Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
  44
  45/* Macros to define the context of vf registration */
  46#define VF_REG_IN_PROBE		1
  47#define VF_REG_IN_NOTIFIER	2
  48
  49static unsigned int ring_size __ro_after_init = 128;
  50module_param(ring_size, uint, 0444);
  51MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
  52unsigned int netvsc_ring_bytes __ro_after_init;
  53
  54static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  55				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  56				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  57				NETIF_MSG_TX_ERR;
  58
  59static int debug = -1;
  60module_param(debug, int, 0444);
  61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  62
  63static LIST_HEAD(netvsc_dev_list);
  64
  65static void netvsc_change_rx_flags(struct net_device *net, int change)
  66{
  67	struct net_device_context *ndev_ctx = netdev_priv(net);
  68	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  69	int inc;
  70
  71	if (!vf_netdev)
  72		return;
  73
  74	if (change & IFF_PROMISC) {
  75		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  76		dev_set_promiscuity(vf_netdev, inc);
  77	}
  78
  79	if (change & IFF_ALLMULTI) {
  80		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  81		dev_set_allmulti(vf_netdev, inc);
  82	}
  83}
  84
  85static void netvsc_set_rx_mode(struct net_device *net)
  86{
  87	struct net_device_context *ndev_ctx = netdev_priv(net);
  88	struct net_device *vf_netdev;
  89	struct netvsc_device *nvdev;
  90
  91	rcu_read_lock();
  92	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  93	if (vf_netdev) {
  94		dev_uc_sync(vf_netdev, net);
  95		dev_mc_sync(vf_netdev, net);
  96	}
  97
  98	nvdev = rcu_dereference(ndev_ctx->nvdev);
  99	if (nvdev)
 100		rndis_filter_update(nvdev);
 101	rcu_read_unlock();
 102}
 103
 104static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 105			     struct net_device *ndev)
 106{
 107	nvscdev->tx_disable = false;
 108	virt_wmb(); /* ensure queue wake up mechanism is on */
 109
 110	netif_tx_wake_all_queues(ndev);
 111}
 112
 113static int netvsc_open(struct net_device *net)
 114{
 115	struct net_device_context *ndev_ctx = netdev_priv(net);
 116	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 117	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 118	struct rndis_device *rdev;
 119	int ret = 0;
 120
 121	netif_carrier_off(net);
 122
 123	/* Open up the device */
 124	ret = rndis_filter_open(nvdev);
 125	if (ret != 0) {
 126		netdev_err(net, "unable to open device (ret %d).\n", ret);
 127		return ret;
 128	}
 129
 130	rdev = nvdev->extension;
 131	if (!rdev->link_state) {
 132		netif_carrier_on(net);
 133		netvsc_tx_enable(nvdev, net);
 134	}
 135
 136	if (vf_netdev) {
 137		/* Setting synthetic device up transparently sets
 138		 * slave as up. If open fails, then slave will be
 139		 * still be offline (and not used).
 140		 */
 141		ret = dev_open(vf_netdev, NULL);
 142		if (ret)
 143			netdev_warn(net,
 144				    "unable to open slave: %s: %d\n",
 145				    vf_netdev->name, ret);
 146	}
 147	return 0;
 148}
 149
 150static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 151{
 152	unsigned int retry = 0;
 153	int i;
 154
 155	/* Ensure pending bytes in ring are read */
 156	for (;;) {
 157		u32 aread = 0;
 158
 159		for (i = 0; i < nvdev->num_chn; i++) {
 160			struct vmbus_channel *chn
 161				= nvdev->chan_table[i].channel;
 162
 163			if (!chn)
 164				continue;
 165
 166			/* make sure receive not running now */
 167			napi_synchronize(&nvdev->chan_table[i].napi);
 168
 169			aread = hv_get_bytes_to_read(&chn->inbound);
 170			if (aread)
 171				break;
 172
 173			aread = hv_get_bytes_to_read(&chn->outbound);
 174			if (aread)
 175				break;
 176		}
 177
 178		if (aread == 0)
 179			return 0;
 180
 181		if (++retry > RETRY_MAX)
 182			return -ETIMEDOUT;
 183
 184		usleep_range(RETRY_US_LO, RETRY_US_HI);
 185	}
 186}
 187
 188static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 189			      struct net_device *ndev)
 190{
 191	if (nvscdev) {
 192		nvscdev->tx_disable = true;
 193		virt_wmb(); /* ensure txq will not wake up after stop */
 194	}
 195
 196	netif_tx_disable(ndev);
 197}
 198
 199static int netvsc_close(struct net_device *net)
 200{
 201	struct net_device_context *net_device_ctx = netdev_priv(net);
 202	struct net_device *vf_netdev
 203		= rtnl_dereference(net_device_ctx->vf_netdev);
 204	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 205	int ret;
 206
 207	netvsc_tx_disable(nvdev, net);
 208
 209	/* No need to close rndis filter if it is removed already */
 210	if (!nvdev)
 211		return 0;
 212
 213	ret = rndis_filter_close(nvdev);
 214	if (ret != 0) {
 215		netdev_err(net, "unable to close device (ret %d).\n", ret);
 216		return ret;
 217	}
 218
 219	ret = netvsc_wait_until_empty(nvdev);
 220	if (ret)
 221		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 222
 223	if (vf_netdev)
 224		dev_close(vf_netdev);
 225
 226	return ret;
 227}
 228
 229static inline void *init_ppi_data(struct rndis_message *msg,
 230				  u32 ppi_size, u32 pkt_type)
 231{
 232	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 233	struct rndis_per_packet_info *ppi;
 234
 235	rndis_pkt->data_offset += ppi_size;
 236	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 237		+ rndis_pkt->per_pkt_info_len;
 238
 239	ppi->size = ppi_size;
 240	ppi->type = pkt_type;
 241	ppi->internal = 0;
 242	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 243
 244	rndis_pkt->per_pkt_info_len += ppi_size;
 245
 246	return ppi + 1;
 247}
 248
 249static inline int netvsc_get_tx_queue(struct net_device *ndev,
 250				      struct sk_buff *skb, int old_idx)
 251{
 252	const struct net_device_context *ndc = netdev_priv(ndev);
 253	struct sock *sk = skb->sk;
 254	int q_idx;
 255
 256	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 257			      (VRSS_SEND_TAB_SIZE - 1)];
 258
 259	/* If queue index changed record the new value */
 260	if (q_idx != old_idx &&
 261	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 262		sk_tx_queue_set(sk, q_idx);
 263
 264	return q_idx;
 265}
 266
 267/*
 268 * Select queue for transmit.
 269 *
 270 * If a valid queue has already been assigned, then use that.
 271 * Otherwise compute tx queue based on hash and the send table.
 272 *
 273 * This is basically similar to default (netdev_pick_tx) with the added step
 274 * of using the host send_table when no other queue has been assigned.
 275 *
 276 * TODO support XPS - but get_xps_queue not exported
 277 */
 278static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 279{
 280	int q_idx = sk_tx_queue_get(skb->sk);
 281
 282	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 283		/* If forwarding a packet, we use the recorded queue when
 284		 * available for better cache locality.
 285		 */
 286		if (skb_rx_queue_recorded(skb))
 287			q_idx = skb_get_rx_queue(skb);
 288		else
 289			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 290	}
 291
 292	return q_idx;
 293}
 294
 295static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 296			       struct net_device *sb_dev)
 297{
 298	struct net_device_context *ndc = netdev_priv(ndev);
 299	struct net_device *vf_netdev;
 300	u16 txq;
 301
 302	rcu_read_lock();
 303	vf_netdev = rcu_dereference(ndc->vf_netdev);
 304	if (vf_netdev) {
 305		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 306
 307		if (vf_ops->ndo_select_queue)
 308			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 309		else
 310			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 311
 312		/* Record the queue selected by VF so that it can be
 313		 * used for common case where VF has more queues than
 314		 * the synthetic device.
 315		 */
 316		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 317	} else {
 318		txq = netvsc_pick_tx(ndev, skb);
 319	}
 320	rcu_read_unlock();
 321
 322	while (txq >= ndev->real_num_tx_queues)
 323		txq -= ndev->real_num_tx_queues;
 324
 325	return txq;
 326}
 327
 328static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 329		       struct hv_page_buffer *pb)
 330{
 331	int j = 0;
 332
 333	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 334	offset = offset & ~HV_HYP_PAGE_MASK;
 335
 336	while (len > 0) {
 337		unsigned long bytes;
 338
 339		bytes = HV_HYP_PAGE_SIZE - offset;
 340		if (bytes > len)
 341			bytes = len;
 342		pb[j].pfn = hvpfn;
 343		pb[j].offset = offset;
 344		pb[j].len = bytes;
 345
 346		offset += bytes;
 347		len -= bytes;
 348
 349		if (offset == HV_HYP_PAGE_SIZE && len) {
 350			hvpfn++;
 351			offset = 0;
 352			j++;
 353		}
 354	}
 355
 356	return j + 1;
 357}
 358
 359static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 360			   struct hv_netvsc_packet *packet,
 361			   struct hv_page_buffer *pb)
 362{
 363	u32 slots_used = 0;
 364	char *data = skb->data;
 365	int frags = skb_shinfo(skb)->nr_frags;
 366	int i;
 367
 368	/* The packet is laid out thus:
 369	 * 1. hdr: RNDIS header and PPI
 370	 * 2. skb linear data
 371	 * 3. skb fragment data
 372	 */
 373	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 374				  offset_in_hvpage(hdr),
 375				  len,
 376				  &pb[slots_used]);
 377
 378	packet->rmsg_size = len;
 379	packet->rmsg_pgcnt = slots_used;
 380
 381	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 382				  offset_in_hvpage(data),
 383				  skb_headlen(skb),
 384				  &pb[slots_used]);
 385
 386	for (i = 0; i < frags; i++) {
 387		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 388
 389		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 390					  skb_frag_off(frag),
 391					  skb_frag_size(frag),
 392					  &pb[slots_used]);
 393	}
 394	return slots_used;
 395}
 396
 397static int count_skb_frag_slots(struct sk_buff *skb)
 398{
 399	int i, frags = skb_shinfo(skb)->nr_frags;
 400	int pages = 0;
 401
 402	for (i = 0; i < frags; i++) {
 403		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 404		unsigned long size = skb_frag_size(frag);
 405		unsigned long offset = skb_frag_off(frag);
 406
 407		/* Skip unused frames from start of page */
 408		offset &= ~HV_HYP_PAGE_MASK;
 409		pages += HVPFN_UP(offset + size);
 410	}
 411	return pages;
 412}
 413
 414static int netvsc_get_slots(struct sk_buff *skb)
 415{
 416	char *data = skb->data;
 417	unsigned int offset = offset_in_hvpage(data);
 418	unsigned int len = skb_headlen(skb);
 419	int slots;
 420	int frag_slots;
 421
 422	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 423	frag_slots = count_skb_frag_slots(skb);
 424	return slots + frag_slots;
 425}
 426
 427static u32 net_checksum_info(struct sk_buff *skb)
 428{
 429	if (skb->protocol == htons(ETH_P_IP)) {
 430		struct iphdr *ip = ip_hdr(skb);
 431
 432		if (ip->protocol == IPPROTO_TCP)
 433			return TRANSPORT_INFO_IPV4_TCP;
 434		else if (ip->protocol == IPPROTO_UDP)
 435			return TRANSPORT_INFO_IPV4_UDP;
 436	} else {
 437		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 438
 439		if (ip6->nexthdr == IPPROTO_TCP)
 440			return TRANSPORT_INFO_IPV6_TCP;
 441		else if (ip6->nexthdr == IPPROTO_UDP)
 442			return TRANSPORT_INFO_IPV6_UDP;
 443	}
 444
 445	return TRANSPORT_INFO_NOT_IP;
 446}
 447
 448/* Send skb on the slave VF device. */
 449static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 450			  struct sk_buff *skb)
 451{
 452	struct net_device_context *ndev_ctx = netdev_priv(net);
 453	unsigned int len = skb->len;
 454	int rc;
 455
 456	skb->dev = vf_netdev;
 457	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 458
 459	rc = dev_queue_xmit(skb);
 460	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 461		struct netvsc_vf_pcpu_stats *pcpu_stats
 462			= this_cpu_ptr(ndev_ctx->vf_stats);
 463
 464		u64_stats_update_begin(&pcpu_stats->syncp);
 465		pcpu_stats->tx_packets++;
 466		pcpu_stats->tx_bytes += len;
 467		u64_stats_update_end(&pcpu_stats->syncp);
 468	} else {
 469		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 470	}
 471
 472	return rc;
 473}
 474
 475static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 476{
 477	struct net_device_context *net_device_ctx = netdev_priv(net);
 478	struct hv_netvsc_packet *packet = NULL;
 479	int ret;
 480	unsigned int num_data_pgs;
 481	struct rndis_message *rndis_msg;
 482	struct net_device *vf_netdev;
 483	u32 rndis_msg_size;
 484	u32 hash;
 485	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 486
 487	/* If VF is present and up then redirect packets to it.
 488	 * Skip the VF if it is marked down or has no carrier.
 489	 * If netpoll is in uses, then VF can not be used either.
 490	 */
 491	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 492	if (vf_netdev && netif_running(vf_netdev) &&
 493	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 494	    net_device_ctx->data_path_is_vf)
 495		return netvsc_vf_xmit(net, vf_netdev, skb);
 496
 497	/* We will atmost need two pages to describe the rndis
 498	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 499	 * of pages in a single packet. If skb is scattered around
 500	 * more pages we try linearizing it.
 501	 */
 502
 503	num_data_pgs = netvsc_get_slots(skb) + 2;
 504
 505	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 506		++net_device_ctx->eth_stats.tx_scattered;
 507
 508		if (skb_linearize(skb))
 509			goto no_memory;
 510
 511		num_data_pgs = netvsc_get_slots(skb) + 2;
 512		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 513			++net_device_ctx->eth_stats.tx_too_big;
 514			goto drop;
 515		}
 516	}
 517
 518	/*
 519	 * Place the rndis header in the skb head room and
 520	 * the skb->cb will be used for hv_netvsc_packet
 521	 * structure.
 522	 */
 523	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 524	if (ret)
 525		goto no_memory;
 526
 527	/* Use the skb control buffer for building up the packet */
 528	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 529			sizeof_field(struct sk_buff, cb));
 530	packet = (struct hv_netvsc_packet *)skb->cb;
 531
 532	packet->q_idx = skb_get_queue_mapping(skb);
 533
 534	packet->total_data_buflen = skb->len;
 535	packet->total_bytes = skb->len;
 536	packet->total_packets = 1;
 537
 538	rndis_msg = (struct rndis_message *)skb->head;
 539
 540	/* Add the rndis header */
 541	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 542	rndis_msg->msg_len = packet->total_data_buflen;
 543
 544	rndis_msg->msg.pkt = (struct rndis_packet) {
 545		.data_offset = sizeof(struct rndis_packet),
 546		.data_len = packet->total_data_buflen,
 547		.per_pkt_info_offset = sizeof(struct rndis_packet),
 548	};
 549
 550	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 551
 552	hash = skb_get_hash_raw(skb);
 553	if (hash != 0 && net->real_num_tx_queues > 1) {
 554		u32 *hash_info;
 555
 556		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 557		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 558					  NBL_HASH_VALUE);
 559		*hash_info = hash;
 560	}
 561
 562	/* When using AF_PACKET we need to drop VLAN header from
 563	 * the frame and update the SKB to allow the HOST OS
 564	 * to transmit the 802.1Q packet
 565	 */
 566	if (skb->protocol == htons(ETH_P_8021Q)) {
 567		u16 vlan_tci;
 568
 569		skb_reset_mac_header(skb);
 570		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 571			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 572				++net_device_ctx->eth_stats.vlan_error;
 573				goto drop;
 574			}
 575
 576			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 577			/* Update the NDIS header pkt lengths */
 578			packet->total_data_buflen -= VLAN_HLEN;
 579			packet->total_bytes -= VLAN_HLEN;
 580			rndis_msg->msg_len = packet->total_data_buflen;
 581			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 582		}
 583	}
 584
 585	if (skb_vlan_tag_present(skb)) {
 586		struct ndis_pkt_8021q_info *vlan;
 587
 588		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 589		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 590				     IEEE_8021Q_INFO);
 591
 592		vlan->value = 0;
 593		vlan->vlanid = skb_vlan_tag_get_id(skb);
 594		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 595		vlan->pri = skb_vlan_tag_get_prio(skb);
 596	}
 597
 598	if (skb_is_gso(skb)) {
 599		struct ndis_tcp_lso_info *lso_info;
 600
 601		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 602		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 603					 TCP_LARGESEND_PKTINFO);
 604
 605		lso_info->value = 0;
 606		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 607		if (skb->protocol == htons(ETH_P_IP)) {
 608			lso_info->lso_v2_transmit.ip_version =
 609				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 610			ip_hdr(skb)->tot_len = 0;
 611			ip_hdr(skb)->check = 0;
 612			tcp_hdr(skb)->check =
 613				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 614						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 615		} else {
 616			lso_info->lso_v2_transmit.ip_version =
 617				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 618			tcp_v6_gso_csum_prep(skb);
 619		}
 620		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 621		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 622	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 623		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 624			struct ndis_tcp_ip_checksum_info *csum_info;
 625
 626			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 627			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 628						  TCPIP_CHKSUM_PKTINFO);
 629
 630			csum_info->value = 0;
 631			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 632
 633			if (skb->protocol == htons(ETH_P_IP)) {
 634				csum_info->transmit.is_ipv4 = 1;
 635
 636				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 637					csum_info->transmit.tcp_checksum = 1;
 638				else
 639					csum_info->transmit.udp_checksum = 1;
 640			} else {
 641				csum_info->transmit.is_ipv6 = 1;
 642
 643				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 644					csum_info->transmit.tcp_checksum = 1;
 645				else
 646					csum_info->transmit.udp_checksum = 1;
 647			}
 648		} else {
 649			/* Can't do offload of this type of checksum */
 650			if (skb_checksum_help(skb))
 651				goto drop;
 652		}
 653	}
 654
 655	/* Start filling in the page buffers with the rndis hdr */
 656	rndis_msg->msg_len += rndis_msg_size;
 657	packet->total_data_buflen = rndis_msg->msg_len;
 658	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 659					       skb, packet, pb);
 660
 661	/* timestamp packet in software */
 662	skb_tx_timestamp(skb);
 663
 664	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 665	if (likely(ret == 0))
 666		return NETDEV_TX_OK;
 667
 668	if (ret == -EAGAIN) {
 669		++net_device_ctx->eth_stats.tx_busy;
 670		return NETDEV_TX_BUSY;
 671	}
 672
 673	if (ret == -ENOSPC)
 674		++net_device_ctx->eth_stats.tx_no_space;
 675
 676drop:
 677	dev_kfree_skb_any(skb);
 678	net->stats.tx_dropped++;
 679
 680	return NETDEV_TX_OK;
 681
 682no_memory:
 683	++net_device_ctx->eth_stats.tx_no_memory;
 684	goto drop;
 685}
 686
 687static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 688				     struct net_device *ndev)
 689{
 690	return netvsc_xmit(skb, ndev, false);
 691}
 692
 693/*
 694 * netvsc_linkstatus_callback - Link up/down notification
 695 */
 696void netvsc_linkstatus_callback(struct net_device *net,
 697				struct rndis_message *resp,
 698				void *data, u32 data_buflen)
 699{
 700	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 701	struct net_device_context *ndev_ctx = netdev_priv(net);
 702	struct netvsc_reconfig *event;
 703	unsigned long flags;
 704
 705	/* Ensure the packet is big enough to access its fields */
 706	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 707		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 708			   resp->msg_len);
 709		return;
 710	}
 711
 712	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 713	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 714
 715	/* Update the physical link speed when changing to another vSwitch */
 716	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 717		u32 speed;
 718
 719		/* Validate status_buf_offset and status_buflen.
 720		 *
 721		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 722		 * for the status buffer field in resp->msg_len; perform the validation
 723		 * using data_buflen (>= resp->msg_len).
 724		 */
 725		if (indicate->status_buflen < sizeof(speed) ||
 726		    indicate->status_buf_offset < sizeof(*indicate) ||
 727		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 728		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 729				< indicate->status_buflen) {
 730			netdev_err(net, "invalid rndis_indicate_status packet\n");
 731			return;
 732		}
 733
 734		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 735		ndev_ctx->speed = speed;
 736		return;
 737	}
 738
 739	/* Handle these link change statuses below */
 740	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 741	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 742	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 743		return;
 744
 745	if (net->reg_state != NETREG_REGISTERED)
 746		return;
 747
 748	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 749	if (!event)
 750		return;
 751	event->event = indicate->status;
 752
 753	spin_lock_irqsave(&ndev_ctx->lock, flags);
 754	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 755	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 756
 757	schedule_delayed_work(&ndev_ctx->dwork, 0);
 758}
 759
 760/* This function should only be called after skb_record_rx_queue() */
 761void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 762{
 763	int rc;
 764
 765	skb->queue_mapping = skb_get_rx_queue(skb);
 766	__skb_push(skb, ETH_HLEN);
 767
 768	rc = netvsc_xmit(skb, ndev, true);
 769
 770	if (dev_xmit_complete(rc))
 771		return;
 772
 773	dev_kfree_skb_any(skb);
 774	ndev->stats.tx_dropped++;
 775}
 776
 777static void netvsc_comp_ipcsum(struct sk_buff *skb)
 778{
 779	struct iphdr *iph = (struct iphdr *)skb->data;
 780
 781	iph->check = 0;
 782	iph->check = ip_fast_csum(iph, iph->ihl);
 783}
 784
 785static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 786					     struct netvsc_channel *nvchan,
 787					     struct xdp_buff *xdp)
 788{
 789	struct napi_struct *napi = &nvchan->napi;
 790	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 791	const struct ndis_tcp_ip_checksum_info *csum_info =
 792						&nvchan->rsc.csum_info;
 793	const u32 *hash_info = &nvchan->rsc.hash_info;
 794	u8 ppi_flags = nvchan->rsc.ppi_flags;
 795	struct sk_buff *skb;
 796	void *xbuf = xdp->data_hard_start;
 797	int i;
 798
 799	if (xbuf) {
 800		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 801		unsigned int xlen = xdp->data_end - xdp->data;
 802		unsigned int frag_size = xdp->frame_sz;
 803
 804		skb = build_skb(xbuf, frag_size);
 805
 806		if (!skb) {
 807			__free_page(virt_to_page(xbuf));
 808			return NULL;
 809		}
 810
 811		skb_reserve(skb, hdroom);
 812		skb_put(skb, xlen);
 813		skb->dev = napi->dev;
 814	} else {
 815		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 816
 817		if (!skb)
 818			return NULL;
 819
 820		/* Copy to skb. This copy is needed here since the memory
 821		 * pointed by hv_netvsc_packet cannot be deallocated.
 822		 */
 823		for (i = 0; i < nvchan->rsc.cnt; i++)
 824			skb_put_data(skb, nvchan->rsc.data[i],
 825				     nvchan->rsc.len[i]);
 826	}
 827
 828	skb->protocol = eth_type_trans(skb, net);
 829
 830	/* skb is already created with CHECKSUM_NONE */
 831	skb_checksum_none_assert(skb);
 832
 833	/* Incoming packets may have IP header checksum verified by the host.
 834	 * They may not have IP header checksum computed after coalescing.
 835	 * We compute it here if the flags are set, because on Linux, the IP
 836	 * checksum is always checked.
 837	 */
 838	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 839	    csum_info->receive.ip_checksum_succeeded &&
 840	    skb->protocol == htons(ETH_P_IP)) {
 841		/* Check that there is enough space to hold the IP header. */
 842		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 843			kfree_skb(skb);
 844			return NULL;
 845		}
 846		netvsc_comp_ipcsum(skb);
 847	}
 848
 849	/* Do L4 checksum offload if enabled and present. */
 850	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 851		if (csum_info->receive.tcp_checksum_succeeded ||
 852		    csum_info->receive.udp_checksum_succeeded)
 853			skb->ip_summed = CHECKSUM_UNNECESSARY;
 854	}
 855
 856	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 857		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 858
 859	if (ppi_flags & NVSC_RSC_VLAN) {
 860		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 861			(vlan->cfi ? VLAN_CFI_MASK : 0);
 862
 863		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 864				       vlan_tci);
 865	}
 866
 867	return skb;
 868}
 869
 870/*
 871 * netvsc_recv_callback -  Callback when we receive a packet from the
 872 * "wire" on the specified device.
 873 */
 874int netvsc_recv_callback(struct net_device *net,
 875			 struct netvsc_device *net_device,
 876			 struct netvsc_channel *nvchan)
 877{
 878	struct net_device_context *net_device_ctx = netdev_priv(net);
 879	struct vmbus_channel *channel = nvchan->channel;
 880	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 881	struct sk_buff *skb;
 882	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
