Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Remote Processor Framework
   4 *
   5 * Copyright (C) 2011 Texas Instruments, Inc.
   6 * Copyright (C) 2011 Google, Inc.
   7 *
   8 * Ohad Ben-Cohen <ohad@wizery.com>
   9 * Brian Swetland <swetland@google.com>
  10 * Mark Grosen <mgrosen@ti.com>
  11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  12 * Suman Anna <s-anna@ti.com>
  13 * Robert Tivy <rtivy@ti.com>
  14 * Armando Uribe De Leon <x0095078@ti.com>
  15 */
  16
  17#define pr_fmt(fmt)    "%s: " fmt, __func__
  18
  19#include <linux/delay.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/device.h>
  23#include <linux/panic_notifier.h>
  24#include <linux/slab.h>
  25#include <linux/mutex.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firmware.h>
  28#include <linux/string.h>
  29#include <linux/debugfs.h>
  30#include <linux/rculist.h>
  31#include <linux/remoteproc.h>
  32#include <linux/iommu.h>
  33#include <linux/idr.h>
  34#include <linux/elf.h>
  35#include <linux/crc32.h>
  36#include <linux/of_platform.h>
  37#include <linux/of_reserved_mem.h>
  38#include <linux/virtio_ids.h>
  39#include <linux/virtio_ring.h>
  40#include <asm/byteorder.h>
  41#include <linux/platform_device.h>
  42
  43#include "remoteproc_internal.h"
  44
  45#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
  46
  47static DEFINE_MUTEX(rproc_list_mutex);
  48static LIST_HEAD(rproc_list);
  49static struct notifier_block rproc_panic_nb;
  50
  51typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  52				 void *, int offset, int avail);
  53
  54static int rproc_alloc_carveout(struct rproc *rproc,
  55				struct rproc_mem_entry *mem);
  56static int rproc_release_carveout(struct rproc *rproc,
  57				  struct rproc_mem_entry *mem);
  58
  59/* Unique indices for remoteproc devices */
  60static DEFINE_IDA(rproc_dev_index);
  61static struct workqueue_struct *rproc_recovery_wq;
  62
  63static const char * const rproc_crash_names[] = {
  64	[RPROC_MMUFAULT]	= "mmufault",
  65	[RPROC_WATCHDOG]	= "watchdog",
  66	[RPROC_FATAL_ERROR]	= "fatal error",
  67};
  68
  69/* translate rproc_crash_type to string */
  70static const char *rproc_crash_to_string(enum rproc_crash_type type)
  71{
  72	if (type < ARRAY_SIZE(rproc_crash_names))
  73		return rproc_crash_names[type];
  74	return "unknown";
  75}
  76
  77/*
  78 * This is the IOMMU fault handler we register with the IOMMU API
  79 * (when relevant; not all remote processors access memory through
  80 * an IOMMU).
  81 *
  82 * IOMMU core will invoke this handler whenever the remote processor
  83 * will try to access an unmapped device address.
  84 */
  85static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  86			     unsigned long iova, int flags, void *token)
  87{
  88	struct rproc *rproc = token;
  89
  90	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  91
  92	rproc_report_crash(rproc, RPROC_MMUFAULT);
  93
  94	/*
  95	 * Let the iommu core know we're not really handling this fault;
  96	 * we just used it as a recovery trigger.
  97	 */
  98	return -ENOSYS;
  99}
 100
 101static int rproc_enable_iommu(struct rproc *rproc)
 102{
 103	struct iommu_domain *domain;
 104	struct device *dev = rproc->dev.parent;
 105	int ret;
 106
 107	if (!rproc->has_iommu) {
 108		dev_dbg(dev, "iommu not present\n");
 109		return 0;
 110	}
 111
 112	domain = iommu_paging_domain_alloc(dev);
 113	if (IS_ERR(domain)) {
 114		dev_err(dev, "can't alloc iommu domain\n");
 115		return PTR_ERR(domain);
 116	}
 117
 118	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 119
 120	ret = iommu_attach_device(domain, dev);
 121	if (ret) {
 122		dev_err(dev, "can't attach iommu device: %d\n", ret);
 123		goto free_domain;
 124	}
 125
 126	rproc->domain = domain;
 127
 128	return 0;
 129
 130free_domain:
 131	iommu_domain_free(domain);
 132	return ret;
 133}
 134
 135static void rproc_disable_iommu(struct rproc *rproc)
 136{
 137	struct iommu_domain *domain = rproc->domain;
 138	struct device *dev = rproc->dev.parent;
 139
 140	if (!domain)
 141		return;
 142
 143	iommu_detach_device(domain, dev);
 144	iommu_domain_free(domain);
 145}
 146
 147phys_addr_t rproc_va_to_pa(void *cpu_addr)
 148{
 149	/*
 150	 * Return physical address according to virtual address location
 151	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 152	 * - in kernel: if region allocated in generic dma memory pool
 153	 */
 154	if (is_vmalloc_addr(cpu_addr)) {
 155		return page_to_phys(vmalloc_to_page(cpu_addr)) +
 156				    offset_in_page(cpu_addr);
 157	}
 158
 159	WARN_ON(!virt_addr_valid(cpu_addr));
 160	return virt_to_phys(cpu_addr);
 161}
 162EXPORT_SYMBOL(rproc_va_to_pa);
 163
 164/**
 165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 166 * @rproc: handle of a remote processor
 167 * @da: remoteproc device address to translate
 168 * @len: length of the memory region @da is pointing to
 169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
 170 *
 171 * Some remote processors will ask us to allocate them physically contiguous
 172 * memory regions (which we call "carveouts"), and map them to specific
 173 * device addresses (which are hardcoded in the firmware). They may also have
 174 * dedicated memory regions internal to the processors, and use them either
 175 * exclusively or alongside carveouts.
 176 *
 177 * They may then ask us to copy objects into specific device addresses (e.g.
 178 * code/data sections) or expose us certain symbols in other device address
 179 * (e.g. their trace buffer).
 180 *
 181 * This function is a helper function with which we can go over the allocated
 182 * carveouts and translate specific device addresses to kernel virtual addresses
 183 * so we can access the referenced memory. This function also allows to perform
 184 * translations on the internal remoteproc memory regions through a platform
 185 * implementation specific da_to_va ops, if present.
 186 *
 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 188 * but only on kernel direct mapped RAM memory. Instead, we're just using
 189 * here the output of the DMA API for the carveouts, which should be more
 190 * correct.
 191 *
 192 * Return: a valid kernel address on success or NULL on failure
 193 */
 194void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
 195{
 196	struct rproc_mem_entry *carveout;
 197	void *ptr = NULL;
 198
 199	if (rproc->ops->da_to_va) {
 200		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
 201		if (ptr)
 202			goto out;
 203	}
 204
 205	list_for_each_entry(carveout, &rproc->carveouts, node) {
 206		int offset = da - carveout->da;
 207
 208		/*  Verify that carveout is allocated */
 209		if (!carveout->va)
 210			continue;
 211
 212		/* try next carveout if da is too small */
 213		if (offset < 0)
 214			continue;
 215
 216		/* try next carveout if da is too large */
 217		if (offset + len > carveout->len)
 218			continue;
 219
 220		ptr = carveout->va + offset;
 221
 222		if (is_iomem)
 223			*is_iomem = carveout->is_iomem;
 224
 225		break;
 226	}
 227
 228out:
 229	return ptr;
 230}
 231EXPORT_SYMBOL(rproc_da_to_va);
 232
 233/**
 234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 235 * @rproc: handle of a remote processor
 236 * @name: carveout name to find (format string)
 237 * @...: optional parameters matching @name string
 238 *
 239 * Platform driver has the capability to register some pre-allacoted carveout
 240 * (physically contiguous memory regions) before rproc firmware loading and
 241 * associated resource table analysis. These regions may be dedicated memory
 242 * regions internal to the coprocessor or specified DDR region with specific
 243 * attributes
 244 *
 245 * This function is a helper function with which we can go over the
 246 * allocated carveouts and return associated region characteristics like
 247 * coprocessor address, length or processor virtual address.
 248 *
 249 * Return: a valid pointer on carveout entry on success or NULL on failure.
 250 */
 251__printf(2, 3)
 252struct rproc_mem_entry *
 253rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 254{
 255	va_list args;
 256	char _name[32];
 257	struct rproc_mem_entry *carveout, *mem = NULL;
 258
 259	if (!name)
 260		return NULL;
 261
 262	va_start(args, name);
 263	vsnprintf(_name, sizeof(_name), name, args);
 264	va_end(args);
 265
 266	list_for_each_entry(carveout, &rproc->carveouts, node) {
 267		/* Compare carveout and requested names */
 268		if (!strcmp(carveout->name, _name)) {
 269			mem = carveout;
 270			break;
 271		}
 272	}
 273
 274	return mem;
 275}
 276
 277/**
 278 * rproc_check_carveout_da() - Check specified carveout da configuration
 279 * @rproc: handle of a remote processor
 280 * @mem: pointer on carveout to check
 281 * @da: area device address
 282 * @len: associated area size
 283 *
 284 * This function is a helper function to verify requested device area (couple
 285 * da, len) is part of specified carveout.
 286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
 287 * checked.
 288 *
 289 * Return: 0 if carveout matches request else error
 290 */
 291static int rproc_check_carveout_da(struct rproc *rproc,
 292				   struct rproc_mem_entry *mem, u32 da, u32 len)
 293{
 294	struct device *dev = &rproc->dev;
 295	int delta;
 296
 297	/* Check requested resource length */
 298	if (len > mem->len) {
 299		dev_err(dev, "Registered carveout doesn't fit len request\n");
 300		return -EINVAL;
 301	}
 302
 303	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 304		/* Address doesn't match registered carveout configuration */
 305		return -EINVAL;
 306	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 307		delta = da - mem->da;
 308
 309		/* Check requested resource belongs to registered carveout */
 310		if (delta < 0) {
 311			dev_err(dev,
 312				"Registered carveout doesn't fit da request\n");
 313			return -EINVAL;
 314		}
 315
 316		if (delta + len > mem->len) {
 317			dev_err(dev,
 318				"Registered carveout doesn't fit len request\n");
 319			return -EINVAL;
 320		}
 321	}
 322
 323	return 0;
 324}
 325
 326int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 327{
 328	struct rproc *rproc = rvdev->rproc;
 329	struct device *dev = &rproc->dev;
 330	struct rproc_vring *rvring = &rvdev->vring[i];
 331	struct fw_rsc_vdev *rsc;
 332	int ret, notifyid;
 333	struct rproc_mem_entry *mem;
 334	size_t size;
 335
 336	/* actual size of vring (in bytes) */
 337	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
 338
 339	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 340
 341	/* Search for pre-registered carveout */
 342	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 343					  i);
 344	if (mem) {
 345		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 346			return -ENOMEM;
 347	} else {
 348		/* Register carveout in list */
 349		mem = rproc_mem_entry_init(dev, NULL, 0,
 350					   size, rsc->vring[i].da,
 351					   rproc_alloc_carveout,
 352					   rproc_release_carveout,
 353					   "vdev%dvring%d",
 354					   rvdev->index, i);
 355		if (!mem) {
 356			dev_err(dev, "Can't allocate memory entry structure\n");
 357			return -ENOMEM;
 358		}
 359
 360		rproc_add_carveout(rproc, mem);
 361	}
 362
 363	/*
 364	 * Assign an rproc-wide unique index for this vring
 365	 * TODO: assign a notifyid for rvdev updates as well
 366	 * TODO: support predefined notifyids (via resource table)
 367	 */
 368	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 369	if (ret < 0) {
 370		dev_err(dev, "idr_alloc failed: %d\n", ret);
 371		return ret;
 372	}
 373	notifyid = ret;
 374
 375	/* Potentially bump max_notifyid */
 376	if (notifyid > rproc->max_notifyid)
 377		rproc->max_notifyid = notifyid;
 378
 379	rvring->notifyid = notifyid;
 380
 381	/* Let the rproc know the notifyid of this vring.*/
 382	rsc->vring[i].notifyid = notifyid;
 383	return 0;
 384}
 385
 386int
 387rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 388{
 389	struct rproc *rproc = rvdev->rproc;
 390	struct device *dev = &rproc->dev;
 391	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 392	struct rproc_vring *rvring = &rvdev->vring[i];
 393
 394	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 395		i, vring->da, vring->num, vring->align);
 396
 397	/* verify queue size and vring alignment are sane */
 398	if (!vring->num || !vring->align) {
 399		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 400			vring->num, vring->align);
 401		return -EINVAL;
 402	}
 403
 404	rvring->num = vring->num;
 405	rvring->align = vring->align;
 406	rvring->rvdev = rvdev;
 407
 408	return 0;
 409}
 410
 411void rproc_free_vring(struct rproc_vring *rvring)
 412{
 413	struct rproc *rproc = rvring->rvdev->rproc;
 414	int idx = rvring - rvring->rvdev->vring;
 415	struct fw_rsc_vdev *rsc;
 416
 417	idr_remove(&rproc->notifyids, rvring->notifyid);
 418
 419	/*
 420	 * At this point rproc_stop() has been called and the installed resource
 421	 * table in the remote processor memory may no longer be accessible. As
 422	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
 423	 * resource table (rproc->cached_table).  The cached resource table is
 424	 * only available when a remote processor has been booted by the
 425	 * remoteproc core, otherwise it is NULL.
 426	 *
 427	 * Based on the above, reset the virtio device section in the cached
 428	 * resource table only if there is one to work with.
 429	 */
 430	if (rproc->table_ptr) {
 431		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 432		rsc->vring[idx].da = 0;
 433		rsc->vring[idx].notifyid = -1;
 434	}
 435}
 436
 437void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
 438{
 439	if (rvdev && rproc)
 440		list_add_tail(&rvdev->node, &rproc->rvdevs);
 441}
 442
 443void rproc_remove_rvdev(struct rproc_vdev *rvdev)
 444{
 445	if (rvdev)
 446		list_del(&rvdev->node);
 447}
 448/**
 449 * rproc_handle_vdev() - handle a vdev fw resource
 450 * @rproc: the remote processor
 451 * @ptr: the vring resource descriptor
 452 * @offset: offset of the resource entry
 453 * @avail: size of available data (for sanity checking the image)
 454 *
 455 * This resource entry requests the host to statically register a virtio
 456 * device (vdev), and setup everything needed to support it. It contains
 457 * everything needed to make it possible: the virtio device id, virtio
 458 * device features, vrings information, virtio config space, etc...
 459 *
 460 * Before registering the vdev, the vrings are allocated from non-cacheable
 461 * physically contiguous memory. Currently we only support two vrings per
 462 * remote processor (temporary limitation). We might also want to consider
 463 * doing the vring allocation only later when ->find_vqs() is invoked, and
 464 * then release them upon ->del_vqs().
 465 *
 466 * Note: @da is currently not really handled correctly: we dynamically
 467 * allocate it using the DMA API, ignoring requested hard coded addresses,
 468 * and we don't take care of any required IOMMU programming. This is all
 469 * going to be taken care of when the generic iommu-based DMA API will be
 470 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 471 * use RSC_DEVMEM resource entries to map their required @da to the physical
 472 * address of their base CMA region (ouch, hacky!).
 473 *
 474 * Return: 0 on success, or an appropriate error code otherwise
 475 */
 476static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
 477			     int offset, int avail)
 478{
 479	struct fw_rsc_vdev *rsc = ptr;
 480	struct device *dev = &rproc->dev;
 481	struct rproc_vdev *rvdev;
 482	size_t rsc_size;
 483	struct rproc_vdev_data rvdev_data;
 484	struct platform_device *pdev;
 485
 486	/* make sure resource isn't truncated */
 487	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
 488	if (size_add(rsc_size, rsc->config_len) > avail) {
 489		dev_err(dev, "vdev rsc is truncated\n");
 490		return -EINVAL;
 491	}
 492
 493	/* make sure reserved bytes are zeroes */
 494	if (rsc->reserved[0] || rsc->reserved[1]) {
 495		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 496		return -EINVAL;
 497	}
 498
 499	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 500		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 501
 502	/* we currently support only two vrings per rvdev */
 503	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 504		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 505		return -EINVAL;
 506	}
 507
 508	rvdev_data.id = rsc->id;
 509	rvdev_data.index = rproc->nb_vdev++;
 510	rvdev_data.rsc_offset = offset;
 511	rvdev_data.rsc = rsc;
 512
 513	/*
 514	 * When there is more than one remote processor, rproc->nb_vdev number is
 515	 * same for each separate instances of "rproc". If rvdev_data.index is used
 516	 * as device id, then we get duplication in sysfs, so need to use
 517	 * PLATFORM_DEVID_AUTO to auto select device id.
 518	 */
 519	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
 520					     sizeof(rvdev_data));
 521	if (IS_ERR(pdev)) {
 522		dev_err(dev, "failed to create rproc-virtio device\n");
 523		return PTR_ERR(pdev);
 524	}
 525
 526	return 0;
 527}
 528
 529/**
 530 * rproc_handle_trace() - handle a shared trace buffer resource
 531 * @rproc: the remote processor
 532 * @ptr: the trace resource descriptor
 533 * @offset: offset of the resource entry
 534 * @avail: size of available data (for sanity checking the image)
 535 *
 536 * In case the remote processor dumps trace logs into memory,
 537 * export it via debugfs.
 538 *
 539 * Currently, the 'da' member of @rsc should contain the device address
 540 * where the remote processor is dumping the traces. Later we could also
 541 * support dynamically allocating this address using the generic
 542 * DMA API (but currently there isn't a use case for that).
 543 *
 544 * Return: 0 on success, or an appropriate error code otherwise
 545 */
 546static int rproc_handle_trace(struct rproc *rproc, void *ptr,
 547			      int offset, int avail)
 548{
 549	struct fw_rsc_trace *rsc = ptr;
 550	struct rproc_debug_trace *trace;
 551	struct device *dev = &rproc->dev;
 552	char name[15];
 553
 554	if (sizeof(*rsc) > avail) {
 555		dev_err(dev, "trace rsc is truncated\n");
 556		return -EINVAL;
 557	}
 558
 559	/* make sure reserved bytes are zeroes */
 560	if (rsc->reserved) {
 561		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 562		return -EINVAL;
 563	}
 564
 565	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 566	if (!trace)
 567		return -ENOMEM;
 568
 569	/* set the trace buffer dma properties */
 570	trace->trace_mem.len = rsc->len;
 571	trace->trace_mem.da = rsc->da;
 572
 573	/* set pointer on rproc device */
 574	trace->rproc = rproc;
 575
 576	/* make sure snprintf always null terminates, even if truncating */
 577	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 578
 579	/* create the debugfs entry */
 580	trace->tfile = rproc_create_trace_file(name, rproc, trace);
 581
 582	list_add_tail(&trace->node, &rproc->traces);
 583
 584	rproc->num_traces++;
 585
 586	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
 587		name, rsc->da, rsc->len);
 588
 589	return 0;
 590}
 591
 592/**
 593 * rproc_handle_devmem() - handle devmem resource entry
 594 * @rproc: remote processor handle
 595 * @ptr: the devmem resource entry
 596 * @offset: offset of the resource entry
 597 * @avail: size of available data (for sanity checking the image)
 598 *
 599 * Remote processors commonly need to access certain on-chip peripherals.
 600 *
 601 * Some of these remote processors access memory via an iommu device,
 602 * and might require us to configure their iommu before they can access
 603 * the on-chip peripherals they need.
 604 *
 605 * This resource entry is a request to map such a peripheral device.
 606 *
 607 * These devmem entries will contain the physical address of the device in
 608 * the 'pa' member. If a specific device address is expected, then 'da' will
 609 * contain it (currently this is the only use case supported). 'len' will
 610 * contain the size of the physical region we need to map.
 611 *
 612 * Currently we just "trust" those devmem entries to contain valid physical
 613 * addresses, but this is going to change: we want the implementations to
 614 * tell us ranges of physical addresses the firmware is allowed to request,
 615 * and not allow firmwares to request access to physical addresses that
 616 * are outside those ranges.
 617 *
 618 * Return: 0 on success, or an appropriate error code otherwise
 619 */
 620static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
 621			       int offset, int avail)
 622{
 623	struct fw_rsc_devmem *rsc = ptr;
 624	struct rproc_mem_entry *mapping;
 625	struct device *dev = &rproc->dev;
 626	int ret;
 627
 628	/* no point in handling this resource without a valid iommu domain */
 629	if (!rproc->domain)
 630		return -EINVAL;
 631
 632	if (sizeof(*rsc) > avail) {
 633		dev_err(dev, "devmem rsc is truncated\n");
 634		return -EINVAL;
 635	}
 636
 637	/* make sure reserved bytes are zeroes */
 638	if (rsc->reserved) {
 639		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 640		return -EINVAL;
 641	}
 642
 643	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 644	if (!mapping)
 645		return -ENOMEM;
 646
 647	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
 648			GFP_KERNEL);
 649	if (ret) {
 650		dev_err(dev, "failed to map devmem: %d\n", ret);
 651		goto out;
 652	}
 653
 654	/*
 655	 * We'll need this info later when we'll want to unmap everything
 656	 * (e.g. on shutdown).
