Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7#include <linux/device.h>
8#include <linux/interrupt.h>
9#include <linux/irq.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/msi.h>
13#include <linux/pci.h>
14#include <linux/pci-acpi.h>
15#include <linux/pci-ecam.h>
16#include <linux/srcu.h>
17#include <linux/rculist.h>
18#include <linux/rcupdate.h>
19
20#include <asm/irqdomain.h>
21
22#define VMD_CFGBAR 0
23#define VMD_MEMBAR1 2
24#define VMD_MEMBAR2 4
25
26#define PCI_REG_VMCAP 0x40
27#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
28#define PCI_REG_VMCONFIG 0x44
29#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
30#define VMCONFIG_MSI_REMAP 0x2
31#define PCI_REG_VMLOCK 0x70
32#define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
33
34#define MB2_SHADOW_OFFSET 0x2000
35#define MB2_SHADOW_SIZE 16
36
37enum vmd_features {
38 /*
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
42 */
43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
44
45 /*
46 * Device may provide root port configuration information which limits
47 * bus numbering
48 */
49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
50
51 /*
52 * Device contains physical location shadow registers in
53 * vendor-specific capability space
54 */
55 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
56
57 /*
58 * Device may use MSI-X vector 0 for software triggering and will not
59 * be used for MSI remapping
60 */
61 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
62
63 /*
64 * Device can bypass remapping MSI-X transactions into its MSI-X table,
65 * avoiding the requirement of a VMD MSI domain for child device
66 * interrupt handling.
67 */
68 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
69
70 /*
71 * Enable ASPM on the PCIE root ports and set the default LTR of the
72 * storage devices on platforms where these values are not configured by
73 * BIOS. This is needed for laptops, which require these settings for
74 * proper power management of the SoC.
75 */
76 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5),
77};
78
79#define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */
80
81#define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \
82 VMD_FEAT_HAS_BUS_RESTRICTIONS | \
83 VMD_FEAT_OFFSET_FIRST_VECTOR | \
84 VMD_FEAT_BIOS_PM_QUIRK)
85
86static DEFINE_IDA(vmd_instance_ida);
87
88/*
89 * Lock for manipulating VMD IRQ lists.
90 */
91static DEFINE_RAW_SPINLOCK(list_lock);
92
93/**
94 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
95 * @node: list item for parent traversal.
96 * @irq: back pointer to parent.
97 * @enabled: true if driver enabled IRQ
98 * @virq: the virtual IRQ value provided to the requesting driver.
99 *
100 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
101 * a VMD IRQ using this structure.
102 */
103struct vmd_irq {
104 struct list_head node;
105 struct vmd_irq_list *irq;
106 bool enabled;
107 unsigned int virq;
108};
109
110/**
111 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
112 * @irq_list: the list of irq's the VMD one demuxes to.
113 * @srcu: SRCU struct for local synchronization.
114 * @count: number of child IRQs assigned to this vector; used to track
115 * sharing.
116 * @virq: The underlying VMD Linux interrupt number
117 */
118struct vmd_irq_list {
119 struct list_head irq_list;
120 struct srcu_struct srcu;
121 unsigned int count;
122 unsigned int virq;
123};
124
125struct vmd_dev {
126 struct pci_dev *dev;
127
128 spinlock_t cfg_lock;
129 void __iomem *cfgbar;
130
131 int msix_count;
132 struct vmd_irq_list *irqs;
133
134 struct pci_sysdata sysdata;
135 struct resource resources[3];
136 struct irq_domain *irq_domain;
137 struct pci_bus *bus;
138 u8 busn_start;
139 u8 first_vec;
140 char *name;
141 int instance;
142};
143
144static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
145{
146 return container_of(bus->sysdata, struct vmd_dev, sysdata);
147}
148
149static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
150 struct vmd_irq_list *irqs)
151{
152 return irqs - vmd->irqs;
153}
154
155/*
156 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
157 * but the MSI entry for the hardware it's driving will be programmed with a
158 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
159 * domain into one of its own, and the VMD driver de-muxes these for the
160 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
161 * and irq_chip to set this up.
162 */
163static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
164{
165 struct vmd_irq *vmdirq = data->chip_data;
166 struct vmd_irq_list *irq = vmdirq->irq;
167 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
168
169 memset(msg, 0, sizeof(*msg));
170 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
171 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
172 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
173}
174
175/*
176 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
177 */
178static void vmd_irq_enable(struct irq_data *data)
179{
180 struct vmd_irq *vmdirq = data->chip_data;
181 unsigned long flags;
182
183 raw_spin_lock_irqsave(&list_lock, flags);
184 WARN_ON(vmdirq->enabled);
185 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
186 vmdirq->enabled = true;
187 raw_spin_unlock_irqrestore(&list_lock, flags);
188
189 data->chip->irq_unmask(data);
190}
191
192static void vmd_irq_disable(struct irq_data *data)
193{
194 struct vmd_irq *vmdirq = data->chip_data;
195 unsigned long flags;
196
197 data->chip->irq_mask(data);
198
199 raw_spin_lock_irqsave(&list_lock, flags);
200 if (vmdirq->enabled) {
201 list_del_rcu(&vmdirq->node);
202 vmdirq->enabled = false;
203 }
204 raw_spin_unlock_irqrestore(&list_lock, flags);
205}
206
207static struct irq_chip vmd_msi_controller = {
208 .name = "VMD-MSI",
209 .irq_enable = vmd_irq_enable,
210 .irq_disable = vmd_irq_disable,
211 .irq_compose_msi_msg = vmd_compose_msi_msg,
212};
213
214static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
215 msi_alloc_info_t *arg)
216{
217 return 0;
218}
219
220/*
221 * XXX: We can be even smarter selecting the best IRQ once we solve the
222 * affinity problem.
223 */
224static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
225{
226 unsigned long flags;
227 int i, best;
228
229 if (vmd->msix_count == 1 + vmd->first_vec)
230 return &vmd->irqs[vmd->first_vec];
231
232 /*
233 * White list for fast-interrupt handlers. All others will share the
234 * "slow" interrupt vector.
