Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ8795 switch driver
   4 *
   5 * Copyright (C) 2017 Microchip Technology Inc.
   6 *	Tristram Ha <Tristram.Ha@microchip.com>
   7 */
   8
   9#include <linux/bitfield.h>
  10#include <linux/delay.h>
  11#include <linux/export.h>
  12#include <linux/gpio.h>
  13#include <linux/if_vlan.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/platform_data/microchip-ksz.h>
  17#include <linux/phy.h>
  18#include <linux/etherdevice.h>
  19#include <linux/if_bridge.h>
  20#include <linux/micrel_phy.h>
  21#include <net/dsa.h>
  22#include <net/switchdev.h>
  23#include <linux/phylink.h>
  24
  25#include "ksz_common.h"
  26#include "ksz8795_reg.h"
  27#include "ksz8.h"
  28
  29static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  30{
  31	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
  32}
  33
  34static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  35			 bool set)
  36{
  37	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
  38			   bits, set ? bits : 0);
  39}
  40
  41static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
  42{
  43	const u16 *regs;
  44	u16 ctrl_addr;
  45	int ret = 0;
  46
  47	regs = dev->info->regs;
  48
  49	mutex_lock(&dev->alu_mutex);
  50
  51	ctrl_addr = IND_ACC_TABLE(table) | addr;
  52	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
  53	if (!ret)
  54		ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
  55
  56	mutex_unlock(&dev->alu_mutex);
  57
  58	return ret;
  59}
  60
  61int ksz8_reset_switch(struct ksz_device *dev)
  62{
  63	if (ksz_is_ksz88x3(dev)) {
  64		/* reset switch */
  65		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
  66			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
  67		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
  68			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
  69	} else {
  70		/* reset switch */
  71		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
  72			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
  73		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
  74	}
  75
  76	return 0;
  77}
  78
  79static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
  80{
  81	u8 ctrl2 = 0;
  82
  83	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
  84		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
  85	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
  86		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
  87
  88	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
  89			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
  90}
  91
  92static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
  93{
  94	u8 ctrl1 = 0, ctrl2 = 0;
  95	int ret;
  96
  97	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
  98		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
  99	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
 100		ctrl1 |= SW_HUGE_PACKET;
 101
 102	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
 103	if (ret)
 104		return ret;
 105
 106	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
 107}
 108
 109int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
 110{
 111	u16 frame_size;
 112
 113	if (!dsa_is_cpu_port(dev->ds, port))
 114		return 0;
 115
 116	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
 117
 118	switch (dev->chip_id) {
 119	case KSZ8795_CHIP_ID:
 120	case KSZ8794_CHIP_ID:
 121	case KSZ8765_CHIP_ID:
 122		return ksz8795_change_mtu(dev, frame_size);
 123	case KSZ8830_CHIP_ID:
 124		return ksz8863_change_mtu(dev, frame_size);
 125	}
 126
 127	return -EOPNOTSUPP;
 128}
 129
 130static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
 131{
 132	u8 hi, lo;
 133
 134	/* Number of queues can only be 1, 2, or 4. */
 135	switch (queue) {
 136	case 4:
 137	case 3:
 138		queue = PORT_QUEUE_SPLIT_4;
 139		break;
 140	case 2:
 141		queue = PORT_QUEUE_SPLIT_2;
 142		break;
 143	default:
 144		queue = PORT_QUEUE_SPLIT_1;
 145	}
 146	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
 147	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
 148	lo &= ~PORT_QUEUE_SPLIT_L;
 149	if (queue & PORT_QUEUE_SPLIT_2)
 150		lo |= PORT_QUEUE_SPLIT_L;
 151	hi &= ~PORT_QUEUE_SPLIT_H;
 152	if (queue & PORT_QUEUE_SPLIT_4)
 153		hi |= PORT_QUEUE_SPLIT_H;
 154	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
 155	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
 156
 157	/* Default is port based for egress rate limit. */
 158	if (queue != PORT_QUEUE_SPLIT_1)
 159		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
 160			true);
 161}
 162
 163void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
 164{
 165	const u32 *masks;
 166	const u16 *regs;
 167	u16 ctrl_addr;
 168	u32 data;
 169	u8 check;
 170	int loop;
 171
 172	masks = dev->info->masks;
 173	regs = dev->info->regs;
 174
 175	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
 176	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
 177
 178	mutex_lock(&dev->alu_mutex);
 179	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 180
 181	/* It is almost guaranteed to always read the valid bit because of
 182	 * slow SPI speed.
 183	 */
 184	for (loop = 2; loop > 0; loop--) {
 185		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
 186
 187		if (check & masks[MIB_COUNTER_VALID]) {
 188			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
 189			if (check & masks[MIB_COUNTER_OVERFLOW])
 190				*cnt += MIB_COUNTER_VALUE + 1;
 191			*cnt += data & MIB_COUNTER_VALUE;
 192			break;
 193		}
 194	}
 195	mutex_unlock(&dev->alu_mutex);
 196}
 197
 198static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 199			      u64 *dropped, u64 *cnt)
 200{
 201	const u32 *masks;
 202	const u16 *regs;
 203	u16 ctrl_addr;
 204	u32 data;
 205	u8 check;
 206	int loop;
 207
 208	masks = dev->info->masks;
 209	regs = dev->info->regs;
 210
 211	addr -= dev->info->reg_mib_cnt;
 212	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
 213	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
 214	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
 215
 216	mutex_lock(&dev->alu_mutex);
 217	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 218
 219	/* It is almost guaranteed to always read the valid bit because of
 220	 * slow SPI speed.