 657	 *
 658	 * We can't trust the remote processor not to change the resource
 659	 * table, so we must maintain this info independently.
 660	 */
 661	mapping->da = rsc->da;
 662	mapping->len = rsc->len;
 663	list_add_tail(&mapping->node, &rproc->mappings);
 664
 665	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 666		rsc->pa, rsc->da, rsc->len);
 667
 668	return 0;
 669
 670out:
 671	kfree(mapping);
 672	return ret;
 673}
 674
 675/**
 676 * rproc_alloc_carveout() - allocated specified carveout
 677 * @rproc: rproc handle
 678 * @mem: the memory entry to allocate
 679 *
 680 * This function allocate specified memory entry @mem using
 681 * dma_alloc_coherent() as default allocator
 682 *
 683 * Return: 0 on success, or an appropriate error code otherwise
 684 */
 685static int rproc_alloc_carveout(struct rproc *rproc,
 686				struct rproc_mem_entry *mem)
 687{
 688	struct rproc_mem_entry *mapping = NULL;
 689	struct device *dev = &rproc->dev;
 690	dma_addr_t dma;
 691	void *va;
 692	int ret;
 693
 694	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 695	if (!va) {
 696		dev_err(dev->parent,
 697			"failed to allocate dma memory: len 0x%zx\n",
 698			mem->len);
 699		return -ENOMEM;
 700	}
 701
 702	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
 703		va, &dma, mem->len);
 704
 705	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
 706		/*
 707		 * Check requested da is equal to dma address
 708		 * and print a warn message in case of missalignment.
 709		 * Don't stop rproc_start sequence as coprocessor may
 710		 * build pa to da translation on its side.
 711		 */
 712		if (mem->da != (u32)dma)
 713			dev_warn(dev->parent,
 714				 "Allocated carveout doesn't fit device address request\n");
 715	}
 716
 717	/*
 718	 * Ok, this is non-standard.
 719	 *
 720	 * Sometimes we can't rely on the generic iommu-based DMA API
 721	 * to dynamically allocate the device address and then set the IOMMU
 722	 * tables accordingly, because some remote processors might
 723	 * _require_ us to use hard coded device addresses that their
 724	 * firmware was compiled with.
 725	 *
 726	 * In this case, we must use the IOMMU API directly and map
 727	 * the memory to the device address as expected by the remote
 728	 * processor.
 729	 *
 730	 * Obviously such remote processor devices should not be configured
 731	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 732	 * physical address in this case.
 733	 */
 734	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
 735		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 736		if (!mapping) {
 737			ret = -ENOMEM;
 738			goto dma_free;
 739		}
 740
 741		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 742				mem->flags, GFP_KERNEL);
 743		if (ret) {
 744			dev_err(dev, "iommu_map failed: %d\n", ret);
 745			goto free_mapping;
 746		}
 747
 748		/*
 749		 * We'll need this info later when we'll want to unmap
 750		 * everything (e.g. on shutdown).
 751		 *
 752		 * We can't trust the remote processor not to change the
 753		 * resource table, so we must maintain this info independently.
 754		 */
 755		mapping->da = mem->da;
 756		mapping->len = mem->len;
 757		list_add_tail(&mapping->node, &rproc->mappings);
 758
 759		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 760			mem->da, &dma);
 761	}
 762
 763	if (mem->da == FW_RSC_ADDR_ANY) {
 764		/* Update device address as undefined by requester */
 765		if ((u64)dma & HIGH_BITS_MASK)
 766			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
 767
 768		mem->da = (u32)dma;
 769	}
 770
 771	mem->dma = dma;
 772	mem->va = va;
 773
 774	return 0;
 775
 776free_mapping:
 777	kfree(mapping);
 778dma_free:
 779	dma_free_coherent(dev->parent, mem->len, va, dma);
 780	return ret;
 781}
 782
 783/**
 784 * rproc_release_carveout() - release acquired carveout
 785 * @rproc: rproc handle
 786 * @mem: the memory entry to release
 787 *
 788 * This function releases specified memory entry @mem allocated via
 789 * rproc_alloc_carveout() function by @rproc.
 790 *
 791 * Return: 0 on success, or an appropriate error code otherwise
 792 */
 793static int rproc_release_carveout(struct rproc *rproc,
 794				  struct rproc_mem_entry *mem)
 795{
 796	struct device *dev = &rproc->dev;
 797
 798	/* clean up carveout allocations */
 799	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 800	return 0;
 801}
 802
 803/**
 804 * rproc_handle_carveout() - handle phys contig memory allocation requests
 805 * @rproc: rproc handle
 806 * @ptr: the resource entry
 807 * @offset: offset of the resource entry
 808 * @avail: size of available data (for image validation)
 809 *
 810 * This function will handle firmware requests for allocation of physically
 811 * contiguous memory regions.
 812 *
 813 * These request entries should come first in the firmware's resource table,
 814 * as other firmware entries might request placing other data objects inside
 815 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 816 *
 817 * Allocating memory this way helps utilizing the reserved physical memory
 818 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 819 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 820 * pressure is important; it may have a substantial impact on performance.
 821 *
 822 * Return: 0 on success, or an appropriate error code otherwise
 823 */
 824static int rproc_handle_carveout(struct rproc *rproc,
 825				 void *ptr, int offset, int avail)
 826{
 827	struct fw_rsc_carveout *rsc = ptr;
 828	struct rproc_mem_entry *carveout;
 829	struct device *dev = &rproc->dev;
 830
 831	if (sizeof(*rsc) > avail) {
 832		dev_err(dev, "carveout rsc is truncated\n");
 833		return -EINVAL;
 834	}
 835
 836	/* make sure reserved bytes are zeroes */
 837	if (rsc->reserved) {
 838		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 839		return -EINVAL;
 840	}
 841
 842	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 843		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 844
 845	/*
 846	 * Check carveout rsc already part of a registered carveout,
 847	 * Search by name, then check the da and length
 848	 */
 849	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 850
 851	if (carveout) {
 852		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 853			dev_err(dev,
 854				"Carveout already associated to resource table\n");
 855			return -ENOMEM;
 856		}
 857
 858		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 859			return -ENOMEM;
 860
 861		/* Update memory carveout with resource table info */
 862		carveout->rsc_offset = offset;
 863		carveout->flags = rsc->flags;
 864
 865		return 0;
 866	}
 867
 868	/* Register carveout in list */
 869	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
 870					rproc_alloc_carveout,
 871					rproc_release_carveout, rsc->name);
 872	if (!carveout) {
 873		dev_err(dev, "Can't allocate memory entry structure\n");
 874		return -ENOMEM;
 875	}
 876
 877	carveout->flags = rsc->flags;
 878	carveout->rsc_offset = offset;
 879	rproc_add_carveout(rproc, carveout);
 880
 881	return 0;
 882}
 883
 884/**
 885 * rproc_add_carveout() - register an allocated carveout region
 886 * @rproc: rproc handle
 887 * @mem: memory entry to register
 888 *
 889 * This function registers specified memory entry in @rproc carveouts list.
 890 * Specified carveout should have been allocated before registering.
 891 */
 892void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
 893{
 894	list_add_tail(&mem->node, &rproc->carveouts);
 895}
 896EXPORT_SYMBOL(rproc_add_carveout);
 897
 898/**
 899 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 900 * @dev: pointer on device struct
 901 * @va: virtual address
 902 * @dma: dma address
 903 * @len: memory carveout length
 904 * @da: device address
 905 * @alloc: memory carveout allocation function
 906 * @release: memory carveout release function
 907 * @name: carveout name
 908 *
 909 * This function allocates a rproc_mem_entry struct and fill it with parameters
 910 * provided by client.
 911 *
 912 * Return: a valid pointer on success, or NULL on failure
 913 */
 914__printf(8, 9)
 915struct rproc_mem_entry *
 916rproc_mem_entry_init(struct device *dev,
 917		     void *va, dma_addr_t dma, size_t len, u32 da,
 918		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
 919		     int (*release)(struct rproc *, struct rproc_mem_entry *),
 920		     const char *name, ...)
 921{
 922	struct rproc_mem_entry *mem;
 923	va_list args;
 924
 925	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 926	if (!mem)
 927		return mem;
 928
 929	mem->va = va;
 930	mem->dma = dma;
 931	mem->da = da;
 932	mem->len = len;
 933	mem->alloc = alloc;
 934	mem->release = release;
 935	mem->rsc_offset = FW_RSC_ADDR_ANY;
 936	mem->of_resm_idx = -1;
 937
 938	va_start(args, name);
 939	vsnprintf(mem->name, sizeof(mem->name), name, args);
 940	va_end(args);
 941
 942	return mem;
 943}
 944EXPORT_SYMBOL(rproc_mem_entry_init);
 945
 946/**
 947 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 948 * from a reserved memory phandle
 949 * @dev: pointer on device struct
 950 * @of_resm_idx: reserved memory phandle index in "memory-region"
 951 * @len: memory carveout length
 952 * @da: device address
 953 * @name: carveout name
 954 *
 955 * This function allocates a rproc_mem_entry struct and fill it with parameters
 956 * provided by client.
 957 *
 958 * Return: a valid pointer on success, or NULL on failure
 959 */
 960__printf(5, 6)
 961struct rproc_mem_entry *
 962rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
 963			     u32 da, const char *name, ...)
 964{
 965	struct rproc_mem_entry *mem;
 966	va_list args;
 967
 968	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 969	if (!mem)
 970		return mem;
 971
 972	mem->da = da;
 973	mem->len = len;
 974	mem->rsc_offset = FW_RSC_ADDR_ANY;
 975	mem->of_resm_idx = of_resm_idx;
 976
 977	va_start(args, name);
 978	vsnprintf(mem->name, sizeof(mem->name), name, args);
 979	va_end(args);
 980
 981	return mem;
 982}
 983EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
 984
 985/**
 986 * rproc_of_parse_firmware() - parse and return the firmware-name
 987 * @dev: pointer on device struct representing a rproc
 988 * @index: index to use for the firmware-name retrieval
 989 * @fw_name: pointer to a character string, in which the firmware
 990 *           name is returned on success and unmodified otherwise.
 991 *
 992 * This is an OF helper function that parses a device's DT node for
 993 * the "firmware-name" property and returns the firmware name pointer
 994 * in @fw_name on success.
 995 *
 996 * Return: 0 on success, or an appropriate failure.
 997 */
 998int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
 999{
1000	int ret;
1001
1002	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1003					    index, fw_name);
1004	return ret ? ret : 0;
1005}
1006EXPORT_SYMBOL(rproc_of_parse_firmware);
1007
1008/*
1009 * A lookup table for resource handlers. The indices are defined in
1010 * enum fw_resource_type.
1011 */
1012static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1013	[RSC_CARVEOUT] = rproc_handle_carveout,
1014	[RSC_DEVMEM] = rproc_handle_devmem,
1015	[RSC_TRACE] = rproc_handle_trace,
1016	[RSC_VDEV] = rproc_handle_vdev,
1017};
1018
1019/* handle firmware resource entries before booting the remote processor */
1020static int rproc_handle_resources(struct rproc *rproc,
1021				  rproc_handle_resource_t handlers[RSC_LAST])
1022{
1023	struct device *dev = &rproc->dev;
1024	rproc_handle_resource_t handler;
1025	int ret = 0, i;
1026
1027	if (!rproc->table_ptr)
1028		return 0;
1029
1030	for (i = 0; i < rproc->table_ptr->num; i++) {
1031		int offset = rproc->table_ptr->offset[i];
1032		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1033		int avail = rproc->table_sz - offset - sizeof(*hdr);
1034		void *rsc = (void *)hdr + sizeof(*hdr);
1035
1036		/* make sure table isn't truncated */
1037		if (avail < 0) {
1038			dev_err(dev, "rsc table is truncated\n");
1039			return -EINVAL;
1040		}
1041
1042		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1043
1044		if (hdr->type >= RSC_VENDOR_START &&
1045		    hdr->type <= RSC_VENDOR_END) {
1046			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1047					       offset + sizeof(*hdr), avail);
1048			if (ret == RSC_HANDLED)
1049				continue;
1050			else if (ret < 0)
1051				break;
1052
1053			dev_warn(dev, "unsupported vendor resource %d\n",
1054				 hdr->type);
1055			continue;
1056		}
1057
1058		if (hdr->type >= RSC_LAST) {
1059			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1060			continue;
1061		}
1062
1063		handler = handlers[hdr->type];
1064		if (!handler)
1065			continue;
1066
1067		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1068		if (ret)
1069			break;
1070	}
1071
1072	return ret;
1073}
1074
1075static int rproc_prepare_subdevices(struct rproc *rproc)
1076{
1077	struct rproc_subdev *subdev;
1078	int ret;
1079
1080	list_for_each_entry(subdev, &rproc->subdevs, node) {
1081		if (subdev->prepare) {
1082			ret = subdev->prepare(subdev);
1083			if (ret)
1084				goto unroll_preparation;
1085		}
1086	}
1087
1088	return 0;
1089
1090unroll_preparation:
1091	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1092		if (subdev->unprepare)
1093			subdev->unprepare(subdev);
1094	}
1095
1096	return ret;
1097}
1098
1099static int rproc_start_subdevices(struct rproc *rproc)
1100{
1101	struct rproc_subdev *subdev;
1102	int ret;
1103
1104	list_for_each_entry(subdev, &rproc->subdevs, node) {
1105		if (subdev->start) {
1106			ret = subdev->start(subdev);
1107			if (ret)
1108				goto unroll_registration;
1109		}
1110	}
1111
1112	return 0;
1113
1114unroll_registration:
1115	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1116		if (subdev->stop)
1117			subdev->stop(subdev, true);
1118	}
1119
1120	return ret;
1121}
1122
1123static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1124{
1125	struct rproc_subdev *subdev;
1126
1127	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1128		if (subdev->stop)
1129			subdev->stop(subdev, crashed);
1130	}
1131}
1132
1133static void rproc_unprepare_subdevices(struct rproc *rproc)
1134{
1135	struct rproc_subdev *subdev;
1136
1137	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1138		if (subdev->unprepare)
1139			subdev->unprepare(subdev);
1140	}
1141}
1142
1143/**
1144 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1145 * in the list
1146 * @rproc: the remote processor handle
1147 *
1148 * This function parses registered carveout list, performs allocation
1149 * if alloc() ops registered and updates resource table information
1150 * if rsc_offset set.
1151 *
1152 * Return: 0 on success
1153 */
1154static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1155{
1156	struct rproc_mem_entry *entry, *tmp;
1157	struct fw_rsc_carveout *rsc;
1158	struct device *dev = &rproc->dev;
1159	u64 pa;
1160	int ret;
1161
1162	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1163		if (entry->alloc) {
1164			ret = entry->alloc(rproc, entry);
1165			if (ret) {
1166				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1167					entry->name, ret);
1168				return -ENOMEM;
1169			}
1170		}
1171
1172		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1173			/* update resource table */
1174			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1175
1176			/*
1177			 * Some remote processors might need to know the pa
1178			 * even though they are behind an IOMMU. E.g., OMAP4's
1179			 * remote M3 processor needs this so it can control
1180			 * on-chip hardware accelerators that are not behind
1181			 * the IOMMU, and therefor must know the pa.
1182			 *
1183			 * Generally we don't want to expose physical addresses
1184			 * if we don't have to (remote processors are generally
1185			 * _not_ trusted), so we might want to do this only for
1186			 * remote processor that _must_ have this (e.g. OMAP4's
1187			 * dual M3 subsystem).
1188			 *
1189			 * Non-IOMMU processors might also want to have this info.
1190			 * In this case, the device address and the physical address
1191			 * are the same.
1192			 */
1193
1194			/* Use va if defined else dma to generate pa */
1195			if (entry->va)
1196				pa = (u64)rproc_va_to_pa(entry->va);
1197			else
1198				pa = (u64)entry->dma;
1199
1200			if (((u64)pa) & HIGH_BITS_MASK)
1201				dev_warn(dev,
1202					 "Physical address cast in 32bit to fit resource table format\n");
1203
1204			rsc->pa = (u32)pa;
1205			rsc->da = entry->da;
1206			rsc->len = entry->len;
1207		}
1208	}
1209
1210	return 0;
1211}
1212
1213
1214/**
1215 * rproc_resource_cleanup() - clean up and free all acquired resources
1216 * @rproc: rproc handle
1217 *
1218 * This function will free all resources acquired for @rproc, and it
1219 * is called whenever @rproc either shuts down or fails to boot.
1220 */
1221void rproc_resource_cleanup(struct rproc *rproc)
1222{
1223	struct rproc_mem_entry *entry, *tmp;
1224	struct rproc_debug_trace *trace, *ttmp;
1225	struct rproc_vdev *rvdev, *rvtmp;
1226	struct device *dev = &rproc->dev;
1227
1228	/* clean up debugfs trace entries */
1229	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1230		rproc_remove_trace_file(trace->tfile);
1231		rproc->num_traces--;
1232		list_del(&trace->node);
1233		kfree(trace);
1234	}
1235
1236	/* clean up iommu mapping entries */
1237	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1238		size_t unmapped;
1239
1240		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1241		if (unmapped != entry->len) {
1242			/* nothing much to do besides complaining */
1243			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1244				unmapped);
1245		}
1246
1247		list_del(&entry->node);
1248		kfree(entry);
1249	}
1250
1251	/* clean up carveout allocations */
1252	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1253		if (entry->release)
1254			entry->release(rproc, entry);
1255		list_del(&entry->node);
1256		kfree(entry);
1257	}
1258
1259	/* clean up remote vdev entries */
1260	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1261		platform_device_unregister(rvdev->pdev);
1262
1263	rproc_coredump_cleanup(rproc);
1264}
1265EXPORT_SYMBOL(rproc_resource_cleanup);
1266
1267static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1268{
1269	struct resource_table *loaded_table;
1270	struct device *dev = &rproc->dev;
1271	int ret;
1272
1273	/* load the ELF segments to memory */
1274	ret = rproc_load_segments(rproc, fw);
1275	if (ret) {
1276		dev_err(dev, "Failed to load program segments: %d\n", ret);
1277		return ret;
1278	}
1279
1280	/*
1281	 * The starting device has been given the rproc->cached_table as the
1282	 * resource table. The address of the vring along with the other
1283	 * allocated resources (carveouts etc) is stored in cached_table.
1284	 * In order to pass this information to the remote device we must copy
1285	 * this information to device memory. We also update the table_ptr so
1286	 * that any subsequent changes will be applied to the loaded version.
1287	 */
1288	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1289	if (loaded_table) {
1290		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1291		rproc->table_ptr = loaded_table;
1292	}
1293
1294	ret = rproc_prepare_subdevices(rproc);
1295	if (ret) {
1296		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1297			rproc->name, ret);
1298		goto reset_table_ptr;
1299	}
1300
1301	/* power up the remote processor */
1302	ret = rproc->ops->start(rproc);
1303	if (ret) {
1304		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1305		goto unprepare_subdevices;
1306	}
1307
1308	/* Start any subdevices for the remote processor */
1309	ret = rproc_start_subdevices(rproc);
1310	if (ret) {
1311		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1312			rproc->name, ret);
1313		goto stop_rproc;
1314	}
1315
1316	rproc->state = RPROC_RUNNING;
1317
1318	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1319
1320	return 0;
1321
1322stop_rproc:
1323	rproc->ops->stop(rproc);
1324unprepare_subdevices:
1325	rproc_unprepare_subdevices(rproc);
1326reset_table_ptr:
1327	rproc->table_ptr = rproc->cached_table;
1328
1329	return ret;
1330}
1331
1332static int __rproc_attach(struct rproc *rproc)
1333{
1334	struct device *dev = &rproc->dev;
1335	int ret;
1336
1337	ret = rproc_prepare_subdevices(rproc);
1338	if (ret) {
1339		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1340			rproc->name, ret);
1341		goto out;
1342	}
1343
1344	/* Attach to the remote processor */
1345	ret = rproc_attach_device(rproc);
1346	if (ret) {
1347		dev_err(dev, "can't attach to rproc %s: %d\n",
1348			rproc->name, ret);
1349		goto unprepare_subdevices;
1350	}
1351
1352	/* Start any subdevices for the remote processor */
1353	ret = rproc_start_subdevices(rproc);
1354	if (ret) {
1355		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1356			rproc->name, ret);
1357		goto stop_rproc;
1358	}
1359
1360	rproc->state = RPROC_ATTACHED;
1361
1362	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1363
1364	return 0;
1365
1366stop_rproc:
1367	rproc->ops->stop(rproc);
1368unprepare_subdevices:
1369	rproc_unprepare_subdevices(rproc);
1370out:
1371	return ret;
1372}
1373
1374/*
1375 * take a firmware and boot a remote processor with it.
