Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* drivers/net/ethernet/micrel/ks8851.c
   3 *
   4 * Copyright 2009 Simtec Electronics
   5 *	http://www.simtec.co.uk/
   6 *	Ben Dooks <ben@simtec.co.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/interrupt.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ethtool.h>
  17#include <linux/cache.h>
  18#include <linux/crc32.h>
  19#include <linux/mii.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/regulator/consumer.h>
  22
  23#include <linux/of_mdio.h>
  24#include <linux/of_net.h>
  25
  26#include "ks8851.h"
  27
  28/**
  29 * ks8851_lock - register access lock
  30 * @ks: The chip state
  31 * @flags: Spinlock flags
  32 *
  33 * Claim chip register access lock
  34 */
  35static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
  36{
  37	ks->lock(ks, flags);
  38}
  39
  40/**
  41 * ks8851_unlock - register access unlock
  42 * @ks: The chip state
  43 * @flags: Spinlock flags
  44 *
  45 * Release chip register access lock
  46 */
  47static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
  48{
  49	ks->unlock(ks, flags);
  50}
  51
  52/**
  53 * ks8851_wrreg16 - write 16bit register value to chip
  54 * @ks: The chip state
  55 * @reg: The register address
  56 * @val: The value to write
  57 *
  58 * Issue a write to put the value @val into the register specified in @reg.
  59 */
  60static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
  61			   unsigned int val)
  62{
  63	ks->wrreg16(ks, reg, val);
  64}
  65
  66/**
  67 * ks8851_rdreg16 - read 16 bit register from device
  68 * @ks: The chip information
  69 * @reg: The register address
  70 *
  71 * Read a 16bit register from the chip, returning the result
  72 */
  73static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
  74				   unsigned int reg)
  75{
  76	return ks->rdreg16(ks, reg);
  77}
  78
  79/**
  80 * ks8851_soft_reset - issue one of the soft reset to the device
  81 * @ks: The device state.
  82 * @op: The bit(s) to set in the GRR
  83 *
  84 * Issue the relevant soft-reset command to the device's GRR register
  85 * specified by @op.
  86 *
  87 * Note, the delays are in there as a caution to ensure that the reset
  88 * has time to take effect and then complete. Since the datasheet does
  89 * not currently specify the exact sequence, we have chosen something
  90 * that seems to work with our device.
  91 */
  92static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
  93{
  94	ks8851_wrreg16(ks, KS_GRR, op);
  95	mdelay(1);	/* wait a short time to effect reset */
  96	ks8851_wrreg16(ks, KS_GRR, 0);
  97	mdelay(1);	/* wait for condition to clear */
  98}
  99
 100/**
 101 * ks8851_set_powermode - set power mode of the device
 102 * @ks: The device state
 103 * @pwrmode: The power mode value to write to KS_PMECR.
 104 *
 105 * Change the power mode of the chip.
 106 */
 107static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 108{
 109	unsigned pmecr;
 110
 111	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 112
 113	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 114	pmecr &= ~PMECR_PM_MASK;
 115	pmecr |= pwrmode;
 116
 117	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 118}
 119
 120/**
 121 * ks8851_write_mac_addr - write mac address to device registers
 122 * @dev: The network device
 123 *
 124 * Update the KS8851 MAC address registers from the address in @dev.
 125 *
 126 * This call assumes that the chip is not running, so there is no need to
 127 * shutdown the RXQ process whilst setting this.
 128*/
 129static int ks8851_write_mac_addr(struct net_device *dev)
 130{
 131	struct ks8851_net *ks = netdev_priv(dev);
 132	unsigned long flags;
 133	u16 val;
 134	int i;
 135
 136	ks8851_lock(ks, &flags);
 137
 138	/*
 139	 * Wake up chip in case it was powered off when stopped; otherwise,
 140	 * the first write to the MAC address does not take effect.
 141	 */
 142	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 143
 144	for (i = 0; i < ETH_ALEN; i += 2) {
 145		val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
 146		ks8851_wrreg16(ks, KS_MAR(i), val);
 147	}
 148
 149	if (!netif_running(dev))
 150		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 151
 152	ks8851_unlock(ks, &flags);
 153
 154	return 0;
 155}
 156
 157/**
 158 * ks8851_read_mac_addr - read mac address from device registers
 159 * @dev: The network device
 160 *
 161 * Update our copy of the KS8851 MAC address from the registers of @dev.
 162*/
 163static void ks8851_read_mac_addr(struct net_device *dev)
 164{
 165	struct ks8851_net *ks = netdev_priv(dev);
 166	unsigned long flags;
 167	u8 addr[ETH_ALEN];
 168	u16 reg;
 169	int i;
 170
 171	ks8851_lock(ks, &flags);
 172
 173	for (i = 0; i < ETH_ALEN; i += 2) {
 174		reg = ks8851_rdreg16(ks, KS_MAR(i));
 175		addr[i] = reg >> 8;
 176		addr[i + 1] = reg & 0xff;
 177	}
 178	eth_hw_addr_set(dev, addr);
 179
 180	ks8851_unlock(ks, &flags);
 181}
 182
 183/**
 184 * ks8851_init_mac - initialise the mac address
 185 * @ks: The device structure
 186 * @np: The device node pointer
 187 *
 188 * Get or create the initial mac address for the device and then set that
 189 * into the station address register. A mac address supplied in the device
 190 * tree takes precedence. Otherwise, if there is an EEPROM present, then
 191 * we try that. If no valid mac address is found we use eth_random_addr()
 192 * to create a new one.
 193 */
 194static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
 195{
 196	struct net_device *dev = ks->netdev;
 197	int ret;
 198
 199	ret = of_get_ethdev_address(np, dev);
 200	if (!ret) {
 201		ks8851_write_mac_addr(dev);
 202		return;
 203	}
 204
 205	if (ks->rc_ccr & CCR_EEPROM) {
 206		ks8851_read_mac_addr(dev);
 207		if (is_valid_ether_addr(dev->dev_addr))
 208			return;
 209
 210		netdev_err(ks->netdev, "invalid mac address read %pM\n",
 211				dev->dev_addr);
 212	}
 213
 214	eth_hw_addr_random(dev);
 215	ks8851_write_mac_addr(dev);
 216}
 217
 218/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219 * ks8851_rx_pkts - receive packets from the host
 220 * @ks: The device information.
 221 * @rxq: Queue of packets received in this function.
 222 *
 223 * This is called from the IRQ work queue when the system detects that there
 224 * are packets in the receive queue. Find out how many packets there are and
 225 * read them from the FIFO.
 226 */
 227static void ks8851_rx_pkts(struct ks8851_net *ks, struct sk_buff_head *rxq)
 228{
 229	struct sk_buff *skb;
 230	unsigned rxfc;
 231	unsigned rxlen;
 232	unsigned rxstat;
 233	u8 *rxpkt;
 234
 235	rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
 236
 237	netif_dbg(ks, rx_status, ks->netdev,
 238		  "%s: %d packets\n", __func__, rxfc);
 239
 240	/* Currently we're issuing a read per packet, but we could possibly
 241	 * improve the code by issuing a single read, getting the receive
 242	 * header, allocating the packet and then reading the packet data
 243	 * out in one go.
 244	 *
 245	 * This form of operation would require us to hold the SPI bus'
 246	 * chipselect low during the entie transaction to avoid any
 247	 * reset to the data stream coming from the chip.
 248	 */
 249
 250	for (; rxfc != 0; rxfc--) {
 251		rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
 252		rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
 253
 254		netif_dbg(ks, rx_status, ks->netdev,
 255			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 256
 257		/* the length of the packet includes the 32bit CRC */
 258
 259		/* set dma read address */
 260		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 261
 262		/* start DMA access */
 263		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 264
 265		if (rxlen > 4) {
 266			unsigned int rxalign;
 267
 268			rxlen -= 4;
 269			rxalign = ALIGN(rxlen, 4);
 270			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 271			if (skb) {
 272
 273				/* 4 bytes of status header + 4 bytes of
 274				 * garbage: we put them before ethernet
 275				 * header, so that they are copied,
 276				 * but ignored.
 277				 */
 278
 279				rxpkt = skb_put(skb, rxlen) - 8;
 280
 281				ks->rdfifo(ks, rxpkt, rxalign + 8);
 282
 283				netif_dbg(ks, pktdata, ks->netdev,
 284					  "pkt %12ph\n", &rxpkt[4]);
 285
 286				skb->protocol = eth_type_trans(skb, ks->netdev);
 287				__skb_queue_tail(rxq, skb);
 288
 289				ks->netdev->stats.rx_packets++;
 290				ks->netdev->stats.rx_bytes += rxlen;
 291			}
 292		}
 293
 294		/* end DMA access and dequeue packet */
 295		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
 296	}
 297}
 298
 299/**
 300 * ks8851_irq - IRQ handler for dealing with interrupt requests
 301 * @irq: IRQ number
 302 * @_ks: cookie
 303 *
 304 * This handler is invoked when the IRQ line asserts to find out what happened.
 305 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 306 * in thread context.
 307 *
 308 * Read the interrupt status, work out what needs to be done and then clear
 309 * any of the interrupts that are not needed.
 310 */
 311static irqreturn_t ks8851_irq(int irq, void *_ks)
 312{
 313	struct ks8851_net *ks = _ks;
 314	struct sk_buff_head rxq;
 315	unsigned long flags;
 316	unsigned int status;
 317	struct sk_buff *skb;
 318
 319	ks8851_lock(ks, &flags);
 320
 321	status = ks8851_rdreg16(ks, KS_ISR);
 322	ks8851_wrreg16(ks, KS_ISR, status);
 323
 324	netif_dbg(ks, intr, ks->netdev,
 325		  "%s: status 0x%04x\n", __func__, status);
 326
 
