Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ8795 switch driver
   4 *
   5 * Copyright (C) 2017 Microchip Technology Inc.
   6 *	Tristram Ha <Tristram.Ha@microchip.com>
   7 */
   8
   9#include <linux/bitfield.h>
  10#include <linux/delay.h>
  11#include <linux/export.h>
  12#include <linux/gpio.h>
  13#include <linux/if_vlan.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/platform_data/microchip-ksz.h>
  17#include <linux/phy.h>
  18#include <linux/etherdevice.h>
  19#include <linux/if_bridge.h>
  20#include <linux/micrel_phy.h>
  21#include <net/dsa.h>
  22#include <net/switchdev.h>
  23#include <linux/phylink.h>
  24
  25#include "ksz_common.h"
  26#include "ksz8795_reg.h"
  27#include "ksz8.h"
  28
  29static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  30{
  31	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
  32}
  33
  34static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  35			 bool set)
  36{
  37	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
  38			   bits, set ? bits : 0);
  39}
  40
  41static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
  42{
  43	const u16 *regs;
  44	u16 ctrl_addr;
  45	int ret = 0;
  46
  47	regs = dev->info->regs;
  48
  49	mutex_lock(&dev->alu_mutex);
  50
  51	ctrl_addr = IND_ACC_TABLE(table) | addr;
  52	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
  53	if (!ret)
  54		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
  55
  56	mutex_unlock(&dev->alu_mutex);
  57
  58	return ret;
  59}
  60
  61int ksz8_reset_switch(struct ksz_device *dev)
  62{
  63	if (ksz_is_ksz88x3(dev)) {
  64		/* reset switch */
  65		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
  66			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
  67		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
  68			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
  69	} else {
  70		/* reset switch */
  71		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
  72			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
  73		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
  74	}
  75
  76	return 0;
  77}
  78
  79static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
  80{
  81	u8 ctrl2 = 0;
  82
  83	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
  84		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
  85	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
  86		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
  87
  88	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
  89			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
  90}
  91
  92static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
  93{
  94	u8 ctrl1 = 0, ctrl2 = 0;
  95	int ret;
  96
  97	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
  98		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
  99	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
 100		ctrl1 |= SW_HUGE_PACKET;
 101
 102	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
 103	if (ret)
 104		return ret;
 105
 106	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
 107}
 108
 109int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
 110{
 111	u16 frame_size;
 112
 113	if (!dsa_is_cpu_port(dev->ds, port))
 114		return 0;
 115
 116	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
 117
 118	switch (dev->chip_id) {
 119	case KSZ8795_CHIP_ID:
 120	case KSZ8794_CHIP_ID:
 121	case KSZ8765_CHIP_ID:
 122		return ksz8795_change_mtu(dev, frame_size);
 123	case KSZ8830_CHIP_ID:
 124		return ksz8863_change_mtu(dev, frame_size);
 125	}
 126
 127	return -EOPNOTSUPP;
 128}
 129
 130static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
 131{
 132	u8 hi, lo;
 133
 134	/* Number of queues can only be 1, 2, or 4. */
 135	switch (queue) {
 136	case 4:
 137	case 3:
 138		queue = PORT_QUEUE_SPLIT_4;
 139		break;
 140	case 2:
 141		queue = PORT_QUEUE_SPLIT_2;
 142		break;
 143	default:
 144		queue = PORT_QUEUE_SPLIT_1;
 145	}
 146	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
 147	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
 148	lo &= ~PORT_QUEUE_SPLIT_L;
 149	if (queue & PORT_QUEUE_SPLIT_2)
 150		lo |= PORT_QUEUE_SPLIT_L;
 151	hi &= ~PORT_QUEUE_SPLIT_H;
 152	if (queue & PORT_QUEUE_SPLIT_4)
 153		hi |= PORT_QUEUE_SPLIT_H;
 154	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
 155	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
 156
 157	/* Default is port based for egress rate limit. */
 158	if (queue != PORT_QUEUE_SPLIT_1)
 159		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
 160			true);
 161}
 162
 163void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
 164{
 165	const u32 *masks;
 166	const u16 *regs;
 167	u16 ctrl_addr;
 168	u32 data;
 169	u8 check;
 170	int loop;
 171
 172	masks = dev->info->masks;
 173	regs = dev->info->regs;
 174
 175	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
 176	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
 177
 178	mutex_lock(&dev->alu_mutex);
 179	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 180
 181	/* It is almost guaranteed to always read the valid bit because of
 182	 * slow SPI speed.
 183	 */
 184	for (loop = 2; loop > 0; loop--) {
 185		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
 186
 187		if (check & masks[MIB_COUNTER_VALID]) {
 188			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
 189			if (check & masks[MIB_COUNTER_OVERFLOW])
 190				*cnt += MIB_COUNTER_VALUE + 1;
 191			*cnt += data & MIB_COUNTER_VALUE;
 192			break;
 193		}
 194	}
 195	mutex_unlock(&dev->alu_mutex);
 196}
 197
 198static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 199			      u64 *dropped, u64 *cnt)
 200{
 201	const u32 *masks;
 202	const u16 *regs;
 203	u16 ctrl_addr;
 204	u32 data;
 205	u8 check;
 206	int loop;
 207
 208	masks = dev->info->masks;
 209	regs = dev->info->regs;
 210
 211	addr -= dev->info->reg_mib_cnt;
 212	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
 213	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
 214	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
 215
 216	mutex_lock(&dev->alu_mutex);
 217	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 218
 219	/* It is almost guaranteed to always read the valid bit because of
 220	 * slow SPI speed.