235 */
236 switch (msi_desc_to_pci_dev(desc)->class) {
237 case PCI_CLASS_STORAGE_EXPRESS:
238 break;
239 default:
240 return &vmd->irqs[vmd->first_vec];
241 }
242
243 raw_spin_lock_irqsave(&list_lock, flags);
244 best = vmd->first_vec + 1;
245 for (i = best; i < vmd->msix_count; i++)
246 if (vmd->irqs[i].count < vmd->irqs[best].count)
247 best = i;
248 vmd->irqs[best].count++;
249 raw_spin_unlock_irqrestore(&list_lock, flags);
250
251 return &vmd->irqs[best];
252}
253
254static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
255 unsigned int virq, irq_hw_number_t hwirq,
256 msi_alloc_info_t *arg)
257{
258 struct msi_desc *desc = arg->desc;
259 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
260 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
261
262 if (!vmdirq)
263 return -ENOMEM;
264
265 INIT_LIST_HEAD(&vmdirq->node);
266 vmdirq->irq = vmd_next_irq(vmd, desc);
267 vmdirq->virq = virq;
268
269 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
270 handle_untracked_irq, vmd, NULL);
271 return 0;
272}
273
274static void vmd_msi_free(struct irq_domain *domain,
275 struct msi_domain_info *info, unsigned int virq)
276{
277 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
278 unsigned long flags;
279
280 synchronize_srcu(&vmdirq->irq->srcu);
281
282 /* XXX: Potential optimization to rebalance */
283 raw_spin_lock_irqsave(&list_lock, flags);
284 vmdirq->irq->count--;
285 raw_spin_unlock_irqrestore(&list_lock, flags);
286
287 kfree(vmdirq);
288}
289
290static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
291 int nvec, msi_alloc_info_t *arg)
292{
293 struct pci_dev *pdev = to_pci_dev(dev);
294 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
295
296 if (nvec > vmd->msix_count)
297 return vmd->msix_count;
298
299 memset(arg, 0, sizeof(*arg));
300 return 0;
301}
302
303static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
304{
305 arg->desc = desc;
306}
307
308static struct msi_domain_ops vmd_msi_domain_ops = {
309 .get_hwirq = vmd_get_hwirq,
310 .msi_init = vmd_msi_init,
311 .msi_free = vmd_msi_free,
312 .msi_prepare = vmd_msi_prepare,
313 .set_desc = vmd_set_desc,
314};
315
316static struct msi_domain_info vmd_msi_domain_info = {
317 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
318 MSI_FLAG_NO_AFFINITY | MSI_FLAG_PCI_MSIX,
319 .ops = &vmd_msi_domain_ops,
320 .chip = &vmd_msi_controller,
321};
322
323static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
324{
325 u16 reg;
326
327 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
328 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
329 (reg | VMCONFIG_MSI_REMAP);
330 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
331}
332
333static int vmd_create_irq_domain(struct vmd_dev *vmd)
334{
335 struct fwnode_handle *fn;
336
337 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
338 if (!fn)
339 return -ENODEV;
340
341 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
342 if (!vmd->irq_domain) {
343 irq_domain_free_fwnode(fn);
344 return -ENODEV;
345 }
346
347 return 0;
348}
349
350static void vmd_remove_irq_domain(struct vmd_dev *vmd)
351{
352 /*
353 * Some production BIOS won't enable remapping between soft reboots.
354 * Ensure remapping is restored before unloading the driver.
355 */
356 if (!vmd->msix_count)
357 vmd_set_msi_remapping(vmd, true);
358
359 if (vmd->irq_domain) {
360 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
361
362 irq_domain_remove(vmd->irq_domain);
363 irq_domain_free_fwnode(fn);
364 }
365}
366
367static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
368 unsigned int devfn, int reg, int len)
369{
370 unsigned int busnr_ecam = bus->number - vmd->busn_start;
371 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
372
373 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
374 return NULL;
375
376 return vmd->cfgbar + offset;
377}
378
379/*
380 * CPU may deadlock if config space is not serialized on some versions of this
381 * hardware, so all config space access is done under a spinlock.
382 */
383static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
384 int len, u32 *value)
385{
386 struct vmd_dev *vmd = vmd_from_bus(bus);
387 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
388 unsigned long flags;
389 int ret = 0;
390
391 if (!addr)
392 return -EFAULT;
393
394 spin_lock_irqsave(&vmd->cfg_lock, flags);
395 switch (len) {
396 case 1:
397 *value = readb(addr);
398 break;
399 case 2:
400 *value = readw(addr);
401 break;
402 case 4:
403 *value = readl(addr);
404 break;
405 default:
406 ret = -EINVAL;
407 break;
408 }
409 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
410 return ret;
411}
412
413/*
414 * VMD h/w converts non-posted config writes to posted memory writes. The
415 * read-back in this function forces the completion so it returns only after
416 * the config space was written, as expected.
417 */
418static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
419 int len, u32 value)
420{
421 struct vmd_dev *vmd = vmd_from_bus(bus);
422 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
423 unsigned long flags;
424 int ret = 0;
425
426 if (!addr)
427 return -EFAULT;
428
429 spin_lock_irqsave(&vmd->cfg_lock, flags);
430 switch (len) {
431 case 1:
432 writeb(value, addr);
433 readb(addr);
434 break;
435 case 2:
436 writew(value, addr);
437 readw(addr);
438 break;
439 case 4:
440 writel(value, addr);
441 readl(addr);
442 break;
443 default:
444 ret = -EINVAL;
445 break;
446 }
447 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
448 return ret;
449}
450
451static struct pci_ops vmd_ops = {
452 .read = vmd_pci_read,
453 .write = vmd_pci_write,
454};
455
456#ifdef CONFIG_ACPI
457static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
458{
459 struct pci_host_bridge *bridge;
460 u32 busnr, addr;
461
462 if (pci_dev->bus->ops != &vmd_ops)
463 return NULL;
464
465 bridge = pci_find_host_bridge(pci_dev->bus);
466 busnr = pci_dev->bus->number - bridge->bus->number;
467 /*
468 * The address computation below is only applicable to relative bus
469 * numbers below 32.
470 */
471 if (busnr > 31)
472 return NULL;
473
474 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
475
476 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
477 addr);
478
479 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
480 false);
481}
482
483static bool hook_installed;
484
485static void vmd_acpi_begin(void)
486{
487 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
488 return;
489
490 hook_installed = true;
491}
492
493static void vmd_acpi_end(void)
494{
495 if (!hook_installed)
496 return;
497
498 pci_acpi_clear_companion_lookup_hook();
499 hook_installed = false;
500}
501#else
502static inline void vmd_acpi_begin(void) { }
503static inline void vmd_acpi_end(void) { }
504#endif /* CONFIG_ACPI */
505
506static void vmd_domain_reset(struct vmd_dev *vmd)
507{
508 u16 bus, max_buses = resource_size(&vmd->resources[0]);
509 u8 dev, functions, fn, hdr_type;
510 char __iomem *base;
511
512 for (bus = 0; bus < max_buses; bus++) {
513 for (dev = 0; dev < 32; dev++) {
514 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
515 PCI_DEVFN(dev, 0), 0);
516
517 hdr_type = readb(base + PCI_HEADER_TYPE);
518
519 functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
520 for (fn = 0; fn < functions; fn++) {
521 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
522 PCI_DEVFN(dev, fn), 0);
523
524 hdr_type = readb(base + PCI_HEADER_TYPE) &
525 PCI_HEADER_TYPE_MASK;
526
527 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
528 (readw(base + PCI_CLASS_DEVICE) !=
529 PCI_CLASS_BRIDGE_PCI))
530 continue;
531
532 /*
533 * Temporarily disable the I/O range before updating
534 * PCI_IO_BASE.
