Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Routines to identify caches on Intel CPU.
4 *
5 * Changes:
6 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
7 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
8 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
9 */
10
11#include <linux/slab.h>
12#include <linux/cacheinfo.h>
13#include <linux/cpu.h>
14#include <linux/cpuhotplug.h>
15#include <linux/sched.h>
16#include <linux/capability.h>
17#include <linux/sysfs.h>
18#include <linux/pci.h>
19#include <linux/stop_machine.h>
20
21#include <asm/cpufeature.h>
22#include <asm/cacheinfo.h>
23#include <asm/amd_nb.h>
24#include <asm/smp.h>
25#include <asm/mtrr.h>
26#include <asm/tlbflush.h>
27
28#include "cpu.h"
29
30#define LVL_1_INST 1
31#define LVL_1_DATA 2
32#define LVL_2 3
33#define LVL_3 4
34#define LVL_TRACE 5
35
36/* Shared last level cache maps */
37DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
38
39/* Shared L2 cache maps */
40DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
41
42static cpumask_var_t cpu_cacheinfo_mask;
43
44/* Kernel controls MTRR and/or PAT MSRs. */
45unsigned int memory_caching_control __ro_after_init;
46
47struct _cache_table {
48 unsigned char descriptor;
49 char cache_type;
50 short size;
51};
52
53#define MB(x) ((x) * 1024)
54
55/* All the cache descriptor types we care about (no TLB or
56 trace cache entries) */
57
58static const struct _cache_table cache_table[] =
59{
60 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
61 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
62 { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
63 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
64 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
65 { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
66 { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */
67 { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
68 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
69 { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
70 { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
71 { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
72 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
73 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
74 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
75 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
76 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
77 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
78 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
79 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
80 { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
81 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
82 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
83 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
84 { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */
85 { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */
86 { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */
87 { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */
88 { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */
89 { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
90 { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */
91 { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
92 { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */
93 { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */
94 { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */
95 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
96 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
97 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
98 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
99 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
100 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
101 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
102 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
103 { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */
104 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
105 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
106 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
107 { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
108 { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */
109 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
110 { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */
111 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
112 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
113 { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */
114 { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */
115 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
116 { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */
117 { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
118 { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */
119 { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */
120 { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */
121 { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */
122 { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
123 { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */
124 { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
125 { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */
126 { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */
127 { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
128 { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
129 { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */
130 { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */
131 { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */
132 { 0x00, 0, 0}
133};
134
135
136enum _cache_type {
137 CTYPE_NULL = 0,
138 CTYPE_DATA = 1,
139 CTYPE_INST = 2,
140 CTYPE_UNIFIED = 3
141};
142
143union _cpuid4_leaf_eax {
144 struct {
145 enum _cache_type type:5;
146 unsigned int level:3;
147 unsigned int is_self_initializing:1;
148 unsigned int is_fully_associative:1;
149 unsigned int reserved:4;
150 unsigned int num_threads_sharing:12;
151 unsigned int num_cores_on_die:6;
152 } split;
153 u32 full;
154};
155
156union _cpuid4_leaf_ebx {
157 struct {
158 unsigned int coherency_line_size:12;
159 unsigned int physical_line_partition:10;
160 unsigned int ways_of_associativity:10;
161 } split;
162 u32 full;
163};
164
165union _cpuid4_leaf_ecx {
166 struct {
167 unsigned int number_of_sets:32;
168 } split;
169 u32 full;
170};
171
172struct _cpuid4_info_regs {
173 union _cpuid4_leaf_eax eax;
174 union _cpuid4_leaf_ebx ebx;
175 union _cpuid4_leaf_ecx ecx;
176 unsigned int id;
177 unsigned long size;
178 struct amd_northbridge *nb;
179};
180
181/* AMD doesn't have CPUID4. Emulate it here to report the same
182 information to the user. This makes some assumptions about the machine:
183 L2 not shared, no SMT etc. that is currently true on AMD CPUs.
184
185 In theory the TLBs could be reported as fake type (they are in "dummy").
186 Maybe later */
187union l1_cache {
188 struct {
189 unsigned line_size:8;
190 unsigned lines_per_tag:8;
191 unsigned assoc:8;
192 unsigned size_in_kb:8;
193 };
194 unsigned val;
195};
196
197union l2_cache {
198 struct {
199 unsigned line_size:8;
200 unsigned lines_per_tag:4;
201 unsigned assoc:4;
202 unsigned size_in_kb:16;
203 };
204 unsigned val;
205};
206
207union l3_cache {
208 struct {
209 unsigned line_size:8;
210 unsigned lines_per_tag:4;
211 unsigned assoc:4;
212 unsigned res:2;
213 unsigned size_encoded:14;
214 };
215 unsigned val;
216};
217
218static const unsigned short assocs[] = {
219 [1] = 1,
220 [2] = 2,
221 [4] = 4,
222 [6] = 8,
223 [8] = 16,
224 [0xa] = 32,
225 [0xb] = 48,
226 [0xc] = 64,
227 [0xd] = 96,
228 [0xe] = 128,
229 [0xf] = 0xffff /* fully associative - no way to show this currently */
230};
231
232static const unsigned char levels[] = { 1, 1, 2, 3 };
233static const unsigned char types[] = { 1, 2, 3, 3 };
234
235static const enum cache_type cache_type_map[] = {
236 [CTYPE_NULL] = CACHE_TYPE_NOCACHE,
237 [CTYPE_DATA] = CACHE_TYPE_DATA,
238 [CTYPE_INST] = CACHE_TYPE_INST,
239 [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
240};
241
242static void
243amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
244 union _cpuid4_leaf_ebx *ebx,
245 union _cpuid4_leaf_ecx *ecx)
246{
247 unsigned dummy;
248 unsigned line_size, lines_per_tag, assoc, size_in_kb;
249 union l1_cache l1i, l1d;
250 union l2_cache l2;
251 union l3_cache l3;
252 union l1_cache *l1 = &l1d;
253
254 eax->full = 0;
255 ebx->full = 0;
256 ecx->full = 0;
257
258 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
259 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
260
261 switch (leaf) {
262 case 1:
263 l1 = &l1i;
264 fallthrough;
265 case 0:
266 if (!l1->val)
267 return;
268 assoc = assocs[l1->assoc];
269 line_size = l1->line_size;
270 lines_per_tag = l1->lines_per_tag;
271 size_in_kb = l1->size_in_kb;
272 break;
273 case 2:
274 if (!l2.val)
275 return;
276 assoc = assocs[l2.assoc];
277 line_size = l2.line_size;
278 lines_per_tag = l2.lines_per_tag;
279 /* cpu_data has errata corrections for K7 applied */
280 size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
281 break;
282 case 3:
283 if (!l3.val)
284 return;
285 assoc = assocs[l3.assoc];
286 line_size = l3.line_size;
287 lines_per_tag = l3.lines_per_tag;
288 size_in_kb = l3.size_encoded * 512;
289 if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
290 size_in_kb = size_in_kb >> 1;
291 assoc = assoc >> 1;
292 }
293 break;
294 default:
295 return;
296 }
297
298 eax->split.is_self_initializing = 1;
299 eax->split.type = types[leaf];
300 eax->split.level = levels[leaf];
301 eax->split.num_threads_sharing = 0;
302 eax->split.num_cores_on_die = topology_num_cores_per_package();
303
304
305 if (assoc == 0xffff)
306 eax->split.is_fully_associative = 1;
307 ebx->split.coherency_line_size = line_size - 1;
308 ebx->split.ways_of_associativity = assoc - 1;
309 ebx->split.physical_line_partition = lines_per_tag - 1;
310 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
311 (ebx->split.ways_of_associativity + 1) - 1;
312}
313
314#if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
315
316/*
317 * L3 cache descriptors
318 */
319static void amd_calc_l3_indices(struct amd_northbridge *nb)
320{
321 struct amd_l3_cache *l3 = &nb->l3_cache;
322 unsigned int sc0, sc1, sc2, sc3;
323 u32 val = 0;
324
325 pci_read_config_dword(nb->misc, 0x1C4, &val);
326
327 /* calculate subcache sizes */
328 l3->subcaches[0] = sc0 = !(val & BIT(0));
329 l3->subcaches[1] = sc1 = !(val & BIT(4));
330
331 if (boot_cpu_data.x86 == 0x15) {
332 l3->subcaches[0] = sc0 += !(val & BIT(1));
333 l3->subcaches[1] = sc1 += !(val & BIT(5));
334 }
335
336 l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9));
337 l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
338
339 l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
340}
341
342/*
343 * check whether a slot used for disabling an L3 index is occupied.
