Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/device.h>
28#include <linux/pm_runtime.h>
29#include <linux/pci_hotplug.h>
30#include <linux/vmalloc.h>
31#include <asm/dma.h>
32#include <linux/aer.h>
33#include <linux/bitfield.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43#ifdef CONFIG_X86_32
44int isa_dma_bridge_buggy;
45EXPORT_SYMBOL(isa_dma_bridge_buggy);
46#endif
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3hot_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66/*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71#define PCI_RESET_WAIT 1000 /* msec */
72
73/*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
81static void pci_dev_d3_sleep(struct pci_dev *dev)
82{
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
91 }
92}
93
94bool pci_reset_supported(struct pci_dev *dev)
95{
96 return dev->reset_methods[0] != 0;
97}
98
99#ifdef CONFIG_PCI_DOMAINS
100int pci_domains_supported = 1;
101#endif
102
103#define DEFAULT_CARDBUS_IO_SIZE (256)
104#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109#define DEFAULT_HOTPLUG_IO_SIZE (256)
110#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112/* hpiosize=nn can override this */
113unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114/*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122#define DEFAULT_HOTPLUG_BUS_SIZE 1
123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129#elif defined CONFIG_PCIE_BUS_SAFE
130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133#elif defined CONFIG_PCIE_BUS_PEER2PEER
134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135#else
136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137#endif
138
139/*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146u8 pci_cache_line_size __ro_after_init ;
147
148/*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152unsigned int pcibios_max_latency = 255;
153
154/* If set, the PCIe ARI capability will not be used. */
155static bool pcie_ari_disabled;
156
157/* If set, the PCIe ATS capability will not be used. */
158static bool pcie_ats_disabled;
159
160/* If set, the PCI config space of each device is printed during boot. */
161bool pci_early_dump;
162
163bool pci_ats_disabled(void)
164{
165 return pcie_ats_disabled;
166}
167EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169/* Disable bridge_d3 for all PCIe ports */
170static bool pci_bridge_d3_disable;
171/* Force bridge_d3 for all PCIe ports */
172static bool pci_bridge_d3_force;
173
174static int __init pcie_port_pm_setup(char *str)
175{
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181}
182__setup("pcie_port_pm=", pcie_port_pm_setup);
183
184/**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192{
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203}
204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206/**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213{
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(pdev, PCI_STATUS, status);
224
225 return status;
226}
227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229#ifdef CONFIG_HAS_IOMEM
230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232{
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(start, size);
247
248 return ioremap(start, size);
249}
250
251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252{
253 return __pci_ioremap_resource(pdev, bar, false);
254}
255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258{
259 return __pci_ioremap_resource(pdev, bar, true);
260}
261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262#endif
263
264/**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285{
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342free_and_exit:
343 kfree(wpath);
344 return ret;
345}
346
347/**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379{
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, p, &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422found:
423 *endptr = p;
424 return 1;
425}
426
427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429{
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449}
450
451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453{
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457}
458
459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460{
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
463}
464EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468{
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484}
485
486/**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
505u8 pci_find_capability(struct pci_dev *dev, int cap)
506{
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512
513 return pos;
514}
515EXPORT_SYMBOL(pci_find_capability);
516
517/**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531{
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541}
542EXPORT_SYMBOL(pci_bus_find_capability);
543
544/**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556{
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593}
594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596/**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611{
612 return pci_find_next_ext_capability(dev, 0, cap);
613}
614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616/**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
625u64 pci_get_dsn(struct pci_dev *dev)
626{
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, pos, &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647}
648EXPORT_SYMBOL_GPL(pci_get_dsn);
649
650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651{
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
673 }
674
675 return 0;
676}
677
678/**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692{
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694}
695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697/**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709{
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717}
718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720/**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731{
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750}
751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753/**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763{
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782}
783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785/**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796{
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r, res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825}
826EXPORT_SYMBOL(pci_find_parent_resource);
827
828/**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838{
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r, res))
845 return r;
846 }
847
848 return NULL;
849}
850EXPORT_SYMBOL(pci_find_resource);
851
852/**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860{
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869#ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876#endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888#ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895#endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910}
911
912/**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921{
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep((1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936}
937
938static int pci_acs_enable;
939
940/**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
943void pci_request_acs(void)
944{
945 pci_acs_enable = 1;
946}
947
948static const char *disable_acs_redir_param;
949static const char *config_acs_param;
950
951struct pci_acs {
952 u16 cap;
953 u16 ctrl;
954 u16 fw_ctrl;
955};
956
957static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 const char *p, u16 mask, u16 flags)
959{
960 char *delimit;
961 int ret = 0;
962
963 if (!p)
964 return;
965
966 while (*p) {
967 if (!mask) {
968 /* Check for ACS flags */
969 delimit = strstr(p, "@");
970 if (delimit) {
971 int end;
972 u32 shift = 0;
973
974 end = delimit - p - 1;
975
976 while (end > -1) {
977 if (*(p + end) == '0') {
978 mask |= 1 << shift;
979 shift++;
980 end--;
981 } else if (*(p + end) == '1') {
982 mask |= 1 << shift;
983 flags |= 1 << shift;
984 shift++;
985 end--;
986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 shift++;
988 end--;
989 } else {
990 pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 return;
992 }
993 }
994 p = delimit + 1;
995 } else {
996 pci_err(dev, "ACS Flags missing\n");
997 return;
998 }
999 }
1000
1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 pci_err(dev, "Invalid ACS flags specified\n");
1004 return;
1005 }
1006
1007 ret = pci_dev_str_match(dev, p, &p);
1008 if (ret < 0) {
1009 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 break;
1011 } else if (ret == 1) {
1012 /* Found a match */
1013 break;
1014 }
1015
1016 if (*p != ';' && *p != ',') {
1017 /* End of param or invalid format */
1018 break;
1019 }
1020 p++;
1021 }
1022
1023 if (ret != 1)
1024 return;
1025
1026 if (!pci_dev_specific_disable_acs_redir(dev))
1027 return;
1028
1029 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1030 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031
1032 /* If mask is 0 then we copy the bit from the firmware setting. */
1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 caps->ctrl |= flags;
1035
1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037}
1038
1039/**
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1043 */
1044static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045{
1046 /* Source Validation */
1047 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048
1049 /* P2P Request Redirect */
1050 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051
1052 /* P2P Completion Redirect */
1053 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054
1055 /* Upstream Forwarding */
1056 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057
1058 /* Enable Translation Blocking for external devices and noats */
1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061}
1062
1063/**
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1066 */
1067static void pci_enable_acs(struct pci_dev *dev)
1068{
1069 struct pci_acs caps;
1070 bool enable_acs = false;
1071 int pos;
1072
1073 /* If an iommu is present we start with kernel default caps */
1074 if (pci_acs_enable) {
1075 if (pci_dev_specific_enable_acs(dev))
1076 enable_acs = true;
1077 }
1078
1079 pos = dev->acs_cap;
1080 if (!pos)
1081 return;
1082
1083 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085 caps.fw_ctrl = caps.ctrl;
1086
1087 if (enable_acs)
1088 pci_std_enable_acs(dev, &caps);
1089
1090 /*
1091 * Always apply caps from the command line, even if there is no iommu.
1092 * Trust that the admin has a reason to change the ACS settings.
1093 */
1094 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1095 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098
1099 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100}
1101
1102/**
1103 * pcie_read_tlp_log - read TLP Header Log
1104 * @dev: PCIe device
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1107 *
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109 *
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1111 */
1112int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113 struct pcie_tlp_log *tlp_log)
1114{
1115 int i, ret;
1116
1117 memset(tlp_log, 0, sizeof(*tlp_log));
1118
1119 for (i = 0; i < 4; i++) {
1120 ret = pci_read_config_dword(dev, where + i * 4,
1121 &tlp_log->dw[i]);
1122 if (ret)
1123 return pcibios_err_to_errno(ret);
1124 }
1125
1126 return 0;
1127}
1128EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129
1130/**
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1133 *
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1136 */
1137static void pci_restore_bars(struct pci_dev *dev)
1138{
1139 int i;
1140
1141 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142 pci_update_resource(dev, i);
1143}
1144
1145static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146{
1147 if (pci_use_mid_pm())
1148 return true;
1149
1150 return acpi_pci_power_manageable(dev);
1151}
1152
1153static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154 pci_power_t t)
1155{
1156 if (pci_use_mid_pm())
1157 return mid_pci_set_power_state(dev, t);
1158
1159 return acpi_pci_set_power_state(dev, t);
1160}
1161
1162static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163{
1164 if (pci_use_mid_pm())
1165 return mid_pci_get_power_state(dev);
1166
1167 return acpi_pci_get_power_state(dev);
1168}
1169
1170static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171{
1172 if (!pci_use_mid_pm())
1173 acpi_pci_refresh_power_state(dev);
1174}
1175
1176static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177{
1178 if (pci_use_mid_pm())
1179 return PCI_POWER_ERROR;
1180
1181 return acpi_pci_choose_state(dev);
1182}
1183
1184static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185{
1186 if (pci_use_mid_pm())
1187 return PCI_POWER_ERROR;
1188
1189 return acpi_pci_wakeup(dev, enable);
1190}
1191
1192static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193{
1194 if (pci_use_mid_pm())
1195 return false;
1196
1197 return acpi_pci_need_resume(dev);
1198}
1199
1200static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201{
1202 if (pci_use_mid_pm())
1203 return false;
1204
1205 return acpi_pci_bridge_d3(dev);
1206}
1207
1208/**
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1212 *
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold. The platform firmware is therefore queried first
1215 * to detect accessibility of the register. In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1219 */
1220void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221{
1222 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223 dev->current_state = PCI_D3cold;
1224 } else if (dev->pm_cap) {
1225 u16 pmcsr;
1226
1227 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229 dev->current_state = PCI_D3cold;
1230 return;
1231 }
1232 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233 } else {
1234 dev->current_state = state;
1235 }
1236}
1237
1238/**
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1241 *
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1244 */
1245void pci_refresh_power_state(struct pci_dev *dev)
1246{
1247 platform_pci_refresh_power_state(dev);
1248 pci_update_current_state(dev, dev->current_state);
1249}
1250
1251/**
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1255 */
1256int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257{
1258 int error;
1259
1260 error = platform_pci_set_power_state(dev, state);
1261 if (!error)
1262 pci_update_current_state(dev, state);
1263 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264 dev->current_state = PCI_D0;
1265
1266 return error;
1267}
1268EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269
1270static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271{
1272 pm_request_resume(&pci_dev->dev);
1273 return 0;
1274}
1275
1276/**
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1279 */
1280void pci_resume_bus(struct pci_bus *bus)
1281{
1282 if (bus)
1283 pci_walk_bus(bus, pci_resume_one, NULL);
1284}
1285
1286static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287{
1288 int delay = 1;
1289 bool retrain = false;
1290 struct pci_dev *root, *bridge;
1291
1292 root = pcie_find_root_port(dev);
1293
1294 if (pci_is_pcie(dev)) {
1295 bridge = pci_upstream_bridge(dev);
1296 if (bridge)
1297 retrain = true;
1298 }
1299
1300 /*
1301 * The caller has already waited long enough after a reset that the
1302 * device should respond to config requests, but it may respond
1303 * with Request Retry Status (RRS) if it needs more time to
1304 * initialize.
1305 *
1306 * If the device is below a Root Port with Configuration RRS
1307 * Software Visibility enabled, reading the Vendor ID returns a
1308 * special data value if the device responded with RRS. Read the
1309 * Vendor ID until we get non-RRS status.
1310 *
1311 * If there's no Root Port or Configuration RRS Software Visibility
1312 * is not enabled, the device may still respond with RRS, but
1313 * hardware may retry the config request. If no retries receive
1314 * Successful Completion, hardware generally synthesizes ~0
1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1316 * ID for VFs and non-existent devices also returns ~0, so read the
1317 * Command register until it returns something other than ~0.
1318 */
1319 for (;;) {
1320 u32 id;
1321
1322 if (pci_dev_is_disconnected(dev)) {
1323 pci_dbg(dev, "disconnected; not waiting\n");
1324 return -ENOTTY;
1325 }
1326
1327 if (root && root->config_rrs_sv) {
1328 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329 if (!pci_bus_rrs_vendor_id(id))
1330 break;
1331 } else {
1332 pci_read_config_dword(dev, PCI_COMMAND, &id);
1333 if (!PCI_POSSIBLE_ERROR(id))
1334 break;
1335 }
1336
1337 if (delay > timeout) {
1338 pci_warn(dev, "not ready %dms after %s; giving up\n",
1339 delay - 1, reset_type);
1340 return -ENOTTY;
1341 }
1342
1343 if (delay > PCI_RESET_WAIT) {
1344 if (retrain) {
1345 retrain = false;
1346 if (pcie_failed_link_retrain(bridge) == 0) {
1347 delay = 1;
1348 continue;
1349 }
1350 }
1351 pci_info(dev, "not ready %dms after %s; waiting\n",
1352 delay - 1, reset_type);
1353 }
1354
1355 msleep(delay);
1356 delay *= 2;
1357 }
1358
1359 if (delay > PCI_RESET_WAIT)
1360 pci_info(dev, "ready %dms after %s\n", delay - 1,
1361 reset_type);
1362 else
1363 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364 reset_type);
1365
1366 return 0;
1367}
1368
1369/**
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1372 *
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1375 *
1376 * On failure, return a negative error code. Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1379 */
1380int pci_power_up(struct pci_dev *dev)
1381{
1382 bool need_restore;
1383 pci_power_t state;
1384 u16 pmcsr;
1385
1386 platform_pci_set_power_state(dev, PCI_D0);
1387
1388 if (!dev->pm_cap) {
1389 state = platform_pci_get_power_state(dev);
1390 if (state == PCI_UNKNOWN)
1391 dev->current_state = PCI_D0;
1392 else
1393 dev->current_state = state;
1394
1395 return -EIO;
1396 }
1397
1398 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401 pci_power_name(dev->current_state));
1402 dev->current_state = PCI_D3cold;
1403 return -EIO;
1404 }
1405
1406 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407
1408 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410
1411 if (state == PCI_D0)
1412 goto end;
1413
1414 /*
1415 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 * PME_En, and sets PowerState to 0.
1417 */
1418 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419
1420 /* Mandatory transition delays; see PCI PM 1.2. */
1421 if (state == PCI_D3hot)
1422 pci_dev_d3_sleep(dev);
1423 else if (state == PCI_D2)
1424 udelay(PCI_PM_D2_DELAY);
1425
1426end:
1427 dev->current_state = PCI_D0;
1428 if (need_restore)
1429 return 1;
1430
1431 return 0;
1432}
1433
1434/**
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1438 *
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1442 *
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1445 * function.
1446 */
1447static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448{
1449 u16 pmcsr;
1450 int ret;
1451
1452 ret = pci_power_up(dev);
1453 if (ret < 0) {
1454 if (dev->current_state == PCI_D0)
1455 return 0;
1456
1457 return ret;
1458 }
1459
1460 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462 if (dev->current_state != PCI_D0) {
1463 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464 pci_power_name(dev->current_state));
1465 } else if (ret > 0) {
1466 /*
1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 * For example, at least some versions of the 3c905B and the
1472 * 3c556B exhibit this behaviour.
1473 *
1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 * devices in a D3hot state at boot. Consequently, we need to
1476 * restore at least the BARs so that the device will be
1477 * accessible to its driver.
1478 */
1479 pci_restore_bars(dev);
1480 }
1481
1482 if (dev->bus->self)
1483 pcie_aspm_pm_state_change(dev->bus->self, locked);
1484
1485 return 0;
1486}
1487
1488/**
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1492 */
1493static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494{
1495 pci_power_t state = *(pci_power_t *)data;
1496
1497 dev->current_state = state;
1498 return 0;
1499}
1500
1501/**
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1505 */
1506void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507{
1508 if (bus)
1509 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510}
1511
1512static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513{
1514 if (!bus)
1515 return;
1516
1517 if (locked)
1518 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519 else
1520 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521}
1522
1523/**
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1528 *
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530 *
1531 * RETURN VALUE:
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1537 */
1538static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539{
1540 u16 pmcsr;
1541
1542 if (!dev->pm_cap)
1543 return -EIO;
1544
1545 /*
1546 * Validate transition: We can enter D0 from any state, but if
1547 * we're already in a low-power state, we can only go deeper. E.g.,
1548 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 * we'd have to go from D3 to D0, then to D1.
1550 */
1551 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553 pci_power_name(dev->current_state),
1554 pci_power_name(state));
1555 return -EINVAL;
1556 }
1557
1558 /* Check if this device supports the desired state */
1559 if ((state == PCI_D1 && !dev->d1_support)
1560 || (state == PCI_D2 && !dev->d2_support))
1561 return -EIO;
1562
1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566 pci_power_name(dev->current_state),
1567 pci_power_name(state));
1568 dev->current_state = PCI_D3cold;
1569 return -EIO;
1570 }
1571
1572 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573 pmcsr |= state;
1574
1575 /* Enter specified state */
1576 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577
1578 /* Mandatory power management transition delays; see PCI PM 1.2. */
1579 if (state == PCI_D3hot)
1580 pci_dev_d3_sleep(dev);
1581 else if (state == PCI_D2)
1582 udelay(PCI_PM_D2_DELAY);
1583
1584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586 if (dev->current_state != state)
1587 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588 pci_power_name(dev->current_state),
1589 pci_power_name(state));
1590
1591 if (dev->bus->self)
1592 pcie_aspm_pm_state_change(dev->bus->self, locked);
1593
1594 return 0;
1595}
1596
1597static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598{
1599 int error;
1600
1601 /* Bound the state we're entering */
1602 if (state > PCI_D3cold)
1603 state = PCI_D3cold;
1604 else if (state < PCI_D0)
1605 state = PCI_D0;
1606 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607
1608 /*
1609 * If the device or the parent bridge do not support PCI
1610 * PM, ignore the request if we're doing anything other
1611 * than putting it into D0 (which would only happen on
1612 * boot).
1613 */
1614 return 0;
1615
1616 /* Check if we're already there */
1617 if (dev->current_state == state)
1618 return 0;
1619
1620 if (state == PCI_D0)
1621 return pci_set_full_power_state(dev, locked);
1622
1623 /*
1624 * This device is quirked not to be put into D3, so don't put it in
1625 * D3
1626 */
1627 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628 return 0;
1629
1630 if (state == PCI_D3cold) {
1631 /*
1632 * To put the device in D3cold, put it into D3hot in the native
1633 * way, then put it into D3cold using platform ops.
1634 */
1635 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636
1637 if (pci_platform_power_transition(dev, PCI_D3cold))
1638 return error;
1639
1640 /* Powering off a bridge may power off the whole hierarchy */
1641 if (dev->current_state == PCI_D3cold)
1642 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643 } else {
1644 error = pci_set_low_power_state(dev, state, locked);
1645
1646 if (pci_platform_power_transition(dev, state))
1647 return error;
1648 }
1649
1650 return 0;
1651}
1652
1653/**
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657 *
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1660 *
1661 * RETURN VALUE:
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1669 */
1670int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671{
1672 return __pci_set_power_state(dev, state, false);
1673}
1674EXPORT_SYMBOL(pci_set_power_state);
1675
1676int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677{
1678 lockdep_assert_held(&pci_bus_sem);
1679
1680 return __pci_set_power_state(dev, state, true);
1681}
1682EXPORT_SYMBOL(pci_set_power_state_locked);
1683
1684#define PCI_EXP_SAVE_REGS 7
1685
1686static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687 u16 cap, bool extended)
1688{
1689 struct pci_cap_saved_state *tmp;
1690
1691 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693 return tmp;
1694 }
1695 return NULL;
1696}
1697
1698struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699{
1700 return _pci_find_saved_cap(dev, cap, false);
1701}
1702
1703struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704{
1705 return _pci_find_saved_cap(dev, cap, true);
1706}
1707
1708static int pci_save_pcie_state(struct pci_dev *dev)
1709{
1710 int i = 0;
1711 struct pci_cap_saved_state *save_state;
1712 u16 *cap;
1713
1714 if (!pci_is_pcie(dev))
1715 return 0;
1716
1717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718 if (!save_state) {
1719 pci_err(dev, "buffer not found in %s\n", __func__);
1720 return -ENOMEM;
1721 }
1722
1723 cap = (u16 *)&save_state->cap.data[0];
1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1728 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731
1732 pci_save_aspm_l1ss_state(dev);
1733 pci_save_ltr_state(dev);
1734
1735 return 0;
1736}
1737
1738static void pci_restore_pcie_state(struct pci_dev *dev)
1739{
1740 int i = 0;
1741 struct pci_cap_saved_state *save_state;
1742 u16 *cap;
1743
1744 /*
1745 * Restore max latencies (in the LTR capability) before enabling
1746 * LTR itself in PCI_EXP_DEVCTL2.
1747 */
1748 pci_restore_ltr_state(dev);
1749 pci_restore_aspm_l1ss_state(dev);
1750
1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752 if (!save_state)
1753 return;
1754
1755 /*
1756 * Downstream ports reset the LTR enable bit when link goes down.
1757 * Check and re-configure the bit here before restoring device.
1758 * PCIe r5.0, sec 7.5.3.16.
1759 */
1760 pci_bridge_reconfigure_ltr(dev);
1761
1762 cap = (u16 *)&save_state->cap.data[0];
1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770}
1771
1772static int pci_save_pcix_state(struct pci_dev *dev)
1773{
1774 int pos;
1775 struct pci_cap_saved_state *save_state;
1776
1777 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778 if (!pos)
1779 return 0;
1780
1781 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782 if (!save_state) {
1783 pci_err(dev, "buffer not found in %s\n", __func__);
1784 return -ENOMEM;
1785 }
1786
1787 pci_read_config_word(dev, pos + PCI_X_CMD,
1788 (u16 *)save_state->cap.data);
1789
1790 return 0;
1791}
1792
1793static void pci_restore_pcix_state(struct pci_dev *dev)
1794{
1795 int i = 0, pos;
1796 struct pci_cap_saved_state *save_state;
1797 u16 *cap;
1798
1799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801 if (!save_state || !pos)
1802 return;
1803 cap = (u16 *)&save_state->cap.data[0];
1804
1805 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806}
1807
1808/**
1809 * pci_save_state - save the PCI configuration space of a device before
1810 * suspending
1811 * @dev: PCI device that we're dealing with
1812 */
1813int pci_save_state(struct pci_dev *dev)
1814{
1815 int i;
1816 /* XXX: 100% dword access ok here? */
1817 for (i = 0; i < 16; i++) {
1818 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819 pci_dbg(dev, "save config %#04x: %#010x\n",
1820 i * 4, dev->saved_config_space[i]);
1821 }
1822 dev->state_saved = true;
1823
1824 i = pci_save_pcie_state(dev);
1825 if (i != 0)
1826 return i;
1827
1828 i = pci_save_pcix_state(dev);
1829 if (i != 0)
1830 return i;
1831
1832 pci_save_dpc_state(dev);
1833 pci_save_aer_state(dev);
1834 pci_save_ptm_state(dev);
1835 pci_save_tph_state(dev);
1836 return pci_save_vc_state(dev);
1837}
1838EXPORT_SYMBOL(pci_save_state);
1839
1840static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1841 u32 saved_val, int retry, bool force)
1842{
1843 u32 val;
1844
1845 pci_read_config_dword(pdev, offset, &val);
1846 if (!force && val == saved_val)
1847 return;
1848
1849 for (;;) {
1850 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1851 offset, val, saved_val);
1852 pci_write_config_dword(pdev, offset, saved_val);
1853 if (retry-- <= 0)
1854 return;
1855
1856 pci_read_config_dword(pdev, offset, &val);
1857 if (val == saved_val)
1858 return;
1859
1860 mdelay(1);
1861 }
1862}
1863
1864static void pci_restore_config_space_range(struct pci_dev *pdev,
1865 int start, int end, int retry,
1866 bool force)
1867{
1868 int index;
1869
1870 for (index = end; index >= start; index--)
1871 pci_restore_config_dword(pdev, 4 * index,
1872 pdev->saved_config_space[index],
1873 retry, force);
1874}
1875
1876static void pci_restore_config_space(struct pci_dev *pdev)
1877{
1878 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1879 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1880 /* Restore BARs before the command register. */
1881 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1882 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1883 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1884 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1885
1886 /*
1887 * Force rewriting of prefetch registers to avoid S3 resume
1888 * issues on Intel PCI bridges that occur when these
1889 * registers are not explicitly written.
1890 */
1891 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1892 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1893 } else {
1894 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1895 }
1896}
1897
1898static void pci_restore_rebar_state(struct pci_dev *pdev)
1899{
1900 unsigned int pos, nbars, i;
1901 u32 ctrl;
1902
1903 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1904 if (!pos)
1905 return;
1906
1907 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1908 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1909
1910 for (i = 0; i < nbars; i++, pos += 8) {
1911 struct resource *res;
1912 int bar_idx, size;
1913
1914 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1916 res = pdev->resource + bar_idx;
1917 size = pci_rebar_bytes_to_size(resource_size(res));
1918 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1919 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1920 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1921 }
1922}
1923
1924/**
1925 * pci_restore_state - Restore the saved state of a PCI device
1926 * @dev: PCI device that we're dealing with
1927 */
1928void pci_restore_state(struct pci_dev *dev)
1929{
1930 if (!dev->state_saved)
1931 return;
1932
1933 pci_restore_pcie_state(dev);
1934 pci_restore_pasid_state(dev);
1935 pci_restore_pri_state(dev);
1936 pci_restore_ats_state(dev);
1937 pci_restore_vc_state(dev);
1938 pci_restore_rebar_state(dev);
1939 pci_restore_dpc_state(dev);
1940 pci_restore_ptm_state(dev);
1941 pci_restore_tph_state(dev);
1942
1943 pci_aer_clear_status(dev);
1944 pci_restore_aer_state(dev);
1945
1946 pci_restore_config_space(dev);
1947
1948 pci_restore_pcix_state(dev);
1949 pci_restore_msi_state(dev);
1950
1951 /* Restore ACS and IOV configuration state */
1952 pci_enable_acs(dev);
1953 pci_restore_iov_state(dev);
1954
1955 dev->state_saved = false;
1956}
1957EXPORT_SYMBOL(pci_restore_state);
1958
1959struct pci_saved_state {
1960 u32 config_space[16];
1961 struct pci_cap_saved_data cap[];
1962};
1963
1964/**
1965 * pci_store_saved_state - Allocate and return an opaque struct containing
1966 * the device saved state.
1967 * @dev: PCI device that we're dealing with
1968 *
1969 * Return NULL if no state or error.
1970 */
1971struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1972{
1973 struct pci_saved_state *state;
1974 struct pci_cap_saved_state *tmp;
1975 struct pci_cap_saved_data *cap;
1976 size_t size;
1977
1978 if (!dev->state_saved)
1979 return NULL;
1980
1981 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1982
1983 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1984 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1985
1986 state = kzalloc(size, GFP_KERNEL);
1987 if (!state)
1988 return NULL;
1989
1990 memcpy(state->config_space, dev->saved_config_space,
1991 sizeof(state->config_space));
1992
1993 cap = state->cap;
1994 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1995 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1996 memcpy(cap, &tmp->cap, len);
1997 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1998 }
1999 /* Empty cap_save terminates list */
2000
2001 return state;
2002}
2003EXPORT_SYMBOL_GPL(pci_store_saved_state);
2004
2005/**
2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007 * @dev: PCI device that we're dealing with
2008 * @state: Saved state returned from pci_store_saved_state()
2009 */
2010int pci_load_saved_state(struct pci_dev *dev,
2011 struct pci_saved_state *state)
2012{
2013 struct pci_cap_saved_data *cap;
2014
2015 dev->state_saved = false;
2016
2017 if (!state)
2018 return 0;
2019
2020 memcpy(dev->saved_config_space, state->config_space,
2021 sizeof(state->config_space));
2022
2023 cap = state->cap;
2024 while (cap->size) {
2025 struct pci_cap_saved_state *tmp;
2026
2027 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2028 if (!tmp || tmp->cap.size != cap->size)
2029 return -EINVAL;
2030
2031 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2032 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2033 sizeof(struct pci_cap_saved_data) + cap->size);
2034 }
2035
2036 dev->state_saved = true;
2037 return 0;
2038}
2039EXPORT_SYMBOL_GPL(pci_load_saved_state);
2040
2041/**
2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043 * and free the memory allocated for it.
2044 * @dev: PCI device that we're dealing with
2045 * @state: Pointer to saved state returned from pci_store_saved_state()
2046 */
2047int pci_load_and_free_saved_state(struct pci_dev *dev,
2048 struct pci_saved_state **state)
2049{
2050 int ret = pci_load_saved_state(dev, *state);
2051 kfree(*state);
2052 *state = NULL;
2053 return ret;
2054}
2055EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2056
2057int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2058{
2059 return pci_enable_resources(dev, bars);
2060}
2061
2062static int do_pci_enable_device(struct pci_dev *dev, int bars)
2063{
2064 int err;
2065 struct pci_dev *bridge;
2066 u16 cmd;
2067 u8 pin;
2068
2069 err = pci_set_power_state(dev, PCI_D0);
2070 if (err < 0 && err != -EIO)
2071 return err;
2072
2073 bridge = pci_upstream_bridge(dev);
2074 if (bridge)
2075 pcie_aspm_powersave_config_link(bridge);
2076
2077 err = pcibios_enable_device(dev, bars);
2078 if (err < 0)
2079 return err;
2080 pci_fixup_device(pci_fixup_enable, dev);
2081
2082 if (dev->msi_enabled || dev->msix_enabled)
2083 return 0;
2084
2085 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2086 if (pin) {
2087 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2088 if (cmd & PCI_COMMAND_INTX_DISABLE)
2089 pci_write_config_word(dev, PCI_COMMAND,
2090 cmd & ~PCI_COMMAND_INTX_DISABLE);
2091 }
2092
2093 return 0;
2094}
2095
2096/**
2097 * pci_reenable_device - Resume abandoned device
2098 * @dev: PCI device to be resumed
2099 *
2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101 * to be called by normal code, write proper resume handler and use it instead.
2102 */
2103int pci_reenable_device(struct pci_dev *dev)
2104{
2105 if (pci_is_enabled(dev))
2106 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2107 return 0;
2108}
2109EXPORT_SYMBOL(pci_reenable_device);
2110
2111static void pci_enable_bridge(struct pci_dev *dev)
2112{
2113 struct pci_dev *bridge;
2114 int retval;
2115
2116 bridge = pci_upstream_bridge(dev);
2117 if (bridge)
2118 pci_enable_bridge(bridge);
2119
2120 if (pci_is_enabled(dev)) {
2121 if (!dev->is_busmaster)
2122 pci_set_master(dev);
2123 return;
2124 }
2125
2126 retval = pci_enable_device(dev);
2127 if (retval)
2128 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2129 retval);
2130 pci_set_master(dev);
2131}
2132
2133static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2134{
2135 struct pci_dev *bridge;
2136 int err;
2137 int i, bars = 0;
2138
2139 /*
2140 * Power state could be unknown at this point, either due to a fresh
2141 * boot or a device removal call. So get the current power state
2142 * so that things like MSI message writing will behave as expected
2143 * (e.g. if the device really is in D0 at enable time).
2144 */
2145 pci_update_current_state(dev, dev->current_state);
2146
2147 if (atomic_inc_return(&dev->enable_cnt) > 1)
2148 return 0; /* already enabled */
2149
2150 bridge = pci_upstream_bridge(dev);
2151 if (bridge)
2152 pci_enable_bridge(bridge);
2153
2154 /* only skip sriov related */
2155 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2156 if (dev->resource[i].flags & flags)
2157 bars |= (1 << i);
2158 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2159 if (dev->resource[i].flags & flags)
2160 bars |= (1 << i);
2161
2162 err = do_pci_enable_device(dev, bars);
2163 if (err < 0)
2164 atomic_dec(&dev->enable_cnt);
2165 return err;
2166}
2167
2168/**
2169 * pci_enable_device_mem - Initialize a device for use with Memory space
2170 * @dev: PCI device to be initialized
2171 *
2172 * Initialize device before it's used by a driver. Ask low-level code
2173 * to enable Memory resources. Wake up the device if it was suspended.
2174 * Beware, this function can fail.
2175 */
2176int pci_enable_device_mem(struct pci_dev *dev)
2177{
2178 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2179}
2180EXPORT_SYMBOL(pci_enable_device_mem);
2181
2182/**
2183 * pci_enable_device - Initialize device before it's used by a driver.
2184 * @dev: PCI device to be initialized
2185 *
2186 * Initialize device before it's used by a driver. Ask low-level code
2187 * to enable I/O and memory. Wake up the device if it was suspended.
2188 * Beware, this function can fail.
2189 *
2190 * Note we don't actually enable the device many times if we call
2191 * this function repeatedly (we just increment the count).
2192 */
2193int pci_enable_device(struct pci_dev *dev)
2194{
2195 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2196}
2197EXPORT_SYMBOL(pci_enable_device);
2198
2199/*
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
2207int __weak pcibios_device_add(struct pci_dev *dev)
2208{
2209 return 0;
2210}
2211
2212/**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 * device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
2221void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223/**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
2231void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
2233static void do_pci_disable_device(struct pci_dev *dev)
2234{
2235 u16 pci_command;
2236
2237 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2238 if (pci_command & PCI_COMMAND_MASTER) {
2239 pci_command &= ~PCI_COMMAND_MASTER;
2240 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2241 }
2242
2243 pcibios_disable_device(dev);
2244}
2245
2246/**
2247 * pci_disable_enabled_device - Disable device without updating enable_cnt
2248 * @dev: PCI device to disable
2249 *
2250 * NOTE: This function is a backend of PCI power management routines and is
2251 * not supposed to be called drivers.
2252 */
2253void pci_disable_enabled_device(struct pci_dev *dev)
2254{
2255 if (pci_is_enabled(dev))
2256 do_pci_disable_device(dev);
2257}
2258
2259/**
2260 * pci_disable_device - Disable PCI device after use
2261 * @dev: PCI device to be disabled
2262 *
2263 * Signal to the system that the PCI device is not in use by the system
2264 * anymore. This only involves disabling PCI bus-mastering, if active.
2265 *
2266 * Note we don't actually disable the device until all callers of
2267 * pci_enable_device() have called pci_disable_device().
2268 */
2269void pci_disable_device(struct pci_dev *dev)
2270{
2271 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2272 "disabling already-disabled device");
2273
2274 if (atomic_dec_return(&dev->enable_cnt) != 0)
2275 return;
2276
2277 do_pci_disable_device(dev);
2278
2279 dev->is_busmaster = 0;
2280}
2281EXPORT_SYMBOL(pci_disable_device);
2282
2283/**
2284 * pcibios_set_pcie_reset_state - set reset state for device dev
2285 * @dev: the PCIe device reset
2286 * @state: Reset state to enter into
2287 *
2288 * Set the PCIe reset state for the device. This is the default
2289 * implementation. Architecture implementations can override this.
2290 */
2291int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2292 enum pcie_reset_state state)
2293{
2294 return -EINVAL;
2295}
2296
2297/**
2298 * pci_set_pcie_reset_state - set reset state for device dev
2299 * @dev: the PCIe device reset
2300 * @state: Reset state to enter into
2301 *
2302 * Sets the PCI reset state for the device.
2303 */
2304int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2305{
2306 return pcibios_set_pcie_reset_state(dev, state);
2307}
2308EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2309
2310#ifdef CONFIG_PCIEAER
2311void pcie_clear_device_status(struct pci_dev *dev)
2312{
2313 u16 sta;
2314
2315 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2316 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2317}
2318#endif
2319
2320/**
2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322 * @dev: PCIe root port or event collector.
2323 */
2324void pcie_clear_root_pme_status(struct pci_dev *dev)
2325{
2326 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2327}
2328
2329/**
2330 * pci_check_pme_status - Check if given device has generated PME.
2331 * @dev: Device to check.
2332 *
2333 * Check the PME status of the device and if set, clear it and clear PME enable
2334 * (if set). Return 'true' if PME status and PME enable were both set or
2335 * 'false' otherwise.
2336 */
2337bool pci_check_pme_status(struct pci_dev *dev)
2338{
2339 int pmcsr_pos;
2340 u16 pmcsr;
2341 bool ret = false;
2342
2343 if (!dev->pm_cap)
2344 return false;
2345
2346 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2347 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2348 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2349 return false;
2350
2351 /* Clear PME status. */
2352 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2354 /* Disable PME to avoid interrupt flood. */
2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356 ret = true;
2357 }
2358
2359 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2360
2361 return ret;
2362}
2363
2364/**
2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366 * @dev: Device to handle.
2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2368 *
2369 * Check if @dev has generated PME and queue a resume request for it in that
2370 * case.
2371 */
2372static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2373{
2374 if (pme_poll_reset && dev->pme_poll)
2375 dev->pme_poll = false;
2376
2377 if (pci_check_pme_status(dev)) {
2378 pci_wakeup_event(dev);
2379 pm_request_resume(&dev->dev);
2380 }
2381 return 0;
2382}
2383
2384/**
2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386 * @bus: Top bus of the subtree to walk.
2387 */
2388void pci_pme_wakeup_bus(struct pci_bus *bus)
2389{
2390 if (bus)
2391 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2392}
2393
2394
2395/**
2396 * pci_pme_capable - check the capability of PCI device to generate PME#
2397 * @dev: PCI device to handle.
2398 * @state: PCI state from which device will issue PME#.
2399 */
2400bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2401{
2402 if (!dev->pm_cap)
2403 return false;
2404
2405 return !!(dev->pme_support & (1 << state));
2406}
2407EXPORT_SYMBOL(pci_pme_capable);
2408
2409static void pci_pme_list_scan(struct work_struct *work)
2410{
2411 struct pci_pme_device *pme_dev, *n;
2412
2413 mutex_lock(&pci_pme_list_mutex);
2414 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2415 struct pci_dev *pdev = pme_dev->dev;
2416
2417 if (pdev->pme_poll) {
2418 struct pci_dev *bridge = pdev->bus->self;
2419 struct device *dev = &pdev->dev;
2420 struct device *bdev = bridge ? &bridge->dev : NULL;
2421 int bref = 0;
2422
2423 /*
2424 * If we have a bridge, it should be in an active/D0
2425 * state or the configuration space of subordinate
2426 * devices may not be accessible or stable over the
2427 * course of the call.
2428 */
2429 if (bdev) {
2430 bref = pm_runtime_get_if_active(bdev);
2431 if (!bref)
2432 continue;
2433
2434 if (bridge->current_state != PCI_D0)
2435 goto put_bridge;
2436 }
2437
2438 /*
2439 * The device itself should be suspended but config
2440 * space must be accessible, therefore it cannot be in
2441 * D3cold.
2442 */
2443 if (pm_runtime_suspended(dev) &&
2444 pdev->current_state != PCI_D3cold)
2445 pci_pme_wakeup(pdev, NULL);
2446
2447put_bridge:
2448 if (bref > 0)
2449 pm_runtime_put(bdev);
2450 } else {
2451 list_del(&pme_dev->list);
2452 kfree(pme_dev);
2453 }
2454 }
2455 if (!list_empty(&pci_pme_list))
2456 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2457 msecs_to_jiffies(PME_TIMEOUT));
2458 mutex_unlock(&pci_pme_list_mutex);
2459}
2460
2461static void __pci_pme_active(struct pci_dev *dev, bool enable)
2462{
2463 u16 pmcsr;
2464
2465 if (!dev->pme_support)
2466 return;
2467
2468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2469 /* Clear PME_Status by writing 1 to it and enable PME# */
2470 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2471 if (!enable)
2472 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473
2474 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2475}
2476
2477/**
2478 * pci_pme_restore - Restore PME configuration after config space restore.
2479 * @dev: PCI device to update.
2480 */
2481void pci_pme_restore(struct pci_dev *dev)
2482{
2483 u16 pmcsr;
2484
2485 if (!dev->pme_support)
2486 return;
2487
2488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2489 if (dev->wakeup_prepared) {
2490 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2491 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2492 } else {
2493 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2494 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2495 }
2496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2497}
2498
2499/**
2500 * pci_pme_active - enable or disable PCI device's PME# function
2501 * @dev: PCI device to handle.
2502 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2503 *
2504 * The caller must verify that the device is capable of generating PME# before
2505 * calling this function with @enable equal to 'true'.
2506 */
2507void pci_pme_active(struct pci_dev *dev, bool enable)
2508{
2509 __pci_pme_active(dev, enable);
2510
2511 /*
2512 * PCI (as opposed to PCIe) PME requires that the device have
2513 * its PME# line hooked up correctly. Not all hardware vendors
2514 * do this, so the PME never gets delivered and the device
2515 * remains asleep. The easiest way around this is to
2516 * periodically walk the list of suspended devices and check
2517 * whether any have their PME flag set. The assumption is that
2518 * we'll wake up often enough anyway that this won't be a huge
2519 * hit, and the power savings from the devices will still be a
2520 * win.
2521 *
2522 * Although PCIe uses in-band PME message instead of PME# line
2523 * to report PME, PME does not work for some PCIe devices in
2524 * reality. For example, there are devices that set their PME
2525 * status bits, but don't really bother to send a PME message;
2526 * there are PCI Express Root Ports that don't bother to
2527 * trigger interrupts when they receive PME messages from the
2528 * devices below. So PME poll is used for PCIe devices too.
2529 */
2530
2531 if (dev->pme_poll) {
2532 struct pci_pme_device *pme_dev;
2533 if (enable) {
2534 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2535 GFP_KERNEL);
2536 if (!pme_dev) {
2537 pci_warn(dev, "can't enable PME#\n");
2538 return;
2539 }
2540 pme_dev->dev = dev;
2541 mutex_lock(&pci_pme_list_mutex);
2542 list_add(&pme_dev->list, &pci_pme_list);
2543 if (list_is_singular(&pci_pme_list))
2544 queue_delayed_work(system_freezable_wq,
2545 &pci_pme_work,
2546 msecs_to_jiffies(PME_TIMEOUT));
2547 mutex_unlock(&pci_pme_list_mutex);
2548 } else {
2549 mutex_lock(&pci_pme_list_mutex);
2550 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2551 if (pme_dev->dev == dev) {
2552 list_del(&pme_dev->list);
2553 kfree(pme_dev);
2554 break;
2555 }
2556 }
2557 mutex_unlock(&pci_pme_list_mutex);
2558 }
2559 }
2560
2561 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2562}
2563EXPORT_SYMBOL(pci_pme_active);
2564
2565/**
2566 * __pci_enable_wake - enable PCI device as wakeup event source
2567 * @dev: PCI device affected
2568 * @state: PCI state from which device will issue wakeup events
2569 * @enable: True to enable event generation; false to disable
2570 *
2571 * This enables the device as a wakeup event source, or disables it.
2572 * When such events involves platform-specific hooks, those hooks are
2573 * called automatically by this routine.
2574 *
2575 * Devices with legacy power management (no standard PCI PM capabilities)
2576 * always require such platform hooks.
2577 *
2578 * RETURN VALUE:
2579 * 0 is returned on success
2580 * -EINVAL is returned if device is not supposed to wake up the system
2581 * Error code depending on the platform is returned if both the platform and
2582 * the native mechanism fail to enable the generation of wake-up events
2583 */
2584static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2585{
2586 int ret = 0;
2587
2588 /*
2589 * Bridges that are not power-manageable directly only signal
2590 * wakeup on behalf of subordinate devices which is set up
2591 * elsewhere, so skip them. However, bridges that are
2592 * power-manageable may signal wakeup for themselves (for example,
2593 * on a hotplug event) and they need to be covered here.
