Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* drivers/net/ethernet/micrel/ks8851.c
   3 *
   4 * Copyright 2009 Simtec Electronics
   5 *	http://www.simtec.co.uk/
   6 *	Ben Dooks <ben@simtec.co.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/interrupt.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ethtool.h>
  17#include <linux/cache.h>
  18#include <linux/crc32.h>
  19#include <linux/mii.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/regulator/consumer.h>
  22
 
 
  23#include <linux/of_mdio.h>
  24#include <linux/of_net.h>
  25
  26#include "ks8851.h"
  27
  28/**
  29 * ks8851_lock - register access lock
  30 * @ks: The chip state
  31 * @flags: Spinlock flags
  32 *
  33 * Claim chip register access lock
  34 */
  35static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
  36{
  37	ks->lock(ks, flags);
  38}
  39
  40/**
  41 * ks8851_unlock - register access unlock
  42 * @ks: The chip state
  43 * @flags: Spinlock flags
  44 *
  45 * Release chip register access lock
  46 */
  47static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
  48{
  49	ks->unlock(ks, flags);
  50}
  51
  52/**
  53 * ks8851_wrreg16 - write 16bit register value to chip
  54 * @ks: The chip state
  55 * @reg: The register address
  56 * @val: The value to write
  57 *
  58 * Issue a write to put the value @val into the register specified in @reg.
  59 */
  60static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
  61			   unsigned int val)
  62{
  63	ks->wrreg16(ks, reg, val);
  64}
  65
  66/**
  67 * ks8851_rdreg16 - read 16 bit register from device
  68 * @ks: The chip information
  69 * @reg: The register address
  70 *
  71 * Read a 16bit register from the chip, returning the result
  72 */
  73static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
  74				   unsigned int reg)
  75{
  76	return ks->rdreg16(ks, reg);
  77}
  78
  79/**
  80 * ks8851_soft_reset - issue one of the soft reset to the device
  81 * @ks: The device state.
  82 * @op: The bit(s) to set in the GRR
  83 *
  84 * Issue the relevant soft-reset command to the device's GRR register
  85 * specified by @op.
  86 *
  87 * Note, the delays are in there as a caution to ensure that the reset
  88 * has time to take effect and then complete. Since the datasheet does
  89 * not currently specify the exact sequence, we have chosen something
  90 * that seems to work with our device.
  91 */
  92static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
  93{
  94	ks8851_wrreg16(ks, KS_GRR, op);
  95	mdelay(1);	/* wait a short time to effect reset */
  96	ks8851_wrreg16(ks, KS_GRR, 0);
  97	mdelay(1);	/* wait for condition to clear */
  98}
  99
 100/**
 101 * ks8851_set_powermode - set power mode of the device
 102 * @ks: The device state
 103 * @pwrmode: The power mode value to write to KS_PMECR.
 104 *
 105 * Change the power mode of the chip.
 106 */
 107static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 108{
 109	unsigned pmecr;
 110
 111	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 112
 113	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 114	pmecr &= ~PMECR_PM_MASK;
 115	pmecr |= pwrmode;
 116
 117	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 118}
 119
 120/**
 121 * ks8851_write_mac_addr - write mac address to device registers
 122 * @dev: The network device
 123 *
 124 * Update the KS8851 MAC address registers from the address in @dev.
 125 *
 126 * This call assumes that the chip is not running, so there is no need to
 127 * shutdown the RXQ process whilst setting this.
 128*/
 129static int ks8851_write_mac_addr(struct net_device *dev)
 130{
 131	struct ks8851_net *ks = netdev_priv(dev);
 132	unsigned long flags;
 133	u16 val;
 134	int i;
 135
 136	ks8851_lock(ks, &flags);
 137
 138	/*
 139	 * Wake up chip in case it was powered off when stopped; otherwise,
 140	 * the first write to the MAC address does not take effect.
 141	 */
 142	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 143
 144	for (i = 0; i < ETH_ALEN; i += 2) {
 145		val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
 146		ks8851_wrreg16(ks, KS_MAR(i), val);
 147	}
 148
 149	if (!netif_running(dev))
 150		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 151
 152	ks8851_unlock(ks, &flags);
 153
 154	return 0;
 155}
 156
 157/**
 158 * ks8851_read_mac_addr - read mac address from device registers
 159 * @dev: The network device
 160 *
 161 * Update our copy of the KS8851 MAC address from the registers of @dev.
 162*/
 163static void ks8851_read_mac_addr(struct net_device *dev)
 164{
 165	struct ks8851_net *ks = netdev_priv(dev);
 166	unsigned long flags;
 167	u8 addr[ETH_ALEN];
 168	u16 reg;
 169	int i;
 170
 171	ks8851_lock(ks, &flags);
 172
 173	for (i = 0; i < ETH_ALEN; i += 2) {
 174		reg = ks8851_rdreg16(ks, KS_MAR(i));
 175		addr[i] = reg >> 8;
 176		addr[i + 1] = reg & 0xff;
 177	}
 178	eth_hw_addr_set(dev, addr);
 179
 180	ks8851_unlock(ks, &flags);
 181}
 182
 183/**
 184 * ks8851_init_mac - initialise the mac address
 185 * @ks: The device structure
 186 * @np: The device node pointer
 187 *
 188 * Get or create the initial mac address for the device and then set that
 189 * into the station address register. A mac address supplied in the device
 190 * tree takes precedence. Otherwise, if there is an EEPROM present, then
 191 * we try that. If no valid mac address is found we use eth_random_addr()
 192 * to create a new one.
 193 */
 194static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
 195{
 196	struct net_device *dev = ks->netdev;
 197	int ret;
 198
 199	ret = of_get_ethdev_address(np, dev);
 200	if (!ret) {
 201		ks8851_write_mac_addr(dev);
 202		return;
 203	}
 204
 205	if (ks->rc_ccr & CCR_EEPROM) {
 206		ks8851_read_mac_addr(dev);
 207		if (is_valid_ether_addr(dev->dev_addr))
 208			return;
 209
 210		netdev_err(ks->netdev, "invalid mac address read %pM\n",
 211				dev->dev_addr);
 212	}
 213
 214	eth_hw_addr_random(dev);
 215	ks8851_write_mac_addr(dev);
 216}
 217
 218/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219 * ks8851_rx_pkts - receive packets from the host
 220 * @ks: The device information.
 221 * @rxq: Queue of packets received in this function.
 222 *
 223 * This is called from the IRQ work queue when the system detects that there
 224 * are packets in the receive queue. Find out how many packets there are and
 225 * read them from the FIFO.
 226 */
 227static void ks8851_rx_pkts(struct ks8851_net *ks, struct sk_buff_head *rxq)
 228{
 229	struct sk_buff *skb;
 230	unsigned rxfc;
 231	unsigned rxlen;
 232	unsigned rxstat;
 233	u8 *rxpkt;
 234
 235	rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
 236
 237	netif_dbg(ks, rx_status, ks->netdev,
 238		  "%s: %d packets\n", __func__, rxfc);
 239
 240	/* Currently we're issuing a read per packet, but we could possibly
 241	 * improve the code by issuing a single read, getting the receive
 242	 * header, allocating the packet and then reading the packet data
 243	 * out in one go.
 244	 *
 245	 * This form of operation would require us to hold the SPI bus'
 246	 * chipselect low during the entie transaction to avoid any
 247	 * reset to the data stream coming from the chip.
 248	 */
 249
 250	for (; rxfc != 0; rxfc--) {
 251		rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
 252		rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
 253
 254		netif_dbg(ks, rx_status, ks->netdev,
 255			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 256
 257		/* the length of the packet includes the 32bit CRC */
 258
 259		/* set dma read address */
 260		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 261
 262		/* start DMA access */
 263		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 264
 265		if (rxlen > 4) {
 266			unsigned int rxalign;
 267
 268			rxlen -= 4;
 269			rxalign = ALIGN(rxlen, 4);
 270			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 271			if (skb) {
 272
 273				/* 4 bytes of status header + 4 bytes of
 274				 * garbage: we put them before ethernet
 275				 * header, so that they are copied,
 276				 * but ignored.
 277				 */
 278
 279				rxpkt = skb_put(skb, rxlen) - 8;
 280
 281				ks->rdfifo(ks, rxpkt, rxalign + 8);
 282
 283				netif_dbg(ks, pktdata, ks->netdev,
 284					  "pkt %12ph\n", &rxpkt[4]);
 285
 286				skb->protocol = eth_type_trans(skb, ks->netdev);
 287				__skb_queue_tail(rxq, skb);
 288
 289				ks->netdev->stats.rx_packets++;
 290				ks->netdev->stats.rx_bytes += rxlen;
 291			}
 292		}
 293
 294		/* end DMA access and dequeue packet */
 295		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
 296	}
 297}
 298
 299/**
 300 * ks8851_irq - IRQ handler for dealing with interrupt requests
 301 * @irq: IRQ number
 302 * @_ks: cookie
 303 *
 304 * This handler is invoked when the IRQ line asserts to find out what happened.
 305 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 306 * in thread context.
 307 *
 308 * Read the interrupt status, work out what needs to be done and then clear
 309 * any of the interrupts that are not needed.
 310 */
 311static irqreturn_t ks8851_irq(int irq, void *_ks)
 312{
 313	struct ks8851_net *ks = _ks;
 314	struct sk_buff_head rxq;
 315	unsigned long flags;
 316	unsigned int status;
 317	struct sk_buff *skb;
 318
 319	ks8851_lock(ks, &flags);
 320
 321	status = ks8851_rdreg16(ks, KS_ISR);
 322	ks8851_wrreg16(ks, KS_ISR, status);
 323
 324	netif_dbg(ks, intr, ks->netdev,
 325		  "%s: status 0x%04x\n", __func__, status);
 326
 
