractively-decoded region that contain the BAR.
804 * We want the positively-decoded one, so this depends
805 * on pci_bus_for_each_resource() giving us those
806 * first.
807 */
808 return r;
809 }
810 }
811 return NULL;
812}
813EXPORT_SYMBOL(pci_find_parent_resource);
814
815/**
816 * pci_find_resource - Return matching PCI device resource
817 * @dev: PCI device to query
818 * @res: Resource to look for
819 *
820 * Goes over standard PCI resources (BARs) and checks if the given resource
821 * is partially or fully contained in any of them. In that case the
822 * matching resource is returned, %NULL otherwise.
823 */
824struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
825{
826 int i;
827
828 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
829 struct resource *r = &dev->resource[i];
830
831 if (r->start && resource_contains(r, res))
832 return r;
833 }
834
835 return NULL;
836}
837EXPORT_SYMBOL(pci_find_resource);
838
839/**
840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
841 * @dev: the PCI device to operate on
842 * @pos: config space offset of status word
843 * @mask: mask of bit(s) to care about in status word
844 *
845 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
846 */
847int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
848{
849 int i;
850
851 /* Wait for Transaction Pending bit clean */
852 for (i = 0; i < 4; i++) {
853 u16 status;
854 if (i)
855 msleep((1 << (i - 1)) * 100);
856
857 pci_read_config_word(dev, pos, &status);
858 if (!(status & mask))
859 return 1;
860 }
861
862 return 0;
863}
864
865static int pci_acs_enable;
866
867/**
868 * pci_request_acs - ask for ACS to be enabled if supported
869 */
870void pci_request_acs(void)
871{
872 pci_acs_enable = 1;
873}
874
875static const char *disable_acs_redir_param;
876
877/**
878 * pci_disable_acs_redir - disable ACS redirect capabilities
879 * @dev: the PCI device
880 *
881 * For only devices specified in the disable_acs_redir parameter.
882 */
883static void pci_disable_acs_redir(struct pci_dev *dev)
884{
885 int ret = 0;
886 const char *p;
887 int pos;
888 u16 ctrl;
889
890 if (!disable_acs_redir_param)
891 return;
892
893 p = disable_acs_redir_param;
894 while (*p) {
895 ret = pci_dev_str_match(dev, p, &p);
896 if (ret < 0) {
897 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
898 disable_acs_redir_param);
899
900 break;
901 } else if (ret == 1) {
902 /* Found a match */
903 break;
904 }
905
906 if (*p != ';' && *p != ',') {
907 /* End of param or invalid format */
908 break;
909 }
910 p++;
911 }
912
913 if (ret != 1)
914 return;
915
916 if (!pci_dev_specific_disable_acs_redir(dev))
917 return;
918
919 pos = dev->acs_cap;
920 if (!pos) {
921 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
922 return;
923 }
924
925 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
926
927 /* P2P Request & Completion Redirect */
928 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
929
930 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
931
932 pci_info(dev, "disabled ACS redirect\n");
933}
934
935/**
936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
937 * @dev: the PCI device
938 */
939static void pci_std_enable_acs(struct pci_dev *dev)
940{
941 int pos;
942 u16 cap;
943 u16 ctrl;
944
945 pos = dev->acs_cap;
946 if (!pos)
947 return;
948
949 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
950 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
951
952 /* Source Validation */
953 ctrl |= (cap & PCI_ACS_SV);
954
955 /* P2P Request Redirect */
956 ctrl |= (cap & PCI_ACS_RR);
957
958 /* P2P Completion Redirect */
959 ctrl |= (cap & PCI_ACS_CR);
960
961 /* Upstream Forwarding */
962 ctrl |= (cap & PCI_ACS_UF);
963
964 /* Enable Translation Blocking for external devices and noats */
965 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
966 ctrl |= (cap & PCI_ACS_TB);
967
968 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
969}
970
971/**
972 * pci_enable_acs - enable ACS if hardware support it
973 * @dev: the PCI device
974 */
975static void pci_enable_acs(struct pci_dev *dev)
976{
977 if (!pci_acs_enable)
978 goto disable_acs_redir;
979
980 if (!pci_dev_specific_enable_acs(dev))
981 goto disable_acs_redir;
982
983 pci_std_enable_acs(dev);
984
985disable_acs_redir:
986 /*
987 * Note: pci_disable_acs_redir() must be called even if ACS was not
988 * enabled by the kernel because it may have been enabled by
989 * platform firmware. So if we are told to disable it, we should
990 * always disable it after setting the kernel's default
991 * preferences.
992 */
993 pci_disable_acs_redir(dev);
994}
995
996/**
997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
998 * @dev: PCI device to have its BARs restored
999 *
1000 * Restore the BAR values for a given device, so as to make it
1001 * accessible by its driver.
1002 */
1003static void pci_restore_bars(struct pci_dev *dev)
1004{
1005 int i;
1006
1007 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008 pci_update_resource(dev, i);
1009}
1010
1011static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1012{
1013 if (pci_use_mid_pm())
1014 return true;
1015
1016 return acpi_pci_power_manageable(dev);
1017}
1018
1019static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020 pci_power_t t)
1021{
1022 if (pci_use_mid_pm())
1023 return mid_pci_set_power_state(dev, t);
1024
1025 return acpi_pci_set_power_state(dev, t);
1026}
1027
1028static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029{
1030 if (pci_use_mid_pm())
1031 return mid_pci_get_power_state(dev);
1032
1033 return acpi_pci_get_power_state(dev);
1034}
1035
1036static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037{
1038 if (!pci_use_mid_pm())
1039 acpi_pci_refresh_power_state(dev);
1040}
1041
1042static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043{
1044 if (pci_use_mid_pm())
1045 return PCI_POWER_ERROR;
1046
1047 return acpi_pci_choose_state(dev);
1048}
1049
1050static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051{
1052 if (pci_use_mid_pm())
1053 return PCI_POWER_ERROR;
1054
1055 return acpi_pci_wakeup(dev, enable);
1056}
1057
1058static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059{
1060 if (pci_use_mid_pm())
1061 return false;
1062
1063 return acpi_pci_need_resume(dev);
1064}
1065
1066static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1067{
1068 if (pci_use_mid_pm())
1069 return false;
1070
1071 return acpi_pci_bridge_d3(dev);
1072}
1073
1074/**
1075 * pci_update_current_state - Read power state of given device and cache it
1076 * @dev: PCI device to handle.
1077 * @state: State to cache in case the device doesn't have the PM capability
1078 *
1079 * The power state is read from the PMCSR register, which however is
1080 * inaccessible in D3cold. The platform firmware is therefore queried first
1081 * to detect accessibility of the register. In case the platform firmware
1082 * reports an incorrect state or the device isn't power manageable by the
1083 * platform at all, we try to detect D3cold by testing accessibility of the
1084 * vendor ID in config space.
1085 */
1086void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087{
1088 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1089 dev->current_state = PCI_D3cold;
1090 } else if (dev->pm_cap) {
1091 u16 pmcsr;
1092
1093 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095 dev->current_state = PCI_D3cold;
1096 return;
1097 }
1098 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099 } else {
1100 dev->current_state = state;
1101 }
1102}
1103
1104/**
1105 * pci_refresh_power_state - Refresh the given device's power state data
1106 * @dev: Target PCI device.
1107 *
1108 * Ask the platform to refresh the devices power state information and invoke
1109 * pci_update_current_state() to update its current PCI power state.
1110 */
1111void pci_refresh_power_state(struct pci_dev *dev)
1112{
1113 platform_pci_refresh_power_state(dev);
1114 pci_update_current_state(dev, dev->current_state);
1115}
1116
1117/**
1118 * pci_platform_power_transition - Use platform to change device power state
1119 * @dev: PCI device to handle.
1120 * @state: State to put the device into.
1121 */
1122int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123{
1124 int error;
1125
1126 error = platform_pci_set_power_state(dev, state);
1127 if (!error)
1128 pci_update_current_state(dev, state);
1129 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1130 dev->current_state = PCI_D0;
1131
1132 return error;
1133}
1134EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135
1136static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1137{
1138 pm_request_resume(&pci_dev->dev);
1139 return 0;
1140}
1141
1142/**
1143 * pci_resume_bus - Walk given bus and runtime resume devices on it
1144 * @bus: Top bus of the subtree to walk.
1145 */
1146void pci_resume_bus(struct pci_bus *bus)
1147{
1148 if (bus)
1149 pci_walk_bus(bus, pci_resume_one, NULL);
1150}
1151
1152static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153{
1154 int delay = 1;
1155 u32 id;
1156
1157 /*
1158 * After reset, the device should not silently discard config
1159 * requests, but it may still indicate that it needs more time by
1160 * responding to them with CRS completions. The Root Port will
1161 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162 * the read (except when CRS SV is enabled and the read was for the
1163 * Vendor ID; in that case it synthesizes 0x0001 data).
1164 *
1165 * Wait for the device to return a non-CRS completion. Read the
1166 * Command register instead of Vendor ID so we don't have to
1167 * contend with the CRS SV value.
1168 */
1169 pci_read_config_dword(dev, PCI_COMMAND, &id);
1170 while (PCI_POSSIBLE_ERROR(id)) {
1171 if (delay > timeout) {
1172 pci_warn(dev, "not ready %dms after %s; giving up\n",
1173 delay - 1, reset_type);
1174 return -ENOTTY;
1175 }
1176
1177 if (delay > 1000)
1178 pci_info(dev, "not ready %dms after %s; waiting\n",
1179 delay - 1, reset_type);
1180
1181 msleep(delay);
1182 delay *= 2;
1183 pci_read_config_dword(dev, PCI_COMMAND, &id);
1184 }
1185
1186 if (delay > 1000)
1187 pci_info(dev, "ready %dms after %s\n", delay - 1,
1188 reset_type);
1189
1190 return 0;
1191}
1192
1193/**
1194 * pci_power_up - Put the given device into D0
1195 * @dev: PCI device to power up
1196 *
1197 * On success, return 0 or 1, depending on whether or not it is necessary to
1198 * restore the device's BARs subsequently (1 is returned in that case).
1199 */
1200int pci_power_up(struct pci_dev *dev)
1201{
1202 bool need_restore;
1203 pci_power_t state;
1204 u16 pmcsr;
1205
1206 platform_pci_set_power_state(dev, PCI_D0);
1207
1208 if (!dev->pm_cap) {
1209 state = platform_pci_get_power_state(dev);
1210 if (state == PCI_UNKNOWN)
1211 dev->current_state = PCI_D0;
1212 else
1213 dev->current_state = state;
1214
1215 if (state == PCI_D0)
1216 return 0;
1217
1218 return -EIO;
1219 }
1220
1221 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224 pci_power_name(dev->current_state));
1225 dev->current_state = PCI_D3cold;
1226 return -EIO;
1227 }
1228
1229 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230
1231 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233
1234 if (state == PCI_D0)
1235 goto end;
1236
1237 /*
1238 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239 * PME_En, and sets PowerState to 0.
1240 */
1241 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242
1243 /* Mandatory transition delays; see PCI PM 1.2. */
1244 if (state == PCI_D3hot)
1245 pci_dev_d3_sleep(dev);
1246 else if (state == PCI_D2)
1247 udelay(PCI_PM_D2_DELAY);
1248
1249end:
1250 dev->current_state = PCI_D0;
1251 if (need_restore)
1252 return 1;
1253
1254 return 0;
1255}
1256
1257/**
1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259 * @dev: PCI device to power up
1260 *
1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262 * to confirm the state change, restore its BARs if they might be lost and
1263 * reconfigure ASPM in acordance with the new power state.
1264 *
1265 * If pci_restore_state() is going to be called right after a power state change
1266 * to D0, it is more efficient to use pci_power_up() directly instead of this
1267 * function.
1268 */
1269static int pci_set_full_power_state(struct pci_dev *dev)
1270{
1271 u16 pmcsr;
1272 int ret;
1273
1274 ret = pci_power_up(dev);
1275 if (ret < 0)
1276 return ret;
1277
1278 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280 if (dev->current_state != PCI_D0) {
1281 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282 pci_power_name(dev->current_state));
1283 } else if (ret > 0) {
1284 /*
1285 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287 * from D3hot to D0 _may_ perform an internal reset, thereby
1288 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289 * For example, at least some versions of the 3c905B and the
1290 * 3c556B exhibit this behaviour.
1291 *
1292 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293 * devices in a D3hot state at boot. Consequently, we need to
1294 * restore at least the BARs so that the device will be
1295 * accessible to its driver.
1296 */
1297 pci_restore_bars(dev);
1298 }
1299
1300 return 0;
1301}
1302
1303/**
1304 * __pci_dev_set_current_state - Set current state of a PCI device
1305 * @dev: Device to handle
1306 * @data: pointer to state to be set
1307 */
1308static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309{
1310 pci_power_t state = *(pci_power_t *)data;
1311
1312 dev->current_state = state;
1313 return 0;
1314}
1315
1316/**
1317 * pci_bus_set_current_state - Walk given bus and set current state of devices
1318 * @bus: Top bus of the subtree to walk.
1319 * @state: state to be set
1320 */
1321void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322{
1323 if (bus)
1324 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325}
1326
1327/**
1328 * pci_set_low_power_state - Put a PCI device into a low-power state.
1329 * @dev: PCI device to handle.
1330 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1331 *
1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333 *
1334 * RETURN VALUE:
1335 * -EINVAL if the requested state is invalid.
1336 * -EIO if device does not support PCI PM or its PM capabilities register has a
1337 * wrong version, or device doesn't support the requested state.
1338 * 0 if device already is in the requested state.
1339 * 0 if device's power state has been successfully changed.
1340 */
1341static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342{
1343 u16 pmcsr;
1344
1345 if (!dev->pm_cap)
1346 return -EIO;
1347
1348 /*
1349 * Validate transition: We can enter D0 from any state, but if
1350 * we're already in a low-power state, we can only go deeper. E.g.,
1351 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352 * we'd have to go from D3 to D0, then to D1.
1353 */
1354 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356 pci_power_name(dev->current_state),
1357 pci_power_name(state));
1358 return -EINVAL;
1359 }
1360
1361 /* Check if this device supports the desired state */
1362 if ((state == PCI_D1 && !dev->d1_support)
1363 || (state == PCI_D2 && !dev->d2_support))
1364 return -EIO;
1365
1366 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369 pci_power_name(dev->current_state),
1370 pci_power_name(state));
1371 dev->current_state = PCI_D3cold;
1372 return -EIO;
1373 }
1374
1375 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376 pmcsr |= state;
1377
1378 /* Enter specified state */
1379 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380
1381 /* Mandatory power management transition delays; see PCI PM 1.2. */
1382 if (state == PCI_D3hot)
1383 pci_dev_d3_sleep(dev);
1384 else if (state == PCI_D2)
1385 udelay(PCI_PM_D2_DELAY);
1386
1387 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389 if (dev->current_state != state)
1390 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391 pci_power_name(dev->current_state),
1392 pci_power_name(state));
1393
1394 return 0;
1395}
1396
1397/**
1398 * pci_set_power_state - Set the power state of a PCI device
1399 * @dev: PCI device to handle.
1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401 *
1402 * Transition a device to a new power state, using the platform firmware and/or
1403 * the device's PCI PM registers.
1404 *
1405 * RETURN VALUE:
1406 * -EINVAL if the requested state is invalid.
1407 * -EIO if device does not support PCI PM or its PM capabilities register has a
1408 * wrong version, or device doesn't support the requested state.
1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410 * 0 if device already is in the requested state.
1411 * 0 if the transition is to D3 but D3 is not supported.
1412 * 0 if device's power state has been successfully changed.
1413 */
1414int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415{
1416 int error;
1417
1418 /* Bound the state we're entering */
1419 if (state > PCI_D3cold)
1420 state = PCI_D3cold;
1421 else if (state < PCI_D0)
1422 state = PCI_D0;
1423 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424
1425 /*
1426 * If the device or the parent bridge do not support PCI
1427 * PM, ignore the request if we're doing anything other
1428 * than putting it into D0 (which would only happen on
1429 * boot).
1430 */
1431 return 0;
1432
1433 /* Check if we're already there */
1434 if (dev->current_state == state)
1435 return 0;
1436
1437 if (state == PCI_D0)
1438 return pci_set_full_power_state(dev);
1439
1440 /*
1441 * This device is quirked not to be put into D3, so don't put it in
1442 * D3
1443 */
1444 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445 return 0;
1446
1447 if (state == PCI_D3cold) {
1448 /*
1449 * To put the device in D3cold, put it into D3hot in the native
1450 * way, then put it into D3cold using platform ops.
1451 */
1452 error = pci_set_low_power_state(dev, PCI_D3hot);
1453
1454 if (pci_platform_power_transition(dev, PCI_D3cold))
1455 return error;
1456
1457 /* Powering off a bridge may power off the whole hierarchy */
1458 if (dev->current_state == PCI_D3cold)
1459 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460 } else {
1461 error = pci_set_low_power_state(dev, state);
1462
1463 if (pci_platform_power_transition(dev, state))
1464 return error;
1465 }
1466
1467 return 0;
1468}
1469EXPORT_SYMBOL(pci_set_power_state);
1470
1471#define PCI_EXP_SAVE_REGS 7
1472
1473static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474 u16 cap, bool extended)
1475{
1476 struct pci_cap_saved_state *tmp;
1477
1478 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480 return tmp;
1481 }
1482 return NULL;
1483}
1484
1485struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486{
1487 return _pci_find_saved_cap(dev, cap, false);
1488}
1489
1490struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491{
1492 return _pci_find_saved_cap(dev, cap, true);
1493}
1494
1495static int pci_save_pcie_state(struct pci_dev *dev)
1496{
1497 int i = 0;
1498 struct pci_cap_saved_state *save_state;
1499 u16 *cap;
1500
1501 if (!pci_is_pcie(dev))
1502 return 0;
1503
1504 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505 if (!save_state) {
1506 pci_err(dev, "buffer not found in %s\n", __func__);
1507 return -ENOMEM;
1508 }
1509
1510 cap = (u16 *)&save_state->cap.data[0];
1511 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1515 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518
1519 return 0;
1520}
1521
1522void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523{
1524#ifdef CONFIG_PCIEASPM
1525 struct pci_dev *bridge;
1526 u32 ctl;
1527
1528 bridge = pci_upstream_bridge(dev);
1529 if (bridge && bridge->ltr_path) {
1530 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532 pci_dbg(bridge, "re-enabling LTR\n");
1533 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534 PCI_EXP_DEVCTL2_LTR_EN);
1535 }
1536 }
1537#endif
1538}
1539
1540static void pci_restore_pcie_state(struct pci_dev *dev)
1541{
1542 int i = 0;
1543 struct pci_cap_saved_state *save_state;
1544 u16 *cap;
1545
1546 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547 if (!save_state)
1548 return;
1549
1550 /*
1551 * Downstream ports reset the LTR enable bit when link goes down.
1552 * Check and re-configure the bit here before restoring device.
1553 * PCIe r5.0, sec 7.5.3.16.
