Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
  44
  45/* Macros to define the context of vf registration */
  46#define VF_REG_IN_PROBE		1
  47#define VF_REG_IN_NOTIFIER	2
  48
  49static unsigned int ring_size __ro_after_init = 128;
  50module_param(ring_size, uint, 0444);
  51MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
  52unsigned int netvsc_ring_bytes __ro_after_init;
  53
  54static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  55				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  56				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  57				NETIF_MSG_TX_ERR;
  58
  59static int debug = -1;
  60module_param(debug, int, 0444);
  61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  62
  63static LIST_HEAD(netvsc_dev_list);
  64
  65static void netvsc_change_rx_flags(struct net_device *net, int change)
  66{
  67	struct net_device_context *ndev_ctx = netdev_priv(net);
  68	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  69	int inc;
  70
  71	if (!vf_netdev)
  72		return;
  73
  74	if (change & IFF_PROMISC) {
  75		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  76		dev_set_promiscuity(vf_netdev, inc);
  77	}
  78
  79	if (change & IFF_ALLMULTI) {
  80		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  81		dev_set_allmulti(vf_netdev, inc);
  82	}
  83}
  84
  85static void netvsc_set_rx_mode(struct net_device *net)
  86{
  87	struct net_device_context *ndev_ctx = netdev_priv(net);
  88	struct net_device *vf_netdev;
  89	struct netvsc_device *nvdev;
  90
  91	rcu_read_lock();
  92	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  93	if (vf_netdev) {
  94		dev_uc_sync(vf_netdev, net);
  95		dev_mc_sync(vf_netdev, net);
  96	}
  97
  98	nvdev = rcu_dereference(ndev_ctx->nvdev);
  99	if (nvdev)
 100		rndis_filter_update(nvdev);
 101	rcu_read_unlock();
 102}
 103
 104static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 105			     struct net_device *ndev)
 106{
 107	nvscdev->tx_disable = false;
 108	virt_wmb(); /* ensure queue wake up mechanism is on */
 109
 110	netif_tx_wake_all_queues(ndev);
 111}
 112
 113static int netvsc_open(struct net_device *net)
 114{
 115	struct net_device_context *ndev_ctx = netdev_priv(net);
 116	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 117	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 118	struct rndis_device *rdev;
 119	int ret = 0;
 120
 121	netif_carrier_off(net);
 122
 123	/* Open up the device */
 124	ret = rndis_filter_open(nvdev);
 125	if (ret != 0) {
 126		netdev_err(net, "unable to open device (ret %d).\n", ret);
 127		return ret;
 128	}
 129
 130	rdev = nvdev->extension;
 131	if (!rdev->link_state) {
 132		netif_carrier_on(net);
 133		netvsc_tx_enable(nvdev, net);
 134	}
 135
 136	if (vf_netdev) {
 137		/* Setting synthetic device up transparently sets
 138		 * slave as up. If open fails, then slave will be
 139		 * still be offline (and not used).
 140		 */
 141		ret = dev_open(vf_netdev, NULL);
 142		if (ret)
 143			netdev_warn(net,
 144				    "unable to open slave: %s: %d\n",
 145				    vf_netdev->name, ret);
 146	}
 147	return 0;
 148}
 149
 150static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 151{
 152	unsigned int retry = 0;
 153	int i;
 154
 155	/* Ensure pending bytes in ring are read */
 156	for (;;) {
 157		u32 aread = 0;
 158
 159		for (i = 0; i < nvdev->num_chn; i++) {
 160			struct vmbus_channel *chn
 161				= nvdev->chan_table[i].channel;
 162
 163			if (!chn)
 164				continue;
 165
 166			/* make sure receive not running now */
 167			napi_synchronize(&nvdev->chan_table[i].napi);
 168
 169			aread = hv_get_bytes_to_read(&chn->inbound);
 170			if (aread)
 171				break;
 172
 173			aread = hv_get_bytes_to_read(&chn->outbound);
 174			if (aread)
 175				break;
 176		}
 177
 178		if (aread == 0)
 179			return 0;
 180
 181		if (++retry > RETRY_MAX)
 182			return -ETIMEDOUT;
 183
 184		usleep_range(RETRY_US_LO, RETRY_US_HI);
 185	}
 186}
 187
 188static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 189			      struct net_device *ndev)
 190{
 191	if (nvscdev) {
 192		nvscdev->tx_disable = true;
 193		virt_wmb(); /* ensure txq will not wake up after stop */
 194	}
 195
 196	netif_tx_disable(ndev);
 197}
 198
 199static int netvsc_close(struct net_device *net)
 200{
 201	struct net_device_context *net_device_ctx = netdev_priv(net);
 202	struct net_device *vf_netdev
 203		= rtnl_dereference(net_device_ctx->vf_netdev);
 204	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 205	int ret;
 206
 207	netvsc_tx_disable(nvdev, net);
 208
 209	/* No need to close rndis filter if it is removed already */
 210	if (!nvdev)
 211		return 0;
 212
 213	ret = rndis_filter_close(nvdev);
 214	if (ret != 0) {
 215		netdev_err(net, "unable to close device (ret %d).\n", ret);
 216		return ret;
 217	}
 218
 219	ret = netvsc_wait_until_empty(nvdev);
 220	if (ret)
 221		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 222
 223	if (vf_netdev)
 224		dev_close(vf_netdev);
 225
 226	return ret;
 227}
 228
 229static inline void *init_ppi_data(struct rndis_message *msg,
 230				  u32 ppi_size, u32 pkt_type)
 231{
 232	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 233	struct rndis_per_packet_info *ppi;
 234
 235	rndis_pkt->data_offset += ppi_size;
 236	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 237		+ rndis_pkt->per_pkt_info_len;
 238
 239	ppi->size = ppi_size;
 240	ppi->type = pkt_type;
 241	ppi->internal = 0;
 242	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 243
 244	rndis_pkt->per_pkt_info_len += ppi_size;
 245
 246	return ppi + 1;
 247}
 248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249static inline int netvsc_get_tx_queue(struct net_device *ndev,
 250				      struct sk_buff *skb, int old_idx)
 251{
 252	const struct net_device_context *ndc = netdev_priv(ndev);
 253	struct sock *sk = skb->sk;
 254	int q_idx;
 255
 256	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 257			      (VRSS_SEND_TAB_SIZE - 1)];
 258
 259	/* If queue index changed record the new value */
 260	if (q_idx != old_idx &&
 261	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 262		sk_tx_queue_set(sk, q_idx);
 263
 264	return q_idx;
 265}
 266
 267/*
 268 * Select queue for transmit.
 269 *
 270 * If a valid queue has already been assigned, then use that.
 271 * Otherwise compute tx queue based on hash and the send table.
 272 *
 273 * This is basically similar to default (netdev_pick_tx) with the added step
 274 * of using the host send_table when no other queue has been assigned.
 275 *
 276 * TODO support XPS - but get_xps_queue not exported
 277 */
 278static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 279{
 280	int q_idx = sk_tx_queue_get(skb->sk);
 281
 282	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 283		/* If forwarding a packet, we use the recorded queue when
 284		 * available for better cache locality.
 285		 */
 286		if (skb_rx_queue_recorded(skb))
 287			q_idx = skb_get_rx_queue(skb);
 288		else
 289			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 290	}
 291
 292	return q_idx;
 293}
 294
 295static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 296			       struct net_device *sb_dev)
 297{
 298	struct net_device_context *ndc = netdev_priv(ndev);
 299	struct net_device *vf_netdev;
 300	u16 txq;
 301
 302	rcu_read_lock();
 303	vf_netdev = rcu_dereference(ndc->vf_netdev);
 304	if (vf_netdev) {
 305		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 306
 307		if (vf_ops->ndo_select_queue)
 308			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 309		else
 310			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 311
 312		/* Record the queue selected by VF so that it can be
 313		 * used for common case where VF has more queues than
 314		 * the synthetic device.
 315		 */
 316		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 317	} else {
 318		txq = netvsc_pick_tx(ndev, skb);
 319	}
 320	rcu_read_unlock();
 321
 322	while (txq >= ndev->real_num_tx_queues)
 323		txq -= ndev->real_num_tx_queues;
 324
 325	return txq;
 326}
 327
 328static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 329		       struct hv_page_buffer *pb)
 330{
 331	int j = 0;
 332
 333	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 334	offset = offset & ~HV_HYP_PAGE_MASK;
 335
 336	while (len > 0) {
 337		unsigned long bytes;
 338
 339		bytes = HV_HYP_PAGE_SIZE - offset;
 340		if (bytes > len)
 341			bytes = len;
 342		pb[j].pfn = hvpfn;
 343		pb[j].offset = offset;
 344		pb[j].len = bytes;
 345
 346		offset += bytes;
 347		len -= bytes;
 348
 349		if (offset == HV_HYP_PAGE_SIZE && len) {
 350			hvpfn++;
 351			offset = 0;
 352			j++;
 353		}
 354	}
 355
 356	return j + 1;
 357}
 358
 359static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 360			   struct hv_netvsc_packet *packet,
 361			   struct hv_page_buffer *pb)
 362{
 363	u32 slots_used = 0;
 364	char *data = skb->data;
 365	int frags = skb_shinfo(skb)->nr_frags;
 366	int i;
 367
 368	/* The packet is laid out thus:
 369	 * 1. hdr: RNDIS header and PPI
 370	 * 2. skb linear data
 371	 * 3. skb fragment data
 372	 */
 373	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 374				  offset_in_hvpage(hdr),
 375				  len,
 376				  &pb[slots_used]);
 377
 378	packet->rmsg_size = len;
 379	packet->rmsg_pgcnt = slots_used;
 380
 381	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 382				  offset_in_hvpage(data),
 383				  skb_headlen(skb),
 384				  &pb[slots_used]);
 385
 386	for (i = 0; i < frags; i++) {
 387		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 388
 389		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 390					  skb_frag_off(frag),
 391					  skb_frag_size(frag),
 392					  &pb[slots_used]);
 393	}
 394	return slots_used;
 395}
 396
 397static int count_skb_frag_slots(struct sk_buff *skb)
 398{
 399	int i, frags = skb_shinfo(skb)->nr_frags;
 400	int pages = 0;
 401
 402	for (i = 0; i < frags; i++) {
 403		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 404		unsigned long size = skb_frag_size(frag);
 405		unsigned long offset = skb_frag_off(frag);
 406
 407		/* Skip unused frames from start of page */
 408		offset &= ~HV_HYP_PAGE_MASK;
 409		pages += HVPFN_UP(offset + size);
 410	}
 411	return pages;
 412}
 413
 414static int netvsc_get_slots(struct sk_buff *skb)
 415{
 416	char *data = skb->data;
 417	unsigned int offset = offset_in_hvpage(data);
 418	unsigned int len = skb_headlen(skb);
 419	int slots;
 420	int frag_slots;
 421
 422	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 423	frag_slots = count_skb_frag_slots(skb);
 424	return slots + frag_slots;
 425}
 426
 427static u32 net_checksum_info(struct sk_buff *skb)
 428{
 429	if (skb->protocol == htons(ETH_P_IP)) {
 430		struct iphdr *ip = ip_hdr(skb);
 431
 432		if (ip->protocol == IPPROTO_TCP)
 433			return TRANSPORT_INFO_IPV4_TCP;
 434		else if (ip->protocol == IPPROTO_UDP)
 435			return TRANSPORT_INFO_IPV4_UDP;
 436	} else {
 437		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 438
 439		if (ip6->nexthdr == IPPROTO_TCP)
 440			return TRANSPORT_INFO_IPV6_TCP;
 441		else if (ip6->nexthdr == IPPROTO_UDP)
 442			return TRANSPORT_INFO_IPV6_UDP;
 443	}
 444
 445	return TRANSPORT_INFO_NOT_IP;
 446}
 447
 448/* Send skb on the slave VF device. */
 449static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 450			  struct sk_buff *skb)
 451{
 452	struct net_device_context *ndev_ctx = netdev_priv(net);
 453	unsigned int len = skb->len;
 454	int rc;
 455
 456	skb->dev = vf_netdev;
 457	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 458
 459	rc = dev_queue_xmit(skb);
 460	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 461		struct netvsc_vf_pcpu_stats *pcpu_stats
 462			= this_cpu_ptr(ndev_ctx->vf_stats);
 463
 464		u64_stats_update_begin(&pcpu_stats->syncp);
 465		pcpu_stats->tx_packets++;
 466		pcpu_stats->tx_bytes += len;
 467		u64_stats_update_end(&pcpu_stats->syncp);
 468	} else {
 469		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 470	}
 471
 472	return rc;
 473}
 474
 475static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 476{
 477	struct net_device_context *net_device_ctx = netdev_priv(net);
 478	struct hv_netvsc_packet *packet = NULL;
 479	int ret;
 480	unsigned int num_data_pgs;
 481	struct rndis_message *rndis_msg;
 482	struct net_device *vf_netdev;
 483	u32 rndis_msg_size;
 484	u32 hash;
 485	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 486
 487	/* If VF is present and up then redirect packets to it.
 488	 * Skip the VF if it is marked down or has no carrier.
 489	 * If netpoll is in uses, then VF can not be used either.
 490	 */
 491	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 492	if (vf_netdev && netif_running(vf_netdev) &&
 493	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 494	    net_device_ctx->data_path_is_vf)
 495		return netvsc_vf_xmit(net, vf_netdev, skb);
 496
 497	/* We will atmost need two pages to describe the rndis
 498	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 499	 * of pages in a single packet. If skb is scattered around
 500	 * more pages we try linearizing it.
 501	 */
 502
 503	num_data_pgs = netvsc_get_slots(skb) + 2;
 504
 505	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 506		++net_device_ctx->eth_stats.tx_scattered;
 507
 508		if (skb_linearize(skb))
 509			goto no_memory;
 510
 511		num_data_pgs = netvsc_get_slots(skb) + 2;
 512		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 513			++net_device_ctx->eth_stats.tx_too_big;
 514			goto drop;
 515		}
 516	}
 517
 518	/*
 519	 * Place the rndis header in the skb head room and
 520	 * the skb->cb will be used for hv_netvsc_packet
 521	 * structure.
 522	 */
 523	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 524	if (ret)
 525		goto no_memory;
 526
 527	/* Use the skb control buffer for building up the packet */
 528	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 529			sizeof_field(struct sk_buff, cb));
 530	packet = (struct hv_netvsc_packet *)skb->cb;
 531
 532	packet->q_idx = skb_get_queue_mapping(skb);
 533
 534	packet->total_data_buflen = skb->len;
 535	packet->total_bytes = skb->len;
 536	packet->total_packets = 1;
 537
 538	rndis_msg = (struct rndis_message *)skb->head;
 539
 540	/* Add the rndis header */
 541	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 542	rndis_msg->msg_len = packet->total_data_buflen;
 543
 544	rndis_msg->msg.pkt = (struct rndis_packet) {
 545		.data_offset = sizeof(struct rndis_packet),
 546		.data_len = packet->total_data_buflen,
 547		.per_pkt_info_offset = sizeof(struct rndis_packet),
 548	};
 549
 550	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 551
 552	hash = skb_get_hash_raw(skb);
 553	if (hash != 0 && net->real_num_tx_queues > 1) {
 554		u32 *hash_info;
 555
 556		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 557		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 558					  NBL_HASH_VALUE);
 559		*hash_info = hash;
 560	}
 561
 562	/* When using AF_PACKET we need to drop VLAN header from
 563	 * the frame and update the SKB to allow the HOST OS
 564	 * to transmit the 802.1Q packet
 565	 */
 566	if (skb->protocol == htons(ETH_P_8021Q)) {
 567		u16 vlan_tci;
 568
 569		skb_reset_mac_header(skb);
 570		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 571			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 572				++net_device_ctx->eth_stats.vlan_error;
 573				goto drop;
 574			}
 575
 576			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 577			/* Update the NDIS header pkt lengths */
 578			packet->total_data_buflen -= VLAN_HLEN;
 579			packet->total_bytes -= VLAN_HLEN;
 580			rndis_msg->msg_len = packet->total_data_buflen;
 581			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 582		}
 583	}
 584
 585	if (skb_vlan_tag_present(skb)) {
 586		struct ndis_pkt_8021q_info *vlan;
 587
 588		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 589		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 590				     IEEE_8021Q_INFO);
 591
 592		vlan->value = 0;
 593		vlan->vlanid = skb_vlan_tag_get_id(skb);
 594		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 595		vlan->pri = skb_vlan_tag_get_prio(skb);
 596	}
 597
 598	if (skb_is_gso(skb)) {
 599		struct ndis_tcp_lso_info *lso_info;
 600
 601		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 602		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 603					 TCP_LARGESEND_PKTINFO);
 604
 605		lso_info->value = 0;
 606		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 607		if (skb->protocol == htons(ETH_P_IP)) {
 608			lso_info->lso_v2_transmit.ip_version =
 609				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 610			ip_hdr(skb)->tot_len = 0;
 611			ip_hdr(skb)->check = 0;
 612			tcp_hdr(skb)->check =
 613				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 614						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 615		} else {
 616			lso_info->lso_v2_transmit.ip_version =
 617				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 618			tcp_v6_gso_csum_prep(skb);
 619		}
 620		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 621		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 622	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 623		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 624			struct ndis_tcp_ip_checksum_info *csum_info;
 625
 626			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 627			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 628						  TCPIP_CHKSUM_PKTINFO);
 629
 630			csum_info->value = 0;
 631			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 632
 633			if (skb->protocol == htons(ETH_P_IP)) {
 634				csum_info->transmit.is_ipv4 = 1;
 635
 636				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 637					csum_info->transmit.tcp_checksum = 1;
 638				else
 639					csum_info->transmit.udp_checksum = 1;
 640			} else {
 641				csum_info->transmit.is_ipv6 = 1;
 642
 643				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 644					csum_info->transmit.tcp_checksum = 1;
 645				else
 646					csum_info->transmit.udp_checksum = 1;
 647			}
 648		} else {
 649			/* Can't do offload of this type of checksum */
 650			if (skb_checksum_help(skb))
 651				goto drop;
 652		}
 653	}
 654
 655	/* Start filling in the page buffers with the rndis hdr */
 656	rndis_msg->msg_len += rndis_msg_size;
 657	packet->total_data_buflen = rndis_msg->msg_len;
 658	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 659					       skb, packet, pb);
 660
 661	/* timestamp packet in software */
 662	skb_tx_timestamp(skb);
 663
 664	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 665	if (likely(ret == 0))
 666		return NETDEV_TX_OK;
 667
 668	if (ret == -EAGAIN) {
 669		++net_device_ctx->eth_stats.tx_busy;
 670		return NETDEV_TX_BUSY;
 671	}
 672
 673	if (ret == -ENOSPC)
 674		++net_device_ctx->eth_stats.tx_no_space;
 675
 676drop:
 677	dev_kfree_skb_any(skb);
 678	net->stats.tx_dropped++;
 679
 680	return NETDEV_TX_OK;
 681
 682no_memory:
 683	++net_device_ctx->eth_stats.tx_no_memory;
 684	goto drop;
 685}
 686
 687static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 688				     struct net_device *ndev)
 689{
 690	return netvsc_xmit(skb, ndev, false);
 691}
 692
 693/*
 694 * netvsc_linkstatus_callback - Link up/down notification
 695 */
 696void netvsc_linkstatus_callback(struct net_device *net,
 697				struct rndis_message *resp,
 698				void *data, u32 data_buflen)
 699{
 700	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 701	struct net_device_context *ndev_ctx = netdev_priv(net);
 702	struct netvsc_reconfig *event;
 703	unsigned long flags;
 704
 705	/* Ensure the packet is big enough to access its fields */
 706	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 707		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 708			   resp->msg_len);
 709		return;
 710	}
 711
 712	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 713	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 714
 715	/* Update the physical link speed when changing to another vSwitch */
 716	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 717		u32 speed;
 718
 719		/* Validate status_buf_offset and status_buflen.
 720		 *
 721		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 722		 * for the status buffer field in resp->msg_len; perform the validation
 723		 * using data_buflen (>= resp->msg_len).
 724		 */
 725		if (indicate->status_buflen < sizeof(speed) ||
 726		    indicate->status_buf_offset < sizeof(*indicate) ||
 727		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 728		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 729				< indicate->status_buflen) {
 730			netdev_err(net, "invalid rndis_indicate_status packet\n");
 731			return;
 732		}
 733
 734		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 735		ndev_ctx->speed = speed;
 736		return;
 737	}
 738
 739	/* Handle these link change statuses below */
 740	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 741	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 742	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 743		return;
 744
 745	if (net->reg_state != NETREG_REGISTERED)
 746		return;
 747
 748	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 749	if (!event)
 750		return;
 751	event->event = indicate->status;
 752
 753	spin_lock_irqsave(&ndev_ctx->lock, flags);
 754	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 755	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 756
 757	schedule_delayed_work(&ndev_ctx->dwork, 0);
 758}
 759
 760/* This function should only be called after skb_record_rx_queue() */
 761void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 762{
 763	int rc;
 764
 765	skb->queue_mapping = skb_get_rx_queue(skb);
 766	__skb_push(skb, ETH_HLEN);
 767
 768	rc = netvsc_xmit(skb, ndev, true);
 769
 770	if (dev_xmit_complete(rc))
 771		return;
 772
 773	dev_kfree_skb_any(skb);
 774	ndev->stats.tx_dropped++;
 775}
 776
 777static void netvsc_comp_ipcsum(struct sk_buff *skb)
 778{
 779	struct iphdr *iph = (struct iphdr *)skb->data;
 780
 781	iph->check = 0;
 782	iph->check = ip_fast_csum(iph, iph->ihl);
 783}
 784
 785static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 786					     struct netvsc_channel *nvchan,
 787					     struct xdp_buff *xdp)
 788{
 789	struct napi_struct *napi = &nvchan->napi;
 790	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 791	const struct ndis_tcp_ip_checksum_info *csum_info =
 792						&nvchan->rsc.csum_info;
 793	const u32 *hash_info = &nvchan->rsc.hash_info;
 794	u8 ppi_flags = nvchan->rsc.ppi_flags;
 795	struct sk_buff *skb;
 796	void *xbuf = xdp->data_hard_start;
 797	int i;
 798
 799	if (xbuf) {
 800		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 801		unsigned int xlen = xdp->data_end - xdp->data;
 802		unsigned int frag_size = xdp->frame_sz;
 803
 804		skb = build_skb(xbuf, frag_size);
 805
 806		if (!skb) {
 807			__free_page(virt_to_page(xbuf));
 808			return NULL;
 809		}
 810
 811		skb_reserve(skb, hdroom);
 812		skb_put(skb, xlen);
 813		skb->dev = napi->dev;
 814	} else {
 815		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 816
 817		if (!skb)
 818			return NULL;
 819
 820		/* Copy to skb. This copy is needed here since the memory
 821		 * pointed by hv_netvsc_packet cannot be deallocated.
 822		 */
 823		for (i = 0; i < nvchan->rsc.cnt; i++)
 824			skb_put_data(skb, nvchan->rsc.data[i],
 825				     nvchan->rsc.len[i]);
 826	}
 827
 828	skb->protocol = eth_type_trans(skb, net);
 829
 830	/* skb is already created with CHECKSUM_NONE */
 831	skb_checksum_none_assert(skb);
 832
 833	/* Incoming packets may have IP header checksum verified by the host.
 834	 * They may not have IP header checksum computed after coalescing.
 835	 * We compute it here if the flags are set, because on Linux, the IP
 836	 * checksum is always checked.
 837	 */
 838	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 839	    csum_info->receive.ip_checksum_succeeded &&
 840	    skb->protocol == htons(ETH_P_IP)) {
 841		/* Check that there is enough space to hold the IP header. */
 842		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 843			kfree_skb(skb);
 844			return NULL;
 845		}
 846		netvsc_comp_ipcsum(skb);
 847	}
 848
 849	/* Do L4 checksum offload if enabled and present. */
 850	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 851		if (csum_info->receive.tcp_checksum_succeeded ||
 852		    csum_info->receive.udp_checksum_succeeded)
 853			skb->ip_summed = CHECKSUM_UNNECESSARY;
 854	}
 855
 856	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 857		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 858
 859	if (ppi_flags & NVSC_RSC_VLAN) {
 860		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 861			(vlan->cfi ? VLAN_CFI_MASK : 0);
 862
 863		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 864				       vlan_tci);
 865	}
 866
 867	return skb;
 868}
 869
 870/*
 871 * netvsc_recv_callback -  Callback when we receive a packet from the
 872 * "wire" on the specified device.
 873 */
 874int netvsc_recv_callback(struct net_device *net,
 875			 struct netvsc_device *net_device,
 876			 struct netvsc_channel *nvchan)
 877{
 878	struct net_device_context *net_device_ctx = netdev_priv(net);
 879	struct vmbus_channel *channel = nvchan->channel;
 880	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 881	struct sk_buff *skb;
 882	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