 883	struct xdp_buff xdp;
 884	u32 act;
 885
 886	if (net->reg_state != NETREG_REGISTERED)
 887		return NVSP_STAT_FAIL;
 888
 889	act = netvsc_run_xdp(net, nvchan, &xdp);
 890
 891	if (act == XDP_REDIRECT)
 892		return NVSP_STAT_SUCCESS;
 893
 894	if (act != XDP_PASS && act != XDP_TX) {
 895		u64_stats_update_begin(&rx_stats->syncp);
 896		rx_stats->xdp_drop++;
 897		u64_stats_update_end(&rx_stats->syncp);
 898
 899		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 900	}
 901
 902	/* Allocate a skb - TODO direct I/O to pages? */
 903	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 904
 905	if (unlikely(!skb)) {
 906		++net_device_ctx->eth_stats.rx_no_memory;
 907		return NVSP_STAT_FAIL;
 908	}
 909
 910	skb_record_rx_queue(skb, q_idx);
 911
 912	/*
 913	 * Even if injecting the packet, record the statistics
 914	 * on the synthetic device because modifying the VF device
 915	 * statistics will not work correctly.
 916	 */
 917	u64_stats_update_begin(&rx_stats->syncp);
 918	if (act == XDP_TX)
 919		rx_stats->xdp_tx++;
 920
 921	rx_stats->packets++;
 922	rx_stats->bytes += nvchan->rsc.pktlen;
 923
 924	if (skb->pkt_type == PACKET_BROADCAST)
 925		++rx_stats->broadcast;
 926	else if (skb->pkt_type == PACKET_MULTICAST)
 927		++rx_stats->multicast;
 928	u64_stats_update_end(&rx_stats->syncp);
 929
 930	if (act == XDP_TX) {
 931		netvsc_xdp_xmit(skb, net);
 932		return NVSP_STAT_SUCCESS;
 933	}
 934
 935	napi_gro_receive(&nvchan->napi, skb);
 936	return NVSP_STAT_SUCCESS;
 937}
 938
 939static void netvsc_get_drvinfo(struct net_device *net,
 940			       struct ethtool_drvinfo *info)
 941{
 942	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 943	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
 944}
 945
 946static void netvsc_get_channels(struct net_device *net,
 947				struct ethtool_channels *channel)
 948{
 949	struct net_device_context *net_device_ctx = netdev_priv(net);
 950	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 951
 952	if (nvdev) {
 953		channel->max_combined	= nvdev->max_chn;
 954		channel->combined_count = nvdev->num_chn;
 955	}
 956}
 957
 958/* Alloc struct netvsc_device_info, and initialize it from either existing
 959 * struct netvsc_device, or from default values.
 960 */
 961static
 962struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
 963{
 964	struct netvsc_device_info *dev_info;
 965	struct bpf_prog *prog;
 966
 967	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 968
 969	if (!dev_info)
 970		return NULL;
 971
 972	if (nvdev) {
 973		ASSERT_RTNL();
 974
 975		dev_info->num_chn = nvdev->num_chn;
 976		dev_info->send_sections = nvdev->send_section_cnt;
 977		dev_info->send_section_size = nvdev->send_section_size;
 978		dev_info->recv_sections = nvdev->recv_section_cnt;
 979		dev_info->recv_section_size = nvdev->recv_section_size;
 980
 981		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 982		       NETVSC_HASH_KEYLEN);
 983
 984		prog = netvsc_xdp_get(nvdev);
 985		if (prog) {
 986			bpf_prog_inc(prog);
 987			dev_info->bprog = prog;
 988		}
 989	} else {
 990		dev_info->num_chn = max(VRSS_CHANNEL_DEFAULT,
 991					netif_get_num_default_rss_queues());
 992		dev_info->send_sections = NETVSC_DEFAULT_TX;
 993		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 994		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 995		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 996	}
 997
 998	return dev_info;
 999}
1000
1001/* Free struct netvsc_device_info */
1002static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1003{
1004	if (dev_info->bprog) {
1005		ASSERT_RTNL();
1006		bpf_prog_put(dev_info->bprog);
1007	}
1008
1009	kfree(dev_info);
1010}
1011
1012static int netvsc_detach(struct net_device *ndev,
1013			 struct netvsc_device *nvdev)
1014{
1015	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1016	struct hv_device *hdev = ndev_ctx->device_ctx;
1017	int ret;
1018
1019	/* Don't try continuing to try and setup sub channels */
1020	if (cancel_work_sync(&nvdev->subchan_work))
1021		nvdev->num_chn = 1;
1022
1023	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1024
1025	/* If device was up (receiving) then shutdown */
1026	if (netif_running(ndev)) {
1027		netvsc_tx_disable(nvdev, ndev);
1028
1029		ret = rndis_filter_close(nvdev);
1030		if (ret) {
1031			netdev_err(ndev,
1032				   "unable to close device (ret %d).\n", ret);
1033			return ret;
1034		}
1035
1036		ret = netvsc_wait_until_empty(nvdev);
1037		if (ret) {
1038			netdev_err(ndev,
1039				   "Ring buffer not empty after closing rndis\n");
1040			return ret;
1041		}
1042	}
1043
1044	netif_device_detach(ndev);
1045
1046	rndis_filter_device_remove(hdev, nvdev);
1047
1048	return 0;
1049}
1050
1051static int netvsc_attach(struct net_device *ndev,
1052			 struct netvsc_device_info *dev_info)
1053{
1054	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1055	struct hv_device *hdev = ndev_ctx->device_ctx;
1056	struct netvsc_device *nvdev;
1057	struct rndis_device *rdev;
1058	struct bpf_prog *prog;
1059	int ret = 0;
1060
1061	nvdev = rndis_filter_device_add(hdev, dev_info);
1062	if (IS_ERR(nvdev))
1063		return PTR_ERR(nvdev);
1064
1065	if (nvdev->num_chn > 1) {
1066		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1067
1068		/* if unavailable, just proceed with one queue */
1069		if (ret) {
1070			nvdev->max_chn = 1;
1071			nvdev->num_chn = 1;
1072		}
1073	}
1074
1075	prog = dev_info->bprog;
1076	if (prog) {
1077		bpf_prog_inc(prog);
1078		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1079		if (ret) {
1080			bpf_prog_put(prog);
1081			goto err1;
1082		}
1083	}
1084
1085	/* In any case device is now ready */
1086	nvdev->tx_disable = false;
1087	netif_device_attach(ndev);
1088
1089	/* Note: enable and attach happen when sub-channels setup */
1090	netif_carrier_off(ndev);
1091
1092	if (netif_running(ndev)) {
1093		ret = rndis_filter_open(nvdev);
1094		if (ret)
1095			goto err2;
1096
1097		rdev = nvdev->extension;
1098		if (!rdev->link_state)
1099			netif_carrier_on(ndev);
1100	}
1101
1102	return 0;
1103
1104err2:
1105	netif_device_detach(ndev);
1106
1107err1:
1108	rndis_filter_device_remove(hdev, nvdev);
1109
1110	return ret;
1111}
1112
1113static int netvsc_set_channels(struct net_device *net,
1114			       struct ethtool_channels *channels)
1115{
1116	struct net_device_context *net_device_ctx = netdev_priv(net);
1117	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1118	unsigned int orig, count = channels->combined_count;
1119	struct netvsc_device_info *device_info;
1120	int ret;
1121
1122	/* We do not support separate count for rx, tx, or other */
1123	if (count == 0 ||
1124	    channels->rx_count || channels->tx_count || channels->other_count)
1125		return -EINVAL;
1126
1127	if (!nvdev || nvdev->destroy)
1128		return -ENODEV;
1129
1130	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1131		return -EINVAL;
1132
1133	if (count > nvdev->max_chn)
1134		return -EINVAL;
1135
1136	orig = nvdev->num_chn;
1137
1138	device_info = netvsc_devinfo_get(nvdev);
1139
1140	if (!device_info)
1141		return -ENOMEM;
1142
1143	device_info->num_chn = count;
1144
1145	ret = netvsc_detach(net, nvdev);
1146	if (ret)
1147		goto out;
1148
1149	ret = netvsc_attach(net, device_info);
1150	if (ret) {
1151		device_info->num_chn = orig;
1152		if (netvsc_attach(net, device_info))
1153			netdev_err(net, "restoring channel setting failed\n");
1154	}
1155
1156out:
1157	netvsc_devinfo_put(device_info);
1158	return ret;
1159}
1160
1161static void netvsc_init_settings(struct net_device *dev)
1162{
1163	struct net_device_context *ndc = netdev_priv(dev);
1164
1165	ndc->l4_hash = HV_DEFAULT_L4HASH;
1166
1167	ndc->speed = SPEED_UNKNOWN;
1168	ndc->duplex = DUPLEX_FULL;
1169
1170	dev->features = NETIF_F_LRO;
1171}
1172
1173static int netvsc_get_link_ksettings(struct net_device *dev,
1174				     struct ethtool_link_ksettings *cmd)
1175{
1176	struct net_device_context *ndc = netdev_priv(dev);
1177	struct net_device *vf_netdev;
1178
1179	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1180
1181	if (vf_netdev)
1182		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1183
1184	cmd->base.speed = ndc->speed;
1185	cmd->base.duplex = ndc->duplex;
1186	cmd->base.port = PORT_OTHER;
1187
1188	return 0;
1189}
1190
1191static int netvsc_set_link_ksettings(struct net_device *dev,
1192				     const struct ethtool_link_ksettings *cmd)
1193{
1194	struct net_device_context *ndc = netdev_priv(dev);
1195	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1196
1197	if (vf_netdev) {
1198		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1199			return -EOPNOTSUPP;
1200
1201		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1202								  cmd);
1203	}
1204
1205	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1206						  &ndc->speed, &ndc->duplex);
1207}
1208
1209static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1210{
1211	struct net_device_context *ndevctx = netdev_priv(ndev);
1212	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1213	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1214	int orig_mtu = ndev->mtu;
1215	struct netvsc_device_info *device_info;
1216	int ret = 0;
1217
1218	if (!nvdev || nvdev->destroy)
1219		return -ENODEV;
1220
1221	device_info = netvsc_devinfo_get(nvdev);
1222
1223	if (!device_info)
1224		return -ENOMEM;
1225
1226	/* Change MTU of underlying VF netdev first. */
1227	if (vf_netdev) {
1228		ret = dev_set_mtu(vf_netdev, mtu);
1229		if (ret)
1230			goto out;
1231	}
1232
1233	ret = netvsc_detach(ndev, nvdev);
1234	if (ret)
1235		goto rollback_vf;
1236
1237	WRITE_ONCE(ndev->mtu, mtu);
1238
1239	ret = netvsc_attach(ndev, device_info);
1240	if (!ret)
1241		goto out;
1242
1243	/* Attempt rollback to original MTU */
1244	WRITE_ONCE(ndev->mtu, orig_mtu);
1245
1246	if (netvsc_attach(ndev, device_info))
1247		netdev_err(ndev, "restoring mtu failed\n");
1248rollback_vf:
1249	if (vf_netdev)
1250		dev_set_mtu(vf_netdev, orig_mtu);
1251
1252out:
1253	netvsc_devinfo_put(device_info);
1254	return ret;
1255}
1256
1257static void netvsc_get_vf_stats(struct net_device *net,
1258				struct netvsc_vf_pcpu_stats *tot)
1259{
1260	struct net_device_context *ndev_ctx = netdev_priv(net);
1261	int i;
1262
1263	memset(tot, 0, sizeof(*tot));
1264
1265	for_each_possible_cpu(i) {
1266		const struct netvsc_vf_pcpu_stats *stats
1267			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1268		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1269		unsigned int start;
1270
1271		do {
1272			start = u64_stats_fetch_begin(&stats->syncp);
1273			rx_packets = stats->rx_packets;
1274			tx_packets = stats->tx_packets;
1275			rx_bytes = stats->rx_bytes;
1276			tx_bytes = stats->tx_bytes;
1277		} while (u64_stats_fetch_retry(&stats->syncp, start));
1278
1279		tot->rx_packets += rx_packets;
1280		tot->tx_packets += tx_packets;
1281		tot->rx_bytes   += rx_bytes;
1282		tot->tx_bytes   += tx_bytes;
1283		tot->tx_dropped += stats->tx_dropped;
1284	}
1285}
1286
1287static void netvsc_get_pcpu_stats(struct net_device *net,
1288				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1289{
1290	struct net_device_context *ndev_ctx = netdev_priv(net);
1291	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1292	int i;
1293
1294	/* fetch percpu stats of vf */
1295	for_each_possible_cpu(i) {
1296		const struct netvsc_vf_pcpu_stats *stats =
1297			per_cpu_ptr(ndev_ctx->vf_stats, i);
1298		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1299		unsigned int start;
1300
1301		do {
1302			start = u64_stats_fetch_begin(&stats->syncp);
1303			this_tot->vf_rx_packets = stats->rx_packets;
1304			this_tot->vf_tx_packets = stats->tx_packets;
1305			this_tot->vf_rx_bytes = stats->rx_bytes;
1306			this_tot->vf_tx_bytes = stats->tx_bytes;
1307		} while (u64_stats_fetch_retry(&stats->syncp, start));
1308		this_tot->rx_packets = this_tot->vf_rx_packets;
1309		this_tot->tx_packets = this_tot->vf_tx_packets;
1310		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1311		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1312	}
1313
1314	/* fetch percpu stats of netvsc */
1315	for (i = 0; i < nvdev->num_chn; i++) {
1316		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1317		const struct netvsc_stats_tx *tx_stats;
1318		const struct netvsc_stats_rx *rx_stats;
1319		struct netvsc_ethtool_pcpu_stats *this_tot =
1320			&pcpu_tot[nvchan->channel->target_cpu];
1321		u64 packets, bytes;
1322		unsigned int start;
1323
1324		tx_stats = &nvchan->tx_stats;
1325		do {
1326			start = u64_stats_fetch_begin(&tx_stats->syncp);
1327			packets = tx_stats->packets;
1328			bytes = tx_stats->bytes;
1329		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1330
1331		this_tot->tx_bytes	+= bytes;
1332		this_tot->tx_packets	+= packets;
1333
1334		rx_stats = &nvchan->rx_stats;
1335		do {
1336			start = u64_stats_fetch_begin(&rx_stats->syncp);
1337			packets = rx_stats->packets;
1338			bytes = rx_stats->bytes;
1339		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1340
1341		this_tot->rx_bytes	+= bytes;
1342		this_tot->rx_packets	+= packets;
1343	}
1344}
1345
1346static void netvsc_get_stats64(struct net_device *net,
1347			       struct rtnl_link_stats64 *t)
1348{
1349	struct net_device_context *ndev_ctx = netdev_priv(net);
1350	struct netvsc_device *nvdev;
1351	struct netvsc_vf_pcpu_stats vf_tot;
1352	int i;
1353
1354	rcu_read_lock();
1355
1356	nvdev = rcu_dereference(ndev_ctx->nvdev);
1357	if (!nvdev)
1358		goto out;
1359
1360	netdev_stats_to_stats64(t, &net->stats);
1361
1362	netvsc_get_vf_stats(net, &vf_tot);
1363	t->rx_packets += vf_tot.rx_packets;
1364	t->tx_packets += vf_tot.tx_packets;
1365	t->rx_bytes   += vf_tot.rx_bytes;
1366	t->tx_bytes   += vf_tot.tx_bytes;
1367	t->tx_dropped += vf_tot.tx_dropped;
1368
1369	for (i = 0; i < nvdev->num_chn; i++) {
1370		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1371		const struct netvsc_stats_tx *tx_stats;
1372		const struct netvsc_stats_rx *rx_stats;
1373		u64 packets, bytes, multicast;
1374		unsigned int start;
1375
1376		tx_stats = &nvchan->tx_stats;
1377		do {
1378			start = u64_stats_fetch_begin(&tx_stats->syncp);
1379			packets = tx_stats->packets;
1380			bytes = tx_stats->bytes;
1381		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1382
1383		t->tx_bytes	+= bytes;
1384		t->tx_packets	+= packets;
1385
1386		rx_stats = &nvchan->rx_stats;
1387		do {
1388			start = u64_stats_fetch_begin(&rx_stats->syncp);
1389			packets = rx_stats->packets;
1390			bytes = rx_stats->bytes;
1391			multicast = rx_stats->multicast + rx_stats->broadcast;
1392		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1393
1394		t->rx_bytes	+= bytes;
1395		t->rx_packets	+= packets;
1396		t->multicast	+= multicast;
1397	}
1398out:
1399	rcu_read_unlock();
1400}
1401
1402static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1403{
1404	struct net_device_context *ndc = netdev_priv(ndev);
1405	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1406	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1407	struct sockaddr *addr = p;
1408	int err;
1409
1410	err = eth_prepare_mac_addr_change(ndev, p);
1411	if (err)
1412		return err;
1413
1414	if (!nvdev)
1415		return -ENODEV;
1416
1417	if (vf_netdev) {
1418		err = dev_set_mac_address(vf_netdev, addr, NULL);
1419		if (err)
1420			return err;
1421	}
1422
1423	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1424	if (!err) {
1425		eth_commit_mac_addr_change(ndev, p);
1426	} else if (vf_netdev) {
1427		/* rollback change on VF */
1428		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1429		dev_set_mac_address(vf_netdev, addr, NULL);
1430	}
1431
1432	return err;
1433}
1434
1435static const struct {
1436	char name[ETH_GSTRING_LEN];
1437	u16 offset;
1438} netvsc_stats[] = {
1439	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1440	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1441	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1442	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1443	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1444	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1445	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1446	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1447	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1448	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1449	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1450}, pcpu_stats[] = {
1451	{ "cpu%u_rx_packets",
1452		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1453	{ "cpu%u_rx_bytes",
1454		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1455	{ "cpu%u_tx_packets",
1456		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1457	{ "cpu%u_tx_bytes",
1458		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1459	{ "cpu%u_vf_rx_packets",
1460		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1461	{ "cpu%u_vf_rx_bytes",
1462		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1463	{ "cpu%u_vf_tx_packets",
1464		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1465	{ "cpu%u_vf_tx_bytes",
1466		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1467}, vf_stats[] = {
1468	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1469	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1470	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1471	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1472	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1473};
1474
1475#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1476#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1477
1478/* statistics per queue (rx/tx packets/bytes) */
1479#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1480
1481/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1482#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1483
1484static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1485{
1486	struct net_device_context *ndc = netdev_priv(dev);
1487	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1488
1489	if (!nvdev)
1490		return -ENODEV;
1491
1492	switch (string_set) {
1493	case ETH_SS_STATS:
1494		return NETVSC_GLOBAL_STATS_LEN
1495			+ NETVSC_VF_STATS_LEN
1496			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1497			+ NETVSC_PCPU_STATS_LEN;
1498	default:
1499		return -EINVAL;
1500	}
1501}
1502
1503static void netvsc_get_ethtool_stats(struct net_device *dev,
1504				     struct ethtool_stats *stats, u64 *data)
1505{
1506	struct net_device_context *ndc = netdev_priv(dev);
1507	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1508	const void *nds = &ndc->eth_stats;
1509	const struct netvsc_stats_tx *tx_stats;
1510	const struct netvsc_stats_rx *rx_stats;
1511	struct netvsc_vf_pcpu_stats sum;
1512	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1513	unsigned int start;
1514	u64 packets, bytes;
1515	u64 xdp_drop;
1516	u64 xdp_redirect;
1517	u64 xdp_tx;
1518	u64 xdp_xmit;
1519	int i, j, cpu;
1520
1521	if (!nvdev)
1522		return;
1523
1524	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1525		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1526
1527	netvsc_get_vf_stats(dev, &sum);
1528	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1529		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1530
1531	for (j = 0; j < nvdev->num_chn; j++) {
1532		tx_stats = &nvdev->chan_table[j].tx_stats;
1533
1534		do {
1535			start = u64_stats_fetch_begin(&tx_stats->syncp);
1536			packets = tx_stats->packets;
1537			bytes = tx_stats->bytes;
1538			xdp_xmit = tx_stats->xdp_xmit;
1539		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1540		data[i++] = packets;
1541		data[i++] = bytes;
1542		data[i++] = xdp_xmit;
1543
1544		rx_stats = &nvdev->chan_table[j].rx_stats;
1545		do {
1546			start = u64_stats_fetch_begin(&rx_stats->syncp);
1547			packets = rx_stats->packets;
1548			bytes = rx_stats->bytes;
1549			xdp_drop = rx_stats->xdp_drop;
1550			xdp_redirect = rx_stats->xdp_redirect;
1551			xdp_tx = rx_stats->xdp_tx;
1552		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1553		data[i++] = packets;
1554		data[i++] = bytes;
1555		data[i++] = xdp_drop;
1556		data[i++] = xdp_redirect;
1557		data[i++] = xdp_tx;
1558	}
1559
1560	pcpu_sum = kvmalloc_array(nr_cpu_ids,
1561				  sizeof(struct netvsc_ethtool_pcpu_stats),
1562				  GFP_KERNEL);
1563	if (!pcpu_sum)
1564		return;
1565
1566	netvsc_get_pcpu_stats(dev, pcpu_sum);
1567	for_each_present_cpu(cpu) {
1568		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1569
1570		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1571			data[i++] = *(u64 *)((void *)this_sum
1572					     + pcpu_stats[j].offset);
1573	}
1574	kvfree(pcpu_sum);
1575}
1576
1577static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1578{
1579	struct net_device_context *ndc = netdev_priv(dev);
1580	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1581	u8 *p = data;
1582	int i, cpu;
1583
1584	if (!nvdev)
1585		return;
1586
1587	switch (stringset) {
1588	case ETH_SS_STATS:
1589		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1590			ethtool_puts(&p, netvsc_stats[i].name);
1591
1592		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1593			ethtool_puts(&p, vf_stats[i].name);
1594
1595		for (i = 0; i < nvdev->num_chn; i++) {
1596			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1597			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1598			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1599			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1600			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1601			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1602			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1603			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1604		}
1605
1606		for_each_present_cpu(cpu) {
1607			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1608				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1609		}
1610
1611		break;
1612	}
1613}
1614
1615static int
1616netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1617			 struct ethtool_rxnfc *info)
1618{
1619	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1620
1621	info->data = RXH_IP_SRC | RXH_IP_DST;
1622
1623	switch (info->flow_type) {
1624	case TCP_V4_FLOW:
1625		if (ndc->l4_hash & HV_TCP4_L4HASH)
1626			info->data |= l4_flag;
1627
1628		break;
1629
1630	case TCP_V6_FLOW:
1631		if (ndc->l4_hash & HV_TCP6_L4HASH)
1632			info->data |= l4_flag;
1633
1634		break;
1635
1636	case UDP_V4_FLOW:
1637		if (ndc->l4_hash & HV_UDP4_L4HASH)
1638			info->data |= l4_flag;
1639
1640		break;
1641
1642	case UDP_V6_FLOW:
1643		if (ndc->l4_hash & HV_UDP6_L4HASH)
1644			info->data |= l4_flag;
1645
1646		break;
1647
1648	case IPV4_FLOW:
1649	case IPV6_FLOW:
1650		break;
1651	default:
1652		info->data = 0;
1653		break;
1654	}
1655
1656	return 0;
1657}
1658
1659static int
1660netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1661		 u32 *rules)
1662{
1663	struct net_device_context *ndc = netdev_priv(dev);
1664	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1665
1666	if (!nvdev)
1667		return -ENODEV;
1668
1669	switch (info->cmd) {
1670	case ETHTOOL_GRXRINGS:
1671		info->data = nvdev->num_chn;
1672		return 0;
1673
1674	case ETHTOOL_GRXFH:
1675		return netvsc_get_rss_hash_opts(ndc, info);
1676	}
1677	return -EOPNOTSUPP;
1678}
1679
1680static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1681				    struct ethtool_rxnfc *info)
1682{
1683	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1684			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1685		switch (info->flow_type) {
1686		case TCP_V4_FLOW:
1687			ndc->l4_hash |= HV_TCP4_L4HASH;
1688			break;
1689
1690		case TCP_V6_FLOW:
1691			ndc->l4_hash |= HV_TCP6_L4HASH;
1692			break;
1693
1694		case UDP_V4_FLOW:
1695			ndc->l4_hash |= HV_UDP4_L4HASH;
1696			break;
1697
1698		case UDP_V6_FLOW:
1699			ndc->l4_hash |= HV_UDP6_L4HASH;
1700			break;
1701
1702		default:
1703			return -EOPNOTSUPP;
1704		}
1705
1706		return 0;
1707	}
1708
1709	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1710		switch (info->flow_type) {
1711		case TCP_V4_FLOW:
1712			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1713			break;
1714
1715		case TCP_V6_FLOW:
1716			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1717			break;
1718
1719		case UDP_V4_FLOW:
1720			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1721			break;
1722
1723		case UDP_V6_FLOW:
1724			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1725			break;
1726
1727		default:
1728			return -EOPNOTSUPP;
1729		}
1730
1731		return 0;
1732	}
1733
1734	return -EOPNOTSUPP;
1735}
1736
1737static int
1738netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1739{
1740	struct net_device_context *ndc = netdev_priv(ndev);
1741
1742	if (info->cmd == ETHTOOL_SRXFH)
1743		return netvsc_set_rss_hash_opts(ndc, info);
1744
1745	return -EOPNOTSUPP;
1746}
1747
1748static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1749{
1750	return NETVSC_HASH_KEYLEN;
1751}
1752
1753static u32 netvsc_rss_indir_size(struct net_device *dev)
1754{
1755	struct net_device_context *ndc = netdev_priv(dev);
1756
1757	return ndc->rx_table_sz;
1758}
1759
1760static int netvsc_get_rxfh(struct net_device *dev,
1761			   struct ethtool_rxfh_param *rxfh)
1762{
1763	struct net_device_context *ndc = netdev_priv(dev);
1764	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1765	struct rndis_device *rndis_dev;
1766	int i;
1767
1768	if (!ndev)
1769		return -ENODEV;
1770
1771	rxfh->hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
 