 
 
 327	if (status & IRQ_LDI) {
 328		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 329		pmecr &= ~PMECR_WKEVT_MASK;
 330		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 
 
 331	}
 332
 
 
 
 333	if (status & IRQ_TXI) {
 334		unsigned short tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 335
 336		netif_dbg(ks, intr, ks->netdev,
 337			  "%s: txspace %d\n", __func__, tx_space);
 338
 339		spin_lock_bh(&ks->statelock);
 340		ks->tx_space = tx_space;
 341		if (netif_queue_stopped(ks->netdev))
 342			netif_wake_queue(ks->netdev);
 343		spin_unlock_bh(&ks->statelock);
 
 344	}
 345
 
 
 
 346	if (status & IRQ_SPIBEI) {
 347		netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
 
 348	}
 349
 
 
 350	if (status & IRQ_RXI) {
 351		/* the datasheet says to disable the rx interrupt during
 352		 * packet read-out, however we're masking the interrupt
 353		 * from the device so do not bother masking just the RX
 354		 * from the device. */
 355
 356		__skb_queue_head_init(&rxq);
 357		ks8851_rx_pkts(ks, &rxq);
 358	}
 359
 360	/* if something stopped the rx process, probably due to wanting
 361	 * to change the rx settings, then do something about restarting
 362	 * it. */
 363	if (status & IRQ_RXPSI) {
 364		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 365
 366		/* update the multicast hash table */
 367		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 368		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 369		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 370		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 371
 372		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 373		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 374	}
 375
 376	ks8851_unlock(ks, &flags);
 377
 378	if (status & IRQ_LCI)
 379		mii_check_link(&ks->mii);
 380
 381	if (status & IRQ_RXI)
 382		while ((skb = __skb_dequeue(&rxq)))
 383			netif_rx(skb);
 384
 385	return IRQ_HANDLED;
 386}
 387
 388/**
 389 * ks8851_flush_tx_work - flush outstanding TX work
 390 * @ks: The device state
 391 */
 392static void ks8851_flush_tx_work(struct ks8851_net *ks)
 393{
 394	if (ks->flush_tx_work)
 395		ks->flush_tx_work(ks);
 396}
 397
 398/**
 399 * ks8851_net_open - open network device
 400 * @dev: The network device being opened.
 401 *
 402 * Called when the network device is marked active, such as a user executing
 403 * 'ifconfig up' on the device.
 404 */
 405static int ks8851_net_open(struct net_device *dev)
 406{
 407	struct ks8851_net *ks = netdev_priv(dev);
 408	unsigned long flags;
 409	int ret;
 410
 411	ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
 412				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
 413				   dev->name, ks);
 414	if (ret < 0) {
 415		netdev_err(dev, "failed to get irq\n");
 416		return ret;
 417	}
 418
 419	/* lock the card, even if we may not actually be doing anything
 420	 * else at the moment */
 421	ks8851_lock(ks, &flags);
 422
 423	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 424
 425	/* bring chip out of any power saving mode it was in */
 426	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 427
 428	/* issue a soft reset to the RX/TX QMU to put it into a known
 429	 * state. */
 430	ks8851_soft_reset(ks, GRR_QMU);
 431
 432	/* setup transmission parameters */
 433
 434	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 435				     TXCR_TXPE | /* pad to min length */
 436				     TXCR_TXCRC | /* add CRC */
 437				     TXCR_TXFCE)); /* enable flow control */
 438
 439	/* auto-increment tx data, reset tx pointer */
 440	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 441
 442	/* setup receiver control */
 443
 444	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 445				      RXCR1_RXFCE | /* enable flow control */
 446				      RXCR1_RXBE | /* broadcast enable */
 447				      RXCR1_RXUE | /* unicast enable */
 448				      RXCR1_RXE)); /* enable rx block */
 449
 450	/* transfer entire frames out in one go */
 451	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 452
 453	/* set receive counter timeouts */
 454	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 455	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 456	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 457
 458	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 459			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 460			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 461
 462	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 463
 464	/* clear then enable interrupts */
 465	ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
 466	ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
 467
 468	ks->queued_len = 0;
 469	ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 470	netif_start_queue(ks->netdev);
 471
 472	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 473
 474	ks8851_unlock(ks, &flags);
 475	mii_check_link(&ks->mii);
 476	return 0;
 477}
 478
 479/**
 480 * ks8851_net_stop - close network device
 481 * @dev: The device being closed.
 482 *
 483 * Called to close down a network device which has been active. Cancell any
 484 * work, shutdown the RX and TX process and then place the chip into a low
 485 * power state whilst it is not being used.
 486 */
 487static int ks8851_net_stop(struct net_device *dev)
 488{
 489	struct ks8851_net *ks = netdev_priv(dev);
 490	unsigned long flags;
 491
 492	netif_info(ks, ifdown, dev, "shutting down\n");
 493
 494	netif_stop_queue(dev);
 495
 496	ks8851_lock(ks, &flags);
 497	/* turn off the IRQs and ack any outstanding */
 498	ks8851_wrreg16(ks, KS_IER, 0x0000);
 499	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 500	ks8851_unlock(ks, &flags);
 501
 502	/* stop any outstanding work */
 503	ks8851_flush_tx_work(ks);
 504	flush_work(&ks->rxctrl_work);
 505
 506	ks8851_lock(ks, &flags);
 507	/* shutdown RX process */
 508	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 509
 510	/* shutdown TX process */
 511	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 512
 513	/* set powermode to soft power down to save power */
 514	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 515	ks8851_unlock(ks, &flags);
 516
 517	/* ensure any queued tx buffers are dumped */
 518	while (!skb_queue_empty(&ks->txq)) {
 519		struct sk_buff *txb = skb_dequeue(&ks->txq);
 520
 521		netif_dbg(ks, ifdown, ks->netdev,
 522			  "%s: freeing txb %p\n", __func__, txb);
 523
 524		dev_kfree_skb(txb);
 525	}
 526
 527	free_irq(dev->irq, ks);
 528
 529	return 0;
 530}
 531
 532/**
 533 * ks8851_start_xmit - transmit packet
 534 * @skb: The buffer to transmit
 535 * @dev: The device used to transmit the packet.
 536 *
 537 * Called by the network layer to transmit the @skb. Queue the packet for
 538 * the device and schedule the necessary work to transmit the packet when
 539 * it is free.
 540 *
 541 * We do this to firstly avoid sleeping with the network device locked,
 542 * and secondly so we can round up more than one packet to transmit which
 543 * means we can try and avoid generating too many transmit done interrupts.
 544 */
 545static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 546				     struct net_device *dev)
 547{
 548	struct ks8851_net *ks = netdev_priv(dev);
 549
 550	return ks->start_xmit(skb, dev);
 551}
 552
 553/**
 554 * ks8851_rxctrl_work - work handler to change rx mode
 555 * @work: The work structure this belongs to.
 556 *
 557 * Lock the device and issue the necessary changes to the receive mode from
 558 * the network device layer. This is done so that we can do this without
 559 * having to sleep whilst holding the network device lock.
 560 *
 561 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 562 * receive parameters are programmed, we issue a write to disable the RXQ and
 563 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 564 * complete. The interrupt handler then writes the new values into the chip.
 565 */
 566static void ks8851_rxctrl_work(struct work_struct *work)
 567{
 568	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 569	unsigned long flags;
 570
 571	ks8851_lock(ks, &flags);
 572
 573	/* need to shutdown RXQ before modifying filter parameters */
 574	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 575
 576	ks8851_unlock(ks, &flags);
 577}
 578
 579static void ks8851_set_rx_mode(struct net_device *dev)
 580{
 581	struct ks8851_net *ks = netdev_priv(dev);
 582	struct ks8851_rxctrl rxctrl;
 583
 584	memset(&rxctrl, 0, sizeof(rxctrl));
 585
 586	if (dev->flags & IFF_PROMISC) {
 587		/* interface to receive everything */
 588
 589		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 590	} else if (dev->flags & IFF_ALLMULTI) {
 591		/* accept all multicast packets */
 592
 593		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 594				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 595	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 596		struct netdev_hw_addr *ha;
 597		u32 crc;
 598
 599		/* accept some multicast */
 600
 601		netdev_for_each_mc_addr(ha, dev) {
 602			crc = ether_crc(ETH_ALEN, ha->addr);
 603			crc >>= (32 - 6);  /* get top six bits */
 604
 605			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 606		}
 607
 608		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 609	} else {
 610		/* just accept broadcast / unicast */
 611		rxctrl.rxcr1 = RXCR1_RXPAFMA;
 612	}
 613
 614	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
 615			 RXCR1_RXBE | /* broadcast enable */
 616			 RXCR1_RXE | /* RX process enable */
 617			 RXCR1_RXFCE); /* enable flow control */
 618
 619	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
 620
 621	/* schedule work to do the actual set of the data if needed */
 622
 623	spin_lock_bh(&ks->statelock);
 624
 625	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
 626		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
 627		schedule_work(&ks->rxctrl_work);
 628	}
 629
 630	spin_unlock_bh(&ks->statelock);
 631}
 632
 633static int ks8851_set_mac_address(struct net_device *dev, void *addr)
 634{
 635	struct sockaddr *sa = addr;
 636
 637	if (netif_running(dev))
 638		return -EBUSY;
 639
 640	if (!is_valid_ether_addr(sa->sa_data))
 641		return -EADDRNOTAVAIL;
 642
 643	eth_hw_addr_set(dev, sa->sa_data);
 644	return ks8851_write_mac_addr(dev);
 645}
 646
 647static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 648{
 649	struct ks8851_net *ks = netdev_priv(dev);
 650
 651	if (!netif_running(dev))
 652		return -EINVAL;
 653
 654	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
 655}
 656
 657static const struct net_device_ops ks8851_netdev_ops = {
 658	.ndo_open		= ks8851_net_open,
 659	.ndo_stop		= ks8851_net_stop,
 660	.ndo_eth_ioctl		= ks8851_net_ioctl,
 661	.ndo_start_xmit		= ks8851_start_xmit,
 662	.ndo_set_mac_address	= ks8851_set_mac_address,
 663	.ndo_set_rx_mode	= ks8851_set_rx_mode,
 664	.ndo_validate_addr	= eth_validate_addr,
 665};
 666
 667/* ethtool support */
 668
 669static void ks8851_get_drvinfo(struct net_device *dev,
 670			       struct ethtool_drvinfo *di)
 671{
 672	strscpy(di->driver, "KS8851", sizeof(di->driver));
