Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7#include <linux/device.h>
8#include <linux/interrupt.h>
9#include <linux/irq.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/msi.h>
13#include <linux/pci.h>
14#include <linux/pci-acpi.h>
15#include <linux/pci-ecam.h>
16#include <linux/srcu.h>
17#include <linux/rculist.h>
18#include <linux/rcupdate.h>
19
20#include <asm/irqdomain.h>
21
22#define VMD_CFGBAR 0
23#define VMD_MEMBAR1 2
24#define VMD_MEMBAR2 4
25
26#define PCI_REG_VMCAP 0x40
27#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
28#define PCI_REG_VMCONFIG 0x44
29#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
30#define VMCONFIG_MSI_REMAP 0x2
31#define PCI_REG_VMLOCK 0x70
32#define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
33
34#define MB2_SHADOW_OFFSET 0x2000
35#define MB2_SHADOW_SIZE 16
36
37enum vmd_features {
38 /*
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
42 */
43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
44
45 /*
46 * Device may provide root port configuration information which limits
47 * bus numbering
48 */
49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
50
51 /*
52 * Device contains physical location shadow registers in
53 * vendor-specific capability space
54 */
55 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
56
57 /*
58 * Device may use MSI-X vector 0 for software triggering and will not
59 * be used for MSI remapping
60 */
61 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
62
63 /*
64 * Device can bypass remapping MSI-X transactions into its MSI-X table,
65 * avoiding the requirement of a VMD MSI domain for child device
66 * interrupt handling.
67 */
68 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
69
70 /*
71 * Enable ASPM on the PCIE root ports and set the default LTR of the
72 * storage devices on platforms where these values are not configured by
73 * BIOS. This is needed for laptops, which require these settings for
74 * proper power management of the SoC.
75 */
76 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5),
77};
78
79#define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */
80
81#define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \
82 VMD_FEAT_HAS_BUS_RESTRICTIONS | \
83 VMD_FEAT_OFFSET_FIRST_VECTOR | \
84 VMD_FEAT_BIOS_PM_QUIRK)
85
86static DEFINE_IDA(vmd_instance_ida);
87
88/*
89 * Lock for manipulating VMD IRQ lists.
90 */
91static DEFINE_RAW_SPINLOCK(list_lock);
92
93/**
94 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
95 * @node: list item for parent traversal.
96 * @irq: back pointer to parent.
97 * @enabled: true if driver enabled IRQ
98 * @virq: the virtual IRQ value provided to the requesting driver.
99 *
100 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
101 * a VMD IRQ using this structure.
102 */
103struct vmd_irq {
104 struct list_head node;
105 struct vmd_irq_list *irq;
106 bool enabled;
107 unsigned int virq;
108};
109
110/**
111 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
112 * @irq_list: the list of irq's the VMD one demuxes to.
113 * @srcu: SRCU struct for local synchronization.
114 * @count: number of child IRQs assigned to this vector; used to track
115 * sharing.
116 * @virq: The underlying VMD Linux interrupt number
117 */
118struct vmd_irq_list {
119 struct list_head irq_list;
120 struct srcu_struct srcu;
121 unsigned int count;
122 unsigned int virq;
123};
124
125struct vmd_dev {
126 struct pci_dev *dev;
127
128 spinlock_t cfg_lock;
129 void __iomem *cfgbar;
130
131 int msix_count;
132 struct vmd_irq_list *irqs;
133
134 struct pci_sysdata sysdata;
135 struct resource resources[3];
136 struct irq_domain *irq_domain;
137 struct pci_bus *bus;
138 u8 busn_start;
139 u8 first_vec;
140 char *name;
141 int instance;
142};
143
144static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
145{
146 return container_of(bus->sysdata, struct vmd_dev, sysdata);
147}
148
149static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
150 struct vmd_irq_list *irqs)
151{
152 return irqs - vmd->irqs;
153}
154
155/*
156 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
157 * but the MSI entry for the hardware it's driving will be programmed with a
158 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
159 * domain into one of its own, and the VMD driver de-muxes these for the
160 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
161 * and irq_chip to set this up.
162 */
163static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
164{
165 struct vmd_irq *vmdirq = data->chip_data;
166 struct vmd_irq_list *irq = vmdirq->irq;
167 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
168
169 memset(msg, 0, sizeof(*msg));
170 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
171 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
172 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
173}
174
175/*
176 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
177 */
178static void vmd_irq_enable(struct irq_data *data)
179{
180 struct vmd_irq *vmdirq = data->chip_data;
181 unsigned long flags;
182
183 raw_spin_lock_irqsave(&list_lock, flags);
184 WARN_ON(vmdirq->enabled);
185 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
186 vmdirq->enabled = true;
187 raw_spin_unlock_irqrestore(&list_lock, flags);
188
189 data->chip->irq_unmask(data);
190}
191
192static void vmd_irq_disable(struct irq_data *data)
193{
194 struct vmd_irq *vmdirq = data->chip_data;
195 unsigned long flags;
196
197 data->chip->irq_mask(data);
198
199 raw_spin_lock_irqsave(&list_lock, flags);
200 if (vmdirq->enabled) {
201 list_del_rcu(&vmdirq->node);
202 vmdirq->enabled = false;
203 }
204 raw_spin_unlock_irqrestore(&list_lock, flags);
205}
206
207static struct irq_chip vmd_msi_controller = {
208 .name = "VMD-MSI",
209 .irq_enable = vmd_irq_enable,
210 .irq_disable = vmd_irq_disable,
211 .irq_compose_msi_msg = vmd_compose_msi_msg,
212};
213
214static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
215 msi_alloc_info_t *arg)
216{
217 return 0;
218}
219
220/*
221 * XXX: We can be even smarter selecting the best IRQ once we solve the
222 * affinity problem.
223 */
224static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
225{
226 unsigned long flags;
227 int i, best;
228
229 if (vmd->msix_count == 1 + vmd->first_vec)
230 return &vmd->irqs[vmd->first_vec];
231
232 /*
233 * White list for fast-interrupt handlers. All others will share the
234 * "slow" interrupt vector.
