Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2008 Intel Corporation. */
   3
   4/* ixgb_hw.c
   5 * Shared functions for accessing and configuring the adapter
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/pci_ids.h>
  11#include "ixgb_hw.h"
  12#include "ixgb_ids.h"
  13
  14#include <linux/etherdevice.h>
  15
  16/*  Local function prototypes */
  17
  18static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);
  19
  20static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);
  21
  22static void ixgb_get_bus_info(struct ixgb_hw *hw);
  23
  24static bool ixgb_link_reset(struct ixgb_hw *hw);
  25
  26static void ixgb_optics_reset(struct ixgb_hw *hw);
  27
  28static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);
  29
  30static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
  31
  32static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
  33
  34static void ixgb_clear_vfta(struct ixgb_hw *hw);
  35
  36static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
  37
  38static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
  39				  u32 reg_address,
  40				  u32 phy_address,
  41				  u32 device_type);
  42
  43static bool ixgb_setup_fc(struct ixgb_hw *hw);
  44
  45static bool mac_addr_valid(u8 *mac_addr);
  46
  47static u32 ixgb_mac_reset(struct ixgb_hw *hw)
  48{
  49	u32 ctrl_reg;
  50
  51	ctrl_reg =  IXGB_CTRL0_RST |
  52				IXGB_CTRL0_SDP3_DIR |   /* All pins are Output=1 */
  53				IXGB_CTRL0_SDP2_DIR |
  54				IXGB_CTRL0_SDP1_DIR |
  55				IXGB_CTRL0_SDP0_DIR |
  56				IXGB_CTRL0_SDP3	 |   /* Initial value 1101   */
  57				IXGB_CTRL0_SDP2	 |
  58				IXGB_CTRL0_SDP0;
  59
  60#ifdef HP_ZX1
  61	/* Workaround for 82597EX reset errata */
  62	IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
  63#else
  64	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
  65#endif
  66
  67	/* Delay a few ms just to allow the reset to complete */
  68	msleep(IXGB_DELAY_AFTER_RESET);
  69	ctrl_reg = IXGB_READ_REG(hw, CTRL0);
  70#ifdef DBG
  71	/* Make sure the self-clearing global reset bit did self clear */
  72	ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
  73#endif
  74
  75	if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) {
  76		ctrl_reg =  /* Enable interrupt from XFP and SerDes */
  77			   IXGB_CTRL1_GPI0_EN |
  78			   IXGB_CTRL1_SDP6_DIR |
  79			   IXGB_CTRL1_SDP7_DIR |
  80			   IXGB_CTRL1_SDP6 |
  81			   IXGB_CTRL1_SDP7;
  82		IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
  83		ixgb_optics_reset_bcm(hw);
  84	}
  85
  86	if (hw->phy_type == ixgb_phy_type_txn17401)
  87		ixgb_optics_reset(hw);
  88
  89	return ctrl_reg;
  90}
  91
  92/******************************************************************************
  93 * Reset the transmit and receive units; mask and clear all interrupts.
  94 *
  95 * hw - Struct containing variables accessed by shared code
  96 *****************************************************************************/
  97bool
  98ixgb_adapter_stop(struct ixgb_hw *hw)
  99{
 100	u32 ctrl_reg;
 101
 102	ENTER();
 103
 104	/* If we are stopped or resetting exit gracefully and wait to be
 105	 * started again before accessing the hardware.
 106	 */
 107	if (hw->adapter_stopped) {
 108		pr_debug("Exiting because the adapter is already stopped!!!\n");
 109		return false;
 110	}
 111
 112	/* Set the Adapter Stopped flag so other driver functions stop
 113	 * touching the Hardware.
 114	 */
 115	hw->adapter_stopped = true;
 116
 117	/* Clear interrupt mask to stop board from generating interrupts */
 118	pr_debug("Masking off all interrupts\n");
 119	IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
 120
 121	/* Disable the Transmit and Receive units.  Then delay to allow
 122	 * any pending transactions to complete before we hit the MAC with
 123	 * the global reset.
 124	 */
 125	IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
 126	IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
 127	IXGB_WRITE_FLUSH(hw);
 128	msleep(IXGB_DELAY_BEFORE_RESET);
 129
 130	/* Issue a global reset to the MAC.  This will reset the chip's
 131	 * transmit, receive, DMA, and link units.  It will not effect
 132	 * the current PCI configuration.  The global reset bit is self-
 133	 * clearing, and should clear within a microsecond.
 134	 */
 135	pr_debug("Issuing a global reset to MAC\n");
 136
 137	ctrl_reg = ixgb_mac_reset(hw);
 138
 139	/* Clear interrupt mask to stop board from generating interrupts */
 140	pr_debug("Masking off all interrupts\n");
 141	IXGB_WRITE_REG(hw, IMC, 0xffffffff);
 142
 143	/* Clear any pending interrupt events. */
 144	IXGB_READ_REG(hw, ICR);
 145
 146	return ctrl_reg & IXGB_CTRL0_RST;
 147}
 148
 149
 150/******************************************************************************
 151 * Identifies the vendor of the optics module on the adapter.  The SR adapters
 152 * support two different types of XPAK optics, so it is necessary to determine
 153 * which optics are present before applying any optics-specific workarounds.
 154 *
 155 * hw - Struct containing variables accessed by shared code.
 156 *
 157 * Returns: the vendor of the XPAK optics module.