1554 */
1555 pci_bridge_reconfigure_ltr(dev);
1556
1557 cap = (u16 *)&save_state->cap.data[0];
1558 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565}
1566
1567static int pci_save_pcix_state(struct pci_dev *dev)
1568{
1569 int pos;
1570 struct pci_cap_saved_state *save_state;
1571
1572 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573 if (!pos)
1574 return 0;
1575
1576 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577 if (!save_state) {
1578 pci_err(dev, "buffer not found in %s\n", __func__);
1579 return -ENOMEM;
1580 }
1581
1582 pci_read_config_word(dev, pos + PCI_X_CMD,
1583 (u16 *)save_state->cap.data);
1584
1585 return 0;
1586}
1587
1588static void pci_restore_pcix_state(struct pci_dev *dev)
1589{
1590 int i = 0, pos;
1591 struct pci_cap_saved_state *save_state;
1592 u16 *cap;
1593
1594 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596 if (!save_state || !pos)
1597 return;
1598 cap = (u16 *)&save_state->cap.data[0];
1599
1600 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601}
1602
1603static void pci_save_ltr_state(struct pci_dev *dev)
1604{
1605 int ltr;
1606 struct pci_cap_saved_state *save_state;
1607 u32 *cap;
1608
1609 if (!pci_is_pcie(dev))
1610 return;
1611
1612 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613 if (!ltr)
1614 return;
1615
1616 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617 if (!save_state) {
1618 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619 return;
1620 }
1621
1622 /* Some broken devices only support dword access to LTR */
1623 cap = &save_state->cap.data[0];
1624 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625}
1626
1627static void pci_restore_ltr_state(struct pci_dev *dev)
1628{
1629 struct pci_cap_saved_state *save_state;
1630 int ltr;
1631 u32 *cap;
1632
1633 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635 if (!save_state || !ltr)
1636 return;
1637
1638 /* Some broken devices only support dword access to LTR */
1639 cap = &save_state->cap.data[0];
1640 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641}
1642
1643/**
1644 * pci_save_state - save the PCI configuration space of a device before
1645 * suspending
1646 * @dev: PCI device that we're dealing with
1647 */
1648int pci_save_state(struct pci_dev *dev)
1649{
1650 int i;
1651 /* XXX: 100% dword access ok here? */
1652 for (i = 0; i < 16; i++) {
1653 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655 i * 4, dev->saved_config_space[i]);
1656 }
1657 dev->state_saved = true;
1658
1659 i = pci_save_pcie_state(dev);
1660 if (i != 0)
1661 return i;
1662
1663 i = pci_save_pcix_state(dev);
1664 if (i != 0)
1665 return i;
1666
1667 pci_save_ltr_state(dev);
1668 pci_save_dpc_state(dev);
1669 pci_save_aer_state(dev);
1670 pci_save_ptm_state(dev);
1671 return pci_save_vc_state(dev);
1672}
1673EXPORT_SYMBOL(pci_save_state);
1674
1675static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1676 u32 saved_val, int retry, bool force)
1677{
1678 u32 val;
1679
1680 pci_read_config_dword(pdev, offset, &val);
1681 if (!force && val == saved_val)
1682 return;
1683
1684 for (;;) {
1685 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1686 offset, val, saved_val);
1687 pci_write_config_dword(pdev, offset, saved_val);
1688 if (retry-- <= 0)
1689 return;
1690
1691 pci_read_config_dword(pdev, offset, &val);
1692 if (val == saved_val)
1693 return;
1694
1695 mdelay(1);
1696 }
1697}
1698
1699static void pci_restore_config_space_range(struct pci_dev *pdev,
1700 int start, int end, int retry,
1701 bool force)
1702{
1703 int index;
1704
1705 for (index = end; index >= start; index--)
1706 pci_restore_config_dword(pdev, 4 * index,
1707 pdev->saved_config_space[index],
1708 retry, force);
1709}
1710
1711static void pci_restore_config_space(struct pci_dev *pdev)
1712{
1713 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1714 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1715 /* Restore BARs before the command register. */
1716 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720
1721 /*
1722 * Force rewriting of prefetch registers to avoid S3 resume
1723 * issues on Intel PCI bridges that occur when these
1724 * registers are not explicitly written.
1725 */
1726 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1728 } else {
1729 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730 }
1731}
1732
1733static void pci_restore_rebar_state(struct pci_dev *pdev)
1734{
1735 unsigned int pos, nbars, i;
1736 u32 ctrl;
1737
1738 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739 if (!pos)
1740 return;
1741
1742 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744 PCI_REBAR_CTRL_NBAR_SHIFT;
1745
1746 for (i = 0; i < nbars; i++, pos += 8) {
1747 struct resource *res;
1748 int bar_idx, size;
1749
1750 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752 res = pdev->resource + bar_idx;
1753 size = pci_rebar_bytes_to_size(resource_size(res));
1754 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1755 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1756 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757 }
1758}
1759
1760/**
1761 * pci_restore_state - Restore the saved state of a PCI device
1762 * @dev: PCI device that we're dealing with
1763 */
1764void pci_restore_state(struct pci_dev *dev)
1765{
1766 if (!dev->state_saved)
1767 return;
1768
1769 /*
1770 * Restore max latencies (in the LTR capability) before enabling
1771 * LTR itself (in the PCIe capability).
1772 */
1773 pci_restore_ltr_state(dev);
1774
1775 pci_restore_pcie_state(dev);
1776 pci_restore_pasid_state(dev);
1777 pci_restore_pri_state(dev);
1778 pci_restore_ats_state(dev);
1779 pci_restore_vc_state(dev);
1780 pci_restore_rebar_state(dev);
1781 pci_restore_dpc_state(dev);
1782 pci_restore_ptm_state(dev);
1783
1784 pci_aer_clear_status(dev);
1785 pci_restore_aer_state(dev);
1786
1787 pci_restore_config_space(dev);
1788
1789 pci_restore_pcix_state(dev);
1790 pci_restore_msi_state(dev);
1791
1792 /* Restore ACS and IOV configuration state */
1793 pci_enable_acs(dev);
1794 pci_restore_iov_state(dev);
1795
1796 dev->state_saved = false;
1797}
1798EXPORT_SYMBOL(pci_restore_state);
1799
1800struct pci_saved_state {
1801 u32 config_space[16];
1802 struct pci_cap_saved_data cap[];
1803};
1804
1805/**
1806 * pci_store_saved_state - Allocate and return an opaque struct containing
1807 * the device saved state.
1808 * @dev: PCI device that we're dealing with
1809 *
1810 * Return NULL if no state or error.
1811 */
1812struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813{
1814 struct pci_saved_state *state;
1815 struct pci_cap_saved_state *tmp;
1816 struct pci_cap_saved_data *cap;
1817 size_t size;
1818
1819 if (!dev->state_saved)
1820 return NULL;
1821
1822 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823
1824 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1825 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826
1827 state = kzalloc(size, GFP_KERNEL);
1828 if (!state)
1829 return NULL;
1830
1831 memcpy(state->config_space, dev->saved_config_space,
1832 sizeof(state->config_space));
1833
1834 cap = state->cap;
1835 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1836 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837 memcpy(cap, &tmp->cap, len);
1838 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839 }
1840 /* Empty cap_save terminates list */
1841
1842 return state;
1843}
1844EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845
1846/**
1847 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848 * @dev: PCI device that we're dealing with
1849 * @state: Saved state returned from pci_store_saved_state()
1850 */
1851int pci_load_saved_state(struct pci_dev *dev,
1852 struct pci_saved_state *state)
1853{
1854 struct pci_cap_saved_data *cap;
1855
1856 dev->state_saved = false;
1857
1858 if (!state)
1859 return 0;
1860
1861 memcpy(dev->saved_config_space, state->config_space,
1862 sizeof(state->config_space));
1863
1864 cap = state->cap;
1865 while (cap->size) {
1866 struct pci_cap_saved_state *tmp;
1867
1868 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1869 if (!tmp || tmp->cap.size != cap->size)
1870 return -EINVAL;
1871
1872 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874 sizeof(struct pci_cap_saved_data) + cap->size);
1875 }
1876
1877 dev->state_saved = true;
1878 return 0;
1879}
1880EXPORT_SYMBOL_GPL(pci_load_saved_state);
1881
1882/**
1883 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884 * and free the memory allocated for it.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Pointer to saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_and_free_saved_state(struct pci_dev *dev,
1889 struct pci_saved_state **state)
1890{
1891 int ret = pci_load_saved_state(dev, *state);
1892 kfree(*state);
1893 *state = NULL;
1894 return ret;
1895}
1896EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897
1898int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899{
1900 return pci_enable_resources(dev, bars);
1901}
1902
1903static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904{
1905 int err;
1906 struct pci_dev *bridge;
1907 u16 cmd;
1908 u8 pin;
1909
1910 err = pci_set_power_state(dev, PCI_D0);
1911 if (err < 0 && err != -EIO)
1912 return err;
1913
1914 bridge = pci_upstream_bridge(dev);
1915 if (bridge)
1916 pcie_aspm_powersave_config_link(bridge);
1917
1918 err = pcibios_enable_device(dev, bars);
1919 if (err < 0)
1920 return err;
1921 pci_fixup_device(pci_fixup_enable, dev);
1922
1923 if (dev->msi_enabled || dev->msix_enabled)
1924 return 0;
1925
1926 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927 if (pin) {
1928 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929 if (cmd & PCI_COMMAND_INTX_DISABLE)
1930 pci_write_config_word(dev, PCI_COMMAND,
1931 cmd & ~PCI_COMMAND_INTX_DISABLE);
1932 }
1933
1934 return 0;
1935}
1936
1937/**
1938 * pci_reenable_device - Resume abandoned device
1939 * @dev: PCI device to be resumed
1940 *
1941 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942 * to be called by normal code, write proper resume handler and use it instead.
1943 */
1944int pci_reenable_device(struct pci_dev *dev)
1945{
1946 if (pci_is_enabled(dev))
1947 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948 return 0;
1949}
1950EXPORT_SYMBOL(pci_reenable_device);
1951
1952static void pci_enable_bridge(struct pci_dev *dev)
1953{
1954 struct pci_dev *bridge;
1955 int retval;
1956
1957 bridge = pci_upstream_bridge(dev);
1958 if (bridge)
1959 pci_enable_bridge(bridge);
1960
1961 if (pci_is_enabled(dev)) {
1962 if (!dev->is_busmaster)
1963 pci_set_master(dev);
1964 return;
1965 }
1966
1967 retval = pci_enable_device(dev);
1968 if (retval)
1969 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1970 retval);
1971 pci_set_master(dev);
1972}
1973
1974static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1975{
1976 struct pci_dev *bridge;
1977 int err;
1978 int i, bars = 0;
1979
1980 /*
1981 * Power state could be unknown at this point, either due to a fresh
1982 * boot or a device removal call. So get the current power state
1983 * so that things like MSI message writing will behave as expected
1984 * (e.g. if the device really is in D0 at enable time).
1985 */
1986 pci_update_current_state(dev, dev->current_state);
1987
1988 if (atomic_inc_return(&dev->enable_cnt) > 1)
1989 return 0; /* already enabled */
1990
1991 bridge = pci_upstream_bridge(dev);
1992 if (bridge)
1993 pci_enable_bridge(bridge);
1994
1995 /* only skip sriov related */
1996 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997 if (dev->resource[i].flags & flags)
1998 bars |= (1 << i);
1999 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2000 if (dev->resource[i].flags & flags)
2001 bars |= (1 << i);
2002
2003 err = do_pci_enable_device(dev, bars);
2004 if (err < 0)
2005 atomic_dec(&dev->enable_cnt);
2006 return err;
2007}
2008
2009/**
2010 * pci_enable_device_io - Initialize a device for use with IO space
2011 * @dev: PCI device to be initialized
2012 *
2013 * Initialize device before it's used by a driver. Ask low-level code
2014 * to enable I/O resources. Wake up the device if it was suspended.
2015 * Beware, this function can fail.
2016 */
2017int pci_enable_device_io(struct pci_dev *dev)
2018{
2019 return pci_enable_device_flags(dev, IORESOURCE_IO);
2020}
2021EXPORT_SYMBOL(pci_enable_device_io);
2022
2023/**
2024 * pci_enable_device_mem - Initialize a device for use with Memory space
2025 * @dev: PCI device to be initialized
2026 *
2027 * Initialize device before it's used by a driver. Ask low-level code
2028 * to enable Memory resources. Wake up the device if it was suspended.
2029 * Beware, this function can fail.
2030 */
2031int pci_enable_device_mem(struct pci_dev *dev)
2032{
2033 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2034}
2035EXPORT_SYMBOL(pci_enable_device_mem);
2036
2037/**
2038 * pci_enable_device - Initialize device before it's used by a driver.
2039 * @dev: PCI device to be initialized
2040 *
2041 * Initialize device before it's used by a driver. Ask low-level code
2042 * to enable I/O and memory. Wake up the device if it was suspended.
2043 * Beware, this function can fail.
2044 *
2045 * Note we don't actually enable the device many times if we call
2046 * this function repeatedly (we just increment the count).
2047 */
2048int pci_enable_device(struct pci_dev *dev)
2049{
2050 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2051}
2052EXPORT_SYMBOL(pci_enable_device);
2053
2054/*
2055 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2056 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2057 * there's no need to track it separately. pci_devres is initialized
2058 * when a device is enabled using managed PCI device enable interface.
2059 */
2060struct pci_devres {
2061 unsigned int enabled:1;
2062 unsigned int pinned:1;
2063 unsigned int orig_intx:1;
2064 unsigned int restore_intx:1;
2065 unsigned int mwi:1;
2066 u32 region_mask;
2067};
2068
2069static void pcim_release(struct device *gendev, void *res)
2070{
2071 struct pci_dev *dev = to_pci_dev(gendev);
2072 struct pci_devres *this = res;
2073 int i;
2074
2075 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076 if (this->region_mask & (1 << i))
2077 pci_release_region(dev, i);
2078
2079 if (this->mwi)
2080 pci_clear_mwi(dev);
2081
2082 if (this->restore_intx)
2083 pci_intx(dev, this->orig_intx);
2084
2085 if (this->enabled && !this->pinned)
2086 pci_disable_device(dev);
2087}
2088
2089static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2090{
2091 struct pci_devres *dr, *new_dr;
2092
2093 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094 if (dr)
2095 return dr;
2096
2097 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098 if (!new_dr)
2099 return NULL;
2100 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101}
2102
2103static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2104{
2105 if (pci_is_managed(pdev))
2106 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107 return NULL;
2108}
2109
2110/**
2111 * pcim_enable_device - Managed pci_enable_device()
2112 * @pdev: PCI device to be initialized
2113 *
2114 * Managed pci_enable_device().
2115 */
2116int pcim_enable_device(struct pci_dev *pdev)
2117{
2118 struct pci_devres *dr;
2119 int rc;
2120
2121 dr = get_pci_dr(pdev);
2122 if (unlikely(!dr))
2123 return -ENOMEM;
2124 if (dr->enabled)
2125 return 0;
2126
2127 rc = pci_enable_device(pdev);
2128 if (!rc) {
2129 pdev->is_managed = 1;
2130 dr->enabled = 1;
2131 }
2132 return rc;
2133}
2134EXPORT_SYMBOL(pcim_enable_device);
2135
2136/**
2137 * pcim_pin_device - Pin managed PCI device
2138 * @pdev: PCI device to pin
2139 *
2140 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2141 * driver detach. @pdev must have been enabled with
2142 * pcim_enable_device().
2143 */
2144void pcim_pin_device(struct pci_dev *pdev)
2145{
2146 struct pci_devres *dr;
2147
2148 dr = find_pci_dr(pdev);
2149 WARN_ON(!dr || !dr->enabled);
2150 if (dr)
2151 dr->pinned = 1;
2152}
2153EXPORT_SYMBOL(pcim_pin_device);
2154
2155/*
2156 * pcibios_device_add - provide arch specific hooks when adding device dev
2157 * @dev: the PCI device being added
2158 *
2159 * Permits the platform to provide architecture specific functionality when
2160 * devices are added. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
2163int __weak pcibios_device_add(struct pci_dev *dev)
2164{
2165 return 0;
2166}
2167
2168/**
2169 * pcibios_release_device - provide arch specific hooks when releasing
2170 * device dev
2171 * @dev: the PCI device being released
2172 *
2173 * Permits the platform to provide architecture specific functionality when
2174 * devices are released. This is the default implementation. Architecture
2175 * implementations can override this.
2176 */
2177void __weak pcibios_release_device(struct pci_dev *dev) {}
2178
2179/**
2180 * pcibios_disable_device - disable arch specific PCI resources for device dev
2181 * @dev: the PCI device to disable
2182 *
2183 * Disables architecture specific PCI resources for the device. This
2184 * is the default implementation. Architecture implementations can
2185 * override this.
2186 */
2187void __weak pcibios_disable_device(struct pci_dev *dev) {}
2188
2189/**
2190 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191 * @irq: ISA IRQ to penalize
2192 * @active: IRQ active or not
2193 *
2194 * Permits the platform to provide architecture-specific functionality when
2195 * penalizing ISA IRQs. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
2198void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199
2200static void do_pci_disable_device(struct pci_dev *dev)
2201{
2202 u16 pci_command;
2203
2204 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205 if (pci_command & PCI_COMMAND_MASTER) {
2206 pci_command &= ~PCI_COMMAND_MASTER;
2207 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208 }
2209
2210 pcibios_disable_device(dev);
2211}
2212
2213/**
2214 * pci_disable_enabled_device - Disable device without updating enable_cnt
2215 * @dev: PCI device to disable
2216 *
2217 * NOTE: This function is a backend of PCI power management routines and is
2218 * not supposed to be called drivers.
2219 */
2220void pci_disable_enabled_device(struct pci_dev *dev)
2221{
2222 if (pci_is_enabled(dev))
2223 do_pci_disable_device(dev);
2224}
2225
2226/**
2227 * pci_disable_device - Disable PCI device after use
2228 * @dev: PCI device to be disabled
2229 *
2230 * Signal to the system that the PCI device is not in use by the system
2231 * anymore. This only involves disabling PCI bus-mastering, if active.
2232 *
2233 * Note we don't actually disable the device until all callers of
2234 * pci_enable_device() have called pci_disable_device().
2235 */
2236void pci_disable_device(struct pci_dev *dev)
2237{
2238 struct pci_devres *dr;
2239
2240 dr = find_pci_dr(dev);
2241 if (dr)
2242 dr->enabled = 0;
2243
2244 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245 "disabling already-disabled device");
2246
2247 if (atomic_dec_return(&dev->enable_cnt) != 0)
2248 return;
2249
2250 do_pci_disable_device(dev);
2251
2252 dev->is_busmaster = 0;
2253}
2254EXPORT_SYMBOL(pci_disable_device);
2255
2256/**
2257 * pcibios_set_pcie_reset_state - set reset state for device dev
2258 * @dev: the PCIe device reset
2259 * @state: Reset state to enter into
2260 *
2261 * Set the PCIe reset state for the device. This is the default
2262 * implementation. Architecture implementations can override this.
2263 */
2264int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265 enum pcie_reset_state state)
2266{
2267 return -EINVAL;
2268}
2269
2270/**
2271 * pci_set_pcie_reset_state - set reset state for device dev
2272 * @dev: the PCIe device reset
2273 * @state: Reset state to enter into
2274 *
2275 * Sets the PCI reset state for the device.
2276 */
2277int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278{
2279 return pcibios_set_pcie_reset_state(dev, state);
2280}
2281EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2282
2283#ifdef CONFIG_PCIEAER
2284void pcie_clear_device_status(struct pci_dev *dev)
2285{
2286 u16 sta;
2287
2288 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290}
2291#endif
2292
2293/**
2294 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295 * @dev: PCIe root port or event collector.
2296 */
2297void pcie_clear_root_pme_status(struct pci_dev *dev)
2298{
2299 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300}
2301
2302/**
2303 * pci_check_pme_status - Check if given device has generated PME.
2304 * @dev: Device to check.
2305 *
2306 * Check the PME status of the device and if set, clear it and clear PME enable
2307 * (if set). Return 'true' if PME status and PME enable were both set or
2308 * 'false' otherwise.
2309 */
2310bool pci_check_pme_status(struct pci_dev *dev)
2311{
2312 int pmcsr_pos;
2313 u16 pmcsr;
2314 bool ret = false;
2315
2316 if (!dev->pm_cap)
2317 return false;
2318
2319 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322 return false;
2323
2324 /* Clear PME status. */
2325 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327 /* Disable PME to avoid interrupt flood. */
2328 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329 ret = true;
2330 }
2331
2332 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333
2334 return ret;
2335}
2336
2337/**
2338 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339 * @dev: Device to handle.
2340 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2341 *
2342 * Check if @dev has generated PME and queue a resume request for it in that
2343 * case.
2344 */
2345static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2346{
2347 if (pme_poll_reset && dev->pme_poll)
2348 dev->pme_poll = false;
2349
2350 if (pci_check_pme_status(dev)) {
2351 pci_wakeup_event(dev);
2352 pm_request_resume(&dev->dev);
2353 }
2354 return 0;
2355}
2356
2357/**
2358 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359 * @bus: Top bus of the subtree to walk.