 883	struct xdp_buff xdp;
 884	u32 act;
 885
 886	if (net->reg_state != NETREG_REGISTERED)
 887		return NVSP_STAT_FAIL;
 888
 889	act = netvsc_run_xdp(net, nvchan, &xdp);
 890
 891	if (act == XDP_REDIRECT)
 892		return NVSP_STAT_SUCCESS;
 893
 894	if (act != XDP_PASS && act != XDP_TX) {
 895		u64_stats_update_begin(&rx_stats->syncp);
 896		rx_stats->xdp_drop++;
 897		u64_stats_update_end(&rx_stats->syncp);
 898
 899		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 900	}
 901
 902	/* Allocate a skb - TODO direct I/O to pages? */
 903	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 904
 905	if (unlikely(!skb)) {
 906		++net_device_ctx->eth_stats.rx_no_memory;
 907		return NVSP_STAT_FAIL;
 908	}
 909
 910	skb_record_rx_queue(skb, q_idx);
 911
 912	/*
 913	 * Even if injecting the packet, record the statistics
 914	 * on the synthetic device because modifying the VF device
 915	 * statistics will not work correctly.
 916	 */
 917	u64_stats_update_begin(&rx_stats->syncp);
 918	if (act == XDP_TX)
 919		rx_stats->xdp_tx++;
 920
 921	rx_stats->packets++;
 922	rx_stats->bytes += nvchan->rsc.pktlen;
 923
 924	if (skb->pkt_type == PACKET_BROADCAST)
 925		++rx_stats->broadcast;
 926	else if (skb->pkt_type == PACKET_MULTICAST)
 927		++rx_stats->multicast;
 928	u64_stats_update_end(&rx_stats->syncp);
 929
 930	if (act == XDP_TX) {
 931		netvsc_xdp_xmit(skb, net);
 932		return NVSP_STAT_SUCCESS;
 933	}
 934
 935	napi_gro_receive(&nvchan->napi, skb);
 936	return NVSP_STAT_SUCCESS;
 937}
 938
 939static void netvsc_get_drvinfo(struct net_device *net,
 940			       struct ethtool_drvinfo *info)
 941{
 942	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 943	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
 944}
 945
 946static void netvsc_get_channels(struct net_device *net,
 947				struct ethtool_channels *channel)
 948{
 949	struct net_device_context *net_device_ctx = netdev_priv(net);
 950	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 951
 952	if (nvdev) {
 953		channel->max_combined	= nvdev->max_chn;
 954		channel->combined_count = nvdev->num_chn;
 955	}
 956}
 957
 958/* Alloc struct netvsc_device_info, and initialize it from either existing
 959 * struct netvsc_device, or from default values.
 960 */
 961static
 962struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
 963{
 964	struct netvsc_device_info *dev_info;
 965	struct bpf_prog *prog;
 966
 967	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 968
 969	if (!dev_info)
 970		return NULL;
 971
 972	if (nvdev) {
 973		ASSERT_RTNL();
 974
 975		dev_info->num_chn = nvdev->num_chn;
 976		dev_info->send_sections = nvdev->send_section_cnt;
 977		dev_info->send_section_size = nvdev->send_section_size;
 978		dev_info->recv_sections = nvdev->recv_section_cnt;
 979		dev_info->recv_section_size = nvdev->recv_section_size;
 980
 981		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 982		       NETVSC_HASH_KEYLEN);
 983
 984		prog = netvsc_xdp_get(nvdev);
 985		if (prog) {
 986			bpf_prog_inc(prog);
 987			dev_info->bprog = prog;
 988		}
 989	} else {
 990		dev_info->num_chn = max(VRSS_CHANNEL_DEFAULT,
 991					netif_get_num_default_rss_queues());
 992		dev_info->send_sections = NETVSC_DEFAULT_TX;
 993		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 994		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 995		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 996	}
 997
 998	return dev_info;
 999}
1000
1001/* Free struct netvsc_device_info */
1002static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1003{
1004	if (dev_info->bprog) {
1005		ASSERT_RTNL();
1006		bpf_prog_put(dev_info->bprog);
1007	}
1008
1009	kfree(dev_info);
1010}
1011
1012static int netvsc_detach(struct net_device *ndev,
1013			 struct netvsc_device *nvdev)
1014{
1015	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1016	struct hv_device *hdev = ndev_ctx->device_ctx;
1017	int ret;
1018
1019	/* Don't try continuing to try and setup sub channels */
1020	if (cancel_work_sync(&nvdev->subchan_work))
1021		nvdev->num_chn = 1;
1022
1023	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1024
1025	/* If device was up (receiving) then shutdown */
1026	if (netif_running(ndev)) {
1027		netvsc_tx_disable(nvdev, ndev);
1028
1029		ret = rndis_filter_close(nvdev);
1030		if (ret) {
1031			netdev_err(ndev,
1032				   "unable to close device (ret %d).\n", ret);
1033			return ret;
1034		}
1035
1036		ret = netvsc_wait_until_empty(nvdev);
1037		if (ret) {
1038			netdev_err(ndev,
1039				   "Ring buffer not empty after closing rndis\n");
1040			return ret;
1041		}
1042	}
1043
1044	netif_device_detach(ndev);
1045
1046	rndis_filter_device_remove(hdev, nvdev);
1047
1048	return 0;
1049}
1050
1051static int netvsc_attach(struct net_device *ndev,
1052			 struct netvsc_device_info *dev_info)
1053{
1054	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1055	struct hv_device *hdev = ndev_ctx->device_ctx;
1056	struct netvsc_device *nvdev;
1057	struct rndis_device *rdev;
1058	struct bpf_prog *prog;
1059	int ret = 0;
1060
1061	nvdev = rndis_filter_device_add(hdev, dev_info);
1062	if (IS_ERR(nvdev))
1063		return PTR_ERR(nvdev);
1064
1065	if (nvdev->num_chn > 1) {
1066		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1067
1068		/* if unavailable, just proceed with one queue */
1069		if (ret) {
1070			nvdev->max_chn = 1;
1071			nvdev->num_chn = 1;
1072		}
1073	}
1074
1075	prog = dev_info->bprog;
1076	if (prog) {
1077		bpf_prog_inc(prog);
1078		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1079		if (ret) {
1080			bpf_prog_put(prog);
1081			goto err1;
1082		}
1083	}
1084
1085	/* In any case device is now ready */
1086	nvdev->tx_disable = false;
1087	netif_device_attach(ndev);
1088
1089	/* Note: enable and attach happen when sub-channels setup */
1090	netif_carrier_off(ndev);
1091
1092	if (netif_running(ndev)) {
1093		ret = rndis_filter_open(nvdev);
1094		if (ret)
1095			goto err2;
1096
1097		rdev = nvdev->extension;
1098		if (!rdev->link_state)
1099			netif_carrier_on(ndev);
1100	}
1101
1102	return 0;
1103
1104err2:
1105	netif_device_detach(ndev);
1106
1107err1:
1108	rndis_filter_device_remove(hdev, nvdev);
1109
1110	return ret;
1111}
1112
1113static int netvsc_set_channels(struct net_device *net,
1114			       struct ethtool_channels *channels)
1115{
1116	struct net_device_context *net_device_ctx = netdev_priv(net);
1117	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1118	unsigned int orig, count = channels->combined_count;
1119	struct netvsc_device_info *device_info;
1120	int ret;
1121
1122	/* We do not support separate count for rx, tx, or other */
1123	if (count == 0 ||
1124	    channels->rx_count || channels->tx_count || channels->other_count)
1125		return -EINVAL;
1126
1127	if (!nvdev || nvdev->destroy)
1128		return -ENODEV;
1129
1130	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1131		return -EINVAL;
1132
1133	if (count > nvdev->max_chn)
1134		return -EINVAL;
1135
1136	orig = nvdev->num_chn;
1137
1138	device_info = netvsc_devinfo_get(nvdev);
1139
1140	if (!device_info)
1141		return -ENOMEM;
1142
1143	device_info->num_chn = count;
1144
1145	ret = netvsc_detach(net, nvdev);
1146	if (ret)
1147		goto out;
1148
1149	ret = netvsc_attach(net, device_info);
1150	if (ret) {
1151		device_info->num_chn = orig;
1152		if (netvsc_attach(net, device_info))
1153			netdev_err(net, "restoring channel setting failed\n");
1154	}
1155
1156out:
1157	netvsc_devinfo_put(device_info);
1158	return ret;
1159}
1160
1161static void netvsc_init_settings(struct net_device *dev)
1162{
1163	struct net_device_context *ndc = netdev_priv(dev);
1164
1165	ndc->l4_hash = HV_DEFAULT_L4HASH;
1166
1167	ndc->speed = SPEED_UNKNOWN;
1168	ndc->duplex = DUPLEX_FULL;
1169
1170	dev->features = NETIF_F_LRO;
1171}
1172
1173static int netvsc_get_link_ksettings(struct net_device *dev,
1174				     struct ethtool_link_ksettings *cmd)
1175{
1176	struct net_device_context *ndc = netdev_priv(dev);
1177	struct net_device *vf_netdev;
1178
1179	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1180
1181	if (vf_netdev)
1182		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1183
1184	cmd->base.speed = ndc->speed;
1185	cmd->base.duplex = ndc->duplex;
1186	cmd->base.port = PORT_OTHER;
1187
1188	return 0;
1189}
1190
1191static int netvsc_set_link_ksettings(struct net_device *dev,
1192				     const struct ethtool_link_ksettings *cmd)
1193{
1194	struct net_device_context *ndc = netdev_priv(dev);
1195	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1196
1197	if (vf_netdev) {
1198		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1199			return -EOPNOTSUPP;
1200
1201		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1202								  cmd);
1203	}
1204
1205	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1206						  &ndc->speed, &ndc->duplex);
1207}
1208
1209static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1210{
1211	struct net_device_context *ndevctx = netdev_priv(ndev);
1212	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1213	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1214	int orig_mtu = ndev->mtu;
1215	struct netvsc_device_info *device_info;
1216	int ret = 0;
1217
1218	if (!nvdev || nvdev->destroy)
1219		return -ENODEV;
1220
1221	device_info = netvsc_devinfo_get(nvdev);
1222
1223	if (!device_info)
1224		return -ENOMEM;
1225
1226	/* Change MTU of underlying VF netdev first. */
1227	if (vf_netdev) {
1228		ret = dev_set_mtu(vf_netdev, mtu);
1229		if (ret)
1230			goto out;
1231	}
1232
1233	ret = netvsc_detach(ndev, nvdev);
1234	if (ret)
1235		goto rollback_vf;
1236
1237	WRITE_ONCE(ndev->mtu, mtu);
1238
1239	ret = netvsc_attach(ndev, device_info);
1240	if (!ret)
1241		goto out;
1242
1243	/* Attempt rollback to original MTU */
1244	WRITE_ONCE(ndev->mtu, orig_mtu);
1245
1246	if (netvsc_attach(ndev, device_info))
1247		netdev_err(ndev, "restoring mtu failed\n");
1248rollback_vf:
1249	if (vf_netdev)
1250		dev_set_mtu(vf_netdev, orig_mtu);
1251
1252out:
1253	netvsc_devinfo_put(device_info);
1254	return ret;
1255}
1256
1257static void netvsc_get_vf_stats(struct net_device *net,
1258				struct netvsc_vf_pcpu_stats *tot)
1259{
1260	struct net_device_context *ndev_ctx = netdev_priv(net);
1261	int i;
1262
1263	memset(tot, 0, sizeof(*tot));
1264
1265	for_each_possible_cpu(i) {
1266		const struct netvsc_vf_pcpu_stats *stats
1267			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1268		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1269		unsigned int start;
1270
1271		do {
1272			start = u64_stats_fetch_begin(&stats->syncp);
1273			rx_packets = stats->rx_packets;
1274			tx_packets = stats->tx_packets;
1275			rx_bytes = stats->rx_bytes;
1276			tx_bytes = stats->tx_bytes;
1277		} while (u64_stats_fetch_retry(&stats->syncp, start));
1278
1279		tot->rx_packets += rx_packets;
1280		tot->tx_packets += tx_packets;
1281		tot->rx_bytes   += rx_bytes;
1282		tot->tx_bytes   += tx_bytes;
1283		tot->tx_dropped += stats->tx_dropped;
1284	}
1285}
1286
1287static void netvsc_get_pcpu_stats(struct net_device *net,
1288				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1289{
1290	struct net_device_context *ndev_ctx = netdev_priv(net);
1291	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1292	int i;
1293
1294	/* fetch percpu stats of vf */
1295	for_each_possible_cpu(i) {
1296		const struct netvsc_vf_pcpu_stats *stats =
1297			per_cpu_ptr(ndev_ctx->vf_stats, i);
1298		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1299		unsigned int start;
1300
1301		do {
1302			start = u64_stats_fetch_begin(&stats->syncp);
1303			this_tot->vf_rx_packets = stats->rx_packets;
1304			this_tot->vf_tx_packets = stats->tx_packets;
1305			this_tot->vf_rx_bytes = stats->rx_bytes;
1306			this_tot->vf_tx_bytes = stats->tx_bytes;
1307		} while (u64_stats_fetch_retry(&stats->syncp, start));
1308		this_tot->rx_packets = this_tot->vf_rx_packets;
1309		this_tot->tx_packets = this_tot->vf_tx_packets;
1310		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1311		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1312	}
1313
1314	/* fetch percpu stats of netvsc */
1315	for (i = 0; i < nvdev->num_chn; i++) {
1316		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1317		const struct netvsc_stats_tx *tx_stats;
1318		const struct netvsc_stats_rx *rx_stats;
1319		struct netvsc_ethtool_pcpu_stats *this_tot =
1320			&pcpu_tot[nvchan->channel->target_cpu];
1321		u64 packets, bytes;
1322		unsigned int start;
1323
1324		tx_stats = &nvchan->tx_stats;
1325		do {
1326			start = u64_stats_fetch_begin(&tx_stats->syncp);
1327			packets = tx_stats->packets;
1328			bytes = tx_stats->bytes;
1329		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1330
1331		this_tot->tx_bytes	+= bytes;
1332		this_tot->tx_packets	+= packets;
1333
1334		rx_stats = &nvchan->rx_stats;
1335		do {
1336			start = u64_stats_fetch_begin(&rx_stats->syncp);
1337			packets = rx_stats->packets;
1338			bytes = rx_stats->bytes;
1339		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1340
1341		this_tot->rx_bytes	+= bytes;
1342		this_tot->rx_packets	+= packets;
1343	}
1344}
1345
1346static void netvsc_get_stats64(struct net_device *net,
1347			       struct rtnl_link_stats64 *t)
1348{
1349	struct net_device_context *ndev_ctx = netdev_priv(net);
1350	struct netvsc_device *nvdev;
1351	struct netvsc_vf_pcpu_stats vf_tot;
1352	int i;
1353
1354	rcu_read_lock();
1355
1356	nvdev = rcu_dereference(ndev_ctx->nvdev);
1357	if (!nvdev)
1358		goto out;
1359
1360	netdev_stats_to_stats64(t, &net->stats);
1361
1362	netvsc_get_vf_stats(net, &vf_tot);
1363	t->rx_packets += vf_tot.rx_packets;
1364	t->tx_packets += vf_tot.tx_packets;
1365	t->rx_bytes   += vf_tot.rx_bytes;
1366	t->tx_bytes   += vf_tot.tx_bytes;
1367	t->tx_dropped += vf_tot.tx_dropped;
1368
1369	for (i = 0; i < nvdev->num_chn; i++) {
1370		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1371		const struct netvsc_stats_tx *tx_stats;
1372		const struct netvsc_stats_rx *rx_stats;
1373		u64 packets, bytes, multicast;
1374		unsigned int start;
1375
1376		tx_stats = &nvchan->tx_stats;
1377		do {
1378			start = u64_stats_fetch_begin(&tx_stats->syncp);
1379			packets = tx_stats->packets;
1380			bytes = tx_stats->bytes;
1381		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1382
1383		t->tx_bytes	+= bytes;
1384		t->tx_packets	+= packets;
1385
1386		rx_stats = &nvchan->rx_stats;
1387		do {
1388			start = u64_stats_fetch_begin(&rx_stats->syncp);
1389			packets = rx_stats->packets;
1390			bytes = rx_stats->bytes;
1391			multicast = rx_stats->multicast + rx_stats->broadcast;
1392		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1393
1394		t->rx_bytes	+= bytes;
1395		t->rx_packets	+= packets;
1396		t->multicast	+= multicast;
1397	}
1398out:
1399	rcu_read_unlock();
1400}
1401
1402static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1403{
1404	struct net_device_context *ndc = netdev_priv(ndev);
1405	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1406	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1407	struct sockaddr *addr = p;
1408	int err;
1409
1410	err = eth_prepare_mac_addr_change(ndev, p);
1411	if (err)
1412		return err;
1413
1414	if (!nvdev)
1415		return -ENODEV;
1416
1417	if (vf_netdev) {
1418		err = dev_set_mac_address(vf_netdev, addr, NULL);
1419		if (err)
1420			return err;
1421	}
1422
1423	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1424	if (!err) {
1425		eth_commit_mac_addr_change(ndev, p);
1426	} else if (vf_netdev) {
1427		/* rollback change on VF */
1428		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1429		dev_set_mac_address(vf_netdev, addr, NULL);
1430	}
1431
1432	return err;
1433}
1434
1435static const struct {
1436	char name[ETH_GSTRING_LEN];
1437	u16 offset;
1438} netvsc_stats[] = {
1439	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1440	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1441	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1442	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1443	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1444	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1445	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1446	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1447	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1448	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1449	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1450}, pcpu_stats[] = {
1451	{ "cpu%u_rx_packets",
1452		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1453	{ "cpu%u_rx_bytes",
1454		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1455	{ "cpu%u_tx_packets",
1456		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1457	{ "cpu%u_tx_bytes",
1458		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1459	{ "cpu%u_vf_rx_packets",
1460		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1461	{ "cpu%u_vf_rx_bytes",
1462		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1463	{ "cpu%u_vf_tx_packets",
1464		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1465	{ "cpu%u_vf_tx_bytes",
1466		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1467}, vf_stats[] = {
1468	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1469	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1470	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1471	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1472	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1473};
1474
1475#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1476#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1477
1478/* statistics per queue (rx/tx packets/bytes) */
1479#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1480
1481/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1482#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1483
1484static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1485{
1486	struct net_device_context *ndc = netdev_priv(dev);
1487	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1488
1489	if (!nvdev)
1490		return -ENODEV;
1491
1492	switch (string_set) {
1493	case ETH_SS_STATS:
1494		return NETVSC_GLOBAL_STATS_LEN
1495			+ NETVSC_VF_STATS_LEN
1496			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1497			+ NETVSC_PCPU_STATS_LEN;
1498	default:
1499		return -EINVAL;
1500	}
1501}
1502
1503static void netvsc_get_ethtool_stats(struct net_device *dev,
1504				     struct ethtool_stats *stats, u64 *data)
1505{
1506	struct net_device_context *ndc = netdev_priv(dev);
1507	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1508	const void *nds = &ndc->eth_stats;
1509	const struct netvsc_stats_tx *tx_stats;
1510	const struct netvsc_stats_rx *rx_stats;
1511	struct netvsc_vf_pcpu_stats sum;
1512	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1513	unsigned int start;
1514	u64 packets, bytes;
1515	u64 xdp_drop;
1516	u64 xdp_redirect;
1517	u64 xdp_tx;
1518	u64 xdp_xmit;
1519	int i, j, cpu;
1520
1521	if (!nvdev)
1522		return;
1523
1524	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1525		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1526
1527	netvsc_get_vf_stats(dev, &sum);
1528	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1529		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1530
1531	for (j = 0; j < nvdev->num_chn; j++) {
1532		tx_stats = &nvdev->chan_table[j].tx_stats;
1533
1534		do {
1535			start = u64_stats_fetch_begin(&tx_stats->syncp);
1536			packets = tx_stats->packets;
1537			bytes = tx_stats->bytes;
1538			xdp_xmit = tx_stats->xdp_xmit;
1539		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1540		data[i++] = packets;
1541		data[i++] = bytes;
1542		data[i++] = xdp_xmit;
1543
1544		rx_stats = &nvdev->chan_table[j].rx_stats;
1545		do {
1546			start = u64_stats_fetch_begin(&rx_stats->syncp);
1547			packets = rx_stats->packets;
1548			bytes = rx_stats->bytes;
1549			xdp_drop = rx_stats->xdp_drop;
1550			xdp_redirect = rx_stats->xdp_redirect;
1551			xdp_tx = rx_stats->xdp_tx;
1552		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1553		data[i++] = packets;
1554		data[i++] = bytes;
1555		data[i++] = xdp_drop;
1556		data[i++] = xdp_redirect;
1557		data[i++] = xdp_tx;
1558	}
1559
1560	pcpu_sum = kvmalloc_array(nr_cpu_ids,
1561				  sizeof(struct netvsc_ethtool_pcpu_stats),
1562				  GFP_KERNEL);
1563	if (!pcpu_sum)
1564		return;
1565
1566	netvsc_get_pcpu_stats(dev, pcpu_sum);
1567	for_each_present_cpu(cpu) {
1568		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1569
1570		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1571			data[i++] = *(u64 *)((void *)this_sum
1572					     + pcpu_stats[j].offset);
1573	}
1574	kvfree(pcpu_sum);
1575}
1576
1577static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1578{
1579	struct net_device_context *ndc = netdev_priv(dev);
1580	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1581	u8 *p = data;
1582	int i, cpu;
1583
1584	if (!nvdev)
1585		return;
1586
1587	switch (stringset) {
1588	case ETH_SS_STATS:
1589		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1590			ethtool_puts(&p, netvsc_stats[i].name);
1591
1592		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1593			ethtool_puts(&p, vf_stats[i].name);
1594
1595		for (i = 0; i < nvdev->num_chn; i++) {
1596			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1597			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1598			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1599			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1600			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1601			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1602			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1603			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1604		}
1605
1606		for_each_present_cpu(cpu) {
1607			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1608				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1609		}
1610
1611		break;
1612	}
1613}
1614
1615static int
1616netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1617			 struct ethtool_rxnfc *info)
1618{
1619	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1620
1621	info->data = RXH_IP_SRC | RXH_IP_DST;
1622
1623	switch (info->flow_type) {
1624	case TCP_V4_FLOW:
1625		if (ndc->l4_hash & HV_TCP4_L4HASH)
1626			info->data |= l4_flag;
1627
1628		break;
1629
1630	case TCP_V6_FLOW:
1631		if (ndc->l4_hash & HV_TCP6_L4HASH)
1632			info->data |= l4_flag;
1633
1634		break;
1635
1636	case UDP_V4_FLOW:
1637		if (ndc->l4_hash & HV_UDP4_L4HASH)
1638			info->data |= l4_flag;
1639
1640		break;
1641
1642	case UDP_V6_FLOW:
1643		if (ndc->l4_hash & HV_UDP6_L4HASH)
1644			info->data |= l4_flag;
1645
1646		break;
1647
1648	case IPV4_FLOW:
1649	case IPV6_FLOW:
1650		break;
1651	default:
1652		info->data = 0;
1653		break;
1654	}
1655
1656	return 0;
1657}
1658
1659static int
1660netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1661		 u32 *rules)
1662{
1663	struct net_device_context *ndc = netdev_priv(dev);
1664	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1665
1666	if (!nvdev)
1667		return -ENODEV;
1668
1669	switch (info->cmd) {
1670	case ETHTOOL_GRXRINGS:
1671		info->data = nvdev->num_chn;
1672		return 0;
1673
1674	case ETHTOOL_GRXFH:
1675		return netvsc_get_rss_hash_opts(ndc, info);
1676	}
1677	return -EOPNOTSUPP;
1678}
1679
1680static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1681				    struct ethtool_rxnfc *info)
1682{
1683	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1684			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1685		switch (info->flow_type) {
1686		case TCP_V4_FLOW:
1687			ndc->l4_hash |= HV_TCP4_L4HASH;
1688			break;
1689
1690		case TCP_V6_FLOW:
1691			ndc->l4_hash |= HV_TCP6_L4HASH;
1692			break;
1693
1694		case UDP_V4_FLOW:
1695			ndc->l4_hash |= HV_UDP4_L4HASH;
1696			break;
1697
1698		case UDP_V6_FLOW:
1699			ndc->l4_hash |= HV_UDP6_L4HASH;
1700			break;
1701
1702		default:
1703			return -EOPNOTSUPP;
1704		}
1705
1706		return 0;
1707	}
1708
1709	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1710		switch (info->flow_type) {
1711		case TCP_V4_FLOW:
1712			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1713			break;
1714
1715		case TCP_V6_FLOW:
1716			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1717			break;
1718
1719		case UDP_V4_FLOW:
1720			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1721			break;
1722
1723		case UDP_V6_FLOW:
1724			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1725			break;
1726
1727		default:
1728			return -EOPNOTSUPP;
1729		}
1730
1731		return 0;
1732	}
1733
1734	return -EOPNOTSUPP;
1735}
1736
1737static int
1738netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1739{
1740	struct net_device_context *ndc = netdev_priv(ndev);
1741
1742	if (info->cmd == ETHTOOL_SRXFH)
1743		return netvsc_set_rss_hash_opts(ndc, info);
1744
1745	return -EOPNOTSUPP;
1746}
1747
1748static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1749{
1750	return NETVSC_HASH_KEYLEN;
1751}
1752
1753static u32 netvsc_rss_indir_size(struct net_device *dev)
1754{
1755	struct net_device_context *ndc = netdev_priv(dev);
1756
1757	return ndc->rx_table_sz;
1758}
1759
1760static int netvsc_get_rxfh(struct net_device *dev,
1761			   struct ethtool_rxfh_param *rxfh)
1762{
1763	struct net_device_context *ndc = netdev_priv(dev);
1764	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1765	struct rndis_device *rndis_dev;
1766	int i;
1767
1768	if (!ndev)
1769		return -ENODEV;
1770
1771	rxfh->hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
 