 221	 */
 222	for (loop = 2; loop > 0; loop--) {
 223		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
 224
 225		if (check & masks[MIB_COUNTER_VALID]) {
 226			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
 227			if (addr < 2) {
 228				u64 total;
 229
 230				total = check & MIB_TOTAL_BYTES_H;
 231				total <<= 32;
 232				*cnt += total;
 233				*cnt += data;
 234				if (check & masks[MIB_COUNTER_OVERFLOW]) {
 235					total = MIB_TOTAL_BYTES_H + 1;
 236					total <<= 32;
 237					*cnt += total;
 238				}
 239			} else {
 240				if (check & masks[MIB_COUNTER_OVERFLOW])
 241					*cnt += MIB_PACKET_DROPPED + 1;
 242				*cnt += data & MIB_PACKET_DROPPED;
 243			}
 244			break;
 245		}
 246	}
 247	mutex_unlock(&dev->alu_mutex);
 248}
 249
 250static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 251			      u64 *dropped, u64 *cnt)
 252{
 253	u32 *last = (u32 *)dropped;
 254	const u16 *regs;
 255	u16 ctrl_addr;
 256	u32 data;
 257	u32 cur;
 258
 259	regs = dev->info->regs;
 260
 261	addr -= dev->info->reg_mib_cnt;
 262	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
 263			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
 264	ctrl_addr += port;
 265	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
 266
 267	mutex_lock(&dev->alu_mutex);
 268	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 269	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
 270	mutex_unlock(&dev->alu_mutex);
 271
 272	data &= MIB_PACKET_DROPPED;
 273	cur = last[addr];
 274	if (data != cur) {
 275		last[addr] = data;
 276		if (data < cur)
 277			data += MIB_PACKET_DROPPED + 1;
 278		data -= cur;
 279		*cnt += data;
 280	}
 281}
 282
 283void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 284		    u64 *dropped, u64 *cnt)
 285{
 286	if (ksz_is_ksz88x3(dev))
 287		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
 288	else
 289		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
 290}
 291
 292void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 293{
 294	if (ksz_is_ksz88x3(dev))
 295		return;
 296
 297	/* enable the port for flush/freeze function */
 298	if (freeze)
 299		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
 300	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
 301
 302	/* disable the port after freeze is done */
 303	if (!freeze)
 304		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
 305}
 306
 307void ksz8_port_init_cnt(struct ksz_device *dev, int port)
 308{
 309	struct ksz_port_mib *mib = &dev->ports[port].mib;
 310	u64 *dropped;
 311
 312	if (!ksz_is_ksz88x3(dev)) {
 313		/* flush all enabled port MIB counters */
 314		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
 315		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
 316		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
 317	}
 318
 319	mib->cnt_ptr = 0;
 320
 321	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
 322	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
 323		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
 324					&mib->counters[mib->cnt_ptr]);
 325		++mib->cnt_ptr;
 326	}
 327
 328	/* last one in storage */
 329	dropped = &mib->counters[dev->info->mib_cnt];
 330
 331	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
 332	while (mib->cnt_ptr < dev->info->mib_cnt) {
 333		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
 334					dropped, &mib->counters[mib->cnt_ptr]);
 335		++mib->cnt_ptr;
 336	}
 337}
 338
 339static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
 340{
 341	const u16 *regs;
 342	u16 ctrl_addr;
 343	int ret;
 344
 345	regs = dev->info->regs;
 346
 347	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
 348
 349	mutex_lock(&dev->alu_mutex);
 350	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 351	if (ret)
 352		goto unlock_alu;
 353
 354	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
 355unlock_alu:
 356	mutex_unlock(&dev->alu_mutex);
 357
 358	return ret;
 359}
 360
 361static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
 362{
 363	const u16 *regs;
 364	u16 ctrl_addr;
 365	int ret;
 366
 367	regs = dev->info->regs;
 368
 369	ctrl_addr = IND_ACC_TABLE(table) | addr;
 370
 371	mutex_lock(&dev->alu_mutex);
 372	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
 373	if (ret)
 374		goto unlock_alu;
 375
 376	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 377unlock_alu:
 378	mutex_unlock(&dev->alu_mutex);
 379
 380	return ret;
 381}
 382
 383static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
 384{
 385	int timeout = 100;
 386	const u32 *masks;
 387	const u16 *regs;
 388
 389	masks = dev->info->masks;
 390	regs = dev->info->regs;
 391
 392	do {
 393		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
 394		timeout--;
 395	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
 396
 397	/* Entry is not ready for accessing. */
 398	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
 399		return -EAGAIN;
 400	/* Entry is ready for accessing. */
 401	} else {
 402		ksz_read8(dev, regs[REG_IND_DATA_8], data);
 403
 404		/* There is no valid entry in the table. */
 405		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
 406			return -ENXIO;
 407	}
 408	return 0;
 409}
 410
 411int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
 412			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
 413{
 414	u32 data_hi, data_lo;
 415	const u8 *shifts;
 416	const u32 *masks;
 417	const u16 *regs;
 418	u16 ctrl_addr;
 419	u8 data;
 420	int rc;
 421
 422	shifts = dev->info->shifts;
 423	masks = dev->info->masks;
 424	regs = dev->info->regs;
 425
 426	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
 427
 428	mutex_lock(&dev->alu_mutex);
 429	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
 430
 431	rc = ksz8_valid_dyn_entry(dev, &data);
 432	if (rc == -EAGAIN) {
 433		if (addr == 0)
 434			*entries = 0;
 435	} else if (rc == -ENXIO) {
 436		*entries = 0;
 437	/* At least one valid entry in the table. */
 438	} else {
 439		u64 buf = 0;
 440		int cnt;
 441
 442		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
 443		data_hi = (u32)(buf >> 32);
 444		data_lo = (u32)buf;
 445
 446		/* Check out how many valid entry in the table. */
 447		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
 448		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
 449		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
 450			shifts[DYNAMIC_MAC_ENTRIES];
 451		*entries = cnt + 1;
 452
 453		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
 454			shifts[DYNAMIC_MAC_FID];
 455		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
 456			shifts[DYNAMIC_MAC_SRC_PORT];
 457		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
 458			shifts[DYNAMIC_MAC_TIMESTAMP];
 459
 460		mac_addr[5] = (u8)data_lo;
 461		mac_addr[4] = (u8)(data_lo >> 8);
 462		mac_addr[3] = (u8)(data_lo >> 16);
 463		mac_addr[2] = (u8)(data_lo >> 24);
 464
 465		mac_addr[1] = (u8)data_hi;
 466		mac_addr[0] = (u8)(data_hi >> 8);
 467		rc = 0;
 468	}
 469	mutex_unlock(&dev->alu_mutex);
 470
 471	return rc;
 472}
 473
 474static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
 475				struct alu_struct *alu, bool *valid)
 476{
 477	u32 data_hi, data_lo;
 478	const u8 *shifts;
 479	const u32 *masks;
 480	u64 data;
 481	int ret;
 482
 483	shifts = dev->info->shifts;
 484	masks = dev->info->masks;
 485
 486	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
 487	if (ret)
 488		return ret;
 489
 490	data_hi = data >> 32;
 491	data_lo = (u32)data;
 492
 493	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
 494			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
 495		*valid = false;
 496		return 0;
 497	}
 498
 499	alu->mac[5] = (u8)data_lo;
 500	alu->mac[4] = (u8)(data_lo >> 8);
 501	alu->mac[3] = (u8)(data_lo >> 16);
 502	alu->mac[2] = (u8)(data_lo >> 24);
 503	alu->mac[1] = (u8)data_hi;
 504	alu->mac[0] = (u8)(data_hi >> 8);
 505	alu->port_forward =
 506		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
 507			shifts[STATIC_MAC_FWD_PORTS];
 508	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
 509
 510	/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
 511	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
 512	 * static MAC table compared to doing write.