 221	 */
 222	for (loop = 2; loop > 0; loop--) {
 223		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
 224
 225		if (check & masks[MIB_COUNTER_VALID]) {
 226			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
 227			if (addr < 2) {
 228				u64 total;
 229
 230				total = check & MIB_TOTAL_BYTES_H;
 231				total <<= 32;
 232				*cnt += total;
 233				*cnt += data;
 234				if (check & masks[MIB_COUNTER_OVERFLOW]) {
 235					total = MIB_TOTAL_BYTES_H + 1;
 236					total <<= 32;
 237					*cnt += total;
 238				}
 239			} else {
 240				if (check & masks[MIB_COUNTER_OVERFLOW])
 241					*cnt += MIB_PACKET_DROPPED + 1;
 242				*cnt += data & MIB_PACKET_DROPPED;
 243			}
 244			break;
 245		}
 246	}
 247	mutex_unlock(&dev->alu_mutex);
 248}
 249
 250static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 251			      u64 *dropped, u64 *cnt)
 252{
 253	u32 *last = (u32 *)dropped;
 254	const u16 *regs;
 255	u16 ctrl_addr;
 256	u32 data;
 257	u32 cur;
 258
 259	regs = dev->info->regs;
 260
 261	addr -= dev->info->reg_mib_cnt;
 262	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
 263			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
 264	ctrl_addr += port;
 265	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
 266
 267	mutex_lock(&dev->alu_mutex);
 268	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 269	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
 270	mutex_unlock(&dev->alu_mutex);
 271
 272	data &= MIB_PACKET_DROPPED;
 273	cur = last[addr];
 274	if (data != cur) {
 275		last[addr] = data;
 276		if (data < cur)
 277			data += MIB_PACKET_DROPPED + 1;
 278		data -= cur;
 279		*cnt += data;
 280	}
 281}
 282
 283void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 284		    u64 *dropped, u64 *cnt)
 285{
 286	if (ksz_is_ksz88x3(dev))
 287		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
 288	else
 289		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
 290}
 291
 292void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 293{
 294	if (ksz_is_ksz88x3(dev))
 295		return;
 296
 297	/* enable the port for flush/freeze function */
 298	if (freeze)
 299		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
 300	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
 301
 302	/* disable the port after freeze is done */
 303	if (!freeze)
 304		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
 305}
 306
 307void ksz8_port_init_cnt(struct ksz_device *dev, int port)
 308{
 309	struct ksz_port_mib *mib = &dev->ports[port].mib;
 310	u64 *dropped;
 311
 312	if (!ksz_is_ksz88x3(dev)) {
 313		/* flush all enabled port MIB counters */
 314		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
 315		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
 316		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
 317	}
 318
 319	mib->cnt_ptr = 0;
 320
 321	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
 322	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
 323		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
 324					&mib->counters[mib->cnt_ptr]);
 325		++mib->cnt_ptr;
 326	}
 327
 328	/* last one in storage */
 329	dropped = &mib->counters[dev->info->mib_cnt];
 330
 331	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
 332	while (mib->cnt_ptr < dev->info->mib_cnt) {
 333		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
 334					dropped, &mib->counters[mib->cnt_ptr]);
 335		++mib->cnt_ptr;
 336	}
 337}
 338
 339static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
 340{
 341	const u16 *regs;
 342	u16 ctrl_addr;
 343
 344	regs = dev->info->regs;
 345
 346	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
 347
 348	mutex_lock(&dev->alu_mutex);
 349	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 350	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
 351	mutex_unlock(&dev->alu_mutex);
 352}
 353
 354static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
 355{
 356	const u16 *regs;
 357	u16 ctrl_addr;
 358
 359	regs = dev->info->regs;
 360
 361	ctrl_addr = IND_ACC_TABLE(table) | addr;
 362
 363	mutex_lock(&dev->alu_mutex);
 364	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
 365	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 366	mutex_unlock(&dev->alu_mutex);
 367}
 368
 369static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
 370{
 371	int timeout = 100;
 372	const u32 *masks;
 373	const u16 *regs;
 374
 375	masks = dev->info->masks;
 376	regs = dev->info->regs;
 377
 378	do {
 379		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
 380		timeout--;
 381	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
 382
 383	/* Entry is not ready for accessing. */
 384	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
 385		return -EAGAIN;
 386	/* Entry is ready for accessing. */
 387	} else {
 388		ksz_read8(dev, regs[REG_IND_DATA_8], data);
 389
 390		/* There is no valid entry in the table. */