1772
1773	rndis_dev = ndev->extension;
1774	if (rxfh->indir) {
1775		for (i = 0; i < ndc->rx_table_sz; i++)
1776			rxfh->indir[i] = ndc->rx_table[i];
1777	}
1778
1779	if (rxfh->key)
1780		memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1781
1782	return 0;
1783}
1784
1785static int netvsc_set_rxfh(struct net_device *dev,
1786			   struct ethtool_rxfh_param *rxfh,
1787			   struct netlink_ext_ack *extack)
1788{
1789	struct net_device_context *ndc = netdev_priv(dev);
1790	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1791	struct rndis_device *rndis_dev;
1792	u8 *key = rxfh->key;
1793	int i;
1794
1795	if (!ndev)
1796		return -ENODEV;
1797
1798	if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1799	    rxfh->hfunc != ETH_RSS_HASH_TOP)
1800		return -EOPNOTSUPP;
1801
1802	rndis_dev = ndev->extension;
1803	if (rxfh->indir) {
1804		for (i = 0; i < ndc->rx_table_sz; i++)
1805			if (rxfh->indir[i] >= ndev->num_chn)
1806				return -EINVAL;
1807
1808		for (i = 0; i < ndc->rx_table_sz; i++)
1809			ndc->rx_table[i] = rxfh->indir[i];
1810	}
1811
1812	if (!key) {
1813		if (!rxfh->indir)
1814			return 0;
1815
1816		key = rndis_dev->rss_key;
1817	}
1818
1819	return rndis_filter_set_rss_param(rndis_dev, key);
1820}
1821
1822/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1823 * It does have pre-allocated receive area which is divided into sections.
1824 */
1825static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1826				   struct ethtool_ringparam *ring)
1827{
1828	u32 max_buf_size;
1829
1830	ring->rx_pending = nvdev->recv_section_cnt;
1831	ring->tx_pending = nvdev->send_section_cnt;
1832
1833	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1834		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1835	else
1836		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1837
1838	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1839	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1840		/ nvdev->send_section_size;
1841}
1842
1843static void netvsc_get_ringparam(struct net_device *ndev,
1844				 struct ethtool_ringparam *ring,
1845				 struct kernel_ethtool_ringparam *kernel_ring,
1846				 struct netlink_ext_ack *extack)
1847{
1848	struct net_device_context *ndevctx = netdev_priv(ndev);
1849	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1850
1851	if (!nvdev)
1852		return;
1853
1854	__netvsc_get_ringparam(nvdev, ring);
1855}
1856
1857static int netvsc_set_ringparam(struct net_device *ndev,
1858				struct ethtool_ringparam *ring,
1859				struct kernel_ethtool_ringparam *kernel_ring,
1860				struct netlink_ext_ack *extack)
1861{
1862	struct net_device_context *ndevctx = netdev_priv(ndev);
1863	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864	struct netvsc_device_info *device_info;
1865	struct ethtool_ringparam orig;
1866	u32 new_tx, new_rx;
1867	int ret = 0;
1868
1869	if (!nvdev || nvdev->destroy)
1870		return -ENODEV;
1871
1872	memset(&orig, 0, sizeof(orig));
1873	__netvsc_get_ringparam(nvdev, &orig);
1874
1875	new_tx = clamp_t(u32, ring->tx_pending,
1876			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1877	new_rx = clamp_t(u32, ring->rx_pending,
1878			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1879
1880	if (new_tx == orig.tx_pending &&
1881	    new_rx == orig.rx_pending)
1882		return 0;	 /* no change */
1883
1884	device_info = netvsc_devinfo_get(nvdev);
1885
1886	if (!device_info)
1887		return -ENOMEM;
1888
1889	device_info->send_sections = new_tx;
1890	device_info->recv_sections = new_rx;
1891
1892	ret = netvsc_detach(ndev, nvdev);
1893	if (ret)
1894		goto out;
1895
1896	ret = netvsc_attach(ndev, device_info);
1897	if (ret) {
1898		device_info->send_sections = orig.tx_pending;
1899		device_info->recv_sections = orig.rx_pending;
1900
1901		if (netvsc_attach(ndev, device_info))
1902			netdev_err(ndev, "restoring ringparam failed");
1903	}
1904
1905out:
1906	netvsc_devinfo_put(device_info);
1907	return ret;
1908}
1909
1910static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1911					     netdev_features_t features)
1912{
1913	struct net_device_context *ndevctx = netdev_priv(ndev);
1914	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1915
1916	if (!nvdev || nvdev->destroy)
1917		return features;
1918
1919	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1920		features ^= NETIF_F_LRO;
1921		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1922	}
1923
1924	return features;
1925}
1926
1927static int netvsc_set_features(struct net_device *ndev,
1928			       netdev_features_t features)
1929{
1930	netdev_features_t change = features ^ ndev->features;
1931	struct net_device_context *ndevctx = netdev_priv(ndev);
1932	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1933	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1934	struct ndis_offload_params offloads;
1935	int ret = 0;
1936
1937	if (!nvdev || nvdev->destroy)
1938		return -ENODEV;
1939
1940	if (!(change & NETIF_F_LRO))
1941		goto syncvf;
1942
1943	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1944
1945	if (features & NETIF_F_LRO) {
1946		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1948	} else {
1949		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1951	}
1952
1953	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1954
1955	if (ret) {
1956		features ^= NETIF_F_LRO;
1957		ndev->features = features;
1958	}
1959
1960syncvf:
1961	if (!vf_netdev)
1962		return ret;
1963
1964	vf_netdev->wanted_features = features;
1965	netdev_update_features(vf_netdev);
1966
1967	return ret;
1968}
1969
1970static int netvsc_get_regs_len(struct net_device *netdev)
1971{
1972	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1973}
1974
1975static void netvsc_get_regs(struct net_device *netdev,
1976			    struct ethtool_regs *regs, void *p)
1977{
1978	struct net_device_context *ndc = netdev_priv(netdev);
1979	u32 *regs_buff = p;
1980
1981	/* increase the version, if buffer format is changed. */
1982	regs->version = 1;
1983
1984	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1985}
1986
1987static u32 netvsc_get_msglevel(struct net_device *ndev)
1988{
1989	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1990
1991	return ndev_ctx->msg_enable;
1992}
1993
1994static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1995{
1996	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1997
1998	ndev_ctx->msg_enable = val;
1999}
2000
2001static const struct ethtool_ops ethtool_ops = {
2002	.get_drvinfo	= netvsc_get_drvinfo,
2003	.get_regs_len	= netvsc_get_regs_len,
2004	.get_regs	= netvsc_get_regs,
2005	.get_msglevel	= netvsc_get_msglevel,
2006	.set_msglevel	= netvsc_set_msglevel,
2007	.get_link	= ethtool_op_get_link,
2008	.get_ethtool_stats = netvsc_get_ethtool_stats,
2009	.get_sset_count = netvsc_get_sset_count,
2010	.get_strings	= netvsc_get_strings,
2011	.get_channels   = netvsc_get_channels,
2012	.set_channels   = netvsc_set_channels,
2013	.get_ts_info	= ethtool_op_get_ts_info,
2014	.get_rxnfc	= netvsc_get_rxnfc,
2015	.set_rxnfc	= netvsc_set_rxnfc,
2016	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2017	.get_rxfh_indir_size = netvsc_rss_indir_size,
2018	.get_rxfh	= netvsc_get_rxfh,
2019	.set_rxfh	= netvsc_set_rxfh,
2020	.get_link_ksettings = netvsc_get_link_ksettings,
2021	.set_link_ksettings = netvsc_set_link_ksettings,
2022	.get_ringparam	= netvsc_get_ringparam,
2023	.set_ringparam	= netvsc_set_ringparam,
2024};
2025
2026static const struct net_device_ops device_ops = {
2027	.ndo_open =			netvsc_open,
2028	.ndo_stop =			netvsc_close,
2029	.ndo_start_xmit =		netvsc_start_xmit,
2030	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2031	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2032	.ndo_fix_features =		netvsc_fix_features,
2033	.ndo_set_features =		netvsc_set_features,
2034	.ndo_change_mtu =		netvsc_change_mtu,
2035	.ndo_validate_addr =		eth_validate_addr,
2036	.ndo_set_mac_address =		netvsc_set_mac_addr,
2037	.ndo_select_queue =		netvsc_select_queue,
2038	.ndo_get_stats64 =		netvsc_get_stats64,
2039	.ndo_bpf =			netvsc_bpf,
2040	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
2041};
2042
2043/*
2044 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2045 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2046 * present send GARP packet to network peers with netif_notify_peers().
2047 */
2048static void netvsc_link_change(struct work_struct *w)
2049{
2050	struct net_device_context *ndev_ctx =
2051		container_of(w, struct net_device_context, dwork.work);
2052	struct hv_device *device_obj = ndev_ctx->device_ctx;
2053	struct net_device *net = hv_get_drvdata(device_obj);
2054	unsigned long flags, next_reconfig, delay;
2055	struct netvsc_reconfig *event = NULL;
2056	struct netvsc_device *net_device;
2057	struct rndis_device *rdev;
2058	bool reschedule = false;
2059
2060	/* if changes are happening, comeback later */
2061	if (!rtnl_trylock()) {
2062		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2063		return;
2064	}
2065
2066	net_device = rtnl_dereference(ndev_ctx->nvdev);
2067	if (!net_device)
2068		goto out_unlock;
2069
2070	rdev = net_device->extension;
2071
2072	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2073	if (time_is_after_jiffies(next_reconfig)) {
2074		/* link_watch only sends one notification with current state
2075		 * per second, avoid doing reconfig more frequently. Handle
2076		 * wrap around.
2077		 */
2078		delay = next_reconfig - jiffies;
2079		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2080		schedule_delayed_work(&ndev_ctx->dwork, delay);
2081		goto out_unlock;
2082	}
2083	ndev_ctx->last_reconfig = jiffies;
2084
2085	spin_lock_irqsave(&ndev_ctx->lock, flags);
2086	if (!list_empty(&ndev_ctx->reconfig_events)) {
2087		event = list_first_entry(&ndev_ctx->reconfig_events,
2088					 struct netvsc_reconfig, list);
2089		list_del(&event->list);
2090		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2091	}
2092	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2093
2094	if (!event)
2095		goto out_unlock;
2096
2097	switch (event->event) {
2098		/* Only the following events are possible due to the check in
2099		 * netvsc_linkstatus_callback()
2100		 */
2101	case RNDIS_STATUS_MEDIA_CONNECT:
2102		if (rdev->link_state) {
2103			rdev->link_state = false;
2104			netif_carrier_on(net);
2105			netvsc_tx_enable(net_device, net);
2106		} else {
2107			__netdev_notify_peers(net);
2108		}
2109		kfree(event);
2110		break;
2111	case RNDIS_STATUS_MEDIA_DISCONNECT:
2112		if (!rdev->link_state) {
2113			rdev->link_state = true;
2114			netif_carrier_off(net);
2115			netvsc_tx_disable(net_device, net);
2116		}
2117		kfree(event);
2118		break;
2119	case RNDIS_STATUS_NETWORK_CHANGE:
2120		/* Only makes sense if carrier is present */
2121		if (!rdev->link_state) {
2122			rdev->link_state = true;
2123			netif_carrier_off(net);
2124			netvsc_tx_disable(net_device, net);
2125			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2126			spin_lock_irqsave(&ndev_ctx->lock, flags);
2127			list_add(&event->list, &ndev_ctx->reconfig_events);
2128			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2129			reschedule = true;
2130		}
2131		break;
2132	}
2133
2134	rtnl_unlock();
2135
2136	/* link_watch only sends one notification with current state per
2137	 * second, handle next reconfig event in 2 seconds.
2138	 */
2139	if (reschedule)
2140		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2141
2142	return;
2143
2144out_unlock:
2145	rtnl_unlock();
2146}
2147
2148static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2149{
2150	struct net_device_context *net_device_ctx;
2151	struct net_device *dev;
2152
2153	dev = netdev_master_upper_dev_get(vf_netdev);
2154	if (!dev || dev->netdev_ops != &device_ops)
2155		return NULL;	/* not a netvsc device */
2156
2157	net_device_ctx = netdev_priv(dev);
2158	if (!rtnl_dereference(net_device_ctx->nvdev))
2159		return NULL;	/* device is removed */
2160
2161	return dev;
2162}
2163
2164/* Called when VF is injecting data into network stack.
2165 * Change the associated network device from VF to netvsc.
2166 * note: already called with rcu_read_lock
2167 */
2168static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2169{
2170	struct sk_buff *skb = *pskb;
2171	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2172	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2173	struct netvsc_vf_pcpu_stats *pcpu_stats
2174		 = this_cpu_ptr(ndev_ctx->vf_stats);
2175
2176	skb = skb_share_check(skb, GFP_ATOMIC);
2177	if (unlikely(!skb))
2178		return RX_HANDLER_CONSUMED;
2179
2180	*pskb = skb;
2181
2182	skb->dev = ndev;
2183
2184	u64_stats_update_begin(&pcpu_stats->syncp);
2185	pcpu_stats->rx_packets++;
2186	pcpu_stats->rx_bytes += skb->len;
2187	u64_stats_update_end(&pcpu_stats->syncp);
2188
2189	return RX_HANDLER_ANOTHER;
2190}
2191
2192static int netvsc_vf_join(struct net_device *vf_netdev,
2193			  struct net_device *ndev, int context)
2194{
2195	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2196	int ret;
2197
2198	ret = netdev_rx_handler_register(vf_netdev,
2199					 netvsc_vf_handle_frame, ndev);
2200	if (ret != 0) {
2201		netdev_err(vf_netdev,
2202			   "can not register netvsc VF receive handler (err = %d)\n",
2203			   ret);
2204		goto rx_handler_failed;
2205	}
2206
2207	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2208					   NULL, NULL, NULL);
2209	if (ret != 0) {
2210		netdev_err(vf_netdev,
2211			   "can not set master device %s (err = %d)\n",
2212			   ndev->name, ret);
2213		goto upper_link_failed;
2214	}
2215
2216	/* If this registration is called from probe context vf_takeover
2217	 * is taken care of later in probe itself.
2218	 */
2219	if (context == VF_REG_IN_NOTIFIER)
2220		schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225	return 0;
2226
2227upper_link_failed:
2228	netdev_rx_handler_unregister(vf_netdev);
2229rx_handler_failed:
2230	return ret;
2231}
2232
2233static void __netvsc_vf_setup(struct net_device *ndev,
2234			      struct net_device *vf_netdev)
2235{
2236	int ret;
2237
2238	/* Align MTU of VF with master */
2239	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240	if (ret)
2241		netdev_warn(vf_netdev,
2242			    "unable to change mtu to %u\n", ndev->mtu);
2243
2244	/* set multicast etc flags on VF */
2245	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247	/* sync address list from ndev to VF */
2248	netif_addr_lock_bh(ndev);
2249	dev_uc_sync(vf_netdev, ndev);
2250	dev_mc_sync(vf_netdev, ndev);
2251	netif_addr_unlock_bh(ndev);
2252
2253	if (netif_running(ndev)) {
2254		ret = dev_open(vf_netdev, NULL);
2255		if (ret)
2256			netdev_warn(vf_netdev,
2257				    "unable to open: %d\n", ret);
2258	}
2259}
2260
2261/* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
2264static void netvsc_vf_setup(struct work_struct *w)
2265{
2266	struct net_device_context *ndev_ctx
2267		= container_of(w, struct net_device_context, vf_takeover.work);
2268	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269	struct net_device *vf_netdev;
2270
2271	if (!rtnl_trylock()) {
2272		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273		return;
2274	}
2275
2276	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277	if (vf_netdev)
2278		__netvsc_vf_setup(ndev, vf_netdev);
2279
2280	rtnl_unlock();
2281}
2282
2283/* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
2286static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287{
2288	struct device *parent = vf_netdev->dev.parent;
2289	struct net_device_context *ndev_ctx;
2290	struct net_device *ndev;
2291	struct pci_dev *pdev;
2292	u32 serial;
2293
2294	if (!parent || !dev_is_pci(parent))
2295		return NULL; /* not a PCI device */
2296
2297	pdev = to_pci_dev(parent);
2298	if (!pdev->slot) {
2299		netdev_notice(vf_netdev, "no PCI slot information\n");
2300		return NULL;
2301	}
2302
2303	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2304		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2305			      pci_slot_name(pdev->slot));
2306		return NULL;
2307	}
2308
2309	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2310		if (!ndev_ctx->vf_alloc)
2311			continue;
2312
2313		if (ndev_ctx->vf_serial != serial)
2314			continue;
2315
2316		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2317		if (ndev->addr_len != vf_netdev->addr_len ||
2318		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2319			   ndev->addr_len) != 0)
2320			continue;
2321
2322		return ndev;
2323
2324	}
2325
2326	/* Fallback path to check synthetic vf with help of mac addr.
2327	 * Because this function can be called before vf_netdev is
2328	 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2329	 * from dev_addr, also try to match to its dev_addr.
2330	 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2331	 * on a VF that matches to the MAC of a unrelated NETVSC device.
2332	 */
2333	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2334		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2335		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2336		    ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2337			return ndev;
2338	}
2339
2340	netdev_notice(vf_netdev,
2341		      "no netdev found for vf serial:%u\n", serial);
2342	return NULL;
2343}
2344
2345static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2346{
2347	struct net_device *ndev;
2348
2349	ndev = get_netvsc_byslot(vf_netdev);
2350	if (!ndev)
2351		return NOTIFY_DONE;
2352
2353	/* set slave flag before open to prevent IPv6 addrconf */
2354	vf_netdev->flags |= IFF_SLAVE;
2355	return NOTIFY_DONE;
2356}
2357
2358static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2359{
2360	struct net_device_context *net_device_ctx;
2361	struct netvsc_device *netvsc_dev;
2362	struct bpf_prog *prog;
2363	struct net_device *ndev;
2364	int ret;
2365
2366	if (vf_netdev->addr_len != ETH_ALEN)
2367		return NOTIFY_DONE;
2368
2369	ndev = get_netvsc_byslot(vf_netdev);
2370	if (!ndev)
2371		return NOTIFY_DONE;
2372
2373	net_device_ctx = netdev_priv(ndev);
2374	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2375	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2376		return NOTIFY_DONE;
2377
2378	/* if synthetic interface is a different namespace,
2379	 * then move the VF to that namespace; join will be
2380	 * done again in that context.
2381	 */
2382	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2383		ret = dev_change_net_namespace(vf_netdev,
2384					       dev_net(ndev), "eth%d");
2385		if (ret)
2386			netdev_err(vf_netdev,
2387				   "could not move to same namespace as %s: %d\n",
2388				   ndev->name, ret);
2389		else
2390			netdev_info(vf_netdev,
2391				    "VF moved to namespace with: %s\n",
2392				    ndev->name);
2393		return NOTIFY_DONE;
2394	}
2395
2396	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2397
2398	if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2399		return NOTIFY_DONE;
2400
2401	dev_hold(vf_netdev);
2402	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2403
2404	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2405		ndev->needed_headroom = vf_netdev->needed_headroom;
2406
2407	vf_netdev->wanted_features = ndev->features;
2408	netdev_update_features(vf_netdev);
2409
2410	prog = netvsc_xdp_get(netvsc_dev);
2411	netvsc_vf_setxdp(vf_netdev, prog);
2412
2413	return NOTIFY_OK;
2414}
2415
2416/* Change the data path when VF UP/DOWN/CHANGE are detected.
2417 *
2418 * Typically a UP or DOWN event is followed by a CHANGE event, so
2419 * net_device_ctx->data_path_is_vf is used to cache the current data path
2420 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2421 * message.
2422 *
2423 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2424 * interface, there is only the CHANGE event and no UP or DOWN event.
2425 */
2426static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2427{
2428	struct net_device_context *net_device_ctx;
2429	struct netvsc_device *netvsc_dev;
2430	struct net_device *ndev;
2431	bool vf_is_up = false;
2432	int ret;
2433
2434	if (event != NETDEV_GOING_DOWN)
2435		vf_is_up = netif_running(vf_netdev);
2436
2437	ndev = get_netvsc_byref(vf_netdev);
2438	if (!ndev)
2439		return NOTIFY_DONE;
2440
2441	net_device_ctx = netdev_priv(ndev);
2442	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2443	if (!netvsc_dev)
2444		return NOTIFY_DONE;
2445
2446	if (net_device_ctx->data_path_is_vf == vf_is_up)
2447		return NOTIFY_OK;
2448
2449	if (vf_is_up && !net_device_ctx->vf_alloc) {
2450		netdev_info(ndev, "Waiting for the VF association from host\n");
2451		wait_for_completion(&net_device_ctx->vf_add);
2452	}
2453
2454	ret = netvsc_switch_datapath(ndev, vf_is_up);
2455
2456	if (ret) {
2457		netdev_err(ndev,
2458			   "Data path failed to switch %s VF: %s, err: %d\n",
2459			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2460		return NOTIFY_DONE;
2461	} else {
2462		netdev_info(ndev, "Data path switched %s VF: %s\n",
2463			    vf_is_up ? "to" : "from", vf_netdev->name);
2464	}
2465
2466	return NOTIFY_OK;
2467}
2468
2469static int netvsc_unregister_vf(struct net_device *vf_netdev)
2470{
2471	struct net_device *ndev;
2472	struct net_device_context *net_device_ctx;
2473
2474	ndev = get_netvsc_byref(vf_netdev);
2475	if (!ndev)
2476		return NOTIFY_DONE;
2477
2478	net_device_ctx = netdev_priv(ndev);
2479	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2480
2481	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2482
2483	netvsc_vf_setxdp(vf_netdev, NULL);
2484
2485	reinit_completion(&net_device_ctx->vf_add);
2486	netdev_rx_handler_unregister(vf_netdev);
2487	netdev_upper_dev_unlink(vf_netdev, ndev);
2488	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2489	dev_put(vf_netdev);
2490
2491	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2492
2493	return NOTIFY_OK;
2494}
2495
2496static int check_dev_is_matching_vf(struct net_device *event_ndev)
2497{
2498	/* Skip NetVSC interfaces */
2499	if (event_ndev->netdev_ops == &device_ops)
2500		return -ENODEV;
2501
2502	/* Avoid non-Ethernet type devices */
2503	if (event_ndev->type != ARPHRD_ETHER)
2504		return -ENODEV;
2505
2506	/* Avoid Vlan dev with same MAC registering as VF */
2507	if (is_vlan_dev(event_ndev))
2508		return -ENODEV;
2509
2510	/* Avoid Bonding master dev with same MAC registering as VF */
2511	if (netif_is_bond_master(event_ndev))
2512		return -ENODEV;
2513
2514	return 0;
2515}
2516
2517static int netvsc_probe(struct hv_device *dev,
2518			const struct hv_vmbus_device_id *dev_id)
2519{
2520	struct net_device *net = NULL, *vf_netdev;
2521	struct net_device_context *net_device_ctx;
2522	struct netvsc_device_info *device_info = NULL;
2523	struct netvsc_device *nvdev;
2524	int ret = -ENOMEM;
2525
2526	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2527				VRSS_CHANNEL_MAX);
2528	if (!net)
2529		goto no_net;
2530
2531	netif_carrier_off(net);
2532
2533	netvsc_init_settings(net);
2534
2535	net_device_ctx = netdev_priv(net);
2536	net_device_ctx->device_ctx = dev;
2537	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2538	if (netif_msg_probe(net_device_ctx))
2539		netdev_dbg(net, "netvsc msg_enable: %d\n",
2540			   net_device_ctx->msg_enable);
2541
2542	hv_set_drvdata(dev, net);
2543
2544	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2545
2546	init_completion(&net_device_ctx->vf_add);
2547	spin_lock_init(&net_device_ctx->lock);
2548	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2549	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2550
2551	net_device_ctx->vf_stats
2552		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2553	if (!net_device_ctx->vf_stats)
2554		goto no_stats;
2555
2556	net->netdev_ops = &device_ops;
2557	net->ethtool_ops = &ethtool_ops;
2558	SET_NETDEV_DEV(net, &dev->device);
2559	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2560
2561	/* We always need headroom for rndis header */
2562	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2563
2564	/* Initialize the number of queues to be 1, we may change it if more
2565	 * channels are offered later.
2566	 */
2567	netif_set_real_num_tx_queues(net, 1);
2568	netif_set_real_num_rx_queues(net, 1);
2569
2570	/* Notify the netvsc driver of the new device */
2571	device_info = netvsc_devinfo_get(NULL);
2572
2573	if (!device_info) {
2574		ret = -ENOMEM;
2575		goto devinfo_failed;
2576	}
2577
 