 673	strscpy(di->version, "1.00", sizeof(di->version));
 674	strscpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
 675}
 676
 677static u32 ks8851_get_msglevel(struct net_device *dev)
 678{
 679	struct ks8851_net *ks = netdev_priv(dev);
 680	return ks->msg_enable;
 681}
 682
 683static void ks8851_set_msglevel(struct net_device *dev, u32 to)
 684{
 685	struct ks8851_net *ks = netdev_priv(dev);
 686	ks->msg_enable = to;
 687}
 688
 689static int ks8851_get_link_ksettings(struct net_device *dev,
 690				     struct ethtool_link_ksettings *cmd)
 691{
 692	struct ks8851_net *ks = netdev_priv(dev);
 693
 694	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
 695
 696	return 0;
 697}
 698
 699static int ks8851_set_link_ksettings(struct net_device *dev,
 700				     const struct ethtool_link_ksettings *cmd)
 701{
 702	struct ks8851_net *ks = netdev_priv(dev);
 703	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
 704}
 705
 706static u32 ks8851_get_link(struct net_device *dev)
 707{
 708	struct ks8851_net *ks = netdev_priv(dev);
 709	return mii_link_ok(&ks->mii);
 710}
 711
 712static int ks8851_nway_reset(struct net_device *dev)
 713{
 714	struct ks8851_net *ks = netdev_priv(dev);
 715	return mii_nway_restart(&ks->mii);
 716}
 717
 718/* EEPROM support */
 719
 720static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
 721{
 722	struct ks8851_net *ks = ee->data;
 723	unsigned val;
 724
 725	val = ks8851_rdreg16(ks, KS_EEPCR);
 726
 727	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
 728	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
 729	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
 730}
 731
 732static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
 733{
 734	struct ks8851_net *ks = ee->data;
 735	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
 736
 737	if (ee->drive_data)
 738		val |= EEPCR_EESRWA;
 739	if (ee->reg_data_in)
 740		val |= EEPCR_EEDO;
 741	if (ee->reg_data_clock)
 742		val |= EEPCR_EESCK;
 743	if (ee->reg_chip_select)
 744		val |= EEPCR_EECS;
 745
 746	ks8851_wrreg16(ks, KS_EEPCR, val);
 747}
 748
 749/**
 750 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
 751 * @ks: The network device state.
 752 *
 753 * Check for the presence of an EEPROM, and then activate software access
 754 * to the device.
 755 */
 756static int ks8851_eeprom_claim(struct ks8851_net *ks)
 757{
 758	/* start with clock low, cs high */
 759	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
 760	return 0;
 761}
 762
 763/**
 764 * ks8851_eeprom_release - release the EEPROM interface
 765 * @ks: The device state
 766 *
 767 * Release the software access to the device EEPROM
 768 */
 769static void ks8851_eeprom_release(struct ks8851_net *ks)
 770{
 771	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
 772
 773	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
 774}
 775
 776#define KS_EEPROM_MAGIC (0x00008851)
 777
 778static int ks8851_set_eeprom(struct net_device *dev,
 779			     struct ethtool_eeprom *ee, u8 *data)
 780{
 781	struct ks8851_net *ks = netdev_priv(dev);
 782	int offset = ee->offset;
 783	unsigned long flags;
 784	int len = ee->len;
 785	u16 tmp;
 786
 787	/* currently only support byte writing */
 788	if (len != 1)
 789		return -EINVAL;
 790
 791	if (ee->magic != KS_EEPROM_MAGIC)
 792		return -EINVAL;
 793
 794	if (!(ks->rc_ccr & CCR_EEPROM))
 795		return -ENOENT;
 796
 797	ks8851_lock(ks, &flags);
 798
 799	ks8851_eeprom_claim(ks);
 800
 801	eeprom_93cx6_wren(&ks->eeprom, true);
 802
 803	/* ethtool currently only supports writing bytes, which means
 804	 * we have to read/modify/write our 16bit EEPROMs */
 805
 806	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
 807
 808	if (offset & 1) {
 809		tmp &= 0xff;
 810		tmp |= *data << 8;
 811	} else {
 812		tmp &= 0xff00;
 813		tmp |= *data;
 814	}
 815
 816	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
 817	eeprom_93cx6_wren(&ks->eeprom, false);
 818
 819	ks8851_eeprom_release(ks);
 820	ks8851_unlock(ks, &flags);
 821
 822	return 0;
 823}
 824
 825static int ks8851_get_eeprom(struct net_device *dev,
 826			     struct ethtool_eeprom *ee, u8 *data)
 827{
 828	struct ks8851_net *ks = netdev_priv(dev);
 829	int offset = ee->offset;
 830	unsigned long flags;
 831	int len = ee->len;
 832
 833	/* must be 2 byte aligned */
 834	if (len & 1 || offset & 1)
 835		return -EINVAL;
 836
 837	if (!(ks->rc_ccr & CCR_EEPROM))
 838		return -ENOENT;
 839
 840	ks8851_lock(ks, &flags);
 841
 842	ks8851_eeprom_claim(ks);
 843
 844	ee->magic = KS_EEPROM_MAGIC;
 845
 846	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
 847	ks8851_eeprom_release(ks);
 848	ks8851_unlock(ks, &flags);
 849
 850	return 0;
 851}
 852
 853static int ks8851_get_eeprom_len(struct net_device *dev)
 854{
 855	struct ks8851_net *ks = netdev_priv(dev);
 856
 857	/* currently, we assume it is an 93C46 attached, so return 128 */
 858	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
 859}
 860
 861static const struct ethtool_ops ks8851_ethtool_ops = {
 862	.get_drvinfo	= ks8851_get_drvinfo,
 863	.get_msglevel	= ks8851_get_msglevel,
 864	.set_msglevel	= ks8851_set_msglevel,
 865	.get_link	= ks8851_get_link,
 866	.nway_reset	= ks8851_nway_reset,
 867	.get_eeprom_len	= ks8851_get_eeprom_len,
 868	.get_eeprom	= ks8851_get_eeprom,
 869	.set_eeprom	= ks8851_set_eeprom,
 870	.get_link_ksettings = ks8851_get_link_ksettings,
 871	.set_link_ksettings = ks8851_set_link_ksettings,
 872};
 873
 874/* MII interface controls */
 875
 876/**
 877 * ks8851_phy_reg - convert MII register into a KS8851 register
 878 * @reg: MII register number.
 879 *
 880 * Return the KS8851 register number for the corresponding MII PHY register
 881 * if possible. Return zero if the MII register has no direct mapping to the
 882 * KS8851 register set.
 883 */
 884static int ks8851_phy_reg(int reg)
 885{
 886	switch (reg) {
 887	case MII_BMCR:
 888		return KS_P1MBCR;
 889	case MII_BMSR:
 890		return KS_P1MBSR;
 891	case MII_PHYSID1:
 892		return KS_PHY1ILR;
 893	case MII_PHYSID2:
 894		return KS_PHY1IHR;
 895	case MII_ADVERTISE:
 896		return KS_P1ANAR;
 897	case MII_LPA:
 898		return KS_P1ANLPR;
 899	}
 900
 901	return -EOPNOTSUPP;
 902}
 903
 904static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg)
 905{
 906	struct ks8851_net *ks = netdev_priv(dev);
 907	unsigned long flags;
 908	int result;
 909	int ksreg;
 910
 911	ksreg = ks8851_phy_reg(reg);
 912	if (ksreg < 0)
 913		return ksreg;
 914
 915	ks8851_lock(ks, &flags);
 916	result = ks8851_rdreg16(ks, ksreg);
 917	ks8851_unlock(ks, &flags);
 918
 919	return result;
 920}
 921
 922/**
 923 * ks8851_phy_read - MII interface PHY register read.
 924 * @dev: The network device the PHY is on.
 925 * @phy_addr: Address of PHY (ignored as we only have one)
 926 * @reg: The register to read.
 927 *
 928 * This call reads data from the PHY register specified in @reg. Since the
 929 * device does not support all the MII registers, the non-existent values
 930 * are always returned as zero.
 931 *
 932 * We return zero for unsupported registers as the MII code does not check
 933 * the value returned for any error status, and simply returns it to the
 934 * caller. The mii-tool that the driver was tested with takes any -ve error
 935 * as real PHY capabilities, thus displaying incorrect data to the user.
 936 */
 937static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
 938{
 939	int ret;
 940
 941	ret = ks8851_phy_read_common(dev, phy_addr, reg);
 942	if (ret < 0)
 943		return 0x0;	/* no error return allowed, so use zero */
 944
 945	return ret;
 946}
 947
 948static void ks8851_phy_write(struct net_device *dev,
 949			     int phy, int reg, int value)
 950{
 951	struct ks8851_net *ks = netdev_priv(dev);
 952	unsigned long flags;
 953	int ksreg;
 954
 955	ksreg = ks8851_phy_reg(reg);
 956	if (ksreg >= 0) {
 957		ks8851_lock(ks, &flags);
 958		ks8851_wrreg16(ks, ksreg, value);
 959		ks8851_unlock(ks, &flags);
 960	}
 961}
 962
 963static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg)
 964{
 965	struct ks8851_net *ks = bus->priv;
 966
 967	if (phy_id != 0)
 968		return -EOPNOTSUPP;
 969
 970	/* KS8851 PHY ID registers are swapped in HW, swap them back. */
 971	if (reg == MII_PHYSID1)
 972		reg = MII_PHYSID2;
 973	else if (reg == MII_PHYSID2)
 974		reg = MII_PHYSID1;
 975
 976	return ks8851_phy_read_common(ks->netdev, phy_id, reg);
 977}
 978
 979static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val)
 980{
 981	struct ks8851_net *ks = bus->priv;
 982
 983	ks8851_phy_write(ks->netdev, phy_id, reg, val);
 984	return 0;
 985}
 986
 987/**
 988 * ks8851_read_selftest - read the selftest memory info.
 989 * @ks: The device state
 990 *
 991 * Read and check the TX/RX memory selftest information.
 992 */
 993static void ks8851_read_selftest(struct ks8851_net *ks)
 994{
 995	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
 996	unsigned rd;
 997
 998	rd = ks8851_rdreg16(ks, KS_MBIR);
 999
1000	if ((rd & both_done) != both_done) {
1001		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1002		return;
1003	}
1004
1005	if (rd & MBIR_TXMBFA)
1006		netdev_err(ks->netdev, "TX memory selftest fail\n");
1007
1008	if (rd & MBIR_RXMBFA)
1009		netdev_err(ks->netdev, "RX memory selftest fail\n");
1010}
1011
1012/* driver bus management functions */
1013
1014#ifdef CONFIG_PM_SLEEP
1015
1016int ks8851_suspend(struct device *dev)
1017{
1018	struct ks8851_net *ks = dev_get_drvdata(dev);
1019	struct net_device *netdev = ks->netdev;
1020
1021	if (netif_running(netdev)) {
1022		netif_device_detach(netdev);
1023		ks8851_net_stop(netdev);
1024	}
1025
1026	return 0;
1027}
1028EXPORT_SYMBOL_GPL(ks8851_suspend);
1029
1030int ks8851_resume(struct device *dev)
1031{
1032	struct ks8851_net *ks = dev_get_drvdata(dev);
1033	struct net_device *netdev = ks->netdev;
1034
1035	if (netif_running(netdev)) {
1036		ks8851_net_open(netdev);
1037		netif_device_attach(netdev);
1038	}
1039
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(ks8851_resume);
1043#endif
1044
1045static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev)
1046{
1047	struct mii_bus *mii_bus;
1048	int ret;
1049
1050	mii_bus = mdiobus_alloc();
1051	if (!mii_bus)
1052		return -ENOMEM;
1053
1054	mii_bus->name = "ks8851_eth_mii";
1055	mii_bus->read = ks8851_mdio_read;
1056	mii_bus->write = ks8851_mdio_write;
1057	mii_bus->priv = ks;
1058	mii_bus->parent = dev;
1059	mii_bus->phy_mask = ~((u32)BIT(0));
1060	snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1061
1062	ret = mdiobus_register(mii_bus);
1063	if (ret)
1064		goto err_mdiobus_register;
1065
1066	ks->mii_bus = mii_bus;
1067
1068	return 0;
1069
1070err_mdiobus_register:
1071	mdiobus_free(mii_bus);
1072	return ret;
1073}
1074
1075static void ks8851_unregister_mdiobus(struct ks8851_net *ks)
1076{
1077	mdiobus_unregister(ks->mii_bus);
1078	mdiobus_free(ks->mii_bus);
1079}
1080
1081int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1082			int msg_en)
1083{
1084	struct ks8851_net *ks = netdev_priv(netdev);
1085	unsigned cider;
1086	int ret;
1087
1088	ks->netdev = netdev;
 