 391		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
 392			return -ENXIO;
 393	}
 394	return 0;
 395}
 396
 397int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
 398			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
 399{
 400	u32 data_hi, data_lo;
 401	const u8 *shifts;
 402	const u32 *masks;
 403	const u16 *regs;
 404	u16 ctrl_addr;
 405	u8 data;
 406	int rc;
 407
 408	shifts = dev->info->shifts;
 409	masks = dev->info->masks;
 410	regs = dev->info->regs;
 411
 412	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
 413
 414	mutex_lock(&dev->alu_mutex);
 415	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 416
 417	rc = ksz8_valid_dyn_entry(dev, &data);
 418	if (rc == -EAGAIN) {
 419		if (addr == 0)
 420			*entries = 0;
 421	} else if (rc == -ENXIO) {
 422		*entries = 0;
 423	/* At least one valid entry in the table. */
 424	} else {
 425		u64 buf = 0;
 426		int cnt;
 427
 428		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
 429		data_hi = (u32)(buf >> 32);
 430		data_lo = (u32)buf;
 431
 432		/* Check out how many valid entry in the table. */
 433		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
 434		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
 435		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
 436			shifts[DYNAMIC_MAC_ENTRIES];
 437		*entries = cnt + 1;
 438
 439		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
 440			shifts[DYNAMIC_MAC_FID];
 441		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
 442			shifts[DYNAMIC_MAC_SRC_PORT];
 443		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
 444			shifts[DYNAMIC_MAC_TIMESTAMP];
 445
 446		mac_addr[5] = (u8)data_lo;
 447		mac_addr[4] = (u8)(data_lo >> 8);
 448		mac_addr[3] = (u8)(data_lo >> 16);
 449		mac_addr[2] = (u8)(data_lo >> 24);
 450
 451		mac_addr[1] = (u8)data_hi;
 452		mac_addr[0] = (u8)(data_hi >> 8);
 453		rc = 0;
 454	}
 455	mutex_unlock(&dev->alu_mutex);
 456
 457	return rc;
 458}
 459
 460int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
 461			 struct alu_struct *alu)
 462{
 463	u32 data_hi, data_lo;
 464	const u8 *shifts;
 465	const u32 *masks;
 466	u64 data;
 467
 468	shifts = dev->info->shifts;
 469	masks = dev->info->masks;
 470
 471	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
 472	data_hi = data >> 32;
 473	data_lo = (u32)data;
 474	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
 475			masks[STATIC_MAC_TABLE_OVERRIDE])) {
 476		alu->mac[5] = (u8)data_lo;
 477		alu->mac[4] = (u8)(data_lo >> 8);
 478		alu->mac[3] = (u8)(data_lo >> 16);
 479		alu->mac[2] = (u8)(data_lo >> 24);
 480		alu->mac[1] = (u8)data_hi;
 481		alu->mac[0] = (u8)(data_hi >> 8);
 482		alu->port_forward =
 483			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
 484				shifts[STATIC_MAC_FWD_PORTS];
 485		alu->is_override =
 486			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
 487		data_hi >>= 1;
 488		alu->is_static = true;
 489		alu->is_use_fid =
 490			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
 491		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
 492				shifts[STATIC_MAC_FID];
 493		return 0;
 494	}
 495	return -ENXIO;
 496}
 497
 498void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
 499			  struct alu_struct *alu)
 500{
 501	u32 data_hi, data_lo;
 502	const u8 *shifts;
 503	const u32 *masks;
 504	u64 data;
 505
 506	shifts = dev->info->shifts;
 507	masks = dev->info->masks;
 508
 509	data_lo = ((u32)alu->mac[2] << 24) |
 510		((u32)alu->mac[3] << 16) |
 511		((u32)alu->mac[4] << 8) | alu->mac[5];
 512	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
 513	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
 514
 515	if (alu->is_override)
 516		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
 517	if (alu->is_use_fid) {
 518		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
 519		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
 520	}
 521	if (alu->is_static)
 522		data_hi |= masks[STATIC_MAC_TABLE_VALID];
 523	else
 524		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
 525
 526	data = (u64)data_hi << 32 | data_lo;
 527	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
 528}
 529
 530static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
 531			   u8 *member, u8 *valid)
 532{
 533	const u8 *shifts;
 534	const u32 *masks;
 535
 536	shifts = dev->info->shifts;
 537	masks = dev->info->masks;
 538
 539	*fid = vlan & masks[VLAN_TABLE_FID];
 540	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
 541			shifts[VLAN_TABLE_MEMBERSHIP_S];
 542	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
 543}
 544
 545static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
 546			 u16 *vlan)
 547{
 548	const u8 *shifts;
 549	const u32 *masks;
 550
 551	shifts = dev->info->shifts;
 552	masks = dev->info->masks;
 553
 554	*vlan = fid;
 555	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