535 */
536 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
537 /* Update lower 16 bits of I/O base/limit */
538 writew(0x00f0, base + PCI_IO_BASE);
539 /* Update upper 16 bits of I/O base/limit */
540 writel(0, base + PCI_IO_BASE_UPPER16);
541
542 /* MMIO Base/Limit */
543 writel(0x0000fff0, base + PCI_MEMORY_BASE);
544
545 /* Prefetchable MMIO Base/Limit */
546 writel(0, base + PCI_PREF_LIMIT_UPPER32);
547 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
548 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
549 }
550 }
551 }
552}
553
554static void vmd_attach_resources(struct vmd_dev *vmd)
555{
556 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
557 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
558}
559
560static void vmd_detach_resources(struct vmd_dev *vmd)
561{
562 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
563 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
564}
565
566/*
567 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
568 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
569 * 16 bits are the PCI Segment Group (domain) number. Other bits are
570 * currently reserved.
571 */
572static int vmd_find_free_domain(void)
573{
574 int domain = 0xffff;
575 struct pci_bus *bus = NULL;
576
577 while ((bus = pci_find_next_bus(bus)) != NULL)
578 domain = max_t(int, domain, pci_domain_nr(bus));
579 return domain + 1;
580}
581
582static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
583 resource_size_t *offset1,
584 resource_size_t *offset2)
585{
586 struct pci_dev *dev = vmd->dev;
587 u64 phys1, phys2;
588
589 if (native_hint) {
590 u32 vmlock;
591 int ret;
592
593 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
594 if (ret || PCI_POSSIBLE_ERROR(vmlock))
595 return -ENODEV;
596
597 if (MB2_SHADOW_EN(vmlock)) {
598 void __iomem *membar2;
599
600 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
601 if (!membar2)
602 return -ENOMEM;
603 phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
604 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
605 pci_iounmap(dev, membar2);
606 } else
607 return 0;
608 } else {
609 /* Hypervisor-Emulated Vendor-Specific Capability */
610 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
611 u32 reg, regu;
612
613 pci_read_config_dword(dev, pos + 4, ®);
614
615 /* "SHDW" */
616 if (pos && reg == 0x53484457) {
617 pci_read_config_dword(dev, pos + 8, ®);
618 pci_read_config_dword(dev, pos + 12, ®u);
619 phys1 = (u64) regu << 32 | reg;
620
621 pci_read_config_dword(dev, pos + 16, ®);
622 pci_read_config_dword(dev, pos + 20, ®u);
623 phys2 = (u64) regu << 32 | reg;
624 } else
625 return 0;
626 }
627
628 *offset1 = dev->resource[VMD_MEMBAR1].start -
629 (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
630 *offset2 = dev->resource[VMD_MEMBAR2].start -
631 (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
632
633 return 0;
634}
635
636static int vmd_get_bus_number_start(struct vmd_dev *vmd)
637{
638 struct pci_dev *dev = vmd->dev;
639 u16 reg;
640
641 pci_read_config_word(dev, PCI_REG_VMCAP, ®);
642 if (BUS_RESTRICT_CAP(reg)) {
643 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
644
645 switch (BUS_RESTRICT_CFG(reg)) {
646 case 0:
647 vmd->busn_start = 0;
648 break;
649 case 1:
650 vmd->busn_start = 128;
651 break;
652 case 2:
653 vmd->busn_start = 224;
654 break;
655 default:
656 pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
657 BUS_RESTRICT_CFG(reg));
658 return -ENODEV;
659 }
660 }
661
662 return 0;
663}
664
665static irqreturn_t vmd_irq(int irq, void *data)
666{
667 struct vmd_irq_list *irqs = data;
668 struct vmd_irq *vmdirq;
669 int idx;
670
671 idx = srcu_read_lock(&irqs->srcu);
672 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
673 generic_handle_irq(vmdirq->virq);
674 srcu_read_unlock(&irqs->srcu, idx);
675
676 return IRQ_HANDLED;
677}
678
679static int vmd_alloc_irqs(struct vmd_dev *vmd)
680{
681 struct pci_dev *dev = vmd->dev;
682 int i, err;
683
684 vmd->msix_count = pci_msix_vec_count(dev);
685 if (vmd->msix_count < 0)
686 return -ENODEV;
687
688 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
689 vmd->msix_count, PCI_IRQ_MSIX);
690 if (vmd->msix_count < 0)
691 return vmd->msix_count;
692
693 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
694 GFP_KERNEL);
695 if (!vmd->irqs)
696 return -ENOMEM;
697
698 for (i = 0; i < vmd->msix_count; i++) {
699 err = init_srcu_struct(&vmd->irqs[i].srcu);
700 if (err)
701 return err;
702
703 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
704 vmd->irqs[i].virq = pci_irq_vector(dev, i);
705 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
706 vmd_irq, IRQF_NO_THREAD,
707 vmd->name, &vmd->irqs[i]);
708 if (err)
709 return err;
710 }
711
712 return 0;
713}
714
715/*
716 * Since VMD is an aperture to regular PCIe root ports, only allow it to
717 * control features that the OS is allowed to control on the physical PCI bus.
718 */
719static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
720 struct pci_host_bridge *vmd_bridge)
721{
722 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
723 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
724 vmd_bridge->native_aer = root_bridge->native_aer;
725 vmd_bridge->native_pme = root_bridge->native_pme;
726 vmd_bridge->native_ltr = root_bridge->native_ltr;
727 vmd_bridge->native_dpc = root_bridge->native_dpc;
728}
729
730/*
731 * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
732 */
733static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
734{
735 unsigned long features = *(unsigned long *)userdata;
736 u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
737 u32 ltr_reg;
738 int pos;
739
740 if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
741 return 0;
742
743 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
744 if (!pos)
745 goto out_state_change;
746
747 /*
748 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
749 * so the LTR quirk is not needed.
750 */
751 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg);
752 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
753 goto out_state_change;
754
755 /*
756 * Set the default values to the maximum required by the platform to
757 * allow the deepest power management savings. Write as a DWORD where
758 * the lower word is the max snoop latency and the upper word is the
759 * max non-snoop latency.
760 */
761 ltr_reg = (ltr << 16) | ltr;
762 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
763 pci_info(pdev, "VMD: Default LTR value set by driver\n");
764
765out_state_change:
766 /*
767 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
768 * PCIe r6.0, sec 5.5.4.