1089
1090	ks->gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1091	ret = PTR_ERR_OR_ZERO(ks->gpio);
1092	if (ret) {
1093		if (ret != -EPROBE_DEFER)
1094			dev_err(dev, "reset gpio request failed: %d\n", ret);
1095		return ret;
1096	}
1097
1098	ret = gpiod_set_consumer_name(ks->gpio, "ks8851_rst_n");
1099	if (ret) {
1100		dev_err(dev, "failed to set reset gpio name: %d\n", ret);
1101		return ret;
1102	}
1103
1104	ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1105	if (IS_ERR(ks->vdd_io)) {
1106		ret = PTR_ERR(ks->vdd_io);
1107		goto err_reg_io;
1108	}
1109
1110	ret = regulator_enable(ks->vdd_io);
1111	if (ret) {
1112		dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1113		goto err_reg_io;
1114	}
1115
1116	ks->vdd_reg = devm_regulator_get(dev, "vdd");
1117	if (IS_ERR(ks->vdd_reg)) {
1118		ret = PTR_ERR(ks->vdd_reg);
1119		goto err_reg;
1120	}
1121
1122	ret = regulator_enable(ks->vdd_reg);
1123	if (ret) {
1124		dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1125		goto err_reg;
1126	}
1127
1128	if (ks->gpio) {
1129		usleep_range(10000, 11000);
1130		gpiod_set_value_cansleep(ks->gpio, 0);
1131	}
1132
1133	spin_lock_init(&ks->statelock);
1134
1135	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1136
1137	SET_NETDEV_DEV(netdev, dev);
1138
1139	/* setup EEPROM state */
1140	ks->eeprom.data = ks;
1141	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1142	ks->eeprom.register_read = ks8851_eeprom_regread;
1143	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1144
1145	/* setup mii state */
1146	ks->mii.dev		= netdev;
1147	ks->mii.phy_id		= 1;
1148	ks->mii.phy_id_mask	= 1;
1149	ks->mii.reg_num_mask	= 0xf;
1150	ks->mii.mdio_read	= ks8851_phy_read;
1151	ks->mii.mdio_write	= ks8851_phy_write;
1152
1153	dev_info(dev, "message enable is %d\n", msg_en);
1154
1155	ret = ks8851_register_mdiobus(ks, dev);
1156	if (ret)
1157		goto err_mdio;
1158
1159	/* set the default message enable */
1160	ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1161						NETIF_MSG_PROBE |
1162						NETIF_MSG_LINK);
1163
1164	skb_queue_head_init(&ks->txq);
1165
1166	netdev->ethtool_ops = &ks8851_ethtool_ops;
1167
1168	dev_set_drvdata(dev, ks);
1169
1170	netif_carrier_off(ks->netdev);
1171	netdev->if_port = IF_PORT_100BASET;
1172	netdev->netdev_ops = &ks8851_netdev_ops;
1173
1174	/* issue a global soft reset to reset the device. */
1175	ks8851_soft_reset(ks, GRR_GSR);
1176
1177	/* simple check for a valid chip being connected to the bus */
1178	cider = ks8851_rdreg16(ks, KS_CIDER);
1179	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1180		dev_err(dev, "failed to read device ID\n");
1181		ret = -ENODEV;
1182		goto err_id;
1183	}
1184
1185	/* cache the contents of the CCR register for EEPROM, etc. */
1186	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1187
1188	ks8851_read_selftest(ks);
1189	ks8851_init_mac(ks, dev->of_node);
1190
1191	ret = register_netdev(netdev);
1192	if (ret) {
1193		dev_err(dev, "failed to register network device\n");
1194		goto err_id;
1195	}
1196
1197	netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1198		    CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1199		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1200
1201	return 0;
1202
1203err_id:
1204	ks8851_unregister_mdiobus(ks);
1205err_mdio:
1206	if (ks->gpio)
1207		gpiod_set_value_cansleep(ks->gpio, 1);
1208	regulator_disable(ks->vdd_reg);
1209err_reg:
1210	regulator_disable(ks->vdd_io);
1211err_reg_io:
1212	return ret;
1213}
1214EXPORT_SYMBOL_GPL(ks8851_probe_common);
1215
1216void ks8851_remove_common(struct device *dev)
1217{
1218	struct ks8851_net *priv = dev_get_drvdata(dev);
1219
1220	ks8851_unregister_mdiobus(priv);
1221
1222	if (netif_msg_drv(priv))
1223		dev_info(dev, "remove\n");
1224
1225	unregister_netdev(priv->netdev);
1226	if (priv->gpio)
1227		gpiod_set_value_cansleep(priv->gpio, 1);
1228	regulator_disable(priv->vdd_reg);
1229	regulator_disable(priv->vdd_io);
1230}
1231EXPORT_SYMBOL_GPL(ks8851_remove_common);
1232
1233MODULE_DESCRIPTION("KS8851 Network driver");
1234MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1235MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* drivers/net/ethernet/micrel/ks8851.c
   3 *
   4 * Copyright 2009 Simtec Electronics
   5 *	http://www.simtec.co.uk/
   6 *	Ben Dooks <ben@simtec.co.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/interrupt.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ethtool.h>
  17#include <linux/cache.h>
  18#include <linux/crc32.h>
  19#include <linux/mii.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/regulator/consumer.h>
  22
  23#include <linux/of_mdio.h>
  24#include <linux/of_net.h>
  25
  26#include "ks8851.h"
  27
  28/**
  29 * ks8851_lock - register access lock
  30 * @ks: The chip state
  31 * @flags: Spinlock flags
  32 *
  33 * Claim chip register access lock
  34 */
  35static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
  36{
  37	ks->lock(ks, flags);
  38}
  39
  40/**
  41 * ks8851_unlock - register access unlock
  42 * @ks: The chip state
  43 * @flags: Spinlock flags
  44 *
  45 * Release chip register access lock
  46 */
  47static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
  48{
  49	ks->unlock(ks, flags);
  50}
  51
  52/**
  53 * ks8851_wrreg16 - write 16bit register value to chip
  54 * @ks: The chip state
  55 * @reg: The register address
  56 * @val: The value to write
  57 *
  58 * Issue a write to put the value @val into the register specified in @reg.
  59 */
  60static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
  61			   unsigned int val)
  62{
  63	ks->wrreg16(ks, reg, val);
  64}
  65
  66/**
  67 * ks8851_rdreg16 - read 16 bit register from device
  68 * @ks: The chip information
  69 * @reg: The register address
  70 *
  71 * Read a 16bit register from the chip, returning the result
  72 */
  73static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
  74				   unsigned int reg)
  75{
  76	return ks->rdreg16(ks, reg);
  77}
  78
  79/**
  80 * ks8851_soft_reset - issue one of the soft reset to the device
  81 * @ks: The device state.
  82 * @op: The bit(s) to set in the GRR
  83 *
  84 * Issue the relevant soft-reset command to the device's GRR register
  85 * specified by @op.
  86 *
  87 * Note, the delays are in there as a caution to ensure that the reset
  88 * has time to take effect and then complete. Since the datasheet does
  89 * not currently specify the exact sequence, we have chosen something
  90 * that seems to work with our device.
  91 */
  92static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
  93{
  94	ks8851_wrreg16(ks, KS_GRR, op);
  95	mdelay(1);	/* wait a short time to effect reset */
  96	ks8851_wrreg16(ks, KS_GRR, 0);
  97	mdelay(1);	/* wait for condition to clear */
  98}
  99
 100/**
 101 * ks8851_set_powermode - set power mode of the device
 102 * @ks: The device state
 103 * @pwrmode: The power mode value to write to KS_PMECR.
 104 *
 105 * Change the power mode of the chip.
 106 */
 107static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 108{
 109	unsigned pmecr;
 110
 111	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 112
 113	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 114	pmecr &= ~PMECR_PM_MASK;
 115	pmecr |= pwrmode;
 116
 117	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 118}
 119
 120/**
 121 * ks8851_write_mac_addr - write mac address to device registers
 122 * @dev: The network device
 123 *
 124 * Update the KS8851 MAC address registers from the address in @dev.
 125 *
 126 * This call assumes that the chip is not running, so there is no need to
 127 * shutdown the RXQ process whilst setting this.
 128*/
 129static int ks8851_write_mac_addr(struct net_device *dev)
 130{
 131	struct ks8851_net *ks = netdev_priv(dev);
 132	unsigned long flags;
 133	u16 val;
 134	int i;
 135
 136	ks8851_lock(ks, &flags);
 137
 138	/*
 139	 * Wake up chip in case it was powered off when stopped; otherwise,
 140	 * the first write to the MAC address does not take effect.
 141	 */
 142	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 143
 144	for (i = 0; i < ETH_ALEN; i += 2) {
 145		val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
 146		ks8851_wrreg16(ks, KS_MAR(i), val);
 147	}
 148
 149	if (!netif_running(dev))
 150		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 151
 152	ks8851_unlock(ks, &flags);
 153
 154	return 0;
 155}
 156
 157/**
 158 * ks8851_read_mac_addr - read mac address from device registers
 159 * @dev: The network device
 160 *
 161 * Update our copy of the KS8851 MAC address from the registers of @dev.
 162*/
 163static void ks8851_read_mac_addr(struct net_device *dev)
 164{
 165	struct ks8851_net *ks = netdev_priv(dev);
 166	unsigned long flags;
 167	u8 addr[ETH_ALEN];
 168	u16 reg;
 169	int i;
 170
 171	ks8851_lock(ks, &flags);
 172
 173	for (i = 0; i < ETH_ALEN; i += 2) {
 174		reg = ks8851_rdreg16(ks, KS_MAR(i));
 175		addr[i] = reg >> 8;
 176		addr[i + 1] = reg & 0xff;
 177	}
 178	eth_hw_addr_set(dev, addr);
 179
 180	ks8851_unlock(ks, &flags);
 181}
 182
 183/**
 184 * ks8851_init_mac - initialise the mac address
 185 * @ks: The device structure
 186 * @np: The device node pointer
 187 *
 188 * Get or create the initial mac address for the device and then set that
 189 * into the station address register. A mac address supplied in the device
 190 * tree takes precedence. Otherwise, if there is an EEPROM present, then
 191 * we try that. If no valid mac address is found we use eth_random_addr()
 192 * to create a new one.
 193 */
 194static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
 195{
 196	struct net_device *dev = ks->netdev;
 197	int ret;
 198
 199	ret = of_get_ethdev_address(np, dev);
 200	if (!ret) {
 201		ks8851_write_mac_addr(dev);
 202		return;
 203	}
 204
 205	if (ks->rc_ccr & CCR_EEPROM) {
 206		ks8851_read_mac_addr(dev);
 207		if (is_valid_ether_addr(dev->dev_addr))
 208			return;
 209
 210		netdev_err(ks->netdev, "invalid mac address read %pM\n",
 211				dev->dev_addr);
 212	}
 213
 214	eth_hw_addr_random(dev);
 215	ks8851_write_mac_addr(dev);
 216}
 217
 218/**
 219 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 220 * @ks: The device state
 221 * @rxpkt: The data for the received packet
 222 *
 223 * Dump the initial data from the packet to dev_dbg().
 224 */
 225static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 226{
 227	netdev_dbg(ks->netdev,
 228		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 229		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 230		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 231		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 232}
 233
 234/**
 235 * ks8851_rx_skb - receive skbuff
 236 * @ks: The device state.
 237 * @skb: The skbuff
 238 */
 239static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
 240{
 241	ks->rx_skb(ks, skb);
 242}
 243
 244/**
 245 * ks8851_rx_pkts - receive packets from the host
 246 * @ks: The device information.
 