2360 */
2361void pci_pme_wakeup_bus(struct pci_bus *bus)
2362{
2363 if (bus)
2364 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2365}
2366
2367
2368/**
2369 * pci_pme_capable - check the capability of PCI device to generate PME#
2370 * @dev: PCI device to handle.
2371 * @state: PCI state from which device will issue PME#.
2372 */
2373bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2374{
2375 if (!dev->pm_cap)
2376 return false;
2377
2378 return !!(dev->pme_support & (1 << state));
2379}
2380EXPORT_SYMBOL(pci_pme_capable);
2381
2382static void pci_pme_list_scan(struct work_struct *work)
2383{
2384 struct pci_pme_device *pme_dev, *n;
2385
2386 mutex_lock(&pci_pme_list_mutex);
2387 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388 if (pme_dev->dev->pme_poll) {
2389 struct pci_dev *bridge;
2390
2391 bridge = pme_dev->dev->bus->self;
2392 /*
2393 * If bridge is in low power state, the
2394 * configuration space of subordinate devices
2395 * may be not accessible
2396 */
2397 if (bridge && bridge->current_state != PCI_D0)
2398 continue;
2399 /*
2400 * If the device is in D3cold it should not be
2401 * polled either.
2402 */
2403 if (pme_dev->dev->current_state == PCI_D3cold)
2404 continue;
2405
2406 pci_pme_wakeup(pme_dev->dev, NULL);
2407 } else {
2408 list_del(&pme_dev->list);
2409 kfree(pme_dev);
2410 }
2411 }
2412 if (!list_empty(&pci_pme_list))
2413 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414 msecs_to_jiffies(PME_TIMEOUT));
2415 mutex_unlock(&pci_pme_list_mutex);
2416}
2417
2418static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419{
2420 u16 pmcsr;
2421
2422 if (!dev->pme_support)
2423 return;
2424
2425 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2426 /* Clear PME_Status by writing 1 to it and enable PME# */
2427 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428 if (!enable)
2429 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430
2431 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432}
2433
2434/**
2435 * pci_pme_restore - Restore PME configuration after config space restore.
2436 * @dev: PCI device to update.
2437 */
2438void pci_pme_restore(struct pci_dev *dev)
2439{
2440 u16 pmcsr;
2441
2442 if (!dev->pme_support)
2443 return;
2444
2445 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446 if (dev->wakeup_prepared) {
2447 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2448 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2449 } else {
2450 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452 }
2453 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454}
2455
2456/**
2457 * pci_pme_active - enable or disable PCI device's PME# function
2458 * @dev: PCI device to handle.
2459 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460 *
2461 * The caller must verify that the device is capable of generating PME# before
2462 * calling this function with @enable equal to 'true'.
2463 */
2464void pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466 __pci_pme_active(dev, enable);
2467
2468 /*
2469 * PCI (as opposed to PCIe) PME requires that the device have
2470 * its PME# line hooked up correctly. Not all hardware vendors
2471 * do this, so the PME never gets delivered and the device
2472 * remains asleep. The easiest way around this is to
2473 * periodically walk the list of suspended devices and check
2474 * whether any have their PME flag set. The assumption is that
2475 * we'll wake up often enough anyway that this won't be a huge
2476 * hit, and the power savings from the devices will still be a
2477 * win.
2478 *
2479 * Although PCIe uses in-band PME message instead of PME# line
2480 * to report PME, PME does not work for some PCIe devices in
2481 * reality. For example, there are devices that set their PME
2482 * status bits, but don't really bother to send a PME message;
2483 * there are PCI Express Root Ports that don't bother to
2484 * trigger interrupts when they receive PME messages from the
2485 * devices below. So PME poll is used for PCIe devices too.
2486 */
2487
2488 if (dev->pme_poll) {
2489 struct pci_pme_device *pme_dev;
2490 if (enable) {
2491 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492 GFP_KERNEL);
2493 if (!pme_dev) {
2494 pci_warn(dev, "can't enable PME#\n");
2495 return;
2496 }
2497 pme_dev->dev = dev;
2498 mutex_lock(&pci_pme_list_mutex);
2499 list_add(&pme_dev->list, &pci_pme_list);
2500 if (list_is_singular(&pci_pme_list))
2501 queue_delayed_work(system_freezable_wq,
2502 &pci_pme_work,
2503 msecs_to_jiffies(PME_TIMEOUT));
2504 mutex_unlock(&pci_pme_list_mutex);
2505 } else {
2506 mutex_lock(&pci_pme_list_mutex);
2507 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508 if (pme_dev->dev == dev) {
2509 list_del(&pme_dev->list);
2510 kfree(pme_dev);
2511 break;
2512 }
2513 }
2514 mutex_unlock(&pci_pme_list_mutex);
2515 }
2516 }
2517
2518 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2519}
2520EXPORT_SYMBOL(pci_pme_active);
2521
2522/**
2523 * __pci_enable_wake - enable PCI device as wakeup event source
2524 * @dev: PCI device affected
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: True to enable event generation; false to disable
2527 *
2528 * This enables the device as a wakeup event source, or disables it.
2529 * When such events involves platform-specific hooks, those hooks are
2530 * called automatically by this routine.
2531 *
2532 * Devices with legacy power management (no standard PCI PM capabilities)
2533 * always require such platform hooks.
2534 *
2535 * RETURN VALUE:
2536 * 0 is returned on success
2537 * -EINVAL is returned if device is not supposed to wake up the system
2538 * Error code depending on the platform is returned if both the platform and
2539 * the native mechanism fail to enable the generation of wake-up events
2540 */
2541static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2542{
2543 int ret = 0;
2544
2545 /*
2546 * Bridges that are not power-manageable directly only signal
2547 * wakeup on behalf of subordinate devices which is set up
2548 * elsewhere, so skip them. However, bridges that are
2549 * power-manageable may signal wakeup for themselves (for example,
2550 * on a hotplug event) and they need to be covered here.
2551 */
2552 if (!pci_power_manageable(dev))
2553 return 0;
2554
2555 /* Don't do the same thing twice in a row for one device. */
2556 if (!!enable == !!dev->wakeup_prepared)
2557 return 0;
2558
2559 /*
2560 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562 * enable. To disable wake-up we call the platform first, for symmetry.
2563 */
2564
2565 if (enable) {
2566 int error;
2567
2568 /*
2569 * Enable PME signaling if the device can signal PME from
2570 * D3cold regardless of whether or not it can signal PME from
2571 * the current target state, because that will allow it to
2572 * signal PME when the hierarchy above it goes into D3cold and
2573 * the device itself ends up in D3cold as a result of that.
2574 */
2575 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2576 pci_pme_active(dev, true);
2577 else
2578 ret = 1;
2579 error = platform_pci_set_wakeup(dev, true);
2580 if (ret)
2581 ret = error;
2582 if (!ret)
2583 dev->wakeup_prepared = true;
2584 } else {
2585 platform_pci_set_wakeup(dev, false);
2586 pci_pme_active(dev, false);
2587 dev->wakeup_prepared = false;
2588 }
2589
2590 return ret;
2591}
2592
2593/**
2594 * pci_enable_wake - change wakeup settings for a PCI device
2595 * @pci_dev: Target device
2596 * @state: PCI state from which device will issue wakeup events
2597 * @enable: Whether or not to enable event generation
2598 *
2599 * If @enable is set, check device_may_wakeup() for the device before calling
2600 * __pci_enable_wake() for it.
2601 */
2602int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603{
2604 if (enable && !device_may_wakeup(&pci_dev->dev))
2605 return -EINVAL;
2606
2607 return __pci_enable_wake(pci_dev, state, enable);
2608}
2609EXPORT_SYMBOL(pci_enable_wake);
2610
2611/**
2612 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613 * @dev: PCI device to prepare
2614 * @enable: True to enable wake-up event generation; false to disable
2615 *
2616 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617 * and this function allows them to set that up cleanly - pci_enable_wake()
2618 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619 * ordering constraints.
2620 *
2621 * This function only returns error code if the device is not allowed to wake
2622 * up the system from sleep or it is not capable of generating PME# from both
2623 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2624 */
2625int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626{
2627 return pci_pme_capable(dev, PCI_D3cold) ?
2628 pci_enable_wake(dev, PCI_D3cold, enable) :
2629 pci_enable_wake(dev, PCI_D3hot, enable);
2630}
2631EXPORT_SYMBOL(pci_wake_from_d3);
2632
2633/**
2634 * pci_target_state - find an appropriate low power state for a given PCI dev
2635 * @dev: PCI device
2636 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2637 *
2638 * Use underlying platform code to find a supported low power state for @dev.
2639 * If the platform can't manage @dev, return the deepest state from which it
2640 * can generate wake events, based on any available PME info.
2641 */
2642static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2643{
2644 if (platform_pci_power_manageable(dev)) {
2645 /*
2646 * Call the platform to find the target state for the device.
2647 */
2648 pci_power_t state = platform_pci_choose_state(dev);
2649
2650 switch (state) {
2651 case PCI_POWER_ERROR:
2652 case PCI_UNKNOWN:
2653 return PCI_D3hot;
2654
2655 case PCI_D1:
2656 case PCI_D2:
2657 if (pci_no_d1d2(dev))
2658 return PCI_D3hot;
2659 }
2660
2661 return state;
2662 }
2663
2664 /*
2665 * If the device is in D3cold even though it's not power-manageable by
2666 * the platform, it may have been powered down by non-standard means.
2667 * Best to let it slumber.
2668 */
2669 if (dev->current_state == PCI_D3cold)
2670 return PCI_D3cold;
2671 else if (!dev->pm_cap)
2672 return PCI_D0;
2673
2674 if (wakeup && dev->pme_support) {
2675 pci_power_t state = PCI_D3hot;
2676
2677 /*
2678 * Find the deepest state from which the device can generate
2679 * PME#.
2680 */
2681 while (state && !(dev->pme_support & (1 << state)))
2682 state--;
2683
2684 if (state)
2685 return state;
2686 else if (dev->pme_support & 1)
2687 return PCI_D0;
2688 }
2689
2690 return PCI_D3hot;
2691}
2692
2693/**
2694 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695 * into a sleep state
2696 * @dev: Device to handle.
2697 *
2698 * Choose the power state appropriate for the device depending on whether
2699 * it can wake up the system and/or is power manageable by the platform
2700 * (PCI_D3hot is the default) and put the device into that state.
2701 */
2702int pci_prepare_to_sleep(struct pci_dev *dev)
2703{
2704 bool wakeup = device_may_wakeup(&dev->dev);
2705 pci_power_t target_state = pci_target_state(dev, wakeup);
2706 int error;
2707
2708 if (target_state == PCI_POWER_ERROR)
2709 return -EIO;
2710
2711 pci_enable_wake(dev, target_state, wakeup);
2712
2713 error = pci_set_power_state(dev, target_state);
2714
2715 if (error)
2716 pci_enable_wake(dev, target_state, false);
2717
2718 return error;
2719}
2720EXPORT_SYMBOL(pci_prepare_to_sleep);
2721
2722/**
2723 * pci_back_from_sleep - turn PCI device on during system-wide transition
2724 * into working state
2725 * @dev: Device to handle.
2726 *
2727 * Disable device's system wake-up capability and put it into D0.
2728 */
2729int pci_back_from_sleep(struct pci_dev *dev)
2730{
2731 int ret = pci_set_power_state(dev, PCI_D0);
2732
2733 if (ret)
2734 return ret;
2735
2736 pci_enable_wake(dev, PCI_D0, false);
2737 return 0;
2738}
2739EXPORT_SYMBOL(pci_back_from_sleep);
2740
2741/**
2742 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743 * @dev: PCI device being suspended.
2744 *
2745 * Prepare @dev to generate wake-up events at run time and put it into a low
2746 * power state.
2747 */
2748int pci_finish_runtime_suspend(struct pci_dev *dev)
2749{
2750 pci_power_t target_state;
2751 int error;
2752
2753 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2754 if (target_state == PCI_POWER_ERROR)
2755 return -EIO;
2756
2757 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2758
2759 error = pci_set_power_state(dev, target_state);
2760
2761 if (error)
2762 pci_enable_wake(dev, target_state, false);
2763
2764 return error;
2765}
2766
2767/**
2768 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769 * @dev: Device to check.
2770 *
2771 * Return true if the device itself is capable of generating wake-up events
2772 * (through the platform or using the native PCIe PME) or if the device supports
2773 * PME and one of its upstream bridges can generate wake-up events.
2774 */
2775bool pci_dev_run_wake(struct pci_dev *dev)
2776{
2777 struct pci_bus *bus = dev->bus;
2778
2779 if (!dev->pme_support)
2780 return false;
2781
2782 /* PME-capable in principle, but not from the target power state */
2783 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2784 return false;
2785
2786 if (device_can_wakeup(&dev->dev))
2787 return true;
2788
2789 while (bus->parent) {
2790 struct pci_dev *bridge = bus->self;
2791
2792 if (device_can_wakeup(&bridge->dev))
2793 return true;
2794
2795 bus = bus->parent;
2796 }
2797
2798 /* We have reached the root bus. */
2799 if (bus->bridge)
2800 return device_can_wakeup(bus->bridge);
2801
2802 return false;
2803}
2804EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805
2806/**
2807 * pci_dev_need_resume - Check if it is necessary to resume the device.
2808 * @pci_dev: Device to check.
2809 *
2810 * Return 'true' if the device is not runtime-suspended or it has to be
2811 * reconfigured due to wakeup settings difference between system and runtime
2812 * suspend, or the current power state of it is not suitable for the upcoming
2813 * (system-wide) transition.
2814 */
2815bool pci_dev_need_resume(struct pci_dev *pci_dev)
2816{
2817 struct device *dev = &pci_dev->dev;
2818 pci_power_t target_state;
2819
2820 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2821 return true;
2822
2823 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2824
2825 /*
2826 * If the earlier platform check has not triggered, D3cold is just power
2827 * removal on top of D3hot, so no need to resume the device in that
2828 * case.
2829 */
2830 return target_state != pci_dev->current_state &&
2831 target_state != PCI_D3cold &&
2832 pci_dev->current_state != PCI_D3hot;
2833}
2834
2835/**
2836 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837 * @pci_dev: Device to check.
2838 *
2839 * If the device is suspended and it is not configured for system wakeup,
2840 * disable PME for it to prevent it from waking up the system unnecessarily.
2841 *
2842 * Note that if the device's power state is D3cold and the platform check in
2843 * pci_dev_need_resume() has not triggered, the device's configuration need not
2844 * be changed.
2845 */
2846void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847{
2848 struct device *dev = &pci_dev->dev;
2849
2850 spin_lock_irq(&dev->power.lock);
2851
2852 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853 pci_dev->current_state < PCI_D3cold)
2854 __pci_pme_active(pci_dev, false);
2855
2856 spin_unlock_irq(&dev->power.lock);
2857}
2858
2859/**
2860 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861 * @pci_dev: Device to handle.
2862 *
2863 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864 * it might have been disabled during the prepare phase of system suspend if
2865 * the device was not configured for system wakeup.
2866 */
2867void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868{
2869 struct device *dev = &pci_dev->dev;
2870
2871 if (!pci_dev_run_wake(pci_dev))
2872 return;
2873
2874 spin_lock_irq(&dev->power.lock);
2875
2876 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877 __pci_pme_active(pci_dev, true);
2878
2879 spin_unlock_irq(&dev->power.lock);
2880}
2881
2882/**
2883 * pci_choose_state - Choose the power state of a PCI device.
2884 * @dev: Target PCI device.
2885 * @state: Target state for the whole system.
2886 *
2887 * Returns PCI power state suitable for @dev and @state.
2888 */
2889pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890{
2891 if (state.event == PM_EVENT_ON)
2892 return PCI_D0;
2893
2894 return pci_target_state(dev, false);
2895}
2896EXPORT_SYMBOL(pci_choose_state);
2897
2898void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899{
2900 struct device *dev = &pdev->dev;
2901 struct device *parent = dev->parent;
2902
2903 if (parent)
2904 pm_runtime_get_sync(parent);
2905 pm_runtime_get_noresume(dev);
2906 /*
2907 * pdev->current_state is set to PCI_D3cold during suspending,
2908 * so wait until suspending completes
2909 */
2910 pm_runtime_barrier(dev);
2911 /*
2912 * Only need to resume devices in D3cold, because config
2913 * registers are still accessible for devices suspended but
2914 * not in D3cold.
2915 */
2916 if (pdev->current_state == PCI_D3cold)
2917 pm_runtime_resume(dev);
2918}
2919
2920void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921{
2922 struct device *dev = &pdev->dev;
2923 struct device *parent = dev->parent;
2924
2925 pm_runtime_put(dev);
2926 if (parent)
2927 pm_runtime_put_sync(parent);
2928}
2929
2930static const struct dmi_system_id bridge_d3_blacklist[] = {
2931#ifdef CONFIG_X86
2932 {
2933 /*
2934 * Gigabyte X299 root port is not marked as hotplug capable
2935 * which allows Linux to power manage it. However, this
2936 * confuses the BIOS SMI handler so don't power manage root
2937 * ports on that system.
2938 */
2939 .ident = "X299 DESIGNARE EX-CF",
2940 .matches = {
2941 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943 },
2944 },
2945 {
2946 /*
2947 * Downstream device is not accessible after putting a root port
2948 * into D3cold and back into D0 on Elo i2.
2949 */
2950 .ident = "Elo i2",
2951 .matches = {
2952 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2955 },
2956 },
2957#endif
2958 { }
2959};
2960
2961/**
2962 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963 * @bridge: Bridge to check
2964 *
2965 * This function checks if it is possible to move the bridge to D3.
2966 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2967 */
2968bool pci_bridge_d3_possible(struct pci_dev *bridge)
2969{
2970 if (!pci_is_pcie(bridge))
2971 return false;
2972
2973 switch (pci_pcie_type(bridge)) {
2974 case PCI_EXP_TYPE_ROOT_PORT:
2975 case PCI_EXP_TYPE_UPSTREAM:
2976 case PCI_EXP_TYPE_DOWNSTREAM:
2977 if (pci_bridge_d3_disable)
2978 return false;
2979
2980 /*
2981 * Hotplug ports handled by firmware in System Management Mode
2982 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2983 */
2984 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2985 return false;
2986
2987 if (pci_bridge_d3_force)
2988 return true;
2989
2990 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2991 if (bridge->is_thunderbolt)
2992 return true;
2993
2994 /* Platform might know better if the bridge supports D3 */
2995 if (platform_pci_bridge_d3(bridge))
2996 return true;
2997
2998 /*
2999 * Hotplug ports handled natively by the OS were not validated
3000 * by vendors for runtime D3 at least until 2018 because there
3001 * was no OS support.
3002 */
3003 if (bridge->is_hotplug_bridge)
3004 return false;
3005
3006 if (dmi_check_system(bridge_d3_blacklist))
3007 return false;
3008
3009 /*
3010 * It should be safe to put PCIe ports from 2015 or newer
3011 * to D3.
3012 */
3013 if (dmi_get_bios_year() >= 2015)
3014 return true;
3015 break;
3016 }
3017
3018 return false;
3019}
3020
3021static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022{
3023 bool *d3cold_ok = data;
3024
3025 if (/* The device needs to be allowed to go D3cold ... */
3026 dev->no_d3cold || !dev->d3cold_allowed ||
3027
3028 /* ... and if it is wakeup capable to do so from D3cold. */
3029 (device_may_wakeup(&dev->dev) &&
3030 !pci_pme_capable(dev, PCI_D3cold)) ||
3031
3032 /* If it is a bridge it must be allowed to go to D3. */
3033 !pci_power_manageable(dev))
3034
3035 *d3cold_ok = false;
3036
3037 return !*d3cold_ok;
3038}
3039
3040/*
3041 * pci_bridge_d3_update - Update bridge D3 capabilities
3042 * @dev: PCI device which is changed
3043 *
3044 * Update upstream bridge PM capabilities accordingly depending on if the
3045 * device PM configuration was changed or the device is being removed. The
3046 * change is also propagated upstream.