344 * @l3: L3 cache descriptor
345 * @slot: slot number (0..1)
346 *
347 * @returns: the disabled index if used or negative value if slot free.
348 */
349static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
350{
351 unsigned int reg = 0;
352
353 pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®);
354
355 /* check whether this slot is activated already */
356 if (reg & (3UL << 30))
357 return reg & 0xfff;
358
359 return -1;
360}
361
362static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
363 unsigned int slot)
364{
365 int index;
366 struct amd_northbridge *nb = this_leaf->priv;
367
368 index = amd_get_l3_disable_slot(nb, slot);
369 if (index >= 0)
370 return sprintf(buf, "%d\n", index);
371
372 return sprintf(buf, "FREE\n");
373}
374
375#define SHOW_CACHE_DISABLE(slot) \
376static ssize_t \
377cache_disable_##slot##_show(struct device *dev, \
378 struct device_attribute *attr, char *buf) \
379{ \
380 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
381 return show_cache_disable(this_leaf, buf, slot); \
382}
383SHOW_CACHE_DISABLE(0)
384SHOW_CACHE_DISABLE(1)
385
386static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
387 unsigned slot, unsigned long idx)
388{
389 int i;
390
391 idx |= BIT(30);
392
393 /*
394 * disable index in all 4 subcaches
395 */
396 for (i = 0; i < 4; i++) {
397 u32 reg = idx | (i << 20);
398
399 if (!nb->l3_cache.subcaches[i])
400 continue;
401
402 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
403
404 /*
405 * We need to WBINVD on a core on the node containing the L3
406 * cache which indices we disable therefore a simple wbinvd()
407 * is not sufficient.
408 */
409 wbinvd_on_cpu(cpu);
410
411 reg |= BIT(31);
412 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
413 }
414}
415
416/*
417 * disable a L3 cache index by using a disable-slot
418 *
419 * @l3: L3 cache descriptor
420 * @cpu: A CPU on the node containing the L3 cache
421 * @slot: slot number (0..1)
422 * @index: index to disable
423 *
424 * @return: 0 on success, error status on failure
425 */
426static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
427 unsigned slot, unsigned long index)
428{
429 int ret = 0;
430
431 /* check if @slot is already used or the index is already disabled */
432 ret = amd_get_l3_disable_slot(nb, slot);
433 if (ret >= 0)
434 return -EEXIST;
435
436 if (index > nb->l3_cache.indices)
437 return -EINVAL;
438
439 /* check whether the other slot has disabled the same index already */
440 if (index == amd_get_l3_disable_slot(nb, !slot))
441 return -EEXIST;
442
443 amd_l3_disable_index(nb, cpu, slot, index);
444
445 return 0;
446}
447
448static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
449 const char *buf, size_t count,
450 unsigned int slot)
451{
452 unsigned long val = 0;
453 int cpu, err = 0;
454 struct amd_northbridge *nb = this_leaf->priv;
455
456 if (!capable(CAP_SYS_ADMIN))
457 return -EPERM;
458
459 cpu = cpumask_first(&this_leaf->shared_cpu_map);
460
461 if (kstrtoul(buf, 10, &val) < 0)
462 return -EINVAL;
463
464 err = amd_set_l3_disable_slot(nb, cpu, slot, val);
465 if (err) {
466 if (err == -EEXIST)
467 pr_warn("L3 slot %d in use/index already disabled!\n",
468 slot);
469 return err;
470 }
471 return count;
472}
473
474#define STORE_CACHE_DISABLE(slot) \
475static ssize_t \
476cache_disable_##slot##_store(struct device *dev, \
477 struct device_attribute *attr, \
478 const char *buf, size_t count) \
479{ \
480 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
481 return store_cache_disable(this_leaf, buf, count, slot); \
482}
483STORE_CACHE_DISABLE(0)
484STORE_CACHE_DISABLE(1)
485
486static ssize_t subcaches_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
488{
489 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
490 int cpu = cpumask_first(&this_leaf->shared_cpu_map);
491
492 return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
493}
494
495static ssize_t subcaches_store(struct device *dev,
496 struct device_attribute *attr,
497 const char *buf, size_t count)
498{
499 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
500 int cpu = cpumask_first(&this_leaf->shared_cpu_map);
501 unsigned long val;
502
503 if (!capable(CAP_SYS_ADMIN))
504 return -EPERM;
505
506 if (kstrtoul(buf, 16, &val) < 0)
507 return -EINVAL;
508
509 if (amd_set_subcaches(cpu, val))
510 return -EINVAL;
511
512 return count;
513}
514
515static DEVICE_ATTR_RW(cache_disable_0);
516static DEVICE_ATTR_RW(cache_disable_1);
517static DEVICE_ATTR_RW(subcaches);
518
519static umode_t
520cache_private_attrs_is_visible(struct kobject *kobj,
521 struct attribute *attr, int unused)
522{
523 struct device *dev = kobj_to_dev(kobj);
524 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
525 umode_t mode = attr->mode;
526
527 if (!this_leaf->priv)
528 return 0;
529
530 if ((attr == &dev_attr_subcaches.attr) &&
531 amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
532 return mode;
533
534 if ((attr == &dev_attr_cache_disable_0.attr ||
535 attr == &dev_attr_cache_disable_1.attr) &&
536 amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
537 return mode;
538
539 return 0;
540}
541
542static struct attribute_group cache_private_group = {
543 .is_visible = cache_private_attrs_is_visible,
544};
545
546static void init_amd_l3_attrs(void)
547{
548 int n = 1;
549 static struct attribute **amd_l3_attrs;
550
551 if (amd_l3_attrs) /* already initialized */
552 return;
553
554 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
555 n += 2;
556 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
557 n += 1;
558
559 amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
560 if (!amd_l3_attrs)
561 return;
562
563 n = 0;
564 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
565 amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
566 amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
567 }
568 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
569 amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
570
571 cache_private_group.attrs = amd_l3_attrs;
572}
573
574const struct attribute_group *
575cache_get_priv_group(struct cacheinfo *this_leaf)
576{
577 struct amd_northbridge *nb = this_leaf->priv;
578
579 if (this_leaf->level < 3 || !nb)
580 return NULL;
581
582 if (nb && nb->l3_cache.indices)
583 init_amd_l3_attrs();
584
585 return &cache_private_group;
586}
587
588static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
589{
590 int node;
591
592 /* only for L3, and not in virtualized environments */
593 if (index < 3)
594 return;
595
596 node = topology_amd_node_id(smp_processor_id());
597 this_leaf->nb = node_to_amd_nb(node);
598 if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
599 amd_calc_l3_indices(this_leaf->nb);
600}
601#else
602#define amd_init_l3_cache(x, y)
603#endif /* CONFIG_AMD_NB && CONFIG_SYSFS */
604
605static int
606cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
607{
608 union _cpuid4_leaf_eax eax;
609 union _cpuid4_leaf_ebx ebx;
610 union _cpuid4_leaf_ecx ecx;
611 unsigned edx;
612
613 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
614 if (boot_cpu_has(X86_FEATURE_TOPOEXT))
615 cpuid_count(0x8000001d, index, &eax.full,
616 &ebx.full, &ecx.full, &edx);
617 else
618 amd_cpuid4(index, &eax, &ebx, &ecx);
619 amd_init_l3_cache(this_leaf, index);
620 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
621 cpuid_count(0x8000001d, index, &eax.full,
622 &ebx.full, &ecx.full, &edx);
623 amd_init_l3_cache(this_leaf, index);
624 } else {
625 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
626 }
627
628 if (eax.split.type == CTYPE_NULL)
629 return -EIO; /* better error ? */
630
631 this_leaf->eax = eax;
632 this_leaf->ebx = ebx;
633 this_leaf->ecx = ecx;
634 this_leaf->size = (ecx.split.number_of_sets + 1) *
635 (ebx.split.coherency_line_size + 1) *
636 (ebx.split.physical_line_partition + 1) *
637 (ebx.split.ways_of_associativity + 1);
638 return 0;
639}
640
641static int find_num_cache_leaves(struct cpuinfo_x86 *c)
642{
643 unsigned int eax, ebx, ecx, edx, op;
644 union _cpuid4_leaf_eax cache_eax;
645 int i = -1;
646
647 if (c->x86_vendor == X86_VENDOR_AMD ||
648 c->x86_vendor == X86_VENDOR_HYGON)
649 op = 0x8000001d;
650 else
651 op = 4;
652
653 do {
654 ++i;
655 /* Do cpuid(op) loop to find out num_cache_leaves */
656 cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
657 cache_eax.full = eax;
658 } while (cache_eax.split.type != CTYPE_NULL);
659 return i;
660}
661
662void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, u16 die_id)
663{
664 /*
665 * We may have multiple LLCs if L3 caches exist, so check if we
666 * have an L3 cache by looking at the L3 cache CPUID leaf.