235 */
236 switch (msi_desc_to_pci_dev(desc)->class) {
237 case PCI_CLASS_STORAGE_EXPRESS:
238 break;
239 default:
240 return &vmd->irqs[vmd->first_vec];
241 }
242
243 raw_spin_lock_irqsave(&list_lock, flags);
244 best = vmd->first_vec + 1;
245 for (i = best; i < vmd->msix_count; i++)
246 if (vmd->irqs[i].count < vmd->irqs[best].count)
247 best = i;
248 vmd->irqs[best].count++;
249 raw_spin_unlock_irqrestore(&list_lock, flags);
250
251 return &vmd->irqs[best];
252}
253
254static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
255 unsigned int virq, irq_hw_number_t hwirq,
256 msi_alloc_info_t *arg)
257{
258 struct msi_desc *desc = arg->desc;
259 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
260 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
261
262 if (!vmdirq)
263 return -ENOMEM;
264
265 INIT_LIST_HEAD(&vmdirq->node);
266 vmdirq->irq = vmd_next_irq(vmd, desc);
267 vmdirq->virq = virq;
268
269 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
270 handle_untracked_irq, vmd, NULL);
271 return 0;
272}
273
274static void vmd_msi_free(struct irq_domain *domain,
275 struct msi_domain_info *info, unsigned int virq)
276{
277 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
278 unsigned long flags;
279
280 synchronize_srcu(&vmdirq->irq->srcu);
281
282 /* XXX: Potential optimization to rebalance */
283 raw_spin_lock_irqsave(&list_lock, flags);
284 vmdirq->irq->count--;
285 raw_spin_unlock_irqrestore(&list_lock, flags);
286
287 kfree(vmdirq);
288}
289
290static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
291 int nvec, msi_alloc_info_t *arg)
292{
293 struct pci_dev *pdev = to_pci_dev(dev);
294 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
295
296 if (nvec > vmd->msix_count)
297 return vmd->msix_count;
298
299 memset(arg, 0, sizeof(*arg));
300 return 0;
301}
302
303static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
304{
305 arg->desc = desc;
306}
307
308static struct msi_domain_ops vmd_msi_domain_ops = {
309 .get_hwirq = vmd_get_hwirq,
310 .msi_init = vmd_msi_init,
311 .msi_free = vmd_msi_free,
312 .msi_prepare = vmd_msi_prepare,
313 .set_desc = vmd_set_desc,
314};
315
316static struct msi_domain_info vmd_msi_domain_info = {
317 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
318 MSI_FLAG_NO_AFFINITY | MSI_FLAG_PCI_MSIX,
319 .ops = &vmd_msi_domain_ops,
320 .chip = &vmd_msi_controller,
321};
322
323static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
324{
325 u16 reg;
326
327 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
328 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
329 (reg | VMCONFIG_MSI_REMAP);
330 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
331}
332
333static int vmd_create_irq_domain(struct vmd_dev *vmd)
334{
335 struct fwnode_handle *fn;
336
337 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
338 if (!fn)
339 return -ENODEV;
340
341 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
342 if (!vmd->irq_domain) {
343 irq_domain_free_fwnode(fn);
344 return -ENODEV;
345 }
346
347 return 0;
348}
349
350static void vmd_remove_irq_domain(struct vmd_dev *vmd)
351{
352 /*
353 * Some production BIOS won't enable remapping between soft reboots.
354 * Ensure remapping is restored before unloading the driver.
355 */
356 if (!vmd->msix_count)
357 vmd_set_msi_remapping(vmd, true);
358
359 if (vmd->irq_domain) {
360 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
361
362 irq_domain_remove(vmd->irq_domain);
363 irq_domain_free_fwnode(fn);
364 }
365}
366
367static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
368 unsigned int devfn, int reg, int len)
369{
370 unsigned int busnr_ecam = bus->number - vmd->busn_start;
371 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
372
373 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
374 return NULL;
375
376 return vmd->cfgbar + offset;
377}
378
379/*
380 * CPU may deadlock if config space is not serialized on some versions of this
381 * hardware, so all config space access is done under a spinlock.
382 */
383static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
384 int len, u32 *value)
385{
386 struct vmd_dev *vmd = vmd_from_bus(bus);
387 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
388 unsigned long flags;
389 int ret = 0;
390
391 if (!addr)
392 return -EFAULT;
393
394 spin_lock_irqsave(&vmd->cfg_lock, flags);
395 switch (len) {
396 case 1:
397 *value = readb(addr);
398 break;
399 case 2:
400 *value = readw(addr);
401 break;
402 case 4:
403 *value = readl(addr);
404 break;
405 default:
406 ret = -EINVAL;
407 break;
408 }
409 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
410 return ret;
411}
412
413/*
414 * VMD h/w converts non-posted config writes to posted memory writes. The
415 * read-back in this function forces the completion so it returns only after
416 * the config space was written, as expected.
417 */
418static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
419 int len, u32 value)
420{
421 struct vmd_dev *vmd = vmd_from_bus(bus);
422 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
423 unsigned long flags;
424 int ret = 0;
425
426 if (!addr)
427 return -EFAULT;
428
429 spin_lock_irqsave(&vmd->cfg_lock, flags);
430 switch (len) {
431 case 1:
432 writeb(value, addr);
433 readb(addr);
434 break;
435 case 2:
436 writew(value, addr);
437 readw(addr);
438 break;
439 case 4:
440 writel(value, addr);
441 readl(addr);
442 break;
443 default:
444 ret = -EINVAL;
445 break;
446 }
447 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
448 return ret;
449}
450
451static struct pci_ops vmd_ops = {
452 .read = vmd_pci_read,
453 .write = vmd_pci_write,
454};
455
456#ifdef CONFIG_ACPI
457static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
458{
459 struct pci_host_bridge *bridge;
460 u32 busnr, addr;
461
462 if (pci_dev->bus->ops != &vmd_ops)
463 return NULL;
464
465 bridge = pci_find_host_bridge(pci_dev->bus);
466 busnr = pci_dev->bus->number - bridge->bus->number;
467 /*
468 * The address computation below is only applicable to relative bus
469 * numbers below 32.
470 */
471 if (busnr > 31)
472 return NULL;
473
474 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
475
476 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
477 addr);
478
479 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
480 false);
481}
482
483static bool hook_installed;
484
485static void vmd_acpi_begin(void)
486{
487 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
488 return;
489
490 hook_installed = true;
491}
492
493static void vmd_acpi_end(void)
494{
495 if (!hook_installed)
496 return;
497
498 pci_acpi_clear_companion_lookup_hook();
499 hook_installed = false;
500}
501#else
502static inline void vmd_acpi_begin(void) { }
503static inline void vmd_acpi_end(void) { }
504#endif /* CONFIG_ACPI */
505
506static void vmd_domain_reset(struct vmd_dev *vmd)
507{
508 u16 bus, max_buses = resource_size(&vmd->resources[0]);
509 u8 dev, functions, fn, hdr_type;
510 char __iomem *base;
511
512 for (bus = 0; bus < max_buses; bus++) {
513 for (dev = 0; dev < 32; dev++) {
514 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
515 PCI_DEVFN(dev, 0), 0);
516
517 hdr_type = readb(base + PCI_HEADER_TYPE);
518
519 functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
520 for (fn = 0; fn < functions; fn++) {
521 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
522 PCI_DEVFN(dev, fn), 0);
523
524 hdr_type = readb(base + PCI_HEADER_TYPE) &
525 PCI_HEADER_TYPE_MASK;
526
527 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
528 (readw(base + PCI_CLASS_DEVICE) !=
529 PCI_CLASS_BRIDGE_PCI))
530 continue;
531
532 /*
533 * Temporarily disable the I/O range before updating
534 * PCI_IO_BASE.
535 */
536 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
537 /* Update lower 16 bits of I/O base/limit */
538 writew(0x00f0, base + PCI_IO_BASE);
539 /* Update upper 16 bits of I/O base/limit */
540 writel(0, base + PCI_IO_BASE_UPPER16);
541
542 /* MMIO Base/Limit */
543 writel(0x0000fff0, base + PCI_MEMORY_BASE);
544
545 /* Prefetchable MMIO Base/Limit */
546 writel(0, base + PCI_PREF_LIMIT_UPPER32);
547 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
548 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
549 }
550 }
551 }
552}
553
554static void vmd_attach_resources(struct vmd_dev *vmd)
555{
556 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
557 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
558}
559
560static void vmd_detach_resources(struct vmd_dev *vmd)
561{
562 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
563 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
564}
565
566/*
567 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
568 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
569 * 16 bits are the PCI Segment Group (domain) number. Other bits are
570 * currently reserved.