1772
1773	rndis_dev = ndev->extension;
1774	if (rxfh->indir) {
1775		for (i = 0; i < ndc->rx_table_sz; i++)
1776			rxfh->indir[i] = ndc->rx_table[i];
1777	}
1778
1779	if (rxfh->key)
1780		memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1781
1782	return 0;
1783}
1784
1785static int netvsc_set_rxfh(struct net_device *dev,
1786			   struct ethtool_rxfh_param *rxfh,
1787			   struct netlink_ext_ack *extack)
1788{
1789	struct net_device_context *ndc = netdev_priv(dev);
1790	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1791	struct rndis_device *rndis_dev;
1792	u8 *key = rxfh->key;
1793	int i;
1794
1795	if (!ndev)
1796		return -ENODEV;
1797
1798	if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1799	    rxfh->hfunc != ETH_RSS_HASH_TOP)
1800		return -EOPNOTSUPP;
1801
1802	rndis_dev = ndev->extension;
1803	if (rxfh->indir) {
1804		for (i = 0; i < ndc->rx_table_sz; i++)
1805			if (rxfh->indir[i] >= ndev->num_chn)
1806				return -EINVAL;
1807
1808		for (i = 0; i < ndc->rx_table_sz; i++)
1809			ndc->rx_table[i] = rxfh->indir[i];
1810	}
1811
1812	if (!key) {
1813		if (!rxfh->indir)
1814			return 0;
1815
1816		key = rndis_dev->rss_key;
1817	}
1818
1819	return rndis_filter_set_rss_param(rndis_dev, key);
1820}
1821
1822/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1823 * It does have pre-allocated receive area which is divided into sections.
1824 */
1825static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1826				   struct ethtool_ringparam *ring)
1827{
1828	u32 max_buf_size;
1829
1830	ring->rx_pending = nvdev->recv_section_cnt;
1831	ring->tx_pending = nvdev->send_section_cnt;
1832
1833	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1834		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1835	else
1836		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1837
1838	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1839	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1840		/ nvdev->send_section_size;
1841}
1842
1843static void netvsc_get_ringparam(struct net_device *ndev,
1844				 struct ethtool_ringparam *ring,
1845				 struct kernel_ethtool_ringparam *kernel_ring,
1846				 struct netlink_ext_ack *extack)
1847{
1848	struct net_device_context *ndevctx = netdev_priv(ndev);
1849	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1850
1851	if (!nvdev)
1852		return;
1853
1854	__netvsc_get_ringparam(nvdev, ring);
1855}
1856
1857static int netvsc_set_ringparam(struct net_device *ndev,
1858				struct ethtool_ringparam *ring,
1859				struct kernel_ethtool_ringparam *kernel_ring,
1860				struct netlink_ext_ack *extack)
1861{
1862	struct net_device_context *ndevctx = netdev_priv(ndev);
1863	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864	struct netvsc_device_info *device_info;
1865	struct ethtool_ringparam orig;
1866	u32 new_tx, new_rx;
1867	int ret = 0;
1868
1869	if (!nvdev || nvdev->destroy)
1870		return -ENODEV;
1871
1872	memset(&orig, 0, sizeof(orig));
1873	__netvsc_get_ringparam(nvdev, &orig);
1874
1875	new_tx = clamp_t(u32, ring->tx_pending,
1876			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1877	new_rx = clamp_t(u32, ring->rx_pending,
1878			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1879
1880	if (new_tx == orig.tx_pending &&
1881	    new_rx == orig.rx_pending)
1882		return 0;	 /* no change */
1883
1884	device_info = netvsc_devinfo_get(nvdev);
1885
1886	if (!device_info)
1887		return -ENOMEM;
1888
1889	device_info->send_sections = new_tx;
1890	device_info->recv_sections = new_rx;
1891
1892	ret = netvsc_detach(ndev, nvdev);
1893	if (ret)
1894		goto out;
1895
1896	ret = netvsc_attach(ndev, device_info);
1897	if (ret) {
1898		device_info->send_sections = orig.tx_pending;
1899		device_info->recv_sections = orig.rx_pending;
1900
1901		if (netvsc_attach(ndev, device_info))
1902			netdev_err(ndev, "restoring ringparam failed");
1903	}
1904
1905out:
1906	netvsc_devinfo_put(device_info);
1907	return ret;
1908}
1909
1910static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1911					     netdev_features_t features)
1912{
1913	struct net_device_context *ndevctx = netdev_priv(ndev);
1914	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1915
1916	if (!nvdev || nvdev->destroy)
1917		return features;
1918
1919	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1920		features ^= NETIF_F_LRO;
1921		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1922	}
1923
1924	return features;
1925}
1926
1927static int netvsc_set_features(struct net_device *ndev,
1928			       netdev_features_t features)
1929{
1930	netdev_features_t change = features ^ ndev->features;
1931	struct net_device_context *ndevctx = netdev_priv(ndev);
1932	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1933	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1934	struct ndis_offload_params offloads;
1935	int ret = 0;
1936
1937	if (!nvdev || nvdev->destroy)
1938		return -ENODEV;
1939
1940	if (!(change & NETIF_F_LRO))
1941		goto syncvf;
1942
1943	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1944
1945	if (features & NETIF_F_LRO) {
1946		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1948	} else {
1949		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1951	}
1952
1953	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1954
1955	if (ret) {
1956		features ^= NETIF_F_LRO;
1957		ndev->features = features;
1958	}
1959
1960syncvf:
1961	if (!vf_netdev)
1962		return ret;
1963
1964	vf_netdev->wanted_features = features;
1965	netdev_update_features(vf_netdev);
1966
1967	return ret;
1968}
1969
1970static int netvsc_get_regs_len(struct net_device *netdev)
1971{
1972	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1973}
1974
1975static void netvsc_get_regs(struct net_device *netdev,
1976			    struct ethtool_regs *regs, void *p)
1977{
1978	struct net_device_context *ndc = netdev_priv(netdev);
1979	u32 *regs_buff = p;
1980
1981	/* increase the version, if buffer format is changed. */
1982	regs->version = 1;
1983
1984	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1985}
1986
1987static u32 netvsc_get_msglevel(struct net_device *ndev)
1988{
1989	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1990
1991	return ndev_ctx->msg_enable;
1992}
1993
1994static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1995{
1996	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1997
1998	ndev_ctx->msg_enable = val;
1999}
2000
2001static const struct ethtool_ops ethtool_ops = {
2002	.get_drvinfo	= netvsc_get_drvinfo,
2003	.get_regs_len	= netvsc_get_regs_len,
2004	.get_regs	= netvsc_get_regs,
2005	.get_msglevel	= netvsc_get_msglevel,
2006	.set_msglevel	= netvsc_set_msglevel,
2007	.get_link	= ethtool_op_get_link,
2008	.get_ethtool_stats = netvsc_get_ethtool_stats,
2009	.get_sset_count = netvsc_get_sset_count,
2010	.get_strings	= netvsc_get_strings,
2011	.get_channels   = netvsc_get_channels,
2012	.set_channels   = netvsc_set_channels,
2013	.get_ts_info	= ethtool_op_get_ts_info,
2014	.get_rxnfc	= netvsc_get_rxnfc,
2015	.set_rxnfc	= netvsc_set_rxnfc,
2016	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2017	.get_rxfh_indir_size = netvsc_rss_indir_size,
2018	.get_rxfh	= netvsc_get_rxfh,
2019	.set_rxfh	= netvsc_set_rxfh,
2020	.get_link_ksettings = netvsc_get_link_ksettings,
2021	.set_link_ksettings = netvsc_set_link_ksettings,
2022	.get_ringparam	= netvsc_get_ringparam,
2023	.set_ringparam	= netvsc_set_ringparam,
2024};
2025
2026static const struct net_device_ops device_ops = {
2027	.ndo_open =			netvsc_open,
2028	.ndo_stop =			netvsc_close,
2029	.ndo_start_xmit =		netvsc_start_xmit,
2030	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2031	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2032	.ndo_fix_features =		netvsc_fix_features,
2033	.ndo_set_features =		netvsc_set_features,
2034	.ndo_change_mtu =		netvsc_change_mtu,
2035	.ndo_validate_addr =		eth_validate_addr,
2036	.ndo_set_mac_address =		netvsc_set_mac_addr,
2037	.ndo_select_queue =		netvsc_select_queue,
2038	.ndo_get_stats64 =		netvsc_get_stats64,
2039	.ndo_bpf =			netvsc_bpf,
2040	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
2041};
2042
2043/*
2044 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2045 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2046 * present send GARP packet to network peers with netif_notify_peers().
2047 */
2048static void netvsc_link_change(struct work_struct *w)
2049{
2050	struct net_device_context *ndev_ctx =
2051		container_of(w, struct net_device_context, dwork.work);
2052	struct hv_device *device_obj = ndev_ctx->device_ctx;
2053	struct net_device *net = hv_get_drvdata(device_obj);
2054	unsigned long flags, next_reconfig, delay;
2055	struct netvsc_reconfig *event = NULL;
2056	struct netvsc_device *net_device;
2057	struct rndis_device *rdev;
2058	bool reschedule = false;
2059
2060	/* if changes are happening, comeback later */
2061	if (!rtnl_trylock()) {
2062		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2063		return;
2064	}
2065
2066	net_device = rtnl_dereference(ndev_ctx->nvdev);
2067	if (!net_device)
2068		goto out_unlock;
2069
2070	rdev = net_device->extension;
2071
2072	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2073	if (time_is_after_jiffies(next_reconfig)) {
2074		/* link_watch only sends one notification with current state
2075		 * per second, avoid doing reconfig more frequently. Handle
2076		 * wrap around.
2077		 */
2078		delay = next_reconfig - jiffies;
2079		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2080		schedule_delayed_work(&ndev_ctx->dwork, delay);
2081		goto out_unlock;
2082	}
2083	ndev_ctx->last_reconfig = jiffies;
2084
2085	spin_lock_irqsave(&ndev_ctx->lock, flags);
2086	if (!list_empty(&ndev_ctx->reconfig_events)) {
2087		event = list_first_entry(&ndev_ctx->reconfig_events,
2088					 struct netvsc_reconfig, list);
2089		list_del(&event->list);
2090		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2091	}
2092	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2093
2094	if (!event)
2095		goto out_unlock;
2096
2097	switch (event->event) {
2098		/* Only the following events are possible due to the check in
2099		 * netvsc_linkstatus_callback()
2100		 */
2101	case RNDIS_STATUS_MEDIA_CONNECT:
2102		if (rdev->link_state) {
2103			rdev->link_state = false;
2104			netif_carrier_on(net);
2105			netvsc_tx_enable(net_device, net);
2106		} else {
2107			__netdev_notify_peers(net);
2108		}
2109		kfree(event);
2110		break;
2111	case RNDIS_STATUS_MEDIA_DISCONNECT:
2112		if (!rdev->link_state) {
2113			rdev->link_state = true;
2114			netif_carrier_off(net);
2115			netvsc_tx_disable(net_device, net);
2116		}
2117		kfree(event);
2118		break;
2119	case RNDIS_STATUS_NETWORK_CHANGE:
2120		/* Only makes sense if carrier is present */
2121		if (!rdev->link_state) {
2122			rdev->link_state = true;
2123			netif_carrier_off(net);
2124			netvsc_tx_disable(net_device, net);
2125			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2126			spin_lock_irqsave(&ndev_ctx->lock, flags);
2127			list_add(&event->list, &ndev_ctx->reconfig_events);
2128			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2129			reschedule = true;
2130		}
2131		break;
2132	}
2133
2134	rtnl_unlock();
2135
2136	/* link_watch only sends one notification with current state per
2137	 * second, handle next reconfig event in 2 seconds.
2138	 */
2139	if (reschedule)
2140		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2141
2142	return;
2143
2144out_unlock:
2145	rtnl_unlock();
2146}
2147
2148static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2149{
2150	struct net_device_context *net_device_ctx;
2151	struct net_device *dev;
2152
2153	dev = netdev_master_upper_dev_get(vf_netdev);
2154	if (!dev || dev->netdev_ops != &device_ops)
2155		return NULL;	/* not a netvsc device */
2156
2157	net_device_ctx = netdev_priv(dev);
2158	if (!rtnl_dereference(net_device_ctx->nvdev))
2159		return NULL;	/* device is removed */
2160
2161	return dev;
2162}
2163
2164/* Called when VF is injecting data into network stack.
2165 * Change the associated network device from VF to netvsc.
2166 * note: already called with rcu_read_lock
2167 */
2168static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2169{
2170	struct sk_buff *skb = *pskb;
2171	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2172	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2173	struct netvsc_vf_pcpu_stats *pcpu_stats
2174		 = this_cpu_ptr(ndev_ctx->vf_stats);
2175
2176	skb = skb_share_check(skb, GFP_ATOMIC);
2177	if (unlikely(!skb))
2178		return RX_HANDLER_CONSUMED;
2179
2180	*pskb = skb;
2181
2182	skb->dev = ndev;
2183
2184	u64_stats_update_begin(&pcpu_stats->syncp);
2185	pcpu_stats->rx_packets++;
2186	pcpu_stats->rx_bytes += skb->len;
2187	u64_stats_update_end(&pcpu_stats->syncp);
2188
2189	return RX_HANDLER_ANOTHER;
2190}
2191
2192static int netvsc_vf_join(struct net_device *vf_netdev,
2193			  struct net_device *ndev, int context)
2194{
2195	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2196	int ret;
2197
2198	ret = netdev_rx_handler_register(vf_netdev,
2199					 netvsc_vf_handle_frame, ndev);
2200	if (ret != 0) {
2201		netdev_err(vf_netdev,
2202			   "can not register netvsc VF receive handler (err = %d)\n",
2203			   ret);
2204		goto rx_handler_failed;
2205	}
2206
2207	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2208					   NULL, NULL, NULL);
2209	if (ret != 0) {
2210		netdev_err(vf_netdev,
2211			   "can not set master device %s (err = %d)\n",
2212			   ndev->name, ret);
2213		goto upper_link_failed;
2214	}
2215
2216	/* If this registration is called from probe context vf_takeover
2217	 * is taken care of later in probe itself.
2218	 */
2219	if (context == VF_REG_IN_NOTIFIER)
2220		schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225	return 0;
2226
2227upper_link_failed:
2228	netdev_rx_handler_unregister(vf_netdev);
2229rx_handler_failed:
2230	return ret;
2231}
2232
2233static void __netvsc_vf_setup(struct net_device *ndev,
2234			      struct net_device *vf_netdev)
2235{
2236	int ret;
2237
2238	/* Align MTU of VF with master */
2239	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240	if (ret)
2241		netdev_warn(vf_netdev,
2242			    "unable to change mtu to %u\n", ndev->mtu);
2243
2244	/* set multicast etc flags on VF */
2245	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247	/* sync address list from ndev to VF */
2248	netif_addr_lock_bh(ndev);
2249	dev_uc_sync(vf_netdev, ndev);
2250	dev_mc_sync(vf_netdev, ndev);
2251	netif_addr_unlock_bh(ndev);
2252
2253	if (netif_running(ndev)) {
2254		ret = dev_open(vf_netdev, NULL);
2255		if (ret)
2256			netdev_warn(vf_netdev,
2257				    "unable to open: %d\n", ret);
2258	}
2259}
2260
2261/* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
2264static void netvsc_vf_setup(struct work_struct *w)
2265{
2266	struct net_device_context *ndev_ctx
2267		= container_of(w, struct net_device_context, vf_takeover.work);
2268	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269	struct net_device *vf_netdev;
2270
2271	if (!rtnl_trylock()) {
2272		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273		return;
2274	}
2275
2276	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277	if (vf_netdev)
2278		__netvsc_vf_setup(ndev, vf_netdev);
2279
2280	rtnl_unlock();
2281}
2282
2283/* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
2286static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287{
2288	struct device *parent = vf_netdev->dev.parent;
2289	struct net_device_context *ndev_ctx;
2290	struct net_device *ndev;
2291	struct pci_dev *pdev;
2292	u32 serial;
2293
2294	if (!parent || !dev_is_pci(parent))
2295		return NULL; /* not a PCI device */
2296
2297	pdev = to_pci_dev(parent);
2298	if (!pdev->slot) {
2299		netdev_notice(vf_netdev, "no PCI slot information\n");
2300		return NULL;
2301	}
2302
2303	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2304		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2305			      pci_slot_name(pdev->slot));
2306		return NULL;
2307	}
2308
2309	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2310		if (!ndev_ctx->vf_alloc)
2311			continue;
2312
2313		if (ndev_ctx->vf_serial != serial)
2314			continue;
2315
2316		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2317		if (ndev->addr_len != vf_netdev->addr_len ||
2318		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2319			   ndev->addr_len) != 0)
2320			continue;
2321
2322		return ndev;
2323
2324	}
2325
2326	/* Fallback path to check synthetic vf with help of mac addr.
2327	 * Because this function can be called before vf_netdev is
2328	 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2329	 * from dev_addr, also try to match to its dev_addr.
2330	 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2331	 * on a VF that matches to the MAC of a unrelated NETVSC device.
2332	 */
2333	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2334		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2335		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2336		    ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
 