769 */
770 pci_set_power_state_locked(pdev, PCI_D0);
771 pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
772 return 0;
773}
774
775static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
776{
777 struct pci_sysdata *sd = &vmd->sysdata;
778 struct resource *res;
779 u32 upper_bits;
780 unsigned long flags;
781 LIST_HEAD(resources);
782 resource_size_t offset[2] = {0};
783 resource_size_t membar2_offset = 0x2000;
784 struct pci_bus *child;
785 struct pci_dev *dev;
786 int ret;
787
788 /*
789 * Shadow registers may exist in certain VMD device ids which allow
790 * guests to correctly assign host physical addresses to the root ports
791 * and child devices. These registers will either return the host value
792 * or 0, depending on an enable bit in the VMD device.
793 */
794 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
795 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
796 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
797 if (ret)
798 return ret;
799 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
800 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
801 if (ret)
802 return ret;
803 }
804
805 /*
806 * Certain VMD devices may have a root port configuration option which
807 * limits the bus range to between 0-127, 128-255, or 224-255
808 */
809 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
810 ret = vmd_get_bus_number_start(vmd);
811 if (ret)
812 return ret;
813 }
814
815 res = &vmd->dev->resource[VMD_CFGBAR];
816 vmd->resources[0] = (struct resource) {
817 .name = "VMD CFGBAR",
818 .start = vmd->busn_start,
819 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
820 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
821 };
822
823 /*
824 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
825 * put 32-bit resources in the window.
826 *
827 * There's no hardware reason why a 64-bit window *couldn't*
828 * contain a 32-bit resource, but pbus_size_mem() computes the
829 * bridge window size assuming a 64-bit window will contain no
830 * 32-bit resources. __pci_assign_resource() enforces that
831 * artificial restriction to make sure everything will fit.
832 *
833 * The only way we could use a 64-bit non-prefetchable MEMBAR is
834 * if its address is <4GB so that we can convert it to a 32-bit
835 * resource. To be visible to the host OS, all VMD endpoints must
836 * be initially configured by platform BIOS, which includes setting
837 * up these resources. We can assume the device is configured
838 * according to the platform needs.
839 */
840 res = &vmd->dev->resource[VMD_MEMBAR1];
841 upper_bits = upper_32_bits(res->end);
842 flags = res->flags & ~IORESOURCE_SIZEALIGN;
843 if (!upper_bits)
844 flags &= ~IORESOURCE_MEM_64;
845 vmd->resources[1] = (struct resource) {
846 .name = "VMD MEMBAR1",
847 .start = res->start,
848 .end = res->end,
849 .flags = flags,
850 .parent = res,
851 };
852
853 res = &vmd->dev->resource[VMD_MEMBAR2];
854 upper_bits = upper_32_bits(res->end);
855 flags = res->flags & ~IORESOURCE_SIZEALIGN;
856 if (!upper_bits)
857 flags &= ~IORESOURCE_MEM_64;
858 vmd->resources[2] = (struct resource) {
859 .name = "VMD MEMBAR2",
860 .start = res->start + membar2_offset,
861 .end = res->end,
862 .flags = flags,
863 .parent = res,
864 };
865
866 sd->vmd_dev = vmd->dev;
867 sd->domain = vmd_find_free_domain();
868 if (sd->domain < 0)
869 return sd->domain;
870
871 sd->node = pcibus_to_node(vmd->dev->bus);
872
873 /*
874 * Currently MSI remapping must be enabled in guest passthrough mode
875 * due to some missing interrupt remapping plumbing. This is probably
876 * acceptable because the guest is usually CPU-limited and MSI
877 * remapping doesn't become a performance bottleneck.
878 */
879 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
880 offset[0] || offset[1]) {
881 ret = vmd_alloc_irqs(vmd);
882 if (ret)
883 return ret;
884
885 vmd_set_msi_remapping(vmd, true);
886
887 ret = vmd_create_irq_domain(vmd);
888 if (ret)
889 return ret;
890
891 /*
892 * Override the IRQ domain bus token so the domain can be
893 * distinguished from a regular PCI/MSI domain.
894 */
895 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
896 } else {
897 vmd_set_msi_remapping(vmd, false);
898 }
899
900 pci_add_resource(&resources, &vmd->resources[0]);
901 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
902 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
903
904 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
905 &vmd_ops, sd, &resources);
906 if (!vmd->bus) {
907 pci_free_resource_list(&resources);
908 vmd_remove_irq_domain(vmd);
909 return -ENODEV;
910 }
911
912 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
913 to_pci_host_bridge(vmd->bus->bridge));
914
915 vmd_attach_resources(vmd);
916 if (vmd->irq_domain)
917 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
918 else
919 dev_set_msi_domain(&vmd->bus->dev,
920 dev_get_msi_domain(&vmd->dev->dev));
921
922 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
923 "domain"), "Can't create symlink to domain\n");
924
925 vmd_acpi_begin();
926
927 pci_scan_child_bus(vmd->bus);
928 vmd_domain_reset(vmd);
929
930 /* When Intel VMD is enabled, the OS does not discover the Root Ports
931 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
932 * a reset to the parent of the PCI device supplied as argument. This
933 * is why we pass a child device, so the reset can be triggered at
934 * the Intel bridge level and propagated to all the children in the
935 * hierarchy.
936 */
937 list_for_each_entry(child, &vmd->bus->children, node) {
938 if (!list_empty(&child->devices)) {
939 dev = list_first_entry(&child->devices,
940 struct pci_dev, bus_list);
941 ret = pci_reset_bus(dev);
942 if (ret)
943 pci_warn(dev, "can't reset device: %d\n", ret);
944
945 break;
946 }
947 }
948
949 pci_assign_unassigned_bus_resources(vmd->bus);
950
951 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
952
953 /*
954 * VMD root buses are virtual and don't return true on pci_is_pcie()
955 * and will fail pcie_bus_configure_settings() early. It can instead be
956 * run on each of the real root ports.