 158 *****************************************************************************/
 159static ixgb_xpak_vendor
 160ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
 161{
 162	u32 i;
 163	u16 vendor_name[5];
 164	ixgb_xpak_vendor xpak_vendor;
 165
 166	ENTER();
 167
 168	/* Read the first few bytes of the vendor string from the XPAK NVR
 169	 * registers.  These are standard XENPAK/XPAK registers, so all XPAK
 170	 * devices should implement them. */
 171	for (i = 0; i < 5; i++) {
 172		vendor_name[i] = ixgb_read_phy_reg(hw,
 173						   MDIO_PMA_PMD_XPAK_VENDOR_NAME
 174						   + i, IXGB_PHY_ADDRESS,
 175						   MDIO_MMD_PMAPMD);
 176	}
 177
 178	/* Determine the actual vendor */
 179	if (vendor_name[0] == 'I' &&
 180	    vendor_name[1] == 'N' &&
 181	    vendor_name[2] == 'T' &&
 182	    vendor_name[3] == 'E' && vendor_name[4] == 'L') {
 183		xpak_vendor = ixgb_xpak_vendor_intel;
 184	} else {
 185		xpak_vendor = ixgb_xpak_vendor_infineon;
 186	}
 187
 188	return xpak_vendor;
 189}
 190
 191/******************************************************************************
 192 * Determine the physical layer module on the adapter.
 193 *
 194 * hw - Struct containing variables accessed by shared code.  The device_id
 195 *      field must be (correctly) populated before calling this routine.
 196 *
 197 * Returns: the phy type of the adapter.
 198 *****************************************************************************/
 199static ixgb_phy_type
 200ixgb_identify_phy(struct ixgb_hw *hw)
 201{
 202	ixgb_phy_type phy_type;
 203	ixgb_xpak_vendor xpak_vendor;
 204
 205	ENTER();
 206
 207	/* Infer the transceiver/phy type from the device id */
 208	switch (hw->device_id) {
 209	case IXGB_DEVICE_ID_82597EX:
 210		pr_debug("Identified TXN17401 optics\n");
 211		phy_type = ixgb_phy_type_txn17401;
 212		break;
 213
 214	case IXGB_DEVICE_ID_82597EX_SR:
 215		/* The SR adapters carry two different types of XPAK optics
 216		 * modules; read the vendor identifier to determine the exact
 217		 * type of optics. */
 218		xpak_vendor = ixgb_identify_xpak_vendor(hw);
 219		if (xpak_vendor == ixgb_xpak_vendor_intel) {
 220			pr_debug("Identified TXN17201 optics\n");
 221			phy_type = ixgb_phy_type_txn17201;
 222		} else {
 223			pr_debug("Identified G6005 optics\n");
 224			phy_type = ixgb_phy_type_g6005;
 225		}
 226		break;
 227	case IXGB_DEVICE_ID_82597EX_LR:
 228		pr_debug("Identified G6104 optics\n");
 229		phy_type = ixgb_phy_type_g6104;
 230		break;
 231	case IXGB_DEVICE_ID_82597EX_CX4:
 232		pr_debug("Identified CX4\n");
 233		xpak_vendor = ixgb_identify_xpak_vendor(hw);
 234		if (xpak_vendor == ixgb_xpak_vendor_intel) {
 235			pr_debug("Identified TXN17201 optics\n");
 236			phy_type = ixgb_phy_type_txn17201;
 237		} else {
 238			pr_debug("Identified G6005 optics\n");
 239			phy_type = ixgb_phy_type_g6005;
 240		}
 241		break;
 242	default:
 243		pr_debug("Unknown physical layer module\n");
 244		phy_type = ixgb_phy_type_unknown;
 245		break;
 246	}
 247
 248	/* update phy type for sun specific board */
 249	if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN)
 250		phy_type = ixgb_phy_type_bcm;
 251
 252	return phy_type;
 253}
 254
 255/******************************************************************************
 256 * Performs basic configuration of the adapter.
 257 *
 258 * hw - Struct containing variables accessed by shared code
 259 *
 260 * Resets the controller.
 261 * Reads and validates the EEPROM.
 262 * Initializes the receive address registers.
 263 * Initializes the multicast table.
 264 * Clears all on-chip counters.
 265 * Calls routine to setup flow control settings.
 266 * Leaves the transmit and receive units disabled and uninitialized.
 267 *
 268 * Returns:
 269 *      true if successful,
 270 *      false if unrecoverable problems were encountered.
 271 *****************************************************************************/
 272bool
 273ixgb_init_hw(struct ixgb_hw *hw)
 274{
 275	u32 i;
 276	bool status;
 277
 278	ENTER();
 279
 280	/* Issue a global reset to the MAC.  This will reset the chip's
 281	 * transmit, receive, DMA, and link units.  It will not effect
 282	 * the current PCI configuration.  The global reset bit is self-
 283	 * clearing, and should clear within a microsecond.
 284	 */
 285	pr_debug("Issuing a global reset to MAC\n");
 286
 287	ixgb_mac_reset(hw);
 288
 289	pr_debug("Issuing an EE reset to MAC\n");
 290#ifdef HP_ZX1
 291	/* Workaround for 82597EX reset errata */
 292	IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
 293#else
 294	IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
 295#endif
 296
 297	/* Delay a few ms just to allow the reset to complete */
 298	msleep(IXGB_DELAY_AFTER_EE_RESET);
 299
 300	if (!ixgb_get_eeprom_data(hw))
 301		return false;
 302
 303	/* Use the device id to determine the type of phy/transceiver. */
 304	hw->device_id = ixgb_get_ee_device_id(hw);
 305	hw->phy_type = ixgb_identify_phy(hw);
 306
 307	/* Setup the receive addresses.