571 */
572static int vmd_find_free_domain(void)
573{
574 int domain = 0xffff;
575 struct pci_bus *bus = NULL;
576
577 while ((bus = pci_find_next_bus(bus)) != NULL)
578 domain = max_t(int, domain, pci_domain_nr(bus));
579 return domain + 1;
580}
581
582static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
583 resource_size_t *offset1,
584 resource_size_t *offset2)
585{
586 struct pci_dev *dev = vmd->dev;
587 u64 phys1, phys2;
588
589 if (native_hint) {
590 u32 vmlock;
591 int ret;
592
593 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
594 if (ret || PCI_POSSIBLE_ERROR(vmlock))
595 return -ENODEV;
596
597 if (MB2_SHADOW_EN(vmlock)) {
598 void __iomem *membar2;
599
600 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
601 if (!membar2)
602 return -ENOMEM;
603 phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
604 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
605 pci_iounmap(dev, membar2);
606 } else
607 return 0;
608 } else {
609 /* Hypervisor-Emulated Vendor-Specific Capability */
610 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
611 u32 reg, regu;
612
613 pci_read_config_dword(dev, pos + 4, ®);
614
615 /* "SHDW" */
616 if (pos && reg == 0x53484457) {
617 pci_read_config_dword(dev, pos + 8, ®);
618 pci_read_config_dword(dev, pos + 12, ®u);
619 phys1 = (u64) regu << 32 | reg;
620
621 pci_read_config_dword(dev, pos + 16, ®);
622 pci_read_config_dword(dev, pos + 20, ®u);
623 phys2 = (u64) regu << 32 | reg;
624 } else
625 return 0;
626 }
627
628 *offset1 = dev->resource[VMD_MEMBAR1].start -
629 (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
630 *offset2 = dev->resource[VMD_MEMBAR2].start -
631 (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
632
633 return 0;
634}
635
636static int vmd_get_bus_number_start(struct vmd_dev *vmd)
637{
638 struct pci_dev *dev = vmd->dev;
639 u16 reg;
640
641 pci_read_config_word(dev, PCI_REG_VMCAP, ®);
642 if (BUS_RESTRICT_CAP(reg)) {
643 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
644
645 switch (BUS_RESTRICT_CFG(reg)) {
646 case 0:
647 vmd->busn_start = 0;
648 break;
649 case 1:
650 vmd->busn_start = 128;
651 break;
652 case 2:
653 vmd->busn_start = 224;
654 break;
655 default:
656 pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
657 BUS_RESTRICT_CFG(reg));
658 return -ENODEV;
659 }
660 }
661
662 return 0;
663}
664
665static irqreturn_t vmd_irq(int irq, void *data)
666{
667 struct vmd_irq_list *irqs = data;
668 struct vmd_irq *vmdirq;
669 int idx;
670
671 idx = srcu_read_lock(&irqs->srcu);
672 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
673 generic_handle_irq(vmdirq->virq);
674 srcu_read_unlock(&irqs->srcu, idx);
675
676 return IRQ_HANDLED;
677}
678
679static int vmd_alloc_irqs(struct vmd_dev *vmd)
680{
681 struct pci_dev *dev = vmd->dev;
682 int i, err;
683
684 vmd->msix_count = pci_msix_vec_count(dev);
685 if (vmd->msix_count < 0)
686 return -ENODEV;
687
688 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
689 vmd->msix_count, PCI_IRQ_MSIX);
690 if (vmd->msix_count < 0)
691 return vmd->msix_count;
692
693 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
694 GFP_KERNEL);
695 if (!vmd->irqs)
696 return -ENOMEM;
697
698 for (i = 0; i < vmd->msix_count; i++) {
699 err = init_srcu_struct(&vmd->irqs[i].srcu);
700 if (err)
701 return err;
702
703 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
704 vmd->irqs[i].virq = pci_irq_vector(dev, i);
705 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
706 vmd_irq, IRQF_NO_THREAD,
707 vmd->name, &vmd->irqs[i]);
708 if (err)
709 return err;
710 }
711
712 return 0;
713}
714
715/*
716 * Since VMD is an aperture to regular PCIe root ports, only allow it to
717 * control features that the OS is allowed to control on the physical PCI bus.
718 */
719static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
720 struct pci_host_bridge *vmd_bridge)
721{
722 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
723 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
724 vmd_bridge->native_aer = root_bridge->native_aer;
725 vmd_bridge->native_pme = root_bridge->native_pme;
726 vmd_bridge->native_ltr = root_bridge->native_ltr;
727 vmd_bridge->native_dpc = root_bridge->native_dpc;
728}
729
730/*
731 * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
732 */
733static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
734{
735 unsigned long features = *(unsigned long *)userdata;
736 u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
737 u32 ltr_reg;
738 int pos;
739
740 if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
741 return 0;
742
743 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
744 if (!pos)
745 goto out_state_change;
746
747 /*
748 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
749 * so the LTR quirk is not needed.
750 */
751 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg);
752 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
753 goto out_state_change;
754
755 /*
756 * Set the default values to the maximum required by the platform to
757 * allow the deepest power management savings. Write as a DWORD where
758 * the lower word is the max snoop latency and the upper word is the
759 * max non-snoop latency.
760 */
761 ltr_reg = (ltr << 16) | ltr;
762 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
763 pci_info(pdev, "VMD: Default LTR value set by driver\n");
764
765out_state_change:
766 /*
767 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
768 * PCIe r6.0, sec 5.5.4.
769 */
770 pci_set_power_state_locked(pdev, PCI_D0);
771 pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
772 return 0;
773}
774
775static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
776{
777 struct pci_sysdata *sd = &vmd->sysdata;
778 struct resource *res;
779 u32 upper_bits;
780 unsigned long flags;
781 LIST_HEAD(resources);
782 resource_size_t offset[2] = {0};
783 resource_size_t membar2_offset = 0x2000;
784 struct pci_bus *child;
785 struct pci_dev *dev;
786 int ret;
787
788 /*
789 * Shadow registers may exist in certain VMD device ids which allow
790 * guests to correctly assign host physical addresses to the root ports
791 * and child devices. These registers will either return the host value
792 * or 0, depending on an enable bit in the VMD device.
793 */
794 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
795 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
796 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
797 if (ret)
798 return ret;
799 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
800 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
801 if (ret)
802 return ret;
803 }
804
805 /*
806 * Certain VMD devices may have a root port configuration option which
807 * limits the bus range to between 0-127, 128-255, or 224-255
808 */
809 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
810 ret = vmd_get_bus_number_start(vmd);
811 if (ret)
812 return ret;
813 }
814
815 res = &vmd->dev->resource[VMD_CFGBAR];
816 vmd->resources[0] = (struct resource) {
817 .name = "VMD CFGBAR",
818 .start = vmd->busn_start,
819 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
820 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
821 };
822
823 /*
824 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
825 * put 32-bit resources in the window.
826 *
827 * There's no hardware reason why a 64-bit window *couldn't*
828 * contain a 32-bit resource, but pbus_size_mem() computes the
829 * bridge window size assuming a 64-bit window will contain no
830 * 32-bit resources. __pci_assign_resource() enforces that
831 * artificial restriction to make sure everything will fit.
832 *
833 * The only way we could use a 64-bit non-prefetchable MEMBAR is
834 * if its address is <4GB so that we can convert it to a 32-bit
835 * resource. To be visible to the host OS, all VMD endpoints must
836 * be initially configured by platform BIOS, which includes setting
837 * up these resources. We can assume the device is configured
838 * according to the platform needs.