 556	if (valid)
 557		*vlan |= masks[VLAN_TABLE_VALID];
 558}
 559
 560static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
 561{
 562	const u8 *shifts;
 563	u64 data;
 564	int i;
 565
 566	shifts = dev->info->shifts;
 567
 568	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
 569	addr *= 4;
 570	for (i = 0; i < 4; i++) {
 571		dev->vlan_cache[addr + i].table[0] = (u16)data;
 572		data >>= shifts[VLAN_TABLE];
 573	}
 574}
 575
 576static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
 577{
 578	int index;
 579	u16 *data;
 580	u16 addr;
 581	u64 buf;
 582
 583	data = (u16 *)&buf;
 584	addr = vid / 4;
 585	index = vid & 3;
 586	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
 587	*vlan = data[index];
 588}
 589
 590static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
 591{
 592	int index;
 593	u16 *data;
 594	u16 addr;
 595	u64 buf;
 596
 597	data = (u16 *)&buf;
 598	addr = vid / 4;
 599	index = vid & 3;
 600	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
 601	data[index] = vlan;
 602	dev->vlan_cache[vid].table[0] = vlan;
 603	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
 604}
 605
 606int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
 607{
 608	u8 restart, speed, ctrl, link;
 609	int processed = true;
 610	const u16 *regs;
 611	u8 val1, val2;
 612	u16 data = 0;
 613	u8 p = phy;
 614	int ret;
 615
 616	regs = dev->info->regs;
 617
 618	switch (reg) {
 619	case MII_BMCR:
 620		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
 621		if (ret)
 622			return ret;
 623
 624		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
 625		if (ret)
 626			return ret;
 627
 628		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
 629		if (ret)
 630			return ret;
 631
 632		if (restart & PORT_PHY_LOOPBACK)
 633			data |= BMCR_LOOPBACK;
 634		if (ctrl & PORT_FORCE_100_MBIT)
 635			data |= BMCR_SPEED100;
 636		if (ksz_is_ksz88x3(dev)) {
 637			if ((ctrl & PORT_AUTO_NEG_ENABLE))
 638				data |= BMCR_ANENABLE;
 639		} else {
 640			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
 641				data |= BMCR_ANENABLE;
 642		}
 643		if (restart & PORT_POWER_DOWN)
 644			data |= BMCR_PDOWN;
 645		if (restart & PORT_AUTO_NEG_RESTART)
 646			data |= BMCR_ANRESTART;
 647		if (ctrl & PORT_FORCE_FULL_DUPLEX)
 648			data |= BMCR_FULLDPLX;
 649		if (speed & PORT_HP_MDIX)
 650			data |= KSZ886X_BMCR_HP_MDIX;
 651		if (restart & PORT_FORCE_MDIX)
 652			data |= KSZ886X_BMCR_FORCE_MDI;
 653		if (restart & PORT_AUTO_MDIX_DISABLE)
 654			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
 655		if (restart & PORT_TX_DISABLE)
 656			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
 657		if (restart & PORT_LED_OFF)
 658			data |= KSZ886X_BMCR_DISABLE_LED;
 659		break;
 660	case MII_BMSR:
 661		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
 662		if (ret)
 663			return ret;
 664
 665		data = BMSR_100FULL |
 666		       BMSR_100HALF |
 667		       BMSR_10FULL |
 668		       BMSR_10HALF |
 669		       BMSR_ANEGCAPABLE;
 670		if (link & PORT_AUTO_NEG_COMPLETE)
 671			data |= BMSR_ANEGCOMPLETE;
 672		if (link & PORT_STAT_LINK_GOOD)
 673			data |= BMSR_LSTATUS;
 674		break;
 675	case MII_PHYSID1:
 676		data = KSZ8795_ID_HI;
 677		break;
 678	case MII_PHYSID2:
 679		if (ksz_is_ksz88x3(dev))
 680			data = KSZ8863_ID_LO;
 681		else
 682			data = KSZ8795_ID_LO;
 683		break;
 684	case MII_ADVERTISE:
 685		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
 686		if (ret)
 687			return ret;
 688
 689		data = ADVERTISE_CSMA;
 690		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
 691			data |= ADVERTISE_PAUSE_CAP;
 692		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
 693			data |= ADVERTISE_100FULL;
 694		if (ctrl & PORT_AUTO_NEG_100BTX)
 695			data |= ADVERTISE_100HALF;
 696		if (ctrl & PORT_AUTO_NEG_10BT_FD)
 697			data |= ADVERTISE_10FULL;
 698		if (ctrl & PORT_AUTO_NEG_10BT)
 699			data |= ADVERTISE_10HALF;
 700		break;
 701	case MII_LPA:
 702		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
 703		if (ret)
 704			return ret;
 705
 706		data = LPA_SLCT;
 707		if (link & PORT_REMOTE_SYM_PAUSE)
 708			data |= LPA_PAUSE_CAP;
 709		if (link & PORT_REMOTE_100BTX_FD)
 710			data |= LPA_100FULL;
 711		if (link & PORT_REMOTE_100BTX)
 712			data |= LPA_100HALF;
 713		if (link & PORT_REMOTE_10BT_FD)
 714			data |= LPA_10FULL;
 715		if (link & PORT_REMOTE_10BT)
 716			data |= LPA_10HALF;
 717		if (data & ~LPA_SLCT)
 718			data |= LPA_LPACK;
 719		break;
 720	case PHY_REG_LINK_MD:
 721		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
 722		if (ret)
 723			return ret;
 724
 725		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
 726		if (ret)
 727			return ret;
 728
 729		if (val1 & PORT_START_CABLE_DIAG)
 730			data |= PHY_START_CABLE_DIAG;
 731
 732		if (val1 & PORT_CABLE_10M_SHORT)
 733			data |= PHY_CABLE_10M_SHORT;