 
 
 
 
 
 
 
 
2578	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2579	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2580	 * all subchannels to show up, but that may not happen because
2581	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2582	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2583	 * the device lock, so all the subchannels can't be processed --
2584	 * finally netvsc_subchan_work() hangs forever.
2585	 *
2586	 * The rtnl lock also needs to be held before rndis_filter_device_add()
2587	 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2588	 * VF NIC offering and registering. If VF NIC finished register_netdev()
2589	 * earlier it may cause name based config failure.
2590	 */
2591	rtnl_lock();
2592
2593	nvdev = rndis_filter_device_add(dev, device_info);
2594	if (IS_ERR(nvdev)) {
2595		ret = PTR_ERR(nvdev);
2596		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2597		goto rndis_failed;
2598	}
2599
2600	eth_hw_addr_set(net, device_info->mac_adr);
2601
2602	if (nvdev->num_chn > 1)
2603		schedule_work(&nvdev->subchan_work);
2604
2605	/* hw_features computed in rndis_netdev_set_hwcaps() */
2606	net->features = net->hw_features |
2607		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2608		NETIF_F_HW_VLAN_CTAG_RX;
2609	net->vlan_features = net->features;
2610
2611	netdev_lockdep_set_classes(net);
2612
2613	net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2614			    NETDEV_XDP_ACT_NDO_XMIT;
2615
2616	/* MTU range: 68 - 1500 or 65521 */
2617	net->min_mtu = NETVSC_MTU_MIN;
2618	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2619		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2620	else
2621		net->max_mtu = ETH_DATA_LEN;
2622
2623	nvdev->tx_disable = false;
2624
2625	ret = register_netdevice(net);
2626	if (ret != 0) {
2627		pr_err("Unable to register netdev.\n");
2628		goto register_failed;
2629	}
2630
2631	list_add(&net_device_ctx->list, &netvsc_dev_list);
2632
2633	/* When the hv_netvsc driver is unloaded and reloaded, the
2634	 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2635	 * is complete. This is because register_netdevice_notifier() gets
2636	 * registered before vmbus_driver_register() so that callback func
2637	 * is set before probe and we don't miss events like NETDEV_POST_INIT
2638	 * So, in this section we try to register the matching vf device that
2639	 * is present as a netdevice, knowing that its register call is not
2640	 * processed in the netvsc_netdev_notifier(as probing is progress and
2641	 * get_netvsc_byslot fails).
2642	 */
2643	for_each_netdev(dev_net(net), vf_netdev) {
2644		ret = check_dev_is_matching_vf(vf_netdev);
2645		if (ret != 0)
2646			continue;
2647
2648		if (net != get_netvsc_byslot(vf_netdev))
2649			continue;
2650
2651		netvsc_prepare_bonding(vf_netdev);
2652		netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2653		__netvsc_vf_setup(net, vf_netdev);
2654		break;
2655	}
2656	rtnl_unlock();
2657
2658	netvsc_devinfo_put(device_info);
2659	return 0;
2660
2661register_failed:
 
2662	rndis_filter_device_remove(dev, nvdev);
2663rndis_failed:
2664	rtnl_unlock();
2665	netvsc_devinfo_put(device_info);
2666devinfo_failed:
2667	free_percpu(net_device_ctx->vf_stats);
2668no_stats:
2669	hv_set_drvdata(dev, NULL);
2670	free_netdev(net);
2671no_net:
2672	return ret;
2673}
2674
2675static void netvsc_remove(struct hv_device *dev)
2676{
2677	struct net_device_context *ndev_ctx;
2678	struct net_device *vf_netdev, *net;
2679	struct netvsc_device *nvdev;
2680
2681	net = hv_get_drvdata(dev);
2682	if (net == NULL) {
2683		dev_err(&dev->device, "No net device to remove\n");
2684		return;
2685	}
2686
2687	ndev_ctx = netdev_priv(net);
2688
2689	cancel_delayed_work_sync(&ndev_ctx->dwork);
2690
2691	rtnl_lock();
2692	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2693	if (nvdev) {
2694		cancel_work_sync(&nvdev->subchan_work);
2695		netvsc_xdp_set(net, NULL, NULL, nvdev);
2696	}
2697
2698	/*
2699	 * Call to the vsc driver to let it know that the device is being
2700	 * removed. Also blocks mtu and channel changes.
2701	 */
2702	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2703	if (vf_netdev)
2704		netvsc_unregister_vf(vf_netdev);
2705
2706	if (nvdev)
2707		rndis_filter_device_remove(dev, nvdev);
2708
2709	unregister_netdevice(net);
2710	list_del(&ndev_ctx->list);
2711
2712	rtnl_unlock();
2713
2714	hv_set_drvdata(dev, NULL);
2715
2716	free_percpu(ndev_ctx->vf_stats);
2717	free_netdev(net);
 
2718}
2719
2720static int netvsc_suspend(struct hv_device *dev)
2721{
2722	struct net_device_context *ndev_ctx;
2723	struct netvsc_device *nvdev;
2724	struct net_device *net;
2725	int ret;
2726
2727	net = hv_get_drvdata(dev);
2728
2729	ndev_ctx = netdev_priv(net);
2730	cancel_delayed_work_sync(&ndev_ctx->dwork);
2731
2732	rtnl_lock();
2733
2734	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2735	if (nvdev == NULL) {
2736		ret = -ENODEV;
2737		goto out;
2738	}
2739
2740	/* Save the current config info */
2741	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2742	if (!ndev_ctx->saved_netvsc_dev_info) {
2743		ret = -ENOMEM;
2744		goto out;
2745	}
2746	ret = netvsc_detach(net, nvdev);
2747out:
2748	rtnl_unlock();
2749
2750	return ret;
2751}
2752
2753static int netvsc_resume(struct hv_device *dev)
2754{
2755	struct net_device *net = hv_get_drvdata(dev);
2756	struct net_device_context *net_device_ctx;
2757	struct netvsc_device_info *device_info;
2758	int ret;
2759
2760	rtnl_lock();
2761
2762	net_device_ctx = netdev_priv(net);
2763
2764	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2765	 * channel. Later netvsc_netdev_event() will switch the data path to
2766	 * the VF upon the UP or CHANGE event.
2767	 */
2768	net_device_ctx->data_path_is_vf = false;
2769	device_info = net_device_ctx->saved_netvsc_dev_info;
2770
2771	ret = netvsc_attach(net, device_info);
2772
2773	netvsc_devinfo_put(device_info);
2774	net_device_ctx->saved_netvsc_dev_info = NULL;
2775
2776	rtnl_unlock();
2777
2778	return ret;
2779}
2780static const struct hv_vmbus_device_id id_table[] = {
2781	/* Network guid */
2782	{ HV_NIC_GUID, },
2783	{ },
2784};
2785
2786MODULE_DEVICE_TABLE(vmbus, id_table);
2787
2788/* The one and only one */
2789static struct  hv_driver netvsc_drv = {
2790	.name = KBUILD_MODNAME,
2791	.id_table = id_table,
2792	.probe = netvsc_probe,
2793	.remove = netvsc_remove,
2794	.suspend = netvsc_suspend,
2795	.resume = netvsc_resume,
2796	.driver = {
2797		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2798	},
2799};
2800
2801/* Set VF's namespace same as the synthetic NIC */
2802static void netvsc_event_set_vf_ns(struct net_device *ndev)
2803{
2804	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2805	struct net_device *vf_netdev;
2806	int ret;
2807
2808	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2809	if (!vf_netdev)
2810		return;
2811
2812	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2813		ret = dev_change_net_namespace(vf_netdev, dev_net(ndev),
2814					       "eth%d");
2815		if (ret)
2816			netdev_err(vf_netdev,
2817				   "Cannot move to same namespace as %s: %d\n",
2818				   ndev->name, ret);
2819		else
2820			netdev_info(vf_netdev,
2821				    "Moved VF to namespace with: %s\n",
2822				    ndev->name);
2823	}
2824}
2825
2826/*
2827 * On Hyper-V, every VF interface is matched with a corresponding
2828 * synthetic interface. The synthetic interface is presented first
2829 * to the guest. When the corresponding VF instance is registered,
2830 * we will take care of switching the data path.
2831 */
2832static int netvsc_netdev_event(struct notifier_block *this,
2833			       unsigned long event, void *ptr)
2834{
2835	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2836	int ret = 0;
2837
2838	if (event_dev->netdev_ops == &device_ops && event == NETDEV_REGISTER) {
2839		netvsc_event_set_vf_ns(event_dev);
 