2594 */
2595 if (!pci_power_manageable(dev))
2596 return 0;
2597
2598 /* Don't do the same thing twice in a row for one device. */
2599 if (!!enable == !!dev->wakeup_prepared)
2600 return 0;
2601
2602 /*
2603 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605 * enable. To disable wake-up we call the platform first, for symmetry.
2606 */
2607
2608 if (enable) {
2609 int error;
2610
2611 /*
2612 * Enable PME signaling if the device can signal PME from
2613 * D3cold regardless of whether or not it can signal PME from
2614 * the current target state, because that will allow it to
2615 * signal PME when the hierarchy above it goes into D3cold and
2616 * the device itself ends up in D3cold as a result of that.
2617 */
2618 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2619 pci_pme_active(dev, true);
2620 else
2621 ret = 1;
2622 error = platform_pci_set_wakeup(dev, true);
2623 if (ret)
2624 ret = error;
2625 if (!ret)
2626 dev->wakeup_prepared = true;
2627 } else {
2628 platform_pci_set_wakeup(dev, false);
2629 pci_pme_active(dev, false);
2630 dev->wakeup_prepared = false;
2631 }
2632
2633 return ret;
2634}
2635
2636/**
2637 * pci_enable_wake - change wakeup settings for a PCI device
2638 * @pci_dev: Target device
2639 * @state: PCI state from which device will issue wakeup events
2640 * @enable: Whether or not to enable event generation
2641 *
2642 * If @enable is set, check device_may_wakeup() for the device before calling
2643 * __pci_enable_wake() for it.
2644 */
2645int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2646{
2647 if (enable && !device_may_wakeup(&pci_dev->dev))
2648 return -EINVAL;
2649
2650 return __pci_enable_wake(pci_dev, state, enable);
2651}
2652EXPORT_SYMBOL(pci_enable_wake);
2653
2654/**
2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656 * @dev: PCI device to prepare
2657 * @enable: True to enable wake-up event generation; false to disable
2658 *
2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660 * and this function allows them to set that up cleanly - pci_enable_wake()
2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662 * ordering constraints.
2663 *
2664 * This function only returns error code if the device is not allowed to wake
2665 * up the system from sleep or it is not capable of generating PME# from both
2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2667 */
2668int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2669{
2670 return pci_pme_capable(dev, PCI_D3cold) ?
2671 pci_enable_wake(dev, PCI_D3cold, enable) :
2672 pci_enable_wake(dev, PCI_D3hot, enable);
2673}
2674EXPORT_SYMBOL(pci_wake_from_d3);
2675
2676/**
2677 * pci_target_state - find an appropriate low power state for a given PCI dev
2678 * @dev: PCI device
2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2680 *
2681 * Use underlying platform code to find a supported low power state for @dev.
2682 * If the platform can't manage @dev, return the deepest state from which it
2683 * can generate wake events, based on any available PME info.
2684 */
2685static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2686{
2687 if (platform_pci_power_manageable(dev)) {
2688 /*
2689 * Call the platform to find the target state for the device.
2690 */
2691 pci_power_t state = platform_pci_choose_state(dev);
2692
2693 switch (state) {
2694 case PCI_POWER_ERROR:
2695 case PCI_UNKNOWN:
2696 return PCI_D3hot;
2697
2698 case PCI_D1:
2699 case PCI_D2:
2700 if (pci_no_d1d2(dev))
2701 return PCI_D3hot;
2702 }
2703
2704 return state;
2705 }
2706
2707 /*
2708 * If the device is in D3cold even though it's not power-manageable by
2709 * the platform, it may have been powered down by non-standard means.
2710 * Best to let it slumber.
2711 */
2712 if (dev->current_state == PCI_D3cold)
2713 return PCI_D3cold;
2714 else if (!dev->pm_cap)
2715 return PCI_D0;
2716
2717 if (wakeup && dev->pme_support) {
2718 pci_power_t state = PCI_D3hot;
2719
2720 /*
2721 * Find the deepest state from which the device can generate
2722 * PME#.
2723 */
2724 while (state && !(dev->pme_support & (1 << state)))
2725 state--;
2726
2727 if (state)
2728 return state;
2729 else if (dev->pme_support & 1)
2730 return PCI_D0;
2731 }
2732
2733 return PCI_D3hot;
2734}
2735
2736/**
2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738 * into a sleep state
2739 * @dev: Device to handle.
2740 *
2741 * Choose the power state appropriate for the device depending on whether
2742 * it can wake up the system and/or is power manageable by the platform
2743 * (PCI_D3hot is the default) and put the device into that state.
2744 */
2745int pci_prepare_to_sleep(struct pci_dev *dev)
2746{
2747 bool wakeup = device_may_wakeup(&dev->dev);
2748 pci_power_t target_state = pci_target_state(dev, wakeup);
2749 int error;
2750
2751 if (target_state == PCI_POWER_ERROR)
2752 return -EIO;
2753
2754 pci_enable_wake(dev, target_state, wakeup);
2755
2756 error = pci_set_power_state(dev, target_state);
2757
2758 if (error)
2759 pci_enable_wake(dev, target_state, false);
2760
2761 return error;
2762}
2763EXPORT_SYMBOL(pci_prepare_to_sleep);
2764
2765/**
2766 * pci_back_from_sleep - turn PCI device on during system-wide transition
2767 * into working state
2768 * @dev: Device to handle.
2769 *
2770 * Disable device's system wake-up capability and put it into D0.
2771 */
2772int pci_back_from_sleep(struct pci_dev *dev)
2773{
2774 int ret = pci_set_power_state(dev, PCI_D0);
2775
2776 if (ret)
2777 return ret;
2778
2779 pci_enable_wake(dev, PCI_D0, false);
2780 return 0;
2781}
2782EXPORT_SYMBOL(pci_back_from_sleep);
2783
2784/**
2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786 * @dev: PCI device being suspended.
2787 *
2788 * Prepare @dev to generate wake-up events at run time and put it into a low
2789 * power state.
2790 */
2791int pci_finish_runtime_suspend(struct pci_dev *dev)
2792{
2793 pci_power_t target_state;
2794 int error;
2795
2796 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2797 if (target_state == PCI_POWER_ERROR)
2798 return -EIO;
2799
2800 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2801
2802 error = pci_set_power_state(dev, target_state);
2803
2804 if (error)
2805 pci_enable_wake(dev, target_state, false);
2806
2807 return error;
2808}
2809
2810/**
2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812 * @dev: Device to check.
2813 *
2814 * Return true if the device itself is capable of generating wake-up events
2815 * (through the platform or using the native PCIe PME) or if the device supports
2816 * PME and one of its upstream bridges can generate wake-up events.
2817 */
2818bool pci_dev_run_wake(struct pci_dev *dev)
2819{
2820 struct pci_bus *bus = dev->bus;
2821
2822 if (!dev->pme_support)
2823 return false;
2824
2825 /* PME-capable in principle, but not from the target power state */
2826 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2827 return false;
2828
2829 if (device_can_wakeup(&dev->dev))
2830 return true;
2831
2832 while (bus->parent) {
2833 struct pci_dev *bridge = bus->self;
2834
2835 if (device_can_wakeup(&bridge->dev))
2836 return true;
2837
2838 bus = bus->parent;
2839 }
2840
2841 /* We have reached the root bus. */
2842 if (bus->bridge)
2843 return device_can_wakeup(bus->bridge);
2844
2845 return false;
2846}
2847EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2848
2849/**
2850 * pci_dev_need_resume - Check if it is necessary to resume the device.
2851 * @pci_dev: Device to check.
2852 *
2853 * Return 'true' if the device is not runtime-suspended or it has to be
2854 * reconfigured due to wakeup settings difference between system and runtime
2855 * suspend, or the current power state of it is not suitable for the upcoming
2856 * (system-wide) transition.
2857 */
2858bool pci_dev_need_resume(struct pci_dev *pci_dev)
2859{
2860 struct device *dev = &pci_dev->dev;
2861 pci_power_t target_state;
2862
2863 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2864 return true;
2865
2866 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2867
2868 /*
2869 * If the earlier platform check has not triggered, D3cold is just power
2870 * removal on top of D3hot, so no need to resume the device in that
2871 * case.
2872 */
2873 return target_state != pci_dev->current_state &&
2874 target_state != PCI_D3cold &&
2875 pci_dev->current_state != PCI_D3hot;
2876}
2877
2878/**
2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880 * @pci_dev: Device to check.
2881 *
2882 * If the device is suspended and it is not configured for system wakeup,
2883 * disable PME for it to prevent it from waking up the system unnecessarily.
2884 *
2885 * Note that if the device's power state is D3cold and the platform check in
2886 * pci_dev_need_resume() has not triggered, the device's configuration need not
2887 * be changed.
2888 */
2889void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2890{
2891 struct device *dev = &pci_dev->dev;
2892
2893 spin_lock_irq(&dev->power.lock);
2894
2895 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2896 pci_dev->current_state < PCI_D3cold)
2897 __pci_pme_active(pci_dev, false);
2898
2899 spin_unlock_irq(&dev->power.lock);
2900}
2901
2902/**
2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904 * @pci_dev: Device to handle.
2905 *
2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907 * it might have been disabled during the prepare phase of system suspend if
2908 * the device was not configured for system wakeup.
2909 */
2910void pci_dev_complete_resume(struct pci_dev *pci_dev)
2911{
2912 struct device *dev = &pci_dev->dev;
2913
2914 if (!pci_dev_run_wake(pci_dev))
2915 return;
2916
2917 spin_lock_irq(&dev->power.lock);
2918
2919 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2920 __pci_pme_active(pci_dev, true);
2921
2922 spin_unlock_irq(&dev->power.lock);
2923}
2924
2925/**
2926 * pci_choose_state - Choose the power state of a PCI device.
2927 * @dev: Target PCI device.
2928 * @state: Target state for the whole system.
2929 *
2930 * Returns PCI power state suitable for @dev and @state.
2931 */
2932pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2933{
2934 if (state.event == PM_EVENT_ON)
2935 return PCI_D0;
2936
2937 return pci_target_state(dev, false);
2938}
2939EXPORT_SYMBOL(pci_choose_state);
2940
2941void pci_config_pm_runtime_get(struct pci_dev *pdev)
2942{
2943 struct device *dev = &pdev->dev;
2944 struct device *parent = dev->parent;
2945
2946 if (parent)
2947 pm_runtime_get_sync(parent);
2948 pm_runtime_get_noresume(dev);
2949 /*
2950 * pdev->current_state is set to PCI_D3cold during suspending,
2951 * so wait until suspending completes
2952 */
2953 pm_runtime_barrier(dev);
2954 /*
2955 * Only need to resume devices in D3cold, because config
2956 * registers are still accessible for devices suspended but
2957 * not in D3cold.
2958 */
2959 if (pdev->current_state == PCI_D3cold)
2960 pm_runtime_resume(dev);
2961}
2962
2963void pci_config_pm_runtime_put(struct pci_dev *pdev)
2964{
2965 struct device *dev = &pdev->dev;
2966 struct device *parent = dev->parent;
2967
2968 pm_runtime_put(dev);
2969 if (parent)
2970 pm_runtime_put_sync(parent);
2971}
2972
2973static const struct dmi_system_id bridge_d3_blacklist[] = {
2974#ifdef CONFIG_X86
2975 {
2976 /*
2977 * Gigabyte X299 root port is not marked as hotplug capable
2978 * which allows Linux to power manage it. However, this
2979 * confuses the BIOS SMI handler so don't power manage root
2980 * ports on that system.
2981 */
2982 .ident = "X299 DESIGNARE EX-CF",
2983 .matches = {
2984 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2985 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2986 },
2987 },
2988 {
2989 /*
2990 * Downstream device is not accessible after putting a root port
2991 * into D3cold and back into D0 on Elo Continental Z2 board
2992 */
2993 .ident = "Elo Continental Z2",
2994 .matches = {
2995 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2996 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2997 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2998 },
2999 },
3000 {
3001 /*
3002 * Changing power state of root port dGPU is connected fails
3003 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3004 */
3005 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3006 .matches = {
3007 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3008 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3009 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3010 },
3011 },
3012#endif
3013 { }
3014};
3015
3016/**
3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018 * @bridge: Bridge to check
3019 *
3020 * This function checks if it is possible to move the bridge to D3.
3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3022 */
3023bool pci_bridge_d3_possible(struct pci_dev *bridge)
3024{
3025 if (!pci_is_pcie(bridge))
3026 return false;
3027
3028 switch (pci_pcie_type(bridge)) {
3029 case PCI_EXP_TYPE_ROOT_PORT:
3030 case PCI_EXP_TYPE_UPSTREAM:
3031 case PCI_EXP_TYPE_DOWNSTREAM:
3032 if (pci_bridge_d3_disable)
3033 return false;
3034
3035 /*
3036 * Hotplug ports handled by firmware in System Management Mode
3037 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3038 */
3039 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3040 return false;
3041
3042 if (pci_bridge_d3_force)
3043 return true;
3044
3045 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3046 if (bridge->is_thunderbolt)
3047 return true;
3048
3049 /* Platform might know better if the bridge supports D3 */
3050 if (platform_pci_bridge_d3(bridge))
3051 return true;
3052
3053 /*
3054 * Hotplug ports handled natively by the OS were not validated
3055 * by vendors for runtime D3 at least until 2018 because there
3056 * was no OS support.
3057 */
3058 if (bridge->is_hotplug_bridge)
3059 return false;
3060
3061 if (dmi_check_system(bridge_d3_blacklist))
3062 return false;
3063
3064 /*
3065 * It should be safe to put PCIe ports from 2015 or newer
3066 * to D3.
3067 */
3068 if (dmi_get_bios_year() >= 2015)
3069 return true;
3070 break;
3071 }
3072
3073 return false;
3074}
3075
3076static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3077{
3078 bool *d3cold_ok = data;
3079
3080 if (/* The device needs to be allowed to go D3cold ... */
3081 dev->no_d3cold || !dev->d3cold_allowed ||
3082
3083 /* ... and if it is wakeup capable to do so from D3cold. */
3084 (device_may_wakeup(&dev->dev) &&
3085 !pci_pme_capable(dev, PCI_D3cold)) ||
3086
3087 /* If it is a bridge it must be allowed to go to D3. */
3088 !pci_power_manageable(dev))
3089
3090 *d3cold_ok = false;
3091
3092 return !*d3cold_ok;
3093}
3094
3095/*
3096 * pci_bridge_d3_update - Update bridge D3 capabilities
3097 * @dev: PCI device which is changed
3098 *
3099 * Update upstream bridge PM capabilities accordingly depending on if the
3100 * device PM configuration was changed or the device is being removed. The
3101 * change is also propagated upstream.
3102 */
3103void pci_bridge_d3_update(struct pci_dev *dev)
3104{
3105 bool remove = !device_is_registered(&dev->dev);
3106 struct pci_dev *bridge;
3107 bool d3cold_ok = true;
3108
3109 bridge = pci_upstream_bridge(dev);
3110 if (!bridge || !pci_bridge_d3_possible(bridge))
3111 return;
3112
3113 /*
3114 * If D3 is currently allowed for the bridge, removing one of its
3115 * children won't change that.
3116 */
3117 if (remove && bridge->bridge_d3)
3118 return;
3119
3120 /*
3121 * If D3 is currently allowed for the bridge and a child is added or
3122 * changed, disallowance of D3 can only be caused by that child, so
3123 * we only need to check that single device, not any of its siblings.
3124 *
3125 * If D3 is currently not allowed for the bridge, checking the device
3126 * first may allow us to skip checking its siblings.
3127 */
3128 if (!remove)
3129 pci_dev_check_d3cold(dev, &d3cold_ok);
3130
3131 /*
3132 * If D3 is currently not allowed for the bridge, this may be caused
3133 * either by the device being changed/removed or any of its siblings,
3134 * so we need to go through all children to find out if one of them
3135 * continues to block D3.
3136 */
3137 if (d3cold_ok && !bridge->bridge_d3)
3138 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3139 &d3cold_ok);
3140
3141 if (bridge->bridge_d3 != d3cold_ok) {
3142 bridge->bridge_d3 = d3cold_ok;
3143 /* Propagate change to upstream bridges */
3144 pci_bridge_d3_update(bridge);
3145 }
3146}
3147
3148/**
3149 * pci_d3cold_enable - Enable D3cold for device
3150 * @dev: PCI device to handle
3151 *
3152 * This function can be used in drivers to enable D3cold from the device
3153 * they handle. It also updates upstream PCI bridge PM capabilities
3154 * accordingly.
3155 */
3156void pci_d3cold_enable(struct pci_dev *dev)
3157{
3158 if (dev->no_d3cold) {
3159 dev->no_d3cold = false;
3160 pci_bridge_d3_update(dev);
3161 }
3162}
3163EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3164
3165/**
3166 * pci_d3cold_disable - Disable D3cold for device
3167 * @dev: PCI device to handle
3168 *
3169 * This function can be used in drivers to disable D3cold from the device
3170 * they handle. It also updates upstream PCI bridge PM capabilities
3171 * accordingly.
3172 */
3173void pci_d3cold_disable(struct pci_dev *dev)
3174{
3175 if (!dev->no_d3cold) {
3176 dev->no_d3cold = true;
3177 pci_bridge_d3_update(dev);
3178 }
3179}
3180EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3181
3182/**
3183 * pci_pm_init - Initialize PM functions of given PCI device
3184 * @dev: PCI device to handle.
3185 */
3186void pci_pm_init(struct pci_dev *dev)
3187{
3188 int pm;
3189 u16 status;
3190 u16 pmc;
3191
3192 pm_runtime_forbid(&dev->dev);
3193 pm_runtime_set_active(&dev->dev);
3194 pm_runtime_enable(&dev->dev);
3195 device_enable_async_suspend(&dev->dev);
3196 dev->wakeup_prepared = false;
3197
3198 dev->pm_cap = 0;
3199 dev->pme_support = 0;
3200
3201 /* find PCI PM capability in list */
3202 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3203 if (!pm)
3204 return;
3205 /* Check device's ability to generate PME# */
3206 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3207
3208 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3209 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3210 pmc & PCI_PM_CAP_VER_MASK);
3211 return;
3212 }
3213
3214 dev->pm_cap = pm;
3215 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3216 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3217 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3218 dev->d3cold_allowed = true;
3219
3220 dev->d1_support = false;
3221 dev->d2_support = false;
3222 if (!pci_no_d1d2(dev)) {
3223 if (pmc & PCI_PM_CAP_D1)
3224 dev->d1_support = true;
3225 if (pmc & PCI_PM_CAP_D2)
3226 dev->d2_support = true;
3227
3228 if (dev->d1_support || dev->d2_support)
3229 pci_info(dev, "supports%s%s\n",
3230 dev->d1_support ? " D1" : "",
3231 dev->d2_support ? " D2" : "");
3232 }
3233
3234 pmc &= PCI_PM_CAP_PME_MASK;
3235 if (pmc) {
3236 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3237 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3238 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3239 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3240 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3241 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3242 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3243 dev->pme_poll = true;
3244 /*
3245 * Make device's PM flags reflect the wake-up capability, but
3246 * let the user space enable it to wake up the system as needed.
3247 */
3248 device_set_wakeup_capable(&dev->dev, true);
3249 /* Disable the PME# generation functionality */
3250 pci_pme_active(dev, false);
3251 }
3252
3253 pci_read_config_word(dev, PCI_STATUS, &status);
3254 if (status & PCI_STATUS_IMM_READY)
3255 dev->imm_ready = 1;
3256}
3257
3258static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3259{
3260 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3261
3262 switch (prop) {
3263 case PCI_EA_P_MEM:
3264 case PCI_EA_P_VF_MEM:
3265 flags |= IORESOURCE_MEM;
3266 break;
3267 case PCI_EA_P_MEM_PREFETCH:
3268 case PCI_EA_P_VF_MEM_PREFETCH:
3269 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3270 break;
3271 case PCI_EA_P_IO:
3272 flags |= IORESOURCE_IO;
3273 break;
3274 default:
3275 return 0;
3276 }
3277
3278 return flags;
3279}
3280
3281static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3282 u8 prop)
3283{
3284 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3285 return &dev->resource[bei];
3286#ifdef CONFIG_PCI_IOV
3287 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3288 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3289 return &dev->resource[PCI_IOV_RESOURCES +
3290 bei - PCI_EA_BEI_VF_BAR0];
3291#endif
3292 else if (bei == PCI_EA_BEI_ROM)
3293 return &dev->resource[PCI_ROM_RESOURCE];
3294 else
3295 return NULL;
3296}
3297
3298/* Read an Enhanced Allocation (EA) entry */
3299static int pci_ea_read(struct pci_dev *dev, int offset)
3300{
3301 struct resource *res;
3302 const char *res_name;
3303 int ent_size, ent_offset = offset;
3304 resource_size_t start, end;
3305 unsigned long flags;
3306 u32 dw0, bei, base, max_offset;
3307 u8 prop;
3308 bool support_64 = (sizeof(resource_size_t) >= 8);
3309
3310 pci_read_config_dword(dev, ent_offset, &dw0);
3311 ent_offset += 4;
3312
3313 /* Entry size field indicates DWORDs after 1st */
3314 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3315
3316 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3317 goto out;
3318
3319 bei = FIELD_GET(PCI_EA_BEI, dw0);
3320 prop = FIELD_GET(PCI_EA_PP, dw0);
3321
3322 /*
3323 * If the Property is in the reserved range, try the Secondary
3324 * Property instead.
3325 */
3326 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3327 prop = FIELD_GET(PCI_EA_SP, dw0);
3328 if (prop > PCI_EA_P_BRIDGE_IO)
3329 goto out;
3330
3331 res = pci_ea_get_resource(dev, bei, prop);
3332 res_name = pci_resource_name(dev, bei);
3333 if (!res) {
3334 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3335 goto out;
3336 }
3337
3338 flags = pci_ea_flags(dev, prop);
3339 if (!flags) {
3340 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3341 goto out;
3342 }
3343
3344 /* Read Base */
3345 pci_read_config_dword(dev, ent_offset, &base);
3346 start = (base & PCI_EA_FIELD_MASK);
3347 ent_offset += 4;
3348
3349 /* Read MaxOffset */
3350 pci_read_config_dword(dev, ent_offset, &max_offset);
3351 ent_offset += 4;
3352
3353 /* Read Base MSBs (if 64-bit entry) */
3354 if (base & PCI_EA_IS_64) {
3355 u32 base_upper;
3356
3357 pci_read_config_dword(dev, ent_offset, &base_upper);
3358 ent_offset += 4;
3359
3360 flags |= IORESOURCE_MEM_64;
3361
3362 /* entry starts above 32-bit boundary, can't use */
3363 if (!support_64 && base_upper)
3364 goto out;
3365
3366 if (support_64)
3367 start |= ((u64)base_upper << 32);
3368 }
3369
3370 end = start + (max_offset | 0x03);
3371
3372 /* Read MaxOffset MSBs (if 64-bit entry) */
3373 if (max_offset & PCI_EA_IS_64) {
3374 u32 max_offset_upper;
3375
3376 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3377 ent_offset += 4;
3378
3379 flags |= IORESOURCE_MEM_64;
3380
3381 /* entry too big, can't use */
3382 if (!support_64 && max_offset_upper)
3383 goto out;
3384
3385 if (support_64)
3386 end += ((u64)max_offset_upper << 32);
3387 }
3388
3389 if (end < start) {
3390 pci_err(dev, "EA Entry crosses address boundary\n");
3391 goto out;
3392 }
3393
3394 if (ent_size != ent_offset - offset) {
3395 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3396 ent_size, ent_offset - offset);
3397 goto out;
3398 }
3399
3400 res->name = pci_name(dev);
3401 res->start = start;
3402 res->end = end;
3403 res->flags = flags;
3404
3405 if (bei <= PCI_EA_BEI_BAR5)
3406 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407 res_name, res, prop);
3408 else if (bei == PCI_EA_BEI_ROM)
3409 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410 res_name, res, prop);
3411 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3412 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413 res_name, res, prop);
3414 else
3415 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3416 bei, res, prop);
3417
3418out:
3419 return offset + ent_size;
3420}
3421
3422/* Enhanced Allocation Initialization */
3423void pci_ea_init(struct pci_dev *dev)
3424{
3425 int ea;
3426 u8 num_ent;
3427 int offset;
3428 int i;
3429
3430 /* find PCI EA capability in list */
3431 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3432 if (!ea)
3433 return;
3434
3435 /* determine the number of entries */
3436 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3437 &num_ent);
3438 num_ent &= PCI_EA_NUM_ENT_MASK;
3439
3440 offset = ea + PCI_EA_FIRST_ENT;
3441
3442 /* Skip DWORD 2 for type 1 functions */
3443 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3444 offset += 4;
3445
3446 /* parse each EA entry */
3447 for (i = 0; i < num_ent; ++i)
3448 offset = pci_ea_read(dev, offset);
3449}
3450
3451static void pci_add_saved_cap(struct pci_dev *pci_dev,
3452 struct pci_cap_saved_state *new_cap)
3453{
3454 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3455}
3456
3457/**
3458 * _pci_add_cap_save_buffer - allocate buffer for saving given
3459 * capability registers
3460 * @dev: the PCI device
3461 * @cap: the capability to allocate the buffer for
3462 * @extended: Standard or Extended capability ID
3463 * @size: requested size of the buffer
3464 */
3465static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3466 bool extended, unsigned int size)
3467{
3468 int pos;
3469 struct pci_cap_saved_state *save_state;
3470
3471 if (extended)
3472 pos = pci_find_ext_capability(dev, cap);
3473 else
3474 pos = pci_find_capability(dev, cap);
3475
3476 if (!pos)
3477 return 0;
3478
3479 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3480 if (!save_state)
3481 return -ENOMEM;
3482
3483 save_state->cap.cap_nr = cap;
3484 save_state->cap.cap_extended = extended;
3485 save_state->cap.size = size;
3486 pci_add_saved_cap(dev, save_state);
3487
3488 return 0;
3489}
3490
3491int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3492{
3493 return _pci_add_cap_save_buffer(dev, cap, false, size);
3494}
3495
3496int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3497{
3498 return _pci_add_cap_save_buffer(dev, cap, true, size);
3499}
3500
3501/**
3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503 * @dev: the PCI device
3504 */
3505void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3506{
3507 int error;
3508
3509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3510 PCI_EXP_SAVE_REGS * sizeof(u16));
3511 if (error)
3512 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3513
3514 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3515 if (error)
3516 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3517
3518 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3519 2 * sizeof(u16));
3520 if (error)
3521 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3522
3523 pci_allocate_vc_save_buffers(dev);
3524}
3525
3526void pci_free_cap_save_buffers(struct pci_dev *dev)
3527{
3528 struct pci_cap_saved_state *tmp;
3529 struct hlist_node *n;
3530
3531 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3532 kfree(tmp);
3533}
3534
3535/**
3536 * pci_configure_ari - enable or disable ARI forwarding
3537 * @dev: the PCI device
3538 *
3539 * If @dev and its upstream bridge both support ARI, enable ARI in the
3540 * bridge. Otherwise, disable ARI in the bridge.
3541 */
3542void pci_configure_ari(struct pci_dev *dev)
3543{
3544 u32 cap;
3545 struct pci_dev *bridge;
3546
3547 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3548 return;
3549
3550 bridge = dev->bus->self;
3551 if (!bridge)
3552 return;
3553
3554 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3555 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3556 return;
3557
3558 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3559 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3560 PCI_EXP_DEVCTL2_ARI);
3561 bridge->ari_enabled = 1;
3562 } else {
3563 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3564 PCI_EXP_DEVCTL2_ARI);
3565 bridge->ari_enabled = 0;
3566 }
3567}
3568
3569static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3570{
3571 int pos;
3572 u16 cap, ctrl;
3573
3574 pos = pdev->acs_cap;
3575 if (!pos)
3576 return false;
3577
3578 /*
3579 * Except for egress control, capabilities are either required
3580 * or only required if controllable. Features missing from the
3581 * capability field can therefore be assumed as hard-wired enabled.
3582 */
3583 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3584 acs_flags &= (cap | PCI_ACS_EC);
3585
3586 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3587 return (ctrl & acs_flags) == acs_flags;
3588}
3589
3590/**
3591 * pci_acs_enabled - test ACS against required flags for a given device
3592 * @pdev: device to test
3593 * @acs_flags: required PCI ACS flags
3594 *
3595 * Return true if the device supports the provided flags. Automatically
3596 * filters out flags that are not implemented on multifunction devices.
3597 *
3598 * Note that this interface checks the effective ACS capabilities of the
3599 * device rather than the actual capabilities. For instance, most single
3600 * function endpoints are not required to support ACS because they have no
3601 * opportunity for peer-to-peer access. We therefore return 'true'
3602 * regardless of whether the device exposes an ACS capability. This makes
3603 * it much easier for callers of this function to ignore the actual type
3604 * or topology of the device when testing ACS support.
3605 */
3606bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3607{
3608 int ret;
3609
3610 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3611 if (ret >= 0)
3612 return ret > 0;
3613
3614 /*
3615 * Conventional PCI and PCI-X devices never support ACS, either
3616 * effectively or actually. The shared bus topology implies that
3617 * any device on the bus can receive or snoop DMA.
3618 */
3619 if (!pci_is_pcie(pdev))
3620 return false;
3621
3622 switch (pci_pcie_type(pdev)) {
3623 /*
3624 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625 * but since their primary interface is PCI/X, we conservatively
3626 * handle them as we would a non-PCIe device.
3627 */
3628 case PCI_EXP_TYPE_PCIE_BRIDGE:
3629 /*
3630 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3631 * applicable... must never implement an ACS Extended Capability...".
3632 * This seems arbitrary, but we take a conservative interpretation
3633 * of this statement.
3634 */
3635 case PCI_EXP_TYPE_PCI_BRIDGE:
3636 case PCI_EXP_TYPE_RC_EC:
3637 return false;
3638 /*
3639 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640 * implement ACS in order to indicate their peer-to-peer capabilities,
3641 * regardless of whether they are single- or multi-function devices.
3642 */
3643 case PCI_EXP_TYPE_DOWNSTREAM:
3644 case PCI_EXP_TYPE_ROOT_PORT:
3645 return pci_acs_flags_enabled(pdev, acs_flags);
3646 /*
3647 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648 * implemented by the remaining PCIe types to indicate peer-to-peer
3649 * capabilities, but only when they are part of a multifunction
3650 * device. The footnote for section 6.12 indicates the specific
3651 * PCIe types included here.
3652 */
3653 case PCI_EXP_TYPE_ENDPOINT:
3654 case PCI_EXP_TYPE_UPSTREAM:
3655 case PCI_EXP_TYPE_LEG_END:
3656 case PCI_EXP_TYPE_RC_END:
3657 if (!pdev->multifunction)
3658 break;
3659
3660 return pci_acs_flags_enabled(pdev, acs_flags);
3661 }
3662
3663 /*
3664 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665 * to single function devices with the exception of downstream ports.
3666 */
3667 return true;
3668}
3669
3670/**
3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672 * @start: starting downstream device
3673 * @end: ending upstream device or NULL to search to the root bus
3674 * @acs_flags: required flags
3675 *
3676 * Walk up a device tree from start to end testing PCI ACS support. If
3677 * any step along the way does not support the required flags, return false.
3678 */
3679bool pci_acs_path_enabled(struct pci_dev *start,
3680 struct pci_dev *end, u16 acs_flags)
3681{
3682 struct pci_dev *pdev, *parent = start;
3683
3684 do {
3685 pdev = parent;
3686
3687 if (!pci_acs_enabled(pdev, acs_flags))
3688 return false;
3689
3690 if (pci_is_root_bus(pdev->bus))
3691 return (end == NULL);
3692
3693 parent = pdev->bus->self;
3694 } while (pdev != end);
3695
3696 return true;
3697}
3698
3699/**
3700 * pci_acs_init - Initialize ACS if hardware supports it
3701 * @dev: the PCI device
3702 */
3703void pci_acs_init(struct pci_dev *dev)
3704{
3705 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3706
3707 /*
3708 * Attempt to enable ACS regardless of capability because some Root
3709 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710 * the standard ACS capability but still support ACS via those
3711 * quirks.
3712 */
3713 pci_enable_acs(dev);
3714}
3715
3716/**
3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3718 * @pdev: PCI device
3719 * @bar: BAR to find
3720 *
3721 * Helper to find the position of the ctrl register for a BAR.
3722 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723 * Returns -ENOENT if no ctrl register for the BAR could be found.
3724 */
3725static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3726{
3727 unsigned int pos, nbars, i;
3728 u32 ctrl;
3729
3730 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3731 if (!pos)
3732 return -ENOTSUPP;
3733
3734 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3736
3737 for (i = 0; i < nbars; i++, pos += 8) {
3738 int bar_idx;
3739
3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742 if (bar_idx == bar)
3743 return pos;
3744 }
3745
3746 return -ENOENT;
3747}
3748
3749/**
3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3751 * @pdev: PCI device
3752 * @bar: BAR to query
3753 *
3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3756 */
3757u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3758{
3759 int pos;
3760 u32 cap;
3761
3762 pos = pci_rebar_find_pos(pdev, bar);
3763 if (pos < 0)
3764 return 0;
3765
3766 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3767 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3768
3769 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3771 bar == 0 && cap == 0x700)
3772 return 0x3f00;
3773
3774 return cap;
3775}
3776EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3777
3778/**
3779 * pci_rebar_get_current_size - get the current size of a BAR
3780 * @pdev: PCI device
3781 * @bar: BAR to set size to
3782 *
3783 * Read the size of a BAR from the resizable BAR config.
3784 * Returns size if found or negative error code.
3785 */
3786int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3787{
3788 int pos;
3789 u32 ctrl;
3790
3791 pos = pci_rebar_find_pos(pdev, bar);
3792 if (pos < 0)
3793 return pos;
3794
3795 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3796 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3797}
3798
3799/**
3800 * pci_rebar_set_size - set a new size for a BAR
3801 * @pdev: PCI device
3802 * @bar: BAR to set size to
3803 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3804 *
3805 * Set the new size of a BAR as defined in the spec.
3806 * Returns zero if resizing was successful, error code otherwise.
3807 */
3808int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3809{
3810 int pos;
3811 u32 ctrl;
3812
3813 pos = pci_rebar_find_pos(pdev, bar);
3814 if (pos < 0)
3815 return pos;
3816
3817 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3818 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3819 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3820 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3821 return 0;
3822}
3823
3824/**
3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826 * @dev: the PCI device
3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3831 *
3832 * Return 0 if all upstream bridges support AtomicOp routing, egress
3833 * blocking is disabled on all upstream ports, and the root port supports
3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835 * AtomicOp completion), or negative otherwise.
3836 */
3837int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3838{
3839 struct pci_bus *bus = dev->bus;
3840 struct pci_dev *bridge;
3841 u32 cap, ctl2;
3842
3843 /*
3844 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845 * in Device Control 2 is reserved in VFs and the PF value applies
3846 * to all associated VFs.
3847 */
3848 if (dev->is_virtfn)
3849 return -EINVAL;
3850
3851 if (!pci_is_pcie(dev))
3852 return -EINVAL;
3853
3854 /*
3855 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856 * AtomicOp requesters. For now, we only support endpoints as
3857 * requesters and root ports as completers. No endpoints as
3858 * completers, and no peer-to-peer.
3859 */
3860
3861 switch (pci_pcie_type(dev)) {
3862 case PCI_EXP_TYPE_ENDPOINT:
3863 case PCI_EXP_TYPE_LEG_END:
3864 case PCI_EXP_TYPE_RC_END:
3865 break;
3866 default:
3867 return -EINVAL;
3868 }
3869
3870 while (bus->parent) {
3871 bridge = bus->self;
3872
3873 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3874
3875 switch (pci_pcie_type(bridge)) {
3876 /* Ensure switch ports support AtomicOp routing */
3877 case PCI_EXP_TYPE_UPSTREAM:
3878 case PCI_EXP_TYPE_DOWNSTREAM:
3879 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3880 return -EINVAL;
3881 break;
3882
3883 /* Ensure root port supports all the sizes we care about */
3884 case PCI_EXP_TYPE_ROOT_PORT:
3885 if ((cap & cap_mask) != cap_mask)
3886 return -EINVAL;
3887 break;
3888 }
3889
3890 /* Ensure upstream ports don't block AtomicOps on egress */
3891 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3892 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3893 &ctl2);
3894 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3895 return -EINVAL;
3896 }
3897
3898 bus = bus->parent;
3899 }
3900
3901 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3902 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3903 return 0;
3904}
3905EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3906
3907/**
3908 * pci_release_region - Release a PCI bar
3909 * @pdev: PCI device whose resources were previously reserved by
3910 * pci_request_region()
3911 * @bar: BAR to release
3912 *
3913 * Releases the PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_region(). Call this function only
3915 * after all use of the PCI regions has ceased.
3916 */
3917void pci_release_region(struct pci_dev *pdev, int bar)
3918{
3919 /*
3920 * This is done for backwards compatibility, because the old PCI devres
3921 * API had a mode in which the function became managed if it had been
3922 * enabled with pcim_enable_device() instead of pci_enable_device().
3923 */
3924 if (pci_is_managed(pdev)) {
3925 pcim_release_region(pdev, bar);
3926 return;
3927 }
3928
3929 if (pci_resource_len(pdev, bar) == 0)
3930 return;
3931 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932 release_region(pci_resource_start(pdev, bar),
3933 pci_resource_len(pdev, bar));
3934 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935 release_mem_region(pci_resource_start(pdev, bar),
3936 pci_resource_len(pdev, bar));
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Returns: 0 on success, negative error code on failure.
3948 *
3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950 * being reserved by owner @res_name. Do not access any
3951 * address inside the PCI regions unless this call returns
3952 * successfully.
3953 *
3954 * If @exclusive is set, then the region is marked so that userspace
3955 * is explicitly not allowed to map the resource via /dev/mem or
3956 * sysfs MMIO access.
3957 *
3958 * Returns 0 on success, or %EBUSY on error. A warning
3959 * message is also printed on failure.
3960 */
3961static int __pci_request_region(struct pci_dev *pdev, int bar,
3962 const char *res_name, int exclusive)
3963{
3964 if (pci_is_managed(pdev)) {
3965 if (exclusive == IORESOURCE_EXCLUSIVE)
3966 return pcim_request_region_exclusive(pdev, bar, res_name);
3967
3968 return pcim_request_region(pdev, bar, res_name);
3969 }
3970
3971 if (pci_resource_len(pdev, bar) == 0)
3972 return 0;
3973
3974 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975 if (!request_region(pci_resource_start(pdev, bar),
3976 pci_resource_len(pdev, bar), res_name))
3977 goto err_out;
3978 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979 if (!__request_mem_region(pci_resource_start(pdev, bar),
3980 pci_resource_len(pdev, bar), res_name,
3981 exclusive))
3982 goto err_out;
3983 }
3984
3985 return 0;
3986
3987err_out:
3988 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3989 &pdev->resource[bar]);
3990 return -EBUSY;
3991}
3992
3993/**
3994 * pci_request_region - Reserve PCI I/O and memory resource
3995 * @pdev: PCI device whose resources are to be reserved
3996 * @bar: BAR to be reserved
3997 * @res_name: Name to be associated with resource
3998 *
3999 * Returns: 0 on success, negative error code on failure.
4000 *
4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002 * being reserved by owner @res_name. Do not access any
4003 * address inside the PCI regions unless this call returns
4004 * successfully.
4005 *
4006 * Returns 0 on success, or %EBUSY on error. A warning
4007 * message is also printed on failure.
4008 *
4009 * NOTE:
4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011 * when pcim_enable_device() has been called in advance. This hybrid feature is
4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4013 */
4014int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4015{
4016 return __pci_request_region(pdev, bar, res_name, 0);
4017}
4018EXPORT_SYMBOL(pci_request_region);
4019
4020/**
4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022 * @pdev: PCI device whose resources were previously reserved
4023 * @bars: Bitmask of BARs to be released
4024 *
4025 * Release selected PCI I/O and memory resources previously reserved.
4026 * Call this function only after all use of the PCI regions has ceased.
4027 */
4028void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4029{
4030 int i;
4031
4032 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4033 if (bars & (1 << i))
4034 pci_release_region(pdev, i);
4035}
4036EXPORT_SYMBOL(pci_release_selected_regions);
4037
4038static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4039 const char *res_name, int excl)
4040{
4041 int i;
4042
4043 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4044 if (bars & (1 << i))
4045 if (__pci_request_region(pdev, i, res_name, excl))
4046 goto err_out;
4047 return 0;
4048
4049err_out:
4050 while (--i >= 0)
4051 if (bars & (1 << i))
4052 pci_release_region(pdev, i);
4053
4054 return -EBUSY;
4055}
4056
4057
4058/**
4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources are to be reserved
4061 * @bars: Bitmask of BARs to be requested
4062 * @res_name: Name to be associated with resource
4063 *
4064 * Returns: 0 on success, negative error code on failure.
4065 *
4066 * NOTE:
4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068 * when pcim_enable_device() has been called in advance. This hybrid feature is
4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070 */
4071int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4072 const char *res_name)
4073{
4074 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4075}
4076EXPORT_SYMBOL(pci_request_selected_regions);
4077
4078/**
4079 * pci_request_selected_regions_exclusive - Request regions exclusively
4080 * @pdev: PCI device to request regions from
4081 * @bars: bit mask of BARs to request
4082 * @res_name: name to be associated with the requests
4083 *
4084 * Returns: 0 on success, negative error code on failure.
4085 *
4086 * NOTE:
4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088 * when pcim_enable_device() has been called in advance. This hybrid feature is
4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4090 */
4091int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 const char *res_name)
4093{
4094 return __pci_request_selected_regions(pdev, bars, res_name,
4095 IORESOURCE_EXCLUSIVE);
4096}
4097EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098
4099/**
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 * pci_request_regions()
4103 *
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions(). Call this function only
4106 * after all use of the PCI regions has ceased.
4107 */
4108void pci_release_regions(struct pci_dev *pdev)
4109{
4110 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4111}
4112EXPORT_SYMBOL(pci_release_regions);
4113
4114/**
4115 * pci_request_regions - Reserve PCI I/O and memory resources
4116 * @pdev: PCI device whose resources are to be reserved
4117 * @res_name: Name to be associated with resource.
4118 *
4119 * Mark all PCI regions associated with PCI device @pdev as
4120 * being reserved by owner @res_name. Do not access any
4121 * address inside the PCI regions unless this call returns
4122 * successfully.
4123 *
4124 * Returns 0 on success, or %EBUSY on error. A warning
4125 * message is also printed on failure.
4126 *
4127 * NOTE:
4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129 * when pcim_enable_device() has been called in advance. This hybrid feature is
4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4131 */
4132int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4133{
4134 return pci_request_selected_regions(pdev,
4135 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4136}
4137EXPORT_SYMBOL(pci_request_regions);
4138
4139/**
4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @res_name: Name to be associated with resource.
4143 *
4144 * Returns: 0 on success, negative error code on failure.