 513	 */
 514	if (ksz_is_ksz87xx(dev))
 515		data_hi >>= 1;
 516	alu->is_static = true;
 517	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
 518	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
 519		shifts[STATIC_MAC_FID];
 520
 521	*valid = true;
 522
 523	return 0;
 524}
 525
 526static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
 527				struct alu_struct *alu)
 528{
 529	u32 data_hi, data_lo;
 530	const u8 *shifts;
 531	const u32 *masks;
 532	u64 data;
 533
 534	shifts = dev->info->shifts;
 535	masks = dev->info->masks;
 536
 537	data_lo = ((u32)alu->mac[2] << 24) |
 538		((u32)alu->mac[3] << 16) |
 539		((u32)alu->mac[4] << 8) | alu->mac[5];
 540	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
 541	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
 542
 543	if (alu->is_override)
 544		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
 545	if (alu->is_use_fid) {
 546		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
 547		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
 548	}
 549	if (alu->is_static)
 550		data_hi |= masks[STATIC_MAC_TABLE_VALID];
 551	else
 552		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
 553
 554	data = (u64)data_hi << 32 | data_lo;
 555
 556	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
 557}
 558
 559static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
 560			   u8 *member, u8 *valid)
 561{
 562	const u8 *shifts;
 563	const u32 *masks;
 564
 565	shifts = dev->info->shifts;
 566	masks = dev->info->masks;
 567
 568	*fid = vlan & masks[VLAN_TABLE_FID];
 569	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
 570			shifts[VLAN_TABLE_MEMBERSHIP_S];
 571	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
 572}
 573
 574static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
 575			 u16 *vlan)
 576{
 577	const u8 *shifts;
 578	const u32 *masks;
 579
 580	shifts = dev->info->shifts;
 581	masks = dev->info->masks;
 582
 583	*vlan = fid;
 584	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
 585	if (valid)
 586		*vlan |= masks[VLAN_TABLE_VALID];
 587}
 588
 589static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
 590{
 591	const u8 *shifts;
 592	u64 data;
 593	int i;
 594
 595	shifts = dev->info->shifts;
 596
 597	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
 598	addr *= 4;
 599	for (i = 0; i < 4; i++) {
 600		dev->vlan_cache[addr + i].table[0] = (u16)data;
 601		data >>= shifts[VLAN_TABLE];
 602	}
 603}
 604
 605static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
 606{
 607	int index;
 608	u16 *data;
 609	u16 addr;
 610	u64 buf;
 611
 612	data = (u16 *)&buf;
 613	addr = vid / 4;
 614	index = vid & 3;
 615	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
 616	*vlan = data[index];
 617}
 618
 619static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
 620{
 621	int index;
 622	u16 *data;
 623	u16 addr;
 624	u64 buf;
 625
 626	data = (u16 *)&buf;
 627	addr = vid / 4;
 628	index = vid & 3;
 629	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
 630	data[index] = vlan;
 631	dev->vlan_cache[vid].table[0] = vlan;
 632	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
 633}
 634
 635/**
 636 * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
 637 *		     Control register (Reg. 31).
 638 * @dev: The KSZ device instance.
 639 * @port: The port number to be read.
 640 * @val: The value read from the SMI interface.
 641 *
 642 * This function reads the SMI interface and translates the hardware register
 643 * bit values into their corresponding control settings for a MIIM PHY Control
 644 * register.
 645 *
 646 * Return: 0 on success, error code on failure.