1376 */
1377static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1378{
1379	struct device *dev = &rproc->dev;
1380	const char *name = rproc->firmware;
1381	int ret;
1382
1383	ret = rproc_fw_sanity_check(rproc, fw);
1384	if (ret)
1385		return ret;
1386
1387	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1388
1389	/*
1390	 * if enabling an IOMMU isn't relevant for this rproc, this is
1391	 * just a nop
1392	 */
1393	ret = rproc_enable_iommu(rproc);
1394	if (ret) {
1395		dev_err(dev, "can't enable iommu: %d\n", ret);
1396		return ret;
1397	}
1398
1399	/* Prepare rproc for firmware loading if needed */
1400	ret = rproc_prepare_device(rproc);
1401	if (ret) {
1402		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1403		goto disable_iommu;
1404	}
1405
1406	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1407
1408	/* Load resource table, core dump segment list etc from the firmware */
1409	ret = rproc_parse_fw(rproc, fw);
1410	if (ret)
1411		goto unprepare_rproc;
1412
1413	/* reset max_notifyid */
1414	rproc->max_notifyid = -1;
1415
1416	/* reset handled vdev */
1417	rproc->nb_vdev = 0;
1418
1419	/* handle fw resources which are required to boot rproc */
1420	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1421	if (ret) {
1422		dev_err(dev, "Failed to process resources: %d\n", ret);
1423		goto clean_up_resources;
1424	}
1425
1426	/* Allocate carveout resources associated to rproc */
1427	ret = rproc_alloc_registered_carveouts(rproc);
1428	if (ret) {
1429		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1430			ret);
1431		goto clean_up_resources;
1432	}
1433
1434	ret = rproc_start(rproc, fw);
1435	if (ret)
1436		goto clean_up_resources;
1437
1438	return 0;
1439
1440clean_up_resources:
1441	rproc_resource_cleanup(rproc);
1442	kfree(rproc->cached_table);
1443	rproc->cached_table = NULL;
1444	rproc->table_ptr = NULL;
1445unprepare_rproc:
1446	/* release HW resources if needed */
1447	rproc_unprepare_device(rproc);
1448disable_iommu:
1449	rproc_disable_iommu(rproc);
1450	return ret;
1451}
1452
1453static int rproc_set_rsc_table(struct rproc *rproc)
1454{
1455	struct resource_table *table_ptr;
1456	struct device *dev = &rproc->dev;
1457	size_t table_sz;
1458	int ret;
1459
1460	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1461	if (!table_ptr) {
1462		/* Not having a resource table is acceptable */
1463		return 0;
1464	}
1465
1466	if (IS_ERR(table_ptr)) {
1467		ret = PTR_ERR(table_ptr);
1468		dev_err(dev, "can't load resource table: %d\n", ret);
1469		return ret;
1470	}
1471
1472	/*
1473	 * If it is possible to detach the remote processor, keep an untouched
1474	 * copy of the resource table.  That way we can start fresh again when
1475	 * the remote processor is re-attached, that is:
1476	 *
1477	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1478	 *
1479	 * Free'd in rproc_reset_rsc_table_on_detach() and
1480	 * rproc_reset_rsc_table_on_stop().
1481	 */
1482	if (rproc->ops->detach) {
1483		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1484		if (!rproc->clean_table)
1485			return -ENOMEM;
1486	} else {
1487		rproc->clean_table = NULL;
1488	}
1489
1490	rproc->cached_table = NULL;
1491	rproc->table_ptr = table_ptr;
1492	rproc->table_sz = table_sz;
1493
1494	return 0;
1495}
1496
1497static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1498{
1499	struct resource_table *table_ptr;
1500
1501	/* A resource table was never retrieved, nothing to do here */
1502	if (!rproc->table_ptr)
1503		return 0;
1504
1505	/*
1506	 * If we made it to this point a clean_table _must_ have been
1507	 * allocated in rproc_set_rsc_table().  If one isn't present
1508	 * something went really wrong and we must complain.
1509	 */
1510	if (WARN_ON(!rproc->clean_table))
1511		return -EINVAL;
1512
1513	/* Remember where the external entity installed the resource table */
1514	table_ptr = rproc->table_ptr;
1515
1516	/*
1517	 * If we made it here the remote processor was started by another
1518	 * entity and a cache table doesn't exist.  As such make a copy of
1519	 * the resource table currently used by the remote processor and
1520	 * use that for the rest of the shutdown process.  The memory
1521	 * allocated here is free'd in rproc_detach().
1522	 */
1523	rproc->cached_table = kmemdup(rproc->table_ptr,
1524				      rproc->table_sz, GFP_KERNEL);
1525	if (!rproc->cached_table)
1526		return -ENOMEM;
1527
1528	/*
1529	 * Use a copy of the resource table for the remainder of the
1530	 * shutdown process.
1531	 */
1532	rproc->table_ptr = rproc->cached_table;
1533
1534	/*
1535	 * Reset the memory area where the firmware loaded the resource table
1536	 * to its original value.  That way when we re-attach the remote
1537	 * processor the resource table is clean and ready to be used again.
1538	 */
1539	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1540
1541	/*
1542	 * The clean resource table is no longer needed.  Allocated in
1543	 * rproc_set_rsc_table().
1544	 */
1545	kfree(rproc->clean_table);
1546
1547	return 0;
1548}
1549
1550static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1551{
1552	/* A resource table was never retrieved, nothing to do here */
1553	if (!rproc->table_ptr)
1554		return 0;
1555
1556	/*
1557	 * If a cache table exists the remote processor was started by
1558	 * the remoteproc core.  That cache table should be used for
1559	 * the rest of the shutdown process.
1560	 */
1561	if (rproc->cached_table)
1562		goto out;
1563
1564	/*
1565	 * If we made it here the remote processor was started by another
1566	 * entity and a cache table doesn't exist.  As such make a copy of
1567	 * the resource table currently used by the remote processor and
1568	 * use that for the rest of the shutdown process.  The memory
1569	 * allocated here is free'd in rproc_shutdown().
1570	 */
1571	rproc->cached_table = kmemdup(rproc->table_ptr,
1572				      rproc->table_sz, GFP_KERNEL);
1573	if (!rproc->cached_table)
1574		return -ENOMEM;
1575
1576	/*
1577	 * Since the remote processor is being switched off the clean table
1578	 * won't be needed.  Allocated in rproc_set_rsc_table().
1579	 */
1580	kfree(rproc->clean_table);
1581
1582out:
1583	/*
1584	 * Use a copy of the resource table for the remainder of the
1585	 * shutdown process.
1586	 */
1587	rproc->table_ptr = rproc->cached_table;
1588	return 0;
1589}
1590
1591/*
1592 * Attach to remote processor - similar to rproc_fw_boot() but without
1593 * the steps that deal with the firmware image.
1594 */
1595static int rproc_attach(struct rproc *rproc)
1596{
1597	struct device *dev = &rproc->dev;
1598	int ret;
1599
1600	/*
1601	 * if enabling an IOMMU isn't relevant for this rproc, this is
1602	 * just a nop
1603	 */
1604	ret = rproc_enable_iommu(rproc);
1605	if (ret) {
1606		dev_err(dev, "can't enable iommu: %d\n", ret);
1607		return ret;
1608	}
1609
1610	/* Do anything that is needed to boot the remote processor */
1611	ret = rproc_prepare_device(rproc);
1612	if (ret) {
1613		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1614		goto disable_iommu;
1615	}
1616
1617	ret = rproc_set_rsc_table(rproc);
1618	if (ret) {
1619		dev_err(dev, "can't load resource table: %d\n", ret);
1620		goto unprepare_device;
1621	}
1622
1623	/* reset max_notifyid */
1624	rproc->max_notifyid = -1;
1625
1626	/* reset handled vdev */
1627	rproc->nb_vdev = 0;
1628
1629	/*
1630	 * Handle firmware resources required to attach to a remote processor.
1631	 * Because we are attaching rather than booting the remote processor,
1632	 * we expect the platform driver to properly set rproc->table_ptr.
1633	 */
1634	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1635	if (ret) {
1636		dev_err(dev, "Failed to process resources: %d\n", ret);
1637		goto unprepare_device;
1638	}
1639
1640	/* Allocate carveout resources associated to rproc */
1641	ret = rproc_alloc_registered_carveouts(rproc);
1642	if (ret) {
1643		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1644			ret);
1645		goto clean_up_resources;
1646	}
1647
1648	ret = __rproc_attach(rproc);
1649	if (ret)
1650		goto clean_up_resources;
1651
1652	return 0;
1653
1654clean_up_resources:
1655	rproc_resource_cleanup(rproc);
1656unprepare_device:
1657	/* release HW resources if needed */
1658	rproc_unprepare_device(rproc);
1659disable_iommu:
1660	rproc_disable_iommu(rproc);
1661	return ret;
1662}
1663
1664/*
1665 * take a firmware and boot it up.
1666 *
1667 * Note: this function is called asynchronously upon registration of the
1668 * remote processor (so we must wait until it completes before we try
1669 * to unregister the device. one other option is just to use kref here,
1670 * that might be cleaner).
1671 */
1672static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1673{
1674	struct rproc *rproc = context;
1675
1676	rproc_boot(rproc);
1677
1678	release_firmware(fw);
1679}
1680
1681static int rproc_trigger_auto_boot(struct rproc *rproc)
1682{
1683	int ret;
1684
1685	/*
1686	 * Since the remote processor is in a detached state, it has already
1687	 * been booted by another entity.  As such there is no point in waiting
1688	 * for a firmware image to be loaded, we can simply initiate the process
1689	 * of attaching to it immediately.
1690	 */
1691	if (rproc->state == RPROC_DETACHED)
1692		return rproc_boot(rproc);
1693
1694	/*
1695	 * We're initiating an asynchronous firmware loading, so we can
1696	 * be built-in kernel code, without hanging the boot process.
1697	 */
1698	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1699				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1700				      rproc, rproc_auto_boot_callback);
1701	if (ret < 0)
1702		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1703
1704	return ret;
1705}
1706
1707static int rproc_stop(struct rproc *rproc, bool crashed)
1708{
1709	struct device *dev = &rproc->dev;
1710	int ret;
1711
1712	/* No need to continue if a stop() operation has not been provided */
1713	if (!rproc->ops->stop)
1714		return -EINVAL;
1715
1716	/* Stop any subdevices for the remote processor */
1717	rproc_stop_subdevices(rproc, crashed);
1718
1719	/* the installed resource table is no longer accessible */
1720	ret = rproc_reset_rsc_table_on_stop(rproc);
1721	if (ret) {
1722		dev_err(dev, "can't reset resource table: %d\n", ret);
1723		return ret;
1724	}
1725
1726
1727	/* power off the remote processor */
1728	ret = rproc->ops->stop(rproc);
1729	if (ret) {
1730		dev_err(dev, "can't stop rproc: %d\n", ret);
1731		return ret;
1732	}
1733
1734	rproc_unprepare_subdevices(rproc);
1735
1736	rproc->state = RPROC_OFFLINE;
1737
1738	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1739
1740	return 0;
1741}
1742
1743/*
1744 * __rproc_detach(): Does the opposite of __rproc_attach()
1745 */
1746static int __rproc_detach(struct rproc *rproc)
1747{
1748	struct device *dev = &rproc->dev;
1749	int ret;
1750
1751	/* No need to continue if a detach() operation has not been provided */
1752	if (!rproc->ops->detach)
1753		return -EINVAL;
1754
1755	/* Stop any subdevices for the remote processor */
1756	rproc_stop_subdevices(rproc, false);
1757
1758	/* the installed resource table is no longer accessible */
1759	ret = rproc_reset_rsc_table_on_detach(rproc);
1760	if (ret) {
1761		dev_err(dev, "can't reset resource table: %d\n", ret);
1762		return ret;
1763	}
1764
1765	/* Tell the remote processor the core isn't available anymore */
1766	ret = rproc->ops->detach(rproc);
1767	if (ret) {
1768		dev_err(dev, "can't detach from rproc: %d\n", ret);
1769		return ret;
1770	}
1771
1772	rproc_unprepare_subdevices(rproc);
1773
1774	rproc->state = RPROC_DETACHED;
1775
1776	dev_info(dev, "detached remote processor %s\n", rproc->name);
1777
1778	return 0;
1779}
1780
1781static int rproc_attach_recovery(struct rproc *rproc)
1782{
1783	int ret;
1784
1785	ret = __rproc_detach(rproc);
1786	if (ret)
1787		return ret;
1788
1789	return __rproc_attach(rproc);
1790}
1791
1792static int rproc_boot_recovery(struct rproc *rproc)
1793{
1794	const struct firmware *firmware_p;
1795	struct device *dev = &rproc->dev;
1796	int ret;
1797
1798	ret = rproc_stop(rproc, true);
1799	if (ret)
1800		return ret;
1801
1802	/* generate coredump */
1803	rproc->ops->coredump(rproc);
1804
1805	/* load firmware */
1806	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1807	if (ret < 0) {
1808		dev_err(dev, "request_firmware failed: %d\n", ret);
1809		return ret;
1810	}
1811
1812	/* boot the remote processor up again */
1813	ret = rproc_start(rproc, firmware_p);
1814
1815	release_firmware(firmware_p);
1816
1817	return ret;
1818}
1819
1820/**
1821 * rproc_trigger_recovery() - recover a remoteproc
1822 * @rproc: the remote processor
1823 *
1824 * The recovery is done by resetting all the virtio devices, that way all the
1825 * rpmsg drivers will be reseted along with the remote processor making the
1826 * remoteproc functional again.
1827 *
1828 * This function can sleep, so it cannot be called from atomic context.
1829 *
1830 * Return: 0 on success or a negative value upon failure
1831 */
1832int rproc_trigger_recovery(struct rproc *rproc)
1833{
1834	struct device *dev = &rproc->dev;
1835	int ret;
1836
1837	ret = mutex_lock_interruptible(&rproc->lock);
1838	if (ret)
1839		return ret;
1840
1841	/* State could have changed before we got the mutex */
1842	if (rproc->state != RPROC_CRASHED)
1843		goto unlock_mutex;
1844
1845	dev_err(dev, "recovering %s\n", rproc->name);
1846
1847	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1848		ret = rproc_attach_recovery(rproc);
1849	else
1850		ret = rproc_boot_recovery(rproc);
1851
1852unlock_mutex:
1853	mutex_unlock(&rproc->lock);
1854	return ret;
1855}
1856
1857/**
1858 * rproc_crash_handler_work() - handle a crash
1859 * @work: work treating the crash
1860 *
1861 * This function needs to handle everything related to a crash, like cpu
1862 * registers and stack dump, information to help to debug the fatal error, etc.
1863 */
1864static void rproc_crash_handler_work(struct work_struct *work)
1865{
1866	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1867	struct device *dev = &rproc->dev;
1868
1869	dev_dbg(dev, "enter %s\n", __func__);
1870
1871	mutex_lock(&rproc->lock);
1872
1873	if (rproc->state == RPROC_CRASHED) {
1874		/* handle only the first crash detected */
1875		mutex_unlock(&rproc->lock);
1876		return;
1877	}
1878
1879	if (rproc->state == RPROC_OFFLINE) {
1880		/* Don't recover if the remote processor was stopped */
1881		mutex_unlock(&rproc->lock);
1882		goto out;
1883	}
1884
1885	rproc->state = RPROC_CRASHED;
1886	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1887		rproc->name);
1888
1889	mutex_unlock(&rproc->lock);
1890
1891	if (!rproc->recovery_disabled)
1892		rproc_trigger_recovery(rproc);
1893
1894out:
1895	pm_relax(rproc->dev.parent);
1896}
1897
1898/**
1899 * rproc_boot() - boot a remote processor
1900 * @rproc: handle of a remote processor
1901 *
1902 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1903 *
1904 * If the remote processor is already powered on, this function immediately
1905 * returns (successfully).
1906 *
1907 * Return: 0 on success, and an appropriate error value otherwise
1908 */
1909int rproc_boot(struct rproc *rproc)
1910{
1911	const struct firmware *firmware_p;
1912	struct device *dev;
1913	int ret;
1914
1915	if (!rproc) {
1916		pr_err("invalid rproc handle\n");
1917		return -EINVAL;
1918	}
1919
1920	dev = &rproc->dev;
1921
1922	ret = mutex_lock_interruptible(&rproc->lock);
1923	if (ret) {
1924		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1925		return ret;
1926	}
1927
1928	if (rproc->state == RPROC_DELETED) {
1929		ret = -ENODEV;
1930		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1931		goto unlock_mutex;
1932	}
1933
1934	/* skip the boot or attach process if rproc is already powered up */
1935	if (atomic_inc_return(&rproc->power) > 1) {
1936		ret = 0;
1937		goto unlock_mutex;
1938	}
1939
1940	if (rproc->state == RPROC_DETACHED) {
1941		dev_info(dev, "attaching to %s\n", rproc->name);
1942
1943		ret = rproc_attach(rproc);
1944	} else {
1945		dev_info(dev, "powering up %s\n", rproc->name);
1946
1947		/* load firmware */
1948		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1949		if (ret < 0) {
1950			dev_err(dev, "request_firmware failed: %d\n", ret);
1951			goto downref_rproc;
1952		}
1953
1954		ret = rproc_fw_boot(rproc, firmware_p);
1955
1956		release_firmware(firmware_p);
1957	}
1958
1959downref_rproc:
1960	if (ret)
1961		atomic_dec(&rproc->power);
1962unlock_mutex:
1963	mutex_unlock(&rproc->lock);
1964	return ret;
1965}
1966EXPORT_SYMBOL(rproc_boot);
1967
1968/**
1969 * rproc_shutdown() - power off the remote processor
1970 * @rproc: the remote processor
1971 *
1972 * Power off a remote processor (previously booted with rproc_boot()).
1973 *
1974 * In case @rproc is still being used by an additional user(s), then
1975 * this function will just decrement the power refcount and exit,
1976 * without really powering off the device.
1977 *
1978 * Every call to rproc_boot() must (eventually) be accompanied by a call
1979 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1980 *
1981 * Notes:
1982 * - we're not decrementing the rproc's refcount, only the power refcount.
1983 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1984 *   returns, and users can still use it with a subsequent rproc_boot(), if
1985 *   needed.
1986 *
1987 * Return: 0 on success, and an appropriate error value otherwise
1988 */
1989int rproc_shutdown(struct rproc *rproc)
1990{
1991	struct device *dev = &rproc->dev;
1992	int ret = 0;
1993
1994	ret = mutex_lock_interruptible(&rproc->lock);
1995	if (ret) {
1996		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1997		return ret;
1998	}
1999
2000	if (rproc->state != RPROC_RUNNING &&
2001	    rproc->state != RPROC_ATTACHED) {
2002		ret = -EINVAL;
2003		goto out;
2004	}
2005
2006	/* if the remote proc is still needed, bail out */
2007	if (!atomic_dec_and_test(&rproc->power))
2008		goto out;
2009
2010	ret = rproc_stop(rproc, false);
2011	if (ret) {
2012		atomic_inc(&rproc->power);
2013		goto out;
2014	}
2015
2016	/* clean up all acquired resources */
2017	rproc_resource_cleanup(rproc);
2018
2019	/* release HW resources if needed */
2020	rproc_unprepare_device(rproc);
2021
2022	rproc_disable_iommu(rproc);
2023
2024	/* Free the copy of the resource table */
2025	kfree(rproc->cached_table);
2026	rproc->cached_table = NULL;
2027	rproc->table_ptr = NULL;
2028out:
2029	mutex_unlock(&rproc->lock);
2030	return ret;
2031}
2032EXPORT_SYMBOL(rproc_shutdown);
2033
2034/**
2035 * rproc_detach() - Detach the remote processor from the
2036 * remoteproc core
2037 *
2038 * @rproc: the remote processor
2039 *
2040 * Detach a remote processor (previously attached to with rproc_attach()).
2041 *
2042 * In case @rproc is still being used by an additional user(s), then
2043 * this function will just decrement the power refcount and exit,
2044 * without disconnecting the device.
2045 *
2046 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2047 * processor know that services provided by the application processor are
2048 * no longer available.  From there it should be possible to remove the
2049 * platform driver and even power cycle the application processor (if the HW
2050 * supports it) without needing to switch off the remote processor.
2051 *
2052 * Return: 0 on success, and an appropriate error value otherwise
2053 */
2054int rproc_detach(struct rproc *rproc)
2055{
2056	struct device *dev = &rproc->dev;
2057	int ret;
2058
2059	ret = mutex_lock_interruptible(&rproc->lock);
2060	if (ret) {
2061		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2062		return ret;
2063	}
2064
2065	if (rproc->state != RPROC_ATTACHED) {
2066		ret = -EINVAL;
2067		goto out;
2068	}
2069
2070	/* if the remote proc is still needed, bail out */
2071	if (!atomic_dec_and_test(&rproc->power)) {
2072		ret = 0;
2073		goto out;
2074	}
2075
2076	ret = __rproc_detach(rproc);
2077	if (ret) {
2078		atomic_inc(&rproc->power);
2079		goto out;
2080	}
2081
2082	/* clean up all acquired resources */
2083	rproc_resource_cleanup(rproc);
2084
2085	/* release HW resources if needed */
2086	rproc_unprepare_device(rproc);
2087
2088	rproc_disable_iommu(rproc);
2089
2090	/* Free the copy of the resource table */
2091	kfree(rproc->cached_table);
2092	rproc->cached_table = NULL;
2093	rproc->table_ptr = NULL;
2094out:
2095	mutex_unlock(&rproc->lock);
2096	return ret;
2097}
2098EXPORT_SYMBOL(rproc_detach);
2099
2100/**
2101 * rproc_get_by_phandle() - find a remote processor by phandle
2102 * @phandle: phandle to the rproc
2103 *
2104 * Finds an rproc handle using the remote processor's phandle, and then
2105 * return a handle to the rproc.