839 */
840 res = &vmd->dev->resource[VMD_MEMBAR1];
841 upper_bits = upper_32_bits(res->end);
842 flags = res->flags & ~IORESOURCE_SIZEALIGN;
843 if (!upper_bits)
844 flags &= ~IORESOURCE_MEM_64;
845 vmd->resources[1] = (struct resource) {
846 .name = "VMD MEMBAR1",
847 .start = res->start,
848 .end = res->end,
849 .flags = flags,
850 .parent = res,
851 };
852
853 res = &vmd->dev->resource[VMD_MEMBAR2];
854 upper_bits = upper_32_bits(res->end);
855 flags = res->flags & ~IORESOURCE_SIZEALIGN;
856 if (!upper_bits)
857 flags &= ~IORESOURCE_MEM_64;
858 vmd->resources[2] = (struct resource) {
859 .name = "VMD MEMBAR2",
860 .start = res->start + membar2_offset,
861 .end = res->end,
862 .flags = flags,
863 .parent = res,
864 };
865
866 sd->vmd_dev = vmd->dev;
867 sd->domain = vmd_find_free_domain();
868 if (sd->domain < 0)
869 return sd->domain;
870
871 sd->node = pcibus_to_node(vmd->dev->bus);
872
873 /*
874 * Currently MSI remapping must be enabled in guest passthrough mode
875 * due to some missing interrupt remapping plumbing. This is probably
876 * acceptable because the guest is usually CPU-limited and MSI
877 * remapping doesn't become a performance bottleneck.
878 */
879 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
880 offset[0] || offset[1]) {
881 ret = vmd_alloc_irqs(vmd);
882 if (ret)
883 return ret;
884
885 vmd_set_msi_remapping(vmd, true);
886
887 ret = vmd_create_irq_domain(vmd);
888 if (ret)
889 return ret;
890
891 /*
892 * Override the IRQ domain bus token so the domain can be
893 * distinguished from a regular PCI/MSI domain.
894 */
895 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
896 } else {
897 vmd_set_msi_remapping(vmd, false);
898 }
899
900 pci_add_resource(&resources, &vmd->resources[0]);
901 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
902 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
903
904 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
905 &vmd_ops, sd, &resources);
906 if (!vmd->bus) {
907 pci_free_resource_list(&resources);
908 vmd_remove_irq_domain(vmd);
909 return -ENODEV;
910 }
911
912 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
913 to_pci_host_bridge(vmd->bus->bridge));
914
915 vmd_attach_resources(vmd);
916 if (vmd->irq_domain)
917 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
918 else
919 dev_set_msi_domain(&vmd->bus->dev,
920 dev_get_msi_domain(&vmd->dev->dev));
921
922 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
923 "domain"), "Can't create symlink to domain\n");
924
925 vmd_acpi_begin();
926
927 pci_scan_child_bus(vmd->bus);
928 vmd_domain_reset(vmd);
929
930 /* When Intel VMD is enabled, the OS does not discover the Root Ports
931 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
932 * a reset to the parent of the PCI device supplied as argument. This
933 * is why we pass a child device, so the reset can be triggered at
934 * the Intel bridge level and propagated to all the children in the
935 * hierarchy.
936 */
937 list_for_each_entry(child, &vmd->bus->children, node) {
938 if (!list_empty(&child->devices)) {
939 dev = list_first_entry(&child->devices,
940 struct pci_dev, bus_list);
941 ret = pci_reset_bus(dev);
942 if (ret)
943 pci_warn(dev, "can't reset device: %d\n", ret);
944
945 break;
946 }
947 }
948
949 pci_assign_unassigned_bus_resources(vmd->bus);
950
951 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
952
953 /*
954 * VMD root buses are virtual and don't return true on pci_is_pcie()
955 * and will fail pcie_bus_configure_settings() early. It can instead be
956 * run on each of the real root ports.
957 */
958 list_for_each_entry(child, &vmd->bus->children, node)
959 pcie_bus_configure_settings(child);
960
961 pci_bus_add_devices(vmd->bus);
962
963 vmd_acpi_end();
964 return 0;
965}
966
967static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
968{
969 unsigned long features = (unsigned long) id->driver_data;
970 struct vmd_dev *vmd;
971 int err;
972
973 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
974 return -ENOMEM;
975
976 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
977 if (!vmd)
978 return -ENOMEM;
979
980 vmd->dev = dev;
981 vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
982 if (vmd->instance < 0)
983 return vmd->instance;
984
985 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
986 vmd->instance);
987 if (!vmd->name) {
988 err = -ENOMEM;
989 goto out_release_instance;
990 }
991
992 err = pcim_enable_device(dev);
993 if (err < 0)
994 goto out_release_instance;
995
996 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
997 if (!vmd->cfgbar) {
998 err = -ENOMEM;
999 goto out_release_instance;
1000 }
1001
1002 pci_set_master(dev);
1003 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1004 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1005 err = -ENODEV;
1006 goto out_release_instance;
1007 }
1008
1009 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1010 vmd->first_vec = 1;
1011
1012 spin_lock_init(&vmd->cfg_lock);
1013 pci_set_drvdata(dev, vmd);
1014 err = vmd_enable_domain(vmd, features);
1015 if (err)
1016 goto out_release_instance;
1017
1018 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1019 vmd->sysdata.domain);
1020 return 0;
1021
1022 out_release_instance:
1023 ida_free(&vmd_instance_ida, vmd->instance);
1024 return err;
1025}
1026
1027static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1028{
1029 int i;
1030
1031 for (i = 0; i < vmd->msix_count; i++)
1032 cleanup_srcu_struct(&vmd->irqs[i].srcu);
1033}
1034
1035static void vmd_remove(struct pci_dev *dev)
1036{
1037 struct vmd_dev *vmd = pci_get_drvdata(dev);
1038
1039 pci_stop_root_bus(vmd->bus);
1040 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1041 pci_remove_root_bus(vmd->bus);
1042 vmd_cleanup_srcu(vmd);
1043 vmd_detach_resources(vmd);
1044 vmd_remove_irq_domain(vmd);
1045 ida_free(&vmd_instance_ida, vmd->instance);
1046}
1047
1048static void vmd_shutdown(struct pci_dev *dev)
1049{
1050 struct vmd_dev *vmd = pci_get_drvdata(dev);
1051
1052 vmd_remove_irq_domain(vmd);
1053}
1054
1055#ifdef CONFIG_PM_SLEEP
1056static int vmd_suspend(struct device *dev)
1057{
1058 struct pci_dev *pdev = to_pci_dev(dev);
1059 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1060 int i;
1061
1062 for (i = 0; i < vmd->msix_count; i++)
1063 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1064
1065 return 0;
1066}
1067
1068static int vmd_resume(struct device *dev)
1069{
1070 struct pci_dev *pdev = to_pci_dev(dev);
1071 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1072 int err, i;
1073
1074 vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
1075
1076 for (i = 0; i < vmd->msix_count; i++) {
1077 err = devm_request_irq(dev, vmd->irqs[i].virq,
1078 vmd_irq, IRQF_NO_THREAD,
1079 vmd->name, &vmd->irqs[i]);
1080 if (err)
1081 return err;
1082 }
1083
1084 return 0;
1085}
1086#endif
1087static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1088
1089static const struct pci_device_id vmd_ids[] = {
1090 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1091 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1092 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1093 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1094 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1095 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1096 {PCI_VDEVICE(INTEL, 0x467f),