 647 */
 648static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
 649{
 650	const u16 *regs = dev->info->regs;
 651	u8 reg_val;
 652	int ret;
 653
 654	*val = 0;
 655
 656	ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], &reg_val);
 657	if (ret < 0)
 658		return ret;
 659
 660	if (reg_val & PORT_MDIX_STATUS)
 661		*val |= KSZ886X_CTRL_MDIX_STAT;
 662
 663	ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, &reg_val);
 664	if (ret < 0)
 665		return ret;
 666
 667	if (reg_val & PORT_FORCE_LINK)
 668		*val |= KSZ886X_CTRL_FORCE_LINK;
 669
 670	if (reg_val & PORT_POWER_SAVING)
 671		*val |= KSZ886X_CTRL_PWRSAVE;
 672
 673	if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
 674		*val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
 675
 676	return 0;
 677}
 678
 679int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
 680{
 681	u8 restart, speed, ctrl, link;
 682	int processed = true;
 683	const u16 *regs;
 684	u8 val1, val2;
 685	u16 data = 0;
 686	u8 p = phy;
 687	int ret;
 688
 689	regs = dev->info->regs;
 690
 691	switch (reg) {
 692	case MII_BMCR:
 693		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
 694		if (ret)
 695			return ret;
 696
 697		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
 698		if (ret)
 699			return ret;
 700
 701		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
 702		if (ret)
 703			return ret;
 704
 705		if (restart & PORT_PHY_LOOPBACK)
 706			data |= BMCR_LOOPBACK;
 707		if (ctrl & PORT_FORCE_100_MBIT)
 708			data |= BMCR_SPEED100;
 709		if (ksz_is_ksz88x3(dev)) {
 710			if ((ctrl & PORT_AUTO_NEG_ENABLE))
 711				data |= BMCR_ANENABLE;
 712		} else {
 713			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
 714				data |= BMCR_ANENABLE;
 715		}
 716		if (restart & PORT_POWER_DOWN)
 717			data |= BMCR_PDOWN;
 718		if (restart & PORT_AUTO_NEG_RESTART)
 719			data |= BMCR_ANRESTART;
 720		if (ctrl & PORT_FORCE_FULL_DUPLEX)
 721			data |= BMCR_FULLDPLX;
 722		if (speed & PORT_HP_MDIX)
 723			data |= KSZ886X_BMCR_HP_MDIX;
 724		if (restart & PORT_FORCE_MDIX)
 725			data |= KSZ886X_BMCR_FORCE_MDI;
 726		if (restart & PORT_AUTO_MDIX_DISABLE)
 727			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
 728		if (restart & PORT_TX_DISABLE)
 729			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
 730		if (restart & PORT_LED_OFF)
 731			data |= KSZ886X_BMCR_DISABLE_LED;
 732		break;
 733	case MII_BMSR:
 734		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
 735		if (ret)
 736			return ret;
 737
 738		data = BMSR_100FULL |
 739		       BMSR_100HALF |
 740		       BMSR_10FULL |
 741		       BMSR_10HALF |
 742		       BMSR_ANEGCAPABLE;
 743		if (link & PORT_AUTO_NEG_COMPLETE)
 744			data |= BMSR_ANEGCOMPLETE;
 745		if (link & PORT_STAT_LINK_GOOD)
 746			data |= BMSR_LSTATUS;
 747		break;
 748	case MII_PHYSID1:
 749		data = KSZ8795_ID_HI;
 750		break;
 751	case MII_PHYSID2:
 752		if (ksz_is_ksz88x3(dev))
 753			data = KSZ8863_ID_LO;
 754		else
 755			data = KSZ8795_ID_LO;
 756		break;
 757	case MII_ADVERTISE:
 758		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
 759		if (ret)
 760			return ret;
 761
 762		data = ADVERTISE_CSMA;
 763		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
 764			data |= ADVERTISE_PAUSE_CAP;
 765		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
 766			data |= ADVERTISE_100FULL;
 767		if (ctrl & PORT_AUTO_NEG_100BTX)
 768			data |= ADVERTISE_100HALF;
 769		if (ctrl & PORT_AUTO_NEG_10BT_FD)
 770			data |= ADVERTISE_10FULL;
 771		if (ctrl & PORT_AUTO_NEG_10BT)
 772			data |= ADVERTISE_10HALF;
 773		break;
 774	case MII_LPA:
 775		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
 776		if (ret)
 777			return ret;
 778
 779		data = LPA_SLCT;
 780		if (link & PORT_REMOTE_SYM_PAUSE)
 781			data |= LPA_PAUSE_CAP;
 782		if (link & PORT_REMOTE_100BTX_FD)
 783			data |= LPA_100FULL;
 784		if (link & PORT_REMOTE_100BTX)
 785			data |= LPA_100HALF;
 786		if (link & PORT_REMOTE_10BT_FD)
 787			data |= LPA_10FULL;
 788		if (link & PORT_REMOTE_10BT)
 789			data |= LPA_10HALF;
 790		if (data & ~LPA_SLCT)
 791			data |= LPA_LPACK;
 792		break;
 793	case PHY_REG_LINK_MD:
 794		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
 795		if (ret)
 796			return ret;
 797
 798		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
 799		if (ret)
 800			return ret;
 801
 802		if (val1 & PORT_START_CABLE_DIAG)
 803			data |= PHY_START_CABLE_DIAG;
 804
 805		if (val1 & PORT_CABLE_10M_SHORT)
 806			data |= PHY_CABLE_10M_SHORT;
 807
 808		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
 809				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
 810
 811		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
 812				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
 813				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
 814		break;
 815	case PHY_REG_PHY_CTRL:
 816		ret = ksz8_r_phy_ctrl(dev, p, &data);
 817		if (ret)
 818			return ret;
 819
 820		break;
 821	default:
 822		processed = false;
 823		break;
 824	}
 825	if (processed)
 826		*val = data;
 827
 828	return 0;
 829}
 830
 831/**
 832 * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
 833 *		     Control register (Reg. 31).
 834 * @dev: The KSZ device instance.
 835 * @port: The port number to be configured.
 836 * @val: The register value to be written.
 837 *
 838 * This function translates control settings from a MIIM PHY Control register
 839 * into their corresponding hardware register bit values for the SMI
 840 * interface.
 841 *
 842 * Return: 0 on success, error code on failure.