2106 *
2107 * This function increments the remote processor's refcount, so always
2108 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2109 *
2110 * Return: rproc handle on success, and NULL on failure
2111 */
2112#ifdef CONFIG_OF
2113struct rproc *rproc_get_by_phandle(phandle phandle)
2114{
2115	struct rproc *rproc = NULL, *r;
2116	struct device_driver *driver;
2117	struct device_node *np;
2118
2119	np = of_find_node_by_phandle(phandle);
2120	if (!np)
2121		return NULL;
2122
2123	rcu_read_lock();
2124	list_for_each_entry_rcu(r, &rproc_list, node) {
2125		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2126			/* prevent underlying implementation from being removed */
2127
2128			/*
2129			 * If the remoteproc's parent has a driver, the
2130			 * remoteproc is not part of a cluster and we can use
2131			 * that driver.
2132			 */
2133			driver = r->dev.parent->driver;
2134
2135			/*
2136			 * If the remoteproc's parent does not have a driver,
2137			 * look for the driver associated with the cluster.
2138			 */
2139			if (!driver) {
2140				if (r->dev.parent->parent)
2141					driver = r->dev.parent->parent->driver;
2142				if (!driver)
2143					break;
2144			}
2145
2146			if (!try_module_get(driver->owner)) {
2147				dev_err(&r->dev, "can't get owner\n");
2148				break;
2149			}
2150
2151			rproc = r;
2152			get_device(&rproc->dev);
2153			break;
2154		}
2155	}
2156	rcu_read_unlock();
2157
2158	of_node_put(np);
2159
2160	return rproc;
2161}
2162#else
2163struct rproc *rproc_get_by_phandle(phandle phandle)
2164{
2165	return NULL;
2166}
2167#endif
2168EXPORT_SYMBOL(rproc_get_by_phandle);
2169
2170/**
2171 * rproc_set_firmware() - assign a new firmware
2172 * @rproc: rproc handle to which the new firmware is being assigned
2173 * @fw_name: new firmware name to be assigned
2174 *
2175 * This function allows remoteproc drivers or clients to configure a custom
2176 * firmware name that is different from the default name used during remoteproc
2177 * registration. The function does not trigger a remote processor boot,
2178 * only sets the firmware name used for a subsequent boot. This function
2179 * should also be called only when the remote processor is offline.
2180 *
2181 * This allows either the userspace to configure a different name through
2182 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2183 * a specific firmware when it is controlling the boot and shutdown of the
2184 * remote processor.
2185 *
2186 * Return: 0 on success or a negative value upon failure
2187 */
2188int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2189{
2190	struct device *dev;
2191	int ret, len;
2192	char *p;
2193
2194	if (!rproc || !fw_name)
2195		return -EINVAL;
2196
2197	dev = rproc->dev.parent;
2198
2199	ret = mutex_lock_interruptible(&rproc->lock);
2200	if (ret) {
2201		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2202		return -EINVAL;
2203	}
2204
2205	if (rproc->state != RPROC_OFFLINE) {
2206		dev_err(dev, "can't change firmware while running\n");
2207		ret = -EBUSY;
2208		goto out;
2209	}
2210
2211	len = strcspn(fw_name, "\n");
2212	if (!len) {
2213		dev_err(dev, "can't provide empty string for firmware name\n");
2214		ret = -EINVAL;
2215		goto out;
2216	}
2217
2218	p = kstrndup(fw_name, len, GFP_KERNEL);
2219	if (!p) {
2220		ret = -ENOMEM;
2221		goto out;
2222	}
2223
2224	kfree_const(rproc->firmware);
2225	rproc->firmware = p;
2226
2227out:
2228	mutex_unlock(&rproc->lock);
2229	return ret;
2230}
2231EXPORT_SYMBOL(rproc_set_firmware);
2232
2233static int rproc_validate(struct rproc *rproc)
2234{
2235	switch (rproc->state) {
2236	case RPROC_OFFLINE:
2237		/*
2238		 * An offline processor without a start()
2239		 * function makes no sense.
2240		 */
2241		if (!rproc->ops->start)
2242			return -EINVAL;
2243		break;
2244	case RPROC_DETACHED:
2245		/*
2246		 * A remote processor in a detached state without an
2247		 * attach() function makes not sense.
2248		 */
2249		if (!rproc->ops->attach)
2250			return -EINVAL;
2251		/*
2252		 * When attaching to a remote processor the device memory
2253		 * is already available and as such there is no need to have a
2254		 * cached table.
2255		 */
2256		if (rproc->cached_table)
2257			return -EINVAL;
2258		break;
2259	default:
2260		/*
2261		 * When adding a remote processor, the state of the device
2262		 * can be offline or detached, nothing else.
2263		 */
2264		return -EINVAL;
2265	}
2266
2267	return 0;
2268}
2269
2270/**
2271 * rproc_add() - register a remote processor
2272 * @rproc: the remote processor handle to register
2273 *
2274 * Registers @rproc with the remoteproc framework, after it has been
2275 * allocated with rproc_alloc().
2276 *
2277 * This is called by the platform-specific rproc implementation, whenever
2278 * a new remote processor device is probed.
2279 *
2280 * Note: this function initiates an asynchronous firmware loading
2281 * context, which will look for virtio devices supported by the rproc's
2282 * firmware.
2283 *
2284 * If found, those virtio devices will be created and added, so as a result
2285 * of registering this remote processor, additional virtio drivers might be
2286 * probed.
2287 *
2288 * Return: 0 on success and an appropriate error code otherwise
2289 */
2290int rproc_add(struct rproc *rproc)
2291{
2292	struct device *dev = &rproc->dev;
2293	int ret;
2294
2295	ret = rproc_validate(rproc);
2296	if (ret < 0)
2297		return ret;
2298
2299	/* add char device for this remoteproc */
2300	ret = rproc_char_device_add(rproc);
2301	if (ret < 0)
2302		return ret;
2303
2304	ret = device_add(dev);
2305	if (ret < 0) {
2306		put_device(dev);
2307		goto rproc_remove_cdev;
2308	}
2309
2310	dev_info(dev, "%s is available\n", rproc->name);
2311
2312	/* create debugfs entries */
2313	rproc_create_debug_dir(rproc);
2314
2315	/* if rproc is marked always-on, request it to boot */
2316	if (rproc->auto_boot) {
2317		ret = rproc_trigger_auto_boot(rproc);
2318		if (ret < 0)
2319			goto rproc_remove_dev;
2320	}
2321
2322	/* expose to rproc_get_by_phandle users */
2323	mutex_lock(&rproc_list_mutex);
2324	list_add_rcu(&rproc->node, &rproc_list);
2325	mutex_unlock(&rproc_list_mutex);
2326
2327	return 0;
2328
2329rproc_remove_dev:
2330	rproc_delete_debug_dir(rproc);
2331	device_del(dev);
2332rproc_remove_cdev:
2333	rproc_char_device_remove(rproc);
2334	return ret;
2335}
2336EXPORT_SYMBOL(rproc_add);
2337
2338static void devm_rproc_remove(void *rproc)
2339{
2340	rproc_del(rproc);
2341}
2342
2343/**
2344 * devm_rproc_add() - resource managed rproc_add()
2345 * @dev: the underlying device
2346 * @rproc: the remote processor handle to register
2347 *
2348 * This function performs like rproc_add() but the registered rproc device will
2349 * automatically be removed on driver detach.
2350 *
2351 * Return: 0 on success, negative errno on failure
2352 */
2353int devm_rproc_add(struct device *dev, struct rproc *rproc)
2354{
2355	int err;
2356
2357	err = rproc_add(rproc);
2358	if (err)
2359		return err;
2360
2361	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2362}
2363EXPORT_SYMBOL(devm_rproc_add);
2364
2365/**
2366 * rproc_type_release() - release a remote processor instance
2367 * @dev: the rproc's device
2368 *
2369 * This function should _never_ be called directly.
2370 *
2371 * It will be called by the driver core when no one holds a valid pointer
2372 * to @dev anymore.
2373 */
2374static void rproc_type_release(struct device *dev)
2375{
2376	struct rproc *rproc = container_of(dev, struct rproc, dev);
2377
2378	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2379
2380	idr_destroy(&rproc->notifyids);
2381
2382	if (rproc->index >= 0)
2383		ida_free(&rproc_dev_index, rproc->index);
2384
2385	kfree_const(rproc->firmware);
2386	kfree_const(rproc->name);
2387	kfree(rproc->ops);
2388	kfree(rproc);
2389}
2390
2391static const struct device_type rproc_type = {
2392	.name		= "remoteproc",
2393	.release	= rproc_type_release,
2394};
2395
2396static int rproc_alloc_firmware(struct rproc *rproc,
2397				const char *name, const char *firmware)
2398{
2399	const char *p;
2400
2401	/*
2402	 * Allocate a firmware name if the caller gave us one to work
2403	 * with.  Otherwise construct a new one using a default pattern.
2404	 */
2405	if (firmware)
2406		p = kstrdup_const(firmware, GFP_KERNEL);
2407	else
2408		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2409
2410	if (!p)
2411		return -ENOMEM;
2412
2413	rproc->firmware = p;
2414
2415	return 0;
2416}
2417
2418static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2419{
2420	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2421	if (!rproc->ops)
2422		return -ENOMEM;
2423
2424	/* Default to rproc_coredump if no coredump function is specified */
2425	if (!rproc->ops->coredump)
2426		rproc->ops->coredump = rproc_coredump;
2427
2428	if (rproc->ops->load)
2429		return 0;
2430
2431	/* Default to ELF loader if no load function is specified */
2432	rproc->ops->load = rproc_elf_load_segments;
2433	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2434	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2435	rproc->ops->sanity_check = rproc_elf_sanity_check;
2436	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2437
2438	return 0;
2439}
2440
2441/**
2442 * rproc_alloc() - allocate a remote processor handle
2443 * @dev: the underlying device
2444 * @name: name of this remote processor
2445 * @ops: platform-specific handlers (mainly start/stop)
2446 * @firmware: name of firmware file to load, can be NULL
2447 * @len: length of private data needed by the rproc driver (in bytes)
2448 *
2449 * Allocates a new remote processor handle, but does not register
2450 * it yet. if @firmware is NULL, a default name is used.
2451 *
2452 * This function should be used by rproc implementations during initialization
2453 * of the remote processor.
2454 *
2455 * After creating an rproc handle using this function, and when ready,
2456 * implementations should then call rproc_add() to complete
2457 * the registration of the remote processor.
2458 *
2459 * Note: _never_ directly deallocate @rproc, even if it was not registered
2460 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2461 *
2462 * Return: new rproc pointer on success, and NULL on failure
2463 */
2464struct rproc *rproc_alloc(struct device *dev, const char *name,
2465			  const struct rproc_ops *ops,
2466			  const char *firmware, int len)
2467{
2468	struct rproc *rproc;
2469
2470	if (!dev || !name || !ops)
2471		return NULL;
2472
2473	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2474	if (!rproc)
2475		return NULL;
2476
2477	rproc->priv = &rproc[1];
2478	rproc->auto_boot = true;
2479	rproc->elf_class = ELFCLASSNONE;
2480	rproc->elf_machine = EM_NONE;
2481
2482	device_initialize(&rproc->dev);
2483	rproc->dev.parent = dev;
2484	rproc->dev.type = &rproc_type;
2485	rproc->dev.class = &rproc_class;
2486	rproc->dev.driver_data = rproc;
2487	idr_init(&rproc->notifyids);
2488
2489	/* Assign a unique device index and name */
2490	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2491	if (rproc->index < 0) {
2492		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2493		goto put_device;
2494	}
2495
2496	rproc->name = kstrdup_const(name, GFP_KERNEL);
2497	if (!rproc->name)
2498		goto put_device;
2499
2500	if (rproc_alloc_firmware(rproc, name, firmware))
2501		goto put_device;
2502
2503	if (rproc_alloc_ops(rproc, ops))
2504		goto put_device;
2505
 
 
 
 
 
 
 
2506	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2507
2508	atomic_set(&rproc->power, 0);
2509
2510	mutex_init(&rproc->lock);
2511
2512	INIT_LIST_HEAD(&rproc->carveouts);
2513	INIT_LIST_HEAD(&rproc->mappings);
2514	INIT_LIST_HEAD(&rproc->traces);
2515	INIT_LIST_HEAD(&rproc->rvdevs);
2516	INIT_LIST_HEAD(&rproc->subdevs);
2517	INIT_LIST_HEAD(&rproc->dump_segments);
2518
2519	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2520
2521	rproc->state = RPROC_OFFLINE;
2522
2523	return rproc;
2524
2525put_device:
2526	put_device(&rproc->dev);
2527	return NULL;
2528}
2529EXPORT_SYMBOL(rproc_alloc);
2530
2531/**
2532 * rproc_free() - unroll rproc_alloc()
2533 * @rproc: the remote processor handle
2534 *
2535 * This function decrements the rproc dev refcount.
2536 *
2537 * If no one holds any reference to rproc anymore, then its refcount would
2538 * now drop to zero, and it would be freed.
2539 */
2540void rproc_free(struct rproc *rproc)
2541{
2542	put_device(&rproc->dev);
2543}
2544EXPORT_SYMBOL(rproc_free);
2545
2546/**
2547 * rproc_put() - release rproc reference
2548 * @rproc: the remote processor handle
2549 *
2550 * This function decrements the rproc dev refcount.
2551 *
2552 * If no one holds any reference to rproc anymore, then its refcount would
2553 * now drop to zero, and it would be freed.
2554 */
2555void rproc_put(struct rproc *rproc)
2556{
2557	if (rproc->dev.parent->driver)
2558		module_put(rproc->dev.parent->driver->owner);
2559	else
2560		module_put(rproc->dev.parent->parent->driver->owner);
2561
2562	put_device(&rproc->dev);
2563}
2564EXPORT_SYMBOL(rproc_put);
2565
2566/**
2567 * rproc_del() - unregister a remote processor
2568 * @rproc: rproc handle to unregister
2569 *
2570 * This function should be called when the platform specific rproc
2571 * implementation decides to remove the rproc device. it should
2572 * _only_ be called if a previous invocation of rproc_add()
2573 * has completed successfully.
2574 *
2575 * After rproc_del() returns, @rproc isn't freed yet, because
2576 * of the outstanding reference created by rproc_alloc. To decrement that
2577 * one last refcount, one still needs to call rproc_free().
2578 *
2579 * Return: 0 on success and -EINVAL if @rproc isn't valid
2580 */
2581int rproc_del(struct rproc *rproc)
2582{
2583	if (!rproc)
2584		return -EINVAL;
2585
2586	/* TODO: make sure this works with rproc->power > 1 */
2587	rproc_shutdown(rproc);
2588
2589	mutex_lock(&rproc->lock);
2590	rproc->state = RPROC_DELETED;
2591	mutex_unlock(&rproc->lock);
2592
2593	rproc_delete_debug_dir(rproc);
2594
2595	/* the rproc is downref'ed as soon as it's removed from the klist */
2596	mutex_lock(&rproc_list_mutex);
2597	list_del_rcu(&rproc->node);
2598	mutex_unlock(&rproc_list_mutex);
2599
2600	/* Ensure that no readers of rproc_list are still active */
2601	synchronize_rcu();
2602
2603	device_del(&rproc->dev);
2604	rproc_char_device_remove(rproc);
2605
2606	return 0;
2607}
2608EXPORT_SYMBOL(rproc_del);
2609
2610static void devm_rproc_free(struct device *dev, void *res)
2611{
2612	rproc_free(*(struct rproc **)res);
2613}
2614
2615/**
2616 * devm_rproc_alloc() - resource managed rproc_alloc()
2617 * @dev: the underlying device
2618 * @name: name of this remote processor
2619 * @ops: platform-specific handlers (mainly start/stop)
2620 * @firmware: name of firmware file to load, can be NULL
2621 * @len: length of private data needed by the rproc driver (in bytes)
2622 *
2623 * This function performs like rproc_alloc() but the acquired rproc device will
2624 * automatically be released on driver detach.
2625 *
2626 * Return: new rproc instance, or NULL on failure
2627 */
2628struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2629			       const struct rproc_ops *ops,
2630			       const char *firmware, int len)
2631{
2632	struct rproc **ptr, *rproc;
2633
2634	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2635	if (!ptr)
2636		return NULL;
2637
2638	rproc = rproc_alloc(dev, name, ops, firmware, len);
2639	if (rproc) {
2640		*ptr = rproc;
2641		devres_add(dev, ptr);
2642	} else {
2643		devres_free(ptr);
2644	}
2645
2646	return rproc;
2647}
2648EXPORT_SYMBOL(devm_rproc_alloc);
2649
2650/**
2651 * rproc_add_subdev() - add a subdevice to a remoteproc
2652 * @rproc: rproc handle to add the subdevice to
2653 * @subdev: subdev handle to register
2654 *
2655 * Caller is responsible for populating optional subdevice function pointers.
2656 */
2657void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2658{
2659	list_add_tail(&subdev->node, &rproc->subdevs);
2660}
2661EXPORT_SYMBOL(rproc_add_subdev);
2662
2663/**
2664 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2665 * @rproc: rproc handle to remove the subdevice from
2666 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2667 */
2668void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2669{
2670	list_del(&subdev->node);
2671}
2672EXPORT_SYMBOL(rproc_remove_subdev);
2673
2674/**
2675 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2676 * @dev:	child device to find ancestor of
2677 *
2678 * Return: the ancestor rproc instance, or NULL if not found
2679 */
2680struct rproc *rproc_get_by_child(struct device *dev)
2681{
2682	for (dev = dev->parent; dev; dev = dev->parent) {
2683		if (dev->type == &rproc_type)
2684			return dev->driver_data;
2685	}
2686
2687	return NULL;
2688}
2689EXPORT_SYMBOL(rproc_get_by_child);
2690
2691/**
2692 * rproc_report_crash() - rproc crash reporter function
2693 * @rproc: remote processor
2694 * @type: crash type
2695 *
2696 * This function must be called every time a crash is detected by the low-level
2697 * drivers implementing a specific remoteproc. This should not be called from a
2698 * non-remoteproc driver.
2699 *
2700 * This function can be called from atomic/interrupt context.
2701 */
2702void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2703{
2704	if (!rproc) {
2705		pr_err("NULL rproc pointer\n");
2706		return;
2707	}
2708
2709	/* Prevent suspend while the remoteproc is being recovered */
2710	pm_stay_awake(rproc->dev.parent);
2711
2712	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2713		rproc->name, rproc_crash_to_string(type));
2714
2715	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2716}
2717EXPORT_SYMBOL(rproc_report_crash);
2718
2719static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2720			       void *ptr)
2721{
2722	unsigned int longest = 0;
2723	struct rproc *rproc;
2724	unsigned int d;
2725
2726	rcu_read_lock();
2727	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2728		if (!rproc->ops->panic)
2729			continue;
2730
2731		if (rproc->state != RPROC_RUNNING &&
2732		    rproc->state != RPROC_ATTACHED)
2733			continue;
2734
2735		d = rproc->ops->panic(rproc);
2736		longest = max(longest, d);
2737	}
2738	rcu_read_unlock();
2739
2740	/*
2741	 * Delay for the longest requested duration before returning. This can
2742	 * be used by the remoteproc drivers to give the remote processor time
2743	 * to perform any requested operations (such as flush caches), when
2744	 * it's not possible to signal the Linux side due to the panic.
2745	 */
2746	mdelay(longest);
2747
2748	return NOTIFY_DONE;
2749}
2750
2751static void __init rproc_init_panic(void)
2752{
2753	rproc_panic_nb.notifier_call = rproc_panic_handler;
2754	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2755}
2756
2757static void __exit rproc_exit_panic(void)
2758{
2759	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2760}
2761
2762static int __init remoteproc_init(void)
2763{
2764	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2765						WQ_UNBOUND | WQ_FREEZABLE, 0);
2766	if (!rproc_recovery_wq) {
2767		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2768		return -ENOMEM;
2769	}
2770
2771	rproc_init_sysfs();
2772	rproc_init_debugfs();
2773	rproc_init_cdev();
2774	rproc_init_panic();
2775
2776	return 0;
2777}
2778subsys_initcall(remoteproc_init);
2779
2780static void __exit remoteproc_exit(void)
2781{
2782	ida_destroy(&rproc_dev_index);
2783
2784	if (!rproc_recovery_wq)
2785		return;
2786
2787	rproc_exit_panic();
2788	rproc_exit_debugfs();
2789	rproc_exit_sysfs();
2790	destroy_workqueue(rproc_recovery_wq);
2791}
2792module_exit(remoteproc_exit);
2793
 
2794MODULE_DESCRIPTION("Generic Remote Processor Framework");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Remote Processor Framework
   4 *
   5 * Copyright (C) 2011 Texas Instruments, Inc.