3047 */
3048void pci_bridge_d3_update(struct pci_dev *dev)
3049{
3050 bool remove = !device_is_registered(&dev->dev);
3051 struct pci_dev *bridge;
3052 bool d3cold_ok = true;
3053
3054 bridge = pci_upstream_bridge(dev);
3055 if (!bridge || !pci_bridge_d3_possible(bridge))
3056 return;
3057
3058 /*
3059 * If D3 is currently allowed for the bridge, removing one of its
3060 * children won't change that.
3061 */
3062 if (remove && bridge->bridge_d3)
3063 return;
3064
3065 /*
3066 * If D3 is currently allowed for the bridge and a child is added or
3067 * changed, disallowance of D3 can only be caused by that child, so
3068 * we only need to check that single device, not any of its siblings.
3069 *
3070 * If D3 is currently not allowed for the bridge, checking the device
3071 * first may allow us to skip checking its siblings.
3072 */
3073 if (!remove)
3074 pci_dev_check_d3cold(dev, &d3cold_ok);
3075
3076 /*
3077 * If D3 is currently not allowed for the bridge, this may be caused
3078 * either by the device being changed/removed or any of its siblings,
3079 * so we need to go through all children to find out if one of them
3080 * continues to block D3.
3081 */
3082 if (d3cold_ok && !bridge->bridge_d3)
3083 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084 &d3cold_ok);
3085
3086 if (bridge->bridge_d3 != d3cold_ok) {
3087 bridge->bridge_d3 = d3cold_ok;
3088 /* Propagate change to upstream bridges */
3089 pci_bridge_d3_update(bridge);
3090 }
3091}
3092
3093/**
3094 * pci_d3cold_enable - Enable D3cold for device
3095 * @dev: PCI device to handle
3096 *
3097 * This function can be used in drivers to enable D3cold from the device
3098 * they handle. It also updates upstream PCI bridge PM capabilities
3099 * accordingly.
3100 */
3101void pci_d3cold_enable(struct pci_dev *dev)
3102{
3103 if (dev->no_d3cold) {
3104 dev->no_d3cold = false;
3105 pci_bridge_d3_update(dev);
3106 }
3107}
3108EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109
3110/**
3111 * pci_d3cold_disable - Disable D3cold for device
3112 * @dev: PCI device to handle
3113 *
3114 * This function can be used in drivers to disable D3cold from the device
3115 * they handle. It also updates upstream PCI bridge PM capabilities
3116 * accordingly.
3117 */
3118void pci_d3cold_disable(struct pci_dev *dev)
3119{
3120 if (!dev->no_d3cold) {
3121 dev->no_d3cold = true;
3122 pci_bridge_d3_update(dev);
3123 }
3124}
3125EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126
3127/**
3128 * pci_pm_init - Initialize PM functions of given PCI device
3129 * @dev: PCI device to handle.
3130 */
3131void pci_pm_init(struct pci_dev *dev)
3132{
3133 int pm;
3134 u16 status;
3135 u16 pmc;
3136
3137 pm_runtime_forbid(&dev->dev);
3138 pm_runtime_set_active(&dev->dev);
3139 pm_runtime_enable(&dev->dev);
3140 device_enable_async_suspend(&dev->dev);
3141 dev->wakeup_prepared = false;
3142
3143 dev->pm_cap = 0;
3144 dev->pme_support = 0;
3145
3146 /* find PCI PM capability in list */
3147 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148 if (!pm)
3149 return;
3150 /* Check device's ability to generate PME# */
3151 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3152
3153 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3154 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3155 pmc & PCI_PM_CAP_VER_MASK);
3156 return;
3157 }
3158
3159 dev->pm_cap = pm;
3160 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3161 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3162 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3163 dev->d3cold_allowed = true;
3164
3165 dev->d1_support = false;
3166 dev->d2_support = false;
3167 if (!pci_no_d1d2(dev)) {
3168 if (pmc & PCI_PM_CAP_D1)
3169 dev->d1_support = true;
3170 if (pmc & PCI_PM_CAP_D2)
3171 dev->d2_support = true;
3172
3173 if (dev->d1_support || dev->d2_support)
3174 pci_info(dev, "supports%s%s\n",
3175 dev->d1_support ? " D1" : "",
3176 dev->d2_support ? " D2" : "");
3177 }
3178
3179 pmc &= PCI_PM_CAP_PME_MASK;
3180 if (pmc) {
3181 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3182 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3185 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3186 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3187 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3188 dev->pme_poll = true;
3189 /*
3190 * Make device's PM flags reflect the wake-up capability, but
3191 * let the user space enable it to wake up the system as needed.
3192 */
3193 device_set_wakeup_capable(&dev->dev, true);
3194 /* Disable the PME# generation functionality */
3195 pci_pme_active(dev, false);
3196 }
3197
3198 pci_read_config_word(dev, PCI_STATUS, &status);
3199 if (status & PCI_STATUS_IMM_READY)
3200 dev->imm_ready = 1;
3201}
3202
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
3205 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206
3207 switch (prop) {
3208 case PCI_EA_P_MEM:
3209 case PCI_EA_P_VF_MEM:
3210 flags |= IORESOURCE_MEM;
3211 break;
3212 case PCI_EA_P_MEM_PREFETCH:
3213 case PCI_EA_P_VF_MEM_PREFETCH:
3214 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215 break;
3216 case PCI_EA_P_IO:
3217 flags |= IORESOURCE_IO;
3218 break;
3219 default:
3220 return 0;
3221 }
3222
3223 return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227 u8 prop)
3228{
3229 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230 return &dev->resource[bei];
3231#ifdef CONFIG_PCI_IOV
3232 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234 return &dev->resource[PCI_IOV_RESOURCES +
3235 bei - PCI_EA_BEI_VF_BAR0];
3236#endif
3237 else if (bei == PCI_EA_BEI_ROM)
3238 return &dev->resource[PCI_ROM_RESOURCE];
3239 else
3240 return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246 struct resource *res;
3247 int ent_size, ent_offset = offset;
3248 resource_size_t start, end;
3249 unsigned long flags;
3250 u32 dw0, bei, base, max_offset;
3251 u8 prop;
3252 bool support_64 = (sizeof(resource_size_t) >= 8);
3253
3254 pci_read_config_dword(dev, ent_offset, &dw0);
3255 ent_offset += 4;
3256
3257 /* Entry size field indicates DWORDs after 1st */
3258 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259
3260 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261 goto out;
3262
3263 bei = (dw0 & PCI_EA_BEI) >> 4;
3264 prop = (dw0 & PCI_EA_PP) >> 8;
3265
3266 /*
3267 * If the Property is in the reserved range, try the Secondary
3268 * Property instead.
3269 */
3270 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3271 prop = (dw0 & PCI_EA_SP) >> 16;
3272 if (prop > PCI_EA_P_BRIDGE_IO)
3273 goto out;
3274
3275 res = pci_ea_get_resource(dev, bei, prop);
3276 if (!res) {
3277 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278 goto out;
3279 }
3280
3281 flags = pci_ea_flags(dev, prop);
3282 if (!flags) {
3283 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3284 goto out;
3285 }
3286
3287 /* Read Base */
3288 pci_read_config_dword(dev, ent_offset, &base);
3289 start = (base & PCI_EA_FIELD_MASK);
3290 ent_offset += 4;
3291
3292 /* Read MaxOffset */
3293 pci_read_config_dword(dev, ent_offset, &max_offset);
3294 ent_offset += 4;
3295
3296 /* Read Base MSBs (if 64-bit entry) */
3297 if (base & PCI_EA_IS_64) {
3298 u32 base_upper;
3299
3300 pci_read_config_dword(dev, ent_offset, &base_upper);
3301 ent_offset += 4;
3302
3303 flags |= IORESOURCE_MEM_64;
3304
3305 /* entry starts above 32-bit boundary, can't use */
3306 if (!support_64 && base_upper)
3307 goto out;
3308
3309 if (support_64)
3310 start |= ((u64)base_upper << 32);
3311 }
3312
3313 end = start + (max_offset | 0x03);
3314
3315 /* Read MaxOffset MSBs (if 64-bit entry) */
3316 if (max_offset & PCI_EA_IS_64) {
3317 u32 max_offset_upper;
3318
3319 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320 ent_offset += 4;
3321
3322 flags |= IORESOURCE_MEM_64;
3323
3324 /* entry too big, can't use */
3325 if (!support_64 && max_offset_upper)
3326 goto out;
3327
3328 if (support_64)
3329 end += ((u64)max_offset_upper << 32);
3330 }
3331
3332 if (end < start) {
3333 pci_err(dev, "EA Entry crosses address boundary\n");
3334 goto out;
3335 }
3336
3337 if (ent_size != ent_offset - offset) {
3338 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3339 ent_size, ent_offset - offset);
3340 goto out;
3341 }
3342
3343 res->name = pci_name(dev);
3344 res->start = start;
3345 res->end = end;
3346 res->flags = flags;
3347
3348 if (bei <= PCI_EA_BEI_BAR5)
3349 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3350 bei, res, prop);
3351 else if (bei == PCI_EA_BEI_ROM)
3352 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3353 res, prop);
3354 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3355 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3356 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357 else
3358 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359 bei, res, prop);
3360
3361out:
3362 return offset + ent_size;
3363}
3364
3365/* Enhanced Allocation Initialization */
3366void pci_ea_init(struct pci_dev *dev)
3367{
3368 int ea;
3369 u8 num_ent;
3370 int offset;
3371 int i;
3372
3373 /* find PCI EA capability in list */
3374 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375 if (!ea)
3376 return;
3377
3378 /* determine the number of entries */
3379 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380 &num_ent);
3381 num_ent &= PCI_EA_NUM_ENT_MASK;
3382
3383 offset = ea + PCI_EA_FIRST_ENT;
3384
3385 /* Skip DWORD 2 for type 1 functions */
3386 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387 offset += 4;
3388
3389 /* parse each EA entry */
3390 for (i = 0; i < num_ent; ++i)
3391 offset = pci_ea_read(dev, offset);
3392}
3393
3394static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395 struct pci_cap_saved_state *new_cap)
3396{
3397 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398}
3399
3400/**
3401 * _pci_add_cap_save_buffer - allocate buffer for saving given
3402 * capability registers
3403 * @dev: the PCI device
3404 * @cap: the capability to allocate the buffer for
3405 * @extended: Standard or Extended capability ID
3406 * @size: requested size of the buffer
3407 */
3408static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409 bool extended, unsigned int size)
3410{
3411 int pos;
3412 struct pci_cap_saved_state *save_state;
3413
3414 if (extended)
3415 pos = pci_find_ext_capability(dev, cap);
3416 else
3417 pos = pci_find_capability(dev, cap);
3418
3419 if (!pos)
3420 return 0;
3421
3422 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423 if (!save_state)
3424 return -ENOMEM;
3425
3426 save_state->cap.cap_nr = cap;
3427 save_state->cap.cap_extended = extended;
3428 save_state->cap.size = size;
3429 pci_add_saved_cap(dev, save_state);
3430
3431 return 0;
3432}
3433
3434int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435{
3436 return _pci_add_cap_save_buffer(dev, cap, false, size);
3437}
3438
3439int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440{
3441 return _pci_add_cap_save_buffer(dev, cap, true, size);
3442}
3443
3444/**
3445 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446 * @dev: the PCI device
3447 */
3448void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449{
3450 int error;
3451
3452 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453 PCI_EXP_SAVE_REGS * sizeof(u16));
3454 if (error)
3455 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3456
3457 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458 if (error)
3459 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3460
3461 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462 2 * sizeof(u16));
3463 if (error)
3464 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465
3466 pci_allocate_vc_save_buffers(dev);
3467}
3468
3469void pci_free_cap_save_buffers(struct pci_dev *dev)
3470{
3471 struct pci_cap_saved_state *tmp;
3472 struct hlist_node *n;
3473
3474 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475 kfree(tmp);
3476}
3477
3478/**
3479 * pci_configure_ari - enable or disable ARI forwarding
3480 * @dev: the PCI device
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge. Otherwise, disable ARI in the bridge.
3484 */
3485void pci_configure_ari(struct pci_dev *dev)
3486{
3487 u32 cap;
3488 struct pci_dev *bridge;
3489
3490 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491 return;
3492
3493 bridge = dev->bus->self;
3494 if (!bridge)
3495 return;
3496
3497 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499 return;
3500
3501 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503 PCI_EXP_DEVCTL2_ARI);
3504 bridge->ari_enabled = 1;
3505 } else {
3506 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507 PCI_EXP_DEVCTL2_ARI);
3508 bridge->ari_enabled = 0;
3509 }
3510}
3511
3512static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513{
3514 int pos;
3515 u16 cap, ctrl;
3516
3517 pos = pdev->acs_cap;
3518 if (!pos)
3519 return false;
3520
3521 /*
3522 * Except for egress control, capabilities are either required
3523 * or only required if controllable. Features missing from the
3524 * capability field can therefore be assumed as hard-wired enabled.
3525 */
3526 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527 acs_flags &= (cap | PCI_ACS_EC);
3528
3529 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530 return (ctrl & acs_flags) == acs_flags;
3531}
3532
3533/**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags. Automatically
3539 * filters out flags that are not implemented on multifunction devices.
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities. For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access. We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability. This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
3548 */
3549bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550{
3551 int ret;
3552
3553 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554 if (ret >= 0)
3555 return ret > 0;
3556
3557 /*
3558 * Conventional PCI and PCI-X devices never support ACS, either
3559 * effectively or actually. The shared bus topology implies that
3560 * any device on the bus can receive or snoop DMA.
3561 */
3562 if (!pci_is_pcie(pdev))
3563 return false;
3564
3565 switch (pci_pcie_type(pdev)) {
3566 /*
3567 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568 * but since their primary interface is PCI/X, we conservatively
3569 * handle them as we would a non-PCIe device.
3570 */
3571 case PCI_EXP_TYPE_PCIE_BRIDGE:
3572 /*
3573 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3574 * applicable... must never implement an ACS Extended Capability...".
3575 * This seems arbitrary, but we take a conservative interpretation
3576 * of this statement.
3577 */
3578 case PCI_EXP_TYPE_PCI_BRIDGE:
3579 case PCI_EXP_TYPE_RC_EC:
3580 return false;
3581 /*
3582 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583 * implement ACS in order to indicate their peer-to-peer capabilities,
3584 * regardless of whether they are single- or multi-function devices.
3585 */
3586 case PCI_EXP_TYPE_DOWNSTREAM:
3587 case PCI_EXP_TYPE_ROOT_PORT:
3588 return pci_acs_flags_enabled(pdev, acs_flags);
3589 /*
3590 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591 * implemented by the remaining PCIe types to indicate peer-to-peer
3592 * capabilities, but only when they are part of a multifunction
3593 * device. The footnote for section 6.12 indicates the specific
3594 * PCIe types included here.
3595 */
3596 case PCI_EXP_TYPE_ENDPOINT:
3597 case PCI_EXP_TYPE_UPSTREAM:
3598 case PCI_EXP_TYPE_LEG_END:
3599 case PCI_EXP_TYPE_RC_END:
3600 if (!pdev->multifunction)
3601 break;
3602
3603 return pci_acs_flags_enabled(pdev, acs_flags);
3604 }
3605
3606 /*
3607 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608 * to single function devices with the exception of downstream ports.
3609 */
3610 return true;
3611}
3612
3613/**
3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support. If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622bool pci_acs_path_enabled(struct pci_dev *start,
3623 struct pci_dev *end, u16 acs_flags)
3624{
3625 struct pci_dev *pdev, *parent = start;
3626
3627 do {
3628 pdev = parent;
3629
3630 if (!pci_acs_enabled(pdev, acs_flags))
3631 return false;
3632
3633 if (pci_is_root_bus(pdev->bus))
3634 return (end == NULL);
3635
3636 parent = pdev->bus->self;
3637 } while (pdev != end);
3638
3639 return true;
3640}
3641
3642/**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646void pci_acs_init(struct pci_dev *dev)
3647{
3648 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
3650 /*
3651 * Attempt to enable ACS regardless of capability because some Root
3652 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653 * the standard ACS capability but still support ACS via those
3654 * quirks.
3655 */
3656 pci_enable_acs(dev);
3657}
3658
3659/**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669{
3670 unsigned int pos, nbars, i;
3671 u32 ctrl;
3672
3673 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674 if (!pos)
3675 return -ENOTSUPP;
3676
3677 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679 PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681 for (i = 0; i < nbars; i++, pos += 8) {
3682 int bar_idx;
3683
3684 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686 if (bar_idx == bar)
3687 return pos;
3688 }
3689
3690 return -ENOENT;
3691}
3692
3693/**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702{
3703 int pos;
3704 u32 cap;
3705
3706 pos = pci_rebar_find_pos(pdev, bar);
3707 if (pos < 0)
3708 return 0;
3709
3710 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711 cap &= PCI_REBAR_CAP_SIZES;
3712
3713 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715 bar == 0 && cap == 0x7000)
3716 cap = 0x3f000;
3717
3718 return cap >> 4;
3719}
3720EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721
3722/**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731{
3732 int pos;
3733 u32 ctrl;
3734
3735 pos = pci_rebar_find_pos(pdev, bar);
3736 if (pos < 0)
3737 return pos;
3738
3739 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741}
3742
3743/**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753{
3754 int pos;
3755 u32 ctrl;
3756
3757 pos = pci_rebar_find_pos(pdev, bar);
3758 if (pos < 0)
3759 return pos;
3760
3761 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765 return 0;
3766}
3767
3768/**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782{
3783 struct pci_bus *bus = dev->bus;
3784 struct pci_dev *bridge;
3785 u32 cap, ctl2;
3786
3787 /*
3788 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789 * in Device Control 2 is reserved in VFs and the PF value applies
3790 * to all associated VFs.
3791 */
3792 if (dev->is_virtfn)
3793 return -EINVAL;
3794
3795 if (!pci_is_pcie(dev))
3796 return -EINVAL;
3797
3798 /*
3799 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800 * AtomicOp requesters. For now, we only support endpoints as
3801 * requesters and root ports as completers. No endpoints as
3802 * completers, and no peer-to-peer.
3803 */
3804
3805 switch (pci_pcie_type(dev)) {
3806 case PCI_EXP_TYPE_ENDPOINT:
3807 case PCI_EXP_TYPE_LEG_END:
3808 case PCI_EXP_TYPE_RC_END:
3809 break;
3810 default:
3811 return -EINVAL;
3812 }
3813
3814 while (bus->parent) {
3815 bridge = bus->self;
3816
3817 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819 switch (pci_pcie_type(bridge)) {
3820 /* Ensure switch ports support AtomicOp routing */
3821 case PCI_EXP_TYPE_UPSTREAM:
3822 case PCI_EXP_TYPE_DOWNSTREAM:
3823 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824 return -EINVAL;
3825 break;
3826
3827 /* Ensure root port supports all the sizes we care about */
3828 case PCI_EXP_TYPE_ROOT_PORT:
3829 if ((cap & cap_mask) != cap_mask)
3830 return -EINVAL;
3831 break;
3832 }
3833
3834 /* Ensure upstream ports don't block AtomicOps on egress */
3835 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837 &ctl2);
3838 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839 return -EINVAL;
3840 }
3841
3842 bus = bus->parent;
3843 }
3844
3845 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847 return 0;
3848}
3849EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
3851/**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge. This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
3861 */
3862u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863{
3864 int slot;
3865
3866 if (pci_ari_enabled(dev->bus))
3867 slot = 0;
3868 else
3869 slot = PCI_SLOT(dev->devfn);
3870
3871 return (((pin - 1) + slot) % 4) + 1;
3872}
3873
3874int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875{
3876 u8 pin;
3877
3878 pin = dev->pin;
3879 if (!pin)
3880 return -1;
3881
3882 while (!pci_is_root_bus(dev->bus)) {
3883 pin = pci_swizzle_interrupt_pin(dev, pin);
3884 dev = dev->bus->self;
3885 }
3886 *bridge = dev;
3887 return pin;
3888}
3889
3890/**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899{
3900 u8 pin = *pinp;
3901
3902 while (!pci_is_root_bus(dev->bus)) {
3903 pin = pci_swizzle_interrupt_pin(dev, pin);
3904 dev = dev->bus->self;
3905 }
3906 *pinp = pin;
3907 return PCI_SLOT(dev->devfn);
3908}
3909EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910
3911/**
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 * pci_request_region()
3915 * @bar: BAR to release
3916 *
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region(). Call this function only
3919 * after all use of the PCI regions has ceased.