4145 *
4146 * Mark all PCI regions associated with PCI device @pdev as being reserved
4147 * by owner @res_name. Do not access any address inside the PCI regions
4148 * unless this call returns successfully.
4149 *
4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151 * and the sysfs MMIO access will not be allowed.
4152 *
4153 * Returns 0 on success, or %EBUSY on error. A warning message is also
4154 * printed on failure.
4155 *
4156 * NOTE:
4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158 * when pcim_enable_device() has been called in advance. This hybrid feature is
4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4160 */
4161int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4162{
4163 return pci_request_selected_regions_exclusive(pdev,
4164 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4165}
4166EXPORT_SYMBOL(pci_request_regions_exclusive);
4167
4168/*
4169 * Record the PCI IO range (expressed as CPU physical address + size).
4170 * Return a negative value if an error has occurred, zero otherwise
4171 */
4172int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4173 resource_size_t size)
4174{
4175 int ret = 0;
4176#ifdef PCI_IOBASE
4177 struct logic_pio_hwaddr *range;
4178
4179 if (!size || addr + size < addr)
4180 return -EINVAL;
4181
4182 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4183 if (!range)
4184 return -ENOMEM;
4185
4186 range->fwnode = fwnode;
4187 range->size = size;
4188 range->hw_start = addr;
4189 range->flags = LOGIC_PIO_CPU_MMIO;
4190
4191 ret = logic_pio_register_range(range);
4192 if (ret)
4193 kfree(range);
4194
4195 /* Ignore duplicates due to deferred probing */
4196 if (ret == -EEXIST)
4197 ret = 0;
4198#endif
4199
4200 return ret;
4201}
4202
4203phys_addr_t pci_pio_to_address(unsigned long pio)
4204{
4205#ifdef PCI_IOBASE
4206 if (pio < MMIO_UPPER_LIMIT)
4207 return logic_pio_to_hwaddr(pio);
4208#endif
4209
4210 return (phys_addr_t) OF_BAD_ADDR;
4211}
4212EXPORT_SYMBOL_GPL(pci_pio_to_address);
4213
4214unsigned long __weak pci_address_to_pio(phys_addr_t address)
4215{
4216#ifdef PCI_IOBASE
4217 return logic_pio_trans_cpuaddr(address);
4218#else
4219 if (address > IO_SPACE_LIMIT)
4220 return (unsigned long)-1;
4221
4222 return (unsigned long) address;
4223#endif
4224}
4225
4226/**
4227 * pci_remap_iospace - Remap the memory mapped I/O space
4228 * @res: Resource describing the I/O space
4229 * @phys_addr: physical address of range to be mapped
4230 *
4231 * Remap the memory mapped I/O space described by the @res and the CPU
4232 * physical address @phys_addr into virtual address space. Only
4233 * architectures that have memory mapped IO functions defined (and the
4234 * PCI_IOBASE value defined) should call this function.
4235 */
4236#ifndef pci_remap_iospace
4237int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4238{
4239#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241
4242 if (!(res->flags & IORESOURCE_IO))
4243 return -EINVAL;
4244
4245 if (res->end > IO_SPACE_LIMIT)
4246 return -EINVAL;
4247
4248 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4249 pgprot_device(PAGE_KERNEL));
4250#else
4251 /*
4252 * This architecture does not have memory mapped I/O space,
4253 * so this function should never be called
4254 */
4255 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4256 return -ENODEV;
4257#endif
4258}
4259EXPORT_SYMBOL(pci_remap_iospace);
4260#endif
4261
4262/**
4263 * pci_unmap_iospace - Unmap the memory mapped I/O space
4264 * @res: resource to be unmapped
4265 *
4266 * Unmap the CPU virtual address @res from virtual address space. Only
4267 * architectures that have memory mapped IO functions defined (and the
4268 * PCI_IOBASE value defined) should call this function.
4269 */
4270void pci_unmap_iospace(struct resource *res)
4271{
4272#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4274
4275 vunmap_range(vaddr, vaddr + resource_size(res));
4276#endif
4277}
4278EXPORT_SYMBOL(pci_unmap_iospace);
4279
4280static void __pci_set_master(struct pci_dev *dev, bool enable)
4281{
4282 u16 old_cmd, cmd;
4283
4284 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285 if (enable)
4286 cmd = old_cmd | PCI_COMMAND_MASTER;
4287 else
4288 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4289 if (cmd != old_cmd) {
4290 pci_dbg(dev, "%s bus mastering\n",
4291 enable ? "enabling" : "disabling");
4292 pci_write_config_word(dev, PCI_COMMAND, cmd);
4293 }
4294 dev->is_busmaster = enable;
4295}
4296
4297/**
4298 * pcibios_setup - process "pci=" kernel boot arguments
4299 * @str: string used to pass in "pci=" kernel boot arguments
4300 *
4301 * Process kernel boot arguments. This is the default implementation.
4302 * Architecture specific implementations can override this as necessary.
4303 */
4304char * __weak __init pcibios_setup(char *str)
4305{
4306 return str;
4307}
4308
4309/**
4310 * pcibios_set_master - enable PCI bus-mastering for device dev
4311 * @dev: the PCI device to enable
4312 *
4313 * Enables PCI bus-mastering for the device. This is the default
4314 * implementation. Architecture specific implementations can override
4315 * this if necessary.
4316 */
4317void __weak pcibios_set_master(struct pci_dev *dev)
4318{
4319 u8 lat;
4320
4321 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322 if (pci_is_pcie(dev))
4323 return;
4324
4325 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326 if (lat < 16)
4327 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4328 else if (lat > pcibios_max_latency)
4329 lat = pcibios_max_latency;
4330 else
4331 return;
4332
4333 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4334}
4335
4336/**
4337 * pci_set_master - enables bus-mastering for device dev
4338 * @dev: the PCI device to enable
4339 *
4340 * Enables bus-mastering on the device and calls pcibios_set_master()
4341 * to do the needed arch specific settings.
4342 */
4343void pci_set_master(struct pci_dev *dev)
4344{
4345 __pci_set_master(dev, true);
4346 pcibios_set_master(dev);
4347}
4348EXPORT_SYMBOL(pci_set_master);
4349
4350/**
4351 * pci_clear_master - disables bus-mastering for device dev
4352 * @dev: the PCI device to disable
4353 */
4354void pci_clear_master(struct pci_dev *dev)
4355{
4356 __pci_set_master(dev, false);
4357}
4358EXPORT_SYMBOL(pci_clear_master);
4359
4360/**
4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362 * @dev: the PCI device for which MWI is to be enabled
4363 *
4364 * Helper function for pci_set_mwi.
4365 * Originally copied from drivers/net/acenic.c.
4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_set_cacheline_size(struct pci_dev *dev)
4371{
4372 u8 cacheline_size;
4373
4374 if (!pci_cache_line_size)
4375 return -EINVAL;
4376
4377 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378 equal to or multiple of the right value. */
4379 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4380 if (cacheline_size >= pci_cache_line_size &&
4381 (cacheline_size % pci_cache_line_size) == 0)
4382 return 0;
4383
4384 /* Write the correct value. */
4385 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386 /* Read it back. */
4387 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4388 if (cacheline_size == pci_cache_line_size)
4389 return 0;
4390
4391 pci_dbg(dev, "cache line size of %d is not supported\n",
4392 pci_cache_line_size << 2);
4393
4394 return -EINVAL;
4395}
4396EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397
4398/**
4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400 * @dev: the PCI device for which MWI is enabled
4401 *
4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403 *
4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405 */
4406int pci_set_mwi(struct pci_dev *dev)
4407{
4408#ifdef PCI_DISABLE_MWI
4409 return 0;
4410#else
4411 int rc;
4412 u16 cmd;
4413
4414 rc = pci_set_cacheline_size(dev);
4415 if (rc)
4416 return rc;
4417
4418 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4419 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4420 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4421 cmd |= PCI_COMMAND_INVALIDATE;
4422 pci_write_config_word(dev, PCI_COMMAND, cmd);
4423 }
4424 return 0;
4425#endif
4426}
4427EXPORT_SYMBOL(pci_set_mwi);
4428
4429/**
4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431 * @dev: the PCI device for which MWI is enabled
4432 *
4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434 * Callers are not required to check the return value.
4435 *
4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4437 */
4438int pci_try_set_mwi(struct pci_dev *dev)
4439{
4440#ifdef PCI_DISABLE_MWI
4441 return 0;
4442#else
4443 return pci_set_mwi(dev);
4444#endif
4445}
4446EXPORT_SYMBOL(pci_try_set_mwi);
4447
4448/**
4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450 * @dev: the PCI device to disable
4451 *
4452 * Disables PCI Memory-Write-Invalidate transaction on the device
4453 */
4454void pci_clear_mwi(struct pci_dev *dev)
4455{
4456#ifndef PCI_DISABLE_MWI
4457 u16 cmd;
4458
4459 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4460 if (cmd & PCI_COMMAND_INVALIDATE) {
4461 cmd &= ~PCI_COMMAND_INVALIDATE;
4462 pci_write_config_word(dev, PCI_COMMAND, cmd);
4463 }
4464#endif
4465}
4466EXPORT_SYMBOL(pci_clear_mwi);
4467
4468/**
4469 * pci_disable_parity - disable parity checking for device
4470 * @dev: the PCI device to operate on
4471 *
4472 * Disable parity checking for device @dev
4473 */
4474void pci_disable_parity(struct pci_dev *dev)
4475{
4476 u16 cmd;
4477
4478 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479 if (cmd & PCI_COMMAND_PARITY) {
4480 cmd &= ~PCI_COMMAND_PARITY;
4481 pci_write_config_word(dev, PCI_COMMAND, cmd);
4482 }
4483}
4484
4485/**
4486 * pci_intx - enables/disables PCI INTx for device dev
4487 * @pdev: the PCI device to operate on
4488 * @enable: boolean: whether to enable or disable PCI INTx
4489 *
4490 * Enables/disables PCI INTx for device @pdev
4491 */
4492void pci_intx(struct pci_dev *pdev, int enable)
4493{
4494 u16 pci_command, new;
4495
4496 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4497
4498 if (enable)
4499 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4500 else
4501 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4502
4503 if (new == pci_command)
4504 return;
4505
4506 pci_write_config_word(pdev, PCI_COMMAND, new);
4507}
4508EXPORT_SYMBOL_GPL(pci_intx);
4509
4510/**
4511 * pci_wait_for_pending_transaction - wait for pending transaction
4512 * @dev: the PCI device to operate on
4513 *
4514 * Return 0 if transaction is pending 1 otherwise.
4515 */
4516int pci_wait_for_pending_transaction(struct pci_dev *dev)
4517{
4518 if (!pci_is_pcie(dev))
4519 return 1;
4520
4521 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4522 PCI_EXP_DEVSTA_TRPND);
4523}
4524EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4525
4526/**
4527 * pcie_flr - initiate a PCIe function level reset
4528 * @dev: device to reset
4529 *
4530 * Initiate a function level reset unconditionally on @dev without
4531 * checking any flags and DEVCAP
4532 */
4533int pcie_flr(struct pci_dev *dev)
4534{
4535 if (!pci_wait_for_pending_transaction(dev))
4536 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4537
4538 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4539
4540 if (dev->imm_ready)
4541 return 0;
4542
4543 /*
4544 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4545 * 100ms, but may silently discard requests while the FLR is in
4546 * progress. Wait 100ms before trying to access the device.
4547 */
4548 msleep(100);
4549
4550 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4551}
4552EXPORT_SYMBOL_GPL(pcie_flr);
4553
4554/**
4555 * pcie_reset_flr - initiate a PCIe function level reset
4556 * @dev: device to reset
4557 * @probe: if true, return 0 if device can be reset this way
4558 *
4559 * Initiate a function level reset on @dev.
4560 */
4561int pcie_reset_flr(struct pci_dev *dev, bool probe)
4562{
4563 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4564 return -ENOTTY;
4565
4566 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4567 return -ENOTTY;
4568
4569 if (probe)
4570 return 0;
4571
4572 return pcie_flr(dev);
4573}
4574EXPORT_SYMBOL_GPL(pcie_reset_flr);
4575
4576static int pci_af_flr(struct pci_dev *dev, bool probe)
4577{
4578 int pos;
4579 u8 cap;
4580
4581 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4582 if (!pos)
4583 return -ENOTTY;
4584
4585 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4586 return -ENOTTY;
4587
4588 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4589 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4590 return -ENOTTY;
4591
4592 if (probe)
4593 return 0;
4594
4595 /*
4596 * Wait for Transaction Pending bit to clear. A word-aligned test
4597 * is used, so we use the control offset rather than status and shift
4598 * the test bit to match.
4599 */
4600 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4601 PCI_AF_STATUS_TP << 8))
4602 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4603
4604 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4605
4606 if (dev->imm_ready)
4607 return 0;
4608
4609 /*
4610 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4611 * updated 27 July 2006; a device must complete an FLR within
4612 * 100ms, but may silently discard requests while the FLR is in
4613 * progress. Wait 100ms before trying to access the device.
4614 */
4615 msleep(100);
4616
4617 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4618}
4619
4620/**
4621 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4622 * @dev: Device to reset.
4623 * @probe: if true, return 0 if the device can be reset this way.
4624 *
4625 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4626 * unset, it will be reinitialized internally when going from PCI_D3hot to
4627 * PCI_D0. If that's the case and the device is not in a low-power state
4628 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4629 *
4630 * NOTE: This causes the caller to sleep for twice the device power transition
4631 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4632 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4633 * Moreover, only devices in D0 can be reset by this function.
4634 */
4635static int pci_pm_reset(struct pci_dev *dev, bool probe)
4636{
4637 u16 csr;
4638
4639 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4640 return -ENOTTY;
4641
4642 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4643 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4644 return -ENOTTY;
4645
4646 if (probe)
4647 return 0;
4648
4649 if (dev->current_state != PCI_D0)
4650 return -EINVAL;
4651
4652 csr &= ~PCI_PM_CTRL_STATE_MASK;
4653 csr |= PCI_D3hot;
4654 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4655 pci_dev_d3_sleep(dev);
4656
4657 csr &= ~PCI_PM_CTRL_STATE_MASK;
4658 csr |= PCI_D0;
4659 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4660 pci_dev_d3_sleep(dev);
4661
4662 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4663}
4664
4665/**
4666 * pcie_wait_for_link_status - Wait for link status change
4667 * @pdev: Device whose link to wait for.
4668 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4669 * @active: Waiting for active or inactive?
4670 *
4671 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4672 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4673 */
4674static int pcie_wait_for_link_status(struct pci_dev *pdev,
4675 bool use_lt, bool active)
4676{
4677 u16 lnksta_mask, lnksta_match;
4678 unsigned long end_jiffies;
4679 u16 lnksta;
4680
4681 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4682 lnksta_match = active ? lnksta_mask : 0;
4683
4684 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4685 do {
4686 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4687 if ((lnksta & lnksta_mask) == lnksta_match)
4688 return 0;
4689 msleep(1);
4690 } while (time_before(jiffies, end_jiffies));
4691
4692 return -ETIMEDOUT;
4693}
4694
4695/**
4696 * pcie_retrain_link - Request a link retrain and wait for it to complete
4697 * @pdev: Device whose link to retrain.
4698 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4699 *
4700 * Retrain completion status is retrieved from the Link Status Register
4701 * according to @use_lt. It is not verified whether the use of the DLLLA
4702 * bit is valid.
4703 *
4704 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4705 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4706 */
4707int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4708{
4709 int rc;
4710
4711 /*
4712 * Ensure the updated LNKCTL parameters are used during link
4713 * training by checking that there is no ongoing link training that
4714 * may have started before link parameters were changed, so as to
4715 * avoid LTSSM race as recommended in Implementation Note at the end
4716 * of PCIe r6.1 sec 7.5.3.7.
4717 */
4718 rc = pcie_wait_for_link_status(pdev, true, false);
4719 if (rc)
4720 return rc;
4721
4722 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4723 if (pdev->clear_retrain_link) {
4724 /*
4725 * Due to an erratum in some devices the Retrain Link bit
4726 * needs to be cleared again manually to allow the link
4727 * training to succeed.
4728 */
4729 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4730 }
4731
4732 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4733
4734 /*
4735 * Clear LBMS after a manual retrain so that the bit can be used
4736 * to track link speed or width changes made by hardware itself
4737 * in attempt to correct unreliable link operation.
4738 */
4739 pcie_reset_lbms_count(pdev);
4740 return rc;
4741}
4742
4743/**
4744 * pcie_wait_for_link_delay - Wait until link is active or inactive
4745 * @pdev: Bridge device
4746 * @active: waiting for active or inactive?
4747 * @delay: Delay to wait after link has become active (in ms)
4748 *
4749 * Use this to wait till link becomes active or inactive.
4750 */
4751static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4752 int delay)
4753{
4754 int rc;
4755
4756 /*
4757 * Some controllers might not implement link active reporting. In this
4758 * case, we wait for 1000 ms + any delay requested by the caller.
4759 */
4760 if (!pdev->link_active_reporting) {
4761 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4762 return true;
4763 }
4764
4765 /*
4766 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4767 * after which we should expect an link active if the reset was
4768 * successful. If so, software must wait a minimum 100ms before sending
4769 * configuration requests to devices downstream this port.
4770 *
4771 * If the link fails to activate, either the device was physically
4772 * removed or the link is permanently failed.
4773 */
4774 if (active)
4775 msleep(20);
4776 rc = pcie_wait_for_link_status(pdev, false, active);
4777 if (active) {
4778 if (rc)
4779 rc = pcie_failed_link_retrain(pdev);
4780 if (rc)
4781 return false;
4782
4783 msleep(delay);
4784 return true;
4785 }
4786
4787 if (rc)
4788 return false;
4789
4790 return true;
4791}
4792
4793/**
4794 * pcie_wait_for_link - Wait until link is active or inactive
4795 * @pdev: Bridge device
4796 * @active: waiting for active or inactive?
4797 *
4798 * Use this to wait till link becomes active or inactive.
4799 */
4800bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4801{
4802 return pcie_wait_for_link_delay(pdev, active, 100);
4803}
4804
4805/*
4806 * Find maximum D3cold delay required by all the devices on the bus. The
4807 * spec says 100 ms, but firmware can lower it and we allow drivers to
4808 * increase it as well.
4809 *
4810 * Called with @pci_bus_sem locked for reading.
4811 */
4812static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4813{
4814 const struct pci_dev *pdev;
4815 int min_delay = 100;
4816 int max_delay = 0;
4817
4818 list_for_each_entry(pdev, &bus->devices, bus_list) {
4819 if (pdev->d3cold_delay < min_delay)
4820 min_delay = pdev->d3cold_delay;
4821 if (pdev->d3cold_delay > max_delay)
4822 max_delay = pdev->d3cold_delay;
4823 }
4824
4825 return max(min_delay, max_delay);
4826}
4827
4828/**
4829 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4830 * @dev: PCI bridge
4831 * @reset_type: reset type in human-readable form
4832 *
4833 * Handle necessary delays before access to the devices on the secondary
4834 * side of the bridge are permitted after D3cold to D0 transition
4835 * or Conventional Reset.
4836 *
4837 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4838 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4839 * 4.3.2.
4840 *
4841 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4842 * failed to become accessible.
4843 */
4844int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4845{
4846 struct pci_dev *child __free(pci_dev_put) = NULL;
4847 int delay;
4848
4849 if (pci_dev_is_disconnected(dev))
4850 return 0;
4851
4852 if (!pci_is_bridge(dev))
4853 return 0;
4854
4855 down_read(&pci_bus_sem);
4856
4857 /*
4858 * We only deal with devices that are present currently on the bus.
4859 * For any hot-added devices the access delay is handled in pciehp
4860 * board_added(). In case of ACPI hotplug the firmware is expected
4861 * to configure the devices before OS is notified.
4862 */
4863 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4864 up_read(&pci_bus_sem);
4865 return 0;
4866 }
4867
4868 /* Take d3cold_delay requirements into account */
4869 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4870 if (!delay) {
4871 up_read(&pci_bus_sem);
4872 return 0;
4873 }
4874
4875 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4876 struct pci_dev, bus_list));
4877 up_read(&pci_bus_sem);
4878
4879 /*
4880 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4881 * accessing the device after reset (that is 1000 ms + 100 ms).
4882 */
4883 if (!pci_is_pcie(dev)) {
4884 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4885 msleep(1000 + delay);
4886 return 0;
4887 }
4888
4889 /*
4890 * For PCIe downstream and root ports that do not support speeds
4891 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4892 * speeds (gen3) we need to wait first for the data link layer to
4893 * become active.
4894 *
4895 * However, 100 ms is the minimum and the PCIe spec says the
4896 * software must allow at least 1s before it can determine that the
4897 * device that did not respond is a broken device. Also device can
4898 * take longer than that to respond if it indicates so through Request
4899 * Retry Status completions.
4900 *
4901 * Therefore we wait for 100 ms and check for the device presence
4902 * until the timeout expires.
4903 */
4904 if (!pcie_downstream_port(dev))
4905 return 0;
4906
4907 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4908 u16 status;
4909
4910 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4911 msleep(delay);
4912
4913 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4914 return 0;
4915
4916 /*
4917 * If the port supports active link reporting we now check
4918 * whether the link is active and if not bail out early with
4919 * the assumption that the device is not present anymore.
4920 */
4921 if (!dev->link_active_reporting)
4922 return -ENOTTY;
4923
4924 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4925 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4926 return -ENOTTY;
4927
4928 return pci_dev_wait(child, reset_type,
4929 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4930 }
4931
4932 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4933 delay);
4934 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4935 /* Did not train, no need to wait any further */
4936 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4937 return -ENOTTY;
4938 }
4939
4940 return pci_dev_wait(child, reset_type,
4941 PCIE_RESET_READY_POLL_MS - delay);
4942}
4943
4944void pci_reset_secondary_bus(struct pci_dev *dev)
4945{
4946 u16 ctrl;
4947
4948 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4949 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4950 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4951
4952 /*
4953 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4954 * this to 2ms to ensure that we meet the minimum requirement.
4955 */
4956 msleep(2);
4957
4958 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4959 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4960}
4961
4962void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4963{
4964 pci_reset_secondary_bus(dev);
4965}
4966
4967/**
4968 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4969 * @dev: Bridge device
4970 *
4971 * Use the bridge control register to assert reset on the secondary bus.
4972 * Devices on the secondary bus are left in power-on state.
4973 */
4974int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4975{
4976 if (!dev->block_cfg_access)
4977 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4978 __builtin_return_address(0));
4979 pcibios_reset_secondary_bus(dev);
4980
4981 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4982}
4983EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4984
4985static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4986{
4987 struct pci_dev *pdev;
4988
4989 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4990 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4991 return -ENOTTY;
4992
4993 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4994 if (pdev != dev)
4995 return -ENOTTY;
4996
4997 if (probe)
4998 return 0;
4999
5000 return pci_bridge_secondary_bus_reset(dev->bus->self);
5001}
5002
5003static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5004{
5005 int rc = -ENOTTY;
5006
5007 if (!hotplug || !try_module_get(hotplug->owner))
5008 return rc;
5009
5010 if (hotplug->ops->reset_slot)
5011 rc = hotplug->ops->reset_slot(hotplug, probe);
5012
5013 module_put(hotplug->owner);
5014
5015 return rc;
5016}
5017
5018static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5019{
5020 if (dev->multifunction || dev->subordinate || !dev->slot ||
5021 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5022 return -ENOTTY;
5023
5024 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5025}
5026
5027static u16 cxl_port_dvsec(struct pci_dev *dev)
5028{
5029 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5030 PCI_DVSEC_CXL_PORT);
5031}
5032
5033static bool cxl_sbr_masked(struct pci_dev *dev)
5034{
5035 u16 dvsec, reg;
5036 int rc;
5037
5038 dvsec = cxl_port_dvsec(dev);
5039 if (!dvsec)
5040 return false;
5041
5042 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5043 if (rc || PCI_POSSIBLE_ERROR(reg))
5044 return false;
5045
5046 /*
5047 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5048 * bit in Bridge Control has no effect. When 1, the Port generates
5049 * hot reset when the SBR bit is set to 1.
5050 */
5051 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5052 return false;
5053
5054 return true;
5055}
5056
5057static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5058{
5059 struct pci_dev *bridge = pci_upstream_bridge(dev);
5060 int rc;
5061
5062 /*
5063 * If "dev" is below a CXL port that has SBR control masked, SBR
5064 * won't do anything, so return error.
5065 */
5066 if (bridge && cxl_sbr_masked(bridge)) {
5067 if (probe)
5068 return 0;
5069
5070 return -ENOTTY;
5071 }
5072
5073 rc = pci_dev_reset_slot_function(dev, probe);
5074 if (rc != -ENOTTY)
5075 return rc;
5076 return pci_parent_bus_reset(dev, probe);
5077}
5078
5079static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5080{
5081 struct pci_dev *bridge;
5082 u16 dvsec, reg, val;
5083 int rc;
5084
5085 bridge = pci_upstream_bridge(dev);
5086 if (!bridge)
5087 return -ENOTTY;
5088
5089 dvsec = cxl_port_dvsec(bridge);
5090 if (!dvsec)
5091 return -ENOTTY;
5092
5093 if (probe)
5094 return 0;
5095
5096 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5097 if (rc)
5098 return -ENOTTY;
5099
5100 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5101 val = reg;
5102 } else {
5103 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5104 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5105 val);
5106 }
5107
5108 rc = pci_reset_bus_function(dev, probe);
5109
5110 if (reg != val)
5111 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5112 reg);
5113
5114 return rc;
5115}
5116
5117void pci_dev_lock(struct pci_dev *dev)
5118{
5119 /* block PM suspend, driver probe, etc. */
5120 device_lock(&dev->dev);
5121 pci_cfg_access_lock(dev);
5122}
5123EXPORT_SYMBOL_GPL(pci_dev_lock);
5124
5125/* Return 1 on successful lock, 0 on contention */
5126int pci_dev_trylock(struct pci_dev *dev)
5127{
5128 if (device_trylock(&dev->dev)) {
5129 if (pci_cfg_access_trylock(dev))
5130 return 1;
5131 device_unlock(&dev->dev);
5132 }
5133
5134 return 0;
5135}
5136EXPORT_SYMBOL_GPL(pci_dev_trylock);
5137
5138void pci_dev_unlock(struct pci_dev *dev)
5139{
5140 pci_cfg_access_unlock(dev);
5141 device_unlock(&dev->dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_unlock);
5144
5145static void pci_dev_save_and_disable(struct pci_dev *dev)
5146{
5147 const struct pci_error_handlers *err_handler =
5148 dev->driver ? dev->driver->err_handler : NULL;
5149
5150 /*
5151 * dev->driver->err_handler->reset_prepare() is protected against
5152 * races with ->remove() by the device lock, which must be held by
5153 * the caller.
5154 */
5155 if (err_handler && err_handler->reset_prepare)
5156 err_handler->reset_prepare(dev);
5157 else if (dev->driver)
5158 pci_warn(dev, "resetting");
5159
5160 /*
5161 * Wake-up device prior to save. PM registers default to D0 after
5162 * reset and a simple register restore doesn't reliably return
5163 * to a non-D0 state anyway.
5164 */
5165 pci_set_power_state(dev, PCI_D0);
5166
5167 pci_save_state(dev);
5168 /*
5169 * Disable the device by clearing the Command register, except for
5170 * INTx-disable which is set. This not only disables MMIO and I/O port
5171 * BARs, but also prevents the device from being Bus Master, preventing
5172 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5173 * compliant devices, INTx-disable prevents legacy interrupts.
5174 */
5175 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5176}
5177
5178static void pci_dev_restore(struct pci_dev *dev)
5179{
5180 const struct pci_error_handlers *err_handler =
5181 dev->driver ? dev->driver->err_handler : NULL;
5182
5183 pci_restore_state(dev);
5184
5185 /*
5186 * dev->driver->err_handler->reset_done() is protected against
5187 * races with ->remove() by the device lock, which must be held by
5188 * the caller.
5189 */
5190 if (err_handler && err_handler->reset_done)
5191 err_handler->reset_done(dev);
5192 else if (dev->driver)
5193 pci_warn(dev, "reset done");
5194}
5195
5196/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5197static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5198 { },
5199 { pci_dev_specific_reset, .name = "device_specific" },
5200 { pci_dev_acpi_reset, .name = "acpi" },
5201 { pcie_reset_flr, .name = "flr" },
5202 { pci_af_flr, .name = "af_flr" },
5203 { pci_pm_reset, .name = "pm" },
5204 { pci_reset_bus_function, .name = "bus" },
5205 { cxl_reset_bus_function, .name = "cxl_bus" },
5206};
5207
5208static ssize_t reset_method_show(struct device *dev,
5209 struct device_attribute *attr, char *buf)
5210{
5211 struct pci_dev *pdev = to_pci_dev(dev);
5212 ssize_t len = 0;
5213 int i, m;
5214
5215 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5216 m = pdev->reset_methods[i];
5217 if (!m)
5218 break;
5219
5220 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5221 pci_reset_fn_methods[m].name);
5222 }
5223
5224 if (len)
5225 len += sysfs_emit_at(buf, len, "\n");
5226
5227 return len;
5228}
5229
5230static int reset_method_lookup(const char *name)
5231{
5232 int m;
5233
5234 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5235 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5236 return m;
5237 }
5238
5239 return 0; /* not found */
5240}
5241
5242static ssize_t reset_method_store(struct device *dev,
5243 struct device_attribute *attr,
5244 const char *buf, size_t count)
5245{
5246 struct pci_dev *pdev = to_pci_dev(dev);
5247 char *options, *tmp_options, *name;
5248 int m, n;
5249 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5250
5251 if (sysfs_streq(buf, "")) {
5252 pdev->reset_methods[0] = 0;
5253 pci_warn(pdev, "All device reset methods disabled by user");
5254 return count;
5255 }
5256
5257 if (sysfs_streq(buf, "default")) {
5258 pci_init_reset_methods(pdev);
5259 return count;
5260 }
5261
5262 options = kstrndup(buf, count, GFP_KERNEL);
5263 if (!options)
5264 return -ENOMEM;
5265
5266 n = 0;
5267 tmp_options = options;
5268 while ((name = strsep(&tmp_options, " ")) != NULL) {
5269 if (sysfs_streq(name, ""))
5270 continue;
5271
5272 name = strim(name);
5273
5274 m = reset_method_lookup(name);
5275 if (!m) {
5276 pci_err(pdev, "Invalid reset method '%s'", name);
5277 goto error;
5278 }
5279
5280 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5281 pci_err(pdev, "Unsupported reset method '%s'", name);
5282 goto error;
5283 }
5284
5285 if (n == PCI_NUM_RESET_METHODS - 1) {
5286 pci_err(pdev, "Too many reset methods\n");
5287 goto error;
5288 }
5289
5290 reset_methods[n++] = m;
5291 }
5292
5293 reset_methods[n] = 0;
5294
5295 /* Warn if dev-specific supported but not highest priority */
5296 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5297 reset_methods[0] != 1)
5298 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5299 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5300 kfree(options);
5301 return count;
5302
5303error:
5304 /* Leave previous methods unchanged */
5305 kfree(options);
5306 return -EINVAL;
5307}
5308static DEVICE_ATTR_RW(reset_method);
5309
5310static struct attribute *pci_dev_reset_method_attrs[] = {
5311 &dev_attr_reset_method.attr,
5312 NULL,
5313};
5314
5315static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5316 struct attribute *a, int n)
5317{
5318 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5319
5320 if (!pci_reset_supported(pdev))
5321 return 0;
5322
5323 return a->mode;
5324}
5325
5326const struct attribute_group pci_dev_reset_method_attr_group = {
5327 .attrs = pci_dev_reset_method_attrs,
5328 .is_visible = pci_dev_reset_method_attr_is_visible,
5329};
5330
5331/**
5332 * __pci_reset_function_locked - reset a PCI device function while holding
5333 * the @dev mutex lock.
5334 * @dev: PCI device to reset
5335 *
5336 * Some devices allow an individual function to be reset without affecting
5337 * other functions in the same device. The PCI device must be responsive
5338 * to PCI config space in order to use this function.
5339 *
5340 * The device function is presumed to be unused and the caller is holding
5341 * the device mutex lock when this function is called.
5342 *
5343 * Resetting the device will make the contents of PCI configuration space
5344 * random, so any caller of this must be prepared to reinitialise the
5345 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5346 * etc.
5347 *
5348 * Returns 0 if the device function was successfully reset or negative if the
5349 * device doesn't support resetting a single function.
5350 */
5351int __pci_reset_function_locked(struct pci_dev *dev)
5352{
5353 int i, m, rc;
5354
5355 might_sleep();
5356
5357 /*
5358 * A reset method returns -ENOTTY if it doesn't support this device and
5359 * we should try the next method.
5360 *
5361 * If it returns 0 (success), we're finished. If it returns any other
5362 * error, we're also finished: this indicates that further reset
5363 * mechanisms might be broken on the device.
5364 */
5365 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5366 m = dev->reset_methods[i];
5367 if (!m)
5368 return -ENOTTY;
5369
5370 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5371 if (!rc)
5372 return 0;
5373 if (rc != -ENOTTY)
5374 return rc;
5375 }
5376
5377 return -ENOTTY;
5378}
5379EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5380
5381/**
5382 * pci_init_reset_methods - check whether device can be safely reset
5383 * and store supported reset mechanisms.
5384 * @dev: PCI device to check for reset mechanisms
5385 *
5386 * Some devices allow an individual function to be reset without affecting
5387 * other functions in the same device. The PCI device must be in D0-D3hot
5388 * state.
5389 *
5390 * Stores reset mechanisms supported by device in reset_methods byte array
5391 * which is a member of struct pci_dev.
5392 */
5393void pci_init_reset_methods(struct pci_dev *dev)
5394{
5395 int m, i, rc;
5396
5397 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5398
5399 might_sleep();
5400
5401 i = 0;
5402 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5403 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5404 if (!rc)
5405 dev->reset_methods[i++] = m;
5406 else if (rc != -ENOTTY)
5407 break;
5408 }
5409
5410 dev->reset_methods[i] = 0;
5411}
5412
5413/**
5414 * pci_reset_function - quiesce and reset a PCI device function
5415 * @dev: PCI device to reset
5416 *
5417 * Some devices allow an individual function to be reset without affecting
5418 * other functions in the same device. The PCI device must be responsive
5419 * to PCI config space in order to use this function.
5420 *
5421 * This function does not just reset the PCI portion of a device, but
5422 * clears all the state associated with the device. This function differs
5423 * from __pci_reset_function_locked() in that it saves and restores device state
5424 * over the reset and takes the PCI device lock.
5425 *
5426 * Returns 0 if the device function was successfully reset or negative if the
5427 * device doesn't support resetting a single function.
5428 */
5429int pci_reset_function(struct pci_dev *dev)
5430{
5431 struct pci_dev *bridge;
5432 int rc;
5433
5434 if (!pci_reset_supported(dev))
5435 return -ENOTTY;
5436
5437 /*
5438 * If there's no upstream bridge, no locking is needed since there is
5439 * no upstream bridge configuration to hold consistent.
5440 */
5441 bridge = pci_upstream_bridge(dev);
5442 if (bridge)
5443 pci_dev_lock(bridge);
5444
5445 pci_dev_lock(dev);
5446 pci_dev_save_and_disable(dev);
5447
5448 rc = __pci_reset_function_locked(dev);
5449
5450 pci_dev_restore(dev);
5451 pci_dev_unlock(dev);
5452
5453 if (bridge)
5454 pci_dev_unlock(bridge);
5455
5456 return rc;
5457}
5458EXPORT_SYMBOL_GPL(pci_reset_function);
5459
5460/**
5461 * pci_reset_function_locked - quiesce and reset a PCI device function
5462 * @dev: PCI device to reset
5463 *
5464 * Some devices allow an individual function to be reset without affecting
5465 * other functions in the same device. The PCI device must be responsive
5466 * to PCI config space in order to use this function.
5467 *
5468 * This function does not just reset the PCI portion of a device, but
5469 * clears all the state associated with the device. This function differs
5470 * from __pci_reset_function_locked() in that it saves and restores device state
5471 * over the reset. It also differs from pci_reset_function() in that it
5472 * requires the PCI device lock to be held.
5473 *
5474 * Returns 0 if the device function was successfully reset or negative if the
5475 * device doesn't support resetting a single function.
5476 */
5477int pci_reset_function_locked(struct pci_dev *dev)
5478{
5479 int rc;
5480
5481 if (!pci_reset_supported(dev))
5482 return -ENOTTY;
5483
5484 pci_dev_save_and_disable(dev);
5485
5486 rc = __pci_reset_function_locked(dev);
5487
5488 pci_dev_restore(dev);
5489
5490 return rc;
5491}
5492EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5493
5494/**
5495 * pci_try_reset_function - quiesce and reset a PCI device function
5496 * @dev: PCI device to reset
5497 *
5498 * Same as above, except return -EAGAIN if unable to lock device.
5499 */
5500int pci_try_reset_function(struct pci_dev *dev)
5501{
5502 int rc;
5503
5504 if (!pci_reset_supported(dev))
5505 return -ENOTTY;
5506
5507 if (!pci_dev_trylock(dev))
5508 return -EAGAIN;
5509
5510 pci_dev_save_and_disable(dev);
5511 rc = __pci_reset_function_locked(dev);
5512 pci_dev_restore(dev);
5513 pci_dev_unlock(dev);
5514
5515 return rc;
5516}
5517EXPORT_SYMBOL_GPL(pci_try_reset_function);
5518
5519/* Do any devices on or below this bus prevent a bus reset? */
5520static bool pci_bus_resettable(struct pci_bus *bus)
5521{
5522 struct pci_dev *dev;
5523
5524
5525 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5526 return false;
5527
5528 list_for_each_entry(dev, &bus->devices, bus_list) {
5529 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5530 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5531 return false;
5532 }
5533
5534 return true;
5535}
5536
5537/* Lock devices from the top of the tree down */
5538static void pci_bus_lock(struct pci_bus *bus)
5539{
5540 struct pci_dev *dev;
5541
5542 pci_dev_lock(bus->self);
5543 list_for_each_entry(dev, &bus->devices, bus_list) {
5544 if (dev->subordinate)
5545 pci_bus_lock(dev->subordinate);
5546 else
5547 pci_dev_lock(dev);
5548 }
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554 struct pci_dev *dev;
5555
5556 list_for_each_entry(dev, &bus->devices, bus_list) {
5557 if (dev->subordinate)
5558 pci_bus_unlock(dev->subordinate);
5559 else
5560 pci_dev_unlock(dev);
5561 }
5562 pci_dev_unlock(bus->self);
5563}
5564
5565/* Return 1 on successful lock, 0 on contention */
5566static int pci_bus_trylock(struct pci_bus *bus)
5567{
5568 struct pci_dev *dev;
5569
5570 if (!pci_dev_trylock(bus->self))
5571 return 0;
5572
5573 list_for_each_entry(dev, &bus->devices, bus_list) {
5574 if (dev->subordinate) {
5575 if (!pci_bus_trylock(dev->subordinate))
5576 goto unlock;
5577 } else if (!pci_dev_trylock(dev))
5578 goto unlock;
5579 }
5580 return 1;
5581
5582unlock:
5583 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5584 if (dev->subordinate)
5585 pci_bus_unlock(dev->subordinate);
5586 else
5587 pci_dev_unlock(dev);
5588 }
5589 pci_dev_unlock(bus->self);
5590 return 0;
5591}
5592
5593/* Do any devices on or below this slot prevent a bus reset? */
5594static bool pci_slot_resettable(struct pci_slot *slot)
5595{
5596 struct pci_dev *dev;
5597
5598 if (slot->bus->self &&
5599 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5600 return false;
5601
5602 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5603 if (!dev->slot || dev->slot != slot)
5604 continue;
5605 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5606 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5607 return false;
5608 }
5609
5610 return true;
5611}
5612
5613/* Lock devices from the top of the tree down */
5614static void pci_slot_lock(struct pci_slot *slot)
5615{
5616 struct pci_dev *dev;
5617
5618 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5619 if (!dev->slot || dev->slot != slot)
5620 continue;
5621 if (dev->subordinate)
5622 pci_bus_lock(dev->subordinate);
5623 else
5624 pci_dev_lock(dev);
5625 }
5626}
5627
5628/* Unlock devices from the bottom of the tree up */
5629static void pci_slot_unlock(struct pci_slot *slot)
5630{
5631 struct pci_dev *dev;
5632
5633 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5634 if (!dev->slot || dev->slot != slot)
5635 continue;
5636 if (dev->subordinate)
5637 pci_bus_unlock(dev->subordinate);
5638 pci_dev_unlock(dev);
5639 }
5640}
5641
5642/* Return 1 on successful lock, 0 on contention */
5643static int pci_slot_trylock(struct pci_slot *slot)
5644{
5645 struct pci_dev *dev;
5646
5647 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5648 if (!dev->slot || dev->slot != slot)
5649 continue;
5650 if (dev->subordinate) {
5651 if (!pci_bus_trylock(dev->subordinate)) {
5652 pci_dev_unlock(dev);
5653 goto unlock;
5654 }
5655 } else if (!pci_dev_trylock(dev))
5656 goto unlock;
5657 }
5658 return 1;
5659
5660unlock:
5661 list_for_each_entry_continue_reverse(dev,
5662 &slot->bus->devices, bus_list) {
5663 if (!dev->slot || dev->slot != slot)
5664 continue;
5665 if (dev->subordinate)
5666 pci_bus_unlock(dev->subordinate);
5667 else
5668 pci_dev_unlock(dev);
5669 }
5670 return 0;
5671}
5672
5673/*
5674 * Save and disable devices from the top of the tree down while holding
5675 * the @dev mutex lock for the entire tree.
5676 */
5677static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5678{
5679 struct pci_dev *dev;
5680
5681 list_for_each_entry(dev, &bus->devices, bus_list) {
5682 pci_dev_save_and_disable(dev);
5683 if (dev->subordinate)
5684 pci_bus_save_and_disable_locked(dev->subordinate);
5685 }
5686}
5687
5688/*
5689 * Restore devices from top of the tree down while holding @dev mutex lock
5690 * for the entire tree. Parent bridges need to be restored before we can
5691 * get to subordinate devices.
5692 */
5693static void pci_bus_restore_locked(struct pci_bus *bus)
5694{
5695 struct pci_dev *dev;
5696
5697 list_for_each_entry(dev, &bus->devices, bus_list) {
5698 pci_dev_restore(dev);
5699 if (dev->subordinate) {
5700 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5701 pci_bus_restore_locked(dev->subordinate);
5702 }
5703 }
5704}
5705
5706/*
5707 * Save and disable devices from the top of the tree down while holding
5708 * the @dev mutex lock for the entire tree.
5709 */
5710static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5711{
5712 struct pci_dev *dev;
5713
5714 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5715 if (!dev->slot || dev->slot != slot)
5716 continue;
5717 pci_dev_save_and_disable(dev);
5718 if (dev->subordinate)
5719 pci_bus_save_and_disable_locked(dev->subordinate);
5720 }
5721}
5722
5723/*
5724 * Restore devices from top of the tree down while holding @dev mutex lock
5725 * for the entire tree. Parent bridges need to be restored before we can
5726 * get to subordinate devices.