   6 * Copyright (C) 2011 Google, Inc.
   7 *
   8 * Ohad Ben-Cohen <ohad@wizery.com>
   9 * Brian Swetland <swetland@google.com>
  10 * Mark Grosen <mgrosen@ti.com>
  11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  12 * Suman Anna <s-anna@ti.com>
  13 * Robert Tivy <rtivy@ti.com>
  14 * Armando Uribe De Leon <x0095078@ti.com>
  15 */
  16
  17#define pr_fmt(fmt)    "%s: " fmt, __func__
  18
  19#include <linux/delay.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/device.h>
  23#include <linux/panic_notifier.h>
  24#include <linux/slab.h>
  25#include <linux/mutex.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firmware.h>
  28#include <linux/string.h>
  29#include <linux/debugfs.h>
  30#include <linux/rculist.h>
  31#include <linux/remoteproc.h>
  32#include <linux/iommu.h>
  33#include <linux/idr.h>
  34#include <linux/elf.h>
  35#include <linux/crc32.h>
 
  36#include <linux/of_reserved_mem.h>
  37#include <linux/virtio_ids.h>
  38#include <linux/virtio_ring.h>
  39#include <asm/byteorder.h>
  40#include <linux/platform_device.h>
  41
  42#include "remoteproc_internal.h"
  43
  44#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
  45
  46static DEFINE_MUTEX(rproc_list_mutex);
  47static LIST_HEAD(rproc_list);
  48static struct notifier_block rproc_panic_nb;
  49
  50typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  51				 void *, int offset, int avail);
  52
  53static int rproc_alloc_carveout(struct rproc *rproc,
  54				struct rproc_mem_entry *mem);
  55static int rproc_release_carveout(struct rproc *rproc,
  56				  struct rproc_mem_entry *mem);
  57
  58/* Unique indices for remoteproc devices */
  59static DEFINE_IDA(rproc_dev_index);
  60static struct workqueue_struct *rproc_recovery_wq;
  61
  62static const char * const rproc_crash_names[] = {
  63	[RPROC_MMUFAULT]	= "mmufault",
  64	[RPROC_WATCHDOG]	= "watchdog",
  65	[RPROC_FATAL_ERROR]	= "fatal error",
  66};
  67
  68/* translate rproc_crash_type to string */
  69static const char *rproc_crash_to_string(enum rproc_crash_type type)
  70{
  71	if (type < ARRAY_SIZE(rproc_crash_names))
  72		return rproc_crash_names[type];
  73	return "unknown";
  74}
  75
  76/*
  77 * This is the IOMMU fault handler we register with the IOMMU API
  78 * (when relevant; not all remote processors access memory through
  79 * an IOMMU).
  80 *
  81 * IOMMU core will invoke this handler whenever the remote processor
  82 * will try to access an unmapped device address.
  83 */
  84static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  85			     unsigned long iova, int flags, void *token)
  86{
  87	struct rproc *rproc = token;
  88
  89	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  90
  91	rproc_report_crash(rproc, RPROC_MMUFAULT);
  92
  93	/*
  94	 * Let the iommu core know we're not really handling this fault;
  95	 * we just used it as a recovery trigger.
  96	 */
  97	return -ENOSYS;
  98}
  99
 100static int rproc_enable_iommu(struct rproc *rproc)
 101{
 102	struct iommu_domain *domain;
 103	struct device *dev = rproc->dev.parent;
 104	int ret;
 105
 106	if (!rproc->has_iommu) {
 107		dev_dbg(dev, "iommu not present\n");
 108		return 0;
 109	}
 110
 111	domain = iommu_domain_alloc(dev->bus);
 112	if (!domain) {
 113		dev_err(dev, "can't alloc iommu domain\n");
 114		return -ENOMEM;
 115	}
 116
 117	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 118
 119	ret = iommu_attach_device(domain, dev);
 120	if (ret) {
 121		dev_err(dev, "can't attach iommu device: %d\n", ret);
 122		goto free_domain;
 123	}
 124
 125	rproc->domain = domain;
 126
 127	return 0;
 128
 129free_domain:
 130	iommu_domain_free(domain);
 131	return ret;
 132}
 133
 134static void rproc_disable_iommu(struct rproc *rproc)
 135{
 136	struct iommu_domain *domain = rproc->domain;
 137	struct device *dev = rproc->dev.parent;
 138
 139	if (!domain)
 140		return;
 141
 142	iommu_detach_device(domain, dev);
 143	iommu_domain_free(domain);
 144}
 145
 146phys_addr_t rproc_va_to_pa(void *cpu_addr)
 147{
 148	/*
 149	 * Return physical address according to virtual address location
 150	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 151	 * - in kernel: if region allocated in generic dma memory pool
 152	 */
 153	if (is_vmalloc_addr(cpu_addr)) {
 154		return page_to_phys(vmalloc_to_page(cpu_addr)) +
 155				    offset_in_page(cpu_addr);
 156	}
 157
 158	WARN_ON(!virt_addr_valid(cpu_addr));
 159	return virt_to_phys(cpu_addr);
 160}
 161EXPORT_SYMBOL(rproc_va_to_pa);
 162
 163/**
 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 165 * @rproc: handle of a remote processor
 166 * @da: remoteproc device address to translate
 167 * @len: length of the memory region @da is pointing to
 168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
 169 *
 170 * Some remote processors will ask us to allocate them physically contiguous
 171 * memory regions (which we call "carveouts"), and map them to specific
 172 * device addresses (which are hardcoded in the firmware). They may also have
 173 * dedicated memory regions internal to the processors, and use them either
 174 * exclusively or alongside carveouts.
 175 *
 176 * They may then ask us to copy objects into specific device addresses (e.g.
 177 * code/data sections) or expose us certain symbols in other device address
 178 * (e.g. their trace buffer).
 179 *
 180 * This function is a helper function with which we can go over the allocated
 181 * carveouts and translate specific device addresses to kernel virtual addresses
 182 * so we can access the referenced memory. This function also allows to perform
 183 * translations on the internal remoteproc memory regions through a platform
 184 * implementation specific da_to_va ops, if present.
 185 *
 186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 187 * but only on kernel direct mapped RAM memory. Instead, we're just using
 188 * here the output of the DMA API for the carveouts, which should be more
 189 * correct.
 190 *
 191 * Return: a valid kernel address on success or NULL on failure
 192 */
 193void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
 194{
 195	struct rproc_mem_entry *carveout;
 196	void *ptr = NULL;
 197
 198	if (rproc->ops->da_to_va) {
 199		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
 200		if (ptr)
 201			goto out;
 202	}
 203
 204	list_for_each_entry(carveout, &rproc->carveouts, node) {
 205		int offset = da - carveout->da;
 206
 207		/*  Verify that carveout is allocated */
 208		if (!carveout->va)
 209			continue;
 210
 211		/* try next carveout if da is too small */
 212		if (offset < 0)
 213			continue;
 214
 215		/* try next carveout if da is too large */
 216		if (offset + len > carveout->len)
 217			continue;
 218
 219		ptr = carveout->va + offset;
 220
 221		if (is_iomem)
 222			*is_iomem = carveout->is_iomem;
 223
 224		break;
 225	}
 226
 227out:
 228	return ptr;
 229}
 230EXPORT_SYMBOL(rproc_da_to_va);
 231
 232/**
 233 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 234 * @rproc: handle of a remote processor
 235 * @name: carveout name to find (format string)
 236 * @...: optional parameters matching @name string
 237 *
 238 * Platform driver has the capability to register some pre-allacoted carveout
 239 * (physically contiguous memory regions) before rproc firmware loading and
 240 * associated resource table analysis. These regions may be dedicated memory
 241 * regions internal to the coprocessor or specified DDR region with specific
 242 * attributes
 243 *
 244 * This function is a helper function with which we can go over the
 245 * allocated carveouts and return associated region characteristics like
 246 * coprocessor address, length or processor virtual address.
 247 *
 248 * Return: a valid pointer on carveout entry on success or NULL on failure.
 249 */
 250__printf(2, 3)
 251struct rproc_mem_entry *
 252rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 253{
 254	va_list args;
 255	char _name[32];
 256	struct rproc_mem_entry *carveout, *mem = NULL;
 257
 258	if (!name)
 259		return NULL;
 260
 261	va_start(args, name);
 262	vsnprintf(_name, sizeof(_name), name, args);
 263	va_end(args);
 264
 265	list_for_each_entry(carveout, &rproc->carveouts, node) {
 266		/* Compare carveout and requested names */
 267		if (!strcmp(carveout->name, _name)) {
 268			mem = carveout;
 269			break;
 270		}
 271	}
 272
 273	return mem;
 274}
 275
 276/**
 277 * rproc_check_carveout_da() - Check specified carveout da configuration
 278 * @rproc: handle of a remote processor
 279 * @mem: pointer on carveout to check
 280 * @da: area device address
 281 * @len: associated area size
 282 *
 283 * This function is a helper function to verify requested device area (couple
 284 * da, len) is part of specified carveout.
 285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
 286 * checked.
 287 *
 288 * Return: 0 if carveout matches request else error
 289 */
 290static int rproc_check_carveout_da(struct rproc *rproc,
 291				   struct rproc_mem_entry *mem, u32 da, u32 len)
 292{
 293	struct device *dev = &rproc->dev;
 294	int delta;
 295
 296	/* Check requested resource length */
 297	if (len > mem->len) {
 298		dev_err(dev, "Registered carveout doesn't fit len request\n");
 299		return -EINVAL;
 300	}
 301
 302	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 303		/* Address doesn't match registered carveout configuration */
 304		return -EINVAL;
 305	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 306		delta = da - mem->da;
 307
 308		/* Check requested resource belongs to registered carveout */
 309		if (delta < 0) {
 310			dev_err(dev,
 311				"Registered carveout doesn't fit da request\n");
 312			return -EINVAL;
 313		}
 314
 315		if (delta + len > mem->len) {
 316			dev_err(dev,
 317				"Registered carveout doesn't fit len request\n");
 318			return -EINVAL;
 319		}
 320	}
 321
 322	return 0;
 323}
 324
 325int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 326{
 327	struct rproc *rproc = rvdev->rproc;
 328	struct device *dev = &rproc->dev;
 329	struct rproc_vring *rvring = &rvdev->vring[i];
 330	struct fw_rsc_vdev *rsc;
 331	int ret, notifyid;
 332	struct rproc_mem_entry *mem;
 333	size_t size;
 334
 335	/* actual size of vring (in bytes) */
 336	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
 337
 338	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 339
 340	/* Search for pre-registered carveout */
 341	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 342					  i);
 343	if (mem) {
 344		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 345			return -ENOMEM;
 346	} else {
 347		/* Register carveout in list */
 348		mem = rproc_mem_entry_init(dev, NULL, 0,
 349					   size, rsc->vring[i].da,
 350					   rproc_alloc_carveout,
 351					   rproc_release_carveout,
 352					   "vdev%dvring%d",
 353					   rvdev->index, i);
 354		if (!mem) {
 355			dev_err(dev, "Can't allocate memory entry structure\n");
 356			return -ENOMEM;
 357		}
 358
 359		rproc_add_carveout(rproc, mem);
 360	}
 361
 362	/*
 363	 * Assign an rproc-wide unique index for this vring
 364	 * TODO: assign a notifyid for rvdev updates as well
 365	 * TODO: support predefined notifyids (via resource table)
 366	 */
 367	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 368	if (ret < 0) {
 369		dev_err(dev, "idr_alloc failed: %d\n", ret);
 370		return ret;
 371	}
 372	notifyid = ret;
 373
 374	/* Potentially bump max_notifyid */
 375	if (notifyid > rproc->max_notifyid)
 376		rproc->max_notifyid = notifyid;
 377
 378	rvring->notifyid = notifyid;
 379
 380	/* Let the rproc know the notifyid of this vring.*/
 381	rsc->vring[i].notifyid = notifyid;
 382	return 0;
 383}
 384
 385int
 386rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 387{
 388	struct rproc *rproc = rvdev->rproc;
 389	struct device *dev = &rproc->dev;
 390	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 391	struct rproc_vring *rvring = &rvdev->vring[i];
 392
 393	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 394		i, vring->da, vring->num, vring->align);
 395
 396	/* verify queue size and vring alignment are sane */
 397	if (!vring->num || !vring->align) {
 398		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 399			vring->num, vring->align);
 400		return -EINVAL;
 401	}
 402
 403	rvring->num = vring->num;
 404	rvring->align = vring->align;
 405	rvring->rvdev = rvdev;
 406
 407	return 0;
 408}
 409
 410void rproc_free_vring(struct rproc_vring *rvring)
 411{
 412	struct rproc *rproc = rvring->rvdev->rproc;
 413	int idx = rvring - rvring->rvdev->vring;
 414	struct fw_rsc_vdev *rsc;
 415
 416	idr_remove(&rproc->notifyids, rvring->notifyid);
 417
 418	/*
 419	 * At this point rproc_stop() has been called and the installed resource
 420	 * table in the remote processor memory may no longer be accessible. As
 421	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
 422	 * resource table (rproc->cached_table).  The cached resource table is
 423	 * only available when a remote processor has been booted by the
 424	 * remoteproc core, otherwise it is NULL.
 425	 *
 426	 * Based on the above, reset the virtio device section in the cached
 427	 * resource table only if there is one to work with.
 428	 */
 429	if (rproc->table_ptr) {
 430		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 431		rsc->vring[idx].da = 0;
 432		rsc->vring[idx].notifyid = -1;
 433	}
 434}
 435
 436void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
 437{
 438	if (rvdev && rproc)
 439		list_add_tail(&rvdev->node, &rproc->rvdevs);
 440}
 441
 442void rproc_remove_rvdev(struct rproc_vdev *rvdev)
 443{
 444	if (rvdev)
 445		list_del(&rvdev->node);
 446}
 447/**
 448 * rproc_handle_vdev() - handle a vdev fw resource
 449 * @rproc: the remote processor
 450 * @ptr: the vring resource descriptor
 451 * @offset: offset of the resource entry
 452 * @avail: size of available data (for sanity checking the image)
 453 *
 454 * This resource entry requests the host to statically register a virtio
 455 * device (vdev), and setup everything needed to support it. It contains
 456 * everything needed to make it possible: the virtio device id, virtio
 457 * device features, vrings information, virtio config space, etc...
 458 *
 459 * Before registering the vdev, the vrings are allocated from non-cacheable
 460 * physically contiguous memory. Currently we only support two vrings per
 461 * remote processor (temporary limitation). We might also want to consider
 462 * doing the vring allocation only later when ->find_vqs() is invoked, and
 463 * then release them upon ->del_vqs().
 464 *
 465 * Note: @da is currently not really handled correctly: we dynamically
 466 * allocate it using the DMA API, ignoring requested hard coded addresses,
 467 * and we don't take care of any required IOMMU programming. This is all
 468 * going to be taken care of when the generic iommu-based DMA API will be
 469 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 470 * use RSC_DEVMEM resource entries to map their required @da to the physical
 471 * address of their base CMA region (ouch, hacky!).
 472 *
 473 * Return: 0 on success, or an appropriate error code otherwise
 474 */
 475static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
 476			     int offset, int avail)
 477{
 478	struct fw_rsc_vdev *rsc = ptr;
 479	struct device *dev = &rproc->dev;
 480	struct rproc_vdev *rvdev;
 481	size_t rsc_size;
 482	struct rproc_vdev_data rvdev_data;
 483	struct platform_device *pdev;
 484
 485	/* make sure resource isn't truncated */
 486	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
 487	if (size_add(rsc_size, rsc->config_len) > avail) {
 488		dev_err(dev, "vdev rsc is truncated\n");
 489		return -EINVAL;
 490	}
 491
 492	/* make sure reserved bytes are zeroes */
 493	if (rsc->reserved[0] || rsc->reserved[1]) {
 494		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 495		return -EINVAL;
 496	}
 497
 498	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 499		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 500
 501	/* we currently support only two vrings per rvdev */
 502	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 503		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 504		return -EINVAL;
 505	}
 506
 507	rvdev_data.id = rsc->id;
 508	rvdev_data.index = rproc->nb_vdev++;
 509	rvdev_data.rsc_offset = offset;
 510	rvdev_data.rsc = rsc;
 511
 512	/*
 513	 * When there is more than one remote processor, rproc->nb_vdev number is
 514	 * same for each separate instances of "rproc". If rvdev_data.index is used
 515	 * as device id, then we get duplication in sysfs, so need to use
 516	 * PLATFORM_DEVID_AUTO to auto select device id.
 517	 */
 518	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
 519					     sizeof(rvdev_data));
 520	if (IS_ERR(pdev)) {
 521		dev_err(dev, "failed to create rproc-virtio device\n");
 522		return PTR_ERR(pdev);
 523	}
 524
 525	return 0;
 526}
 527
 528/**
 529 * rproc_handle_trace() - handle a shared trace buffer resource
 530 * @rproc: the remote processor
 531 * @ptr: the trace resource descriptor
 532 * @offset: offset of the resource entry
 533 * @avail: size of available data (for sanity checking the image)
 534 *
 535 * In case the remote processor dumps trace logs into memory,
 536 * export it via debugfs.
 537 *
 538 * Currently, the 'da' member of @rsc should contain the device address
 539 * where the remote processor is dumping the traces. Later we could also
 540 * support dynamically allocating this address using the generic
 541 * DMA API (but currently there isn't a use case for that).
 542 *
 543 * Return: 0 on success, or an appropriate error code otherwise
 544 */
 545static int rproc_handle_trace(struct rproc *rproc, void *ptr,
 546			      int offset, int avail)
 547{
 548	struct fw_rsc_trace *rsc = ptr;
 549	struct rproc_debug_trace *trace;
 550	struct device *dev = &rproc->dev;
 551	char name[15];
 552
 553	if (sizeof(*rsc) > avail) {
 554		dev_err(dev, "trace rsc is truncated\n");
 555		return -EINVAL;
 556	}
 557
 558	/* make sure reserved bytes are zeroes */
 559	if (rsc->reserved) {
 560		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 561		return -EINVAL;
 562	}
 563
 564	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 565	if (!trace)
 566		return -ENOMEM;
 567
 568	/* set the trace buffer dma properties */
 569	trace->trace_mem.len = rsc->len;
 570	trace->trace_mem.da = rsc->da;
 571
 572	/* set pointer on rproc device */
 573	trace->rproc = rproc;
 574
 575	/* make sure snprintf always null terminates, even if truncating */
 576	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 577
 578	/* create the debugfs entry */
 579	trace->tfile = rproc_create_trace_file(name, rproc, trace);
 580
 581	list_add_tail(&trace->node, &rproc->traces);
 582
 583	rproc->num_traces++;
 584
 585	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
 586		name, rsc->da, rsc->len);
 587
 588	return 0;
 589}
 590
 591/**
 592 * rproc_handle_devmem() - handle devmem resource entry
 593 * @rproc: remote processor handle
 594 * @ptr: the devmem resource entry
 595 * @offset: offset of the resource entry
 596 * @avail: size of available data (for sanity checking the image)
 597 *
 598 * Remote processors commonly need to access certain on-chip peripherals.
 599 *
 600 * Some of these remote processors access memory via an iommu device,
 601 * and might require us to configure their iommu before they can access
 602 * the on-chip peripherals they need.
 603 *
 604 * This resource entry is a request to map such a peripheral device.
 605 *
 606 * These devmem entries will contain the physical address of the device in
 607 * the 'pa' member. If a specific device address is expected, then 'da' will
 608 * contain it (currently this is the only use case supported). 'len' will
 609 * contain the size of the physical region we need to map.
 610 *
 611 * Currently we just "trust" those devmem entries to contain valid physical
 612 * addresses, but this is going to change: we want the implementations to
 613 * tell us ranges of physical addresses the firmware is allowed to request,
 614 * and not allow firmwares to request access to physical addresses that
 615 * are outside those ranges.
 616 *
 617 * Return: 0 on success, or an appropriate error code otherwise
 618 */
 619static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
 620			       int offset, int avail)
 621{
 622	struct fw_rsc_devmem *rsc = ptr;
 623	struct rproc_mem_entry *mapping;
 624	struct device *dev = &rproc->dev;
 625	int ret;
 626
 627	/* no point in handling this resource without a valid iommu domain */
 628	if (!rproc->domain)
 629		return -EINVAL;
 630
 631	if (sizeof(*rsc) > avail) {
 632		dev_err(dev, "devmem rsc is truncated\n");
 633		return -EINVAL;
 634	}
 635
 636	/* make sure reserved bytes are zeroes */
 637	if (rsc->reserved) {
 638		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 639		return -EINVAL;
 640	}
 641
 642	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 643	if (!mapping)
 644		return -ENOMEM;
 645
 646	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 
 647	if (ret) {
 648		dev_err(dev, "failed to map devmem: %d\n", ret);
 649		goto out;
 650	}
 651
 652	/*
 653	 * We'll need this info later when we'll want to unmap everything
 654	 * (e.g. on shutdown).