 
 
 327	if (status & IRQ_LDI) {
 328		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 329		pmecr &= ~PMECR_WKEVT_MASK;
 330		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 
 
 331	}
 332
 
 
 
 333	if (status & IRQ_TXI) {
 334		unsigned short tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 335
 336		netif_dbg(ks, intr, ks->netdev,
 337			  "%s: txspace %d\n", __func__, tx_space);
 
 
 
 338
 339		spin_lock_bh(&ks->statelock);
 340		ks->tx_space = tx_space;
 341		if (netif_queue_stopped(ks->netdev))
 342			netif_wake_queue(ks->netdev);
 343		spin_unlock_bh(&ks->statelock);
 344	}
 345
 
 
 
 346	if (status & IRQ_SPIBEI) {
 347		netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
 
 348	}
 349
 
 
 350	if (status & IRQ_RXI) {
 351		/* the datasheet says to disable the rx interrupt during
 352		 * packet read-out, however we're masking the interrupt
 353		 * from the device so do not bother masking just the RX
 354		 * from the device. */
 355
 356		__skb_queue_head_init(&rxq);
 357		ks8851_rx_pkts(ks, &rxq);
 358	}
 359
 360	/* if something stopped the rx process, probably due to wanting
 361	 * to change the rx settings, then do something about restarting
 362	 * it. */
 363	if (status & IRQ_RXPSI) {
 364		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 365
 366		/* update the multicast hash table */
 367		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 368		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 369		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 370		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 371
 372		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 373		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 374	}
 375
 376	ks8851_unlock(ks, &flags);
 377
 378	if (status & IRQ_LCI)
 379		mii_check_link(&ks->mii);
 380
 381	if (status & IRQ_RXI)
 382		while ((skb = __skb_dequeue(&rxq)))
 383			netif_rx(skb);
 384
 385	return IRQ_HANDLED;
 386}
 387
 388/**
 389 * ks8851_flush_tx_work - flush outstanding TX work
 390 * @ks: The device state
 391 */
 392static void ks8851_flush_tx_work(struct ks8851_net *ks)
 393{
 394	if (ks->flush_tx_work)
 395		ks->flush_tx_work(ks);
 396}
 397
 398/**
 399 * ks8851_net_open - open network device
 400 * @dev: The network device being opened.
 401 *
 402 * Called when the network device is marked active, such as a user executing
 403 * 'ifconfig up' on the device.
 404 */
 405static int ks8851_net_open(struct net_device *dev)
 406{
 407	struct ks8851_net *ks = netdev_priv(dev);
 408	unsigned long flags;
 409	int ret;
 410
 411	ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
 412				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
 413				   dev->name, ks);
 414	if (ret < 0) {
 415		netdev_err(dev, "failed to get irq\n");
 416		return ret;
 417	}
 418
 419	/* lock the card, even if we may not actually be doing anything
 420	 * else at the moment */
 421	ks8851_lock(ks, &flags);
 422
 423	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 424
 425	/* bring chip out of any power saving mode it was in */
 426	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 427
 428	/* issue a soft reset to the RX/TX QMU to put it into a known
 429	 * state. */
 430	ks8851_soft_reset(ks, GRR_QMU);
 431
 432	/* setup transmission parameters */
 433
 434	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 435				     TXCR_TXPE | /* pad to min length */
 436				     TXCR_TXCRC | /* add CRC */
 437				     TXCR_TXFCE)); /* enable flow control */
 438
 439	/* auto-increment tx data, reset tx pointer */
 440	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 441
 442	/* setup receiver control */
 443
 444	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 445				      RXCR1_RXFCE | /* enable flow control */
 446				      RXCR1_RXBE | /* broadcast enable */
 447				      RXCR1_RXUE | /* unicast enable */
 448				      RXCR1_RXE)); /* enable rx block */
 449
 450	/* transfer entire frames out in one go */
 451	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 452
 453	/* set receive counter timeouts */
 454	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 455	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 456	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 457
 458	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 459			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 460			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 461
 462	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 463
 464	/* clear then enable interrupts */
 465	ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
 466	ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
 467
 468	ks->queued_len = 0;
 469	ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 470	netif_start_queue(ks->netdev);
 471
 472	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 473
 474	ks8851_unlock(ks, &flags);
 475	mii_check_link(&ks->mii);
 476	return 0;
 477}
 478
 479/**
 480 * ks8851_net_stop - close network device
 481 * @dev: The device being closed.
 482 *
 483 * Called to close down a network device which has been active. Cancell any
 484 * work, shutdown the RX and TX process and then place the chip into a low
 485 * power state whilst it is not being used.
 486 */
 487static int ks8851_net_stop(struct net_device *dev)
 488{
 489	struct ks8851_net *ks = netdev_priv(dev);
 490	unsigned long flags;
 491
 492	netif_info(ks, ifdown, dev, "shutting down\n");
 493
 494	netif_stop_queue(dev);
 495
 496	ks8851_lock(ks, &flags);
 497	/* turn off the IRQs and ack any outstanding */
 498	ks8851_wrreg16(ks, KS_IER, 0x0000);
 499	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 500	ks8851_unlock(ks, &flags);
 501
 502	/* stop any outstanding work */
 503	ks8851_flush_tx_work(ks);
 504	flush_work(&ks->rxctrl_work);
 505
 506	ks8851_lock(ks, &flags);
 507	/* shutdown RX process */
 508	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 509
 510	/* shutdown TX process */
 511	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 512
 513	/* set powermode to soft power down to save power */
 514	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 515	ks8851_unlock(ks, &flags);
 516
 517	/* ensure any queued tx buffers are dumped */
 518	while (!skb_queue_empty(&ks->txq)) {
 519		struct sk_buff *txb = skb_dequeue(&ks->txq);
 520
 521		netif_dbg(ks, ifdown, ks->netdev,
 522			  "%s: freeing txb %p\n", __func__, txb);
 523
 524		dev_kfree_skb(txb);
 525	}
 526
 527	free_irq(dev->irq, ks);
 528
 529	return 0;
 530}
 531
 532/**
 533 * ks8851_start_xmit - transmit packet
 534 * @skb: The buffer to transmit
 535 * @dev: The device used to transmit the packet.
 536 *
 537 * Called by the network layer to transmit the @skb. Queue the packet for
 538 * the device and schedule the necessary work to transmit the packet when
 539 * it is free.
 540 *
 541 * We do this to firstly avoid sleeping with the network device locked,
 542 * and secondly so we can round up more than one packet to transmit which
 543 * means we can try and avoid generating too many transmit done interrupts.
 544 */
 545static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 546				     struct net_device *dev)
 547{
 548	struct ks8851_net *ks = netdev_priv(dev);
 549
 550	return ks->start_xmit(skb, dev);
 551}
 552
 553/**
 554 * ks8851_rxctrl_work - work handler to change rx mode
 555 * @work: The work structure this belongs to.
 556 *
 557 * Lock the device and issue the necessary changes to the receive mode from
 558 * the network device layer. This is done so that we can do this without
 559 * having to sleep whilst holding the network device lock.
 560 *
 561 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 562 * receive parameters are programmed, we issue a write to disable the RXQ and
 563 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 564 * complete. The interrupt handler then writes the new values into the chip.
 565 */
 566static void ks8851_rxctrl_work(struct work_struct *work)
 567{
 568	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 569	unsigned long flags;
 570
 571	ks8851_lock(ks, &flags);
 572
 573	/* need to shutdown RXQ before modifying filter parameters */
 574	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 575
 576	ks8851_unlock(ks, &flags);
 577}
 578
 579static void ks8851_set_rx_mode(struct net_device *dev)
 580{
 581	struct ks8851_net *ks = netdev_priv(dev);
 582	struct ks8851_rxctrl rxctrl;
 583
 584	memset(&rxctrl, 0, sizeof(rxctrl));
 585
 586	if (dev->flags & IFF_PROMISC) {
 587		/* interface to receive everything */
 588
 589		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 590	} else if (dev->flags & IFF_ALLMULTI) {
 591		/* accept all multicast packets */
 592
 593		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 594				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 595	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 596		struct netdev_hw_addr *ha;
 597		u32 crc;
 598
 599		/* accept some multicast */
 600
 601		netdev_for_each_mc_addr(ha, dev) {
 602			crc = ether_crc(ETH_ALEN, ha->addr);
 603			crc >>= (32 - 6);  /* get top six bits */
 604
 605			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 606		}
 607
 608		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 609	} else {
 610		/* just accept broadcast / unicast */
 611		rxctrl.rxcr1 = RXCR1_RXPAFMA;
 612	}
 613
 614	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
 615			 RXCR1_RXBE | /* broadcast enable */
 616			 RXCR1_RXE | /* RX process enable */
 617			 RXCR1_RXFCE); /* enable flow control */
 618
 619	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
 620
 621	/* schedule work to do the actual set of the data if needed */
 622
 623	spin_lock_bh(&ks->statelock);
 624
 625	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
 626		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
 627		schedule_work(&ks->rxctrl_work);
 628	}
 629
 630	spin_unlock_bh(&ks->statelock);
 631}
 632
 633static int ks8851_set_mac_address(struct net_device *dev, void *addr)
 634{
 635	struct sockaddr *sa = addr;
 636
 637	if (netif_running(dev))
 638		return -EBUSY;
 639
 640	if (!is_valid_ether_addr(sa->sa_data))
 641		return -EADDRNOTAVAIL;
 642
 643	eth_hw_addr_set(dev, sa->sa_data);
 644	return ks8851_write_mac_addr(dev);
 645}
 646
 647static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 648{
 649	struct ks8851_net *ks = netdev_priv(dev);
 650
 651	if (!netif_running(dev))
 652		return -EINVAL;
 653
 654	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
 655}
 656
 657static const struct net_device_ops ks8851_netdev_ops = {
 658	.ndo_open		= ks8851_net_open,
 659	.ndo_stop		= ks8851_net_stop,
 660	.ndo_eth_ioctl		= ks8851_net_ioctl,
 661	.ndo_start_xmit		= ks8851_start_xmit,
 662	.ndo_set_mac_address	= ks8851_set_mac_address,
 663	.ndo_set_rx_mode	= ks8851_set_rx_mode,
 664	.ndo_validate_addr	= eth_validate_addr,
 665};
 666
 667/* ethtool support */
 668
 669static void ks8851_get_drvinfo(struct net_device *dev,
 670			       struct ethtool_drvinfo *di)
 671{