1097 .driver_data = VMD_FEATS_CLIENT,},
1098 {PCI_VDEVICE(INTEL, 0x4c3d),
1099 .driver_data = VMD_FEATS_CLIENT,},
1100 {PCI_VDEVICE(INTEL, 0xa77f),
1101 .driver_data = VMD_FEATS_CLIENT,},
1102 {PCI_VDEVICE(INTEL, 0x7d0b),
1103 .driver_data = VMD_FEATS_CLIENT,},
1104 {PCI_VDEVICE(INTEL, 0xad0b),
1105 .driver_data = VMD_FEATS_CLIENT,},
1106 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1107 .driver_data = VMD_FEATS_CLIENT,},
1108 {PCI_VDEVICE(INTEL, 0xb60b),
1109 .driver_data = VMD_FEATS_CLIENT,},
1110 {PCI_VDEVICE(INTEL, 0xb06f),
1111 .driver_data = VMD_FEATS_CLIENT,},
1112 {0,}
1113};
1114MODULE_DEVICE_TABLE(pci, vmd_ids);
1115
1116static struct pci_driver vmd_drv = {
1117 .name = "vmd",
1118 .id_table = vmd_ids,
1119 .probe = vmd_probe,
1120 .remove = vmd_remove,
1121 .shutdown = vmd_shutdown,
1122 .driver = {
1123 .pm = &vmd_dev_pm_ops,
1124 },
1125};
1126module_pci_driver(vmd_drv);
1127
1128MODULE_AUTHOR("Intel Corporation");
1129MODULE_DESCRIPTION("Volume Management Device driver");
1130MODULE_LICENSE("GPL v2");
1131MODULE_VERSION("0.6");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7#include <linux/device.h>
8#include <linux/interrupt.h>
9#include <linux/irq.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/msi.h>
13#include <linux/pci.h>
14#include <linux/pci-acpi.h>
15#include <linux/pci-ecam.h>
16#include <linux/srcu.h>
17#include <linux/rculist.h>
18#include <linux/rcupdate.h>
19
20#include <asm/irqdomain.h>
21
22#define VMD_CFGBAR 0
23#define VMD_MEMBAR1 2
24#define VMD_MEMBAR2 4
25
26#define PCI_REG_VMCAP 0x40
27#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
28#define PCI_REG_VMCONFIG 0x44
29#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
30#define VMCONFIG_MSI_REMAP 0x2
31#define PCI_REG_VMLOCK 0x70
32#define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
33
34#define MB2_SHADOW_OFFSET 0x2000
35#define MB2_SHADOW_SIZE 16
36
37enum vmd_features {
38 /*
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
42 */
43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
44
45 /*
46 * Device may provide root port configuration information which limits
47 * bus numbering
48 */
49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
50
51 /*
52 * Device contains physical location shadow registers in
53 * vendor-specific capability space
54 */
55 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
56
57 /*
58 * Device may use MSI-X vector 0 for software triggering and will not
59 * be used for MSI remapping
60 */
61 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
62
63 /*
64 * Device can bypass remapping MSI-X transactions into its MSI-X table,
65 * avoiding the requirement of a VMD MSI domain for child device
66 * interrupt handling.
67 */
68 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
69};
70
71static DEFINE_IDA(vmd_instance_ida);
72
73/*
74 * Lock for manipulating VMD IRQ lists.
75 */
76static DEFINE_RAW_SPINLOCK(list_lock);
77
78/**
79 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
80 * @node: list item for parent traversal.
81 * @irq: back pointer to parent.
82 * @enabled: true if driver enabled IRQ
83 * @virq: the virtual IRQ value provided to the requesting driver.
84 *
85 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
86 * a VMD IRQ using this structure.
87 */
88struct vmd_irq {
89 struct list_head node;
90 struct vmd_irq_list *irq;
91 bool enabled;
92 unsigned int virq;
93};
94
95/**
96 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
97 * @irq_list: the list of irq's the VMD one demuxes to.
98 * @srcu: SRCU struct for local synchronization.
99 * @count: number of child IRQs assigned to this vector; used to track
100 * sharing.
101 * @virq: The underlying VMD Linux interrupt number
102 */
103struct vmd_irq_list {
104 struct list_head irq_list;
105 struct srcu_struct srcu;
106 unsigned int count;
107 unsigned int virq;
108};
109
110struct vmd_dev {
111 struct pci_dev *dev;
112
113 spinlock_t cfg_lock;
114 void __iomem *cfgbar;
115
116 int msix_count;
117 struct vmd_irq_list *irqs;
118
119 struct pci_sysdata sysdata;
120 struct resource resources[3];
121 struct irq_domain *irq_domain;
122 struct pci_bus *bus;
123 u8 busn_start;
124 u8 first_vec;
125 char *name;
126 int instance;
127};
128
129static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
130{
131 return container_of(bus->sysdata, struct vmd_dev, sysdata);
132}
133
134static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
135 struct vmd_irq_list *irqs)
136{
137 return irqs - vmd->irqs;
138}
139
140/*
141 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
142 * but the MSI entry for the hardware it's driving will be programmed with a
143 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
144 * domain into one of its own, and the VMD driver de-muxes these for the
145 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
146 * and irq_chip to set this up.
147 */
148static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
149{
150 struct vmd_irq *vmdirq = data->chip_data;
151 struct vmd_irq_list *irq = vmdirq->irq;
152 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
153
154 memset(msg, 0, sizeof(*msg));
155 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
156 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
157 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
158}
159
160/*
161 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
162 */
163static void vmd_irq_enable(struct irq_data *data)
164{
165 struct vmd_irq *vmdirq = data->chip_data;
166 unsigned long flags;
167
168 raw_spin_lock_irqsave(&list_lock, flags);
169 WARN_ON(vmdirq->enabled);
170 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
171 vmdirq->enabled = true;
172 raw_spin_unlock_irqrestore(&list_lock, flags);
173
174 data->chip->irq_unmask(data);
175}
176
177static void vmd_irq_disable(struct irq_data *data)
178{
179 struct vmd_irq *vmdirq = data->chip_data;
180 unsigned long flags;
181
182 data->chip->irq_mask(data);
183
184 raw_spin_lock_irqsave(&list_lock, flags);
185 if (vmdirq->enabled) {
186 list_del_rcu(&vmdirq->node);
187 vmdirq->enabled = false;
188 }
189 raw_spin_unlock_irqrestore(&list_lock, flags);
190}
191
192/*
193 * XXX: Stubbed until we develop acceptable way to not create conflicts with
194 * other devices sharing the same vector.
195 */
196static int vmd_irq_set_affinity(struct irq_data *data,
197 const struct cpumask *dest, bool force)
198{
199 return -EINVAL;
200}
201
202static struct irq_chip vmd_msi_controller = {
203 .name = "VMD-MSI",
204 .irq_enable = vmd_irq_enable,
205 .irq_disable = vmd_irq_disable,
206 .irq_compose_msi_msg = vmd_compose_msi_msg,
207 .irq_set_affinity = vmd_irq_set_affinity,
208};
209
210static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
211 msi_alloc_info_t *arg)
212{
213 return 0;
214}
215
216/*
217 * XXX: We can be even smarter selecting the best IRQ once we solve the
218 * affinity problem.
219 */
220static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
221{
222 unsigned long flags;
223 int i, best;
224
225 if (vmd->msix_count == 1 + vmd->first_vec)
226 return &vmd->irqs[vmd->first_vec];
227
228 /*
229 * White list for fast-interrupt handlers. All others will share the
230 * "slow" interrupt vector.