 734
 735		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
 736				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
 737
 738		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
 739				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
 740				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
 741		break;
 742	case PHY_REG_PHY_CTRL:
 743		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
 744		if (ret)
 745			return ret;
 746
 747		if (link & PORT_MDIX_STATUS)
 748			data |= KSZ886X_CTRL_MDIX_STAT;
 749		break;
 750	default:
 751		processed = false;
 752		break;
 753	}
 754	if (processed)
 755		*val = data;
 756
 757	return 0;
 758}
 759
 760int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
 761{
 762	u8 restart, speed, ctrl, data;
 763	const u16 *regs;
 764	u8 p = phy;
 765	int ret;
 766
 767	regs = dev->info->regs;
 768
 769	switch (reg) {
 770	case MII_BMCR:
 771
 772		/* Do not support PHY reset function. */
 773		if (val & BMCR_RESET)
 774			break;
 775		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
 776		if (ret)
 777			return ret;
 778
 779		data = speed;
 780		if (val & KSZ886X_BMCR_HP_MDIX)
 781			data |= PORT_HP_MDIX;
 782		else
 783			data &= ~PORT_HP_MDIX;
 784
 785		if (data != speed) {
 786			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
 787			if (ret)
 788				return ret;
 789		}
 790
 791		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
 792		if (ret)
 793			return ret;
 794
 795		data = ctrl;
 796		if (ksz_is_ksz88x3(dev)) {
 797			if ((val & BMCR_ANENABLE))
 798				data |= PORT_AUTO_NEG_ENABLE;
 799			else
 800				data &= ~PORT_AUTO_NEG_ENABLE;
 801		} else {
 802			if (!(val & BMCR_ANENABLE))
 803				data |= PORT_AUTO_NEG_DISABLE;
 804			else
 805				data &= ~PORT_AUTO_NEG_DISABLE;
 806
 807			/* Fiber port does not support auto-negotiation. */
 808			if (dev->ports[p].fiber)
 809				data |= PORT_AUTO_NEG_DISABLE;
 810		}
 811
 812		if (val & BMCR_SPEED100)
 813			data |= PORT_FORCE_100_MBIT;
 814		else
 815			data &= ~PORT_FORCE_100_MBIT;
 816		if (val & BMCR_FULLDPLX)
 817			data |= PORT_FORCE_FULL_DUPLEX;
 818		else
 819			data &= ~PORT_FORCE_FULL_DUPLEX;
 820
 821		if (data != ctrl) {
 822			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
 823			if (ret)
 824				return ret;
 825		}
 826
 827		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
 828		if (ret)
 829			return ret;
 830
 831		data = restart;
 832		if (val & KSZ886X_BMCR_DISABLE_LED)
 833			data |= PORT_LED_OFF;
 834		else
 835			data &= ~PORT_LED_OFF;
 836		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
 837			data |= PORT_TX_DISABLE;
 838		else
 839			data &= ~PORT_TX_DISABLE;
 840		if (val & BMCR_ANRESTART)
 841			data |= PORT_AUTO_NEG_RESTART;
 842		else
 843			data &= ~(PORT_AUTO_NEG_RESTART);
 844		if (val & BMCR_PDOWN)
 845			data |= PORT_POWER_DOWN;
 846		else
 847			data &= ~PORT_POWER_DOWN;
 848		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
 849			data |= PORT_AUTO_MDIX_DISABLE;
 850		else
 851			data &= ~PORT_AUTO_MDIX_DISABLE;
 852		if (val & KSZ886X_BMCR_FORCE_MDI)
 853			data |= PORT_FORCE_MDIX;
 854		else
 855			data &= ~PORT_FORCE_MDIX;
 856		if (val & BMCR_LOOPBACK)
 857			data |= PORT_PHY_LOOPBACK;
 858		else
 859			data &= ~PORT_PHY_LOOPBACK;
 860
 861		if (data != restart) {
 862			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
 863					  data);
 864			if (ret)
 865				return ret;
 866		}
 867		break;
 868	case MII_ADVERTISE:
 869		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
 870		if (ret)
 871			return ret;
 872
 873		data = ctrl;
 874		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
 875			  PORT_AUTO_NEG_100BTX_FD |
 876			  PORT_AUTO_NEG_100BTX |
 877			  PORT_AUTO_NEG_10BT_FD |
 878			  PORT_AUTO_NEG_10BT);
 879		if (val & ADVERTISE_PAUSE_CAP)
 880			data |= PORT_AUTO_NEG_SYM_PAUSE;
 881		if (val & ADVERTISE_100FULL)
 882			data |= PORT_AUTO_NEG_100BTX_FD;
 883		if (val & ADVERTISE_100HALF)
 884			data |= PORT_AUTO_NEG_100BTX;
 885		if (val & ADVERTISE_10FULL)
 886			data |= PORT_AUTO_NEG_10BT_FD;
 887		if (val & ADVERTISE_10HALF)
 888			data |= PORT_AUTO_NEG_10BT;
 889
 890		if (data != ctrl) {
 891			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
 892			if (ret)
 893				return ret;
 894		}
 895		break;
 896	case PHY_REG_LINK_MD:
 897		if (val & PHY_START_CABLE_DIAG)
 898			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
 899		break;
 900	default:
 901		break;
 902	}
 903
 904	return 0;
 905}
 906
 907void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
 908{
 909	u8 data;
 910
 911	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
 912	data &= ~PORT_VLAN_MEMBERSHIP;
 913	data |= (member & dev->port_mask);
 914	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
 915}
 916
 917void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
 918{