667 */
668 if (!cpuid_edx(0x80000006))
669 return;
670
671 if (c->x86 < 0x17) {
672 /* LLC is at the node level. */
673 c->topo.llc_id = die_id;
674 } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) {
675 /*
676 * LLC is at the core complex level.
677 * Core complex ID is ApicId[3] for these processors.
678 */
679 c->topo.llc_id = c->topo.apicid >> 3;
680 } else {
681 /*
682 * LLC ID is calculated from the number of threads sharing the
683 * cache.
684 * */
685 u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
686 u32 llc_index = find_num_cache_leaves(c) - 1;
687
688 cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
689 if (eax)
690 num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
691
692 if (num_sharing_cache) {
693 int bits = get_count_order(num_sharing_cache);
694
695 c->topo.llc_id = c->topo.apicid >> bits;
696 }
697 }
698}
699
700void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c)
701{
702 /*
703 * We may have multiple LLCs if L3 caches exist, so check if we
704 * have an L3 cache by looking at the L3 cache CPUID leaf.
705 */
706 if (!cpuid_edx(0x80000006))
707 return;
708
709 /*
710 * LLC is at the core complex level.
711 * Core complex ID is ApicId[3] for these processors.
712 */
713 c->topo.llc_id = c->topo.apicid >> 3;
714}
715
716void init_amd_cacheinfo(struct cpuinfo_x86 *c)
717{
718 struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
719
720 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
721 ci->num_leaves = find_num_cache_leaves(c);
722 } else if (c->extended_cpuid_level >= 0x80000006) {
723 if (cpuid_edx(0x80000006) & 0xf000)
724 ci->num_leaves = 4;
725 else
726 ci->num_leaves = 3;
727 }
728}
729
730void init_hygon_cacheinfo(struct cpuinfo_x86 *c)
731{
732 struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
733
734 ci->num_leaves = find_num_cache_leaves(c);
735}
736
737void init_intel_cacheinfo(struct cpuinfo_x86 *c)
738{
739 /* Cache sizes */
740 unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0;
741 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
742 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
743 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
744 struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
745
746 if (c->cpuid_level > 3) {
747 /*
748 * There should be at least one leaf. A non-zero value means
749 * that the number of leaves has been initialized.
750 */
751 if (!ci->num_leaves)
752 ci->num_leaves = find_num_cache_leaves(c);
753
754 /*
755 * Whenever possible use cpuid(4), deterministic cache
756 * parameters cpuid leaf to find the cache details
757 */
758 for (i = 0; i < ci->num_leaves; i++) {
759 struct _cpuid4_info_regs this_leaf = {};
760 int retval;
761
762 retval = cpuid4_cache_lookup_regs(i, &this_leaf);
763 if (retval < 0)
764 continue;
765
766 switch (this_leaf.eax.split.level) {
767 case 1:
768 if (this_leaf.eax.split.type == CTYPE_DATA)
769 new_l1d = this_leaf.size/1024;
770 else if (this_leaf.eax.split.type == CTYPE_INST)
771 new_l1i = this_leaf.size/1024;
772 break;
773 case 2:
774 new_l2 = this_leaf.size/1024;
775 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
776 index_msb = get_count_order(num_threads_sharing);
777 l2_id = c->topo.apicid & ~((1 << index_msb) - 1);
778 break;
779 case 3:
780 new_l3 = this_leaf.size/1024;
781 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
782 index_msb = get_count_order(num_threads_sharing);
783 l3_id = c->topo.apicid & ~((1 << index_msb) - 1);
784 break;
785 default:
786 break;
787 }
788 }
789 }
790 /*
791 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
792 * trace cache
793 */
794 if ((!ci->num_leaves || c->x86 == 15) && c->cpuid_level > 1) {
795 /* supports eax=2 call */
796 int j, n;
797 unsigned int regs[4];
798 unsigned char *dp = (unsigned char *)regs;
799 int only_trace = 0;
800
801 if (ci->num_leaves && c->x86 == 15)
802 only_trace = 1;
803
804 /* Number of times to iterate */
805 n = cpuid_eax(2) & 0xFF;
806
807 for (i = 0 ; i < n ; i++) {
808 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
809
810 /* If bit 31 is set, this is an unknown format */
811 for (j = 0 ; j < 4 ; j++)
812 if (regs[j] & (1 << 31))
813 regs[j] = 0;
814
815 /* Byte 0 is level count, not a descriptor */
816 for (j = 1 ; j < 16 ; j++) {
817 unsigned char des = dp[j];
818 unsigned char k = 0;
819
820 /* look up this descriptor in the table */
821 while (cache_table[k].descriptor != 0) {
822 if (cache_table[k].descriptor == des) {
823 if (only_trace && cache_table[k].cache_type != LVL_TRACE)
824 break;
825 switch (cache_table[k].cache_type) {
826 case LVL_1_INST:
827 l1i += cache_table[k].size;
828 break;
829 case LVL_1_DATA:
830 l1d += cache_table[k].size;
831 break;
832 case LVL_2:
833 l2 += cache_table[k].size;
834 break;
835 case LVL_3:
836 l3 += cache_table[k].size;
837 break;
838 }
839
840 break;
841 }
842
843 k++;
844 }
845 }
846 }
847 }
848
849 if (new_l1d)
850 l1d = new_l1d;
851
852 if (new_l1i)
853 l1i = new_l1i;
854
855 if (new_l2) {
856 l2 = new_l2;
857 c->topo.llc_id = l2_id;
858 c->topo.l2c_id = l2_id;
859 }
860
861 if (new_l3) {
862 l3 = new_l3;
863 c->topo.llc_id = l3_id;
864 }
865
866 /*
867 * If llc_id is not yet set, this means cpuid_level < 4 which in
868 * turns means that the only possibility is SMT (as indicated in
869 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know
870 * that SMT shares all caches, we can unconditionally set cpu_llc_id to
871 * c->topo.pkg_id.
872 */
873 if (c->topo.llc_id == BAD_APICID)
874 c->topo.llc_id = c->topo.pkg_id;
875
876 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
877
878 if (!l2)
879 cpu_detect_cache_sizes(c);
880}
881
882static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
883 struct _cpuid4_info_regs *base)
884{
885 struct cpu_cacheinfo *this_cpu_ci;
886 struct cacheinfo *this_leaf;
887 int i, sibling;
888
889 /*
890 * For L3, always use the pre-calculated cpu_llc_shared_mask
891 * to derive shared_cpu_map.