 247 *
 248 * This is called from the IRQ work queue when the system detects that there
 249 * are packets in the receive queue. Find out how many packets there are and
 250 * read them from the FIFO.
 251 */
 252static void ks8851_rx_pkts(struct ks8851_net *ks)
 253{
 254	struct sk_buff *skb;
 255	unsigned rxfc;
 256	unsigned rxlen;
 257	unsigned rxstat;
 258	u8 *rxpkt;
 259
 260	rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
 261
 262	netif_dbg(ks, rx_status, ks->netdev,
 263		  "%s: %d packets\n", __func__, rxfc);
 264
 265	/* Currently we're issuing a read per packet, but we could possibly
 266	 * improve the code by issuing a single read, getting the receive
 267	 * header, allocating the packet and then reading the packet data
 268	 * out in one go.
 269	 *
 270	 * This form of operation would require us to hold the SPI bus'
 271	 * chipselect low during the entie transaction to avoid any
 272	 * reset to the data stream coming from the chip.
 273	 */
 274
 275	for (; rxfc != 0; rxfc--) {
 276		rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
 277		rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
 278
 279		netif_dbg(ks, rx_status, ks->netdev,
 280			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 281
 282		/* the length of the packet includes the 32bit CRC */
 283
 284		/* set dma read address */
 285		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 286
 287		/* start DMA access */
 288		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 289
 290		if (rxlen > 4) {
 291			unsigned int rxalign;
 292
 293			rxlen -= 4;
 294			rxalign = ALIGN(rxlen, 4);
 295			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 296			if (skb) {
 297
 298				/* 4 bytes of status header + 4 bytes of
 299				 * garbage: we put them before ethernet
 300				 * header, so that they are copied,
 301				 * but ignored.
 302				 */
 303
 304				rxpkt = skb_put(skb, rxlen) - 8;
 305
 306				ks->rdfifo(ks, rxpkt, rxalign + 8);
 307
 308				if (netif_msg_pktdata(ks))
 309					ks8851_dbg_dumpkkt(ks, rxpkt);
 310
 311				skb->protocol = eth_type_trans(skb, ks->netdev);
 312				ks8851_rx_skb(ks, skb);
 313
 314				ks->netdev->stats.rx_packets++;
 315				ks->netdev->stats.rx_bytes += rxlen;
 316			}
 317		}
 318
 319		/* end DMA access and dequeue packet */
 320		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
 321	}
 322}
 323
 324/**
 325 * ks8851_irq - IRQ handler for dealing with interrupt requests
 326 * @irq: IRQ number
 327 * @_ks: cookie
 328 *
 329 * This handler is invoked when the IRQ line asserts to find out what happened.
 330 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 331 * in thread context.
 332 *
 333 * Read the interrupt status, work out what needs to be done and then clear
 334 * any of the interrupts that are not needed.
 335 */
 336static irqreturn_t ks8851_irq(int irq, void *_ks)
 337{
 338	struct ks8851_net *ks = _ks;
 339	unsigned handled = 0;
 340	unsigned long flags;
 341	unsigned int status;
 