 672	strscpy(di->driver, "KS8851", sizeof(di->driver));
 673	strscpy(di->version, "1.00", sizeof(di->version));
 674	strscpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
 675}
 676
 677static u32 ks8851_get_msglevel(struct net_device *dev)
 678{
 679	struct ks8851_net *ks = netdev_priv(dev);
 680	return ks->msg_enable;
 681}
 682
 683static void ks8851_set_msglevel(struct net_device *dev, u32 to)
 684{
 685	struct ks8851_net *ks = netdev_priv(dev);
 686	ks->msg_enable = to;
 687}
 688
 689static int ks8851_get_link_ksettings(struct net_device *dev,
 690				     struct ethtool_link_ksettings *cmd)
 691{
 692	struct ks8851_net *ks = netdev_priv(dev);
 693
 694	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
 695
 696	return 0;
 697}
 698
 699static int ks8851_set_link_ksettings(struct net_device *dev,
 700				     const struct ethtool_link_ksettings *cmd)
 701{
 702	struct ks8851_net *ks = netdev_priv(dev);
 703	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
 704}
 705
 706static u32 ks8851_get_link(struct net_device *dev)
 707{
 708	struct ks8851_net *ks = netdev_priv(dev);
 709	return mii_link_ok(&ks->mii);
 710}
 711
 712static int ks8851_nway_reset(struct net_device *dev)
 713{
 714	struct ks8851_net *ks = netdev_priv(dev);
 715	return mii_nway_restart(&ks->mii);
 716}
 717
 718/* EEPROM support */
 719
 720static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
 721{
 722	struct ks8851_net *ks = ee->data;
 723	unsigned val;
 724
 725	val = ks8851_rdreg16(ks, KS_EEPCR);
 726
 727	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
 728	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
 729	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
 730}
 731
 732static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
 733{
 734	struct ks8851_net *ks = ee->data;
 735	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
 736
 737	if (ee->drive_data)
 738		val |= EEPCR_EESRWA;
 739	if (ee->reg_data_in)
 740		val |= EEPCR_EEDO;
 741	if (ee->reg_data_clock)
 742		val |= EEPCR_EESCK;
 743	if (ee->reg_chip_select)
 744		val |= EEPCR_EECS;
 745
 746	ks8851_wrreg16(ks, KS_EEPCR, val);
 747}
 748
 749/**
 750 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
 751 * @ks: The network device state.
 752 *
 753 * Check for the presence of an EEPROM, and then activate software access
 754 * to the device.
 755 */
 756static int ks8851_eeprom_claim(struct ks8851_net *ks)
 757{
 758	/* start with clock low, cs high */
 759	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
 760	return 0;
 761}
 762
 763/**
 764 * ks8851_eeprom_release - release the EEPROM interface
 765 * @ks: The device state
 766 *
 767 * Release the software access to the device EEPROM
 768 */
 769static void ks8851_eeprom_release(struct ks8851_net *ks)
 770{
 771	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
 772
 773	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
 774}
 775
 776#define KS_EEPROM_MAGIC (0x00008851)
 777
 778static int ks8851_set_eeprom(struct net_device *dev,
 779			     struct ethtool_eeprom *ee, u8 *data)
 780{
 781	struct ks8851_net *ks = netdev_priv(dev);
 782	int offset = ee->offset;
 783	unsigned long flags;
 784	int len = ee->len;
 785	u16 tmp;
 786
 787	/* currently only support byte writing */
 788	if (len != 1)
 789		return -EINVAL;
 790
 791	if (ee->magic != KS_EEPROM_MAGIC)
 792		return -EINVAL;
 793
 794	if (!(ks->rc_ccr & CCR_EEPROM))
 795		return -ENOENT;
 796
 797	ks8851_lock(ks, &flags);
 798
 799	ks8851_eeprom_claim(ks);
 800
 801	eeprom_93cx6_wren(&ks->eeprom, true);
 802
 803	/* ethtool currently only supports writing bytes, which means
 804	 * we have to read/modify/write our 16bit EEPROMs */
 805
 806	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
 807
 808	if (offset & 1) {
 809		tmp &= 0xff;
 810		tmp |= *data << 8;
 811	} else {
 812		tmp &= 0xff00;
 813		tmp |= *data;
 814	}
 815
 816	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
 817	eeprom_93cx6_wren(&ks->eeprom, false);
 818
 819	ks8851_eeprom_release(ks);
 820	ks8851_unlock(ks, &flags);
 821
 822	return 0;
 823}
 824
 825static int ks8851_get_eeprom(struct net_device *dev,
 826			     struct ethtool_eeprom *ee, u8 *data)
 827{
 828	struct ks8851_net *ks = netdev_priv(dev);
 829	int offset = ee->offset;
 830	unsigned long flags;
 831	int len = ee->len;
 832
 833	/* must be 2 byte aligned */
 834	if (len & 1 || offset & 1)
 835		return -EINVAL;
 836
 837	if (!(ks->rc_ccr & CCR_EEPROM))
 838		return -ENOENT;
 839
 840	ks8851_lock(ks, &flags);
 841
 842	ks8851_eeprom_claim(ks);
 843
 844	ee->magic = KS_EEPROM_MAGIC;
 845
 846	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
 847	ks8851_eeprom_release(ks);
 848	ks8851_unlock(ks, &flags);
 849
 850	return 0;
 851}
 852
 853static int ks8851_get_eeprom_len(struct net_device *dev)
 854{
 855	struct ks8851_net *ks = netdev_priv(dev);
 856
 857	/* currently, we assume it is an 93C46 attached, so return 128 */
 858	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
 859}
 860
 861static const struct ethtool_ops ks8851_ethtool_ops = {
 862	.get_drvinfo	= ks8851_get_drvinfo,
 863	.get_msglevel	= ks8851_get_msglevel,
 864	.set_msglevel	= ks8851_set_msglevel,
 865	.get_link	= ks8851_get_link,
 866	.nway_reset	= ks8851_nway_reset,
 867	.get_eeprom_len	= ks8851_get_eeprom_len,
 868	.get_eeprom	= ks8851_get_eeprom,
 869	.set_eeprom	= ks8851_set_eeprom,
 870	.get_link_ksettings = ks8851_get_link_ksettings,
 871	.set_link_ksettings = ks8851_set_link_ksettings,
 872};
 873
 874/* MII interface controls */
 875
 876/**
 877 * ks8851_phy_reg - convert MII register into a KS8851 register
 878 * @reg: MII register number.
 879 *
 880 * Return the KS8851 register number for the corresponding MII PHY register
 881 * if possible. Return zero if the MII register has no direct mapping to the
 882 * KS8851 register set.
 883 */
 884static int ks8851_phy_reg(int reg)
 885{
 886	switch (reg) {
 887	case MII_BMCR:
 888		return KS_P1MBCR;
 889	case MII_BMSR:
 890		return KS_P1MBSR;
 891	case MII_PHYSID1:
 892		return KS_PHY1ILR;
 893	case MII_PHYSID2:
 894		return KS_PHY1IHR;
 895	case MII_ADVERTISE:
 896		return KS_P1ANAR;
 897	case MII_LPA:
 898		return KS_P1ANLPR;
 899	}
 900
 901	return -EOPNOTSUPP;
 902}
 903
 904static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg)
 905{
 906	struct ks8851_net *ks = netdev_priv(dev);
 907	unsigned long flags;
 908	int result;
 909	int ksreg;
 910
 911	ksreg = ks8851_phy_reg(reg);
 912	if (ksreg < 0)
 913		return ksreg;
 914
 915	ks8851_lock(ks, &flags);
 916	result = ks8851_rdreg16(ks, ksreg);
 917	ks8851_unlock(ks, &flags);
 918
 919	return result;
 920}
 921
 922/**
 923 * ks8851_phy_read - MII interface PHY register read.
 924 * @dev: The network device the PHY is on.
 925 * @phy_addr: Address of PHY (ignored as we only have one)
 926 * @reg: The register to read.
 927 *
 928 * This call reads data from the PHY register specified in @reg. Since the
 929 * device does not support all the MII registers, the non-existent values
 930 * are always returned as zero.
 931 *
 932 * We return zero for unsupported registers as the MII code does not check
 933 * the value returned for any error status, and simply returns it to the
 934 * caller. The mii-tool that the driver was tested with takes any -ve error
 935 * as real PHY capabilities, thus displaying incorrect data to the user.
 936 */
 937static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
 938{
 939	int ret;
 940
 941	ret = ks8851_phy_read_common(dev, phy_addr, reg);
 942	if (ret < 0)
 943		return 0x0;	/* no error return allowed, so use zero */
 944
 945	return ret;
 946}
 947
 948static void ks8851_phy_write(struct net_device *dev,
 949			     int phy, int reg, int value)
 950{
 951	struct ks8851_net *ks = netdev_priv(dev);
 952	unsigned long flags;
 953	int ksreg;
 954
 955	ksreg = ks8851_phy_reg(reg);
 956	if (ksreg >= 0) {
 957		ks8851_lock(ks, &flags);
 958		ks8851_wrreg16(ks, ksreg, value);
 959		ks8851_unlock(ks, &flags);
 960	}
 961}
 962
 963static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg)
 964{
 965	struct ks8851_net *ks = bus->priv;
 966
 967	if (phy_id != 0)
 968		return -EOPNOTSUPP;
 969
 970	/* KS8851 PHY ID registers are swapped in HW, swap them back. */
 971	if (reg == MII_PHYSID1)
 972		reg = MII_PHYSID2;
 973	else if (reg == MII_PHYSID2)
 974		reg = MII_PHYSID1;
 975
 976	return ks8851_phy_read_common(ks->netdev, phy_id, reg);
 977}
 978
 979static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val)
 980{
 981	struct ks8851_net *ks = bus->priv;
 982
 983	ks8851_phy_write(ks->netdev, phy_id, reg, val);
 984	return 0;
 985}
 986
 987/**
 988 * ks8851_read_selftest - read the selftest memory info.
 989 * @ks: The device state
 990 *
 991 * Read and check the TX/RX memory selftest information.
 992 */
 993static void ks8851_read_selftest(struct ks8851_net *ks)
 994{
 995	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
 996	unsigned rd;
 997
 998	rd = ks8851_rdreg16(ks, KS_MBIR);
 999
1000	if ((rd & both_done) != both_done) {
1001		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1002		return;
1003	}
1004
1005	if (rd & MBIR_TXMBFA)
1006		netdev_err(ks->netdev, "TX memory selftest fail\n");
1007
1008	if (rd & MBIR_RXMBFA)
1009		netdev_err(ks->netdev, "RX memory selftest fail\n");
1010}
1011
1012/* driver bus management functions */
1013
1014#ifdef CONFIG_PM_SLEEP
1015
1016int ks8851_suspend(struct device *dev)
1017{
1018	struct ks8851_net *ks = dev_get_drvdata(dev);
1019	struct net_device *netdev = ks->netdev;
1020
1021	if (netif_running(netdev)) {
1022		netif_device_detach(netdev);
1023		ks8851_net_stop(netdev);
1024	}
1025
1026	return 0;
1027}
1028EXPORT_SYMBOL_GPL(ks8851_suspend);
1029
1030int ks8851_resume(struct device *dev)
1031{
1032	struct ks8851_net *ks = dev_get_drvdata(dev);
1033	struct net_device *netdev = ks->netdev;
1034
1035	if (netif_running(netdev)) {
1036		ks8851_net_open(netdev);
1037		netif_device_attach(netdev);
1038	}
1039
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(ks8851_resume);
1043#endif
1044
1045static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev)
1046{
1047	struct mii_bus *mii_bus;
1048	int ret;
1049
1050	mii_bus = mdiobus_alloc();
1051	if (!mii_bus)
1052		return -ENOMEM;
1053
1054	mii_bus->name = "ks8851_eth_mii";
1055	mii_bus->read = ks8851_mdio_read;
1056	mii_bus->write = ks8851_mdio_write;
1057	mii_bus->priv = ks;
1058	mii_bus->parent = dev;
1059	mii_bus->phy_mask = ~((u32)BIT(0));
1060	snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1061
1062	ret = mdiobus_register(mii_bus);
1063	if (ret)
1064		goto err_mdiobus_register;
1065
1066	ks->mii_bus = mii_bus;
1067
1068	return 0;
1069
1070err_mdiobus_register:
1071	mdiobus_free(mii_bus);
1072	return ret;
1073}
1074
1075static void ks8851_unregister_mdiobus(struct ks8851_net *ks)
1076{
1077	mdiobus_unregister(ks->mii_bus);
1078	mdiobus_free(ks->mii_bus);
1079}
1080
1081int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1082			int msg_en)
1083{
1084	struct ks8851_net *ks = netdev_priv(netdev);
1085	unsigned cider;
 