 843 */
 844static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
 845{
 846	u8 reg_val = 0;
 847	int ret;
 848
 849	if (val & KSZ886X_CTRL_FORCE_LINK)
 850		reg_val |= PORT_FORCE_LINK;
 851
 852	if (val & KSZ886X_CTRL_PWRSAVE)
 853		reg_val |= PORT_POWER_SAVING;
 854
 855	if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
 856		reg_val |= PORT_PHY_REMOTE_LOOPBACK;
 857
 858	ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
 859			PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
 860	return ret;
 861}
 862
 863int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
 864{
 865	u8 restart, speed, ctrl, data;
 866	const u16 *regs;
 867	u8 p = phy;
 868	int ret;
 869
 870	regs = dev->info->regs;
 871
 872	switch (reg) {
 873	case MII_BMCR:
 874
 875		/* Do not support PHY reset function. */
 876		if (val & BMCR_RESET)
 877			break;
 878		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
 879		if (ret)
 880			return ret;
 881
 882		data = speed;
 883		if (val & KSZ886X_BMCR_HP_MDIX)
 884			data |= PORT_HP_MDIX;
 885		else
 886			data &= ~PORT_HP_MDIX;
 887
 888		if (data != speed) {
 889			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
 890			if (ret)
 891				return ret;
 892		}
 893
 894		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
 895		if (ret)
 896			return ret;
 897
 898		data = ctrl;
 899		if (ksz_is_ksz88x3(dev)) {
 900			if ((val & BMCR_ANENABLE))
 901				data |= PORT_AUTO_NEG_ENABLE;
 902			else
 903				data &= ~PORT_AUTO_NEG_ENABLE;
 904		} else {
 905			if (!(val & BMCR_ANENABLE))
 906				data |= PORT_AUTO_NEG_DISABLE;
 907			else
 908				data &= ~PORT_AUTO_NEG_DISABLE;
 909
 910			/* Fiber port does not support auto-negotiation. */
 911			if (dev->ports[p].fiber)
 912				data |= PORT_AUTO_NEG_DISABLE;
 913		}
 914
 915		if (val & BMCR_SPEED100)
 916			data |= PORT_FORCE_100_MBIT;
 917		else
 918			data &= ~PORT_FORCE_100_MBIT;
 919		if (val & BMCR_FULLDPLX)
 920			data |= PORT_FORCE_FULL_DUPLEX;
 921		else
 922			data &= ~PORT_FORCE_FULL_DUPLEX;
 923
 924		if (data != ctrl) {
 925			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
 926			if (ret)
 927				return ret;
 928		}
 929
 930		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
 931		if (ret)
 932			return ret;
 933
 934		data = restart;
 935		if (val & KSZ886X_BMCR_DISABLE_LED)
 936			data |= PORT_LED_OFF;
 937		else
 938			data &= ~PORT_LED_OFF;
 939		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
 940			data |= PORT_TX_DISABLE;
 941		else
 942			data &= ~PORT_TX_DISABLE;
 943		if (val & BMCR_ANRESTART)
 944			data |= PORT_AUTO_NEG_RESTART;
 945		else
 946			data &= ~(PORT_AUTO_NEG_RESTART);
 947		if (val & BMCR_PDOWN)
 948			data |= PORT_POWER_DOWN;
 949		else
 950			data &= ~PORT_POWER_DOWN;
 951		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
 952			data |= PORT_AUTO_MDIX_DISABLE;
 953		else
 954			data &= ~PORT_AUTO_MDIX_DISABLE;
 955		if (val & KSZ886X_BMCR_FORCE_MDI)
 956			data |= PORT_FORCE_MDIX;
 957		else
 958			data &= ~PORT_FORCE_MDIX;
 959		if (val & BMCR_LOOPBACK)
 960			data |= PORT_PHY_LOOPBACK;
 961		else
 962			data &= ~PORT_PHY_LOOPBACK;
 963
 964		if (data != restart) {
 965			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
 966					  data);
 967			if (ret)
 968				return ret;
 969		}
 970		break;
 971	case MII_ADVERTISE:
 972		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
 973		if (ret)
 974			return ret;
 975
 976		data = ctrl;
 977		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
 978			  PORT_AUTO_NEG_100BTX_FD |
 979			  PORT_AUTO_NEG_100BTX |
 980			  PORT_AUTO_NEG_10BT_FD |
 981			  PORT_AUTO_NEG_10BT);
 982		if (val & ADVERTISE_PAUSE_CAP)
 983			data |= PORT_AUTO_NEG_SYM_PAUSE;
 984		if (val & ADVERTISE_100FULL)
 985			data |= PORT_AUTO_NEG_100BTX_FD;
 986		if (val & ADVERTISE_100HALF)
 987			data |= PORT_AUTO_NEG_100BTX;
 988		if (val & ADVERTISE_10FULL)
 989			data |= PORT_AUTO_NEG_10BT_FD;
 990		if (val & ADVERTISE_10HALF)
 991			data |= PORT_AUTO_NEG_10BT;
 992
 993		if (data != ctrl) {
 994			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
 995			if (ret)
 996				return ret;
 997		}
 998		break;
 999	case PHY_REG_LINK_MD:
1000		if (val & PHY_START_CABLE_DIAG)
1001			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1002		break;
1003
1004	case PHY_REG_PHY_CTRL:
1005		ret = ksz8_w_phy_ctrl(dev, p, val);
1006		if (ret)
1007			return ret;
1008		break;
1009	default:
1010		break;
1011	}
1012
1013	return 0;
1014}
1015
1016void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1017{
1018	u8 data;
1019
1020	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1021	data &= ~PORT_VLAN_MEMBERSHIP;
1022	data |= (member & dev->port_mask);
1023	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1024}
1025
1026void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1027{
1028	u8 learn[DSA_MAX_PORTS];
1029	int first, index, cnt;
1030	const u16 *regs;
1031
1032	regs = dev->info->regs;
1033
1034	if ((uint)port < dev->info->port_cnt) {
1035		first = port;
1036		cnt = port + 1;
1037	} else {
1038		/* Flush all ports. */
1039		first = 0;
1040		cnt = dev->info->port_cnt;
1041	}
1042	for (index = first; index < cnt; index++) {
1043		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1044		if (!(learn[index] & PORT_LEARN_DISABLE))