2337			return ndev;
 
2338	}
2339
2340	netdev_notice(vf_netdev,
2341		      "no netdev found for vf serial:%u\n", serial);
2342	return NULL;
2343}
2344
2345static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2346{
2347	struct net_device *ndev;
2348
2349	ndev = get_netvsc_byslot(vf_netdev);
2350	if (!ndev)
2351		return NOTIFY_DONE;
2352
2353	/* set slave flag before open to prevent IPv6 addrconf */
2354	vf_netdev->flags |= IFF_SLAVE;
2355	return NOTIFY_DONE;
2356}
2357
2358static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2359{
2360	struct net_device_context *net_device_ctx;
2361	struct netvsc_device *netvsc_dev;
2362	struct bpf_prog *prog;
2363	struct net_device *ndev;
2364	int ret;
2365
2366	if (vf_netdev->addr_len != ETH_ALEN)
2367		return NOTIFY_DONE;
2368
2369	ndev = get_netvsc_byslot(vf_netdev);
2370	if (!ndev)
2371		return NOTIFY_DONE;
2372
2373	net_device_ctx = netdev_priv(ndev);
2374	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2375	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2376		return NOTIFY_DONE;
2377
2378	/* if synthetic interface is a different namespace,
2379	 * then move the VF to that namespace; join will be
2380	 * done again in that context.
2381	 */
2382	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2383		ret = dev_change_net_namespace(vf_netdev,
2384					       dev_net(ndev), "eth%d");
2385		if (ret)
2386			netdev_err(vf_netdev,
2387				   "could not move to same namespace as %s: %d\n",
2388				   ndev->name, ret);
2389		else
2390			netdev_info(vf_netdev,
2391				    "VF moved to namespace with: %s\n",
2392				    ndev->name);
2393		return NOTIFY_DONE;
2394	}
2395
2396	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2397
2398	if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2399		return NOTIFY_DONE;
2400
2401	dev_hold(vf_netdev);
2402	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2403
2404	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2405		ndev->needed_headroom = vf_netdev->needed_headroom;
2406
2407	vf_netdev->wanted_features = ndev->features;
2408	netdev_update_features(vf_netdev);
2409
2410	prog = netvsc_xdp_get(netvsc_dev);
2411	netvsc_vf_setxdp(vf_netdev, prog);
2412
2413	return NOTIFY_OK;
2414}
2415
2416/* Change the data path when VF UP/DOWN/CHANGE are detected.
2417 *
2418 * Typically a UP or DOWN event is followed by a CHANGE event, so
2419 * net_device_ctx->data_path_is_vf is used to cache the current data path
2420 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2421 * message.
2422 *
2423 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2424 * interface, there is only the CHANGE event and no UP or DOWN event.
2425 */
2426static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2427{
2428	struct net_device_context *net_device_ctx;
2429	struct netvsc_device *netvsc_dev;
2430	struct net_device *ndev;
2431	bool vf_is_up = false;
2432	int ret;
2433
2434	if (event != NETDEV_GOING_DOWN)
2435		vf_is_up = netif_running(vf_netdev);
2436
2437	ndev = get_netvsc_byref(vf_netdev);
2438	if (!ndev)
2439		return NOTIFY_DONE;
2440
2441	net_device_ctx = netdev_priv(ndev);
2442	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2443	if (!netvsc_dev)
2444		return NOTIFY_DONE;
2445
2446	if (net_device_ctx->data_path_is_vf == vf_is_up)
2447		return NOTIFY_OK;
2448
2449	if (vf_is_up && !net_device_ctx->vf_alloc) {
2450		netdev_info(ndev, "Waiting for the VF association from host\n");
2451		wait_for_completion(&net_device_ctx->vf_add);
2452	}
2453
2454	ret = netvsc_switch_datapath(ndev, vf_is_up);
2455
2456	if (ret) {
2457		netdev_err(ndev,
2458			   "Data path failed to switch %s VF: %s, err: %d\n",
2459			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2460		return NOTIFY_DONE;
2461	} else {
2462		netdev_info(ndev, "Data path switched %s VF: %s\n",
2463			    vf_is_up ? "to" : "from", vf_netdev->name);
2464	}
2465
2466	return NOTIFY_OK;
2467}
2468
2469static int netvsc_unregister_vf(struct net_device *vf_netdev)
2470{
2471	struct net_device *ndev;
2472	struct net_device_context *net_device_ctx;
2473
2474	ndev = get_netvsc_byref(vf_netdev);
2475	if (!ndev)
2476		return NOTIFY_DONE;
2477
2478	net_device_ctx = netdev_priv(ndev);
2479	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2480
2481	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2482
2483	netvsc_vf_setxdp(vf_netdev, NULL);
2484
2485	reinit_completion(&net_device_ctx->vf_add);
2486	netdev_rx_handler_unregister(vf_netdev);
2487	netdev_upper_dev_unlink(vf_netdev, ndev);
2488	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2489	dev_put(vf_netdev);
2490
2491	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2492
2493	return NOTIFY_OK;
2494}
2495
2496static int check_dev_is_matching_vf(struct net_device *event_ndev)
2497{
2498	/* Skip NetVSC interfaces */
2499	if (event_ndev->netdev_ops == &device_ops)
2500		return -ENODEV;
2501
2502	/* Avoid non-Ethernet type devices */
2503	if (event_ndev->type != ARPHRD_ETHER)
2504		return -ENODEV;
2505
2506	/* Avoid Vlan dev with same MAC registering as VF */
2507	if (is_vlan_dev(event_ndev))
2508		return -ENODEV;
2509
2510	/* Avoid Bonding master dev with same MAC registering as VF */
2511	if (netif_is_bond_master(event_ndev))
2512		return -ENODEV;
2513
2514	return 0;
2515}
2516
2517static int netvsc_probe(struct hv_device *dev,
2518			const struct hv_vmbus_device_id *dev_id)
2519{
2520	struct net_device *net = NULL, *vf_netdev;
2521	struct net_device_context *net_device_ctx;
2522	struct netvsc_device_info *device_info = NULL;
2523	struct netvsc_device *nvdev;
2524	int ret = -ENOMEM;
2525
2526	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2527				VRSS_CHANNEL_MAX);
2528	if (!net)
2529		goto no_net;
2530
2531	netif_carrier_off(net);
2532
2533	netvsc_init_settings(net);
2534
2535	net_device_ctx = netdev_priv(net);
2536	net_device_ctx->device_ctx = dev;
2537	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2538	if (netif_msg_probe(net_device_ctx))
2539		netdev_dbg(net, "netvsc msg_enable: %d\n",
2540			   net_device_ctx->msg_enable);
2541
2542	hv_set_drvdata(dev, net);
2543
2544	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2545
2546	init_completion(&net_device_ctx->vf_add);
2547	spin_lock_init(&net_device_ctx->lock);
2548	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2549	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2550
2551	net_device_ctx->vf_stats
2552		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2553	if (!net_device_ctx->vf_stats)
2554		goto no_stats;
2555
2556	net->netdev_ops = &device_ops;
2557	net->ethtool_ops = &ethtool_ops;
2558	SET_NETDEV_DEV(net, &dev->device);
2559	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2560
2561	/* We always need headroom for rndis header */
2562	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2563
2564	/* Initialize the number of queues to be 1, we may change it if more
2565	 * channels are offered later.
2566	 */
2567	netif_set_real_num_tx_queues(net, 1);
2568	netif_set_real_num_rx_queues(net, 1);
2569
2570	/* Notify the netvsc driver of the new device */
2571	device_info = netvsc_devinfo_get(NULL);
2572
2573	if (!device_info) {
2574		ret = -ENOMEM;
2575		goto devinfo_failed;
2576	}
2577
 
 
 
 
 
 
 
 
 
2578	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2579	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2580	 * all subchannels to show up, but that may not happen because
2581	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2582	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2583	 * the device lock, so all the subchannels can't be processed --
2584	 * finally netvsc_subchan_work() hangs forever.
2585	 *
2586	 * The rtnl lock also needs to be held before rndis_filter_device_add()
2587	 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2588	 * VF NIC offering and registering. If VF NIC finished register_netdev()
2589	 * earlier it may cause name based config failure.
2590	 */
2591	rtnl_lock();
2592
2593	nvdev = rndis_filter_device_add(dev, device_info);
2594	if (IS_ERR(nvdev)) {
2595		ret = PTR_ERR(nvdev);
2596		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2597		goto rndis_failed;
2598	}
2599
2600	eth_hw_addr_set(net, device_info->mac_adr);
2601
2602	if (nvdev->num_chn > 1)
2603		schedule_work(&nvdev->subchan_work);
2604
2605	/* hw_features computed in rndis_netdev_set_hwcaps() */
2606	net->features = net->hw_features |
2607		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2608		NETIF_F_HW_VLAN_CTAG_RX;
2609	net->vlan_features = net->features;
2610
2611	netdev_lockdep_set_classes(net);
2612
2613	net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2614			    NETDEV_XDP_ACT_NDO_XMIT;
2615
2616	/* MTU range: 68 - 1500 or 65521 */
2617	net->min_mtu = NETVSC_MTU_MIN;
2618	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2619		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2620	else
2621		net->max_mtu = ETH_DATA_LEN;
2622
2623	nvdev->tx_disable = false;
2624
2625	ret = register_netdevice(net);
2626	if (ret != 0) {
2627		pr_err("Unable to register netdev.\n");
2628		goto register_failed;
2629	}
2630
2631	list_add(&net_device_ctx->list, &netvsc_dev_list);
2632
2633	/* When the hv_netvsc driver is unloaded and reloaded, the
2634	 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2635	 * is complete. This is because register_netdevice_notifier() gets
2636	 * registered before vmbus_driver_register() so that callback func
2637	 * is set before probe and we don't miss events like NETDEV_POST_INIT
2638	 * So, in this section we try to register the matching vf device that
2639	 * is present as a netdevice, knowing that its register call is not
2640	 * processed in the netvsc_netdev_notifier(as probing is progress and
2641	 * get_netvsc_byslot fails).
2642	 */
2643	for_each_netdev(dev_net(net), vf_netdev) {
2644		ret = check_dev_is_matching_vf(vf_netdev);
2645		if (ret != 0)
2646			continue;
2647
2648		if (net != get_netvsc_byslot(vf_netdev))
2649			continue;
2650
2651		netvsc_prepare_bonding(vf_netdev);
2652		netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2653		__netvsc_vf_setup(net, vf_netdev);
2654		break;
2655	}
2656	rtnl_unlock();
2657
2658	netvsc_devinfo_put(device_info);
2659	return 0;
2660
2661register_failed:
 
2662	rndis_filter_device_remove(dev, nvdev);
2663rndis_failed:
2664	rtnl_unlock();
2665	netvsc_devinfo_put(device_info);
2666devinfo_failed:
2667	free_percpu(net_device_ctx->vf_stats);
2668no_stats:
2669	hv_set_drvdata(dev, NULL);
2670	free_netdev(net);
2671no_net:
2672	return ret;
2673}
2674
2675static void netvsc_remove(struct hv_device *dev)
2676{
2677	struct net_device_context *ndev_ctx;
2678	struct net_device *vf_netdev, *net;
2679	struct netvsc_device *nvdev;
2680
2681	net = hv_get_drvdata(dev);
2682	if (net == NULL) {
2683		dev_err(&dev->device, "No net device to remove\n");
2684		return;
2685	}
2686
2687	ndev_ctx = netdev_priv(net);
2688
2689	cancel_delayed_work_sync(&ndev_ctx->dwork);
2690
2691	rtnl_lock();
2692	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2693	if (nvdev) {
2694		cancel_work_sync(&nvdev->subchan_work);
2695		netvsc_xdp_set(net, NULL, NULL, nvdev);
2696	}
2697
2698	/*
2699	 * Call to the vsc driver to let it know that the device is being
2700	 * removed. Also blocks mtu and channel changes.
2701	 */
2702	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2703	if (vf_netdev)
2704		netvsc_unregister_vf(vf_netdev);
2705
2706	if (nvdev)
2707		rndis_filter_device_remove(dev, nvdev);
2708
2709	unregister_netdevice(net);
2710	list_del(&ndev_ctx->list);
2711
2712	rtnl_unlock();
2713
2714	hv_set_drvdata(dev, NULL);
2715
2716	free_percpu(ndev_ctx->vf_stats);
2717	free_netdev(net);
 
2718}
2719
2720static int netvsc_suspend(struct hv_device *dev)
2721{
2722	struct net_device_context *ndev_ctx;
2723	struct netvsc_device *nvdev;
2724	struct net_device *net;
2725	int ret;
2726
2727	net = hv_get_drvdata(dev);
2728
2729	ndev_ctx = netdev_priv(net);
2730	cancel_delayed_work_sync(&ndev_ctx->dwork);
2731
2732	rtnl_lock();
2733
2734	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2735	if (nvdev == NULL) {
2736		ret = -ENODEV;
2737		goto out;
2738	}
2739
2740	/* Save the current config info */
2741	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2742	if (!ndev_ctx->saved_netvsc_dev_info) {
2743		ret = -ENOMEM;
2744		goto out;
2745	}
2746	ret = netvsc_detach(net, nvdev);
2747out:
2748	rtnl_unlock();
2749
2750	return ret;
2751}
2752
2753static int netvsc_resume(struct hv_device *dev)
2754{
2755	struct net_device *net = hv_get_drvdata(dev);
2756	struct net_device_context *net_device_ctx;
2757	struct netvsc_device_info *device_info;
2758	int ret;
2759
2760	rtnl_lock();
2761
2762	net_device_ctx = netdev_priv(net);
2763
2764	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2765	 * channel. Later netvsc_netdev_event() will switch the data path to
2766	 * the VF upon the UP or CHANGE event.
2767	 */
2768	net_device_ctx->data_path_is_vf = false;
2769	device_info = net_device_ctx->saved_netvsc_dev_info;
2770
2771	ret = netvsc_attach(net, device_info);
2772
2773	netvsc_devinfo_put(device_info);
2774	net_device_ctx->saved_netvsc_dev_info = NULL;
2775
2776	rtnl_unlock();
2777
2778	return ret;
2779}
2780static const struct hv_vmbus_device_id id_table[] = {
2781	/* Network guid */
2782	{ HV_NIC_GUID, },
2783	{ },
2784};
2785
2786MODULE_DEVICE_TABLE(vmbus, id_table);
2787
2788/* The one and only one */
2789static struct  hv_driver netvsc_drv = {
2790	.name = KBUILD_MODNAME,
2791	.id_table = id_table,
2792	.probe = netvsc_probe,
2793	.remove = netvsc_remove,
2794	.suspend = netvsc_suspend,
2795	.resume = netvsc_resume,
2796	.driver = {
2797		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2798	},
2799};
2800
2801/* Set VF's namespace same as the synthetic NIC */
2802static void netvsc_event_set_vf_ns(struct net_device *ndev)
2803{
2804	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2805	struct net_device *vf_netdev;
2806	int ret;
2807
2808	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2809	if (!vf_netdev)
2810		return;
2811
2812	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2813		ret = dev_change_net_namespace(vf_netdev, dev_net(ndev),
2814					       "eth%d");
2815		if (ret)
2816			netdev_err(vf_netdev,
2817				   "Cannot move to same namespace as %s: %d\n",
2818				   ndev->name, ret);
2819		else
2820			netdev_info(vf_netdev,
2821				    "Moved VF to namespace with: %s\n",
2822				    ndev->name);
2823	}
2824}
2825
2826/*
2827 * On Hyper-V, every VF interface is matched with a corresponding
2828 * synthetic interface. The synthetic interface is presented first
2829 * to the guest. When the corresponding VF instance is registered,
2830 * we will take care of switching the data path.
2831 */
2832static int netvsc_netdev_event(struct notifier_block *this,
2833			       unsigned long event, void *ptr)
2834{
2835	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2836	int ret = 0;
2837
2838	if (event_dev->netdev_ops == &device_ops && event == NETDEV_REGISTER) {
2839		netvsc_event_set_vf_ns(event_dev);
2840		return NOTIFY_DONE;
2841	}
2842
2843	ret = check_dev_is_matching_vf(event_dev);
2844	if (ret != 0)
 