231 */
232 switch (msi_desc_to_pci_dev(desc)->class) {
233 case PCI_CLASS_STORAGE_EXPRESS:
234 break;
235 default:
236 return &vmd->irqs[vmd->first_vec];
237 }
238
239 raw_spin_lock_irqsave(&list_lock, flags);
240 best = vmd->first_vec + 1;
241 for (i = best; i < vmd->msix_count; i++)
242 if (vmd->irqs[i].count < vmd->irqs[best].count)
243 best = i;
244 vmd->irqs[best].count++;
245 raw_spin_unlock_irqrestore(&list_lock, flags);
246
247 return &vmd->irqs[best];
248}
249
250static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
251 unsigned int virq, irq_hw_number_t hwirq,
252 msi_alloc_info_t *arg)
253{
254 struct msi_desc *desc = arg->desc;
255 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
256 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
257
258 if (!vmdirq)
259 return -ENOMEM;
260
261 INIT_LIST_HEAD(&vmdirq->node);
262 vmdirq->irq = vmd_next_irq(vmd, desc);
263 vmdirq->virq = virq;
264
265 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
266 handle_untracked_irq, vmd, NULL);
267 return 0;
268}
269
270static void vmd_msi_free(struct irq_domain *domain,
271 struct msi_domain_info *info, unsigned int virq)
272{
273 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
274 unsigned long flags;
275
276 synchronize_srcu(&vmdirq->irq->srcu);
277
278 /* XXX: Potential optimization to rebalance */
279 raw_spin_lock_irqsave(&list_lock, flags);
280 vmdirq->irq->count--;
281 raw_spin_unlock_irqrestore(&list_lock, flags);
282
283 kfree(vmdirq);
284}
285
286static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
287 int nvec, msi_alloc_info_t *arg)
288{
289 struct pci_dev *pdev = to_pci_dev(dev);
290 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
291
292 if (nvec > vmd->msix_count)
293 return vmd->msix_count;
294
295 memset(arg, 0, sizeof(*arg));
296 return 0;
297}
298
299static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
300{
301 arg->desc = desc;
302}
303
304static struct msi_domain_ops vmd_msi_domain_ops = {
305 .get_hwirq = vmd_get_hwirq,
306 .msi_init = vmd_msi_init,
307 .msi_free = vmd_msi_free,
308 .msi_prepare = vmd_msi_prepare,
309 .set_desc = vmd_set_desc,
310};
311
312static struct msi_domain_info vmd_msi_domain_info = {
313 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
314 MSI_FLAG_PCI_MSIX,
315 .ops = &vmd_msi_domain_ops,
316 .chip = &vmd_msi_controller,
317};
318
319static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
320{
321 u16 reg;
322
323 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
324 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
325 (reg | VMCONFIG_MSI_REMAP);
326 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
327}
328
329static int vmd_create_irq_domain(struct vmd_dev *vmd)
330{
331 struct fwnode_handle *fn;
332
333 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
334 if (!fn)
335 return -ENODEV;
336
337 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
338 if (!vmd->irq_domain) {
339 irq_domain_free_fwnode(fn);
340 return -ENODEV;
341 }
342
343 return 0;
344}
345
346static void vmd_remove_irq_domain(struct vmd_dev *vmd)
347{
348 /*
349 * Some production BIOS won't enable remapping between soft reboots.
350 * Ensure remapping is restored before unloading the driver.
351 */
352 if (!vmd->msix_count)
353 vmd_set_msi_remapping(vmd, true);
354
355 if (vmd->irq_domain) {
356 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
357
358 irq_domain_remove(vmd->irq_domain);
359 irq_domain_free_fwnode(fn);
360 }
361}
362
363static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
364 unsigned int devfn, int reg, int len)
365{
366 unsigned int busnr_ecam = bus->number - vmd->busn_start;
367 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
368
369 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
370 return NULL;
371
372 return vmd->cfgbar + offset;
373}
374
375/*
376 * CPU may deadlock if config space is not serialized on some versions of this
377 * hardware, so all config space access is done under a spinlock.
378 */
379static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
380 int len, u32 *value)
381{
382 struct vmd_dev *vmd = vmd_from_bus(bus);
383 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
384 unsigned long flags;
385 int ret = 0;
386
387 if (!addr)
388 return -EFAULT;
389
390 spin_lock_irqsave(&vmd->cfg_lock, flags);
391 switch (len) {
392 case 1:
393 *value = readb(addr);
394 break;
395 case 2:
396 *value = readw(addr);
397 break;
398 case 4:
399 *value = readl(addr);
400 break;
401 default:
402 ret = -EINVAL;
403 break;
404 }
405 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
406 return ret;
407}
408
409/*
410 * VMD h/w converts non-posted config writes to posted memory writes. The
411 * read-back in this function forces the completion so it returns only after
412 * the config space was written, as expected.
413 */
414static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
415 int len, u32 value)
416{
417 struct vmd_dev *vmd = vmd_from_bus(bus);
418 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
419 unsigned long flags;
420 int ret = 0;
421
422 if (!addr)
423 return -EFAULT;
424
425 spin_lock_irqsave(&vmd->cfg_lock, flags);
426 switch (len) {
427 case 1:
428 writeb(value, addr);
429 readb(addr);
430 break;
431 case 2:
432 writew(value, addr);
433 readw(addr);
434 break;
435 case 4:
436 writel(value, addr);
437 readl(addr);
438 break;
439 default:
440 ret = -EINVAL;
441 break;
442 }
443 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
444 return ret;
445}
446
447static struct pci_ops vmd_ops = {
448 .read = vmd_pci_read,
449 .write = vmd_pci_write,
450};
451
452#ifdef CONFIG_ACPI
453static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
454{
455 struct pci_host_bridge *bridge;
456 u32 busnr, addr;
457
458 if (pci_dev->bus->ops != &vmd_ops)
459 return NULL;
460
461 bridge = pci_find_host_bridge(pci_dev->bus);
462 busnr = pci_dev->bus->number - bridge->bus->number;
463 /*
464 * The address computation below is only applicable to relative bus
465 * numbers below 32.
466 */
467 if (busnr > 31)
468 return NULL;
469
470 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
471
472 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
473 addr);
474
475 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
476 false);
477}
478
479static bool hook_installed;
480
481static void vmd_acpi_begin(void)
482{
483 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
484 return;
485
486 hook_installed = true;
487}
488
489static void vmd_acpi_end(void)
490{
491 if (!hook_installed)
492 return;
493
494 pci_acpi_clear_companion_lookup_hook();
495 hook_installed = false;
496}
497#else
498static inline void vmd_acpi_begin(void) { }
499static inline void vmd_acpi_end(void) { }
500#endif /* CONFIG_ACPI */
501
502static void vmd_domain_reset(struct vmd_dev *vmd)
503{
504 u16 bus, max_buses = resource_size(&vmd->resources[0]);
505 u8 dev, functions, fn, hdr_type;
506 char __iomem *base;
507
508 for (bus = 0; bus < max_buses; bus++) {
509 for (dev = 0; dev < 32; dev++) {
510 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
511 PCI_DEVFN(dev, 0), 0);
512
513 hdr_type = readb(base + PCI_HEADER_TYPE) &
514 PCI_HEADER_TYPE_MASK;
515
516 functions = (hdr_type & 0x80) ? 8 : 1;
517 for (fn = 0; fn < functions; fn++) {
518 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
519 PCI_DEVFN(dev, fn), 0);
520
521 hdr_type = readb(base + PCI_HEADER_TYPE) &
522 PCI_HEADER_TYPE_MASK;
523
524 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
525 (readw(base + PCI_CLASS_DEVICE) !=
526 PCI_CLASS_BRIDGE_PCI))
527 continue;
528
529 memset_io(base + PCI_IO_BASE, 0,
530 PCI_ROM_ADDRESS1 - PCI_IO_BASE);
531 }
532 }
533 }
534}
535
536static void vmd_attach_resources(struct vmd_dev *vmd)
537{
538 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
539 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
540}
541
542static void vmd_detach_resources(struct vmd_dev *vmd)
543{
544 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
545 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
546}
547
548/*
549 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
550 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
551 * 16 bits are the PCI Segment Group (domain) number. Other bits are
552 * currently reserved.