 342
 343	ks8851_lock(ks, &flags);
 344
 345	status = ks8851_rdreg16(ks, KS_ISR);
 
 346
 347	netif_dbg(ks, intr, ks->netdev,
 348		  "%s: status 0x%04x\n", __func__, status);
 349
 350	if (status & IRQ_LCI)
 351		handled |= IRQ_LCI;
 352
 353	if (status & IRQ_LDI) {
 354		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 355		pmecr &= ~PMECR_WKEVT_MASK;
 356		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 357
 358		handled |= IRQ_LDI;
 359	}
 360
 361	if (status & IRQ_RXPSI)
 362		handled |= IRQ_RXPSI;
 363
 364	if (status & IRQ_TXI) {
 365		handled |= IRQ_TXI;
 366
 367		/* no lock here, tx queue should have been stopped */
 
 368
 369		/* update our idea of how much tx space is available to the
 370		 * system */
 371		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 372
 373		netif_dbg(ks, intr, ks->netdev,
 374			  "%s: txspace %d\n", __func__, ks->tx_space);
 375	}
 376
 377	if (status & IRQ_RXI)
 378		handled |= IRQ_RXI;
 379
 380	if (status & IRQ_SPIBEI) {
 381		netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
 382		handled |= IRQ_SPIBEI;
 383	}
 384
 385	ks8851_wrreg16(ks, KS_ISR, handled);
 386
 387	if (status & IRQ_RXI) {
 388		/* the datasheet says to disable the rx interrupt during
 389		 * packet read-out, however we're masking the interrupt
 390		 * from the device so do not bother masking just the RX
 391		 * from the device. */
 392
 393		ks8851_rx_pkts(ks);
 
 394	}
 395
 396	/* if something stopped the rx process, probably due to wanting
 397	 * to change the rx settings, then do something about restarting
 398	 * it. */
 399	if (status & IRQ_RXPSI) {
 400		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 401
 402		/* update the multicast hash table */
 403		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 404		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 405		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 406		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 407
 408		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 409		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 410	}
 411
 412	ks8851_unlock(ks, &flags);
 413
 414	if (status & IRQ_LCI)
 415		mii_check_link(&ks->mii);
 416
 417	if (status & IRQ_TXI)
 418		netif_wake_queue(ks->netdev);
 
 419
 420	return IRQ_HANDLED;
 421}
 422
 423/**
 424 * ks8851_flush_tx_work - flush outstanding TX work
 425 * @ks: The device state
 426 */
 427static void ks8851_flush_tx_work(struct ks8851_net *ks)
 428{
 429	if (ks->flush_tx_work)
 430		ks->flush_tx_work(ks);
 431}
 432
 433/**
 434 * ks8851_net_open - open network device
 435 * @dev: The network device being opened.
 436 *
 437 * Called when the network device is marked active, such as a user executing
 438 * 'ifconfig up' on the device.
 439 */
 440static int ks8851_net_open(struct net_device *dev)
 441{
 442	struct ks8851_net *ks = netdev_priv(dev);
 443	unsigned long flags;
 444	int ret;
 445
 446	ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
 447				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
 448				   dev->name, ks);
 449	if (ret < 0) {
 450		netdev_err(dev, "failed to get irq\n");
 451		return ret;
 452	}
 453
 454	/* lock the card, even if we may not actually be doing anything
 455	 * else at the moment */
 456	ks8851_lock(ks, &flags);
 457
 458	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 459
 460	/* bring chip out of any power saving mode it was in */
 461	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 462
 463	/* issue a soft reset to the RX/TX QMU to put it into a known
 464	 * state. */
 465	ks8851_soft_reset(ks, GRR_QMU);
 466
 467	/* setup transmission parameters */
 468
 469	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 470				     TXCR_TXPE | /* pad to min length */
 471				     TXCR_TXCRC | /* add CRC */
 472				     TXCR_TXFCE)); /* enable flow control */
 473
 474	/* auto-increment tx data, reset tx pointer */
 475	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 476
 477	/* setup receiver control */
 478
 479	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 480				      RXCR1_RXFCE | /* enable flow control */
 481				      RXCR1_RXBE | /* broadcast enable */
 482				      RXCR1_RXUE | /* unicast enable */
 483				      RXCR1_RXE)); /* enable rx block */
 484
 485	/* transfer entire frames out in one go */
 486	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 487
 488	/* set receive counter timeouts */
 489	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 490	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 491	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 492
 493	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 494			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 495			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 496
 497	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 498
 499	/* clear then enable interrupts */
 500	ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
 501	ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
 502
 