 308	 * Receive Address Registers (RARs 0 - 15).
 309	 */
 310	ixgb_init_rx_addrs(hw);
 311
 312	/*
 313	 * Check that a valid MAC address has been set.
 314	 * If it is not valid, we fail hardware init.
 315	 */
 316	if (!mac_addr_valid(hw->curr_mac_addr)) {
 317		pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
 318		return(false);
 319	}
 320
 321	/* tell the routines in this file they can access hardware again */
 322	hw->adapter_stopped = false;
 323
 324	/* Fill in the bus_info structure */
 325	ixgb_get_bus_info(hw);
 326
 327	/* Zero out the Multicast HASH table */
 328	pr_debug("Zeroing the MTA\n");
 329	for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
 330		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
 331
 332	/* Zero out the VLAN Filter Table Array */
 333	ixgb_clear_vfta(hw);
 334
 335	/* Zero all of the hardware counters */
 336	ixgb_clear_hw_cntrs(hw);
 337
 338	/* Call a subroutine to setup flow control. */
 339	status = ixgb_setup_fc(hw);
 340
 341	/* 82597EX errata: Call check-for-link in case lane deskew is locked */
 342	ixgb_check_for_link(hw);
 343
 344	return status;
 345}
 346
 347/******************************************************************************
 348 * Initializes receive address filters.
 349 *
 350 * hw - Struct containing variables accessed by shared code
 351 *
 352 * Places the MAC address in receive address register 0 and clears the rest
 353 * of the receive address registers. Clears the multicast table. Assumes
 354 * the receiver is in reset when the routine is called.
 355 *****************************************************************************/
 356static void
 357ixgb_init_rx_addrs(struct ixgb_hw *hw)
 358{
 359	u32 i;
 360
 361	ENTER();
 362
 363	/*
 364	 * If the current mac address is valid, assume it is a software override
 365	 * to the permanent address.
 366	 * Otherwise, use the permanent address from the eeprom.
 367	 */
 368	if (!mac_addr_valid(hw->curr_mac_addr)) {
 369
 370		/* Get the MAC address from the eeprom for later reference */
 371		ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
 372
 373		pr_debug("Keeping Permanent MAC Addr = %pM\n",
 374			 hw->curr_mac_addr);
 375	} else {
 376
 377		/* Setup the receive address. */
 378		pr_debug("Overriding MAC Address in RAR[0]\n");
 379		pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr);
 380
 381		ixgb_rar_set(hw, hw->curr_mac_addr, 0);
 382	}
 383
 384	/* Zero out the other 15 receive addresses. */
 385	pr_debug("Clearing RAR[1-15]\n");
 386	for (i = 1; i < IXGB_RAR_ENTRIES; i++) {
 387		/* Write high reg first to disable the AV bit first */
 388		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
 389		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
 390	}
 391}
 392
 393/******************************************************************************
 394 * Updates the MAC's list of multicast addresses.
 395 *
 396 * hw - Struct containing variables accessed by shared code
 397 * mc_addr_list - the list of new multicast addresses
 398 * mc_addr_count - number of addresses
 399 * pad - number of bytes between addresses in the list
 400 *
 401 * The given list replaces any existing list. Clears the last 15 receive
 402 * address registers and the multicast table. Uses receive address registers
 403 * for the first 15 multicast addresses, and hashes the rest into the
 404 * multicast table.
 405 *****************************************************************************/
 406void
 407ixgb_mc_addr_list_update(struct ixgb_hw *hw,
 408			  u8 *mc_addr_list,
 409			  u32 mc_addr_count,
 410			  u32 pad)
 411{
 412	u32 hash_value;
 413	u32 i;
 414	u32 rar_used_count = 1;		/* RAR[0] is used for our MAC address */
 415	u8 *mca;
 416
 417	ENTER();
 418
 419	/* Set the new number of MC addresses that we are being requested to use. */
 420	hw->num_mc_addrs = mc_addr_count;
 421
 422	/* Clear RAR[1-15] */
 423	pr_debug("Clearing RAR[1-15]\n");
 424	for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
 425		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
 426		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
 427	}
 428
 429	/* Clear the MTA */
 430	pr_debug("Clearing MTA\n");
 431	for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
 432		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
 433
 434	/* Add the new addresses */
 435	mca = mc_addr_list;
 436	for (i = 0; i < mc_addr_count; i++) {
 437		pr_debug("Adding the multicast addresses:\n");
 438		pr_debug("MC Addr #%d = %pM\n", i, mca);
 439
 440		/* Place this multicast address in the RAR if there is room, *
 441		 * else put it in the MTA
 442		 */
 443		if (rar_used_count < IXGB_RAR_ENTRIES) {
 444			ixgb_rar_set(hw, mca, rar_used_count);
 445			pr_debug("Added a multicast address to RAR[%d]\n", i);
 446			rar_used_count++;
 447		} else {
 448			hash_value = ixgb_hash_mc_addr(hw, mca);
 449
 450			pr_debug("Hash value = 0x%03X\n", hash_value);
 451
 452			ixgb_mta_set(hw, hash_value);
 453		}
 454
 455		mca += ETH_ALEN + pad;
 456	}
 457
 458	pr_debug("MC Update Complete\n");
 459}
 460
 461/******************************************************************************
 462 * Hashes an address to determine its location in the multicast table
 463 *
 464 * hw - Struct containing variables accessed by shared code
 465 * mc_addr - the multicast address to hash
 466 *
 467 * Returns:
 468 *      The hash value
 469 *****************************************************************************/
 470static u32
 471ixgb_hash_mc_addr(struct ixgb_hw *hw,
 472		   u8 *mc_addr)
 473{
 474	u32 hash_value = 0;
 475
 476	ENTER();
 477
 478	/* The portion of the address that is used for the hash table is
 479	 * determined by the mc_filter_type setting.