892 */
893 if (index == 3) {
894 for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
895 this_cpu_ci = get_cpu_cacheinfo(i);
896 if (!this_cpu_ci->info_list)
897 continue;
898 this_leaf = this_cpu_ci->info_list + index;
899 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
900 if (!cpu_online(sibling))
901 continue;
902 cpumask_set_cpu(sibling,
903 &this_leaf->shared_cpu_map);
904 }
905 }
906 } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
907 unsigned int apicid, nshared, first, last;
908
909 nshared = base->eax.split.num_threads_sharing + 1;
910 apicid = cpu_data(cpu).topo.apicid;
911 first = apicid - (apicid % nshared);
912 last = first + nshared - 1;
913
914 for_each_online_cpu(i) {
915 this_cpu_ci = get_cpu_cacheinfo(i);
916 if (!this_cpu_ci->info_list)
917 continue;
918
919 apicid = cpu_data(i).topo.apicid;
920 if ((apicid < first) || (apicid > last))
921 continue;
922
923 this_leaf = this_cpu_ci->info_list + index;
924
925 for_each_online_cpu(sibling) {
926 apicid = cpu_data(sibling).topo.apicid;
927 if ((apicid < first) || (apicid > last))
928 continue;
929 cpumask_set_cpu(sibling,
930 &this_leaf->shared_cpu_map);
931 }
932 }
933 } else
934 return 0;
935
936 return 1;
937}
938
939static void __cache_cpumap_setup(unsigned int cpu, int index,
940 struct _cpuid4_info_regs *base)
941{
942 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
943 struct cacheinfo *this_leaf, *sibling_leaf;
944 unsigned long num_threads_sharing;
945 int index_msb, i;
946 struct cpuinfo_x86 *c = &cpu_data(cpu);
947
948 if (c->x86_vendor == X86_VENDOR_AMD ||
949 c->x86_vendor == X86_VENDOR_HYGON) {
950 if (__cache_amd_cpumap_setup(cpu, index, base))
951 return;
952 }
953
954 this_leaf = this_cpu_ci->info_list + index;
955 num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
956
957 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
958 if (num_threads_sharing == 1)
959 return;
960
961 index_msb = get_count_order(num_threads_sharing);
962
963 for_each_online_cpu(i)
964 if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) {
965 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
966
967 if (i == cpu || !sib_cpu_ci->info_list)
968 continue;/* skip if itself or no cacheinfo */
969 sibling_leaf = sib_cpu_ci->info_list + index;
970 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
971 cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
972 }
973}
974
975static void ci_leaf_init(struct cacheinfo *this_leaf,
976 struct _cpuid4_info_regs *base)
977{
978 this_leaf->id = base->id;
979 this_leaf->attributes = CACHE_ID;
980 this_leaf->level = base->eax.split.level;
981 this_leaf->type = cache_type_map[base->eax.split.type];
982 this_leaf->coherency_line_size =
983 base->ebx.split.coherency_line_size + 1;
984 this_leaf->ways_of_associativity =
985 base->ebx.split.ways_of_associativity + 1;
986 this_leaf->size = base->size;
987 this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
988 this_leaf->physical_line_partition =
989 base->ebx.split.physical_line_partition + 1;
990 this_leaf->priv = base->nb;
991}
992
993int init_cache_level(unsigned int cpu)
994{
995 struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);
996
997 /* There should be at least one leaf. */
998 if (!ci->num_leaves)
999 return -ENOENT;
1000
1001 return 0;
1002}
1003
1004/*
1005 * The max shared threads number comes from CPUID.4:EAX[25-14] with input
1006 * ECX as cache index. Then right shift apicid by the number's order to get
1007 * cache id for this cache node.
1008 */
1009static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs)
1010{
1011 struct cpuinfo_x86 *c = &cpu_data(cpu);
1012 unsigned long num_threads_sharing;
1013 int index_msb;
1014
1015 num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing;
1016 index_msb = get_count_order(num_threads_sharing);
1017 id4_regs->id = c->topo.apicid >> index_msb;
1018}
1019
1020int populate_cache_leaves(unsigned int cpu)
1021{
1022 unsigned int idx, ret;
1023 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
1024 struct cacheinfo *this_leaf = this_cpu_ci->info_list;
1025 struct _cpuid4_info_regs id4_regs = {};
1026
1027 for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
1028 ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
1029 if (ret)
1030 return ret;
1031 get_cache_id(cpu, &id4_regs);
1032 ci_leaf_init(this_leaf++, &id4_regs);
1033 __cache_cpumap_setup(cpu, idx, &id4_regs);
1034 }
1035 this_cpu_ci->cpu_map_populated = true;
1036
1037 return 0;
1038}
1039
1040/*
1041 * Disable and enable caches. Needed for changing MTRRs and the PAT MSR.
1042 *
1043 * Since we are disabling the cache don't allow any interrupts,
1044 * they would run extremely slow and would only increase the pain.
1045 *
1046 * The caller must ensure that local interrupts are disabled and
1047 * are reenabled after cache_enable() has been called.
1048 */
1049static unsigned long saved_cr4;
1050static DEFINE_RAW_SPINLOCK(cache_disable_lock);
1051
1052void cache_disable(void) __acquires(cache_disable_lock)
1053{
1054 unsigned long cr0;
1055
1056 /*
1057 * Note that this is not ideal
1058 * since the cache is only flushed/disabled for this CPU while the
1059 * MTRRs are changed, but changing this requires more invasive
1060 * changes to the way the kernel boots
1061 */
1062
1063 raw_spin_lock(&cache_disable_lock);
1064
1065 /* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
1066 cr0 = read_cr0() | X86_CR0_CD;
1067 write_cr0(cr0);
1068
1069 /*
1070 * Cache flushing is the most time-consuming step when programming
1071 * the MTRRs. Fortunately, as per the Intel Software Development
1072 * Manual, we can skip it if the processor supports cache self-
1073 * snooping.
1074 */
1075 if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
1076 wbinvd();
1077
1078 /* Save value of CR4 and clear Page Global Enable (bit 7) */
1079 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1080 saved_cr4 = __read_cr4();
1081 __write_cr4(saved_cr4 & ~X86_CR4_PGE);
1082 }
1083
1084 /* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
1085 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1086 flush_tlb_local();
1087
1088 if (cpu_feature_enabled(X86_FEATURE_MTRR))
1089 mtrr_disable();
1090
1091 /* Again, only flush caches if we have to. */
1092 if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
1093 wbinvd();
1094}
1095
1096void cache_enable(void) __releases(cache_disable_lock)
1097{
1098 /* Flush TLBs (no need to flush caches - they are disabled) */
1099 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1100 flush_tlb_local();
1101
1102 if (cpu_feature_enabled(X86_FEATURE_MTRR))
1103 mtrr_enable();
1104
1105 /* Enable caches */
1106 write_cr0(read_cr0() & ~X86_CR0_CD);
1107
1108 /* Restore value of CR4 */
1109 if (cpu_feature_enabled(X86_FEATURE_PGE))
1110 __write_cr4(saved_cr4);
1111
1112 raw_spin_unlock(&cache_disable_lock);
1113}
1114
1115static void cache_cpu_init(void)
1116{
1117 unsigned long flags;
1118
1119 local_irq_save(flags);
1120
1121 if (memory_caching_control & CACHE_MTRR) {
1122 cache_disable();
1123 mtrr_generic_set_state();
1124 cache_enable();
1125 }
1126
1127 if (memory_caching_control & CACHE_PAT)
1128 pat_cpu_init();
1129
1130 local_irq_restore(flags);
1131}
1132
1133static bool cache_aps_delayed_init = true;
1134
1135void set_cache_aps_delayed_init(bool val)
1136{
1137 cache_aps_delayed_init = val;
1138}
1139
1140bool get_cache_aps_delayed_init(void)
1141{
1142 return cache_aps_delayed_init;
1143}
1144
1145static int cache_rendezvous_handler(void *unused)
1146{
1147 if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id()))
1148 cache_cpu_init();
1149
1150 return 0;
1151}
1152
1153void __init cache_bp_init(void)
1154{
1155 mtrr_bp_init();
1156 pat_bp_init();
1157
1158 if (memory_caching_control)
1159 cache_cpu_init();
1160}
1161
1162void cache_bp_restore(void)
1163{
1164 if (memory_caching_control)
1165 cache_cpu_init();
1166}
1167
1168static int cache_ap_online(unsigned int cpu)
1169{
1170 cpumask_set_cpu(cpu, cpu_cacheinfo_mask);
1171
1172 if (!memory_caching_control || get_cache_aps_delayed_init())
1173 return 0;
1174
1175 /*
1176 * Ideally we should hold mtrr_mutex here to avoid MTRR entries
1177 * changed, but this routine will be called in CPU boot time,
1178 * holding the lock breaks it.
1179 *
1180 * This routine is called in two cases:
1181 *
1182 * 1. very early time of software resume, when there absolutely
1183 * isn't MTRR entry changes;
1184 *
1185 * 2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug
1186 * lock to prevent MTRR entry changes
1187 */
1188 stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL,
1189 cpu_cacheinfo_mask);
1190
1191 return 0;
1192}
1193
1194static int cache_ap_offline(unsigned int cpu)
1195{
1196 cpumask_clear_cpu(cpu, cpu_cacheinfo_mask);
1197 return 0;
1198}
1199
1200/*
1201 * Delayed cache initialization for all AP's
1202 */
1203void cache_aps_init(void)
1204{
1205 if (!memory_caching_control || !get_cache_aps_delayed_init())
1206 return;
1207
1208 stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask);
1209 set_cache_aps_delayed_init(false);
1210}
1211
1212static int __init cache_ap_register(void)
1213{
1214 zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL);
1215 cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask);
1216
1217 cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING,
1218 "x86/cachectrl:starting",
1219 cache_ap_online, cache_ap_offline);
1220 return 0;
1221}
1222early_initcall(cache_ap_register);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Routines to identify caches on Intel CPU.