 919	u8 learn[DSA_MAX_PORTS];
 920	int first, index, cnt;
 921	struct ksz_port *p;
 922	const u16 *regs;
 923
 924	regs = dev->info->regs;
 925
 926	if ((uint)port < dev->info->port_cnt) {
 927		first = port;
 928		cnt = port + 1;
 929	} else {
 930		/* Flush all ports. */
 931		first = 0;
 932		cnt = dev->info->port_cnt;
 933	}
 934	for (index = first; index < cnt; index++) {
 935		p = &dev->ports[index];
 936		if (!p->on)
 937			continue;
 938		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
 939		if (!(learn[index] & PORT_LEARN_DISABLE))
 940			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
 941				    learn[index] | PORT_LEARN_DISABLE);
 942	}
 943	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 944	for (index = first; index < cnt; index++) {
 945		p = &dev->ports[index];
 946		if (!p->on)
 947			continue;
 948		if (!(learn[index] & PORT_LEARN_DISABLE))
 949			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
 950	}
 951}
 952
 953int ksz8_fdb_dump(struct ksz_device *dev, int port,
 954		  dsa_fdb_dump_cb_t *cb, void *data)
 955{
 956	int ret = 0;
 957	u16 i = 0;
 958	u16 entries = 0;
 959	u8 timestamp = 0;
 960	u8 fid;
 961	u8 member;
 962	struct alu_struct alu;
 963
 964	do {
 965		alu.is_static = false;
 966		ret = ksz8_r_dyn_mac_table(dev, i, alu.mac, &fid, &member,
 967					   &timestamp, &entries);
 968		if (!ret && (member & BIT(port))) {
 969			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 970			if (ret)
 971				break;
 972		}
 973		i++;
 974	} while (i < entries);
 975	if (i >= entries)
 976		ret = 0;
 977
 978	return ret;
 979}
 980
 981int ksz8_mdb_add(struct ksz_device *dev, int port,
 982		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 983{
 984	struct alu_struct alu;
 985	int index;
 986	int empty = 0;
 987
 988	alu.port_forward = 0;
 989	for (index = 0; index < dev->info->num_statics; index++) {
 990		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
 991			/* Found one already in static MAC table. */
 992			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
 993			    alu.fid == mdb->vid)
 994				break;
 995		/* Remember the first empty entry. */
 996		} else if (!empty) {
 997			empty = index + 1;
 998		}
 999	}
1000
1001	/* no available entry */
1002	if (index == dev->info->num_statics && !empty)
1003		return -ENOSPC;
1004
1005	/* add entry */
1006	if (index == dev->info->num_statics) {
1007		index = empty - 1;
1008		memset(&alu, 0, sizeof(alu));
1009		memcpy(alu.mac, mdb->addr, ETH_ALEN);
1010		alu.is_static = true;
1011	}
1012	alu.port_forward |= BIT(port);
1013	if (mdb->vid) {
1014		alu.is_use_fid = true;
1015
1016		/* Need a way to map VID to FID. */
1017		alu.fid = mdb->vid;
1018	}
1019	ksz8_w_sta_mac_table(dev, index, &alu);
1020
1021	return 0;
1022}
1023
1024int ksz8_mdb_del(struct ksz_device *dev, int port,
1025		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1026{
1027	struct alu_struct alu;
1028	int index;
1029
1030	for (index = 0; index < dev->info->num_statics; index++) {
1031		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
1032			/* Found one already in static MAC table. */
1033			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
1034			    alu.fid == mdb->vid)
1035				break;
1036		}
1037	}
1038
1039	/* no available entry */
1040	if (index == dev->info->num_statics)
1041		goto exit;
1042
1043	/* clear port */
1044	alu.port_forward &= ~BIT(port);
1045	if (!alu.port_forward)
1046		alu.is_static = false;
1047	ksz8_w_sta_mac_table(dev, index, &alu);
1048
1049exit:
1050	return 0;
1051}
1052
1053int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1054			     struct netlink_ext_ack *extack)
1055{
1056	if (ksz_is_ksz88x3(dev))
1057		return -ENOTSUPP;
1058
1059	/* Discard packets with VID not enabled on the switch */
1060	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1061
1062	/* Discard packets with VID not enabled on the ingress port */
1063	for (port = 0; port < dev->phy_port_cnt; ++port)
1064		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1065			     flag);
1066
1067	return 0;
1068}
1069
1070static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1071{
1072	if (ksz_is_ksz88x3(dev)) {
1073		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1074			0x03 << (4 - 2 * port), state);
1075	} else {
1076		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1077	}
1078}
1079
1080int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1081		       const struct switchdev_obj_port_vlan *vlan,
1082		       struct netlink_ext_ack *extack)
1083{
1084	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1085	struct ksz_port *p = &dev->ports[port];
1086	u16 data, new_pvid = 0;
1087	u8 fid, member, valid;
1088
1089	if (ksz_is_ksz88x3(dev))
1090		return -ENOTSUPP;
1091
1092	/* If a VLAN is added with untagged flag different from the
1093	 * port's Remove Tag flag, we need to change the latter.