 480	 */
 481	switch (hw->mc_filter_type) {
 482		/* [0] [1] [2] [3] [4] [5]
 483		 * 01  AA  00  12  34  56
 484		 * LSB                 MSB - According to H/W docs */
 485	case 0:
 486		/* [47:36] i.e. 0x563 for above example address */
 487		hash_value =
 488		    ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
 489		break;
 490	case 1:		/* [46:35] i.e. 0xAC6 for above example address */
 491		hash_value =
 492		    ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
 493		break;
 494	case 2:		/* [45:34] i.e. 0x5D8 for above example address */
 495		hash_value =
 496		    ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
 497		break;
 498	case 3:		/* [43:32] i.e. 0x634 for above example address */
 499		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
 500		break;
 501	default:
 502		/* Invalid mc_filter_type, what should we do? */
 503		pr_debug("MC filter type param set incorrectly\n");
 504		ASSERT(0);
 505		break;
 506	}
 507
 508	hash_value &= 0xFFF;
 509	return hash_value;
 510}
 511
 512/******************************************************************************
 513 * Sets the bit in the multicast table corresponding to the hash value.
 514 *
 515 * hw - Struct containing variables accessed by shared code
 516 * hash_value - Multicast address hash value
 517 *****************************************************************************/
 518static void
 519ixgb_mta_set(struct ixgb_hw *hw,
 520		  u32 hash_value)
 521{
 522	u32 hash_bit, hash_reg;
 523	u32 mta_reg;
 524
 525	/* The MTA is a register array of 128 32-bit registers.
 526	 * It is treated like an array of 4096 bits.  We want to set
 527	 * bit BitArray[hash_value]. So we figure out what register
 528	 * the bit is in, read it, OR in the new bit, then write
 529	 * back the new value.  The register is determined by the
 530	 * upper 7 bits of the hash value and the bit within that
 531	 * register are determined by the lower 5 bits of the value.
 532	 */
 533	hash_reg = (hash_value >> 5) & 0x7F;
 534	hash_bit = hash_value & 0x1F;
 535
 536	mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
 537
 538	mta_reg |= (1 << hash_bit);
 539
 540	IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
 541}
 542
 543/******************************************************************************
 544 * Puts an ethernet address into a receive address register.
 545 *
 546 * hw - Struct containing variables accessed by shared code
 547 * addr - Address to put into receive address register
 548 * index - Receive address register to write
 549 *****************************************************************************/
 550void
 551ixgb_rar_set(struct ixgb_hw *hw,
 552		  const u8 *addr,
 553		  u32 index)
 554{
 555	u32 rar_low, rar_high;
 556
 557	ENTER();
 558
 559	/* HW expects these in little endian so we reverse the byte order
 560	 * from network order (big endian) to little endian
 561	 */
 562	rar_low = ((u32) addr[0] |
 563		   ((u32)addr[1] << 8) |
 564		   ((u32)addr[2] << 16) |
 565		   ((u32)addr[3] << 24));
 566
 567	rar_high = ((u32) addr[4] |
 568			((u32)addr[5] << 8) |
 569			IXGB_RAH_AV);
 570
 571	IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
 572	IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
 573}
 574
 575/******************************************************************************
 576 * Writes a value to the specified offset in the VLAN filter table.
 577 *
 578 * hw - Struct containing variables accessed by shared code
 579 * offset - Offset in VLAN filter table to write
 580 * value - Value to write into VLAN filter table
 581 *****************************************************************************/
 582void
 583ixgb_write_vfta(struct ixgb_hw *hw,
 584		 u32 offset,
 585		 u32 value)
 586{
 587	IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
 588}
 589
 590/******************************************************************************
 591 * Clears the VLAN filter table
 592 *
 593 * hw - Struct containing variables accessed by shared code
 594 *****************************************************************************/
 595static void
 596ixgb_clear_vfta(struct ixgb_hw *hw)
 597{
 598	u32 offset;
 599
 600	for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
 601		IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
 602}
 603
 604/******************************************************************************
 605 * Configures the flow control settings based on SW configuration.
 606 *
 607 * hw - Struct containing variables accessed by shared code
 608 *****************************************************************************/
 609
 610static bool
 611ixgb_setup_fc(struct ixgb_hw *hw)
 612{
 613	u32 ctrl_reg;
 614	u32 pap_reg = 0;   /* by default, assume no pause time */
 615	bool status = true;
 616
 617	ENTER();
 618
 619	/* Get the current control reg 0 settings */
 620	ctrl_reg = IXGB_READ_REG(hw, CTRL0);
 621
 622	/* Clear the Receive Pause Enable and Transmit Pause Enable bits */
 623	ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
 624
 625	/* The possible values of the "flow_control" parameter are:
 626	 *      0:  Flow control is completely disabled
 627	 *      1:  Rx flow control is enabled (we can receive pause frames
 628	 *          but not send pause frames).
 629	 *      2:  Tx flow control is enabled (we can send pause frames
 630	 *          but we do not support receiving pause frames).
 631	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
 632	 *  other:  Invalid.