 
 503	netif_start_queue(ks->netdev);
 504
 505	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 506
 507	ks8851_unlock(ks, &flags);
 508	mii_check_link(&ks->mii);
 509	return 0;
 510}
 511
 512/**
 513 * ks8851_net_stop - close network device
 514 * @dev: The device being closed.
 515 *
 516 * Called to close down a network device which has been active. Cancell any
 517 * work, shutdown the RX and TX process and then place the chip into a low
 518 * power state whilst it is not being used.
 519 */
 520static int ks8851_net_stop(struct net_device *dev)
 521{
 522	struct ks8851_net *ks = netdev_priv(dev);
 523	unsigned long flags;
 524
 525	netif_info(ks, ifdown, dev, "shutting down\n");
 526
 527	netif_stop_queue(dev);
 528
 529	ks8851_lock(ks, &flags);
 530	/* turn off the IRQs and ack any outstanding */
 531	ks8851_wrreg16(ks, KS_IER, 0x0000);
 532	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 533	ks8851_unlock(ks, &flags);
 534
 535	/* stop any outstanding work */
 536	ks8851_flush_tx_work(ks);
 537	flush_work(&ks->rxctrl_work);
 538
 539	ks8851_lock(ks, &flags);
 540	/* shutdown RX process */
 541	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 542
 543	/* shutdown TX process */
 544	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 545
 546	/* set powermode to soft power down to save power */
 547	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 548	ks8851_unlock(ks, &flags);
 549
 550	/* ensure any queued tx buffers are dumped */
 551	while (!skb_queue_empty(&ks->txq)) {
 552		struct sk_buff *txb = skb_dequeue(&ks->txq);
 553
 554		netif_dbg(ks, ifdown, ks->netdev,
 555			  "%s: freeing txb %p\n", __func__, txb);
 556
 557		dev_kfree_skb(txb);
 558	}
 559
 560	free_irq(dev->irq, ks);
 561
 562	return 0;
 563}
 564
 565/**
 566 * ks8851_start_xmit - transmit packet
 567 * @skb: The buffer to transmit
 568 * @dev: The device used to transmit the packet.
 569 *
 570 * Called by the network layer to transmit the @skb. Queue the packet for
 571 * the device and schedule the necessary work to transmit the packet when
 572 * it is free.
 573 *
 574 * We do this to firstly avoid sleeping with the network device locked,
 575 * and secondly so we can round up more than one packet to transmit which
 576 * means we can try and avoid generating too many transmit done interrupts.
 577 */
 578static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 579				     struct net_device *dev)
 580{
 581	struct ks8851_net *ks = netdev_priv(dev);
 582
 583	return ks->start_xmit(skb, dev);
 584}
 585
 586/**
 587 * ks8851_rxctrl_work - work handler to change rx mode
 588 * @work: The work structure this belongs to.
 589 *
 590 * Lock the device and issue the necessary changes to the receive mode from
 591 * the network device layer. This is done so that we can do this without
 592 * having to sleep whilst holding the network device lock.
 593 *
 594 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 595 * receive parameters are programmed, we issue a write to disable the RXQ and
 596 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 597 * complete. The interrupt handler then writes the new values into the chip.
 598 */
 599static void ks8851_rxctrl_work(struct work_struct *work)
 600{
 601	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 602	unsigned long flags;
 603
 604	ks8851_lock(ks, &flags);
 605
 606	/* need to shutdown RXQ before modifying filter parameters */
 607	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 608
 609	ks8851_unlock(ks, &flags);
 610}
 611
 612static void ks8851_set_rx_mode(struct net_device *dev)
 613{
 614	struct ks8851_net *ks = netdev_priv(dev);
 615	struct ks8851_rxctrl rxctrl;
 616
 617	memset(&rxctrl, 0, sizeof(rxctrl));
 618
 619	if (dev->flags & IFF_PROMISC) {
 620		/* interface to receive everything */
 621
 622		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 623	} else if (dev->flags & IFF_ALLMULTI) {
 624		/* accept all multicast packets */
 625
 626		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 627				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 628	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 629		struct netdev_hw_addr *ha;
 630		u32 crc;
 631
 632		/* accept some multicast */
 633
 634		netdev_for_each_mc_addr(ha, dev) {
 635			crc = ether_crc(ETH_ALEN, ha->addr);
 636			crc >>= (32 - 6);  /* get top six bits */
 637
 638			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 639		}
 640
 641		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 642	} else {
 643		/* just accept broadcast / unicast */
 644		rxctrl.rxcr1 = RXCR1_RXPAFMA;
 645	}
 646
 647	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
 648			 RXCR1_RXBE | /* broadcast enable */
 649			 RXCR1_RXE | /* RX process enable */
 650			 RXCR1_RXFCE); /* enable flow control */
 651
 652	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
 653
 654	/* schedule work to do the actual set of the data if needed */
 655
 656	spin_lock(&ks->statelock);
 657
 658	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
 659		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
 660		schedule_work(&ks->rxctrl_work);
 661	}
 662
 663	spin_unlock(&ks->statelock);
 664}
 665
 666static int ks8851_set_mac_address(struct net_device *dev, void *addr)
 667{
 668	struct sockaddr *sa = addr;
 669
 670	if (netif_running(dev))
 671		return -EBUSY;
 672
 673	if (!is_valid_ether_addr(sa->sa_data))
 674		return -EADDRNOTAVAIL;
 675
 676	eth_hw_addr_set(dev, sa->sa_data);
 677	return ks8851_write_mac_addr(dev);
 678}
 679
 680static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 681{
 682	struct ks8851_net *ks = netdev_priv(dev);
 683
 684	if (!netif_running(dev))
 685		return -EINVAL;
 686
 687	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
 688}
 689
 690static const struct net_device_ops ks8851_netdev_ops = {
 691	.ndo_open		= ks8851_net_open,
 692	.ndo_stop		= ks8851_net_stop,
 693	.ndo_eth_ioctl		= ks8851_net_ioctl,
 694	.ndo_start_xmit		= ks8851_start_xmit,
 695	.ndo_set_mac_address	= ks8851_set_mac_address,
 696	.ndo_set_rx_mode	= ks8851_set_rx_mode,
 697	.ndo_validate_addr	= eth_validate_addr,
 698};
 699
 700/* ethtool support */
 701
 702static void ks8851_get_drvinfo(struct net_device *dev,
 703			       struct ethtool_drvinfo *di)
 704{
 705	strscpy(di->driver, "KS8851", sizeof(di->driver));
 706	strscpy(di->version, "1.00", sizeof(di->version));
 707	strscpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
 708}
 709
 710static u32 ks8851_get_msglevel(struct net_device *dev)
 711{
 712	struct ks8851_net *ks = netdev_priv(dev);
 713	return ks->msg_enable;
 714}
 715
 716static void ks8851_set_msglevel(struct net_device *dev, u32 to)
 717{
 718	struct ks8851_net *ks = netdev_priv(dev);
 719	ks->msg_enable = to;
 720}
 721
 722static int ks8851_get_link_ksettings(struct net_device *dev,
 723				     struct ethtool_link_ksettings *cmd)
 724{
 725	struct ks8851_net *ks = netdev_priv(dev);
 726
 727	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
 728
 729	return 0;
 730}
 731
 732static int ks8851_set_link_ksettings(struct net_device *dev,
 733				     const struct ethtool_link_ksettings *cmd)
 734{
 735	struct ks8851_net *ks = netdev_priv(dev);
 736	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
 737}
 738
 739static u32 ks8851_get_link(struct net_device *dev)
 740{
 741	struct ks8851_net *ks = netdev_priv(dev);
 742	return mii_link_ok(&ks->mii);
 743}
 744
 745static int ks8851_nway_reset(struct net_device *dev)
 746{
 747	struct ks8851_net *ks = netdev_priv(dev);
 748	return mii_nway_restart(&ks->mii);
 749}
 750
 751/* EEPROM support */
 752
 753static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
 754{
 755	struct ks8851_net *ks = ee->data;
 756	unsigned val;
 757
 758	val = ks8851_rdreg16(ks, KS_EEPCR);
 759
 760	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
 761	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
 762	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
 763}
 764
 765static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
 766{
 767	struct ks8851_net *ks = ee->data;
 768	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
 769
 770	if (ee->drive_data)
 771		val |= EEPCR_EESRWA;
 772	if (ee->reg_data_in)
 773		val |= EEPCR_EEDO;
 774	if (ee->reg_data_clock)
 775		val |= EEPCR_EESCK;
 776	if (ee->reg_chip_select)
 777		val |= EEPCR_EECS;
 778
 779	ks8851_wrreg16(ks, KS_EEPCR, val);
 780}
 781
 782/**
 783 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
 784 * @ks: The network device state.
 785 *
 786 * Check for the presence of an EEPROM, and then activate software access
 787 * to the device.
 788 */
 789static int ks8851_eeprom_claim(struct ks8851_net *ks)
 790{
 791	/* start with clock low, cs high */
 792	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
 793	return 0;
 794}
 795
 796/**
 797 * ks8851_eeprom_release - release the EEPROM interface
 798 * @ks: The device state
 799 *
 800 * Release the software access to the device EEPROM
 801 */
 802static void ks8851_eeprom_release(struct ks8851_net *ks)
 803{
 804	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
 805
 806	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
 807}
 808
 809#define KS_EEPROM_MAGIC (0x00008851)
 810
 811static int ks8851_set_eeprom(struct net_device *dev,
 812			     struct ethtool_eeprom *ee, u8 *data)
 813{
 814	struct ks8851_net *ks = netdev_priv(dev);
 815	int offset = ee->offset;
 816	unsigned long flags;
 817	int len = ee->len;
 818	u16 tmp;
 819
 820	/* currently only support byte writing */
 821	if (len != 1)
 822		return -EINVAL;
 823
 824	if (ee->magic != KS_EEPROM_MAGIC)
 825		return -EINVAL;
 826
 827	if (!(ks->rc_ccr & CCR_EEPROM))
 828		return -ENOENT;
 829
 830	ks8851_lock(ks, &flags);
 831
 832	ks8851_eeprom_claim(ks);
 833
 834	eeprom_93cx6_wren(&ks->eeprom, true);
 835
 836	/* ethtool currently only supports writing bytes, which means
 837	 * we have to read/modify/write our 16bit EEPROMs */
 838
 839	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
 840
 841	if (offset & 1) {
 842		tmp &= 0xff;
 843		tmp |= *data << 8;
 844	} else {
 845		tmp &= 0xff00;
 846		tmp |= *data;
 847	}
 848
 849	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
 850	eeprom_93cx6_wren(&ks->eeprom, false);
 851
 852	ks8851_eeprom_release(ks);
 853	ks8851_unlock(ks, &flags);
 854
 855	return 0;
 856}
 857
 858static int ks8851_get_eeprom(struct net_device *dev,
 859			     struct ethtool_eeprom *ee, u8 *data)
 860{
 861	struct ks8851_net *ks = netdev_priv(dev);
 862	int offset = ee->offset;
 863	unsigned long flags;
 864	int len = ee->len;
 865
 866	/* must be 2 byte aligned */
 867	if (len & 1 || offset & 1)
 868		return -EINVAL;
 869
 870	if (!(ks->rc_ccr & CCR_EEPROM))
 871		return -ENOENT;