 655	 *
 656	 * We can't trust the remote processor not to change the resource
 657	 * table, so we must maintain this info independently.
 658	 */
 659	mapping->da = rsc->da;
 660	mapping->len = rsc->len;
 661	list_add_tail(&mapping->node, &rproc->mappings);
 662
 663	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 664		rsc->pa, rsc->da, rsc->len);
 665
 666	return 0;
 667
 668out:
 669	kfree(mapping);
 670	return ret;
 671}
 672
 673/**
 674 * rproc_alloc_carveout() - allocated specified carveout
 675 * @rproc: rproc handle
 676 * @mem: the memory entry to allocate
 677 *
 678 * This function allocate specified memory entry @mem using
 679 * dma_alloc_coherent() as default allocator
 680 *
 681 * Return: 0 on success, or an appropriate error code otherwise
 682 */
 683static int rproc_alloc_carveout(struct rproc *rproc,
 684				struct rproc_mem_entry *mem)
 685{
 686	struct rproc_mem_entry *mapping = NULL;
 687	struct device *dev = &rproc->dev;
 688	dma_addr_t dma;
 689	void *va;
 690	int ret;
 691
 692	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 693	if (!va) {
 694		dev_err(dev->parent,
 695			"failed to allocate dma memory: len 0x%zx\n",
 696			mem->len);
 697		return -ENOMEM;
 698	}
 699
 700	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
 701		va, &dma, mem->len);
 702
 703	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
 704		/*
 705		 * Check requested da is equal to dma address
 706		 * and print a warn message in case of missalignment.
 707		 * Don't stop rproc_start sequence as coprocessor may
 708		 * build pa to da translation on its side.
 709		 */
 710		if (mem->da != (u32)dma)
 711			dev_warn(dev->parent,
 712				 "Allocated carveout doesn't fit device address request\n");
 713	}
 714
 715	/*
 716	 * Ok, this is non-standard.
 717	 *
 718	 * Sometimes we can't rely on the generic iommu-based DMA API
 719	 * to dynamically allocate the device address and then set the IOMMU
 720	 * tables accordingly, because some remote processors might
 721	 * _require_ us to use hard coded device addresses that their
 722	 * firmware was compiled with.
 723	 *
 724	 * In this case, we must use the IOMMU API directly and map
 725	 * the memory to the device address as expected by the remote
 726	 * processor.
 727	 *
 728	 * Obviously such remote processor devices should not be configured
 729	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 730	 * physical address in this case.
 731	 */
 732	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
 733		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 734		if (!mapping) {
 735			ret = -ENOMEM;
 736			goto dma_free;
 737		}
 738
 739		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 740				mem->flags);
 741		if (ret) {
 742			dev_err(dev, "iommu_map failed: %d\n", ret);
 743			goto free_mapping;
 744		}
 745
 746		/*
 747		 * We'll need this info later when we'll want to unmap
 748		 * everything (e.g. on shutdown).
 749		 *
 750		 * We can't trust the remote processor not to change the
 751		 * resource table, so we must maintain this info independently.
 752		 */
 753		mapping->da = mem->da;
 754		mapping->len = mem->len;
 755		list_add_tail(&mapping->node, &rproc->mappings);
 756
 757		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 758			mem->da, &dma);
 759	}
 760
 761	if (mem->da == FW_RSC_ADDR_ANY) {
 762		/* Update device address as undefined by requester */
 763		if ((u64)dma & HIGH_BITS_MASK)
 764			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
 765
 766		mem->da = (u32)dma;
 767	}
 768
 769	mem->dma = dma;
 770	mem->va = va;
 771
 772	return 0;
 773
 774free_mapping:
 775	kfree(mapping);
 776dma_free:
 777	dma_free_coherent(dev->parent, mem->len, va, dma);
 778	return ret;
 779}
 780
 781/**
 782 * rproc_release_carveout() - release acquired carveout
 783 * @rproc: rproc handle
 784 * @mem: the memory entry to release
 785 *
 786 * This function releases specified memory entry @mem allocated via
 787 * rproc_alloc_carveout() function by @rproc.
 788 *
 789 * Return: 0 on success, or an appropriate error code otherwise
 790 */
 791static int rproc_release_carveout(struct rproc *rproc,
 792				  struct rproc_mem_entry *mem)
 793{
 794	struct device *dev = &rproc->dev;
 795
 796	/* clean up carveout allocations */
 797	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 798	return 0;
 799}
 800
 801/**
 802 * rproc_handle_carveout() - handle phys contig memory allocation requests
 803 * @rproc: rproc handle
 804 * @ptr: the resource entry
 805 * @offset: offset of the resource entry
 806 * @avail: size of available data (for image validation)
 807 *
 808 * This function will handle firmware requests for allocation of physically
 809 * contiguous memory regions.
 810 *
 811 * These request entries should come first in the firmware's resource table,
 812 * as other firmware entries might request placing other data objects inside
 813 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 814 *
 815 * Allocating memory this way helps utilizing the reserved physical memory
 816 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 817 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 818 * pressure is important; it may have a substantial impact on performance.
 819 *
 820 * Return: 0 on success, or an appropriate error code otherwise
 821 */
 822static int rproc_handle_carveout(struct rproc *rproc,
 823				 void *ptr, int offset, int avail)
 824{
 825	struct fw_rsc_carveout *rsc = ptr;
 826	struct rproc_mem_entry *carveout;
 827	struct device *dev = &rproc->dev;
 828
 829	if (sizeof(*rsc) > avail) {
 830		dev_err(dev, "carveout rsc is truncated\n");
 831		return -EINVAL;
 832	}
 833
 834	/* make sure reserved bytes are zeroes */
 835	if (rsc->reserved) {
 836		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 837		return -EINVAL;
 838	}
 839
 840	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 841		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 842
 843	/*
 844	 * Check carveout rsc already part of a registered carveout,
 845	 * Search by name, then check the da and length
 846	 */
 847	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 848
 849	if (carveout) {
 850		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 851			dev_err(dev,
 852				"Carveout already associated to resource table\n");
 853			return -ENOMEM;
 854		}
 855
 856		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 857			return -ENOMEM;
 858
 859		/* Update memory carveout with resource table info */
 860		carveout->rsc_offset = offset;
 861		carveout->flags = rsc->flags;
 862
 863		return 0;
 864	}
 865
 866	/* Register carveout in list */
 867	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
 868					rproc_alloc_carveout,
 869					rproc_release_carveout, rsc->name);
 870	if (!carveout) {
 871		dev_err(dev, "Can't allocate memory entry structure\n");
 872		return -ENOMEM;
 873	}
 874
 875	carveout->flags = rsc->flags;
 876	carveout->rsc_offset = offset;
 877	rproc_add_carveout(rproc, carveout);
 878
 879	return 0;
 880}
 881
 882/**
 883 * rproc_add_carveout() - register an allocated carveout region
 884 * @rproc: rproc handle
 885 * @mem: memory entry to register
 886 *
 887 * This function registers specified memory entry in @rproc carveouts list.
 888 * Specified carveout should have been allocated before registering.
 889 */
 890void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
 891{
 892	list_add_tail(&mem->node, &rproc->carveouts);
 893}
 894EXPORT_SYMBOL(rproc_add_carveout);
 895
 896/**
 897 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 898 * @dev: pointer on device struct
 899 * @va: virtual address
 900 * @dma: dma address
 901 * @len: memory carveout length
 902 * @da: device address
 903 * @alloc: memory carveout allocation function
 904 * @release: memory carveout release function
 905 * @name: carveout name
 906 *
 907 * This function allocates a rproc_mem_entry struct and fill it with parameters
 908 * provided by client.
 909 *
 910 * Return: a valid pointer on success, or NULL on failure
 911 */
 912__printf(8, 9)
 913struct rproc_mem_entry *
 914rproc_mem_entry_init(struct device *dev,
 915		     void *va, dma_addr_t dma, size_t len, u32 da,
 916		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
 917		     int (*release)(struct rproc *, struct rproc_mem_entry *),
 918		     const char *name, ...)
 919{
 920	struct rproc_mem_entry *mem;
 921	va_list args;
 922
 923	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 924	if (!mem)
 925		return mem;
 926
 927	mem->va = va;
 928	mem->dma = dma;
 929	mem->da = da;
 930	mem->len = len;
 931	mem->alloc = alloc;
 932	mem->release = release;
 933	mem->rsc_offset = FW_RSC_ADDR_ANY;
 934	mem->of_resm_idx = -1;
 935
 936	va_start(args, name);
 937	vsnprintf(mem->name, sizeof(mem->name), name, args);
 938	va_end(args);
 939
 940	return mem;
 941}
 942EXPORT_SYMBOL(rproc_mem_entry_init);
 943
 944/**
 945 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
 946 * from a reserved memory phandle
 947 * @dev: pointer on device struct
 948 * @of_resm_idx: reserved memory phandle index in "memory-region"
 949 * @len: memory carveout length
 950 * @da: device address
 951 * @name: carveout name
 952 *
 953 * This function allocates a rproc_mem_entry struct and fill it with parameters
 954 * provided by client.
 955 *
 956 * Return: a valid pointer on success, or NULL on failure
 957 */
 958__printf(5, 6)
 959struct rproc_mem_entry *
 960rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
 961			     u32 da, const char *name, ...)
 962{
 963	struct rproc_mem_entry *mem;
 964	va_list args;
 965
 966	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 967	if (!mem)
 968		return mem;
 969
 970	mem->da = da;
 971	mem->len = len;
 972	mem->rsc_offset = FW_RSC_ADDR_ANY;
 973	mem->of_resm_idx = of_resm_idx;
 974
 975	va_start(args, name);
 976	vsnprintf(mem->name, sizeof(mem->name), name, args);
 977	va_end(args);
 978
 979	return mem;
 980}
 981EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
 982
 983/**
 984 * rproc_of_parse_firmware() - parse and return the firmware-name
 985 * @dev: pointer on device struct representing a rproc
 986 * @index: index to use for the firmware-name retrieval
 987 * @fw_name: pointer to a character string, in which the firmware
 988 *           name is returned on success and unmodified otherwise.
 989 *
 990 * This is an OF helper function that parses a device's DT node for
 991 * the "firmware-name" property and returns the firmware name pointer
 992 * in @fw_name on success.
 993 *
 994 * Return: 0 on success, or an appropriate failure.
 995 */
 996int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
 997{
 998	int ret;
 999
1000	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1001					    index, fw_name);
1002	return ret ? ret : 0;
1003}
1004EXPORT_SYMBOL(rproc_of_parse_firmware);
1005
1006/*
1007 * A lookup table for resource handlers. The indices are defined in
1008 * enum fw_resource_type.
1009 */
1010static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1011	[RSC_CARVEOUT] = rproc_handle_carveout,
1012	[RSC_DEVMEM] = rproc_handle_devmem,
1013	[RSC_TRACE] = rproc_handle_trace,
1014	[RSC_VDEV] = rproc_handle_vdev,
1015};
1016
1017/* handle firmware resource entries before booting the remote processor */
1018static int rproc_handle_resources(struct rproc *rproc,
1019				  rproc_handle_resource_t handlers[RSC_LAST])
1020{
1021	struct device *dev = &rproc->dev;
1022	rproc_handle_resource_t handler;
1023	int ret = 0, i;
1024
1025	if (!rproc->table_ptr)
1026		return 0;
1027
1028	for (i = 0; i < rproc->table_ptr->num; i++) {
1029		int offset = rproc->table_ptr->offset[i];
1030		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1031		int avail = rproc->table_sz - offset - sizeof(*hdr);
1032		void *rsc = (void *)hdr + sizeof(*hdr);
1033
1034		/* make sure table isn't truncated */
1035		if (avail < 0) {
1036			dev_err(dev, "rsc table is truncated\n");
1037			return -EINVAL;
1038		}
1039
1040		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1041
1042		if (hdr->type >= RSC_VENDOR_START &&
1043		    hdr->type <= RSC_VENDOR_END) {
1044			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1045					       offset + sizeof(*hdr), avail);
1046			if (ret == RSC_HANDLED)
1047				continue;
1048			else if (ret < 0)
1049				break;
1050
1051			dev_warn(dev, "unsupported vendor resource %d\n",
1052				 hdr->type);
1053			continue;
1054		}
1055
1056		if (hdr->type >= RSC_LAST) {
1057			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1058			continue;
1059		}
1060
1061		handler = handlers[hdr->type];
1062		if (!handler)
1063			continue;
1064
1065		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1066		if (ret)
1067			break;
1068	}
1069
1070	return ret;
1071}
1072
1073static int rproc_prepare_subdevices(struct rproc *rproc)
1074{
1075	struct rproc_subdev *subdev;
1076	int ret;
1077
1078	list_for_each_entry(subdev, &rproc->subdevs, node) {
1079		if (subdev->prepare) {
1080			ret = subdev->prepare(subdev);
1081			if (ret)
1082				goto unroll_preparation;
1083		}
1084	}
1085
1086	return 0;
1087
1088unroll_preparation:
1089	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1090		if (subdev->unprepare)
1091			subdev->unprepare(subdev);
1092	}
1093
1094	return ret;
1095}
1096
1097static int rproc_start_subdevices(struct rproc *rproc)
1098{
1099	struct rproc_subdev *subdev;
1100	int ret;
1101
1102	list_for_each_entry(subdev, &rproc->subdevs, node) {
1103		if (subdev->start) {
1104			ret = subdev->start(subdev);
1105			if (ret)
1106				goto unroll_registration;
1107		}
1108	}
1109
1110	return 0;
1111
1112unroll_registration:
1113	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1114		if (subdev->stop)
1115			subdev->stop(subdev, true);
1116	}
1117
1118	return ret;
1119}
1120
1121static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1122{
1123	struct rproc_subdev *subdev;
1124
1125	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1126		if (subdev->stop)
1127			subdev->stop(subdev, crashed);
1128	}
1129}
1130
1131static void rproc_unprepare_subdevices(struct rproc *rproc)
1132{
1133	struct rproc_subdev *subdev;
1134
1135	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1136		if (subdev->unprepare)
1137			subdev->unprepare(subdev);
1138	}
1139}
1140
1141/**
1142 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1143 * in the list
1144 * @rproc: the remote processor handle
1145 *
1146 * This function parses registered carveout list, performs allocation
1147 * if alloc() ops registered and updates resource table information
1148 * if rsc_offset set.
1149 *
1150 * Return: 0 on success
1151 */
1152static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1153{
1154	struct rproc_mem_entry *entry, *tmp;
1155	struct fw_rsc_carveout *rsc;
1156	struct device *dev = &rproc->dev;
1157	u64 pa;
1158	int ret;
1159
1160	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1161		if (entry->alloc) {
1162			ret = entry->alloc(rproc, entry);
1163			if (ret) {
1164				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1165					entry->name, ret);
1166				return -ENOMEM;
1167			}
1168		}
1169
1170		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1171			/* update resource table */
1172			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1173
1174			/*
1175			 * Some remote processors might need to know the pa
1176			 * even though they are behind an IOMMU. E.g., OMAP4's
1177			 * remote M3 processor needs this so it can control
1178			 * on-chip hardware accelerators that are not behind
1179			 * the IOMMU, and therefor must know the pa.
1180			 *
1181			 * Generally we don't want to expose physical addresses
1182			 * if we don't have to (remote processors are generally
1183			 * _not_ trusted), so we might want to do this only for
1184			 * remote processor that _must_ have this (e.g. OMAP4's
1185			 * dual M3 subsystem).
1186			 *
1187			 * Non-IOMMU processors might also want to have this info.
1188			 * In this case, the device address and the physical address
1189			 * are the same.
1190			 */
1191
1192			/* Use va if defined else dma to generate pa */
1193			if (entry->va)
1194				pa = (u64)rproc_va_to_pa(entry->va);
1195			else
1196				pa = (u64)entry->dma;
1197
1198			if (((u64)pa) & HIGH_BITS_MASK)
1199				dev_warn(dev,
1200					 "Physical address cast in 32bit to fit resource table format\n");
1201
1202			rsc->pa = (u32)pa;
1203			rsc->da = entry->da;
1204			rsc->len = entry->len;
1205		}
1206	}
1207
1208	return 0;
1209}
1210
1211
1212/**
1213 * rproc_resource_cleanup() - clean up and free all acquired resources
1214 * @rproc: rproc handle
1215 *
1216 * This function will free all resources acquired for @rproc, and it
1217 * is called whenever @rproc either shuts down or fails to boot.
1218 */
1219void rproc_resource_cleanup(struct rproc *rproc)
1220{
1221	struct rproc_mem_entry *entry, *tmp;
1222	struct rproc_debug_trace *trace, *ttmp;
1223	struct rproc_vdev *rvdev, *rvtmp;
1224	struct device *dev = &rproc->dev;
1225
1226	/* clean up debugfs trace entries */
1227	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1228		rproc_remove_trace_file(trace->tfile);
1229		rproc->num_traces--;
1230		list_del(&trace->node);
1231		kfree(trace);
1232	}
1233
1234	/* clean up iommu mapping entries */
1235	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1236		size_t unmapped;
1237
1238		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1239		if (unmapped != entry->len) {
1240			/* nothing much to do besides complaining */
1241			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1242				unmapped);
1243		}
1244
1245		list_del(&entry->node);
1246		kfree(entry);
1247	}
1248
1249	/* clean up carveout allocations */
1250	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1251		if (entry->release)
1252			entry->release(rproc, entry);
1253		list_del(&entry->node);
1254		kfree(entry);
1255	}
1256
1257	/* clean up remote vdev entries */
1258	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1259		platform_device_unregister(rvdev->pdev);
1260
1261	rproc_coredump_cleanup(rproc);
1262}
1263EXPORT_SYMBOL(rproc_resource_cleanup);
1264
1265static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1266{
1267	struct resource_table *loaded_table;
1268	struct device *dev = &rproc->dev;
1269	int ret;
1270
1271	/* load the ELF segments to memory */
1272	ret = rproc_load_segments(rproc, fw);
1273	if (ret) {
1274		dev_err(dev, "Failed to load program segments: %d\n", ret);
1275		return ret;
1276	}
1277
1278	/*
1279	 * The starting device has been given the rproc->cached_table as the
1280	 * resource table. The address of the vring along with the other
1281	 * allocated resources (carveouts etc) is stored in cached_table.
1282	 * In order to pass this information to the remote device we must copy
1283	 * this information to device memory. We also update the table_ptr so
1284	 * that any subsequent changes will be applied to the loaded version.
1285	 */
1286	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1287	if (loaded_table) {
1288		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1289		rproc->table_ptr = loaded_table;
1290	}
1291
1292	ret = rproc_prepare_subdevices(rproc);
1293	if (ret) {
1294		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1295			rproc->name, ret);
1296		goto reset_table_ptr;
1297	}
1298
1299	/* power up the remote processor */
1300	ret = rproc->ops->start(rproc);
1301	if (ret) {
1302		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1303		goto unprepare_subdevices;
1304	}
1305
1306	/* Start any subdevices for the remote processor */
1307	ret = rproc_start_subdevices(rproc);
1308	if (ret) {
1309		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1310			rproc->name, ret);
1311		goto stop_rproc;
1312	}
1313
1314	rproc->state = RPROC_RUNNING;
1315
1316	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1317
1318	return 0;
1319
1320stop_rproc:
1321	rproc->ops->stop(rproc);
1322unprepare_subdevices:
1323	rproc_unprepare_subdevices(rproc);
1324reset_table_ptr:
1325	rproc->table_ptr = rproc->cached_table;
1326
1327	return ret;
1328}
1329
1330static int __rproc_attach(struct rproc *rproc)
1331{
1332	struct device *dev = &rproc->dev;
1333	int ret;
1334
1335	ret = rproc_prepare_subdevices(rproc);
1336	if (ret) {
1337		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1338			rproc->name, ret);
1339		goto out;
1340	}
1341
1342	/* Attach to the remote processor */
1343	ret = rproc_attach_device(rproc);
1344	if (ret) {
1345		dev_err(dev, "can't attach to rproc %s: %d\n",
1346			rproc->name, ret);
1347		goto unprepare_subdevices;
1348	}
1349
1350	/* Start any subdevices for the remote processor */
1351	ret = rproc_start_subdevices(rproc);
1352	if (ret) {
1353		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1354			rproc->name, ret);
1355		goto stop_rproc;
1356	}
1357
1358	rproc->state = RPROC_ATTACHED;
1359
1360	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1361
1362	return 0;
1363
1364stop_rproc:
1365	rproc->ops->stop(rproc);
1366unprepare_subdevices:
1367	rproc_unprepare_subdevices(rproc);
1368out:
1369	return ret;
1370}
1371
1372/*
1373 * take a firmware and boot a remote processor with it.