4 *
5 * Changes:
6 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
7 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
8 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
9 */
10
11#include <linux/slab.h>
12#include <linux/cacheinfo.h>
13#include <linux/cpu.h>
14#include <linux/cpuhotplug.h>
15#include <linux/sched.h>
16#include <linux/capability.h>
17#include <linux/sysfs.h>
18#include <linux/pci.h>
19#include <linux/stop_machine.h>
20
21#include <asm/cpufeature.h>
22#include <asm/cacheinfo.h>
23#include <asm/amd_nb.h>
24#include <asm/smp.h>
25#include <asm/mtrr.h>
26#include <asm/tlbflush.h>
27
28#include "cpu.h"
29
30#define LVL_1_INST 1
31#define LVL_1_DATA 2
32#define LVL_2 3
33#define LVL_3 4
34#define LVL_TRACE 5
35
36/* Shared last level cache maps */
37DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
38
39/* Shared L2 cache maps */
40DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
41
42/* Kernel controls MTRR and/or PAT MSRs. */
43unsigned int memory_caching_control __ro_after_init;
44
45struct _cache_table {
46 unsigned char descriptor;
47 char cache_type;
48 short size;
49};
50
51#define MB(x) ((x) * 1024)
52
53/* All the cache descriptor types we care about (no TLB or
54 trace cache entries) */
55
56static const struct _cache_table cache_table[] =
57{
58 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
59 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
60 { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
61 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
62 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
63 { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
64 { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */
65 { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
66 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
67 { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
68 { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
69 { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
70 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
71 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
72 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
73 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
74 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
75 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
76 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
77 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
78 { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
79 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
80 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
81 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
82 { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */
83 { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */
84 { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */
85 { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */
86 { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */
87 { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
88 { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */
89 { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
90 { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */
91 { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */
92 { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */
93 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
94 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
95 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
96 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
97 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
98 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
99 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
100 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
101 { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */
102 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
103 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
104 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
105 { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
106 { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */
107 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
108 { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */
109 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
110 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
111 { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */
112 { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */
113 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
114 { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */
115 { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
116 { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */
117 { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */
118 { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */
119 { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */
120 { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
121 { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */
122 { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */
123 { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */
124 { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */
125 { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */
126 { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */
127 { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */
128 { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */
129 { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */
130 { 0x00, 0, 0}
131};
132
133
134enum _cache_type {
135 CTYPE_NULL = 0,
136 CTYPE_DATA = 1,
137 CTYPE_INST = 2,
138 CTYPE_UNIFIED = 3
139};
140
141union _cpuid4_leaf_eax {
142 struct {
143 enum _cache_type type:5;
144 unsigned int level:3;
145 unsigned int is_self_initializing:1;
146 unsigned int is_fully_associative:1;
147 unsigned int reserved:4;
148 unsigned int num_threads_sharing:12;
149 unsigned int num_cores_on_die:6;
150 } split;
151 u32 full;
152};
153
154union _cpuid4_leaf_ebx {
155 struct {
156 unsigned int coherency_line_size:12;
157 unsigned int physical_line_partition:10;
158 unsigned int ways_of_associativity:10;
159 } split;
160 u32 full;
161};
162
163union _cpuid4_leaf_ecx {
164 struct {
165 unsigned int number_of_sets:32;
166 } split;
167 u32 full;
168};
169
170struct _cpuid4_info_regs {
171 union _cpuid4_leaf_eax eax;
172 union _cpuid4_leaf_ebx ebx;
173 union _cpuid4_leaf_ecx ecx;
174 unsigned int id;
175 unsigned long size;
176 struct amd_northbridge *nb;
177};
178
179static unsigned short num_cache_leaves;
180
181/* AMD doesn't have CPUID4. Emulate it here to report the same
182 information to the user. This makes some assumptions about the machine:
183 L2 not shared, no SMT etc. that is currently true on AMD CPUs.
184
185 In theory the TLBs could be reported as fake type (they are in "dummy").
186 Maybe later */
187union l1_cache {
188 struct {
189 unsigned line_size:8;
190 unsigned lines_per_tag:8;
191 unsigned assoc:8;
192 unsigned size_in_kb:8;
193 };
194 unsigned val;
195};
196
197union l2_cache {
198 struct {
199 unsigned line_size:8;
200 unsigned lines_per_tag:4;
201 unsigned assoc:4;
202 unsigned size_in_kb:16;
203 };
204 unsigned val;
205};
206
207union l3_cache {
208 struct {
209 unsigned line_size:8;
210 unsigned lines_per_tag:4;
211 unsigned assoc:4;
212 unsigned res:2;
213 unsigned size_encoded:14;
214 };
215 unsigned val;
216};
217
218static const unsigned short assocs[] = {
219 [1] = 1,
220 [2] = 2,
221 [4] = 4,
222 [6] = 8,
223 [8] = 16,
224 [0xa] = 32,
225 [0xb] = 48,
226 [0xc] = 64,
227 [0xd] = 96,
228 [0xe] = 128,
229 [0xf] = 0xffff /* fully associative - no way to show this currently */
230};
231
232static const unsigned char levels[] = { 1, 1, 2, 3 };
233static const unsigned char types[] = { 1, 2, 3, 3 };
234
235static const enum cache_type cache_type_map[] = {
236 [CTYPE_NULL] = CACHE_TYPE_NOCACHE,
237 [CTYPE_DATA] = CACHE_TYPE_DATA,
238 [CTYPE_INST] = CACHE_TYPE_INST,
239 [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
240};
241
242static void
243amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
244 union _cpuid4_leaf_ebx *ebx,
245 union _cpuid4_leaf_ecx *ecx)
246{
247 unsigned dummy;
248 unsigned line_size, lines_per_tag, assoc, size_in_kb;
249 union l1_cache l1i, l1d;
250 union l2_cache l2;
251 union l3_cache l3;
252 union l1_cache *l1 = &l1d;
253
254 eax->full = 0;
255 ebx->full = 0;
256 ecx->full = 0;
257
258 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
259 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
260
261 switch (leaf) {
262 case 1:
263 l1 = &l1i;
264 fallthrough;
265 case 0:
266 if (!l1->val)
267 return;
268 assoc = assocs[l1->assoc];
269 line_size = l1->line_size;
270 lines_per_tag = l1->lines_per_tag;
271 size_in_kb = l1->size_in_kb;
272 break;
273 case 2:
274 if (!l2.val)
275 return;
276 assoc = assocs[l2.assoc];
277 line_size = l2.line_size;
278 lines_per_tag = l2.lines_per_tag;
279 /* cpu_data has errata corrections for K7 applied */
280 size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
281 break;
282 case 3:
283 if (!l3.val)
284 return;
285 assoc = assocs[l3.assoc];
286 line_size = l3.line_size;
287 lines_per_tag = l3.lines_per_tag;
288 size_in_kb = l3.size_encoded * 512;
289 if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
290 size_in_kb = size_in_kb >> 1;
291 assoc = assoc >> 1;
292 }
293 break;
294 default:
295 return;
296 }
297
298 eax->split.is_self_initializing = 1;
299 eax->split.type = types[leaf];
300 eax->split.level = levels[leaf];
301 eax->split.num_threads_sharing = 0;
302 eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1;
303
304
305 if (assoc == 0xffff)
306 eax->split.is_fully_associative = 1;
307 ebx->split.coherency_line_size = line_size - 1;
308 ebx->split.ways_of_associativity = assoc - 1;
309 ebx->split.physical_line_partition = lines_per_tag - 1;
310 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
311 (ebx->split.ways_of_associativity + 1) - 1;
312}
313
314#if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
315
316/*
317 * L3 cache descriptors
318 */
319static void amd_calc_l3_indices(struct amd_northbridge *nb)
320{
321 struct amd_l3_cache *l3 = &nb->l3_cache;
322 unsigned int sc0, sc1, sc2, sc3;
323 u32 val = 0;
324
325 pci_read_config_dword(nb->misc, 0x1C4, &val);
326
327 /* calculate subcache sizes */
328 l3->subcaches[0] = sc0 = !(val & BIT(0));
329 l3->subcaches[1] = sc1 = !(val & BIT(4));
330
331 if (boot_cpu_data.x86 == 0x15) {
332 l3->subcaches[0] = sc0 += !(val & BIT(1));
333 l3->subcaches[1] = sc1 += !(val & BIT(5));
334 }
335
336 l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9));
337 l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13));
338
339 l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1;
340}
341
342/*
343 * check whether a slot used for disabling an L3 index is occupied.