 
 
 
 
 
 
 
2840		return NOTIFY_DONE;
2841	}
2842
2843	ret = check_dev_is_matching_vf(event_dev);
2844	if (ret != 0)
 
2845		return NOTIFY_DONE;
2846
2847	switch (event) {
2848	case NETDEV_POST_INIT:
2849		return netvsc_prepare_bonding(event_dev);
2850	case NETDEV_REGISTER:
2851		return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2852	case NETDEV_UNREGISTER:
2853		return netvsc_unregister_vf(event_dev);
2854	case NETDEV_UP:
2855	case NETDEV_DOWN:
2856	case NETDEV_CHANGE:
2857	case NETDEV_GOING_DOWN:
2858		return netvsc_vf_changed(event_dev, event);
2859	default:
2860		return NOTIFY_DONE;
2861	}
2862}
2863
2864static struct notifier_block netvsc_netdev_notifier = {
2865	.notifier_call = netvsc_netdev_event,
2866};
2867
2868static void __exit netvsc_drv_exit(void)
2869{
2870	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2871	vmbus_driver_unregister(&netvsc_drv);
2872}
2873
2874static int __init netvsc_drv_init(void)
2875{
2876	int ret;
2877
2878	if (ring_size < RING_SIZE_MIN) {
2879		ring_size = RING_SIZE_MIN;
2880		pr_info("Increased ring_size to %u (min allowed)\n",
2881			ring_size);
2882	}
2883	netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2884
2885	register_netdevice_notifier(&netvsc_netdev_notifier);
2886
2887	ret = vmbus_driver_register(&netvsc_drv);
2888	if (ret)
2889		goto err_vmbus_reg;
2890
 
2891	return 0;
2892
2893err_vmbus_reg:
2894	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2895	return ret;
2896}
2897
2898MODULE_LICENSE("GPL");
2899MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2900
2901module_init(netvsc_drv_init);
2902module_exit(netvsc_drv_exit);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
  44
 
 
 
 
  45static unsigned int ring_size __ro_after_init = 128;
  46module_param(ring_size, uint, 0444);
  47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  48unsigned int netvsc_ring_bytes __ro_after_init;
  49
  50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  51				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  52				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  53				NETIF_MSG_TX_ERR;
  54
  55static int debug = -1;
  56module_param(debug, int, 0444);
  57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  58
  59static LIST_HEAD(netvsc_dev_list);
  60
  61static void netvsc_change_rx_flags(struct net_device *net, int change)
  62{
  63	struct net_device_context *ndev_ctx = netdev_priv(net);
  64	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  65	int inc;
  66
  67	if (!vf_netdev)
  68		return;
  69
  70	if (change & IFF_PROMISC) {
  71		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  72		dev_set_promiscuity(vf_netdev, inc);
  73	}
  74
  75	if (change & IFF_ALLMULTI) {
  76		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  77		dev_set_allmulti(vf_netdev, inc);
  78	}
  79}
  80
  81static void netvsc_set_rx_mode(struct net_device *net)
  82{
  83	struct net_device_context *ndev_ctx = netdev_priv(net);
  84	struct net_device *vf_netdev;
  85	struct netvsc_device *nvdev;
  86
  87	rcu_read_lock();
  88	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  89	if (vf_netdev) {
  90		dev_uc_sync(vf_netdev, net);
  91		dev_mc_sync(vf_netdev, net);
  92	}
  93
  94	nvdev = rcu_dereference(ndev_ctx->nvdev);
  95	if (nvdev)
  96		rndis_filter_update(nvdev);
  97	rcu_read_unlock();
  98}
  99
 100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 101			     struct net_device *ndev)
 102{
 103	nvscdev->tx_disable = false;
 104	virt_wmb(); /* ensure queue wake up mechanism is on */
 105
 106	netif_tx_wake_all_queues(ndev);
 107}
 108
 109static int netvsc_open(struct net_device *net)
 110{
 111	struct net_device_context *ndev_ctx = netdev_priv(net);
 112	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 113	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 114	struct rndis_device *rdev;
 115	int ret = 0;
 116
 117	netif_carrier_off(net);
 118
 119	/* Open up the device */
 120	ret = rndis_filter_open(nvdev);
 121	if (ret != 0) {
 122		netdev_err(net, "unable to open device (ret %d).\n", ret);
 123		return ret;
 124	}
 125
 126	rdev = nvdev->extension;
 127	if (!rdev->link_state) {
 128		netif_carrier_on(net);
 129		netvsc_tx_enable(nvdev, net);
 130	}
 131
 132	if (vf_netdev) {
 133		/* Setting synthetic device up transparently sets
 134		 * slave as up. If open fails, then slave will be
 135		 * still be offline (and not used).
 136		 */
 137		ret = dev_open(vf_netdev, NULL);
 138		if (ret)
 139			netdev_warn(net,
 140				    "unable to open slave: %s: %d\n",
 141				    vf_netdev->name, ret);
 142	}
 143	return 0;
 144}
 145
 146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 147{
 148	unsigned int retry = 0;
 149	int i;
 150
 151	/* Ensure pending bytes in ring are read */
 152	for (;;) {
 153		u32 aread = 0;
 154
 155		for (i = 0; i < nvdev->num_chn; i++) {
 156			struct vmbus_channel *chn
 157				= nvdev->chan_table[i].channel;
 158
 159			if (!chn)
 160				continue;
 161
 162			/* make sure receive not running now */
 163			napi_synchronize(&nvdev->chan_table[i].napi);
 164
 165			aread = hv_get_bytes_to_read(&chn->inbound);
 166			if (aread)
 167				break;
 168
 169			aread = hv_get_bytes_to_read(&chn->outbound);
 170			if (aread)
 171				break;
 172		}
 173
 174		if (aread == 0)
 175			return 0;
 176
 177		if (++retry > RETRY_MAX)
 178			return -ETIMEDOUT;
 179
 180		usleep_range(RETRY_US_LO, RETRY_US_HI);
 181	}
 182}
 183
 184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 185			      struct net_device *ndev)
 186{
 187	if (nvscdev) {
 188		nvscdev->tx_disable = true;
 189		virt_wmb(); /* ensure txq will not wake up after stop */
 190	}
 191
 192	netif_tx_disable(ndev);
 193}
 194
 195static int netvsc_close(struct net_device *net)
 196{
 197	struct net_device_context *net_device_ctx = netdev_priv(net);
 198	struct net_device *vf_netdev
 199		= rtnl_dereference(net_device_ctx->vf_netdev);
 200	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 201	int ret;
 202
 203	netvsc_tx_disable(nvdev, net);
 204
 205	/* No need to close rndis filter if it is removed already */
 206	if (!nvdev)
 207		return 0;
 208
 209	ret = rndis_filter_close(nvdev);
 210	if (ret != 0) {
 211		netdev_err(net, "unable to close device (ret %d).\n", ret);
 212		return ret;
 213	}
 214
 215	ret = netvsc_wait_until_empty(nvdev);
 216	if (ret)
 217		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 218
 219	if (vf_netdev)
 220		dev_close(vf_netdev);
 221
 222	return ret;
 223}
 224
 225static inline void *init_ppi_data(struct rndis_message *msg,
 226				  u32 ppi_size, u32 pkt_type)
 227{
 228	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 229	struct rndis_per_packet_info *ppi;
 230
 231	rndis_pkt->data_offset += ppi_size;
 232	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 233		+ rndis_pkt->per_pkt_info_len;
 234
 235	ppi->size = ppi_size;
 236	ppi->type = pkt_type;
 237	ppi->internal = 0;
 238	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 239
 240	rndis_pkt->per_pkt_info_len += ppi_size;
 241
 242	return ppi + 1;
 243}
 244
 245/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 246 * packets. We can use ethtool to change UDP hash level when necessary.
 247 */
 248static inline u32 netvsc_get_hash(
 249	struct sk_buff *skb,
 250	const struct net_device_context *ndc)
 251{
 252	struct flow_keys flow;
 253	u32 hash, pkt_proto = 0;
 254	static u32 hashrnd __read_mostly;
 255
 256	net_get_random_once(&hashrnd, sizeof(hashrnd));
 257
 258	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 259		return 0;
 260
 261	switch (flow.basic.ip_proto) {
 262	case IPPROTO_TCP:
 263		if (flow.basic.n_proto == htons(ETH_P_IP))
 264			pkt_proto = HV_TCP4_L4HASH;
 265		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 266			pkt_proto = HV_TCP6_L4HASH;
 267
 268		break;
 269
 270	case IPPROTO_UDP:
 271		if (flow.basic.n_proto == htons(ETH_P_IP))
 272			pkt_proto = HV_UDP4_L4HASH;
 273		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 274			pkt_proto = HV_UDP6_L4HASH;
 275
 276		break;
 277	}
 278
 279	if (pkt_proto & ndc->l4_hash) {
 280		return skb_get_hash(skb);
 281	} else {
 282		if (flow.basic.n_proto == htons(ETH_P_IP))
 283			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 284		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 285			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 286		else
 287			return 0;
 288
 289		__skb_set_sw_hash(skb, hash, false);
 290	}
 291
 292	return hash;
 293}
 294
 295static inline int netvsc_get_tx_queue(struct net_device *ndev,
 296				      struct sk_buff *skb, int old_idx)
 297{
 298	const struct net_device_context *ndc = netdev_priv(ndev);
 299	struct sock *sk = skb->sk;
 300	int q_idx;
 301
 302	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 303			      (VRSS_SEND_TAB_SIZE - 1)];
 304
 305	/* If queue index changed record the new value */
 306	if (q_idx != old_idx &&
 307	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 308		sk_tx_queue_set(sk, q_idx);
 309
 310	return q_idx;
 311}
 312
 313/*
 314 * Select queue for transmit.
 315 *
 316 * If a valid queue has already been assigned, then use that.
 317 * Otherwise compute tx queue based on hash and the send table.
 318 *
 319 * This is basically similar to default (netdev_pick_tx) with the added step
 320 * of using the host send_table when no other queue has been assigned.
 321 *
 322 * TODO support XPS - but get_xps_queue not exported
 323 */
 324static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 325{
 326	int q_idx = sk_tx_queue_get(skb->sk);
 327
 328	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 329		/* If forwarding a packet, we use the recorded queue when
 330		 * available for better cache locality.
 331		 */
 332		if (skb_rx_queue_recorded(skb))
 333			q_idx = skb_get_rx_queue(skb);
 334		else
 335			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 336	}
 337
 338	return q_idx;
 339}
 340
 341static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 342			       struct net_device *sb_dev)
 343{
 344	struct net_device_context *ndc = netdev_priv(ndev);
 345	struct net_device *vf_netdev;
 346	u16 txq;
 347
 348	rcu_read_lock();
 349	vf_netdev = rcu_dereference(ndc->vf_netdev);
 350	if (vf_netdev) {
 351		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 352
 353		if (vf_ops->ndo_select_queue)
 354			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 355		else
 356			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 357
 358		/* Record the queue selected by VF so that it can be
 359		 * used for common case where VF has more queues than
 360		 * the synthetic device.
 361		 */
 362		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 363	} else {
 364		txq = netvsc_pick_tx(ndev, skb);
 365	}
 366	rcu_read_unlock();
 367
 368	while (txq >= ndev->real_num_tx_queues)
 369		txq -= ndev->real_num_tx_queues;
 370
 371	return txq;
 372}
 373
 374static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 375		       struct hv_page_buffer *pb)
 376{
 377	int j = 0;
 378
 379	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 380	offset = offset & ~HV_HYP_PAGE_MASK;
 381
 382	while (len > 0) {
 383		unsigned long bytes;
 384
 385		bytes = HV_HYP_PAGE_SIZE - offset;
 386		if (bytes > len)
 387			bytes = len;
 388		pb[j].pfn = hvpfn;
 389		pb[j].offset = offset;
 390		pb[j].len = bytes;
 391
 392		offset += bytes;
 393		len -= bytes;
 394
 395		if (offset == HV_HYP_PAGE_SIZE && len) {
 396			hvpfn++;
 397			offset = 0;
 398			j++;
 399		}
 400	}
 401
 402	return j + 1;
 403}
 404
 405static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 406			   struct hv_netvsc_packet *packet,
 407			   struct hv_page_buffer *pb)
 408{
 409	u32 slots_used = 0;
 410	char *data = skb->data;
 411	int frags = skb_shinfo(skb)->nr_frags;
 412	int i;
 413
 414	/* The packet is laid out thus:
 415	 * 1. hdr: RNDIS header and PPI
 416	 * 2. skb linear data
 417	 * 3. skb fragment data
 418	 */
 419	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 420				  offset_in_hvpage(hdr),
 421				  len,
 422				  &pb[slots_used]);
 423
 424	packet->rmsg_size = len;
 425	packet->rmsg_pgcnt = slots_used;
 426
 427	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 428				  offset_in_hvpage(data),
 429				  skb_headlen(skb),
 430				  &pb[slots_used]);
 431
 432	for (i = 0; i < frags; i++) {
 433		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 434
 435		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 436					  skb_frag_off(frag),
 437					  skb_frag_size(frag),
 438					  &pb[slots_used]);
 439	}
 440	return slots_used;
 441}
 442
 443static int count_skb_frag_slots(struct sk_buff *skb)
 444{
 445	int i, frags = skb_shinfo(skb)->nr_frags;
 446	int pages = 0;
 447
 448	for (i = 0; i < frags; i++) {
 449		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 450		unsigned long size = skb_frag_size(frag);
 451		unsigned long offset = skb_frag_off(frag);
 452
 453		/* Skip unused frames from start of page */
 454		offset &= ~HV_HYP_PAGE_MASK;
 455		pages += HVPFN_UP(offset + size);
 456	}
 457	return pages;
 458}
 459
 460static int netvsc_get_slots(struct sk_buff *skb)
 461{
 462	char *data = skb->data;
 463	unsigned int offset = offset_in_hvpage(data);
 464	unsigned int len = skb_headlen(skb);
 465	int slots;
 466	int frag_slots;
 467
 468	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 469	frag_slots = count_skb_frag_slots(skb);
 470	return slots + frag_slots;
 471}
 472
 473static u32 net_checksum_info(struct sk_buff *skb)
 474{
 475	if (skb->protocol == htons(ETH_P_IP)) {
 476		struct iphdr *ip = ip_hdr(skb);
 477
 478		if (ip->protocol == IPPROTO_TCP)
 479			return TRANSPORT_INFO_IPV4_TCP;
 480		else if (ip->protocol == IPPROTO_UDP)
 481			return TRANSPORT_INFO_IPV4_UDP;
 482	} else {
 483		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 484
 485		if (ip6->nexthdr == IPPROTO_TCP)
 486			return TRANSPORT_INFO_IPV6_TCP;
 487		else if (ip6->nexthdr == IPPROTO_UDP)
 488			return TRANSPORT_INFO_IPV6_UDP;
 489	}
 490
 491	return TRANSPORT_INFO_NOT_IP;
 492}
 493
 494/* Send skb on the slave VF device. */
 495static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 496			  struct sk_buff *skb)
 497{
 498	struct net_device_context *ndev_ctx = netdev_priv(net);
 499	unsigned int len = skb->len;
 500	int rc;
 501
 502	skb->dev = vf_netdev;
 503	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 504
 505	rc = dev_queue_xmit(skb);
 506	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 507		struct netvsc_vf_pcpu_stats *pcpu_stats
 508			= this_cpu_ptr(ndev_ctx->vf_stats);
 509
 510		u64_stats_update_begin(&pcpu_stats->syncp);
 511		pcpu_stats->tx_packets++;
 512		pcpu_stats->tx_bytes += len;
 513		u64_stats_update_end(&pcpu_stats->syncp);
 514	} else {
 515		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 516	}
 517
 518	return rc;
 519}
 520
 521static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 522{
 523	struct net_device_context *net_device_ctx = netdev_priv(net);
 524	struct hv_netvsc_packet *packet = NULL;
 525	int ret;
 526	unsigned int num_data_pgs;
 527	struct rndis_message *rndis_msg;
 528	struct net_device *vf_netdev;
 529	u32 rndis_msg_size;
 530	u32 hash;
 531	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 532
 533	/* If VF is present and up then redirect packets to it.
 534	 * Skip the VF if it is marked down or has no carrier.
 535	 * If netpoll is in uses, then VF can not be used either.
 536	 */
 537	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 538	if (vf_netdev && netif_running(vf_netdev) &&
 539	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 540	    net_device_ctx->data_path_is_vf)
 541		return netvsc_vf_xmit(net, vf_netdev, skb);
 542
 543	/* We will atmost need two pages to describe the rndis
 544	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 545	 * of pages in a single packet. If skb is scattered around
 546	 * more pages we try linearizing it.
 547	 */
 548
 549	num_data_pgs = netvsc_get_slots(skb) + 2;
 550
 551	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 552		++net_device_ctx->eth_stats.tx_scattered;
 553
 554		if (skb_linearize(skb))
 555			goto no_memory;
 556
 557		num_data_pgs = netvsc_get_slots(skb) + 2;
 558		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 559			++net_device_ctx->eth_stats.tx_too_big;
 560			goto drop;
 561		}
 562	}
 563
 564	/*
 565	 * Place the rndis header in the skb head room and
 566	 * the skb->cb will be used for hv_netvsc_packet
 567	 * structure.
 568	 */
 569	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 570	if (ret)
 571		goto no_memory;
 572
 573	/* Use the skb control buffer for building up the packet */
 574	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 575			sizeof_field(struct sk_buff, cb));
 576	packet = (struct hv_netvsc_packet *)skb->cb;
 577
 578	packet->q_idx = skb_get_queue_mapping(skb);
 579
 580	packet->total_data_buflen = skb->len;
 581	packet->total_bytes = skb->len;
 582	packet->total_packets = 1;
 583
 584	rndis_msg = (struct rndis_message *)skb->head;
 585
 586	/* Add the rndis header */
 587	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 588	rndis_msg->msg_len = packet->total_data_buflen;
 589
 590	rndis_msg->msg.pkt = (struct rndis_packet) {
 591		.data_offset = sizeof(struct rndis_packet),
 592		.data_len = packet->total_data_buflen,
 593		.per_pkt_info_offset = sizeof(struct rndis_packet),
 594	};
 595
 596	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 597
 598	hash = skb_get_hash_raw(skb);
 599	if (hash != 0 && net->real_num_tx_queues > 1) {
 600		u32 *hash_info;
 601
 602		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 603		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 604					  NBL_HASH_VALUE);
 605		*hash_info = hash;
 606	}
 607
 608	/* When using AF_PACKET we need to drop VLAN header from
 609	 * the frame and update the SKB to allow the HOST OS
 610	 * to transmit the 802.1Q packet
 611	 */
 612	if (skb->protocol == htons(ETH_P_8021Q)) {
 613		u16 vlan_tci;
 614
 615		skb_reset_mac_header(skb);
 616		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 617			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 618				++net_device_ctx->eth_stats.vlan_error;
 619				goto drop;
 620			}
 621
 622			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 623			/* Update the NDIS header pkt lengths */
 624			packet->total_data_buflen -= VLAN_HLEN;
 625			packet->total_bytes -= VLAN_HLEN;
 626			rndis_msg->msg_len = packet->total_data_buflen;
 627			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 628		}
 629	}
 630
 631	if (skb_vlan_tag_present(skb)) {
 632		struct ndis_pkt_8021q_info *vlan;
 633
 634		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 635		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 636				     IEEE_8021Q_INFO);
 637
 638		vlan->value = 0;
 639		vlan->vlanid = skb_vlan_tag_get_id(skb);
 640		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 641		vlan->pri = skb_vlan_tag_get_prio(skb);
 642	}
 643
 644	if (skb_is_gso(skb)) {
 645		struct ndis_tcp_lso_info *lso_info;
 646
 647		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 648		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 649					 TCP_LARGESEND_PKTINFO);
 650
 651		lso_info->value = 0;
 652		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 653		if (skb->protocol == htons(ETH_P_IP)) {
 654			lso_info->lso_v2_transmit.ip_version =
 655				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 656			ip_hdr(skb)->tot_len = 0;
 657			ip_hdr(skb)->check = 0;
 658			tcp_hdr(skb)->check =
 659				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 660						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 661		} else {
 662			lso_info->lso_v2_transmit.ip_version =
 663				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 664			tcp_v6_gso_csum_prep(skb);
 665		}
 666		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 667		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 668	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 669		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 670			struct ndis_tcp_ip_checksum_info *csum_info;
 671
 672			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 673			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 674						  TCPIP_CHKSUM_PKTINFO);
 675
 676			csum_info->value = 0;
 677			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 678
 679			if (skb->protocol == htons(ETH_P_IP)) {
 680				csum_info->transmit.is_ipv4 = 1;
 681
 682				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 683					csum_info->transmit.tcp_checksum = 1;
 684				else
 685					csum_info->transmit.udp_checksum = 1;
 686			} else {
 687				csum_info->transmit.is_ipv6 = 1;
 688
 689				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 690					csum_info->transmit.tcp_checksum = 1;
 691				else
 692					csum_info->transmit.udp_checksum = 1;
 693			}
 694		} else {
 695			/* Can't do offload of this type of checksum */
 696			if (skb_checksum_help(skb))
 697				goto drop;
 698		}
 699	}
 700
 701	/* Start filling in the page buffers with the rndis hdr */
 702	rndis_msg->msg_len += rndis_msg_size;
 703	packet->total_data_buflen = rndis_msg->msg_len;
 704	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 705					       skb, packet, pb);
 706
 707	/* timestamp packet in software */
 708	skb_tx_timestamp(skb);
 709
 710	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 711	if (likely(ret == 0))
 712		return NETDEV_TX_OK;
 713
 714	if (ret == -EAGAIN) {
 715		++net_device_ctx->eth_stats.tx_busy;
 716		return NETDEV_TX_BUSY;
 717	}
 718
 719	if (ret == -ENOSPC)
 720		++net_device_ctx->eth_stats.tx_no_space;
 721
 722drop:
 723	dev_kfree_skb_any(skb);
 724	net->stats.tx_dropped++;
 725
 726	return NETDEV_TX_OK;
 727
 728no_memory:
 729	++net_device_ctx->eth_stats.tx_no_memory;
 730	goto drop;
 731}
 732
 733static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 734				     struct net_device *ndev)
 735{
 736	return netvsc_xmit(skb, ndev, false);
 737}
 738
 739/*
 740 * netvsc_linkstatus_callback - Link up/down notification
 741 */
 742void netvsc_linkstatus_callback(struct net_device *net,
 743				struct rndis_message *resp,
 744				void *data, u32 data_buflen)
 745{
 746	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 747	struct net_device_context *ndev_ctx = netdev_priv(net);
 748	struct netvsc_reconfig *event;
 749	unsigned long flags;
 750
 751	/* Ensure the packet is big enough to access its fields */
 752	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 753		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 754			   resp->msg_len);
 755		return;
 756	}
 757
 758	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 759	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 760
 761	/* Update the physical link speed when changing to another vSwitch */
 762	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 763		u32 speed;
 764
 765		/* Validate status_buf_offset and status_buflen.
 766		 *
 767		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 768		 * for the status buffer field in resp->msg_len; perform the validation
 769		 * using data_buflen (>= resp->msg_len).
 770		 */
 771		if (indicate->status_buflen < sizeof(speed) ||
 772		    indicate->status_buf_offset < sizeof(*indicate) ||
 773		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 774		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 775				< indicate->status_buflen) {
 776			netdev_err(net, "invalid rndis_indicate_status packet\n");
 777			return;
 778		}
 779
 780		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 781		ndev_ctx->speed = speed;
 782		return;
 783	}
 784
 785	/* Handle these link change statuses below */
 786	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 787	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 788	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 789		return;
 790
 791	if (net->reg_state != NETREG_REGISTERED)
 792		return;
 793
 794	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 795	if (!event)
 796		return;
 797	event->event = indicate->status;
 798
 799	spin_lock_irqsave(&ndev_ctx->lock, flags);
 800	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 801	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 802
 803	schedule_delayed_work(&ndev_ctx->dwork, 0);
 804}
 805
 806static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 
 807{
 808	int rc;
 809
 810	skb->queue_mapping = skb_get_rx_queue(skb);
 811	__skb_push(skb, ETH_HLEN);
 812
 813	rc = netvsc_xmit(skb, ndev, true);
 814
 815	if (dev_xmit_complete(rc))
 816		return;
 817
 818	dev_kfree_skb_any(skb);
 819	ndev->stats.tx_dropped++;
 820}
 821
 822static void netvsc_comp_ipcsum(struct sk_buff *skb)
 823{
 824	struct iphdr *iph = (struct iphdr *)skb->data;
 825
 826	iph->check = 0;
 827	iph->check = ip_fast_csum(iph, iph->ihl);
 828}
 829
 830static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 831					     struct netvsc_channel *nvchan,
 832					     struct xdp_buff *xdp)
 833{
 834	struct napi_struct *napi = &nvchan->napi;
 835	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 836	const struct ndis_tcp_ip_checksum_info *csum_info =
 837						&nvchan->rsc.csum_info;
 838	const u32 *hash_info = &nvchan->rsc.hash_info;
 839	u8 ppi_flags = nvchan->rsc.ppi_flags;
 840	struct sk_buff *skb;
 841	void *xbuf = xdp->data_hard_start;
 842	int i;
 843
 844	if (xbuf) {
 845		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 846		unsigned int xlen = xdp->data_end - xdp->data;
 847		unsigned int frag_size = xdp->frame_sz;
 848
 849		skb = build_skb(xbuf, frag_size);
 850
 851		if (!skb) {
 852			__free_page(virt_to_page(xbuf));
 853			return NULL;
 854		}
 855
 856		skb_reserve(skb, hdroom);
 857		skb_put(skb, xlen);
 858		skb->dev = napi->dev;
 859	} else {
 860		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 861
 862		if (!skb)
 863			return NULL;
 864
 865		/* Copy to skb. This copy is needed here since the memory
 866		 * pointed by hv_netvsc_packet cannot be deallocated.
 867		 */
 868		for (i = 0; i < nvchan->rsc.cnt; i++)
 869			skb_put_data(skb, nvchan->rsc.data[i],
 870				     nvchan->rsc.len[i]);
 871	}
 872
 873	skb->protocol = eth_type_trans(skb, net);
 874
 875	/* skb is already created with CHECKSUM_NONE */
 876	skb_checksum_none_assert(skb);
 877
 878	/* Incoming packets may have IP header checksum verified by the host.
 879	 * They may not have IP header checksum computed after coalescing.
 880	 * We compute it here if the flags are set, because on Linux, the IP
 881	 * checksum is always checked.
 882	 */
 883	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 884	    csum_info->receive.ip_checksum_succeeded &&
 885	    skb->protocol == htons(ETH_P_IP)) {
 886		/* Check that there is enough space to hold the IP header. */
 887		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 888			kfree_skb(skb);
 889			return NULL;
 890		}
 891		netvsc_comp_ipcsum(skb);
 892	}
 893
 894	/* Do L4 checksum offload if enabled and present. */
 895	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 896		if (csum_info->receive.tcp_checksum_succeeded ||
 897		    csum_info->receive.udp_checksum_succeeded)
 898			skb->ip_summed = CHECKSUM_UNNECESSARY;
 899	}
 900
 901	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 902		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 903
 904	if (ppi_flags & NVSC_RSC_VLAN) {
 905		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 906			(vlan->cfi ? VLAN_CFI_MASK : 0);
 907
 908		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 909				       vlan_tci);
 910	}
 911
 912	return skb;
 913}
 914
 915/*
 916 * netvsc_recv_callback -  Callback when we receive a packet from the
 917 * "wire" on the specified device.
 918 */
 919int netvsc_recv_callback(struct net_device *net,
 920			 struct netvsc_device *net_device,
 921			 struct netvsc_channel *nvchan)
 922{
 923	struct net_device_context *net_device_ctx = netdev_priv(net);
 924	struct vmbus_channel *channel = nvchan->channel;
 925	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 926	struct sk_buff *skb;
 927	struct netvsc_stats *rx_stats = &nvchan->rx_stats;
 928	struct xdp_buff xdp;
 929	u32 act;
 930
 931	if (net->reg_state != NETREG_REGISTERED)
 932		return NVSP_STAT_FAIL;
 933
 934	act = netvsc_run_xdp(net, nvchan, &xdp);
 935
 