1086	int ret;
1087
1088	ks->netdev = netdev;
 
1089
1090	ks->gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1091	ret = PTR_ERR_OR_ZERO(ks->gpio);
1092	if (ret) {
1093		if (ret != -EPROBE_DEFER)
1094			dev_err(dev, "reset gpio request failed: %d\n", ret);
1095		return ret;
1096	}
1097
1098	ret = gpiod_set_consumer_name(ks->gpio, "ks8851_rst_n");
1099	if (ret) {
1100		dev_err(dev, "failed to set reset gpio name: %d\n", ret);
1101		return ret;
1102	}
1103
1104	ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1105	if (IS_ERR(ks->vdd_io)) {
1106		ret = PTR_ERR(ks->vdd_io);
1107		goto err_reg_io;
1108	}
1109
1110	ret = regulator_enable(ks->vdd_io);
1111	if (ret) {
1112		dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1113		goto err_reg_io;
1114	}
1115
1116	ks->vdd_reg = devm_regulator_get(dev, "vdd");
1117	if (IS_ERR(ks->vdd_reg)) {
1118		ret = PTR_ERR(ks->vdd_reg);
1119		goto err_reg;
1120	}
1121
1122	ret = regulator_enable(ks->vdd_reg);
1123	if (ret) {
1124		dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1125		goto err_reg;
1126	}
1127
1128	if (ks->gpio) {
1129		usleep_range(10000, 11000);
1130		gpiod_set_value_cansleep(ks->gpio, 0);
1131	}
1132
1133	spin_lock_init(&ks->statelock);
1134
1135	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1136
1137	SET_NETDEV_DEV(netdev, dev);
1138
1139	/* setup EEPROM state */
1140	ks->eeprom.data = ks;
1141	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1142	ks->eeprom.register_read = ks8851_eeprom_regread;
1143	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1144
1145	/* setup mii state */
1146	ks->mii.dev		= netdev;
1147	ks->mii.phy_id		= 1;
1148	ks->mii.phy_id_mask	= 1;
1149	ks->mii.reg_num_mask	= 0xf;
1150	ks->mii.mdio_read	= ks8851_phy_read;
1151	ks->mii.mdio_write	= ks8851_phy_write;
1152
1153	dev_info(dev, "message enable is %d\n", msg_en);
1154
1155	ret = ks8851_register_mdiobus(ks, dev);
1156	if (ret)
1157		goto err_mdio;
1158
1159	/* set the default message enable */
1160	ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1161						NETIF_MSG_PROBE |
1162						NETIF_MSG_LINK);
1163
1164	skb_queue_head_init(&ks->txq);
1165
1166	netdev->ethtool_ops = &ks8851_ethtool_ops;
1167
1168	dev_set_drvdata(dev, ks);
1169
1170	netif_carrier_off(ks->netdev);
1171	netdev->if_port = IF_PORT_100BASET;
1172	netdev->netdev_ops = &ks8851_netdev_ops;
1173
1174	/* issue a global soft reset to reset the device. */
1175	ks8851_soft_reset(ks, GRR_GSR);
1176
1177	/* simple check for a valid chip being connected to the bus */
1178	cider = ks8851_rdreg16(ks, KS_CIDER);
1179	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1180		dev_err(dev, "failed to read device ID\n");
1181		ret = -ENODEV;
1182		goto err_id;
1183	}
1184
1185	/* cache the contents of the CCR register for EEPROM, etc. */
1186	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1187
1188	ks8851_read_selftest(ks);
1189	ks8851_init_mac(ks, dev->of_node);
1190
1191	ret = register_netdev(netdev);
1192	if (ret) {
1193		dev_err(dev, "failed to register network device\n");
1194		goto err_id;
1195	}
1196
1197	netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1198		    CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1199		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1200
1201	return 0;
1202
1203err_id:
1204	ks8851_unregister_mdiobus(ks);
1205err_mdio:
1206	if (ks->gpio)
1207		gpiod_set_value_cansleep(ks->gpio, 1);
1208	regulator_disable(ks->vdd_reg);
1209err_reg:
1210	regulator_disable(ks->vdd_io);
1211err_reg_io:
1212	return ret;
1213}
1214EXPORT_SYMBOL_GPL(ks8851_probe_common);
1215
1216void ks8851_remove_common(struct device *dev)
1217{
1218	struct ks8851_net *priv = dev_get_drvdata(dev);
1219
1220	ks8851_unregister_mdiobus(priv);
1221
1222	if (netif_msg_drv(priv))
1223		dev_info(dev, "remove\n");
1224
1225	unregister_netdev(priv->netdev);
1226	if (priv->gpio)
1227		gpiod_set_value_cansleep(priv->gpio, 1);
1228	regulator_disable(priv->vdd_reg);
1229	regulator_disable(priv->vdd_io);
 
 
1230}
1231EXPORT_SYMBOL_GPL(ks8851_remove_common);
1232
1233MODULE_DESCRIPTION("KS8851 Network driver");
1234MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1235MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* drivers/net/ethernet/micrel/ks8851.c
   3 *
   4 * Copyright 2009 Simtec Electronics
   5 *	http://www.simtec.co.uk/
   6 *	Ben Dooks <ben@simtec.co.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/interrupt.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ethtool.h>
  17#include <linux/cache.h>
  18#include <linux/crc32.h>
  19#include <linux/mii.h>
 