344 * @l3: L3 cache descriptor
345 * @slot: slot number (0..1)
346 *
347 * @returns: the disabled index if used or negative value if slot free.
348 */
349static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot)
350{
351 unsigned int reg = 0;
352
353 pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®);
354
355 /* check whether this slot is activated already */
356 if (reg & (3UL << 30))
357 return reg & 0xfff;
358
359 return -1;
360}
361
362static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf,
363 unsigned int slot)
364{
365 int index;
366 struct amd_northbridge *nb = this_leaf->priv;
367
368 index = amd_get_l3_disable_slot(nb, slot);
369 if (index >= 0)
370 return sprintf(buf, "%d\n", index);
371
372 return sprintf(buf, "FREE\n");
373}
374
375#define SHOW_CACHE_DISABLE(slot) \
376static ssize_t \
377cache_disable_##slot##_show(struct device *dev, \
378 struct device_attribute *attr, char *buf) \
379{ \
380 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
381 return show_cache_disable(this_leaf, buf, slot); \
382}
383SHOW_CACHE_DISABLE(0)
384SHOW_CACHE_DISABLE(1)
385
386static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu,
387 unsigned slot, unsigned long idx)
388{
389 int i;
390
391 idx |= BIT(30);
392
393 /*
394 * disable index in all 4 subcaches
395 */
396 for (i = 0; i < 4; i++) {
397 u32 reg = idx | (i << 20);
398
399 if (!nb->l3_cache.subcaches[i])
400 continue;
401
402 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
403
404 /*
405 * We need to WBINVD on a core on the node containing the L3
406 * cache which indices we disable therefore a simple wbinvd()
407 * is not sufficient.
408 */
409 wbinvd_on_cpu(cpu);
410
411 reg |= BIT(31);
412 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg);
413 }
414}
415
416/*
417 * disable a L3 cache index by using a disable-slot
418 *
419 * @l3: L3 cache descriptor
420 * @cpu: A CPU on the node containing the L3 cache
421 * @slot: slot number (0..1)
422 * @index: index to disable
423 *
424 * @return: 0 on success, error status on failure
425 */
426static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu,
427 unsigned slot, unsigned long index)
428{
429 int ret = 0;
430
431 /* check if @slot is already used or the index is already disabled */
432 ret = amd_get_l3_disable_slot(nb, slot);
433 if (ret >= 0)
434 return -EEXIST;
435
436 if (index > nb->l3_cache.indices)
437 return -EINVAL;
438
439 /* check whether the other slot has disabled the same index already */
440 if (index == amd_get_l3_disable_slot(nb, !slot))
441 return -EEXIST;
442
443 amd_l3_disable_index(nb, cpu, slot, index);
444
445 return 0;
446}
447
448static ssize_t store_cache_disable(struct cacheinfo *this_leaf,
449 const char *buf, size_t count,
450 unsigned int slot)
451{
452 unsigned long val = 0;
453 int cpu, err = 0;
454 struct amd_northbridge *nb = this_leaf->priv;
455
456 if (!capable(CAP_SYS_ADMIN))
457 return -EPERM;
458
459 cpu = cpumask_first(&this_leaf->shared_cpu_map);
460
461 if (kstrtoul(buf, 10, &val) < 0)
462 return -EINVAL;
463
464 err = amd_set_l3_disable_slot(nb, cpu, slot, val);
465 if (err) {
466 if (err == -EEXIST)
467 pr_warn("L3 slot %d in use/index already disabled!\n",
468 slot);
469 return err;
470 }
471 return count;
472}
473
474#define STORE_CACHE_DISABLE(slot) \
475static ssize_t \
476cache_disable_##slot##_store(struct device *dev, \
477 struct device_attribute *attr, \
478 const char *buf, size_t count) \
479{ \
480 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
481 return store_cache_disable(this_leaf, buf, count, slot); \
482}
483STORE_CACHE_DISABLE(0)
484STORE_CACHE_DISABLE(1)
485
486static ssize_t subcaches_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
488{
489 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
490 int cpu = cpumask_first(&this_leaf->shared_cpu_map);
491
492 return sprintf(buf, "%x\n", amd_get_subcaches(cpu));
493}
494
495static ssize_t subcaches_store(struct device *dev,
496 struct device_attribute *attr,
497 const char *buf, size_t count)
498{
499 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
500 int cpu = cpumask_first(&this_leaf->shared_cpu_map);
501 unsigned long val;
502
503 if (!capable(CAP_SYS_ADMIN))
504 return -EPERM;
505
506 if (kstrtoul(buf, 16, &val) < 0)
507 return -EINVAL;
508
509 if (amd_set_subcaches(cpu, val))
510 return -EINVAL;
511
512 return count;
513}
514
515static DEVICE_ATTR_RW(cache_disable_0);
516static DEVICE_ATTR_RW(cache_disable_1);
517static DEVICE_ATTR_RW(subcaches);
518
519static umode_t
520cache_private_attrs_is_visible(struct kobject *kobj,
521 struct attribute *attr, int unused)
522{
523 struct device *dev = kobj_to_dev(kobj);
524 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
525 umode_t mode = attr->mode;
526
527 if (!this_leaf->priv)
528 return 0;
529
530 if ((attr == &dev_attr_subcaches.attr) &&
531 amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
532 return mode;
533
534 if ((attr == &dev_attr_cache_disable_0.attr ||
535 attr == &dev_attr_cache_disable_1.attr) &&
536 amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
537 return mode;
538
539 return 0;
540}
541
542static struct attribute_group cache_private_group = {
543 .is_visible = cache_private_attrs_is_visible,
544};
545
546static void init_amd_l3_attrs(void)
547{
548 int n = 1;
549 static struct attribute **amd_l3_attrs;
550
551 if (amd_l3_attrs) /* already initialized */
552 return;
553
554 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE))
555 n += 2;
556 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
557 n += 1;
558
559 amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL);
560 if (!amd_l3_attrs)
561 return;
562
563 n = 0;
564 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) {
565 amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr;
566 amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr;
567 }
568 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
569 amd_l3_attrs[n++] = &dev_attr_subcaches.attr;
570
571 cache_private_group.attrs = amd_l3_attrs;
572}
573
574const struct attribute_group *
575cache_get_priv_group(struct cacheinfo *this_leaf)
576{
577 struct amd_northbridge *nb = this_leaf->priv;
578
579 if (this_leaf->level < 3 || !nb)
580 return NULL;
581
582 if (nb && nb->l3_cache.indices)
583 init_amd_l3_attrs();
584
585 return &cache_private_group;
586}
587
588static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index)
589{
590 int node;
591
592 /* only for L3, and not in virtualized environments */
593 if (index < 3)
594 return;
595
596 node = topology_die_id(smp_processor_id());
597 this_leaf->nb = node_to_amd_nb(node);
598 if (this_leaf->nb && !this_leaf->nb->l3_cache.indices)
599 amd_calc_l3_indices(this_leaf->nb);
600}
601#else
602#define amd_init_l3_cache(x, y)
603#endif /* CONFIG_AMD_NB && CONFIG_SYSFS */
604
605static int
606cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf)
607{
608 union _cpuid4_leaf_eax eax;
609 union _cpuid4_leaf_ebx ebx;
610 union _cpuid4_leaf_ecx ecx;
611 unsigned edx;
612
613 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
614 if (boot_cpu_has(X86_FEATURE_TOPOEXT))
615 cpuid_count(0x8000001d, index, &eax.full,
616 &ebx.full, &ecx.full, &edx);
617 else
618 amd_cpuid4(index, &eax, &ebx, &ecx);
619 amd_init_l3_cache(this_leaf, index);
620 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
621 cpuid_count(0x8000001d, index, &eax.full,
622 &ebx.full, &ecx.full, &edx);
623 amd_init_l3_cache(this_leaf, index);
624 } else {
625 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
626 }
627
628 if (eax.split.type == CTYPE_NULL)
629 return -EIO; /* better error ? */
630
631 this_leaf->eax = eax;
632 this_leaf->ebx = ebx;
633 this_leaf->ecx = ecx;
634 this_leaf->size = (ecx.split.number_of_sets + 1) *
635 (ebx.split.coherency_line_size + 1) *
636 (ebx.split.physical_line_partition + 1) *
637 (ebx.split.ways_of_associativity + 1);
638 return 0;
639}
640
641static int find_num_cache_leaves(struct cpuinfo_x86 *c)
642{
643 unsigned int eax, ebx, ecx, edx, op;
644 union _cpuid4_leaf_eax cache_eax;
645 int i = -1;
646
647 if (c->x86_vendor == X86_VENDOR_AMD ||
648 c->x86_vendor == X86_VENDOR_HYGON)
649 op = 0x8000001d;
650 else
651 op = 4;
652
653 do {
654 ++i;
655 /* Do cpuid(op) loop to find out num_cache_leaves */
656 cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
657 cache_eax.full = eax;
658 } while (cache_eax.split.type != CTYPE_NULL);
659 return i;
660}
661
662void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu)
663{
664 /*
665 * We may have multiple LLCs if L3 caches exist, so check if we
666 * have an L3 cache by looking at the L3 cache CPUID leaf.