957 */
958 list_for_each_entry(child, &vmd->bus->children, node)
959 pcie_bus_configure_settings(child);
960
961 pci_bus_add_devices(vmd->bus);
962
963 vmd_acpi_end();
964 return 0;
965}
966
967static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
968{
969 unsigned long features = (unsigned long) id->driver_data;
970 struct vmd_dev *vmd;
971 int err;
972
973 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
974 return -ENOMEM;
975
976 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
977 if (!vmd)
978 return -ENOMEM;
979
980 vmd->dev = dev;
981 vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
982 if (vmd->instance < 0)
983 return vmd->instance;
984
985 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
986 vmd->instance);
987 if (!vmd->name) {
988 err = -ENOMEM;
989 goto out_release_instance;
990 }
991
992 err = pcim_enable_device(dev);
993 if (err < 0)
994 goto out_release_instance;
995
996 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
997 if (!vmd->cfgbar) {
998 err = -ENOMEM;
999 goto out_release_instance;
1000 }
1001
1002 pci_set_master(dev);
1003 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1004 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1005 err = -ENODEV;
1006 goto out_release_instance;
1007 }
1008
1009 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1010 vmd->first_vec = 1;
1011
1012 spin_lock_init(&vmd->cfg_lock);
1013 pci_set_drvdata(dev, vmd);
1014 err = vmd_enable_domain(vmd, features);
1015 if (err)
1016 goto out_release_instance;
1017
1018 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1019 vmd->sysdata.domain);
1020 return 0;
1021
1022 out_release_instance:
1023 ida_free(&vmd_instance_ida, vmd->instance);
1024 return err;
1025}
1026
1027static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1028{
1029 int i;
1030
1031 for (i = 0; i < vmd->msix_count; i++)
1032 cleanup_srcu_struct(&vmd->irqs[i].srcu);
1033}
1034
1035static void vmd_remove(struct pci_dev *dev)
1036{
1037 struct vmd_dev *vmd = pci_get_drvdata(dev);
1038
1039 pci_stop_root_bus(vmd->bus);
1040 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1041 pci_remove_root_bus(vmd->bus);
1042 vmd_cleanup_srcu(vmd);
1043 vmd_detach_resources(vmd);
1044 vmd_remove_irq_domain(vmd);
1045 ida_free(&vmd_instance_ida, vmd->instance);
1046}
1047
1048static void vmd_shutdown(struct pci_dev *dev)
1049{
1050 struct vmd_dev *vmd = pci_get_drvdata(dev);
1051
1052 vmd_remove_irq_domain(vmd);
1053}
1054
1055#ifdef CONFIG_PM_SLEEP
1056static int vmd_suspend(struct device *dev)
1057{
1058 struct pci_dev *pdev = to_pci_dev(dev);
1059 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1060 int i;
1061
1062 for (i = 0; i < vmd->msix_count; i++)
1063 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1064
1065 return 0;
1066}
1067
1068static int vmd_resume(struct device *dev)
1069{
1070 struct pci_dev *pdev = to_pci_dev(dev);
1071 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1072 int err, i;
1073
1074 vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
1075
1076 for (i = 0; i < vmd->msix_count; i++) {
1077 err = devm_request_irq(dev, vmd->irqs[i].virq,
1078 vmd_irq, IRQF_NO_THREAD,
1079 vmd->name, &vmd->irqs[i]);
1080 if (err)
1081 return err;
1082 }
1083
1084 return 0;
1085}
1086#endif
1087static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1088
1089static const struct pci_device_id vmd_ids[] = {
1090 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1091 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1092 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1093 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1094 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1095 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1096 {PCI_VDEVICE(INTEL, 0x467f),
1097 .driver_data = VMD_FEATS_CLIENT,},
1098 {PCI_VDEVICE(INTEL, 0x4c3d),
1099 .driver_data = VMD_FEATS_CLIENT,},
1100 {PCI_VDEVICE(INTEL, 0xa77f),
1101 .driver_data = VMD_FEATS_CLIENT,},
1102 {PCI_VDEVICE(INTEL, 0x7d0b),
1103 .driver_data = VMD_FEATS_CLIENT,},
1104 {PCI_VDEVICE(INTEL, 0xad0b),
1105 .driver_data = VMD_FEATS_CLIENT,},
1106 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1107 .driver_data = VMD_FEATS_CLIENT,},
1108 {PCI_VDEVICE(INTEL, 0xb60b),
1109 .driver_data = VMD_FEATS_CLIENT,},
1110 {PCI_VDEVICE(INTEL, 0xb06f),
1111 .driver_data = VMD_FEATS_CLIENT,},
1112 {0,}
1113};
1114MODULE_DEVICE_TABLE(pci, vmd_ids);
1115
1116static struct pci_driver vmd_drv = {
1117 .name = "vmd",
1118 .id_table = vmd_ids,
1119 .probe = vmd_probe,
1120 .remove = vmd_remove,
1121 .shutdown = vmd_shutdown,
1122 .driver = {
1123 .pm = &vmd_dev_pm_ops,
1124 },
1125};
1126module_pci_driver(vmd_drv);
1127
1128MODULE_AUTHOR("Intel Corporation");
1129MODULE_DESCRIPTION("Volume Management Device driver");
1130MODULE_LICENSE("GPL v2");
1131MODULE_VERSION("0.6");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7#include <linux/device.h>
8#include <linux/interrupt.h>
9#include <linux/irq.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/msi.h>
13#include <linux/pci.h>
14#include <linux/srcu.h>
15#include <linux/rculist.h>
16#include <linux/rcupdate.h>
17
18#include <asm/irqdomain.h>
19#include <asm/device.h>
20#include <asm/msi.h>
21#include <asm/msidef.h>
22
23#define VMD_CFGBAR 0
24#define VMD_MEMBAR1 2
25#define VMD_MEMBAR2 4
26
27#define PCI_REG_VMCAP 0x40
28#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29#define PCI_REG_VMCONFIG 0x44
30#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31#define PCI_REG_VMLOCK 0x70
32#define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
33
34#define MB2_SHADOW_OFFSET 0x2000
35#define MB2_SHADOW_SIZE 16
36
37enum vmd_features {
38 /*
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
42 */
43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
44
45 /*
46 * Device may provide root port configuration information which limits
47 * bus numbering
48 */
49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
50};
51
52/*
53 * Lock for manipulating VMD IRQ lists.
54 */
55static DEFINE_RAW_SPINLOCK(list_lock);
56
57/**
58 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
59 * @node: list item for parent traversal.
60 * @irq: back pointer to parent.
61 * @enabled: true if driver enabled IRQ
62 * @virq: the virtual IRQ value provided to the requesting driver.
63 *
64 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
65 * a VMD IRQ using this structure.
66 */
67struct vmd_irq {
68 struct list_head node;
69 struct vmd_irq_list *irq;
70 bool enabled;
71 unsigned int virq;
72};
73
74/**
75 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
76 * @irq_list: the list of irq's the VMD one demuxes to.
77 * @srcu: SRCU struct for local synchronization.
78 * @count: number of child IRQs assigned to this vector; used to track
79 * sharing.
80 */
81struct vmd_irq_list {
82 struct list_head irq_list;
83 struct srcu_struct srcu;
84 unsigned int count;
85};
86
87struct vmd_dev {
88 struct pci_dev *dev;
89
90 spinlock_t cfg_lock;
91 char __iomem *cfgbar;
92
93 int msix_count;
94 struct vmd_irq_list *irqs;
95
96 struct pci_sysdata sysdata;
97 struct resource resources[3];
98 struct irq_domain *irq_domain;
99 struct pci_bus *bus;
100 u8 busn_start;
101
102 struct dma_map_ops dma_ops;
103 struct dma_domain dma_domain;
104};
105
106static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
107{
108 return container_of(bus->sysdata, struct vmd_dev, sysdata);
109}
110
111static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
112 struct vmd_irq_list *irqs)
113{
114 return irqs - vmd->irqs;
115}
116
117/*
118 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
119 * but the MSI entry for the hardware it's driving will be programmed with a
120 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
121 * domain into one of its own, and the VMD driver de-muxes these for the
122 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
123 * and irq_chip to set this up.