5727 */
5728static void pci_slot_restore_locked(struct pci_slot *slot)
5729{
5730 struct pci_dev *dev;
5731
5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 if (!dev->slot || dev->slot != slot)
5734 continue;
5735 pci_dev_restore(dev);
5736 if (dev->subordinate) {
5737 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5738 pci_bus_restore_locked(dev->subordinate);
5739 }
5740 }
5741}
5742
5743static int pci_slot_reset(struct pci_slot *slot, bool probe)
5744{
5745 int rc;
5746
5747 if (!slot || !pci_slot_resettable(slot))
5748 return -ENOTTY;
5749
5750 if (!probe)
5751 pci_slot_lock(slot);
5752
5753 might_sleep();
5754
5755 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5756
5757 if (!probe)
5758 pci_slot_unlock(slot);
5759
5760 return rc;
5761}
5762
5763/**
5764 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5765 * @slot: PCI slot to probe
5766 *
5767 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5768 */
5769int pci_probe_reset_slot(struct pci_slot *slot)
5770{
5771 return pci_slot_reset(slot, PCI_RESET_PROBE);
5772}
5773EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5774
5775/**
5776 * __pci_reset_slot - Try to reset a PCI slot
5777 * @slot: PCI slot to reset
5778 *
5779 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5780 * independent of other slots. For instance, some slots may support slot power
5781 * control. In the case of a 1:1 bus to slot architecture, this function may
5782 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5783 * Generally a slot reset should be attempted before a bus reset. All of the
5784 * function of the slot and any subordinate buses behind the slot are reset
5785 * through this function. PCI config space of all devices in the slot and
5786 * behind the slot is saved before and restored after reset.
5787 *
5788 * Same as above except return -EAGAIN if the slot cannot be locked
5789 */
5790static int __pci_reset_slot(struct pci_slot *slot)
5791{
5792 int rc;
5793
5794 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5795 if (rc)
5796 return rc;
5797
5798 if (pci_slot_trylock(slot)) {
5799 pci_slot_save_and_disable_locked(slot);
5800 might_sleep();
5801 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5802 pci_slot_restore_locked(slot);
5803 pci_slot_unlock(slot);
5804 } else
5805 rc = -EAGAIN;
5806
5807 return rc;
5808}
5809
5810static int pci_bus_reset(struct pci_bus *bus, bool probe)
5811{
5812 int ret;
5813
5814 if (!bus->self || !pci_bus_resettable(bus))
5815 return -ENOTTY;
5816
5817 if (probe)
5818 return 0;
5819
5820 pci_bus_lock(bus);
5821
5822 might_sleep();
5823
5824 ret = pci_bridge_secondary_bus_reset(bus->self);
5825
5826 pci_bus_unlock(bus);
5827
5828 return ret;
5829}
5830
5831/**
5832 * pci_bus_error_reset - reset the bridge's subordinate bus
5833 * @bridge: The parent device that connects to the bus to reset
5834 *
5835 * This function will first try to reset the slots on this bus if the method is
5836 * available. If slot reset fails or is not available, this will fall back to a
5837 * secondary bus reset.
5838 */
5839int pci_bus_error_reset(struct pci_dev *bridge)
5840{
5841 struct pci_bus *bus = bridge->subordinate;
5842 struct pci_slot *slot;
5843
5844 if (!bus)
5845 return -ENOTTY;
5846
5847 mutex_lock(&pci_slot_mutex);
5848 if (list_empty(&bus->slots))
5849 goto bus_reset;
5850
5851 list_for_each_entry(slot, &bus->slots, list)
5852 if (pci_probe_reset_slot(slot))
5853 goto bus_reset;
5854
5855 list_for_each_entry(slot, &bus->slots, list)
5856 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5857 goto bus_reset;
5858
5859 mutex_unlock(&pci_slot_mutex);
5860 return 0;
5861bus_reset:
5862 mutex_unlock(&pci_slot_mutex);
5863 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5864}
5865
5866/**
5867 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5868 * @bus: PCI bus to probe
5869 *
5870 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5871 */
5872int pci_probe_reset_bus(struct pci_bus *bus)
5873{
5874 return pci_bus_reset(bus, PCI_RESET_PROBE);
5875}
5876EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5877
5878/**
5879 * __pci_reset_bus - Try to reset a PCI bus
5880 * @bus: top level PCI bus to reset
5881 *
5882 * Same as above except return -EAGAIN if the bus cannot be locked
5883 */
5884int __pci_reset_bus(struct pci_bus *bus)
5885{
5886 int rc;
5887
5888 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5889 if (rc)
5890 return rc;
5891
5892 if (pci_bus_trylock(bus)) {
5893 pci_bus_save_and_disable_locked(bus);
5894 might_sleep();
5895 rc = pci_bridge_secondary_bus_reset(bus->self);
5896 pci_bus_restore_locked(bus);
5897 pci_bus_unlock(bus);
5898 } else
5899 rc = -EAGAIN;
5900
5901 return rc;
5902}
5903
5904/**
5905 * pci_reset_bus - Try to reset a PCI bus
5906 * @pdev: top level PCI device to reset via slot/bus
5907 *
5908 * Same as above except return -EAGAIN if the bus cannot be locked
5909 */
5910int pci_reset_bus(struct pci_dev *pdev)
5911{
5912 return (!pci_probe_reset_slot(pdev->slot)) ?
5913 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5914}
5915EXPORT_SYMBOL_GPL(pci_reset_bus);
5916
5917/**
5918 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5919 * @dev: PCI device to query
5920 *
5921 * Returns mmrbc: maximum designed memory read count in bytes or
5922 * appropriate error value.
5923 */
5924int pcix_get_max_mmrbc(struct pci_dev *dev)
5925{
5926 int cap;
5927 u32 stat;
5928
5929 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5930 if (!cap)
5931 return -EINVAL;
5932
5933 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5934 return -EINVAL;
5935
5936 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5937}
5938EXPORT_SYMBOL(pcix_get_max_mmrbc);
5939
5940/**
5941 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5942 * @dev: PCI device to query
5943 *
5944 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5945 * value.
5946 */
5947int pcix_get_mmrbc(struct pci_dev *dev)
5948{
5949 int cap;
5950 u16 cmd;
5951
5952 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5953 if (!cap)
5954 return -EINVAL;
5955
5956 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5957 return -EINVAL;
5958
5959 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5960}
5961EXPORT_SYMBOL(pcix_get_mmrbc);
5962
5963/**
5964 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5965 * @dev: PCI device to query
5966 * @mmrbc: maximum memory read count in bytes
5967 * valid values are 512, 1024, 2048, 4096
5968 *
5969 * If possible sets maximum memory read byte count, some bridges have errata
5970 * that prevent this.
5971 */
5972int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5973{
5974 int cap;
5975 u32 stat, v, o;
5976 u16 cmd;
5977
5978 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5979 return -EINVAL;
5980
5981 v = ffs(mmrbc) - 10;
5982
5983 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5984 if (!cap)
5985 return -EINVAL;
5986
5987 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5988 return -EINVAL;
5989
5990 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5991 return -E2BIG;
5992
5993 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5994 return -EINVAL;
5995
5996 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5997 if (o != v) {
5998 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5999 return -EIO;
6000
6001 cmd &= ~PCI_X_CMD_MAX_READ;
6002 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6003 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6004 return -EIO;
6005 }
6006 return 0;
6007}
6008EXPORT_SYMBOL(pcix_set_mmrbc);
6009
6010/**
6011 * pcie_get_readrq - get PCI Express read request size
6012 * @dev: PCI device to query
6013 *
6014 * Returns maximum memory read request in bytes or appropriate error value.
6015 */
6016int pcie_get_readrq(struct pci_dev *dev)
6017{
6018 u16 ctl;
6019
6020 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6021
6022 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6023}
6024EXPORT_SYMBOL(pcie_get_readrq);
6025
6026/**
6027 * pcie_set_readrq - set PCI Express maximum memory read request
6028 * @dev: PCI device to query
6029 * @rq: maximum memory read count in bytes
6030 * valid values are 128, 256, 512, 1024, 2048, 4096
6031 *
6032 * If possible sets maximum memory read request in bytes
6033 */
6034int pcie_set_readrq(struct pci_dev *dev, int rq)
6035{
6036 u16 v;
6037 int ret;
6038 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6039
6040 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6041 return -EINVAL;
6042
6043 /*
6044 * If using the "performance" PCIe config, we clamp the read rq
6045 * size to the max packet size to keep the host bridge from
6046 * generating requests larger than we can cope with.
6047 */
6048 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6049 int mps = pcie_get_mps(dev);
6050
6051 if (mps < rq)
6052 rq = mps;
6053 }
6054
6055 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6056
6057 if (bridge->no_inc_mrrs) {
6058 int max_mrrs = pcie_get_readrq(dev);
6059
6060 if (rq > max_mrrs) {
6061 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6062 return -EINVAL;
6063 }
6064 }
6065
6066 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6067 PCI_EXP_DEVCTL_READRQ, v);
6068
6069 return pcibios_err_to_errno(ret);
6070}
6071EXPORT_SYMBOL(pcie_set_readrq);
6072
6073/**
6074 * pcie_get_mps - get PCI Express maximum payload size
6075 * @dev: PCI device to query
6076 *
6077 * Returns maximum payload size in bytes
6078 */
6079int pcie_get_mps(struct pci_dev *dev)
6080{
6081 u16 ctl;
6082
6083 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6084
6085 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6086}
6087EXPORT_SYMBOL(pcie_get_mps);
6088
6089/**
6090 * pcie_set_mps - set PCI Express maximum payload size
6091 * @dev: PCI device to query
6092 * @mps: maximum payload size in bytes
6093 * valid values are 128, 256, 512, 1024, 2048, 4096
6094 *
6095 * If possible sets maximum payload size
6096 */
6097int pcie_set_mps(struct pci_dev *dev, int mps)
6098{
6099 u16 v;
6100 int ret;
6101
6102 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6103 return -EINVAL;
6104
6105 v = ffs(mps) - 8;
6106 if (v > dev->pcie_mpss)
6107 return -EINVAL;
6108 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6109
6110 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6111 PCI_EXP_DEVCTL_PAYLOAD, v);
6112
6113 return pcibios_err_to_errno(ret);
6114}
6115EXPORT_SYMBOL(pcie_set_mps);
6116
6117static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6118{
6119 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6120}
6121
6122int pcie_link_speed_mbps(struct pci_dev *pdev)
6123{
6124 u16 lnksta;
6125 int err;
6126
6127 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6128 if (err)
6129 return err;
6130
6131 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6132}
6133EXPORT_SYMBOL(pcie_link_speed_mbps);
6134
6135/**
6136 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6137 * device and its bandwidth limitation
6138 * @dev: PCI device to query
6139 * @limiting_dev: storage for device causing the bandwidth limitation
6140 * @speed: storage for speed of limiting device
6141 * @width: storage for width of limiting device
6142 *
6143 * Walk up the PCI device chain and find the point where the minimum
6144 * bandwidth is available. Return the bandwidth available there and (if
6145 * limiting_dev, speed, and width pointers are supplied) information about
6146 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6147 * raw bandwidth.
6148 */
6149u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6150 enum pci_bus_speed *speed,
6151 enum pcie_link_width *width)
6152{
6153 u16 lnksta;
6154 enum pci_bus_speed next_speed;
6155 enum pcie_link_width next_width;
6156 u32 bw, next_bw;
6157
6158 if (speed)
6159 *speed = PCI_SPEED_UNKNOWN;
6160 if (width)
6161 *width = PCIE_LNK_WIDTH_UNKNOWN;
6162
6163 bw = 0;
6164
6165 while (dev) {
6166 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6167
6168 next_speed = to_pcie_link_speed(lnksta);
6169 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6170
6171 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6172
6173 /* Check if current device limits the total bandwidth */
6174 if (!bw || next_bw <= bw) {
6175 bw = next_bw;
6176
6177 if (limiting_dev)
6178 *limiting_dev = dev;
6179 if (speed)
6180 *speed = next_speed;
6181 if (width)
6182 *width = next_width;
6183 }
6184
6185 dev = pci_upstream_bridge(dev);
6186 }
6187
6188 return bw;
6189}
6190EXPORT_SYMBOL(pcie_bandwidth_available);
6191
6192/**
6193 * pcie_get_supported_speeds - query Supported Link Speed Vector
6194 * @dev: PCI device to query
6195 *
6196 * Query @dev supported link speeds.
6197 *
6198 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6199 * supported link speeds using the Supported Link Speeds Vector in the Link
6200 * Capabilities 2 Register (when available).
6201 *
6202 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6203 *
6204 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6205 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6206 * speeds were defined.
6207 *
6208 * For @dev without Supported Link Speed Vector, the field is synthesized
6209 * from the Max Link Speed field in the Link Capabilities Register.
6210 *
6211 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6212 */
6213u8 pcie_get_supported_speeds(struct pci_dev *dev)
6214{
6215 u32 lnkcap2, lnkcap;
6216 u8 speeds;
6217
6218 /*
6219 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6220 * Speeds Vector to allow using SLS Vector bit defines directly.
6221 */
6222 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6223 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6224
6225 /* Ignore speeds higher than Max Link Speed */
6226 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6227 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6228
6229 /* PCIe r3.0-compliant */
6230 if (speeds)
6231 return speeds;
6232
6233 /* Synthesize from the Max Link Speed field */
6234 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6235 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6236 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6237 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6238
6239 return speeds;
6240}
6241
6242/**
6243 * pcie_get_speed_cap - query for the PCI device's link speed capability
6244 * @dev: PCI device to query
6245 *
6246 * Query the PCI device speed capability.
6247 *
6248 * Return: the maximum link speed supported by the device.
6249 */
6250enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6251{
6252 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6253}
6254EXPORT_SYMBOL(pcie_get_speed_cap);
6255
6256/**
6257 * pcie_get_width_cap - query for the PCI device's link width capability
6258 * @dev: PCI device to query
6259 *
6260 * Query the PCI device width capability. Return the maximum link width
6261 * supported by the device.
6262 */
6263enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6264{
6265 u32 lnkcap;
6266
6267 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6268 if (lnkcap)
6269 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6270
6271 return PCIE_LNK_WIDTH_UNKNOWN;
6272}
6273EXPORT_SYMBOL(pcie_get_width_cap);
6274
6275/**
6276 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6277 * @dev: PCI device
6278 * @speed: storage for link speed
6279 * @width: storage for link width
6280 *
6281 * Calculate a PCI device's link bandwidth by querying for its link speed
6282 * and width, multiplying them, and applying encoding overhead. The result
6283 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6284 */
6285static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6286 enum pci_bus_speed *speed,
6287 enum pcie_link_width *width)
6288{
6289 *speed = pcie_get_speed_cap(dev);
6290 *width = pcie_get_width_cap(dev);
6291
6292 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6293 return 0;
6294
6295 return *width * PCIE_SPEED2MBS_ENC(*speed);
6296}
6297
6298/**
6299 * __pcie_print_link_status - Report the PCI device's link speed and width
6300 * @dev: PCI device to query
6301 * @verbose: Print info even when enough bandwidth is available
6302 *
6303 * If the available bandwidth at the device is less than the device is
6304 * capable of, report the device's maximum possible bandwidth and the
6305 * upstream link that limits its performance. If @verbose, always print
6306 * the available bandwidth, even if the device isn't constrained.
6307 */
6308void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6309{
6310 enum pcie_link_width width, width_cap;
6311 enum pci_bus_speed speed, speed_cap;
6312 struct pci_dev *limiting_dev = NULL;
6313 u32 bw_avail, bw_cap;
6314
6315 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6316 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6317
6318 if (bw_avail >= bw_cap && verbose)
6319 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6320 bw_cap / 1000, bw_cap % 1000,
6321 pci_speed_string(speed_cap), width_cap);
6322 else if (bw_avail < bw_cap)
6323 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6324 bw_avail / 1000, bw_avail % 1000,
6325 pci_speed_string(speed), width,
6326 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6327 bw_cap / 1000, bw_cap % 1000,
6328 pci_speed_string(speed_cap), width_cap);
6329}
6330
6331/**
6332 * pcie_print_link_status - Report the PCI device's link speed and width
6333 * @dev: PCI device to query
6334 *
6335 * Report the available bandwidth at the device.
6336 */
6337void pcie_print_link_status(struct pci_dev *dev)
6338{
6339 __pcie_print_link_status(dev, true);
6340}
6341EXPORT_SYMBOL(pcie_print_link_status);
6342
6343/**
6344 * pci_select_bars - Make BAR mask from the type of resource
6345 * @dev: the PCI device for which BAR mask is made
6346 * @flags: resource type mask to be selected
6347 *
6348 * This helper routine makes bar mask from the type of resource.
6349 */
6350int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6351{
6352 int i, bars = 0;
6353 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6354 if (pci_resource_flags(dev, i) & flags)
6355 bars |= (1 << i);
6356 return bars;
6357}
6358EXPORT_SYMBOL(pci_select_bars);
6359
6360/* Some architectures require additional programming to enable VGA */
6361static arch_set_vga_state_t arch_set_vga_state;
6362
6363void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6364{
6365 arch_set_vga_state = func; /* NULL disables */
6366}
6367
6368static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6369 unsigned int command_bits, u32 flags)
6370{
6371 if (arch_set_vga_state)
6372 return arch_set_vga_state(dev, decode, command_bits,
6373 flags);
6374 return 0;
6375}
6376
6377/**
6378 * pci_set_vga_state - set VGA decode state on device and parents if requested
6379 * @dev: the PCI device
6380 * @decode: true = enable decoding, false = disable decoding
6381 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6382 * @flags: traverse ancestors and change bridges
6383 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6384 */
6385int pci_set_vga_state(struct pci_dev *dev, bool decode,
6386 unsigned int command_bits, u32 flags)
6387{
6388 struct pci_bus *bus;
6389 struct pci_dev *bridge;
6390 u16 cmd;
6391 int rc;
6392
6393 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6394
6395 /* ARCH specific VGA enables */
6396 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6397 if (rc)
6398 return rc;
6399
6400 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6401 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6402 if (decode)
6403 cmd |= command_bits;
6404 else
6405 cmd &= ~command_bits;
6406 pci_write_config_word(dev, PCI_COMMAND, cmd);
6407 }
6408
6409 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6410 return 0;
6411
6412 bus = dev->bus;
6413 while (bus) {
6414 bridge = bus->self;
6415 if (bridge) {
6416 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6417 &cmd);
6418 if (decode)
6419 cmd |= PCI_BRIDGE_CTL_VGA;
6420 else
6421 cmd &= ~PCI_BRIDGE_CTL_VGA;
6422 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6423 cmd);
6424 }
6425 bus = bus->parent;
6426 }
6427 return 0;
6428}
6429
6430#ifdef CONFIG_ACPI
6431bool pci_pr3_present(struct pci_dev *pdev)
6432{
6433 struct acpi_device *adev;
6434
6435 if (acpi_disabled)
6436 return false;
6437
6438 adev = ACPI_COMPANION(&pdev->dev);
6439 if (!adev)
6440 return false;
6441
6442 return adev->power.flags.power_resources &&
6443 acpi_has_method(adev->handle, "_PR3");
6444}
6445EXPORT_SYMBOL_GPL(pci_pr3_present);
6446#endif
6447
6448/**
6449 * pci_add_dma_alias - Add a DMA devfn alias for a device
6450 * @dev: the PCI device for which alias is added
6451 * @devfn_from: alias slot and function
6452 * @nr_devfns: number of subsequent devfns to alias
6453 *
6454 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6455 * which is used to program permissible bus-devfn source addresses for DMA
6456 * requests in an IOMMU. These aliases factor into IOMMU group creation
6457 * and are useful for devices generating DMA requests beyond or different
6458 * from their logical bus-devfn. Examples include device quirks where the
6459 * device simply uses the wrong devfn, as well as non-transparent bridges
6460 * where the alias may be a proxy for devices in another domain.
6461 *
6462 * IOMMU group creation is performed during device discovery or addition,
6463 * prior to any potential DMA mapping and therefore prior to driver probing
6464 * (especially for userspace assigned devices where IOMMU group definition
6465 * cannot be left as a userspace activity). DMA aliases should therefore
6466 * be configured via quirks, such as the PCI fixup header quirk.
6467 */
6468void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6469 unsigned int nr_devfns)
6470{
6471 int devfn_to;
6472
6473 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6474 devfn_to = devfn_from + nr_devfns - 1;
6475
6476 if (!dev->dma_alias_mask)
6477 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6478 if (!dev->dma_alias_mask) {
6479 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6480 return;
6481 }
6482
6483 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6484
6485 if (nr_devfns == 1)
6486 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6487 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6488 else if (nr_devfns > 1)
6489 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6490 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6491 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6492}
6493
6494bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6495{
6496 return (dev1->dma_alias_mask &&
6497 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6498 (dev2->dma_alias_mask &&
6499 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6500 pci_real_dma_dev(dev1) == dev2 ||
6501 pci_real_dma_dev(dev2) == dev1;
6502}
6503
6504bool pci_device_is_present(struct pci_dev *pdev)
6505{
6506 u32 v;
6507
6508 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6509 pdev = pci_physfn(pdev);
6510 if (pci_dev_is_disconnected(pdev))
6511 return false;
6512 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6513}
6514EXPORT_SYMBOL_GPL(pci_device_is_present);
6515
6516void pci_ignore_hotplug(struct pci_dev *dev)
6517{
6518 struct pci_dev *bridge = dev->bus->self;
6519
6520 dev->ignore_hotplug = 1;
6521 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6522 if (bridge)
6523 bridge->ignore_hotplug = 1;
6524}
6525EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6526
6527/**
6528 * pci_real_dma_dev - Get PCI DMA device for PCI device
6529 * @dev: the PCI device that may have a PCI DMA alias
6530 *
6531 * Permits the platform to provide architecture-specific functionality to
6532 * devices needing to alias DMA to another PCI device on another PCI bus. If
6533 * the PCI device is on the same bus, it is recommended to use
6534 * pci_add_dma_alias(). This is the default implementation. Architecture
6535 * implementations can override this.
6536 */
6537struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6538{
6539 return dev;
6540}
6541
6542resource_size_t __weak pcibios_default_alignment(void)
6543{
6544 return 0;
6545}
6546
6547/*
6548 * Arches that don't want to expose struct resource to userland as-is in
6549 * sysfs and /proc can implement their own pci_resource_to_user().
6550 */
6551void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6552 const struct resource *rsrc,
6553 resource_size_t *start, resource_size_t *end)
6554{
6555 *start = rsrc->start;
6556 *end = rsrc->end;
6557}
6558
6559static char *resource_alignment_param;
6560static DEFINE_SPINLOCK(resource_alignment_lock);
6561
6562/**
6563 * pci_specified_resource_alignment - get resource alignment specified by user.
6564 * @dev: the PCI device to get
6565 * @resize: whether or not to change resources' size when reassigning alignment
6566 *
6567 * RETURNS: Resource alignment if it is specified.
6568 * Zero if it is not specified.
6569 */
6570static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6571 bool *resize)
6572{
6573 int align_order, count;
6574 resource_size_t align = pcibios_default_alignment();
6575 const char *p;
6576 int ret;
6577
6578 spin_lock(&resource_alignment_lock);
6579 p = resource_alignment_param;
6580 if (!p || !*p)
6581 goto out;
6582 if (pci_has_flag(PCI_PROBE_ONLY)) {
6583 align = 0;
6584 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6585 goto out;
6586 }
6587
6588 while (*p) {
6589 count = 0;
6590 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6591 p[count] == '@') {
6592 p += count + 1;
6593 if (align_order > 63) {
6594 pr_err("PCI: Invalid requested alignment (order %d)\n",
6595 align_order);
6596 align_order = PAGE_SHIFT;
6597 }
6598 } else {
6599 align_order = PAGE_SHIFT;
6600 }
6601
6602 ret = pci_dev_str_match(dev, p, &p);
6603 if (ret == 1) {
6604 *resize = true;
6605 align = 1ULL << align_order;
6606 break;
6607 } else if (ret < 0) {
6608 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6609 p);
6610 break;
6611 }
6612
6613 if (*p != ';' && *p != ',') {
6614 /* End of param or invalid format */
6615 break;
6616 }
6617 p++;
6618 }
6619out:
6620 spin_unlock(&resource_alignment_lock);
6621 return align;
6622}
6623
6624static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6625 resource_size_t align, bool resize)
6626{
6627 struct resource *r = &dev->resource[bar];
6628 const char *r_name = pci_resource_name(dev, bar);
6629 resource_size_t size;
6630
6631 if (!(r->flags & IORESOURCE_MEM))
6632 return;
6633
6634 if (r->flags & IORESOURCE_PCI_FIXED) {
6635 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6636 r_name, r, (unsigned long long)align);
6637 return;
6638 }
6639
6640 size = resource_size(r);
6641 if (size >= align)
6642 return;
6643
6644 /*
6645 * Increase the alignment of the resource. There are two ways we
6646 * can do this:
6647 *
6648 * 1) Increase the size of the resource. BARs are aligned on their
6649 * size, so when we reallocate space for this resource, we'll
6650 * allocate it with the larger alignment. This also prevents
6651 * assignment of any other BARs inside the alignment region, so
6652 * if we're requesting page alignment, this means no other BARs
6653 * will share the page.
6654 *
6655 * The disadvantage is that this makes the resource larger than
6656 * the hardware BAR, which may break drivers that compute things
6657 * based on the resource size, e.g., to find registers at a
6658 * fixed offset before the end of the BAR.
6659 *
6660 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6661 * set r->start to the desired alignment. By itself this
6662 * doesn't prevent other BARs being put inside the alignment
6663 * region, but if we realign *every* resource of every device in
6664 * the system, none of them will share an alignment region.
6665 *
6666 * When the user has requested alignment for only some devices via
6667 * the "pci=resource_alignment" argument, "resize" is true and we
6668 * use the first method. Otherwise we assume we're aligning all
6669 * devices and we use the second.
6670 */
6671
6672 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6673 r_name, r, (unsigned long long)align);
6674
6675 if (resize) {
6676 r->start = 0;
6677 r->end = align - 1;
6678 } else {
6679 r->flags &= ~IORESOURCE_SIZEALIGN;
6680 r->flags |= IORESOURCE_STARTALIGN;
6681 resource_set_range(r, align, size);
6682 }
6683 r->flags |= IORESOURCE_UNSET;
6684}
6685
6686/*
6687 * This function disables memory decoding and releases memory resources
6688 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6689 * It also rounds up size to specified alignment.
6690 * Later on, the kernel will assign page-aligned memory resource back
6691 * to the device.
6692 */
6693void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6694{
6695 int i;
6696 struct resource *r;
6697 resource_size_t align;
6698 u16 command;
6699 bool resize = false;
6700
6701 /*
6702 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6703 * 3.4.1.11. Their resources are allocated from the space
6704 * described by the VF BARx register in the PF's SR-IOV capability.
6705 * We can't influence their alignment here.
6706 */
6707 if (dev->is_virtfn)
6708 return;
6709
6710 /* check if specified PCI is target device to reassign */
6711 align = pci_specified_resource_alignment(dev, &resize);
6712 if (!align)
6713 return;
6714
6715 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6716 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6717 pci_warn(dev, "Can't reassign resources to host bridge\n");
6718 return;
6719 }
6720
6721 pci_read_config_word(dev, PCI_COMMAND, &command);
6722 command &= ~PCI_COMMAND_MEMORY;
6723 pci_write_config_word(dev, PCI_COMMAND, command);
6724
6725 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6726 pci_request_resource_alignment(dev, i, align, resize);
6727
6728 /*
6729 * Need to disable bridge's resource window,
6730 * to enable the kernel to reassign new resource
6731 * window later on.
6732 */
6733 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6734 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6735 r = &dev->resource[i];
6736 if (!(r->flags & IORESOURCE_MEM))
6737 continue;
6738 r->flags |= IORESOURCE_UNSET;
6739 r->end = resource_size(r) - 1;
6740 r->start = 0;
6741 }
6742 pci_disable_bridge_window(dev);
6743 }
6744}
6745
6746static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6747{
6748 size_t count = 0;
6749
6750 spin_lock(&resource_alignment_lock);
6751 if (resource_alignment_param)
6752 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6753 spin_unlock(&resource_alignment_lock);
6754
6755 return count;
6756}
6757
6758static ssize_t resource_alignment_store(const struct bus_type *bus,
6759 const char *buf, size_t count)
6760{
6761 char *param, *old, *end;
6762
6763 if (count >= (PAGE_SIZE - 1))
6764 return -EINVAL;
6765
6766 param = kstrndup(buf, count, GFP_KERNEL);
6767 if (!param)
6768 return -ENOMEM;
6769
6770 end = strchr(param, '\n');
6771 if (end)
6772 *end = '\0';
6773
6774 spin_lock(&resource_alignment_lock);
6775 old = resource_alignment_param;
6776 if (strlen(param)) {
6777 resource_alignment_param = param;
6778 } else {
6779 kfree(param);
6780 resource_alignment_param = NULL;
6781 }
6782 spin_unlock(&resource_alignment_lock);
6783
6784 kfree(old);
6785
6786 return count;
6787}
6788
6789static BUS_ATTR_RW(resource_alignment);
6790
6791static int __init pci_resource_alignment_sysfs_init(void)
6792{
6793 return bus_create_file(&pci_bus_type,
6794 &bus_attr_resource_alignment);
6795}
6796late_initcall(pci_resource_alignment_sysfs_init);
6797
6798static void pci_no_domains(void)
6799{
6800#ifdef CONFIG_PCI_DOMAINS
6801 pci_domains_supported = 0;
6802#endif
6803}
6804
6805#ifdef CONFIG_PCI_DOMAINS_GENERIC
6806static DEFINE_IDA(pci_domain_nr_static_ida);
6807static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6808
6809static void of_pci_reserve_static_domain_nr(void)
6810{
6811 struct device_node *np;
6812 int domain_nr;
6813
6814 for_each_node_by_type(np, "pci") {
6815 domain_nr = of_get_pci_domain_nr(np);
6816 if (domain_nr < 0)
6817 continue;
6818 /*
6819 * Permanently allocate domain_nr in dynamic_ida
6820 * to prevent it from dynamic allocation.
6821 */
6822 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6823 domain_nr, domain_nr, GFP_KERNEL);
6824 }
6825}
6826
6827static int of_pci_bus_find_domain_nr(struct device *parent)
6828{
6829 static bool static_domains_reserved = false;
6830 int domain_nr;
6831
6832 /* On the first call scan device tree for static allocations. */
6833 if (!static_domains_reserved) {
6834 of_pci_reserve_static_domain_nr();
6835 static_domains_reserved = true;
6836 }
6837
6838 if (parent) {
6839 /*
6840 * If domain is in DT, allocate it in static IDA. This
6841 * prevents duplicate static allocations in case of errors
6842 * in DT.
6843 */
6844 domain_nr = of_get_pci_domain_nr(parent->of_node);
6845 if (domain_nr >= 0)
6846 return ida_alloc_range(&pci_domain_nr_static_ida,
6847 domain_nr, domain_nr,
6848 GFP_KERNEL);
6849 }
6850
6851 /*
6852 * If domain was not specified in DT, choose a free ID from dynamic
6853 * allocations. All domain numbers from DT are permanently in
6854 * dynamic allocations to prevent assigning them to other DT nodes
6855 * without static domain.
6856 */
6857 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6858}
6859
6860static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6861{
6862 if (domain_nr < 0)
6863 return;
6864
6865 /* Release domain from IDA where it was allocated. */
6866 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6867 ida_free(&pci_domain_nr_static_ida, domain_nr);
6868 else
6869 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6870}
6871
6872int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6873{
6874 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6875 acpi_pci_bus_find_domain_nr(bus);
6876}
6877
6878void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6879{
6880 if (!acpi_disabled)
6881 return;
6882 of_pci_bus_release_domain_nr(parent, domain_nr);
6883}
6884#endif
6885
6886/**
6887 * pci_ext_cfg_avail - can we access extended PCI config space?
6888 *
6889 * Returns 1 if we can access PCI extended config space (offsets
6890 * greater than 0xff). This is the default implementation. Architecture
6891 * implementations can override this.
6892 */
6893int __weak pci_ext_cfg_avail(void)
6894{
6895 return 1;
6896}
6897
6898void __weak pci_fixup_cardbus(struct pci_bus *bus)
6899{
6900}
6901EXPORT_SYMBOL(pci_fixup_cardbus);
6902
6903static int __init pci_setup(char *str)
6904{
6905 while (str) {
6906 char *k = strchr(str, ',');
6907 if (k)
6908 *k++ = 0;
6909 if (*str && (str = pcibios_setup(str)) && *str) {
6910 if (!strcmp(str, "nomsi")) {
6911 pci_no_msi();
6912 } else if (!strncmp(str, "noats", 5)) {
6913 pr_info("PCIe: ATS is disabled\n");
6914 pcie_ats_disabled = true;
6915 } else if (!strcmp(str, "noaer")) {
6916 pci_no_aer();
6917 } else if (!strcmp(str, "earlydump")) {
6918 pci_early_dump = true;
6919 } else if (!strncmp(str, "realloc=", 8)) {
6920 pci_realloc_get_opt(str + 8);
6921 } else if (!strncmp(str, "realloc", 7)) {
6922 pci_realloc_get_opt("on");
6923 } else if (!strcmp(str, "nodomains")) {
6924 pci_no_domains();
6925 } else if (!strncmp(str, "noari", 5)) {
6926 pcie_ari_disabled = true;
6927 } else if (!strncmp(str, "notph", 5)) {
6928 pci_no_tph();
6929 } else if (!strncmp(str, "cbiosize=", 9)) {
6930 pci_cardbus_io_size = memparse(str + 9, &str);
6931 } else if (!strncmp(str, "cbmemsize=", 10)) {
6932 pci_cardbus_mem_size = memparse(str + 10, &str);
6933 } else if (!strncmp(str, "resource_alignment=", 19)) {
6934 resource_alignment_param = str + 19;
6935 } else if (!strncmp(str, "ecrc=", 5)) {
6936 pcie_ecrc_get_policy(str + 5);
6937 } else if (!strncmp(str, "hpiosize=", 9)) {
6938 pci_hotplug_io_size = memparse(str + 9, &str);
6939 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6940 pci_hotplug_mmio_size = memparse(str + 11, &str);
6941 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6942 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6943 } else if (!strncmp(str, "hpmemsize=", 10)) {
6944 pci_hotplug_mmio_size = memparse(str + 10, &str);
6945 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6946 } else if (!strncmp(str, "hpbussize=", 10)) {
6947 pci_hotplug_bus_size =
6948 simple_strtoul(str + 10, &str, 0);
6949 if (pci_hotplug_bus_size > 0xff)
6950 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6951 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6952 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6953 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6954 pcie_bus_config = PCIE_BUS_SAFE;
6955 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6956 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6957 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6958 pcie_bus_config = PCIE_BUS_PEER2PEER;
6959 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6960 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6961 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6962 disable_acs_redir_param = str + 18;
6963 } else if (!strncmp(str, "config_acs=", 11)) {
6964 config_acs_param = str + 11;
6965 } else {
6966 pr_err("PCI: Unknown option `%s'\n", str);
6967 }
6968 }
6969 str = k;
6970 }
6971 return 0;
6972}
6973early_param("pci", pci_setup);
6974
6975/*
6976 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6977 * in pci_setup(), above, to point to data in the __initdata section which
6978 * will be freed after the init sequence is complete. We can't allocate memory
6979 * in pci_setup() because some architectures do not have any memory allocation
6980 * service available during an early_param() call. So we allocate memory and
6981 * copy the variable here before the init section is freed.
6982 *
6983 */
6984static int __init pci_realloc_setup_params(void)
6985{
6986 resource_alignment_param = kstrdup(resource_alignment_param,
6987 GFP_KERNEL);
6988 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6989 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6990
6991 return 0;
6992}
6993pure_initcall(pci_realloc_setup_params);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43int isa_dma_bridge_buggy;
44EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46int pci_pci_problems;
47EXPORT_SYMBOL(pci_pci_problems);
48
49unsigned int pci_pm_d3hot_delay;
50
51static void pci_pme_list_scan(struct work_struct *work);
52
53static LIST_HEAD(pci_pme_list);
54static DEFINE_MUTEX(pci_pme_list_mutex);
55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60};
61
62#define PME_TIMEOUT 1000 /* How long between PME checks */
63
64static void pci_dev_d3_sleep(struct pci_dev *dev)
65{
66 unsigned int delay = dev->d3hot_delay;
67
68 if (delay < pci_pm_d3hot_delay)
69 delay = pci_pm_d3hot_delay;
70
71 if (delay)
72 msleep(delay);
73}
74
75#ifdef CONFIG_PCI_DOMAINS
76int pci_domains_supported = 1;
77#endif
78
79#define DEFAULT_CARDBUS_IO_SIZE (256)
80#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
85#define DEFAULT_HOTPLUG_IO_SIZE (256)
86#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88/* hpiosize=nn can override this */
89unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90/*
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
94 */
95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97
98#define DEFAULT_HOTPLUG_BUS_SIZE 1
99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100
101
102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105#elif defined CONFIG_PCIE_BUS_SAFE
106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109#elif defined CONFIG_PCIE_BUS_PEER2PEER
110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111#else
112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113#endif
114
115/*
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
120 */
121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122u8 pci_cache_line_size;
123
124/*
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
127 */
128unsigned int pcibios_max_latency = 255;
129
130/* If set, the PCIe ARI capability will not be used. */
131static bool pcie_ari_disabled;
132
133/* If set, the PCIe ATS capability will not be used. */
134static bool pcie_ats_disabled;
135
136/* If set, the PCI config space of each device is printed during boot. */
137bool pci_early_dump;
138
139bool pci_ats_disabled(void)
140{
141 return pcie_ats_disabled;
142}
143EXPORT_SYMBOL_GPL(pci_ats_disabled);
144
145/* Disable bridge_d3 for all PCIe ports */
146static bool pci_bridge_d3_disable;
147/* Force bridge_d3 for all PCIe ports */
148static bool pci_bridge_d3_force;
149
150static int __init pcie_port_pm_setup(char *str)
151{
152 if (!strcmp(str, "off"))
153 pci_bridge_d3_disable = true;
154 else if (!strcmp(str, "force"))
155 pci_bridge_d3_force = true;
156 return 1;
157}
158__setup("pcie_port_pm=", pcie_port_pm_setup);
159
160/* Time to wait after a reset for device to become responsive */
161#define PCIE_RESET_READY_POLL_MS 60000
162
163/**
164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165 * @bus: pointer to PCI bus structure to search
166 *
167 * Given a PCI bus, returns the highest PCI bus number present in the set
168 * including the given PCI bus and its list of child PCI buses.
169 */
170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171{
172 struct pci_bus *tmp;
173 unsigned char max, n;
174
175 max = bus->busn_res.end;
176 list_for_each_entry(tmp, &bus->children, node) {
177 n = pci_bus_max_busnr(tmp);
178 if (n > max)
179 max = n;
180 }
181 return max;
182}
183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184
185/**
186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187 * @pdev: the PCI device
188 *
189 * Returns error bits set in PCI_STATUS and clears them.
190 */
191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192{
193 u16 status;
194 int ret;
195
196 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 if (ret != PCIBIOS_SUCCESSFUL)
198 return -EIO;
199
200 status &= PCI_STATUS_ERROR_BITS;
201 if (status)
202 pci_write_config_word(pdev, PCI_STATUS, status);
203
204 return status;
205}
206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207
208#ifdef CONFIG_HAS_IOMEM
209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210{
211 struct resource *res = &pdev->resource[bar];
212
213 /*
214 * Make sure the BAR is actually a memory resource, not an IO resource
215 */
216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 return NULL;
219 }
220 return ioremap(res->start, resource_size(res));
221}
222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223
224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225{
226 /*
227 * Make sure the BAR is actually a memory resource, not an IO resource
228 */
229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 WARN_ON(1);
231 return NULL;
232 }
233 return ioremap_wc(pci_resource_start(pdev, bar),
234 pci_resource_len(pdev, bar));
235}
236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237#endif
238
239/**
240 * pci_dev_str_match_path - test if a path string matches a device
241 * @dev: the PCI device to test
242 * @path: string to match the device against
243 * @endptr: pointer to the string after the match
244 *
245 * Test if a string (typically from a kernel parameter) formatted as a
246 * path of device/function addresses matches a PCI device. The string must
247 * be of the form:
248 *
249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250 *
251 * A path for a device can be obtained using 'lspci -t'. Using a path
252 * is more robust against bus renumbering than using only a single bus,
253 * device and function address.
254 *
255 * Returns 1 if the string matches the device, 0 if it does not and
256 * a negative error code if it fails to parse the string.
257 */
258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 const char **endptr)
260{
261 int ret;
262 int seg, bus, slot, func;
263 char *wpath, *p;
264 char end;
265
266 *endptr = strchrnul(path, ';');
267
268 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
269 if (!wpath)
270 return -ENOMEM;
271
272 while (1) {
273 p = strrchr(wpath, '/');
274 if (!p)
275 break;
276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 if (ret != 2) {
278 ret = -EINVAL;
279 goto free_and_exit;
280 }
281
282 if (dev->devfn != PCI_DEVFN(slot, func)) {
283 ret = 0;
284 goto free_and_exit;
285 }
286
287 /*
288 * Note: we don't need to get a reference to the upstream
289 * bridge because we hold a reference to the top level
290 * device which should hold a reference to the bridge,
291 * and so on.
292 */
293 dev = pci_upstream_bridge(dev);
294 if (!dev) {
295 ret = 0;
296 goto free_and_exit;
297 }
298
299 *p = 0;
300 }
301
302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 &func, &end);
304 if (ret != 4) {
305 seg = 0;
306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 if (ret != 3) {
308 ret = -EINVAL;
309 goto free_and_exit;
310 }
311 }
312
313 ret = (seg == pci_domain_nr(dev->bus) &&
314 bus == dev->bus->number &&
315 dev->devfn == PCI_DEVFN(slot, func));
316
317free_and_exit:
318 kfree(wpath);
319 return ret;
320}
321
322/**
323 * pci_dev_str_match - test if a string matches a device
324 * @dev: the PCI device to test
325 * @p: string to match the device against
326 * @endptr: pointer to the string after the match
327 *
328 * Test if a string (typically from a kernel parameter) matches a specified
329 * PCI device. The string may be of one of the following formats:
330 *
331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333 *
334 * The first format specifies a PCI bus/device/function address which
335 * may change if new hardware is inserted, if motherboard firmware changes,
336 * or due to changes caused in kernel parameters. If the domain is
337 * left unspecified, it is taken to be 0. In order to be robust against
338 * bus renumbering issues, a path of PCI device/function numbers may be used
339 * to address the specific device. The path for a device can be determined
340 * through the use of 'lspci -t'.
341 *
342 * The second format matches devices using IDs in the configuration
343 * space which may match multiple devices in the system. A value of 0
344 * for any field will match all devices. (Note: this differs from
345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346 * legacy reasons and convenience so users don't have to specify
347 * FFFFFFFFs on the command line.)
348 *
349 * Returns 1 if the string matches the device, 0 if it does not and
350 * a negative error code if the string cannot be parsed.