 
 
 
 
 
 
 
2845		return NOTIFY_DONE;
2846
2847	switch (event) {
2848	case NETDEV_POST_INIT:
2849		return netvsc_prepare_bonding(event_dev);
2850	case NETDEV_REGISTER:
2851		return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2852	case NETDEV_UNREGISTER:
2853		return netvsc_unregister_vf(event_dev);
2854	case NETDEV_UP:
2855	case NETDEV_DOWN:
2856	case NETDEV_CHANGE:
2857	case NETDEV_GOING_DOWN:
2858		return netvsc_vf_changed(event_dev, event);
2859	default:
2860		return NOTIFY_DONE;
2861	}
2862}
2863
2864static struct notifier_block netvsc_netdev_notifier = {
2865	.notifier_call = netvsc_netdev_event,
2866};
2867
2868static void __exit netvsc_drv_exit(void)
2869{
2870	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2871	vmbus_driver_unregister(&netvsc_drv);
2872}
2873
2874static int __init netvsc_drv_init(void)
2875{
2876	int ret;
2877
2878	if (ring_size < RING_SIZE_MIN) {
2879		ring_size = RING_SIZE_MIN;
2880		pr_info("Increased ring_size to %u (min allowed)\n",
2881			ring_size);
2882	}
2883	netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2884
2885	register_netdevice_notifier(&netvsc_netdev_notifier);
2886
2887	ret = vmbus_driver_register(&netvsc_drv);
2888	if (ret)
2889		goto err_vmbus_reg;
2890
 
2891	return 0;
2892
2893err_vmbus_reg:
2894	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2895	return ret;
2896}
2897
2898MODULE_LICENSE("GPL");
2899MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2900
2901module_init(netvsc_drv_init);
2902module_exit(netvsc_drv_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
  44
 
 
 