1045			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1046				    learn[index] | PORT_LEARN_DISABLE);
1047	}
1048	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1049	for (index = first; index < cnt; index++) {
1050		if (!(learn[index] & PORT_LEARN_DISABLE))
1051			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1052	}
1053}
1054
1055int ksz8_fdb_dump(struct ksz_device *dev, int port,
1056		  dsa_fdb_dump_cb_t *cb, void *data)
1057{
1058	int ret = 0;
1059	u16 i = 0;
1060	u16 entries = 0;
1061	u8 timestamp = 0;
1062	u8 fid;
1063	u8 src_port;
1064	u8 mac[ETH_ALEN];
1065
1066	do {
1067		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1068					   &timestamp, &entries);
1069		if (!ret && port == src_port) {
1070			ret = cb(mac, fid, false, data);
1071			if (ret)
1072				break;
1073		}
1074		i++;
1075	} while (i < entries);
1076	if (i >= entries)
1077		ret = 0;
1078
1079	return ret;
1080}
1081
1082static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1083			    const unsigned char *addr, u16 vid)
1084{
1085	struct alu_struct alu;
1086	int index, ret;
1087	int empty = 0;
1088
1089	alu.port_forward = 0;
1090	for (index = 0; index < dev->info->num_statics; index++) {
1091		bool valid;
1092
1093		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1094		if (ret)
1095			return ret;
1096		if (!valid) {
1097			/* Remember the first empty entry. */
1098			if (!empty)
1099				empty = index + 1;
1100			continue;
1101		}
1102
1103		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1104			break;
1105	}
1106
1107	/* no available entry */
1108	if (index == dev->info->num_statics && !empty)
1109		return -ENOSPC;
1110
1111	/* add entry */
1112	if (index == dev->info->num_statics) {
1113		index = empty - 1;
1114		memset(&alu, 0, sizeof(alu));
1115		memcpy(alu.mac, addr, ETH_ALEN);
1116		alu.is_static = true;
1117	}
1118	alu.port_forward |= BIT(port);
1119	if (vid) {
1120		alu.is_use_fid = true;
1121
1122		/* Need a way to map VID to FID. */
1123		alu.fid = vid;
1124	}
1125
1126	return ksz8_w_sta_mac_table(dev, index, &alu);
1127}
1128
1129static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1130			    const unsigned char *addr, u16 vid)
1131{
1132	struct alu_struct alu;
1133	int index, ret;
1134
1135	for (index = 0; index < dev->info->num_statics; index++) {
1136		bool valid;
1137
1138		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1139		if (ret)
1140			return ret;
1141		if (!valid)
1142			continue;
1143
1144		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1145			break;
1146	}
1147
1148	/* no available entry */
1149	if (index == dev->info->num_statics)
1150		return 0;
1151
1152	/* clear port */
1153	alu.port_forward &= ~BIT(port);
1154	if (!alu.port_forward)
1155		alu.is_static = false;
1156
1157	return ksz8_w_sta_mac_table(dev, index, &alu);
1158}
1159
1160int ksz8_mdb_add(struct ksz_device *dev, int port,
1161		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1162{
1163	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1164}
1165
1166int ksz8_mdb_del(struct ksz_device *dev, int port,
1167		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1168{
1169	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1170}
1171
1172int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1173		 u16 vid, struct dsa_db db)
1174{
1175	return ksz8_add_sta_mac(dev, port, addr, vid);
1176}
1177
1178int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1179		 u16 vid, struct dsa_db db)
1180{
1181	return ksz8_del_sta_mac(dev, port, addr, vid);
1182}
1183
1184int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1185			     struct netlink_ext_ack *extack)
1186{
1187	if (ksz_is_ksz88x3(dev))
1188		return -ENOTSUPP;
1189
1190	/* Discard packets with VID not enabled on the switch */
1191	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1192
1193	/* Discard packets with VID not enabled on the ingress port */
1194	for (port = 0; port < dev->phy_port_cnt; ++port)
1195		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1196			     flag);
1197
1198	return 0;
1199}
1200
1201static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1202{
1203	if (ksz_is_ksz88x3(dev)) {
1204		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1205			0x03 << (4 - 2 * port), state);
1206	} else {
1207		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1208	}
1209}
1210
1211int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1212		       const struct switchdev_obj_port_vlan *vlan,
1213		       struct netlink_ext_ack *extack)
1214{
1215	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1216	struct ksz_port *p = &dev->ports[port];
1217	u16 data, new_pvid = 0;
1218	u8 fid, member, valid;
1219
1220	if (ksz_is_ksz88x3(dev))
1221		return -ENOTSUPP;
1222
1223	/* If a VLAN is added with untagged flag different from the
1224	 * port's Remove Tag flag, we need to change the latter.
1225	 * Ignore VID 0, which is always untagged.
1226	 * Ignore CPU port, which will always be tagged.
1227	 */
1228	if (untagged != p->remove_tag && vlan->vid != 0 &&
1229	    port != dev->cpu_port) {
1230		unsigned int vid;
1231
1232		/* Reject attempts to add a VLAN that requires the
1233		 * Remove Tag flag to be changed, unless there are no
1234		 * other VLANs currently configured.