3920 */
3921void pci_release_region(struct pci_dev *pdev, int bar)
3922{
3923 struct pci_devres *dr;
3924
3925 if (pci_resource_len(pdev, bar) == 0)
3926 return;
3927 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928 release_region(pci_resource_start(pdev, bar),
3929 pci_resource_len(pdev, bar));
3930 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931 release_mem_region(pci_resource_start(pdev, bar),
3932 pci_resource_len(pdev, bar));
3933
3934 dr = find_pci_dr(pdev);
3935 if (dr)
3936 dr->region_mask &= ~(1 << bar);
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name. Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
3951 *
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
3955 *
3956 * Returns 0 on success, or %EBUSY on error. A warning
3957 * message is also printed on failure.
3958 */
3959static int __pci_request_region(struct pci_dev *pdev, int bar,
3960 const char *res_name, int exclusive)
3961{
3962 struct pci_devres *dr;
3963
3964 if (pci_resource_len(pdev, bar) == 0)
3965 return 0;
3966
3967 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968 if (!request_region(pci_resource_start(pdev, bar),
3969 pci_resource_len(pdev, bar), res_name))
3970 goto err_out;
3971 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972 if (!__request_mem_region(pci_resource_start(pdev, bar),
3973 pci_resource_len(pdev, bar), res_name,
3974 exclusive))
3975 goto err_out;
3976 }
3977
3978 dr = find_pci_dr(pdev);
3979 if (dr)
3980 dr->region_mask |= 1 << bar;
3981
3982 return 0;
3983
3984err_out:
3985 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986 &pdev->resource[bar]);
3987 return -EBUSY;
3988}
3989
3990/**
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
3995 *
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name. Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
4000 *
4001 * Returns 0 on success, or %EBUSY on error. A warning
4002 * message is also printed on failure.
4003 */
4004int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005{
4006 return __pci_request_region(pdev, bar, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_region);
4009
4010/**
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019{
4020 int i;
4021
4022 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023 if (bars & (1 << i))
4024 pci_release_region(pdev, i);
4025}
4026EXPORT_SYMBOL(pci_release_selected_regions);
4027
4028static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029 const char *res_name, int excl)
4030{
4031 int i;
4032
4033 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034 if (bars & (1 << i))
4035 if (__pci_request_region(pdev, i, res_name, excl))
4036 goto err_out;
4037 return 0;
4038
4039err_out:
4040 while (--i >= 0)
4041 if (bars & (1 << i))
4042 pci_release_region(pdev, i);
4043
4044 return -EBUSY;
4045}
4046
4047
4048/**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
4053 */
4054int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055 const char *res_name)
4056{
4057 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058}
4059EXPORT_SYMBOL(pci_request_selected_regions);
4060
4061int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062 const char *res_name)
4063{
4064 return __pci_request_selected_regions(pdev, bars, res_name,
4065 IORESOURCE_EXCLUSIVE);
4066}
4067EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068
4069/**
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 * pci_request_regions()
4073 *
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions(). Call this function only
4076 * after all use of the PCI regions has ceased.
4077 */
4078
4079void pci_release_regions(struct pci_dev *pdev)
4080{
4081 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082}
4083EXPORT_SYMBOL(pci_release_regions);
4084
4085/**
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
4089 *
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name. Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
4094 *
4095 * Returns 0 on success, or %EBUSY on error. A warning
4096 * message is also printed on failure.
4097 */
4098int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099{
4100 return pci_request_selected_regions(pdev,
4101 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102}
4103EXPORT_SYMBOL(pci_request_regions);
4104
4105/**
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
4109 *
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name. Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
4113 *
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
4116 *
4117 * Returns 0 on success, or %EBUSY on error. A warning message is also
4118 * printed on failure.
4119 */
4120int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121{
4122 return pci_request_selected_regions_exclusive(pdev,
4123 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124}
4125EXPORT_SYMBOL(pci_request_regions_exclusive);
4126
4127/*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
4129 * Return a negative value if an error has occurred, zero otherwise
4130 */
4131int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132 resource_size_t size)
4133{
4134 int ret = 0;
4135#ifdef PCI_IOBASE
4136 struct logic_pio_hwaddr *range;
4137
4138 if (!size || addr + size < addr)
4139 return -EINVAL;
4140
4141 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142 if (!range)
4143 return -ENOMEM;
4144
4145 range->fwnode = fwnode;
4146 range->size = size;
4147 range->hw_start = addr;
4148 range->flags = LOGIC_PIO_CPU_MMIO;
4149
4150 ret = logic_pio_register_range(range);
4151 if (ret)
4152 kfree(range);
4153
4154 /* Ignore duplicates due to deferred probing */
4155 if (ret == -EEXIST)
4156 ret = 0;
4157#endif
4158
4159 return ret;
4160}
4161
4162phys_addr_t pci_pio_to_address(unsigned long pio)
4163{
4164 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166#ifdef PCI_IOBASE
4167 if (pio >= MMIO_UPPER_LIMIT)
4168 return address;
4169
4170 address = logic_pio_to_hwaddr(pio);
4171#endif
4172
4173 return address;
4174}
4175EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176
4177unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178{
4179#ifdef PCI_IOBASE
4180 return logic_pio_trans_cpuaddr(address);
4181#else
4182 if (address > IO_SPACE_LIMIT)
4183 return (unsigned long)-1;
4184
4185 return (unsigned long) address;
4186#endif
4187}
4188
4189/**
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
4193 *
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space. Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
4198 */
4199#ifndef pci_remap_iospace
4200int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4201{
4202#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204
4205 if (!(res->flags & IORESOURCE_IO))
4206 return -EINVAL;
4207
4208 if (res->end > IO_SPACE_LIMIT)
4209 return -EINVAL;
4210
4211 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212 pgprot_device(PAGE_KERNEL));
4213#else
4214 /*
4215 * This architecture does not have memory mapped I/O space,
4216 * so this function should never be called
4217 */
4218 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219 return -ENODEV;
4220#endif
4221}
4222EXPORT_SYMBOL(pci_remap_iospace);
4223#endif
4224
4225/**
4226 * pci_unmap_iospace - Unmap the memory mapped I/O space
4227 * @res: resource to be unmapped
4228 *
4229 * Unmap the CPU virtual address @res from virtual address space. Only
4230 * architectures that have memory mapped IO functions defined (and the
4231 * PCI_IOBASE value defined) should call this function.
4232 */
4233void pci_unmap_iospace(struct resource *res)
4234{
4235#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237
4238 vunmap_range(vaddr, vaddr + resource_size(res));
4239#endif
4240}
4241EXPORT_SYMBOL(pci_unmap_iospace);
4242
4243static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244{
4245 struct resource **res = ptr;
4246
4247 pci_unmap_iospace(*res);
4248}
4249
4250/**
4251 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252 * @dev: Generic device to remap IO address for
4253 * @res: Resource describing the I/O space
4254 * @phys_addr: physical address of range to be mapped
4255 *
4256 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4257 * detach.
4258 */
4259int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260 phys_addr_t phys_addr)
4261{
4262 const struct resource **ptr;
4263 int error;
4264
4265 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266 if (!ptr)
4267 return -ENOMEM;
4268
4269 error = pci_remap_iospace(res, phys_addr);
4270 if (error) {
4271 devres_free(ptr);
4272 } else {
4273 *ptr = res;
4274 devres_add(dev, ptr);
4275 }
4276
4277 return error;
4278}
4279EXPORT_SYMBOL(devm_pci_remap_iospace);
4280
4281/**
4282 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283 * @dev: Generic device to remap IO address for
4284 * @offset: Resource address to map
4285 * @size: Size of map
4286 *
4287 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4288 * detach.
4289 */
4290void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291 resource_size_t offset,
4292 resource_size_t size)
4293{
4294 void __iomem **ptr, *addr;
4295
4296 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297 if (!ptr)
4298 return NULL;
4299
4300 addr = pci_remap_cfgspace(offset, size);
4301 if (addr) {
4302 *ptr = addr;
4303 devres_add(dev, ptr);
4304 } else
4305 devres_free(ptr);
4306
4307 return addr;
4308}
4309EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310
4311/**
4312 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313 * @dev: generic device to handle the resource for
4314 * @res: configuration space resource to be handled
4315 *
4316 * Checks that a resource is a valid memory region, requests the memory
4317 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318 * proper PCI configuration space memory attributes are guaranteed.
4319 *
4320 * All operations are managed and will be undone on driver detach.
4321 *
4322 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4323 * on failure. Usage example::
4324 *
4325 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327 * if (IS_ERR(base))
4328 * return PTR_ERR(base);
4329 */
4330void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331 struct resource *res)
4332{
4333 resource_size_t size;
4334 const char *name;
4335 void __iomem *dest_ptr;
4336
4337 BUG_ON(!dev);
4338
4339 if (!res || resource_type(res) != IORESOURCE_MEM) {
4340 dev_err(dev, "invalid resource\n");
4341 return IOMEM_ERR_PTR(-EINVAL);
4342 }
4343
4344 size = resource_size(res);
4345
4346 if (res->name)
4347 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348 res->name);
4349 else
4350 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351 if (!name)
4352 return IOMEM_ERR_PTR(-ENOMEM);
4353
4354 if (!devm_request_mem_region(dev, res->start, size, name)) {
4355 dev_err(dev, "can't request region for resource %pR\n", res);
4356 return IOMEM_ERR_PTR(-EBUSY);
4357 }
4358
4359 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360 if (!dest_ptr) {
4361 dev_err(dev, "ioremap failed for resource %pR\n", res);
4362 devm_release_mem_region(dev, res->start, size);
4363 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364 }
4365
4366 return dest_ptr;
4367}
4368EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369
4370static void __pci_set_master(struct pci_dev *dev, bool enable)
4371{
4372 u16 old_cmd, cmd;
4373
4374 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375 if (enable)
4376 cmd = old_cmd | PCI_COMMAND_MASTER;
4377 else
4378 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379 if (cmd != old_cmd) {
4380 pci_dbg(dev, "%s bus mastering\n",
4381 enable ? "enabling" : "disabling");
4382 pci_write_config_word(dev, PCI_COMMAND, cmd);
4383 }
4384 dev->is_busmaster = enable;
4385}
4386
4387/**
4388 * pcibios_setup - process "pci=" kernel boot arguments
4389 * @str: string used to pass in "pci=" kernel boot arguments
4390 *
4391 * Process kernel boot arguments. This is the default implementation.
4392 * Architecture specific implementations can override this as necessary.
4393 */
4394char * __weak __init pcibios_setup(char *str)
4395{
4396 return str;
4397}
4398
4399/**
4400 * pcibios_set_master - enable PCI bus-mastering for device dev
4401 * @dev: the PCI device to enable
4402 *
4403 * Enables PCI bus-mastering for the device. This is the default
4404 * implementation. Architecture specific implementations can override
4405 * this if necessary.
4406 */
4407void __weak pcibios_set_master(struct pci_dev *dev)
4408{
4409 u8 lat;
4410
4411 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412 if (pci_is_pcie(dev))
4413 return;
4414
4415 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416 if (lat < 16)
4417 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418 else if (lat > pcibios_max_latency)
4419 lat = pcibios_max_latency;
4420 else
4421 return;
4422
4423 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424}
4425
4426/**
4427 * pci_set_master - enables bus-mastering for device dev
4428 * @dev: the PCI device to enable
4429 *
4430 * Enables bus-mastering on the device and calls pcibios_set_master()
4431 * to do the needed arch specific settings.
4432 */
4433void pci_set_master(struct pci_dev *dev)
4434{
4435 __pci_set_master(dev, true);
4436 pcibios_set_master(dev);
4437}
4438EXPORT_SYMBOL(pci_set_master);
4439
4440/**
4441 * pci_clear_master - disables bus-mastering for device dev
4442 * @dev: the PCI device to disable
4443 */
4444void pci_clear_master(struct pci_dev *dev)
4445{
4446 __pci_set_master(dev, false);
4447}
4448EXPORT_SYMBOL(pci_clear_master);
4449
4450/**
4451 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452 * @dev: the PCI device for which MWI is to be enabled
4453 *
4454 * Helper function for pci_set_mwi.
4455 * Originally copied from drivers/net/acenic.c.
4456 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457 *
4458 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459 */
4460int pci_set_cacheline_size(struct pci_dev *dev)
4461{
4462 u8 cacheline_size;
4463
4464 if (!pci_cache_line_size)
4465 return -EINVAL;
4466
4467 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468 equal to or multiple of the right value. */
4469 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470 if (cacheline_size >= pci_cache_line_size &&
4471 (cacheline_size % pci_cache_line_size) == 0)
4472 return 0;
4473
4474 /* Write the correct value. */
4475 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476 /* Read it back. */
4477 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478 if (cacheline_size == pci_cache_line_size)
4479 return 0;
4480
4481 pci_dbg(dev, "cache line size of %d is not supported\n",
4482 pci_cache_line_size << 2);
4483
4484 return -EINVAL;
4485}
4486EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487
4488/**
4489 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490 * @dev: the PCI device for which MWI is enabled
4491 *
4492 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4493 *
4494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495 */
4496int pci_set_mwi(struct pci_dev *dev)
4497{
4498#ifdef PCI_DISABLE_MWI
4499 return 0;
4500#else
4501 int rc;
4502 u16 cmd;
4503
4504 rc = pci_set_cacheline_size(dev);
4505 if (rc)
4506 return rc;
4507
4508 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4510 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4511 cmd |= PCI_COMMAND_INVALIDATE;
4512 pci_write_config_word(dev, PCI_COMMAND, cmd);
4513 }
4514 return 0;
4515#endif
4516}
4517EXPORT_SYMBOL(pci_set_mwi);
4518
4519/**
4520 * pcim_set_mwi - a device-managed pci_set_mwi()
4521 * @dev: the PCI device for which MWI is enabled
4522 *
4523 * Managed pci_set_mwi().
4524 *
4525 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 */
4527int pcim_set_mwi(struct pci_dev *dev)
4528{
4529 struct pci_devres *dr;
4530
4531 dr = find_pci_dr(dev);
4532 if (!dr)
4533 return -ENOMEM;
4534
4535 dr->mwi = 1;
4536 return pci_set_mwi(dev);
4537}
4538EXPORT_SYMBOL(pcim_set_mwi);
4539
4540/**
4541 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542 * @dev: the PCI device for which MWI is enabled
4543 *
4544 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545 * Callers are not required to check the return value.
4546 *
4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548 */
4549int pci_try_set_mwi(struct pci_dev *dev)
4550{
4551#ifdef PCI_DISABLE_MWI
4552 return 0;
4553#else
4554 return pci_set_mwi(dev);
4555#endif
4556}
4557EXPORT_SYMBOL(pci_try_set_mwi);
4558
4559/**
4560 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561 * @dev: the PCI device to disable
4562 *
4563 * Disables PCI Memory-Write-Invalidate transaction on the device
4564 */
4565void pci_clear_mwi(struct pci_dev *dev)
4566{
4567#ifndef PCI_DISABLE_MWI
4568 u16 cmd;
4569
4570 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571 if (cmd & PCI_COMMAND_INVALIDATE) {
4572 cmd &= ~PCI_COMMAND_INVALIDATE;
4573 pci_write_config_word(dev, PCI_COMMAND, cmd);
4574 }
4575#endif
4576}
4577EXPORT_SYMBOL(pci_clear_mwi);
4578
4579/**
4580 * pci_disable_parity - disable parity checking for device
4581 * @dev: the PCI device to operate on
4582 *
4583 * Disable parity checking for device @dev
4584 */
4585void pci_disable_parity(struct pci_dev *dev)
4586{
4587 u16 cmd;
4588
4589 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590 if (cmd & PCI_COMMAND_PARITY) {
4591 cmd &= ~PCI_COMMAND_PARITY;
4592 pci_write_config_word(dev, PCI_COMMAND, cmd);
4593 }
4594}
4595
4596/**
4597 * pci_intx - enables/disables PCI INTx for device dev
4598 * @pdev: the PCI device to operate on
4599 * @enable: boolean: whether to enable or disable PCI INTx
4600 *
4601 * Enables/disables PCI INTx for device @pdev
4602 */
4603void pci_intx(struct pci_dev *pdev, int enable)
4604{
4605 u16 pci_command, new;
4606
4607 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608
4609 if (enable)
4610 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4611 else
4612 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4613
4614 if (new != pci_command) {
4615 struct pci_devres *dr;
4616
4617 pci_write_config_word(pdev, PCI_COMMAND, new);
4618
4619 dr = find_pci_dr(pdev);
4620 if (dr && !dr->restore_intx) {
4621 dr->restore_intx = 1;
4622 dr->orig_intx = !enable;
4623 }
4624 }
4625}
4626EXPORT_SYMBOL_GPL(pci_intx);
4627
4628static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629{
4630 struct pci_bus *bus = dev->bus;
4631 bool mask_updated = true;
4632 u32 cmd_status_dword;
4633 u16 origcmd, newcmd;
4634 unsigned long flags;
4635 bool irq_pending;
4636
4637 /*
4638 * We do a single dword read to retrieve both command and status.
4639 * Document assumptions that make this possible.
4640 */
4641 BUILD_BUG_ON(PCI_COMMAND % 4);
4642 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643
4644 raw_spin_lock_irqsave(&pci_lock, flags);
4645
4646 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647
4648 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649
4650 /*
4651 * Check interrupt status register to see whether our device
4652 * triggered the interrupt (when masking) or the next IRQ is
4653 * already pending (when unmasking).
4654 */
4655 if (mask != irq_pending) {
4656 mask_updated = false;
4657 goto done;
4658 }
4659
4660 origcmd = cmd_status_dword;
4661 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662 if (mask)
4663 newcmd |= PCI_COMMAND_INTX_DISABLE;
4664 if (newcmd != origcmd)
4665 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666
4667done:
4668 raw_spin_unlock_irqrestore(&pci_lock, flags);
4669
4670 return mask_updated;
4671}
4672
4673/**
4674 * pci_check_and_mask_intx - mask INTx on pending interrupt
4675 * @dev: the PCI device to operate on
4676 *
4677 * Check if the device dev has its INTx line asserted, mask it and return
4678 * true in that case. False is returned if no interrupt was pending.
4679 */
4680bool pci_check_and_mask_intx(struct pci_dev *dev)
4681{
4682 return pci_check_and_set_intx_mask(dev, true);
4683}
4684EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685
4686/**
4687 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4688 * @dev: the PCI device to operate on
4689 *
4690 * Check if the device dev has its INTx line asserted, unmask it if not and
4691 * return true. False is returned and the mask remains active if there was
4692 * still an interrupt pending.
4693 */
4694bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695{
4696 return pci_check_and_set_intx_mask(dev, false);
4697}
4698EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699
4700/**
4701 * pci_wait_for_pending_transaction - wait for pending transaction
4702 * @dev: the PCI device to operate on
4703 *
4704 * Return 0 if transaction is pending 1 otherwise.
4705 */
4706int pci_wait_for_pending_transaction(struct pci_dev *dev)
4707{
4708 if (!pci_is_pcie(dev))
4709 return 1;
4710
4711 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712 PCI_EXP_DEVSTA_TRPND);
4713}
4714EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715
4716/**
4717 * pcie_flr - initiate a PCIe function level reset
4718 * @dev: device to reset
4719 *
4720 * Initiate a function level reset unconditionally on @dev without
4721 * checking any flags and DEVCAP
4722 */
4723int pcie_flr(struct pci_dev *dev)
4724{
4725 if (!pci_wait_for_pending_transaction(dev))
4726 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4727
4728 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4729
4730 if (dev->imm_ready)
4731 return 0;
4732
4733 /*
4734 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735 * 100ms, but may silently discard requests while the FLR is in
4736 * progress. Wait 100ms before trying to access the device.
4737 */
4738 msleep(100);
4739
4740 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4741}
4742EXPORT_SYMBOL_GPL(pcie_flr);
4743
4744/**
4745 * pcie_reset_flr - initiate a PCIe function level reset
4746 * @dev: device to reset
4747 * @probe: if true, return 0 if device can be reset this way
4748 *
4749 * Initiate a function level reset on @dev.