1374 */
1375static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1376{
1377	struct device *dev = &rproc->dev;
1378	const char *name = rproc->firmware;
1379	int ret;
1380
1381	ret = rproc_fw_sanity_check(rproc, fw);
1382	if (ret)
1383		return ret;
1384
1385	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1386
1387	/*
1388	 * if enabling an IOMMU isn't relevant for this rproc, this is
1389	 * just a nop
1390	 */
1391	ret = rproc_enable_iommu(rproc);
1392	if (ret) {
1393		dev_err(dev, "can't enable iommu: %d\n", ret);
1394		return ret;
1395	}
1396
1397	/* Prepare rproc for firmware loading if needed */
1398	ret = rproc_prepare_device(rproc);
1399	if (ret) {
1400		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1401		goto disable_iommu;
1402	}
1403
1404	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1405
1406	/* Load resource table, core dump segment list etc from the firmware */
1407	ret = rproc_parse_fw(rproc, fw);
1408	if (ret)
1409		goto unprepare_rproc;
1410
1411	/* reset max_notifyid */
1412	rproc->max_notifyid = -1;
1413
1414	/* reset handled vdev */
1415	rproc->nb_vdev = 0;
1416
1417	/* handle fw resources which are required to boot rproc */
1418	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1419	if (ret) {
1420		dev_err(dev, "Failed to process resources: %d\n", ret);
1421		goto clean_up_resources;
1422	}
1423
1424	/* Allocate carveout resources associated to rproc */
1425	ret = rproc_alloc_registered_carveouts(rproc);
1426	if (ret) {
1427		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1428			ret);
1429		goto clean_up_resources;
1430	}
1431
1432	ret = rproc_start(rproc, fw);
1433	if (ret)
1434		goto clean_up_resources;
1435
1436	return 0;
1437
1438clean_up_resources:
1439	rproc_resource_cleanup(rproc);
1440	kfree(rproc->cached_table);
1441	rproc->cached_table = NULL;
1442	rproc->table_ptr = NULL;
1443unprepare_rproc:
1444	/* release HW resources if needed */
1445	rproc_unprepare_device(rproc);
1446disable_iommu:
1447	rproc_disable_iommu(rproc);
1448	return ret;
1449}
1450
1451static int rproc_set_rsc_table(struct rproc *rproc)
1452{
1453	struct resource_table *table_ptr;
1454	struct device *dev = &rproc->dev;
1455	size_t table_sz;
1456	int ret;
1457
1458	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1459	if (!table_ptr) {
1460		/* Not having a resource table is acceptable */
1461		return 0;
1462	}
1463
1464	if (IS_ERR(table_ptr)) {
1465		ret = PTR_ERR(table_ptr);
1466		dev_err(dev, "can't load resource table: %d\n", ret);
1467		return ret;
1468	}
1469
1470	/*
1471	 * If it is possible to detach the remote processor, keep an untouched
1472	 * copy of the resource table.  That way we can start fresh again when
1473	 * the remote processor is re-attached, that is:
1474	 *
1475	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1476	 *
1477	 * Free'd in rproc_reset_rsc_table_on_detach() and
1478	 * rproc_reset_rsc_table_on_stop().
1479	 */
1480	if (rproc->ops->detach) {
1481		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1482		if (!rproc->clean_table)
1483			return -ENOMEM;
1484	} else {
1485		rproc->clean_table = NULL;
1486	}
1487
1488	rproc->cached_table = NULL;
1489	rproc->table_ptr = table_ptr;
1490	rproc->table_sz = table_sz;
1491
1492	return 0;
1493}
1494
1495static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1496{
1497	struct resource_table *table_ptr;
1498
1499	/* A resource table was never retrieved, nothing to do here */
1500	if (!rproc->table_ptr)
1501		return 0;
1502
1503	/*
1504	 * If we made it to this point a clean_table _must_ have been
1505	 * allocated in rproc_set_rsc_table().  If one isn't present
1506	 * something went really wrong and we must complain.
1507	 */
1508	if (WARN_ON(!rproc->clean_table))
1509		return -EINVAL;
1510
1511	/* Remember where the external entity installed the resource table */
1512	table_ptr = rproc->table_ptr;
1513
1514	/*
1515	 * If we made it here the remote processor was started by another
1516	 * entity and a cache table doesn't exist.  As such make a copy of
1517	 * the resource table currently used by the remote processor and
1518	 * use that for the rest of the shutdown process.  The memory
1519	 * allocated here is free'd in rproc_detach().
1520	 */
1521	rproc->cached_table = kmemdup(rproc->table_ptr,
1522				      rproc->table_sz, GFP_KERNEL);
1523	if (!rproc->cached_table)
1524		return -ENOMEM;
1525
1526	/*
1527	 * Use a copy of the resource table for the remainder of the
1528	 * shutdown process.
1529	 */
1530	rproc->table_ptr = rproc->cached_table;
1531
1532	/*
1533	 * Reset the memory area where the firmware loaded the resource table
1534	 * to its original value.  That way when we re-attach the remote
1535	 * processor the resource table is clean and ready to be used again.
1536	 */
1537	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1538
1539	/*
1540	 * The clean resource table is no longer needed.  Allocated in
1541	 * rproc_set_rsc_table().
1542	 */
1543	kfree(rproc->clean_table);
1544
1545	return 0;
1546}
1547
1548static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1549{
1550	/* A resource table was never retrieved, nothing to do here */
1551	if (!rproc->table_ptr)
1552		return 0;
1553
1554	/*
1555	 * If a cache table exists the remote processor was started by
1556	 * the remoteproc core.  That cache table should be used for
1557	 * the rest of the shutdown process.
1558	 */
1559	if (rproc->cached_table)
1560		goto out;
1561
1562	/*
1563	 * If we made it here the remote processor was started by another
1564	 * entity and a cache table doesn't exist.  As such make a copy of
1565	 * the resource table currently used by the remote processor and
1566	 * use that for the rest of the shutdown process.  The memory
1567	 * allocated here is free'd in rproc_shutdown().
1568	 */
1569	rproc->cached_table = kmemdup(rproc->table_ptr,
1570				      rproc->table_sz, GFP_KERNEL);
1571	if (!rproc->cached_table)
1572		return -ENOMEM;
1573
1574	/*
1575	 * Since the remote processor is being switched off the clean table
1576	 * won't be needed.  Allocated in rproc_set_rsc_table().
1577	 */
1578	kfree(rproc->clean_table);
1579
1580out:
1581	/*
1582	 * Use a copy of the resource table for the remainder of the
1583	 * shutdown process.
1584	 */
1585	rproc->table_ptr = rproc->cached_table;
1586	return 0;
1587}
1588
1589/*
1590 * Attach to remote processor - similar to rproc_fw_boot() but without
1591 * the steps that deal with the firmware image.
1592 */
1593static int rproc_attach(struct rproc *rproc)
1594{
1595	struct device *dev = &rproc->dev;
1596	int ret;
1597
1598	/*
1599	 * if enabling an IOMMU isn't relevant for this rproc, this is
1600	 * just a nop
1601	 */
1602	ret = rproc_enable_iommu(rproc);
1603	if (ret) {
1604		dev_err(dev, "can't enable iommu: %d\n", ret);
1605		return ret;
1606	}
1607
1608	/* Do anything that is needed to boot the remote processor */
1609	ret = rproc_prepare_device(rproc);
1610	if (ret) {
1611		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1612		goto disable_iommu;
1613	}
1614
1615	ret = rproc_set_rsc_table(rproc);
1616	if (ret) {
1617		dev_err(dev, "can't load resource table: %d\n", ret);
1618		goto unprepare_device;
1619	}
1620
1621	/* reset max_notifyid */
1622	rproc->max_notifyid = -1;
1623
1624	/* reset handled vdev */
1625	rproc->nb_vdev = 0;
1626
1627	/*
1628	 * Handle firmware resources required to attach to a remote processor.
1629	 * Because we are attaching rather than booting the remote processor,
1630	 * we expect the platform driver to properly set rproc->table_ptr.
1631	 */
1632	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1633	if (ret) {
1634		dev_err(dev, "Failed to process resources: %d\n", ret);
1635		goto unprepare_device;
1636	}
1637
1638	/* Allocate carveout resources associated to rproc */
1639	ret = rproc_alloc_registered_carveouts(rproc);
1640	if (ret) {
1641		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1642			ret);
1643		goto clean_up_resources;
1644	}
1645
1646	ret = __rproc_attach(rproc);
1647	if (ret)
1648		goto clean_up_resources;
1649
1650	return 0;
1651
1652clean_up_resources:
1653	rproc_resource_cleanup(rproc);
1654unprepare_device:
1655	/* release HW resources if needed */
1656	rproc_unprepare_device(rproc);
1657disable_iommu:
1658	rproc_disable_iommu(rproc);
1659	return ret;
1660}
1661
1662/*
1663 * take a firmware and boot it up.
1664 *
1665 * Note: this function is called asynchronously upon registration of the
1666 * remote processor (so we must wait until it completes before we try
1667 * to unregister the device. one other option is just to use kref here,
1668 * that might be cleaner).
1669 */
1670static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1671{
1672	struct rproc *rproc = context;
1673
1674	rproc_boot(rproc);
1675
1676	release_firmware(fw);
1677}
1678
1679static int rproc_trigger_auto_boot(struct rproc *rproc)
1680{
1681	int ret;
1682
1683	/*
1684	 * Since the remote processor is in a detached state, it has already
1685	 * been booted by another entity.  As such there is no point in waiting
1686	 * for a firmware image to be loaded, we can simply initiate the process
1687	 * of attaching to it immediately.
1688	 */
1689	if (rproc->state == RPROC_DETACHED)
1690		return rproc_boot(rproc);
1691
1692	/*
1693	 * We're initiating an asynchronous firmware loading, so we can
1694	 * be built-in kernel code, without hanging the boot process.
1695	 */
1696	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1697				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1698				      rproc, rproc_auto_boot_callback);
1699	if (ret < 0)
1700		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1701
1702	return ret;
1703}
1704
1705static int rproc_stop(struct rproc *rproc, bool crashed)
1706{
1707	struct device *dev = &rproc->dev;
1708	int ret;
1709
1710	/* No need to continue if a stop() operation has not been provided */
1711	if (!rproc->ops->stop)
1712		return -EINVAL;
1713
1714	/* Stop any subdevices for the remote processor */
1715	rproc_stop_subdevices(rproc, crashed);
1716
1717	/* the installed resource table is no longer accessible */
1718	ret = rproc_reset_rsc_table_on_stop(rproc);
1719	if (ret) {
1720		dev_err(dev, "can't reset resource table: %d\n", ret);
1721		return ret;
1722	}
1723
1724
1725	/* power off the remote processor */
1726	ret = rproc->ops->stop(rproc);
1727	if (ret) {
1728		dev_err(dev, "can't stop rproc: %d\n", ret);
1729		return ret;
1730	}
1731
1732	rproc_unprepare_subdevices(rproc);
1733
1734	rproc->state = RPROC_OFFLINE;
1735
1736	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1737
1738	return 0;
1739}
1740
1741/*
1742 * __rproc_detach(): Does the opposite of __rproc_attach()
1743 */
1744static int __rproc_detach(struct rproc *rproc)
1745{
1746	struct device *dev = &rproc->dev;
1747	int ret;
1748
1749	/* No need to continue if a detach() operation has not been provided */
1750	if (!rproc->ops->detach)
1751		return -EINVAL;
1752
1753	/* Stop any subdevices for the remote processor */
1754	rproc_stop_subdevices(rproc, false);
1755
1756	/* the installed resource table is no longer accessible */
1757	ret = rproc_reset_rsc_table_on_detach(rproc);
1758	if (ret) {
1759		dev_err(dev, "can't reset resource table: %d\n", ret);
1760		return ret;
1761	}
1762
1763	/* Tell the remote processor the core isn't available anymore */
1764	ret = rproc->ops->detach(rproc);
1765	if (ret) {
1766		dev_err(dev, "can't detach from rproc: %d\n", ret);
1767		return ret;
1768	}
1769
1770	rproc_unprepare_subdevices(rproc);
1771
1772	rproc->state = RPROC_DETACHED;
1773
1774	dev_info(dev, "detached remote processor %s\n", rproc->name);
1775
1776	return 0;
1777}
1778
1779static int rproc_attach_recovery(struct rproc *rproc)
1780{
1781	int ret;
1782
1783	ret = __rproc_detach(rproc);
1784	if (ret)
1785		return ret;
1786
1787	return __rproc_attach(rproc);
1788}
1789
1790static int rproc_boot_recovery(struct rproc *rproc)
1791{
1792	const struct firmware *firmware_p;
1793	struct device *dev = &rproc->dev;
1794	int ret;
1795
1796	ret = rproc_stop(rproc, true);
1797	if (ret)
1798		return ret;
1799
1800	/* generate coredump */
1801	rproc->ops->coredump(rproc);
1802
1803	/* load firmware */
1804	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1805	if (ret < 0) {
1806		dev_err(dev, "request_firmware failed: %d\n", ret);
1807		return ret;
1808	}
1809
1810	/* boot the remote processor up again */
1811	ret = rproc_start(rproc, firmware_p);
1812
1813	release_firmware(firmware_p);
1814
1815	return ret;
1816}
1817
1818/**
1819 * rproc_trigger_recovery() - recover a remoteproc
1820 * @rproc: the remote processor
1821 *
1822 * The recovery is done by resetting all the virtio devices, that way all the
1823 * rpmsg drivers will be reseted along with the remote processor making the
1824 * remoteproc functional again.
1825 *
1826 * This function can sleep, so it cannot be called from atomic context.
1827 *
1828 * Return: 0 on success or a negative value upon failure
1829 */
1830int rproc_trigger_recovery(struct rproc *rproc)
1831{
1832	struct device *dev = &rproc->dev;
1833	int ret;
1834
1835	ret = mutex_lock_interruptible(&rproc->lock);
1836	if (ret)
1837		return ret;
1838
1839	/* State could have changed before we got the mutex */
1840	if (rproc->state != RPROC_CRASHED)
1841		goto unlock_mutex;
1842
1843	dev_err(dev, "recovering %s\n", rproc->name);
1844
1845	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1846		ret = rproc_attach_recovery(rproc);
1847	else
1848		ret = rproc_boot_recovery(rproc);
1849
1850unlock_mutex:
1851	mutex_unlock(&rproc->lock);
1852	return ret;
1853}
1854
1855/**
1856 * rproc_crash_handler_work() - handle a crash
1857 * @work: work treating the crash
1858 *
1859 * This function needs to handle everything related to a crash, like cpu
1860 * registers and stack dump, information to help to debug the fatal error, etc.
1861 */
1862static void rproc_crash_handler_work(struct work_struct *work)
1863{
1864	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1865	struct device *dev = &rproc->dev;
1866
1867	dev_dbg(dev, "enter %s\n", __func__);
1868
1869	mutex_lock(&rproc->lock);
1870
1871	if (rproc->state == RPROC_CRASHED) {
1872		/* handle only the first crash detected */
1873		mutex_unlock(&rproc->lock);
1874		return;
1875	}
1876
1877	if (rproc->state == RPROC_OFFLINE) {
1878		/* Don't recover if the remote processor was stopped */
1879		mutex_unlock(&rproc->lock);
1880		goto out;
1881	}
1882
1883	rproc->state = RPROC_CRASHED;
1884	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1885		rproc->name);
1886
1887	mutex_unlock(&rproc->lock);
1888
1889	if (!rproc->recovery_disabled)
1890		rproc_trigger_recovery(rproc);
1891
1892out:
1893	pm_relax(rproc->dev.parent);
1894}
1895
1896/**
1897 * rproc_boot() - boot a remote processor
1898 * @rproc: handle of a remote processor
1899 *
1900 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1901 *
1902 * If the remote processor is already powered on, this function immediately
1903 * returns (successfully).
1904 *
1905 * Return: 0 on success, and an appropriate error value otherwise
1906 */
1907int rproc_boot(struct rproc *rproc)
1908{
1909	const struct firmware *firmware_p;
1910	struct device *dev;
1911	int ret;
1912
1913	if (!rproc) {
1914		pr_err("invalid rproc handle\n");
1915		return -EINVAL;
1916	}
1917
1918	dev = &rproc->dev;
1919
1920	ret = mutex_lock_interruptible(&rproc->lock);
1921	if (ret) {
1922		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1923		return ret;
1924	}
1925
1926	if (rproc->state == RPROC_DELETED) {
1927		ret = -ENODEV;
1928		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1929		goto unlock_mutex;
1930	}
1931
1932	/* skip the boot or attach process if rproc is already powered up */
1933	if (atomic_inc_return(&rproc->power) > 1) {
1934		ret = 0;
1935		goto unlock_mutex;
1936	}
1937
1938	if (rproc->state == RPROC_DETACHED) {
1939		dev_info(dev, "attaching to %s\n", rproc->name);
1940
1941		ret = rproc_attach(rproc);
1942	} else {
1943		dev_info(dev, "powering up %s\n", rproc->name);
1944
1945		/* load firmware */
1946		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1947		if (ret < 0) {
1948			dev_err(dev, "request_firmware failed: %d\n", ret);
1949			goto downref_rproc;
1950		}
1951
1952		ret = rproc_fw_boot(rproc, firmware_p);
1953
1954		release_firmware(firmware_p);
1955	}
1956
1957downref_rproc:
1958	if (ret)
1959		atomic_dec(&rproc->power);
1960unlock_mutex:
1961	mutex_unlock(&rproc->lock);
1962	return ret;
1963}
1964EXPORT_SYMBOL(rproc_boot);
1965
1966/**
1967 * rproc_shutdown() - power off the remote processor
1968 * @rproc: the remote processor
1969 *
1970 * Power off a remote processor (previously booted with rproc_boot()).
1971 *
1972 * In case @rproc is still being used by an additional user(s), then
1973 * this function will just decrement the power refcount and exit,
1974 * without really powering off the device.
1975 *
1976 * Every call to rproc_boot() must (eventually) be accompanied by a call
1977 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1978 *
1979 * Notes:
1980 * - we're not decrementing the rproc's refcount, only the power refcount.
1981 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1982 *   returns, and users can still use it with a subsequent rproc_boot(), if
1983 *   needed.
1984 *
1985 * Return: 0 on success, and an appropriate error value otherwise
1986 */
1987int rproc_shutdown(struct rproc *rproc)
1988{
1989	struct device *dev = &rproc->dev;
1990	int ret = 0;
1991
1992	ret = mutex_lock_interruptible(&rproc->lock);
1993	if (ret) {
1994		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1995		return ret;
1996	}
1997
1998	if (rproc->state != RPROC_RUNNING &&
1999	    rproc->state != RPROC_ATTACHED) {
2000		ret = -EINVAL;
2001		goto out;
2002	}
2003
2004	/* if the remote proc is still needed, bail out */
2005	if (!atomic_dec_and_test(&rproc->power))
2006		goto out;
2007
2008	ret = rproc_stop(rproc, false);
2009	if (ret) {
2010		atomic_inc(&rproc->power);
2011		goto out;
2012	}
2013
2014	/* clean up all acquired resources */
2015	rproc_resource_cleanup(rproc);
2016
2017	/* release HW resources if needed */
2018	rproc_unprepare_device(rproc);
2019
2020	rproc_disable_iommu(rproc);
2021
2022	/* Free the copy of the resource table */
2023	kfree(rproc->cached_table);
2024	rproc->cached_table = NULL;
2025	rproc->table_ptr = NULL;
2026out:
2027	mutex_unlock(&rproc->lock);
2028	return ret;
2029}
2030EXPORT_SYMBOL(rproc_shutdown);
2031
2032/**
2033 * rproc_detach() - Detach the remote processor from the
2034 * remoteproc core
2035 *
2036 * @rproc: the remote processor
2037 *
2038 * Detach a remote processor (previously attached to with rproc_attach()).
2039 *
2040 * In case @rproc is still being used by an additional user(s), then
2041 * this function will just decrement the power refcount and exit,
2042 * without disconnecting the device.
2043 *
2044 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2045 * processor know that services provided by the application processor are
2046 * no longer available.  From there it should be possible to remove the
2047 * platform driver and even power cycle the application processor (if the HW
2048 * supports it) without needing to switch off the remote processor.