 
  45static unsigned int ring_size __ro_after_init = 128;
  46module_param(ring_size, uint, 0444);
  47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  48unsigned int netvsc_ring_bytes __ro_after_init;
  49
  50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  51				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  52				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  53				NETIF_MSG_TX_ERR;
  54
  55static int debug = -1;
  56module_param(debug, int, 0444);
  57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  58
  59static LIST_HEAD(netvsc_dev_list);
  60
  61static void netvsc_change_rx_flags(struct net_device *net, int change)
  62{
  63	struct net_device_context *ndev_ctx = netdev_priv(net);
  64	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  65	int inc;
  66
  67	if (!vf_netdev)
  68		return;
  69
  70	if (change & IFF_PROMISC) {
  71		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  72		dev_set_promiscuity(vf_netdev, inc);
  73	}
  74
  75	if (change & IFF_ALLMULTI) {
  76		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  77		dev_set_allmulti(vf_netdev, inc);
  78	}
  79}
  80
  81static void netvsc_set_rx_mode(struct net_device *net)
  82{
  83	struct net_device_context *ndev_ctx = netdev_priv(net);
  84	struct net_device *vf_netdev;
  85	struct netvsc_device *nvdev;
  86
  87	rcu_read_lock();
  88	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  89	if (vf_netdev) {
  90		dev_uc_sync(vf_netdev, net);
  91		dev_mc_sync(vf_netdev, net);
  92	}
  93
  94	nvdev = rcu_dereference(ndev_ctx->nvdev);
  95	if (nvdev)
  96		rndis_filter_update(nvdev);
  97	rcu_read_unlock();
  98}
  99
 100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 101			     struct net_device *ndev)
 102{
 103	nvscdev->tx_disable = false;
 104	virt_wmb(); /* ensure queue wake up mechanism is on */
 105
 106	netif_tx_wake_all_queues(ndev);
 107}
 108
 109static int netvsc_open(struct net_device *net)
 110{
 111	struct net_device_context *ndev_ctx = netdev_priv(net);
 112	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 113	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 114	struct rndis_device *rdev;
 115	int ret = 0;
 116
 117	netif_carrier_off(net);
 118
 119	/* Open up the device */
 120	ret = rndis_filter_open(nvdev);
 121	if (ret != 0) {
 122		netdev_err(net, "unable to open device (ret %d).\n", ret);
 123		return ret;
 124	}
 125
 126	rdev = nvdev->extension;
 127	if (!rdev->link_state) {
 128		netif_carrier_on(net);
 129		netvsc_tx_enable(nvdev, net);
 130	}
 131
 132	if (vf_netdev) {
 133		/* Setting synthetic device up transparently sets
 134		 * slave as up. If open fails, then slave will be
 135		 * still be offline (and not used).
 136		 */
 137		ret = dev_open(vf_netdev, NULL);
 138		if (ret)
 139			netdev_warn(net,
 140				    "unable to open slave: %s: %d\n",
 141				    vf_netdev->name, ret);
 142	}
 143	return 0;
 144}
 145
 146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 147{
 148	unsigned int retry = 0;
 149	int i;
 150
 151	/* Ensure pending bytes in ring are read */
 152	for (;;) {
 153		u32 aread = 0;
 154
 155		for (i = 0; i < nvdev->num_chn; i++) {
 156			struct vmbus_channel *chn
 157				= nvdev->chan_table[i].channel;
 158
 159			if (!chn)
 160				continue;
 161
 162			/* make sure receive not running now */
 163			napi_synchronize(&nvdev->chan_table[i].napi);
 164
 165			aread = hv_get_bytes_to_read(&chn->inbound);
 166			if (aread)
 167				break;
 168
 169			aread = hv_get_bytes_to_read(&chn->outbound);
 170			if (aread)
 171				break;
 172		}
 173
 174		if (aread == 0)
 175			return 0;
 176
 177		if (++retry > RETRY_MAX)
 178			return -ETIMEDOUT;
 179
 180		usleep_range(RETRY_US_LO, RETRY_US_HI);
 181	}
 182}
 183
 184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 185			      struct net_device *ndev)
 186{
 187	if (nvscdev) {
 188		nvscdev->tx_disable = true;
 189		virt_wmb(); /* ensure txq will not wake up after stop */
 190	}
 191
 192	netif_tx_disable(ndev);
 193}
 194
 195static int netvsc_close(struct net_device *net)
 196{
 197	struct net_device_context *net_device_ctx = netdev_priv(net);
 198	struct net_device *vf_netdev
 199		= rtnl_dereference(net_device_ctx->vf_netdev);
 200	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 201	int ret;
 202
 203	netvsc_tx_disable(nvdev, net);
 204
 205	/* No need to close rndis filter if it is removed already */
 206	if (!nvdev)
 207		return 0;
 208
 209	ret = rndis_filter_close(nvdev);
 210	if (ret != 0) {
 211		netdev_err(net, "unable to close device (ret %d).\n", ret);
 212		return ret;
 213	}
 214
 215	ret = netvsc_wait_until_empty(nvdev);
 216	if (ret)
 217		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 218
 219	if (vf_netdev)
 220		dev_close(vf_netdev);
 221
 222	return ret;
 223}
 224
 225static inline void *init_ppi_data(struct rndis_message *msg,
 226				  u32 ppi_size, u32 pkt_type)
 227{
 228	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 229	struct rndis_per_packet_info *ppi;
 230
 231	rndis_pkt->data_offset += ppi_size;
 232	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 233		+ rndis_pkt->per_pkt_info_len;
 234
 235	ppi->size = ppi_size;
 236	ppi->type = pkt_type;
 237	ppi->internal = 0;
 238	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 239
 240	rndis_pkt->per_pkt_info_len += ppi_size;
 241
 242	return ppi + 1;
 243}
 244
 245static inline int netvsc_get_tx_queue(struct net_device *ndev,
 246				      struct sk_buff *skb, int old_idx)
 247{
 248	const struct net_device_context *ndc = netdev_priv(ndev);
 249	struct sock *sk = skb->sk;
 250	int q_idx;
 251
 252	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 253			      (VRSS_SEND_TAB_SIZE - 1)];
 254
 255	/* If queue index changed record the new value */
 256	if (q_idx != old_idx &&
 257	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 258		sk_tx_queue_set(sk, q_idx);
 259
 260	return q_idx;
 261}
 262
 263/*
 264 * Select queue for transmit.
 265 *
 266 * If a valid queue has already been assigned, then use that.
 267 * Otherwise compute tx queue based on hash and the send table.
 268 *
 269 * This is basically similar to default (netdev_pick_tx) with the added step
 270 * of using the host send_table when no other queue has been assigned.
 271 *
 272 * TODO support XPS - but get_xps_queue not exported
 273 */
 274static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 275{
 276	int q_idx = sk_tx_queue_get(skb->sk);
 277
 278	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 279		/* If forwarding a packet, we use the recorded queue when
 280		 * available for better cache locality.
 281		 */
 282		if (skb_rx_queue_recorded(skb))
 283			q_idx = skb_get_rx_queue(skb);
 284		else
 285			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 286	}
 287
 288	return q_idx;
 289}
 290
 291static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 292			       struct net_device *sb_dev)
 293{
 294	struct net_device_context *ndc = netdev_priv(ndev);
 295	struct net_device *vf_netdev;
 296	u16 txq;
 297
 298	rcu_read_lock();
 299	vf_netdev = rcu_dereference(ndc->vf_netdev);
 300	if (vf_netdev) {
 301		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 302
 303		if (vf_ops->ndo_select_queue)
 304			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 305		else
 306			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 307
 308		/* Record the queue selected by VF so that it can be
 309		 * used for common case where VF has more queues than
 310		 * the synthetic device.
 311		 */
 312		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 313	} else {
 314		txq = netvsc_pick_tx(ndev, skb);
 315	}
 316	rcu_read_unlock();
 317
 318	while (txq >= ndev->real_num_tx_queues)
 319		txq -= ndev->real_num_tx_queues;
 320
 321	return txq;
 322}
 323
 324static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 325		       struct hv_page_buffer *pb)
 326{
 327	int j = 0;
 328
 329	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 330	offset = offset & ~HV_HYP_PAGE_MASK;
 331
 332	while (len > 0) {
 333		unsigned long bytes;
 334
 335		bytes = HV_HYP_PAGE_SIZE - offset;
 336		if (bytes > len)
 337			bytes = len;
 338		pb[j].pfn = hvpfn;
 339		pb[j].offset = offset;
 340		pb[j].len = bytes;
 341
 342		offset += bytes;
 343		len -= bytes;
 344
 345		if (offset == HV_HYP_PAGE_SIZE && len) {
 346			hvpfn++;
 347			offset = 0;
 348			j++;
 349		}
 350	}
 351
 352	return j + 1;
 353}
 354
 355static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 356			   struct hv_netvsc_packet *packet,
 357			   struct hv_page_buffer *pb)
 358{
 359	u32 slots_used = 0;
 360	char *data = skb->data;
 361	int frags = skb_shinfo(skb)->nr_frags;
 362	int i;
 363
 364	/* The packet is laid out thus:
 365	 * 1. hdr: RNDIS header and PPI
 366	 * 2. skb linear data
 367	 * 3. skb fragment data
 368	 */
 369	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 370				  offset_in_hvpage(hdr),
 371				  len,
 372				  &pb[slots_used]);
 373
 374	packet->rmsg_size = len;
 375	packet->rmsg_pgcnt = slots_used;
 376
 377	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 378				  offset_in_hvpage(data),
 379				  skb_headlen(skb),
 380				  &pb[slots_used]);
 381
 382	for (i = 0; i < frags; i++) {
 383		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 384
 385		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 386					  skb_frag_off(frag),
 387					  skb_frag_size(frag),
 388					  &pb[slots_used]);
 389	}
 390	return slots_used;
 391}
 392
 393static int count_skb_frag_slots(struct sk_buff *skb)
 394{
 395	int i, frags = skb_shinfo(skb)->nr_frags;
 396	int pages = 0;
 397
 398	for (i = 0; i < frags; i++) {
 399		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 400		unsigned long size = skb_frag_size(frag);
 401		unsigned long offset = skb_frag_off(frag);
 402
 403		/* Skip unused frames from start of page */
 404		offset &= ~HV_HYP_PAGE_MASK;
 405		pages += HVPFN_UP(offset + size);
 406	}
 407	return pages;
 408}
 409
 410static int netvsc_get_slots(struct sk_buff *skb)
 411{
 412	char *data = skb->data;
 413	unsigned int offset = offset_in_hvpage(data);
 414	unsigned int len = skb_headlen(skb);
 415	int slots;
 416	int frag_slots;
 417
 418	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 419	frag_slots = count_skb_frag_slots(skb);
 420	return slots + frag_slots;
 421}
 422
 423static u32 net_checksum_info(struct sk_buff *skb)
 424{
 425	if (skb->protocol == htons(ETH_P_IP)) {
 426		struct iphdr *ip = ip_hdr(skb);
 427
 428		if (ip->protocol == IPPROTO_TCP)
 429			return TRANSPORT_INFO_IPV4_TCP;
 430		else if (ip->protocol == IPPROTO_UDP)
 431			return TRANSPORT_INFO_IPV4_UDP;
 432	} else {
 433		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 434
 435		if (ip6->nexthdr == IPPROTO_TCP)
 436			return TRANSPORT_INFO_IPV6_TCP;
 437		else if (ip6->nexthdr == IPPROTO_UDP)
 438			return TRANSPORT_INFO_IPV6_UDP;
 439	}
 440
 441	return TRANSPORT_INFO_NOT_IP;
 442}
 443
 444/* Send skb on the slave VF device. */
 445static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 446			  struct sk_buff *skb)
 447{
 448	struct net_device_context *ndev_ctx = netdev_priv(net);
 449	unsigned int len = skb->len;
 450	int rc;
 451
 452	skb->dev = vf_netdev;
 453	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 454
 455	rc = dev_queue_xmit(skb);
 456	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 457		struct netvsc_vf_pcpu_stats *pcpu_stats
 458			= this_cpu_ptr(ndev_ctx->vf_stats);
 459
 460		u64_stats_update_begin(&pcpu_stats->syncp);
 461		pcpu_stats->tx_packets++;
 462		pcpu_stats->tx_bytes += len;
 463		u64_stats_update_end(&pcpu_stats->syncp);
 464	} else {
 465		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 466	}
 467
 468	return rc;
 469}
 470
 471static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 472{
 473	struct net_device_context *net_device_ctx = netdev_priv(net);
 474	struct hv_netvsc_packet *packet = NULL;
 475	int ret;
 476	unsigned int num_data_pgs;
 477	struct rndis_message *rndis_msg;
 478	struct net_device *vf_netdev;
 479	u32 rndis_msg_size;
 480	u32 hash;
 481	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 482
 483	/* If VF is present and up then redirect packets to it.
 484	 * Skip the VF if it is marked down or has no carrier.
 485	 * If netpoll is in uses, then VF can not be used either.
 486	 */
 487	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 488	if (vf_netdev && netif_running(vf_netdev) &&
 489	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 490	    net_device_ctx->data_path_is_vf)
 491		return netvsc_vf_xmit(net, vf_netdev, skb);
 492
 493	/* We will atmost need two pages to describe the rndis
 494	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 495	 * of pages in a single packet. If skb is scattered around
 496	 * more pages we try linearizing it.
 497	 */
 498
 499	num_data_pgs = netvsc_get_slots(skb) + 2;
 500
 501	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 502		++net_device_ctx->eth_stats.tx_scattered;
 503
 504		if (skb_linearize(skb))
 505			goto no_memory;
 506
 507		num_data_pgs = netvsc_get_slots(skb) + 2;
 508		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 509			++net_device_ctx->eth_stats.tx_too_big;
 510			goto drop;
 511		}
 512	}
 513
 514	/*
 515	 * Place the rndis header in the skb head room and
 516	 * the skb->cb will be used for hv_netvsc_packet
 517	 * structure.
 518	 */
 519	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 520	if (ret)
 521		goto no_memory;
 522
 523	/* Use the skb control buffer for building up the packet */
 524	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 525			sizeof_field(struct sk_buff, cb));
 526	packet = (struct hv_netvsc_packet *)skb->cb;
 527
 528	packet->q_idx = skb_get_queue_mapping(skb);
 529
 530	packet->total_data_buflen = skb->len;
 531	packet->total_bytes = skb->len;
 532	packet->total_packets = 1;
 533
 534	rndis_msg = (struct rndis_message *)skb->head;
 535
 536	/* Add the rndis header */
 537	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 538	rndis_msg->msg_len = packet->total_data_buflen;
 539
 540	rndis_msg->msg.pkt = (struct rndis_packet) {
 541		.data_offset = sizeof(struct rndis_packet),
 542		.data_len = packet->total_data_buflen,
 543		.per_pkt_info_offset = sizeof(struct rndis_packet),
 544	};
 545
 546	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 547
 548	hash = skb_get_hash_raw(skb);
 549	if (hash != 0 && net->real_num_tx_queues > 1) {
 550		u32 *hash_info;
 551
 552		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 553		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 554					  NBL_HASH_VALUE);
 555		*hash_info = hash;
 556	}
 557
 558	/* When using AF_PACKET we need to drop VLAN header from
 559	 * the frame and update the SKB to allow the HOST OS
 560	 * to transmit the 802.1Q packet
 561	 */
 562	if (skb->protocol == htons(ETH_P_8021Q)) {
 563		u16 vlan_tci;
 564
 565		skb_reset_mac_header(skb);
 566		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 567			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 568				++net_device_ctx->eth_stats.vlan_error;
 569				goto drop;
 570			}
 571
 572			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 573			/* Update the NDIS header pkt lengths */
 574			packet->total_data_buflen -= VLAN_HLEN;
 575			packet->total_bytes -= VLAN_HLEN;
 576			rndis_msg->msg_len = packet->total_data_buflen;
 577			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 578		}
 579	}
 580
 581	if (skb_vlan_tag_present(skb)) {
 582		struct ndis_pkt_8021q_info *vlan;
 583
 584		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 585		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 586				     IEEE_8021Q_INFO);
 587
 588		vlan->value = 0;
 589		vlan->vlanid = skb_vlan_tag_get_id(skb);
 590		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 591		vlan->pri = skb_vlan_tag_get_prio(skb);
 592	}
 593
 594	if (skb_is_gso(skb)) {
 595		struct ndis_tcp_lso_info *lso_info;
 596
 597		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 598		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 599					 TCP_LARGESEND_PKTINFO);
 600
 601		lso_info->value = 0;
 602		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 603		if (skb->protocol == htons(ETH_P_IP)) {
 604			lso_info->lso_v2_transmit.ip_version =
 605				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 606			ip_hdr(skb)->tot_len = 0;
 607			ip_hdr(skb)->check = 0;
 608			tcp_hdr(skb)->check =
 609				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 610						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 611		} else {
 612			lso_info->lso_v2_transmit.ip_version =
 613				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 614			tcp_v6_gso_csum_prep(skb);
 615		}
 616		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 617		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 618	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 619		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 620			struct ndis_tcp_ip_checksum_info *csum_info;
 621
 622			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 623			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 624						  TCPIP_CHKSUM_PKTINFO);
 625
 626			csum_info->value = 0;
 627			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 628
 629			if (skb->protocol == htons(ETH_P_IP)) {
 630				csum_info->transmit.is_ipv4 = 1;
 631
 632				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 633					csum_info->transmit.tcp_checksum = 1;
 634				else
 635					csum_info->transmit.udp_checksum = 1;
 636			} else {
 637				csum_info->transmit.is_ipv6 = 1;
 638
 639				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 640					csum_info->transmit.tcp_checksum = 1;
 641				else
 642					csum_info->transmit.udp_checksum = 1;
 643			}
 644		} else {
 645			/* Can't do offload of this type of checksum */
 646			if (skb_checksum_help(skb))
 647				goto drop;
 648		}
 649	}
 650
 651	/* Start filling in the page buffers with the rndis hdr */
 652	rndis_msg->msg_len += rndis_msg_size;
 653	packet->total_data_buflen = rndis_msg->msg_len;
 654	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 655					       skb, packet, pb);
 656
 657	/* timestamp packet in software */
 658	skb_tx_timestamp(skb);
 659
 660	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 661	if (likely(ret == 0))
 662		return NETDEV_TX_OK;
 663
 664	if (ret == -EAGAIN) {
 665		++net_device_ctx->eth_stats.tx_busy;
 666		return NETDEV_TX_BUSY;
 667	}
 668
 669	if (ret == -ENOSPC)
 670		++net_device_ctx->eth_stats.tx_no_space;
 671
 672drop:
 673	dev_kfree_skb_any(skb);
 674	net->stats.tx_dropped++;
 675
 676	return NETDEV_TX_OK;
 677
 678no_memory:
 679	++net_device_ctx->eth_stats.tx_no_memory;
 680	goto drop;
 681}
 682
 683static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 684				     struct net_device *ndev)
 685{
 686	return netvsc_xmit(skb, ndev, false);
 687}
 688
 689/*
 690 * netvsc_linkstatus_callback - Link up/down notification
 691 */
 692void netvsc_linkstatus_callback(struct net_device *net,
 693				struct rndis_message *resp,
 694				void *data, u32 data_buflen)
 695{
 696	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 697	struct net_device_context *ndev_ctx = netdev_priv(net);
 698	struct netvsc_reconfig *event;
 699	unsigned long flags;
 700
 701	/* Ensure the packet is big enough to access its fields */
 702	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 703		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 704			   resp->msg_len);
 705		return;
 706	}
 707
 708	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 709	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 710
 711	/* Update the physical link speed when changing to another vSwitch */
 712	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 713		u32 speed;
 714
 715		/* Validate status_buf_offset and status_buflen.
 716		 *
 717		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 718		 * for the status buffer field in resp->msg_len; perform the validation
 719		 * using data_buflen (>= resp->msg_len).
 720		 */
 721		if (indicate->status_buflen < sizeof(speed) ||
 722		    indicate->status_buf_offset < sizeof(*indicate) ||
 723		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 724		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 725				< indicate->status_buflen) {
 726			netdev_err(net, "invalid rndis_indicate_status packet\n");
 727			return;
 728		}
 729
 730		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 731		ndev_ctx->speed = speed;
 732		return;
 733	}
 734
 735	/* Handle these link change statuses below */
 736	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 737	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 738	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 739		return;
 740
 741	if (net->reg_state != NETREG_REGISTERED)
 742		return;
 743
 744	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 745	if (!event)
 746		return;
 747	event->event = indicate->status;
 748
 749	spin_lock_irqsave(&ndev_ctx->lock, flags);
 750	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 751	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 752
 753	schedule_delayed_work(&ndev_ctx->dwork, 0);
 754}
 755
 756/* This function should only be called after skb_record_rx_queue() */
 757void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 758{
 759	int rc;
 760
 761	skb->queue_mapping = skb_get_rx_queue(skb);
 762	__skb_push(skb, ETH_HLEN);
 763
 764	rc = netvsc_xmit(skb, ndev, true);
 765
 766	if (dev_xmit_complete(rc))
 767		return;
 768
 769	dev_kfree_skb_any(skb);
 770	ndev->stats.tx_dropped++;
 771}
 772
 773static void netvsc_comp_ipcsum(struct sk_buff *skb)
 774{
 775	struct iphdr *iph = (struct iphdr *)skb->data;
 776
 777	iph->check = 0;
 778	iph->check = ip_fast_csum(iph, iph->ihl);
 779}
 780
 781static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 782					     struct netvsc_channel *nvchan,
 783					     struct xdp_buff *xdp)
 784{
 785	struct napi_struct *napi = &nvchan->napi;
 786	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 787	const struct ndis_tcp_ip_checksum_info *csum_info =
 788						&nvchan->rsc.csum_info;
 789	const u32 *hash_info = &nvchan->rsc.hash_info;
 790	u8 ppi_flags = nvchan->rsc.ppi_flags;
 791	struct sk_buff *skb;
 792	void *xbuf = xdp->data_hard_start;
 793	int i;
 794
 795	if (xbuf) {
 796		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 797		unsigned int xlen = xdp->data_end - xdp->data;
 798		unsigned int frag_size = xdp->frame_sz;
 799
 800		skb = build_skb(xbuf, frag_size);
 801
 802		if (!skb) {
 803			__free_page(virt_to_page(xbuf));
 804			return NULL;
 805		}
 806
 807		skb_reserve(skb, hdroom);
 808		skb_put(skb, xlen);
 809		skb->dev = napi->dev;
 810	} else {
 811		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 812
 813		if (!skb)
 814			return NULL;
 815
 816		/* Copy to skb. This copy is needed here since the memory
 817		 * pointed by hv_netvsc_packet cannot be deallocated.
 818		 */
 819		for (i = 0; i < nvchan->rsc.cnt; i++)
 820			skb_put_data(skb, nvchan->rsc.data[i],
 821				     nvchan->rsc.len[i]);
 822	}
 823
 824	skb->protocol = eth_type_trans(skb, net);
 825
 826	/* skb is already created with CHECKSUM_NONE */
 827	skb_checksum_none_assert(skb);
 828
 829	/* Incoming packets may have IP header checksum verified by the host.
 830	 * They may not have IP header checksum computed after coalescing.
 831	 * We compute it here if the flags are set, because on Linux, the IP
 832	 * checksum is always checked.
 833	 */
 834	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 835	    csum_info->receive.ip_checksum_succeeded &&
 836	    skb->protocol == htons(ETH_P_IP)) {
 837		/* Check that there is enough space to hold the IP header. */
 838		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 839			kfree_skb(skb);
 840			return NULL;
 841		}
 842		netvsc_comp_ipcsum(skb);
 843	}
 844
 845	/* Do L4 checksum offload if enabled and present. */
 846	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 847		if (csum_info->receive.tcp_checksum_succeeded ||
 848		    csum_info->receive.udp_checksum_succeeded)
 849			skb->ip_summed = CHECKSUM_UNNECESSARY;
 850	}
 851
 852	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 853		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 854
 855	if (ppi_flags & NVSC_RSC_VLAN) {
 856		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 857			(vlan->cfi ? VLAN_CFI_MASK : 0);
 858
 859		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 860				       vlan_tci);
 861	}
 862
 863	return skb;
 864}
 865
 866/*
 867 * netvsc_recv_callback -  Callback when we receive a packet from the
 868 * "wire" on the specified device.
 869 */
 870int netvsc_recv_callback(struct net_device *net,
 871			 struct netvsc_device *net_device,
 872			 struct netvsc_channel *nvchan)
 873{
 874	struct net_device_context *net_device_ctx = netdev_priv(net);
 875	struct vmbus_channel *channel = nvchan->channel;
 876	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 877	struct sk_buff *skb;
 878	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
 879	struct xdp_buff xdp;
 880	u32 act;
 881
 882	if (net->reg_state != NETREG_REGISTERED)
 883		return NVSP_STAT_FAIL;
 884
 885	act = netvsc_run_xdp(net, nvchan, &xdp);
 886
 887	if (act == XDP_REDIRECT)
 888		return NVSP_STAT_SUCCESS;
 889
 890	if (act != XDP_PASS && act != XDP_TX) {
 891		u64_stats_update_begin(&rx_stats->syncp);
 892		rx_stats->xdp_drop++;
 893		u64_stats_update_end(&rx_stats->syncp);
 894
 895		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 896	}
 897
 898	/* Allocate a skb - TODO direct I/O to pages? */
 899	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 900
 901	if (unlikely(!skb)) {
 902		++net_device_ctx->eth_stats.rx_no_memory;
 903		return NVSP_STAT_FAIL;
 904	}
 905
 906	skb_record_rx_queue(skb, q_idx);
 907
 908	/*
 909	 * Even if injecting the packet, record the statistics
 910	 * on the synthetic device because modifying the VF device
 911	 * statistics will not work correctly.
 912	 */
 913	u64_stats_update_begin(&rx_stats->syncp);
 914	if (act == XDP_TX)
 915		rx_stats->xdp_tx++;
 916
 917	rx_stats->packets++;
 918	rx_stats->bytes += nvchan->rsc.pktlen;
 919
 920	if (skb->pkt_type == PACKET_BROADCAST)
 921		++rx_stats->broadcast;
 922	else if (skb->pkt_type == PACKET_MULTICAST)
 923		++rx_stats->multicast;
 924	u64_stats_update_end(&rx_stats->syncp);
 925
 926	if (act == XDP_TX) {
 927		netvsc_xdp_xmit(skb, net);
 928		return NVSP_STAT_SUCCESS;
 929	}
 930
 931	napi_gro_receive(&nvchan->napi, skb);
 932	return NVSP_STAT_SUCCESS;
 933}
 934
 935static void netvsc_get_drvinfo(struct net_device *net,
 936			       struct ethtool_drvinfo *info)
 937{
 938	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 939	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
 940}
 941
 942static void netvsc_get_channels(struct net_device *net,
 943				struct ethtool_channels *channel)
 944{
 945	struct net_device_context *net_device_ctx = netdev_priv(net);
 946	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 947
 948	if (nvdev) {
 949		channel->max_combined	= nvdev->max_chn;
 950		channel->combined_count = nvdev->num_chn;
 951	}
 952}
 953
 954/* Alloc struct netvsc_device_info, and initialize it from either existing
 955 * struct netvsc_device, or from default values.
 956 */
 957static
 958struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
 959{
 960	struct netvsc_device_info *dev_info;
 961	struct bpf_prog *prog;
 962
 963	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 964
 965	if (!dev_info)
 966		return NULL;
 967
 968	if (nvdev) {
 969		ASSERT_RTNL();
 970
 971		dev_info->num_chn = nvdev->num_chn;
 972		dev_info->send_sections = nvdev->send_section_cnt;
 973		dev_info->send_section_size = nvdev->send_section_size;
 974		dev_info->recv_sections = nvdev->recv_section_cnt;
 975		dev_info->recv_section_size = nvdev->recv_section_size;
 976
 977		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 978		       NETVSC_HASH_KEYLEN);
 979
 980		prog = netvsc_xdp_get(nvdev);
 981		if (prog) {
 982			bpf_prog_inc(prog);
 983			dev_info->bprog = prog;
 984		}
 985	} else {
 986		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 
 987		dev_info->send_sections = NETVSC_DEFAULT_TX;
 988		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 989		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 990		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 991	}
 992
 993	return dev_info;
 994}
 995
 996/* Free struct netvsc_device_info */
 997static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
 998{
 999	if (dev_info->bprog) {
1000		ASSERT_RTNL();
1001		bpf_prog_put(dev_info->bprog);
1002	}
1003
1004	kfree(dev_info);
1005}
1006
1007static int netvsc_detach(struct net_device *ndev,
1008			 struct netvsc_device *nvdev)
1009{
1010	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1011	struct hv_device *hdev = ndev_ctx->device_ctx;
1012	int ret;
1013
1014	/* Don't try continuing to try and setup sub channels */
1015	if (cancel_work_sync(&nvdev->subchan_work))
1016		nvdev->num_chn = 1;
1017
1018	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1019
1020	/* If device was up (receiving) then shutdown */
1021	if (netif_running(ndev)) {
1022		netvsc_tx_disable(nvdev, ndev);
1023
1024		ret = rndis_filter_close(nvdev);
1025		if (ret) {
1026			netdev_err(ndev,
1027				   "unable to close device (ret %d).\n", ret);
1028			return ret;
1029		}
1030
1031		ret = netvsc_wait_until_empty(nvdev);
1032		if (ret) {
1033			netdev_err(ndev,
1034				   "Ring buffer not empty after closing rndis\n");
1035			return ret;
1036		}
1037	}
1038
1039	netif_device_detach(ndev);
1040
1041	rndis_filter_device_remove(hdev, nvdev);
1042
1043	return 0;
1044}
1045
1046static int netvsc_attach(struct net_device *ndev,
1047			 struct netvsc_device_info *dev_info)
1048{
1049	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1050	struct hv_device *hdev = ndev_ctx->device_ctx;
1051	struct netvsc_device *nvdev;
1052	struct rndis_device *rdev;
1053	struct bpf_prog *prog;
1054	int ret = 0;
1055
1056	nvdev = rndis_filter_device_add(hdev, dev_info);
1057	if (IS_ERR(nvdev))
1058		return PTR_ERR(nvdev);
1059
1060	if (nvdev->num_chn > 1) {
1061		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1062
1063		/* if unavailable, just proceed with one queue */
1064		if (ret) {
1065			nvdev->max_chn = 1;
1066			nvdev->num_chn = 1;
1067		}
1068	}
1069
1070	prog = dev_info->bprog;
1071	if (prog) {
1072		bpf_prog_inc(prog);
1073		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1074		if (ret) {
1075			bpf_prog_put(prog);
1076			goto err1;
1077		}
1078	}
1079
1080	/* In any case device is now ready */
1081	nvdev->tx_disable = false;
1082	netif_device_attach(ndev);
1083
1084	/* Note: enable and attach happen when sub-channels setup */
1085	netif_carrier_off(ndev);
1086
1087	if (netif_running(ndev)) {
1088		ret = rndis_filter_open(nvdev);
1089		if (ret)
1090			goto err2;
1091
1092		rdev = nvdev->extension;
1093		if (!rdev->link_state)
1094			netif_carrier_on(ndev);
1095	}
1096
1097	return 0;
1098
1099err2:
1100	netif_device_detach(ndev);
1101
1102err1:
1103	rndis_filter_device_remove(hdev, nvdev);
1104
1105	return ret;
1106}
1107
1108static int netvsc_set_channels(struct net_device *net,
1109			       struct ethtool_channels *channels)
1110{
1111	struct net_device_context *net_device_ctx = netdev_priv(net);
1112	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1113	unsigned int orig, count = channels->combined_count;
1114	struct netvsc_device_info *device_info;
1115	int ret;
1116
1117	/* We do not support separate count for rx, tx, or other */
1118	if (count == 0 ||
1119	    channels->rx_count || channels->tx_count || channels->other_count)
1120		return -EINVAL;
1121
1122	if (!nvdev || nvdev->destroy)
1123		return -ENODEV;
1124
1125	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1126		return -EINVAL;
1127
1128	if (count > nvdev->max_chn)
1129		return -EINVAL;
1130
1131	orig = nvdev->num_chn;
1132
1133	device_info = netvsc_devinfo_get(nvdev);
1134
1135	if (!device_info)
1136		return -ENOMEM;
1137
1138	device_info->num_chn = count;
1139
1140	ret = netvsc_detach(net, nvdev);
1141	if (ret)
1142		goto out;
1143
1144	ret = netvsc_attach(net, device_info);
1145	if (ret) {
1146		device_info->num_chn = orig;
1147		if (netvsc_attach(net, device_info))
1148			netdev_err(net, "restoring channel setting failed\n");
1149	}
1150
1151out:
1152	netvsc_devinfo_put(device_info);
1153	return ret;
1154}
1155
1156static void netvsc_init_settings(struct net_device *dev)
1157{
1158	struct net_device_context *ndc = netdev_priv(dev);
1159
1160	ndc->l4_hash = HV_DEFAULT_L4HASH;
1161
1162	ndc->speed = SPEED_UNKNOWN;
1163	ndc->duplex = DUPLEX_FULL;
1164
1165	dev->features = NETIF_F_LRO;
1166}
1167
1168static int netvsc_get_link_ksettings(struct net_device *dev,
1169				     struct ethtool_link_ksettings *cmd)
1170{
1171	struct net_device_context *ndc = netdev_priv(dev);
1172	struct net_device *vf_netdev;
1173
1174	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1175
1176	if (vf_netdev)
1177		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1178
1179	cmd->base.speed = ndc->speed;
1180	cmd->base.duplex = ndc->duplex;
1181	cmd->base.port = PORT_OTHER;
1182
1183	return 0;
1184}
1185
1186static int netvsc_set_link_ksettings(struct net_device *dev,
1187				     const struct ethtool_link_ksettings *cmd)
1188{
1189	struct net_device_context *ndc = netdev_priv(dev);
1190	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1191
1192	if (vf_netdev) {
1193		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1194			return -EOPNOTSUPP;
1195
1196		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1197								  cmd);
1198	}
1199
1200	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1201						  &ndc->speed, &ndc->duplex);
1202}
1203
1204static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1205{
1206	struct net_device_context *ndevctx = netdev_priv(ndev);
1207	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1208	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1209	int orig_mtu = ndev->mtu;
1210	struct netvsc_device_info *device_info;
1211	int ret = 0;
1212
1213	if (!nvdev || nvdev->destroy)
1214		return -ENODEV;
1215
1216	device_info = netvsc_devinfo_get(nvdev);
1217
1218	if (!device_info)
1219		return -ENOMEM;
1220
1221	/* Change MTU of underlying VF netdev first. */
1222	if (vf_netdev) {
1223		ret = dev_set_mtu(vf_netdev, mtu);
1224		if (ret)
1225			goto out;
1226	}
1227
1228	ret = netvsc_detach(ndev, nvdev);
1229	if (ret)
1230		goto rollback_vf;
1231
1232	ndev->mtu = mtu;
1233
1234	ret = netvsc_attach(ndev, device_info);
1235	if (!ret)
1236		goto out;
1237
1238	/* Attempt rollback to original MTU */
1239	ndev->mtu = orig_mtu;
1240
1241	if (netvsc_attach(ndev, device_info))
1242		netdev_err(ndev, "restoring mtu failed\n");
1243rollback_vf:
1244	if (vf_netdev)
1245		dev_set_mtu(vf_netdev, orig_mtu);
1246
1247out:
1248	netvsc_devinfo_put(device_info);
1249	return ret;
1250}
1251
1252static void netvsc_get_vf_stats(struct net_device *net,
1253				struct netvsc_vf_pcpu_stats *tot)
1254{
1255	struct net_device_context *ndev_ctx = netdev_priv(net);
1256	int i;
1257
1258	memset(tot, 0, sizeof(*tot));
1259
1260	for_each_possible_cpu(i) {
1261		const struct netvsc_vf_pcpu_stats *stats
1262			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1263		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1264		unsigned int start;
1265
1266		do {
1267			start = u64_stats_fetch_begin(&stats->syncp);
1268			rx_packets = stats->rx_packets;
1269			tx_packets = stats->tx_packets;
1270			rx_bytes = stats->rx_bytes;
1271			tx_bytes = stats->tx_bytes;
1272		} while (u64_stats_fetch_retry(&stats->syncp, start));
1273
1274		tot->rx_packets += rx_packets;
1275		tot->tx_packets += tx_packets;
1276		tot->rx_bytes   += rx_bytes;
1277		tot->tx_bytes   += tx_bytes;
1278		tot->tx_dropped += stats->tx_dropped;
1279	}
1280}
1281
1282static void netvsc_get_pcpu_stats(struct net_device *net,
1283				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1284{
1285	struct net_device_context *ndev_ctx = netdev_priv(net);
1286	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1287	int i;
1288
1289	/* fetch percpu stats of vf */
1290	for_each_possible_cpu(i) {
1291		const struct netvsc_vf_pcpu_stats *stats =
1292			per_cpu_ptr(ndev_ctx->vf_stats, i);
1293		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1294		unsigned int start;
1295
1296		do {
1297			start = u64_stats_fetch_begin(&stats->syncp);
1298			this_tot->vf_rx_packets = stats->rx_packets;
1299			this_tot->vf_tx_packets = stats->tx_packets;
1300			this_tot->vf_rx_bytes = stats->rx_bytes;
1301			this_tot->vf_tx_bytes = stats->tx_bytes;
1302		} while (u64_stats_fetch_retry(&stats->syncp, start));
1303		this_tot->rx_packets = this_tot->vf_rx_packets;
1304		this_tot->tx_packets = this_tot->vf_tx_packets;
1305		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1306		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1307	}
1308
1309	/* fetch percpu stats of netvsc */
1310	for (i = 0; i < nvdev->num_chn; i++) {
1311		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1312		const struct netvsc_stats_tx *tx_stats;
1313		const struct netvsc_stats_rx *rx_stats;
1314		struct netvsc_ethtool_pcpu_stats *this_tot =
1315			&pcpu_tot[nvchan->channel->target_cpu];
1316		u64 packets, bytes;
1317		unsigned int start;
1318
1319		tx_stats = &nvchan->tx_stats;
1320		do {
1321			start = u64_stats_fetch_begin(&tx_stats->syncp);
1322			packets = tx_stats->packets;
1323			bytes = tx_stats->bytes;
1324		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1325
1326		this_tot->tx_bytes	+= bytes;
1327		this_tot->tx_packets	+= packets;
1328
1329		rx_stats = &nvchan->rx_stats;
1330		do {
1331			start = u64_stats_fetch_begin(&rx_stats->syncp);
1332			packets = rx_stats->packets;
1333			bytes = rx_stats->bytes;
1334		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1335
1336		this_tot->rx_bytes	+= bytes;
1337		this_tot->rx_packets	+= packets;
1338	}
1339}
1340
1341static void netvsc_get_stats64(struct net_device *net,
1342			       struct rtnl_link_stats64 *t)
1343{
1344	struct net_device_context *ndev_ctx = netdev_priv(net);
1345	struct netvsc_device *nvdev;
1346	struct netvsc_vf_pcpu_stats vf_tot;
1347	int i;
1348
1349	rcu_read_lock();
1350
1351	nvdev = rcu_dereference(ndev_ctx->nvdev);
1352	if (!nvdev)
1353		goto out;
1354
1355	netdev_stats_to_stats64(t, &net->stats);
1356
1357	netvsc_get_vf_stats(net, &vf_tot);
1358	t->rx_packets += vf_tot.rx_packets;
1359	t->tx_packets += vf_tot.tx_packets;
1360	t->rx_bytes   += vf_tot.rx_bytes;
1361	t->tx_bytes   += vf_tot.tx_bytes;
1362	t->tx_dropped += vf_tot.tx_dropped;
1363
1364	for (i = 0; i < nvdev->num_chn; i++) {
1365		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1366		const struct netvsc_stats_tx *tx_stats;
1367		const struct netvsc_stats_rx *rx_stats;
1368		u64 packets, bytes, multicast;
1369		unsigned int start;
1370
1371		tx_stats = &nvchan->tx_stats;
1372		do {
1373			start = u64_stats_fetch_begin(&tx_stats->syncp);
1374			packets = tx_stats->packets;
1375			bytes = tx_stats->bytes;
1376		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1377
1378		t->tx_bytes	+= bytes;
1379		t->tx_packets	+= packets;
1380
1381		rx_stats = &nvchan->rx_stats;
1382		do {
1383			start = u64_stats_fetch_begin(&rx_stats->syncp);
1384			packets = rx_stats->packets;
1385			bytes = rx_stats->bytes;
1386			multicast = rx_stats->multicast + rx_stats->broadcast;
1387		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1388
1389		t->rx_bytes	+= bytes;
1390		t->rx_packets	+= packets;
1391		t->multicast	+= multicast;
1392	}
1393out:
1394	rcu_read_unlock();
1395}
1396
1397static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1398{
1399	struct net_device_context *ndc = netdev_priv(ndev);
1400	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1401	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1402	struct sockaddr *addr = p;
1403	int err;
1404
1405	err = eth_prepare_mac_addr_change(ndev, p);
1406	if (err)
1407		return err;
1408
1409	if (!nvdev)
1410		return -ENODEV;
1411
1412	if (vf_netdev) {
1413		err = dev_set_mac_address(vf_netdev, addr, NULL);
1414		if (err)
1415			return err;
1416	}
1417
1418	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1419	if (!err) {
1420		eth_commit_mac_addr_change(ndev, p);
1421	} else if (vf_netdev) {
1422		/* rollback change on VF */
1423		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1424		dev_set_mac_address(vf_netdev, addr, NULL);
1425	}
1426
1427	return err;
1428}
1429
1430static const struct {
1431	char name[ETH_GSTRING_LEN];
1432	u16 offset;
1433} netvsc_stats[] = {
1434	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1435	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1436	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1437	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1438	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1439	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1440	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1441	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1442	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1443	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1444	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1445}, pcpu_stats[] = {
1446	{ "cpu%u_rx_packets",
1447		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1448	{ "cpu%u_rx_bytes",
1449		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1450	{ "cpu%u_tx_packets",
1451		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1452	{ "cpu%u_tx_bytes",
1453		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1454	{ "cpu%u_vf_rx_packets",
1455		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1456	{ "cpu%u_vf_rx_bytes",
1457		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1458	{ "cpu%u_vf_tx_packets",
1459		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1460	{ "cpu%u_vf_tx_bytes",
1461		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1462}, vf_stats[] = {
1463	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1464	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1465	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1466	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1467	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1468};
1469
1470#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1471#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1472
1473/* statistics per queue (rx/tx packets/bytes) */
1474#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1475
1476/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1477#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1478
1479static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1480{
1481	struct net_device_context *ndc = netdev_priv(dev);
1482	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1483
1484	if (!nvdev)
1485		return -ENODEV;
1486
1487	switch (string_set) {
1488	case ETH_SS_STATS:
1489		return NETVSC_GLOBAL_STATS_LEN
1490			+ NETVSC_VF_STATS_LEN
1491			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1492			+ NETVSC_PCPU_STATS_LEN;
1493	default:
1494		return -EINVAL;
1495	}
1496}
1497
1498static void netvsc_get_ethtool_stats(struct net_device *dev,
1499				     struct ethtool_stats *stats, u64 *data)
1500{
1501	struct net_device_context *ndc = netdev_priv(dev);
1502	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1503	const void *nds = &ndc->eth_stats;
1504	const struct netvsc_stats_tx *tx_stats;
1505	const struct netvsc_stats_rx *rx_stats;
1506	struct netvsc_vf_pcpu_stats sum;
1507	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1508	unsigned int start;
1509	u64 packets, bytes;
1510	u64 xdp_drop;
1511	u64 xdp_redirect;
1512	u64 xdp_tx;
1513	u64 xdp_xmit;
1514	int i, j, cpu;
1515
1516	if (!nvdev)
1517		return;
1518
1519	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1520		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1521
1522	netvsc_get_vf_stats(dev, &sum);
1523	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1524		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1525
1526	for (j = 0; j < nvdev->num_chn; j++) {
1527		tx_stats = &nvdev->chan_table[j].tx_stats;
1528
1529		do {
1530			start = u64_stats_fetch_begin(&tx_stats->syncp);
1531			packets = tx_stats->packets;
1532			bytes = tx_stats->bytes;
1533			xdp_xmit = tx_stats->xdp_xmit;
1534		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1535		data[i++] = packets;
1536		data[i++] = bytes;
1537		data[i++] = xdp_xmit;
1538
1539		rx_stats = &nvdev->chan_table[j].rx_stats;
1540		do {
1541			start = u64_stats_fetch_begin(&rx_stats->syncp);
1542			packets = rx_stats->packets;
1543			bytes = rx_stats->bytes;
1544			xdp_drop = rx_stats->xdp_drop;
1545			xdp_redirect = rx_stats->xdp_redirect;
1546			xdp_tx = rx_stats->xdp_tx;
1547		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1548		data[i++] = packets;
1549		data[i++] = bytes;
1550		data[i++] = xdp_drop;
1551		data[i++] = xdp_redirect;
1552		data[i++] = xdp_tx;
1553	}
1554
1555	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1556				  sizeof(struct netvsc_ethtool_pcpu_stats),
1557				  GFP_KERNEL);
1558	if (!pcpu_sum)
1559		return;
1560
1561	netvsc_get_pcpu_stats(dev, pcpu_sum);
1562	for_each_present_cpu(cpu) {
1563		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1564
1565		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1566			data[i++] = *(u64 *)((void *)this_sum
1567					     + pcpu_stats[j].offset);
1568	}
1569	kvfree(pcpu_sum);
1570}
1571
1572static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1573{
1574	struct net_device_context *ndc = netdev_priv(dev);
1575	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1576	u8 *p = data;
1577	int i, cpu;
1578
1579	if (!nvdev)
1580		return;
1581
1582	switch (stringset) {
1583	case ETH_SS_STATS:
1584		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1585			ethtool_sprintf(&p, netvsc_stats[i].name);
1586
1587		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1588			ethtool_sprintf(&p, vf_stats[i].name);
1589
1590		for (i = 0; i < nvdev->num_chn; i++) {
1591			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1592			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1593			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1594			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1595			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1596			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1597			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1598			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1599		}
1600
1601		for_each_present_cpu(cpu) {
1602			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1603				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1604		}
1605
1606		break;
1607	}
1608}
1609
1610static int
1611netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1612			 struct ethtool_rxnfc *info)
1613{
1614	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1615
1616	info->data = RXH_IP_SRC | RXH_IP_DST;
1617
1618	switch (info->flow_type) {
1619	case TCP_V4_FLOW:
1620		if (ndc->l4_hash & HV_TCP4_L4HASH)
1621			info->data |= l4_flag;
1622
1623		break;
1624
1625	case TCP_V6_FLOW:
1626		if (ndc->l4_hash & HV_TCP6_L4HASH)
1627			info->data |= l4_flag;
1628
1629		break;
1630
1631	case UDP_V4_FLOW:
1632		if (ndc->l4_hash & HV_UDP4_L4HASH)
1633			info->data |= l4_flag;
1634
1635		break;
1636
1637	case UDP_V6_FLOW:
1638		if (ndc->l4_hash & HV_UDP6_L4HASH)
1639			info->data |= l4_flag;
1640
1641		break;
1642
1643	case IPV4_FLOW:
1644	case IPV6_FLOW:
1645		break;
1646	default:
1647		info->data = 0;
1648		break;
1649	}
1650
1651	return 0;
1652}
1653
1654static int
1655netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1656		 u32 *rules)
1657{
1658	struct net_device_context *ndc = netdev_priv(dev);
1659	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1660
1661	if (!nvdev)
1662		return -ENODEV;
1663
1664	switch (info->cmd) {
1665	case ETHTOOL_GRXRINGS:
1666		info->data = nvdev->num_chn;
1667		return 0;
1668
1669	case ETHTOOL_GRXFH:
1670		return netvsc_get_rss_hash_opts(ndc, info);
1671	}
1672	return -EOPNOTSUPP;
1673}
1674
1675static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1676				    struct ethtool_rxnfc *info)
1677{
1678	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1679			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1680		switch (info->flow_type) {
1681		case TCP_V4_FLOW:
1682			ndc->l4_hash |= HV_TCP4_L4HASH;
1683			break;
1684
1685		case TCP_V6_FLOW:
1686			ndc->l4_hash |= HV_TCP6_L4HASH;
1687			break;
1688
1689		case UDP_V4_FLOW:
1690			ndc->l4_hash |= HV_UDP4_L4HASH;
1691			break;
1692
1693		case UDP_V6_FLOW:
1694			ndc->l4_hash |= HV_UDP6_L4HASH;
1695			break;
1696
1697		default:
1698			return -EOPNOTSUPP;
1699		}
1700
1701		return 0;
1702	}
1703
1704	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1705		switch (info->flow_type) {
1706		case TCP_V4_FLOW:
1707			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1708			break;
1709
1710		case TCP_V6_FLOW:
1711			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1712			break;
1713
1714		case UDP_V4_FLOW:
1715			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1716			break;
1717
1718		case UDP_V6_FLOW:
1719			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1720			break;
1721
1722		default:
1723			return -EOPNOTSUPP;
1724		}
1725
1726		return 0;
1727	}
1728
1729	return -EOPNOTSUPP;
1730}
1731
1732static int
1733netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1734{
1735	struct net_device_context *ndc = netdev_priv(ndev);
1736
1737	if (info->cmd == ETHTOOL_SRXFH)
1738		return netvsc_set_rss_hash_opts(ndc, info);
1739
1740	return -EOPNOTSUPP;
1741}
1742
1743static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1744{
1745	return NETVSC_HASH_KEYLEN;
1746}
1747
1748static u32 netvsc_rss_indir_size(struct net_device *dev)
1749{
1750	return ITAB_NUM;
 