4750 */
4751int pcie_reset_flr(struct pci_dev *dev, bool probe)
4752{
4753 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754 return -ENOTTY;
4755
4756 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757 return -ENOTTY;
4758
4759 if (probe)
4760 return 0;
4761
4762 return pcie_flr(dev);
4763}
4764EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765
4766static int pci_af_flr(struct pci_dev *dev, bool probe)
4767{
4768 int pos;
4769 u8 cap;
4770
4771 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772 if (!pos)
4773 return -ENOTTY;
4774
4775 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776 return -ENOTTY;
4777
4778 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4779 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780 return -ENOTTY;
4781
4782 if (probe)
4783 return 0;
4784
4785 /*
4786 * Wait for Transaction Pending bit to clear. A word-aligned test
4787 * is used, so we use the control offset rather than status and shift
4788 * the test bit to match.
4789 */
4790 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4791 PCI_AF_STATUS_TP << 8))
4792 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4793
4794 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4795
4796 if (dev->imm_ready)
4797 return 0;
4798
4799 /*
4800 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801 * updated 27 July 2006; a device must complete an FLR within
4802 * 100ms, but may silently discard requests while the FLR is in
4803 * progress. Wait 100ms before trying to access the device.
4804 */
4805 msleep(100);
4806
4807 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808}
4809
4810/**
4811 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812 * @dev: Device to reset.
4813 * @probe: if true, return 0 if the device can be reset this way.
4814 *
4815 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816 * unset, it will be reinitialized internally when going from PCI_D3hot to
4817 * PCI_D0. If that's the case and the device is not in a low-power state
4818 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819 *
4820 * NOTE: This causes the caller to sleep for twice the device power transition
4821 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4822 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4823 * Moreover, only devices in D0 can be reset by this function.
4824 */
4825static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826{
4827 u16 csr;
4828
4829 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4830 return -ENOTTY;
4831
4832 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834 return -ENOTTY;
4835
4836 if (probe)
4837 return 0;
4838
4839 if (dev->current_state != PCI_D0)
4840 return -EINVAL;
4841
4842 csr &= ~PCI_PM_CTRL_STATE_MASK;
4843 csr |= PCI_D3hot;
4844 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4845 pci_dev_d3_sleep(dev);
4846
4847 csr &= ~PCI_PM_CTRL_STATE_MASK;
4848 csr |= PCI_D0;
4849 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4850 pci_dev_d3_sleep(dev);
4851
4852 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853}
4854
4855/**
4856 * pcie_wait_for_link_delay - Wait until link is active or inactive
4857 * @pdev: Bridge device
4858 * @active: waiting for active or inactive?
4859 * @delay: Delay to wait after link has become active (in ms)
4860 *
4861 * Use this to wait till link becomes active or inactive.
4862 */
4863static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864 int delay)
4865{
4866 int timeout = 1000;
4867 bool ret;
4868 u16 lnk_status;
4869
4870 /*
4871 * Some controllers might not implement link active reporting. In this
4872 * case, we wait for 1000 ms + any delay requested by the caller.
4873 */
4874 if (!pdev->link_active_reporting) {
4875 msleep(timeout + delay);
4876 return true;
4877 }
4878
4879 /*
4880 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881 * after which we should expect an link active if the reset was
4882 * successful. If so, software must wait a minimum 100ms before sending
4883 * configuration requests to devices downstream this port.
4884 *
4885 * If the link fails to activate, either the device was physically
4886 * removed or the link is permanently failed.
4887 */
4888 if (active)
4889 msleep(20);
4890 for (;;) {
4891 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893 if (ret == active)
4894 break;
4895 if (timeout <= 0)
4896 break;
4897 msleep(10);
4898 timeout -= 10;
4899 }
4900 if (active && ret)
4901 msleep(delay);
4902
4903 return ret == active;
4904}
4905
4906/**
4907 * pcie_wait_for_link - Wait until link is active or inactive
4908 * @pdev: Bridge device
4909 * @active: waiting for active or inactive?
4910 *
4911 * Use this to wait till link becomes active or inactive.
4912 */
4913bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914{
4915 return pcie_wait_for_link_delay(pdev, active, 100);
4916}
4917
4918/*
4919 * Find maximum D3cold delay required by all the devices on the bus. The
4920 * spec says 100 ms, but firmware can lower it and we allow drivers to
4921 * increase it as well.
4922 *
4923 * Called with @pci_bus_sem locked for reading.
4924 */
4925static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926{
4927 const struct pci_dev *pdev;
4928 int min_delay = 100;
4929 int max_delay = 0;
4930
4931 list_for_each_entry(pdev, &bus->devices, bus_list) {
4932 if (pdev->d3cold_delay < min_delay)
4933 min_delay = pdev->d3cold_delay;
4934 if (pdev->d3cold_delay > max_delay)
4935 max_delay = pdev->d3cold_delay;
4936 }
4937
4938 return max(min_delay, max_delay);
4939}
4940
4941/**
4942 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943 * @dev: PCI bridge
4944 *
4945 * Handle necessary delays before access to the devices on the secondary
4946 * side of the bridge are permitted after D3cold to D0 transition.
4947 *
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950 * 4.3.2.
4951 */
4952void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953{
4954 struct pci_dev *child;
4955 int delay;
4956
4957 if (pci_dev_is_disconnected(dev))
4958 return;
4959
4960 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961 return;
4962
4963 down_read(&pci_bus_sem);
4964
4965 /*
4966 * We only deal with devices that are present currently on the bus.
4967 * For any hot-added devices the access delay is handled in pciehp
4968 * board_added(). In case of ACPI hotplug the firmware is expected
4969 * to configure the devices before OS is notified.
4970 */
4971 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972 up_read(&pci_bus_sem);
4973 return;
4974 }
4975
4976 /* Take d3cold_delay requirements into account */
4977 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978 if (!delay) {
4979 up_read(&pci_bus_sem);
4980 return;
4981 }
4982
4983 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984 bus_list);
4985 up_read(&pci_bus_sem);
4986
4987 /*
4988 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990 * practice this should not be needed because we don't do power
4991 * management for them (see pci_bridge_d3_possible()).
4992 */
4993 if (!pci_is_pcie(dev)) {
4994 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995 msleep(1000 + delay);
4996 return;
4997 }
4998
4999 /*
5000 * For PCIe downstream and root ports that do not support speeds
5001 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002 * speeds (gen3) we need to wait first for the data link layer to
5003 * become active.
5004 *
5005 * However, 100 ms is the minimum and the PCIe spec says the
5006 * software must allow at least 1s before it can determine that the
5007 * device that did not respond is a broken device. There is
5008 * evidence that 100 ms is not always enough, for example certain
5009 * Titan Ridge xHCI controller does not always respond to
5010 * configuration requests if we only wait for 100 ms (see
5011 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012 *
5013 * Therefore we wait for 100 ms and check for the device presence.
5014 * If it is still not present give it an additional 100 ms.
5015 */
5016 if (!pcie_downstream_port(dev))
5017 return;
5018
5019 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5020 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021 msleep(delay);
5022 } else {
5023 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024 delay);
5025 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5026 /* Did not train, no need to wait any further */
5027 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5028 return;
5029 }
5030 }
5031
5032 if (!pci_device_is_present(child)) {
5033 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034 msleep(delay);
5035 }
5036}
5037
5038void pci_reset_secondary_bus(struct pci_dev *dev)
5039{
5040 u16 ctrl;
5041
5042 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5045
5046 /*
5047 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5048 * this to 2ms to ensure that we meet the minimum requirement.
5049 */
5050 msleep(2);
5051
5052 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5054
5055 /*
5056 * Trhfa for conventional PCI is 2^25 clock cycles.
5057 * Assuming a minimum 33MHz clock this results in a 1s
5058 * delay before we can consider subordinate devices to
5059 * be re-initialized. PCIe has some ways to shorten this,
5060 * but we don't make use of them yet.
5061 */
5062 ssleep(1);
5063}
5064
5065void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066{
5067 pci_reset_secondary_bus(dev);
5068}
5069
5070/**
5071 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5072 * @dev: Bridge device
5073 *
5074 * Use the bridge control register to assert reset on the secondary bus.
5075 * Devices on the secondary bus are left in power-on state.
5076 */
5077int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5078{
5079 pcibios_reset_secondary_bus(dev);
5080
5081 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5082}
5083EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5084
5085static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5086{
5087 struct pci_dev *pdev;
5088
5089 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5091 return -ENOTTY;
5092
5093 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094 if (pdev != dev)
5095 return -ENOTTY;
5096
5097 if (probe)
5098 return 0;
5099
5100 return pci_bridge_secondary_bus_reset(dev->bus->self);
5101}
5102
5103static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5104{
5105 int rc = -ENOTTY;
5106
5107 if (!hotplug || !try_module_get(hotplug->owner))
5108 return rc;
5109
5110 if (hotplug->ops->reset_slot)
5111 rc = hotplug->ops->reset_slot(hotplug, probe);
5112
5113 module_put(hotplug->owner);
5114
5115 return rc;
5116}
5117
5118static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5119{
5120 if (dev->multifunction || dev->subordinate || !dev->slot ||
5121 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5122 return -ENOTTY;
5123
5124 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125}
5126
5127static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5128{
5129 int rc;
5130
5131 rc = pci_dev_reset_slot_function(dev, probe);
5132 if (rc != -ENOTTY)
5133 return rc;
5134 return pci_parent_bus_reset(dev, probe);
5135}
5136
5137void pci_dev_lock(struct pci_dev *dev)
5138{
5139 /* block PM suspend, driver probe, etc. */
5140 device_lock(&dev->dev);
5141 pci_cfg_access_lock(dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_lock);
5144
5145/* Return 1 on successful lock, 0 on contention */
5146int pci_dev_trylock(struct pci_dev *dev)
5147{
5148 if (device_trylock(&dev->dev)) {
5149 if (pci_cfg_access_trylock(dev))
5150 return 1;
5151 device_unlock(&dev->dev);
5152 }
5153
5154 return 0;
5155}
5156EXPORT_SYMBOL_GPL(pci_dev_trylock);
5157
5158void pci_dev_unlock(struct pci_dev *dev)
5159{
5160 pci_cfg_access_unlock(dev);
5161 device_unlock(&dev->dev);
5162}
5163EXPORT_SYMBOL_GPL(pci_dev_unlock);
5164
5165static void pci_dev_save_and_disable(struct pci_dev *dev)
5166{
5167 const struct pci_error_handlers *err_handler =
5168 dev->driver ? dev->driver->err_handler : NULL;
5169
5170 /*
5171 * dev->driver->err_handler->reset_prepare() is protected against
5172 * races with ->remove() by the device lock, which must be held by
5173 * the caller.
5174 */
5175 if (err_handler && err_handler->reset_prepare)
5176 err_handler->reset_prepare(dev);
5177
5178 /*
5179 * Wake-up device prior to save. PM registers default to D0 after
5180 * reset and a simple register restore doesn't reliably return
5181 * to a non-D0 state anyway.
5182 */
5183 pci_set_power_state(dev, PCI_D0);
5184
5185 pci_save_state(dev);
5186 /*
5187 * Disable the device by clearing the Command register, except for
5188 * INTx-disable which is set. This not only disables MMIO and I/O port
5189 * BARs, but also prevents the device from being Bus Master, preventing
5190 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5191 * compliant devices, INTx-disable prevents legacy interrupts.
5192 */
5193 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194}
5195
5196static void pci_dev_restore(struct pci_dev *dev)
5197{
5198 const struct pci_error_handlers *err_handler =
5199 dev->driver ? dev->driver->err_handler : NULL;
5200
5201 pci_restore_state(dev);
5202
5203 /*
5204 * dev->driver->err_handler->reset_done() is protected against
5205 * races with ->remove() by the device lock, which must be held by
5206 * the caller.
5207 */
5208 if (err_handler && err_handler->reset_done)
5209 err_handler->reset_done(dev);
5210}
5211
5212/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214 { },
5215 { pci_dev_specific_reset, .name = "device_specific" },
5216 { pci_dev_acpi_reset, .name = "acpi" },
5217 { pcie_reset_flr, .name = "flr" },
5218 { pci_af_flr, .name = "af_flr" },
5219 { pci_pm_reset, .name = "pm" },
5220 { pci_reset_bus_function, .name = "bus" },
5221};
5222
5223static ssize_t reset_method_show(struct device *dev,
5224 struct device_attribute *attr, char *buf)
5225{
5226 struct pci_dev *pdev = to_pci_dev(dev);
5227 ssize_t len = 0;
5228 int i, m;
5229
5230 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231 m = pdev->reset_methods[i];
5232 if (!m)
5233 break;
5234
5235 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236 pci_reset_fn_methods[m].name);
5237 }
5238
5239 if (len)
5240 len += sysfs_emit_at(buf, len, "\n");
5241
5242 return len;
5243}
5244
5245static int reset_method_lookup(const char *name)
5246{
5247 int m;
5248
5249 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251 return m;
5252 }
5253
5254 return 0; /* not found */
5255}
5256
5257static ssize_t reset_method_store(struct device *dev,
5258 struct device_attribute *attr,
5259 const char *buf, size_t count)
5260{
5261 struct pci_dev *pdev = to_pci_dev(dev);
5262 char *options, *name;
5263 int m, n;
5264 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265
5266 if (sysfs_streq(buf, "")) {
5267 pdev->reset_methods[0] = 0;
5268 pci_warn(pdev, "All device reset methods disabled by user");
5269 return count;
5270 }
5271
5272 if (sysfs_streq(buf, "default")) {
5273 pci_init_reset_methods(pdev);
5274 return count;
5275 }
5276
5277 options = kstrndup(buf, count, GFP_KERNEL);
5278 if (!options)
5279 return -ENOMEM;
5280
5281 n = 0;
5282 while ((name = strsep(&options, " ")) != NULL) {
5283 if (sysfs_streq(name, ""))
5284 continue;
5285
5286 name = strim(name);
5287
5288 m = reset_method_lookup(name);
5289 if (!m) {
5290 pci_err(pdev, "Invalid reset method '%s'", name);
5291 goto error;
5292 }
5293
5294 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5295 pci_err(pdev, "Unsupported reset method '%s'", name);
5296 goto error;
5297 }
5298
5299 if (n == PCI_NUM_RESET_METHODS - 1) {
5300 pci_err(pdev, "Too many reset methods\n");
5301 goto error;
5302 }
5303
5304 reset_methods[n++] = m;
5305 }
5306
5307 reset_methods[n] = 0;
5308
5309 /* Warn if dev-specific supported but not highest priority */
5310 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5311 reset_methods[0] != 1)
5312 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314 kfree(options);
5315 return count;
5316
5317error:
5318 /* Leave previous methods unchanged */
5319 kfree(options);
5320 return -EINVAL;
5321}
5322static DEVICE_ATTR_RW(reset_method);
5323
5324static struct attribute *pci_dev_reset_method_attrs[] = {
5325 &dev_attr_reset_method.attr,
5326 NULL,
5327};
5328
5329static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330 struct attribute *a, int n)
5331{
5332 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333
5334 if (!pci_reset_supported(pdev))
5335 return 0;
5336
5337 return a->mode;
5338}
5339
5340const struct attribute_group pci_dev_reset_method_attr_group = {
5341 .attrs = pci_dev_reset_method_attrs,
5342 .is_visible = pci_dev_reset_method_attr_is_visible,
5343};
5344
5345/**
5346 * __pci_reset_function_locked - reset a PCI device function while holding
5347 * the @dev mutex lock.
5348 * @dev: PCI device to reset
5349 *
5350 * Some devices allow an individual function to be reset without affecting
5351 * other functions in the same device. The PCI device must be responsive
5352 * to PCI config space in order to use this function.
5353 *
5354 * The device function is presumed to be unused and the caller is holding
5355 * the device mutex lock when this function is called.
5356 *
5357 * Resetting the device will make the contents of PCI configuration space
5358 * random, so any caller of this must be prepared to reinitialise the
5359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360 * etc.
5361 *
5362 * Returns 0 if the device function was successfully reset or negative if the
5363 * device doesn't support resetting a single function.
5364 */
5365int __pci_reset_function_locked(struct pci_dev *dev)
5366{
5367 int i, m, rc;
5368
5369 might_sleep();
5370
5371 /*
5372 * A reset method returns -ENOTTY if it doesn't support this device and
5373 * we should try the next method.
5374 *
5375 * If it returns 0 (success), we're finished. If it returns any other
5376 * error, we're also finished: this indicates that further reset
5377 * mechanisms might be broken on the device.
5378 */
5379 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380 m = dev->reset_methods[i];
5381 if (!m)
5382 return -ENOTTY;
5383
5384 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5385 if (!rc)
5386 return 0;
5387 if (rc != -ENOTTY)
5388 return rc;
5389 }
5390
5391 return -ENOTTY;
5392}
5393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394
5395/**
5396 * pci_init_reset_methods - check whether device can be safely reset
5397 * and store supported reset mechanisms.
5398 * @dev: PCI device to check for reset mechanisms
5399 *
5400 * Some devices allow an individual function to be reset without affecting
5401 * other functions in the same device. The PCI device must be in D0-D3hot
5402 * state.
5403 *
5404 * Stores reset mechanisms supported by device in reset_methods byte array
5405 * which is a member of struct pci_dev.
5406 */
5407void pci_init_reset_methods(struct pci_dev *dev)
5408{
5409 int m, i, rc;
5410
5411 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412
5413 might_sleep();
5414
5415 i = 0;
5416 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5417 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5418 if (!rc)
5419 dev->reset_methods[i++] = m;
5420 else if (rc != -ENOTTY)
5421 break;
5422 }
5423
5424 dev->reset_methods[i] = 0;
5425}
5426
5427/**
5428 * pci_reset_function - quiesce and reset a PCI device function
5429 * @dev: PCI device to reset
5430 *
5431 * Some devices allow an individual function to be reset without affecting
5432 * other functions in the same device. The PCI device must be responsive
5433 * to PCI config space in order to use this function.
5434 *
5435 * This function does not just reset the PCI portion of a device, but
5436 * clears all the state associated with the device. This function differs
5437 * from __pci_reset_function_locked() in that it saves and restores device state
5438 * over the reset and takes the PCI device lock.
5439 *
5440 * Returns 0 if the device function was successfully reset or negative if the
5441 * device doesn't support resetting a single function.
5442 */
5443int pci_reset_function(struct pci_dev *dev)
5444{
5445 int rc;
5446
5447 if (!pci_reset_supported(dev))
5448 return -ENOTTY;
5449
5450 pci_dev_lock(dev);
5451 pci_dev_save_and_disable(dev);
5452
5453 rc = __pci_reset_function_locked(dev);
5454
5455 pci_dev_restore(dev);
5456 pci_dev_unlock(dev);
5457
5458 return rc;
5459}
5460EXPORT_SYMBOL_GPL(pci_reset_function);
5461
5462/**
5463 * pci_reset_function_locked - quiesce and reset a PCI device function
5464 * @dev: PCI device to reset
5465 *
5466 * Some devices allow an individual function to be reset without affecting
5467 * other functions in the same device. The PCI device must be responsive
5468 * to PCI config space in order to use this function.
5469 *
5470 * This function does not just reset the PCI portion of a device, but
5471 * clears all the state associated with the device. This function differs
5472 * from __pci_reset_function_locked() in that it saves and restores device state
5473 * over the reset. It also differs from pci_reset_function() in that it
5474 * requires the PCI device lock to be held.
5475 *
5476 * Returns 0 if the device function was successfully reset or negative if the
5477 * device doesn't support resetting a single function.
5478 */
5479int pci_reset_function_locked(struct pci_dev *dev)
5480{
5481 int rc;
5482
5483 if (!pci_reset_supported(dev))
5484 return -ENOTTY;
5485
5486 pci_dev_save_and_disable(dev);
5487
5488 rc = __pci_reset_function_locked(dev);
5489
5490 pci_dev_restore(dev);
5491
5492 return rc;
5493}
5494EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495
5496/**
5497 * pci_try_reset_function - quiesce and reset a PCI device function
5498 * @dev: PCI device to reset
5499 *
5500 * Same as above, except return -EAGAIN if unable to lock device.