 633	 */
 634	switch (hw->fc.type) {
 635	case ixgb_fc_none:	/* 0 */
 636		/* Set CMDC bit to disable Rx Flow control */
 637		ctrl_reg |= (IXGB_CTRL0_CMDC);
 638		break;
 639	case ixgb_fc_rx_pause:	/* 1 */
 640		/* RX Flow control is enabled, and TX Flow control is
 641		 * disabled.
 642		 */
 643		ctrl_reg |= (IXGB_CTRL0_RPE);
 644		break;
 645	case ixgb_fc_tx_pause:	/* 2 */
 646		/* TX Flow control is enabled, and RX Flow control is
 647		 * disabled, by a software over-ride.
 648		 */
 649		ctrl_reg |= (IXGB_CTRL0_TPE);
 650		pap_reg = hw->fc.pause_time;
 651		break;
 652	case ixgb_fc_full:	/* 3 */
 653		/* Flow control (both RX and TX) is enabled by a software
 654		 * over-ride.
 655		 */
 656		ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
 657		pap_reg = hw->fc.pause_time;
 658		break;
 659	default:
 660		/* We should never get here.  The value should be 0-3. */
 661		pr_debug("Flow control param set incorrectly\n");
 662		ASSERT(0);
 663		break;
 664	}
 665
 666	/* Write the new settings */
 667	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
 668
 669	if (pap_reg != 0)
 670		IXGB_WRITE_REG(hw, PAP, pap_reg);
 671
 672	/* Set the flow control receive threshold registers.  Normally,
 673	 * these registers will be set to a default threshold that may be
 674	 * adjusted later by the driver's runtime code.  However, if the
 675	 * ability to transmit pause frames in not enabled, then these
 676	 * registers will be set to 0.
 677	 */
 678	if (!(hw->fc.type & ixgb_fc_tx_pause)) {
 679		IXGB_WRITE_REG(hw, FCRTL, 0);
 680		IXGB_WRITE_REG(hw, FCRTH, 0);
 681	} else {
 682	   /* We need to set up the Receive Threshold high and low water
 683	    * marks as well as (optionally) enabling the transmission of XON
 684	    * frames. */
 685		if (hw->fc.send_xon) {
 686			IXGB_WRITE_REG(hw, FCRTL,
 687				(hw->fc.low_water | IXGB_FCRTL_XONE));
 688		} else {
 689			IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
 690		}
 691		IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
 692	}
 693	return status;
 694}
 695
 696/******************************************************************************
 697 * Reads a word from a device over the Management Data Interface (MDI) bus.
 698 * This interface is used to manage Physical layer devices.
 699 *
 700 * hw          - Struct containing variables accessed by hw code
 701 * reg_address - Offset of device register being read.
 702 * phy_address - Address of device on MDI.
 703 *
 704 * Returns:  Data word (16 bits) from MDI device.
 705 *
 706 * The 82597EX has support for several MDI access methods.  This routine
 707 * uses the new protocol MDI Single Command and Address Operation.
 708 * This requires that first an address cycle command is sent, followed by a
 709 * read command.
 710 *****************************************************************************/
 711static u16
 712ixgb_read_phy_reg(struct ixgb_hw *hw,
 713		u32 reg_address,
 714		u32 phy_address,
 715		u32 device_type)
 716{
 717	u32 i;
 718	u32 data;
 719	u32 command = 0;
 720
 721	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
 722	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
 723	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
 724
 725	/* Setup and write the address cycle command */
 726	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
 727		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
 728		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
 729		   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
 730
 731	IXGB_WRITE_REG(hw, MSCA, command);
 732
 733    /**************************************************************
 734    ** Check every 10 usec to see if the address cycle completed
 735    ** The COMMAND bit will clear when the operation is complete.
 736    ** This may take as long as 64 usecs (we'll wait 100 usecs max)
 737    ** from the CPU Write to the Ready bit assertion.
 738    **************************************************************/
 739
 740	for (i = 0; i < 10; i++)
 741	{
 742		udelay(10);
 743
 744		command = IXGB_READ_REG(hw, MSCA);
 745
 746		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
 747			break;
 748	}
 749
 750	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
 751
 752	/* Address cycle complete, setup and write the read command */
 753	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
 754		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
 755		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
 756		   (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
 757
 758	IXGB_WRITE_REG(hw, MSCA, command);
 759
 760    /**************************************************************
 761    ** Check every 10 usec to see if the read command completed
 762    ** The COMMAND bit will clear when the operation is complete.
 763    ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
 764    ** from the CPU Write to the Ready bit assertion.
 765    **************************************************************/
 766
 767	for (i = 0; i < 10; i++)
 768	{
 769		udelay(10);
 770
 771		command = IXGB_READ_REG(hw, MSCA);
 772
 773		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
 774			break;
 775	}
 776
 777	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
 778
 779	/* Operation is complete, get the data from the MDIO Read/Write Data
 780	 * register and return.
 781	 */
 782	data = IXGB_READ_REG(hw, MSRWD);
 783	data >>= IXGB_MSRWD_READ_DATA_SHIFT;
 784	return((u16) data);
 785}
 786
 787/******************************************************************************
 788 * Writes a word to a device over the Management Data Interface (MDI) bus.
 789 * This interface is used to manage Physical layer devices.
 790 *
 791 * hw          - Struct containing variables accessed by hw code
 792 * reg_address - Offset of device register being read.
 793 * phy_address - Address of device on MDI.
 794 * device_type - Also known as the Device ID or DID.
 795 * data        - 16-bit value to be written
 796 *
 797 * Returns:  void.