1094	 * Ignore VID 0, which is always untagged.
1095	 * Ignore CPU port, which will always be tagged.
1096	 */
1097	if (untagged != p->remove_tag && vlan->vid != 0 &&
1098	    port != dev->cpu_port) {
1099		unsigned int vid;
1100
1101		/* Reject attempts to add a VLAN that requires the
1102		 * Remove Tag flag to be changed, unless there are no
1103		 * other VLANs currently configured.
1104		 */
1105		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1106			/* Skip the VID we are going to add or reconfigure */
1107			if (vid == vlan->vid)
1108				continue;
1109
1110			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1111				       &fid, &member, &valid);
1112			if (valid && (member & BIT(port)))
1113				return -EINVAL;
1114		}
1115
1116		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1117		p->remove_tag = untagged;
1118	}
1119
1120	ksz8_r_vlan_table(dev, vlan->vid, &data);
1121	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1122
1123	/* First time to setup the VLAN entry. */
1124	if (!valid) {
1125		/* Need to find a way to map VID to FID. */
1126		fid = 1;
1127		valid = 1;
1128	}
1129	member |= BIT(port);
1130
1131	ksz8_to_vlan(dev, fid, member, valid, &data);
1132	ksz8_w_vlan_table(dev, vlan->vid, data);
1133
1134	/* change PVID */
1135	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1136		new_pvid = vlan->vid;
1137
1138	if (new_pvid) {
1139		u16 vid;
1140
1141		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1142		vid &= ~VLAN_VID_MASK;
1143		vid |= new_pvid;
1144		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1145
1146		ksz8_port_enable_pvid(dev, port, true);
1147	}
1148
1149	return 0;
1150}
1151
1152int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1153		       const struct switchdev_obj_port_vlan *vlan)
1154{
1155	u16 data, pvid;
1156	u8 fid, member, valid;
1157
1158	if (ksz_is_ksz88x3(dev))
1159		return -ENOTSUPP;
1160
1161	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1162	pvid = pvid & 0xFFF;
1163
1164	ksz8_r_vlan_table(dev, vlan->vid, &data);
1165	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1166
1167	member &= ~BIT(port);
1168
1169	/* Invalidate the entry if no more member. */
1170	if (!member) {
1171		fid = 0;
1172		valid = 0;
1173	}
1174
1175	ksz8_to_vlan(dev, fid, member, valid, &data);
1176	ksz8_w_vlan_table(dev, vlan->vid, data);
1177
1178	if (pvid == vlan->vid)
1179		ksz8_port_enable_pvid(dev, port, false);
1180
1181	return 0;
1182}
1183
1184int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1185			 struct dsa_mall_mirror_tc_entry *mirror,
1186			 bool ingress, struct netlink_ext_ack *extack)
1187{
1188	if (ingress) {
1189		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1190		dev->mirror_rx |= BIT(port);
1191	} else {
1192		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1193		dev->mirror_tx |= BIT(port);
1194	}
1195
1196	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1197
1198	/* configure mirror port */
1199	if (dev->mirror_rx || dev->mirror_tx)
1200		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1201			     PORT_MIRROR_SNIFFER, true);
1202
1203	return 0;
1204}
1205
1206void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1207			  struct dsa_mall_mirror_tc_entry *mirror)
1208{
1209	u8 data;
1210
1211	if (mirror->ingress) {
1212		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1213		dev->mirror_rx &= ~BIT(port);
1214	} else {
1215		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1216		dev->mirror_tx &= ~BIT(port);
1217	}
1218
1219	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1220
1221	if (!dev->mirror_rx && !dev->mirror_tx)
1222		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1223			     PORT_MIRROR_SNIFFER, false);
1224}
1225
1226static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1227{
1228	struct ksz_port *p = &dev->ports[port];
1229
1230	if (!p->interface && dev->compat_interface) {
1231		dev_warn(dev->dev,
1232			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1233			 "Please update your device tree.\n",
1234			 port);
1235		p->interface = dev->compat_interface;
1236	}
1237}
1238
1239void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1240{
1241	struct dsa_switch *ds = dev->ds;
1242	const u32 *masks;
1243	u8 member;
1244
1245	masks = dev->info->masks;
1246
1247	/* enable broadcast storm limit */
1248	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1249
1250	if (!ksz_is_ksz88x3(dev))
1251		ksz8795_set_prio_queue(dev, port, 4);
1252
1253	/* disable DiffServ priority */
1254	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1255
1256	/* replace priority */
1257	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1258		     masks[PORT_802_1P_REMAPPING], false);
1259
1260	/* enable 802.1p priority */
1261	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1262
1263	if (cpu_port) {
1264		if (!ksz_is_ksz88x3(dev))
1265			ksz8795_cpu_interface_select(dev, port);
1266
1267		member = dsa_user_ports(ds);
1268	} else {