 
 
 936	if (act != XDP_PASS && act != XDP_TX) {
 937		u64_stats_update_begin(&rx_stats->syncp);
 938		rx_stats->xdp_drop++;
 939		u64_stats_update_end(&rx_stats->syncp);
 940
 941		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 942	}
 943
 944	/* Allocate a skb - TODO direct I/O to pages? */
 945	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 946
 947	if (unlikely(!skb)) {
 948		++net_device_ctx->eth_stats.rx_no_memory;
 949		return NVSP_STAT_FAIL;
 950	}
 951
 952	skb_record_rx_queue(skb, q_idx);
 953
 954	/*
 955	 * Even if injecting the packet, record the statistics
 956	 * on the synthetic device because modifying the VF device
 957	 * statistics will not work correctly.
 958	 */
 959	u64_stats_update_begin(&rx_stats->syncp);
 
 
 
 960	rx_stats->packets++;
 961	rx_stats->bytes += nvchan->rsc.pktlen;
 962
 963	if (skb->pkt_type == PACKET_BROADCAST)
 964		++rx_stats->broadcast;
 965	else if (skb->pkt_type == PACKET_MULTICAST)
 966		++rx_stats->multicast;
 967	u64_stats_update_end(&rx_stats->syncp);
 968
 969	if (act == XDP_TX) {
 970		netvsc_xdp_xmit(skb, net);
 971		return NVSP_STAT_SUCCESS;
 972	}
 973
 974	napi_gro_receive(&nvchan->napi, skb);
 975	return NVSP_STAT_SUCCESS;
 976}
 977
 978static void netvsc_get_drvinfo(struct net_device *net,
 979			       struct ethtool_drvinfo *info)
 980{
 981	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 982	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 983}
 984
 985static void netvsc_get_channels(struct net_device *net,
 986				struct ethtool_channels *channel)
 987{
 988	struct net_device_context *net_device_ctx = netdev_priv(net);
 989	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 990
 991	if (nvdev) {
 992		channel->max_combined	= nvdev->max_chn;
 993		channel->combined_count = nvdev->num_chn;
 994	}
 995}
 996
 997/* Alloc struct netvsc_device_info, and initialize it from either existing
 998 * struct netvsc_device, or from default values.
 999 */
1000static
1001struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1002{
1003	struct netvsc_device_info *dev_info;
1004	struct bpf_prog *prog;
1005
1006	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1007
1008	if (!dev_info)
1009		return NULL;
1010
1011	if (nvdev) {
1012		ASSERT_RTNL();
1013
1014		dev_info->num_chn = nvdev->num_chn;
1015		dev_info->send_sections = nvdev->send_section_cnt;
1016		dev_info->send_section_size = nvdev->send_section_size;
1017		dev_info->recv_sections = nvdev->recv_section_cnt;
1018		dev_info->recv_section_size = nvdev->recv_section_size;
1019
1020		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1021		       NETVSC_HASH_KEYLEN);
1022
1023		prog = netvsc_xdp_get(nvdev);
1024		if (prog) {
1025			bpf_prog_inc(prog);
1026			dev_info->bprog = prog;
1027		}
1028	} else {
1029		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 
1030		dev_info->send_sections = NETVSC_DEFAULT_TX;
1031		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1032		dev_info->recv_sections = NETVSC_DEFAULT_RX;
1033		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1034	}
1035
1036	return dev_info;
1037}
1038
1039/* Free struct netvsc_device_info */
1040static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1041{
1042	if (dev_info->bprog) {
1043		ASSERT_RTNL();
1044		bpf_prog_put(dev_info->bprog);
1045	}
1046
1047	kfree(dev_info);
1048}
1049
1050static int netvsc_detach(struct net_device *ndev,
1051			 struct netvsc_device *nvdev)
1052{
1053	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054	struct hv_device *hdev = ndev_ctx->device_ctx;
1055	int ret;
1056
1057	/* Don't try continuing to try and setup sub channels */
1058	if (cancel_work_sync(&nvdev->subchan_work))
1059		nvdev->num_chn = 1;
1060
1061	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1062
1063	/* If device was up (receiving) then shutdown */
1064	if (netif_running(ndev)) {
1065		netvsc_tx_disable(nvdev, ndev);
1066
1067		ret = rndis_filter_close(nvdev);
1068		if (ret) {
1069			netdev_err(ndev,
1070				   "unable to close device (ret %d).\n", ret);
1071			return ret;
1072		}
1073
1074		ret = netvsc_wait_until_empty(nvdev);
1075		if (ret) {
1076			netdev_err(ndev,
1077				   "Ring buffer not empty after closing rndis\n");
1078			return ret;
1079		}
1080	}
1081
1082	netif_device_detach(ndev);
1083
1084	rndis_filter_device_remove(hdev, nvdev);
1085
1086	return 0;
1087}
1088
1089static int netvsc_attach(struct net_device *ndev,
1090			 struct netvsc_device_info *dev_info)
1091{
1092	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1093	struct hv_device *hdev = ndev_ctx->device_ctx;
1094	struct netvsc_device *nvdev;
1095	struct rndis_device *rdev;
1096	struct bpf_prog *prog;
1097	int ret = 0;
1098
1099	nvdev = rndis_filter_device_add(hdev, dev_info);
1100	if (IS_ERR(nvdev))
1101		return PTR_ERR(nvdev);
1102
1103	if (nvdev->num_chn > 1) {
1104		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1105
1106		/* if unavailable, just proceed with one queue */
1107		if (ret) {
1108			nvdev->max_chn = 1;
1109			nvdev->num_chn = 1;
1110		}
1111	}
1112
1113	prog = dev_info->bprog;
1114	if (prog) {
1115		bpf_prog_inc(prog);
1116		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1117		if (ret) {
1118			bpf_prog_put(prog);
1119			goto err1;
1120		}
1121	}
1122
1123	/* In any case device is now ready */
1124	nvdev->tx_disable = false;
1125	netif_device_attach(ndev);
1126
1127	/* Note: enable and attach happen when sub-channels setup */
1128	netif_carrier_off(ndev);
1129
1130	if (netif_running(ndev)) {
1131		ret = rndis_filter_open(nvdev);
1132		if (ret)
1133			goto err2;
1134
1135		rdev = nvdev->extension;
1136		if (!rdev->link_state)
1137			netif_carrier_on(ndev);
1138	}
1139
1140	return 0;
1141
1142err2:
1143	netif_device_detach(ndev);
1144
1145err1:
1146	rndis_filter_device_remove(hdev, nvdev);
1147
1148	return ret;
1149}
1150
1151static int netvsc_set_channels(struct net_device *net,
1152			       struct ethtool_channels *channels)
1153{
1154	struct net_device_context *net_device_ctx = netdev_priv(net);
1155	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1156	unsigned int orig, count = channels->combined_count;
1157	struct netvsc_device_info *device_info;
1158	int ret;
1159
1160	/* We do not support separate count for rx, tx, or other */
1161	if (count == 0 ||
1162	    channels->rx_count || channels->tx_count || channels->other_count)
1163		return -EINVAL;
1164
1165	if (!nvdev || nvdev->destroy)
1166		return -ENODEV;
1167
1168	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1169		return -EINVAL;
1170
1171	if (count > nvdev->max_chn)
1172		return -EINVAL;
1173
1174	orig = nvdev->num_chn;
1175
1176	device_info = netvsc_devinfo_get(nvdev);
1177
1178	if (!device_info)
1179		return -ENOMEM;
1180
1181	device_info->num_chn = count;
1182
1183	ret = netvsc_detach(net, nvdev);
1184	if (ret)
1185		goto out;
1186
1187	ret = netvsc_attach(net, device_info);
1188	if (ret) {
1189		device_info->num_chn = orig;
1190		if (netvsc_attach(net, device_info))
1191			netdev_err(net, "restoring channel setting failed\n");
1192	}
1193
1194out:
1195	netvsc_devinfo_put(device_info);
1196	return ret;
1197}
1198
1199static void netvsc_init_settings(struct net_device *dev)
1200{
1201	struct net_device_context *ndc = netdev_priv(dev);
1202
1203	ndc->l4_hash = HV_DEFAULT_L4HASH;
1204
1205	ndc->speed = SPEED_UNKNOWN;
1206	ndc->duplex = DUPLEX_FULL;
1207
1208	dev->features = NETIF_F_LRO;
1209}
1210
1211static int netvsc_get_link_ksettings(struct net_device *dev,
1212				     struct ethtool_link_ksettings *cmd)
1213{
1214	struct net_device_context *ndc = netdev_priv(dev);
1215	struct net_device *vf_netdev;
1216
1217	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1218
1219	if (vf_netdev)
1220		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1221
1222	cmd->base.speed = ndc->speed;
1223	cmd->base.duplex = ndc->duplex;
1224	cmd->base.port = PORT_OTHER;
1225
1226	return 0;
1227}
1228
1229static int netvsc_set_link_ksettings(struct net_device *dev,
1230				     const struct ethtool_link_ksettings *cmd)
1231{
1232	struct net_device_context *ndc = netdev_priv(dev);
1233	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234
1235	if (vf_netdev) {
1236		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1237			return -EOPNOTSUPP;
1238
1239		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1240								  cmd);
1241	}
1242
1243	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1244						  &ndc->speed, &ndc->duplex);
1245}
1246
1247static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1248{
1249	struct net_device_context *ndevctx = netdev_priv(ndev);
1250	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1251	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1252	int orig_mtu = ndev->mtu;
1253	struct netvsc_device_info *device_info;
1254	int ret = 0;
1255
1256	if (!nvdev || nvdev->destroy)
1257		return -ENODEV;
1258
1259	device_info = netvsc_devinfo_get(nvdev);
1260
1261	if (!device_info)
1262		return -ENOMEM;
1263
1264	/* Change MTU of underlying VF netdev first. */
1265	if (vf_netdev) {
1266		ret = dev_set_mtu(vf_netdev, mtu);
1267		if (ret)
1268			goto out;
1269	}
1270
1271	ret = netvsc_detach(ndev, nvdev);
1272	if (ret)
1273		goto rollback_vf;
1274
1275	ndev->mtu = mtu;
1276
1277	ret = netvsc_attach(ndev, device_info);
1278	if (!ret)
1279		goto out;
1280
1281	/* Attempt rollback to original MTU */
1282	ndev->mtu = orig_mtu;
1283
1284	if (netvsc_attach(ndev, device_info))
1285		netdev_err(ndev, "restoring mtu failed\n");
1286rollback_vf:
1287	if (vf_netdev)
1288		dev_set_mtu(vf_netdev, orig_mtu);
1289
1290out:
1291	netvsc_devinfo_put(device_info);
1292	return ret;
1293}
1294
1295static void netvsc_get_vf_stats(struct net_device *net,
1296				struct netvsc_vf_pcpu_stats *tot)
1297{
1298	struct net_device_context *ndev_ctx = netdev_priv(net);
1299	int i;
1300
1301	memset(tot, 0, sizeof(*tot));
1302
1303	for_each_possible_cpu(i) {
1304		const struct netvsc_vf_pcpu_stats *stats
1305			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1306		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1307		unsigned int start;
1308
1309		do {
1310			start = u64_stats_fetch_begin_irq(&stats->syncp);
1311			rx_packets = stats->rx_packets;
1312			tx_packets = stats->tx_packets;
1313			rx_bytes = stats->rx_bytes;
1314			tx_bytes = stats->tx_bytes;
1315		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1316
1317		tot->rx_packets += rx_packets;
1318		tot->tx_packets += tx_packets;
1319		tot->rx_bytes   += rx_bytes;
1320		tot->tx_bytes   += tx_bytes;
1321		tot->tx_dropped += stats->tx_dropped;
1322	}
1323}
1324
1325static void netvsc_get_pcpu_stats(struct net_device *net,
1326				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1327{
1328	struct net_device_context *ndev_ctx = netdev_priv(net);
1329	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1330	int i;
1331
1332	/* fetch percpu stats of vf */
1333	for_each_possible_cpu(i) {
1334		const struct netvsc_vf_pcpu_stats *stats =
1335			per_cpu_ptr(ndev_ctx->vf_stats, i);
1336		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1337		unsigned int start;
1338
1339		do {
1340			start = u64_stats_fetch_begin_irq(&stats->syncp);
1341			this_tot->vf_rx_packets = stats->rx_packets;
1342			this_tot->vf_tx_packets = stats->tx_packets;
1343			this_tot->vf_rx_bytes = stats->rx_bytes;
1344			this_tot->vf_tx_bytes = stats->tx_bytes;
1345		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1346		this_tot->rx_packets = this_tot->vf_rx_packets;
1347		this_tot->tx_packets = this_tot->vf_tx_packets;
1348		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1349		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1350	}
1351
1352	/* fetch percpu stats of netvsc */
1353	for (i = 0; i < nvdev->num_chn; i++) {
1354		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1355		const struct netvsc_stats *stats;
 