2049 *
2050 * Return: 0 on success, and an appropriate error value otherwise
2051 */
2052int rproc_detach(struct rproc *rproc)
2053{
2054	struct device *dev = &rproc->dev;
2055	int ret;
2056
2057	ret = mutex_lock_interruptible(&rproc->lock);
2058	if (ret) {
2059		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2060		return ret;
2061	}
2062
2063	if (rproc->state != RPROC_ATTACHED) {
2064		ret = -EINVAL;
2065		goto out;
2066	}
2067
2068	/* if the remote proc is still needed, bail out */
2069	if (!atomic_dec_and_test(&rproc->power)) {
2070		ret = 0;
2071		goto out;
2072	}
2073
2074	ret = __rproc_detach(rproc);
2075	if (ret) {
2076		atomic_inc(&rproc->power);
2077		goto out;
2078	}
2079
2080	/* clean up all acquired resources */
2081	rproc_resource_cleanup(rproc);
2082
2083	/* release HW resources if needed */
2084	rproc_unprepare_device(rproc);
2085
2086	rproc_disable_iommu(rproc);
2087
2088	/* Free the copy of the resource table */
2089	kfree(rproc->cached_table);
2090	rproc->cached_table = NULL;
2091	rproc->table_ptr = NULL;
2092out:
2093	mutex_unlock(&rproc->lock);
2094	return ret;
2095}
2096EXPORT_SYMBOL(rproc_detach);
2097
2098/**
2099 * rproc_get_by_phandle() - find a remote processor by phandle
2100 * @phandle: phandle to the rproc
2101 *
2102 * Finds an rproc handle using the remote processor's phandle, and then
2103 * return a handle to the rproc.
2104 *
2105 * This function increments the remote processor's refcount, so always
2106 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2107 *
2108 * Return: rproc handle on success, and NULL on failure
2109 */
2110#ifdef CONFIG_OF
2111struct rproc *rproc_get_by_phandle(phandle phandle)
2112{
2113	struct rproc *rproc = NULL, *r;
 
2114	struct device_node *np;
2115
2116	np = of_find_node_by_phandle(phandle);
2117	if (!np)
2118		return NULL;
2119
2120	rcu_read_lock();
2121	list_for_each_entry_rcu(r, &rproc_list, node) {
2122		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2123			/* prevent underlying implementation from being removed */
2124			if (!try_module_get(r->dev.parent->driver->owner)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2125				dev_err(&r->dev, "can't get owner\n");
2126				break;
2127			}
2128
2129			rproc = r;
2130			get_device(&rproc->dev);
2131			break;
2132		}
2133	}
2134	rcu_read_unlock();
2135
2136	of_node_put(np);
2137
2138	return rproc;
2139}
2140#else
2141struct rproc *rproc_get_by_phandle(phandle phandle)
2142{
2143	return NULL;
2144}
2145#endif
2146EXPORT_SYMBOL(rproc_get_by_phandle);
2147
2148/**
2149 * rproc_set_firmware() - assign a new firmware
2150 * @rproc: rproc handle to which the new firmware is being assigned
2151 * @fw_name: new firmware name to be assigned
2152 *
2153 * This function allows remoteproc drivers or clients to configure a custom
2154 * firmware name that is different from the default name used during remoteproc
2155 * registration. The function does not trigger a remote processor boot,
2156 * only sets the firmware name used for a subsequent boot. This function
2157 * should also be called only when the remote processor is offline.
2158 *
2159 * This allows either the userspace to configure a different name through
2160 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2161 * a specific firmware when it is controlling the boot and shutdown of the
2162 * remote processor.
2163 *
2164 * Return: 0 on success or a negative value upon failure
2165 */
2166int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2167{
2168	struct device *dev;
2169	int ret, len;
2170	char *p;
2171
2172	if (!rproc || !fw_name)
2173		return -EINVAL;
2174
2175	dev = rproc->dev.parent;
2176
2177	ret = mutex_lock_interruptible(&rproc->lock);
2178	if (ret) {
2179		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2180		return -EINVAL;
2181	}
2182
2183	if (rproc->state != RPROC_OFFLINE) {
2184		dev_err(dev, "can't change firmware while running\n");
2185		ret = -EBUSY;
2186		goto out;
2187	}
2188
2189	len = strcspn(fw_name, "\n");
2190	if (!len) {
2191		dev_err(dev, "can't provide empty string for firmware name\n");
2192		ret = -EINVAL;
2193		goto out;
2194	}
2195
2196	p = kstrndup(fw_name, len, GFP_KERNEL);
2197	if (!p) {
2198		ret = -ENOMEM;
2199		goto out;
2200	}
2201
2202	kfree_const(rproc->firmware);
2203	rproc->firmware = p;
2204
2205out:
2206	mutex_unlock(&rproc->lock);
2207	return ret;
2208}
2209EXPORT_SYMBOL(rproc_set_firmware);
2210
2211static int rproc_validate(struct rproc *rproc)
2212{
2213	switch (rproc->state) {
2214	case RPROC_OFFLINE:
2215		/*
2216		 * An offline processor without a start()
2217		 * function makes no sense.
2218		 */
2219		if (!rproc->ops->start)
2220			return -EINVAL;
2221		break;
2222	case RPROC_DETACHED:
2223		/*
2224		 * A remote processor in a detached state without an
2225		 * attach() function makes not sense.
2226		 */
2227		if (!rproc->ops->attach)
2228			return -EINVAL;
2229		/*
2230		 * When attaching to a remote processor the device memory
2231		 * is already available and as such there is no need to have a
2232		 * cached table.
2233		 */
2234		if (rproc->cached_table)
2235			return -EINVAL;
2236		break;
2237	default:
2238		/*
2239		 * When adding a remote processor, the state of the device
2240		 * can be offline or detached, nothing else.
2241		 */
2242		return -EINVAL;
2243	}
2244
2245	return 0;
2246}
2247
2248/**
2249 * rproc_add() - register a remote processor
2250 * @rproc: the remote processor handle to register
2251 *
2252 * Registers @rproc with the remoteproc framework, after it has been
2253 * allocated with rproc_alloc().
2254 *
2255 * This is called by the platform-specific rproc implementation, whenever
2256 * a new remote processor device is probed.
2257 *
2258 * Note: this function initiates an asynchronous firmware loading
2259 * context, which will look for virtio devices supported by the rproc's
2260 * firmware.
2261 *
2262 * If found, those virtio devices will be created and added, so as a result
2263 * of registering this remote processor, additional virtio drivers might be
2264 * probed.
2265 *
2266 * Return: 0 on success and an appropriate error code otherwise
2267 */
2268int rproc_add(struct rproc *rproc)
2269{
2270	struct device *dev = &rproc->dev;
2271	int ret;
2272
2273	ret = rproc_validate(rproc);
2274	if (ret < 0)
2275		return ret;
2276
2277	/* add char device for this remoteproc */
2278	ret = rproc_char_device_add(rproc);
2279	if (ret < 0)
2280		return ret;
2281
2282	ret = device_add(dev);
2283	if (ret < 0) {
2284		put_device(dev);
2285		goto rproc_remove_cdev;
2286	}
2287
2288	dev_info(dev, "%s is available\n", rproc->name);
2289
2290	/* create debugfs entries */
2291	rproc_create_debug_dir(rproc);
2292
2293	/* if rproc is marked always-on, request it to boot */
2294	if (rproc->auto_boot) {
2295		ret = rproc_trigger_auto_boot(rproc);
2296		if (ret < 0)
2297			goto rproc_remove_dev;
2298	}
2299
2300	/* expose to rproc_get_by_phandle users */
2301	mutex_lock(&rproc_list_mutex);
2302	list_add_rcu(&rproc->node, &rproc_list);
2303	mutex_unlock(&rproc_list_mutex);
2304
2305	return 0;
2306
2307rproc_remove_dev:
2308	rproc_delete_debug_dir(rproc);
2309	device_del(dev);
2310rproc_remove_cdev:
2311	rproc_char_device_remove(rproc);
2312	return ret;
2313}
2314EXPORT_SYMBOL(rproc_add);
2315
2316static void devm_rproc_remove(void *rproc)
2317{
2318	rproc_del(rproc);
2319}
2320
2321/**
2322 * devm_rproc_add() - resource managed rproc_add()
2323 * @dev: the underlying device
2324 * @rproc: the remote processor handle to register
2325 *
2326 * This function performs like rproc_add() but the registered rproc device will
2327 * automatically be removed on driver detach.
2328 *
2329 * Return: 0 on success, negative errno on failure
2330 */
2331int devm_rproc_add(struct device *dev, struct rproc *rproc)
2332{
2333	int err;
2334
2335	err = rproc_add(rproc);
2336	if (err)
2337		return err;
2338
2339	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2340}
2341EXPORT_SYMBOL(devm_rproc_add);
2342
2343/**
2344 * rproc_type_release() - release a remote processor instance
2345 * @dev: the rproc's device
2346 *
2347 * This function should _never_ be called directly.
2348 *
2349 * It will be called by the driver core when no one holds a valid pointer
2350 * to @dev anymore.
2351 */
2352static void rproc_type_release(struct device *dev)
2353{
2354	struct rproc *rproc = container_of(dev, struct rproc, dev);
2355
2356	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2357
2358	idr_destroy(&rproc->notifyids);
2359
2360	if (rproc->index >= 0)
2361		ida_free(&rproc_dev_index, rproc->index);
2362
2363	kfree_const(rproc->firmware);
2364	kfree_const(rproc->name);
2365	kfree(rproc->ops);
2366	kfree(rproc);
2367}
2368
2369static const struct device_type rproc_type = {
2370	.name		= "remoteproc",
2371	.release	= rproc_type_release,
2372};
2373
2374static int rproc_alloc_firmware(struct rproc *rproc,
2375				const char *name, const char *firmware)
2376{
2377	const char *p;
2378
2379	/*
2380	 * Allocate a firmware name if the caller gave us one to work
2381	 * with.  Otherwise construct a new one using a default pattern.
2382	 */
2383	if (firmware)
2384		p = kstrdup_const(firmware, GFP_KERNEL);
2385	else
2386		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2387
2388	if (!p)
2389		return -ENOMEM;
2390
2391	rproc->firmware = p;
2392
2393	return 0;
2394}
2395
2396static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2397{
2398	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2399	if (!rproc->ops)
2400		return -ENOMEM;
2401
2402	/* Default to rproc_coredump if no coredump function is specified */
2403	if (!rproc->ops->coredump)
2404		rproc->ops->coredump = rproc_coredump;
2405
2406	if (rproc->ops->load)
2407		return 0;
2408
2409	/* Default to ELF loader if no load function is specified */
2410	rproc->ops->load = rproc_elf_load_segments;
2411	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2412	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2413	rproc->ops->sanity_check = rproc_elf_sanity_check;
2414	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2415
2416	return 0;
2417}
2418
2419/**
2420 * rproc_alloc() - allocate a remote processor handle
2421 * @dev: the underlying device
2422 * @name: name of this remote processor
2423 * @ops: platform-specific handlers (mainly start/stop)
2424 * @firmware: name of firmware file to load, can be NULL
2425 * @len: length of private data needed by the rproc driver (in bytes)
2426 *
2427 * Allocates a new remote processor handle, but does not register
2428 * it yet. if @firmware is NULL, a default name is used.
2429 *
2430 * This function should be used by rproc implementations during initialization
2431 * of the remote processor.
2432 *
2433 * After creating an rproc handle using this function, and when ready,
2434 * implementations should then call rproc_add() to complete
2435 * the registration of the remote processor.
2436 *
2437 * Note: _never_ directly deallocate @rproc, even if it was not registered
2438 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2439 *
2440 * Return: new rproc pointer on success, and NULL on failure
2441 */
2442struct rproc *rproc_alloc(struct device *dev, const char *name,
2443			  const struct rproc_ops *ops,
2444			  const char *firmware, int len)
2445{
2446	struct rproc *rproc;
2447
2448	if (!dev || !name || !ops)
2449		return NULL;
2450
2451	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2452	if (!rproc)
2453		return NULL;
2454
2455	rproc->priv = &rproc[1];
2456	rproc->auto_boot = true;
2457	rproc->elf_class = ELFCLASSNONE;
2458	rproc->elf_machine = EM_NONE;
2459
2460	device_initialize(&rproc->dev);
2461	rproc->dev.parent = dev;
2462	rproc->dev.type = &rproc_type;
2463	rproc->dev.class = &rproc_class;
2464	rproc->dev.driver_data = rproc;
2465	idr_init(&rproc->notifyids);
2466
 
 
 
 
 
 
 
2467	rproc->name = kstrdup_const(name, GFP_KERNEL);
2468	if (!rproc->name)
2469		goto put_device;
2470
2471	if (rproc_alloc_firmware(rproc, name, firmware))
2472		goto put_device;
2473
2474	if (rproc_alloc_ops(rproc, ops))
2475		goto put_device;
2476
2477	/* Assign a unique device index and name */
2478	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2479	if (rproc->index < 0) {
2480		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2481		goto put_device;
2482	}
2483
2484	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2485
2486	atomic_set(&rproc->power, 0);
2487
2488	mutex_init(&rproc->lock);
2489
2490	INIT_LIST_HEAD(&rproc->carveouts);
2491	INIT_LIST_HEAD(&rproc->mappings);
2492	INIT_LIST_HEAD(&rproc->traces);
2493	INIT_LIST_HEAD(&rproc->rvdevs);
2494	INIT_LIST_HEAD(&rproc->subdevs);
2495	INIT_LIST_HEAD(&rproc->dump_segments);
2496
2497	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2498
2499	rproc->state = RPROC_OFFLINE;
2500
2501	return rproc;
2502
2503put_device:
2504	put_device(&rproc->dev);
2505	return NULL;
2506}
2507EXPORT_SYMBOL(rproc_alloc);
2508
2509/**
2510 * rproc_free() - unroll rproc_alloc()
2511 * @rproc: the remote processor handle
2512 *
2513 * This function decrements the rproc dev refcount.
2514 *
2515 * If no one holds any reference to rproc anymore, then its refcount would
2516 * now drop to zero, and it would be freed.
2517 */
2518void rproc_free(struct rproc *rproc)
2519{
2520	put_device(&rproc->dev);
2521}
2522EXPORT_SYMBOL(rproc_free);
2523
2524/**
2525 * rproc_put() - release rproc reference
2526 * @rproc: the remote processor handle
2527 *
2528 * This function decrements the rproc dev refcount.
2529 *
2530 * If no one holds any reference to rproc anymore, then its refcount would
2531 * now drop to zero, and it would be freed.
2532 */
2533void rproc_put(struct rproc *rproc)
2534{
2535	module_put(rproc->dev.parent->driver->owner);
 
 
 
 
2536	put_device(&rproc->dev);
2537}
2538EXPORT_SYMBOL(rproc_put);
2539
2540/**
2541 * rproc_del() - unregister a remote processor
2542 * @rproc: rproc handle to unregister
2543 *
2544 * This function should be called when the platform specific rproc
2545 * implementation decides to remove the rproc device. it should
2546 * _only_ be called if a previous invocation of rproc_add()
2547 * has completed successfully.
2548 *
2549 * After rproc_del() returns, @rproc isn't freed yet, because
2550 * of the outstanding reference created by rproc_alloc. To decrement that
2551 * one last refcount, one still needs to call rproc_free().
2552 *
2553 * Return: 0 on success and -EINVAL if @rproc isn't valid
2554 */
2555int rproc_del(struct rproc *rproc)
2556{
2557	if (!rproc)
2558		return -EINVAL;
2559
2560	/* TODO: make sure this works with rproc->power > 1 */
2561	rproc_shutdown(rproc);
2562
2563	mutex_lock(&rproc->lock);
2564	rproc->state = RPROC_DELETED;
2565	mutex_unlock(&rproc->lock);
2566
2567	rproc_delete_debug_dir(rproc);
2568
2569	/* the rproc is downref'ed as soon as it's removed from the klist */
2570	mutex_lock(&rproc_list_mutex);
2571	list_del_rcu(&rproc->node);
2572	mutex_unlock(&rproc_list_mutex);
2573
2574	/* Ensure that no readers of rproc_list are still active */
2575	synchronize_rcu();
2576
2577	device_del(&rproc->dev);
2578	rproc_char_device_remove(rproc);
2579
2580	return 0;
2581}
2582EXPORT_SYMBOL(rproc_del);
2583
2584static void devm_rproc_free(struct device *dev, void *res)
2585{
2586	rproc_free(*(struct rproc **)res);
2587}
2588
2589/**
2590 * devm_rproc_alloc() - resource managed rproc_alloc()
2591 * @dev: the underlying device
2592 * @name: name of this remote processor
2593 * @ops: platform-specific handlers (mainly start/stop)
2594 * @firmware: name of firmware file to load, can be NULL
2595 * @len: length of private data needed by the rproc driver (in bytes)
2596 *
2597 * This function performs like rproc_alloc() but the acquired rproc device will
2598 * automatically be released on driver detach.
2599 *
2600 * Return: new rproc instance, or NULL on failure
2601 */
2602struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2603			       const struct rproc_ops *ops,
2604			       const char *firmware, int len)
2605{
2606	struct rproc **ptr, *rproc;
2607
2608	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2609	if (!ptr)
2610		return NULL;
2611
2612	rproc = rproc_alloc(dev, name, ops, firmware, len);
2613	if (rproc) {
2614		*ptr = rproc;
2615		devres_add(dev, ptr);
2616	} else {
2617		devres_free(ptr);
2618	}
2619
2620	return rproc;
2621}
2622EXPORT_SYMBOL(devm_rproc_alloc);
2623
2624/**
2625 * rproc_add_subdev() - add a subdevice to a remoteproc
2626 * @rproc: rproc handle to add the subdevice to
2627 * @subdev: subdev handle to register
2628 *
2629 * Caller is responsible for populating optional subdevice function pointers.
2630 */
2631void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2632{
2633	list_add_tail(&subdev->node, &rproc->subdevs);
2634}
2635EXPORT_SYMBOL(rproc_add_subdev);
2636
2637/**
2638 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2639 * @rproc: rproc handle to remove the subdevice from
2640 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2641 */
2642void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2643{
2644	list_del(&subdev->node);
2645}
2646EXPORT_SYMBOL(rproc_remove_subdev);
2647
2648/**
2649 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2650 * @dev:	child device to find ancestor of
2651 *
2652 * Return: the ancestor rproc instance, or NULL if not found
2653 */
2654struct rproc *rproc_get_by_child(struct device *dev)
2655{
2656	for (dev = dev->parent; dev; dev = dev->parent) {
2657		if (dev->type == &rproc_type)
2658			return dev->driver_data;
2659	}
2660
2661	return NULL;
2662}
2663EXPORT_SYMBOL(rproc_get_by_child);
2664
2665/**
2666 * rproc_report_crash() - rproc crash reporter function
2667 * @rproc: remote processor
2668 * @type: crash type
2669 *
2670 * This function must be called every time a crash is detected by the low-level
2671 * drivers implementing a specific remoteproc. This should not be called from a
2672 * non-remoteproc driver.
2673 *
2674 * This function can be called from atomic/interrupt context.
2675 */
2676void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2677{
2678	if (!rproc) {
2679		pr_err("NULL rproc pointer\n");
2680		return;
2681	}
2682
2683	/* Prevent suspend while the remoteproc is being recovered */
2684	pm_stay_awake(rproc->dev.parent);
2685
2686	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2687		rproc->name, rproc_crash_to_string(type));
2688
2689	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2690}
2691EXPORT_SYMBOL(rproc_report_crash);
2692
2693static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2694			       void *ptr)
2695{
2696	unsigned int longest = 0;
2697	struct rproc *rproc;
2698	unsigned int d;
2699
2700	rcu_read_lock();
2701	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2702		if (!rproc->ops->panic)
2703			continue;
2704
2705		if (rproc->state != RPROC_RUNNING &&
2706		    rproc->state != RPROC_ATTACHED)
2707			continue;
2708
2709		d = rproc->ops->panic(rproc);
2710		longest = max(longest, d);
2711	}
2712	rcu_read_unlock();
2713
2714	/*
2715	 * Delay for the longest requested duration before returning. This can
2716	 * be used by the remoteproc drivers to give the remote processor time
2717	 * to perform any requested operations (such as flush caches), when
2718	 * it's not possible to signal the Linux side due to the panic.
2719	 */
2720	mdelay(longest);
2721
2722	return NOTIFY_DONE;
2723}
2724
2725static void __init rproc_init_panic(void)
2726{
2727	rproc_panic_nb.notifier_call = rproc_panic_handler;
2728	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2729}
2730
2731static void __exit rproc_exit_panic(void)
2732{
2733	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2734}
2735
2736static int __init remoteproc_init(void)
2737{
2738	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2739						WQ_UNBOUND | WQ_FREEZABLE, 0);
2740	if (!rproc_recovery_wq) {
2741		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2742		return -ENOMEM;
2743	}
2744
2745	rproc_init_sysfs();
2746	rproc_init_debugfs();
2747	rproc_init_cdev();
2748	rproc_init_panic();
2749
2750	return 0;
2751}
2752subsys_initcall(remoteproc_init);
2753
2754static void __exit remoteproc_exit(void)
2755{
2756	ida_destroy(&rproc_dev_index);
2757
2758	if (!rproc_recovery_wq)
2759		return;
2760
2761	rproc_exit_panic();
2762	rproc_exit_debugfs();
2763	rproc_exit_sysfs();
2764	destroy_workqueue(rproc_recovery_wq);
2765}
2766module_exit(remoteproc_exit);
2767
2768MODULE_LICENSE("GPL v2");
2769MODULE_DESCRIPTION("Generic Remote Processor Framework");