1235		 */
1236		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1237			/* Skip the VID we are going to add or reconfigure */
1238			if (vid == vlan->vid)
1239				continue;
1240
1241			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1242				       &fid, &member, &valid);
1243			if (valid && (member & BIT(port)))
1244				return -EINVAL;
1245		}
1246
1247		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1248		p->remove_tag = untagged;
1249	}
1250
1251	ksz8_r_vlan_table(dev, vlan->vid, &data);
1252	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1253
1254	/* First time to setup the VLAN entry. */
1255	if (!valid) {
1256		/* Need to find a way to map VID to FID. */
1257		fid = 1;
1258		valid = 1;
1259	}
1260	member |= BIT(port);
1261
1262	ksz8_to_vlan(dev, fid, member, valid, &data);
1263	ksz8_w_vlan_table(dev, vlan->vid, data);
1264
1265	/* change PVID */
1266	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1267		new_pvid = vlan->vid;
1268
1269	if (new_pvid) {
1270		u16 vid;
1271
1272		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1273		vid &= ~VLAN_VID_MASK;
1274		vid |= new_pvid;
1275		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1276
1277		ksz8_port_enable_pvid(dev, port, true);
1278	}
1279
1280	return 0;
1281}
1282
1283int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1284		       const struct switchdev_obj_port_vlan *vlan)
1285{
1286	u16 data, pvid;
1287	u8 fid, member, valid;
1288
1289	if (ksz_is_ksz88x3(dev))
1290		return -ENOTSUPP;
1291
1292	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1293	pvid = pvid & 0xFFF;
1294
1295	ksz8_r_vlan_table(dev, vlan->vid, &data);
1296	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1297
1298	member &= ~BIT(port);
1299
1300	/* Invalidate the entry if no more member. */
1301	if (!member) {
1302		fid = 0;
1303		valid = 0;
1304	}
1305
1306	ksz8_to_vlan(dev, fid, member, valid, &data);
1307	ksz8_w_vlan_table(dev, vlan->vid, data);
1308
1309	if (pvid == vlan->vid)
1310		ksz8_port_enable_pvid(dev, port, false);
1311
1312	return 0;
1313}
1314
1315int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1316			 struct dsa_mall_mirror_tc_entry *mirror,
1317			 bool ingress, struct netlink_ext_ack *extack)
1318{
1319	if (ingress) {
1320		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1321		dev->mirror_rx |= BIT(port);
1322	} else {
1323		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1324		dev->mirror_tx |= BIT(port);
1325	}
1326
1327	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1328
1329	/* configure mirror port */
1330	if (dev->mirror_rx || dev->mirror_tx)
1331		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1332			     PORT_MIRROR_SNIFFER, true);
1333
1334	return 0;
1335}
1336
1337void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1338			  struct dsa_mall_mirror_tc_entry *mirror)
1339{
1340	u8 data;
1341
1342	if (mirror->ingress) {
1343		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1344		dev->mirror_rx &= ~BIT(port);
1345	} else {
1346		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1347		dev->mirror_tx &= ~BIT(port);
1348	}
1349
1350	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1351
1352	if (!dev->mirror_rx && !dev->mirror_tx)
1353		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1354			     PORT_MIRROR_SNIFFER, false);
1355}
1356
1357static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1358{
1359	struct ksz_port *p = &dev->ports[port];
1360
1361	if (!ksz_is_ksz87xx(dev))
1362		return;
1363
1364	if (!p->interface && dev->compat_interface) {
1365		dev_warn(dev->dev,
1366			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1367			 "Please update your device tree.\n",
1368			 port);
1369		p->interface = dev->compat_interface;
1370	}
1371}
1372
1373void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1374{
1375	struct dsa_switch *ds = dev->ds;
1376	const u32 *masks;
1377	u8 member;
1378
1379	masks = dev->info->masks;
1380
1381	/* enable broadcast storm limit */
1382	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1383
1384	if (!ksz_is_ksz88x3(dev))
1385		ksz8795_set_prio_queue(dev, port, 4);
1386
1387	/* disable DiffServ priority */
1388	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1389
1390	/* replace priority */
1391	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1392		     masks[PORT_802_1P_REMAPPING], false);
1393
1394	/* enable 802.1p priority */
1395	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1396
1397	if (cpu_port)
1398		member = dsa_user_ports(ds);
1399	else
1400		member = BIT(dsa_upstream_port(ds, port));
1401
1402	ksz8_cfg_port_member(dev, port, member);
1403}
1404
1405static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1406{
1407	struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1408	bool rmii_clk_internal;
1409
1410	if (!ksz_is_ksz88x3(dev))
1411		return;
1412
1413	rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1414						  "microchip,rmii-clk-internal");
1415
1416	ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1417		KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1418}
1419
1420void ksz8_config_cpu_port(struct dsa_switch *ds)
1421{
1422	struct ksz_device *dev = ds->priv;
1423	struct ksz_port *p;
1424	const u32 *masks;
1425	const u16 *regs;
1426	u8 remote;
1427	int i;
1428
1429	masks = dev->info->masks;
1430	regs = dev->info->regs;
1431
1432	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1433
1434	ksz8_port_setup(dev, dev->cpu_port, true);
1435
1436	ksz8795_cpu_interface_select(dev, dev->cpu_port);
1437	ksz88x3_config_rmii_clk(dev);
1438
1439	for (i = 0; i < dev->phy_port_cnt; i++) {
1440		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1441	}
1442	for (i = 0; i < dev->phy_port_cnt; i++) {
1443		p = &dev->ports[i];
1444
1445		if (!ksz_is_ksz88x3(dev)) {
1446			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1447			if (remote & KSZ8_PORT_FIBER_MODE)
1448				p->fiber = 1;
1449		}
1450		if (p->fiber)
1451			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1452				     PORT_FORCE_FLOW_CTRL, true);
1453		else
1454			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1455				     PORT_FORCE_FLOW_CTRL, false);
1456	}
1457}
1458
1459/**
1460 * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1461 * @dev: The KSZ device instance.
1462 * @port: The port number to configure.
1463 * @duplex: The desired duplex mode.
1464 * @tx_pause: If true, enables transmit pause.
1465 * @rx_pause: If true, enables receive pause.
1466 *
1467 * Description:
1468 * The function configures flow control settings for a given port based on the
1469 * desired settings and current duplex mode.
1470 *
1471 * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1472 * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1473 * determines how flow control is handled on the port:
1474 *    "1 = will always enable full-duplex flow control on the port, regardless
1475 *         of AN result.
1476 *     0 = full-duplex flow control is enabled based on AN result."
1477 *
1478 * This means that the flow control behavior depends on the state of this bit:
1479 * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1480 *   force flow control on the port.
1481 * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1482 *   flow control based on the AN results.
1483 *
1484 * However, there is a potential limitation in this configuration. It is
1485 * currently not possible to force disable flow control on a port if we still
1486 * advertise pause support. While such a configuration is not currently
1487 * supported by Linux, and may not make practical sense, it's important to be
1488 * aware of this limitation when working with the KSZ8873 and similar devices.
1489 */
1490static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1491				  bool tx_pause, bool rx_pause)
1492{
1493	const u16 *regs = dev->info->regs;
1494	u8 sctrl = 0;
1495
1496	/* The KSZ8795 switch differs from the KSZ8873 by supporting
1497	 * asymmetric pause control. However, since a single bit is used to
1498	 * control both RX and TX pause, we can't enforce asymmetric pause
1499	 * control - both TX and RX pause will be either enabled or disabled
1500	 * together.