5501 */
5502int pci_try_reset_function(struct pci_dev *dev)
5503{
5504 int rc;
5505
5506 if (!pci_reset_supported(dev))
5507 return -ENOTTY;
5508
5509 if (!pci_dev_trylock(dev))
5510 return -EAGAIN;
5511
5512 pci_dev_save_and_disable(dev);
5513 rc = __pci_reset_function_locked(dev);
5514 pci_dev_restore(dev);
5515 pci_dev_unlock(dev);
5516
5517 return rc;
5518}
5519EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520
5521/* Do any devices on or below this bus prevent a bus reset? */
5522static bool pci_bus_resetable(struct pci_bus *bus)
5523{
5524 struct pci_dev *dev;
5525
5526
5527 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528 return false;
5529
5530 list_for_each_entry(dev, &bus->devices, bus_list) {
5531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533 return false;
5534 }
5535
5536 return true;
5537}
5538
5539/* Lock devices from the top of the tree down */
5540static void pci_bus_lock(struct pci_bus *bus)
5541{
5542 struct pci_dev *dev;
5543
5544 list_for_each_entry(dev, &bus->devices, bus_list) {
5545 pci_dev_lock(dev);
5546 if (dev->subordinate)
5547 pci_bus_lock(dev->subordinate);
5548 }
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554 struct pci_dev *dev;
5555
5556 list_for_each_entry(dev, &bus->devices, bus_list) {
5557 if (dev->subordinate)
5558 pci_bus_unlock(dev->subordinate);
5559 pci_dev_unlock(dev);
5560 }
5561}
5562
5563/* Return 1 on successful lock, 0 on contention */
5564static int pci_bus_trylock(struct pci_bus *bus)
5565{
5566 struct pci_dev *dev;
5567
5568 list_for_each_entry(dev, &bus->devices, bus_list) {
5569 if (!pci_dev_trylock(dev))
5570 goto unlock;
5571 if (dev->subordinate) {
5572 if (!pci_bus_trylock(dev->subordinate)) {
5573 pci_dev_unlock(dev);
5574 goto unlock;
5575 }
5576 }
5577 }
5578 return 1;
5579
5580unlock:
5581 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582 if (dev->subordinate)
5583 pci_bus_unlock(dev->subordinate);
5584 pci_dev_unlock(dev);
5585 }
5586 return 0;
5587}
5588
5589/* Do any devices on or below this slot prevent a bus reset? */
5590static bool pci_slot_resetable(struct pci_slot *slot)
5591{
5592 struct pci_dev *dev;
5593
5594 if (slot->bus->self &&
5595 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596 return false;
5597
5598 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599 if (!dev->slot || dev->slot != slot)
5600 continue;
5601 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603 return false;
5604 }
5605
5606 return true;
5607}
5608
5609/* Lock devices from the top of the tree down */
5610static void pci_slot_lock(struct pci_slot *slot)
5611{
5612 struct pci_dev *dev;
5613
5614 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615 if (!dev->slot || dev->slot != slot)
5616 continue;
5617 pci_dev_lock(dev);
5618 if (dev->subordinate)
5619 pci_bus_lock(dev->subordinate);
5620 }
5621}
5622
5623/* Unlock devices from the bottom of the tree up */
5624static void pci_slot_unlock(struct pci_slot *slot)
5625{
5626 struct pci_dev *dev;
5627
5628 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629 if (!dev->slot || dev->slot != slot)
5630 continue;
5631 if (dev->subordinate)
5632 pci_bus_unlock(dev->subordinate);
5633 pci_dev_unlock(dev);
5634 }
5635}
5636
5637/* Return 1 on successful lock, 0 on contention */
5638static int pci_slot_trylock(struct pci_slot *slot)
5639{
5640 struct pci_dev *dev;
5641
5642 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643 if (!dev->slot || dev->slot != slot)
5644 continue;
5645 if (!pci_dev_trylock(dev))
5646 goto unlock;
5647 if (dev->subordinate) {
5648 if (!pci_bus_trylock(dev->subordinate)) {
5649 pci_dev_unlock(dev);
5650 goto unlock;
5651 }
5652 }
5653 }
5654 return 1;
5655
5656unlock:
5657 list_for_each_entry_continue_reverse(dev,
5658 &slot->bus->devices, bus_list) {
5659 if (!dev->slot || dev->slot != slot)
5660 continue;
5661 if (dev->subordinate)
5662 pci_bus_unlock(dev->subordinate);
5663 pci_dev_unlock(dev);
5664 }
5665 return 0;
5666}
5667
5668/*
5669 * Save and disable devices from the top of the tree down while holding
5670 * the @dev mutex lock for the entire tree.
5671 */
5672static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5673{
5674 struct pci_dev *dev;
5675
5676 list_for_each_entry(dev, &bus->devices, bus_list) {
5677 pci_dev_save_and_disable(dev);
5678 if (dev->subordinate)
5679 pci_bus_save_and_disable_locked(dev->subordinate);
5680 }
5681}
5682
5683/*
5684 * Restore devices from top of the tree down while holding @dev mutex lock
5685 * for the entire tree. Parent bridges need to be restored before we can
5686 * get to subordinate devices.
5687 */
5688static void pci_bus_restore_locked(struct pci_bus *bus)
5689{
5690 struct pci_dev *dev;
5691
5692 list_for_each_entry(dev, &bus->devices, bus_list) {
5693 pci_dev_restore(dev);
5694 if (dev->subordinate)
5695 pci_bus_restore_locked(dev->subordinate);
5696 }
5697}
5698
5699/*
5700 * Save and disable devices from the top of the tree down while holding
5701 * the @dev mutex lock for the entire tree.
5702 */
5703static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5704{
5705 struct pci_dev *dev;
5706
5707 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708 if (!dev->slot || dev->slot != slot)
5709 continue;
5710 pci_dev_save_and_disable(dev);
5711 if (dev->subordinate)
5712 pci_bus_save_and_disable_locked(dev->subordinate);
5713 }
5714}
5715
5716/*
5717 * Restore devices from top of the tree down while holding @dev mutex lock
5718 * for the entire tree. Parent bridges need to be restored before we can
5719 * get to subordinate devices.
5720 */
5721static void pci_slot_restore_locked(struct pci_slot *slot)
5722{
5723 struct pci_dev *dev;
5724
5725 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726 if (!dev->slot || dev->slot != slot)
5727 continue;
5728 pci_dev_restore(dev);
5729 if (dev->subordinate)
5730 pci_bus_restore_locked(dev->subordinate);
5731 }
5732}
5733
5734static int pci_slot_reset(struct pci_slot *slot, bool probe)
5735{
5736 int rc;
5737
5738 if (!slot || !pci_slot_resetable(slot))
5739 return -ENOTTY;
5740
5741 if (!probe)
5742 pci_slot_lock(slot);
5743
5744 might_sleep();
5745
5746 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747
5748 if (!probe)
5749 pci_slot_unlock(slot);
5750
5751 return rc;
5752}
5753
5754/**
5755 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756 * @slot: PCI slot to probe
5757 *
5758 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759 */
5760int pci_probe_reset_slot(struct pci_slot *slot)
5761{
5762 return pci_slot_reset(slot, PCI_RESET_PROBE);
5763}
5764EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765
5766/**
5767 * __pci_reset_slot - Try to reset a PCI slot
5768 * @slot: PCI slot to reset
5769 *
5770 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771 * independent of other slots. For instance, some slots may support slot power
5772 * control. In the case of a 1:1 bus to slot architecture, this function may
5773 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774 * Generally a slot reset should be attempted before a bus reset. All of the
5775 * function of the slot and any subordinate buses behind the slot are reset
5776 * through this function. PCI config space of all devices in the slot and
5777 * behind the slot is saved before and restored after reset.
5778 *
5779 * Same as above except return -EAGAIN if the slot cannot be locked
5780 */
5781static int __pci_reset_slot(struct pci_slot *slot)
5782{
5783 int rc;
5784
5785 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5786 if (rc)
5787 return rc;
5788
5789 if (pci_slot_trylock(slot)) {
5790 pci_slot_save_and_disable_locked(slot);
5791 might_sleep();
5792 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5793 pci_slot_restore_locked(slot);
5794 pci_slot_unlock(slot);
5795 } else
5796 rc = -EAGAIN;
5797
5798 return rc;
5799}
5800
5801static int pci_bus_reset(struct pci_bus *bus, bool probe)
5802{
5803 int ret;
5804
5805 if (!bus->self || !pci_bus_resetable(bus))
5806 return -ENOTTY;
5807
5808 if (probe)
5809 return 0;
5810
5811 pci_bus_lock(bus);
5812
5813 might_sleep();
5814
5815 ret = pci_bridge_secondary_bus_reset(bus->self);
5816
5817 pci_bus_unlock(bus);
5818
5819 return ret;
5820}
5821
5822/**
5823 * pci_bus_error_reset - reset the bridge's subordinate bus
5824 * @bridge: The parent device that connects to the bus to reset
5825 *
5826 * This function will first try to reset the slots on this bus if the method is
5827 * available. If slot reset fails or is not available, this will fall back to a
5828 * secondary bus reset.
5829 */
5830int pci_bus_error_reset(struct pci_dev *bridge)
5831{
5832 struct pci_bus *bus = bridge->subordinate;
5833 struct pci_slot *slot;
5834
5835 if (!bus)
5836 return -ENOTTY;
5837
5838 mutex_lock(&pci_slot_mutex);
5839 if (list_empty(&bus->slots))
5840 goto bus_reset;
5841
5842 list_for_each_entry(slot, &bus->slots, list)
5843 if (pci_probe_reset_slot(slot))
5844 goto bus_reset;
5845
5846 list_for_each_entry(slot, &bus->slots, list)
5847 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5848 goto bus_reset;
5849
5850 mutex_unlock(&pci_slot_mutex);
5851 return 0;
5852bus_reset:
5853 mutex_unlock(&pci_slot_mutex);
5854 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5855}
5856
5857/**
5858 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859 * @bus: PCI bus to probe
5860 *
5861 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862 */
5863int pci_probe_reset_bus(struct pci_bus *bus)
5864{
5865 return pci_bus_reset(bus, PCI_RESET_PROBE);
5866}
5867EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868
5869/**
5870 * __pci_reset_bus - Try to reset a PCI bus
5871 * @bus: top level PCI bus to reset
5872 *
5873 * Same as above except return -EAGAIN if the bus cannot be locked
5874 */
5875static int __pci_reset_bus(struct pci_bus *bus)
5876{
5877 int rc;
5878
5879 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5880 if (rc)
5881 return rc;
5882
5883 if (pci_bus_trylock(bus)) {
5884 pci_bus_save_and_disable_locked(bus);
5885 might_sleep();
5886 rc = pci_bridge_secondary_bus_reset(bus->self);
5887 pci_bus_restore_locked(bus);
5888 pci_bus_unlock(bus);
5889 } else
5890 rc = -EAGAIN;
5891
5892 return rc;
5893}
5894
5895/**
5896 * pci_reset_bus - Try to reset a PCI bus
5897 * @pdev: top level PCI device to reset via slot/bus
5898 *
5899 * Same as above except return -EAGAIN if the bus cannot be locked
5900 */
5901int pci_reset_bus(struct pci_dev *pdev)
5902{
5903 return (!pci_probe_reset_slot(pdev->slot)) ?
5904 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5905}
5906EXPORT_SYMBOL_GPL(pci_reset_bus);
5907
5908/**
5909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910 * @dev: PCI device to query
5911 *
5912 * Returns mmrbc: maximum designed memory read count in bytes or
5913 * appropriate error value.
5914 */
5915int pcix_get_max_mmrbc(struct pci_dev *dev)
5916{
5917 int cap;
5918 u32 stat;
5919
5920 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921 if (!cap)
5922 return -EINVAL;
5923
5924 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5925 return -EINVAL;
5926
5927 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5928}
5929EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930
5931/**
5932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 *
5935 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936 * value.
5937 */
5938int pcix_get_mmrbc(struct pci_dev *dev)
5939{
5940 int cap;
5941 u16 cmd;
5942
5943 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944 if (!cap)
5945 return -EINVAL;
5946
5947 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948 return -EINVAL;
5949
5950 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5951}
5952EXPORT_SYMBOL(pcix_get_mmrbc);
5953
5954/**
5955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956 * @dev: PCI device to query
5957 * @mmrbc: maximum memory read count in bytes
5958 * valid values are 512, 1024, 2048, 4096
5959 *
5960 * If possible sets maximum memory read byte count, some bridges have errata
5961 * that prevent this.
5962 */
5963int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964{
5965 int cap;
5966 u32 stat, v, o;
5967 u16 cmd;
5968
5969 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5970 return -EINVAL;
5971
5972 v = ffs(mmrbc) - 10;
5973
5974 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975 if (!cap)
5976 return -EINVAL;
5977
5978 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979 return -EINVAL;
5980
5981 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982 return -E2BIG;
5983
5984 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985 return -EINVAL;
5986
5987 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988 if (o != v) {
5989 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5990 return -EIO;
5991
5992 cmd &= ~PCI_X_CMD_MAX_READ;
5993 cmd |= v << 2;
5994 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995 return -EIO;
5996 }
5997 return 0;
5998}
5999EXPORT_SYMBOL(pcix_set_mmrbc);
6000
6001/**
6002 * pcie_get_readrq - get PCI Express read request size
6003 * @dev: PCI device to query
6004 *
6005 * Returns maximum memory read request in bytes or appropriate error value.
6006 */
6007int pcie_get_readrq(struct pci_dev *dev)
6008{
6009 u16 ctl;
6010
6011 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6012
6013 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6014}
6015EXPORT_SYMBOL(pcie_get_readrq);
6016
6017/**
6018 * pcie_set_readrq - set PCI Express maximum memory read request
6019 * @dev: PCI device to query
6020 * @rq: maximum memory read count in bytes
6021 * valid values are 128, 256, 512, 1024, 2048, 4096
6022 *
6023 * If possible sets maximum memory read request in bytes
6024 */
6025int pcie_set_readrq(struct pci_dev *dev, int rq)
6026{
6027 u16 v;
6028 int ret;
6029
6030 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031 return -EINVAL;
6032
6033 /*
6034 * If using the "performance" PCIe config, we clamp the read rq
6035 * size to the max packet size to keep the host bridge from
6036 * generating requests larger than we can cope with.
6037 */
6038 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039 int mps = pcie_get_mps(dev);
6040
6041 if (mps < rq)
6042 rq = mps;
6043 }
6044
6045 v = (ffs(rq) - 8) << 12;
6046
6047 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6048 PCI_EXP_DEVCTL_READRQ, v);
6049
6050 return pcibios_err_to_errno(ret);
6051}
6052EXPORT_SYMBOL(pcie_set_readrq);
6053
6054/**
6055 * pcie_get_mps - get PCI Express maximum payload size
6056 * @dev: PCI device to query
6057 *
6058 * Returns maximum payload size in bytes
6059 */
6060int pcie_get_mps(struct pci_dev *dev)
6061{
6062 u16 ctl;
6063
6064 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6065
6066 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6067}
6068EXPORT_SYMBOL(pcie_get_mps);
6069
6070/**
6071 * pcie_set_mps - set PCI Express maximum payload size
6072 * @dev: PCI device to query
6073 * @mps: maximum payload size in bytes
6074 * valid values are 128, 256, 512, 1024, 2048, 4096
6075 *
6076 * If possible sets maximum payload size
6077 */
6078int pcie_set_mps(struct pci_dev *dev, int mps)
6079{
6080 u16 v;
6081 int ret;
6082
6083 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6084 return -EINVAL;
6085
6086 v = ffs(mps) - 8;
6087 if (v > dev->pcie_mpss)
6088 return -EINVAL;
6089 v <<= 5;
6090
6091 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6092 PCI_EXP_DEVCTL_PAYLOAD, v);
6093
6094 return pcibios_err_to_errno(ret);
6095}
6096EXPORT_SYMBOL(pcie_set_mps);
6097
6098/**
6099 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100 * device and its bandwidth limitation
6101 * @dev: PCI device to query
6102 * @limiting_dev: storage for device causing the bandwidth limitation
6103 * @speed: storage for speed of limiting device
6104 * @width: storage for width of limiting device
6105 *
6106 * Walk up the PCI device chain and find the point where the minimum
6107 * bandwidth is available. Return the bandwidth available there and (if
6108 * limiting_dev, speed, and width pointers are supplied) information about
6109 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6110 * raw bandwidth.
6111 */
6112u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113 enum pci_bus_speed *speed,
6114 enum pcie_link_width *width)
6115{
6116 u16 lnksta;
6117 enum pci_bus_speed next_speed;
6118 enum pcie_link_width next_width;
6119 u32 bw, next_bw;
6120
6121 if (speed)
6122 *speed = PCI_SPEED_UNKNOWN;
6123 if (width)
6124 *width = PCIE_LNK_WIDTH_UNKNOWN;
6125
6126 bw = 0;
6127
6128 while (dev) {
6129 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130
6131 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133 PCI_EXP_LNKSTA_NLW_SHIFT;
6134
6135 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136
6137 /* Check if current device limits the total bandwidth */
6138 if (!bw || next_bw <= bw) {
6139 bw = next_bw;
6140
6141 if (limiting_dev)
6142 *limiting_dev = dev;
6143 if (speed)
6144 *speed = next_speed;
6145 if (width)
6146 *width = next_width;
6147 }
6148
6149 dev = pci_upstream_bridge(dev);
6150 }
6151
6152 return bw;
6153}
6154EXPORT_SYMBOL(pcie_bandwidth_available);
6155
6156/**
6157 * pcie_get_speed_cap - query for the PCI device's link speed capability
6158 * @dev: PCI device to query
6159 *
6160 * Query the PCI device speed capability. Return the maximum link speed
6161 * supported by the device.
6162 */
6163enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164{
6165 u32 lnkcap2, lnkcap;
6166
6167 /*
6168 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6169 * implementation note there recommends using the Supported Link
6170 * Speeds Vector in Link Capabilities 2 when supported.
6171 *
6172 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173 * should use the Supported Link Speeds field in Link Capabilities,
6174 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6175 */
6176 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6177
6178 /* PCIe r3.0-compliant */
6179 if (lnkcap2)
6180 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6181
6182 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6183 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184 return PCIE_SPEED_5_0GT;
6185 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186 return PCIE_SPEED_2_5GT;
6187
6188 return PCI_SPEED_UNKNOWN;
6189}
6190EXPORT_SYMBOL(pcie_get_speed_cap);
6191
6192/**
6193 * pcie_get_width_cap - query for the PCI device's link width capability
6194 * @dev: PCI device to query
6195 *
6196 * Query the PCI device width capability. Return the maximum link width
6197 * supported by the device.
6198 */
6199enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200{
6201 u32 lnkcap;
6202
6203 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204 if (lnkcap)
6205 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206
6207 return PCIE_LNK_WIDTH_UNKNOWN;
6208}
6209EXPORT_SYMBOL(pcie_get_width_cap);
6210
6211/**
6212 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213 * @dev: PCI device
6214 * @speed: storage for link speed
6215 * @width: storage for link width
6216 *
6217 * Calculate a PCI device's link bandwidth by querying for its link speed
6218 * and width, multiplying them, and applying encoding overhead. The result
6219 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220 */
6221u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222 enum pcie_link_width *width)
6223{
6224 *speed = pcie_get_speed_cap(dev);
6225 *width = pcie_get_width_cap(dev);
6226
6227 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228 return 0;
6229
6230 return *width * PCIE_SPEED2MBS_ENC(*speed);
6231}
6232
6233/**
6234 * __pcie_print_link_status - Report the PCI device's link speed and width
6235 * @dev: PCI device to query
6236 * @verbose: Print info even when enough bandwidth is available
6237 *
6238 * If the available bandwidth at the device is less than the device is
6239 * capable of, report the device's maximum possible bandwidth and the
6240 * upstream link that limits its performance. If @verbose, always print
6241 * the available bandwidth, even if the device isn't constrained.