 798 *
 799 * The 82597EX has support for several MDI access methods.  This routine
 800 * uses the new protocol MDI Single Command and Address Operation.
 801 * This requires that first an address cycle command is sent, followed by a
 802 * write command.
 803 *****************************************************************************/
 804static void
 805ixgb_write_phy_reg(struct ixgb_hw *hw,
 806			u32 reg_address,
 807			u32 phy_address,
 808			u32 device_type,
 809			u16 data)
 810{
 811	u32 i;
 812	u32 command = 0;
 813
 814	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
 815	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
 816	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
 817
 818	/* Put the data in the MDIO Read/Write Data register */
 819	IXGB_WRITE_REG(hw, MSRWD, (u32)data);
 820
 821	/* Setup and write the address cycle command */
 822	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
 823			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
 824			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
 825			   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
 826
 827	IXGB_WRITE_REG(hw, MSCA, command);
 828
 829	/**************************************************************
 830	** Check every 10 usec to see if the address cycle completed
 831	** The COMMAND bit will clear when the operation is complete.
 832	** This may take as long as 64 usecs (we'll wait 100 usecs max)
 833	** from the CPU Write to the Ready bit assertion.
 834	**************************************************************/
 835
 836	for (i = 0; i < 10; i++)
 837	{
 838		udelay(10);
 839
 840		command = IXGB_READ_REG(hw, MSCA);
 841
 842		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
 843			break;
 844	}
 845
 846	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
 847
 848	/* Address cycle complete, setup and write the write command */
 849	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
 850			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
 851			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
 852			   (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
 853
 854	IXGB_WRITE_REG(hw, MSCA, command);
 855
 856	/**************************************************************
 857	** Check every 10 usec to see if the read command completed
 858	** The COMMAND bit will clear when the operation is complete.
 859	** The write may take as long as 64 usecs (we'll wait 100 usecs max)
 860	** from the CPU Write to the Ready bit assertion.
 861	**************************************************************/
 862
 863	for (i = 0; i < 10; i++)
 864	{
 865		udelay(10);
 866
 867		command = IXGB_READ_REG(hw, MSCA);
 868
 869		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
 870			break;
 871	}
 872
 873	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
 874
 875	/* Operation is complete, return. */
 876}
 877
 878/******************************************************************************
 879 * Checks to see if the link status of the hardware has changed.
 880 *
 881 * hw - Struct containing variables accessed by hw code
 882 *
 883 * Called by any function that needs to check the link status of the adapter.
 884 *****************************************************************************/
 885void
 886ixgb_check_for_link(struct ixgb_hw *hw)
 887{
 888	u32 status_reg;
 889	u32 xpcss_reg;
 890
 891	ENTER();
 892
 893	xpcss_reg = IXGB_READ_REG(hw, XPCSS);
 894	status_reg = IXGB_READ_REG(hw, STATUS);
 895
 896	if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
 897	    (status_reg & IXGB_STATUS_LU)) {
 898		hw->link_up = true;
 899	} else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
 900		   (status_reg & IXGB_STATUS_LU)) {
 901		pr_debug("XPCSS Not Aligned while Status:LU is set\n");
 902		hw->link_up = ixgb_link_reset(hw);
 903	} else {
 904		/*
 905		 * 82597EX errata.  Since the lane deskew problem may prevent
 906		 * link, reset the link before reporting link down.
 907		 */
 908		hw->link_up = ixgb_link_reset(hw);
 909	}
 910	/*  Anything else for 10 Gig?? */
 911}
 912
 913/******************************************************************************
 914 * Check for a bad link condition that may have occurred.
 915 * The indication is that the RFC / LFC registers may be incrementing
 916 * continually.  A full adapter reset is required to recover.
 917 *
 918 * hw - Struct containing variables accessed by hw code
 919 *
 920 * Called by any function that needs to check the link status of the adapter.
 921 *****************************************************************************/
 922bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
 923{
 924	u32 newLFC, newRFC;
 925	bool bad_link_returncode = false;
 926
 927	if (hw->phy_type == ixgb_phy_type_txn17401) {
 928		newLFC = IXGB_READ_REG(hw, LFC);
 929		newRFC = IXGB_READ_REG(hw, RFC);
 930		if ((hw->lastLFC + 250 < newLFC)
 931		    || (hw->lastRFC + 250 < newRFC)) {
 932			pr_debug("BAD LINK! too many LFC/RFC since last check\n");
 933			bad_link_returncode = true;
 934		}
 935		hw->lastLFC = newLFC;
 936		hw->lastRFC = newRFC;
 937	}
 938
 939	return bad_link_returncode;
 940}
 941
 942/******************************************************************************
 943 * Clears all hardware statistics counters.