 
1751}
1752
1753static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1754			   u8 *hfunc)
1755{
1756	struct net_device_context *ndc = netdev_priv(dev);
1757	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1758	struct rndis_device *rndis_dev;
1759	int i;
1760
1761	if (!ndev)
1762		return -ENODEV;
1763
1764	if (hfunc)
1765		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1766
1767	rndis_dev = ndev->extension;
1768	if (indir) {
1769		for (i = 0; i < ITAB_NUM; i++)
1770			indir[i] = ndc->rx_table[i];
1771	}
1772
1773	if (key)
1774		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1775
1776	return 0;
1777}
1778
1779static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1780			   const u8 *key, const u8 hfunc)
 
1781{
1782	struct net_device_context *ndc = netdev_priv(dev);
1783	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1784	struct rndis_device *rndis_dev;
 
1785	int i;
1786
1787	if (!ndev)
1788		return -ENODEV;
1789
1790	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
 
1791		return -EOPNOTSUPP;
1792
1793	rndis_dev = ndev->extension;
1794	if (indir) {
1795		for (i = 0; i < ITAB_NUM; i++)
1796			if (indir[i] >= ndev->num_chn)
1797				return -EINVAL;
1798
1799		for (i = 0; i < ITAB_NUM; i++)
1800			ndc->rx_table[i] = indir[i];
1801	}
1802
1803	if (!key) {
1804		if (!indir)
1805			return 0;
1806
1807		key = rndis_dev->rss_key;
1808	}
1809
1810	return rndis_filter_set_rss_param(rndis_dev, key);
1811}
1812
1813/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1814 * It does have pre-allocated receive area which is divided into sections.
1815 */
1816static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1817				   struct ethtool_ringparam *ring)
1818{
1819	u32 max_buf_size;
1820
1821	ring->rx_pending = nvdev->recv_section_cnt;
1822	ring->tx_pending = nvdev->send_section_cnt;
1823
1824	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1825		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1826	else
1827		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1828
1829	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1830	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1831		/ nvdev->send_section_size;
1832}
1833
1834static void netvsc_get_ringparam(struct net_device *ndev,
1835				 struct ethtool_ringparam *ring,
1836				 struct kernel_ethtool_ringparam *kernel_ring,
1837				 struct netlink_ext_ack *extack)
1838{
1839	struct net_device_context *ndevctx = netdev_priv(ndev);
1840	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1841
1842	if (!nvdev)
1843		return;
1844
1845	__netvsc_get_ringparam(nvdev, ring);
1846}
1847
1848static int netvsc_set_ringparam(struct net_device *ndev,
1849				struct ethtool_ringparam *ring,
1850				struct kernel_ethtool_ringparam *kernel_ring,
1851				struct netlink_ext_ack *extack)
1852{
1853	struct net_device_context *ndevctx = netdev_priv(ndev);
1854	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1855	struct netvsc_device_info *device_info;
1856	struct ethtool_ringparam orig;
1857	u32 new_tx, new_rx;
1858	int ret = 0;
1859
1860	if (!nvdev || nvdev->destroy)
1861		return -ENODEV;
1862
1863	memset(&orig, 0, sizeof(orig));
1864	__netvsc_get_ringparam(nvdev, &orig);
1865
1866	new_tx = clamp_t(u32, ring->tx_pending,
1867			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1868	new_rx = clamp_t(u32, ring->rx_pending,
1869			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1870
1871	if (new_tx == orig.tx_pending &&
1872	    new_rx == orig.rx_pending)
1873		return 0;	 /* no change */
1874
1875	device_info = netvsc_devinfo_get(nvdev);
1876
1877	if (!device_info)
1878		return -ENOMEM;
1879
1880	device_info->send_sections = new_tx;
1881	device_info->recv_sections = new_rx;
1882
1883	ret = netvsc_detach(ndev, nvdev);
1884	if (ret)
1885		goto out;
1886
1887	ret = netvsc_attach(ndev, device_info);
1888	if (ret) {
1889		device_info->send_sections = orig.tx_pending;
1890		device_info->recv_sections = orig.rx_pending;
1891
1892		if (netvsc_attach(ndev, device_info))
1893			netdev_err(ndev, "restoring ringparam failed");
1894	}
1895
1896out:
1897	netvsc_devinfo_put(device_info);
1898	return ret;
1899}
1900
1901static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1902					     netdev_features_t features)
1903{
1904	struct net_device_context *ndevctx = netdev_priv(ndev);
1905	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1906
1907	if (!nvdev || nvdev->destroy)
1908		return features;
1909
1910	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1911		features ^= NETIF_F_LRO;
1912		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1913	}
1914
1915	return features;
1916}
1917
1918static int netvsc_set_features(struct net_device *ndev,
1919			       netdev_features_t features)
1920{
1921	netdev_features_t change = features ^ ndev->features;
1922	struct net_device_context *ndevctx = netdev_priv(ndev);
1923	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1924	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1925	struct ndis_offload_params offloads;
1926	int ret = 0;
1927
1928	if (!nvdev || nvdev->destroy)
1929		return -ENODEV;
1930
1931	if (!(change & NETIF_F_LRO))
1932		goto syncvf;
1933
1934	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1935
1936	if (features & NETIF_F_LRO) {
1937		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1938		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1939	} else {
1940		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1941		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1942	}
1943
1944	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1945
1946	if (ret) {
1947		features ^= NETIF_F_LRO;
1948		ndev->features = features;
1949	}
1950
1951syncvf:
1952	if (!vf_netdev)
1953		return ret;
1954
1955	vf_netdev->wanted_features = features;
1956	netdev_update_features(vf_netdev);
1957
1958	return ret;
1959}
1960
1961static int netvsc_get_regs_len(struct net_device *netdev)
1962{
1963	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1964}
1965
1966static void netvsc_get_regs(struct net_device *netdev,
1967			    struct ethtool_regs *regs, void *p)
1968{
1969	struct net_device_context *ndc = netdev_priv(netdev);
1970	u32 *regs_buff = p;
1971
1972	/* increase the version, if buffer format is changed. */
1973	regs->version = 1;
1974
1975	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1976}
1977
1978static u32 netvsc_get_msglevel(struct net_device *ndev)
1979{
1980	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1981
1982	return ndev_ctx->msg_enable;
1983}
1984
1985static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1986{
1987	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1988
1989	ndev_ctx->msg_enable = val;
1990}
1991
1992static const struct ethtool_ops ethtool_ops = {
1993	.get_drvinfo	= netvsc_get_drvinfo,
1994	.get_regs_len	= netvsc_get_regs_len,
1995	.get_regs	= netvsc_get_regs,
1996	.get_msglevel	= netvsc_get_msglevel,
1997	.set_msglevel	= netvsc_set_msglevel,
1998	.get_link	= ethtool_op_get_link,
1999	.get_ethtool_stats = netvsc_get_ethtool_stats,
2000	.get_sset_count = netvsc_get_sset_count,
2001	.get_strings	= netvsc_get_strings,
2002	.get_channels   = netvsc_get_channels,
2003	.set_channels   = netvsc_set_channels,
2004	.get_ts_info	= ethtool_op_get_ts_info,
2005	.get_rxnfc	= netvsc_get_rxnfc,
2006	.set_rxnfc	= netvsc_set_rxnfc,
2007	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2008	.get_rxfh_indir_size = netvsc_rss_indir_size,
2009	.get_rxfh	= netvsc_get_rxfh,
2010	.set_rxfh	= netvsc_set_rxfh,
2011	.get_link_ksettings = netvsc_get_link_ksettings,
2012	.set_link_ksettings = netvsc_set_link_ksettings,
2013	.get_ringparam	= netvsc_get_ringparam,
2014	.set_ringparam	= netvsc_set_ringparam,
2015};
2016
2017static const struct net_device_ops device_ops = {
2018	.ndo_open =			netvsc_open,
2019	.ndo_stop =			netvsc_close,
2020	.ndo_start_xmit =		netvsc_start_xmit,
2021	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2022	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2023	.ndo_fix_features =		netvsc_fix_features,
2024	.ndo_set_features =		netvsc_set_features,
2025	.ndo_change_mtu =		netvsc_change_mtu,
2026	.ndo_validate_addr =		eth_validate_addr,
2027	.ndo_set_mac_address =		netvsc_set_mac_addr,
2028	.ndo_select_queue =		netvsc_select_queue,
2029	.ndo_get_stats64 =		netvsc_get_stats64,
2030	.ndo_bpf =			netvsc_bpf,
2031	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
2032};
2033
2034/*
2035 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2036 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2037 * present send GARP packet to network peers with netif_notify_peers().
2038 */
2039static void netvsc_link_change(struct work_struct *w)
2040{
2041	struct net_device_context *ndev_ctx =
2042		container_of(w, struct net_device_context, dwork.work);
2043	struct hv_device *device_obj = ndev_ctx->device_ctx;
2044	struct net_device *net = hv_get_drvdata(device_obj);
2045	unsigned long flags, next_reconfig, delay;
2046	struct netvsc_reconfig *event = NULL;
2047	struct netvsc_device *net_device;
2048	struct rndis_device *rdev;
2049	bool reschedule = false;
2050
2051	/* if changes are happening, comeback later */
2052	if (!rtnl_trylock()) {
2053		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2054		return;
2055	}
2056
2057	net_device = rtnl_dereference(ndev_ctx->nvdev);
2058	if (!net_device)
2059		goto out_unlock;
2060
2061	rdev = net_device->extension;
2062
2063	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2064	if (time_is_after_jiffies(next_reconfig)) {
2065		/* link_watch only sends one notification with current state
2066		 * per second, avoid doing reconfig more frequently. Handle
2067		 * wrap around.
2068		 */
2069		delay = next_reconfig - jiffies;
2070		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2071		schedule_delayed_work(&ndev_ctx->dwork, delay);
2072		goto out_unlock;
2073	}
2074	ndev_ctx->last_reconfig = jiffies;
2075
2076	spin_lock_irqsave(&ndev_ctx->lock, flags);
2077	if (!list_empty(&ndev_ctx->reconfig_events)) {
2078		event = list_first_entry(&ndev_ctx->reconfig_events,
2079					 struct netvsc_reconfig, list);
2080		list_del(&event->list);
2081		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2082	}
2083	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2084
2085	if (!event)
2086		goto out_unlock;
2087
2088	switch (event->event) {
2089		/* Only the following events are possible due to the check in
2090		 * netvsc_linkstatus_callback()
2091		 */
2092	case RNDIS_STATUS_MEDIA_CONNECT:
2093		if (rdev->link_state) {
2094			rdev->link_state = false;
2095			netif_carrier_on(net);
2096			netvsc_tx_enable(net_device, net);
2097		} else {
2098			__netdev_notify_peers(net);
2099		}
2100		kfree(event);
2101		break;
2102	case RNDIS_STATUS_MEDIA_DISCONNECT:
2103		if (!rdev->link_state) {
2104			rdev->link_state = true;
2105			netif_carrier_off(net);
2106			netvsc_tx_disable(net_device, net);
2107		}
2108		kfree(event);
2109		break;
2110	case RNDIS_STATUS_NETWORK_CHANGE:
2111		/* Only makes sense if carrier is present */
2112		if (!rdev->link_state) {
2113			rdev->link_state = true;
2114			netif_carrier_off(net);
2115			netvsc_tx_disable(net_device, net);
2116			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2117			spin_lock_irqsave(&ndev_ctx->lock, flags);
2118			list_add(&event->list, &ndev_ctx->reconfig_events);
2119			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2120			reschedule = true;
2121		}
2122		break;
2123	}
2124
2125	rtnl_unlock();
2126
2127	/* link_watch only sends one notification with current state per
2128	 * second, handle next reconfig event in 2 seconds.
2129	 */
2130	if (reschedule)
2131		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2132
2133	return;
2134
2135out_unlock:
2136	rtnl_unlock();
2137}
2138
2139static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2140{
2141	struct net_device_context *net_device_ctx;
2142	struct net_device *dev;
2143
2144	dev = netdev_master_upper_dev_get(vf_netdev);
2145	if (!dev || dev->netdev_ops != &device_ops)
2146		return NULL;	/* not a netvsc device */
2147
2148	net_device_ctx = netdev_priv(dev);
2149	if (!rtnl_dereference(net_device_ctx->nvdev))
2150		return NULL;	/* device is removed */
2151
2152	return dev;
2153}
2154
2155/* Called when VF is injecting data into network stack.
2156 * Change the associated network device from VF to netvsc.
2157 * note: already called with rcu_read_lock
2158 */
2159static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2160{
2161	struct sk_buff *skb = *pskb;
2162	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2163	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2164	struct netvsc_vf_pcpu_stats *pcpu_stats
2165		 = this_cpu_ptr(ndev_ctx->vf_stats);
2166
2167	skb = skb_share_check(skb, GFP_ATOMIC);
2168	if (unlikely(!skb))
2169		return RX_HANDLER_CONSUMED;
2170
2171	*pskb = skb;
2172
2173	skb->dev = ndev;
2174
2175	u64_stats_update_begin(&pcpu_stats->syncp);
2176	pcpu_stats->rx_packets++;
2177	pcpu_stats->rx_bytes += skb->len;
2178	u64_stats_update_end(&pcpu_stats->syncp);
2179
2180	return RX_HANDLER_ANOTHER;
2181}
2182
2183static int netvsc_vf_join(struct net_device *vf_netdev,
2184			  struct net_device *ndev)
2185{
2186	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2187	int ret;
2188
2189	ret = netdev_rx_handler_register(vf_netdev,
2190					 netvsc_vf_handle_frame, ndev);
2191	if (ret != 0) {
2192		netdev_err(vf_netdev,
2193			   "can not register netvsc VF receive handler (err = %d)\n",
2194			   ret);
2195		goto rx_handler_failed;
2196	}
2197
2198	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2199					   NULL, NULL, NULL);
2200	if (ret != 0) {
2201		netdev_err(vf_netdev,
2202			   "can not set master device %s (err = %d)\n",
2203			   ndev->name, ret);
2204		goto upper_link_failed;
2205	}
2206
2207	/* set slave flag before open to prevent IPv6 addrconf */
2208	vf_netdev->flags |= IFF_SLAVE;
2209
2210	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
 