667 */
668 if (!cpuid_edx(0x80000006))
669 return;
670
671 if (c->x86 < 0x17) {
672 /* LLC is at the node level. */
673 per_cpu(cpu_llc_id, cpu) = c->cpu_die_id;
674 } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) {
675 /*
676 * LLC is at the core complex level.
677 * Core complex ID is ApicId[3] for these processors.
678 */
679 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
680 } else {
681 /*
682 * LLC ID is calculated from the number of threads sharing the
683 * cache.
684 * */
685 u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
686 u32 llc_index = find_num_cache_leaves(c) - 1;
687
688 cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
689 if (eax)
690 num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
691
692 if (num_sharing_cache) {
693 int bits = get_count_order(num_sharing_cache);
694
695 per_cpu(cpu_llc_id, cpu) = c->apicid >> bits;
696 }
697 }
698}
699
700void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c, int cpu)
701{
702 /*
703 * We may have multiple LLCs if L3 caches exist, so check if we
704 * have an L3 cache by looking at the L3 cache CPUID leaf.
705 */
706 if (!cpuid_edx(0x80000006))
707 return;
708
709 /*
710 * LLC is at the core complex level.
711 * Core complex ID is ApicId[3] for these processors.
712 */
713 per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
714}
715
716void init_amd_cacheinfo(struct cpuinfo_x86 *c)
717{
718
719 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
720 num_cache_leaves = find_num_cache_leaves(c);
721 } else if (c->extended_cpuid_level >= 0x80000006) {
722 if (cpuid_edx(0x80000006) & 0xf000)
723 num_cache_leaves = 4;
724 else
725 num_cache_leaves = 3;
726 }
727}
728
729void init_hygon_cacheinfo(struct cpuinfo_x86 *c)
730{
731 num_cache_leaves = find_num_cache_leaves(c);
732}
733
734void init_intel_cacheinfo(struct cpuinfo_x86 *c)
735{
736 /* Cache sizes */
737 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
738 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
739 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
740 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
741#ifdef CONFIG_SMP
742 unsigned int cpu = c->cpu_index;
743#endif
744
745 if (c->cpuid_level > 3) {
746 static int is_initialized;
747
748 if (is_initialized == 0) {
749 /* Init num_cache_leaves from boot CPU */
750 num_cache_leaves = find_num_cache_leaves(c);
751 is_initialized++;
752 }
753
754 /*
755 * Whenever possible use cpuid(4), deterministic cache
756 * parameters cpuid leaf to find the cache details
757 */
758 for (i = 0; i < num_cache_leaves; i++) {
759 struct _cpuid4_info_regs this_leaf = {};
760 int retval;
761
762 retval = cpuid4_cache_lookup_regs(i, &this_leaf);
763 if (retval < 0)
764 continue;
765
766 switch (this_leaf.eax.split.level) {
767 case 1:
768 if (this_leaf.eax.split.type == CTYPE_DATA)
769 new_l1d = this_leaf.size/1024;
770 else if (this_leaf.eax.split.type == CTYPE_INST)
771 new_l1i = this_leaf.size/1024;
772 break;
773 case 2:
774 new_l2 = this_leaf.size/1024;
775 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
776 index_msb = get_count_order(num_threads_sharing);
777 l2_id = c->apicid & ~((1 << index_msb) - 1);
778 break;
779 case 3:
780 new_l3 = this_leaf.size/1024;
781 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
782 index_msb = get_count_order(num_threads_sharing);
783 l3_id = c->apicid & ~((1 << index_msb) - 1);
784 break;
785 default:
786 break;
787 }
788 }
789 }
790 /*
791 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
792 * trace cache
793 */
794 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
795 /* supports eax=2 call */
796 int j, n;
797 unsigned int regs[4];
798 unsigned char *dp = (unsigned char *)regs;
799 int only_trace = 0;
800
801 if (num_cache_leaves != 0 && c->x86 == 15)
802 only_trace = 1;
803
804 /* Number of times to iterate */
805 n = cpuid_eax(2) & 0xFF;
806
807 for (i = 0 ; i < n ; i++) {
808 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
809
810 /* If bit 31 is set, this is an unknown format */
811 for (j = 0 ; j < 3 ; j++)
812 if (regs[j] & (1 << 31))
813 regs[j] = 0;
814
815 /* Byte 0 is level count, not a descriptor */
816 for (j = 1 ; j < 16 ; j++) {
817 unsigned char des = dp[j];
818 unsigned char k = 0;
819
820 /* look up this descriptor in the table */
821 while (cache_table[k].descriptor != 0) {
822 if (cache_table[k].descriptor == des) {
823 if (only_trace && cache_table[k].cache_type != LVL_TRACE)
824 break;
825 switch (cache_table[k].cache_type) {
826 case LVL_1_INST:
827 l1i += cache_table[k].size;
828 break;
829 case LVL_1_DATA:
830 l1d += cache_table[k].size;
831 break;
832 case LVL_2:
833 l2 += cache_table[k].size;
834 break;
835 case LVL_3:
836 l3 += cache_table[k].size;
837 break;
838 case LVL_TRACE:
839 trace += cache_table[k].size;
840 break;
841 }
842
843 break;
844 }
845
846 k++;
847 }
848 }
849 }
850 }
851
852 if (new_l1d)
853 l1d = new_l1d;
854
855 if (new_l1i)
856 l1i = new_l1i;
857
858 if (new_l2) {
859 l2 = new_l2;
860#ifdef CONFIG_SMP
861 per_cpu(cpu_llc_id, cpu) = l2_id;
862 per_cpu(cpu_l2c_id, cpu) = l2_id;
863#endif
864 }
865
866 if (new_l3) {
867 l3 = new_l3;
868#ifdef CONFIG_SMP
869 per_cpu(cpu_llc_id, cpu) = l3_id;
870#endif
871 }
872
873#ifdef CONFIG_SMP
874 /*
875 * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in
876 * turns means that the only possibility is SMT (as indicated in
877 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know
878 * that SMT shares all caches, we can unconditionally set cpu_llc_id to
879 * c->phys_proc_id.
880 */
881 if (per_cpu(cpu_llc_id, cpu) == BAD_APICID)
882 per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
883#endif
884
885 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
886
887 if (!l2)
888 cpu_detect_cache_sizes(c);
889}
890
891static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
892 struct _cpuid4_info_regs *base)
893{
894 struct cpu_cacheinfo *this_cpu_ci;
895 struct cacheinfo *this_leaf;
896 int i, sibling;
897
898 /*
899 * For L3, always use the pre-calculated cpu_llc_shared_mask
900 * to derive shared_cpu_map.