124 */
125static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
126{
127 struct vmd_irq *vmdirq = data->chip_data;
128 struct vmd_irq_list *irq = vmdirq->irq;
129 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
130
131 msg->address_hi = MSI_ADDR_BASE_HI;
132 msg->address_lo = MSI_ADDR_BASE_LO |
133 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
134 msg->data = 0;
135}
136
137/*
138 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
139 */
140static void vmd_irq_enable(struct irq_data *data)
141{
142 struct vmd_irq *vmdirq = data->chip_data;
143 unsigned long flags;
144
145 raw_spin_lock_irqsave(&list_lock, flags);
146 WARN_ON(vmdirq->enabled);
147 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
148 vmdirq->enabled = true;
149 raw_spin_unlock_irqrestore(&list_lock, flags);
150
151 data->chip->irq_unmask(data);
152}
153
154static void vmd_irq_disable(struct irq_data *data)
155{
156 struct vmd_irq *vmdirq = data->chip_data;
157 unsigned long flags;
158
159 data->chip->irq_mask(data);
160
161 raw_spin_lock_irqsave(&list_lock, flags);
162 if (vmdirq->enabled) {
163 list_del_rcu(&vmdirq->node);
164 vmdirq->enabled = false;
165 }
166 raw_spin_unlock_irqrestore(&list_lock, flags);
167}
168
169/*
170 * XXX: Stubbed until we develop acceptable way to not create conflicts with
171 * other devices sharing the same vector.
172 */
173static int vmd_irq_set_affinity(struct irq_data *data,
174 const struct cpumask *dest, bool force)
175{
176 return -EINVAL;
177}
178
179static struct irq_chip vmd_msi_controller = {
180 .name = "VMD-MSI",
181 .irq_enable = vmd_irq_enable,
182 .irq_disable = vmd_irq_disable,
183 .irq_compose_msi_msg = vmd_compose_msi_msg,
184 .irq_set_affinity = vmd_irq_set_affinity,
185};
186
187static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
188 msi_alloc_info_t *arg)
189{
190 return 0;
191}
192
193/*
194 * XXX: We can be even smarter selecting the best IRQ once we solve the
195 * affinity problem.
196 */
197static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
198{
199 int i, best = 1;
200 unsigned long flags;
201
202 if (vmd->msix_count == 1)
203 return &vmd->irqs[0];
204
205 /*
206 * White list for fast-interrupt handlers. All others will share the
207 * "slow" interrupt vector.
208 */
209 switch (msi_desc_to_pci_dev(desc)->class) {
210 case PCI_CLASS_STORAGE_EXPRESS:
211 break;
212 default:
213 return &vmd->irqs[0];
214 }
215
216 raw_spin_lock_irqsave(&list_lock, flags);
217 for (i = 1; i < vmd->msix_count; i++)
218 if (vmd->irqs[i].count < vmd->irqs[best].count)
219 best = i;
220 vmd->irqs[best].count++;
221 raw_spin_unlock_irqrestore(&list_lock, flags);
222
223 return &vmd->irqs[best];
224}
225
226static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
227 unsigned int virq, irq_hw_number_t hwirq,
228 msi_alloc_info_t *arg)
229{
230 struct msi_desc *desc = arg->desc;
231 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
232 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
233 unsigned int index, vector;
234
235 if (!vmdirq)
236 return -ENOMEM;
237
238 INIT_LIST_HEAD(&vmdirq->node);
239 vmdirq->irq = vmd_next_irq(vmd, desc);
240 vmdirq->virq = virq;
241 index = index_from_irqs(vmd, vmdirq->irq);
242 vector = pci_irq_vector(vmd->dev, index);
243
244 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
245 handle_untracked_irq, vmd, NULL);
246 return 0;
247}
248
249static void vmd_msi_free(struct irq_domain *domain,
250 struct msi_domain_info *info, unsigned int virq)
251{
252 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
253 unsigned long flags;
254
255 synchronize_srcu(&vmdirq->irq->srcu);
256
257 /* XXX: Potential optimization to rebalance */
258 raw_spin_lock_irqsave(&list_lock, flags);
259 vmdirq->irq->count--;
260 raw_spin_unlock_irqrestore(&list_lock, flags);
261
262 kfree(vmdirq);
263}
264
265static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
266 int nvec, msi_alloc_info_t *arg)
267{
268 struct pci_dev *pdev = to_pci_dev(dev);
269 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
270
271 if (nvec > vmd->msix_count)
272 return vmd->msix_count;
273
274 memset(arg, 0, sizeof(*arg));
275 return 0;
276}
277
278static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
279{
280 arg->desc = desc;
281}
282
283static struct msi_domain_ops vmd_msi_domain_ops = {
284 .get_hwirq = vmd_get_hwirq,
285 .msi_init = vmd_msi_init,
286 .msi_free = vmd_msi_free,
287 .msi_prepare = vmd_msi_prepare,
288 .set_desc = vmd_set_desc,
289};
290
291static struct msi_domain_info vmd_msi_domain_info = {
292 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
293 MSI_FLAG_PCI_MSIX,
294 .ops = &vmd_msi_domain_ops,
295 .chip = &vmd_msi_controller,
296};
297
298/*
299 * VMD replaces the requester ID with its own. DMA mappings for devices in a
300 * VMD domain need to be mapped for the VMD, not the device requiring
301 * the mapping.