 944 *
 945 * hw - Struct containing variables accessed by shared code
 946 *****************************************************************************/
 947static void
 948ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
 949{
 950	ENTER();
 951
 952	/* if we are stopped or resetting exit gracefully */
 953	if (hw->adapter_stopped) {
 954		pr_debug("Exiting because the adapter is stopped!!!\n");
 955		return;
 956	}
 957
 958	IXGB_READ_REG(hw, TPRL);
 959	IXGB_READ_REG(hw, TPRH);
 960	IXGB_READ_REG(hw, GPRCL);
 961	IXGB_READ_REG(hw, GPRCH);
 962	IXGB_READ_REG(hw, BPRCL);
 963	IXGB_READ_REG(hw, BPRCH);
 964	IXGB_READ_REG(hw, MPRCL);
 965	IXGB_READ_REG(hw, MPRCH);
 966	IXGB_READ_REG(hw, UPRCL);
 967	IXGB_READ_REG(hw, UPRCH);
 968	IXGB_READ_REG(hw, VPRCL);
 969	IXGB_READ_REG(hw, VPRCH);
 970	IXGB_READ_REG(hw, JPRCL);
 971	IXGB_READ_REG(hw, JPRCH);
 972	IXGB_READ_REG(hw, GORCL);
 973	IXGB_READ_REG(hw, GORCH);
 974	IXGB_READ_REG(hw, TORL);
 975	IXGB_READ_REG(hw, TORH);
 976	IXGB_READ_REG(hw, RNBC);
 977	IXGB_READ_REG(hw, RUC);
 978	IXGB_READ_REG(hw, ROC);
 979	IXGB_READ_REG(hw, RLEC);
 980	IXGB_READ_REG(hw, CRCERRS);
 981	IXGB_READ_REG(hw, ICBC);
 982	IXGB_READ_REG(hw, ECBC);
 983	IXGB_READ_REG(hw, MPC);
 984	IXGB_READ_REG(hw, TPTL);
 985	IXGB_READ_REG(hw, TPTH);
 986	IXGB_READ_REG(hw, GPTCL);
 987	IXGB_READ_REG(hw, GPTCH);
 988	IXGB_READ_REG(hw, BPTCL);
 989	IXGB_READ_REG(hw, BPTCH);
 990	IXGB_READ_REG(hw, MPTCL);
 991	IXGB_READ_REG(hw, MPTCH);
 992	IXGB_READ_REG(hw, UPTCL);
 993	IXGB_READ_REG(hw, UPTCH);
 994	IXGB_READ_REG(hw, VPTCL);
 995	IXGB_READ_REG(hw, VPTCH);
 996	IXGB_READ_REG(hw, JPTCL);
 997	IXGB_READ_REG(hw, JPTCH);
 998	IXGB_READ_REG(hw, GOTCL);
 999	IXGB_READ_REG(hw, GOTCH);
1000	IXGB_READ_REG(hw, TOTL);
1001	IXGB_READ_REG(hw, TOTH);
1002	IXGB_READ_REG(hw, DC);
1003	IXGB_READ_REG(hw, PLT64C);
1004	IXGB_READ_REG(hw, TSCTC);
1005	IXGB_READ_REG(hw, TSCTFC);
1006	IXGB_READ_REG(hw, IBIC);
1007	IXGB_READ_REG(hw, RFC);
1008	IXGB_READ_REG(hw, LFC);
1009	IXGB_READ_REG(hw, PFRC);
1010	IXGB_READ_REG(hw, PFTC);
1011	IXGB_READ_REG(hw, MCFRC);
1012	IXGB_READ_REG(hw, MCFTC);
1013	IXGB_READ_REG(hw, XONRXC);
1014	IXGB_READ_REG(hw, XONTXC);
1015	IXGB_READ_REG(hw, XOFFRXC);
1016	IXGB_READ_REG(hw, XOFFTXC);
1017	IXGB_READ_REG(hw, RJC);
1018}
1019
1020/******************************************************************************
1021 * Turns on the software controllable LED
1022 *
1023 * hw - Struct containing variables accessed by shared code
1024 *****************************************************************************/
1025void
1026ixgb_led_on(struct ixgb_hw *hw)
1027{
1028	u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1029
1030	/* To turn on the LED, clear software-definable pin 0 (SDP0). */
1031	ctrl0_reg &= ~IXGB_CTRL0_SDP0;
1032	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1033}
1034
1035/******************************************************************************
1036 * Turns off the software controllable LED
1037 *
1038 * hw - Struct containing variables accessed by shared code
1039 *****************************************************************************/
1040void
1041ixgb_led_off(struct ixgb_hw *hw)
1042{
1043	u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1044
1045	/* To turn off the LED, set software-definable pin 0 (SDP0). */
1046	ctrl0_reg |= IXGB_CTRL0_SDP0;
1047	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1048}
1049
1050/******************************************************************************
1051 * Gets the current PCI bus type, speed, and width of the hardware
1052 *
1053 * hw - Struct containing variables accessed by shared code
1054 *****************************************************************************/
1055static void
1056ixgb_get_bus_info(struct ixgb_hw *hw)
1057{
1058	u32 status_reg;
1059
1060	status_reg = IXGB_READ_REG(hw, STATUS);
1061
1062	hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
1063		ixgb_bus_type_pcix : ixgb_bus_type_pci;
1064
1065	if (hw->bus.type == ixgb_bus_type_pci) {
1066		hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
1067			ixgb_bus_speed_66 : ixgb_bus_speed_33;
1068	} else {
1069		switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
1070		case IXGB_STATUS_PCIX_SPD_66:
1071			hw->bus.speed = ixgb_bus_speed_66;
1072			break;
1073		case IXGB_STATUS_PCIX_SPD_100:
1074			hw->bus.speed = ixgb_bus_speed_100;
1075			break;
1076		case IXGB_STATUS_PCIX_SPD_133:
1077			hw->bus.speed = ixgb_bus_speed_133;
1078			break;
1079		default:
1080			hw->bus.speed = ixgb_bus_speed_reserved;
1081			break;
1082		}
1083	}
1084
1085	hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
1086		ixgb_bus_width_64 : ixgb_bus_width_32;
1087}
1088
1089/******************************************************************************
1090 * Tests a MAC address to ensure it is a valid Individual Address
1091 *
1092 * mac_addr - pointer to MAC address.