  20#include <linux/regulator/consumer.h>
  21
  22#include <linux/gpio.h>
  23#include <linux/of_gpio.h>
  24#include <linux/of_mdio.h>
  25#include <linux/of_net.h>
  26
  27#include "ks8851.h"
  28
  29/**
  30 * ks8851_lock - register access lock
  31 * @ks: The chip state
  32 * @flags: Spinlock flags
  33 *
  34 * Claim chip register access lock
  35 */
  36static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
  37{
  38	ks->lock(ks, flags);
  39}
  40
  41/**
  42 * ks8851_unlock - register access unlock
  43 * @ks: The chip state
  44 * @flags: Spinlock flags
  45 *
  46 * Release chip register access lock
  47 */
  48static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
  49{
  50	ks->unlock(ks, flags);
  51}
  52
  53/**
  54 * ks8851_wrreg16 - write 16bit register value to chip
  55 * @ks: The chip state
  56 * @reg: The register address
  57 * @val: The value to write
  58 *
  59 * Issue a write to put the value @val into the register specified in @reg.
  60 */
  61static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
  62			   unsigned int val)
  63{
  64	ks->wrreg16(ks, reg, val);
  65}
  66
  67/**
  68 * ks8851_rdreg16 - read 16 bit register from device
  69 * @ks: The chip information
  70 * @reg: The register address
  71 *
  72 * Read a 16bit register from the chip, returning the result
  73 */
  74static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
  75				   unsigned int reg)
  76{
  77	return ks->rdreg16(ks, reg);
  78}
  79
  80/**
  81 * ks8851_soft_reset - issue one of the soft reset to the device
  82 * @ks: The device state.
  83 * @op: The bit(s) to set in the GRR
  84 *
  85 * Issue the relevant soft-reset command to the device's GRR register
  86 * specified by @op.
  87 *
  88 * Note, the delays are in there as a caution to ensure that the reset
  89 * has time to take effect and then complete. Since the datasheet does
  90 * not currently specify the exact sequence, we have chosen something
  91 * that seems to work with our device.
  92 */
  93static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
  94{
  95	ks8851_wrreg16(ks, KS_GRR, op);
  96	mdelay(1);	/* wait a short time to effect reset */
  97	ks8851_wrreg16(ks, KS_GRR, 0);
  98	mdelay(1);	/* wait for condition to clear */
  99}
 100
 101/**
 102 * ks8851_set_powermode - set power mode of the device
 103 * @ks: The device state
 104 * @pwrmode: The power mode value to write to KS_PMECR.
 105 *
 106 * Change the power mode of the chip.
 107 */
 108static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 109{
 110	unsigned pmecr;
 111
 112	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 113
 114	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 115	pmecr &= ~PMECR_PM_MASK;
 116	pmecr |= pwrmode;
 117
 118	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 119}
 120
 121/**
 122 * ks8851_write_mac_addr - write mac address to device registers
 123 * @dev: The network device
 124 *
 125 * Update the KS8851 MAC address registers from the address in @dev.
 126 *
 127 * This call assumes that the chip is not running, so there is no need to
 128 * shutdown the RXQ process whilst setting this.
 129*/
 130static int ks8851_write_mac_addr(struct net_device *dev)
 131{
 132	struct ks8851_net *ks = netdev_priv(dev);
 133	unsigned long flags;
 134	u16 val;
 135	int i;
 136
 137	ks8851_lock(ks, &flags);
 138
 139	/*
 140	 * Wake up chip in case it was powered off when stopped; otherwise,
 141	 * the first write to the MAC address does not take effect.
 142	 */
 143	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 144
 145	for (i = 0; i < ETH_ALEN; i += 2) {
 146		val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
 147		ks8851_wrreg16(ks, KS_MAR(i), val);
 148	}
 149
 150	if (!netif_running(dev))
 151		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 152
 153	ks8851_unlock(ks, &flags);
 154
 155	return 0;
 156}
 157
 158/**
 159 * ks8851_read_mac_addr - read mac address from device registers
 160 * @dev: The network device
 161 *
 162 * Update our copy of the KS8851 MAC address from the registers of @dev.
 163*/
 164static void ks8851_read_mac_addr(struct net_device *dev)
 165{
 166	struct ks8851_net *ks = netdev_priv(dev);
 167	unsigned long flags;
 
 168	u16 reg;
 169	int i;
 170
 171	ks8851_lock(ks, &flags);
 172
 173	for (i = 0; i < ETH_ALEN; i += 2) {
 174		reg = ks8851_rdreg16(ks, KS_MAR(i));
 175		dev->dev_addr[i] = reg >> 8;
 176		dev->dev_addr[i + 1] = reg & 0xff;
 177	}
 
 178
 179	ks8851_unlock(ks, &flags);
 180}
 181
 182/**
 183 * ks8851_init_mac - initialise the mac address
 184 * @ks: The device structure
 185 * @np: The device node pointer
 186 *
 187 * Get or create the initial mac address for the device and then set that
 188 * into the station address register. A mac address supplied in the device
 189 * tree takes precedence. Otherwise, if there is an EEPROM present, then
 190 * we try that. If no valid mac address is found we use eth_random_addr()
 191 * to create a new one.
 192 */
 193static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
 194{
 195	struct net_device *dev = ks->netdev;
 196	int ret;
 197
 198	ret = of_get_mac_address(np, dev->dev_addr);
 199	if (!ret) {
 200		ks8851_write_mac_addr(dev);
 201		return;
 202	}
 203
 204	if (ks->rc_ccr & CCR_EEPROM) {
 205		ks8851_read_mac_addr(dev);
 206		if (is_valid_ether_addr(dev->dev_addr))
 207			return;
 208
 209		netdev_err(ks->netdev, "invalid mac address read %pM\n",
 210				dev->dev_addr);
 211	}
 212
 213	eth_hw_addr_random(dev);
 214	ks8851_write_mac_addr(dev);
 215}
 216
 217/**
 218 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 219 * @ks: The device state
 220 * @rxpkt: The data for the received packet
 221 *
 222 * Dump the initial data from the packet to dev_dbg().
 223 */
 224static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 225{
 226	netdev_dbg(ks->netdev,
 227		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 228		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 229		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 230		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 231}
 232
 233/**
 234 * ks8851_rx_skb - receive skbuff
 235 * @ks: The device state.
 236 * @skb: The skbuff
 237 */
 238static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
 239{
 240	ks->rx_skb(ks, skb);
 241}
 242
 243/**
 244 * ks8851_rx_pkts - receive packets from the host
 245 * @ks: The device information.
 
 246 *
 247 * This is called from the IRQ work queue when the system detects that there
 248 * are packets in the receive queue. Find out how many packets there are and
 249 * read them from the FIFO.
 250 */
 251static void ks8851_rx_pkts(struct ks8851_net *ks)
 252{
 253	struct sk_buff *skb;
 254	unsigned rxfc;
 255	unsigned rxlen;
 256	unsigned rxstat;
 257	u8 *rxpkt;
 258
 259	rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
 260
 261	netif_dbg(ks, rx_status, ks->netdev,
 262		  "%s: %d packets\n", __func__, rxfc);
 263
 264	/* Currently we're issuing a read per packet, but we could possibly
 265	 * improve the code by issuing a single read, getting the receive
 266	 * header, allocating the packet and then reading the packet data
 267	 * out in one go.
 268	 *
 269	 * This form of operation would require us to hold the SPI bus'
 270	 * chipselect low during the entie transaction to avoid any
 271	 * reset to the data stream coming from the chip.
 272	 */
 273
 274	for (; rxfc != 0; rxfc--) {
 275		rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
 276		rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
 277
 278		netif_dbg(ks, rx_status, ks->netdev,
 279			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 280
 281		/* the length of the packet includes the 32bit CRC */
 282
 283		/* set dma read address */
 284		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 285
 286		/* start DMA access */
 287		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 288
 289		if (rxlen > 4) {
 290			unsigned int rxalign;
 291
 292			rxlen -= 4;
 293			rxalign = ALIGN(rxlen, 4);
 294			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 295			if (skb) {
 296
 297				/* 4 bytes of status header + 4 bytes of
 298				 * garbage: we put them before ethernet
 299				 * header, so that they are copied,
 300				 * but ignored.
 301				 */
 302
 303				rxpkt = skb_put(skb, rxlen) - 8;
 304
 305				ks->rdfifo(ks, rxpkt, rxalign + 8);
 306
 307				if (netif_msg_pktdata(ks))
 308					ks8851_dbg_dumpkkt(ks, rxpkt);
 309
 310				skb->protocol = eth_type_trans(skb, ks->netdev);
 311				ks8851_rx_skb(ks, skb);
 312
 313				ks->netdev->stats.rx_packets++;
 314				ks->netdev->stats.rx_bytes += rxlen;
 315			}
 316		}
 317
 318		/* end DMA access and dequeue packet */
 319		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
 320	}
 321}
 322
 323/**
 324 * ks8851_irq - IRQ handler for dealing with interrupt requests
 325 * @irq: IRQ number
 326 * @_ks: cookie
 327 *
 328 * This handler is invoked when the IRQ line asserts to find out what happened.
 329 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 330 * in thread context.
 331 *
 332 * Read the interrupt status, work out what needs to be done and then clear
 333 * any of the interrupts that are not needed.
 334 */
 335static irqreturn_t ks8851_irq(int irq, void *_ks)
 336{
 337	struct ks8851_net *ks = _ks;
 338	unsigned handled = 0;
 339	unsigned long flags;
 340	unsigned int status;
 