553 */
554static int vmd_find_free_domain(void)
555{
556 int domain = 0xffff;
557 struct pci_bus *bus = NULL;
558
559 while ((bus = pci_find_next_bus(bus)) != NULL)
560 domain = max_t(int, domain, pci_domain_nr(bus));
561 return domain + 1;
562}
563
564static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
565 resource_size_t *offset1,
566 resource_size_t *offset2)
567{
568 struct pci_dev *dev = vmd->dev;
569 u64 phys1, phys2;
570
571 if (native_hint) {
572 u32 vmlock;
573 int ret;
574
575 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
576 if (ret || PCI_POSSIBLE_ERROR(vmlock))
577 return -ENODEV;
578
579 if (MB2_SHADOW_EN(vmlock)) {
580 void __iomem *membar2;
581
582 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
583 if (!membar2)
584 return -ENOMEM;
585 phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
586 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
587 pci_iounmap(dev, membar2);
588 } else
589 return 0;
590 } else {
591 /* Hypervisor-Emulated Vendor-Specific Capability */
592 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
593 u32 reg, regu;
594
595 pci_read_config_dword(dev, pos + 4, ®);
596
597 /* "SHDW" */
598 if (pos && reg == 0x53484457) {
599 pci_read_config_dword(dev, pos + 8, ®);
600 pci_read_config_dword(dev, pos + 12, ®u);
601 phys1 = (u64) regu << 32 | reg;
602
603 pci_read_config_dword(dev, pos + 16, ®);
604 pci_read_config_dword(dev, pos + 20, ®u);
605 phys2 = (u64) regu << 32 | reg;
606 } else
607 return 0;
608 }
609
610 *offset1 = dev->resource[VMD_MEMBAR1].start -
611 (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
612 *offset2 = dev->resource[VMD_MEMBAR2].start -
613 (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
614
615 return 0;
616}
617
618static int vmd_get_bus_number_start(struct vmd_dev *vmd)
619{
620 struct pci_dev *dev = vmd->dev;
621 u16 reg;
622
623 pci_read_config_word(dev, PCI_REG_VMCAP, ®);
624 if (BUS_RESTRICT_CAP(reg)) {
625 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
626
627 switch (BUS_RESTRICT_CFG(reg)) {
628 case 0:
629 vmd->busn_start = 0;
630 break;
631 case 1:
632 vmd->busn_start = 128;
633 break;
634 case 2:
635 vmd->busn_start = 224;
636 break;
637 default:
638 pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
639 BUS_RESTRICT_CFG(reg));
640 return -ENODEV;
641 }
642 }
643
644 return 0;
645}
646
647static irqreturn_t vmd_irq(int irq, void *data)
648{
649 struct vmd_irq_list *irqs = data;
650 struct vmd_irq *vmdirq;
651 int idx;
652
653 idx = srcu_read_lock(&irqs->srcu);
654 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
655 generic_handle_irq(vmdirq->virq);
656 srcu_read_unlock(&irqs->srcu, idx);
657
658 return IRQ_HANDLED;
659}
660
661static int vmd_alloc_irqs(struct vmd_dev *vmd)
662{
663 struct pci_dev *dev = vmd->dev;
664 int i, err;
665
666 vmd->msix_count = pci_msix_vec_count(dev);
667 if (vmd->msix_count < 0)
668 return -ENODEV;
669
670 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
671 vmd->msix_count, PCI_IRQ_MSIX);
672 if (vmd->msix_count < 0)
673 return vmd->msix_count;
674
675 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
676 GFP_KERNEL);
677 if (!vmd->irqs)
678 return -ENOMEM;
679
680 for (i = 0; i < vmd->msix_count; i++) {
681 err = init_srcu_struct(&vmd->irqs[i].srcu);
682 if (err)
683 return err;
684
685 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
686 vmd->irqs[i].virq = pci_irq_vector(dev, i);
687 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
688 vmd_irq, IRQF_NO_THREAD,
689 vmd->name, &vmd->irqs[i]);
690 if (err)
691 return err;
692 }
693
694 return 0;
695}
696
697/*
698 * Since VMD is an aperture to regular PCIe root ports, only allow it to
699 * control features that the OS is allowed to control on the physical PCI bus.
700 */
701static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
702 struct pci_host_bridge *vmd_bridge)
703{
704 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
705 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
706 vmd_bridge->native_aer = root_bridge->native_aer;
707 vmd_bridge->native_pme = root_bridge->native_pme;
708 vmd_bridge->native_ltr = root_bridge->native_ltr;
709 vmd_bridge->native_dpc = root_bridge->native_dpc;
710}
711
712static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
713{
714 struct pci_sysdata *sd = &vmd->sysdata;
715 struct resource *res;
716 u32 upper_bits;
717 unsigned long flags;
718 LIST_HEAD(resources);
719 resource_size_t offset[2] = {0};
720 resource_size_t membar2_offset = 0x2000;
721 struct pci_bus *child;
722 struct pci_dev *dev;
723 int ret;
724
725 /*
726 * Shadow registers may exist in certain VMD device ids which allow
727 * guests to correctly assign host physical addresses to the root ports
728 * and child devices. These registers will either return the host value
729 * or 0, depending on an enable bit in the VMD device.
730 */
731 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
732 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
733 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
734 if (ret)
735 return ret;
736 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
737 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
738 if (ret)
739 return ret;
740 }
741
742 /*
743 * Certain VMD devices may have a root port configuration option which
744 * limits the bus range to between 0-127, 128-255, or 224-255
745 */
746 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
747 ret = vmd_get_bus_number_start(vmd);
748 if (ret)
749 return ret;
750 }
751
752 res = &vmd->dev->resource[VMD_CFGBAR];
753 vmd->resources[0] = (struct resource) {
754 .name = "VMD CFGBAR",
755 .start = vmd->busn_start,
756 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
757 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
758 };
759
760 /*
761 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
762 * put 32-bit resources in the window.
763 *
764 * There's no hardware reason why a 64-bit window *couldn't*
765 * contain a 32-bit resource, but pbus_size_mem() computes the
766 * bridge window size assuming a 64-bit window will contain no
767 * 32-bit resources. __pci_assign_resource() enforces that
768 * artificial restriction to make sure everything will fit.
769 *
770 * The only way we could use a 64-bit non-prefetchable MEMBAR is
771 * if its address is <4GB so that we can convert it to a 32-bit
772 * resource. To be visible to the host OS, all VMD endpoints must
773 * be initially configured by platform BIOS, which includes setting
774 * up these resources. We can assume the device is configured
775 * according to the platform needs.