2211
2212	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2213
2214	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2215	return 0;
2216
2217upper_link_failed:
2218	netdev_rx_handler_unregister(vf_netdev);
2219rx_handler_failed:
2220	return ret;
2221}
2222
2223static void __netvsc_vf_setup(struct net_device *ndev,
2224			      struct net_device *vf_netdev)
2225{
2226	int ret;
2227
2228	/* Align MTU of VF with master */
2229	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2230	if (ret)
2231		netdev_warn(vf_netdev,
2232			    "unable to change mtu to %u\n", ndev->mtu);
2233
2234	/* set multicast etc flags on VF */
2235	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2236
2237	/* sync address list from ndev to VF */
2238	netif_addr_lock_bh(ndev);
2239	dev_uc_sync(vf_netdev, ndev);
2240	dev_mc_sync(vf_netdev, ndev);
2241	netif_addr_unlock_bh(ndev);
2242
2243	if (netif_running(ndev)) {
2244		ret = dev_open(vf_netdev, NULL);
2245		if (ret)
2246			netdev_warn(vf_netdev,
2247				    "unable to open: %d\n", ret);
2248	}
2249}
2250
2251/* Setup VF as slave of the synthetic device.
2252 * Runs in workqueue to avoid recursion in netlink callbacks.
2253 */
2254static void netvsc_vf_setup(struct work_struct *w)
2255{
2256	struct net_device_context *ndev_ctx
2257		= container_of(w, struct net_device_context, vf_takeover.work);
2258	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2259	struct net_device *vf_netdev;
2260
2261	if (!rtnl_trylock()) {
2262		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2263		return;
2264	}
2265
2266	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2267	if (vf_netdev)
2268		__netvsc_vf_setup(ndev, vf_netdev);
2269
2270	rtnl_unlock();
2271}
2272
2273/* Find netvsc by VF serial number.
2274 * The PCI hyperv controller records the serial number as the slot kobj name.
2275 */
2276static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2277{
2278	struct device *parent = vf_netdev->dev.parent;
2279	struct net_device_context *ndev_ctx;
2280	struct net_device *ndev;
2281	struct pci_dev *pdev;
2282	u32 serial;
2283
2284	if (!parent || !dev_is_pci(parent))
2285		return NULL; /* not a PCI device */
2286
2287	pdev = to_pci_dev(parent);
2288	if (!pdev->slot) {
2289		netdev_notice(vf_netdev, "no PCI slot information\n");
2290		return NULL;
2291	}
2292
2293	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2294		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2295			      pci_slot_name(pdev->slot));
2296		return NULL;
2297	}
2298
2299	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2300		if (!ndev_ctx->vf_alloc)
2301			continue;
2302
2303		if (ndev_ctx->vf_serial != serial)
2304			continue;
2305
2306		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2307		if (ndev->addr_len != vf_netdev->addr_len ||
2308		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2309			   ndev->addr_len) != 0)
2310			continue;
2311
2312		return ndev;
2313
2314	}
2315
2316	/* Fallback path to check synthetic vf with
2317	 * help of mac addr
 
 
 
 
2318	 */
2319	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2321		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr)) {
2322			netdev_notice(vf_netdev,
2323				      "falling back to mac addr based matching\n");
2324			return ndev;
2325		}
2326	}
2327
2328	netdev_notice(vf_netdev,
2329		      "no netdev found for vf serial:%u\n", serial);
2330	return NULL;
2331}
2332
2333static int netvsc_register_vf(struct net_device *vf_netdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
2334{
2335	struct net_device_context *net_device_ctx;
2336	struct netvsc_device *netvsc_dev;
2337	struct bpf_prog *prog;
2338	struct net_device *ndev;
2339	int ret;
2340
2341	if (vf_netdev->addr_len != ETH_ALEN)
2342		return NOTIFY_DONE;
2343
2344	ndev = get_netvsc_byslot(vf_netdev);
2345	if (!ndev)
2346		return NOTIFY_DONE;
2347
2348	net_device_ctx = netdev_priv(ndev);
2349	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2350	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2351		return NOTIFY_DONE;
2352
2353	/* if synthetic interface is a different namespace,
2354	 * then move the VF to that namespace; join will be
2355	 * done again in that context.
2356	 */
2357	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2358		ret = dev_change_net_namespace(vf_netdev,
2359					       dev_net(ndev), "eth%d");
2360		if (ret)
2361			netdev_err(vf_netdev,
2362				   "could not move to same namespace as %s: %d\n",
2363				   ndev->name, ret);
2364		else
2365			netdev_info(vf_netdev,
2366				    "VF moved to namespace with: %s\n",
2367				    ndev->name);
2368		return NOTIFY_DONE;
2369	}
2370
2371	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2372
2373	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2374		return NOTIFY_DONE;
2375
2376	dev_hold(vf_netdev);
2377	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2378
2379	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2380		ndev->needed_headroom = vf_netdev->needed_headroom;
2381
2382	vf_netdev->wanted_features = ndev->features;
2383	netdev_update_features(vf_netdev);
2384
2385	prog = netvsc_xdp_get(netvsc_dev);
2386	netvsc_vf_setxdp(vf_netdev, prog);
2387
2388	return NOTIFY_OK;
2389}
2390
2391/* Change the data path when VF UP/DOWN/CHANGE are detected.
2392 *
2393 * Typically a UP or DOWN event is followed by a CHANGE event, so
2394 * net_device_ctx->data_path_is_vf is used to cache the current data path
2395 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2396 * message.
2397 *
2398 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2399 * interface, there is only the CHANGE event and no UP or DOWN event.
2400 */
2401static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2402{
2403	struct net_device_context *net_device_ctx;
2404	struct netvsc_device *netvsc_dev;
2405	struct net_device *ndev;
2406	bool vf_is_up = false;
2407	int ret;
2408
2409	if (event != NETDEV_GOING_DOWN)
2410		vf_is_up = netif_running(vf_netdev);
2411
2412	ndev = get_netvsc_byref(vf_netdev);
2413	if (!ndev)
2414		return NOTIFY_DONE;
2415
2416	net_device_ctx = netdev_priv(ndev);
2417	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2418	if (!netvsc_dev)
2419		return NOTIFY_DONE;
2420
2421	if (net_device_ctx->data_path_is_vf == vf_is_up)
2422		return NOTIFY_OK;
2423
2424	if (vf_is_up && !net_device_ctx->vf_alloc) {
2425		netdev_info(ndev, "Waiting for the VF association from host\n");
2426		wait_for_completion(&net_device_ctx->vf_add);
2427	}
2428
2429	ret = netvsc_switch_datapath(ndev, vf_is_up);
2430
2431	if (ret) {
2432		netdev_err(ndev,
2433			   "Data path failed to switch %s VF: %s, err: %d\n",
2434			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2435		return NOTIFY_DONE;
2436	} else {
2437		netdev_info(ndev, "Data path switched %s VF: %s\n",
2438			    vf_is_up ? "to" : "from", vf_netdev->name);
2439	}
2440
2441	return NOTIFY_OK;
2442}
2443
2444static int netvsc_unregister_vf(struct net_device *vf_netdev)
2445{
2446	struct net_device *ndev;
2447	struct net_device_context *net_device_ctx;
2448
2449	ndev = get_netvsc_byref(vf_netdev);
2450	if (!ndev)
2451		return NOTIFY_DONE;
2452
2453	net_device_ctx = netdev_priv(ndev);
2454	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2455
2456	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2457
2458	netvsc_vf_setxdp(vf_netdev, NULL);
2459
2460	reinit_completion(&net_device_ctx->vf_add);
2461	netdev_rx_handler_unregister(vf_netdev);
2462	netdev_upper_dev_unlink(vf_netdev, ndev);
2463	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2464	dev_put(vf_netdev);
2465
2466	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2467
2468	return NOTIFY_OK;
2469}
2470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2471static int netvsc_probe(struct hv_device *dev,
2472			const struct hv_vmbus_device_id *dev_id)
2473{
2474	struct net_device *net = NULL;
2475	struct net_device_context *net_device_ctx;
2476	struct netvsc_device_info *device_info = NULL;
2477	struct netvsc_device *nvdev;
2478	int ret = -ENOMEM;
2479
2480	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2481				VRSS_CHANNEL_MAX);
2482	if (!net)
2483		goto no_net;
2484
2485	netif_carrier_off(net);
2486
2487	netvsc_init_settings(net);
2488
2489	net_device_ctx = netdev_priv(net);
2490	net_device_ctx->device_ctx = dev;
2491	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2492	if (netif_msg_probe(net_device_ctx))
2493		netdev_dbg(net, "netvsc msg_enable: %d\n",
2494			   net_device_ctx->msg_enable);
2495
2496	hv_set_drvdata(dev, net);
2497
2498	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2499
2500	init_completion(&net_device_ctx->vf_add);
2501	spin_lock_init(&net_device_ctx->lock);
2502	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2503	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2504
2505	net_device_ctx->vf_stats
2506		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2507	if (!net_device_ctx->vf_stats)
2508		goto no_stats;
2509
2510	net->netdev_ops = &device_ops;
2511	net->ethtool_ops = &ethtool_ops;
2512	SET_NETDEV_DEV(net, &dev->device);
2513	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2514
2515	/* We always need headroom for rndis header */
2516	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518	/* Initialize the number of queues to be 1, we may change it if more
2519	 * channels are offered later.
2520	 */
2521	netif_set_real_num_tx_queues(net, 1);
2522	netif_set_real_num_rx_queues(net, 1);
2523
2524	/* Notify the netvsc driver of the new device */
2525	device_info = netvsc_devinfo_get(NULL);
2526
2527	if (!device_info) {
2528		ret = -ENOMEM;
2529		goto devinfo_failed;
2530	}
2531
2532	nvdev = rndis_filter_device_add(dev, device_info);
2533	if (IS_ERR(nvdev)) {
2534		ret = PTR_ERR(nvdev);
2535		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536		goto rndis_failed;
2537	}
2538
2539	eth_hw_addr_set(net, device_info->mac_adr);
2540
2541	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2542	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543	 * all subchannels to show up, but that may not happen because
2544	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546	 * the device lock, so all the subchannels can't be processed --
2547	 * finally netvsc_subchan_work() hangs forever.
 
 
 
 
 
2548	 */
2549	rtnl_lock();
2550
 
 
 
 
 
 
 
 
 
2551	if (nvdev->num_chn > 1)
2552		schedule_work(&nvdev->subchan_work);
2553
2554	/* hw_features computed in rndis_netdev_set_hwcaps() */
2555	net->features = net->hw_features |
2556		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557		NETIF_F_HW_VLAN_CTAG_RX;
2558	net->vlan_features = net->features;
2559
2560	netdev_lockdep_set_classes(net);
2561
 
 
 
2562	/* MTU range: 68 - 1500 or 65521 */
2563	net->min_mtu = NETVSC_MTU_MIN;
2564	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566	else
2567		net->max_mtu = ETH_DATA_LEN;
2568
2569	nvdev->tx_disable = false;
2570
2571	ret = register_netdevice(net);
2572	if (ret != 0) {
2573		pr_err("Unable to register netdev.\n");
2574		goto register_failed;
2575	}
2576
2577	list_add(&net_device_ctx->list, &netvsc_dev_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578	rtnl_unlock();
2579
2580	netvsc_devinfo_put(device_info);
2581	return 0;
2582
2583register_failed:
2584	rtnl_unlock();
2585	rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
 
2587	netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589	free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591	hv_set_drvdata(dev, NULL);
2592	free_netdev(net);
2593no_net:
2594	return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
2599	struct net_device_context *ndev_ctx;
2600	struct net_device *vf_netdev, *net;
2601	struct netvsc_device *nvdev;
2602
2603	net = hv_get_drvdata(dev);
2604	if (net == NULL) {
2605		dev_err(&dev->device, "No net device to remove\n");
2606		return 0;
2607	}
2608
2609	ndev_ctx = netdev_priv(net);
2610
2611	cancel_delayed_work_sync(&ndev_ctx->dwork);
2612
2613	rtnl_lock();
2614	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615	if (nvdev) {
2616		cancel_work_sync(&nvdev->subchan_work);
2617		netvsc_xdp_set(net, NULL, NULL, nvdev);
2618	}
2619
2620	/*
2621	 * Call to the vsc driver to let it know that the device is being
2622	 * removed. Also blocks mtu and channel changes.
2623	 */
2624	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625	if (vf_netdev)
2626		netvsc_unregister_vf(vf_netdev);
2627
2628	if (nvdev)
2629		rndis_filter_device_remove(dev, nvdev);
2630
2631	unregister_netdevice(net);
2632	list_del(&ndev_ctx->list);
2633
2634	rtnl_unlock();
2635
2636	hv_set_drvdata(dev, NULL);
2637
2638	free_percpu(ndev_ctx->vf_stats);
2639	free_netdev(net);
2640	return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645	struct net_device_context *ndev_ctx;
2646	struct netvsc_device *nvdev;
2647	struct net_device *net;
2648	int ret;
2649
2650	net = hv_get_drvdata(dev);
2651
2652	ndev_ctx = netdev_priv(net);
2653	cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655	rtnl_lock();
2656
2657	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658	if (nvdev == NULL) {
2659		ret = -ENODEV;
2660		goto out;
2661	}
2662
2663	/* Save the current config info */
2664	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665	if (!ndev_ctx->saved_netvsc_dev_info) {
2666		ret = -ENOMEM;
2667		goto out;
2668	}
2669	ret = netvsc_detach(net, nvdev);
2670out:
2671	rtnl_unlock();
2672
2673	return ret;
2674}
2675
2676static int netvsc_resume(struct hv_device *dev)
2677{
2678	struct net_device *net = hv_get_drvdata(dev);
2679	struct net_device_context *net_device_ctx;
2680	struct netvsc_device_info *device_info;
2681	int ret;
2682
2683	rtnl_lock();
2684
2685	net_device_ctx = netdev_priv(net);
2686
2687	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2688	 * channel. Later netvsc_netdev_event() will switch the data path to
2689	 * the VF upon the UP or CHANGE event.
2690	 */
2691	net_device_ctx->data_path_is_vf = false;
2692	device_info = net_device_ctx->saved_netvsc_dev_info;
2693
2694	ret = netvsc_attach(net, device_info);
2695
2696	netvsc_devinfo_put(device_info);
2697	net_device_ctx->saved_netvsc_dev_info = NULL;
2698
2699	rtnl_unlock();
2700
2701	return ret;
2702}
2703static const struct hv_vmbus_device_id id_table[] = {
2704	/* Network guid */
2705	{ HV_NIC_GUID, },
2706	{ },
2707};
2708
2709MODULE_DEVICE_TABLE(vmbus, id_table);
2710
2711/* The one and only one */
2712static struct  hv_driver netvsc_drv = {
2713	.name = KBUILD_MODNAME,
2714	.id_table = id_table,
2715	.probe = netvsc_probe,
2716	.remove = netvsc_remove,
2717	.suspend = netvsc_suspend,
2718	.resume = netvsc_resume,
2719	.driver = {
2720		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2721	},
2722};
2723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724/*
2725 * On Hyper-V, every VF interface is matched with a corresponding
2726 * synthetic interface. The synthetic interface is presented first
2727 * to the guest. When the corresponding VF instance is registered,
2728 * we will take care of switching the data path.
2729 */
2730static int netvsc_netdev_event(struct notifier_block *this,
2731			       unsigned long event, void *ptr)
2732{
2733	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
 
2734
2735	/* Skip our own events */
2736	if (event_dev->netdev_ops == &device_ops)
2737		return NOTIFY_DONE;
 
2738
2739	/* Avoid non-Ethernet type devices */
2740	if (event_dev->type != ARPHRD_ETHER)
2741		return NOTIFY_DONE;
2742
2743	/* Avoid Vlan dev with same MAC registering as VF */
2744	if (is_vlan_dev(event_dev))
2745		return NOTIFY_DONE;
2746
2747	/* Avoid Bonding master dev with same MAC registering as VF */
2748	if (netif_is_bond_master(event_dev))
2749		return NOTIFY_DONE;
2750
2751	switch (event) {
 
 
2752	case NETDEV_REGISTER:
2753		return netvsc_register_vf(event_dev);
2754	case NETDEV_UNREGISTER:
2755		return netvsc_unregister_vf(event_dev);
2756	case NETDEV_UP:
2757	case NETDEV_DOWN:
2758	case NETDEV_CHANGE:
2759	case NETDEV_GOING_DOWN:
2760		return netvsc_vf_changed(event_dev, event);
2761	default:
2762		return NOTIFY_DONE;
2763	}
2764}
2765
2766static struct notifier_block netvsc_netdev_notifier = {
2767	.notifier_call = netvsc_netdev_event,
2768};
2769
2770static void __exit netvsc_drv_exit(void)
2771{
2772	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2773	vmbus_driver_unregister(&netvsc_drv);
2774}
2775
2776static int __init netvsc_drv_init(void)
2777{
2778	int ret;
2779
2780	if (ring_size < RING_SIZE_MIN) {
2781		ring_size = RING_SIZE_MIN;
2782		pr_info("Increased ring_size to %u (min allowed)\n",
2783			ring_size);
2784	}
2785	netvsc_ring_bytes = ring_size * PAGE_SIZE;
 
 
2786
2787	ret = vmbus_driver_register(&netvsc_drv);
2788	if (ret)
2789		return ret;
2790
2791	register_netdevice_notifier(&netvsc_netdev_notifier);
2792	return 0;
 
 
 
 
2793}
2794
2795MODULE_LICENSE("GPL");
2796MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2797
2798module_init(netvsc_drv_init);
2799module_exit(netvsc_drv_exit);