 341
 342	ks8851_lock(ks, &flags);
 343
 344	status = ks8851_rdreg16(ks, KS_ISR);
 
 345
 346	netif_dbg(ks, intr, ks->netdev,
 347		  "%s: status 0x%04x\n", __func__, status);
 348
 349	if (status & IRQ_LCI)
 350		handled |= IRQ_LCI;
 351
 352	if (status & IRQ_LDI) {
 353		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 354		pmecr &= ~PMECR_WKEVT_MASK;
 355		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 356
 357		handled |= IRQ_LDI;
 358	}
 359
 360	if (status & IRQ_RXPSI)
 361		handled |= IRQ_RXPSI;
 362
 363	if (status & IRQ_TXI) {
 364		handled |= IRQ_TXI;
 365
 366		/* no lock here, tx queue should have been stopped */
 367
 368		/* update our idea of how much tx space is available to the
 369		 * system */
 370		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 371
 372		netif_dbg(ks, intr, ks->netdev,
 373			  "%s: txspace %d\n", __func__, ks->tx_space);
 
 
 
 374	}
 375
 376	if (status & IRQ_RXI)
 377		handled |= IRQ_RXI;
 378
 379	if (status & IRQ_SPIBEI) {
 380		netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
 381		handled |= IRQ_SPIBEI;
 382	}
 383
 384	ks8851_wrreg16(ks, KS_ISR, handled);
 385
 386	if (status & IRQ_RXI) {
 387		/* the datasheet says to disable the rx interrupt during
 388		 * packet read-out, however we're masking the interrupt
 389		 * from the device so do not bother masking just the RX
 390		 * from the device. */
 391
 392		ks8851_rx_pkts(ks);
 
 393	}
 394
 395	/* if something stopped the rx process, probably due to wanting
 396	 * to change the rx settings, then do something about restarting
 397	 * it. */
 398	if (status & IRQ_RXPSI) {
 399		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 400
 401		/* update the multicast hash table */
 402		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 403		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 404		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 405		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 406
 407		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 408		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 409	}
 410
 411	ks8851_unlock(ks, &flags);
 412
 413	if (status & IRQ_LCI)
 414		mii_check_link(&ks->mii);
 415
 416	if (status & IRQ_TXI)
 417		netif_wake_queue(ks->netdev);
 
 418
 419	return IRQ_HANDLED;
 420}
 421
 422/**
 423 * ks8851_flush_tx_work - flush outstanding TX work
 424 * @ks: The device state
 425 */
 426static void ks8851_flush_tx_work(struct ks8851_net *ks)
 427{
 428	if (ks->flush_tx_work)
 429		ks->flush_tx_work(ks);
 430}
 431
 432/**
 433 * ks8851_net_open - open network device
 434 * @dev: The network device being opened.
 435 *
 436 * Called when the network device is marked active, such as a user executing
 437 * 'ifconfig up' on the device.
 438 */
 439static int ks8851_net_open(struct net_device *dev)
 440{
 441	struct ks8851_net *ks = netdev_priv(dev);
 442	unsigned long flags;
 443	int ret;
 444
 445	ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
 446				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
 447				   dev->name, ks);
 448	if (ret < 0) {
 449		netdev_err(dev, "failed to get irq\n");
 450		return ret;
 451	}
 452
 453	/* lock the card, even if we may not actually be doing anything
 454	 * else at the moment */
 455	ks8851_lock(ks, &flags);
 456
 457	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 458
 459	/* bring chip out of any power saving mode it was in */
 460	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 461
 462	/* issue a soft reset to the RX/TX QMU to put it into a known
 463	 * state. */
 464	ks8851_soft_reset(ks, GRR_QMU);
 465
 466	/* setup transmission parameters */
 467
 468	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 469				     TXCR_TXPE | /* pad to min length */
 470				     TXCR_TXCRC | /* add CRC */
 471				     TXCR_TXFCE)); /* enable flow control */
 472
 473	/* auto-increment tx data, reset tx pointer */
 474	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 475
 476	/* setup receiver control */
 477
 478	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 479				      RXCR1_RXFCE | /* enable flow control */
 480				      RXCR1_RXBE | /* broadcast enable */
 481				      RXCR1_RXUE | /* unicast enable */
 482				      RXCR1_RXE)); /* enable rx block */
 483
 484	/* transfer entire frames out in one go */
 485	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 486
 487	/* set receive counter timeouts */
 488	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 489	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 490	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 491
 492	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 493			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 494			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 495
 496	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 497
 498	/* clear then enable interrupts */
 499	ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
 500	ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
 501
 