776 */
777 res = &vmd->dev->resource[VMD_MEMBAR1];
778 upper_bits = upper_32_bits(res->end);
779 flags = res->flags & ~IORESOURCE_SIZEALIGN;
780 if (!upper_bits)
781 flags &= ~IORESOURCE_MEM_64;
782 vmd->resources[1] = (struct resource) {
783 .name = "VMD MEMBAR1",
784 .start = res->start,
785 .end = res->end,
786 .flags = flags,
787 .parent = res,
788 };
789
790 res = &vmd->dev->resource[VMD_MEMBAR2];
791 upper_bits = upper_32_bits(res->end);
792 flags = res->flags & ~IORESOURCE_SIZEALIGN;
793 if (!upper_bits)
794 flags &= ~IORESOURCE_MEM_64;
795 vmd->resources[2] = (struct resource) {
796 .name = "VMD MEMBAR2",
797 .start = res->start + membar2_offset,
798 .end = res->end,
799 .flags = flags,
800 .parent = res,
801 };
802
803 sd->vmd_dev = vmd->dev;
804 sd->domain = vmd_find_free_domain();
805 if (sd->domain < 0)
806 return sd->domain;
807
808 sd->node = pcibus_to_node(vmd->dev->bus);
809
810 /*
811 * Currently MSI remapping must be enabled in guest passthrough mode
812 * due to some missing interrupt remapping plumbing. This is probably
813 * acceptable because the guest is usually CPU-limited and MSI
814 * remapping doesn't become a performance bottleneck.
815 */
816 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
817 offset[0] || offset[1]) {
818 ret = vmd_alloc_irqs(vmd);
819 if (ret)
820 return ret;
821
822 vmd_set_msi_remapping(vmd, true);
823
824 ret = vmd_create_irq_domain(vmd);
825 if (ret)
826 return ret;
827
828 /*
829 * Override the IRQ domain bus token so the domain can be
830 * distinguished from a regular PCI/MSI domain.
831 */
832 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
833 } else {
834 vmd_set_msi_remapping(vmd, false);
835 }
836
837 pci_add_resource(&resources, &vmd->resources[0]);
838 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
839 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
840
841 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
842 &vmd_ops, sd, &resources);
843 if (!vmd->bus) {
844 pci_free_resource_list(&resources);
845 vmd_remove_irq_domain(vmd);
846 return -ENODEV;
847 }
848
849 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
850 to_pci_host_bridge(vmd->bus->bridge));
851
852 vmd_attach_resources(vmd);
853 if (vmd->irq_domain)
854 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
855 else
856 dev_set_msi_domain(&vmd->bus->dev,
857 dev_get_msi_domain(&vmd->dev->dev));
858
859 vmd_acpi_begin();
860
861 pci_scan_child_bus(vmd->bus);
862 vmd_domain_reset(vmd);
863
864 /* When Intel VMD is enabled, the OS does not discover the Root Ports
865 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
866 * a reset to the parent of the PCI device supplied as argument. This
867 * is why we pass a child device, so the reset can be triggered at
868 * the Intel bridge level and propagated to all the children in the
869 * hierarchy.
870 */
871 list_for_each_entry(child, &vmd->bus->children, node) {
872 if (!list_empty(&child->devices)) {
873 dev = list_first_entry(&child->devices,
874 struct pci_dev, bus_list);
875 if (pci_reset_bus(dev))
876 pci_warn(dev, "can't reset device: %d\n", ret);
877
878 break;
879 }
880 }
881
882 pci_assign_unassigned_bus_resources(vmd->bus);
883
884 /*
885 * VMD root buses are virtual and don't return true on pci_is_pcie()
886 * and will fail pcie_bus_configure_settings() early. It can instead be
887 * run on each of the real root ports.
888 */
889 list_for_each_entry(child, &vmd->bus->children, node)
890 pcie_bus_configure_settings(child);
891
892 pci_bus_add_devices(vmd->bus);
893
894 vmd_acpi_end();
895
896 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
897 "domain"), "Can't create symlink to domain\n");
898 return 0;
899}
900
901static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
902{
903 unsigned long features = (unsigned long) id->driver_data;
904 struct vmd_dev *vmd;
905 int err;
906
907 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
908 return -ENOMEM;
909
910 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
911 if (!vmd)
912 return -ENOMEM;
913
914 vmd->dev = dev;
915 vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
916 if (vmd->instance < 0)
917 return vmd->instance;
918
919 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
920 vmd->instance);
921 if (!vmd->name) {
922 err = -ENOMEM;
923 goto out_release_instance;
924 }
925
926 err = pcim_enable_device(dev);
927 if (err < 0)
928 goto out_release_instance;
929
930 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
931 if (!vmd->cfgbar) {
932 err = -ENOMEM;
933 goto out_release_instance;
934 }
935
936 pci_set_master(dev);
937 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
938 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
939 err = -ENODEV;
940 goto out_release_instance;
941 }
942
943 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
944 vmd->first_vec = 1;
945
946 spin_lock_init(&vmd->cfg_lock);
947 pci_set_drvdata(dev, vmd);
948 err = vmd_enable_domain(vmd, features);
949 if (err)
950 goto out_release_instance;
951
952 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
953 vmd->sysdata.domain);
954 return 0;
955
956 out_release_instance:
957 ida_simple_remove(&vmd_instance_ida, vmd->instance);
958 return err;
959}
960
961static void vmd_cleanup_srcu(struct vmd_dev *vmd)
962{
963 int i;
964
965 for (i = 0; i < vmd->msix_count; i++)
966 cleanup_srcu_struct(&vmd->irqs[i].srcu);
967}
968
969static void vmd_remove(struct pci_dev *dev)
970{
971 struct vmd_dev *vmd = pci_get_drvdata(dev);
972
973 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
974 pci_stop_root_bus(vmd->bus);
975 pci_remove_root_bus(vmd->bus);
976 vmd_cleanup_srcu(vmd);
977 vmd_detach_resources(vmd);
978 vmd_remove_irq_domain(vmd);
979 ida_simple_remove(&vmd_instance_ida, vmd->instance);
980}
981
982#ifdef CONFIG_PM_SLEEP
983static int vmd_suspend(struct device *dev)
984{
985 struct pci_dev *pdev = to_pci_dev(dev);
986 struct vmd_dev *vmd = pci_get_drvdata(pdev);
987 int i;
988
989 for (i = 0; i < vmd->msix_count; i++)
990 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
991
992 return 0;
993}
994
995static int vmd_resume(struct device *dev)
996{
997 struct pci_dev *pdev = to_pci_dev(dev);
998 struct vmd_dev *vmd = pci_get_drvdata(pdev);
999 int err, i;
1000
1001 if (vmd->irq_domain)
1002 vmd_set_msi_remapping(vmd, true);
1003 else
1004 vmd_set_msi_remapping(vmd, false);
1005
1006 for (i = 0; i < vmd->msix_count; i++) {
1007 err = devm_request_irq(dev, vmd->irqs[i].virq,
1008 vmd_irq, IRQF_NO_THREAD,
1009 vmd->name, &vmd->irqs[i]);
1010 if (err)
1011 return err;
1012 }
1013
1014 return 0;
1015}
1016#endif
1017static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1018
1019static const struct pci_device_id vmd_ids[] = {
1020 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1021 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1022 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1023 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1024 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1025 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1026 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
1027 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1028 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1029 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1030 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
1031 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1032 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1033 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1034 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa77f),
1035 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1036 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1037 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1038 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x7d0b),
1039 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1040 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1041 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1042 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xad0b),
1043 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1044 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1045 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1046 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1047 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1048 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1049 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1050 {0,}
1051};
1052MODULE_DEVICE_TABLE(pci, vmd_ids);
1053
1054static struct pci_driver vmd_drv = {
1055 .name = "vmd",
1056 .id_table = vmd_ids,
1057 .probe = vmd_probe,
1058 .remove = vmd_remove,
1059 .driver = {
1060 .pm = &vmd_dev_pm_ops,
1061 },
1062};
1063module_pci_driver(vmd_drv);
1064
1065MODULE_AUTHOR("Intel Corporation");
1066MODULE_LICENSE("GPL v2");
1067MODULE_VERSION("0.6");