302 */
303static struct device *to_vmd_dev(struct device *dev)
304{
305 struct pci_dev *pdev = to_pci_dev(dev);
306 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
307
308 return &vmd->dev->dev;
309}
310
311static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
312 gfp_t flag, unsigned long attrs)
313{
314 return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
315}
316
317static void vmd_free(struct device *dev, size_t size, void *vaddr,
318 dma_addr_t addr, unsigned long attrs)
319{
320 return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
321}
322
323static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
324 void *cpu_addr, dma_addr_t addr, size_t size,
325 unsigned long attrs)
326{
327 return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
328 attrs);
329}
330
331static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
332 void *cpu_addr, dma_addr_t addr, size_t size,
333 unsigned long attrs)
334{
335 return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
336 attrs);
337}
338
339static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
340 unsigned long offset, size_t size,
341 enum dma_data_direction dir,
342 unsigned long attrs)
343{
344 return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
345 attrs);
346}
347
348static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
349 enum dma_data_direction dir, unsigned long attrs)
350{
351 dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
352}
353
354static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
355 enum dma_data_direction dir, unsigned long attrs)
356{
357 return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
358}
359
360static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
361 enum dma_data_direction dir, unsigned long attrs)
362{
363 dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
364}
365
366static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
367 size_t size, enum dma_data_direction dir)
368{
369 dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
370}
371
372static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
373 size_t size, enum dma_data_direction dir)
374{
375 dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
376}
377
378static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
379 int nents, enum dma_data_direction dir)
380{
381 dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
382}
383
384static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
385 int nents, enum dma_data_direction dir)
386{
387 dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
388}
389
390static int vmd_dma_supported(struct device *dev, u64 mask)
391{
392 return dma_supported(to_vmd_dev(dev), mask);
393}
394
395static u64 vmd_get_required_mask(struct device *dev)
396{
397 return dma_get_required_mask(to_vmd_dev(dev));
398}
399
400static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
401{
402 struct dma_domain *domain = &vmd->dma_domain;
403
404 if (get_dma_ops(&vmd->dev->dev))
405 del_dma_domain(domain);
406}
407
408#define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
409 do { \
410 if (source->fn) \
411 dest->fn = vmd_##fn; \
412 } while (0)
413
414static void vmd_setup_dma_ops(struct vmd_dev *vmd)
415{
416 const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
417 struct dma_map_ops *dest = &vmd->dma_ops;
418 struct dma_domain *domain = &vmd->dma_domain;
419
420 domain->domain_nr = vmd->sysdata.domain;
421 domain->dma_ops = dest;
422
423 if (!source)
424 return;
425 ASSIGN_VMD_DMA_OPS(source, dest, alloc);
426 ASSIGN_VMD_DMA_OPS(source, dest, free);
427 ASSIGN_VMD_DMA_OPS(source, dest, mmap);
428 ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
429 ASSIGN_VMD_DMA_OPS(source, dest, map_page);
430 ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
431 ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
432 ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
433 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
434 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
435 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
436 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
437 ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
438 ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
439 add_dma_domain(domain);
440}
441#undef ASSIGN_VMD_DMA_OPS
442
443static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
444 unsigned int devfn, int reg, int len)
445{
446 char __iomem *addr = vmd->cfgbar +
447 ((bus->number - vmd->busn_start) << 20) +
448 (devfn << 12) + reg;
449
450 if ((addr - vmd->cfgbar) + len >=
451 resource_size(&vmd->dev->resource[VMD_CFGBAR]))
452 return NULL;
453
454 return addr;
455}
456
457/*
458 * CPU may deadlock if config space is not serialized on some versions of this
459 * hardware, so all config space access is done under a spinlock.
460 */
461static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
462 int len, u32 *value)
463{
464 struct vmd_dev *vmd = vmd_from_bus(bus);
465 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
466 unsigned long flags;
467 int ret = 0;
468
469 if (!addr)
470 return -EFAULT;
471
472 spin_lock_irqsave(&vmd->cfg_lock, flags);
473 switch (len) {
474 case 1:
475 *value = readb(addr);
476 break;
477 case 2:
478 *value = readw(addr);
479 break;
480 case 4:
481 *value = readl(addr);
482 break;
483 default:
484 ret = -EINVAL;
485 break;
486 }
487 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
488 return ret;
489}
490
491/*
492 * VMD h/w converts non-posted config writes to posted memory writes. The
493 * read-back in this function forces the completion so it returns only after
494 * the config space was written, as expected.
495 */
496static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
497 int len, u32 value)
498{
499 struct vmd_dev *vmd = vmd_from_bus(bus);
500 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
501 unsigned long flags;
502 int ret = 0;
503
504 if (!addr)
505 return -EFAULT;
506
507 spin_lock_irqsave(&vmd->cfg_lock, flags);
508 switch (len) {
509 case 1:
510 writeb(value, addr);
511 readb(addr);
512 break;
513 case 2:
514 writew(value, addr);
515 readw(addr);
516 break;
517 case 4:
518 writel(value, addr);
519 readl(addr);
520 break;
521 default:
522 ret = -EINVAL;
523 break;
524 }
525 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
526 return ret;
527}
528
529static struct pci_ops vmd_ops = {
530 .read = vmd_pci_read,
531 .write = vmd_pci_write,
532};
533
534static void vmd_attach_resources(struct vmd_dev *vmd)
535{
536 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
537 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
538}
539
540static void vmd_detach_resources(struct vmd_dev *vmd)
541{
542 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
543 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
544}
545
546/*
547 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
548 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
549 * 16 bits are the PCI Segment Group (domain) number. Other bits are
550 * currently reserved.
551 */
552static int vmd_find_free_domain(void)
553{
554 int domain = 0xffff;
555 struct pci_bus *bus = NULL;
556
557 while ((bus = pci_find_next_bus(bus)) != NULL)
558 domain = max_t(int, domain, pci_domain_nr(bus));
559 return domain + 1;
560}
561
562static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
563{
564 struct pci_sysdata *sd = &vmd->sysdata;
565 struct fwnode_handle *fn;
566 struct resource *res;
567 u32 upper_bits;
568 unsigned long flags;
569 LIST_HEAD(resources);
570 resource_size_t offset[2] = {0};
571 resource_size_t membar2_offset = 0x2000;
572 struct pci_bus *child;
573
574 /*
575 * Shadow registers may exist in certain VMD device ids which allow
576 * guests to correctly assign host physical addresses to the root ports
577 * and child devices. These registers will either return the host value
578 * or 0, depending on an enable bit in the VMD device.
579 */
580 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
581 u32 vmlock;
582 int ret;
583
584 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
585 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
586 if (ret || vmlock == ~0)
587 return -ENODEV;
588
589 if (MB2_SHADOW_EN(vmlock)) {
590 void __iomem *membar2;
591
592 membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
593 if (!membar2)
594 return -ENOMEM;
595 offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
596 readq(membar2 + MB2_SHADOW_OFFSET);
597 offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
598 readq(membar2 + MB2_SHADOW_OFFSET + 8);
599 pci_iounmap(vmd->dev, membar2);
600 }
601 }
602
603 /*
604 * Certain VMD devices may have a root port configuration option which
605 * limits the bus range to between 0-127 or 128-255
606 */
607 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
608 u32 vmcap, vmconfig;
609
610 pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
611 pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
612 if (BUS_RESTRICT_CAP(vmcap) &&
613 (BUS_RESTRICT_CFG(vmconfig) == 0x1))
614 vmd->busn_start = 128;
615 }
616
617 res = &vmd->dev->resource[VMD_CFGBAR];
618 vmd->resources[0] = (struct resource) {
619 .name = "VMD CFGBAR",
620 .start = vmd->busn_start,
621 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
622 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
623 };
624
625 /*
626 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
627 * put 32-bit resources in the window.
628 *
629 * There's no hardware reason why a 64-bit window *couldn't*
630 * contain a 32-bit resource, but pbus_size_mem() computes the
631 * bridge window size assuming a 64-bit window will contain no
632 * 32-bit resources. __pci_assign_resource() enforces that
633 * artificial restriction to make sure everything will fit.