901 */
902 if (index == 3) {
903 for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
904 this_cpu_ci = get_cpu_cacheinfo(i);
905 if (!this_cpu_ci->info_list)
906 continue;
907 this_leaf = this_cpu_ci->info_list + index;
908 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
909 if (!cpu_online(sibling))
910 continue;
911 cpumask_set_cpu(sibling,
912 &this_leaf->shared_cpu_map);
913 }
914 }
915 } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
916 unsigned int apicid, nshared, first, last;
917
918 nshared = base->eax.split.num_threads_sharing + 1;
919 apicid = cpu_data(cpu).apicid;
920 first = apicid - (apicid % nshared);
921 last = first + nshared - 1;
922
923 for_each_online_cpu(i) {
924 this_cpu_ci = get_cpu_cacheinfo(i);
925 if (!this_cpu_ci->info_list)
926 continue;
927
928 apicid = cpu_data(i).apicid;
929 if ((apicid < first) || (apicid > last))
930 continue;
931
932 this_leaf = this_cpu_ci->info_list + index;
933
934 for_each_online_cpu(sibling) {
935 apicid = cpu_data(sibling).apicid;
936 if ((apicid < first) || (apicid > last))
937 continue;
938 cpumask_set_cpu(sibling,
939 &this_leaf->shared_cpu_map);
940 }
941 }
942 } else
943 return 0;
944
945 return 1;
946}
947
948static void __cache_cpumap_setup(unsigned int cpu, int index,
949 struct _cpuid4_info_regs *base)
950{
951 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
952 struct cacheinfo *this_leaf, *sibling_leaf;
953 unsigned long num_threads_sharing;
954 int index_msb, i;
955 struct cpuinfo_x86 *c = &cpu_data(cpu);
956
957 if (c->x86_vendor == X86_VENDOR_AMD ||
958 c->x86_vendor == X86_VENDOR_HYGON) {
959 if (__cache_amd_cpumap_setup(cpu, index, base))
960 return;
961 }
962
963 this_leaf = this_cpu_ci->info_list + index;
964 num_threads_sharing = 1 + base->eax.split.num_threads_sharing;
965
966 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
967 if (num_threads_sharing == 1)
968 return;
969
970 index_msb = get_count_order(num_threads_sharing);
971
972 for_each_online_cpu(i)
973 if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) {
974 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
975
976 if (i == cpu || !sib_cpu_ci->info_list)
977 continue;/* skip if itself or no cacheinfo */
978 sibling_leaf = sib_cpu_ci->info_list + index;
979 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
980 cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map);
981 }
982}
983
984static void ci_leaf_init(struct cacheinfo *this_leaf,
985 struct _cpuid4_info_regs *base)
986{
987 this_leaf->id = base->id;
988 this_leaf->attributes = CACHE_ID;
989 this_leaf->level = base->eax.split.level;
990 this_leaf->type = cache_type_map[base->eax.split.type];
991 this_leaf->coherency_line_size =
992 base->ebx.split.coherency_line_size + 1;
993 this_leaf->ways_of_associativity =
994 base->ebx.split.ways_of_associativity + 1;
995 this_leaf->size = base->size;
996 this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1;
997 this_leaf->physical_line_partition =
998 base->ebx.split.physical_line_partition + 1;
999 this_leaf->priv = base->nb;
1000}
1001
1002int init_cache_level(unsigned int cpu)
1003{
1004 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
1005
1006 if (!num_cache_leaves)
1007 return -ENOENT;
1008 if (!this_cpu_ci)
1009 return -EINVAL;
1010 this_cpu_ci->num_levels = 3;
1011 this_cpu_ci->num_leaves = num_cache_leaves;
1012 return 0;
1013}
1014
1015/*
1016 * The max shared threads number comes from CPUID.4:EAX[25-14] with input
1017 * ECX as cache index. Then right shift apicid by the number's order to get
1018 * cache id for this cache node.
1019 */
1020static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs)
1021{
1022 struct cpuinfo_x86 *c = &cpu_data(cpu);
1023 unsigned long num_threads_sharing;
1024 int index_msb;
1025
1026 num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing;
1027 index_msb = get_count_order(num_threads_sharing);
1028 id4_regs->id = c->apicid >> index_msb;
1029}
1030
1031int populate_cache_leaves(unsigned int cpu)
1032{
1033 unsigned int idx, ret;
1034 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
1035 struct cacheinfo *this_leaf = this_cpu_ci->info_list;
1036 struct _cpuid4_info_regs id4_regs = {};
1037
1038 for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
1039 ret = cpuid4_cache_lookup_regs(idx, &id4_regs);
1040 if (ret)
1041 return ret;
1042 get_cache_id(cpu, &id4_regs);
1043 ci_leaf_init(this_leaf++, &id4_regs);
1044 __cache_cpumap_setup(cpu, idx, &id4_regs);
1045 }
1046 this_cpu_ci->cpu_map_populated = true;
1047
1048 return 0;
1049}
1050
1051/*
1052 * Disable and enable caches. Needed for changing MTRRs and the PAT MSR.
1053 *
1054 * Since we are disabling the cache don't allow any interrupts,
1055 * they would run extremely slow and would only increase the pain.
1056 *
1057 * The caller must ensure that local interrupts are disabled and
1058 * are reenabled after cache_enable() has been called.
1059 */
1060static unsigned long saved_cr4;
1061static DEFINE_RAW_SPINLOCK(cache_disable_lock);
1062
1063void cache_disable(void) __acquires(cache_disable_lock)
1064{
1065 unsigned long cr0;
1066
1067 /*
1068 * Note that this is not ideal
1069 * since the cache is only flushed/disabled for this CPU while the
1070 * MTRRs are changed, but changing this requires more invasive
1071 * changes to the way the kernel boots
1072 */
1073
1074 raw_spin_lock(&cache_disable_lock);
1075
1076 /* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
1077 cr0 = read_cr0() | X86_CR0_CD;
1078 write_cr0(cr0);
1079
1080 /*
1081 * Cache flushing is the most time-consuming step when programming
1082 * the MTRRs. Fortunately, as per the Intel Software Development
1083 * Manual, we can skip it if the processor supports cache self-
1084 * snooping.
1085 */
1086 if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
1087 wbinvd();
1088
1089 /* Save value of CR4 and clear Page Global Enable (bit 7) */
1090 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1091 saved_cr4 = __read_cr4();
1092 __write_cr4(saved_cr4 & ~X86_CR4_PGE);
1093 }
1094
1095 /* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
1096 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1097 flush_tlb_local();
1098
1099 if (cpu_feature_enabled(X86_FEATURE_MTRR))
1100 mtrr_disable();
1101
1102 /* Again, only flush caches if we have to. */
1103 if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
1104 wbinvd();
1105}
1106
1107void cache_enable(void) __releases(cache_disable_lock)
1108{
1109 /* Flush TLBs (no need to flush caches - they are disabled) */
1110 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
1111 flush_tlb_local();
1112
1113 if (cpu_feature_enabled(X86_FEATURE_MTRR))
1114 mtrr_enable();
1115
1116 /* Enable caches */
1117 write_cr0(read_cr0() & ~X86_CR0_CD);
1118
1119 /* Restore value of CR4 */
1120 if (cpu_feature_enabled(X86_FEATURE_PGE))
1121 __write_cr4(saved_cr4);
1122
1123 raw_spin_unlock(&cache_disable_lock);
1124}
1125
1126static void cache_cpu_init(void)
1127{
1128 unsigned long flags;
1129
1130 local_irq_save(flags);
1131 cache_disable();
1132
1133 if (memory_caching_control & CACHE_MTRR)
1134 mtrr_generic_set_state();
1135
1136 if (memory_caching_control & CACHE_PAT)
1137 pat_cpu_init();
1138
1139 cache_enable();
1140 local_irq_restore(flags);
1141}
1142
1143static bool cache_aps_delayed_init = true;
1144
1145void set_cache_aps_delayed_init(bool val)
1146{
1147 cache_aps_delayed_init = val;
1148}
1149
1150bool get_cache_aps_delayed_init(void)
1151{
1152 return cache_aps_delayed_init;
1153}
1154
1155static int cache_rendezvous_handler(void *unused)
1156{
1157 if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id()))
1158 cache_cpu_init();
1159
1160 return 0;
1161}
1162
1163void __init cache_bp_init(void)
1164{
1165 mtrr_bp_init();
1166 pat_bp_init();
1167
1168 if (memory_caching_control)
1169 cache_cpu_init();
1170}
1171
1172void cache_bp_restore(void)
1173{
1174 if (memory_caching_control)
1175 cache_cpu_init();
1176}
1177
1178static int cache_ap_init(unsigned int cpu)
1179{
1180 if (!memory_caching_control || get_cache_aps_delayed_init())
1181 return 0;
1182
1183 /*
1184 * Ideally we should hold mtrr_mutex here to avoid MTRR entries
1185 * changed, but this routine will be called in CPU boot time,
1186 * holding the lock breaks it.
1187 *
1188 * This routine is called in two cases:
1189 *
1190 * 1. very early time of software resume, when there absolutely
1191 * isn't MTRR entry changes;
1192 *
1193 * 2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug
1194 * lock to prevent MTRR entry changes
1195 */
1196 stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL,
1197 cpu_callout_mask);
1198
1199 return 0;
1200}
1201
1202/*
1203 * Delayed cache initialization for all AP's
1204 */
1205void cache_aps_init(void)
1206{
1207 if (!memory_caching_control || !get_cache_aps_delayed_init())
1208 return;
1209
1210 stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask);
1211 set_cache_aps_delayed_init(false);
1212}
1213
1214static int __init cache_ap_register(void)
1215{
1216 cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING,
1217 "x86/cachectrl:starting",
1218 cache_ap_init, NULL);
1219 return 0;
1220}
1221core_initcall(cache_ap_register);