1269		member = BIT(dsa_upstream_port(ds, port));
1270	}
1271
1272	ksz8_cfg_port_member(dev, port, member);
1273}
1274
1275void ksz8_config_cpu_port(struct dsa_switch *ds)
1276{
1277	struct ksz_device *dev = ds->priv;
1278	struct ksz_port *p;
1279	const u32 *masks;
1280	const u16 *regs;
1281	u8 remote;
1282	int i;
1283
1284	masks = dev->info->masks;
1285	regs = dev->info->regs;
1286
1287	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1288
1289	p = &dev->ports[dev->cpu_port];
1290	p->on = 1;
1291
1292	ksz8_port_setup(dev, dev->cpu_port, true);
1293
1294	for (i = 0; i < dev->phy_port_cnt; i++) {
1295		p = &dev->ports[i];
1296
1297		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1298
1299		/* Last port may be disabled. */
1300		if (i == dev->phy_port_cnt)
1301			break;
1302		p->on = 1;
1303	}
1304	for (i = 0; i < dev->phy_port_cnt; i++) {
1305		p = &dev->ports[i];
1306		if (!p->on)
1307			continue;
1308		if (!ksz_is_ksz88x3(dev)) {
1309			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1310			if (remote & KSZ8_PORT_FIBER_MODE)
1311				p->fiber = 1;
1312		}
1313		if (p->fiber)
1314			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1315				     PORT_FORCE_FLOW_CTRL, true);
1316		else
1317			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1318				     PORT_FORCE_FLOW_CTRL, false);
1319	}
1320}
1321
1322static int ksz8_handle_global_errata(struct dsa_switch *ds)
1323{
1324	struct ksz_device *dev = ds->priv;
1325	int ret = 0;
1326
1327	/* KSZ87xx Errata DS80000687C.
1328	 * Module 2: Link drops with some EEE link partners.
1329	 *   An issue with the EEE next page exchange between the
1330	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1331	 *   the link dropping.
1332	 */
1333	if (dev->info->ksz87xx_eee_link_erratum)
1334		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1335
1336	return ret;
1337}
1338
1339int ksz8_enable_stp_addr(struct ksz_device *dev)
1340{
1341	struct alu_struct alu;
1342
1343	/* Setup STP address for STP operation. */
1344	memset(&alu, 0, sizeof(alu));
1345	ether_addr_copy(alu.mac, eth_stp_addr);
1346	alu.is_static = true;
1347	alu.is_override = true;
1348	alu.port_forward = dev->info->cpu_ports;
1349
1350	ksz8_w_sta_mac_table(dev, 0, &alu);
1351
1352	return 0;
1353}
1354
1355int ksz8_setup(struct dsa_switch *ds)
1356{
1357	struct ksz_device *dev = ds->priv;
1358	int i;
1359
1360	ds->mtu_enforcement_ingress = true;
1361
1362	/* We rely on software untagging on the CPU port, so that we
1363	 * can support both tagged and untagged VLANs
1364	 */
1365	ds->untag_bridge_pvid = true;
1366
1367	/* VLAN filtering is partly controlled by the global VLAN
1368	 * Enable flag
1369	 */
1370	ds->vlan_filtering_is_global = true;
1371
1372	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1373
1374	/* Enable automatic fast aging when link changed detected. */
1375	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1376
1377	/* Enable aggressive back off algorithm in half duplex mode. */
1378	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1379			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1380
1381	/*
1382	 * Make sure unicast VLAN boundary is set as default and
1383	 * enable no excessive collision drop.
1384	 */
1385	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1386			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1387			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1388
1389	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1390
1391	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1392
1393	if (!ksz_is_ksz88x3(dev))
1394		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1395
1396	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1397		ksz8_r_vlan_entries(dev, i);
1398
1399	return ksz8_handle_global_errata(ds);
1400}
1401
1402void ksz8_get_caps(struct ksz_device *dev, int port,
1403		   struct phylink_config *config)
1404{
1405	config->mac_capabilities = MAC_10 | MAC_100;
1406
1407	/* Silicon Errata Sheet (DS80000830A):
1408	 * "Port 1 does not respond to received flow control PAUSE frames"
1409	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1410	 * switches.
1411	 */
1412	if (!ksz_is_ksz88x3(dev) || port)
1413		config->mac_capabilities |= MAC_SYM_PAUSE;
1414
1415	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1416	if (!ksz_is_ksz88x3(dev))
1417		config->mac_capabilities |= MAC_ASYM_PAUSE;
1418}
1419
1420u32 ksz8_get_port_addr(int port, int offset)
1421{
1422	return PORT_CTRL_ADDR(port, offset);
1423}
1424
1425int ksz8_switch_init(struct ksz_device *dev)
1426{
1427	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1428	dev->phy_port_cnt = dev->info->port_cnt - 1;
1429	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1430
1431	return 0;
1432}
1433
1434void ksz8_switch_exit(struct ksz_device *dev)
1435{
1436	ksz8_reset_switch(dev);
1437}
1438
1439MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1440MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1441MODULE_LICENSE("GPL");