1501	 *
1502	 * If auto-negotiation is enabled, we usually allow the flow control to
1503	 * be determined by the auto-negotiation process based on the
1504	 * capabilities of both link partners. However, for KSZ8873, the
1505	 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1506	 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1507	 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1508	 * properly cleared.
1509	 *
1510	 * In the absence of pause auto-negotiation, we will enforce symmetric
1511	 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1512	 *
1513	 * Autoneg Pause Autoneg      rx,tx	PORT_FORCE_FLOW_CTRL
1514	 * 1		1		x	0
1515	 * 0		1		x	0 (flow control probably disabled)
1516	 * x		0		1	1 (flow control force enabled)
1517	 * 1		0		0	0 (flow control still depends on
1518	 *					   aneg result due to hardware)
1519	 * 0		0		0	0 (flow control probably disabled)
1520	 */
1521	if (dev->ports[port].manual_flow && tx_pause)
1522		sctrl |= PORT_FORCE_FLOW_CTRL;
1523
1524	ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1525}
1526
1527/**
1528 * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1529 * @dev: The KSZ device instance.
1530 * @speed: The desired link speed.
1531 * @duplex: The desired duplex mode.
1532 * @tx_pause: If true, enables transmit pause.
1533 * @rx_pause: If true, enables receive pause.
1534 *
1535 * Description:
1536 * The function configures flow control and speed settings for the CPU
1537 * port of the switch based on the desired settings, current duplex mode, and
1538 * speed.
1539 */
1540static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1541				  bool tx_pause, bool rx_pause)
1542{
1543	const u16 *regs = dev->info->regs;
1544	u8 ctrl = 0;
1545
1546	/* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1547	 * at least on KSZ8873. They can have different values depending on your
1548	 * board setup.
1549	 */
1550	if (tx_pause || rx_pause)
1551		ctrl |= SW_FLOW_CTRL;
1552
1553	if (duplex == DUPLEX_HALF)
1554		ctrl |= SW_HALF_DUPLEX;
1555
1556	/* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1557	 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1558	 */
1559	if (speed == SPEED_10)
1560		ctrl |= SW_10_MBIT;
1561
1562	ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1563		 SW_10_MBIT, ctrl);
1564}
1565
1566void ksz8_phylink_mac_link_up(struct ksz_device *dev, int port,
1567			      unsigned int mode, phy_interface_t interface,
1568			      struct phy_device *phydev, int speed, int duplex,
1569			      bool tx_pause, bool rx_pause)
1570{
1571	/* If the port is the CPU port, apply special handling. Only the CPU
1572	 * port is configured via global registers.
1573	 */
1574	if (dev->cpu_port == port)
1575		ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1576	else if (dev->info->internal_phy[port])
1577		ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1578}
1579
1580static int ksz8_handle_global_errata(struct dsa_switch *ds)
1581{
1582	struct ksz_device *dev = ds->priv;
1583	int ret = 0;
1584
1585	/* KSZ87xx Errata DS80000687C.
1586	 * Module 2: Link drops with some EEE link partners.
1587	 *   An issue with the EEE next page exchange between the
1588	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1589	 *   the link dropping.
1590	 */
1591	if (dev->info->ksz87xx_eee_link_erratum)
1592		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1593
1594	return ret;
1595}
1596
1597int ksz8_enable_stp_addr(struct ksz_device *dev)
1598{
1599	struct alu_struct alu;
1600
1601	/* Setup STP address for STP operation. */
1602	memset(&alu, 0, sizeof(alu));
1603	ether_addr_copy(alu.mac, eth_stp_addr);
1604	alu.is_static = true;
1605	alu.is_override = true;
1606	alu.port_forward = dev->info->cpu_ports;
1607
1608	return ksz8_w_sta_mac_table(dev, 0, &alu);
1609}
1610
1611int ksz8_setup(struct dsa_switch *ds)
1612{
1613	struct ksz_device *dev = ds->priv;
1614	int i;
1615
1616	ds->mtu_enforcement_ingress = true;
1617
1618	/* We rely on software untagging on the CPU port, so that we
1619	 * can support both tagged and untagged VLANs
1620	 */
1621	ds->untag_bridge_pvid = true;
1622
1623	/* VLAN filtering is partly controlled by the global VLAN
1624	 * Enable flag
1625	 */
1626	ds->vlan_filtering_is_global = true;
1627
1628	/* Enable automatic fast aging when link changed detected. */
1629	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1630
1631	/* Enable aggressive back off algorithm in half duplex mode. */
1632	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1633			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1634
1635	/*
1636	 * Make sure unicast VLAN boundary is set as default and
1637	 * enable no excessive collision drop.
1638	 */
1639	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1640			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1641			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1642
1643	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1644
1645	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1646
1647	if (!ksz_is_ksz88x3(dev))
1648		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1649
1650	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1651		ksz8_r_vlan_entries(dev, i);
1652
1653	return ksz8_handle_global_errata(ds);
1654}
1655
1656void ksz8_get_caps(struct ksz_device *dev, int port,
1657		   struct phylink_config *config)
1658{
1659	config->mac_capabilities = MAC_10 | MAC_100;
1660
1661	/* Silicon Errata Sheet (DS80000830A):
1662	 * "Port 1 does not respond to received flow control PAUSE frames"
1663	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1664	 * switches.
1665	 */
1666	if (!ksz_is_ksz88x3(dev) || port)
1667		config->mac_capabilities |= MAC_SYM_PAUSE;
1668
1669	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1670	if (!ksz_is_ksz88x3(dev))
1671		config->mac_capabilities |= MAC_ASYM_PAUSE;
1672}
1673
1674u32 ksz8_get_port_addr(int port, int offset)
1675{
1676	return PORT_CTRL_ADDR(port, offset);
1677}
1678
1679int ksz8_switch_init(struct ksz_device *dev)
1680{
1681	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1682	dev->phy_port_cnt = dev->info->port_cnt - 1;
1683	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1684
1685	return 0;
1686}
1687
1688void ksz8_switch_exit(struct ksz_device *dev)
1689{
1690	ksz8_reset_switch(dev);
1691}
1692
1693MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1694MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1695MODULE_LICENSE("GPL");