 872
 873	ks8851_lock(ks, &flags);
 874
 875	ks8851_eeprom_claim(ks);
 876
 877	ee->magic = KS_EEPROM_MAGIC;
 878
 879	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
 880	ks8851_eeprom_release(ks);
 881	ks8851_unlock(ks, &flags);
 882
 883	return 0;
 884}
 885
 886static int ks8851_get_eeprom_len(struct net_device *dev)
 887{
 888	struct ks8851_net *ks = netdev_priv(dev);
 889
 890	/* currently, we assume it is an 93C46 attached, so return 128 */
 891	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
 892}
 893
 894static const struct ethtool_ops ks8851_ethtool_ops = {
 895	.get_drvinfo	= ks8851_get_drvinfo,
 896	.get_msglevel	= ks8851_get_msglevel,
 897	.set_msglevel	= ks8851_set_msglevel,
 898	.get_link	= ks8851_get_link,
 899	.nway_reset	= ks8851_nway_reset,
 900	.get_eeprom_len	= ks8851_get_eeprom_len,
 901	.get_eeprom	= ks8851_get_eeprom,
 902	.set_eeprom	= ks8851_set_eeprom,
 903	.get_link_ksettings = ks8851_get_link_ksettings,
 904	.set_link_ksettings = ks8851_set_link_ksettings,
 905};
 906
 907/* MII interface controls */
 908
 909/**
 910 * ks8851_phy_reg - convert MII register into a KS8851 register
 911 * @reg: MII register number.
 912 *
 913 * Return the KS8851 register number for the corresponding MII PHY register
 914 * if possible. Return zero if the MII register has no direct mapping to the
 915 * KS8851 register set.
 916 */
 917static int ks8851_phy_reg(int reg)
 918{
 919	switch (reg) {
 920	case MII_BMCR:
 921		return KS_P1MBCR;
 922	case MII_BMSR:
 923		return KS_P1MBSR;
 924	case MII_PHYSID1:
 925		return KS_PHY1ILR;
 926	case MII_PHYSID2:
 927		return KS_PHY1IHR;
 928	case MII_ADVERTISE:
 929		return KS_P1ANAR;
 930	case MII_LPA:
 931		return KS_P1ANLPR;
 932	}
 933
 934	return -EOPNOTSUPP;
 935}
 936
 937static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg)
 938{
 939	struct ks8851_net *ks = netdev_priv(dev);
 940	unsigned long flags;
 941	int result;
 942	int ksreg;
 943
 944	ksreg = ks8851_phy_reg(reg);
 945	if (ksreg < 0)
 946		return ksreg;
 947
 948	ks8851_lock(ks, &flags);
 949	result = ks8851_rdreg16(ks, ksreg);
 950	ks8851_unlock(ks, &flags);
 951
 952	return result;
 953}
 954
 955/**
 956 * ks8851_phy_read - MII interface PHY register read.
 957 * @dev: The network device the PHY is on.
 958 * @phy_addr: Address of PHY (ignored as we only have one)
 959 * @reg: The register to read.
 960 *
 961 * This call reads data from the PHY register specified in @reg. Since the
 962 * device does not support all the MII registers, the non-existent values
 963 * are always returned as zero.
 964 *
 965 * We return zero for unsupported registers as the MII code does not check
 966 * the value returned for any error status, and simply returns it to the
 967 * caller. The mii-tool that the driver was tested with takes any -ve error
 968 * as real PHY capabilities, thus displaying incorrect data to the user.
 969 */
 970static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
 971{
 972	int ret;
 973
 974	ret = ks8851_phy_read_common(dev, phy_addr, reg);
 975	if (ret < 0)
 976		return 0x0;	/* no error return allowed, so use zero */
 977
 978	return ret;
 979}
 980
 981static void ks8851_phy_write(struct net_device *dev,
 982			     int phy, int reg, int value)
 983{
 984	struct ks8851_net *ks = netdev_priv(dev);
 985	unsigned long flags;
 986	int ksreg;
 987
 988	ksreg = ks8851_phy_reg(reg);
 989	if (ksreg >= 0) {
 990		ks8851_lock(ks, &flags);
 991		ks8851_wrreg16(ks, ksreg, value);
 992		ks8851_unlock(ks, &flags);
 993	}
 994}
 995
 996static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg)
 997{
 998	struct ks8851_net *ks = bus->priv;
 999
1000	if (phy_id != 0)
1001		return -EOPNOTSUPP;
1002
1003	/* KS8851 PHY ID registers are swapped in HW, swap them back. */
1004	if (reg == MII_PHYSID1)
1005		reg = MII_PHYSID2;
1006	else if (reg == MII_PHYSID2)
1007		reg = MII_PHYSID1;
1008
1009	return ks8851_phy_read_common(ks->netdev, phy_id, reg);
1010}
1011
1012static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val)
1013{
1014	struct ks8851_net *ks = bus->priv;
1015
1016	ks8851_phy_write(ks->netdev, phy_id, reg, val);
1017	return 0;
1018}
1019
1020/**
1021 * ks8851_read_selftest - read the selftest memory info.
1022 * @ks: The device state
1023 *
1024 * Read and check the TX/RX memory selftest information.
1025 */
1026static void ks8851_read_selftest(struct ks8851_net *ks)
1027{
1028	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1029	unsigned rd;
1030
1031	rd = ks8851_rdreg16(ks, KS_MBIR);
1032
1033	if ((rd & both_done) != both_done) {
1034		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1035		return;
1036	}
1037
1038	if (rd & MBIR_TXMBFA)
1039		netdev_err(ks->netdev, "TX memory selftest fail\n");
1040
1041	if (rd & MBIR_RXMBFA)
1042		netdev_err(ks->netdev, "RX memory selftest fail\n");
1043}
1044
1045/* driver bus management functions */
1046
1047#ifdef CONFIG_PM_SLEEP
1048
1049int ks8851_suspend(struct device *dev)
1050{
1051	struct ks8851_net *ks = dev_get_drvdata(dev);
1052	struct net_device *netdev = ks->netdev;
1053
1054	if (netif_running(netdev)) {
1055		netif_device_detach(netdev);
1056		ks8851_net_stop(netdev);
1057	}
1058
1059	return 0;
1060}
1061EXPORT_SYMBOL_GPL(ks8851_suspend);
1062
1063int ks8851_resume(struct device *dev)
1064{
1065	struct ks8851_net *ks = dev_get_drvdata(dev);
1066	struct net_device *netdev = ks->netdev;
1067
1068	if (netif_running(netdev)) {
1069		ks8851_net_open(netdev);
1070		netif_device_attach(netdev);
1071	}
1072
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(ks8851_resume);
1076#endif
1077
1078static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev)
1079{
1080	struct mii_bus *mii_bus;
1081	int ret;
1082
1083	mii_bus = mdiobus_alloc();
1084	if (!mii_bus)
1085		return -ENOMEM;
1086
1087	mii_bus->name = "ks8851_eth_mii";
1088	mii_bus->read = ks8851_mdio_read;
1089	mii_bus->write = ks8851_mdio_write;
1090	mii_bus->priv = ks;
1091	mii_bus->parent = dev;
1092	mii_bus->phy_mask = ~((u32)BIT(0));
1093	snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1094
1095	ret = mdiobus_register(mii_bus);
1096	if (ret)
1097		goto err_mdiobus_register;
1098
1099	ks->mii_bus = mii_bus;
1100
1101	return 0;
1102
1103err_mdiobus_register:
1104	mdiobus_free(mii_bus);
1105	return ret;
1106}
1107
1108static void ks8851_unregister_mdiobus(struct ks8851_net *ks)
1109{
1110	mdiobus_unregister(ks->mii_bus);
1111	mdiobus_free(ks->mii_bus);
1112}
1113
1114int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1115			int msg_en)
1116{
1117	struct ks8851_net *ks = netdev_priv(netdev);
1118	unsigned cider;
1119	int ret;
1120
1121	ks->netdev = netdev;
1122	ks->tx_space = 6144;
1123
1124	ks->gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1125	ret = PTR_ERR_OR_ZERO(ks->gpio);
1126	if (ret) {
1127		if (ret != -EPROBE_DEFER)
1128			dev_err(dev, "reset gpio request failed: %d\n", ret);
1129		return ret;
1130	}
1131
1132	ret = gpiod_set_consumer_name(ks->gpio, "ks8851_rst_n");
1133	if (ret) {
1134		dev_err(dev, "failed to set reset gpio name: %d\n", ret);
1135		return ret;
1136	}
1137
1138	ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1139	if (IS_ERR(ks->vdd_io)) {
1140		ret = PTR_ERR(ks->vdd_io);
1141		goto err_reg_io;
1142	}
1143
1144	ret = regulator_enable(ks->vdd_io);
1145	if (ret) {
1146		dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1147		goto err_reg_io;
1148	}
1149
1150	ks->vdd_reg = devm_regulator_get(dev, "vdd");
1151	if (IS_ERR(ks->vdd_reg)) {
1152		ret = PTR_ERR(ks->vdd_reg);
1153		goto err_reg;
1154	}
1155
1156	ret = regulator_enable(ks->vdd_reg);
1157	if (ret) {
1158		dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1159		goto err_reg;
1160	}
1161
1162	if (ks->gpio) {
1163		usleep_range(10000, 11000);
1164		gpiod_set_value_cansleep(ks->gpio, 0);
1165	}
1166
1167	spin_lock_init(&ks->statelock);
1168
1169	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1170
1171	SET_NETDEV_DEV(netdev, dev);
1172
1173	/* setup EEPROM state */
1174	ks->eeprom.data = ks;
1175	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1176	ks->eeprom.register_read = ks8851_eeprom_regread;
1177	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1178
1179	/* setup mii state */
1180	ks->mii.dev		= netdev;
1181	ks->mii.phy_id		= 1;
1182	ks->mii.phy_id_mask	= 1;
1183	ks->mii.reg_num_mask	= 0xf;
1184	ks->mii.mdio_read	= ks8851_phy_read;
1185	ks->mii.mdio_write	= ks8851_phy_write;
1186
1187	dev_info(dev, "message enable is %d\n", msg_en);
1188
1189	ret = ks8851_register_mdiobus(ks, dev);
1190	if (ret)
1191		goto err_mdio;
1192
1193	/* set the default message enable */
1194	ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1195						NETIF_MSG_PROBE |
1196						NETIF_MSG_LINK);
1197
1198	skb_queue_head_init(&ks->txq);
1199
1200	netdev->ethtool_ops = &ks8851_ethtool_ops;
1201
1202	dev_set_drvdata(dev, ks);
1203
1204	netif_carrier_off(ks->netdev);
1205	netdev->if_port = IF_PORT_100BASET;
1206	netdev->netdev_ops = &ks8851_netdev_ops;
1207
1208	/* issue a global soft reset to reset the device. */
1209	ks8851_soft_reset(ks, GRR_GSR);
1210
1211	/* simple check for a valid chip being connected to the bus */
1212	cider = ks8851_rdreg16(ks, KS_CIDER);
1213	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1214		dev_err(dev, "failed to read device ID\n");
1215		ret = -ENODEV;
1216		goto err_id;
1217	}
1218
1219	/* cache the contents of the CCR register for EEPROM, etc. */
1220	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1221
1222	ks8851_read_selftest(ks);
1223	ks8851_init_mac(ks, dev->of_node);
1224
1225	ret = register_netdev(netdev);
1226	if (ret) {
1227		dev_err(dev, "failed to register network device\n");
1228		goto err_id;
1229	}
1230
1231	netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1232		    CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1233		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1234
1235	return 0;
1236
1237err_id:
1238	ks8851_unregister_mdiobus(ks);
1239err_mdio:
1240	if (ks->gpio)
1241		gpiod_set_value_cansleep(ks->gpio, 1);
1242	regulator_disable(ks->vdd_reg);
1243err_reg:
1244	regulator_disable(ks->vdd_io);
1245err_reg_io:
1246	return ret;
1247}
1248EXPORT_SYMBOL_GPL(ks8851_probe_common);
1249
1250void ks8851_remove_common(struct device *dev)
1251{
1252	struct ks8851_net *priv = dev_get_drvdata(dev);
1253
1254	ks8851_unregister_mdiobus(priv);
1255
1256	if (netif_msg_drv(priv))
1257		dev_info(dev, "remove\n");
1258
1259	unregister_netdev(priv->netdev);
1260	if (priv->gpio)
1261		gpiod_set_value_cansleep(priv->gpio, 1);
1262	regulator_disable(priv->vdd_reg);
1263	regulator_disable(priv->vdd_io);
1264}
1265EXPORT_SYMBOL_GPL(ks8851_remove_common);
1266
1267MODULE_DESCRIPTION("KS8851 Network driver");
1268MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1269MODULE_LICENSE("GPL");