351 */
352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 const char **endptr)
354{
355 int ret;
356 int count;
357 unsigned short vendor, device, subsystem_vendor, subsystem_device;
358
359 if (strncmp(p, "pci:", 4) == 0) {
360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 p += 4;
362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 &subsystem_vendor, &subsystem_device, &count);
364 if (ret != 4) {
365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 if (ret != 2)
367 return -EINVAL;
368
369 subsystem_vendor = 0;
370 subsystem_device = 0;
371 }
372
373 p += count;
374
375 if ((!vendor || vendor == dev->vendor) &&
376 (!device || device == dev->device) &&
377 (!subsystem_vendor ||
378 subsystem_vendor == dev->subsystem_vendor) &&
379 (!subsystem_device ||
380 subsystem_device == dev->subsystem_device))
381 goto found;
382 } else {
383 /*
384 * PCI Bus, Device, Function IDs are specified
385 * (optionally, may include a path of devfns following it)
386 */
387 ret = pci_dev_str_match_path(dev, p, &p);
388 if (ret < 0)
389 return ret;
390 else if (ret)
391 goto found;
392 }
393
394 *endptr = p;
395 return 0;
396
397found:
398 *endptr = p;
399 return 1;
400}
401
402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 u8 pos, int cap, int *ttl)
404{
405 u8 id;
406 u16 ent;
407
408 pci_bus_read_config_byte(bus, devfn, pos, &pos);
409
410 while ((*ttl)--) {
411 if (pos < 0x40)
412 break;
413 pos &= ~3;
414 pci_bus_read_config_word(bus, devfn, pos, &ent);
415
416 id = ent & 0xff;
417 if (id == 0xff)
418 break;
419 if (id == cap)
420 return pos;
421 pos = (ent >> 8);
422 }
423 return 0;
424}
425
426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap)
428{
429 int ttl = PCI_FIND_CAP_TTL;
430
431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432}
433
434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435{
436 return __pci_find_next_cap(dev->bus, dev->devfn,
437 pos + PCI_CAP_LIST_NEXT, cap);
438}
439EXPORT_SYMBOL_GPL(pci_find_next_capability);
440
441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 unsigned int devfn, u8 hdr_type)
443{
444 u16 status;
445
446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 if (!(status & PCI_STATUS_CAP_LIST))
448 return 0;
449
450 switch (hdr_type) {
451 case PCI_HEADER_TYPE_NORMAL:
452 case PCI_HEADER_TYPE_BRIDGE:
453 return PCI_CAPABILITY_LIST;
454 case PCI_HEADER_TYPE_CARDBUS:
455 return PCI_CB_CAPABILITY_LIST;
456 }
457
458 return 0;
459}
460
461/**
462 * pci_find_capability - query for devices' capabilities
463 * @dev: PCI device to query
464 * @cap: capability code
465 *
466 * Tell if a device supports a given PCI capability.
467 * Returns the address of the requested capability structure within the
468 * device's PCI configuration space or 0 in case the device does not
469 * support it. Possible values for @cap include:
470 *
471 * %PCI_CAP_ID_PM Power Management
472 * %PCI_CAP_ID_AGP Accelerated Graphics Port
473 * %PCI_CAP_ID_VPD Vital Product Data
474 * %PCI_CAP_ID_SLOTID Slot Identification
475 * %PCI_CAP_ID_MSI Message Signalled Interrupts
476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
477 * %PCI_CAP_ID_PCIX PCI-X
478 * %PCI_CAP_ID_EXP PCI Express
479 */
480u8 pci_find_capability(struct pci_dev *dev, int cap)
481{
482 u8 pos;
483
484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 if (pos)
486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487
488 return pos;
489}
490EXPORT_SYMBOL(pci_find_capability);
491
492/**
493 * pci_bus_find_capability - query for devices' capabilities
494 * @bus: the PCI bus to query
495 * @devfn: PCI device to query
496 * @cap: capability code
497 *
498 * Like pci_find_capability() but works for PCI devices that do not have a
499 * pci_dev structure set up yet.
500 *
501 * Returns the address of the requested capability structure within the
502 * device's PCI configuration space or 0 in case the device does not
503 * support it.
504 */
505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506{
507 u8 hdr_type, pos;
508
509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
510
511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 if (pos)
513 pos = __pci_find_next_cap(bus, devfn, pos, cap);
514
515 return pos;
516}
517EXPORT_SYMBOL(pci_bus_find_capability);
518
519/**
520 * pci_find_next_ext_capability - Find an extended capability
521 * @dev: PCI device to query
522 * @start: address at which to start looking (0 to start at beginning of list)
523 * @cap: capability code
524 *
525 * Returns the address of the next matching extended capability structure
526 * within the device's PCI configuration space or 0 if the device does
527 * not support it. Some capabilities can occur several times, e.g., the
528 * vendor-specific capability, and this provides a way to find them all.
529 */
530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
531{
532 u32 header;
533 int ttl;
534 u16 pos = PCI_CFG_SPACE_SIZE;
535
536 /* minimum 8 bytes per capability */
537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
538
539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
540 return 0;
541
542 if (start)
543 pos = start;
544
545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 return 0;
547
548 /*
549 * If we have no capabilities, this is indicated by cap ID,
550 * cap version and next pointer all being 0.
551 */
552 if (header == 0)
553 return 0;
554
555 while (ttl-- > 0) {
556 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
557 return pos;
558
559 pos = PCI_EXT_CAP_NEXT(header);
560 if (pos < PCI_CFG_SPACE_SIZE)
561 break;
562
563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 break;
565 }
566
567 return 0;
568}
569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
570
571/**
572 * pci_find_ext_capability - Find an extended capability
573 * @dev: PCI device to query
574 * @cap: capability code
575 *
576 * Returns the address of the requested extended capability structure
577 * within the device's PCI configuration space or 0 if the device does
578 * not support it. Possible values for @cap include:
579 *
580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
581 * %PCI_EXT_CAP_ID_VC Virtual Channel
582 * %PCI_EXT_CAP_ID_DSN Device Serial Number
583 * %PCI_EXT_CAP_ID_PWR Power Budgeting
584 */
585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
586{
587 return pci_find_next_ext_capability(dev, 0, cap);
588}
589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
590
591/**
592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
593 * @dev: PCI device to query
594 *
595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596 * Number.
597 *
598 * Returns the DSN, or zero if the capability does not exist.
599 */
600u64 pci_get_dsn(struct pci_dev *dev)
601{
602 u32 dword;
603 u64 dsn;
604 int pos;
605
606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 if (!pos)
608 return 0;
609
610 /*
611 * The Device Serial Number is two dwords offset 4 bytes from the
612 * capability position. The specification says that the first dword is
613 * the lower half, and the second dword is the upper half.
614 */
615 pos += 4;
616 pci_read_config_dword(dev, pos, &dword);
617 dsn = (u64)dword;
618 pci_read_config_dword(dev, pos + 4, &dword);
619 dsn |= ((u64)dword) << 32;
620
621 return dsn;
622}
623EXPORT_SYMBOL_GPL(pci_get_dsn);
624
625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
626{
627 int rc, ttl = PCI_FIND_CAP_TTL;
628 u8 cap, mask;
629
630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 mask = HT_3BIT_CAP_MASK;
632 else
633 mask = HT_5BIT_CAP_MASK;
634
635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 PCI_CAP_ID_HT, &ttl);
637 while (pos) {
638 rc = pci_read_config_byte(dev, pos + 3, &cap);
639 if (rc != PCIBIOS_SUCCESSFUL)
640 return 0;
641
642 if ((cap & mask) == ht_cap)
643 return pos;
644
645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 pos + PCI_CAP_LIST_NEXT,
647 PCI_CAP_ID_HT, &ttl);
648 }
649
650 return 0;
651}
652
653/**
654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655 * @dev: PCI device to query
656 * @pos: Position from which to continue searching
657 * @ht_cap: HyperTransport capability code
658 *
659 * To be used in conjunction with pci_find_ht_capability() to search for
660 * all capabilities matching @ht_cap. @pos should always be a value returned
661 * from pci_find_ht_capability().
662 *
663 * NB. To be 100% safe against broken PCI devices, the caller should take
664 * steps to avoid an infinite loop.
665 */
666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
667{
668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669}
670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671
672/**
673 * pci_find_ht_capability - query a device's HyperTransport capabilities
674 * @dev: PCI device to query
675 * @ht_cap: HyperTransport capability code
676 *
677 * Tell if a device supports a given HyperTransport capability.
678 * Returns an address within the device's PCI configuration space
679 * or 0 in case the device does not support the request capability.
680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681 * which has a HyperTransport capability matching @ht_cap.
682 */
683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684{
685 u8 pos;
686
687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 if (pos)
689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690
691 return pos;
692}
693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694
695/**
696 * pci_find_vsec_capability - Find a vendor-specific extended capability
697 * @dev: PCI device to query
698 * @vendor: Vendor ID for which capability is defined
699 * @cap: Vendor-specific capability ID
700 *
701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
702 * VSEC ID @cap. If found, return the capability offset in
703 * config space; otherwise return 0.
704 */
705u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
706{
707 u16 vsec = 0;
708 u32 header;
709
710 if (vendor != dev->vendor)
711 return 0;
712
713 while ((vsec = pci_find_next_ext_capability(dev, vsec,
714 PCI_EXT_CAP_ID_VNDR))) {
715 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
716 &header) == PCIBIOS_SUCCESSFUL &&
717 PCI_VNDR_HEADER_ID(header) == cap)
718 return vsec;
719 }
720
721 return 0;
722}
723EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
724
725/**
726 * pci_find_parent_resource - return resource region of parent bus of given
727 * region
728 * @dev: PCI device structure contains resources to be searched
729 * @res: child resource record for which parent is sought
730 *
731 * For given resource region of given device, return the resource region of
732 * parent bus the given region is contained in.
733 */
734struct resource *pci_find_parent_resource(const struct pci_dev *dev,
735 struct resource *res)
736{
737 const struct pci_bus *bus = dev->bus;
738 struct resource *r;
739 int i;
740
741 pci_bus_for_each_resource(bus, r, i) {
742 if (!r)
743 continue;
744 if (resource_contains(r, res)) {
745
746 /*
747 * If the window is prefetchable but the BAR is
748 * not, the allocator made a mistake.
749 */
750 if (r->flags & IORESOURCE_PREFETCH &&
751 !(res->flags & IORESOURCE_PREFETCH))
752 return NULL;
753
754 /*
755 * If we're below a transparent bridge, there may
756 * be both a positively-decoded aperture and a
757 * subtractively-decoded region that contain the BAR.
758 * We want the positively-decoded one, so this depends
759 * on pci_bus_for_each_resource() giving us those
760 * first.
761 */
762 return r;
763 }
764 }
765 return NULL;
766}
767EXPORT_SYMBOL(pci_find_parent_resource);
768
769/**
770 * pci_find_resource - Return matching PCI device resource
771 * @dev: PCI device to query
772 * @res: Resource to look for
773 *
774 * Goes over standard PCI resources (BARs) and checks if the given resource
775 * is partially or fully contained in any of them. In that case the
776 * matching resource is returned, %NULL otherwise.
777 */
778struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
779{
780 int i;
781
782 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
783 struct resource *r = &dev->resource[i];
784
785 if (r->start && resource_contains(r, res))
786 return r;
787 }
788
789 return NULL;
790}
791EXPORT_SYMBOL(pci_find_resource);
792
793/**
794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
795 * @dev: the PCI device to operate on
796 * @pos: config space offset of status word
797 * @mask: mask of bit(s) to care about in status word
798 *
799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
800 */
801int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
802{
803 int i;
804
805 /* Wait for Transaction Pending bit clean */
806 for (i = 0; i < 4; i++) {
807 u16 status;
808 if (i)
809 msleep((1 << (i - 1)) * 100);
810
811 pci_read_config_word(dev, pos, &status);
812 if (!(status & mask))
813 return 1;
814 }
815
816 return 0;
817}
818
819static int pci_acs_enable;
820
821/**
822 * pci_request_acs - ask for ACS to be enabled if supported
823 */
824void pci_request_acs(void)
825{
826 pci_acs_enable = 1;
827}
828
829static const char *disable_acs_redir_param;
830
831/**
832 * pci_disable_acs_redir - disable ACS redirect capabilities
833 * @dev: the PCI device
834 *
835 * For only devices specified in the disable_acs_redir parameter.
836 */
837static void pci_disable_acs_redir(struct pci_dev *dev)
838{
839 int ret = 0;
840 const char *p;
841 int pos;
842 u16 ctrl;
843
844 if (!disable_acs_redir_param)
845 return;
846
847 p = disable_acs_redir_param;
848 while (*p) {
849 ret = pci_dev_str_match(dev, p, &p);
850 if (ret < 0) {
851 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
852 disable_acs_redir_param);
853
854 break;
855 } else if (ret == 1) {
856 /* Found a match */
857 break;
858 }
859
860 if (*p != ';' && *p != ',') {
861 /* End of param or invalid format */
862 break;
863 }
864 p++;
865 }
866
867 if (ret != 1)
868 return;
869
870 if (!pci_dev_specific_disable_acs_redir(dev))
871 return;
872
873 pos = dev->acs_cap;
874 if (!pos) {
875 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
876 return;
877 }
878
879 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
880
881 /* P2P Request & Completion Redirect */
882 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
883
884 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
885
886 pci_info(dev, "disabled ACS redirect\n");
887}
888
889/**
890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
891 * @dev: the PCI device
892 */
893static void pci_std_enable_acs(struct pci_dev *dev)
894{
895 int pos;
896 u16 cap;
897 u16 ctrl;
898
899 pos = dev->acs_cap;
900 if (!pos)
901 return;
902
903 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
904 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
905
906 /* Source Validation */
907 ctrl |= (cap & PCI_ACS_SV);
908
909 /* P2P Request Redirect */
910 ctrl |= (cap & PCI_ACS_RR);
911
912 /* P2P Completion Redirect */
913 ctrl |= (cap & PCI_ACS_CR);
914
915 /* Upstream Forwarding */
916 ctrl |= (cap & PCI_ACS_UF);
917
918 /* Enable Translation Blocking for external devices */
919 if (dev->external_facing || dev->untrusted)
920 ctrl |= (cap & PCI_ACS_TB);
921
922 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
923}
924
925/**
926 * pci_enable_acs - enable ACS if hardware support it
927 * @dev: the PCI device
928 */
929static void pci_enable_acs(struct pci_dev *dev)
930{
931 if (!pci_acs_enable)
932 goto disable_acs_redir;
933
934 if (!pci_dev_specific_enable_acs(dev))
935 goto disable_acs_redir;
936
937 pci_std_enable_acs(dev);
938
939disable_acs_redir:
940 /*
941 * Note: pci_disable_acs_redir() must be called even if ACS was not
942 * enabled by the kernel because it may have been enabled by
943 * platform firmware. So if we are told to disable it, we should
944 * always disable it after setting the kernel's default
945 * preferences.
946 */
947 pci_disable_acs_redir(dev);
948}
949
950/**
951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
952 * @dev: PCI device to have its BARs restored
953 *
954 * Restore the BAR values for a given device, so as to make it
955 * accessible by its driver.
956 */
957static void pci_restore_bars(struct pci_dev *dev)
958{
959 int i;
960
961 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
962 pci_update_resource(dev, i);
963}
964
965static const struct pci_platform_pm_ops *pci_platform_pm;
966
967int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
968{
969 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
970 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
971 return -EINVAL;
972 pci_platform_pm = ops;
973 return 0;
974}
975
976static inline bool platform_pci_power_manageable(struct pci_dev *dev)
977{
978 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
979}
980
981static inline int platform_pci_set_power_state(struct pci_dev *dev,
982 pci_power_t t)
983{
984 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
985}
986
987static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
988{
989 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
990}
991
992static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
993{
994 if (pci_platform_pm && pci_platform_pm->refresh_state)
995 pci_platform_pm->refresh_state(dev);
996}
997
998static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
999{
1000 return pci_platform_pm ?
1001 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002}
1003
1004static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005{
1006 return pci_platform_pm ?
1007 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1008}
1009
1010static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011{
1012 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013}
1014
1015static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016{
1017 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018 return pci_platform_pm->bridge_d3(dev);
1019 return false;
1020}
1021
1022/**
1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024 * given PCI device
1025 * @dev: PCI device to handle.
1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027 *
1028 * RETURN VALUE:
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1034 */
1035static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036{
1037 u16 pmcsr;
1038 bool need_restore = false;
1039
1040 /* Check if we're already there */
1041 if (dev->current_state == state)
1042 return 0;
1043
1044 if (!dev->pm_cap)
1045 return -EIO;
1046
1047 if (state < PCI_D0 || state > PCI_D3hot)
1048 return -EINVAL;
1049
1050 /*
1051 * Validate transition: We can enter D0 from any state, but if
1052 * we're already in a low-power state, we can only go deeper. E.g.,
1053 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054 * we'd have to go from D3 to D0, then to D1.
1055 */
1056 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057 && dev->current_state > state) {
1058 pci_err(dev, "invalid power transition (from %s to %s)\n",
1059 pci_power_name(dev->current_state),
1060 pci_power_name(state));
1061 return -EINVAL;
1062 }
1063
1064 /* Check if this device supports the desired state */
1065 if ((state == PCI_D1 && !dev->d1_support)
1066 || (state == PCI_D2 && !dev->d2_support))
1067 return -EIO;
1068
1069 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070 if (pmcsr == (u16) ~0) {
1071 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072 pci_power_name(dev->current_state),
1073 pci_power_name(state));
1074 return -EIO;
1075 }
1076
1077 /*
1078 * If we're (effectively) in D3, force entire word to 0.
1079 * This doesn't affect PME_Status, disables PME_En, and
1080 * sets PowerState to 0.
1081 */
1082 switch (dev->current_state) {
1083 case PCI_D0:
1084 case PCI_D1:
1085 case PCI_D2:
1086 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087 pmcsr |= state;
1088 break;
1089 case PCI_D3hot:
1090 case PCI_D3cold:
1091 case PCI_UNKNOWN: /* Boot-up */
1092 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094 need_restore = true;
1095 fallthrough; /* force to D0 */
1096 default:
1097 pmcsr = 0;
1098 break;
1099 }
1100
1101 /* Enter specified state */
1102 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103
1104 /*
1105 * Mandatory power management transition delays; see PCI PM 1.1
1106 * 5.6.1 table 18
1107 */
1108 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109 pci_dev_d3_sleep(dev);
1110 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111 udelay(PCI_PM_D2_DELAY);
1112
1113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115 if (dev->current_state != state)
1116 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117 pci_power_name(dev->current_state),
1118 pci_power_name(state));
1119
1120 /*
1121 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123 * from D3hot to D0 _may_ perform an internal reset, thereby
1124 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125 * For example, at least some versions of the 3c905B and the
1126 * 3c556B exhibit this behaviour.
1127 *
1128 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129 * devices in a D3hot state at boot. Consequently, we need to
1130 * restore at least the BARs so that the device will be
1131 * accessible to its driver.
1132 */
1133 if (need_restore)
1134 pci_restore_bars(dev);
1135
1136 if (dev->bus->self)
1137 pcie_aspm_pm_state_change(dev->bus->self);
1138
1139 return 0;
1140}
1141
1142/**
1143 * pci_update_current_state - Read power state of given device and cache it
1144 * @dev: PCI device to handle.
1145 * @state: State to cache in case the device doesn't have the PM capability
1146 *
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold. The platform firmware is therefore queried first
1149 * to detect accessibility of the register. In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
1153 */
1154void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155{
1156 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157 !pci_device_is_present(dev)) {
1158 dev->current_state = PCI_D3cold;
1159 } else if (dev->pm_cap) {
1160 u16 pmcsr;
1161
1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164 } else {
1165 dev->current_state = state;
1166 }
1167}
1168
1169/**
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1172 *
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1175 */
1176void pci_refresh_power_state(struct pci_dev *dev)
1177{
1178 if (platform_pci_power_manageable(dev))
1179 platform_pci_refresh_power_state(dev);
1180
1181 pci_update_current_state(dev, dev->current_state);
1182}
1183
1184/**
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1188 */
1189int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190{
1191 int error;
1192
1193 if (platform_pci_power_manageable(dev)) {
1194 error = platform_pci_set_power_state(dev, state);
1195 if (!error)
1196 pci_update_current_state(dev, state);
1197 } else
1198 error = -ENODEV;
1199
1200 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201 dev->current_state = PCI_D0;
1202
1203 return error;
1204}
1205EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206
1207static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1208{
1209 pm_request_resume(&pci_dev->dev);
1210 return 0;
1211}
1212
1213/**
1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
1215 * @bus: Top bus of the subtree to walk.
1216 */
1217void pci_resume_bus(struct pci_bus *bus)
1218{
1219 if (bus)
1220 pci_walk_bus(bus, pci_resume_one, NULL);
1221}
1222
1223static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224{
1225 int delay = 1;
1226 u32 id;
1227
1228 /*
1229 * After reset, the device should not silently discard config
1230 * requests, but it may still indicate that it needs more time by
1231 * responding to them with CRS completions. The Root Port will
1232 * generally synthesize ~0 data to complete the read (except when
1233 * CRS SV is enabled and the read was for the Vendor ID; in that
1234 * case it synthesizes 0x0001 data).
1235 *
1236 * Wait for the device to return a non-CRS completion. Read the
1237 * Command register instead of Vendor ID so we don't have to
1238 * contend with the CRS SV value.
1239 */
1240 pci_read_config_dword(dev, PCI_COMMAND, &id);
1241 while (id == ~0) {
1242 if (delay > timeout) {
1243 pci_warn(dev, "not ready %dms after %s; giving up\n",
1244 delay - 1, reset_type);
1245 return -ENOTTY;
1246 }
1247
1248 if (delay > 1000)
1249 pci_info(dev, "not ready %dms after %s; waiting\n",
1250 delay - 1, reset_type);
1251
1252 msleep(delay);
1253 delay *= 2;
1254 pci_read_config_dword(dev, PCI_COMMAND, &id);
1255 }
1256
1257 if (delay > 1000)
1258 pci_info(dev, "ready %dms after %s\n", delay - 1,
1259 reset_type);
1260
1261 return 0;
1262}
1263
1264/**
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
1267 */
1268int pci_power_up(struct pci_dev *dev)
1269{
1270 pci_platform_power_transition(dev, PCI_D0);
1271
1272 /*
1273 * Mandatory power management transition delays are handled in
1274 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275 * corresponding bridge.
1276 */
1277 if (dev->runtime_d3cold) {
1278 /*
1279 * When powering on a bridge from D3cold, the whole hierarchy
1280 * may be powered on into D0uninitialized state, resume them to
1281 * give them a chance to suspend again
1282 */
1283 pci_resume_bus(dev->subordinate);
1284 }
1285
1286 return pci_raw_set_power_state(dev, PCI_D0);
1287}
1288
1289/**
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1293 */
1294static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295{
1296 pci_power_t state = *(pci_power_t *)data;
1297
1298 dev->current_state = state;
1299 return 0;
1300}
1301
1302/**
1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1306 */
1307void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308{
1309 if (bus)
1310 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311}
1312
1313/**
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317 *
1318 * Transition a device to a new power state, using the platform firmware and/or
1319 * the device's PCI PM registers.
1320 *
1321 * RETURN VALUE:
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326 * 0 if device already is in the requested state.
1327 * 0 if the transition is to D3 but D3 is not supported.
1328 * 0 if device's power state has been successfully changed.
1329 */
1330int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331{
1332 int error;
1333
1334 /* Bound the state we're entering */
1335 if (state > PCI_D3cold)
1336 state = PCI_D3cold;
1337 else if (state < PCI_D0)
1338 state = PCI_D0;
1339 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340
1341 /*
1342 * If the device or the parent bridge do not support PCI
1343 * PM, ignore the request if we're doing anything other
1344 * than putting it into D0 (which would only happen on
1345 * boot).
1346 */
1347 return 0;
1348
1349 /* Check if we're already there */
1350 if (dev->current_state == state)
1351 return 0;
1352
1353 if (state == PCI_D0)
1354 return pci_power_up(dev);
1355
1356 /*
1357 * This device is quirked not to be put into D3, so don't put it in
1358 * D3
1359 */
1360 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361 return 0;
1362
1363 /*
1364 * To put device in D3cold, we put device into D3hot in native
1365 * way, then put device into D3cold with platform ops
1366 */
1367 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368 PCI_D3hot : state);
1369
1370 if (pci_platform_power_transition(dev, state))
1371 return error;
1372
1373 /* Powering off a bridge may power off the whole hierarchy */
1374 if (state == PCI_D3cold)
1375 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1376
1377 return 0;
1378}
1379EXPORT_SYMBOL(pci_set_power_state);
1380
1381/**
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
1385 * that is passed to suspend() function.
1386 *
1387 * Returns PCI power state suitable for given device and given system
1388 * message.
1389 */
1390pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391{
1392 pci_power_t ret;
1393
1394 if (!dev->pm_cap)
1395 return PCI_D0;
1396
1397 ret = platform_pci_choose_state(dev);
1398 if (ret != PCI_POWER_ERROR)
1399 return ret;
1400
1401 switch (state.event) {
1402 case PM_EVENT_ON:
1403 return PCI_D0;
1404 case PM_EVENT_FREEZE:
1405 case PM_EVENT_PRETHAW:
1406 /* REVISIT both freeze and pre-thaw "should" use D0 */
1407 case PM_EVENT_SUSPEND:
1408 case PM_EVENT_HIBERNATE:
1409 return PCI_D3hot;
1410 default:
1411 pci_info(dev, "unrecognized suspend event %d\n",
1412 state.event);
1413 BUG();
1414 }
1415 return PCI_D0;
1416}
1417EXPORT_SYMBOL(pci_choose_state);
1418
1419#define PCI_EXP_SAVE_REGS 7
1420
1421static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422 u16 cap, bool extended)
1423{
1424 struct pci_cap_saved_state *tmp;
1425
1426 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428 return tmp;
1429 }
1430 return NULL;
1431}
1432
1433struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434{
1435 return _pci_find_saved_cap(dev, cap, false);
1436}
1437
1438struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439{
1440 return _pci_find_saved_cap(dev, cap, true);
1441}
1442
1443static int pci_save_pcie_state(struct pci_dev *dev)
1444{
1445 int i = 0;
1446 struct pci_cap_saved_state *save_state;
1447 u16 *cap;
1448
1449 if (!pci_is_pcie(dev))
1450 return 0;
1451
1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 if (!save_state) {
1454 pci_err(dev, "buffer not found in %s\n", __func__);
1455 return -ENOMEM;
1456 }
1457
1458 cap = (u16 *)&save_state->cap.data[0];
1459 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466
1467 return 0;
1468}
1469
1470static void pci_restore_pcie_state(struct pci_dev *dev)
1471{
1472 int i = 0;
1473 struct pci_cap_saved_state *save_state;
1474 u16 *cap;
1475
1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477 if (!save_state)
1478 return;
1479
1480 cap = (u16 *)&save_state->cap.data[0];
1481 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488}
1489
1490static int pci_save_pcix_state(struct pci_dev *dev)
1491{
1492 int pos;
1493 struct pci_cap_saved_state *save_state;
1494
1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496 if (!pos)
1497 return 0;
1498
1499 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500 if (!save_state) {
1501 pci_err(dev, "buffer not found in %s\n", __func__);
1502 return -ENOMEM;
1503 }
1504
1505 pci_read_config_word(dev, pos + PCI_X_CMD,
1506 (u16 *)save_state->cap.data);
1507
1508 return 0;
1509}
1510
1511static void pci_restore_pcix_state(struct pci_dev *dev)
1512{
1513 int i = 0, pos;
1514 struct pci_cap_saved_state *save_state;
1515 u16 *cap;
1516
1517 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519 if (!save_state || !pos)
1520 return;
1521 cap = (u16 *)&save_state->cap.data[0];
1522
1523 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524}
1525
1526static void pci_save_ltr_state(struct pci_dev *dev)
1527{
1528 int ltr;
1529 struct pci_cap_saved_state *save_state;
1530 u16 *cap;
1531
1532 if (!pci_is_pcie(dev))
1533 return;
1534
1535 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536 if (!ltr)
1537 return;
1538
1539 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540 if (!save_state) {
1541 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542 return;
1543 }
1544
1545 cap = (u16 *)&save_state->cap.data[0];
1546 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548}
1549
1550static void pci_restore_ltr_state(struct pci_dev *dev)
1551{
1552 struct pci_cap_saved_state *save_state;
1553 int ltr;
1554 u16 *cap;
1555
1556 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558 if (!save_state || !ltr)
1559 return;
1560
1561 cap = (u16 *)&save_state->cap.data[0];
1562 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564}
1565
1566/**
1567 * pci_save_state - save the PCI configuration space of a device before
1568 * suspending
1569 * @dev: PCI device that we're dealing with
1570 */
1571int pci_save_state(struct pci_dev *dev)
1572{
1573 int i;
1574 /* XXX: 100% dword access ok here? */
1575 for (i = 0; i < 16; i++) {
1576 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578 i * 4, dev->saved_config_space[i]);
1579 }
1580 dev->state_saved = true;
1581
1582 i = pci_save_pcie_state(dev);
1583 if (i != 0)
1584 return i;
1585
1586 i = pci_save_pcix_state(dev);
1587 if (i != 0)
1588 return i;
1589
1590 pci_save_ltr_state(dev);
1591 pci_save_dpc_state(dev);
1592 pci_save_aer_state(dev);
1593 pci_save_ptm_state(dev);
1594 return pci_save_vc_state(dev);
1595}
1596EXPORT_SYMBOL(pci_save_state);
1597
1598static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599 u32 saved_val, int retry, bool force)
1600{
1601 u32 val;
1602
1603 pci_read_config_dword(pdev, offset, &val);
1604 if (!force && val == saved_val)
1605 return;
1606
1607 for (;;) {
1608 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609 offset, val, saved_val);
1610 pci_write_config_dword(pdev, offset, saved_val);
1611 if (retry-- <= 0)
1612 return;
1613
1614 pci_read_config_dword(pdev, offset, &val);
1615 if (val == saved_val)
1616 return;
1617
1618 mdelay(1);
1619 }
1620}
1621
1622static void pci_restore_config_space_range(struct pci_dev *pdev,
1623 int start, int end, int retry,
1624 bool force)
1625{
1626 int index;
1627
1628 for (index = end; index >= start; index--)
1629 pci_restore_config_dword(pdev, 4 * index,
1630 pdev->saved_config_space[index],
1631 retry, force);
1632}
1633
1634static void pci_restore_config_space(struct pci_dev *pdev)
1635{
1636 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638 /* Restore BARs before the command register. */
1639 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643
1644 /*
1645 * Force rewriting of prefetch registers to avoid S3 resume
1646 * issues on Intel PCI bridges that occur when these
1647 * registers are not explicitly written.
1648 */
1649 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651 } else {
1652 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653 }
1654}
1655
1656static void pci_restore_rebar_state(struct pci_dev *pdev)
1657{
1658 unsigned int pos, nbars, i;
1659 u32 ctrl;
1660
1661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662 if (!pos)
1663 return;
1664
1665 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667 PCI_REBAR_CTRL_NBAR_SHIFT;
1668
1669 for (i = 0; i < nbars; i++, pos += 8) {
1670 struct resource *res;
1671 int bar_idx, size;
1672
1673 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675 res = pdev->resource + bar_idx;
1676 size = pci_rebar_bytes_to_size(resource_size(res));
1677 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680 }
1681}
1682
1683/**
1684 * pci_restore_state - Restore the saved state of a PCI device
1685 * @dev: PCI device that we're dealing with
1686 */
1687void pci_restore_state(struct pci_dev *dev)
1688{
1689 if (!dev->state_saved)
1690 return;
1691
1692 /*
1693 * Restore max latencies (in the LTR capability) before enabling
1694 * LTR itself (in the PCIe capability).
1695 */
1696 pci_restore_ltr_state(dev);
1697
1698 pci_restore_pcie_state(dev);
1699 pci_restore_pasid_state(dev);
1700 pci_restore_pri_state(dev);
1701 pci_restore_ats_state(dev);
1702 pci_restore_vc_state(dev);
1703 pci_restore_rebar_state(dev);
1704 pci_restore_dpc_state(dev);
1705 pci_restore_ptm_state(dev);
1706
1707 pci_aer_clear_status(dev);
1708 pci_restore_aer_state(dev);
1709
1710 pci_restore_config_space(dev);
1711
1712 pci_restore_pcix_state(dev);
1713 pci_restore_msi_state(dev);
1714
1715 /* Restore ACS and IOV configuration state */
1716 pci_enable_acs(dev);
1717 pci_restore_iov_state(dev);
1718
1719 dev->state_saved = false;
1720}
1721EXPORT_SYMBOL(pci_restore_state);
1722
1723struct pci_saved_state {
1724 u32 config_space[16];
1725 struct pci_cap_saved_data cap[];
1726};
1727
1728/**
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 * the device saved state.
1731 * @dev: PCI device that we're dealing with
1732 *
1733 * Return NULL if no state or error.
1734 */
1735struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736{
1737 struct pci_saved_state *state;
1738 struct pci_cap_saved_state *tmp;
1739 struct pci_cap_saved_data *cap;
1740 size_t size;
1741
1742 if (!dev->state_saved)
1743 return NULL;
1744
1745 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746
1747 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749
1750 state = kzalloc(size, GFP_KERNEL);
1751 if (!state)
1752 return NULL;
1753
1754 memcpy(state->config_space, dev->saved_config_space,
1755 sizeof(state->config_space));
1756
1757 cap = state->cap;
1758 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760 memcpy(cap, &tmp->cap, len);
1761 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762 }
1763 /* Empty cap_save terminates list */
1764
1765 return state;
1766}
1767EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768
1769/**
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1773 */
1774int pci_load_saved_state(struct pci_dev *dev,
1775 struct pci_saved_state *state)
1776{
1777 struct pci_cap_saved_data *cap;
1778
1779 dev->state_saved = false;
1780
1781 if (!state)
1782 return 0;
1783
1784 memcpy(dev->saved_config_space, state->config_space,
1785 sizeof(state->config_space));
1786
1787 cap = state->cap;
1788 while (cap->size) {
1789 struct pci_cap_saved_state *tmp;
1790
1791 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792 if (!tmp || tmp->cap.size != cap->size)
1793 return -EINVAL;
1794
1795 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797 sizeof(struct pci_cap_saved_data) + cap->size);
1798 }
1799
1800 dev->state_saved = true;
1801 return 0;
1802}
1803EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804
1805/**
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 * and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1810 */
1811int pci_load_and_free_saved_state(struct pci_dev *dev,
1812 struct pci_saved_state **state)
1813{
1814 int ret = pci_load_saved_state(dev, *state);
1815 kfree(*state);
1816 *state = NULL;
1817 return ret;
1818}
1819EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820
1821int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822{
1823 return pci_enable_resources(dev, bars);
1824}
1825
1826static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827{
1828 int err;
1829 struct pci_dev *bridge;
1830 u16 cmd;
1831 u8 pin;
1832
1833 err = pci_set_power_state(dev, PCI_D0);
1834 if (err < 0 && err != -EIO)
1835 return err;
1836
1837 bridge = pci_upstream_bridge(dev);
1838 if (bridge)
1839 pcie_aspm_powersave_config_link(bridge);
1840
1841 err = pcibios_enable_device(dev, bars);
1842 if (err < 0)
1843 return err;
1844 pci_fixup_device(pci_fixup_enable, dev);
1845
1846 if (dev->msi_enabled || dev->msix_enabled)
1847 return 0;
1848
1849 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850 if (pin) {
1851 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852 if (cmd & PCI_COMMAND_INTX_DISABLE)
1853 pci_write_config_word(dev, PCI_COMMAND,
1854 cmd & ~PCI_COMMAND_INTX_DISABLE);
1855 }
1856
1857 return 0;
1858}
1859
1860/**
1861 * pci_reenable_device - Resume abandoned device
1862 * @dev: PCI device to be resumed
1863 *
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
1866 */
1867int pci_reenable_device(struct pci_dev *dev)
1868{
1869 if (pci_is_enabled(dev))
1870 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871 return 0;
1872}
1873EXPORT_SYMBOL(pci_reenable_device);
1874
1875static void pci_enable_bridge(struct pci_dev *dev)
1876{
1877 struct pci_dev *bridge;
1878 int retval;
1879
1880 bridge = pci_upstream_bridge(dev);
1881 if (bridge)
1882 pci_enable_bridge(bridge);
1883
1884 if (pci_is_enabled(dev)) {
1885 if (!dev->is_busmaster)
1886 pci_set_master(dev);
1887 return;
1888 }
1889
1890 retval = pci_enable_device(dev);
1891 if (retval)
1892 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893 retval);
1894 pci_set_master(dev);
1895}
1896
1897static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898{
1899 struct pci_dev *bridge;
1900 int err;
1901 int i, bars = 0;
1902
1903 /*
1904 * Power state could be unknown at this point, either due to a fresh
1905 * boot or a device removal call. So get the current power state
1906 * so that things like MSI message writing will behave as expected
1907 * (e.g. if the device really is in D0 at enable time).
1908 */
1909 pci_update_current_state(dev, dev->current_state);
1910
1911 if (atomic_inc_return(&dev->enable_cnt) > 1)
1912 return 0; /* already enabled */
1913
1914 bridge = pci_upstream_bridge(dev);
1915 if (bridge)
1916 pci_enable_bridge(bridge);
1917
1918 /* only skip sriov related */
1919 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1920 if (dev->resource[i].flags & flags)
1921 bars |= (1 << i);
1922 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1923 if (dev->resource[i].flags & flags)
1924 bars |= (1 << i);
1925
1926 err = do_pci_enable_device(dev, bars);
1927 if (err < 0)
1928 atomic_dec(&dev->enable_cnt);
1929 return err;
1930}
1931
1932/**
1933 * pci_enable_device_io - Initialize a device for use with IO space
1934 * @dev: PCI device to be initialized
1935 *
1936 * Initialize device before it's used by a driver. Ask low-level code
1937 * to enable I/O resources. Wake up the device if it was suspended.
1938 * Beware, this function can fail.
1939 */
1940int pci_enable_device_io(struct pci_dev *dev)
1941{
1942 return pci_enable_device_flags(dev, IORESOURCE_IO);
1943}
1944EXPORT_SYMBOL(pci_enable_device_io);
1945
1946/**
1947 * pci_enable_device_mem - Initialize a device for use with Memory space
1948 * @dev: PCI device to be initialized
1949 *
1950 * Initialize device before it's used by a driver. Ask low-level code
1951 * to enable Memory resources. Wake up the device if it was suspended.
1952 * Beware, this function can fail.
1953 */
1954int pci_enable_device_mem(struct pci_dev *dev)
1955{
1956 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1957}
1958EXPORT_SYMBOL(pci_enable_device_mem);
1959
1960/**
1961 * pci_enable_device - Initialize device before it's used by a driver.
1962 * @dev: PCI device to be initialized
1963 *
1964 * Initialize device before it's used by a driver. Ask low-level code
1965 * to enable I/O and memory. Wake up the device if it was suspended.
1966 * Beware, this function can fail.
1967 *
1968 * Note we don't actually enable the device many times if we call
1969 * this function repeatedly (we just increment the count).
1970 */
1971int pci_enable_device(struct pci_dev *dev)
1972{
1973 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1974}
1975EXPORT_SYMBOL(pci_enable_device);
1976
1977/*
1978 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1979 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1980 * there's no need to track it separately. pci_devres is initialized
1981 * when a device is enabled using managed PCI device enable interface.
1982 */
1983struct pci_devres {
1984 unsigned int enabled:1;
1985 unsigned int pinned:1;
1986 unsigned int orig_intx:1;
1987 unsigned int restore_intx:1;
1988 unsigned int mwi:1;
1989 u32 region_mask;
1990};
1991
1992static void pcim_release(struct device *gendev, void *res)
1993{
1994 struct pci_dev *dev = to_pci_dev(gendev);
1995 struct pci_devres *this = res;
1996 int i;
1997
1998 if (dev->msi_enabled)
1999 pci_disable_msi(dev);
2000 if (dev->msix_enabled)
2001 pci_disable_msix(dev);
2002
2003 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2004 if (this->region_mask & (1 << i))
2005 pci_release_region(dev, i);
2006
2007 if (this->mwi)
2008 pci_clear_mwi(dev);
2009
2010 if (this->restore_intx)
2011 pci_intx(dev, this->orig_intx);
2012
2013 if (this->enabled && !this->pinned)
2014 pci_disable_device(dev);
2015}
2016
2017static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2018{
2019 struct pci_devres *dr, *new_dr;
2020
2021 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2022 if (dr)
2023 return dr;
2024
2025 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2026 if (!new_dr)
2027 return NULL;
2028 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2029}
2030
2031static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2032{
2033 if (pci_is_managed(pdev))
2034 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2035 return NULL;
2036}
2037
2038/**
2039 * pcim_enable_device - Managed pci_enable_device()
2040 * @pdev: PCI device to be initialized
2041 *
2042 * Managed pci_enable_device().
2043 */
2044int pcim_enable_device(struct pci_dev *pdev)
2045{
2046 struct pci_devres *dr;
2047 int rc;
2048
2049 dr = get_pci_dr(pdev);
2050 if (unlikely(!dr))
2051 return -ENOMEM;
2052 if (dr->enabled)
2053 return 0;
2054
2055 rc = pci_enable_device(pdev);
2056 if (!rc) {
2057 pdev->is_managed = 1;
2058 dr->enabled = 1;
2059 }
2060 return rc;
2061}
2062EXPORT_SYMBOL(pcim_enable_device);
2063
2064/**
2065 * pcim_pin_device - Pin managed PCI device
2066 * @pdev: PCI device to pin
2067 *
2068 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2069 * driver detach. @pdev must have been enabled with
2070 * pcim_enable_device().
2071 */
2072void pcim_pin_device(struct pci_dev *pdev)
2073{
2074 struct pci_devres *dr;
2075
2076 dr = find_pci_dr(pdev);
2077 WARN_ON(!dr || !dr->enabled);
2078 if (dr)
2079 dr->pinned = 1;
2080}
2081EXPORT_SYMBOL(pcim_pin_device);
2082
2083/*
2084 * pcibios_add_device - provide arch specific hooks when adding device dev
2085 * @dev: the PCI device being added
2086 *
2087 * Permits the platform to provide architecture specific functionality when
2088 * devices are added. This is the default implementation. Architecture
2089 * implementations can override this.
2090 */
2091int __weak pcibios_add_device(struct pci_dev *dev)
2092{
2093 return 0;
2094}
2095
2096/**
2097 * pcibios_release_device - provide arch specific hooks when releasing
2098 * device dev
2099 * @dev: the PCI device being released
2100 *
2101 * Permits the platform to provide architecture specific functionality when
2102 * devices are released. This is the default implementation. Architecture
2103 * implementations can override this.
2104 */
2105void __weak pcibios_release_device(struct pci_dev *dev) {}
2106
2107/**
2108 * pcibios_disable_device - disable arch specific PCI resources for device dev
2109 * @dev: the PCI device to disable
2110 *
2111 * Disables architecture specific PCI resources for the device. This
2112 * is the default implementation. Architecture implementations can
2113 * override this.
2114 */
2115void __weak pcibios_disable_device(struct pci_dev *dev) {}
2116
2117/**
2118 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2119 * @irq: ISA IRQ to penalize
2120 * @active: IRQ active or not
2121 *
2122 * Permits the platform to provide architecture-specific functionality when
2123 * penalizing ISA IRQs. This is the default implementation. Architecture
2124 * implementations can override this.