634 *
635 * The only way we could use a 64-bit non-prefetchable MEMBAR is
636 * if its address is <4GB so that we can convert it to a 32-bit
637 * resource. To be visible to the host OS, all VMD endpoints must
638 * be initially configured by platform BIOS, which includes setting
639 * up these resources. We can assume the device is configured
640 * according to the platform needs.
641 */
642 res = &vmd->dev->resource[VMD_MEMBAR1];
643 upper_bits = upper_32_bits(res->end);
644 flags = res->flags & ~IORESOURCE_SIZEALIGN;
645 if (!upper_bits)
646 flags &= ~IORESOURCE_MEM_64;
647 vmd->resources[1] = (struct resource) {
648 .name = "VMD MEMBAR1",
649 .start = res->start,
650 .end = res->end,
651 .flags = flags,
652 .parent = res,
653 };
654
655 res = &vmd->dev->resource[VMD_MEMBAR2];
656 upper_bits = upper_32_bits(res->end);
657 flags = res->flags & ~IORESOURCE_SIZEALIGN;
658 if (!upper_bits)
659 flags &= ~IORESOURCE_MEM_64;
660 vmd->resources[2] = (struct resource) {
661 .name = "VMD MEMBAR2",
662 .start = res->start + membar2_offset,
663 .end = res->end,
664 .flags = flags,
665 .parent = res,
666 };
667
668 sd->vmd_domain = true;
669 sd->domain = vmd_find_free_domain();
670 if (sd->domain < 0)
671 return sd->domain;
672
673 sd->node = pcibus_to_node(vmd->dev->bus);
674
675 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
676 if (!fn)
677 return -ENODEV;
678
679 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
680 x86_vector_domain);
681 irq_domain_free_fwnode(fn);
682 if (!vmd->irq_domain)
683 return -ENODEV;
684
685 pci_add_resource(&resources, &vmd->resources[0]);
686 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
687 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
688
689 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
690 &vmd_ops, sd, &resources);
691 if (!vmd->bus) {
692 pci_free_resource_list(&resources);
693 irq_domain_remove(vmd->irq_domain);
694 return -ENODEV;
695 }
696
697 vmd_attach_resources(vmd);
698 vmd_setup_dma_ops(vmd);
699 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
700
701 pci_scan_child_bus(vmd->bus);
702 pci_assign_unassigned_bus_resources(vmd->bus);
703
704 /*
705 * VMD root buses are virtual and don't return true on pci_is_pcie()
706 * and will fail pcie_bus_configure_settings() early. It can instead be
707 * run on each of the real root ports.
708 */
709 list_for_each_entry(child, &vmd->bus->children, node)
710 pcie_bus_configure_settings(child);
711
712 pci_bus_add_devices(vmd->bus);
713
714 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
715 "domain"), "Can't create symlink to domain\n");
716 return 0;
717}
718
719static irqreturn_t vmd_irq(int irq, void *data)
720{
721 struct vmd_irq_list *irqs = data;
722 struct vmd_irq *vmdirq;
723 int idx;
724
725 idx = srcu_read_lock(&irqs->srcu);
726 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
727 generic_handle_irq(vmdirq->virq);
728 srcu_read_unlock(&irqs->srcu, idx);
729
730 return IRQ_HANDLED;
731}
732
733static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
734{
735 struct vmd_dev *vmd;
736 int i, err;
737
738 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
739 return -ENOMEM;
740
741 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
742 if (!vmd)
743 return -ENOMEM;
744
745 vmd->dev = dev;
746 err = pcim_enable_device(dev);
747 if (err < 0)
748 return err;
749
750 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
751 if (!vmd->cfgbar)
752 return -ENOMEM;
753
754 pci_set_master(dev);
755 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
756 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
757 return -ENODEV;
758
759 vmd->msix_count = pci_msix_vec_count(dev);
760 if (vmd->msix_count < 0)
761 return -ENODEV;
762
763 vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
764 PCI_IRQ_MSIX);
765 if (vmd->msix_count < 0)
766 return vmd->msix_count;
767
768 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
769 GFP_KERNEL);
770 if (!vmd->irqs)
771 return -ENOMEM;
772
773 for (i = 0; i < vmd->msix_count; i++) {
774 err = init_srcu_struct(&vmd->irqs[i].srcu);
775 if (err)
776 return err;
777
778 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
779 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
780 vmd_irq, IRQF_NO_THREAD,
781 "vmd", &vmd->irqs[i]);
782 if (err)
783 return err;
784 }
785
786 spin_lock_init(&vmd->cfg_lock);
787 pci_set_drvdata(dev, vmd);
788 err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
789 if (err)
790 return err;
791
792 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
793 vmd->sysdata.domain);
794 return 0;
795}
796
797static void vmd_cleanup_srcu(struct vmd_dev *vmd)
798{
799 int i;
800
801 for (i = 0; i < vmd->msix_count; i++)
802 cleanup_srcu_struct(&vmd->irqs[i].srcu);
803}
804
805static void vmd_remove(struct pci_dev *dev)
806{
807 struct vmd_dev *vmd = pci_get_drvdata(dev);
808
809 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
810 pci_stop_root_bus(vmd->bus);
811 pci_remove_root_bus(vmd->bus);
812 vmd_cleanup_srcu(vmd);
813 vmd_teardown_dma_ops(vmd);
814 vmd_detach_resources(vmd);
815 irq_domain_remove(vmd->irq_domain);
816}
817
818#ifdef CONFIG_PM_SLEEP
819static int vmd_suspend(struct device *dev)
820{
821 struct pci_dev *pdev = to_pci_dev(dev);
822 struct vmd_dev *vmd = pci_get_drvdata(pdev);
823 int i;
824
825 for (i = 0; i < vmd->msix_count; i++)
826 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
827
828 pci_save_state(pdev);
829 return 0;
830}
831
832static int vmd_resume(struct device *dev)
833{
834 struct pci_dev *pdev = to_pci_dev(dev);
835 struct vmd_dev *vmd = pci_get_drvdata(pdev);
836 int err, i;
837
838 for (i = 0; i < vmd->msix_count; i++) {
839 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
840 vmd_irq, IRQF_NO_THREAD,
841 "vmd", &vmd->irqs[i]);
842 if (err)
843 return err;
844 }
845
846 pci_restore_state(pdev);
847 return 0;
848}
849#endif
850static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
851
852static const struct pci_device_id vmd_ids[] = {
853 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
854 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
855 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
856 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
857 {0,}
858};
859MODULE_DEVICE_TABLE(pci, vmd_ids);
860
861static struct pci_driver vmd_drv = {
862 .name = "vmd",
863 .id_table = vmd_ids,
864 .probe = vmd_probe,
865 .remove = vmd_remove,
866 .driver = {
867 .pm = &vmd_dev_pm_ops,
868 },
869};
870module_pci_driver(vmd_drv);
871
872MODULE_AUTHOR("Intel Corporation");
873MODULE_LICENSE("GPL v2");
874MODULE_VERSION("0.6");