1356		struct netvsc_ethtool_pcpu_stats *this_tot =
1357			&pcpu_tot[nvchan->channel->target_cpu];
1358		u64 packets, bytes;
1359		unsigned int start;
1360
1361		stats = &nvchan->tx_stats;
1362		do {
1363			start = u64_stats_fetch_begin_irq(&stats->syncp);
1364			packets = stats->packets;
1365			bytes = stats->bytes;
1366		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1367
1368		this_tot->tx_bytes	+= bytes;
1369		this_tot->tx_packets	+= packets;
1370
1371		stats = &nvchan->rx_stats;
1372		do {
1373			start = u64_stats_fetch_begin_irq(&stats->syncp);
1374			packets = stats->packets;
1375			bytes = stats->bytes;
1376		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1377
1378		this_tot->rx_bytes	+= bytes;
1379		this_tot->rx_packets	+= packets;
1380	}
1381}
1382
1383static void netvsc_get_stats64(struct net_device *net,
1384			       struct rtnl_link_stats64 *t)
1385{
1386	struct net_device_context *ndev_ctx = netdev_priv(net);
1387	struct netvsc_device *nvdev;
1388	struct netvsc_vf_pcpu_stats vf_tot;
1389	int i;
1390
1391	rcu_read_lock();
1392
1393	nvdev = rcu_dereference(ndev_ctx->nvdev);
1394	if (!nvdev)
1395		goto out;
1396
1397	netdev_stats_to_stats64(t, &net->stats);
1398
1399	netvsc_get_vf_stats(net, &vf_tot);
1400	t->rx_packets += vf_tot.rx_packets;
1401	t->tx_packets += vf_tot.tx_packets;
1402	t->rx_bytes   += vf_tot.rx_bytes;
1403	t->tx_bytes   += vf_tot.tx_bytes;
1404	t->tx_dropped += vf_tot.tx_dropped;
1405
1406	for (i = 0; i < nvdev->num_chn; i++) {
1407		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1408		const struct netvsc_stats *stats;
 
1409		u64 packets, bytes, multicast;
1410		unsigned int start;
1411
1412		stats = &nvchan->tx_stats;
1413		do {
1414			start = u64_stats_fetch_begin_irq(&stats->syncp);
1415			packets = stats->packets;
1416			bytes = stats->bytes;
1417		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1418
1419		t->tx_bytes	+= bytes;
1420		t->tx_packets	+= packets;
1421
1422		stats = &nvchan->rx_stats;
1423		do {
1424			start = u64_stats_fetch_begin_irq(&stats->syncp);
1425			packets = stats->packets;
1426			bytes = stats->bytes;
1427			multicast = stats->multicast + stats->broadcast;
1428		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1429
1430		t->rx_bytes	+= bytes;
1431		t->rx_packets	+= packets;
1432		t->multicast	+= multicast;
1433	}
1434out:
1435	rcu_read_unlock();
1436}
1437
1438static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1439{
1440	struct net_device_context *ndc = netdev_priv(ndev);
1441	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1442	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1443	struct sockaddr *addr = p;
1444	int err;
1445
1446	err = eth_prepare_mac_addr_change(ndev, p);
1447	if (err)
1448		return err;
1449
1450	if (!nvdev)
1451		return -ENODEV;
1452
1453	if (vf_netdev) {
1454		err = dev_set_mac_address(vf_netdev, addr, NULL);
1455		if (err)
1456			return err;
1457	}
1458
1459	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1460	if (!err) {
1461		eth_commit_mac_addr_change(ndev, p);
1462	} else if (vf_netdev) {
1463		/* rollback change on VF */
1464		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1465		dev_set_mac_address(vf_netdev, addr, NULL);
1466	}
1467
1468	return err;
1469}
1470
1471static const struct {
1472	char name[ETH_GSTRING_LEN];
1473	u16 offset;
1474} netvsc_stats[] = {
1475	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1476	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1477	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1478	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1479	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1480	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1481	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1482	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1483	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1484	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1485	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1486}, pcpu_stats[] = {
1487	{ "cpu%u_rx_packets",
1488		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1489	{ "cpu%u_rx_bytes",
1490		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1491	{ "cpu%u_tx_packets",
1492		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1493	{ "cpu%u_tx_bytes",
1494		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1495	{ "cpu%u_vf_rx_packets",
1496		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1497	{ "cpu%u_vf_rx_bytes",
1498		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1499	{ "cpu%u_vf_tx_packets",
1500		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1501	{ "cpu%u_vf_tx_bytes",
1502		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1503}, vf_stats[] = {
1504	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1505	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1506	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1507	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1508	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1509};
1510
1511#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1512#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1513
1514/* statistics per queue (rx/tx packets/bytes) */
1515#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1516
1517/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1518#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1519
1520static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1521{
1522	struct net_device_context *ndc = netdev_priv(dev);
1523	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1524
1525	if (!nvdev)
1526		return -ENODEV;
1527
1528	switch (string_set) {
1529	case ETH_SS_STATS:
1530		return NETVSC_GLOBAL_STATS_LEN
1531			+ NETVSC_VF_STATS_LEN
1532			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1533			+ NETVSC_PCPU_STATS_LEN;
1534	default:
1535		return -EINVAL;
1536	}
1537}
1538
1539static void netvsc_get_ethtool_stats(struct net_device *dev,
1540				     struct ethtool_stats *stats, u64 *data)
1541{
1542	struct net_device_context *ndc = netdev_priv(dev);
1543	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1544	const void *nds = &ndc->eth_stats;
1545	const struct netvsc_stats *qstats;
 
1546	struct netvsc_vf_pcpu_stats sum;
1547	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1548	unsigned int start;
1549	u64 packets, bytes;
1550	u64 xdp_drop;
 
 
 
1551	int i, j, cpu;
1552
1553	if (!nvdev)
1554		return;
1555
1556	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1557		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1558
1559	netvsc_get_vf_stats(dev, &sum);
1560	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1561		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1562
1563	for (j = 0; j < nvdev->num_chn; j++) {
1564		qstats = &nvdev->chan_table[j].tx_stats;
1565
1566		do {
1567			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1568			packets = qstats->packets;
1569			bytes = qstats->bytes;
1570		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
 
1571		data[i++] = packets;
1572		data[i++] = bytes;
 
1573
1574		qstats = &nvdev->chan_table[j].rx_stats;
1575		do {
1576			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1577			packets = qstats->packets;
1578			bytes = qstats->bytes;
1579			xdp_drop = qstats->xdp_drop;
1580		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
 
 
1581		data[i++] = packets;
1582		data[i++] = bytes;
1583		data[i++] = xdp_drop;
 
 
1584	}
1585
1586	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1587				  sizeof(struct netvsc_ethtool_pcpu_stats),
1588				  GFP_KERNEL);
 
 
 
1589	netvsc_get_pcpu_stats(dev, pcpu_sum);
1590	for_each_present_cpu(cpu) {
1591		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1592
1593		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1594			data[i++] = *(u64 *)((void *)this_sum
1595					     + pcpu_stats[j].offset);
1596	}
1597	kvfree(pcpu_sum);
1598}
1599
1600static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1601{
1602	struct net_device_context *ndc = netdev_priv(dev);
1603	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1604	u8 *p = data;
1605	int i, cpu;
1606
1607	if (!nvdev)
1608		return;
1609
1610	switch (stringset) {
1611	case ETH_SS_STATS:
1612		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1613			ethtool_sprintf(&p, netvsc_stats[i].name);
1614
1615		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1616			ethtool_sprintf(&p, vf_stats[i].name);
1617
1618		for (i = 0; i < nvdev->num_chn; i++) {
1619			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1620			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
 
1621			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1622			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1623			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
 
 
1624		}
1625
1626		for_each_present_cpu(cpu) {
1627			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1628				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1629		}
1630
1631		break;
1632	}
1633}
1634
1635static int
1636netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1637			 struct ethtool_rxnfc *info)
1638{
1639	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1640
1641	info->data = RXH_IP_SRC | RXH_IP_DST;
1642
1643	switch (info->flow_type) {
1644	case TCP_V4_FLOW:
1645		if (ndc->l4_hash & HV_TCP4_L4HASH)
1646			info->data |= l4_flag;
1647
1648		break;
1649
1650	case TCP_V6_FLOW:
1651		if (ndc->l4_hash & HV_TCP6_L4HASH)
1652			info->data |= l4_flag;
1653
1654		break;
1655
1656	case UDP_V4_FLOW:
1657		if (ndc->l4_hash & HV_UDP4_L4HASH)
1658			info->data |= l4_flag;
1659
1660		break;
1661
1662	case UDP_V6_FLOW:
1663		if (ndc->l4_hash & HV_UDP6_L4HASH)
1664			info->data |= l4_flag;
1665
1666		break;
1667
1668	case IPV4_FLOW:
1669	case IPV6_FLOW:
1670		break;
1671	default:
1672		info->data = 0;
1673		break;
1674	}
1675
1676	return 0;
1677}
1678
1679static int
1680netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1681		 u32 *rules)
1682{
1683	struct net_device_context *ndc = netdev_priv(dev);
1684	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1685
1686	if (!nvdev)
1687		return -ENODEV;
1688
1689	switch (info->cmd) {
1690	case ETHTOOL_GRXRINGS:
1691		info->data = nvdev->num_chn;
1692		return 0;
1693
1694	case ETHTOOL_GRXFH:
1695		return netvsc_get_rss_hash_opts(ndc, info);
1696	}
1697	return -EOPNOTSUPP;
1698}
1699
1700static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1701				    struct ethtool_rxnfc *info)
1702{
1703	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1704			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1705		switch (info->flow_type) {
1706		case TCP_V4_FLOW:
1707			ndc->l4_hash |= HV_TCP4_L4HASH;
1708			break;
1709
1710		case TCP_V6_FLOW:
1711			ndc->l4_hash |= HV_TCP6_L4HASH;
1712			break;
1713
1714		case UDP_V4_FLOW:
1715			ndc->l4_hash |= HV_UDP4_L4HASH;
1716			break;
1717
1718		case UDP_V6_FLOW:
1719			ndc->l4_hash |= HV_UDP6_L4HASH;
1720			break;
1721
1722		default:
1723			return -EOPNOTSUPP;
1724		}
1725
1726		return 0;
1727	}
1728
1729	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1730		switch (info->flow_type) {
1731		case TCP_V4_FLOW:
1732			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1733			break;
1734
1735		case TCP_V6_FLOW:
1736			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1737			break;
1738
1739		case UDP_V4_FLOW:
1740			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1741			break;
1742
1743		case UDP_V6_FLOW:
1744			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1745			break;
1746
1747		default:
1748			return -EOPNOTSUPP;
1749		}
1750
1751		return 0;
1752	}
1753
1754	return -EOPNOTSUPP;
1755}
1756
1757static int
1758netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1759{
1760	struct net_device_context *ndc = netdev_priv(ndev);
1761
1762	if (info->cmd == ETHTOOL_SRXFH)
1763		return netvsc_set_rss_hash_opts(ndc, info);
1764
1765	return -EOPNOTSUPP;
1766}
1767
1768static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1769{
1770	return NETVSC_HASH_KEYLEN;
1771}
1772
1773static u32 netvsc_rss_indir_size(struct net_device *dev)
1774{
1775	return ITAB_NUM;
 
 
1776}
1777
1778static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1779			   u8 *hfunc)
1780{
1781	struct net_device_context *ndc = netdev_priv(dev);
1782	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1783	struct rndis_device *rndis_dev;
1784	int i;
1785
1786	if (!ndev)
1787		return -ENODEV;
1788
1789	if (hfunc)
1790		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1791
1792	rndis_dev = ndev->extension;
1793	if (indir) {
1794		for (i = 0; i < ITAB_NUM; i++)
1795			indir[i] = ndc->rx_table[i];
1796	}
1797
1798	if (key)
1799		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1800
1801	return 0;
1802}
1803
1804static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1805			   const u8 *key, const u8 hfunc)
 
1806{
1807	struct net_device_context *ndc = netdev_priv(dev);
1808	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1809	struct rndis_device *rndis_dev;
 
1810	int i;
1811
1812	if (!ndev)
1813		return -ENODEV;
1814
1815	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
 
1816		return -EOPNOTSUPP;
1817
1818	rndis_dev = ndev->extension;
1819	if (indir) {
1820		for (i = 0; i < ITAB_NUM; i++)
1821			if (indir[i] >= ndev->num_chn)
1822				return -EINVAL;
1823
1824		for (i = 0; i < ITAB_NUM; i++)
1825			ndc->rx_table[i] = indir[i];
1826	}
1827
1828	if (!key) {
1829		if (!indir)
1830			return 0;
1831
1832		key = rndis_dev->rss_key;
1833	}
1834
1835	return rndis_filter_set_rss_param(rndis_dev, key);
1836}
1837
1838/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1839 * It does have pre-allocated receive area which is divided into sections.
1840 */
1841static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1842				   struct ethtool_ringparam *ring)
1843{
1844	u32 max_buf_size;
1845
1846	ring->rx_pending = nvdev->recv_section_cnt;
1847	ring->tx_pending = nvdev->send_section_cnt;
1848
1849	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1850		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1851	else
1852		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1853
1854	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1855	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1856		/ nvdev->send_section_size;
1857}
1858
1859static void netvsc_get_ringparam(struct net_device *ndev,
1860				 struct ethtool_ringparam *ring)
 
 
1861{
1862	struct net_device_context *ndevctx = netdev_priv(ndev);
1863	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864
1865	if (!nvdev)
1866		return;
1867
1868	__netvsc_get_ringparam(nvdev, ring);
1869}
1870
1871static int netvsc_set_ringparam(struct net_device *ndev,
1872				struct ethtool_ringparam *ring)
 
 
1873{
1874	struct net_device_context *ndevctx = netdev_priv(ndev);
1875	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1876	struct netvsc_device_info *device_info;
1877	struct ethtool_ringparam orig;
1878	u32 new_tx, new_rx;
1879	int ret = 0;
1880
1881	if (!nvdev || nvdev->destroy)
1882		return -ENODEV;
1883
1884	memset(&orig, 0, sizeof(orig));
1885	__netvsc_get_ringparam(nvdev, &orig);
1886
1887	new_tx = clamp_t(u32, ring->tx_pending,
1888			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1889	new_rx = clamp_t(u32, ring->rx_pending,
1890			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1891
1892	if (new_tx == orig.tx_pending &&
1893	    new_rx == orig.rx_pending)
1894		return 0;	 /* no change */
1895
1896	device_info = netvsc_devinfo_get(nvdev);
1897
1898	if (!device_info)
1899		return -ENOMEM;
1900
1901	device_info->send_sections = new_tx;
1902	device_info->recv_sections = new_rx;
1903
1904	ret = netvsc_detach(ndev, nvdev);
1905	if (ret)
1906		goto out;
1907
1908	ret = netvsc_attach(ndev, device_info);
1909	if (ret) {
1910		device_info->send_sections = orig.tx_pending;
1911		device_info->recv_sections = orig.rx_pending;
1912
1913		if (netvsc_attach(ndev, device_info))
1914			netdev_err(ndev, "restoring ringparam failed");
1915	}
1916
1917out:
1918	netvsc_devinfo_put(device_info);
1919	return ret;
1920}
1921
1922static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1923					     netdev_features_t features)
1924{
1925	struct net_device_context *ndevctx = netdev_priv(ndev);
1926	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1927
1928	if (!nvdev || nvdev->destroy)
1929		return features;
1930
1931	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1932		features ^= NETIF_F_LRO;
1933		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1934	}
1935
1936	return features;
1937}
1938
1939static int netvsc_set_features(struct net_device *ndev,
1940			       netdev_features_t features)
1941{
1942	netdev_features_t change = features ^ ndev->features;
1943	struct net_device_context *ndevctx = netdev_priv(ndev);
1944	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1945	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1946	struct ndis_offload_params offloads;
1947	int ret = 0;
1948
1949	if (!nvdev || nvdev->destroy)
1950		return -ENODEV;
1951
1952	if (!(change & NETIF_F_LRO))
1953		goto syncvf;
1954
1955	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1956
1957	if (features & NETIF_F_LRO) {
1958		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1959		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1960	} else {
1961		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1962		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1963	}
1964
1965	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1966
1967	if (ret) {
1968		features ^= NETIF_F_LRO;
1969		ndev->features = features;
1970	}
1971
1972syncvf:
1973	if (!vf_netdev)
1974		return ret;
1975
1976	vf_netdev->wanted_features = features;
1977	netdev_update_features(vf_netdev);
1978
1979	return ret;
1980}
1981
1982static int netvsc_get_regs_len(struct net_device *netdev)
1983{
1984	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1985}
1986
1987static void netvsc_get_regs(struct net_device *netdev,
1988			    struct ethtool_regs *regs, void *p)
1989{
1990	struct net_device_context *ndc = netdev_priv(netdev);
1991	u32 *regs_buff = p;
1992
1993	/* increase the version, if buffer format is changed. */
1994	regs->version = 1;
1995
1996	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1997}
1998
1999static u32 netvsc_get_msglevel(struct net_device *ndev)
2000{
2001	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2002
2003	return ndev_ctx->msg_enable;
2004}
2005
2006static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2007{
2008	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2009
2010	ndev_ctx->msg_enable = val;
2011}
2012
2013static const struct ethtool_ops ethtool_ops = {
2014	.get_drvinfo	= netvsc_get_drvinfo,
2015	.get_regs_len	= netvsc_get_regs_len,
2016	.get_regs	= netvsc_get_regs,
2017	.get_msglevel	= netvsc_get_msglevel,
2018	.set_msglevel	= netvsc_set_msglevel,
2019	.get_link	= ethtool_op_get_link,
2020	.get_ethtool_stats = netvsc_get_ethtool_stats,
2021	.get_sset_count = netvsc_get_sset_count,
2022	.get_strings	= netvsc_get_strings,
2023	.get_channels   = netvsc_get_channels,
2024	.set_channels   = netvsc_set_channels,
2025	.get_ts_info	= ethtool_op_get_ts_info,
2026	.get_rxnfc	= netvsc_get_rxnfc,
2027	.set_rxnfc	= netvsc_set_rxnfc,
2028	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2029	.get_rxfh_indir_size = netvsc_rss_indir_size,
2030	.get_rxfh	= netvsc_get_rxfh,
2031	.set_rxfh	= netvsc_set_rxfh,
2032	.get_link_ksettings = netvsc_get_link_ksettings,
2033	.set_link_ksettings = netvsc_set_link_ksettings,
2034	.get_ringparam	= netvsc_get_ringparam,
2035	.set_ringparam	= netvsc_set_ringparam,
2036};
2037
2038static const struct net_device_ops device_ops = {
2039	.ndo_open =			netvsc_open,
2040	.ndo_stop =			netvsc_close,
2041	.ndo_start_xmit =		netvsc_start_xmit,
2042	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2043	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2044	.ndo_fix_features =		netvsc_fix_features,
2045	.ndo_set_features =		netvsc_set_features,
2046	.ndo_change_mtu =		netvsc_change_mtu,
2047	.ndo_validate_addr =		eth_validate_addr,
2048	.ndo_set_mac_address =		netvsc_set_mac_addr,
2049	.ndo_select_queue =		netvsc_select_queue,
2050	.ndo_get_stats64 =		netvsc_get_stats64,
2051	.ndo_bpf =			netvsc_bpf,
 