2125 */
2126void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2127
2128static void do_pci_disable_device(struct pci_dev *dev)
2129{
2130 u16 pci_command;
2131
2132 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2133 if (pci_command & PCI_COMMAND_MASTER) {
2134 pci_command &= ~PCI_COMMAND_MASTER;
2135 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2136 }
2137
2138 pcibios_disable_device(dev);
2139}
2140
2141/**
2142 * pci_disable_enabled_device - Disable device without updating enable_cnt
2143 * @dev: PCI device to disable
2144 *
2145 * NOTE: This function is a backend of PCI power management routines and is
2146 * not supposed to be called drivers.
2147 */
2148void pci_disable_enabled_device(struct pci_dev *dev)
2149{
2150 if (pci_is_enabled(dev))
2151 do_pci_disable_device(dev);
2152}
2153
2154/**
2155 * pci_disable_device - Disable PCI device after use
2156 * @dev: PCI device to be disabled
2157 *
2158 * Signal to the system that the PCI device is not in use by the system
2159 * anymore. This only involves disabling PCI bus-mastering, if active.
2160 *
2161 * Note we don't actually disable the device until all callers of
2162 * pci_enable_device() have called pci_disable_device().
2163 */
2164void pci_disable_device(struct pci_dev *dev)
2165{
2166 struct pci_devres *dr;
2167
2168 dr = find_pci_dr(dev);
2169 if (dr)
2170 dr->enabled = 0;
2171
2172 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2173 "disabling already-disabled device");
2174
2175 if (atomic_dec_return(&dev->enable_cnt) != 0)
2176 return;
2177
2178 do_pci_disable_device(dev);
2179
2180 dev->is_busmaster = 0;
2181}
2182EXPORT_SYMBOL(pci_disable_device);
2183
2184/**
2185 * pcibios_set_pcie_reset_state - set reset state for device dev
2186 * @dev: the PCIe device reset
2187 * @state: Reset state to enter into
2188 *
2189 * Set the PCIe reset state for the device. This is the default
2190 * implementation. Architecture implementations can override this.
2191 */
2192int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2193 enum pcie_reset_state state)
2194{
2195 return -EINVAL;
2196}
2197
2198/**
2199 * pci_set_pcie_reset_state - set reset state for device dev
2200 * @dev: the PCIe device reset
2201 * @state: Reset state to enter into
2202 *
2203 * Sets the PCI reset state for the device.
2204 */
2205int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2206{
2207 return pcibios_set_pcie_reset_state(dev, state);
2208}
2209EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2210
2211void pcie_clear_device_status(struct pci_dev *dev)
2212{
2213 u16 sta;
2214
2215 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2216 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2217}
2218
2219/**
2220 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2221 * @dev: PCIe root port or event collector.
2222 */
2223void pcie_clear_root_pme_status(struct pci_dev *dev)
2224{
2225 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2226}
2227
2228/**
2229 * pci_check_pme_status - Check if given device has generated PME.
2230 * @dev: Device to check.
2231 *
2232 * Check the PME status of the device and if set, clear it and clear PME enable
2233 * (if set). Return 'true' if PME status and PME enable were both set or
2234 * 'false' otherwise.
2235 */
2236bool pci_check_pme_status(struct pci_dev *dev)
2237{
2238 int pmcsr_pos;
2239 u16 pmcsr;
2240 bool ret = false;
2241
2242 if (!dev->pm_cap)
2243 return false;
2244
2245 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2246 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2247 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2248 return false;
2249
2250 /* Clear PME status. */
2251 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2252 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2253 /* Disable PME to avoid interrupt flood. */
2254 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2255 ret = true;
2256 }
2257
2258 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2259
2260 return ret;
2261}
2262
2263/**
2264 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2265 * @dev: Device to handle.
2266 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2267 *
2268 * Check if @dev has generated PME and queue a resume request for it in that
2269 * case.
2270 */
2271static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2272{
2273 if (pme_poll_reset && dev->pme_poll)
2274 dev->pme_poll = false;
2275
2276 if (pci_check_pme_status(dev)) {
2277 pci_wakeup_event(dev);
2278 pm_request_resume(&dev->dev);
2279 }
2280 return 0;
2281}
2282
2283/**
2284 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2285 * @bus: Top bus of the subtree to walk.
2286 */
2287void pci_pme_wakeup_bus(struct pci_bus *bus)
2288{
2289 if (bus)
2290 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2291}
2292
2293
2294/**
2295 * pci_pme_capable - check the capability of PCI device to generate PME#
2296 * @dev: PCI device to handle.
2297 * @state: PCI state from which device will issue PME#.
2298 */
2299bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2300{
2301 if (!dev->pm_cap)
2302 return false;
2303
2304 return !!(dev->pme_support & (1 << state));
2305}
2306EXPORT_SYMBOL(pci_pme_capable);
2307
2308static void pci_pme_list_scan(struct work_struct *work)
2309{
2310 struct pci_pme_device *pme_dev, *n;
2311
2312 mutex_lock(&pci_pme_list_mutex);
2313 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2314 if (pme_dev->dev->pme_poll) {
2315 struct pci_dev *bridge;
2316
2317 bridge = pme_dev->dev->bus->self;
2318 /*
2319 * If bridge is in low power state, the
2320 * configuration space of subordinate devices
2321 * may be not accessible
2322 */
2323 if (bridge && bridge->current_state != PCI_D0)
2324 continue;
2325 /*
2326 * If the device is in D3cold it should not be
2327 * polled either.
2328 */
2329 if (pme_dev->dev->current_state == PCI_D3cold)
2330 continue;
2331
2332 pci_pme_wakeup(pme_dev->dev, NULL);
2333 } else {
2334 list_del(&pme_dev->list);
2335 kfree(pme_dev);
2336 }
2337 }
2338 if (!list_empty(&pci_pme_list))
2339 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2340 msecs_to_jiffies(PME_TIMEOUT));
2341 mutex_unlock(&pci_pme_list_mutex);
2342}
2343
2344static void __pci_pme_active(struct pci_dev *dev, bool enable)
2345{
2346 u16 pmcsr;
2347
2348 if (!dev->pme_support)
2349 return;
2350
2351 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2352 /* Clear PME_Status by writing 1 to it and enable PME# */
2353 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2354 if (!enable)
2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356
2357 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358}
2359
2360/**
2361 * pci_pme_restore - Restore PME configuration after config space restore.
2362 * @dev: PCI device to update.
2363 */
2364void pci_pme_restore(struct pci_dev *dev)
2365{
2366 u16 pmcsr;
2367
2368 if (!dev->pme_support)
2369 return;
2370
2371 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2372 if (dev->wakeup_prepared) {
2373 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2374 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2375 } else {
2376 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2377 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2378 }
2379 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2380}
2381
2382/**
2383 * pci_pme_active - enable or disable PCI device's PME# function
2384 * @dev: PCI device to handle.
2385 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2386 *
2387 * The caller must verify that the device is capable of generating PME# before
2388 * calling this function with @enable equal to 'true'.
2389 */
2390void pci_pme_active(struct pci_dev *dev, bool enable)
2391{
2392 __pci_pme_active(dev, enable);
2393
2394 /*
2395 * PCI (as opposed to PCIe) PME requires that the device have
2396 * its PME# line hooked up correctly. Not all hardware vendors
2397 * do this, so the PME never gets delivered and the device
2398 * remains asleep. The easiest way around this is to
2399 * periodically walk the list of suspended devices and check
2400 * whether any have their PME flag set. The assumption is that
2401 * we'll wake up often enough anyway that this won't be a huge
2402 * hit, and the power savings from the devices will still be a
2403 * win.
2404 *
2405 * Although PCIe uses in-band PME message instead of PME# line
2406 * to report PME, PME does not work for some PCIe devices in
2407 * reality. For example, there are devices that set their PME
2408 * status bits, but don't really bother to send a PME message;
2409 * there are PCI Express Root Ports that don't bother to
2410 * trigger interrupts when they receive PME messages from the
2411 * devices below. So PME poll is used for PCIe devices too.
2412 */
2413
2414 if (dev->pme_poll) {
2415 struct pci_pme_device *pme_dev;
2416 if (enable) {
2417 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2418 GFP_KERNEL);
2419 if (!pme_dev) {
2420 pci_warn(dev, "can't enable PME#\n");
2421 return;
2422 }
2423 pme_dev->dev = dev;
2424 mutex_lock(&pci_pme_list_mutex);
2425 list_add(&pme_dev->list, &pci_pme_list);
2426 if (list_is_singular(&pci_pme_list))
2427 queue_delayed_work(system_freezable_wq,
2428 &pci_pme_work,
2429 msecs_to_jiffies(PME_TIMEOUT));
2430 mutex_unlock(&pci_pme_list_mutex);
2431 } else {
2432 mutex_lock(&pci_pme_list_mutex);
2433 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2434 if (pme_dev->dev == dev) {
2435 list_del(&pme_dev->list);
2436 kfree(pme_dev);
2437 break;
2438 }
2439 }
2440 mutex_unlock(&pci_pme_list_mutex);
2441 }
2442 }
2443
2444 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2445}
2446EXPORT_SYMBOL(pci_pme_active);
2447
2448/**
2449 * __pci_enable_wake - enable PCI device as wakeup event source
2450 * @dev: PCI device affected
2451 * @state: PCI state from which device will issue wakeup events
2452 * @enable: True to enable event generation; false to disable
2453 *
2454 * This enables the device as a wakeup event source, or disables it.
2455 * When such events involves platform-specific hooks, those hooks are
2456 * called automatically by this routine.
2457 *
2458 * Devices with legacy power management (no standard PCI PM capabilities)
2459 * always require such platform hooks.
2460 *
2461 * RETURN VALUE:
2462 * 0 is returned on success
2463 * -EINVAL is returned if device is not supposed to wake up the system
2464 * Error code depending on the platform is returned if both the platform and
2465 * the native mechanism fail to enable the generation of wake-up events
2466 */
2467static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2468{
2469 int ret = 0;
2470
2471 /*
2472 * Bridges that are not power-manageable directly only signal
2473 * wakeup on behalf of subordinate devices which is set up
2474 * elsewhere, so skip them. However, bridges that are
2475 * power-manageable may signal wakeup for themselves (for example,
2476 * on a hotplug event) and they need to be covered here.
2477 */
2478 if (!pci_power_manageable(dev))
2479 return 0;
2480
2481 /* Don't do the same thing twice in a row for one device. */
2482 if (!!enable == !!dev->wakeup_prepared)
2483 return 0;
2484
2485 /*
2486 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2487 * Anderson we should be doing PME# wake enable followed by ACPI wake
2488 * enable. To disable wake-up we call the platform first, for symmetry.
2489 */
2490
2491 if (enable) {
2492 int error;
2493
2494 /*
2495 * Enable PME signaling if the device can signal PME from
2496 * D3cold regardless of whether or not it can signal PME from
2497 * the current target state, because that will allow it to
2498 * signal PME when the hierarchy above it goes into D3cold and
2499 * the device itself ends up in D3cold as a result of that.
2500 */
2501 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2502 pci_pme_active(dev, true);
2503 else
2504 ret = 1;
2505 error = platform_pci_set_wakeup(dev, true);
2506 if (ret)
2507 ret = error;
2508 if (!ret)
2509 dev->wakeup_prepared = true;
2510 } else {
2511 platform_pci_set_wakeup(dev, false);
2512 pci_pme_active(dev, false);
2513 dev->wakeup_prepared = false;
2514 }
2515
2516 return ret;
2517}
2518
2519/**
2520 * pci_enable_wake - change wakeup settings for a PCI device
2521 * @pci_dev: Target device
2522 * @state: PCI state from which device will issue wakeup events
2523 * @enable: Whether or not to enable event generation
2524 *
2525 * If @enable is set, check device_may_wakeup() for the device before calling
2526 * __pci_enable_wake() for it.
2527 */
2528int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2529{
2530 if (enable && !device_may_wakeup(&pci_dev->dev))
2531 return -EINVAL;
2532
2533 return __pci_enable_wake(pci_dev, state, enable);
2534}
2535EXPORT_SYMBOL(pci_enable_wake);
2536
2537/**
2538 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2539 * @dev: PCI device to prepare
2540 * @enable: True to enable wake-up event generation; false to disable
2541 *
2542 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2543 * and this function allows them to set that up cleanly - pci_enable_wake()
2544 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2545 * ordering constraints.
2546 *
2547 * This function only returns error code if the device is not allowed to wake
2548 * up the system from sleep or it is not capable of generating PME# from both
2549 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2550 */
2551int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2552{
2553 return pci_pme_capable(dev, PCI_D3cold) ?
2554 pci_enable_wake(dev, PCI_D3cold, enable) :
2555 pci_enable_wake(dev, PCI_D3hot, enable);
2556}
2557EXPORT_SYMBOL(pci_wake_from_d3);
2558
2559/**
2560 * pci_target_state - find an appropriate low power state for a given PCI dev
2561 * @dev: PCI device
2562 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2563 *
2564 * Use underlying platform code to find a supported low power state for @dev.
2565 * If the platform can't manage @dev, return the deepest state from which it
2566 * can generate wake events, based on any available PME info.
2567 */
2568static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2569{
2570 pci_power_t target_state = PCI_D3hot;
2571
2572 if (platform_pci_power_manageable(dev)) {
2573 /*
2574 * Call the platform to find the target state for the device.
2575 */
2576 pci_power_t state = platform_pci_choose_state(dev);
2577
2578 switch (state) {
2579 case PCI_POWER_ERROR:
2580 case PCI_UNKNOWN:
2581 break;
2582 case PCI_D1:
2583 case PCI_D2:
2584 if (pci_no_d1d2(dev))
2585 break;
2586 fallthrough;
2587 default:
2588 target_state = state;
2589 }
2590
2591 return target_state;
2592 }
2593
2594 if (!dev->pm_cap)
2595 target_state = PCI_D0;
2596
2597 /*
2598 * If the device is in D3cold even though it's not power-manageable by
2599 * the platform, it may have been powered down by non-standard means.
2600 * Best to let it slumber.
2601 */
2602 if (dev->current_state == PCI_D3cold)
2603 target_state = PCI_D3cold;
2604
2605 if (wakeup && dev->pme_support) {
2606 pci_power_t state = target_state;
2607
2608 /*
2609 * Find the deepest state from which the device can generate
2610 * PME#.
2611 */
2612 while (state && !(dev->pme_support & (1 << state)))
2613 state--;
2614
2615 if (state)
2616 return state;
2617 else if (dev->pme_support & 1)
2618 return PCI_D0;
2619 }
2620
2621 return target_state;
2622}
2623
2624/**
2625 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2626 * into a sleep state
2627 * @dev: Device to handle.
2628 *
2629 * Choose the power state appropriate for the device depending on whether
2630 * it can wake up the system and/or is power manageable by the platform
2631 * (PCI_D3hot is the default) and put the device into that state.
2632 */
2633int pci_prepare_to_sleep(struct pci_dev *dev)
2634{
2635 bool wakeup = device_may_wakeup(&dev->dev);
2636 pci_power_t target_state = pci_target_state(dev, wakeup);
2637 int error;
2638
2639 if (target_state == PCI_POWER_ERROR)
2640 return -EIO;
2641
2642 /*
2643 * There are systems (for example, Intel mobile chips since Coffee
2644 * Lake) where the power drawn while suspended can be significantly
2645 * reduced by disabling PTM on PCIe root ports as this allows the
2646 * port to enter a lower-power PM state and the SoC to reach a
2647 * lower-power idle state as a whole.
2648 */
2649 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2650 pci_disable_ptm(dev);
2651
2652 pci_enable_wake(dev, target_state, wakeup);
2653
2654 error = pci_set_power_state(dev, target_state);
2655
2656 if (error) {
2657 pci_enable_wake(dev, target_state, false);
2658 pci_restore_ptm_state(dev);
2659 }
2660
2661 return error;
2662}
2663EXPORT_SYMBOL(pci_prepare_to_sleep);
2664
2665/**
2666 * pci_back_from_sleep - turn PCI device on during system-wide transition
2667 * into working state
2668 * @dev: Device to handle.
2669 *
2670 * Disable device's system wake-up capability and put it into D0.
2671 */
2672int pci_back_from_sleep(struct pci_dev *dev)
2673{
2674 pci_enable_wake(dev, PCI_D0, false);
2675 return pci_set_power_state(dev, PCI_D0);
2676}
2677EXPORT_SYMBOL(pci_back_from_sleep);
2678
2679/**
2680 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2681 * @dev: PCI device being suspended.
2682 *
2683 * Prepare @dev to generate wake-up events at run time and put it into a low
2684 * power state.
2685 */
2686int pci_finish_runtime_suspend(struct pci_dev *dev)
2687{
2688 pci_power_t target_state;
2689 int error;
2690
2691 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2692 if (target_state == PCI_POWER_ERROR)
2693 return -EIO;
2694
2695 dev->runtime_d3cold = target_state == PCI_D3cold;
2696
2697 /*
2698 * There are systems (for example, Intel mobile chips since Coffee
2699 * Lake) where the power drawn while suspended can be significantly
2700 * reduced by disabling PTM on PCIe root ports as this allows the
2701 * port to enter a lower-power PM state and the SoC to reach a
2702 * lower-power idle state as a whole.
2703 */
2704 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2705 pci_disable_ptm(dev);
2706
2707 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2708
2709 error = pci_set_power_state(dev, target_state);
2710
2711 if (error) {
2712 pci_enable_wake(dev, target_state, false);
2713 pci_restore_ptm_state(dev);
2714 dev->runtime_d3cold = false;
2715 }
2716
2717 return error;
2718}
2719
2720/**
2721 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2722 * @dev: Device to check.
2723 *
2724 * Return true if the device itself is capable of generating wake-up events
2725 * (through the platform or using the native PCIe PME) or if the device supports
2726 * PME and one of its upstream bridges can generate wake-up events.
2727 */
2728bool pci_dev_run_wake(struct pci_dev *dev)
2729{
2730 struct pci_bus *bus = dev->bus;
2731
2732 if (!dev->pme_support)
2733 return false;
2734
2735 /* PME-capable in principle, but not from the target power state */
2736 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2737 return false;
2738
2739 if (device_can_wakeup(&dev->dev))
2740 return true;
2741
2742 while (bus->parent) {
2743 struct pci_dev *bridge = bus->self;
2744
2745 if (device_can_wakeup(&bridge->dev))
2746 return true;
2747
2748 bus = bus->parent;
2749 }
2750
2751 /* We have reached the root bus. */
2752 if (bus->bridge)
2753 return device_can_wakeup(bus->bridge);
2754
2755 return false;
2756}
2757EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2758
2759/**
2760 * pci_dev_need_resume - Check if it is necessary to resume the device.
2761 * @pci_dev: Device to check.
2762 *
2763 * Return 'true' if the device is not runtime-suspended or it has to be
2764 * reconfigured due to wakeup settings difference between system and runtime
2765 * suspend, or the current power state of it is not suitable for the upcoming
2766 * (system-wide) transition.
2767 */
2768bool pci_dev_need_resume(struct pci_dev *pci_dev)
2769{
2770 struct device *dev = &pci_dev->dev;
2771 pci_power_t target_state;
2772
2773 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2774 return true;
2775
2776 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2777
2778 /*
2779 * If the earlier platform check has not triggered, D3cold is just power
2780 * removal on top of D3hot, so no need to resume the device in that
2781 * case.
2782 */
2783 return target_state != pci_dev->current_state &&
2784 target_state != PCI_D3cold &&
2785 pci_dev->current_state != PCI_D3hot;
2786}
2787
2788/**
2789 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2790 * @pci_dev: Device to check.
2791 *
2792 * If the device is suspended and it is not configured for system wakeup,
2793 * disable PME for it to prevent it from waking up the system unnecessarily.
2794 *
2795 * Note that if the device's power state is D3cold and the platform check in
2796 * pci_dev_need_resume() has not triggered, the device's configuration need not
2797 * be changed.
2798 */
2799void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2800{
2801 struct device *dev = &pci_dev->dev;
2802
2803 spin_lock_irq(&dev->power.lock);
2804
2805 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2806 pci_dev->current_state < PCI_D3cold)
2807 __pci_pme_active(pci_dev, false);
2808
2809 spin_unlock_irq(&dev->power.lock);
2810}
2811
2812/**
2813 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2814 * @pci_dev: Device to handle.
2815 *
2816 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2817 * it might have been disabled during the prepare phase of system suspend if
2818 * the device was not configured for system wakeup.
2819 */
2820void pci_dev_complete_resume(struct pci_dev *pci_dev)
2821{
2822 struct device *dev = &pci_dev->dev;
2823
2824 if (!pci_dev_run_wake(pci_dev))
2825 return;
2826
2827 spin_lock_irq(&dev->power.lock);
2828
2829 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2830 __pci_pme_active(pci_dev, true);
2831
2832 spin_unlock_irq(&dev->power.lock);
2833}
2834
2835void pci_config_pm_runtime_get(struct pci_dev *pdev)
2836{
2837 struct device *dev = &pdev->dev;
2838 struct device *parent = dev->parent;
2839
2840 if (parent)
2841 pm_runtime_get_sync(parent);
2842 pm_runtime_get_noresume(dev);
2843 /*
2844 * pdev->current_state is set to PCI_D3cold during suspending,
2845 * so wait until suspending completes
2846 */
2847 pm_runtime_barrier(dev);
2848 /*
2849 * Only need to resume devices in D3cold, because config
2850 * registers are still accessible for devices suspended but
2851 * not in D3cold.
2852 */
2853 if (pdev->current_state == PCI_D3cold)
2854 pm_runtime_resume(dev);
2855}
2856
2857void pci_config_pm_runtime_put(struct pci_dev *pdev)
2858{
2859 struct device *dev = &pdev->dev;
2860 struct device *parent = dev->parent;
2861
2862 pm_runtime_put(dev);
2863 if (parent)
2864 pm_runtime_put_sync(parent);
2865}
2866
2867static const struct dmi_system_id bridge_d3_blacklist[] = {
2868#ifdef CONFIG_X86
2869 {
2870 /*
2871 * Gigabyte X299 root port is not marked as hotplug capable
2872 * which allows Linux to power manage it. However, this
2873 * confuses the BIOS SMI handler so don't power manage root
2874 * ports on that system.
2875 */
2876 .ident = "X299 DESIGNARE EX-CF",
2877 .matches = {
2878 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2879 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2880 },
2881 },
2882#endif
2883 { }
2884};
2885
2886/**
2887 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2888 * @bridge: Bridge to check
2889 *
2890 * This function checks if it is possible to move the bridge to D3.
2891 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2892 */
2893bool pci_bridge_d3_possible(struct pci_dev *bridge)
2894{
2895 if (!pci_is_pcie(bridge))
2896 return false;
2897
2898 switch (pci_pcie_type(bridge)) {
2899 case PCI_EXP_TYPE_ROOT_PORT:
2900 case PCI_EXP_TYPE_UPSTREAM:
2901 case PCI_EXP_TYPE_DOWNSTREAM:
2902 if (pci_bridge_d3_disable)
2903 return false;
2904
2905 /*
2906 * Hotplug ports handled by firmware in System Management Mode
2907 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2908 */
2909 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2910 return false;
2911
2912 if (pci_bridge_d3_force)
2913 return true;
2914
2915 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2916 if (bridge->is_thunderbolt)
2917 return true;
2918
2919 /* Platform might know better if the bridge supports D3 */
2920 if (platform_pci_bridge_d3(bridge))
2921 return true;
2922
2923 /*
2924 * Hotplug ports handled natively by the OS were not validated
2925 * by vendors for runtime D3 at least until 2018 because there
2926 * was no OS support.
2927 */
2928 if (bridge->is_hotplug_bridge)
2929 return false;
2930
2931 if (dmi_check_system(bridge_d3_blacklist))
2932 return false;
2933
2934 /*
2935 * It should be safe to put PCIe ports from 2015 or newer
2936 * to D3.
2937 */
2938 if (dmi_get_bios_year() >= 2015)
2939 return true;
2940 break;
2941 }
2942
2943 return false;
2944}
2945
2946static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2947{
2948 bool *d3cold_ok = data;
2949
2950 if (/* The device needs to be allowed to go D3cold ... */
2951 dev->no_d3cold || !dev->d3cold_allowed ||
2952
2953 /* ... and if it is wakeup capable to do so from D3cold. */
2954 (device_may_wakeup(&dev->dev) &&
2955 !pci_pme_capable(dev, PCI_D3cold)) ||
2956
2957 /* If it is a bridge it must be allowed to go to D3. */
2958 !pci_power_manageable(dev))
2959
2960 *d3cold_ok = false;
2961
2962 return !*d3cold_ok;
2963}
2964
2965/*
2966 * pci_bridge_d3_update - Update bridge D3 capabilities
2967 * @dev: PCI device which is changed
2968 *
2969 * Update upstream bridge PM capabilities accordingly depending on if the
2970 * device PM configuration was changed or the device is being removed. The
2971 * change is also propagated upstream.
2972 */
2973void pci_bridge_d3_update(struct pci_dev *dev)
2974{
2975 bool remove = !device_is_registered(&dev->dev);
2976 struct pci_dev *bridge;
2977 bool d3cold_ok = true;
2978
2979 bridge = pci_upstream_bridge(dev);
2980 if (!bridge || !pci_bridge_d3_possible(bridge))
2981 return;
2982
2983 /*
2984 * If D3 is currently allowed for the bridge, removing one of its
2985 * children won't change that.
2986 */
2987 if (remove && bridge->bridge_d3)
2988 return;
2989
2990 /*
2991 * If D3 is currently allowed for the bridge and a child is added or
2992 * changed, disallowance of D3 can only be caused by that child, so
2993 * we only need to check that single device, not any of its siblings.
2994 *
2995 * If D3 is currently not allowed for the bridge, checking the device
2996 * first may allow us to skip checking its siblings.
2997 */
2998 if (!remove)
2999 pci_dev_check_d3cold(dev, &d3cold_ok);
3000
3001 /*
3002 * If D3 is currently not allowed for the bridge, this may be caused
3003 * either by the device being changed/removed or any of its siblings,
3004 * so we need to go through all children to find out if one of them
3005 * continues to block D3.
3006 */
3007 if (d3cold_ok && !bridge->bridge_d3)
3008 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3009 &d3cold_ok);
3010
3011 if (bridge->bridge_d3 != d3cold_ok) {
3012 bridge->bridge_d3 = d3cold_ok;
3013 /* Propagate change to upstream bridges */
3014 pci_bridge_d3_update(bridge);
3015 }
3016}
3017
3018/**
3019 * pci_d3cold_enable - Enable D3cold for device
3020 * @dev: PCI device to handle
3021 *
3022 * This function can be used in drivers to enable D3cold from the device
3023 * they handle. It also updates upstream PCI bridge PM capabilities
3024 * accordingly.
3025 */
3026void pci_d3cold_enable(struct pci_dev *dev)
3027{
3028 if (dev->no_d3cold) {
3029 dev->no_d3cold = false;
3030 pci_bridge_d3_update(dev);
3031 }
3032}
3033EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3034
3035/**
3036 * pci_d3cold_disable - Disable D3cold for device
3037 * @dev: PCI device to handle
3038 *
3039 * This function can be used in drivers to disable D3cold from the device
3040 * they handle. It also updates upstream PCI bridge PM capabilities
3041 * accordingly.
3042 */
3043void pci_d3cold_disable(struct pci_dev *dev)
3044{
3045 if (!dev->no_d3cold) {
3046 dev->no_d3cold = true;
3047 pci_bridge_d3_update(dev);
3048 }
3049}
3050EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3051
3052/**
3053 * pci_pm_init - Initialize PM functions of given PCI device
3054 * @dev: PCI device to handle.
3055 */
3056void pci_pm_init(struct pci_dev *dev)
3057{
3058 int pm;
3059 u16 status;
3060 u16 pmc;
3061
3062 pm_runtime_forbid(&dev->dev);
3063 pm_runtime_set_active(&dev->dev);
3064 pm_runtime_enable(&dev->dev);
3065 device_enable_async_suspend(&dev->dev);
3066 dev->wakeup_prepared = false;
3067
3068 dev->pm_cap = 0;
3069 dev->pme_support = 0;
3070
3071 /* find PCI PM capability in list */
3072 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3073 if (!pm)
3074 return;
3075 /* Check device's ability to generate PME# */
3076 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3077
3078 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3079 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3080 pmc & PCI_PM_CAP_VER_MASK);
3081 return;
3082 }
3083
3084 dev->pm_cap = pm;
3085 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3086 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3087 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3088 dev->d3cold_allowed = true;
3089
3090 dev->d1_support = false;
3091 dev->d2_support = false;
3092 if (!pci_no_d1d2(dev)) {
3093 if (pmc & PCI_PM_CAP_D1)
3094 dev->d1_support = true;
3095 if (pmc & PCI_PM_CAP_D2)
3096 dev->d2_support = true;
3097
3098 if (dev->d1_support || dev->d2_support)
3099 pci_info(dev, "supports%s%s\n",
3100 dev->d1_support ? " D1" : "",
3101 dev->d2_support ? " D2" : "");
3102 }
3103
3104 pmc &= PCI_PM_CAP_PME_MASK;
3105 if (pmc) {
3106 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3107 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3108 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3109 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3110 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3111 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3112 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3113 dev->pme_poll = true;
3114 /*
3115 * Make device's PM flags reflect the wake-up capability, but
3116 * let the user space enable it to wake up the system as needed.
3117 */
3118 device_set_wakeup_capable(&dev->dev, true);
3119 /* Disable the PME# generation functionality */
3120 pci_pme_active(dev, false);
3121 }
3122
3123 pci_read_config_word(dev, PCI_STATUS, &status);
3124 if (status & PCI_STATUS_IMM_READY)
3125 dev->imm_ready = 1;
3126}
3127
3128static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3129{
3130 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3131
3132 switch (prop) {
3133 case PCI_EA_P_MEM:
3134 case PCI_EA_P_VF_MEM:
3135 flags |= IORESOURCE_MEM;
3136 break;
3137 case PCI_EA_P_MEM_PREFETCH:
3138 case PCI_EA_P_VF_MEM_PREFETCH:
3139 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3140 break;
3141 case PCI_EA_P_IO:
3142 flags |= IORESOURCE_IO;
3143 break;
3144 default:
3145 return 0;
3146 }
3147
3148 return flags;
3149}
3150
3151static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3152 u8 prop)
3153{
3154 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3155 return &dev->resource[bei];
3156#ifdef CONFIG_PCI_IOV
3157 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3158 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3159 return &dev->resource[PCI_IOV_RESOURCES +
3160 bei - PCI_EA_BEI_VF_BAR0];
3161#endif
3162 else if (bei == PCI_EA_BEI_ROM)
3163 return &dev->resource[PCI_ROM_RESOURCE];
3164 else
3165 return NULL;
3166}
3167
3168/* Read an Enhanced Allocation (EA) entry */
3169static int pci_ea_read(struct pci_dev *dev, int offset)
3170{
3171 struct resource *res;
3172 int ent_size, ent_offset = offset;
3173 resource_size_t start, end;
3174 unsigned long flags;
3175 u32 dw0, bei, base, max_offset;
3176 u8 prop;
3177 bool support_64 = (sizeof(resource_size_t) >= 8);
3178
3179 pci_read_config_dword(dev, ent_offset, &dw0);
3180 ent_offset += 4;
3181
3182 /* Entry size field indicates DWORDs after 1st */
3183 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3184
3185 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3186 goto out;
3187
3188 bei = (dw0 & PCI_EA_BEI) >> 4;
3189 prop = (dw0 & PCI_EA_PP) >> 8;
3190
3191 /*
3192 * If the Property is in the reserved range, try the Secondary
3193 * Property instead.
3194 */
3195 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3196 prop = (dw0 & PCI_EA_SP) >> 16;
3197 if (prop > PCI_EA_P_BRIDGE_IO)
3198 goto out;
3199
3200 res = pci_ea_get_resource(dev, bei, prop);
3201 if (!res) {
3202 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3203 goto out;
3204 }
3205
3206 flags = pci_ea_flags(dev, prop);
3207 if (!flags) {
3208 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3209 goto out;
3210 }
3211
3212 /* Read Base */
3213 pci_read_config_dword(dev, ent_offset, &base);
3214 start = (base & PCI_EA_FIELD_MASK);
3215 ent_offset += 4;
3216
3217 /* Read MaxOffset */
3218 pci_read_config_dword(dev, ent_offset, &max_offset);
3219 ent_offset += 4;
3220
3221 /* Read Base MSBs (if 64-bit entry) */
3222 if (base & PCI_EA_IS_64) {
3223 u32 base_upper;
3224
3225 pci_read_config_dword(dev, ent_offset, &base_upper);
3226 ent_offset += 4;
3227
3228 flags |= IORESOURCE_MEM_64;
3229
3230 /* entry starts above 32-bit boundary, can't use */
3231 if (!support_64 && base_upper)
3232 goto out;
3233
3234 if (support_64)
3235 start |= ((u64)base_upper << 32);
3236 }
3237
3238 end = start + (max_offset | 0x03);
3239
3240 /* Read MaxOffset MSBs (if 64-bit entry) */
3241 if (max_offset & PCI_EA_IS_64) {
3242 u32 max_offset_upper;
3243
3244 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3245 ent_offset += 4;
3246
3247 flags |= IORESOURCE_MEM_64;
3248
3249 /* entry too big, can't use */
3250 if (!support_64 && max_offset_upper)
3251 goto out;
3252
3253 if (support_64)
3254 end += ((u64)max_offset_upper << 32);
3255 }
3256
3257 if (end < start) {
3258 pci_err(dev, "EA Entry crosses address boundary\n");
3259 goto out;
3260 }
3261
3262 if (ent_size != ent_offset - offset) {
3263 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3264 ent_size, ent_offset - offset);
3265 goto out;
3266 }
3267
3268 res->name = pci_name(dev);
3269 res->start = start;
3270 res->end = end;
3271 res->flags = flags;
3272
3273 if (bei <= PCI_EA_BEI_BAR5)
3274 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3275 bei, res, prop);
3276 else if (bei == PCI_EA_BEI_ROM)
3277 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3278 res, prop);
3279 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3280 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3281 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3282 else
3283 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3284 bei, res, prop);
3285
3286out:
3287 return offset + ent_size;
3288}
3289
3290/* Enhanced Allocation Initialization */
3291void pci_ea_init(struct pci_dev *dev)
3292{
3293 int ea;
3294 u8 num_ent;
3295 int offset;
3296 int i;
3297
3298 /* find PCI EA capability in list */
3299 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3300 if (!ea)
3301 return;
3302
3303 /* determine the number of entries */
3304 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3305 &num_ent);
3306 num_ent &= PCI_EA_NUM_ENT_MASK;
3307
3308 offset = ea + PCI_EA_FIRST_ENT;
3309
3310 /* Skip DWORD 2 for type 1 functions */
3311 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3312 offset += 4;
3313
3314 /* parse each EA entry */
3315 for (i = 0; i < num_ent; ++i)
3316 offset = pci_ea_read(dev, offset);
3317}
3318
3319static void pci_add_saved_cap(struct pci_dev *pci_dev,
3320 struct pci_cap_saved_state *new_cap)
3321{
3322 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3323}
3324
3325/**
3326 * _pci_add_cap_save_buffer - allocate buffer for saving given
3327 * capability registers
3328 * @dev: the PCI device
3329 * @cap: the capability to allocate the buffer for
3330 * @extended: Standard or Extended capability ID
3331 * @size: requested size of the buffer
3332 */
3333static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3334 bool extended, unsigned int size)
3335{
3336 int pos;
3337 struct pci_cap_saved_state *save_state;
3338
3339 if (extended)
3340 pos = pci_find_ext_capability(dev, cap);
3341 else
3342 pos = pci_find_capability(dev, cap);
3343
3344 if (!pos)
3345 return 0;
3346
3347 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3348 if (!save_state)
3349 return -ENOMEM;
3350
3351 save_state->cap.cap_nr = cap;
3352 save_state->cap.cap_extended = extended;
3353 save_state->cap.size = size;
3354 pci_add_saved_cap(dev, save_state);
3355
3356 return 0;
3357}
3358
3359int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3360{
3361 return _pci_add_cap_save_buffer(dev, cap, false, size);
3362}
3363
3364int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3365{
3366 return _pci_add_cap_save_buffer(dev, cap, true, size);
3367}
3368
3369/**
3370 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3371 * @dev: the PCI device
3372 */
3373void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3374{
3375 int error;
3376
3377 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3378 PCI_EXP_SAVE_REGS * sizeof(u16));
3379 if (error)
3380 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3381
3382 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3383 if (error)
3384 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3385
3386 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3387 2 * sizeof(u16));
3388 if (error)
3389 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3390
3391 pci_allocate_vc_save_buffers(dev);
3392}
3393
3394void pci_free_cap_save_buffers(struct pci_dev *dev)
3395{
3396 struct pci_cap_saved_state *tmp;
3397 struct hlist_node *n;
3398
3399 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3400 kfree(tmp);
3401}
3402
3403/**
3404 * pci_configure_ari - enable or disable ARI forwarding
3405 * @dev: the PCI device
3406 *
3407 * If @dev and its upstream bridge both support ARI, enable ARI in the
3408 * bridge. Otherwise, disable ARI in the bridge.
3409 */
3410void pci_configure_ari(struct pci_dev *dev)
3411{
3412 u32 cap;
3413 struct pci_dev *bridge;
3414
3415 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3416 return;
3417
3418 bridge = dev->bus->self;
3419 if (!bridge)
3420 return;
3421
3422 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3423 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3424 return;
3425
3426 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3427 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3428 PCI_EXP_DEVCTL2_ARI);
3429 bridge->ari_enabled = 1;
3430 } else {
3431 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3432 PCI_EXP_DEVCTL2_ARI);
3433 bridge->ari_enabled = 0;
3434 }
3435}
3436
3437static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3438{
3439 int pos;
3440 u16 cap, ctrl;
3441
3442 pos = pdev->acs_cap;
3443 if (!pos)
3444 return false;
3445
3446 /*
3447 * Except for egress control, capabilities are either required
3448 * or only required if controllable. Features missing from the
3449 * capability field can therefore be assumed as hard-wired enabled.
3450 */
3451 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3452 acs_flags &= (cap | PCI_ACS_EC);
3453
3454 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3455 return (ctrl & acs_flags) == acs_flags;
3456}
3457
3458/**
3459 * pci_acs_enabled - test ACS against required flags for a given device
3460 * @pdev: device to test
3461 * @acs_flags: required PCI ACS flags
3462 *
3463 * Return true if the device supports the provided flags. Automatically
3464 * filters out flags that are not implemented on multifunction devices.
3465 *
3466 * Note that this interface checks the effective ACS capabilities of the
3467 * device rather than the actual capabilities. For instance, most single
3468 * function endpoints are not required to support ACS because they have no
3469 * opportunity for peer-to-peer access. We therefore return 'true'
3470 * regardless of whether the device exposes an ACS capability. This makes
3471 * it much easier for callers of this function to ignore the actual type
3472 * or topology of the device when testing ACS support.
3473 */
3474bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3475{
3476 int ret;
3477
3478 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3479 if (ret >= 0)
3480 return ret > 0;
3481
3482 /*
3483 * Conventional PCI and PCI-X devices never support ACS, either
3484 * effectively or actually. The shared bus topology implies that
3485 * any device on the bus can receive or snoop DMA.
3486 */
3487 if (!pci_is_pcie(pdev))
3488 return false;
3489
3490 switch (pci_pcie_type(pdev)) {
3491 /*
3492 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3493 * but since their primary interface is PCI/X, we conservatively
3494 * handle them as we would a non-PCIe device.
3495 */
3496 case PCI_EXP_TYPE_PCIE_BRIDGE:
3497 /*
3498 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3499 * applicable... must never implement an ACS Extended Capability...".
3500 * This seems arbitrary, but we take a conservative interpretation
3501 * of this statement.
3502 */
3503 case PCI_EXP_TYPE_PCI_BRIDGE:
3504 case PCI_EXP_TYPE_RC_EC:
3505 return false;
3506 /*
3507 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3508 * implement ACS in order to indicate their peer-to-peer capabilities,
3509 * regardless of whether they are single- or multi-function devices.
3510 */
3511 case PCI_EXP_TYPE_DOWNSTREAM:
3512 case PCI_EXP_TYPE_ROOT_PORT:
3513 return pci_acs_flags_enabled(pdev, acs_flags);
3514 /*
3515 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3516 * implemented by the remaining PCIe types to indicate peer-to-peer
3517 * capabilities, but only when they are part of a multifunction
3518 * device. The footnote for section 6.12 indicates the specific
3519 * PCIe types included here.
3520 */
3521 case PCI_EXP_TYPE_ENDPOINT:
3522 case PCI_EXP_TYPE_UPSTREAM:
3523 case PCI_EXP_TYPE_LEG_END:
3524 case PCI_EXP_TYPE_RC_END:
3525 if (!pdev->multifunction)
3526 break;
3527
3528 return pci_acs_flags_enabled(pdev, acs_flags);
3529 }
3530
3531 /*
3532 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3533 * to single function devices with the exception of downstream ports.
3534 */
3535 return true;
3536}
3537
3538/**
3539 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3540 * @start: starting downstream device
3541 * @end: ending upstream device or NULL to search to the root bus
3542 * @acs_flags: required flags
3543 *
3544 * Walk up a device tree from start to end testing PCI ACS support. If
3545 * any step along the way does not support the required flags, return false.
3546 */
3547bool pci_acs_path_enabled(struct pci_dev *start,
3548 struct pci_dev *end, u16 acs_flags)
3549{
3550 struct pci_dev *pdev, *parent = start;
3551
3552 do {
3553 pdev = parent;
3554
3555 if (!pci_acs_enabled(pdev, acs_flags))
3556 return false;
3557
3558 if (pci_is_root_bus(pdev->bus))
3559 return (end == NULL);
3560
3561 parent = pdev->bus->self;
3562 } while (pdev != end);
3563
3564 return true;
3565}
3566
3567/**
3568 * pci_acs_init - Initialize ACS if hardware supports it
3569 * @dev: the PCI device
3570 */
3571void pci_acs_init(struct pci_dev *dev)
3572{
3573 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3574
3575 /*
3576 * Attempt to enable ACS regardless of capability because some Root
3577 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3578 * the standard ACS capability but still support ACS via those
3579 * quirks.
3580 */
3581 pci_enable_acs(dev);
3582}
3583
3584/**
3585 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3586 * @pdev: PCI device
3587 * @bar: BAR to find
3588 *
3589 * Helper to find the position of the ctrl register for a BAR.
3590 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3591 * Returns -ENOENT if no ctrl register for the BAR could be found.