 
 502	netif_start_queue(ks->netdev);
 503
 504	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 505
 506	ks8851_unlock(ks, &flags);
 507	mii_check_link(&ks->mii);
 508	return 0;
 509}
 510
 511/**
 512 * ks8851_net_stop - close network device
 513 * @dev: The device being closed.
 514 *
 515 * Called to close down a network device which has been active. Cancell any
 516 * work, shutdown the RX and TX process and then place the chip into a low
 517 * power state whilst it is not being used.
 518 */
 519static int ks8851_net_stop(struct net_device *dev)
 520{
 521	struct ks8851_net *ks = netdev_priv(dev);
 522	unsigned long flags;
 523
 524	netif_info(ks, ifdown, dev, "shutting down\n");
 525
 526	netif_stop_queue(dev);
 527
 528	ks8851_lock(ks, &flags);
 529	/* turn off the IRQs and ack any outstanding */
 530	ks8851_wrreg16(ks, KS_IER, 0x0000);
 531	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 532	ks8851_unlock(ks, &flags);
 533
 534	/* stop any outstanding work */
 535	ks8851_flush_tx_work(ks);
 536	flush_work(&ks->rxctrl_work);
 537
 538	ks8851_lock(ks, &flags);
 539	/* shutdown RX process */
 540	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 541
 542	/* shutdown TX process */
 543	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 544
 545	/* set powermode to soft power down to save power */
 546	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 547	ks8851_unlock(ks, &flags);
 548
 549	/* ensure any queued tx buffers are dumped */
 550	while (!skb_queue_empty(&ks->txq)) {
 551		struct sk_buff *txb = skb_dequeue(&ks->txq);
 552
 553		netif_dbg(ks, ifdown, ks->netdev,
 554			  "%s: freeing txb %p\n", __func__, txb);
 555
 556		dev_kfree_skb(txb);
 557	}
 558
 559	free_irq(dev->irq, ks);
 560
 561	return 0;
 562}
 563
 564/**
 565 * ks8851_start_xmit - transmit packet
 566 * @skb: The buffer to transmit
 567 * @dev: The device used to transmit the packet.
 568 *
 569 * Called by the network layer to transmit the @skb. Queue the packet for
 570 * the device and schedule the necessary work to transmit the packet when
 571 * it is free.
 572 *
 573 * We do this to firstly avoid sleeping with the network device locked,
 574 * and secondly so we can round up more than one packet to transmit which
 575 * means we can try and avoid generating too many transmit done interrupts.
 576 */
 577static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 578				     struct net_device *dev)
 579{
 580	struct ks8851_net *ks = netdev_priv(dev);
 581
 582	return ks->start_xmit(skb, dev);
 583}
 584
 585/**
 586 * ks8851_rxctrl_work - work handler to change rx mode
 587 * @work: The work structure this belongs to.
 588 *
 589 * Lock the device and issue the necessary changes to the receive mode from
 590 * the network device layer. This is done so that we can do this without
 591 * having to sleep whilst holding the network device lock.
 592 *
 593 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 594 * receive parameters are programmed, we issue a write to disable the RXQ and
 595 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 596 * complete. The interrupt handler then writes the new values into the chip.
 597 */
 598static void ks8851_rxctrl_work(struct work_struct *work)
 599{
 600	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 601	unsigned long flags;
 602
 603	ks8851_lock(ks, &flags);
 604
 605	/* need to shutdown RXQ before modifying filter parameters */
 606	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 607
 608	ks8851_unlock(ks, &flags);
 609}
 610
 611static void ks8851_set_rx_mode(struct net_device *dev)
 612{
 613	struct ks8851_net *ks = netdev_priv(dev);
 614	struct ks8851_rxctrl rxctrl;
 615
 616	memset(&rxctrl, 0, sizeof(rxctrl));
 617
 618	if (dev->flags & IFF_PROMISC) {
 619		/* interface to receive everything */
 620
 621		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 622	} else if (dev->flags & IFF_ALLMULTI) {
 623		/* accept all multicast packets */
 624
 625		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 626				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 627	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 628		struct netdev_hw_addr *ha;
 629		u32 crc;
 630
 631		/* accept some multicast */
 632
 633		netdev_for_each_mc_addr(ha, dev) {
 634			crc = ether_crc(ETH_ALEN, ha->addr);
 635			crc >>= (32 - 6);  /* get top six bits */
 636
 637			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 638		}
 639
 640		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 641	} else {
 642		/* just accept broadcast / unicast */
 643		rxctrl.rxcr1 = RXCR1_RXPAFMA;
 644	}
 645
 646	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
 647			 RXCR1_RXBE | /* broadcast enable */
 648			 RXCR1_RXE | /* RX process enable */
 649			 RXCR1_RXFCE); /* enable flow control */
 650
 651	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
 652
 653	/* schedule work to do the actual set of the data if needed */
 654
 655	spin_lock(&ks->statelock);
 656
 657	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
 658		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
 659		schedule_work(&ks->rxctrl_work);
 660	}
 661
 662	spin_unlock(&ks->statelock);
 663}
 664
 665static int ks8851_set_mac_address(struct net_device *dev, void *addr)
 666{
 667	struct sockaddr *sa = addr;
 668
 669	if (netif_running(dev))
 670		return -EBUSY;
 671
 672	if (!is_valid_ether_addr(sa->sa_data))
 673		return -EADDRNOTAVAIL;
 674
 675	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
 676	return ks8851_write_mac_addr(dev);
 677}
 678
 679static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 680{
 681	struct ks8851_net *ks = netdev_priv(dev);
 682
 683	if (!netif_running(dev))
 684		return -EINVAL;
 685
 686	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
 687}
 688
 689static const struct net_device_ops ks8851_netdev_ops = {
 690	.ndo_open		= ks8851_net_open,
 691	.ndo_stop		= ks8851_net_stop,
 692	.ndo_do_ioctl		= ks8851_net_ioctl,
 693	.ndo_start_xmit		= ks8851_start_xmit,
 694	.ndo_set_mac_address	= ks8851_set_mac_address,
 695	.ndo_set_rx_mode	= ks8851_set_rx_mode,
 696	.ndo_validate_addr	= eth_validate_addr,
 697};
 698
 699/* ethtool support */
 700
 701static void ks8851_get_drvinfo(struct net_device *dev,
 702			       struct ethtool_drvinfo *di)
 703{
 704	strlcpy(di->driver, "KS8851", sizeof(di->driver));
 705	strlcpy(di->version, "1.00", sizeof(di->version));
 706	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
 707}
 708
 709static u32 ks8851_get_msglevel(struct net_device *dev)
 710{
 711	struct ks8851_net *ks = netdev_priv(dev);
 712	return ks->msg_enable;
 713}
 714
 715static void ks8851_set_msglevel(struct net_device *dev, u32 to)
 716{
 717	struct ks8851_net *ks = netdev_priv(dev);
 718	ks->msg_enable = to;
 719}
 720
 721static int ks8851_get_link_ksettings(struct net_device *dev,
 722				     struct ethtool_link_ksettings *cmd)
 723{
 724	struct ks8851_net *ks = netdev_priv(dev);
 725
 726	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
 727
 728	return 0;
 729}
 730
 731static int ks8851_set_link_ksettings(struct net_device *dev,
 732				     const struct ethtool_link_ksettings *cmd)
 733{
 734	struct ks8851_net *ks = netdev_priv(dev);
 735	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
 736}
 737
 738static u32 ks8851_get_link(struct net_device *dev)
 739{
 740	struct ks8851_net *ks = netdev_priv(dev);
 741	return mii_link_ok(&ks->mii);
 742}
 743
 744static int ks8851_nway_reset(struct net_device *dev)
 745{
 746	struct ks8851_net *ks = netdev_priv(dev);
 747	return mii_nway_restart(&ks->mii);
 748}
 749
 750/* EEPROM support */
 751
 752static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
 753{
 754	struct ks8851_net *ks = ee->data;
 755	unsigned val;
 756
 757	val = ks8851_rdreg16(ks, KS_EEPCR);
 758
 759	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
 760	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
 761	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
 762}
 763
 764static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
 765{
 766	struct ks8851_net *ks = ee->data;
 767	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
 768
 769	if (ee->drive_data)
 770		val |= EEPCR_EESRWA;
 771	if (ee->reg_data_in)
 772		val |= EEPCR_EEDO;
 773	if (ee->reg_data_clock)
 774		val |= EEPCR_EESCK;
 775	if (ee->reg_chip_select)
 776		val |= EEPCR_EECS;
 777
 778	ks8851_wrreg16(ks, KS_EEPCR, val);
 779}
 780
 781/**
 782 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
 783 * @ks: The network device state.
 784 *
 785 * Check for the presence of an EEPROM, and then activate software access
 786 * to the device.
 787 */
 788static int ks8851_eeprom_claim(struct ks8851_net *ks)
 789{
 790	/* start with clock low, cs high */
 791	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
 792	return 0;
 793}
 794
 795/**
 796 * ks8851_eeprom_release - release the EEPROM interface
 797 * @ks: The device state
 798 *
 799 * Release the software access to the device EEPROM
 800 */
 801static void ks8851_eeprom_release(struct ks8851_net *ks)
 802{
 803	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
 804
 805	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
 806}
 807
 808#define KS_EEPROM_MAGIC (0x00008851)
 809
 810static int ks8851_set_eeprom(struct net_device *dev,
 811			     struct ethtool_eeprom *ee, u8 *data)
 812{
 813	struct ks8851_net *ks = netdev_priv(dev);
 814	int offset = ee->offset;
 815	unsigned long flags;
 816	int len = ee->len;
 817	u16 tmp;
 818
 819	/* currently only support byte writing */
 820	if (len != 1)
 821		return -EINVAL;
 822
 823	if (ee->magic != KS_EEPROM_MAGIC)
 824		return -EINVAL;
 825
 826	if (!(ks->rc_ccr & CCR_EEPROM))
 827		return -ENOENT;
 828
 829	ks8851_lock(ks, &flags);
 830
 831	ks8851_eeprom_claim(ks);
 832
 833	eeprom_93cx6_wren(&ks->eeprom, true);
 834
 835	/* ethtool currently only supports writing bytes, which means
 836	 * we have to read/modify/write our 16bit EEPROMs */
 837
 838	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
 839
 840	if (offset & 1) {
 841		tmp &= 0xff;
 842		tmp |= *data << 8;
 843	} else {
 844		tmp &= 0xff00;
 845		tmp |= *data;
 846	}
 847
 848	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
 849	eeprom_93cx6_wren(&ks->eeprom, false);
 850
 851	ks8851_eeprom_release(ks);
 852	ks8851_unlock(ks, &flags);
 853
 854	return 0;
 855}
 856
 857static int ks8851_get_eeprom(struct net_device *dev,
 858			     struct ethtool_eeprom *ee, u8 *data)
 859{
 860	struct ks8851_net *ks = netdev_priv(dev);
 861	int offset = ee->offset;
 862	unsigned long flags;
 863	int len = ee->len;
 864
 865	/* must be 2 byte aligned */
 866	if (len & 1 || offset & 1)
 867		return -EINVAL;
 868
 869	if (!(ks->rc_ccr & CCR_EEPROM))
 870		return -ENOENT;