2052};
2053
2054/*
2055 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2056 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2057 * present send GARP packet to network peers with netif_notify_peers().
2058 */
2059static void netvsc_link_change(struct work_struct *w)
2060{
2061	struct net_device_context *ndev_ctx =
2062		container_of(w, struct net_device_context, dwork.work);
2063	struct hv_device *device_obj = ndev_ctx->device_ctx;
2064	struct net_device *net = hv_get_drvdata(device_obj);
2065	unsigned long flags, next_reconfig, delay;
2066	struct netvsc_reconfig *event = NULL;
2067	struct netvsc_device *net_device;
2068	struct rndis_device *rdev;
2069	bool reschedule = false;
2070
2071	/* if changes are happening, comeback later */
2072	if (!rtnl_trylock()) {
2073		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2074		return;
2075	}
2076
2077	net_device = rtnl_dereference(ndev_ctx->nvdev);
2078	if (!net_device)
2079		goto out_unlock;
2080
2081	rdev = net_device->extension;
2082
2083	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2084	if (time_is_after_jiffies(next_reconfig)) {
2085		/* link_watch only sends one notification with current state
2086		 * per second, avoid doing reconfig more frequently. Handle
2087		 * wrap around.
2088		 */
2089		delay = next_reconfig - jiffies;
2090		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2091		schedule_delayed_work(&ndev_ctx->dwork, delay);
2092		goto out_unlock;
2093	}
2094	ndev_ctx->last_reconfig = jiffies;
2095
2096	spin_lock_irqsave(&ndev_ctx->lock, flags);
2097	if (!list_empty(&ndev_ctx->reconfig_events)) {
2098		event = list_first_entry(&ndev_ctx->reconfig_events,
2099					 struct netvsc_reconfig, list);
2100		list_del(&event->list);
2101		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2102	}
2103	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2104
2105	if (!event)
2106		goto out_unlock;
2107
2108	switch (event->event) {
2109		/* Only the following events are possible due to the check in
2110		 * netvsc_linkstatus_callback()
2111		 */
2112	case RNDIS_STATUS_MEDIA_CONNECT:
2113		if (rdev->link_state) {
2114			rdev->link_state = false;
2115			netif_carrier_on(net);
2116			netvsc_tx_enable(net_device, net);
2117		} else {
2118			__netdev_notify_peers(net);
2119		}
2120		kfree(event);
2121		break;
2122	case RNDIS_STATUS_MEDIA_DISCONNECT:
2123		if (!rdev->link_state) {
2124			rdev->link_state = true;
2125			netif_carrier_off(net);
2126			netvsc_tx_disable(net_device, net);
2127		}
2128		kfree(event);
2129		break;
2130	case RNDIS_STATUS_NETWORK_CHANGE:
2131		/* Only makes sense if carrier is present */
2132		if (!rdev->link_state) {
2133			rdev->link_state = true;
2134			netif_carrier_off(net);
2135			netvsc_tx_disable(net_device, net);
2136			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2137			spin_lock_irqsave(&ndev_ctx->lock, flags);
2138			list_add(&event->list, &ndev_ctx->reconfig_events);
2139			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2140			reschedule = true;
2141		}
2142		break;
2143	}
2144
2145	rtnl_unlock();
2146
2147	/* link_watch only sends one notification with current state per
2148	 * second, handle next reconfig event in 2 seconds.
2149	 */
2150	if (reschedule)
2151		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2152
2153	return;
2154
2155out_unlock:
2156	rtnl_unlock();
2157}
2158
2159static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2160{
2161	struct net_device_context *net_device_ctx;
2162	struct net_device *dev;
2163
2164	dev = netdev_master_upper_dev_get(vf_netdev);
2165	if (!dev || dev->netdev_ops != &device_ops)
2166		return NULL;	/* not a netvsc device */
2167
2168	net_device_ctx = netdev_priv(dev);
2169	if (!rtnl_dereference(net_device_ctx->nvdev))
2170		return NULL;	/* device is removed */
2171
2172	return dev;
2173}
2174
2175/* Called when VF is injecting data into network stack.
2176 * Change the associated network device from VF to netvsc.
2177 * note: already called with rcu_read_lock
2178 */
2179static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2180{
2181	struct sk_buff *skb = *pskb;
2182	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2183	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2184	struct netvsc_vf_pcpu_stats *pcpu_stats
2185		 = this_cpu_ptr(ndev_ctx->vf_stats);
2186
2187	skb = skb_share_check(skb, GFP_ATOMIC);
2188	if (unlikely(!skb))
2189		return RX_HANDLER_CONSUMED;
2190
2191	*pskb = skb;
2192
2193	skb->dev = ndev;
2194
2195	u64_stats_update_begin(&pcpu_stats->syncp);
2196	pcpu_stats->rx_packets++;
2197	pcpu_stats->rx_bytes += skb->len;
2198	u64_stats_update_end(&pcpu_stats->syncp);
2199
2200	return RX_HANDLER_ANOTHER;
2201}
2202
2203static int netvsc_vf_join(struct net_device *vf_netdev,
2204			  struct net_device *ndev)
2205{
2206	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2207	int ret;
2208
2209	ret = netdev_rx_handler_register(vf_netdev,
2210					 netvsc_vf_handle_frame, ndev);
2211	if (ret != 0) {
2212		netdev_err(vf_netdev,
2213			   "can not register netvsc VF receive handler (err = %d)\n",
2214			   ret);
2215		goto rx_handler_failed;
2216	}
2217
2218	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2219					   NULL, NULL, NULL);
2220	if (ret != 0) {
2221		netdev_err(vf_netdev,
2222			   "can not set master device %s (err = %d)\n",
2223			   ndev->name, ret);
2224		goto upper_link_failed;
2225	}
2226
2227	/* set slave flag before open to prevent IPv6 addrconf */
2228	vf_netdev->flags |= IFF_SLAVE;
2229
2230	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
 
2231
2232	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2233
2234	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2235	return 0;
2236
2237upper_link_failed:
2238	netdev_rx_handler_unregister(vf_netdev);
2239rx_handler_failed:
2240	return ret;
2241}
2242
2243static void __netvsc_vf_setup(struct net_device *ndev,
2244			      struct net_device *vf_netdev)
2245{
2246	int ret;
2247
2248	/* Align MTU of VF with master */
2249	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2250	if (ret)
2251		netdev_warn(vf_netdev,
2252			    "unable to change mtu to %u\n", ndev->mtu);
2253
2254	/* set multicast etc flags on VF */
2255	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2256
2257	/* sync address list from ndev to VF */
2258	netif_addr_lock_bh(ndev);
2259	dev_uc_sync(vf_netdev, ndev);
2260	dev_mc_sync(vf_netdev, ndev);
2261	netif_addr_unlock_bh(ndev);
2262
2263	if (netif_running(ndev)) {
2264		ret = dev_open(vf_netdev, NULL);
2265		if (ret)
2266			netdev_warn(vf_netdev,
2267				    "unable to open: %d\n", ret);
2268	}
2269}
2270
2271/* Setup VF as slave of the synthetic device.
2272 * Runs in workqueue to avoid recursion in netlink callbacks.
2273 */
2274static void netvsc_vf_setup(struct work_struct *w)
2275{
2276	struct net_device_context *ndev_ctx
2277		= container_of(w, struct net_device_context, vf_takeover.work);
2278	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2279	struct net_device *vf_netdev;
2280
2281	if (!rtnl_trylock()) {
2282		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2283		return;
2284	}
2285
2286	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2287	if (vf_netdev)
2288		__netvsc_vf_setup(ndev, vf_netdev);
2289
2290	rtnl_unlock();
2291}
2292
2293/* Find netvsc by VF serial number.
2294 * The PCI hyperv controller records the serial number as the slot kobj name.
2295 */
2296static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2297{
2298	struct device *parent = vf_netdev->dev.parent;
2299	struct net_device_context *ndev_ctx;
2300	struct net_device *ndev;
2301	struct pci_dev *pdev;
2302	u32 serial;
2303
2304	if (!parent || !dev_is_pci(parent))
2305		return NULL; /* not a PCI device */
2306
2307	pdev = to_pci_dev(parent);
2308	if (!pdev->slot) {
2309		netdev_notice(vf_netdev, "no PCI slot information\n");
2310		return NULL;
2311	}
2312
2313	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2314		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2315			      pci_slot_name(pdev->slot));
2316		return NULL;
2317	}
2318
2319	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320		if (!ndev_ctx->vf_alloc)
2321			continue;
2322
2323		if (ndev_ctx->vf_serial != serial)
2324			continue;
2325
2326		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2327		if (ndev->addr_len != vf_netdev->addr_len ||
2328		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2329			   ndev->addr_len) != 0)
2330			continue;
2331
2332		return ndev;
2333
2334	}
2335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336	netdev_notice(vf_netdev,
2337		      "no netdev found for vf serial:%u\n", serial);
2338	return NULL;
2339}
2340
2341static int netvsc_register_vf(struct net_device *vf_netdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
2342{
2343	struct net_device_context *net_device_ctx;
2344	struct netvsc_device *netvsc_dev;
2345	struct bpf_prog *prog;
2346	struct net_device *ndev;
2347	int ret;
2348
2349	if (vf_netdev->addr_len != ETH_ALEN)
2350		return NOTIFY_DONE;
2351
2352	ndev = get_netvsc_byslot(vf_netdev);
2353	if (!ndev)
2354		return NOTIFY_DONE;
2355
2356	net_device_ctx = netdev_priv(ndev);
2357	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2358	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2359		return NOTIFY_DONE;
2360
2361	/* if synthetic interface is a different namespace,
2362	 * then move the VF to that namespace; join will be
2363	 * done again in that context.
2364	 */
2365	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2366		ret = dev_change_net_namespace(vf_netdev,
2367					       dev_net(ndev), "eth%d");
2368		if (ret)
2369			netdev_err(vf_netdev,
2370				   "could not move to same namespace as %s: %d\n",
2371				   ndev->name, ret);
2372		else
2373			netdev_info(vf_netdev,
2374				    "VF moved to namespace with: %s\n",
2375				    ndev->name);
2376		return NOTIFY_DONE;
2377	}
2378
2379	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2380
2381	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2382		return NOTIFY_DONE;
2383
2384	dev_hold(vf_netdev);
2385	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2386
2387	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2388		ndev->needed_headroom = vf_netdev->needed_headroom;
2389
2390	vf_netdev->wanted_features = ndev->features;
2391	netdev_update_features(vf_netdev);
2392
2393	prog = netvsc_xdp_get(netvsc_dev);
2394	netvsc_vf_setxdp(vf_netdev, prog);
2395
2396	return NOTIFY_OK;
2397}
2398
2399/* Change the data path when VF UP/DOWN/CHANGE are detected.
2400 *
2401 * Typically a UP or DOWN event is followed by a CHANGE event, so
2402 * net_device_ctx->data_path_is_vf is used to cache the current data path
2403 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2404 * message.
2405 *
2406 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2407 * interface, there is only the CHANGE event and no UP or DOWN event.
2408 */
2409static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2410{
2411	struct net_device_context *net_device_ctx;
2412	struct netvsc_device *netvsc_dev;
2413	struct net_device *ndev;
2414	bool vf_is_up = false;
2415	int ret;
2416
2417	if (event != NETDEV_GOING_DOWN)
2418		vf_is_up = netif_running(vf_netdev);
2419
2420	ndev = get_netvsc_byref(vf_netdev);
2421	if (!ndev)
2422		return NOTIFY_DONE;
2423
2424	net_device_ctx = netdev_priv(ndev);
2425	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2426	if (!netvsc_dev)
2427		return NOTIFY_DONE;
2428
2429	if (net_device_ctx->data_path_is_vf == vf_is_up)
2430		return NOTIFY_OK;
2431
 
 
 
 
 
2432	ret = netvsc_switch_datapath(ndev, vf_is_up);
2433
2434	if (ret) {
2435		netdev_err(ndev,
2436			   "Data path failed to switch %s VF: %s, err: %d\n",
2437			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2438		return NOTIFY_DONE;
2439	} else {
2440		netdev_info(ndev, "Data path switched %s VF: %s\n",
2441			    vf_is_up ? "to" : "from", vf_netdev->name);
2442	}
2443
2444	return NOTIFY_OK;
2445}
2446
2447static int netvsc_unregister_vf(struct net_device *vf_netdev)
2448{
2449	struct net_device *ndev;
2450	struct net_device_context *net_device_ctx;
2451
2452	ndev = get_netvsc_byref(vf_netdev);
2453	if (!ndev)
2454		return NOTIFY_DONE;
2455
2456	net_device_ctx = netdev_priv(ndev);
2457	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2458
2459	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2460
2461	netvsc_vf_setxdp(vf_netdev, NULL);
2462
 
2463	netdev_rx_handler_unregister(vf_netdev);
2464	netdev_upper_dev_unlink(vf_netdev, ndev);
2465	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2466	dev_put(vf_netdev);
2467
2468	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2469
2470	return NOTIFY_OK;
2471}
2472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473static int netvsc_probe(struct hv_device *dev,
2474			const struct hv_vmbus_device_id *dev_id)
2475{
2476	struct net_device *net = NULL;
2477	struct net_device_context *net_device_ctx;
2478	struct netvsc_device_info *device_info = NULL;
2479	struct netvsc_device *nvdev;
2480	int ret = -ENOMEM;
2481
2482	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2483				VRSS_CHANNEL_MAX);
2484	if (!net)
2485		goto no_net;
2486
2487	netif_carrier_off(net);
2488
2489	netvsc_init_settings(net);
2490
2491	net_device_ctx = netdev_priv(net);
2492	net_device_ctx->device_ctx = dev;
2493	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2494	if (netif_msg_probe(net_device_ctx))
2495		netdev_dbg(net, "netvsc msg_enable: %d\n",
2496			   net_device_ctx->msg_enable);
2497
2498	hv_set_drvdata(dev, net);
2499
2500	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2501
 
2502	spin_lock_init(&net_device_ctx->lock);
2503	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2504	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2505
2506	net_device_ctx->vf_stats
2507		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2508	if (!net_device_ctx->vf_stats)
2509		goto no_stats;
2510
2511	net->netdev_ops = &device_ops;
2512	net->ethtool_ops = &ethtool_ops;
2513	SET_NETDEV_DEV(net, &dev->device);
 
2514
2515	/* We always need headroom for rndis header */
2516	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518	/* Initialize the number of queues to be 1, we may change it if more
2519	 * channels are offered later.
2520	 */
2521	netif_set_real_num_tx_queues(net, 1);
2522	netif_set_real_num_rx_queues(net, 1);
2523
2524	/* Notify the netvsc driver of the new device */
2525	device_info = netvsc_devinfo_get(NULL);
2526
2527	if (!device_info) {
2528		ret = -ENOMEM;
2529		goto devinfo_failed;
2530	}
2531
2532	nvdev = rndis_filter_device_add(dev, device_info);
2533	if (IS_ERR(nvdev)) {
2534		ret = PTR_ERR(nvdev);
2535		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536		goto rndis_failed;
2537	}
2538
2539	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2540
2541	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2542	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543	 * all subchannels to show up, but that may not happen because
2544	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546	 * the device lock, so all the subchannels can't be processed --
2547	 * finally netvsc_subchan_work() hangs forever.
 
 
 
 
 
2548	 */
2549	rtnl_lock();
2550
 
 
 
 
 
 
 
 
 
2551	if (nvdev->num_chn > 1)
2552		schedule_work(&nvdev->subchan_work);
2553
2554	/* hw_features computed in rndis_netdev_set_hwcaps() */
2555	net->features = net->hw_features |
2556		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557		NETIF_F_HW_VLAN_CTAG_RX;
2558	net->vlan_features = net->features;
2559
2560	netdev_lockdep_set_classes(net);
2561
 
 
 
2562	/* MTU range: 68 - 1500 or 65521 */
2563	net->min_mtu = NETVSC_MTU_MIN;
2564	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566	else
2567		net->max_mtu = ETH_DATA_LEN;
2568
2569	nvdev->tx_disable = false;
2570
2571	ret = register_netdevice(net);
2572	if (ret != 0) {
2573		pr_err("Unable to register netdev.\n");
2574		goto register_failed;
2575	}
2576
2577	list_add(&net_device_ctx->list, &netvsc_dev_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578	rtnl_unlock();
2579
2580	netvsc_devinfo_put(device_info);
2581	return 0;
2582
2583register_failed:
2584	rtnl_unlock();
2585	rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
 
2587	netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589	free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591	hv_set_drvdata(dev, NULL);
2592	free_netdev(net);
2593no_net:
2594	return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
2599	struct net_device_context *ndev_ctx;
2600	struct net_device *vf_netdev, *net;
2601	struct netvsc_device *nvdev;
2602
2603	net = hv_get_drvdata(dev);
2604	if (net == NULL) {
2605		dev_err(&dev->device, "No net device to remove\n");
2606		return 0;
2607	}
2608
2609	ndev_ctx = netdev_priv(net);
2610
2611	cancel_delayed_work_sync(&ndev_ctx->dwork);
2612
2613	rtnl_lock();
2614	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615	if (nvdev) {
2616		cancel_work_sync(&nvdev->subchan_work);
2617		netvsc_xdp_set(net, NULL, NULL, nvdev);
2618	}
2619
2620	/*
2621	 * Call to the vsc driver to let it know that the device is being
2622	 * removed. Also blocks mtu and channel changes.
2623	 */
2624	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625	if (vf_netdev)
2626		netvsc_unregister_vf(vf_netdev);
2627
2628	if (nvdev)
2629		rndis_filter_device_remove(dev, nvdev);
2630
2631	unregister_netdevice(net);
2632	list_del(&ndev_ctx->list);
2633
2634	rtnl_unlock();
2635
2636	hv_set_drvdata(dev, NULL);
2637
2638	free_percpu(ndev_ctx->vf_stats);
2639	free_netdev(net);
2640	return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645	struct net_device_context *ndev_ctx;
2646	struct netvsc_device *nvdev;
2647	struct net_device *net;
2648	int ret;
2649
2650	net = hv_get_drvdata(dev);
2651
2652	ndev_ctx = netdev_priv(net);
2653	cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655	rtnl_lock();
2656
2657	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658	if (nvdev == NULL) {
2659		ret = -ENODEV;
2660		goto out;
2661	}
2662
2663	/* Save the current config info */
2664	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665
 
 
 
2666	ret = netvsc_detach(net, nvdev);
2667out:
2668	rtnl_unlock();
2669
2670	return ret;
2671}
2672
2673static int netvsc_resume(struct hv_device *dev)
2674{
2675	struct net_device *net = hv_get_drvdata(dev);
2676	struct net_device_context *net_device_ctx;
2677	struct netvsc_device_info *device_info;
2678	int ret;
2679
2680	rtnl_lock();
2681
2682	net_device_ctx = netdev_priv(net);
2683
2684	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2685	 * channel. Later netvsc_netdev_event() will switch the data path to
2686	 * the VF upon the UP or CHANGE event.
2687	 */
2688	net_device_ctx->data_path_is_vf = false;
2689	device_info = net_device_ctx->saved_netvsc_dev_info;
2690
2691	ret = netvsc_attach(net, device_info);
2692
2693	netvsc_devinfo_put(device_info);
2694	net_device_ctx->saved_netvsc_dev_info = NULL;
2695
2696	rtnl_unlock();
2697
2698	return ret;
2699}
2700static const struct hv_vmbus_device_id id_table[] = {
2701	/* Network guid */
2702	{ HV_NIC_GUID, },
2703	{ },
2704};
2705
2706MODULE_DEVICE_TABLE(vmbus, id_table);
2707
2708/* The one and only one */
2709static struct  hv_driver netvsc_drv = {
2710	.name = KBUILD_MODNAME,
2711	.id_table = id_table,
2712	.probe = netvsc_probe,
2713	.remove = netvsc_remove,
2714	.suspend = netvsc_suspend,
2715	.resume = netvsc_resume,
2716	.driver = {
2717		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2718	},
2719};
2720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721/*
2722 * On Hyper-V, every VF interface is matched with a corresponding
2723 * synthetic interface. The synthetic interface is presented first
2724 * to the guest. When the corresponding VF instance is registered,
2725 * we will take care of switching the data path.
2726 */
2727static int netvsc_netdev_event(struct notifier_block *this,
2728			       unsigned long event, void *ptr)
2729{
2730	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
 
2731
2732	/* Skip our own events */
2733	if (event_dev->netdev_ops == &device_ops)
2734		return NOTIFY_DONE;
2735
2736	/* Avoid non-Ethernet type devices */
2737	if (event_dev->type != ARPHRD_ETHER)
2738		return NOTIFY_DONE;
2739
2740	/* Avoid Vlan dev with same MAC registering as VF */
2741	if (is_vlan_dev(event_dev))
2742		return NOTIFY_DONE;
 
2743
2744	/* Avoid Bonding master dev with same MAC registering as VF */
2745	if ((event_dev->priv_flags & IFF_BONDING) &&
2746	    (event_dev->flags & IFF_MASTER))
2747		return NOTIFY_DONE;
2748
2749	switch (event) {
 
 
2750	case NETDEV_REGISTER:
2751		return netvsc_register_vf(event_dev);
2752	case NETDEV_UNREGISTER:
2753		return netvsc_unregister_vf(event_dev);
2754	case NETDEV_UP:
2755	case NETDEV_DOWN:
2756	case NETDEV_CHANGE:
2757	case NETDEV_GOING_DOWN:
2758		return netvsc_vf_changed(event_dev, event);
2759	default:
2760		return NOTIFY_DONE;
2761	}
2762}
2763
2764static struct notifier_block netvsc_netdev_notifier = {
2765	.notifier_call = netvsc_netdev_event,
2766};
2767
2768static void __exit netvsc_drv_exit(void)
2769{
2770	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2771	vmbus_driver_unregister(&netvsc_drv);
2772}
2773
2774static int __init netvsc_drv_init(void)
2775{
2776	int ret;
2777
2778	if (ring_size < RING_SIZE_MIN) {
2779		ring_size = RING_SIZE_MIN;
2780		pr_info("Increased ring_size to %u (min allowed)\n",
2781			ring_size);
2782	}
2783	netvsc_ring_bytes = ring_size * PAGE_SIZE;
 
 
2784
2785	ret = vmbus_driver_register(&netvsc_drv);
2786	if (ret)
2787		return ret;
2788
2789	register_netdevice_notifier(&netvsc_netdev_notifier);
2790	return 0;
 
 
 
 
2791}
2792
2793MODULE_LICENSE("GPL");
2794MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2795
2796module_init(netvsc_drv_init);
2797module_exit(netvsc_drv_exit);