3592 */
3593static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3594{
3595 unsigned int pos, nbars, i;
3596 u32 ctrl;
3597
3598 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3599 if (!pos)
3600 return -ENOTSUPP;
3601
3602 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3603 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3604 PCI_REBAR_CTRL_NBAR_SHIFT;
3605
3606 for (i = 0; i < nbars; i++, pos += 8) {
3607 int bar_idx;
3608
3609 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3610 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3611 if (bar_idx == bar)
3612 return pos;
3613 }
3614
3615 return -ENOENT;
3616}
3617
3618/**
3619 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3620 * @pdev: PCI device
3621 * @bar: BAR to query
3622 *
3623 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3624 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3625 */
3626u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3627{
3628 int pos;
3629 u32 cap;
3630
3631 pos = pci_rebar_find_pos(pdev, bar);
3632 if (pos < 0)
3633 return 0;
3634
3635 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3636 cap &= PCI_REBAR_CAP_SIZES;
3637
3638 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3639 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3640 bar == 0 && cap == 0x7000)
3641 cap = 0x3f000;
3642
3643 return cap >> 4;
3644}
3645EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3646
3647/**
3648 * pci_rebar_get_current_size - get the current size of a BAR
3649 * @pdev: PCI device
3650 * @bar: BAR to set size to
3651 *
3652 * Read the size of a BAR from the resizable BAR config.
3653 * Returns size if found or negative error code.
3654 */
3655int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3656{
3657 int pos;
3658 u32 ctrl;
3659
3660 pos = pci_rebar_find_pos(pdev, bar);
3661 if (pos < 0)
3662 return pos;
3663
3664 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3665 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3666}
3667
3668/**
3669 * pci_rebar_set_size - set a new size for a BAR
3670 * @pdev: PCI device
3671 * @bar: BAR to set size to
3672 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3673 *
3674 * Set the new size of a BAR as defined in the spec.
3675 * Returns zero if resizing was successful, error code otherwise.
3676 */
3677int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3678{
3679 int pos;
3680 u32 ctrl;
3681
3682 pos = pci_rebar_find_pos(pdev, bar);
3683 if (pos < 0)
3684 return pos;
3685
3686 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3687 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3688 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3689 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3690 return 0;
3691}
3692
3693/**
3694 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3695 * @dev: the PCI device
3696 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3697 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3698 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3699 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3700 *
3701 * Return 0 if all upstream bridges support AtomicOp routing, egress
3702 * blocking is disabled on all upstream ports, and the root port supports
3703 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3704 * AtomicOp completion), or negative otherwise.
3705 */
3706int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3707{
3708 struct pci_bus *bus = dev->bus;
3709 struct pci_dev *bridge;
3710 u32 cap, ctl2;
3711
3712 if (!pci_is_pcie(dev))
3713 return -EINVAL;
3714
3715 /*
3716 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3717 * AtomicOp requesters. For now, we only support endpoints as
3718 * requesters and root ports as completers. No endpoints as
3719 * completers, and no peer-to-peer.
3720 */
3721
3722 switch (pci_pcie_type(dev)) {
3723 case PCI_EXP_TYPE_ENDPOINT:
3724 case PCI_EXP_TYPE_LEG_END:
3725 case PCI_EXP_TYPE_RC_END:
3726 break;
3727 default:
3728 return -EINVAL;
3729 }
3730
3731 while (bus->parent) {
3732 bridge = bus->self;
3733
3734 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3735
3736 switch (pci_pcie_type(bridge)) {
3737 /* Ensure switch ports support AtomicOp routing */
3738 case PCI_EXP_TYPE_UPSTREAM:
3739 case PCI_EXP_TYPE_DOWNSTREAM:
3740 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3741 return -EINVAL;
3742 break;
3743
3744 /* Ensure root port supports all the sizes we care about */
3745 case PCI_EXP_TYPE_ROOT_PORT:
3746 if ((cap & cap_mask) != cap_mask)
3747 return -EINVAL;
3748 break;
3749 }
3750
3751 /* Ensure upstream ports don't block AtomicOps on egress */
3752 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3753 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3754 &ctl2);
3755 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3756 return -EINVAL;
3757 }
3758
3759 bus = bus->parent;
3760 }
3761
3762 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3763 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3764 return 0;
3765}
3766EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3767
3768/**
3769 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3770 * @dev: the PCI device
3771 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3772 *
3773 * Perform INTx swizzling for a device behind one level of bridge. This is
3774 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3775 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3776 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3777 * the PCI Express Base Specification, Revision 2.1)
3778 */
3779u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3780{
3781 int slot;
3782
3783 if (pci_ari_enabled(dev->bus))
3784 slot = 0;
3785 else
3786 slot = PCI_SLOT(dev->devfn);
3787
3788 return (((pin - 1) + slot) % 4) + 1;
3789}
3790
3791int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3792{
3793 u8 pin;
3794
3795 pin = dev->pin;
3796 if (!pin)
3797 return -1;
3798
3799 while (!pci_is_root_bus(dev->bus)) {
3800 pin = pci_swizzle_interrupt_pin(dev, pin);
3801 dev = dev->bus->self;
3802 }
3803 *bridge = dev;
3804 return pin;
3805}
3806
3807/**
3808 * pci_common_swizzle - swizzle INTx all the way to root bridge
3809 * @dev: the PCI device
3810 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3811 *
3812 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3813 * bridges all the way up to a PCI root bus.
3814 */
3815u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3816{
3817 u8 pin = *pinp;
3818
3819 while (!pci_is_root_bus(dev->bus)) {
3820 pin = pci_swizzle_interrupt_pin(dev, pin);
3821 dev = dev->bus->self;
3822 }
3823 *pinp = pin;
3824 return PCI_SLOT(dev->devfn);
3825}
3826EXPORT_SYMBOL_GPL(pci_common_swizzle);
3827
3828/**
3829 * pci_release_region - Release a PCI bar
3830 * @pdev: PCI device whose resources were previously reserved by
3831 * pci_request_region()
3832 * @bar: BAR to release
3833 *
3834 * Releases the PCI I/O and memory resources previously reserved by a
3835 * successful call to pci_request_region(). Call this function only
3836 * after all use of the PCI regions has ceased.
3837 */
3838void pci_release_region(struct pci_dev *pdev, int bar)
3839{
3840 struct pci_devres *dr;
3841
3842 if (pci_resource_len(pdev, bar) == 0)
3843 return;
3844 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3845 release_region(pci_resource_start(pdev, bar),
3846 pci_resource_len(pdev, bar));
3847 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3848 release_mem_region(pci_resource_start(pdev, bar),
3849 pci_resource_len(pdev, bar));
3850
3851 dr = find_pci_dr(pdev);
3852 if (dr)
3853 dr->region_mask &= ~(1 << bar);
3854}
3855EXPORT_SYMBOL(pci_release_region);
3856
3857/**
3858 * __pci_request_region - Reserved PCI I/O and memory resource
3859 * @pdev: PCI device whose resources are to be reserved
3860 * @bar: BAR to be reserved
3861 * @res_name: Name to be associated with resource.
3862 * @exclusive: whether the region access is exclusive or not
3863 *
3864 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3865 * being reserved by owner @res_name. Do not access any
3866 * address inside the PCI regions unless this call returns
3867 * successfully.
3868 *
3869 * If @exclusive is set, then the region is marked so that userspace
3870 * is explicitly not allowed to map the resource via /dev/mem or
3871 * sysfs MMIO access.
3872 *
3873 * Returns 0 on success, or %EBUSY on error. A warning
3874 * message is also printed on failure.
3875 */
3876static int __pci_request_region(struct pci_dev *pdev, int bar,
3877 const char *res_name, int exclusive)
3878{
3879 struct pci_devres *dr;
3880
3881 if (pci_resource_len(pdev, bar) == 0)
3882 return 0;
3883
3884 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3885 if (!request_region(pci_resource_start(pdev, bar),
3886 pci_resource_len(pdev, bar), res_name))
3887 goto err_out;
3888 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3889 if (!__request_mem_region(pci_resource_start(pdev, bar),
3890 pci_resource_len(pdev, bar), res_name,
3891 exclusive))
3892 goto err_out;
3893 }
3894
3895 dr = find_pci_dr(pdev);
3896 if (dr)
3897 dr->region_mask |= 1 << bar;
3898
3899 return 0;
3900
3901err_out:
3902 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3903 &pdev->resource[bar]);
3904 return -EBUSY;
3905}
3906
3907/**
3908 * pci_request_region - Reserve PCI I/O and memory resource
3909 * @pdev: PCI device whose resources are to be reserved
3910 * @bar: BAR to be reserved
3911 * @res_name: Name to be associated with resource
3912 *
3913 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3914 * being reserved by owner @res_name. Do not access any
3915 * address inside the PCI regions unless this call returns
3916 * successfully.
3917 *
3918 * Returns 0 on success, or %EBUSY on error. A warning
3919 * message is also printed on failure.
3920 */
3921int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3922{
3923 return __pci_request_region(pdev, bar, res_name, 0);
3924}
3925EXPORT_SYMBOL(pci_request_region);
3926
3927/**
3928 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3929 * @pdev: PCI device whose resources were previously reserved
3930 * @bars: Bitmask of BARs to be released
3931 *
3932 * Release selected PCI I/O and memory resources previously reserved.
3933 * Call this function only after all use of the PCI regions has ceased.
3934 */
3935void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3936{
3937 int i;
3938
3939 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3940 if (bars & (1 << i))
3941 pci_release_region(pdev, i);
3942}
3943EXPORT_SYMBOL(pci_release_selected_regions);
3944
3945static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3946 const char *res_name, int excl)
3947{
3948 int i;
3949
3950 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3951 if (bars & (1 << i))
3952 if (__pci_request_region(pdev, i, res_name, excl))
3953 goto err_out;
3954 return 0;
3955
3956err_out:
3957 while (--i >= 0)
3958 if (bars & (1 << i))
3959 pci_release_region(pdev, i);
3960
3961 return -EBUSY;
3962}
3963
3964
3965/**
3966 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3967 * @pdev: PCI device whose resources are to be reserved
3968 * @bars: Bitmask of BARs to be requested
3969 * @res_name: Name to be associated with resource
3970 */
3971int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3972 const char *res_name)
3973{
3974 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3975}
3976EXPORT_SYMBOL(pci_request_selected_regions);
3977
3978int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3979 const char *res_name)
3980{
3981 return __pci_request_selected_regions(pdev, bars, res_name,
3982 IORESOURCE_EXCLUSIVE);
3983}
3984EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3985
3986/**
3987 * pci_release_regions - Release reserved PCI I/O and memory resources
3988 * @pdev: PCI device whose resources were previously reserved by
3989 * pci_request_regions()
3990 *
3991 * Releases all PCI I/O and memory resources previously reserved by a
3992 * successful call to pci_request_regions(). Call this function only
3993 * after all use of the PCI regions has ceased.
3994 */
3995
3996void pci_release_regions(struct pci_dev *pdev)
3997{
3998 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3999}
4000EXPORT_SYMBOL(pci_release_regions);
4001
4002/**
4003 * pci_request_regions - Reserve PCI I/O and memory resources
4004 * @pdev: PCI device whose resources are to be reserved
4005 * @res_name: Name to be associated with resource.
4006 *
4007 * Mark all PCI regions associated with PCI device @pdev as
4008 * being reserved by owner @res_name. Do not access any
4009 * address inside the PCI regions unless this call returns
4010 * successfully.
4011 *
4012 * Returns 0 on success, or %EBUSY on error. A warning
4013 * message is also printed on failure.
4014 */
4015int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4016{
4017 return pci_request_selected_regions(pdev,
4018 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4019}
4020EXPORT_SYMBOL(pci_request_regions);
4021
4022/**
4023 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4024 * @pdev: PCI device whose resources are to be reserved
4025 * @res_name: Name to be associated with resource.
4026 *
4027 * Mark all PCI regions associated with PCI device @pdev as being reserved
4028 * by owner @res_name. Do not access any address inside the PCI regions
4029 * unless this call returns successfully.
4030 *
4031 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4032 * and the sysfs MMIO access will not be allowed.
4033 *
4034 * Returns 0 on success, or %EBUSY on error. A warning message is also
4035 * printed on failure.
4036 */
4037int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4038{
4039 return pci_request_selected_regions_exclusive(pdev,
4040 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4041}
4042EXPORT_SYMBOL(pci_request_regions_exclusive);
4043
4044/*
4045 * Record the PCI IO range (expressed as CPU physical address + size).
4046 * Return a negative value if an error has occurred, zero otherwise
4047 */
4048int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4049 resource_size_t size)
4050{
4051 int ret = 0;
4052#ifdef PCI_IOBASE
4053 struct logic_pio_hwaddr *range;
4054
4055 if (!size || addr + size < addr)
4056 return -EINVAL;
4057
4058 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4059 if (!range)
4060 return -ENOMEM;
4061
4062 range->fwnode = fwnode;
4063 range->size = size;
4064 range->hw_start = addr;
4065 range->flags = LOGIC_PIO_CPU_MMIO;
4066
4067 ret = logic_pio_register_range(range);
4068 if (ret)
4069 kfree(range);
4070
4071 /* Ignore duplicates due to deferred probing */
4072 if (ret == -EEXIST)
4073 ret = 0;
4074#endif
4075
4076 return ret;
4077}
4078
4079phys_addr_t pci_pio_to_address(unsigned long pio)
4080{
4081 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4082
4083#ifdef PCI_IOBASE
4084 if (pio >= MMIO_UPPER_LIMIT)
4085 return address;
4086
4087 address = logic_pio_to_hwaddr(pio);
4088#endif
4089
4090 return address;
4091}
4092EXPORT_SYMBOL_GPL(pci_pio_to_address);
4093
4094unsigned long __weak pci_address_to_pio(phys_addr_t address)
4095{
4096#ifdef PCI_IOBASE
4097 return logic_pio_trans_cpuaddr(address);
4098#else
4099 if (address > IO_SPACE_LIMIT)
4100 return (unsigned long)-1;
4101
4102 return (unsigned long) address;
4103#endif
4104}
4105
4106/**
4107 * pci_remap_iospace - Remap the memory mapped I/O space
4108 * @res: Resource describing the I/O space
4109 * @phys_addr: physical address of range to be mapped
4110 *
4111 * Remap the memory mapped I/O space described by the @res and the CPU
4112 * physical address @phys_addr into virtual address space. Only
4113 * architectures that have memory mapped IO functions defined (and the
4114 * PCI_IOBASE value defined) should call this function.
4115 */
4116int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4117{
4118#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4119 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4120
4121 if (!(res->flags & IORESOURCE_IO))
4122 return -EINVAL;
4123
4124 if (res->end > IO_SPACE_LIMIT)
4125 return -EINVAL;
4126
4127 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4128 pgprot_device(PAGE_KERNEL));
4129#else
4130 /*
4131 * This architecture does not have memory mapped I/O space,
4132 * so this function should never be called
4133 */
4134 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4135 return -ENODEV;
4136#endif
4137}
4138EXPORT_SYMBOL(pci_remap_iospace);
4139
4140/**
4141 * pci_unmap_iospace - Unmap the memory mapped I/O space
4142 * @res: resource to be unmapped
4143 *
4144 * Unmap the CPU virtual address @res from virtual address space. Only
4145 * architectures that have memory mapped IO functions defined (and the
4146 * PCI_IOBASE value defined) should call this function.
4147 */
4148void pci_unmap_iospace(struct resource *res)
4149{
4150#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4151 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152
4153 vunmap_range(vaddr, vaddr + resource_size(res));
4154#endif
4155}
4156EXPORT_SYMBOL(pci_unmap_iospace);
4157
4158static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4159{
4160 struct resource **res = ptr;
4161
4162 pci_unmap_iospace(*res);
4163}
4164
4165/**
4166 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4167 * @dev: Generic device to remap IO address for
4168 * @res: Resource describing the I/O space
4169 * @phys_addr: physical address of range to be mapped
4170 *
4171 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4172 * detach.
4173 */
4174int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4175 phys_addr_t phys_addr)
4176{
4177 const struct resource **ptr;
4178 int error;
4179
4180 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4181 if (!ptr)
4182 return -ENOMEM;
4183
4184 error = pci_remap_iospace(res, phys_addr);
4185 if (error) {
4186 devres_free(ptr);
4187 } else {
4188 *ptr = res;
4189 devres_add(dev, ptr);
4190 }
4191
4192 return error;
4193}
4194EXPORT_SYMBOL(devm_pci_remap_iospace);
4195
4196/**
4197 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4198 * @dev: Generic device to remap IO address for
4199 * @offset: Resource address to map
4200 * @size: Size of map
4201 *
4202 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4203 * detach.
4204 */
4205void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4206 resource_size_t offset,
4207 resource_size_t size)
4208{
4209 void __iomem **ptr, *addr;
4210
4211 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4212 if (!ptr)
4213 return NULL;
4214
4215 addr = pci_remap_cfgspace(offset, size);
4216 if (addr) {
4217 *ptr = addr;
4218 devres_add(dev, ptr);
4219 } else
4220 devres_free(ptr);
4221
4222 return addr;
4223}
4224EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4225
4226/**
4227 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4228 * @dev: generic device to handle the resource for
4229 * @res: configuration space resource to be handled
4230 *
4231 * Checks that a resource is a valid memory region, requests the memory
4232 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4233 * proper PCI configuration space memory attributes are guaranteed.
4234 *
4235 * All operations are managed and will be undone on driver detach.
4236 *
4237 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4238 * on failure. Usage example::
4239 *
4240 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4241 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4242 * if (IS_ERR(base))
4243 * return PTR_ERR(base);
4244 */
4245void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4246 struct resource *res)
4247{
4248 resource_size_t size;
4249 const char *name;
4250 void __iomem *dest_ptr;
4251
4252 BUG_ON(!dev);
4253
4254 if (!res || resource_type(res) != IORESOURCE_MEM) {
4255 dev_err(dev, "invalid resource\n");
4256 return IOMEM_ERR_PTR(-EINVAL);
4257 }
4258
4259 size = resource_size(res);
4260
4261 if (res->name)
4262 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4263 res->name);
4264 else
4265 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4266 if (!name)
4267 return IOMEM_ERR_PTR(-ENOMEM);
4268
4269 if (!devm_request_mem_region(dev, res->start, size, name)) {
4270 dev_err(dev, "can't request region for resource %pR\n", res);
4271 return IOMEM_ERR_PTR(-EBUSY);
4272 }
4273
4274 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4275 if (!dest_ptr) {
4276 dev_err(dev, "ioremap failed for resource %pR\n", res);
4277 devm_release_mem_region(dev, res->start, size);
4278 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4279 }
4280
4281 return dest_ptr;
4282}
4283EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4284
4285static void __pci_set_master(struct pci_dev *dev, bool enable)
4286{
4287 u16 old_cmd, cmd;
4288
4289 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4290 if (enable)
4291 cmd = old_cmd | PCI_COMMAND_MASTER;
4292 else
4293 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4294 if (cmd != old_cmd) {
4295 pci_dbg(dev, "%s bus mastering\n",
4296 enable ? "enabling" : "disabling");
4297 pci_write_config_word(dev, PCI_COMMAND, cmd);
4298 }
4299 dev->is_busmaster = enable;
4300}
4301
4302/**
4303 * pcibios_setup - process "pci=" kernel boot arguments
4304 * @str: string used to pass in "pci=" kernel boot arguments
4305 *
4306 * Process kernel boot arguments. This is the default implementation.
4307 * Architecture specific implementations can override this as necessary.
4308 */
4309char * __weak __init pcibios_setup(char *str)
4310{
4311 return str;
4312}
4313
4314/**
4315 * pcibios_set_master - enable PCI bus-mastering for device dev
4316 * @dev: the PCI device to enable
4317 *
4318 * Enables PCI bus-mastering for the device. This is the default
4319 * implementation. Architecture specific implementations can override
4320 * this if necessary.
4321 */
4322void __weak pcibios_set_master(struct pci_dev *dev)
4323{
4324 u8 lat;
4325
4326 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4327 if (pci_is_pcie(dev))
4328 return;
4329
4330 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4331 if (lat < 16)
4332 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4333 else if (lat > pcibios_max_latency)
4334 lat = pcibios_max_latency;
4335 else
4336 return;
4337
4338 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4339}
4340
4341/**
4342 * pci_set_master - enables bus-mastering for device dev
4343 * @dev: the PCI device to enable
4344 *
4345 * Enables bus-mastering on the device and calls pcibios_set_master()
4346 * to do the needed arch specific settings.
4347 */
4348void pci_set_master(struct pci_dev *dev)
4349{
4350 __pci_set_master(dev, true);
4351 pcibios_set_master(dev);
4352}
4353EXPORT_SYMBOL(pci_set_master);
4354
4355/**
4356 * pci_clear_master - disables bus-mastering for device dev
4357 * @dev: the PCI device to disable
4358 */
4359void pci_clear_master(struct pci_dev *dev)
4360{
4361 __pci_set_master(dev, false);
4362}
4363EXPORT_SYMBOL(pci_clear_master);
4364
4365/**
4366 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4367 * @dev: the PCI device for which MWI is to be enabled
4368 *
4369 * Helper function for pci_set_mwi.
4370 * Originally copied from drivers/net/acenic.c.
4371 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4372 *
4373 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4374 */
4375int pci_set_cacheline_size(struct pci_dev *dev)
4376{
4377 u8 cacheline_size;
4378
4379 if (!pci_cache_line_size)
4380 return -EINVAL;
4381
4382 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4383 equal to or multiple of the right value. */
4384 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4385 if (cacheline_size >= pci_cache_line_size &&
4386 (cacheline_size % pci_cache_line_size) == 0)
4387 return 0;
4388
4389 /* Write the correct value. */
4390 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4391 /* Read it back. */
4392 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4393 if (cacheline_size == pci_cache_line_size)
4394 return 0;
4395
4396 pci_dbg(dev, "cache line size of %d is not supported\n",
4397 pci_cache_line_size << 2);
4398
4399 return -EINVAL;
4400}
4401EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4402
4403/**
4404 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4405 * @dev: the PCI device for which MWI is enabled
4406 *
4407 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4408 *
4409 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4410 */
4411int pci_set_mwi(struct pci_dev *dev)
4412{
4413#ifdef PCI_DISABLE_MWI
4414 return 0;
4415#else
4416 int rc;
4417 u16 cmd;
4418
4419 rc = pci_set_cacheline_size(dev);
4420 if (rc)
4421 return rc;
4422
4423 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4424 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4425 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4426 cmd |= PCI_COMMAND_INVALIDATE;
4427 pci_write_config_word(dev, PCI_COMMAND, cmd);
4428 }
4429 return 0;
4430#endif
4431}
4432EXPORT_SYMBOL(pci_set_mwi);
4433
4434/**
4435 * pcim_set_mwi - a device-managed pci_set_mwi()
4436 * @dev: the PCI device for which MWI is enabled
4437 *
4438 * Managed pci_set_mwi().
4439 *
4440 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4441 */
4442int pcim_set_mwi(struct pci_dev *dev)
4443{
4444 struct pci_devres *dr;
4445
4446 dr = find_pci_dr(dev);
4447 if (!dr)
4448 return -ENOMEM;
4449
4450 dr->mwi = 1;
4451 return pci_set_mwi(dev);
4452}
4453EXPORT_SYMBOL(pcim_set_mwi);
4454
4455/**
4456 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4457 * @dev: the PCI device for which MWI is enabled
4458 *
4459 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4460 * Callers are not required to check the return value.
4461 *
4462 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4463 */
4464int pci_try_set_mwi(struct pci_dev *dev)
4465{
4466#ifdef PCI_DISABLE_MWI
4467 return 0;
4468#else
4469 return pci_set_mwi(dev);
4470#endif
4471}
4472EXPORT_SYMBOL(pci_try_set_mwi);
4473
4474/**
4475 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4476 * @dev: the PCI device to disable
4477 *
4478 * Disables PCI Memory-Write-Invalidate transaction on the device
4479 */
4480void pci_clear_mwi(struct pci_dev *dev)
4481{
4482#ifndef PCI_DISABLE_MWI
4483 u16 cmd;
4484
4485 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486 if (cmd & PCI_COMMAND_INVALIDATE) {
4487 cmd &= ~PCI_COMMAND_INVALIDATE;
4488 pci_write_config_word(dev, PCI_COMMAND, cmd);
4489 }
4490#endif
4491}
4492EXPORT_SYMBOL(pci_clear_mwi);
4493
4494/**
4495 * pci_disable_parity - disable parity checking for device
4496 * @dev: the PCI device to operate on
4497 *
4498 * Disable parity checking for device @dev
4499 */
4500void pci_disable_parity(struct pci_dev *dev)
4501{
4502 u16 cmd;
4503
4504 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4505 if (cmd & PCI_COMMAND_PARITY) {
4506 cmd &= ~PCI_COMMAND_PARITY;
4507 pci_write_config_word(dev, PCI_COMMAND, cmd);
4508 }
4509}
4510
4511/**
4512 * pci_intx - enables/disables PCI INTx for device dev
4513 * @pdev: the PCI device to operate on
4514 * @enable: boolean: whether to enable or disable PCI INTx
4515 *
4516 * Enables/disables PCI INTx for device @pdev
4517 */
4518void pci_intx(struct pci_dev *pdev, int enable)
4519{
4520 u16 pci_command, new;
4521
4522 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4523
4524 if (enable)
4525 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4526 else
4527 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4528
4529 if (new != pci_command) {
4530 struct pci_devres *dr;
4531
4532 pci_write_config_word(pdev, PCI_COMMAND, new);
4533
4534 dr = find_pci_dr(pdev);
4535 if (dr && !dr->restore_intx) {
4536 dr->restore_intx = 1;
4537 dr->orig_intx = !enable;
4538 }
4539 }
4540}
4541EXPORT_SYMBOL_GPL(pci_intx);
4542
4543static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4544{
4545 struct pci_bus *bus = dev->bus;
4546 bool mask_updated = true;
4547 u32 cmd_status_dword;
4548 u16 origcmd, newcmd;
4549 unsigned long flags;
4550 bool irq_pending;
4551
4552 /*
4553 * We do a single dword read to retrieve both command and status.
4554 * Document assumptions that make this possible.
4555 */
4556 BUILD_BUG_ON(PCI_COMMAND % 4);
4557 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4558
4559 raw_spin_lock_irqsave(&pci_lock, flags);
4560
4561 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4562
4563 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4564
4565 /*
4566 * Check interrupt status register to see whether our device
4567 * triggered the interrupt (when masking) or the next IRQ is
4568 * already pending (when unmasking).
4569 */
4570 if (mask != irq_pending) {
4571 mask_updated = false;
4572 goto done;
4573 }
4574
4575 origcmd = cmd_status_dword;
4576 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4577 if (mask)
4578 newcmd |= PCI_COMMAND_INTX_DISABLE;
4579 if (newcmd != origcmd)
4580 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4581
4582done:
4583 raw_spin_unlock_irqrestore(&pci_lock, flags);
4584
4585 return mask_updated;
4586}
4587
4588/**
4589 * pci_check_and_mask_intx - mask INTx on pending interrupt
4590 * @dev: the PCI device to operate on
4591 *
4592 * Check if the device dev has its INTx line asserted, mask it and return
4593 * true in that case. False is returned if no interrupt was pending.
4594 */
4595bool pci_check_and_mask_intx(struct pci_dev *dev)
4596{
4597 return pci_check_and_set_intx_mask(dev, true);
4598}
4599EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4600
4601/**
4602 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4603 * @dev: the PCI device to operate on
4604 *
4605 * Check if the device dev has its INTx line asserted, unmask it if not and
4606 * return true. False is returned and the mask remains active if there was
4607 * still an interrupt pending.
4608 */
4609bool pci_check_and_unmask_intx(struct pci_dev *dev)
4610{
4611 return pci_check_and_set_intx_mask(dev, false);
4612}
4613EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4614
4615/**
4616 * pci_wait_for_pending_transaction - wait for pending transaction
4617 * @dev: the PCI device to operate on
4618 *
4619 * Return 0 if transaction is pending 1 otherwise.
4620 */
4621int pci_wait_for_pending_transaction(struct pci_dev *dev)
4622{
4623 if (!pci_is_pcie(dev))
4624 return 1;
4625
4626 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4627 PCI_EXP_DEVSTA_TRPND);
4628}
4629EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4630
4631/**
4632 * pcie_has_flr - check if a device supports function level resets
4633 * @dev: device to check
4634 *
4635 * Returns true if the device advertises support for PCIe function level
4636 * resets.
4637 */
4638bool pcie_has_flr(struct pci_dev *dev)
4639{
4640 u32 cap;
4641
4642 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4643 return false;
4644
4645 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4646 return cap & PCI_EXP_DEVCAP_FLR;
4647}
4648EXPORT_SYMBOL_GPL(pcie_has_flr);
4649
4650/**
4651 * pcie_flr - initiate a PCIe function level reset
4652 * @dev: device to reset
4653 *
4654 * Initiate a function level reset on @dev. The caller should ensure the
4655 * device supports FLR before calling this function, e.g. by using the
4656 * pcie_has_flr() helper.
4657 */
4658int pcie_flr(struct pci_dev *dev)
4659{
4660 if (!pci_wait_for_pending_transaction(dev))
4661 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4662
4663 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4664
4665 if (dev->imm_ready)
4666 return 0;
4667
4668 /*
4669 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4670 * 100ms, but may silently discard requests while the FLR is in
4671 * progress. Wait 100ms before trying to access the device.
4672 */
4673 msleep(100);
4674
4675 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4676}
4677EXPORT_SYMBOL_GPL(pcie_flr);
4678
4679static int pci_af_flr(struct pci_dev *dev, int probe)
4680{
4681 int pos;
4682 u8 cap;
4683
4684 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4685 if (!pos)
4686 return -ENOTTY;
4687
4688 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4689 return -ENOTTY;
4690
4691 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4692 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4693 return -ENOTTY;
4694
4695 if (probe)
4696 return 0;
4697
4698 /*
4699 * Wait for Transaction Pending bit to clear. A word-aligned test
4700 * is used, so we use the control offset rather than status and shift
4701 * the test bit to match.
4702 */
4703 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4704 PCI_AF_STATUS_TP << 8))
4705 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4706
4707 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4708
4709 if (dev->imm_ready)
4710 return 0;
4711
4712 /*
4713 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4714 * updated 27 July 2006; a device must complete an FLR within
4715 * 100ms, but may silently discard requests while the FLR is in
4716 * progress. Wait 100ms before trying to access the device.
4717 */
4718 msleep(100);
4719
4720 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4721}
4722
4723/**
4724 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4725 * @dev: Device to reset.
4726 * @probe: If set, only check if the device can be reset this way.
4727 *
4728 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4729 * unset, it will be reinitialized internally when going from PCI_D3hot to
4730 * PCI_D0. If that's the case and the device is not in a low-power state
4731 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4732 *
4733 * NOTE: This causes the caller to sleep for twice the device power transition
4734 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4735 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4736 * Moreover, only devices in D0 can be reset by this function.
4737 */
4738static int pci_pm_reset(struct pci_dev *dev, int probe)
4739{
4740 u16 csr;
4741
4742 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4743 return -ENOTTY;
4744
4745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4746 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4747 return -ENOTTY;
4748
4749 if (probe)
4750 return 0;
4751
4752 if (dev->current_state != PCI_D0)
4753 return -EINVAL;
4754
4755 csr &= ~PCI_PM_CTRL_STATE_MASK;
4756 csr |= PCI_D3hot;
4757 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4758 pci_dev_d3_sleep(dev);
4759
4760 csr &= ~PCI_PM_CTRL_STATE_MASK;
4761 csr |= PCI_D0;
4762 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4763 pci_dev_d3_sleep(dev);
4764
4765 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4766}
4767
4768/**
4769 * pcie_wait_for_link_delay - Wait until link is active or inactive
4770 * @pdev: Bridge device
4771 * @active: waiting for active or inactive?
4772 * @delay: Delay to wait after link has become active (in ms)
4773 *
4774 * Use this to wait till link becomes active or inactive.
4775 */
4776static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4777 int delay)
4778{
4779 int timeout = 1000;
4780 bool ret;
4781 u16 lnk_status;
4782
4783 /*
4784 * Some controllers might not implement link active reporting. In this
4785 * case, we wait for 1000 ms + any delay requested by the caller.
4786 */
4787 if (!pdev->link_active_reporting) {
4788 msleep(timeout + delay);
4789 return true;
4790 }
4791
4792 /*
4793 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4794 * after which we should expect an link active if the reset was
4795 * successful. If so, software must wait a minimum 100ms before sending
4796 * configuration requests to devices downstream this port.
4797 *
4798 * If the link fails to activate, either the device was physically
4799 * removed or the link is permanently failed.
4800 */
4801 if (active)
4802 msleep(20);
4803 for (;;) {
4804 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4805 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4806 if (ret == active)
4807 break;
4808 if (timeout <= 0)
4809 break;
4810 msleep(10);
4811 timeout -= 10;
4812 }
4813 if (active && ret)
4814 msleep(delay);
4815
4816 return ret == active;
4817}
4818
4819/**
4820 * pcie_wait_for_link - Wait until link is active or inactive
4821 * @pdev: Bridge device
4822 * @active: waiting for active or inactive?
4823 *
4824 * Use this to wait till link becomes active or inactive.
4825 */
4826bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4827{
4828 return pcie_wait_for_link_delay(pdev, active, 100);
4829}
4830
4831/*
4832 * Find maximum D3cold delay required by all the devices on the bus. The
4833 * spec says 100 ms, but firmware can lower it and we allow drivers to
4834 * increase it as well.
4835 *
4836 * Called with @pci_bus_sem locked for reading.
4837 */
4838static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4839{
4840 const struct pci_dev *pdev;
4841 int min_delay = 100;
4842 int max_delay = 0;
4843
4844 list_for_each_entry(pdev, &bus->devices, bus_list) {
4845 if (pdev->d3cold_delay < min_delay)
4846 min_delay = pdev->d3cold_delay;
4847 if (pdev->d3cold_delay > max_delay)
4848 max_delay = pdev->d3cold_delay;
4849 }
4850
4851 return max(min_delay, max_delay);
4852}
4853
4854/**
4855 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4856 * @dev: PCI bridge
4857 *
4858 * Handle necessary delays before access to the devices on the secondary
4859 * side of the bridge are permitted after D3cold to D0 transition.
4860 *
4861 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4862 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4863 * 4.3.2.
4864 */
4865void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4866{
4867 struct pci_dev *child;
4868 int delay;
4869
4870 if (pci_dev_is_disconnected(dev))
4871 return;
4872
4873 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4874 return;
4875
4876 down_read(&pci_bus_sem);
4877
4878 /*
4879 * We only deal with devices that are present currently on the bus.
4880 * For any hot-added devices the access delay is handled in pciehp
4881 * board_added(). In case of ACPI hotplug the firmware is expected
4882 * to configure the devices before OS is notified.
4883 */
4884 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4885 up_read(&pci_bus_sem);
4886 return;
4887 }
4888
4889 /* Take d3cold_delay requirements into account */
4890 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4891 if (!delay) {
4892 up_read(&pci_bus_sem);
4893 return;
4894 }
4895
4896 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4897 bus_list);
4898 up_read(&pci_bus_sem);
4899
4900 /*
4901 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4902 * accessing the device after reset (that is 1000 ms + 100 ms). In
4903 * practice this should not be needed because we don't do power
4904 * management for them (see pci_bridge_d3_possible()).
4905 */
4906 if (!pci_is_pcie(dev)) {
4907 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4908 msleep(1000 + delay);
4909 return;
4910 }
4911
4912 /*
4913 * For PCIe downstream and root ports that do not support speeds
4914 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4915 * speeds (gen3) we need to wait first for the data link layer to
4916 * become active.
4917 *
4918 * However, 100 ms is the minimum and the PCIe spec says the
4919 * software must allow at least 1s before it can determine that the
4920 * device that did not respond is a broken device. There is
4921 * evidence that 100 ms is not always enough, for example certain
4922 * Titan Ridge xHCI controller does not always respond to
4923 * configuration requests if we only wait for 100 ms (see
4924 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4925 *
4926 * Therefore we wait for 100 ms and check for the device presence.
4927 * If it is still not present give it an additional 100 ms.
4928 */
4929 if (!pcie_downstream_port(dev))
4930 return;
4931
4932 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4933 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4934 msleep(delay);
4935 } else {
4936 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4937 delay);
4938 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4939 /* Did not train, no need to wait any further */
4940 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4941 return;
4942 }
4943 }
4944
4945 if (!pci_device_is_present(child)) {
4946 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4947 msleep(delay);
4948 }
4949}
4950
4951void pci_reset_secondary_bus(struct pci_dev *dev)
4952{
4953 u16 ctrl;
4954
4955 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4956 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4957 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4958
4959 /*
4960 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4961 * this to 2ms to ensure that we meet the minimum requirement.
4962 */
4963 msleep(2);
4964
4965 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4966 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4967
4968 /*
4969 * Trhfa for conventional PCI is 2^25 clock cycles.
4970 * Assuming a minimum 33MHz clock this results in a 1s
4971 * delay before we can consider subordinate devices to
4972 * be re-initialized. PCIe has some ways to shorten this,
4973 * but we don't make use of them yet.
4974 */
4975 ssleep(1);
4976}
4977
4978void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4979{
4980 pci_reset_secondary_bus(dev);
4981}
4982
4983/**
4984 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4985 * @dev: Bridge device
4986 *
4987 * Use the bridge control register to assert reset on the secondary bus.
4988 * Devices on the secondary bus are left in power-on state.
4989 */
4990int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4991{
4992 pcibios_reset_secondary_bus(dev);
4993
4994 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4995}
4996EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4997
4998static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4999{
5000 struct pci_dev *pdev;
5001
5002 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5003 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5004 return -ENOTTY;
5005
5006 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5007 if (pdev != dev)
5008 return -ENOTTY;
5009
5010 if (probe)
5011 return 0;
5012
5013 return pci_bridge_secondary_bus_reset(dev->bus->self);
5014}
5015
5016static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5017{
5018 int rc = -ENOTTY;
5019
5020 if (!hotplug || !try_module_get(hotplug->owner))
5021 return rc;
5022
5023 if (hotplug->ops->reset_slot)
5024 rc = hotplug->ops->reset_slot(hotplug, probe);
5025
5026 module_put(hotplug->owner);
5027
5028 return rc;
5029}
5030
5031static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5032{
5033 if (dev->multifunction || dev->subordinate || !dev->slot ||
5034 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5035 return -ENOTTY;
5036
5037 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5038}
5039
5040static int pci_reset_bus_function(struct pci_dev *dev, int probe)
5041{
5042 int rc;
5043
5044 rc = pci_dev_reset_slot_function(dev, probe);
5045 if (rc != -ENOTTY)
5046 return rc;
5047 return pci_parent_bus_reset(dev, probe);
5048}
5049
5050static void pci_dev_lock(struct pci_dev *dev)
5051{
5052 pci_cfg_access_lock(dev);
5053 /* block PM suspend, driver probe, etc. */
5054 device_lock(&dev->dev);
5055}
5056
5057/* Return 1 on successful lock, 0 on contention */
5058int pci_dev_trylock(struct pci_dev *dev)
5059{
5060 if (pci_cfg_access_trylock(dev)) {
5061 if (device_trylock(&dev->dev))
5062 return 1;
5063 pci_cfg_access_unlock(dev);
5064 }
5065
5066 return 0;
5067}
5068EXPORT_SYMBOL_GPL(pci_dev_trylock);
5069
5070void pci_dev_unlock(struct pci_dev *dev)
5071{
5072 device_unlock(&dev->dev);
5073 pci_cfg_access_unlock(dev);
5074}
5075EXPORT_SYMBOL_GPL(pci_dev_unlock);
5076
5077static void pci_dev_save_and_disable(struct pci_dev *dev)
5078{
5079 const struct pci_error_handlers *err_handler =
5080 dev->driver ? dev->driver->err_handler : NULL;
5081
5082 /*
5083 * dev->driver->err_handler->reset_prepare() is protected against
5084 * races with ->remove() by the device lock, which must be held by
5085 * the caller.
5086 */
5087 if (err_handler && err_handler->reset_prepare)
5088 err_handler->reset_prepare(dev);
5089
5090 /*
5091 * Wake-up device prior to save. PM registers default to D0 after
5092 * reset and a simple register restore doesn't reliably return
5093 * to a non-D0 state anyway.
5094 */
5095 pci_set_power_state(dev, PCI_D0);
5096
5097 pci_save_state(dev);
5098 /*
5099 * Disable the device by clearing the Command register, except for
5100 * INTx-disable which is set. This not only disables MMIO and I/O port
5101 * BARs, but also prevents the device from being Bus Master, preventing
5102 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5103 * compliant devices, INTx-disable prevents legacy interrupts.
5104 */
5105 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5106}
5107
5108static void pci_dev_restore(struct pci_dev *dev)
5109{
5110 const struct pci_error_handlers *err_handler =
5111 dev->driver ? dev->driver->err_handler : NULL;
5112
5113 pci_restore_state(dev);
5114
5115 /*
5116 * dev->driver->err_handler->reset_done() is protected against
5117 * races with ->remove() by the device lock, which must be held by
5118 * the caller.
5119 */
5120 if (err_handler && err_handler->reset_done)
5121 err_handler->reset_done(dev);
5122}
5123
5124/**
5125 * __pci_reset_function_locked - reset a PCI device function while holding
5126 * the @dev mutex lock.
5127 * @dev: PCI device to reset
5128 *
5129 * Some devices allow an individual function to be reset without affecting
5130 * other functions in the same device. The PCI device must be responsive
5131 * to PCI config space in order to use this function.
5132 *
5133 * The device function is presumed to be unused and the caller is holding
5134 * the device mutex lock when this function is called.
5135 *
5136 * Resetting the device will make the contents of PCI configuration space
5137 * random, so any caller of this must be prepared to reinitialise the
5138 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5139 * etc.
5140 *
5141 * Returns 0 if the device function was successfully reset or negative if the
5142 * device doesn't support resetting a single function.
5143 */
5144int __pci_reset_function_locked(struct pci_dev *dev)
5145{
5146 int rc;
5147
5148 might_sleep();
5149
5150 /*
5151 * A reset method returns -ENOTTY if it doesn't support this device
5152 * and we should try the next method.
5153 *
5154 * If it returns 0 (success), we're finished. If it returns any
5155 * other error, we're also finished: this indicates that further
5156 * reset mechanisms might be broken on the device.
5157 */
5158 rc = pci_dev_specific_reset(dev, 0);
5159 if (rc != -ENOTTY)
5160 return rc;
5161 if (pcie_has_flr(dev)) {
5162 rc = pcie_flr(dev);
5163 if (rc != -ENOTTY)
5164 return rc;
5165 }
5166 rc = pci_af_flr(dev, 0);
5167 if (rc != -ENOTTY)
5168 return rc;
5169 rc = pci_pm_reset(dev, 0);
5170 if (rc != -ENOTTY)
5171 return rc;
5172 return pci_reset_bus_function(dev, 0);
5173}
5174EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5175
5176/**
5177 * pci_probe_reset_function - check whether the device can be safely reset
5178 * @dev: PCI device to reset
5179 *
5180 * Some devices allow an individual function to be reset without affecting
5181 * other functions in the same device. The PCI device must be responsive
5182 * to PCI config space in order to use this function.
5183 *
5184 * Returns 0 if the device function can be reset or negative if the
5185 * device doesn't support resetting a single function.