 871
 872	ks8851_lock(ks, &flags);
 873
 874	ks8851_eeprom_claim(ks);
 875
 876	ee->magic = KS_EEPROM_MAGIC;
 877
 878	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
 879	ks8851_eeprom_release(ks);
 880	ks8851_unlock(ks, &flags);
 881
 882	return 0;
 883}
 884
 885static int ks8851_get_eeprom_len(struct net_device *dev)
 886{
 887	struct ks8851_net *ks = netdev_priv(dev);
 888
 889	/* currently, we assume it is an 93C46 attached, so return 128 */
 890	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
 891}
 892
 893static const struct ethtool_ops ks8851_ethtool_ops = {
 894	.get_drvinfo	= ks8851_get_drvinfo,
 895	.get_msglevel	= ks8851_get_msglevel,
 896	.set_msglevel	= ks8851_set_msglevel,
 897	.get_link	= ks8851_get_link,
 898	.nway_reset	= ks8851_nway_reset,
 899	.get_eeprom_len	= ks8851_get_eeprom_len,
 900	.get_eeprom	= ks8851_get_eeprom,
 901	.set_eeprom	= ks8851_set_eeprom,
 902	.get_link_ksettings = ks8851_get_link_ksettings,
 903	.set_link_ksettings = ks8851_set_link_ksettings,
 904};
 905
 906/* MII interface controls */
 907
 908/**
 909 * ks8851_phy_reg - convert MII register into a KS8851 register
 910 * @reg: MII register number.
 911 *
 912 * Return the KS8851 register number for the corresponding MII PHY register
 913 * if possible. Return zero if the MII register has no direct mapping to the
 914 * KS8851 register set.
 915 */
 916static int ks8851_phy_reg(int reg)
 917{
 918	switch (reg) {
 919	case MII_BMCR:
 920		return KS_P1MBCR;
 921	case MII_BMSR:
 922		return KS_P1MBSR;
 923	case MII_PHYSID1:
 924		return KS_PHY1ILR;
 925	case MII_PHYSID2:
 926		return KS_PHY1IHR;
 927	case MII_ADVERTISE:
 928		return KS_P1ANAR;
 929	case MII_LPA:
 930		return KS_P1ANLPR;
 931	}
 932
 933	return -EOPNOTSUPP;
 934}
 935
 936static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg)
 937{
 938	struct ks8851_net *ks = netdev_priv(dev);
 939	unsigned long flags;
 940	int result;
 941	int ksreg;
 942
 943	ksreg = ks8851_phy_reg(reg);
 944	if (ksreg < 0)
 945		return ksreg;
 946
 947	ks8851_lock(ks, &flags);
 948	result = ks8851_rdreg16(ks, ksreg);
 949	ks8851_unlock(ks, &flags);
 950
 951	return result;
 952}
 953
 954/**
 955 * ks8851_phy_read - MII interface PHY register read.
 956 * @dev: The network device the PHY is on.
 957 * @phy_addr: Address of PHY (ignored as we only have one)
 958 * @reg: The register to read.
 959 *
 960 * This call reads data from the PHY register specified in @reg. Since the
 961 * device does not support all the MII registers, the non-existent values
 962 * are always returned as zero.
 963 *
 964 * We return zero for unsupported registers as the MII code does not check
 965 * the value returned for any error status, and simply returns it to the
 966 * caller. The mii-tool that the driver was tested with takes any -ve error
 967 * as real PHY capabilities, thus displaying incorrect data to the user.
 968 */
 969static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
 970{
 971	int ret;
 972
 973	ret = ks8851_phy_read_common(dev, phy_addr, reg);
 974	if (ret < 0)
 975		return 0x0;	/* no error return allowed, so use zero */
 976
 977	return ret;
 978}
 979
 980static void ks8851_phy_write(struct net_device *dev,
 981			     int phy, int reg, int value)
 982{
 983	struct ks8851_net *ks = netdev_priv(dev);
 984	unsigned long flags;
 985	int ksreg;
 986
 987	ksreg = ks8851_phy_reg(reg);
 988	if (ksreg >= 0) {
 989		ks8851_lock(ks, &flags);
 990		ks8851_wrreg16(ks, ksreg, value);
 991		ks8851_unlock(ks, &flags);
 992	}
 993}
 994
 995static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg)
 996{
 997	struct ks8851_net *ks = bus->priv;
 998
 999	if (phy_id != 0)
1000		return -EOPNOTSUPP;
1001
1002	/* KS8851 PHY ID registers are swapped in HW, swap them back. */
1003	if (reg == MII_PHYSID1)
1004		reg = MII_PHYSID2;
1005	else if (reg == MII_PHYSID2)
1006		reg = MII_PHYSID1;
1007
1008	return ks8851_phy_read_common(ks->netdev, phy_id, reg);
1009}
1010
1011static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val)
1012{
1013	struct ks8851_net *ks = bus->priv;
1014
1015	ks8851_phy_write(ks->netdev, phy_id, reg, val);
1016	return 0;
1017}
1018
1019/**
1020 * ks8851_read_selftest - read the selftest memory info.
1021 * @ks: The device state
1022 *
1023 * Read and check the TX/RX memory selftest information.
1024 */
1025static void ks8851_read_selftest(struct ks8851_net *ks)
1026{
1027	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1028	unsigned rd;
1029
1030	rd = ks8851_rdreg16(ks, KS_MBIR);
1031
1032	if ((rd & both_done) != both_done) {
1033		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1034		return;
1035	}
1036
1037	if (rd & MBIR_TXMBFA)
1038		netdev_err(ks->netdev, "TX memory selftest fail\n");
1039
1040	if (rd & MBIR_RXMBFA)
1041		netdev_err(ks->netdev, "RX memory selftest fail\n");
1042}
1043
1044/* driver bus management functions */
1045
1046#ifdef CONFIG_PM_SLEEP
1047
1048int ks8851_suspend(struct device *dev)
1049{
1050	struct ks8851_net *ks = dev_get_drvdata(dev);
1051	struct net_device *netdev = ks->netdev;
1052
1053	if (netif_running(netdev)) {
1054		netif_device_detach(netdev);
1055		ks8851_net_stop(netdev);
1056	}
1057
1058	return 0;
1059}
1060EXPORT_SYMBOL_GPL(ks8851_suspend);
1061
1062int ks8851_resume(struct device *dev)
1063{
1064	struct ks8851_net *ks = dev_get_drvdata(dev);
1065	struct net_device *netdev = ks->netdev;
1066
1067	if (netif_running(netdev)) {
1068		ks8851_net_open(netdev);
1069		netif_device_attach(netdev);
1070	}
1071
1072	return 0;
1073}
1074EXPORT_SYMBOL_GPL(ks8851_resume);
1075#endif
1076
1077static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev)
1078{
1079	struct mii_bus *mii_bus;
1080	int ret;
1081
1082	mii_bus = mdiobus_alloc();
1083	if (!mii_bus)
1084		return -ENOMEM;
1085
1086	mii_bus->name = "ks8851_eth_mii";
1087	mii_bus->read = ks8851_mdio_read;
1088	mii_bus->write = ks8851_mdio_write;
1089	mii_bus->priv = ks;
1090	mii_bus->parent = dev;
1091	mii_bus->phy_mask = ~((u32)BIT(0));
1092	snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1093
1094	ret = mdiobus_register(mii_bus);
1095	if (ret)
1096		goto err_mdiobus_register;
1097
1098	ks->mii_bus = mii_bus;
1099
1100	return 0;
1101
1102err_mdiobus_register:
1103	mdiobus_free(mii_bus);
1104	return ret;
1105}
1106
1107static void ks8851_unregister_mdiobus(struct ks8851_net *ks)
1108{
1109	mdiobus_unregister(ks->mii_bus);
1110	mdiobus_free(ks->mii_bus);
1111}
1112
1113int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1114			int msg_en)
1115{
1116	struct ks8851_net *ks = netdev_priv(netdev);
1117	unsigned cider;
1118	int gpio;
1119	int ret;
1120
1121	ks->netdev = netdev;
1122	ks->tx_space = 6144;
1123
1124	gpio = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, NULL);
1125	if (gpio == -EPROBE_DEFER)
1126		return gpio;
1127
1128	ks->gpio = gpio;
1129	if (gpio_is_valid(gpio)) {
1130		ret = devm_gpio_request_one(dev, gpio,
1131					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1132		if (ret) {
1133			dev_err(dev, "reset gpio request failed\n");
1134			return ret;
1135		}
1136	}
1137
1138	ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1139	if (IS_ERR(ks->vdd_io)) {
1140		ret = PTR_ERR(ks->vdd_io);
1141		goto err_reg_io;
1142	}
1143
1144	ret = regulator_enable(ks->vdd_io);
1145	if (ret) {
1146		dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1147		goto err_reg_io;
1148	}
1149
1150	ks->vdd_reg = devm_regulator_get(dev, "vdd");
1151	if (IS_ERR(ks->vdd_reg)) {
1152		ret = PTR_ERR(ks->vdd_reg);
1153		goto err_reg;
1154	}
1155
1156	ret = regulator_enable(ks->vdd_reg);
1157	if (ret) {
1158		dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1159		goto err_reg;
1160	}
1161
1162	if (gpio_is_valid(gpio)) {
1163		usleep_range(10000, 11000);
1164		gpio_set_value(gpio, 1);
1165	}
1166
1167	spin_lock_init(&ks->statelock);
1168
1169	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1170
1171	SET_NETDEV_DEV(netdev, dev);
1172
1173	/* setup EEPROM state */
1174	ks->eeprom.data = ks;
1175	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1176	ks->eeprom.register_read = ks8851_eeprom_regread;
1177	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1178
1179	/* setup mii state */
1180	ks->mii.dev		= netdev;
1181	ks->mii.phy_id		= 1;
1182	ks->mii.phy_id_mask	= 1;
1183	ks->mii.reg_num_mask	= 0xf;
1184	ks->mii.mdio_read	= ks8851_phy_read;
1185	ks->mii.mdio_write	= ks8851_phy_write;
1186
1187	dev_info(dev, "message enable is %d\n", msg_en);
1188
1189	ret = ks8851_register_mdiobus(ks, dev);
1190	if (ret)
1191		goto err_mdio;
1192
1193	/* set the default message enable */
1194	ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1195						NETIF_MSG_PROBE |
1196						NETIF_MSG_LINK);
1197
1198	skb_queue_head_init(&ks->txq);
1199
1200	netdev->ethtool_ops = &ks8851_ethtool_ops;
1201
1202	dev_set_drvdata(dev, ks);
1203
1204	netif_carrier_off(ks->netdev);
1205	netdev->if_port = IF_PORT_100BASET;
1206	netdev->netdev_ops = &ks8851_netdev_ops;
1207
1208	/* issue a global soft reset to reset the device. */
1209	ks8851_soft_reset(ks, GRR_GSR);
1210
1211	/* simple check for a valid chip being connected to the bus */
1212	cider = ks8851_rdreg16(ks, KS_CIDER);
1213	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1214		dev_err(dev, "failed to read device ID\n");
1215		ret = -ENODEV;
1216		goto err_id;
1217	}
1218
1219	/* cache the contents of the CCR register for EEPROM, etc. */
1220	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1221
1222	ks8851_read_selftest(ks);
1223	ks8851_init_mac(ks, dev->of_node);
1224
1225	ret = register_netdev(netdev);
1226	if (ret) {
1227		dev_err(dev, "failed to register network device\n");
1228		goto err_id;
1229	}
1230
1231	netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1232		    CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1233		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1234
1235	return 0;
1236
1237err_id:
1238	ks8851_unregister_mdiobus(ks);
1239err_mdio:
1240	if (gpio_is_valid(gpio))
1241		gpio_set_value(gpio, 0);
1242	regulator_disable(ks->vdd_reg);
1243err_reg:
1244	regulator_disable(ks->vdd_io);
1245err_reg_io:
1246	return ret;
1247}
1248EXPORT_SYMBOL_GPL(ks8851_probe_common);
1249
1250int ks8851_remove_common(struct device *dev)
1251{
1252	struct ks8851_net *priv = dev_get_drvdata(dev);
1253
1254	ks8851_unregister_mdiobus(priv);
1255
1256	if (netif_msg_drv(priv))
1257		dev_info(dev, "remove\n");
1258
1259	unregister_netdev(priv->netdev);
1260	if (gpio_is_valid(priv->gpio))
1261		gpio_set_value(priv->gpio, 0);
1262	regulator_disable(priv->vdd_reg);
1263	regulator_disable(priv->vdd_io);
1264
1265	return 0;
1266}
1267EXPORT_SYMBOL_GPL(ks8851_remove_common);
1268
1269MODULE_DESCRIPTION("KS8851 Network driver");
1270MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1271MODULE_LICENSE("GPL");