6242 */
6243void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6244{
6245 enum pcie_link_width width, width_cap;
6246 enum pci_bus_speed speed, speed_cap;
6247 struct pci_dev *limiting_dev = NULL;
6248 u32 bw_avail, bw_cap;
6249
6250 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252
6253 if (bw_avail >= bw_cap && verbose)
6254 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6255 bw_cap / 1000, bw_cap % 1000,
6256 pci_speed_string(speed_cap), width_cap);
6257 else if (bw_avail < bw_cap)
6258 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6259 bw_avail / 1000, bw_avail % 1000,
6260 pci_speed_string(speed), width,
6261 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262 bw_cap / 1000, bw_cap % 1000,
6263 pci_speed_string(speed_cap), width_cap);
6264}
6265
6266/**
6267 * pcie_print_link_status - Report the PCI device's link speed and width
6268 * @dev: PCI device to query
6269 *
6270 * Report the available bandwidth at the device.
6271 */
6272void pcie_print_link_status(struct pci_dev *dev)
6273{
6274 __pcie_print_link_status(dev, true);
6275}
6276EXPORT_SYMBOL(pcie_print_link_status);
6277
6278/**
6279 * pci_select_bars - Make BAR mask from the type of resource
6280 * @dev: the PCI device for which BAR mask is made
6281 * @flags: resource type mask to be selected
6282 *
6283 * This helper routine makes bar mask from the type of resource.
6284 */
6285int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286{
6287 int i, bars = 0;
6288 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289 if (pci_resource_flags(dev, i) & flags)
6290 bars |= (1 << i);
6291 return bars;
6292}
6293EXPORT_SYMBOL(pci_select_bars);
6294
6295/* Some architectures require additional programming to enable VGA */
6296static arch_set_vga_state_t arch_set_vga_state;
6297
6298void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299{
6300 arch_set_vga_state = func; /* NULL disables */
6301}
6302
6303static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6304 unsigned int command_bits, u32 flags)
6305{
6306 if (arch_set_vga_state)
6307 return arch_set_vga_state(dev, decode, command_bits,
6308 flags);
6309 return 0;
6310}
6311
6312/**
6313 * pci_set_vga_state - set VGA decode state on device and parents if requested
6314 * @dev: the PCI device
6315 * @decode: true = enable decoding, false = disable decoding
6316 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6317 * @flags: traverse ancestors and change bridges
6318 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6319 */
6320int pci_set_vga_state(struct pci_dev *dev, bool decode,
6321 unsigned int command_bits, u32 flags)
6322{
6323 struct pci_bus *bus;
6324 struct pci_dev *bridge;
6325 u16 cmd;
6326 int rc;
6327
6328 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6329
6330 /* ARCH specific VGA enables */
6331 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6332 if (rc)
6333 return rc;
6334
6335 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6337 if (decode)
6338 cmd |= command_bits;
6339 else
6340 cmd &= ~command_bits;
6341 pci_write_config_word(dev, PCI_COMMAND, cmd);
6342 }
6343
6344 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6345 return 0;
6346
6347 bus = dev->bus;
6348 while (bus) {
6349 bridge = bus->self;
6350 if (bridge) {
6351 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352 &cmd);
6353 if (decode)
6354 cmd |= PCI_BRIDGE_CTL_VGA;
6355 else
6356 cmd &= ~PCI_BRIDGE_CTL_VGA;
6357 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358 cmd);
6359 }
6360 bus = bus->parent;
6361 }
6362 return 0;
6363}
6364
6365#ifdef CONFIG_ACPI
6366bool pci_pr3_present(struct pci_dev *pdev)
6367{
6368 struct acpi_device *adev;
6369
6370 if (acpi_disabled)
6371 return false;
6372
6373 adev = ACPI_COMPANION(&pdev->dev);
6374 if (!adev)
6375 return false;
6376
6377 return adev->power.flags.power_resources &&
6378 acpi_has_method(adev->handle, "_PR3");
6379}
6380EXPORT_SYMBOL_GPL(pci_pr3_present);
6381#endif
6382
6383/**
6384 * pci_add_dma_alias - Add a DMA devfn alias for a device
6385 * @dev: the PCI device for which alias is added
6386 * @devfn_from: alias slot and function
6387 * @nr_devfns: number of subsequent devfns to alias
6388 *
6389 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390 * which is used to program permissible bus-devfn source addresses for DMA
6391 * requests in an IOMMU. These aliases factor into IOMMU group creation
6392 * and are useful for devices generating DMA requests beyond or different
6393 * from their logical bus-devfn. Examples include device quirks where the
6394 * device simply uses the wrong devfn, as well as non-transparent bridges
6395 * where the alias may be a proxy for devices in another domain.
6396 *
6397 * IOMMU group creation is performed during device discovery or addition,
6398 * prior to any potential DMA mapping and therefore prior to driver probing
6399 * (especially for userspace assigned devices where IOMMU group definition
6400 * cannot be left as a userspace activity). DMA aliases should therefore
6401 * be configured via quirks, such as the PCI fixup header quirk.
6402 */
6403void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404 unsigned int nr_devfns)
6405{
6406 int devfn_to;
6407
6408 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6409 devfn_to = devfn_from + nr_devfns - 1;
6410
6411 if (!dev->dma_alias_mask)
6412 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6413 if (!dev->dma_alias_mask) {
6414 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6415 return;
6416 }
6417
6418 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419
6420 if (nr_devfns == 1)
6421 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423 else if (nr_devfns > 1)
6424 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6427}
6428
6429bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430{
6431 return (dev1->dma_alias_mask &&
6432 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433 (dev2->dma_alias_mask &&
6434 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435 pci_real_dma_dev(dev1) == dev2 ||
6436 pci_real_dma_dev(dev2) == dev1;
6437}
6438
6439bool pci_device_is_present(struct pci_dev *pdev)
6440{
6441 u32 v;
6442
6443 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444 pdev = pci_physfn(pdev);
6445 if (pci_dev_is_disconnected(pdev))
6446 return false;
6447 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448}
6449EXPORT_SYMBOL_GPL(pci_device_is_present);
6450
6451void pci_ignore_hotplug(struct pci_dev *dev)
6452{
6453 struct pci_dev *bridge = dev->bus->self;
6454
6455 dev->ignore_hotplug = 1;
6456 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6457 if (bridge)
6458 bridge->ignore_hotplug = 1;
6459}
6460EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461
6462/**
6463 * pci_real_dma_dev - Get PCI DMA device for PCI device
6464 * @dev: the PCI device that may have a PCI DMA alias
6465 *
6466 * Permits the platform to provide architecture-specific functionality to
6467 * devices needing to alias DMA to another PCI device on another PCI bus. If
6468 * the PCI device is on the same bus, it is recommended to use
6469 * pci_add_dma_alias(). This is the default implementation. Architecture
6470 * implementations can override this.
6471 */
6472struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473{
6474 return dev;
6475}
6476
6477resource_size_t __weak pcibios_default_alignment(void)
6478{
6479 return 0;
6480}
6481
6482/*
6483 * Arches that don't want to expose struct resource to userland as-is in
6484 * sysfs and /proc can implement their own pci_resource_to_user().
6485 */
6486void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487 const struct resource *rsrc,
6488 resource_size_t *start, resource_size_t *end)
6489{
6490 *start = rsrc->start;
6491 *end = rsrc->end;
6492}
6493
6494static char *resource_alignment_param;
6495static DEFINE_SPINLOCK(resource_alignment_lock);
6496
6497/**
6498 * pci_specified_resource_alignment - get resource alignment specified by user.
6499 * @dev: the PCI device to get
6500 * @resize: whether or not to change resources' size when reassigning alignment
6501 *
6502 * RETURNS: Resource alignment if it is specified.
6503 * Zero if it is not specified.
6504 */
6505static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506 bool *resize)
6507{
6508 int align_order, count;
6509 resource_size_t align = pcibios_default_alignment();
6510 const char *p;
6511 int ret;
6512
6513 spin_lock(&resource_alignment_lock);
6514 p = resource_alignment_param;
6515 if (!p || !*p)
6516 goto out;
6517 if (pci_has_flag(PCI_PROBE_ONLY)) {
6518 align = 0;
6519 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520 goto out;
6521 }
6522
6523 while (*p) {
6524 count = 0;
6525 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6526 p[count] == '@') {
6527 p += count + 1;
6528 if (align_order > 63) {
6529 pr_err("PCI: Invalid requested alignment (order %d)\n",
6530 align_order);
6531 align_order = PAGE_SHIFT;
6532 }
6533 } else {
6534 align_order = PAGE_SHIFT;
6535 }
6536
6537 ret = pci_dev_str_match(dev, p, &p);
6538 if (ret == 1) {
6539 *resize = true;
6540 align = 1ULL << align_order;
6541 break;
6542 } else if (ret < 0) {
6543 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544 p);
6545 break;
6546 }
6547
6548 if (*p != ';' && *p != ',') {
6549 /* End of param or invalid format */
6550 break;
6551 }
6552 p++;
6553 }
6554out:
6555 spin_unlock(&resource_alignment_lock);
6556 return align;
6557}
6558
6559static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6560 resource_size_t align, bool resize)
6561{
6562 struct resource *r = &dev->resource[bar];
6563 resource_size_t size;
6564
6565 if (!(r->flags & IORESOURCE_MEM))
6566 return;
6567
6568 if (r->flags & IORESOURCE_PCI_FIXED) {
6569 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6570 bar, r, (unsigned long long)align);
6571 return;
6572 }
6573
6574 size = resource_size(r);
6575 if (size >= align)
6576 return;
6577
6578 /*
6579 * Increase the alignment of the resource. There are two ways we
6580 * can do this:
6581 *
6582 * 1) Increase the size of the resource. BARs are aligned on their
6583 * size, so when we reallocate space for this resource, we'll
6584 * allocate it with the larger alignment. This also prevents
6585 * assignment of any other BARs inside the alignment region, so
6586 * if we're requesting page alignment, this means no other BARs
6587 * will share the page.
6588 *
6589 * The disadvantage is that this makes the resource larger than
6590 * the hardware BAR, which may break drivers that compute things
6591 * based on the resource size, e.g., to find registers at a
6592 * fixed offset before the end of the BAR.
6593 *
6594 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595 * set r->start to the desired alignment. By itself this
6596 * doesn't prevent other BARs being put inside the alignment
6597 * region, but if we realign *every* resource of every device in
6598 * the system, none of them will share an alignment region.
6599 *
6600 * When the user has requested alignment for only some devices via
6601 * the "pci=resource_alignment" argument, "resize" is true and we
6602 * use the first method. Otherwise we assume we're aligning all
6603 * devices and we use the second.
6604 */
6605
6606 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6607 bar, r, (unsigned long long)align);
6608
6609 if (resize) {
6610 r->start = 0;
6611 r->end = align - 1;
6612 } else {
6613 r->flags &= ~IORESOURCE_SIZEALIGN;
6614 r->flags |= IORESOURCE_STARTALIGN;
6615 r->start = align;
6616 r->end = r->start + size - 1;
6617 }
6618 r->flags |= IORESOURCE_UNSET;
6619}
6620
6621/*
6622 * This function disables memory decoding and releases memory resources
6623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624 * It also rounds up size to specified alignment.
6625 * Later on, the kernel will assign page-aligned memory resource back
6626 * to the device.
6627 */
6628void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629{
6630 int i;
6631 struct resource *r;
6632 resource_size_t align;
6633 u16 command;
6634 bool resize = false;
6635
6636 /*
6637 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638 * 3.4.1.11. Their resources are allocated from the space
6639 * described by the VF BARx register in the PF's SR-IOV capability.
6640 * We can't influence their alignment here.
6641 */
6642 if (dev->is_virtfn)
6643 return;
6644
6645 /* check if specified PCI is target device to reassign */
6646 align = pci_specified_resource_alignment(dev, &resize);
6647 if (!align)
6648 return;
6649
6650 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6652 pci_warn(dev, "Can't reassign resources to host bridge\n");
6653 return;
6654 }
6655
6656 pci_read_config_word(dev, PCI_COMMAND, &command);
6657 command &= ~PCI_COMMAND_MEMORY;
6658 pci_write_config_word(dev, PCI_COMMAND, command);
6659
6660 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6661 pci_request_resource_alignment(dev, i, align, resize);
6662
6663 /*
6664 * Need to disable bridge's resource window,
6665 * to enable the kernel to reassign new resource
6666 * window later on.
6667 */
6668 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6669 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670 r = &dev->resource[i];
6671 if (!(r->flags & IORESOURCE_MEM))
6672 continue;
6673 r->flags |= IORESOURCE_UNSET;
6674 r->end = resource_size(r) - 1;
6675 r->start = 0;
6676 }
6677 pci_disable_bridge_window(dev);
6678 }
6679}
6680
6681static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6682{
6683 size_t count = 0;
6684
6685 spin_lock(&resource_alignment_lock);
6686 if (resource_alignment_param)
6687 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6688 spin_unlock(&resource_alignment_lock);
6689
6690 return count;
6691}
6692
6693static ssize_t resource_alignment_store(struct bus_type *bus,
6694 const char *buf, size_t count)
6695{
6696 char *param, *old, *end;
6697
6698 if (count >= (PAGE_SIZE - 1))
6699 return -EINVAL;
6700
6701 param = kstrndup(buf, count, GFP_KERNEL);
6702 if (!param)
6703 return -ENOMEM;
6704
6705 end = strchr(param, '\n');
6706 if (end)
6707 *end = '\0';
6708
6709 spin_lock(&resource_alignment_lock);
6710 old = resource_alignment_param;
6711 if (strlen(param)) {
6712 resource_alignment_param = param;
6713 } else {
6714 kfree(param);
6715 resource_alignment_param = NULL;
6716 }
6717 spin_unlock(&resource_alignment_lock);
6718
6719 kfree(old);
6720
6721 return count;
6722}
6723
6724static BUS_ATTR_RW(resource_alignment);
6725
6726static int __init pci_resource_alignment_sysfs_init(void)
6727{
6728 return bus_create_file(&pci_bus_type,
6729 &bus_attr_resource_alignment);
6730}
6731late_initcall(pci_resource_alignment_sysfs_init);
6732
6733static void pci_no_domains(void)
6734{
6735#ifdef CONFIG_PCI_DOMAINS
6736 pci_domains_supported = 0;
6737#endif
6738}
6739
6740#ifdef CONFIG_PCI_DOMAINS_GENERIC
6741static DEFINE_IDA(pci_domain_nr_static_ida);
6742static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6743
6744static void of_pci_reserve_static_domain_nr(void)
6745{
6746 struct device_node *np;
6747 int domain_nr;
6748
6749 for_each_node_by_type(np, "pci") {
6750 domain_nr = of_get_pci_domain_nr(np);
6751 if (domain_nr < 0)
6752 continue;
6753 /*
6754 * Permanently allocate domain_nr in dynamic_ida
6755 * to prevent it from dynamic allocation.
6756 */
6757 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758 domain_nr, domain_nr, GFP_KERNEL);
6759 }
6760}
6761
6762static int of_pci_bus_find_domain_nr(struct device *parent)
6763{
6764 static bool static_domains_reserved = false;
6765 int domain_nr;
6766
6767 /* On the first call scan device tree for static allocations. */
6768 if (!static_domains_reserved) {
6769 of_pci_reserve_static_domain_nr();
6770 static_domains_reserved = true;
6771 }
6772
6773 if (parent) {
6774 /*
6775 * If domain is in DT, allocate it in static IDA. This
6776 * prevents duplicate static allocations in case of errors
6777 * in DT.
6778 */
6779 domain_nr = of_get_pci_domain_nr(parent->of_node);
6780 if (domain_nr >= 0)
6781 return ida_alloc_range(&pci_domain_nr_static_ida,
6782 domain_nr, domain_nr,
6783 GFP_KERNEL);
6784 }
6785
6786 /*
6787 * If domain was not specified in DT, choose a free ID from dynamic
6788 * allocations. All domain numbers from DT are permanently in
6789 * dynamic allocations to prevent assigning them to other DT nodes
6790 * without static domain.
6791 */
6792 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793}
6794
6795static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796{
6797 if (bus->domain_nr < 0)
6798 return;
6799
6800 /* Release domain from IDA where it was allocated. */
6801 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803 else
6804 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6805}
6806
6807int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808{
6809 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810 acpi_pci_bus_find_domain_nr(bus);
6811}
6812
6813void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814{
6815 if (!acpi_disabled)
6816 return;
6817 of_pci_bus_release_domain_nr(bus, parent);
6818}
6819#endif
6820
6821/**
6822 * pci_ext_cfg_avail - can we access extended PCI config space?
6823 *
6824 * Returns 1 if we can access PCI extended config space (offsets
6825 * greater than 0xff). This is the default implementation. Architecture
6826 * implementations can override this.
6827 */
6828int __weak pci_ext_cfg_avail(void)
6829{
6830 return 1;
6831}
6832
6833void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834{
6835}
6836EXPORT_SYMBOL(pci_fixup_cardbus);
6837
6838static int __init pci_setup(char *str)
6839{
6840 while (str) {
6841 char *k = strchr(str, ',');
6842 if (k)
6843 *k++ = 0;
6844 if (*str && (str = pcibios_setup(str)) && *str) {
6845 if (!strcmp(str, "nomsi")) {
6846 pci_no_msi();
6847 } else if (!strncmp(str, "noats", 5)) {
6848 pr_info("PCIe: ATS is disabled\n");
6849 pcie_ats_disabled = true;
6850 } else if (!strcmp(str, "noaer")) {
6851 pci_no_aer();
6852 } else if (!strcmp(str, "earlydump")) {
6853 pci_early_dump = true;
6854 } else if (!strncmp(str, "realloc=", 8)) {
6855 pci_realloc_get_opt(str + 8);
6856 } else if (!strncmp(str, "realloc", 7)) {
6857 pci_realloc_get_opt("on");
6858 } else if (!strcmp(str, "nodomains")) {
6859 pci_no_domains();
6860 } else if (!strncmp(str, "noari", 5)) {
6861 pcie_ari_disabled = true;
6862 } else if (!strncmp(str, "cbiosize=", 9)) {
6863 pci_cardbus_io_size = memparse(str + 9, &str);
6864 } else if (!strncmp(str, "cbmemsize=", 10)) {
6865 pci_cardbus_mem_size = memparse(str + 10, &str);
6866 } else if (!strncmp(str, "resource_alignment=", 19)) {
6867 resource_alignment_param = str + 19;
6868 } else if (!strncmp(str, "ecrc=", 5)) {
6869 pcie_ecrc_get_policy(str + 5);
6870 } else if (!strncmp(str, "hpiosize=", 9)) {
6871 pci_hotplug_io_size = memparse(str + 9, &str);
6872 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6873 pci_hotplug_mmio_size = memparse(str + 11, &str);
6874 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6876 } else if (!strncmp(str, "hpmemsize=", 10)) {
6877 pci_hotplug_mmio_size = memparse(str + 10, &str);
6878 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6879 } else if (!strncmp(str, "hpbussize=", 10)) {
6880 pci_hotplug_bus_size =
6881 simple_strtoul(str + 10, &str, 0);
6882 if (pci_hotplug_bus_size > 0xff)
6883 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6884 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6886 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887 pcie_bus_config = PCIE_BUS_SAFE;
6888 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6890 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891 pcie_bus_config = PCIE_BUS_PEER2PEER;
6892 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6893 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6894 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6895 disable_acs_redir_param = str + 18;
6896 } else {
6897 pr_err("PCI: Unknown option `%s'\n", str);
6898 }
6899 }
6900 str = k;
6901 }
6902 return 0;
6903}
6904early_param("pci", pci_setup);
6905
6906/*
6907 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908 * in pci_setup(), above, to point to data in the __initdata section which
6909 * will be freed after the init sequence is complete. We can't allocate memory
6910 * in pci_setup() because some architectures do not have any memory allocation
6911 * service available during an early_param() call. So we allocate memory and
6912 * copy the variable here before the init section is freed.
6913 *
6914 */
6915static int __init pci_realloc_setup_params(void)
6916{
6917 resource_alignment_param = kstrdup(resource_alignment_param,
6918 GFP_KERNEL);
6919 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6920
6921 return 0;
6922}
6923pure_initcall(pci_realloc_setup_params);