5186 */
5187int pci_probe_reset_function(struct pci_dev *dev)
5188{
5189 int rc;
5190
5191 might_sleep();
5192
5193 rc = pci_dev_specific_reset(dev, 1);
5194 if (rc != -ENOTTY)
5195 return rc;
5196 if (pcie_has_flr(dev))
5197 return 0;
5198 rc = pci_af_flr(dev, 1);
5199 if (rc != -ENOTTY)
5200 return rc;
5201 rc = pci_pm_reset(dev, 1);
5202 if (rc != -ENOTTY)
5203 return rc;
5204
5205 return pci_reset_bus_function(dev, 1);
5206}
5207
5208/**
5209 * pci_reset_function - quiesce and reset a PCI device function
5210 * @dev: PCI device to reset
5211 *
5212 * Some devices allow an individual function to be reset without affecting
5213 * other functions in the same device. The PCI device must be responsive
5214 * to PCI config space in order to use this function.
5215 *
5216 * This function does not just reset the PCI portion of a device, but
5217 * clears all the state associated with the device. This function differs
5218 * from __pci_reset_function_locked() in that it saves and restores device state
5219 * over the reset and takes the PCI device lock.
5220 *
5221 * Returns 0 if the device function was successfully reset or negative if the
5222 * device doesn't support resetting a single function.
5223 */
5224int pci_reset_function(struct pci_dev *dev)
5225{
5226 int rc;
5227
5228 if (!dev->reset_fn)
5229 return -ENOTTY;
5230
5231 pci_dev_lock(dev);
5232 pci_dev_save_and_disable(dev);
5233
5234 rc = __pci_reset_function_locked(dev);
5235
5236 pci_dev_restore(dev);
5237 pci_dev_unlock(dev);
5238
5239 return rc;
5240}
5241EXPORT_SYMBOL_GPL(pci_reset_function);
5242
5243/**
5244 * pci_reset_function_locked - quiesce and reset a PCI device function
5245 * @dev: PCI device to reset
5246 *
5247 * Some devices allow an individual function to be reset without affecting
5248 * other functions in the same device. The PCI device must be responsive
5249 * to PCI config space in order to use this function.
5250 *
5251 * This function does not just reset the PCI portion of a device, but
5252 * clears all the state associated with the device. This function differs
5253 * from __pci_reset_function_locked() in that it saves and restores device state
5254 * over the reset. It also differs from pci_reset_function() in that it
5255 * requires the PCI device lock to be held.
5256 *
5257 * Returns 0 if the device function was successfully reset or negative if the
5258 * device doesn't support resetting a single function.
5259 */
5260int pci_reset_function_locked(struct pci_dev *dev)
5261{
5262 int rc;
5263
5264 if (!dev->reset_fn)
5265 return -ENOTTY;
5266
5267 pci_dev_save_and_disable(dev);
5268
5269 rc = __pci_reset_function_locked(dev);
5270
5271 pci_dev_restore(dev);
5272
5273 return rc;
5274}
5275EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5276
5277/**
5278 * pci_try_reset_function - quiesce and reset a PCI device function
5279 * @dev: PCI device to reset
5280 *
5281 * Same as above, except return -EAGAIN if unable to lock device.
5282 */
5283int pci_try_reset_function(struct pci_dev *dev)
5284{
5285 int rc;
5286
5287 if (!dev->reset_fn)
5288 return -ENOTTY;
5289
5290 if (!pci_dev_trylock(dev))
5291 return -EAGAIN;
5292
5293 pci_dev_save_and_disable(dev);
5294 rc = __pci_reset_function_locked(dev);
5295 pci_dev_restore(dev);
5296 pci_dev_unlock(dev);
5297
5298 return rc;
5299}
5300EXPORT_SYMBOL_GPL(pci_try_reset_function);
5301
5302/* Do any devices on or below this bus prevent a bus reset? */
5303static bool pci_bus_resetable(struct pci_bus *bus)
5304{
5305 struct pci_dev *dev;
5306
5307
5308 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5309 return false;
5310
5311 list_for_each_entry(dev, &bus->devices, bus_list) {
5312 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5313 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5314 return false;
5315 }
5316
5317 return true;
5318}
5319
5320/* Lock devices from the top of the tree down */
5321static void pci_bus_lock(struct pci_bus *bus)
5322{
5323 struct pci_dev *dev;
5324
5325 list_for_each_entry(dev, &bus->devices, bus_list) {
5326 pci_dev_lock(dev);
5327 if (dev->subordinate)
5328 pci_bus_lock(dev->subordinate);
5329 }
5330}
5331
5332/* Unlock devices from the bottom of the tree up */
5333static void pci_bus_unlock(struct pci_bus *bus)
5334{
5335 struct pci_dev *dev;
5336
5337 list_for_each_entry(dev, &bus->devices, bus_list) {
5338 if (dev->subordinate)
5339 pci_bus_unlock(dev->subordinate);
5340 pci_dev_unlock(dev);
5341 }
5342}
5343
5344/* Return 1 on successful lock, 0 on contention */
5345static int pci_bus_trylock(struct pci_bus *bus)
5346{
5347 struct pci_dev *dev;
5348
5349 list_for_each_entry(dev, &bus->devices, bus_list) {
5350 if (!pci_dev_trylock(dev))
5351 goto unlock;
5352 if (dev->subordinate) {
5353 if (!pci_bus_trylock(dev->subordinate)) {
5354 pci_dev_unlock(dev);
5355 goto unlock;
5356 }
5357 }
5358 }
5359 return 1;
5360
5361unlock:
5362 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5363 if (dev->subordinate)
5364 pci_bus_unlock(dev->subordinate);
5365 pci_dev_unlock(dev);
5366 }
5367 return 0;
5368}
5369
5370/* Do any devices on or below this slot prevent a bus reset? */
5371static bool pci_slot_resetable(struct pci_slot *slot)
5372{
5373 struct pci_dev *dev;
5374
5375 if (slot->bus->self &&
5376 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5377 return false;
5378
5379 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5380 if (!dev->slot || dev->slot != slot)
5381 continue;
5382 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5383 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5384 return false;
5385 }
5386
5387 return true;
5388}
5389
5390/* Lock devices from the top of the tree down */
5391static void pci_slot_lock(struct pci_slot *slot)
5392{
5393 struct pci_dev *dev;
5394
5395 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5396 if (!dev->slot || dev->slot != slot)
5397 continue;
5398 pci_dev_lock(dev);
5399 if (dev->subordinate)
5400 pci_bus_lock(dev->subordinate);
5401 }
5402}
5403
5404/* Unlock devices from the bottom of the tree up */
5405static void pci_slot_unlock(struct pci_slot *slot)
5406{
5407 struct pci_dev *dev;
5408
5409 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5410 if (!dev->slot || dev->slot != slot)
5411 continue;
5412 if (dev->subordinate)
5413 pci_bus_unlock(dev->subordinate);
5414 pci_dev_unlock(dev);
5415 }
5416}
5417
5418/* Return 1 on successful lock, 0 on contention */
5419static int pci_slot_trylock(struct pci_slot *slot)
5420{
5421 struct pci_dev *dev;
5422
5423 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5424 if (!dev->slot || dev->slot != slot)
5425 continue;
5426 if (!pci_dev_trylock(dev))
5427 goto unlock;
5428 if (dev->subordinate) {
5429 if (!pci_bus_trylock(dev->subordinate)) {
5430 pci_dev_unlock(dev);
5431 goto unlock;
5432 }
5433 }
5434 }
5435 return 1;
5436
5437unlock:
5438 list_for_each_entry_continue_reverse(dev,
5439 &slot->bus->devices, bus_list) {
5440 if (!dev->slot || dev->slot != slot)
5441 continue;
5442 if (dev->subordinate)
5443 pci_bus_unlock(dev->subordinate);
5444 pci_dev_unlock(dev);
5445 }
5446 return 0;
5447}
5448
5449/*
5450 * Save and disable devices from the top of the tree down while holding
5451 * the @dev mutex lock for the entire tree.
5452 */
5453static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5454{
5455 struct pci_dev *dev;
5456
5457 list_for_each_entry(dev, &bus->devices, bus_list) {
5458 pci_dev_save_and_disable(dev);
5459 if (dev->subordinate)
5460 pci_bus_save_and_disable_locked(dev->subordinate);
5461 }
5462}
5463
5464/*
5465 * Restore devices from top of the tree down while holding @dev mutex lock
5466 * for the entire tree. Parent bridges need to be restored before we can
5467 * get to subordinate devices.
5468 */
5469static void pci_bus_restore_locked(struct pci_bus *bus)
5470{
5471 struct pci_dev *dev;
5472
5473 list_for_each_entry(dev, &bus->devices, bus_list) {
5474 pci_dev_restore(dev);
5475 if (dev->subordinate)
5476 pci_bus_restore_locked(dev->subordinate);
5477 }
5478}
5479
5480/*
5481 * Save and disable devices from the top of the tree down while holding
5482 * the @dev mutex lock for the entire tree.
5483 */
5484static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5485{
5486 struct pci_dev *dev;
5487
5488 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5489 if (!dev->slot || dev->slot != slot)
5490 continue;
5491 pci_dev_save_and_disable(dev);
5492 if (dev->subordinate)
5493 pci_bus_save_and_disable_locked(dev->subordinate);
5494 }
5495}
5496
5497/*
5498 * Restore devices from top of the tree down while holding @dev mutex lock
5499 * for the entire tree. Parent bridges need to be restored before we can
5500 * get to subordinate devices.
5501 */
5502static void pci_slot_restore_locked(struct pci_slot *slot)
5503{
5504 struct pci_dev *dev;
5505
5506 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5507 if (!dev->slot || dev->slot != slot)
5508 continue;
5509 pci_dev_restore(dev);
5510 if (dev->subordinate)
5511 pci_bus_restore_locked(dev->subordinate);
5512 }
5513}
5514
5515static int pci_slot_reset(struct pci_slot *slot, int probe)
5516{
5517 int rc;
5518
5519 if (!slot || !pci_slot_resetable(slot))
5520 return -ENOTTY;
5521
5522 if (!probe)
5523 pci_slot_lock(slot);
5524
5525 might_sleep();
5526
5527 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5528
5529 if (!probe)
5530 pci_slot_unlock(slot);
5531
5532 return rc;
5533}
5534
5535/**
5536 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5537 * @slot: PCI slot to probe
5538 *
5539 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5540 */
5541int pci_probe_reset_slot(struct pci_slot *slot)
5542{
5543 return pci_slot_reset(slot, 1);
5544}
5545EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5546
5547/**
5548 * __pci_reset_slot - Try to reset a PCI slot
5549 * @slot: PCI slot to reset
5550 *
5551 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5552 * independent of other slots. For instance, some slots may support slot power
5553 * control. In the case of a 1:1 bus to slot architecture, this function may
5554 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5555 * Generally a slot reset should be attempted before a bus reset. All of the
5556 * function of the slot and any subordinate buses behind the slot are reset
5557 * through this function. PCI config space of all devices in the slot and
5558 * behind the slot is saved before and restored after reset.
5559 *
5560 * Same as above except return -EAGAIN if the slot cannot be locked
5561 */
5562static int __pci_reset_slot(struct pci_slot *slot)
5563{
5564 int rc;
5565
5566 rc = pci_slot_reset(slot, 1);
5567 if (rc)
5568 return rc;
5569
5570 if (pci_slot_trylock(slot)) {
5571 pci_slot_save_and_disable_locked(slot);
5572 might_sleep();
5573 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5574 pci_slot_restore_locked(slot);
5575 pci_slot_unlock(slot);
5576 } else
5577 rc = -EAGAIN;
5578
5579 return rc;
5580}
5581
5582static int pci_bus_reset(struct pci_bus *bus, int probe)
5583{
5584 int ret;
5585
5586 if (!bus->self || !pci_bus_resetable(bus))
5587 return -ENOTTY;
5588
5589 if (probe)
5590 return 0;
5591
5592 pci_bus_lock(bus);
5593
5594 might_sleep();
5595
5596 ret = pci_bridge_secondary_bus_reset(bus->self);
5597
5598 pci_bus_unlock(bus);
5599
5600 return ret;
5601}
5602
5603/**
5604 * pci_bus_error_reset - reset the bridge's subordinate bus
5605 * @bridge: The parent device that connects to the bus to reset
5606 *
5607 * This function will first try to reset the slots on this bus if the method is
5608 * available. If slot reset fails or is not available, this will fall back to a
5609 * secondary bus reset.
5610 */
5611int pci_bus_error_reset(struct pci_dev *bridge)
5612{
5613 struct pci_bus *bus = bridge->subordinate;
5614 struct pci_slot *slot;
5615
5616 if (!bus)
5617 return -ENOTTY;
5618
5619 mutex_lock(&pci_slot_mutex);
5620 if (list_empty(&bus->slots))
5621 goto bus_reset;
5622
5623 list_for_each_entry(slot, &bus->slots, list)
5624 if (pci_probe_reset_slot(slot))
5625 goto bus_reset;
5626
5627 list_for_each_entry(slot, &bus->slots, list)
5628 if (pci_slot_reset(slot, 0))
5629 goto bus_reset;
5630
5631 mutex_unlock(&pci_slot_mutex);
5632 return 0;
5633bus_reset:
5634 mutex_unlock(&pci_slot_mutex);
5635 return pci_bus_reset(bridge->subordinate, 0);
5636}
5637
5638/**
5639 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5640 * @bus: PCI bus to probe
5641 *
5642 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5643 */
5644int pci_probe_reset_bus(struct pci_bus *bus)
5645{
5646 return pci_bus_reset(bus, 1);
5647}
5648EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5649
5650/**
5651 * __pci_reset_bus - Try to reset a PCI bus
5652 * @bus: top level PCI bus to reset
5653 *
5654 * Same as above except return -EAGAIN if the bus cannot be locked
5655 */
5656static int __pci_reset_bus(struct pci_bus *bus)
5657{
5658 int rc;
5659
5660 rc = pci_bus_reset(bus, 1);
5661 if (rc)
5662 return rc;
5663
5664 if (pci_bus_trylock(bus)) {
5665 pci_bus_save_and_disable_locked(bus);
5666 might_sleep();
5667 rc = pci_bridge_secondary_bus_reset(bus->self);
5668 pci_bus_restore_locked(bus);
5669 pci_bus_unlock(bus);
5670 } else
5671 rc = -EAGAIN;
5672
5673 return rc;
5674}
5675
5676/**
5677 * pci_reset_bus - Try to reset a PCI bus
5678 * @pdev: top level PCI device to reset via slot/bus
5679 *
5680 * Same as above except return -EAGAIN if the bus cannot be locked
5681 */
5682int pci_reset_bus(struct pci_dev *pdev)
5683{
5684 return (!pci_probe_reset_slot(pdev->slot)) ?
5685 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5686}
5687EXPORT_SYMBOL_GPL(pci_reset_bus);
5688
5689/**
5690 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5691 * @dev: PCI device to query
5692 *
5693 * Returns mmrbc: maximum designed memory read count in bytes or
5694 * appropriate error value.
5695 */
5696int pcix_get_max_mmrbc(struct pci_dev *dev)
5697{
5698 int cap;
5699 u32 stat;
5700
5701 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5702 if (!cap)
5703 return -EINVAL;
5704
5705 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5706 return -EINVAL;
5707
5708 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5709}
5710EXPORT_SYMBOL(pcix_get_max_mmrbc);
5711
5712/**
5713 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5714 * @dev: PCI device to query
5715 *
5716 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5717 * value.
5718 */
5719int pcix_get_mmrbc(struct pci_dev *dev)
5720{
5721 int cap;
5722 u16 cmd;
5723
5724 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5725 if (!cap)
5726 return -EINVAL;
5727
5728 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5729 return -EINVAL;
5730
5731 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5732}
5733EXPORT_SYMBOL(pcix_get_mmrbc);
5734
5735/**
5736 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5737 * @dev: PCI device to query
5738 * @mmrbc: maximum memory read count in bytes
5739 * valid values are 512, 1024, 2048, 4096
5740 *
5741 * If possible sets maximum memory read byte count, some bridges have errata
5742 * that prevent this.
5743 */
5744int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5745{
5746 int cap;
5747 u32 stat, v, o;
5748 u16 cmd;
5749
5750 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5751 return -EINVAL;
5752
5753 v = ffs(mmrbc) - 10;
5754
5755 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5756 if (!cap)
5757 return -EINVAL;
5758
5759 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5760 return -EINVAL;
5761
5762 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5763 return -E2BIG;
5764
5765 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5766 return -EINVAL;
5767
5768 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5769 if (o != v) {
5770 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5771 return -EIO;
5772
5773 cmd &= ~PCI_X_CMD_MAX_READ;
5774 cmd |= v << 2;
5775 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5776 return -EIO;
5777 }
5778 return 0;
5779}
5780EXPORT_SYMBOL(pcix_set_mmrbc);
5781
5782/**
5783 * pcie_get_readrq - get PCI Express read request size
5784 * @dev: PCI device to query
5785 *
5786 * Returns maximum memory read request in bytes or appropriate error value.
5787 */
5788int pcie_get_readrq(struct pci_dev *dev)
5789{
5790 u16 ctl;
5791
5792 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5793
5794 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5795}
5796EXPORT_SYMBOL(pcie_get_readrq);
5797
5798/**
5799 * pcie_set_readrq - set PCI Express maximum memory read request
5800 * @dev: PCI device to query
5801 * @rq: maximum memory read count in bytes
5802 * valid values are 128, 256, 512, 1024, 2048, 4096
5803 *
5804 * If possible sets maximum memory read request in bytes
5805 */
5806int pcie_set_readrq(struct pci_dev *dev, int rq)
5807{
5808 u16 v;
5809 int ret;
5810
5811 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5812 return -EINVAL;
5813
5814 /*
5815 * If using the "performance" PCIe config, we clamp the read rq
5816 * size to the max packet size to keep the host bridge from
5817 * generating requests larger than we can cope with.
5818 */
5819 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5820 int mps = pcie_get_mps(dev);
5821
5822 if (mps < rq)
5823 rq = mps;
5824 }
5825
5826 v = (ffs(rq) - 8) << 12;
5827
5828 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5829 PCI_EXP_DEVCTL_READRQ, v);
5830
5831 return pcibios_err_to_errno(ret);
5832}
5833EXPORT_SYMBOL(pcie_set_readrq);
5834
5835/**
5836 * pcie_get_mps - get PCI Express maximum payload size
5837 * @dev: PCI device to query
5838 *
5839 * Returns maximum payload size in bytes
5840 */
5841int pcie_get_mps(struct pci_dev *dev)
5842{
5843 u16 ctl;
5844
5845 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5846
5847 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5848}
5849EXPORT_SYMBOL(pcie_get_mps);
5850
5851/**
5852 * pcie_set_mps - set PCI Express maximum payload size
5853 * @dev: PCI device to query
5854 * @mps: maximum payload size in bytes
5855 * valid values are 128, 256, 512, 1024, 2048, 4096
5856 *
5857 * If possible sets maximum payload size
5858 */
5859int pcie_set_mps(struct pci_dev *dev, int mps)
5860{
5861 u16 v;
5862 int ret;
5863
5864 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5865 return -EINVAL;
5866
5867 v = ffs(mps) - 8;
5868 if (v > dev->pcie_mpss)
5869 return -EINVAL;
5870 v <<= 5;
5871
5872 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5873 PCI_EXP_DEVCTL_PAYLOAD, v);
5874
5875 return pcibios_err_to_errno(ret);
5876}
5877EXPORT_SYMBOL(pcie_set_mps);
5878
5879/**
5880 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5881 * device and its bandwidth limitation
5882 * @dev: PCI device to query
5883 * @limiting_dev: storage for device causing the bandwidth limitation
5884 * @speed: storage for speed of limiting device
5885 * @width: storage for width of limiting device
5886 *
5887 * Walk up the PCI device chain and find the point where the minimum
5888 * bandwidth is available. Return the bandwidth available there and (if
5889 * limiting_dev, speed, and width pointers are supplied) information about
5890 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5891 * raw bandwidth.
5892 */
5893u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5894 enum pci_bus_speed *speed,
5895 enum pcie_link_width *width)
5896{
5897 u16 lnksta;
5898 enum pci_bus_speed next_speed;
5899 enum pcie_link_width next_width;
5900 u32 bw, next_bw;
5901
5902 if (speed)
5903 *speed = PCI_SPEED_UNKNOWN;
5904 if (width)
5905 *width = PCIE_LNK_WIDTH_UNKNOWN;
5906
5907 bw = 0;
5908
5909 while (dev) {
5910 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5911
5912 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5913 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5914 PCI_EXP_LNKSTA_NLW_SHIFT;
5915
5916 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5917
5918 /* Check if current device limits the total bandwidth */
5919 if (!bw || next_bw <= bw) {
5920 bw = next_bw;
5921
5922 if (limiting_dev)
5923 *limiting_dev = dev;
5924 if (speed)
5925 *speed = next_speed;
5926 if (width)
5927 *width = next_width;
5928 }
5929
5930 dev = pci_upstream_bridge(dev);
5931 }
5932
5933 return bw;
5934}
5935EXPORT_SYMBOL(pcie_bandwidth_available);
5936
5937/**
5938 * pcie_get_speed_cap - query for the PCI device's link speed capability
5939 * @dev: PCI device to query
5940 *
5941 * Query the PCI device speed capability. Return the maximum link speed
5942 * supported by the device.
5943 */
5944enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5945{
5946 u32 lnkcap2, lnkcap;
5947
5948 /*
5949 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5950 * implementation note there recommends using the Supported Link
5951 * Speeds Vector in Link Capabilities 2 when supported.
5952 *
5953 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5954 * should use the Supported Link Speeds field in Link Capabilities,
5955 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5956 */
5957 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5958
5959 /* PCIe r3.0-compliant */
5960 if (lnkcap2)
5961 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5962
5963 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5964 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5965 return PCIE_SPEED_5_0GT;
5966 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5967 return PCIE_SPEED_2_5GT;
5968
5969 return PCI_SPEED_UNKNOWN;
5970}
5971EXPORT_SYMBOL(pcie_get_speed_cap);
5972
5973/**
5974 * pcie_get_width_cap - query for the PCI device's link width capability
5975 * @dev: PCI device to query
5976 *
5977 * Query the PCI device width capability. Return the maximum link width
5978 * supported by the device.
5979 */
5980enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5981{
5982 u32 lnkcap;
5983
5984 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5985 if (lnkcap)
5986 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5987
5988 return PCIE_LNK_WIDTH_UNKNOWN;
5989}
5990EXPORT_SYMBOL(pcie_get_width_cap);
5991
5992/**
5993 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5994 * @dev: PCI device
5995 * @speed: storage for link speed
5996 * @width: storage for link width
5997 *
5998 * Calculate a PCI device's link bandwidth by querying for its link speed
5999 * and width, multiplying them, and applying encoding overhead. The result
6000 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6001 */
6002u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6003 enum pcie_link_width *width)
6004{
6005 *speed = pcie_get_speed_cap(dev);
6006 *width = pcie_get_width_cap(dev);
6007
6008 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6009 return 0;
6010
6011 return *width * PCIE_SPEED2MBS_ENC(*speed);
6012}
6013
6014/**
6015 * __pcie_print_link_status - Report the PCI device's link speed and width
6016 * @dev: PCI device to query
6017 * @verbose: Print info even when enough bandwidth is available
6018 *
6019 * If the available bandwidth at the device is less than the device is
6020 * capable of, report the device's maximum possible bandwidth and the
6021 * upstream link that limits its performance. If @verbose, always print
6022 * the available bandwidth, even if the device isn't constrained.
6023 */
6024void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6025{
6026 enum pcie_link_width width, width_cap;
6027 enum pci_bus_speed speed, speed_cap;
6028 struct pci_dev *limiting_dev = NULL;
6029 u32 bw_avail, bw_cap;
6030
6031 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6032 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6033
6034 if (bw_avail >= bw_cap && verbose)
6035 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6036 bw_cap / 1000, bw_cap % 1000,
6037 pci_speed_string(speed_cap), width_cap);
6038 else if (bw_avail < bw_cap)
6039 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6040 bw_avail / 1000, bw_avail % 1000,
6041 pci_speed_string(speed), width,
6042 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6043 bw_cap / 1000, bw_cap % 1000,
6044 pci_speed_string(speed_cap), width_cap);
6045}
6046
6047/**
6048 * pcie_print_link_status - Report the PCI device's link speed and width
6049 * @dev: PCI device to query
6050 *
6051 * Report the available bandwidth at the device.
6052 */
6053void pcie_print_link_status(struct pci_dev *dev)
6054{
6055 __pcie_print_link_status(dev, true);
6056}
6057EXPORT_SYMBOL(pcie_print_link_status);
6058
6059/**
6060 * pci_select_bars - Make BAR mask from the type of resource
6061 * @dev: the PCI device for which BAR mask is made
6062 * @flags: resource type mask to be selected
6063 *
6064 * This helper routine makes bar mask from the type of resource.
6065 */
6066int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6067{
6068 int i, bars = 0;
6069 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6070 if (pci_resource_flags(dev, i) & flags)
6071 bars |= (1 << i);
6072 return bars;
6073}
6074EXPORT_SYMBOL(pci_select_bars);
6075
6076/* Some architectures require additional programming to enable VGA */
6077static arch_set_vga_state_t arch_set_vga_state;
6078
6079void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6080{
6081 arch_set_vga_state = func; /* NULL disables */
6082}
6083
6084static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6085 unsigned int command_bits, u32 flags)
6086{
6087 if (arch_set_vga_state)
6088 return arch_set_vga_state(dev, decode, command_bits,
6089 flags);
6090 return 0;
6091}
6092
6093/**
6094 * pci_set_vga_state - set VGA decode state on device and parents if requested
6095 * @dev: the PCI device
6096 * @decode: true = enable decoding, false = disable decoding
6097 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6098 * @flags: traverse ancestors and change bridges
6099 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6100 */
6101int pci_set_vga_state(struct pci_dev *dev, bool decode,
6102 unsigned int command_bits, u32 flags)
6103{
6104 struct pci_bus *bus;
6105 struct pci_dev *bridge;
6106 u16 cmd;
6107 int rc;
6108
6109 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6110
6111 /* ARCH specific VGA enables */
6112 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6113 if (rc)
6114 return rc;
6115
6116 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6117 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6118 if (decode)
6119 cmd |= command_bits;
6120 else
6121 cmd &= ~command_bits;
6122 pci_write_config_word(dev, PCI_COMMAND, cmd);
6123 }
6124
6125 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6126 return 0;
6127
6128 bus = dev->bus;
6129 while (bus) {
6130 bridge = bus->self;
6131 if (bridge) {
6132 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6133 &cmd);
6134 if (decode)
6135 cmd |= PCI_BRIDGE_CTL_VGA;
6136 else
6137 cmd &= ~PCI_BRIDGE_CTL_VGA;
6138 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6139 cmd);
6140 }
6141 bus = bus->parent;
6142 }
6143 return 0;
6144}
6145
6146#ifdef CONFIG_ACPI
6147bool pci_pr3_present(struct pci_dev *pdev)
6148{
6149 struct acpi_device *adev;
6150
6151 if (acpi_disabled)
6152 return false;
6153
6154 adev = ACPI_COMPANION(&pdev->dev);
6155 if (!adev)
6156 return false;
6157
6158 return adev->power.flags.power_resources &&
6159 acpi_has_method(adev->handle, "_PR3");
6160}
6161EXPORT_SYMBOL_GPL(pci_pr3_present);
6162#endif
6163
6164/**
6165 * pci_add_dma_alias - Add a DMA devfn alias for a device
6166 * @dev: the PCI device for which alias is added
6167 * @devfn_from: alias slot and function
6168 * @nr_devfns: number of subsequent devfns to alias
6169 *
6170 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6171 * which is used to program permissible bus-devfn source addresses for DMA
6172 * requests in an IOMMU. These aliases factor into IOMMU group creation
6173 * and are useful for devices generating DMA requests beyond or different
6174 * from their logical bus-devfn. Examples include device quirks where the
6175 * device simply uses the wrong devfn, as well as non-transparent bridges
6176 * where the alias may be a proxy for devices in another domain.
6177 *
6178 * IOMMU group creation is performed during device discovery or addition,
6179 * prior to any potential DMA mapping and therefore prior to driver probing
6180 * (especially for userspace assigned devices where IOMMU group definition
6181 * cannot be left as a userspace activity). DMA aliases should therefore
6182 * be configured via quirks, such as the PCI fixup header quirk.
6183 */
6184void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6185{
6186 int devfn_to;
6187
6188 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6189 devfn_to = devfn_from + nr_devfns - 1;
6190
6191 if (!dev->dma_alias_mask)
6192 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6193 if (!dev->dma_alias_mask) {
6194 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6195 return;
6196 }
6197
6198 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6199
6200 if (nr_devfns == 1)
6201 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6202 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6203 else if (nr_devfns > 1)
6204 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6205 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6206 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6207}
6208
6209bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6210{
6211 return (dev1->dma_alias_mask &&
6212 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6213 (dev2->dma_alias_mask &&
6214 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6215 pci_real_dma_dev(dev1) == dev2 ||
6216 pci_real_dma_dev(dev2) == dev1;
6217}
6218
6219bool pci_device_is_present(struct pci_dev *pdev)
6220{
6221 u32 v;
6222
6223 if (pci_dev_is_disconnected(pdev))
6224 return false;
6225 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6226}
6227EXPORT_SYMBOL_GPL(pci_device_is_present);
6228
6229void pci_ignore_hotplug(struct pci_dev *dev)
6230{
6231 struct pci_dev *bridge = dev->bus->self;
6232
6233 dev->ignore_hotplug = 1;
6234 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6235 if (bridge)
6236 bridge->ignore_hotplug = 1;
6237}
6238EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6239
6240/**
6241 * pci_real_dma_dev - Get PCI DMA device for PCI device
6242 * @dev: the PCI device that may have a PCI DMA alias
6243 *
6244 * Permits the platform to provide architecture-specific functionality to
6245 * devices needing to alias DMA to another PCI device on another PCI bus. If
6246 * the PCI device is on the same bus, it is recommended to use
6247 * pci_add_dma_alias(). This is the default implementation. Architecture
6248 * implementations can override this.
6249 */
6250struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6251{
6252 return dev;
6253}
6254
6255resource_size_t __weak pcibios_default_alignment(void)
6256{
6257 return 0;
6258}
6259
6260/*
6261 * Arches that don't want to expose struct resource to userland as-is in
6262 * sysfs and /proc can implement their own pci_resource_to_user().
6263 */
6264void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6265 const struct resource *rsrc,
6266 resource_size_t *start, resource_size_t *end)
6267{
6268 *start = rsrc->start;
6269 *end = rsrc->end;
6270}
6271
6272static char *resource_alignment_param;
6273static DEFINE_SPINLOCK(resource_alignment_lock);
6274
6275/**
6276 * pci_specified_resource_alignment - get resource alignment specified by user.
6277 * @dev: the PCI device to get
6278 * @resize: whether or not to change resources' size when reassigning alignment
6279 *
6280 * RETURNS: Resource alignment if it is specified.
6281 * Zero if it is not specified.
6282 */
6283static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6284 bool *resize)
6285{
6286 int align_order, count;
6287 resource_size_t align = pcibios_default_alignment();
6288 const char *p;
6289 int ret;
6290
6291 spin_lock(&resource_alignment_lock);
6292 p = resource_alignment_param;
6293 if (!p || !*p)
6294 goto out;
6295 if (pci_has_flag(PCI_PROBE_ONLY)) {
6296 align = 0;
6297 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6298 goto out;
6299 }
6300
6301 while (*p) {
6302 count = 0;
6303 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6304 p[count] == '@') {
6305 p += count + 1;
6306 if (align_order > 63) {
6307 pr_err("PCI: Invalid requested alignment (order %d)\n",
6308 align_order);
6309 align_order = PAGE_SHIFT;
6310 }
6311 } else {
6312 align_order = PAGE_SHIFT;
6313 }
6314
6315 ret = pci_dev_str_match(dev, p, &p);
6316 if (ret == 1) {
6317 *resize = true;
6318 align = 1ULL << align_order;
6319 break;
6320 } else if (ret < 0) {
6321 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6322 p);
6323 break;
6324 }
6325
6326 if (*p != ';' && *p != ',') {
6327 /* End of param or invalid format */
6328 break;
6329 }
6330 p++;
6331 }
6332out:
6333 spin_unlock(&resource_alignment_lock);
6334 return align;
6335}
6336
6337static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6338 resource_size_t align, bool resize)
6339{
6340 struct resource *r = &dev->resource[bar];
6341 resource_size_t size;
6342
6343 if (!(r->flags & IORESOURCE_MEM))
6344 return;
6345
6346 if (r->flags & IORESOURCE_PCI_FIXED) {
6347 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6348 bar, r, (unsigned long long)align);
6349 return;
6350 }
6351
6352 size = resource_size(r);
6353 if (size >= align)
6354 return;
6355
6356 /*
6357 * Increase the alignment of the resource. There are two ways we
6358 * can do this:
6359 *
6360 * 1) Increase the size of the resource. BARs are aligned on their
6361 * size, so when we reallocate space for this resource, we'll
6362 * allocate it with the larger alignment. This also prevents
6363 * assignment of any other BARs inside the alignment region, so
6364 * if we're requesting page alignment, this means no other BARs
6365 * will share the page.
6366 *
6367 * The disadvantage is that this makes the resource larger than
6368 * the hardware BAR, which may break drivers that compute things
6369 * based on the resource size, e.g., to find registers at a
6370 * fixed offset before the end of the BAR.
6371 *
6372 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6373 * set r->start to the desired alignment. By itself this
6374 * doesn't prevent other BARs being put inside the alignment
6375 * region, but if we realign *every* resource of every device in
6376 * the system, none of them will share an alignment region.
6377 *
6378 * When the user has requested alignment for only some devices via
6379 * the "pci=resource_alignment" argument, "resize" is true and we
6380 * use the first method. Otherwise we assume we're aligning all
6381 * devices and we use the second.
6382 */
6383
6384 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6385 bar, r, (unsigned long long)align);
6386
6387 if (resize) {
6388 r->start = 0;
6389 r->end = align - 1;
6390 } else {
6391 r->flags &= ~IORESOURCE_SIZEALIGN;
6392 r->flags |= IORESOURCE_STARTALIGN;
6393 r->start = align;
6394 r->end = r->start + size - 1;
6395 }
6396 r->flags |= IORESOURCE_UNSET;
6397}
6398
6399/*
6400 * This function disables memory decoding and releases memory resources
6401 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6402 * It also rounds up size to specified alignment.
6403 * Later on, the kernel will assign page-aligned memory resource back
6404 * to the device.
6405 */
6406void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6407{
6408 int i;
6409 struct resource *r;
6410 resource_size_t align;
6411 u16 command;
6412 bool resize = false;
6413
6414 /*
6415 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6416 * 3.4.1.11. Their resources are allocated from the space
6417 * described by the VF BARx register in the PF's SR-IOV capability.
6418 * We can't influence their alignment here.
6419 */
6420 if (dev->is_virtfn)
6421 return;
6422
6423 /* check if specified PCI is target device to reassign */
6424 align = pci_specified_resource_alignment(dev, &resize);
6425 if (!align)
6426 return;
6427
6428 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6429 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6430 pci_warn(dev, "Can't reassign resources to host bridge\n");
6431 return;
6432 }
6433
6434 pci_read_config_word(dev, PCI_COMMAND, &command);
6435 command &= ~PCI_COMMAND_MEMORY;
6436 pci_write_config_word(dev, PCI_COMMAND, command);
6437
6438 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6439 pci_request_resource_alignment(dev, i, align, resize);
6440
6441 /*
6442 * Need to disable bridge's resource window,
6443 * to enable the kernel to reassign new resource
6444 * window later on.
6445 */
6446 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6447 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6448 r = &dev->resource[i];
6449 if (!(r->flags & IORESOURCE_MEM))
6450 continue;
6451 r->flags |= IORESOURCE_UNSET;
6452 r->end = resource_size(r) - 1;
6453 r->start = 0;
6454 }
6455 pci_disable_bridge_window(dev);
6456 }
6457}
6458
6459static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6460{
6461 size_t count = 0;
6462
6463 spin_lock(&resource_alignment_lock);
6464 if (resource_alignment_param)
6465 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6466 spin_unlock(&resource_alignment_lock);
6467
6468 return count;
6469}
6470
6471static ssize_t resource_alignment_store(struct bus_type *bus,
6472 const char *buf, size_t count)
6473{
6474 char *param, *old, *end;
6475
6476 if (count >= (PAGE_SIZE - 1))
6477 return -EINVAL;
6478
6479 param = kstrndup(buf, count, GFP_KERNEL);
6480 if (!param)
6481 return -ENOMEM;
6482
6483 end = strchr(param, '\n');
6484 if (end)
6485 *end = '\0';
6486
6487 spin_lock(&resource_alignment_lock);
6488 old = resource_alignment_param;
6489 if (strlen(param)) {
6490 resource_alignment_param = param;
6491 } else {
6492 kfree(param);
6493 resource_alignment_param = NULL;
6494 }
6495 spin_unlock(&resource_alignment_lock);
6496
6497 kfree(old);
6498
6499 return count;
6500}
6501
6502static BUS_ATTR_RW(resource_alignment);
6503
6504static int __init pci_resource_alignment_sysfs_init(void)
6505{
6506 return bus_create_file(&pci_bus_type,
6507 &bus_attr_resource_alignment);
6508}
6509late_initcall(pci_resource_alignment_sysfs_init);
6510
6511static void pci_no_domains(void)
6512{
6513#ifdef CONFIG_PCI_DOMAINS
6514 pci_domains_supported = 0;
6515#endif
6516}
6517
6518#ifdef CONFIG_PCI_DOMAINS_GENERIC
6519static atomic_t __domain_nr = ATOMIC_INIT(-1);
6520
6521static int pci_get_new_domain_nr(void)
6522{
6523 return atomic_inc_return(&__domain_nr);
6524}
6525
6526static int of_pci_bus_find_domain_nr(struct device *parent)
6527{
6528 static int use_dt_domains = -1;
6529 int domain = -1;
6530
6531 if (parent)
6532 domain = of_get_pci_domain_nr(parent->of_node);
6533
6534 /*
6535 * Check DT domain and use_dt_domains values.
6536 *
6537 * If DT domain property is valid (domain >= 0) and
6538 * use_dt_domains != 0, the DT assignment is valid since this means
6539 * we have not previously allocated a domain number by using
6540 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6541 * 1, to indicate that we have just assigned a domain number from
6542 * DT.
6543 *
6544 * If DT domain property value is not valid (ie domain < 0), and we
6545 * have not previously assigned a domain number from DT
6546 * (use_dt_domains != 1) we should assign a domain number by
6547 * using the:
6548 *
6549 * pci_get_new_domain_nr()
6550 *
6551 * API and update the use_dt_domains value to keep track of method we
6552 * are using to assign domain numbers (use_dt_domains = 0).
6553 *
6554 * All other combinations imply we have a platform that is trying
6555 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6556 * which is a recipe for domain mishandling and it is prevented by
6557 * invalidating the domain value (domain = -1) and printing a
6558 * corresponding error.
6559 */
6560 if (domain >= 0 && use_dt_domains) {
6561 use_dt_domains = 1;
6562 } else if (domain < 0 && use_dt_domains != 1) {
6563 use_dt_domains = 0;
6564 domain = pci_get_new_domain_nr();
6565 } else {
6566 if (parent)
6567 pr_err("Node %pOF has ", parent->of_node);
6568 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6569 domain = -1;
6570 }
6571
6572 return domain;
6573}
6574
6575int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6576{
6577 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6578 acpi_pci_bus_find_domain_nr(bus);
6579}
6580#endif
6581
6582/**
6583 * pci_ext_cfg_avail - can we access extended PCI config space?
6584 *
6585 * Returns 1 if we can access PCI extended config space (offsets
6586 * greater than 0xff). This is the default implementation. Architecture
6587 * implementations can override this.
6588 */
6589int __weak pci_ext_cfg_avail(void)
6590{
6591 return 1;
6592}
6593
6594void __weak pci_fixup_cardbus(struct pci_bus *bus)
6595{
6596}
6597EXPORT_SYMBOL(pci_fixup_cardbus);
6598
6599static int __init pci_setup(char *str)
6600{
6601 while (str) {
6602 char *k = strchr(str, ',');
6603 if (k)
6604 *k++ = 0;
6605 if (*str && (str = pcibios_setup(str)) && *str) {
6606 if (!strcmp(str, "nomsi")) {
6607 pci_no_msi();
6608 } else if (!strncmp(str, "noats", 5)) {
6609 pr_info("PCIe: ATS is disabled\n");
6610 pcie_ats_disabled = true;
6611 } else if (!strcmp(str, "noaer")) {
6612 pci_no_aer();
6613 } else if (!strcmp(str, "earlydump")) {
6614 pci_early_dump = true;
6615 } else if (!strncmp(str, "realloc=", 8)) {
6616 pci_realloc_get_opt(str + 8);
6617 } else if (!strncmp(str, "realloc", 7)) {
6618 pci_realloc_get_opt("on");
6619 } else if (!strcmp(str, "nodomains")) {
6620 pci_no_domains();
6621 } else if (!strncmp(str, "noari", 5)) {
6622 pcie_ari_disabled = true;
6623 } else if (!strncmp(str, "cbiosize=", 9)) {
6624 pci_cardbus_io_size = memparse(str + 9, &str);
6625 } else if (!strncmp(str, "cbmemsize=", 10)) {
6626 pci_cardbus_mem_size = memparse(str + 10, &str);
6627 } else if (!strncmp(str, "resource_alignment=", 19)) {
6628 resource_alignment_param = str + 19;
6629 } else if (!strncmp(str, "ecrc=", 5)) {
6630 pcie_ecrc_get_policy(str + 5);
6631 } else if (!strncmp(str, "hpiosize=", 9)) {
6632 pci_hotplug_io_size = memparse(str + 9, &str);
6633 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6634 pci_hotplug_mmio_size = memparse(str + 11, &str);
6635 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6636 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6637 } else if (!strncmp(str, "hpmemsize=", 10)) {
6638 pci_hotplug_mmio_size = memparse(str + 10, &str);
6639 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6640 } else if (!strncmp(str, "hpbussize=", 10)) {
6641 pci_hotplug_bus_size =
6642 simple_strtoul(str + 10, &str, 0);
6643 if (pci_hotplug_bus_size > 0xff)
6644 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6645 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6646 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6647 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6648 pcie_bus_config = PCIE_BUS_SAFE;
6649 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6650 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6651 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6652 pcie_bus_config = PCIE_BUS_PEER2PEER;
6653 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6654 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6655 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6656 disable_acs_redir_param = str + 18;
6657 } else {
6658 pr_err("PCI: Unknown option `%s'\n", str);
6659 }
6660 }
6661 str = k;
6662 }
6663 return 0;
6664}
6665early_param("pci", pci_setup);
6666
6667/*
6668 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6669 * in pci_setup(), above, to point to data in the __initdata section which
6670 * will be freed after the init sequence is complete. We can't allocate memory
6671 * in pci_setup() because some architectures do not have any memory allocation
6672 * service available during an early_param() call. So we allocate memory and
6673 * copy the variable here before the init section is freed.
6674 *
6675 */
6676static int __init pci_realloc_setup_params(void)
6677{
6678 resource_alignment_param = kstrdup(resource_alignment_param,
6679 GFP_KERNEL);
6680 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6681
6682 return 0;
6683}
6684pure_initcall(pci_realloc_setup_params);