1093 *
1094 *****************************************************************************/
1095static bool
1096mac_addr_valid(u8 *mac_addr)
1097{
1098	bool is_valid = true;
1099	ENTER();
1100
1101	/* Make sure it is not a multicast address */
1102	if (is_multicast_ether_addr(mac_addr)) {
1103		pr_debug("MAC address is multicast\n");
1104		is_valid = false;
1105	}
1106	/* Not a broadcast address */
1107	else if (is_broadcast_ether_addr(mac_addr)) {
1108		pr_debug("MAC address is broadcast\n");
1109		is_valid = false;
1110	}
1111	/* Reject the zero address */
1112	else if (is_zero_ether_addr(mac_addr)) {
1113		pr_debug("MAC address is all zeros\n");
1114		is_valid = false;
1115	}
1116	return is_valid;
1117}
1118
1119/******************************************************************************
1120 * Resets the 10GbE link.  Waits the settle time and returns the state of
1121 * the link.
1122 *
1123 * hw - Struct containing variables accessed by shared code
1124 *****************************************************************************/
1125static bool
1126ixgb_link_reset(struct ixgb_hw *hw)
1127{
1128	bool link_status = false;
1129	u8 wait_retries = MAX_RESET_ITERATIONS;
1130	u8 lrst_retries = MAX_RESET_ITERATIONS;
1131
1132	do {
1133		/* Reset the link */
1134		IXGB_WRITE_REG(hw, CTRL0,
1135			       IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
1136
1137		/* Wait for link-up and lane re-alignment */
1138		do {
1139			udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
1140			link_status =
1141			    ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
1142			     && (IXGB_READ_REG(hw, XPCSS) &
1143				 IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
1144		} while (!link_status && --wait_retries);
1145
1146	} while (!link_status && --lrst_retries);
1147
1148	return link_status;
1149}
1150
1151/******************************************************************************
1152 * Resets the 10GbE optics module.
1153 *
1154 * hw - Struct containing variables accessed by shared code
1155 *****************************************************************************/
1156static void
1157ixgb_optics_reset(struct ixgb_hw *hw)
1158{
1159	if (hw->phy_type == ixgb_phy_type_txn17401) {
1160		ixgb_write_phy_reg(hw,
1161				   MDIO_CTRL1,
1162				   IXGB_PHY_ADDRESS,
1163				   MDIO_MMD_PMAPMD,
1164				   MDIO_CTRL1_RESET);
1165
1166		ixgb_read_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD);
1167	}
1168}
1169
1170/******************************************************************************
1171 * Resets the 10GbE optics module for Sun variant NIC.
1172 *
1173 * hw - Struct containing variables accessed by shared code
1174 *****************************************************************************/
1175
1176#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG         0xC803
1177#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL     0x0164
1178#define   IXGB_BCM8704_USER_CTRL_REG                0xC800
1179#define   IXGB_BCM8704_USER_CTRL_REG_VAL            0x7FBF
1180#define   IXGB_BCM8704_USER_DEV3_ADDR               0x0003
1181#define   IXGB_SUN_PHY_ADDRESS                      0x0000
1182#define   IXGB_SUN_PHY_RESET_DELAY                     305
1183
1184static void
1185ixgb_optics_reset_bcm(struct ixgb_hw *hw)
1186{
1187	u32 ctrl = IXGB_READ_REG(hw, CTRL0);
1188	ctrl &= ~IXGB_CTRL0_SDP2;
1189	ctrl |= IXGB_CTRL0_SDP3;
1190	IXGB_WRITE_REG(hw, CTRL0, ctrl);
1191	IXGB_WRITE_FLUSH(hw);
1192
1193	/* SerDes needs extra delay */
1194	msleep(IXGB_SUN_PHY_RESET_DELAY);
1195
1196	/* Broadcom 7408L configuration */
1197	/* Reference clock config */
1198	ixgb_write_phy_reg(hw,
1199			   IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1200			   IXGB_SUN_PHY_ADDRESS,
1201			   IXGB_BCM8704_USER_DEV3_ADDR,
1202			   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
1203	/*  we must read the registers twice */
1204	ixgb_read_phy_reg(hw,
1205			  IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1206			  IXGB_SUN_PHY_ADDRESS,
1207			  IXGB_BCM8704_USER_DEV3_ADDR);
1208	ixgb_read_phy_reg(hw,
1209			  IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1210			  IXGB_SUN_PHY_ADDRESS,
1211			  IXGB_BCM8704_USER_DEV3_ADDR);
1212
1213	ixgb_write_phy_reg(hw,
1214			   IXGB_BCM8704_USER_CTRL_REG,
1215			   IXGB_SUN_PHY_ADDRESS,
1216			   IXGB_BCM8704_USER_DEV3_ADDR,
1217			   IXGB_BCM8704_USER_CTRL_REG_VAL);
1218	ixgb_read_phy_reg(hw,
1219			  IXGB_BCM8704_USER_CTRL_REG,
1220			  IXGB_SUN_PHY_ADDRESS,
1221			  IXGB_BCM8704_USER_DEV3_ADDR);
1222	ixgb_read_phy_reg(hw,
1223			  IXGB_BCM8704_USER_CTRL_REG,
1224			  IXGB_SUN_PHY_ADDRESS,
1225			  IXGB_BCM8704_USER_DEV3_ADDR);
1226
1227	/* SerDes needs extra delay */
1228	msleep(IXGB_SUN_PHY_RESET_DELAY);
1229}